
COMPUTATIONAL METHODS IN 
NONLINEAR STRUCTURAL AND 

SOLID MECHANICS 

Papers presented at the Symposium on Computational Methods 
in Nonlinear Structural and Solid Mechanics 

Held 6-8 October 1980, Washington, D.C. 

Editors 
AHMED K. NOOR 

Professor of Engineering and Applied Science, The George Washington University Center at NASA Langley 
Research Center, Hampton, Virginia, U.S.A. 

and 

HARVEY G. McCOMB, JR. 
Assistant Chief, Structural Mechanics Division, NASA Langley Research Center, Hampton, Virginia, U.S.A. 

Sponsored by the George Washington University and NASA Langley 
Research Center in cooperation with the American Society of Civil 
Engineers, the American Society of Mechanical Engineers, and the 
National Science Foundation. 

PERGAMON PRESS 
OXFORD · NEW YORK · TORONTO 

PARIS · FRANKFURT · SYDNEY 



U.K. 

U.S.A. 

CANADA 

AUSTRALIA 

FRANCE 

FEDERAL REPUBLIC 
OF GERMANY 

Pergamon Press Ltd., Headington Hill Hall, 
Oxford OX3 OBW, England 
Pergamon Press Inc., Maxwell House, Fairview Park, 
Elmsford, New York 10523, U.S.A. 
Pergamon Press Canada Ltd., Suite 104, 150 Con-
sumers Road, Willowdale, Ontario M2J 1P9, Canada 
Pergamon Press (Aust.) Pty. Ltd., P.O. Box 544, 
Potts Point, N.S.W. 2011, Australia 
Pergamon Press SARL, 24 rue des Ecoles, 
75240 Paris, Cedex 05, France 
Pergamon Press GmBH, Hammerweg 6, Postfach 1305, 
6242 Kronberg-Taunus, Federal Republic of Germany 

Copyright © 1981 Pergamon Press Ltd. 
All Rights Reserved. No part of this publication may be 
reproduced, stored in a retrieval system or transmitted 
in any form or by any means: electronic, electrostatic, 
magnetic tape, mechanical, photocopying, recording or 
otherwise, without permission in writing from the 
publishers. 

ISBN 0 08 027299 1 

Published as a special issue of the journal Com-
puters & Structures, Volume 13, Number 1-3 and 
supplied to subscribers as part of their normal 
subscription. Also available to non-subscribers. 

Printed in Great Britain by A. Wheaton & Co. Ltd., Exeter. 



Computers & Structures Vol. 13, pp. v-vi, 1981. 
Printed in Great Britain 

0045-7949/8 l/01000v-02$02.00/0 
Pergamon Press Ltd. 

PREFACE 

Significant and far-reaching advances have been made in the last decade in the development and 
application of computational methods to analyze nonlinear behavior of structures and solids. The 
increasing importance of nonlinear analysis is largely due to the emphasis placed by manufacturers, 
contractors and certifying agencies on realistic modeling and accurate analysis of critical structural 
components. This endeavor has prompted the development of efficient discretization procedures, 
numerical algorithms and programming techniques as well as versatile and powerful finite element 
software systems for nonlinear analysis. These developments have been greatly facilitated by extensive 
advances in computer hardware and software technology. Nonlinear analysis currently represents the 
new frontier and "cutting edge" of modern structures and solid mechanics technology. It is important for 
the future progress of this field that technical information be exchanged quickly and accurately among 
researchers, structural analysts and structural engineering software designers. 

As a means of communicating recent advances and as a step towards stronger interaction among 
numerical analysts, computer scientists and structural engineers, a symposium entitled, "Computational 
Methods in Nonlinear Structural and Solid Mechanics," was held in Washington, D.C. on 6-8 October 1980. 
The organizing committee expected that by bringing together leading experts and active researchers in areas 
which could impact future developments in numerical analysis of nonlinear response of structures and 
solids, formal presentations and personal interaction would increase communications among the disciplines 
and foster effective development of the technology. 

Most of the papers presented at the symposium which report completed research work are contained 
in this Proceedings volume. A companion NASA Conference Publication entitled, "Research in 
Nonlinear Structural and Solid Mechanics," contains primarily short papers reporting research in 
progress. 

These papers document clearly recent developments in efficient discretization approaches, advanced 
numerical methods, improved programming techniques, and applications of these developments to 
nonlinear analysis of structures and solids. They also help identify directions of future developments in 
this field. The topic headings in the symposium are largely represented by the section headings of this 
volume, namely: (1) Nonlinear Mathematical Theories and Formulation Aspects, (2) Computational 
Strategies for Nonlinear Problems, (3) Time Integration Techniques and Numerical Solution of Non-
linear Algebraic Equations, (4) Material Characterization and Nonlinear Fracture Mechanics, (5) Non-
linear Interaction Problems, (6) Seismic Response and Nonlinear Analysis of Concrete 
Structures, (7) Nonlinear Problems for Nuclear Reactors, (8) Crash Dynamics and Impact Problems, (9) 
Nonlinear Problems of Fibrous Composites and Advanced Nonlinear Applications, and (10) Com-
puterized Symbolic Manipulation and Nonlinear Analysis Software Systems. The papers contained in 
this volume will also appear in a special issue of the Journal of Computers and Structures. 

The last paper in this volume was not presented at the symposium and is included in the volume 
because it gives an indication of the status of existing software for nonlinear analysis. The paper is a 
survey of current capabilities of thirty-six computer programs for solution of structural and solid 
mechanics problems. This spectrum of programs ranges from large, general purpose to small, special 
purpose codes. It is hoped that this survey will guide analysts and researchers in the initial selection of 
programs most suitable for selected applications. 

The fields covered by the symposium are rapidly changing, and if new results and anticipated future 
directions are to have the maximum impact and use, it is imperative that they reach workers in the field 
as soon as possible. This consideration led to the decision to publish these proceedings prior to the 
symposium. Special thanks go to Pergamon Press for their cooperation in publishing this volume and to 
Dean Harold Liebowitz, School of Engineering and Applied Science of the George Washington 
University for making arrangements for the publication. 

v 
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Abstract—A complete and consistent theory is formulated to describe the large-deflection elastic-plastic 
behavior of thin-walled beams of arbitrary initial shape and subjected to arbitrary transient loadings. The 
nonlinear beam theory is derived from a well-documented nonlinear shell theory through an application of 
Hamilton's Principle. By interpreting classical beam theory displacement fields as the lower order terms in a 
more general series expansion of deformation modes which describe the behavior of the beam cross section, 
a higher order beam theory based on such an expansion can be developed. The theory can be sufficiently 
general so as to incorporate the effects of cross-sectional distortion and collapse in addition to the complete 
range of behavior normally associated with beam theory (translation, extension, bending transverse shear 
deformation, torsion, and warping). The generalized equations of motion associated with this series or 
modal technique are shown to be of the same form as the generalized equations of shell theory from which 
they were derived. These nonlinear equations of motion for the beam are cast into an approximate form 
suitable for implementation on a digital computer. The resulting program, MENTOR-3 is applied to treat 
a nonlinear response and impact problem. 

1. INTRODUCTION 

In recent years the concern over nuclear power plant 
safety and vehicle crashworthiness has speeded the 
development of sophisticated analytical tools and 
computer codes required by the analyst to predict the 
nonlinear behavior of safety related structures during 
abnormal or upset conditions. It has been demonstrated 
that when sufficient care and attention is paid in devel-
oping the nonlinear analysis, the predictions can be 
shown to be reliable and accurate to within the order of 
accepted approximation. Therein, the engineer must 
determine the appropriate level of sophistication or 
precision which must be incorporated into the analysis 
in order for the predictions to be useful and meaningful. 

The three basic theories of structural mechanics 
available to the engineering analyst include beam, shell 
and general 3-dimensional continuum theory. Each 
of these "macro-mechanics" type theories incorporates 
a particular level of approximation which is clearly 
evident in its derivation from the fundamental prin-
ciples of physics. Traditional continuum theory in-
volves the least amount of approximation and is norm-
ally considered to be a valid basis for the development 
of the more specialized theories of shells and beams. 

A measure which forms a suitable basis for dis-
tinguishing between beam, shell, and solid structures 
lies in their relative physical dimensions (additional 
criteria concerned with material properties, and 
smoothness of geometry and loading may also be 
addressed). For instance, shells are distinguishable from 
solids by their having one physical dimension, their 
thickness, small in comparison with their other di-
mensions. Beams on the other hand have two dimen-
sions (their cross section measurements) small in 
comparison with the remaining dimension (span). It is 

3-D SOLID CONTINUUM THEORY 

THIN SHELL-

B 

\ 
- THICK SHELL 

THIN-WALLED THICK-WALLED SOLID 
BEAM — G — BEAM -H-CROSS-SECTION 

BEAM 

Fig. 1. Inter-relation between theories for solids, shells and 
beams. 

evident, therefore, that one should in principle be able 
to connect and derive the equations for beams, shells 
and 3-dimensional continuum (solids) by taking ad-
vantage of these basic factors which serve to distinguish 
each structure. Such a relationship is illustrated in Fig. 1 
for smoothly contoured and loaded homogeneous 
structures. 

Some of the paths discernable in Fig. 1 have already 
been developed. The theoretical developments associ-
ated with paths A, B, C and D are available in [1-4]. For 
instance, in [1] advantage is taken of the fact that the 
thickness of a shell is thin in comparison with its other 
dimensions to reduce a 3-dimensional continuum 
theory to one defined on a 2-dimensional subspace or 
reference surface. This is accomplished by assuming 
within the context of Hamilton's Principle that the 
deformation through the shell thickness is of a known 
functional form (truncated series of deformation modes) 
whose parameters are defined on the shell reference 
surface. Unfortunately, it is often prohibitively expen-
sive to treat many problems of engineering interest by 

3 
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employing a 3-dimensional continuum analysis or 
even the less-costly shell analysis. This is particularly 
true for structures in which at least one, and more likely 
two, of its physical dimensions is "thin" with respect to 
its other dimensions. 

Many investigators [5-7] have studied the behavior 
of such doubly-thin structures and have contributed to 
the modern engineering theory of general beams. Most 
of these formulations were developed to treat the be-
havior of beams whose cross-sections deformed in 
accordance with classical beam theory assumptions 
(translation, bending and torsion) or incorporated the 
first order effects of warping and transverse shear 
deformation. Several attempts to incorporate higher 
order effects in beams have been reported [8]; how-
ever, most are restricted to elastic beam material be-
havior and specific types of deformation fields. Of 
specific interest in the present paper is the nonlinear 
response of general 3-dimensional thin-walled beams. 
This field has also received considerable attention 
[9-11] ; however, again the published results are gener-
ally restricted to small strain elastic behavior or incor-
porate a multitude of kinematic assumptions or con-
straints. It is nevertheless important to note that in each 
of the above-mentioned shell and beam formulations, 
the displacement field of the structure along its thin 
dimension(s) is postulated in terms of generalized dis-
placements defined along the remaining dimension(s). 
By reducing the infinite number of degrees of freedom 
along the thin dimension to a suitable and finite number 
(these normally are just the displacements of the struc-
ture at its reference surface or reference axis), great 
economies in expenditure and effort are derived while 
maintaining suitable engineering accuracy. 

The present paper extends this basic concept to de-
velop a thin-walled beam theory from shell theory by 
imposing an assumed displacement field along the shell 
reference surface coordinate (η) which lies within the 
cross sectional face of the beam (Fig. 2). This reduces the 
shell theory to a beam theory (path E in Fig. 1) wherein 
the parameters (displacement field coefficients) which 
describe the structural deformation are evaluated or 
defined on a reference line (the beam axis). Such a 
formulation for thin-walled beams has a number of 
distinct advantages, the most significant of which is the 
orderly overlapping of the domains of applicability of 
shell and beam theory. In addition, since no restriction 
is applied to the type or number of independent degrees 
of freedom incorporated in the description of the dis-

Fig. 2. Position vector to a 3-dimensional thin-walled beam. 

tStandard tensor summation conventions are used 
throughout. Greek minuscules range over the values 1 and 2 
whereas Latin minuscules range over the values 1, 2 and 3. 

placement field of the beam across its cross section, the 
analyst is no longer confined by the deformation restric-
tions of classical beam theory (which may be interpreted 
as the lower order terms in a more general series expan-
sion). By the judicious insertion of additional independ-
ent degrees of freedom into the assumed displacement 
field of the cross section, effects such as cross-section 
distortion and collapse, normally associated with shell 
theory, may readily be incorporated into the "beam-
type" analysis. It is perhaps worthwhile to note at this 
stage that because each deformation mode is treated as 
being independent (at least in an incremental sense), the 
present procedure may also be interpreted as a "general-
ized nonlinear incremental modal technique" as applied 
to a beam-type structure. Also note that in the limit, as 
an infinite number of independent degrees of freedom 
is employed in the beam cross section displacement 
field, the beam solution should converge to the shell-
theory solution as the truncation error approaches zero. 

In the following sections, the generalized equations 
which describe the arbitrarily large-deflection elastic-
plastic response of a thin-walled beam are derived from 
a thin-walled shell theory through an application of 
Hamilton's Principle into which the above-mentioned 
beam displacement field is introduced. It will be shown 
that the generalized equations of motion suitable for 
describing the behavior of a beam are similar in form 
to the equations which describe the behavior of a shell 
and of a 3-dimensional continuum ; a similar analogy 
exists in any modal or generalized Ritz or finite-element 
analysis. The finite-difference method is employed to 
approximate the spatial derivatives along the span of 
the beam. The resulting approximate equations of 
equilibrium are then integrated in time by means of a 
central-difference procedure to obtain the transient 
response of the beam. 

This analysis has been incorporated into the 
MENTOR-3 computer code which is available for 
treating structures such as shells, beams, or combina-
tions thereof. This program has been employed to 
analyze a variety of problems wherein the effects of 
large-displacement elastic-plastic behavior associated 
with the overall deformation of the structure are com-
plicated by the presence of local cross sectional collapse. 

2. THEORETICAL DEVELOPMENT 

An outline of the general development leading to the 
formulation of the general modal equations of motion 
suitable for a thin-walled beam is presented in this 
section. A more comprehensive and detailed develop-
ment may be found in [1, 3]. 

Geometry and position vector of the beam 
A general 3-dimensional body can be described in 

terms of the position vector R to any point within the 
body. Each such point can be uniquely defined by its ξι 

intrinsic coordinates f (which, for each material point, 
are invariant in time). The position vector may be 
described in terms of its coordinates Yj in Cartesian 
space as: 

In general, the positions Yj are a function of the three in-
trinsic coordinates ξι used to identify the material point. 

Consider now a beam whose cross section is com-
prised of thin-walled members. It is often advantageous 
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when treating thin structures to employ the concept of 
a reference surface which may, but need not be, the 
mid-surface of the structure. The reference surface of 
such a shell-type structure is defined by its position 
vector Rs which can be described in terms of the two 
intrinsic coordinates ξ1, ξ2 associated with material 
points on the reference surface (Fig. 2) 

R s = î % (2) 
Next, a third intrinsic coordinate ζ is introduced which 
is associated with the direction which is initially normal 
to the reference surface and is needed to describe the 
position of points located through the thickness of the 
structure. For thin structures, one employs the Kirch-
hoff hypothesis to describe the deformed shape through 
the thickness as : 

R = R ( a = R ( £ U 2 , 0 
^ΐΥί + ζΝ^,ξ2)^ (3) 
= Υ\ξ\ ξ\ Ov 

When describing a thin-walled beam which is treated 
as a thin-shell constrained in some fashion to behave 
as a beam, it is advantageous to employ the coordin-
ates s, η and ( which are defined to exist along the beam 
reference axis, lateral cross section coordinate (on the 
reference surface), and through the shell thickness, 
respectively (Fig. 2). 

The position vector to the beam reference axis, Rb, 
can be described in terms of its axial coordinate 5 as: 

Rb=R>(s)=y{(5)i, "(4) 
In the present analysis, the reference axis has no par-
ticular significance other than being a convenient 
means of describing the position of the beam in space. 
Next, the position vector Rs to any point on the refer-
ence surface of the thin-walled beam may be described 
by 

R„ ■ Yfrl, s)ij (5a) 

and since this same reference surface may be described 
in terms of the shell intrinsic coordinates as 

Rs= Υ{(ξ\ ζ% (5b) 

it is convenient to set, without loss of any generality 

ξι = η e = s. (6) 

The position vector Rs to the deformed reference 
surface will now be related to the beam displacement 
field. First, the position vector to the deformed beam 
axis is given by 

= Υί(ξ% (7) 

where rb is the position vector to the undeformed beam 
axis, and ub is the displacement field vector of the beam 
reference axis. Consider now the position vector to 
points away from the beam axis. Since shell theory will 
be employed to describe the behavior of the beam 
through the wall thickness, it suffices to describe the 
position vector to the deformed reference surface in 
order to describe fully the geometry of the deformed 
beam. If rs represents the position vector to the un-
deformed reference surface, then 

Rs = r s +u, (8) 

The reference surface displacement vector us is repre-

sented by a series of generalized displacements (re-
ferred to Cartesian directions) 

us= X Φ${η)ΑΥ^\ (9) 

Expressions for the changes in the base vectors and the 
associated incremental strain tensor are available in [3]. 

The equations of modal equilibrium and the associated 
boundary conditions 

The equilibrium equations and boundary conditions 
for a thin-walled beam can be obtained from an 
application of Hamilton's Principle as applied to a 
shell upon whose reference surface a beam-type dis-
placement field is imposed. Hamilton's Principle for a 
shell reads [1-3] 

(ÔHi + ÔH^ÔHJdt^O. (12) 

Neglecting transverse shear and rotary inertia terms 
through the shell thickness, the various terms in Ham-
ilton's Principle read: 

ÔH—ÔT + ÔWi-ÔUi 

= / / ( - Α ^ + ^ + έ ' ) δΥ*άξι άξ> (13) 
ξξ 
1 2 

ÔHMàWi-ôU^ 

"if (Γ"-7£*)ί^+<Αη-<>) 

¥)}· χ| -NJS)U? 

(14) 

i/f^-ff^Y^Hm22-^) -Ü 
οδγ\ 

(15) 
Consider now the satisfaction of Hamilton's Principle 
within the interior of the beam. Setting at each time 
instant 

δΗι+δΗ^Ο (16a) 

Consequently, one can describe the position vector to 
any point through the beam thickness as 

(10) 

The base vectors to the deformed beam geometry are 
then given by 

(Π) 
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one obtains the following interior condition : 

iJ 
«1«I 

- ν ^ + ^ + β ψ « 1 ^ 2 
lateral beam boundary the condition that the shell-type 
moments (m11) and twists (m12) are equal to their 
applied values. Under either condition the equilibrium 
conditions associated with satisfying eqn (16) in the 
interior of the beam become (for arbitrary and inde-
pendent δ Ym) 

f)N2k 

ΑΛ Y(m)k_ 11M«) _nk ,pk n n 
, , 2 _ 0

 IV1(m,n) * - ^ζΐ P{n) + r(n) \ZL) 

which have the same form (but one less dimension) as 
(16b) the generalized equation of shell theory [1]. 

where φβ0) is the mass per unit d^1 άξ\ Èk is the Attention will now be focused on the beam end-edge 
internal loading, and (see [3]) 

■if - J ^"-TlDôY^+im^-mlD 

-N ^ \ 
s* δζ1 ) 

N°k = n"ßYk
ß+q*Nk

s 

fxk^^k.8(m-Nk) 

.„ dmß° 
β δ\ 

η*β=^Οτ*°(δν-ζΒΐ>α)ζάζ. 

boundary conditions. Returning to Hamilton's Prin-
ciple as applied to a thin structure, the beam edge work 

(17a) terms along the boundary ξ2 = constant may be written 
as 

(17b) f f Γ f -
p i / e d i = | ^ l i r a - T ^ + imf t -m») 

(17c) 
x | -Ν'~?\\άξιάί=0 (22) 5 8ξ2 

(17d) Employing eqn (17b) and (18b) in eqn (22) leads to 

(17e) ^Η.α^Ι^Ι^,,,,+^ίΛίί,Ν^,,, 
Note that the lateral edge terms have been included in 
the internal work contribution as is appropriate for a 
beam theory formulation. Next, the variation and the 
acceleration of the beam displacement field may be 
written as 

-m22Nkd^sM 
m(A)iys fi*2 

N2k*s{n)+^(rn21NMS{n)-m
22N[ # s(n) 

ÔUS=ÔY% 

n 

Yk=y !// γ<«>*. 

fia y(n)" 
5ξ2 

d{1dt=0. (23) 

Upon implementing eqns (18) into eqn (16b) and per-
forming the appropriate integration by parts, the intern-
al work contribution becomes 

(18a) 

(18b) 
Then, if one sets the shell-type moments (m22) and twist 

(18c) (m21) on the boundary edge to their prescribed values, 
the boundary edge work term becomes 

δΗ^δΗ, HL 

jmedt=[(Nlk
(ArN^YÎ*dt (24) 

which implies, at each time instant, the following 
conditions 

f)N2k 

iVi(m,n)2 ^ ~)K2 P ( n ) t r ( n ) T A ( n ) ( ü i l t US 

Nïï=NïïtA)
 or δγ(*=°- (25) 

where 

"Sh i N'V^di1 

??„>=]" ( j V I * ^ + N " ^ > W (20b) 

QQX Displacement field employed for the beam reference 
surface 

The MENTOR-3 computer code employs a Fourier-
type series expansion of deformation modes to describe 

(20a) the behavior of the beam reference surface cross-section 
as a function of the lateral reference surface coordinate 
ζ1. This displacement field was chosen since it decouples 
the generalized mass term M(m n) for many geometries. 

(20c) 

(20d) 

ôûs = ôYkjk = z>Ps{m)oY{m)kik 

Ψ5(ΐ) — 1 (Translation) 
ηπξ' 

< ) = ^ 2 { ( ^ 1 2 - ^ 2 ) ) Ν ί } ^ ( Μ ) 

+ (m11-m(
1i) -Ni # , 

Οξ1 

Ψ*(2Ν) = L COS 

ψ5(2Ν+ΐ) = ^ sin 

(«n« » Îm.n) 

ηπξ' 

(20e) (ft., Çmin/ 

(Rotation, Distortion, etc) 

n = 1,2,..., N (26) 

For beams continuous in ξ1 (closed cross section), the where the "effective lateral moment arm" L is intro-
Rk

n) are zero. The Rk
n) are also zero if one imposes on the duced as an aid in relating the generalized beam reac-
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tions to the classical beam moment and torsion terms. 
The user may set L to unity if desired. 

3. FINITE-DIFFERENCE FORMULATION 

Approximate solutions to the variational statement 
of equilibrium (eqn 12) may be obtained by a variety 
of techniques (finite element, finite-difference, etc.). In 
the present formulation, the differential equations of 
equilibrium (eqn 21) are cast into finite-difference form, 
resulting in a set of algebraic equations suitable for 
numerical integration in time. In general, the central-
difference formulae having truncation errors of the 
order Δ2 are used to represent the spatial and the 
temporal derivatives. A method for joining structures 
which are modeled as finite-difference grids has also 
been devised. Details of the techniques are available 
in [3]. 

4. COMPARISON WITH EXPERIMENT OR 
INDEPENDENT PREDICTIONS 

The analysis which has been described in the previous 
sections has been incorporated into the MENTOR-3 
computer program. This program has been applied to 
various example problems to compare predictions 
with those from other computer codes and/or experi-
mental results for large-deflection, elastic-plastic dy-
namic responses and to examine the impact interaction 
process involving colliding structures [3]. An example 
to demonstrate the feasibility of employing MENTOR-
3 to treat problems of generic interest is included below. 

Impact of an elbow with attached pipe against a rigid 
barrier 

MENTOR-3 was employed to treat the pipe elbow 
impact example presented in [12]. Therein, the 3500 
in./sec (8890 cm/sec) impact of a whipping pipe against 
a stationary rigid barrier was modeled as an elbow with 
straight lengths of pipe attached at each end to rep-
resent the additional effective piping length and mass 
which must be stopped via the local impact interaction. 
The differences in boundary conditions, fluid momen-
tum change, and the effect of the changing elbow 
geometry on the forcing function was ignored. This 
model was intended to demonstrate the classical un-
restrained pipe whip impact problem in a configuration 
which would be easier to model experimentally. 

A 1.5 D 90° 24 in. SCH 80 elbow was employed in this 
example. The following material parameters were 
employed: 
Mass density =0.738 x 10"3 lb-sec2/in.4 

(0.8xl0~5kg-sec2/cm4) 
Poisson's ratio=0.3 
The stress-strain coordinates used to model the uni-
axial stres^strain curve (reflecting conditions at 
typical operating temperature) were: 

σ psi 

26,000 
42,500 
65,000 

σ kg/cm2 

1828 
2988 
4570 

ε in/in 

0.001 
0.025 
0.15 

1/D sec 

0.316 
0.316 
0.316 

1/P 

0.3 
0.3 
0.3 

Advantage was taken of symmetry along two axes, 
and the quarter section of the piped elbow was modeled. 
Both shell and beam predictions were obtained. For 
the shell and initial beam analysis, a 17 x 18 mesh was 
employed. The beam analysis incorporated 11 deform-
tion modes across the pipe cross section. Due to the 
fine axial mesh size, the stable time increment for the 
higher order modes of the beam theory was consider-
ably smaller than the shell theory stable time increment 
(the beam stable time increment typically diminishes 
faster with decreasing mesh size than the corresponding 
shell theory stable time increment). Consequently, the 
generalized masses of the higher order beam modes 
were artificially increased to permit the use of the same 
time increment as that employed in the shell analysis ; 
this was not expected to have a significant influence 
on the lower frequency response which dominates the 
solution. 

One benefit of employing a beam modal theory 
analysis is the ability to employ a coarse axial mesh in 
conjunction with a finer circumferential mesh and not 
have to be concerned with a circumferential time stab-
ility criterion. Therefore, a coarser mesh beam analysis 
was performed; this also permitted the use of a larger 
execution time increment. 

Typical impact deformation patterns are illustrated 
in Fig. 3. The predictions display the local oil-canning 
indentation phenomena associated with typical elbow 
crush. As can be readily observed, under these impact 

(a) Shell Prediction 

(b) Beam Prediction 

(c) Coarse Beam Prediction 

Fig. 3. Elbow deformations (one-quarter model). 
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28.01 

24.0 

Shell (fine mesh) 
Beam (fine mesh) -
Beam (coarse mesh) 

-p.o o 

12.6 

5.4 

E 

Ê 

0.3 0.4 0.5 

Time x 10"2 sec 
Fig. 4. Impact force time histories. 

0.8 0.9 

conditions, most of the deformation occurs locally 
around the region of impact. The two end pipes served 
to stiffen the elbow to some extent in the latter stages of 
crush and their deformations were relatively small com-
pared to the severity of the local deformation and 
indentation of the elbow. 

Both the fine and coarse mesh beam predictions for 
the present example compared favorably with the shell 
predictions. The 11 beam modes reasonably reproduced 
the severe axial and circumferential curvature changes 
experienced by the crushing elbow. The beam impact 
forces (Fig. 4) compared reasonably well with the shell 
theory prediction. The general amplitude, period, and 
characteristics of the impact forces were similar, 
although the beam theory predictions demonstrated a 
somewhat greater fluctuation in the smaller high 
frequency oscillations which were superimposed on the 
main loading cycle. Employing the coarser beam mesh 
with the larger time increment did not significantly 
degrade the prediction. 

5. SUMMARY OF CURRENT RESULTS 

The present beam formulation represents a general 
nonlinear dynamic incremental modal technique suit-
able for analyzing the transient response of thin-walled 
structures. The theoretical-experimental results showed 
generally good correlation for shells and beams sub-
jected to prescribed transient forces, initial velocities 
and impacts [3]. Predictions for impacts of flexible 

FORCE 

structures with rigid missiles also show good correla-
tion with experiment [3]. Predictions for impacts 
between flexible structures, as illustrated in Fig. 5, 
appear plausible. The present technique has been ap-
plied successfully to predict the static and dynamic 
crush of pipe elbows. MENTOR-3 also has been 
applied to predict the nonlinear response of piping 
systems incorporating elbows in which the inplanar 
and out-of-plane elbow rigidity dominates the struc-
tural response [3]. 

6. CONCLUSIONS AND COMMENTS 

The present modal formulation unifies the concepts 
of shell and beam theories to form a hybrid theory cap-
able of incorporating, to any desirable degree, the salient 
features of either theory. This general formulation 
provides the framework for a unified theory of struc-
tural mechanics (Fig. 1 ). Such a unified approach can 
serve as a valuable teaching aid for students first being 
exposed to structural mechanics since it places each of 
the basic theories of applied mechanics into clearer 
focus and proper perspective. The basic formulation 
presented herein has already been employed to develop 
a nonlinear theory for beams of solid cross section [4]. 
The concept of employing an incremental modal 
solution along one coordinate can be extended to 
employing an assumed modal solution along the 
remaining coordinates, resulting in a nonlinear incre-
mental modal analysis theory for shells and solids. 

Fig. 5. MENTOR-3 general impact capability. 

8 
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Similarly, alternate displacement fields may be investig-
ated for use in the current thin-walled beam formula-
tion. 

The generalized beam theory incorporated herein 
offers several distinct computational advantages over 
traditional shell and beam formulations including: 

—Elimination of stability requirements associated 
with coordinate directions other than the axial direction 
(an advantage somewhat offset by the need to consider 
the stability of the axial propagation of the higher order 
beam deformation modes). 

—Ability to tailor the accuracy of the analysis tö suit 
the problem by incorporating only those modes con-
sidered necessary for an adequate solution. 

—Ease of joining beams to shells either axially or 
laterally. 

—Ease of input, modeling, and interpretation of 
results. 

Of major interest to the nuclear power industry is the 
interaction between pipes (pressure vessels) and con-
tained or impinging fluids. The MENTOR-3 com-
puter code is ideally suited for incorporating or inter-
facing with a fluid-dynamics program which would 
determine the response of the fluid. 

Although conceived primarily to treat beams with 
crushable cross-sections, the technique introduced 
herein constitutes a new and attractive approach to 
nonlinear structural analysis. 

Acknowledgement—This paper is dedicated to the memory of 
Dr. John Peech who provided the inspiration for the present 
investigation. 

REFERENCES 

1. S. D. Pirotin, L. Morino and J. W. Leech, Finite-differ-
ence analysis for predicting large elastic-plastic transient 
deformations of variable thickness Kirchhoff, soft-

bonded thin and transverse shear deformable thicker 
shells. BRL CR 315 (MITASRLTR 152-3) (Sept. 1976). 

2. MENTOR-1 Computer Program Manual. Meredith 
Engineering, 91 Sycamore Road, Melrose, Massachu-
setts. 

3. MENTOR-3 Computer Program Manual. Meredith 
Engineering, 91 Sycamore Road, Melrose, Massachu-
setts. 

4. D. Meredith, Development of a 3-dimensional solid 
cross section beam theory. Meredith Engineering 
Internal Document, Meredith Engineering, Melrose, 
Massachusetts. 

5. V. Z. Vlasov, Thin-Walled Elastic Beams, 2nd Edn. 
Israel Program for Scientific Translations, Jerusalem, 
Israel (1961). 

6. S. Timoshenko and J. N. Goodier, Theory of Elasticity, 
2nd Edn. McGraw-Hill, New York (1951). 

7. K. Washizu, Some considerations on a naturally curved 
and twisted slender beam. J. Math. Phys. 43(2), 111-116 
(1964). 

8. J. T-S. Wang and J. N. Dickson, Elastic beams of various 
orders. AIAA, pp. 535-537 (May 1979). 

9. A. Rosen and P. Friedman, The nonlinear behavior of 
elastic slender straight beams undergoing small strains 
and moderate rotations. J. Appl Mech. 46, 161-167 
(1979). 

10. S. D. Pirotin and G. H. East, Jr., Large-deflection, 
elastic-plastic response of piping: experiment, analysis 
and application. Paper F3/1, 4th SMiRT Conf., San 
Francisco (Aug. 1977). 

11. E. A. Witmer, F. Merlis and R. L. Spilker, Experimental 
transient and permanent deformation studies of steel-
sphere-impacted of impulsively-loaded aluminum beams 
with clamped ends. NASA CR 134922, MIT ASRL TR 
154-11 (Oct. 1975). 

12. D. Meredith and E. A. Witmer, Computer code for 
predicting the dynamic response of high energy piping, 
pressure vessels, and shell structures to transient loads 
and impacts. ASME Paper 78-PVP-33, Presented at 
Joint ASME/CSME Pressure Vessels and Piping Conf., 
Montreal, Canada (June 1978). 



Computers a Structures, Vol. 13, pp. 11-18, 1981 
Printed in Great Britain. All rights reserved 

0045-7949/81/010011-08S02.00/0 
Copyright © 1981 Pergamon Press Ltd. 

STABILITY ANALYSIS OF STRUCTURES VIA A NEW 
COMPLEMENTARY ENERGY METHOD 

H. MuRAKAWAt, K. W. REEDJ, S. N. ATLURi§and R. RUBENSTEINI! 
Center for the Advancement of Computational Mechanics School of Civil Engineering, Georgia Institute 

of Technology, Atlanta, GA 30332, U.S.A. 

(Received 29 May 1980) 

Abstract A new procedure for the analyses of finite deformations and stability of structures, based on a 
complementary energy principle and an associated hybrid-mixed finite element method, is presented. 
In this procedure, the description of kinematics is based on the polar-decomposition of the displacement 
gradient into pure stretch and rigid rotation. The details of the procedure are illustrated through the 
problems of (i) post-buckling of a column, (ii) the elastica, and (iii) finite-displacements of a transversely 
loaded beam. 

INTRODUCTION 

As discussed by Atluri and Murakawa [1], the most 
consistent and easily applicable development of a 
complementary energy principle for finite deformations 
is due to the late Fraeijs de Veubeke [2]. Such a 
principle, involving both the first Piola-Kirchhoff 
stress tensor as well as the point-wise rigid rotation 
tensor as variables, has been stated in [2] so as to 
govern the finite deformations of a compressible 
nonlinear elastic solid. Also discussed in [1] are con-
tributions to the subject of complementary energy 
principles for finite elasticity due to Zubov, Koiter, 
Christoffersen, and others. Since the appearance of [1], 
the authors became aware of the work by Ogden [3] 
who discussed more critically the key element in the 
works of Zubov, and Koiter, namely, the invertibility 
of the relation between the first Piola-Kirchhoff stress 
tensor and the displacement-gradient tensor. Odgen 
[3] demonstrates clearly the non-unique nature of this 
inverse relation. 

The concepts of discretizing the equations of angular 
momentum balance through a complementary energy 
principle involving rigid rotations also as variables 
has been exploited by the authors in their studies related 
to incremental (rate) analyses of finite strain problems 
involving nonlinear elastic solids (compressible as 
well as incompressible), as well as elastic-plastic solids 
[4-9]. All of the studies in [4-9] were limited to prob-
lems of solids in plane stress/plane strain or of axisym-
metric strain. In this paper we explore the concepts 
outlined in [1, Φ-9] as they may be applied7 in Jhe 
analysis of finite deformations and stability of struc-
tural members such as beams, plates and shells wherein 
certain plausible deformation hypotheses of the well-
known "Kirchhoff-Love" type are invoked. 

The case for the possible advantages of using a com-
plementary energy approach to structural stability 
problems has been succinctly presented by Masur 
and Popelar [10], and Koiter [11]. The analyses pre-
sented in [10, 11] are, however, limited to the cases of 
bifurcation instability of beams/columns with irrota-

f Hitachi Co., Japan. 
^Graduate Student. 
§Regents' Professor of Mechanics. 
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tional fundamental states (linear prebuckling states). 
In the present paper we consider, as an example, the 

general problem of finite deformation of a "one-
dimensional" structural member undergoing arbitrarily 
large rotations but only moderate stretching. The 
material is considered to be isotropic and semilinear, 
i.e. exhibiting a linear relation between the stretch (or 
engineering strain) tensor and the Jaumann stress (or 
equivalently, in the case of isotropy, the Lure of Biot 
stress) tensor. While the procedures presented herein 
may be directly extended to the cases of plates and 
shells, such extensions are not included here. 
We present here detailed results, and their dis-

cussion, for the problems of (i) post-buckling of a 
column, (ii) the elastica, and (iii) large displacements of 
a transversely loaded beam. 

In the following, we present, as a starting point, a 
general variational principle for finite elasticity, analo-
gous to the well-known Hu-Washizu principle of 
linear elasticity, involving the displacements, stretches, 
rotations, and the first Piola-Kirchhoff stresses, as 
variables. By incorporating appropriate "plausible" 
assumptions for a structural member, such as a beam, 
the above principle is specialized to the case of the 
respective structural member. From this general 
principle an appropriate complementary energy prin-
ciple, and an associated "hybrid-mixed" finite element 
method, are developed for the case of a beam. 

1. PRELIMINARIES AND A GENERAL VARIATIONAL 
PRINCIPLE 

We use a fixed rectangular Cartesian Coordinate 
system. We adopt the notation: Bold denotes a vector; 
bold italic denotes a second-order tensor; a=Ab 
implies that di = Aikbk; AB denotes a product such 
that (Λ ·Β) ί ; =ΛΑ, · ; M:B) = i4yBy; and wt=uttt. 

The position vector of a particle in the undeformed 
body is x=(xaea) where ea are unit Cartesian bases, and 
the gradient operator V in the initial configuration is 
V = ead/dxa. The position vector of the same particle in 
the deformed body is y and the corresponding gradient 
operator VN=eld/dyi. The deformation gradient tensor 
F is given by F = (Vy)T; F^y^^ay^x^ For non-
singular F the polar-decomposition, F = a. (/ 4- h) exists, 
where (I+Λ) is a symmetric positive definite tensor cal-
led the stretch tensor (with h often being called the en-

11 
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gineering strain tensor), / an identity tensor; and a an 
orthogonal rotation tensor such that α Γ =α _ 1 . The 
deformation tensor G is defined by G = FT · F = (/ + h)2. 
The Green-Lagrange strain tensor is defined by 
g = 1/2(G - / ) = ψι2 + 2h) = \/2(e + eT + eTe) where e is 
the gradient of the displacement vector u(=y—x), i.e. 
e = (Vu)T such that eia = uia. For our present purposes 
we introduce the stress measures: (i) the true (Cauchy) 
stress tensor, τ, (ii) the Piola-Lagrange or the first Piola 
Kirchhof! stress tensor, t ; (iii) and the Jaumann stress 
tensor (or what is also at times referred to as the sym-
metrized Lure' stress tensor or the symmetrized Biot 
stress tensor) r. As discussed in [1], and elsewhere, the 
relations between τ, t and r are: 

t = J(F'1'T) (1) 

Γ=1/2(ί·α + αΤ·ίΤ) (2) 
where F~x is the inverse of F, and J is the determinant 
of the Jacobian yia. As also discussed in [1], and else-
where, τ and r are symmetric, while t is in general an 
unsymmetric tensor. In the case of isotropic elastic 
materials, fi, g and r become coaxial, and the relation 
(2) becomes: 

r = t a. (3) 

As discussed in detail in [1], a functional Π(ιι, ft, a, t) 
whose stationary conditions are the field equations 
governing the finite deformation of a nonlinear elastic 
body can be stated as: 

πΗμ,(ιι,/!,α,ί)= f { m * ) - p g - u + iT:[( / + Vu)T 

JVo 

-<x-(I+h)~]dv- f t - ( u - ü ) d s - [ t uds. (4) 

The stretch h is required to be symmetric a priori, the 
rotation a is required to be orthogonal, a priori, and the 
first Piola-KirchhofT stresses t must be allowed to be 
unsymmetric, a priori. In eqn (3), V0 is the volume of the 
space occupied by the undeformed body ; S^ and Sao are, 
respectively, the surfaces where displacements and 
traction are prescribed; W(h) is the strain energy 
density, per unit initial volume, as a function of the 
symmetric engineering strain tensor h; g are body 
forces/unit mass; p is the mass density/unit initial 
volume; t = n · t are surface tractions, and superposed 
bar implies a prescribed quantity. The first variation 
of the functional in eqn (4) can be shown [1] to be: 

ônHW{ôu;ôh;ô(x;ôt)= f j ^ -1/2(ί·α + αΓίΓ) \:ôh 

- [ V · i+pg] ■ <5u-[(I+h)· t· α]: (αΓ· δχ)Τ 

+ [(I+Vu)T-a· (I+h)]: δΑάν 

- | (t-iw)-<5uds- ί <3t-(u-ü)ds=0 (5) 
J Sao JSuo 

The vanishing of the above first variation leads to the 
following Euler-Lagrange equations from the usual 
arguments of calculus of variations : (i) the constitutive 
equation (corresponding to oh); (ii) the linear momen-
tum balance condition for t (corresponding to <>u); 
(iii) the angular momentum balance condition for i, 
viz. that (/ + h) ia = symmetric (due to the skew-
symmetric nature of αΓ·<5α, since a is required to be 
orthogonal a priori, such that αΓ·α=/); (iv) the com-
patibility condition between u, a and h (corresponding 

to <5f); (v) the traction at 5σο, viz., t = n i (corresponding 
to <5u at SO0); and (vi) the displacement boundary 
condition at SUo corresponding to δί at SUQ. 

In the technical theory of beams, or plates, and shells, 
certain "plausible" approximations are introduced to 
reduce these problems, respectively, to one or two 
dimensional in nature from what may rigorously be 
classified as three-dimensional problems. It is well-
known that variational principles often provide a 
convenient way of deriving the field equations and 
consistent boundary conditions for these problems. 
One may systematically introduce "plausible" approxi-
mations for the field variables in a functional, then the 
stationary conditions of the functional yield the rele-
vant field equations and boundary conditions for the 
considered structural member. Thus, the "modus 
operandi" of the present procedure is to introduce 
certain approximations to u, Λ, α and t appearing in 
eqn (4) so that the relevant field equations for the 
structural problems of beams, plates, and shells may 
be derived from the stationary condition of the thus 
approximated functional nHW. While this approach 
can be systematically extended to the cases of plates 
and shells along the same general lines as indicated 
here, we present in the following the details of only 
the case of arbitrarily large deformations (charac-
terized by large rotations and perhaps moderate 
stretches) of a beam. 

2. FINITE DEFORMATIONS OF A BEAM 
We consider, without loss of generality, an initially 

straight rectangular beam (of a symmetrical cross 
section) as shown in Fig. 1, with material coordinates 
xv x2. Coordinate x1 is along the length of the beam, 
and x2 is in the depth-direction of the beam (x2 = 0 
being the mid-plane). We consider the beam to be of a 
unit width and consider deformation of the beam 
only in the xtx2 plane. 

The position vector of a particle on the mid-plane 
of the beam is denoted by x* = x1e1. Upon deforma-
tion, the same particle is located by the position vector, 
y* = x* + u* = (x1 -h wfe1 + wfe2) (see Fig. 1). The posi-
tion of an arbitrary point in the undeformed beam is 
denoted by the vector, x = x* + x2

e2-
We invoke, in the present work, the Kirchhoff-Love 

hypothesis for the deformation of the beam, viz. the 
x2 lines of the undeformed beam remain normal to 
the deformed mid-plane and, moreover, remain un-
stretched. Thus, the position vector of an arbitrary 
particle in the deformed beam is given by, 

y=y* + x 2
N (6) 

where N (see Fig. 1) is normal to the deformed mid-
plane. Thus, the displacement of an arbitrary particle 
from the undeformed to the deformed state of the 
beam is given by: 
u = y - x = u* + ( N - e2(x2 = (uf ex + u\ e2) + (N - e2)x2. 

(7) 
The base vectors at an arbitrary point in the deformed 
beam are given by : 

dy/dx1 =y5l s G 1 = ( i i l + « u ) e i 4 - N9lx2 (8) 

dy/dx2=y,2 = G2 = N. (9) 
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Thus, in eqn (8), and throughout the remainder of the 
paper, the notation, ( )5l =d( )/dx1 is used. 

The deformation gradient tensor F can be represent-
ed as: 

F = (Vy) r =G i e i + Ne2. (10) 

We consider here a class of problems characterized 
by large rotation, but moderate stretches. For all 
deformations given by eqn (7) the material coordinates 
coincide with the principal axes of stretch, so the 
deformation of the beam may be decomposed into a 
pure stretch along the et direction, followed by a rigid 
rotation. The stretch tensor h is thus, 

h = hlielel. (11) 

From eqns (10) and (11) it is seen that, 

N = F · e2 = [a · (/+*)] · e2 = a ■ e2. (12) 

Using eqn (12), eqn (7) can be written as: 

u = (wfe14-ti|e2) + ( a - / ) - e 2 x 2 (13a) 

where 

κ.* = Μ*(ΧιΧα = Κ2). (13b) 
In the present case of moderate stretches, we assume 

that h(xv x2) can be represented as: 

Aii(xi,x2)=(A + pc2) (14) 
where h=h(xl) is the midplane stretch, and χ=χ(χί) is 
the curvature strain. These are the well-known engineer-
ing measures of strain. Further, we assume plane-
stress conditions in the beam and assume the first 
Piole-KirchhofT stress tensor (i.e. stress measured/unit 
area in the undeformed configuration) to be represented 
by: 

t = taßeaeß(a,ß=U2) (15) 

where 

taß
:=taß(xl,x2). (16) 

Likewise, we assume the rigid rotation tensor to be 
represented by: 

<x = ocßyeßey (17) 

where, under the present deformation assumptions, 

a/?y = a,?rUi)only. (18) 

The orthogonal tensor aßy is represented convenient-
ly in terms of the angle 0 (Fig. 1) as: 

Γ cos0; sin ö l 
*» = [-ή*θ; cos 4 {19) 

We assume the beam to be of a semi-linear isotropic 
material, such that the relation between the stretch h^ 
and its conjugate stress measure, the Jaumann stress 
r n , is given by 

r n = £ A n . (20) 
We assume the following system of external tractions 

on the beam in general : 

at xx = 0 or L: ί1 γ =7j λ(χ2); f 12=712(x2). (21) 

The external forces distributed along the beam are 
assumed, without much loss of generality, to be speci-
fied per unit length xx along the midaxis of the beam to 
be ga = ga{xiY Finally, the specified displacements at 
the ends of the beam are assumed to be: 

atxx = 0or L: ui = ul(x2); u2 = û2(x2). (22) 

We assume that ΰ^ and w2 are compatible with the 
presently invoked hypotheses, such that : 

atxt = 0or L: üi(x2)=ü*{ + otl2x2', 

ü 2 =ü | + (ä 2 2 - l )x 2 . (23) 

Even though the boundary conditions (21) and (23) 
are given in their general form, it is to be understood 
that at either end of the beam, either both the traction 
components Tj i andT12, or both displacements ü1 and 
ΰ2, or one component of traction and a complementary 
component of displacement, such at i n and w2, are 
assumed to be given. 

Substituting eqns (13H18) into eqn (4), we obtain. 
after some straightforward manipulations, that for a 
beam under the above discussed assumptions, 

i W W , <*?/?> An, t^) = TlHW{uX, iif, K X, 0, taß) 

{^(h + xxrf + tuKl + uS^-a + tycose -L 
+ x2cos0(0,1-#)] 

+ t 1 2 [ i 4 1 + ( l + /Osin0-x 2 s in0(0, 1 -*)]} 
xdxxdx2 

+ J ^ i d X i - M | ί η [ ( ι ι ΐ - β ) + χ 2 

x(sin 0 — sin"9)]-K12(u2 — ö*)+x2 

+ x2(cos 0—cos "9) > dx 

(F11(uî + x2sin0) 

(or) 

+ίί2{η% + χ2(οο$θ-\))}άχ2\ (or). 
Jo 

(21) 
It is of interest to note that only tx x and t12 enter the 

above energy expression, due to the nature of the 
presently assumed deformation pattern. We now define 
first Piola-KirchhofT stress-resultants (Ταβ) and stress-
couples (Mxß) such that, 

dx2 T n = f n d x 2 ; T12= tx 

^ 1 1 = Î i i X 2
d * 2 ; M 1 2 = ί ΐ 

J Xj V x , 
2x2 dx2. (22) 

*>X2 'X2 

Accordingly, we define the prescribed equivalent 
stress-resultants and stress couples, at x ^ O or L, as 

Άι= 7 n d x 2 ; T12= T12dx 
Jx2 Jx2 

f _ f - (23) 
A f n = i n x 2 dx 2 ; M 1 2 = r12x2dx2. 

Jx2 Jx2 

With the definitions of eqns (22) and (23), eqn (21) 
can be written as: 

nHW(ut, u\, K X, 0, Til9 T12, M n , M12) 

= f {±EAh2 + ±EIX
2-gauï + 

Jo 

+ T11<l + u î > 1 - ( l + /i)cos0> + 
+ 7i2<i*5tl+(l + A)sin0) 
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+ ( M n cos 0 - M 1 2 sin 0)(09l -χ)} ax, 

- [T„( i i f -öf )+T 1 2 ( i i5 -öJ) + M u ( s i n 0 - s i n 0 ) 
+ M ! 2(cos 0 -cos~0)]£ (or) 
--[TllW* + T12w* + M 1 1 s i n 0 + M1 2(cos0-l)]£(or) 

(24) 
where 

/ = x2dx2. 
Jx2 

For convenience, we define new variable M and W 
as:f 

M = M n cos0 —M12 sin 0 
W = M n s i n 0 + M 1 2 cos0. (25) 

The thus transformed functional can be written as: 
π ^uf,iiS,Äz,0>T1 1,T1 2,M,w) 

n^ul uî, h, χ9θ9Τη,Τ12, M) 

■I 
Je 

= \ {\EAh2^2Elx2-gvui 

+ T11<l + < 1 - c o s 0 ( l + /i)> 
+ Τ12<ιι5ι1 + 8Ϊηθ(1 + Α)) + Μ(0,1-χ)}αχ1 

- [T u (M*-ö*)+T 1 2 ( M *-^ )+Msin(0 -"9 ) 
+ W(l-cos(0-"5))]i;(or) 

- [TilMJ + Tx2κ$ + Mj ! sin 0 + Λ?!2(cos 0 - l)]£(or). 
(26) 

With a view to simplify the boundary conditions on 0 
and M, we consider the variation of the term (M0?1) in 
the integral and the corresponding terms at the bound-
aries, in eqn (26V Thus, 

δ I {ji&fiixi -lMsm{e-d)+W(l -cos(0-9))]£(or) 

^ l l - c o s ( l / - 0 ) ) ] J ( o r ) 

- [ A ? n sin0 + M12(cos0-l)]£(or) 

= f δΜθ^άχ^ ί Μ^δθάχ^ΐΜδθ^ηά) 
Jo Jo 
-(δΜ sin ( 0 - 5 ) + M cos (0-0)<50 

+tiV(l - c o s (0-9)) +W sin (0 -9)<50]£(or) 
- [(M ! ! cos 0 - M ! 2 sin 0)<50]{;(or). (27) 

From the usual arguments of calculus of variations, 
the vanishing of the first variation in eqn (27) for 
arbitrary variations of allowable <5M, dW and δθ at 
x t = 0 or L, leads simply to the boundary conditions, 

at x1 = 0 or L: sin (0-3) = O or cos (0-T?)= 1, 
i.e.0="9 (28a) 

and M = M n cos0 — M1 2 sin 0at xl = 0 or L(28b) 

From eqns (27) and (28a, b) it can be observed that 
precisely the same boundary conditions, as in eqns (28a, 
b) follow even if the boundary terms in eqn (26) are 
simplified as in the following redefined functional: 

tFrom the definition of the Jaumann stress of Eq. (3), 
i.e. r{tß = tayctyß, and eqn (22), it is immediately seen that M 
and W can be identified as "Jaumann stress-couples", 

defined by M= rnx2dx2, and W=\ r12x2dx2. 

■f 
Jo 

{±2EAh2 + ±EIX
2-gauï + 

+ 711<l + t i î i l - cos0( l + A)) 
-hT12(W*4-fsin0(l + /î)) + M(0,1-x)}dx1 

-[?n(iif-öT)+?i2(M5-öS)+Af(e-"B)]S(or) 
-[?ΐ!«ΐ-I-7i2«* + A?ii s i n 0 + M12(cos0-l)]o'(or). 

(29) 

It is of interest to note that the Jaumann stress-couple 
W does not appear in eqn (29), due, primarily, to the 
nature of the present deformation assumptions. The 
Euler-Lagrange equations and natural boundary-
conditions from the stationarity of the functional in eqn 
(29) can be seen to be: 

EAh = Tll cos Θ-Τί2 sin 9=Rn (30a) 
Ε1χ = Μ (30b) 
1 + M?tl=(l + A)cos0 (30c) 
n 5 f i = - ( l + Ä)sin0 (30d) 
0,i = X (30e) 
M ^ - U + AXTn s in0+r 1 2 cos0) 

= M , 1 - ( l + /iXK12)=0 (300 

^1,1 + ^1 = ° (3Qg) 
Ti2,i + ^2 = 0 (30h) 
uî = ûî;wf = wf;0="9atx1 = OorL (30i) 
Άι = Ά^ ^i2 = 7 1 2 ;M = M n c o s 0 - M 1 2 s i n 0 

a t x ^ O o r L . (30j) 

Again, it is seen that Rxl and R12 defined in eqns 
(30a) and (30f) respectively, can be identified as the 
Jaumann stress-resultants, 

Rn= r n d x 2 ; K1 2= r ^dx^ (31) 

Equations (30a, b) are constitutive relations, (c-e) 
are compatibility conditions, (f-h) are equilibrium 
equations, and (i, j) are boundary conditions, in terms 
of the presently defined beam variables. 

By satisfying, a priori, eqns (30a, b) one may eliminate 
h and χ as variables from eqn (29); and satisfying, a 
priori, eqns (30g, h) one may eliminate u* as variables 
within the integral in eqn (29). Thus one derives a 
modified complementary energy functional, as: 

nc(ütüte,TluTl2,M) 

-V ' 
Je 

2EAlTilct»e-Tlt«nef-m»i' 

+ T 1 1 ( l -cos0)+T 1 2 s in0-M, 1 0>dx 1 

+ [Tnû* + T12ù* + M5]J(or) 
+ [ (7 ι ι -Τ ι ι )ΰΪ + (7;2_-Τ12)ΰ5 
+ (ΜΘ-Μ1Χ sin 0-M1 2(cos 0 - l))]£(or). (32) 

It is noted that in the above complementary energy 
functional, only the variables 0, Γ η , T12 and M occur 
in the interior of the beam, while ü* and ü\ occur only 
at the boundaries of the beam. Thus the point-variables 
ü% and ü% may be viewed as point-Lagrange-multi-
pliers to enforce the traction boundary conditions, 
T11 — T11 and 7\2 = 7\2, respectively, at Xj = 0 or L. 

The Euler-Lagrange equations and natural bound-
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ary conditions corresponding to onc=0, with nc as in 
eqn (32), can easily be seen to be: (i) the compatibility 
conditions, eqn (30c-e); (ii) the moment balance condi-
tion, eqn (30f), (iii) the displacement boundary condi-
tions, eqn (30i); and (iv) the traction and moment 
boundary conditions, eqn (30j). 

We now consider formulations for a piece wise linear 
incremental solution procedure. Thus, let CN denote a 
known deformed configuration of the beam, and 
CN+1 be a further deformed state of the beam which is 
to be solved for. We assume that CN + 1 is sufficiently 
close to CN, such that CN + 1 = CN + AC where AC 
represents a "small" change in the variables, 0, T u , T12 

and M. 
We will use a total Lagrangean (TL) formulation, the 

details for which are elaborated in Atluri and Mura-
kawa [1], in the following. Using this (TL) formulation, 
we can write: 

nij(cw+1)=nc[(ûf^1,(û5)w+1,eJV+1, τ»ΐ\ τ?2
+1, 

= nc[(w*N + Aw*), ( û f + Aw*), (0" + Δ0), 
(Τ^+ΑΤ^ΛΤ^ + ΑΤΛΛΜΧ + ΑΜ)] 

= nc(CN) + A1nc(CN, AQ + A2UC[CN, (AC)2]. 
(33) 

Further, in the present complementary energy 
formulation, the incremental constitutive relations 
eqns (30a, b), and the incremental linear momentum 
balance conditions, eqns (30g, h) are assumed to be 
satisfied a priori, i.e. 

£^AA=AR11 = (AT11cosö-AT12sinÖ) 
- (7i ! sin 0 + 7; 2 cos 0)A0 (34) 

ΕΙΑχ = ΑΜ (35) 

Δ Τ ί ^ + Δ ^ Ο (36) 

and ΔΤ12>1+Δ02 = Ο. (37) 
Expanding n ^ C ^ 1 ) , we find, through some straight-
forward algebra, that: 

i,n-l{- EA 
<7*1cos0N-T?2sin0N> 

xKATn cos θΝ-ΑΤ12 sin 0JV-(T?1 sin θΝ 

+ TN
12 cos 0N)A0> 

- ~ MNAM + ATll(l - cos 0N)+ TN
n sin 0NA0 

LI 

+ATi2 sin eN+fi2 cos Θ"ΑΘ-Μ^Μ-ΑΜ, ,Ö~J 

keep the solution path from straying from the true 
path, as discussed in detail in Atluri and Murakawa 
[1]· 

The incremental functional A2IIC is obtained to be: 
A2nc(Aw*, Au*, A0, ATn, AT12, AM) 

2ËÂ (ATlx C0S °N~ATi2 S i n ^-Κ^Δ0)2 <{-
+ 2 ^ 4 ( ^ ι Δ Ο ) 2 + ά ^ ι ( Δ Γ ΐ 1 SinöN 

+ AT^ cos 0Ν)Δ0- ^ΑΑΜ)2 

2EI 

+ (ΔΓη sin θΝ + ΑΤί2 cos 0JV)A0+^1(A0)2 

)ηΑθ\άχ1 -(AMI 

+ |ATi iAû* + ΔΓ12Δΰ* + ΔΜΔ"9|£(ΟΓ) 
+ |(ΔΓ11-ΔΤ11)Δι5Ϊ + (ΔΓ12-ΔΤ12)Δΰ*4-< 
+ < Δ Μ Δ 0 - ( Δ Μ η cos 0 Ν - Δ Μ 1 2 sin 0")Δ0 
+ (M n s in0 N ) 

4-(M12cos0N)(A0)2/2|i;(or) (39) 

where 

RNn ={TNn sin 0N + T?2 cos 0N); 
Κ ^ = ( Γ ^ cos 0 N - TN

12 sin 0N) (40) 

Recognizing that Δ Τ η and ΔΤ12 ate subject to the 
constraints, eqns (36) and (37), a priori, it can be shown 
that the condition of stationarity of the functional in 
eqn (39) leads to the following Euler equations and 
n.b.c: 

Au*1A = -— cos 0Ν(ΔΤη cos θΝ-ΑΤί2 sin 0"-Κ"2Δ0) 
LA 

( RN 

-sin0NA0( l + ^ i i 
ΕΛ 

(41) 

ΔΜ5,! = £A 
sin 0N(Arn cos 0" -ΔΓ 1 2 sin 0"-Κ?2Δ0) 

- cos0 N A0( l + 
EA) 

(42) 

^ 1 2 / 

xdXiH-CArnW^ + A r ^ ü ^ + A M Ö ^ o r ) 
+ [AT11ùîN + AT12t5f + (T11-T11)AM* 
+ (Tn-Ti2)AwJ-h<AM0N + (M-(AÎ!! cos 0N 

-M12sin0N))A0]e(or). (38) 

In view of the fact that the a priori conditions eqns 
(30a, b, g and h) hold at CN, and the incremental vari-
ables ATn and AT12 are required to satisfy eqns (36) 
and (37) it is seen that A 1 !^ must be identically zero if 
the solution obtained, from the present comple-
mentary energy approach, at CN satisfies the conditions, 
eqns (30c-f, i-k) exactly. However due to the inherent 
errors of the present piecewise linear procedure, this 
may not be so, i.e. Δ Ή ^ Ο . Thus, the term A 1 ! ^ is 
retained to devise an iterative corrective procedure to 

0=- (AM) 5 l + —^(AT1 1cos0N-Ar1 2sin0 i v) 

RN 

+ -}j(ATll sin0N + Ar1 2cos0N) 

+ (ΔΤη sin ΘΝ + ΑΤ12 cos Θ") (43) 

(44) £-«·*■ 

We now consider a finite element implementation of 
the complementary energy method represented by the 
stationarity of the functional in eqn (39). We segment 
the beam into M elements i = 0 , 1 . . . M, each with end 
points denoted by x1=Xi(i) and Xid+i), with x1(0)=0 
and xUM+i)=L. To satisfy eqns (36) and (37), a priori, 
we assume within each element; 

(45) 
(46) 

(47) 



16 H. MURAKAWA et al. 

11 = - f &9ι + Aa\(i = 0,... M) (48) 
Jxx 

1 2 = - f Δ 0 2 + Δ 4 ( ί = Ο , . . . Μ ) (49) 
Jx! 

ΔΓ, 

wherein Aa\ and Δα2 are undetermined parameters 
which are taken, for simplicity, to be independent for 
each element, i = 0 , . . . M. In view of this, the traction 
reciprocity conditions, at the node Xi = xui) at which 
the (/ —l)th and ith elements are connected, viz. 
(ΔΤ11)+=(ΔΤ11)- and (ΔΤ12)+=(ΔΤ12Γ (where + 
and — denote, respectively, the left and right hand 
sides of x1(0 in the limit that x1(i) is approached), 
are enforced through a Lagrange-multiplier technique 
as described in Atluri and Murakawa [1]. 

Further, within each element, the moment ΔΜ is 
assumed as: 

ΔΑί' = ΔΑί ( Ι / 1 -0 + ΔΜ(Ι+1)ξ(ί = 0 , . . . M) (50a) 
where 

ξ=-
ll ( i ) (50b) 

Xl(i + l)~Xl{i) 

where ΔΜ(ί) and ΔΜ(i+ υ are, respectively, the moments 
at x1(i) and x1(i + 1). Thus, eqn (50) inherently satisfies 
the moment reciprocity condition. Finally, we assume 
the rigid rotation within each element to be a constant, 
i.e. 

Δ β ' - Δ ^ χ ^ Χι χ1 ( / + Λ ) ( ί=0, . . .Μ) (51) 

when the interelement traction-reciprocity conditions, 
viz ( Δ Γ η Γ ^ Δ Τ ^ Γ and (ΔΓ12)+ = (ΔΤ12)" at 
x1=x1 ( i ) are introduced as subsidiary conditions 
through Lagrange-multipliers (Au*)1 at x1(i), the 
functional for the finite element system, which is a 
modification to eqn (39) as described in Atluri and 
Murakawa [1], can be written as: 

M 

A2Ur = Σ (Δ2π€)'· 
i = 0 

(52) 

where (A2Hcy is defined simply by chaing the limits of 
integrals occurring in eqn (39) as follows: 

f 
Jo 

()dx+- ► (change to)-
|"*l(i+l) 

OdXi (53a) 

[ ]S(or)->(change t o ) - [ Yx\f+
l)ov. (54a) 

When the assumptions in eqn (48H50) and (57) are 
introduced, the functional in eqn (52) can be written as 

Δ 2 Π € [ ( Δ Μ * ) \ Δαΐ, ΔΜ\ Δ^1] 

Kti Κ12 0 
Λ-21 ^ 2 2 ^ 2 3 

^ 3 2 ^ 3 3 

0 0 

* 1< 
0 
0 
0 

(55) 

In the above, the notations, [Δα^^ΔαΊ , Δαι
2], 

[ΔΜ1]=[ΔΜ(ί), ΔΜ( ί + 1 )] , and [A^ f ] = [A«*(i), 
Δ«Ϊ(,·+ΐ)» Δΰ?(0, ΔΜ^Ϊ+Ι ) ] are used. Since Δα1 and Aß1 

are independent for each element, they may be elimin-
ated as variables at the element level, from the condi-

tions of stationarity of the functional in eqn (55) wxt. 
Δβι and Aß1. When this is done, it is seen that the func 
tional A2Ylc can be written as : 

M 

A2Ur 

ΔΜ1' 
Δϋ*' 

^ 3 2 

0 

0 

y 2ΓΔ ΜΊ Γ*33 0Τ 0 

Ικ21 κ12] Ικ 
Γ ρ 3 Ί { Δ Μ Π _ Γ β 1 Τ κ 1 1 κ 1 2 Ί -ΗΔΜ ι Ί 
IQ4]\AÜ^ IQ2]IK21 Κ22] \AÜ^· 

κ14. 
0 

(56) 
By carrying out the clement assembly, eqn (56) can 

be reduced to : 

A2IW 
ΔΜ 
Δυ 

l̂· 
ΔΜ 
Δυ* 

ΔΜ 
Au 

(57) 

where {AM} represents a column vector of moments at 
all nodes, and {Au*} represents a column vector of 
displacements (in xx and x2 directions) at all nodes. 
Finally, setting Δ2ΠΓ = 0 w.r.t. ΔΛί and Au*, we obtain 
the algebraic equation: 

(58) 

Thus, in the present method, the final algebraic 
equations can be solved for both the nodal moment 
resultants as well as the nodal displacements. For 
this reason, in accordance with the definitions given in 
Atluri [12] and Atluri and Murakawa [1], the present 
method can be classified as a mixed method. More-
over, since the reciprocity conditions for T n and T12 

at the nodes are satisfied through Lagrange-multiplier 
technique, the present method is also a hybrid method 
[1]. Thus, the present method is a "mixed-hybrid" 
method [1]. 

In the following we present three illustrative ex-
amples. 

Examples 
(i) Post-buckling of a column. The details of the 

problem are given in Fig. 2, which shows a cantilever 
beam subject to a compressive axial force P at the free 
end. Post buckling behavior was initiated by a small 
axial force q= 10"5 P£, as shown in Fig. 2. The finite 
element solution is obtained by using 4 elements, each 
with (i) a constant rotation, (ii) linear displacement 

Fig. 1. Undeformed and deformed configurations of a 
beam. 
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Fig. 2. Post-buckling deformation patterns of a beam 
column. 
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Fig. 3. Lateral displacement at the free end vs axial load in a 
centilever beam-column. 

field of w*, w*, and (iii) a linear moment field. The 
deformed shapes of the column for axial load of ocPE, 
for various values of a, are shown in Fig. 2. 

The transverse displacement of the free end of the 
centilever beam-column is shown in Fig. 3 as a function 
of the axial load ctPF. It has been verified that the solid 
line shown in Fig. 3 matches exactly the analytical 
solution given by Timoshenko and Gere [13]. It is 
noted that a finite element solution for this problem 
was also presented by Horrigome [14]. In [14] the 
beam-column was modeled as a 2-dimensional plate-
strip. The solution [14], which is based on an incre-
mental potential energy formulation, was obtained by 
using 14 triangular elements and was also noted [14] 
to correlate well with that of [13]. 

(ii) Elastica: The problem, depicted in Fig. 4, is 
that of a simply supported beam with an axially 
movable hinge, and subject to concentrated moments 
at the ends. The problem was analyzed by using 4 
elements each with the previously mentioned field 
assumptions. The deformed shapes of the beam for 
various values of applied M are shown in Fig. 4. The 

EA-1000 
EI -1.0 

Fig. 4. Deformation patterns of a simply supported beam 
with a movable hinge, and subject to pure bending. 

EXACT SOLUTION 
o NUMERICAL SOLUTION 

Fig. 

1.0 

MOMENT (M) 

5. Axial shortening vs applied moment of a simply 
supported beam subject to pure bending. 

variation of "a" (the projection of the deformed axis of 
the beam on the axis of the undeformed beam as in 
Fig. 4) with M is shown in Fig. 5. This variation is seen 
to correlate excellently with the analytical solution [13]. 

(iii) Transversely loaded simply-supported beam : The 
problem, depicted in Fig. 6, is that of a transversely 
loaded simply-supported beam with axially-imovable 
hinges. The predominant nonlineality in the problem 
is due to the mid-plane stretching of the beam. The 
problem was analysed by using 4 elements in a half of 
the beam. The analytical solution for a rectangular 
plate-strip was given by Timoshenko and Woinowsky-
Krieger [15]. The solution in [15] would thus have a 
Piosson-ratio effect, whereas the present beam solution 
does not have a similar effect. The solution of [15] was 
numerically evaluated in [14] for v=0.3 and is repro-
duced here. It is seen from Fig. 6 that there is an 
excellent correlation between the present results and 
those of [15]. It is noted that numerical solution for the 
problem of a simply supported rectangular plate-strip, 
based on an incremental potential energy formulation, 
and using 15 elements (10 triangular and 5 rectangular) 
in a half of the plate, was also given in Horrigmoe [14]. 

The comparison of the present results with those of 
Horrigmore [14] for identical problems appears to 
indicate the relative merits of the presently proposed 
complementary energy method, in terms of accuracy as 
well as computational economy. 

CLOSURE 

A new complementary energy method for the stress 
and stability analyses of structures, which undergo 
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Fig. 6. Problem of a transversely loaded simply supported 
beam with immovable hinges. 

large rotations but moderate stretches, has been 
indicated. The relative merits of the present procedure 
have been illustrated in some representative problems 
of beams. Further work along the present lines is 
underway and will be reported elsewhere. 
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Abstract—A total Lagrangian formulation for large deformation analysis of shells by the finite element 
method is presented. The development of the model is based upon the three dimensional field equations. To 
permit solution of shell problems without numerical difficulties, a special discretization in the thickness 
direction is employed. The displacement field of the shell element is represented by the displacement on the 
shell midsurface together with the relative displacement on the shell top surface, without resorting to the 
more complicating finite rotation parameters. Consistent linearization of the discretized balance equations 
is used to establish a Newton-Raphson solution scheme. The versatility and accuracy of the present shell 
element are demonstrated by solving several numerical examples. 

INTRODUCTION 

In recent years, a number of finite elements have been 
developed for shell analysis. Their applications span 
over a wide range of shell geometric forms, thicknesses 
and severities of shell deformation. Shortcomings in-
herent in many shell elements include the following: 
(a) the element application is limited, usually within the 
scope of an underlying shell theory; it could also be 
restricted by a number of numerical instabilities intrin-
sic to certain shell situations, (b) the element formula-
tion is highly complicated, particularly in nonlinear 
analysis and, (c) the computational cost of element 
characteristics is too high for practical use. 

The purpose of this paper is to develop a shell finite 
element for large-deformation applications which is 
free of the above shortcomings. Computational cost is 
usually a prime concern in nonlinear analysis. Frequent 
reformations of element tangent stiffness and general-
ized force often lead to an exorbitant computational 
expenditure. Besides, the uncertainty of many nonlinear 
characteristics often limits the confidence level of a 
nonlinear solution to a point that any accuracy 
improvement made by using a highly accurate element 
becomes merely an extravagence. Under such circum-
stances, an economic consideration usually entails the 
use of simple and efficient elements. For this reason, we 
focus our attention on a shell element which is simple, 
versatile and yet competitively accurate. 

Special features characterizing this element can be 
highlighted as follows : (1) Bilinear functions are selected 
for the element geometry so that the element can serve 
as a convenient basis for unlimited forms of shell 
surfaces. (2) Relative displacement degrees-of-freedom 

t Assistant Professor of Structural Engineering. 
^Professor of Civil Engineering. 
§Associate Professor of Structural Mechanics. 

are introduced to replace the cumbersome finite rota-
tions. Special shape functions are devised to accommo-
date these degrees-of-freedom with no sacrifice of the 
element isoparametric property. (3) The formulation 
of the shell element, being a special case of continuum, 
employs rigorous three-dimensional field equations. 
The computation utilizes the reduced integration tech-
nique [1-3] which extends the element application to 
thin shells. 

STRATEGIES OF SHELL ELEMENT DERIVATION 

Shell finite elements are often derived from governing 
equations based on a classical shell theory; these are 
referred to as classical shell elements. Alternatively, one 
can obtain shell elements by modifying a continuum 
element to comply with shell assumptions without 
resorting to a shell theory. These are known as degener-
ate shell elements [2-6]. Both derivation concepts 
involve, at one stage or another, the process of reducing 
a shell-like continuum into a consistent surface patch 
of shell elements (Fig. 1). This process utilizes two 
classes of approximation: one results from the finite-
element discretization and the other from enforcing 
certain shell approximations. 

Formulation of a classical shell element is often com-
plicated by the inherent complexities of the underlying 
shell theory and the global shell geometry. This prompts 
the shift from complex and restrictive classical shell 
elements towards the simpler and more versatile 
degenerate shell elements [2-5, 7]. 

The degeneration concept employs the two classes of 
approximation in the reverse order. A finite element 
discretization is performed first on the shell-like con-
tinuum before shell approximations are imposed. As a 
result, three-dimensional field equations are reduced to 
depend only on the element mid-surface coordinates. 

19 
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SHELL-LIKE CONTINUUM 

SHELL ASSUMPTIONS 

SHELL ASSUMPTIONS 

a ) DEGENERATION 
CONCEPT 

SHELL FINITE 
ELEMENT MODEL 

b) CLASSICAL SHELL 
CONCEPT 

can be found in many references [10-12] and therefore 
are omitted here. 

FORMULATION OF LARGE DEFORMATION 
SHELL ELEMENT 

Element concepts 
The present shell element shown (Fig. 2) evolves from 

a 3-D continuum (brick) element. Two opposite bi-
linear faces portray the top and the bottom surfaces of a 
shell whereas the mean surface between them defines 
shell mid-surface. The element consists of eight nodes, 
four reference nodes on the midsurface and four relative 
nodes on the top surface. Nodal variables assigned to 
each of the reference nodes are three components of 
displacement, while those assigned to each relative 
node are three components of the relative displacement 
with respect to the reference node located at the same 
corner. 

Fig. 1. Strategies for shell element derivation. 
3D CONTINUUM ELEMENT SHELL ELEMENT 

Since shell approximations are enforced in individual 
shell elements in total disregard of the global form of 
shell geometry, the shell element is unrestricted to any 
specific shell surface. 

In the shell element to be presented, the following 
thick shell approximations are made: (1) a plane-stress 
state is assumed for each shell lamina and (2) straight 
normals to the undeformed shell midsurface remain 
straight throughout the deformation. The first assump-
tion avoids the ill-conditioning that could result from 
displacement dependency across a shell normal. The 
second assumption allows the displacement profile 
along a shell normal to be completely described by two 
parameters: the midsurface displacement and one 
outer-face displacement relative to the midsurface are 
employed here. 

The usual rotational degree-of-freedom is abandoned 
because of its inconvenience when its magnitude is 
finite. Since finite rotation can not be represented by a 
vector, its coordinate transformation often requires a 
complex and unorthodox treatment. The element 
formulation ends up with highly complicated expres-
sions involving products of trigonometric functions 
[8]. In the proposed shell element, the field variables 
(displacement and relative displacement) are vectorial 
regardless of their magnitude. Consequently, the 
formulation of element characteristics is relatively 
simple and straightforward. 

Another problem often encountered in thin shell 
applications of a degenerate shell element is the so-
called shear-locking phenomenon [2, 3]. In a thin shell 
limit, each of the transverse shear strains is minute and 
its associated strain energy becomes a penalty function 
[9]. The first variation of this function leads to a con-
straint which enforces zero transverse shear strain 
everywhere on the shell surface and adversely affects 
the bending behavior. 

Reduced integration techniques were introduced and 
employed effectively in many degenerate elements 
[1, 3] as a means to remedy the shear-locking problem. 
In this technique, the transverse shear strain energy is 
evaluated with a reduced quadrature: the associated 
shear constraint is only enforced pointwise at the 
integration sampling points without degrading the thin 
shell solution. Rational explanations for this remedy 

NATURAL 
COORDINATES 

SPATIAL COORDINATES 

u ( r , s , t ) = f M"( r ,s , t ) V* u ( r , s , t ) = Z N ( r . s . t ) U 
a = 1 ~ a=1 ~ 

N°= W r W * (a =1,4) I 
a a a - 4 

N = M - M ( a = 5 , 8 ) 

Fig. 2. Shape functions employed in the shell element evolv-
ing from a three-dimensional continuum element. 

Geometry of the shell element can be described by a 
set of natural curvilinear coordinates {r, s, t ) such that a 
cube of bi-unit sides is uniquely mapped into the shell 
element. Displacement vector of a particle P located at 
(r, s, t) in a shell element can be expressed in terms of 
nodal variables as 

u(r,s,r)= X Na(r, s, t)Va (I) 

where Ua denotes the absolute displacement vector at 
node "a" for a = 1,4 and the relative displacement vector 
at node V for a = 5,8. The shape function Na consistent 
with this definition of U" can be given by 

^ Γ , * θ Η 1 + Λ ) ( 1 + Λ ) f o r f l = 1 · 4 (2) 

This element is isoparametric provided that relative 
position vector is input for each relative node; hence, 

x(r,s, f) = Σ Na(r,s,t)xa 
(3) 

where \a{a= 1, 4) is the position vector of a reference 
node and xa(a = 5, 8) is the relative position vector of a 
relative node with respect to the reference node "a —4" 
(Fig. 2). 
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Formulation of discretized equations of motion 
The motion of a body B is a one-parameter family of 

its configuration Bt in the Euclidean space. The spatial 
Cartesian coordinate system x serves to describe 
motions of particles in the space. Another set of Cartes-
ian coordinates X, known as the reference coordinates, 
describes the material framework of a configuration B0 

which is employed as a deformation reference. Motion 
of a particle P can be given in terms of the displacement 
vector u from its reference position in B0, X(P), as 

x/X,i) = i ^ + dj+tt/X,t) (4) 
where δ}3 denotes the Cartesian shifter between x and 
X systems and d is the position vector of the origin of 
X (Fig. 3). Throughout this presentation, upper-case 
and lower-case subscripts are used to differentiate 
between the components associated with X and x 
respectively. Also, a repeated index in a term implies 
summation over its range. 

/ * / % - CONVERGED CONFIGURATION 
t ^ / AT TIME = t 

,.Β?+1 

in which b is the body force vector, S the second Piola-
Kirchhoff stress tensor and F the deformation gradient 
associated with a motion from B0 to Bt. Assuming that 
the motion is sufficiently smooth for differentiation, F 
is given by ~ 

'»-ax;- (6) 

The traction boundary condition associated with 
boundary surface dB0 is as follows. 

" Α Α / - ή η ) = 0 ondB0 (7) 
where n is the unit normal vector of dB0 and f{n) is the 
prescribed traction acting on 3B0. 

The Galerkin weighted residual method is applied to 
eqns (5) and (7) to construct a Galerkin's weak form of 
the problem, i.e. 

G(u, ff)= - f (SuFjjltfjdV-i (Pobj-PàujMjdV 
JB0 JB0 

LINEARIZED Γ ^ 
INCREMENTAL] 7 
MOTION 

I Y ^ V Z PIVOTAL CONFIGURATION 
L ^ ^ / FOR LINEARIZATION 

r REFERENCE CONFIGURATION 

REFERENCE COORDINATES 
SPATIAL COORDINATES 

Fig. 3. Motion of a shell finite element. 

Physical principles governing the motion and ther-
mal responses of deformable bodies include conserva-
tion of mass, balance of linear and angular momenta, 
balance of energy and the entropy production inequal-
ity [13]. Restricting our attention to elastic bodies 
under isothermal deformation, the balance equation of 
energy becomes trivial. The balance of angular 
momentum is satisfied through the use of a symmetric 
stress tensor. On the other hand, the conservation of 
mass is satisfied through pt=p0/Jt where p0 and pt are 
mass densities of the body at B0 and Bt respectively and 
Jt is the determinant of the deformation gradient 
matrix. With a constitutive model constructed to 
comply with the entropy production inequality, an 
elastodynamic problem reduces to the determination 
of deformation and stress response that satisfy the 
balance equation of linear momentum. 

The balance of linear momentum, together with con-
stitutive equations, strain-displacement relations, and 
appropriate initial and boundary conditions, con-
stitutes an initial boundary value problem. By the 
finite element method, a weak form of this initial 
boundary value problem can be used to establish a 
system of discretized equations of motion. 

First, the local balance equation of linear momentum 
is expressed in the Lagrangian mode as [13] 

(SuFjjU + Pobj-PoU^O for Pe ß (5) 

ί + (n.S.jFjj-T^jjdA^O (8) 

in which η denotes a weight field over B0. Applying the 
Gauss-Green Theorem to the first integral leads to a 
corresponding canonical form of eqn (8). If both u and 
η are continuous over the shell domain, the Galerkin 
function can be written as an accumulation of individual 
element contributions, i.e. G(u, ry)=ZeGe(u, η) where the 
canonical form of a typical Ge associated with eqn (8) is 

Ge(u, η)= f e SvFtfjj dV- f e (p0bj -p0üj)VjdV 
JBO JBO 

- f . Tf%dA. (9) 
JdBo 

In the present shell element, the displacement field is 
expressed in terms of nodal displacements and nodal 
relative displacements according to eqns (1) and (2) 
in compliance with the thick shell assumption. The 
Galerkin method also employs η which belongs to the 
same function space as the displacement field. In 
addition, η is chosen to satisfy homogeneous essential 
boundary conditions. 

Let X be constructed at the element center so that X3 

is normal to the element midsurface. The unit vectors 
associated with X are given as follows. 

êX 3 = x, r (0,0,0) x x,s(0, 0,0)/|x,r(0, 0, 0) x x,s(0, 0, 0)| 

èX2 = êX3 x x,r(0, 0, 0)/|êX3 x xv(0,0,0)| 
e * l — eX2 X e * 3 ' 

(10a) 

(10b) 

(10c) 

The displacement field and the weight field of a particle 
P(X) in the shell element can be represented as 

u(X) = JVa(X)U° 
η(Χ) = Να(Χ)Ηα 

XeB'o (11) 
(12) 

where Na is given in eqn (2) and Ha denotes element 
nodal values of η. Note that the repeated superscript 
index such as "a" in eqns (11) and (12) implies summa-
tion over the element nodes (a= 1,8). Substituting eqns 
(11) and (12) into eqn (9) yields 

Ge(U, H)=H)(M% ϋ° + Κ)- Ιή) (13) 

in which the internal force vector, the mass matrix and 
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the generalized force vector are respectively 

JBZ 

M H NaNbdVÖ,. 

(14) 

(15) 

and 

Rbj=\ eTfNndA+ f Pob^aV. (16) 
o 

Observe that superscript refers to a node number while 
subscript refers to a spatial basis. For example, K) 
denotes the 7-component of the internal force vector at 
node "a". Assembling all individual element contribu-
tions leads to 

G(U, H) = HT[MU + K(U)-R] = 0 (17) 

in which H is a vector of nonprescribed weight para-
meters associated with global nodes. Since H can be 
arbitrary, eqn (17) reduces to 

MU + K(U)-R = 0 (18) 

which is the system of discretized equations of motion 
in terms of shell generalized variables U. 

Linearization of the internal force vector 
In quasi-static analysis, dropping the inertia term in 

eqn (18) directly gives a nonlinear algebraic system, 
from which U corresponding to a load step is computed. 
For dynamic problems, a time integration scheme such 
as the Newmark method or the Wilson 0-method can 
be used to establish an algebraic system of pseudostatic 
equilibrium equations from eqn (18). Solving these 
nonlinear equations by the Newton-Raphson tech-
nique requires the linearization of nonlinear term 
K(U) with respect to U. 

For quasi-static analysis, it is not difficult to show 
that a typical linearized equilibrium system associated 
with eqn (18) is 

DK(U-)AU- = R„-K(U-) (19) 

where DK(U™) denotes tangent stiffness matrix about a 
trial displacement U™ (assumed at the mth iteration for 
U„, the solution corresponding to the wth load step). 
The iterative increment, AU™, is computed from eqn 
(19) and added to U™ for a more accurate solution. 

It is very convenient to evaluate DK from the com-
ponential form as 

4"j | (20) 
r\Jla\ 

An expression for the shell element tangent stiffness is 
obtained by substituting eqn (14) into eqn (20) as 

v f RS f J i „ „„ „ dF, 

J>KJ7(UD= 

D I ^»-L[^ F ^ + S -^] dV 
j=u/r 

(21) 
In view of eqns (3), (4) and (6), the deformation gradi-

ent F can be evaluated from 

FJJ^SJJ + WJWJ. (22) 

Using the chain rule dSIJ/dUa
i={dSIJ/dEKIXdEKL/dUcl) 

in eqn (21), the Green strain definition Eu = ^FkIFkJ 

—δπ) and eqn (22), we can obtain DK for the shell 

element as 

DK 

Î OyWA. 

ë> ^ ( U W K I 

xdV+ j(V)NbjdV} . (23) 
U=UJT 

The first term on the r.h.s. of eqn (23) constitutes an 
elastic tangent stiffness with the effect of finite motion 
included, and the other term represents the effect of 
initial stresses. 

Constitutive model 
So far, the formulation is valid for any material con-

stitution in which S is a function of F. To avoid dis-
tractions from using too complicated constitutive 
models, our scope will be further limited to the class of 
hyperelastic solids. In this case, main attention can be 
focused on the performance of the shell element. The 
constitutive model for hyperelastic solids takes the 
form [13] 

in which Ψ is the Helmholz free energy function. To 
provide a simple presentation of constitutive equations, 
a fourth-order elasticity tensor is introduced such that 

d2x¥ 
(25) 

IdSj r — — I J 
C / J K L ~ 2 d £ = 2Po KL 2 oEudEKL 

from which one can show that CIJKL = CKLIj=CJIKL 

— ClJLK' 
In practice, constitutive relation can be obtained by 

assuming Ψ as a convenient function of E. From eqn 
(25), if Ψ is taken as a quadratic function of E, all 
CIJKLS a r e constant parameters. This class of material 
constitution corresponds to the first-order theory of 
elasticity [13]. For isotropic, linear elastic materials, 
the elasticity tensor can be described by two Lame's 
constants, λ and μ, as 

2CKLMN — λδκιβΜΝ + μ(δΚΜδΙΝ + SKNöLM). (26) 

In the present shell element formulation, the elasticity 
tensor must be modified to include the effect of the 
plane-stress assumption. With an orientation of X 
following eqns (10a), (10b) and (10c), the generalized 
plane-stress tensor C with respect to X at the element 
center can be obtained as 

CK L7 — C K -c KL33^33MN/^3333 r/C3 (27) 

In addition, C at any point on the element midsurface 
is approximated by C at the element center. This does 
not affect convergence because each individual element 
approaches apoint as the shell element model is refined ; 
thus, C(X)-> C(0) at the center of each element. 

Computational implementation 
A reduced numerical integration will be used to 

evaluate the transverse shear effect in both K and DK. 
To allow the selective integration scheme, K and DK 
must be partitioned into two parts: the transverse shear 
effect and the rest. Rewrite K given by eqn (14) in a 
matrix form as 

Kb= f 
JBÎ 

FSVNbdK (28) 
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where VNfe= <JV?1N*2JV?3)r. If the matrix of the second 
Piola-Kirchhoff stress tensor S is decomposed into two 
submatrices as 

s=sm+s = 
S n 

S 2 i 

0 

^12 

^22 

0 

0 
0 

S33 

+ 
0 
0 

531 

0 
0 

S32 

«13 

^23 

0 
(29) 

The internal force vector can be split into two parts, 
Kb = K^ + K£, in which the membrane-bending effect 
is given by 

FSmVNftdF 

FS,VNbdK 

(30) 

(3D 

Jßoe 

and the transverse shear effect by 

Similar partitioning will be applied to the tangent 
stiffness matrix. By restricting the present scope to the 
class of isotropic hyperelastic material, the term dSjj/ 
dEKL in eqn (23) is replaced by CIJKL in view of eqns 
(25H27). Since no coupling terms in C between the 
shear and the in-plane strains exist, the partition of 
DK into the two effects is straightforward. Rewrite 
DK of eqn (23) in a matrix form as 

DKfcfl= ί (Bb)TOBaaV+ f (VNYSVNadK-I (32) 
o 

in which I is the identity matrix, Ba relates the vector of 
Green strains E={EliE22E332E122E232E31}

T to the 
nodal parameters Ua and D is a matrix deduced from 
the generalized plane-stress tensor to give dS/<3E = D 
when S={S11S22S33S12S23S3l}

T. The matrices B and 
D can be partitioned as 

B '=[!] 
FM 
F12N?2 

FM 

F21W1 
F22N12 

FM, 

F31W1 
F32N°2 

FM3 
FuW2 + F12NU F21N-,2 + FMi F31iV?2 + F32JV?1 

Fi3W2 + Fl2N°3 FM2 + FM3 F33N°2 + FM3 

F Mi + F , ,JV?3 F23N% + F21N
a,3 F33N°yl + F31N°,3 

(33) 
and 

Χ+2μ I 
I Ι + 2 μ 

1 0 0 
0 0 
0 Ö 

L o 0 

0 
0 
ε 
0 
0 
0 

0 
0 
0 
μ 
0 
0 

0 
0 

,ο 
!0 
\μ 
ιθ 
1 

0 Ί 
0 
0 
0 
0 
l·1 J 

(34) 

with respect to the system X. The reduced Lame's 
constant 1 = 2λμ/(λ+2μ) and ε is a fictitious coefficient 
employed for numerical stability to be discussed in the 
Appendix. 

In view of eqns (33) and (34), we can show that 

DKe*=DKj + DKf (35) 
where the membrane-bending effect is given by 

DK*m
b=i (BflJrDmBb

mdF+ f (VNTSmVNbdK-I 
JBe Jße 

o o 

(36) 

and the transverse shear effect by 

DKf = f (B;)TDsBjdK+f (VNe)TSsVNbdK-I. 
JBS JBS 

(37) 

The 2 x 2 x 2 Gaussian quadrature is used to evaluate 
Km and DKm, while the one-point Gaussian quadrature 
is used to evaluate Ks and DKS. 

Choice ofB0 

Figure 3 shows a configuration Bt at time t and also a 
reference configuration denoted by B0. During the 
(w + l)st Newton-Raphson iteration, the configuration 
JBJ+ 1 is obtained by solving the linearized equilibrium 
system based upon the last known configuration B". 

Distinction should be made between a configuration 
about which linearization is performed (B") and a con-
figuration that is employed for deformation reference 
(B0). The total Lagrangian formulation takes the un-
deformed configuration as B0, while the updated 
Lagrangian formulation employs B" as reference. In 
the general case, there is no obvious, clear-cut advant-
age for choosing one formulation over the other. 
Many factors need to be considered including the 
nature of the problem, computational efficiency, and 
program implementation effort. 

For shell structures, for which the constitutive model 
is transversely isotropic, the total Lagrangian formula-
tion is found to be superior. The elementary elasticity 
tensor D with respect to X (eqn (34)) can be used in the 

INITIAL CONFIGURATION B0 

a) Form X on B0 

b) Form É 6-,j] 
c) Form C1JKL atX=0 

DEFORMED CONFIGURATION B{ 

At ̂ XL,Form N,NtI ,W = JL wL 

F|j = ÔJJ+ZNO.JUJ» 

Su= / Î05^]E) -2CI J K LEKL 

(FIRST-ORDER ELASTICITY) 

I Form VhftXj.BÊlXji lasI.e)! ~ x — 
Form Dot,§o6 

-<^Node 0 ( 0 = 1 , 8 ) y ~ 

-FSot'VNaxW 

it j <^Node b ( b = l , 8 ) 

Ù 
£Kob— CjÛT-JB-rfltw 
DK°^(7y)TâVNbIW 

Fig. 4. Flow diagram showing the computation of K and 
DK. 
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computation of DK at any state of the motion without 
a need to be updated or transformed ; hence, computa-
tional effort is kept at a minimum. In addition, the 
reference frame X can be constructed locally to accom-
modate a convenient energy splitting in the evaluation 
of K and DK. For the above reasons, the total Lagran-
gian formulation is chosen in this study. The flow 
chart showing steps to evaluate DK and K of the pro-
posed nonlinear shell element is given in Fig. 4. 

NUMERICAL EXAMPLES 

Numerical examples are solved to test the perform-
ance of the shell element in nonlinear applications. The 
first-order, linear elasticity tensor of eqn (26) is used in 
these examples to allow relevant solution comparisons. 
All nonlinear solutions employ the Newton-Raphson 
iteration technique within each load increment. The 
Euclidean norm of incremental displacements less than 
10" 4 times the current displacement norm is used as the 
condition for convergence. The respective number of 
iterations required to meet this criterion is stated in each 
problem. 

All problems were solved with the FEAP macro 
programming language [14]. The calculations were 
performed on the University of California CDC 6400 
computer. 

A stiff bar undergoing finite rotations 
The shell element is used to model a very stiff bar 

(Fig. 5) which is hinged at one end and attached to soft 
springs at the other end to allow large rotations. Load-
deflection curves are plotted in Fig. 5 to compare with 
the one-dimensional nonlinear truss solution. The 
comparison shows good agreement between the two 
solutions. 

bending moment with respect to the displaced position. 
This is done conveniently through a fictitious surface 
element detailed in Fig. 6. 

The analytical solution for this problem is available: 
the deformed midsurface forms a constant curva-
ture = ML/El, where M is the applied bending moment 
at the tip, L is the strip length, and / is the moment of 
inertia about the axis of bending. The present solution 
is plotted in Fig. 7. A deviation of 7% is observed at the 
last load step when the crude mesh of 5 elements 
attempts to form a half circular ring. A plot of the 
deformed configurations is also given in Fig. 8. 

The elastica 
A clamped beam-column in Fig. 9 is subjected to 

vertical load at the top. The beam-column is tilted 
initially with a slope of 1:1000 to initiate non-neutral 
stability solution after the bifurcation point (buckling). 

FICTITIOUS fy 

SURFACE ELEMENT 

Fig. 6. Finite-element mesh of a cantilever shell strip and a 
fictitious surface element to transform bending moment to 

relative nodal forces on the deformed configuration. 

Cylindrical bending of a cantilever shell strip 
Five shell elements are used to model the cantilever 

shell strip shown in Fig. 6. The strip is subjected to a 
bending moment at the tip. Since relative displace-
ments, not rotations, are employed in this shell element 
model, an appropriate transformation is needed to 
obtain equivalent relative nodal forces from the tip 
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Fig. 5. Finite rotation of a stiff bar modelled by shell element; 
load-deflection curves. The bar has A = 100 in2, E—107 psi 

and v = 0. 

TT 

y 

311 
5 

211 
5 

II 
5 

(Ux 

NO. OF 
ITERATIONS 

Y in, 

To «ox 

S\ 1 1 L 

/ D -

7/ 

8> 

1 i 

9 \ 

7i 

L 

• A - ( - U y / L ) 

A 

\ J J · . \ 
4-f-l—|—|—0—»x 

1 M 
Y 

EXACT 

O · F.EM. 

CONVERGENCE CRITERION 

. t ■ lu l 

0 0.5 1.0 

NORMALIZED DISPLACEMENT 

Fig. 7. Load-displacement curves of a 5-element model canti-
lever strip. 
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Ten shell elements are employed for the beam-column 
of a unit width. The tip displacements plotted in Fig. 9 
show excellent agreement with the analytical solution 
[15]. 

Square clamped plate subjected to a uniform pressure 
Figure 10 shows a sixteen shell element model of 

square clamped plate quadrant. Finite deflection of the 
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plate center is plotted vs the magnitude of uniform 
pressure for comparison with other solutions,, The 
present solution shows better agreement with the 
analytical solution [16] than the solution of 16 cubic 
plate elements, reported by Kawai et al. [17]. The 
values of the extreme fiber stresses are also plotted in 
Fig. 11. 

A shallow, clamped cylindrical panel subjected to normal 
pressures 

In this problem, 16 shell elements are employed for a 
quadrant of a shallow cylindrical shell shown in Fig. 12. 
Four iterations are needed in each load step to pass the 
convergence criterion. In the same figure, the present 
solution is compared with those due to Gallagher 
[18], Brebbia et al [19], and Dhatt [20]. The compar-
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Fig. 9. Elastica problem: load-deflection curves. 
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ison shows good,agreement between the present solu-
tion and Gallagher's solution. 

An aluminum can squeezed at the midsection between two 
rigid edges 

The last example is an aluminum can being squeezed 
between two rigid, straight edges as shown in Fig. 13. 
Young's modulus of aluminum is taken as 106 and 
Poisson's ratio as 1/3. 

For simplicity, clamped ends are assumed at both 
ends of the cylindrical shell. A quadrant of the can is 
modelled with 24 shell finite elements. Four Hertzian 
contact elements developed by Hughes et ai [21] are 
employed around the contact periphery of the can mid-
section. The driven distance of a rigid edge is prescribed 
at a uniform increment of 0.05 in. The value of total 
contact force is plotted vs the driven distance in Fig. 13. 
A plot of the deformed configurations is also presented 
in Fig. 14 along with contact pressure profiles. 

Fig. 14. Plot of deformed configurations of the finite-element 
aluminum can quadrant. 

CONCLUSIONS 
A highlight of the present finite element for general 

nonlinear shells is its rigorous, but surprisingly simple 
formulation. The key to this success is the introduction 
of relative displacements in place of the customary shell 
rotation variables. As a result, the finite element 
formulation can be presented within the context of 
nonlinear continuum mechanics. The simplicity of the 
formulation stems from the fact that no unorthodox 
treatment of finite shell rotation is encountered. 

The total Lagrangian formulation is chosen in this 
study because of its simplicity and efficiency in estab-
lishing a degenerate shell element. All the numerical 
examples show excellent performance of the present 
shell element, despite the crude finite element meshes. 
Undoubtedly, this shell element, which is simple, cheap, 
versatile, and yet accurate, will serve as an attractive 
basis for large-deformation problems of general shells. 
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APPENDIX 

The fictitious coefficient ε in eqn (34) is employed to 
prevent the system from being ill-conditioned in certain 
situations. The reason can be explained as follows. Along the 
interelement boundaries of a bilinear element assemblage, 
kinks normally occur. Despite the plane-stress assumption, 



A large deformation formulation for shell analysis by the finite element method 27 

the complete (three) components of relative displacement 
must be assigned to each relative node to accommodate 
coupling among non-planar elements surrounding the node. 
Although no stiffness for the transverse component has been 
accounted within the individual elements, the coupling 
among them serves to prevent free thickness deformation of 
each element. Nevertheless, whenever neighboring elements 
to a node are close to being co-planar, the weak coupling 
only generates minute stiffness to restrain the zero-energy 
thickness deformation mode and the system tends to be ill-
conditioned. Under this situation, a fictitious thickness 
modulus ε is introduced to maintain the numerical condition 
of the system. 

The value of ε must be large enough so that the relative 
degrees-of-freedom represent rotations ; on the other hand, 
it must not be so large as to effectively cancel out the in-
plane stiffness due to limited computer word length. There 
exists a range of ε however for which correct shell solutions 
can be obtained with little sensitivity of ε. The magnitude 
comparison shows that the stiffness associated with a trans-
verse relative degree-of-freedom is 0(le/he)2 times the in-plane 
stiffness, where le/he is a characteristic length-to-thickness 
aspect ratio of shell element. To prevent exorbitant magni-
tude of this stiffness in the thin shell limit (Äe->0), a smaller ε 
must be used for the thinner shell. Numerical experiments 
are conducted on the range of the fictitious thickness 
modulus ε. 

The result indicates that ε should be proportional to 
{he/le)2 times the in-plane modulus. Figure Al shows a two-
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Fig. Al. A two-hinged arch finite element model (unit width) 
subjected to concentrated load at the crown. Vertical deflec-

tion at the crown versus fictitious thickness modulus ε. 

hinged arch finite element model subjected to a point load 
at the crown. A small magnitude load is employed so that 
the solution can be relevantly compared with analytical 
small-displacement solution. Crown deflections are ob-
tained with different values of ε as shown in Fig. Al. Good 
solutions are attainable with values of ε within 10"1 and 
102 times {/ΐ*/Ιβ)2(λ+2μ). In Fig. A2, solutions of the same 
problem using 3, 9 and 27 shell elements are plotted; all are 
obtained with ε = (Ιιβ/Π2(2. + 2μ). Solution of the 9-element 
model with ε = (λ+2μ) is also presented for comparison; 
its failure in the thin shell limit is attributed to exorbitant 
magnitude of the corresponding transverse stiffness when 
he-*0. Midsurface displacements, relative displacements and 
stress resultants of the 3 and 9 element meshes are very accur-
ate as shown in Figs. A3 and A4. The solution of the 27-
element mesh is accurate to the third decimal place and is in 
fact indistinguishable from the exact solution. 

It is therefore recommended that magnitude of ε be given 
by 

ε = α(/ι7η2(Ι + 2μ) (AI) 
in which the parameter a may vary within 10" MO 2 to 
ensure reliable thin shell solutions. 
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RECENT ADVANCES IN REDUCTION METHODS 
FOR NONLINEAR PROBLEMS 

AHMED K. NooRt 
George Washington University Center at NASA Langley Research Center, Hampton, VA 23665, U.S.A. 

Abstract—Status and some recent developments in the application of reduction methods to nonlinear structural 
mechanics problems are summarized. The aspects of reduction methods discussed herein include: (a) selection of basis 
vectors in nonlinear static and dynamic problems (b) application of reduction methods in nonlinear static analysis of 
structures subjected to prescribed edge displacements, and (c) use of reduction methods in conjunction with mixed 
finite element models. 

Numerical examples are presented to demonstrate the effectiveness of reduction methods in nonlinear problems. 
Also, a number of research areas which have high potential for application of reduction methods are identified. 
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elastic modulus of the material 
error norm defined in eqns (16) and (28) 
linear global flexibility matrix 
vector of internal nodal forces defined in 

eqn (38) 
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vectors defined in eqns (1) and (4), respec-
tively 

partitions of {G(X)} defined in eqns (19) 
and (45) 

vectors of nonlinear terms defined in eqns 
(1) and (30), respectively 

vectors of nonlinear terms of the reduced 
system of equations defined in eqns (6) 
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global linear stiffness matrix 
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system defined in eqns (5) and (34), 
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mass matrices of the full and reduced sys-
tems 

vector of nonlinear terms defined in eqn 
(30) 

number of displacement degrees of 
freedom in the model 

applied concentrated load 
intensity of uniform pressure loading 
normalized load vector of the full system 
normalized load vectors of the reduced 

systems defined in eqns (7) and (36), 
respectively 

partitions of the vector {Q} defined in eqn 
(45) 

vectors of external and constraint forces 
defined in eqn (19) 

load parameter 
radius of curvature of the shell 

M 

residual vectors defined in eqns (15) and 
(29), respectively 

number of reduced basis vectors 
current stiffness parameter corresponding 

to point / of the solution path 
linear generalized stiffness matrix defined 

in eqn (30) 
total strain energy of the structure 
displacement components in the coor-

dinate directions 
vector of nodal displacements 
partitions of the vector {X} defined in eqn 

(45) 
vectors of free and prescribed (nonzero) 

nodal displacements defined in eqn (17) 
orthogonal curvilinear coordinates 
vector of displacement parameters defined 

in eqn (18) 
condition number of the Gram matrix of 

basis vectors 
matrices of basis vectors defined in eqns 

(3) and (32) 
path parameter 
Poisson's ratio of the material 
mass density of the material 
rotation components of the middle surface 

of the shell 
vector of unknowns of the reduced equa-
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tProfessor of Engineering and Applied Science. 

1. INTRODUCTION 

In recent years nonlinear analysis of static and dynamic 
problems has become the focus of intense research 
efforts. The increasing importance of nonlinear analysis 
is largely due to the emphasis placed by manufacturers, 
contractors and certifying agencies on realistic modeling 
and accurate analysis of critical structural components. 
This endeavor has prompted the development of ver-
satile and powerful finite element discretization methods 
as well as of improved numerical methods and pro-
gramming techniques for nonlinear static and dynamic 
analysis of structures (e.g. Refs. [1-16]). In spite of these 
advances the solutions of most large-scale nonlinear 
structural and solid mechanics problems require exces-
sive amounts of computer time even on present-day large 
computers and thus are very expensive. 

An examination of the static load-deflection charac-
teristics and dynamic response-time histories of a num-

31 
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ber of complex structural systems revealed that they are 
generally not more complicated than those for simple 
structures. The large numbers of degrees of freedom in 
complex structures are often dictated by their topology 
rather than by the expected complexity of the behavior. 
This fact has been recognized and techniques for reduc-
ing the degrees of freedom have long been proposed in 
vibration analysis and automated optimum design (Refs. 
[17-22]), and more recently in nonlinear analysis (Refs. 
[23-30]). The techniques for reducing the degrees of 
freedom are referred to herein as reduction methods. 

In the case of nonlinear analysis most of the reduction 
methods that have been proposed are hybrid procedures 
which combine contemporary finite elements (or finite 
differences) and classical Rayleigh-Ritz (or Bubnov-
Galerkin) technique. Such approaches preserve the 
modeling versatility of the finite element (or finite 
difference) method, and at the same time reduce the 
number of degrees of freedom through Rayleigh-Ritz (or 
Bubnov-Galerkin) approximation. 

The essence of reduction methods for nonlinear 
analysis is to limit the deformation modes of the dis-
cretized structure to some known modes (basis vectors 
or global Rayleigh-Ritz approximation functions) which 
are considerably smaller in number than the number of 
degrees of freedom of the initial discretization. Due to 
the high potential of reduction methods for nonlinear 
analysis, increasing interest has recently been shown in 
the application of these methods to nonlinear static and 
dynamic problems. This paper summarizes the status and 
some recent developments of reduction methods and 
their application to nonlinear structural mechanics prob-
lems. Discussion focuses herein on a number of aspects 
of reduction methods which are of interest to the author 
including: (a) selection of basis vectors in nonlinear 
statics and dynamics problems, (b) application of reduc-
tion methods to static rionlinear analysis of structures 
subjected to prescribed edge displacements, and (c) use 
of reduction methods in conjunction with mixed finite 
element models. 

Numerical examples are presented to demonstrate the 
effectiveness of reduction methods. Also, a number of 
research areas which have high potential for application 
of reduction methods are identified. 

2. REDUCTION METHODS FOR NONLINEAR STATIC PROBLEMS 

For static problems the response of the discretized 
structure is described by a system of nonlinear algebraic 
equations. Rayleigh-Ritz (or Bubnov-Galerkin) tech-
nique is then used to replace the governing equations of 
the structure by a reduced system of equations with 
considerably fewer unknowns. This section gives a 
summary of the basic equations used in reduction 
methods along with some recent developments relative 
to the selection of basis vectors. The loading is assumed 
to be conservative and proportional. A total Lagrangian 
formulation is used and the spatial discretization is done 
by using displacement finite element models. The ad-
vantages of using reduction methods in conjunction with 
mixed finite element models, in which the fundamental 
unknowns consist of both stress and displacement 
parameters, are discussed in the succeeding sections. 

2.1 Governing finite element equations 
The governing finite element (or finite difference) 

equations of the discretized structure can be cast in the 

following form: 

{/(*, λ» = [K){X} + {G (X)} - q{Q} = 0 (1) 

where [K] is the n x n linear global stiffness matrix; n is 
the total number of displacement degrees of freedom; 
{X} is the vector of unknown nodal displacements; 
{G(X)} is the vector of nonlinear terms; {Q} is a nor-
malized load vector; q is a load parameter, and A is a 
path parameter which may be identified with a loading or 
displacement parameter. 

2.2 Reduced system of equations 
A Rayleigh-Ritz technique is used to replace eqn (1) 

by a reduced system of equations. This is accomplished 
by approximating {X} byja linear combination of r linearly 
independent vectors {X}u {X}i, {X}r where r is 
much less than n, i.e. 

{Χ} = [Τ]{ψ} (2) 

where 

[Γ]„,Γ = [{Χ}„{Χ}2,....{Χ}Γ] (3) 

and {φ}Γ,ι is a vector of undetermined coefficients which 
are obtained by solving the reduced system of nonlinear 
equations. 

{/(*, A)} = [Κ]{φ} + {0(φ)} - q{Q) = 0 (4) 

and 

IK] = [T)T[K][T] (5) 

{0(φ)} = [Υ]τ&(φ)} (6) 

{Q} = [T]T{Q} (7) 

where superscript T denotes transposition and {ΰ(φ)} is 
obtained from {G(X)} by replacing {X} by its expression 
in terms of {φ}, eqn (2). 

2.3 Selection of reduced basis vectors 
As would be expected, the effectiveness of reduction 

methods depends, to a great extent, on the proper choice 
of the reduced basis vectors. Various choices for basis 
vectors were proposed in the literature. These include 
linear bifurcation buckling modes (Refs. [26-27]); linear 
solution and corrections to it (Ref. [25]), and nonlinear 
solution and its various order path derivatives (Refs. 
[28,29]). In order to assess the relative merits of these 
various choices of basis vectors it is useful to identify 
the qualities important in an ideal set of basis vectors. 
An ideal set of basis vectors is defined herein as one 
which maximizes the quality of the results and minimizes 
the total effort in obtaining them. The criteria which 
these basis vectors must satisfy are: 

(a) The vectors must be linearly independent and span 
the space of solutions in the neighborhood of the point 
considered on the solution path, in the sense that they 
fully characterize the nonlinear response in that neigh-
borhood. 

(b) Their generation should be both simple and com-
putationally inexpensive, and their number can be 
automatically selected for any given problem. 

(c) The vectors must have good approximation pro-
perties in the sense that they provide highly accurate 
solutions on a large interval of the solution path. 
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(d) Their use should simplify the tracing of post-buck-
ling and post-limit-point paths. 

The first criterion is necessary for the convergence of 
the Rayleigh-Ritz approximation. The last three criteria 
significantly enhance the efficiency of the reduction 
method and increase its effectiveness in solving non-
linear structural problems. If the various choices for 
basis vectors reported in the literature are examined in 
the light of these criteria, one finds that the generation of 
bifurcation buckling modes for large structural problems 
is computationally expensive. The use of the linear solu-
tion as a basis vector necessitates frequent additions of 
corrective basis vectors; each additional vector is 
obtained by solving the full system of nonlinear finite 
element equations. On the other hand, the use of a 
nonlinear solution and its various order path derivatives 
(which are commonly used in the static perturbation 
technique) satisfies all the aforementioned criteria. These 
basis vectors are: 

<Hf) 
(8) 

(9) 

(10) 

The vectors are linearly independent and span the space 
of solutions in the neighborhood of the point considered 
on the solution path. As is known from the static per-
turbation technique, the use of the path derivatives, eqns 
(9) and (10), simplifies the tracing of post-buckling and 
post-limit-point paths. The path derivatives are obtained 
by successive differentiation of the governing finite ele-
ment equations of the discretized structure. An efficient 
algorithm for evaluating the basis vectors and generating 
the reduced system of equations is given in Ref. [29]. The 
generation of all the vectors is done with only one matrix 
factorization, and therefore, the effort in generating the 
second and succeeding basis vectors reduces to that of 
evaluating the right hand sides of the recursion formulas 
used in their evaluation (see Refs. [28,29]). 

A criterion for the automatic selection of the number 
of basis vectors was proposed in Ref. [28]. This criterion 
is based on monitoring the condition number ß of the 
Gram matrix of the basis vectors, and terminating the 
generation of these vectors when ß exceeds a prescribed 
value. Along with the prescribed value of ß, upper and 
lower limits for the number of basis vectors must be 
prescribed (e.g. 10 and 2). The high accuracy and 
effectiveness of using the proposed set of basis vectors 
in nonlinear shell problems was demonstrated in 
Ref. [29]. 

reduced system of equations; (e) tracing post-buckling 
and post-limit-point paths. Only some of the key features 
of these elements are outlined herein. 

3.1 Characterization of nonlinear response and selection 
of load (or displacement) step size 

For the efficient application of reduction methods to 
complex structural systems, it is desirable to characterize 
the changes in the nonlinear response of the structural 
system by means of a single parameter. The selection of 
load (or displacement) increments and the frequency of 
error sensing are then related to changes in this 
parameter. 

A convenient scalar for characterizing the nonlinear 
response is the current stiffness parameter S introduced 
in Refs. [31,32]. This parameter has the major advantage 
of being easily computed from the reduced system of 
equations. The parameter 5(l) corresponding to point / in 
the load-displacement path is defined as follows: 

dq\ 

$ω=(ιί\ψ} I So for the full system (11) 

dq 
dk 

r.. Λ ft*—ISo for the reduced system 

where 

5o = 
ill 
3λ\0 ifl> 

(12) 

(13) 

and the subscript 0 refers to the value at A = 0. 
The parameter 5( l ) provides a global measure for the 

stiffness of the structure at point i. It has an initial value 
of 1.0, increases when the structure stiffens and 
decreases when the structure softens. For stable equili-
brium paths, S is positive; for unstable paths, it is 
negative; and at limit points, S is zero. 

An automatic load (and displacement) incrementation 
procedure is described in Refs. [28,31]. The load (or 
displacement) steps are selected in such a way as to 
maintain almost equal changes of 5 for the different load 
(or displacement) steps. The load increment of the /th 
step Δ<7(1) is related to the load increment of the ( / - 1 ) 
step Δ<70_ΐ) as follows: 

kq(i 
_ Aq(t 

Afc.3M (14) 

3. COMPUTATIONAL PROCEDURE USED WITH REDUCTION 

METHODS 

A problem-adaptive computational procedure for use 
with reduction methods has been presented in Refs. 
[28,29]. The five key elements of this procedure are: (a) 
efficient evaluation of basis vectors and generation of the 
reduced system of equations; (b) characterization of the 
nonlinear response by means of a single scalar; (c) 
automatic selection of load (or displacement) step size 
and evaluation of the corresponding displacements and 
forces; (d) sensing and controlling the error in the 

where AS is the chosen increment of S and AS(l-n is the 
actual change in the current stiffness parameter during 
the ( / - 1) step. Along with eqn (14) maximum and mini-
mum values must be specified for Lq. 

3.2 Sensing and controlling the error in the reduced sys-
tem of equations 

In order to check the accuracy of the solution obtained 
by the reduced system of equations at any value of the 
load parameter q, the current solution {X} is generated 
using eqn (2) and then the residual vector {/?} of the finite 
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element equations, eqn (1), is computed, where 

{R} = [K}{X} + {G(X)}-q{Q}. (15) 

A weighted Euclidean norm of {R} is used as an error 
measure, namely: 

If the error norm e is less than a prescribed tolerance, 
the solution is continued; otherwise, a corrected (or im-
proved) estimate of {X} is obtained using Newton-
Raphson technique in conjunction with eqn (1). Then a 
new set of basis vectors is generated (with no matrix 
factorization needed). 

To improve the efficiency of the computational pro-
cedure, it is desirable to reduce the frequency of com-
puting the error norm without sacrificing the solution 
accuracy. This is accomplished by relating the frequency 
of error sensing to changes in the current stiffness 
parameter S (see Refs. [28,29]). 

3.3 Tracing post-buckling and post-limit-point paths 
At limit points of the load deflection path, S = 0 and 

* 
the stiffness matrix [K]( = [K] + [(dGJdXi)]) is singular. 
To avoid such singularities, S is continuously monitored 
and load incrementation is discontinued when S falls 
below a prescribed tolerance (e.g. 0.05). A new set of 
basis vectors are then computed, with λ chosen to be a 
displacement parameter instead of the load parameter. 
The solution is then advanced using a displacement 
incrementation procedure. 

To trace the unstable load deflection path in snap-
through and snap-back problems, the change AXmax in 
the maximum displacement component is monitored. If a 
large value A^max is observed in one load step (e.g. ten 
times the preceding value of Xmax) the solution step is 
rejected before switching to displacement incremen-
tation. The maximum displacement Xmax at each step is 
chosen as the path parameter to be incremented. Note 
that the location of the maximum displacement can shift 
from step to step. The displacement increments are chosen 
to correspond to almost equal changes of S for the different 
steps. 

4. CASE OF PRESCRIBED EDGE DISPLACEMENTS 

In the case of a loading applied by means of prescribed 
displacements, as would occur in a laboratory com-
pression test, it is convenient to partition the vector of 
nodal displacements as follows: 

<*}-{*} (H) 

where {Xf} and {Xc} are the free and prescribed (non-
zero) displacements, respectively. The constrained zero 
displacements, and their associated equations are eli-
minated from eqn (1). For simplicity, the prescribed 
(nonzero) displacements are assumed to be proportional 
to the path parameter A, i.e. 

{XC} = X{Z}. (18) 

4.1 Governing finite element equations 
Equation (1) can be conveniently partitioned into two 

sets of matrix equations as follows: 

\Kff Kfc][XA jGAXfiXc)] _[<?/] = ft 

[Kcf KccWXcriGaXfiXc)} [Qcl u· 
(19) 

In the absence of externally applied loading (case of 
prescribed displacements only), {Qf} = 0 and {Qc} equals 
the vector of constraint forces associated with the pres-
cribed displacements {Xc}. The first set of eqns (19) can 
be used to determine {Xf} and the second set is then used 
to evaluate the constraint forces {Qc}. 

4.2 Basis vectors and reduced system of equations 
It is convenient to write the matrix [Γ], eqn (3), in the 

following form: 

"ν-[β}{ϊ}έ{ϊ}·-Ρ{ϊ}} 
(20) 

The corresponding reduced system of equations has a 
slightly different structure from that of eqn (4), namely: 

[Κ]{ψ} + {0(ψ)}-{0} = 0 (21) 

where 

{<?} = [ n T { ç J . (22) 

Note that {Q} has only one nonzero component, namely 
Ci. Equations (21) are solved for the reduced unknowns 
{φ} subject to the condition φί = A. 

4.3 Current stiffness parameter 
In the absence of external loading the current stiffness 

parameter, defined in eqns (11)-(13) needs to be modified 
as follows: 

S o ) = (in\T 1 So for the full system (23) 

= /So for the reduced system (24) 
dQi 
3λ l(i) 

where 

(25) 

f=!,['*'<>+[f]]f <»> 
and 

So = TTfTTr—· (27) 

i f ) . <z> 
4.4 Error norm 

A convenient error norm that can be used for checking 
the accuracy of the reduced solution is given by: 

e = yJ({Rf}
T{Rf}l{Qc}T{Qc}) (28) 
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where 

{«,} = [Kff]{Xf] + lKfc]{Xc} + mxf, Xc% (29) 

Except for the aforementioned modifications, the com-
putational algorithm to be used for the case of prescribed 
edge displacements is the same as that outlined in Refs. 
[28,29]. 

5. USE OF REDUCED-BASIS TECHNIQUE IN CONJUNCTION WITH 
MIXED FINITE ELEMENT MODELS 

In a number of applications of the reduced basis 
technique with displacement finite element models it was 
found that the accuracy of stress resultants produced by 
the approximate reduced equations was, in general, 
lower than that of displacements. To remedy this draw-
back the use of the reduced basis technique in con-
junction with mixed finite element models was proposed 
in Ref. [30]. The basic idea of this approach as applied to 
geometrically nonlinear static problems with conser-
vative proportional loading is discussed in the succeeding 
subsections. 

5.1 Governing finite element equations 
The governing finite element equations of the dis-

cretized structure consist of both the constitutive equa-
tions and the equilibrium equations and can be cast in the 
following form: 

tf„(H,X,A)] [-[F] IS]]{H\. f %Χ) 1 
l/x(J/,JU)J L ISf 0 ηχΓ\Μ(Η,Χ)ί 

-q{°Q} = 0 (30) 

where [F] and [5] are the linear global flexibility and 
generalized stiffness matrices; {//} and {X} are the vec-
tors of stress parameters and nodal displacements; 
{^(Χ)} and {M{H,X)} are vectors of nonlinear con-
tributions; and {Q} is a normalized external load vector. 

5.2 Basis vectors and reduced system of equations 
As in the case of displacement models discussed in the 

preceding sections, the basis vectors are chosen to con-
sist of a nonlinear solution and its various order path 
derivatives as follows: 

A Rayleigh-Ritz (or Bubnov-Galerkin) procedure is 

then used to replace the governing finite element equa-

tions by the following reduced system of equations 

{/(A A)} = [XU) + {«(0)} - q{£] = 0 (33) 

where 

[*] = - ITH]TIF][TH] + ITH]TIS][TX] + ITX}TIS]TITH) 

(34) 

{$(φ)} = [T„]Tm<t>)} + ΙΤχ]
τ{Μ(φ)} (35) 

and 

0 } = [Γχ]τ{<?}. (36) 

In eqns (35), {<β{φ)} and {Μ(φ)} are obtained from {%X)} 
and {M(H, X)} by replacing {//} and {X} by their expres-
sions in terms of {<£}, eqn (31). 

The computational algorithm for applying reduction 
methods with mixed models is similar to that described 
in the preceding sections in connection with displace-
ment models and is outlined in Ref. [30]. 

5.3 Assets and labilities of using reduced basis technique 
with mixed models 

If the proposed approach for applying reduced basis 
technique in conjunction with mixed models is con-
trasted with the corresponding displacement approach 
the following two major advantages can be identified: 

1. Simplicity of generation of reduced basis vectors. 
The nonlinear terms in the finite element equations of the 
mixed method have simple mathematical structure and 
are bilinear (or quadratic) in the nodal parameters (see 
Refs. [30, 33]). In contrast, the nonlinear terms in the 
displacement finite element equations are cubic in the 
nodal displacement parameters. As a consequence of 
this, the evaluation of the path derivatives for mixed 
finite elements involves less arithmetic operations than 
that of the corresponding displacement models. 

2. Better approximation properties. Numerical results 
reported in Ref. [30] have shown that for a given number 
of basis vectors, the accuracy of the solutions obtained 
by reduced basis-mixed models is higher than that of the 
corresponding displacement approach. This is particu-
larly true for the stress predictions. As a consequence of 
this, the basis vectors in the mixed method are less 
frequently updated than in the displacement method. 
This will also be demonstrated in the section of numeri-
cal studies. 

While there are a number of advantages of the pro-
posed reduced basis-mixed model approach two major 
difficulties also arise: (a) the first results from the large 
number of degrees of freedom used in the mixed model. 
This leads to a substantial increase in the number of 
simultaneous equations used in generating and updating 
the basis vectors; and (b) the second difficulty is due to 
the nondefiniteness of the matrix of the algebraic equa-
tions used in generating the basis vectors. The two 
difficulties can be alleviated by using mixed models with 
discontinuous stress fields at interelement boundaries. 
Such mixed models have been shown to have better 
performance that mixed models with continuous stress 
fields (see Ref. [34]). Moreover, the stress parameters as 
well as their path derivatives can be eliminated on the 
element level, thereby considerably reducing the size of 
the system of equations used for evaluating the path 
derivatives. Also, the use of mixed models with dis-
continuous stress fields simplifies the implementation of 
the reduced basis-mixed model approach in existing non-
linear programs based on the displacement formulation. 

6. REDUCTION METHODS FOR NONLINEAR DYNAMIC PROBLEMS 

The semi-discrete form of the governing equations for 
nonlinear structural systems at time t can be written in 
the following form: 

[M]{x}t=m-mt (37) 
where [M] is the mass matrix; {Q} is the vector of 
externally applied discretized loads; {X} is the vector of 
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nodal accelerations; {&} is the vector of internal nodal 
forces which can be expressed in terms of the vector of 
nodal displacements as follows: 

mt = [K]{X}t+{G(X)}t (38) 

and [K] is the linear global stiffness matrix. For sim-
plicity, the effect of damping has been neglected in eqn 
(37). 

With a specification of the initial conditions, the 
governing system of nonlinear ordinary differential 
equations, eqn (37), can be integrated to produce the time 
history response of the structure. A wide variety of explicit 
and implicit techniques have been proposed in the lit-
erature for integrating eqn (37) and obtaining the response-
time history of the structure. However, the computational 
effort involved in applying these techniques to large 
systems can be quite substantial. Therefore, the reduction 
of degrees of freedom in nonlinear dynamic problems is 
even more important than in nonlinear static analysis. 

6.1 Modal methods 
Modal superposition technique is a very effective 

reduction method for linear dynamic problems when 
only few vibration modes are excited by the external 
loading (case of structural dynamics problems as 
opposed to wave propagation problems, see Ref. [13]). 
The basis vectors in this technique consist of few vibra-
tion mode shapes. Several studies have been made on 
improving the accuracy and efficiency of modal super-
position techniques in linear problems (see, for example, 
Refs. [35,36]). 

The use of modal methods in nonlinear problems ap-
pears, at a first glance, to violate the well-known fact that 
superposition principles are not applicable to nonlinear 
systems. However, Ref. [37] suggests the use of the 
principle of local modal superposition which states that 
small harmonic motions may be superimposed upon large 
static motion and that small forced motion may be 
represented in terms of the nonlinear (tangent stiffness) 
frequency spectrum. 

If a total Lagrangian displacement formulation is used, 
the vector of nodal displacements is expressed as a linear 
combination of the lowest vibration modes as follows: 

{Χ} = [Τ]{φ} (39) 

where the columns of the matrix [Γ] are the basis vectors 
which consist of the lowest vibration modes. 

The semi-discrete governing equations of the struc-
ture, eqn (37), are then approximated by the following 
reduced system of ordinary differential equations 

[M]Wt = {Q}t-m (40) 

where 

[Μ] = [Γ]Γ[Μ][Γ] (41) 

{Q} = IT]T{Q} (42) 

{Ρ\ = [Κ]{ψ} + [Τ]τ{0(ψ)} (43) 

and 

[K] = [Y]T[K][T] (44) 

Both the [M] and [K] in this case are diagonal matrices. 
The effectiveness of modal superposition technique in 
nonlinear dynamic problems depends on: 

(a) The number of basis vectors (vibration modes) 
required to accurately simulate the response; 

(b) The frequency of updating the basis vectors (or 
recalculating the vibration modes); and, 

(c) The efficiency of the algorithms used in extracting 
the initial eigenmodes and updating them. 

The number of basis vectors required depends on the 
structural properties of the system as well as on the 
spatial distribution and frequency content of the loading 
(see Refs. [37, 38]). The frequency of updating the basis 
vectors depends on the rate of change of these vectors 
with time. 

The computational cost of extracting the vibration 
modes can be reduced by applying one of the conden-
sation schemes (e.g. Guyan reduction or static "zero 
mass" condensation method) to the discrete system prior 
to extracting the eigenvectors. An efficient algorithm 
should be used for extracting only the lowest modes for 
the generalized eigenvalue problem that represents the 
initial state of the structure. Then an iterative scheme 
such as subspace iteration technique is applied for 
determining the subsequent modal spectrum (or mode 
shapes) using the most recently determined spectrum as 
an initial estimate (see Ref. [37]). 

For mildly nonlinear problems, the use of modal tech-
nique in conjunction with the residual force method 
holds much promise. This is because a single set of 
modes (based on linear analysis) could be used 
throughout the analysis. Only the residual force due to 
nonlinearities needs to be transformed (modified) in each 
time step (see eqn (40)). This approach was suggested in 
Ref. [38] but no numerical results were presented. In a 
number of simple nonlinear structural dynamics prob-
lems, modal methods were found to be competitive with 
direct integration operators (see Refs. [37-40]). 

6.2 Modified modal method 
For the case of step loading on arches and spherical 

shells, it was found that reasonably accurate solutions 
can be obtained by the simultaneous use of the following 
two sets of vibration modes as basis vectors: 

(a) Lowest vibration modes of the initial state of the 
structure; 

(b) Lowest vibration modes of the nonlinear, steady-
state of the structure. 

The latter set of modes is obtained by first finding the 
steady-state (or static) nonlinear solution and using it to 
evaluate the stiffness of the structure, then extracting the 
lowest vibration modes from the corresponding general-
ized eigenvalue problem. Note that the resulting mass 
and linear stiffness matrices [M] and [K] of the reduced 
system, eqns (41) and (44), are sparse but not diagonal. 
The effectiveness of the aforementioned choice of basis 
vectors for the solution of nonlinear dynamic problems 
is discussed in the succeeding sections. 

7. TWO-STAGE RAYLEIGH-RITZ AND BUBNOV-GALERKIN TECH-

NIQUES 

The discussion to this point has been focused on the 
methodology of establishing reduction methods in con-
junction with finite element (or finite difference) tech-
niques. Reduction methods can also be used to improve 
the efficiency of the classical Rayleigh-Ritz and Bubnov-
Galerkin techniques by considerably reducing the number 
of degrees of freedom of the discretized structure. This 
is accomplished by applying these techniques in two 
stages. The first stage is that of spatial discretization 
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wherein the structure is discretized by using coordinate 
functions which cover the entire region of the structure. 
In the second stage the vector of unknown parameters 
is expressed as a linear combination of a small number of 
basis vectors. The Rayleigh-Ritz (or Bubnov-Galerkin) 
procedure is then applied a second time to approximate 
the nonlinear equations of the discretized structure by a 
reduced system of nonlinear algebraic equations. For 
static problems, the basis vectors used in the second 
stage are the same as those used in the reduced basis-
finite element method; namely, a nonlinear solution and a 
number of its path derivatives. Also, the computational 
procedure for the two-stage Rayleigh-Ritz and Bubnov-
Galerkin techniques is similar to that outlined in the 
preceding sections in conjunction with reduced basis-
finite element method. A detailed discussion of the 
two-stage technique is given in Ref. [41] and its 
effectiveness is demonstrated by means of numerical 
examples of axisymmetric deformation of shallow 
spherical caps. 

8. NUMERICAL STUDIES 

Numerical studies which demonstrate the effective-
ness of the reduction methods presented in the preceding 
sections for the solution of nonlinear static problems 
have been presented in Refs. [28-30]. Herein the results 
of three typical problems are discussed. The three prob-
lems are: (a) elastic collapse analysis of cylindrical shell 
with a rectangular cutout (b) large deflections of clamped 
cylindrical panel, and (c) nonlinear dynamic response of 
a shallow spherical cap subjected to a point load applied 
as a step function at the apex. 

The first problem was selected to test the effectiveness 
of the proposed approach when applied to structures 
problems with loading applied as a prescribed edge dis-

placement. The second problem is used to assess the 
relative merits of reduced basis-mixed model approach 
over the corresponding displacement method and the 
third problem gives an indication of the potential of the 
modified modal method in solving nonlinear dynamic 
problems. 

8.1 Elastic collapse analysis of cylindrical shell with a 
cutout 

The first problem considered is that of the cylindrical 
shell with rectangular cutout shown in Fig. 1. The prob-
lem is one of three problems used in Ref. [42] to assess 
the capability of various programs to analyze shell 
structures. The load is applied to the cylinder by means 
of a uniform axial shortening which is increased in-
crementally until the cylinder collapses. 

Due to symmetry, only one octant of the cylinder was 
modeled using the grid of shear-flexible elements shown 
in Fig. 1. Bicubic Lagrangian interpolation functions were 
used to approximate each of the displacement and rota-
tion components (a total of 29% nonzero displacement 
degrees of freedom). Finite difference solutions to this 
problem using the STAGS (Structural Analysis of 
General Shells) computer code are presented in Refs. 
[42,43]. 

Figure 2 shows the variation of the current stiffness 
parameter S with loading. Figure 3 gives an indication of 
the accuracy of the normal displacement w, at the cen-
ters of two sides of the rectangular cutout, obtained by 
the reduced-basis technique. Figure 4 gives an indication 
of the accuracy of the total strain energy and Fig. 5 
shows the error norms of the reduced basis technique 
with seven basis vectors at various load levels. Figure 6 
shows contour plots of the normal displacement w at 
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Fig. 1. Cylindrical shell with cutout and finite element model used in the present study. 
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Fig. 2. Variation of current stiffness parameter with loading for 
the cylindrical shell with cutout shown in Fig. 1. 
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Fig. 4. Accuracy of strain energies obtained by reduced basis 
technique at various load levels. Cylindrical shell with cutout 
shown in Fig. 1. Roman numerals indicate points of generating 

basis vectors. 
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Fig. 5. Error norms of reduced basis technique (using 7 vectors) 
at various load levels. Cylindrical shell with cutout shown in Fig. 

1. 

four different load levels, each normalized by dividing by 
HW for that load level. 

In the present study the path parameter λ was chosen 
to be equal to the axial edge displacements, and there-
fore, the components of the vector {Z} are equal to 
unity. The basis vectors were first computed for the 
unloaded shell (A = 0, {Xf} = 0). An error tolerance e < 
0.05 was prescribed. The seven basis vectors were used 
to advance the solution to A = 3.048 x 10~5 m. at which 
value the error norms were checked and were found to 
exceed the prescribed tolerance (see Fig. 5). New (up-
dated) set of seven basis vectors were generated and the 
solution was continued until A = 7.620 x 10~5 m. The 
same process was repeated and new set of seven vectors 
were generated and used to advance the solution until 
A = 9.398 x 10~5. The predicted collapse load of 
the cylinder was 13.656 x 103 Newtons corresponding to 
A=9.70xl0'5m. 

The high accuracy of the normal displacements and 
strain energies obtained by the reduced system of equa-
tions is demonstrated in Figs. 3 and 4. At A = 
9.398 x 10~5 m. the errors in the maximum normal dis-
placement wb and the total strain energy U obtained by 
using seven basis vectors were 0.53% and 0.023%, res-
pectively. 

Higher accuracy of the reduced solutions can be 
achieved by backtracking the equilibrium paths every 
time a new (updated) set of basis vectors is generated. 
This amounts to effectively reducing the error norm well 
below the prescribed tolerance. When this technique was 
used in the present problem, the maximum value of the 
error norms using seven vectors reduced to less than 
0.003. The computational expense involved in the back-
tracking process was insignificant. 

Figure 6 shows, that a large change in loading (or 
prescribed axial end shortening) is associated with a 
small change in the spatial distribution of the response 
quantities (manifested by small changes in the nor-
malized contour plots). It is this fact that suggested the 
separation of the spatial distribution of the response 
quantities at any load level from the variation of these 
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Fig. 6. Contour plots for the normal displacements w at various load levels (each normalized by dividing by wm 
for that load level). Cylindrical shell with cutout (see Fig. I). 

quantities with loading, and is the primary reason for the 
success of the proposed approach. 

In summary, the generation of the whole solution path 
up to collapse of the cylinder involved: (a) generation of 
an initial set of basis vectors at λ = 0, and (b) updating 
the basis vectors three times. 

The use of reduced basis technique in this problem 
resulted in reducing the number of degrees of freedom by 
a factor of over 400 (from 29% degrees of freedom for 
the original finite element model to seven degrees of 
freedom for the reduced system). 

8.2 Large deflections of clamped cylindrical panel 
The second problem considered is that of a clamped 

cylindrical panel subjected to uniform pressure loading. 
The material and geometric characteristics of the panel 
are given in Fig. 7. Finite element solutions to this pro-
blem were given in Refs.[44,45]. Also, the same problem 
was analyzed in Ref. [29] using the reduced basis displace-
ment approach. Due to symmetry, only one quarter of the 
panel was considered and was modeled by a grid of 4 x 4 
shear-flexible, shallow shell mixed elements. Biquadratic 

R = 2.54 m. 

L = 0.254 m. 

h = 3.175 x l O " 3 m. 

Θ = 0.1 rad. 

E = 3.10275 x 109 Newtons/m2 

v = 0.3 

All edges are clamped 

(u 

Fig. 7. Cylindrical panel used in present study. 

Lagrangian interpolation functions were used for ap-
proximating each of the displacement and rotation com-
ponents and bilinear interpolation functions were used 
for approximating each of the eight stress resultants. The 
analysis model had a total of 287 nonzero displacement 
degrees of freedom and 512 stress-resultant parameters. 
No continuity requirements were imposed on the stress 
resultants at the interelement boundaries, and therefore, 
they were eliminated on the element level. 
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Figures 8-10 give an indication of the accuracy of the 
solutions obtained using the reduced basis-mixed and 
displacement approaches. 

The basis vectors were first computed for the unloaded 
shell (A = 0,{tf} = {X} = 0, {^{X)} = {M(H9 X)} = 0), and 
were thus obtained by solving a linear set of finite 
element equations. An error tolerance e<0.02 was 
prescribed. With the reduced basis-mixed model ap-
proach that error tolerance was not exceeded when the 
solution was advanced to A = (pRIEh) = 0.667 x 10~3, 
and therefore, no updating of the basis vectors was 
needed. On the other hand, ther error norms of the 
reduced basis-displacement approach with six and seven 
basis vectors exceeded the prescribed tolerance at A = 
0.472 xlO"3 and A = 0.499 x 10~3, respectively. A new 
(updated) set of six and seven basis vectors were 
generated at these values of A. Also, the strain energy 
obtained by the reduced basis-mixed approach was 
found to be more accurate than that obtained by the 
corresponding displacement approach (see Fig. 9). 

Figure 10 shows the high accuracy of the current 
stiffness parameter predicted by the reduced basis mixed 
approach, with six and seven basis vectors through the 
softening region and up to where a stiffening behavior is 
again experienced. Then the reduced basis mixed solu-
tions with six basis vectors tend to underestimate the 
value of S. The corresponding solutions with seven vec-
tors slightly overestimate the value of S. 

8.3 Nonlinear dynamic response of a shallow spherical 
cap 

The last problem considered is that of the dynamic 
response of the clamped shallow spherical cap shown in 
Fig. 11. The cap is subjected to a point load at the apex 
applied as a step function in time. Solutions to this 
problem using Houbolt temporal integration scheme 
were presented in Refs. [46,47]. Also, several modal 
solutions, with successively higher number of modes, 
were presented in Ref. [37]. The modes were updated 
very frequently (every one microsecond). 

Due to axial symmetry, only the meridian was con-
sidered and was modeled by using ten shear-flexible 
curved elements with quintic interpolation functions for 
each of the displacements and rotation components (a 
total of 148 nonzero displacement degrees of freedom). 

An indication of the accuracy of the response time 
histories obtained by the modified modal approach, for a 
duration of 0.5 milliseconds is given in Figs. 11 and 12. A 
set of ten basis vectors consisting of (a) the five lowest 
vibration modes of the initial (linear) state of the struc-
ture and (b) the five lowest vibration modes of the 
nonlinear steady-state (static equilibrium state) of the 
structure. The same set of vectors was used throughout the 
response analysis. The reduced system of ten equations 
was integrated using the central difference temporal in-
tegration scheme with Ar = 0.4/isec. Figures 11 and 12 
show that in spite of the slight phase shift, the chosen set of 
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basis vectors predicts accurately the shape of the res-
ponse-time histories. In contrast the use of ten linear 
vibration modes leads to grossly inaccurate solutions. It 
may be noted that Ref. [37] reported significant inac-
curacies in the predictions of the modal method at about 
50 μsec when twelve modes or less were used (even when 
these modes were updated every microsecond). 

9. FUTURE DIRECTIONS FOR RESEARCH ON REDUCTION METHODS 

Among the different aspects of reduction methods 
which have high potential for research are the following: 

9.1 Use of reduction methods in conjunction with sub-
structuring (partitioning) techniques 

In many structural problems the nonlinearities are 
either more pronounced in, or limited to, a few local 
regions. The rest of the structure either exhibits mild 
nonlinearity or remains completely linear. The use of 
reduction methods in conjunction with substructuring 
techniques can lead to substantial savings in computer 
time in these problems. A possible approach for applying 
this procedure to static problems with localized strong 
nonlinearities is to partition the governing finite element 
equations of the discretized structure as follows: 

\Kaa Kab]iXa\ [GAXa,X„)\ j a ] _ n .... 

where the vector {Xa} represents the nodal displace-
ments in the region with strong nonlinearity and the 
vector {Xb} represents the nodal displacements in the 
rest of the structure. 

The initial set of basis vectors (corresponding to A = 0) 
are generated in the manner described in the previous 
sections. The parameter λ is incremented and for each 
nonzero value of A the vector {Xb} is first obtained by 
using the static perturbation technique (i.e. Taylor series 
expansion) as follows: 

W = W o + AA{f}o + ^ { ^ } o + · · . . (46) 

Then the vector {Xa}^ at the same value of A, is obtained 
by using the reduced basis technique with {Xb}x given by 
eqn (46). 

Also, in updating the basis vectors, the path deriva-
tives associated with {Xb} are approximated by their 
Taylor series expansions, thereby considerably reducing 
the size of the system of equations used in generating the 
path derivatives associated with {Xa}. 

Moreover, if the region of strong nonlinearity is not 
known in advance it can be identified by comparing the 
norms of the higher-order derivatives {(d2Xld\2)}, 
{(d3Xld\3)} and {(d4Xld\4)} of the displacement vector at 
each node with the norm of the first derivative {(dXldX)} 
for the same node. The region of strong nonlinearity 
usually consists of the nodes with large norms for the 
higher-order derivatives. 

9.2 Improving the effectiveness of reduction methods in 
nonlinear dynamic problems 

In order to realize the full potential of reduction 
methods in nonlinear dynamic problems, a problem-
adaptive computational strategy needs to be developed 
which includes the following key elements: 

(a) Characterization of nonlinear dynamic response by 
means of a single (or few) scalar(s); 

(b) Proper selection of basis vectors. This also includes 
a procedure for efficient generation of basis vectors and 
automatic selection of their number. 

(c) Sensing and controlling the error in the reduced 
system of equations. This includes relating the frequency 
of sensing the error to the changes in the values of the 
scalar(s) characterizing the nonlinear dynamic response. 

9.3 Application of reduction methods to inelastic analy-
sis and optimization problems 

The key element in the application of reduction 
methods to inelastic analysis is the proper selection of 
basis vectors. In static problems the validity of using the 
path derivatives as basis vectors should be examined. In 
optimization problems reduction methods can be used 
for: (a) reducing the number of degrees of freedom in the 
analysis model; (b) reducing the number of design vari-
ables; and (c) reducing the number of constraints. Some 
ideas along these lines were presented in Ref. [48], but 
algorithms need to be developed for the automatic im-
plementation of these ideas. 

10. CONCLUDING REMARKS 

Status and recent developments in the application of 
reduction methods to nonlinear structural mechanics 
problems are summarized. A number of aspects of 
reduction methods are discussed herein including: (a) 
selection of basis vectors in nonlinear static and dynamic' 
problems, (b) application of reduction methods to non-
linear analysis of structures subjected to prescribed edge 
displacements, and (c) use of reduction methods in con-
junction with mixed finite element models. 

Numerical examples are presented to demonstrate the 
effectiveness of reduction methods in nonlinear prob-
lems. Also, a number of research areas which appear to 
have high potential for application of reduction methods 
are identified. 

The results of the present study suggest several con-
clusions relative to the effectiveness of reduction methods 
in nonlinear static problems and the particular choice of 
basis vectors in these problems: 

1. The proposed reduced basis technique for nonlinear 
static problems outlined in the paper is a hybrid method 
which combines the major advantages of contemporary 
finite element method, classical Rayleigh-Ritz technique 
and static perturbation method, namely: 

(a) modeling versatility 
(b) reduction in total number of degrees of freedom; 

and, 
(c) simplicity of tracing post-buckling and post-limit-

point equilibrium paths. 
Moreover, it greatly alleviates the following major 

drawbacks of the aforementioned three techniques: 
(a) excessive amounts of computer time required for 

the nonlinear finite element analysis of complex struc-
tures; 

(b) difficulty of selecting global approximation func-
tions for classical Rayleigh-Ritz (and Bubnov-Galerkin) 
technique; and, 

(c) small radius of convergence of the Taylor series 
expansions used in the static perturbation technique. 

2. The use of path derivatives as basis vectors in 
nonlinear static problems allows highly accurate solu-
tions to be obtained with a small number of basis vec-
tors. Therefore, the time required to solve the reduced 
system of equations is fairly small and the analysis time, 
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to a first approximation, equals the time required to 
generate and update the basis vectors. 

3. The success of the foregoing reduced basis tech-
nique in static problems can be mainly attributed to the 
separation of spatial distribution of the response quan-
tities at any load level from the variation of these quan-
tities with loading. The numerical studies have shown 
that a large change in loading (or prescribed end dis-
placements) is associated with a small change in the 
spatial distribution of the response quantities. On the 
other hand, large changes in the spatial distribution of 
the response quantities require updating the basis vec-
tors. 

4. For static problems with conservative external and 
internal forces, the efficiency of the reduced-basis tech-
nique can be increased if the error tolerance is increased 
and the accuracy of the reduced system of equations is 
maintained by backtracking the solution path every time 
a new (updated) set of basis vectors is generated. 

5. The use of reduction methods in conjunction with 
mixed models offers the following two major advantages 
over displacement models: 

(a) lower computational expense in generating the 
basis vectors; and, 

(b) better approximation for stresses and less frequent 
updating of basis vectors. 

If the mixed models have discontinuous stress fields at 
interelement boundaries, the stress parameters as well as 
their path derivatives can be eliminated on the element 
level and the efficiency of the reduction method is 
thereby greatly enhanced. 
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Abstract—The paper presents a strategy to control load path discretization error in elastic-perfectly 
plastic finite element analysis. The load path discretization is included as part of the nonlinear problem, 
using the strategy. At each stage in the incrementation, the load step size is treated as a variable which is 
forced to adapt to the current structural stiffness gradient. The step size is determined during the numerical 
solution, using a selection criterion which restricts changes in yield surface stress state at points within the 
plastic zone. 

The strategy has been developed for a particular, assumed displacement, "incremental secant stiffness" 
formulation. The formulation per se is not new; it has been presented by Rice and Tracey [1]. Average 
stiffnesses are used to account for elastic-plastic boundary and flow rule changes during the step. The 
formulation is examined in detail, to allow discussion of the approximations which are made and also to 
guide implementation. The 2D problems of plane stress, plane strain and axisymmetric deformation are 
considered. Simple test solutions are used to demonstrate that solution error can be effectively monitored 
by the yield surface deviatoric stress change, and this suggests the step size selection criterion that is 
employed. 

A new solution algorithm for adaptive incrementation is the major contribution of the paper. With the 
algorithm, the nonlinear incremental secant equilibrium equation is solved subject to the selection criterion 
which is viewed as a constraint condition on the nodal variables. It appears that the algorithm could be 
used to advantage in other structural mechanics problem areas. 

INTRODUCTION 

Finite element solutions of flow theory plasticity prob-
lems in general are dependent upon load path discret-
ization. This poses a problem of error control in prac-
tice, and here we consider the issue for small deforma-
tion elastic-plastic problems which use the Prandtl-
Reuss constitutive relationships. When employing this 
constitutive theory, it is necessary to trace the stress and 
strain history of material points during the application 
of load, to account for the continually changing char-
acter of the plastic flow throughout the structure. The 
load path discretization dependency results from 
approximations used in representing the constitutive 
equations over the finite load steps of an analysis. The 
nature of the approximations vary with formulation, 
thus specialized error control strategies must be es-
tablished. Here we consider the problem for the elastic-
perfectly plastic, assumed displacement formulation 
that was developed by Rice and Tracey [1]. 

In the formulation, the spatial distribution of dis-
placement is assumed, and at each load step the basic 
unknown is the array of nodal displacement incre-
ments, AUf. The load step number is denoted by the 
subscript i. If the vector P represents a segment of the 
load path, with property that over the segment individ-
ual nodal load components increase from zero in fixed 
proportion to each other, then the incremental equi-

fTo be presented at the Symposium on Computational 
Methods in Nonlinear Structural and Solid Mechanics (Oct. 
1980), Arlington, Virginia. 

librium equation to be solved corresponding to a load 
step AfP is given by 

ΚΔυ4 = λ,Ρ. (1) 
The stiffness matrix K is defined to account for the 
plastic yielding, and hence we use what is commonly 
called a "tangent modulus" formulation. 

The most primitive tangent modulus formulation 
determines K on the basis of the stress and deformation 
state, and plastic zone at the beginning of a step. Such a 
"tangent stiffness" approach leads to problems of load 
imbalance, in the sense that calculated stress distribu-
tions do not equilibrate applied loads. The source of 
this imbalance is largely due to corrective procedures 
that are necessary to satisfy the yield condition after a 
step solution. It occurs whenever different constitutive 
relationships are used for stiffness definition and stress 
computation, 

In the Rice and Tracey [1] formulation step average 
stiffnesses are used, with the averages defined as func-
tions of the undetermined displacement increment. It is 
perhaps best called an "incremental secant stiffness" 
formulation. The load imbalance problem is essentially 
alleviated with this formulation because it is self-
consistent as regards the constitutive law. Step average 
element stiffnesses are used which approximately 
account for elastic-plastic boundary changes and also 
for changes which occur in the flow rule at locations 
within the plastic zone. Importantly, the averages are 
defined so as to guarantee satisfaction of the yield condi-
tion at the end of a step, and thus corrective procedures 

45 
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are not required. Whereas a tangent stiffness formula-
tion poses a linear problem at each step, the incremental 
secant stiffness problem is nonlinear, At each load 
step, the problem is to determine AU( which satisfies 
the nonlinear equation 

Κ(Δυ,)Δυ, = Α,Ρ (2) 

It is clear that in general a different endpoint stress, 
strain and displacement solution, i.e. U=ZAU,·, results 
for each discretization of the vector P. Differences from 
that solution which would result with infinitesimal step 
sizes constitutes the discretization error that concerns 
us in this report. From test solutions, we show in the 
following that an effective way to control discretization 
error when using the incremental secant stiffness 
formulation is by limiting the yield surface deviatoric 
stress change that occurs during the plastic deformation 
of a step. This serves to define the step size selection 
criterion for our adaptive load incrementation solution 
algorithm. 

With the adaptive algorithm, discretization is ac-
complished automatically, as part of the solution 
process. The scheme is designed to adjust step size 
according to a specified maximum allowable stress 
change. In essence at each step the equilibrium equation 
is solved subject to a constraint 

g(àVÙ=o (3) 

which follows from the selection criterion. Using the 
algorithm allows a set of incremental solutions to be 
obtained which are consistently spaced along the load 
path, in contrast to the arbitrary spacing that can result 
with a priori discretization choices. Efficient converg-
ence studies can be readily performed by systematically 
decreasing the specified maximum allowable stress 
change value. 

The adaptive algorithm was developed during the 
course of a study aimed at improving our quantitative 
understanding of errors which might follow from the 
incremental secant stiffness formulation [1]. The error 
control strategy which we present here is designed 
specifically for this formulation. Being that the strategy 
is so specialized, we have elected to start the report 
with a basic review of the formulation. This serves three 
useful purposes. It allows a thorough discussion of a 
previously unrecognized complication in the plane 
stress problem, which has to do with the proper defini-
tion of the yield surface secant approximation. Next, it 
clearly identifies the nature of the approximations being 
made, thus providing the background for the sub-
sequent discussion. Lastly, the review should allow 
rapid implementation by specialists who may be 
interested in testing the solution algorithm. 

Following the formulation section, we motivate the 
choice of our step size selection criterion by considering 
solution errors for two trivial homogeneous deforma-
tion problems. A detailed description of the adaptive 
algorithm is then given. We conclude with a discussion 
of solutions for a thick-walled cylinder under mono-
tonic and cyclic pressurization to demonstrate the 
performance of the algorithm. 

INCREMENTAL SECANT STIFFNESS FORMULATION 

Here we describe the formulations for the "two-
dimensional" problems of plane stress, plane strain, 
and axisymmetric deformation. We start with the incre-

mental equilibrium equations and then concentrate on 
the operations involved in the computation of the step-
wise average element stiffness matrix. To meet the 
above mentioned purposes of this section, the discus-
sion by necessity is very detailed and methodical. 

It suffices to consider equilibrium of a single element. 
If the nodal degrees of freedom Δϋ, involve motion in 
the x, y plane, then the group of strain increment com-
ponents involved in the internal work of deformation 
are (Δεχχ, Δε^ Ayxy) for the planar problems and 
(Δεχχ, Δε^ ΔεΖ2, Ayxy) for problems of axisymmetry. 
Using the vector Δεζ· to represent these respective 
groups at load step i, the element interpolation function 
provides the relationship 

Δ ε = Β Δ υ , (4) 

If Δσ, is the stress increment vector that is the work 
conjugate to Δε, then the principle of virtual work gives 
the equilibrium condition of the element as 

ΒΓΔσ,α7=λΡ. (5) 

The constitutive relationship 

Δσ—ΟΔε; (6) 

allows us to write the matrix stiffness equation as 

BTDBdF AU^AfP. (7) 

Of the system of equations represented by (7), those 
corresponding to specified components of AUf must be 
deleted, and the load vector must include terms cor-
responding to specified non-zero values. Furthermore, 
in general there is the need to assembly equations for 
a group of elements. For our present purposes these 
considerations need not be addressed in depth. Here we 
are concerned mainly with the details of computation 
of the stiffness matrix in eqn (7) for a generic element. 

The tangent stiffness approach evaluates K using con-
stitutive matrices D that represent the current state 
of yielding, both as regards the elastic-plastic boundary 
and flow capability within the plastic zone. The incre-
mental secant formulation on the other hand uses a step 
average D which accounts for elastic-plastic boundary 
changes and flow direction changes during the step. 
The designation "secant stiffness" is used to underscore 
the fact that the averaging is done over the (undeter-
mined) deformation interval. The D matrix is depend-
ent upon AUf; thus the nonlinear functional form of 
eqn (2) involving K(AU,). 

By the nature of flow theory plasticity there is no 
explicit functional relationship D(AU,) that can be used 
in the formulation. The matrix must be numerically 
generated as part of the iterative solution process. The 
process used in previous fixed load step analyses (where 
Λ(Ρ was specified) involves the formation of a trial stiff-
ness matrix and solution for an estimate to ΔΙ^ at each 
iteration cycle. If Δ υ / - 1 is the solution for cycle; —1, 
then for cycle /, D (and thus K) is computed on the basis 
of Δυ-j""x and the improved solution follows from 

K i A U r ^ U J ^ P . (8) 
The solution to the true nonlinear problem results by 
iterating to convergence. The adaptive solution algor-
ithm modifies this process by treating λ{ as an unknown. 
Nonetheless, for either fixed or variable load step size 
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the nature of the incremental secant stiffness formula-
tion [1] is defined by the operations involved in com-
puting K(AU-{" *). We concentrate on these operations 
in the remainder of the section. 

The components of the stiffness matrix are defined as 
volume integrals, eqn (7), and these are evaluated using 
Gaussian quadrature. The main problem then lies in 
evaluating the matrix product BTDB at a few distinct 
"integration stations" within the element volume, if 
there are N degrees of freedom, B is of order 3 x N 
and D is of order 3 x 3 for the planar problems, while for 
axisymmetric problems these respective orders are 
4 x N and 4 x 4. To be able to compute D at a station 
requires that the starting stress state be known at that 
location, and also that the strain increments suggested 
by the active solution vector A\J{ be calculated using 
eqn (4). We will not consider strain hardening here so 
that further state data is not needed. In the planar 
formulations it proves convenient to use four compon-
ent arrays S° and ΔΕ to represent the starting stress 
state and strain increment. The arrays use an xx,yy\ zz, 
xy component ordering. For plane strain the zz com-
ponent of ΔΕ is identically zero. For plane stress the zz 
component of S° is identically zero, while the zz com-
ponent of ΔΕ is initially unknown and must be deter-
mined along with D. Of course for axisymmetric 
problems there is no predetermined knowledge con-
cerning any of the eight components of S° and ΔΕ. 

Along with the vectors S° and ΔΕ, it proves conveni-
ent in the planar formulations to work with temporary 
4 x 4 constitutive matrices. This also allows a parallel 
discussion ot the three problem classes. The necessary 
3 x 3 D matrices are obtained through a concluding 
reduction operation. If C is such a 4 x 4 constitutive 
matrix, its function is simply defined according to 

(9) 

We concern ourselves with computing the components 
C,,, and then for plane strain, since Δε„ = 0, the 3 x 3 
matrix follows as 

ΔσΛΛ 

άσ„ I 
Δ°·.Λ 
Ατχ>) 

A 
A 
A 

A l 

C,2 

A 
A 
A 

A 
A 
A 
A , 

C,4 

A* 
A 4 

A* 

(fox* 
1 &Byy 

) Δε_. u:, 

D p / ( ane strain — 

A 
A 
A. 

C\2 C14 

^ 2 2 ^ 2 4 

^ 4 2 C4.4 

(10) 

For plane stress, the Δσ„ = 0 condition implies that 
ΔεΖ2 depends upon the inplane strain increment com-
ponents according to 

Ae„= l -C 3 1 /C 3 3 -C32/C33 -C 3 4 /C 3 3 J ΓΔεΛΛ(Π) 

Using eqn (11) to eliminate Δεζζ from the 1st, 2nd and 
4th equations of (9 ) gives the 3 x 3 plane stress matrix as 

D plane stress 

M l M 2 M 4 

A i Cj.9 C/1 

A c34j 

Of course for the axisymmetric case, 
D„ C = C 'axisymmetric " 

The 4 x 4 elastic matrix is given by 

(12) 

(13) 

Ce = 2G 

1 to ω ω 0 
ω 1 +ω ω 0 
(0 ω 1 + ω 0 
0 0 0 12 

(14) 

where G is the shear modulus, and in terms of Poisson's 
ratio v, ω = ν/(1 -2v). 

The above serves as the background against which 
the computational algorithms operate. To begin the 
constitutive matrix computations for an integration 
station we determine whether the station's strain 
increment ΔΕ is purely elastic; purely elastic over a 
portion of the interval, elastic-plastic over the remaind-
er; or elastic-plastic over the entire interval. We start 
with the hypothesis that it is purely elastic and compute 
the corresponding final stress state S2 according to 

S2 = eAE-fS° . 15) 
For plane stress, Δε._ in ΔΕ is tentatively considered to 
be given by eqn (11) using C3j. If S2 falls within the 
Mises yield surface, the elastic hypothesis is taken to be 
correct and C is then used to define D for the point, 
using either (10), (12) or (13). It perhaps should be 
emphasized here that points which have S° satisfying 
the yield criterion could fall into this elastic category 
for the step, indicating that the point unloads. In terms 
of the modulus of the deviatoric stress vector s and 
tensile flow stress K, the Mises yield surface is defined by 

y/J/2\s\=Y. (16) 

To account for the complementary shear stress τνν. s is 
a five component vector. The stress states used in the 
formulation are illustrated in Fig. 1 relative to the yield 
surface in deviatoric stress space. 

If S2 falls outside the yield surface, the next operation 
determines whether or not there is a subinterval of 
purely elastic response before yield occurs. The total 
strain increment ΔΕ is taken to be the result of a pro-
portional straining process, i.e. components of ΔΕ are 
treated as though they increase in fixed proportion to 
each other throughout the interval. Then the elastic 
subinterval is established by the scalar fe ("fraction 
elastic") which is the non-negative root to the quadratic 
equation 

V3/2|s°+/,(s2-s°)|=K (17) 

In this expression s° and s2 are the deviatoric parts of the 
stress states S° and S2. The strain /«,ΔΕ is considered 
purely elastic, and it brings the point to yield at the 
yield surface stress state 

S 1 =S°+/ e (S 2 -S°) . (18) 
The strain (1 —fe)Ae is taken to be elastic-plastic, and it 
is considered to occur after S1 is reached. This case of 
elastic/elastic-plastic partitioning of the deformation 
applies not only for cases of first yield, but in general. 
For instance, it applies when there is unloading from a 
yield surface stress state S° and reyielding at S1 during 
the interval. For cases of elastic-plastic straining over 
the entire interval, fe=0. 

The weighting factor/,, is used to define the average 
constitutive matrix at the integration station in ques-
tion, for the current solution iteration cycle. If Cep is 
the constitutive matrix that applies over the elastic-
plastic subinterval—a matrix which follows from the 
Prandtl-Reuss equations and the averaging techniques 
discussed below—and if Oep is the reduced matrix 
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Fig. 1. Illustration of stress states of the formulation in devia-
toric space. 

following from Cep, then the average D matrix is given 
by 

D=/ e D e +( l - / e )D e p . (19) 

De is the elastic matrix that follows from Ce. This par-
titioning of the interval into elastic and elastic-plastic 
subintervals, and the use of a corresponding step 
average stiffness was suggested by the work of Marcal 
and King [2]. They referred to the approach as the 
"partial-stiffness" method. 

Our next concern is to define Cep in a way that is 
appropriate to the elastic-plastic strain increment 
(1 —fe)As. We will in our discussion employ the dimen-
sionless deviatoric stress vector n=^/3/2s/Y. This 
vector considered in stress space is directed normal to 
the yield surface, and it has unit length when s satisfies 
the yield criterion. The Prandtl-Reuss equations for 
infinitesimal deformation starting at S1 would suggest 
that Cep be given by 

C e -2GÎ w U [ i & nyy n\z n\y\ (20) 

However, this choice of Cep would allow a stress change 
which is tangent to the yield surface, and thus result in 
a final stress state S° + AS which violates the yield 
criterion. "We define Cep using an average normal vector 
so that the yield criterion is satisfied exactly at the end 
of the step. This approach can be contrasted with 
formulations which use the instantaneous matrix (20) 
and satisfy the yield criterion by a posteriori scaling of 
the stress solution. This latter procedure carries the 
penalty of creating a load imbalance, i.e. a violation 
of the incremental equilibrium equation (5). 

Rice and Tracey [1] have demonstrated that if the 
average unit normal is defined, in terms of s1 and the 
elastically calculated final deviatoric stress state s2, as 

n = (s1+s2)/ |s1+s2| (21) 
and used in (20) instead of n1, then the yield condition is 
satisfied at the end of the step. Using this average nor-
mal corresponds to a chord approximation to the yield 
circle. It essentially states that the material offers no 
resistance to straining proportional to fi. Hence in 

terms of n, Cep is given by 

σρ=σ-20(ΓιχΛ[ήχχ ûyy ή22 nxyl (22) 

For plane stress problems, there is a complication in 
the above definition of Cep which follows from the 
indeterminacy of Δε2Ζ. The elastically calculated final 
stress state S2 used in the definition of n depends upon 
ΔΕ, according to eqn (15). The original hypothesis 
that the strain increment is purely elastic for the step 
allows an elastic computation for ΔεΖ2. From this a 
provisional S2 is employed to determine fe and S1. 
However, computation of the proper S2 is predicated 
upon knowing the elastic-plastic portion of Δεζζ, 
Δε^, which corresponds to the inplane strain (1 —/β)Δε. 
To satisfy the Δσζ ζ=0 condition over the elastic-plastic 
subinterval, Δεζζ* is determined from the following (non-
linear) equation 

0=(l-/ rX^Aex x+C5'2Aew+CSP4Ayx; + C?3Afi;f̂  
(23) 

This equation is solved using an iterative algorithm. 
The incipient yield matrix (20) provides starting values 
for Ce& Solving for a trial Δε^ allows computation of a 
trial S2 and improved Ce/P etc. The process has shown 
rapid convergence properties. The solution provides a 
constitutive matrix which insures that both the yield 
criterion and the planar stress condition are satisfied 
at the conclusion of the step. 

With Cep established, the step average D follows 
from either eqns (10), (12) or (13), and (19) for the 
integration point in question. Next, the product BT DB 
is computed and scaled by the necessary volume 
weighting factor, and this represents the contribution 
of one station to K(AU-j~ *) in eqn (8). The total stiffness 
results from contributions from all integration points. 
of all elements of the structure. The linear system of 
equations is solved for Α\]{ and the process is continued 
until successive solutions show insignificant differences. 

This completes our description of the incremental 
secant stiffness formulation for 2D elastic-perfectly 
plastic problems. The character of the formulation 
per se is as outlined regardless of whether the load 
step size is prescribed, as in the standard analysis 
procedure or treated as a variable, as in our adaptive 
scheme. By virtue of the subinterval partitioning and 
average flow rule techniques, the formulation is able 
to accommodate an arbitrary size load step. An 
equilibrium state which satisfies the yield condition 
throughout the plastic zone is always obtained, 
regardless of step size. However, the need for averaging 
over a step implies that solutions will always possess 
some degree of discretization error. We consider the 
means to controlling this error in the next section. 

CONTROLLING LOAD PATH DISCRETIZATION ERROR 

When considering the issue of error control, it is 
first necessary to identify the approximations of the 
formulation, and then find a convenient way to 
quantitatively monitor the solution errors which follow 
from these approximations. In our formulation, error 
stems from the averaging techniques used to approxi-
mate elastic-plastic boundary and plastic flow direction 
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changes during a load step. We have found that the 
level of solution error which results from either of these 
approximations can be conveniently monitored in 
terms of the yield surface deviatoric stress change 
As =(s/—s1), Fig. 1. To demonstrate this, we con-
sider the errors in solutions for two simple homo-
geneous deformation problems. These solutions were 
gained by prescribing the discretization and using the 
standard solution algorithm. The results suggest that 
an effective general error control strategy would be 
one which selects step size according to a As sec limita-
tion. 

We begin by considering the tensile loading of a thin-
walled cylinder which is first twisted from a stress free 
state to incipient yield. During the tensile loading a 
constraint is imposed so that shear strain remains fixed 
at the magnitude 1/̂ /3 Y/G, hence additional deforma-
tion is strictly extensional. As the tensile stress σ 
increases from zero, the shear stress τ decreases to 
follow the Mises yield surface, which for this problem is 
given by 

σ2 + 3τ2=Υ2. (24) 
As τ decreases, so does the cylinder's resistance to 
further extension, and hence uncontrolled plastic 
extensional straining results as σ-> Υ. 

At a given value of σ, the extensional strain ε is given 
by the relationship 

£ =3É[ ( 1 + V ) l n (^ ) + ( 1 - 2 V W Y ] (25) 

This exact solution is derived in Hill [3]. We can use it 
here to quantify finite element solution discretization 
errors. The problem has no spatial variations, so it can 
be readily treated using a single constant state triangular 
element, with the plane stress formulation. In eqn (25) 
and below, E represents Young's modulus. 

Consider the case of loading from the incipient yield 
state to a σ value of 0.8 Y According to eqn (25) ε then 
equals 1.059Y/E, for v=0.3. However, numerically the 
solution for ε depends upon how the tensile loading is 
discretized. For instance, using one step, so that the 
applied load increment corresponds to Ασ=0.8 X gives 
an ε value of 0.973 Y/E. With four steps of Δσ=0.2ΐ; the 
ε value results as 1.051 Y/E. If we consider loading to 
σ=Χ the exact solution suggests that ε-*οο, corre-
sponding to the attainment of limit load. However, 
numerically we obtained ε values of 1.770, 2.208 and 
2.985 Y/E for 1,2 and 10 uniform step discretizations, 
respectively. 

These deviations from the exact solution are due 
entirely to the average flow rule that is used to define 
the stiffness at each step. The approximation can be 
geometrically constructed as a piecewise linear model of 
the yield ellipse (24). The solution improvements fol-
lowing from the step size refinements correspond to the 
decrease of the chordal segments of the model. In 
general terms, the improvements correspond to de-
creasing |Assec| magnitudes. We expect that a strategy of 
controlling this stress variable will be effective in 
limiting the average flow rule approximation in the 
general problem, where AsSPf varies from point to point. 
Of course in general, contrary to the case for this prob-
lem, it is not possible to predict the relationship between 
load step size and the Assec distribution. This is why an 
adaptive load incrementation procedure is desirable. 

Another distinctly different source of error is the 

method used for partitioning strain increments into 
elastic and elastic-plastic parts to account for yielding 
during a step. The solution gained using this scheme 
can be exact only if there is proportional straining in 
the load interval. The nature of the approximation can 
be readily appreciated by considering the problem of 
homogeneous uniaxial extension to a strain level 
beyond yield—starting from a stress free state. Strain 
components do not increase in fixed proportion for this 
problem : if U is the imposed extension over a length L 
and if the contraction over a length L is V, then before 
yield occurs A V/A £7 = v, while afterwards A V/A £7 = 1/2. 
Numerical solutions show discretization dependency. 
Using a plane stress constant state triangle we solved 
for the case having the imposed extensional strain U/L 
equal to 10 Y/E, and v = l/4. V should result as 4.75 
YL/E according to the formula 

VIL = v Y/E + l/2( U/L - Y/E) (26) 

which applies when U/L> Y/E. In the table we give 
solutions for eight uniform step size discretizations. A 
one step analysis resulted in a 23% error in V. The 
exact solution was obtained using 10 steps and 20 
steps, but not when 16 steps were used. The exact 
solution results only when partitioning is not done ! 

The error occurs because the incipient yield state 
S1 is determined on the basis of the ratio of the com-
ponents of the total strain change, as defined at the 
current iteration cycle. For instance, in the case of one 
step loading, the exact ratio A V/AU is 4.75. Considered 
to be the result of proportional straining, this ratio 
suggests that first yield occurs at a biaxial stress state. 
In all cases, S·̂  resulted as a uniaxial stress state of mag-
nitude 7, as is necessary to satisfy the yield condition 
and equilibrium. But since an inexact partitioning is 
done, the approximate contraction results. From the 
table, we see that the degree of error is reflected by the 
value of |Assec|. It is expected that partitioning error in 
the general problem can be monitored in terms of this 
variable. 

The issue of accurately tracing elastic-plastic bound-
ary movement is of course much more complicated 
than the above example would suggest. In general, 
within an arbitrary load interval, the deformation at a 
point can be non-monotonic, possibly involving mul-
tiple unloadings and reyieldings. The simple elastic/ 
elastic-plastic partitioning could then be a gross 
approximation. However, we expect that such approx-
imations can be monitored in terms of |Assec|. As this 
"secant stress" decreases, the possibilities of non-
monotonic deformation occurring should likewise 
decrease. 

Having a way to quantitatively monitor solution 
error gives rise to the next concern, which is choosing a 
viable criterion to be used for step size selection. We 
have chosen a criterion which places a limit on the 
maximum value of |Assec| that can occur in the structure 
during a load step. The standard analysis approach of 
prescribing step size is clearly unsuited for such an 
error control strategy. Hence, we have developed the 
following adaptive solution algorithm which allows a 
numerical determination of the required discretization. 

ADAPTIVE SOLUTION ALGORTIHM 

With this adaptive incrementation approach, the 
size of each load step is determined so that the max-
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imum |Assec| results equal to a prescribed fraction of the 
yield stress, OLY This selection criterion is viewed as a 
constraint condition on the nodal variables, and we 
express this condition as 

^(AUi) = |Assec|max-aY=0. (27) 

The solution for a step consists of the vector AU,· and 
step size scalar λ( which satisfy the stiffness equation (2) 
and the constraint condition (27). 

The algorithm is designed to automatically discretize 
a load history which may involve a combination of pre-
scribed tractions, body forces and displacements. The 
history is considered in segments, selected so that during 
each one the prescribed loading parameters increase 
from base values of zero in fixed proportion to each 
other. P represents the nodal load vector that would 
correspond to the final values of the parameters in a 
particular segment. If there are non-zero specified 
components of displacement, then at each step within 
the segment, A;P involves elements of K multiplying the 
specified values. 

Often at the beginning of a load segment, there is an 
interval during which the behavior is purely elastic. 
For instance in reverse loadings, such as for the pressure 
cycling of the example problem below, there is purely 
elastic behavior until incipient reverse yield conditions 
are reached. Hence, as a standard practice, at the first 
step of each load segment, it is assumed that the problem 
is linear. The elastic stiffness is employed and the solu-
tion is scaled to have λ1 correspond to the incipient 
yield state. 

Beyond incipient yield the explicit form of the equi-
librium equation is undetermined at a step, as has been 
discussed above. An iterative process is necessary and 
it begins with an estimate for the load step size, Af, and 
a choice of a starting displacement increment vector 
AU? to define the first trial stiffness. For these starting 
values we have used λ^^ and the null vector 0; the 
latter choice implying that the current stress state 
defines the flow conditions for the first iteration cycle. 
The matrix equation for AU/ then takes the form 

K(AU°)AU/ = A?P. (28) 

Components of K(AUf) enter the definition of P for 
cases having non-zero specified displacement com-
ponents. 

In general AU/ will not satisfy the constraint condi-
tion, so that a search is performed for a scalar multiple 
of AU/ which does satisfy it. This scaled solution is used 
as the trial vector for the next cycle of iteration. The 
improved step size trial follows from interpreting the 
scale factor as being equal to A//A°. In general terms, the 
problem after (28) is solved for AU/ is to determine λ\ 
which satisfies 

0(AU/-AiM?)=O. (29) 

The search procedure which gives λ\ is as follows. 
Once AU/ is obtained, the "secant stress" Assec is 
computed at all plastically deforming points in the 
structure. The maximum |Assec|/aY is used to scale 
AU/. The scaled solution suggests a revised stress dis-
tribution, so that the search and scaling is repeated until 
convergence. The only difficulty encountered in this 
procedure is when limit load is being approached, since 
then straining is purely plastic and only slight stress 
changes are possible. Actually, we have found this to 
be a convenient way to detect the attainment of limit 

conditions. Prior to the computation of the stress 
change, a test is employed which compares the plastic 
and elastic strain changes. If the ratio of the moduli of 
these strain vectors exceeds 1000, then execution 
terminates with the message UNCONTROLLED 
PLASTIC FLOW. 

The above operations for the first cycle of iteration 
sets the pattern for subsequent cycles. At cycle j , a 
stiffness matrix is formed according to the estimated 
displacement Α\]{~ * ·λ\~1 /λ[~ 2

9 and a new displace-
ment AUj is determined from 

K(AurJ · M"1/H~2)^i=M~1^ (30) 
Once AUf is obtained, λ{ follows from 

g(AVi'M/M'l)=0. (31) 

This .iterative process is continued until convergence; 
that is, until both AUj and λ{ show insignificant changes 
with further iteration. Since λ{ is determined on the basis 
of the secant stress distribution, a function of AUf, λ{ 
and AUf converge concurrently. Hence, convergence 
can be conveniently monitored by observing the cycle to 
cycle change in the scalar λ{. We have used a test which 
terminates iteration when the relative change in λ{ in 
two successive cycles falls below a specified tolerance δ. 
For the fixed load step algorithm, we use a test which 
terminates iteration when the relative change in the 
maximum secant stress modulus falls below Ô. 

Numerical results have shown the importance of 
using a strict convergence test in analysis. The value of 
δ in effect determines the relative degree of applied 
load-internal stress imbalance. The equilibrium condi-
tion (5) can be satisfied only if there are insignificant 
differences in the vectors AUj""1 and AUf Data from 
the cylinder problem illustrates the point. Consider the 
case of loading from σ = 0 to o~ Y/2 in one step: The 
element stress results after the first four iteration cycles 
were found to be 0.4757, 0.4972, 0.4997 and 0.5000 Y. 
The rate of convergence varies with problem and step 
size of course. For the above problem with a final 
σ=Υ, the stress results were 0.825, 0.915, 0.950 and 
0.960 after the first four cycles. Hence, the value as-
signed to Ô weighs heavily on the ultimate accuracy of a 
solution, and this must be considered in the accuracy/ 
cost deliberations when undertaking an analysis. 

To complete our discussion of the adaptive solution 
algorithm, we mention some additional restrictions 
that must be placed on the allowable magnitude of kt. 
Corresponding to the specification of definite load 
vectors P, there is the need to restrict λ{ < 1, and further-
more Σλ(= l. The final step to reach the total load will 
usually be smaller than that allowed by the constraint 
condition. For this case, the algorithm reverts to the 
fixed load step procedure. When P is indefinite in the 
sense that the final magnitude of the loading parameters 
are not specified, then A, is not restricted. This latter 
case applies to studies which seek to determine limit 
load values. 

EXAMPLE ANALYSES USING ADAPTIVE 
INCREMENTATION 

In practice, the most obvious value of the adaptive 
algorithm is that it produces a solution which has a 
consistent level of error from step to step, and this is 
accomplished by simply prescribing a value for the 
constraint parameter a. Clearly, the approach becomes 
more and more attractive as problem complexity 
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increases. However, when discussing the algorithm's 
performance characteristics, it is best to consider a 
problem that is well understood; so we consider here 
the analysis of a thick-walled cylinder under monotonie 
and cyclic pressure loadings. 

A cylinder with an inner/outer radius ratio of 1/4 is 
considered. In the problem, axial strain is prevented, 
so that spatial variations are limited to the radial direc-
tion. Using an (r, 0, z) cylindrical coordinate system. 
only the displacement component Ur is non-zero. The 
analysis was undertaken using the 2D axisymmetric 
formulation, with a mesh of 60 four-node bilinear 
interpolation ring elements, and with nodal values of 
AUZ set equal to zero. In the (r, z) plane, the mesh would 
appear as a row of uniformly spaced square elements of 
edge length a/20. At each pressure step Δρ, the loading 
consists of radial forces Δρ πα2/20 applied to the 2 nodes 
a t r = a . 

First we consider the results for a monotonie increase 
in pressure from a stress free state to limit conditions. 
The value for a was specified as 0.05. The incipient 
yield conditions were found at the expected pressure 
level px = 0.5601: During the computations of the 14th 
pressure step, execution terminated with the UN-
CONTROLLED PLASTIC FLOW message. This 
was at a pressure level of 1.609 X which agrees, to within 
a factor of 1.005, with the theoretical limit pressure 
(2/^/3) In (b/a)Y. There is a precipitous drop in step size 
during the loading, and this is shown in Fig. 2. The 

Δρ/ρ, 

Step Number 

Fig. 2. Pressure steps as determined by adaptive algorithm 
for monotonie loading to limit conditions. 

highly accurate determination of the limit pressure 
suggests that both the spatial and the load path discret-
izations incurred minor levels of approximation. The 
significant result here, of course, is that this very accur-
ate load path discretization was obtained automatic-
ally, with the adaptive algorithm. In this analysis, the 
tolerance parameter δ was equal to 0.001. Four itera-
tions were required, on the average, to meet the con-
vergence test. 

We can gain an appreciation for the nonlinear char-
acter of this problem and for some general features of 
solutions which are obtained with the formulation and 
solution algorithm by considering the yield surface 
stress changes which occur across the cylinder wall, 
corresponding to different pressure steps. Figure 3 
shows |As |/Y plotted versus r/a, for 6 pressure steps. 
The distributions take on oscillatory forms, with the 
peak values of 0.05 following from the constraint 
condition. The peak always occurs at the elastic-plastic 
boundary, as defined by the previous step solution. By 

*^r /a 

Fig. 3. Radial variation of yield surface deviatoric stress 
change for pressure steps in monotonie loading case. 

definition, Assec falls to zero at the newly determined 
elastic-plastic boundary and equals zero in the elastic 
region. Generally, the peaks and valleys of the distribu-
tions occur at the elastic-plastic boundaries of previous 
steps. The outer surface of the cylinder yielded during 
the 10th pressure step. During steps 11-13, the max-
imum stress change was at this location, as the stress 
state there followed a history similar to that of plane 
strain uniaxial extension. It is perhaps worth restating 
here, relating to Figs. 2 and 3, that the basis of our error 
control strategy is that step size per se is immaterial. 
What is important is consistency of approximation, and 
this can be effectively achieved by limiting the yield 
surface deviatoric stress change at each step, as in Fig. 3. 

In the cyclic analysis, pressure varied between the 
values of zero and 2.8px. We followed the loading for 
1^ cycles using an a of 0.05, and the resulting discretiza-
tion is illustrated in Fig. 4. As can be seen, 18 steps were 
found necessary to trace this load path. At peak load, the 
elastic-plastic boundary had advanced to r = 3.38 a. The 
plastic zone elastically unloads during step 10 to a 
state of reverse incipient yield at the inner surface. The 
zone of reverse plastic flow spreads during steps 11-13 
to r = 1.23 a, at p = 0. For incompressible materials this 
boundary is known to be at r=1.26a, [4]. We have 
taken v as 0.3 in this problem. During step 14, the 
reverse plastic zone elastically unloads to a renewed 
state of forward incipient yield at the inner surface. 
The forward yielding spreads across the wall as the 
pressure increases during steps 15-18. At peak load, it 
was found that the elastic-plastic boundary had re-

*~Time 

Fig. 4. Pressure discretization results in cyclic analysis. 
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gained its previous position at r= 3.38 a. 
The radial distribution of the hoop stress σθθ takes on 

interesting variations during the pressure cycling, as 
displayed in Fig. 5. The monotonie and tensile character 
of the elastic solution is seen to give way to jagged dis-
tributions with peaks and valleys at the elastic-plastic 
boundaries and compression in the interior of the wall. 
Take the curve labeled 17, for instance. The first peak 
marks the current plastic boundary, the valley is at the 
boundary of the reverse plastic zone and the tensile 
peak is at the maximum pressure, forward plastic zone 
boundary. We determined that plastic flow during step 
18 was essentially limited to a <r < 1.23 a, even though 
the entire region a <r < 3.38 a satisfied the yield condi-
tion at the conclusion of the step. Hence this smaller 
zone would be aptly called a cyclic plastic zone. The 
hoop stress distribution at step 18 shows no perceptible 
differences from that at step 9. This is a surprising result, 
as the stress state would be expected to display this 
cyclic character only for radial loading, such as for the 
incompressible case. The axial stress showed differences 
up to 6% at peak load levels 9 and 18, and these differ-
ences were confined to the cyclic plastic zone. 

Further details of this problem could be discussed, 
including the dependence of the solution on the pre-
scribed value of a, but this would not have general 
import. Our intention here has been to provide some 
simple data to illustrate the performance of the adaptive 
algorithm. In complex problems, entailing totally un-
predictable conditions of yielding and plastic flow, we 
have found, as in this example, that the adaptive 
approach is a very efficient way to achieve accurate 
solutions. 

strategy presented—adaptively selecting step size ac-
cording to a constraint on the maximum value of 
|Assec|-has been developed for a single finite element 
formulation, for the elastic-perfectly plastic model. 
For strain hardening materials, it appears that an 
effective constraint would be one which simultaneously 
limits the hardening law and yield surface approxima-
tions in a load step. 

Table 1. Homogeneous uniaxial extension solution data 
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CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 

The adaptive load incrementation approach is a 
major development when considered in the context of 
standard practice, which requires the analyst to pre-
scribe the load path discretization. With this standard 
approach, load steps which provide a consistent level of 
error can only be determined by performing a series of 
analyses, and this can entail excessive labor and expense. 
While the error control strategy represents an improve-
ment, we are not claiming that is is the optimum ap-
proach. Various questions remain, as discussed below. 
Although we have focused on 2D analysis, the general 
considerations apply to 3D problems. Of course, the 

Y 

^ r / a 

Fig. 5. Radial variation of hoop stress at different positions 
along the cyclic loading path. 

There is a need for further research to examine the 
possibilities of achieving a uniformity of error from 
step to step. Krieg and Krieg [5] have considered this 
issue for homogeneous, proportional strain situations. 
Work is also needed to establish convergence study 
guidelines. Whereas we have concentrated on load path 
discretization, there is the obvious need for a strategy 
to control error which stems from spatial as well 
as load path discretization. Related to this are res-
trictions, which must be placed on element inter-
polation functions and mesh patterns, to allow spatially 
nonuniform, near-incompressible straining when fully 
plastic conditions develop. These restrictions have been 
discussed by Nagtegaal et al. [6]. 

It would appear that the adaptive solution algorithm 
could be used to advantage in many other incremental 
structural mechanics problems. It applies only to 
tangent modulus formulations, of course; but in the 
algorithm's generalized form, the nature of the problem 
nonlinearity, whether it be constitutive, geometric or 
both, is immaterial. The effectiveness of the algorithm 
is always dependent upon the propriety of the con-
straint condition which is chosen for the particular 
problem class. 
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Abstract- Riks [1] has recently proposed a new solution procedure for overcoming limit points. To this 
end, he adds, to the standard equilibrium equations, a constraint equation fixing the length of the incre-
mental load step in load/deflection space. The applied load level becomes an additional variable. 

The present paper describes a means of modifying Rik's approach so that it is suitable for use with the 
finite element method. The procedure is applied in conjunction with the modified Newton-Raphson method 
in both its original and accelerated forms. The resulting techniques not only allow limit points to be passed, 
but also, improve the convergence characteristics of the unconstrained iterative procedures. Illustrative 
examples include the large deflection analysis of shallow elastic shells and the collapse analysis of a stiffened 
steel diaphragm from a box-girder bridge. 

INTRODUCTION 
Snap-through and snap-back buckling phenomena 
(Fig. 1) pose some of the most difficult problems in non-
linear structural analysis. For most practical problems, 
it is quite unnecessary to trace such a convulated load/ 
deflection path as that shown in Fig. 1. Indeed, were 
such a path to be traced, most analyses would trace the 
static path ABCDEFGHIJ and thus infer the dynamic 
"snaps". Although the analyses are therefore somewhat 
artificial, they may be very important. 

Fig. 1. "Snap buckling". 

For some problems, all that may appear to be 
required is the load level at the first limit point. How-
ever, without analysis techniques that allow the limit 
points to be passed, even this information may be un-
available or unreliable. "Collapse loads" are often 
associated with a failure to achieve convergence with 
the iterative solution procedure. However, it may only 
be the iterative solution procedure that has collapsed 
(possibly as a consequence of round-off error). For 
other problems, the analysis may be performed on an 
individual component of a complete structure. In such a 
situation, it may be important to obtain information on 
the nature of the load shedding, following the limit 
points, in order to assess the performance of the com-
plete structure. 

When analysing relatively simple structures, it is 
tempting to try and avoid the full complexities of a 
"snap analysis" by applying a simple form of displace-
ment control. Such "displacement control" may simul-
ate a physical testing procedure. For instance, referring 
to Fig. 1, if the displacement p were to be prescribed, 
the limit point B could be passed and the load-shedding 
curve BC could be traced. However, a similar procedure 
would fail at, or just before, the limit point G. This fail-
ure might not matter if the analyst could conclude 
"Following the (local) maximum at F, there is a very 
sharp drop-off in load". However, the dramatic non-
linear behaviour associated with the limit point G may 
induce a failure in the incremental/iterative solution 
procedure at point E (Fig. 1). In such a situation, the 
analyst is left with no information on the nature of the 
failure and may not even be sure that he has a struc-
tural (rather than numerical) collapse. Consequently, 
non-linear finite element computer programs should 
be provided with solution procedures that will handle 
such "snapping phenomena" particularly if this can be 
achieved without resorting to many "special tech-
niques" [2]. Present procedures generally involve the 
use of fictitious springs [3] or adopt some form of 
"displacement control" [4, 5]. The main disadvantage 
of the former method is the trial and error often in-
volved in the selection of the appropriate springs [6]. 
The disadvantages of the latter method relate to the 
selection of the appropriate displacement variable. For 
instance, Maewal and Nachbar [7] note the necessity 
to change the prescribed displacement variable fol-
lowing slow convergence or divergence of the iterative 
solution procedure. 

Began et al [6, 8] use the "current stiffness param-
eter" [8], to predict the position of the local maximum 
or minimum. They then suppress the equilibrium itera-
tions in the neighbourhood of the extremum (limit) 
point and reverse the sign of the load following a change 
in the sign of the determinant of the tangent stiffness 
matrix. The supression of the equilibrium iterations 
dictates the provision of very small load increments 

55 



56 M. A. CRISFIELD 

close to the limit point and also leads to a local drift 
from equilibrium. 

RIKS METHOD 

Figure 2(a) illustrates the application of Rik's 
procedure [1] to the solution of a one-dimensional 
problem. Riks used the normal to the tangent rather 
than the circular path. The latter method is slightly less 
likely to fail (Fig. 2a) and has been applied in the 

Displacement, p 

(a) WITH NEWTON-RAPHSON TECHNIQUE 

Displacement, p 

(b) WITH MODIFIED NEWTON-RAPHSON TECHNIQUE 

Fig. 2. Riks's method (1). (a) With Newton-Raphson tech-
nique; (b) with modified Newton-Raphson technique. 

present work. For a problem with N displacement 
variables, the following constraint equation is added 
to the usual N equilibrium equations. 

Δ ρ Γ Δ ρ + Δ λ ν \ ι = Δ/2 (i) 

Δρ is the incremental displacement vector and q is the 
total applied loading vector. The "loading parameter" 
is the scalar λ while Δ/ fixes the "length" of the incre-
ment in N -I-1 dimensional space. The N equilibrium 
equations involve the N + 1 unknowns p and λ and can 
be written in the form 

(The external load vector qextwill normally be referred 
to as q.) Riks applied his technique to the analysis of a 
shallow circular arch and solved the N +1 equations 
using the Newton-Raphson (N-R) method. 

The Newton-Raphson method is not often used with 
the finite element method, the modified Newton-
Raphson method (m.N-R) being generally preferred 
[9]. When using the m.N-R procedure, the tangent 
stiffness matrix is neither re-formed nor re-factorised at 

each iteration but is, instead held fixed. In the current 
version, the tangent stiffness matrix is only formed and 
factorised at the beginning of each load increment. 
Figure 2(b) illustrates the combination of Rik's pro-
cedure with the m.N-R method for the one-dimensional 
problem of Fig. 2(a). 

A MODIFIED RIKS METHOD 
Even having substituted the m.N-R method for the 

N-R procedure, Rik's technique is still not suitable for 
use with the standard finite element method. Un-
fortunately, the direct simultaneous solution of eqns (1) 
and (2) destroys the symmetric banded nature of the 
equilibrium equations (eqns 2) on their own (with λ 
taken as a constant). Fortunately, the problem can be 
overcome by adopting a technique similar to that 
advocated by Batoz and Dhatt [5] for standard "dis-
placement control". Using such a procedure, eqn (2) 
is re-written to express the out-of-balance force vector 
(or gradient of the total potential energy), g, as: 

Ζ(λ + δλ)=ζ(λ)-δλ<ι=0. (3) 

Consequently, the iterative change (δ^ given by the 
m.N-R method, can be expressed as: 

oi= -Κ-^ + δλ^δβϊ+δλίτ (4) 

where δ^) is the standard iterative change for some 
known fixed out-of-balance force vector, g,<A() with 
known λί and K is the tangent stiffness matrix at the 
beginning of the "load increment", i.e. 

δβ^-Κ-^λ,) (5) 

while δτ is the tangential displacement, 

δτ = Κ'^ (6) 

which was required for the original tangential solution 

Δρ0 = ΔΛ0<57 (7) 

with ΔΛ0 being some assumed initial incremental 
loading parameter (see Fig. 2) and Δρ, being the incre-
mental displacement vector such that 

ΔΡι.+ 1 = Δ Ρ ί + <5, (8) 

Instead of applying the constraint of eqn (1), numerical 
experience has shown that it is preferable to fix the 
"incremental length", Δ/, in N dimensional space, i.e. 
eqn (1) is replaced by 

ΔρΓΔΡι· = Δ/2 (9) 

for all iterations, i. Substituting from eqns (4) and (8) 
into eqn (9) gives the following quadratic equation for 
the change, <5A,, in the loading parameter: 

a^Xf + α2δλί+α3 = 0 (10) 

where 

αγ=δ\δτ 

α2 = 2(^ι+δι{λ$τδτ (11) 

α,Μάρ^δβ^Αρ^δμ^-Μ2. 

The two roots of this scalar quadratic equation will be 
designated δλη and δλ·α. To avoid "doubling back" on 
the original load/deflection path, the "angle" between 
the incremental displacement vector, Δρ{ before the 
present iteration, and the incremental vector, Δρί + 1 
after the current iteration, should be positive. From 
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eqns (4) and (8) there are two alternative values for 
APi+i (called say Api+1>1 and Δρί + 1 2) which corre-
spond to the two solutions δλη and δλί2. Hence, the 
two "angles" Θλ and Θ2 are given by: 

^ Δ ρ ^ ^ Δ ρ , , 02 = ΔΡι
Γ

+1<2Δρ, (12) 

The appropriate root, δλη or <5AI2, is that which gives a 
positive "angle" unless both "angles" are positive, in 
which case, the appropriate root is that closest to the 
linear solution : 

δλ^-aja^ (13) 

The first load increment will generally be started 
using a given approximate increment, ΔΛ0 (Fig. 2). The 
"length" of the increment, Δ/, is then fixed using eqns 
(7) and (9), i.e. 

Δ / = Δ / ί ο ν / ^ . (14) 

For subsequent increments, the lengths may be adjusted 
with a view to achieving "a nearly constant number of 
iterative cycles being needed at each level of loading in 
order to restore equilibrium" [6]. To this end, the 
following very simple approach may be adopted [10}. 

Α ^ Α ! Η ^ . (15) 

The "length" Δ/;·_ x was used for thej— 1th increment, 
/ , · _ ! was the number of iterations required to achieve 
equilibrium at the; — 1th increment and ld is the desired 
number of iterations (between 3 and 5 in the present 
work). This procedure will automatically lead to small 
lengths in the areas of the most severe non-linearity 
and longer lengths when the response is nearly linear. 
To avoid the danger of converging on a higher equi-
librium path, and in the presence of plasticity (which is 
path dependent) to limit the departure from the true 
equilibrium path during the iterations, maximum 
lengths should be specified [8,10]. A maximum number 
of iterations (in the present work 12) should also be 
given. Failure to converge within this limit would result 
in an automatic reduction in the increment size [10]. 

For all increments other than the first, the initial 
incremental loading parameter Αλ0 (Fig. 2) would be 
obtained from 

Δλ0=±ΜΙ^βϊδτ. (16) 
The sign is chosen following an approach due to Bergan 
and Soreide [8] in which the sign follows that of the 
previous increment unless the determinant of the 
tangent stiffness matrix has changed sign, in which case, 
a sign reversal is applied. Provided the adopted factor-
isation procedure takes the form 

K = LDL7 (17) 

the determinant is easily calculated and there are no 
problems in obtaining solutions if K is negative definite. 
However, the procedure does fail if K is exactly singular. 
Fortunately, as noted by Batoz and Dhatt [5], this is 
extremely unlikely to occur in practise. Indeed, neither 
they, nor the author, have ever encountered such a 
situation. 

For some problems, it may be required that the scalar 
ki should relate to a set of prescribed displacements 
rather than to a fixed load vector, q. For example, when 
"loading" elasto-plastic structures, the distribution of 
stress across some "loaded boundary" may be un-
known and may vary with the load so that it is essential 

to prescribe displacements unless constraint equations 
are to be introduced. In such circumstances, the vector 
q in eqn (6) would be replaced by the tangent load 
vector qTi which may be formed at the end of each 
iteration at the same time as the gradient (or out-of-
balance force vector), g/A;), is calculated. The vector 
δτ in eqns (6) and (11) would then be replaced by <5Ti 
which would need to be re-formed at each iteration. 
This can be achieved by operating simultaneously on 
two "load vectors".(g,-(Af) and qTJ when applying the 
forward and backward substitution to find δ ^ and 

AN ACCELERATED MODIFIED NEWTON-RAPHSON 

METHOD WITH FIXED LENGTH INCREMENTS 
At the expense of extra storage and complexity, the 

previous "modified Riks approach" can be adapted to 
apply to an "accelerated m.N-R" method [11]. Various 
such acceleration procedures have been proposed 
[11-13]. The particular technique used in the present 
work [11] is both efficient and fully automatic and is 
closely related [14] to conjugate gradient [14-16], 
conjugate-Newton [17] and quasi-Newton [18-20] 
solution procedures. The method has been shown [20] 
to be among the most efficient of a set of so-called 
"secant-Newton" solution techniques. Assuming for the 
present fixed load levels, the accelerated iterative pro-
cedure replaces eqn (5) by 

where 

l=-K'lgi (18) 
is the standard m.N-R iteration vector and the scalars 
ei and h-x are given by 

' b, 

«-*.(ΐ-ξ)-1· (19) 

The scalars a ,·, bt and cf are given by the inner products 

αί = $ Γ - i 8 i - i 

Λ, = *Γ-ι(β,-β,-ι) = *Γ-ι7ι (20) 
Ci=iTyi. 

In comparison with the standard m.N-R method (of 
eqn 18), eqn (17) requires the storage of two extra 
vectors, ^j_j and g^v 

By applying eqns (3) and (4), eqn (17) can be modified 
to relate to a variable load level. (The procedure is 
analogous to the modification of the fixed load level 
m.N-R method of eqn (5) to the variable load level 
approach of eqn 4.) As a consequence of the modifica-
tion, eqn (17) can be replaced by 

δ^ + δλ^δ^η ΙΊΗδλ,δ^ (21) 

where all the terms in eqns (17H20) relate to the fixed 
load level λ( and δΤβ is given by: 

äre = W r + <*Ä + i A - i (22) 
where the scalar ht has already been defined (eqn 19) 
and the scalars dt and if are given by: 

hi (23) 

(17) 
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f/=4 1- bj b, Shi-

Equation (17) satisfies the "generalised secant" rela-
tionship [14, 20] 

*?>,·=-*f-i& (24) 

while eqn (21) satisfies the equivalent relationship for 
a variable load level 

ί / ϊ ί = - * Γ - ι ( 8 ι - ^ Λ ) . (25) 

It should be emphasised that the vectors g„ g,_ j and 
y. = g.—gi_1 all relate to the load level A,, Consequently, 
following the calculation of <$Λ,·, the vector g, is adjusted 
using eqn (3) to relate to the new load level λί+ί = A, + <U, 
before being stored for the next iteration as gt_ v 

The calculation of the load adjustment scalar δλί fol-
lows the procedure previously described for the 
"constrained m.N-R method" To that end, eqns (8) 
and (9) are used to set up a scalar quadratic equation 
which is identical to eqns (10) and (11) with the excep-
tion that <5:(Af) and δτ in eqns (11) are replaced by <5, 
(eqn 17) and ôTe (eqn 22) respectively. 

Numerical experience has shown that in some situa-
tions, the accelerated m.N-R iteration gives a worse 
solution than the standard m.N-R procedure. This 
appears to occur whenever the scalar multiplying 
<Ü, is much different from unity or whenever the scalar 
multiplying <5,_ λ becomes large in comparison with the 
scalar multiplying $,. Consequently, the acceleration is 
only applied if 

Rl>hi + ôkidi> 
1 

*7 
and (26) 

R7> 
ei + ÖAji 

> - * * , 
hi + öAidi 

where the "cut out parameter", Rx lies between 2.0 and 
3.0 and the "cut out parameter", R2 lies between 0.3 
and 1.0. (Further work is required to obtain the 
optimum values or to derive new "cut out criteria".) 

APPLICATIONS 

The solution procedures have been incorporated in a 
finite element computer program for the large-deflec-
tion elasto-plastic analysis of imperfect stiffened plates 
and shallow shells. The program is based on a Lagran-
gean formulation for moderately large deflections. 
The elements are rectangular with quadratic shape 
functions [4] being used for the in-plane displacement 
fields, while the restricted quartic non-conforming 
shape functions [21] (which pass the patch test) are used 
for the out-of-plane deflections. Reduced two-point 
Gaussian integration is adopted in order to reduce the 
"self straining". Details are given in [20, 22]. 

The following convergence criterion has been adopt-
ed 

Hill 
max.(A||q||,||r||pc ( 2 7 ) 

where g, q and r are the scaled gradient (out-of-balance 
force), total applied force and reaction vectors. The 
applied scaling is that proposed by Peano and Riccioni 
[23], i.e. 

(28) 

where D is a diagonal matrix containing the leading 
diagonal elements of the tangent stiffness matrix (at the 
beginning of the load increment). Unless it is stated 
otherwise, the convergence constant ε of eqn (27) is 
set to 10" 4 while the cut-out parameters of eqn (26) are 
set as 1^ = 3.0 and K2 = 0.8. 

Hinged elastic cylindrical shells subject to point loads 

A five by five mesh was used to idealise a quarter 
of the elastic cylindrical shell shown in Fig. 3. The 

R = 2540mm, L = B = 504mm 

E = 3105 N/mm2, ,· = 0.3. t = 12.7m 

llslhVg^g.etc.; 

Fig. 3. Hinged cylindrical shell with a central point load. 

results are in close agreement with an alternative solu-
tion due to Sabir and Lock [24] who used a N-R 
solution procedure combined with displacement con-
trol at the centre of the shell. The present analysis 
combines applied loading with the "length constraint" 
so that the tangent stiffness matrix changes from posi-
tive to negative to positive definite as the load/deflec-
tion path is traced (Fig. 3). The analysis was first per-
formed using the accelerated m.N-R method com-
bined with the automatic procedure for selecting the 
incremental lengths. The desired number of iterations, 
Is (eqn 15), was set to 4 which equals the average number 
of iterations taken over the complete load/deflection 
path. 

This analysis was followed by a second analysis in 
which the incremental lengths derived from the first 
analysis were used to define the increment sizes for a 
"constrained m.N-R" solution. The average number of 
iterations came to 4.9 (Fig. 3) which is significantly 
more than were required when the acceleration was 
added. The benefits of the acceleration were most 
noticeable in the region where the structure is harden-
ing. In this zone, the coefficient of the m.N-R iteration 
vector, St (which is hx + δλ^ί) is generally less than unity. 

Both solution procedures allowed the limit points 
to be passed without resorting to very small increments 
or surpressing the equilibrium iterations. In order to 
derive a load/deflection path involving both horizontal 
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and vertical tangent (limit) points, Sabir and Lock [24] 
halved the thickness of the shell. They traced the load/ 
deflection behaviour (Fig. 4) by switching from dis-
placement to load and back to displacement control. 
The present solution, which is in reasonable agreement 
with Sabir and Lock's solution (Fig. 4), was obtained 
by combining load control (via the parameter Af) with 
the length constraint. The solution process was the same 
as that described for the previous shell. 

The desired number of iterations, 7d, was again set to 
4 which is very close to the average number of itera-
tions (4.1) required when using the accelerated m.N-R 

R = 2540mm, L = B = 504mm 
E = 3105 N/mm2, v = 0.3, t = 6.35mm 

P_ free 

Central def lection, Ac (mm) 

Fig. 4. Thin hinged cylindrical shell with a central point load. 

solution procedure. When the acceleration was re-
moved, the average number of iterations increased to 
6.9. Once more, the limit points were passed without 
any particular problems. The adopted convergence 
criterion (ε= 10 ~4) is excessively harsh. This probably 
contributes towards the larger number of increments 
required in comparison with Sabir and Lock's solution 
(No details are given [24] on the convergence criterion 
or characteristics.) 

Stiffened steel diaphragm from box-girder bridge 
As part of a study [25] into the collapse behaviour of 

steel box-girder diaphragms, TRRL commissioned a 
set of tests [26] on lightly stiffened large-scale models. 
Figure 5 shows such a model and gives load/deflection 
curves obtained from a finite element analysis which 
allows for plasticity, geometric nonlinearities and im-
perfections. An elastic sub-structuring technique was 
combined with some structural idealisations [22, 25] 
so that only the diaphragm itself was analysed in a 
non-linear manner. A 5 x 7 mesh was used to represent 
one half of the diaphragm. Details are given in [10] 
which includes comparisons with the experimental 
results [26]. 

In order to bracket the experimental behaviour, two 
extreme boundary conditions were applied to the out-
of-plane deflections at the edges of the diaphragm. 
For analysis A (curve A, Fig. 5), the boundaries were 
assumed to be simply supported while for analysis B 
(curve B, Fig. 5) they were assumed to be encastré. 
In both cases the structure was "loaded" by increment-
ing prescribed displacements across the bearings and 
combining this "displacement control" with the addi-
tion of "length constraints". The accelerated m.N-R 
method was used for the first analyses and was com-
bined with the automatic procedure for calculating the 
incremental lengths (Id being set to 3). Maximum 
increment sizes were also specified [10]. The later 
analyses, using the standard (constrained) m.N-R 
method, maintained the same lengths as had been 
derived using the accelerated procedure. The converg-
ence constant, ε (eqn 27) was set to 10 " 3 while the 
"cut-out" factors Rx and R2 (eqns 26) were set to 3.0 
and 0.5 respectively. 

Despite the applied "displacement control", analysis 

Displacements at bearings 

Fig. 5. Stiffened diaphragm from steel box-girder. 
CAS 13:1-3 - E 
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A (curve A, Fig. 5 with 348 degrees-of-freedom) was 
expected to encompass limit points since an earlier 
analysis [10], without the addition of the "length 
constraint", had to be abandoned following a failure to 
achieve convergence. Clearly, the addition of the 
length constraint has overcome these problems and 
allowed four limit points (or changes in the sign of the 
determinant of the tangent stiffness matrix) to be 
passed. Up to the 12th increment, while the determinant 
was positive (under displacement control), the acceler-
ated solution procedure gave slightly better converg-
ence (average number of iterations =3.7) than the 
standard technique (average number of iterations=4.4). 
However, following the first limit point, the response 
involves a dramatic reduction in load while the deter-
minant of the tangent stiffness matrix oscillates be-
tween positive and negative. In these circumstances, the 
accelerated solution procedure gave a slightly worse 
performance than the standard technique (Fig. 5, 
curve A) before the final stiffening response again 
favoured the acceleration. It is not surprising that the 
acceleration is relatively unsuccessful when the struc-
ture oscillates between stable and unstable equilibrium. 
The technique was designed to satisfy the "secant 
relationship" of eqns (24) or (25) which were in turn 
derived [14, 20] by approximating the total potential 
energy to a quadratic function. Clearly such an approx-
imation is unreasonable when the determinant of the 
tangent stiffness matrix is close to zero. 

Analysis B (with the encastré boundaries) involved 
324 degrees-of-freedom. Under the applied "displace-
ment control", the response was everywhere stable 
(Fig. 5, curve B) so that no limit points were encount-
ered. The accelerated solution technique (average 
number of iterations = 3.9 in comparison with the 
desired number of iterations = 4.0) gave substantially 
better convergence characteristics than the standard 
procedure (average number of iterations greater than 
7.4). 

Clamped elastic cylindrical shell 
The previous examples have shown that both of the 

"constrained iterative procedures" can be successfully 
used to pass limit points. In general, the use of the 
accelerated m.N-R procedure has led to an appreciable 
reduction in the required number of iterations. How-
ever the advantages have been less dramatic than those 
previously experienced [10, 11, 14] when the length 
constraint was omitted. Following this observation, it 
was decided to directly compare the performance of the 
constrained and unconstrained iterative procedures. 
This was achieved by analysing the clamped shell of 
Fig. 6 which responds to load without exhibiting any 
limit points. To this end, a 5 x 5 mesh was used to 
idealise a quarter of the shell (196 degrees-of-freedom). 

The first analysis combined the constrained acceler-
ated m.N-R procedure with the technique for auto-
matically selecting the increment lengths. The average 
number of iterations required to restore equilibrium 
was 3.6 while the desired number of iterations, Id had 
been set to 4. The incremental lengths derived from this 
analysis were next used to generate a solution without 
acceleration. The average of the required number of 
iterations increased to 6.4. 

Unconstrained solutions were now obtained using 
the load increments that had been derived from the 
previous analyses (Fig. 6). The accelerated m.N-R 

0 1.0 2.0 3.0 
Central deflection ratio Δ , 

Fig. 6. Fully clamped cylindrical shell with uniform pressure 
loading. 

method was still fairly successful, the average number 
of iterations having increased from 3.6 to 4.4 as a result 
of the removal of the length constraint. However, the 
performance of the standard m.N-R method showed 
a dramatic deterioration following the removal of the 
length constraint. The average number of iterations 
increase from 6.4 to over 46. This supports the hypothes-
is that the addition of the length constraint is far more 
beneficial to the standard m.N-R method than it is 
to the accelerated technique. 

Solution of linear simultaneous equations 
The previous solution techniques can be used [14,20] 

with the matrix K (eqns 5 and 6) approximating the 
tangent stiffness matrix at the beginning of the incre-
ment. In the extreme, if the matrix K is replaced by the 
identity matrix, the solution procedures can be used to 
solve sets of linear simultaneous equations. Without 
the length constraint, the m.N-R method becomes the 
simple Jacobi iteration [16] while the accelerated 
m.N-R method becomes a form of accelerated Jacobi 
iteration which coincides with the conjugate gradient 
method if line searches [14,18] are introduced [14,20]. 
However, following the previous nonlinear solutions, 
line searches will not be introduced in the present 
work. The following set of linear simultaneous equa-
tions [16] was used to investigate the effect of adding the 
length constraint to the standard and accelerated 
Jacobi methods: 

1-0 symmetric Ί 

-0.30898 0.0 -0.27471 1.0| 
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r 5.32088 Λ 
J 6.07624 ( , ^ 

H-8.80455 f (24) 

v. 2.67600 J 

The convergence constant ε of eqn (27) was set to 10~3. 
When using the standard Jacobi iteration (m.N-R with 
K=I), the required number of iterations was reduced 
by 30% (from 24 to 17) when the "length constraint" 
was added. In contrast, when using the accelerated 
Jacobi method (accelerated m.N-R with K = I), the 
required number of iterations was only marginally 
reduced (from 11 to 10) when the length constraint was 
added. A similar trend followed from other examples 
although, in line with the standard Jacobi method [16], 
convergence could not always be achieved. Better 
methods are clearly available for solving linear equa-
tions. However the object of the example is to show in a 
different context, the advantages that can be gained by 
adding Riks's "length constraint". Hopefully, the work 
may stimulate a rigorous mathematical-study of the 
convergence properties. 

CONCLUSIONS 
Riks's solution procedure [1] for passing limit points 

has been adapted so that it is suitable for implementa-
tion with the finite element method. As a result of the 
modification, the "length constraint equation" is no 
longer solved directly in combination with the equi-
librium equations. Instead, the iterativa change, result-
ing from the usual treatment of the equilibrium equa-
tions, is augmented by the addition of a multiple of the 
tangential displacement vector. This fixed vector is 
derived from the external load vector and the tangent 
stiffness matrix at the beginning of the load increment. 
The scalar multiplying the tangential displacement 
vector is obtained from the solution of a scalar quad-
ratic equation derived from the "length constraint 
equation". The technique is implemented in conjunc-
tion with the modified Newton-Raphson (m.N-R) 
method in both standard and accelerated forms. 

The solution procedure has been successfully applied 
to problems involving both horizontal tangent (limit) 
points, which could otherwise be passed using dis-
placement control, and vertical tangent points, which 
could otherwise be passed using load control. Such 
switching is no longer required and there is no 
need to suppress the equilibrium iterations in the 
vicinity of the limit points. When applied with the 
standard m.N-R procedure, only one extra vector 
need be stored. The added computation is negligible. 
Not only can the limit points be passed, but also, the 
convergence characteristics are significantly improved 
so that the technique can be beneficially applied to 
problems for which limit points are not anticipated. 

Numerical experience with the accelerated m.N-R 
method is not quite so encouraging. Better convergence 
characteristics were generally obtained when the 
acceleration was included. However, the benefits 
gained by adding the length constraint to the acceler-
ated m.N-R method were less dramatic than those 
obtained as a result of the similar addition to the 
standard m.N-R procedure. As anticipated, the per-
formance of the "constrained accelerated m.N-R" 
solution procedure was least satisfactory when the 
structure was oscillating over a short length of the 

load/deflection path between stable and unstable 
equilibrium. Further work in this area should concen-
trate on the development of better "cut out" criteria 
designed to temporarily suppress the accelerations. 
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Abstract—In non linear structural analysis, an economical computation algorithm should be able to 
compute for large load increments and the number of iterations per step must remain little sensitive to the 
increment size. In case of elasto-plasticity, several difficulties are encountered in deriving an efficient 
solution scheme. A state determination algorithm is proposed which, combined with slight adaptations of 
the classical Newton-Raphson method, allows to obtain the required property and to compute for accurate 
solutions. 

Evenmore, the solutions obtained are reasonably independent on the chosen calculation strategy. 
Several examples, including combined geometric and elasto-plastic non linearities, illustrate the perform-
ance of the derived algorithm. 

1. INTRODUCTION 

A large number of theoretical and computation 
advances in the analysis of nonlinear structures have 
been made in recent years. Many computer analyses 
have been carried out and a number of general 
purpose computer programs for nonlinear elastic 
and inelastic analyses have been developed. 

Nevertheless, the choice for an efficient, accurate 
and economical calculation algorithm to solve elasto-
plastic problems with a great number of degrees of 
freedom is still a tricky task [1-3]. It seems to be a 
general agreement that a good algorithm should be 
able to deal with large load increments, this require-
ment being obtained without alteration of the solution 
accuracy. The main difficulties in case of elasto-
plasticity arise from the irreversibility of the plastic 
strains and from the discontinuous change of the 
material properties. 

From this, two distinct phases must be considered 
when deriving a computation algorithm in elasto-
plasticity : the numerical iterative method to solve the 
system of nonlinear equations and the numerical 
algorithm for accurate state determination of the 
material. As will be shown, these two fundamental 
aspects are closely bounded. 

We propose here a particular state determination 
algorithm which allows to maintain good convergence 
properties to the Newton-Raphson method, pro-
vided it is slightly modified. It will be shown that the 
numerical solution computed is quite independent of 
the particular calculation strategy adopted, which is 
also an essential requirement. 

2. SYSTEM OF EQUATIONS TO SOLVE 

In this analysis, it will be assumed that the elasto-
plastic materials obey the Prandtl-Reuss-von Mises 
plastic flow rules [4]. Only isotropic materials with 
isotropic hardening and at uniform temperature will 
be considered in the formulation for brevity. All 
considerations can be straightforwards generalized 

to include temperature dependence of mechanical 
properties and kinematic hardening if necessary. 

If small strains are assumed, the increments of total 
Green strains may be split into an elastic part and a 
plastic part : 

ä y ^ + äfr (1) 

The elastic strains are related to the stresses by the 
classical linear elastic constitutive relations : 

ffij:=^ijkl£kh (2) 

where the Cijkl are the elastic moduli. The stresses 
should always satisfy the plasticity critérium : 

F{a,lp) = ô2-X2=0 (3) 

with 

σ2=/(σ^);Χ=Χ0 + Η'άερ, (4) 

where fis a convex function which defines the plasti-
city critérium used. X0 is the initial elasticity limit, 
while άερ is an equivalent plastic strain. H' is the 
coefficient of strain hardening. During the plastic 
flow, the stresses must be plastically admissible and 
satisfy eqn (3). 

Following the Drucker stability postulate [5], the 
plastic strains are given by 

The exact solution of the plasticity problem should 
satisfy relations (1H3) and (5),. the equilibrium 
equations and the appropriate boundary conditions. 

During plastic flow, the increments should satisfy 
the consistency condition : 

αυσυ = 2ΧΗ'ερ = 4σ2Η'λ = Αλ. (6) 
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From (1), (2), (5) and (6), λ may always be expressed 
in terms of strain increments to obtain the classical 
elasto-plastic incremental stress-strain relations : 

one obtains 

Gij — Dijkiékb (7) where 

with 

Dijki=[Cijki-OiCijstastCklmnumn/(A +apqCpqrsars)]. (8) 

In (8), the a parameter takes a value of unity during 
plastic flow, i.e. \ϊ/{σ^) = Χ2 a n d / > 0 ; it takes a zero 
value otherwise. 

In a finite element static analysis based on the 
displacement formulation, the equation of equil-
ibrium may be stated as 

ι B'(q)adV=g, (9) 

where σ are the Kirchhoff-Trefftz stresses, B is the 
incremental strain matrix which generally depends 
on the generalized displacements q, and g is a vector 
of generalized loads. Since the strains are assumed 
to be small, the stresses are related to the total strains 
through the constitutive equations (7), i.e. 

σ= ί D(a)de, (10) 

where the integration is taken along the deformation 
path since plasticity is essentially path dependent. 
The nonlinear equations to solve in an elasto-plastic 
problem may be written 

J B'fa) Q ΧΧσ) dfi^ dK=flr. (11) 

3. REQUIRED PROPERTIES OF AN EFFICIENT 

SOLUTION METHOD 

3.1 Solution procedures 
It is now generally admitted that an iterative pro-

cedure must be used to achieve sufficient accuracy in 
solving the nonlinear system (11) [1-3, 6-8]. The main 
iterative methods can be considered as particular 
cases of the Newton-Raphson method. 

Suppose that we know an approximation of the 
solution at iteration k, noted 

(*, ε> <l\ (12) 

which satisfy the compatibility requirements and the 
constitutive relations (7). The exact solution may 
always be written as 

q=q+Aq ε = ε+Δε σ = σ+Δσ, (13) 

where Aq, Δε and Δσ denote the corrections to be done 
on the solution (12), which are not necessary infini-
tesimal. Expressing that the solution (13) must satisfy 
eqns (11), it is then possible to compute for the cor-
rections Δ, after linearization in these corrections. 
Noting that 

Γ ε + Δ ε Γε 

ΰ(σ)άε~ D(a) άε+ΰ(σ)Αε=σ+ϋ(σ)Αε, 

KT(q)Aq=g-j B'(q)cdV=r, (15) 

dB 
[B'(q)D(a)B(q)+~(q)a)dV (16) 

V °Q 

is the tangential stiffness matrix computed using the 
tangent material properties evaluated at the approxi-
mate state (12). In (15), r states for the out-of-balance 
forces. Solving (15) for Δ#, a new estimation of the 
displacements is obtained. The corresponding state of 
the material is then obtained by computing the corre-
sponding strain increments to which the stress incre-
ments are related through the elasto-plastic constitutive 
relations : 

Γε + ά H. Ώ{σ) de. (17) 

(14) 

From the new stress state, the new out-of-balance 
forces may be computed and the procedure repeated 
until an appropriate norm of r becomes less than a user 
fixed tolerance ε. It is worth noting that a solution is 
then reached whatever the stiffness matrix used for the 
iterations. 

Constant stiffness method. If the stiffness matrix is 
formed and decomposed only once, the constant 
stiffness method [9, 10] is recovered. In case of strong 
nonlinearities, the method often fails to converge even 
if an acceleration scheme is used and this method 
cannot be retained solely for a general purpose com-
puting code. 

Strict and modified Newton-Raphson method. In the 
strict Newton-Raphson method, the tangential stiff-
ness is changed at every iteration. A disadvantage of 
this procedure is that a large amount of computational 
effort may be required to form and decompose the 
stiffness matrix. But, if the convergence of the method 
is sufficiently fast, it can be compensated for by saving 
time in the state determination phase. In fact, when 
evaluating the computational efficiency of a solution 
scheme, it should be noted that the computational 
cost of this phase can be significant as compared with 
the solution phase cost [1-3]. 

Depending on the degree of nonlinearity, computing 
time can sometimes be saved by reforming the stiffness 
matrix on each few iterations (modified Newton-
Raphson method). It is also interesting to note that the 
factorized tangent stiffness matrix may also be 
gradually constructed at low cost while iterating using 
quasi Newton methods [11, 12]. These methods seem 
very promising but were not investigated in this work. 

When only geometric nonlinearities are present and 
in absence of instability, the convergence of the 
Newton-Raphson method is quadratic and in struc-
tural analysis, convergence is almost always obtained 
in a few iterations. Due to the ability of the method to 
converge even in case of strong nonlinearities, the 
method is widely used in nonlinear structural analysis. 
When applied to elasto-plastic problems, some diffi-
culties are still encountered due to the irreversibility 
of the plastic stress and the discontinuous variation of 
material properties due to elasto-plastic state transi-
tion. Its use and efficiency is sometime controverted in 
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this case [13]. The main problems of the method may 
be summarized as follows. 

The first difficulty is inherent to each type of iterative 
method. To each computing strategy corresponds a 
particular path in the load space given by 

g=ÎB'oaV (18) 

where the σ are the stresses computed during the 
iterations. This path can be quite sophisticated. Since 
an elasto-plastic solution is essentially path dependent, 
the value of the final solution must be discussed. 

Convergence difficulties may be encountered if the 
method is applied without special care. 

In case of combined material and geometric non-
linearities, the convergence of the Newton-Raphson 
method can excessively slow down and even be lost in 
particular cases [13,14]. 

Due to these difficulties, some modifications of the 
classical Newton-Raphson method should be intro-
duced to retain the decisive advantages of reliability of 
the method. 

3.2 Definition of an efficient iterative scheme 
A solution method to be included in a general 

purpose nonlinear computer program should have a 
great reliability and offer a great flexibility in the choice 
of computing strategy since the best one vary with 
each particular problem. The computed solution should 
be reasonably independent of the particular strategy 
adopted. Finally, the method should be economic to 
use which implies two aspects. Firstly, in order to 
save engineer time, convergence should be reached 
whatever the reasonable choice of the load incrementa-
tion may be. Secondly, in order to save computing 
time, the rate of convergence should be sufficiently 
fast to insure that the total computing cost, including 
the stiffness matrix reformations and the state deter-
minations, should be acceptable. 

It is now well recognized [3,14,15] that these require-
ments can only be achieved if the computation 
algorithm is able to deal with large load increments, 
provided the number of iterations per step remains 
quite independent of the increment size. The state 
determination algorithm should consequently be very 
accurate, which can significantly increase the com-
putation cost of the corresponding phase and leads 
to limit the number of iterations per step. 

It will be shown that the required properties can be 
reached using a Newton-Raphson type method with 
an appropriate state determination algorithm. 

4. STATE DETERMINATION ALGORITHM 

Computing of strain increments from displacement 
increments involves only kinematics. The problem of 
computing a stress increment from a given strain 
increment involves the material constitutive relations 
at two levels : i.e. how to determine the increment of 
stress Δσ for a given strain increment Δε and how to 
determine the total increment of stress over a whole 
increment. 

4.1 Stress increment associated to a given strain incre-
ment 

The stress increment during plastic flow must be 

such that the plastic flow rule and the plasticity 
critérium should be satisfied with about the same 
degree of accuracy. Due to the nonlinearity of (3) and 
(5), the true stress increment must be computed using, 

Γε + Δε 
Δσν=\ Ό(σ)άε. (19) 

Various algorithms have been designed for this 
purpose. 

4.1.1 Single step methods. A first approximation of 
(19) is obtained using a Euler one step forward inte-
gration scheme : 

Δσα~ϋ(σ)Δε. (20) 

The fact that the direction of the plastic flow is only 
correct in the beginning of the increment can lead to 
important error in the final orientation of the stress 
vector in the stress space [15, 16]. Moreover the final 
stress σα will not lie on the yield surface. An additional 
correction is then needed and generally, the stresses 
are brought radially back to the yield surface. The 
plastic flow which takes place during this correction 
is usually completely neglected. So, the radial return 
seems not very consistent. 

To eliminate this difficulty, a single step Euler 
backward method can be used. In this case the flow 
rule is satisfied only at the end of the interval con-
sidered while the elastic stresses are again projected 
radially to the yield locus. But in this implicit method, 
the additional plastic flow occuring during this return 
can easily be taken into account if the von Mises 
critérium is used [15-17]. Schreyer et al. [15] have 
demonstrated in a parametric study that for a single 
step method, the error associated with the implicit 
scheme is usually much less than the error obtained 
with the Euler forward method, but if the increments 
are large, the error can still be unacceptable. Moreover, 
the convergence properties of the iterative method 
singularly degrades when using the implicit scheme if 
the stress state is far from uniaxial. 

4.1.2 Subincrementation schemes. Improvements of 
the accuracy of integration (19) can be achieved by mul-
ti-stepping [3, 6, 14, 16, 18]. In this case, both implicit 
and Euler schemes lead to results that may be con-
sidered quite satisfactory for most engineering prob-
lems, for approximately the same number of sub-
increments [15], the errors being even less for the 
explicit Euler scheme in the case considered in [15]. 

The algorithm implemented is based on an Euler 
forward multistep integration scheme since it is the 
most easy to use in plane stress problem and for multi-
linear hardening law. It is coupled with a consistent 
correction to bring the stresses back to the yield surface 
at each subincrement and is formulated as follows. 

Since higher derivatives are not available, a constant 
strain rate is assumed like in most structural programs. 
This assumption may be violated in the true physical 
loading path. Strictly speaking, small enough load 
steps should be used. However the proposed algorithm 
performs very well even for quite large increments of 
load. 

When plastic loading occurs, the increment of strain 
Δε is then divided into m equal subincrements. To 
estimate the parameter m, the troncature error of a 
one step integration is first estimated. If σΔ designate 
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the difference between the stress state reached in a 
single step and in a double step Euler forward inte-
gration, a measure of the troncature error for one step 
is taken as 

2/^2(σΑ)/Χ. (21) 

It is then assumed that the total error is roughly 1/m 
of the single step error if a m substep procedure is 
used. The number of subincrements is then taken equal 
to 

m = 2 / 1 / 2 K ) M (22) 

where ε is roughly equal to the required relative error 
level. Sufficient accuracy was always obtained using 
ε =0.05 and the number m was almost always less than 
30. More sophisticated algorithms could be used to 
determine ra, based on the variation of the plastic 
flow direction during the integration process [14, 18], 
but the simple formula (22) has always proven to be 
sufficient in the applications. If the strain hardening 
law is multilinear, a strain subincrement 

Δε(ΙΛ)=Δε/Μ (23) 

is divided into the required number of substeps so 
that no discontinuity occurs within as subinterval. For 
each subinterval, the associated stress increment is 
computed by 

Ασ{ηι) = Ώ(σ)Αε{ηι), (24) 

where σ states for the stresses at the beginning of the 
subinterval. 

At the end of each subincrement an additional 
correction is made to bring the stresses back to the 
yield surface. To do this, the following scheme, which 
is consistent with all plasticity laws to the first order, 
is proposed. In a displacement iterative scheme, this 
correction denoted δ must be done at fixed total strains, 
which implies 

δεε+δερ = 0. (25) 

On the other hand, we would like to have 

/(σ+δσ)=(Χ+δΧ)2, (26) 

or linearizing 

J£ δσ=Χ2 -/(σ)+4σΧΗ'(5λ (27) 
CO 

If due account is taken from plastic flow rule (5), it 
comes that 

δλ-Μ'* >Q (28) 
ΑσΧΗ'+α'Ηα v ; 

where H is the Hooke matrix. The corresponding 
correction for the stresses is given by 

δσ=-δλΗα. (29) 

As demonstrated by (28), plastic flow always occurs 
during this correction. 

4.2 Total stress increment evaluation over an increment 
From strict application of the Newton-Raphson 

method the total strain increment at iteration i of 
increment n should be evaluated by 

(άσνΪ=Σ P" Dde, (30) 

with ε°η = ε*, where a starred value is a value at the 
beginning of the considered increment. Nevertheless, 
if (30) is applied without care, the solution obtained 
may be very path dependent, and depends strongly of 
the particular calculation strategy adopted [3]. More-
over, fictitious numerical unloadings may occur during 
the iterative process. If they are considered as irre-
versible, these can lead to erroneous results especially 
in cases of combined geometric and material non-
linearities. Evenmore, convergence may be lost due to 
loading-unloading cycles. 

To avoid this difficulty and obtain a reasonable 
path independent algorithm for a given load incre-
ment, many authors [1, 7, 14, 18] have proposed to 
compute the stress increment by integration on the 
total strain increment at each iteration, i.e. for iteration 
i of increment «, on 

Δε;= X dA£k, (31) 

where dΔεfc is the new strain increment at iteration k. 
Nevertheless, this technique has a serious drawback : 
the cost of the state determination does not decrease 
during the iterative procedure since the whole strain 
increment is always integrated. Moreover, the strain 
path used to compute for (Δσνγη differs from the strain 
path used in the Newton-Raphson iteration for the 
approximated stress : 

(Acj-)i = (A^)i-1+D[(^)ÜdAei. 32) 

Consequently, the new state of stress may differ from 
the approximated value by a quantity which is not 
quadratic in dΔε|l. This technique can lead to serious 
convergence difficulties especially in case of combined 
geometric and material nonlinearities. This fact has 
led Bushnell [14] to separate in this case the geometric 
and material iterations to maintain the convergence 
of the iterative scheme. But this procedure may be 
costly since each material iteration requires several 
geometric iterations. 

All these drawbacks may be eliminated in another 
way. The path dependence of the state determination 
may be eliminated using an assumption of incremental 
reversibility. "A point which deforms plastically 
during one increment is assumed to unload plastically 
until the plastic work done become again equal to its 
value at the beginning of the considered increment. 
Then only will elastic unloading take place". The 
corresponding stress-strain relation is given on Fig. 1 
for a one dimensional case. Due to this assumption, the 
stress increment may be computed using (30). The 
number of integration subincrements decrease rapidly 
as the iterations converge, which save computing time 
for the state determination. Moreover, the procedure 
is more consistent with the Newton-Raphson method 
and good convergence properties are maintained by 
this procedure. The solution becomes also reasonably 
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Fig. 1. Incremental reversibility assumption. 

independent of the particular computing strategy 
adopted for the increment. 

5. IMPROVEMENTS OF THE NEWTON-RAPHSON 
METHOD FOR ELASTO-PLASTIC CASES 

Two additional adaptations have been introduced 
in the classical Newton-Raphson method. 

When the loads are decreased, the plastic points 
undergo too large unloading when the first iteration 
of the corresponding increment is made using the 
tangent stiffness matrix. The convergence of the 
Newton-Raphson method may then excessively be 
slowed down. To avoid this difficulty, the possibility 
to restore the elastic stiffness matrix at the first itera-
tion of each increment of loads was introduced. In 
the case of continuous loading, this additional iteration 
is not very time consuming since the elastic stiffness 
matrix triangulation, made at the first iteration of the 
problem, may be saved and does not need to be re-
run. Moreover, when the incremental reversibility 
assumption is introduced, this iteration does not 
generally change the solution. 

Secondly, non convergent loading-unloading cycles 

Fig. 2. Unloading-loading cycles in a uniaxial case. 

may be observed when a plastic point unloads as far 
as to reload plastically during the same iteration. 
This phenomenon was often observed numerically in 
case of combined material and geometric nonlineari-
ties. To avoid these spurious cycles, the elastic stiffness 
is automatically restored at this point during the 
increment until a new elastic state is reached during the 
iterative process (Fig. 2). In this way, the convergence 
of the Newton-Raphson method has always been 
restored in all the cases where the loss of convergence 
was due to the considered phenomenon. 

The final algorithm obtained has been tested on 
numerous examples including thermoplasticity with 
isotropic or kinematic hardening and combined geo-
metric and material nonlinearities. The convergence 
rate reached has been always satisfactory even for 
very large load increments. Moreover, the number of 
iterations needed per step was nearly independent of 
the increment amplitude and the solution computed 
reasonably insensitive to the particular strategy 
adopted on the linear parts of the loading path. A 
few examples will now be presented to illustrate the 
accuracy and the efficiency of the proposed algorithm. 

6. EXAMPLES 

The proposed algorithm was implemented in general 
purpose computer programs [19, 20]. The results 
presented here were obtained using either of these 
programs. 

6.1 Tension-torsion tube 
Problem description. The physical problem being 

solved is that of a thin walled cylindrical tube which is 
subjected to axial tension and torsion. Since the stress 
distribution in the tube, remote from ends, is constant 
everywhere, the only requirements for the finite 
element model is that it represents material subjected 
to uniform tension and shear. This could be accom-
plished by a single plane constant stress isoparametric 
quadrilateral element. The material constants are 
given in Fig. 3. The non proportional loading path is 
specified in the same figure. The elasto-plastic non-
linearities are very severe for this case, which was 
retained by Clinard et al. [21] as a benchmarking 
problem for testing nonlinear computing codes. 

Results and discussion. To compute the solution, a 
systematic incremental history was chosen, as if the 
final solution was unknown. Each linear segment of 
the loading path was equally divided in n increments. 
To obtain a reference solution, n was firstly chosen 
equal to 80. The solution obtained agree with the 
averaged computed solution using ADINA, ANSYS, 
CREEPLAST, CREEPABSA and PLACRE as given 
in [21], within 5%. Then n was chosen equal to 5 which 
corresponds to quite large increments. In this case, two 
different computing strategies were adopted: pure 
Newton-Raphson iteration and modified Newton-
Raphson method with a first elastic iteration at each 
step. 

Axial and shear stress strain results are plotted in 
Fig. 4. The results agree closely with the reference 
solution. When the elastic stiffness matrix is used at the 
first iteration, the shear stress-strain curves differ 
slightly, but the maximum difference is less than 9%. 
Figure 5 gives the convergence curves of the algorithm 
for a few increments and demonstrates its quality. 
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Fig. 4. Stress-strain response in the tension-torsion test. 

6.2 Flat circular plate under concentrated load 
Problem description. A simply supported aluminium 

circular plate is submitted to a concentrated load at its 
center. Geometric and material data are given in Fig. 6. 
Isotropie hardening was adopted using a piecewise 
linear law with eight segments. The plate was tested 
by Levine et al. [22], which present also computed 
results in good agreement with the test results, but 
they use about 100 load steps to reach the final load 
of 1000 lbs. Computed results using BOSOR 5 are also 
available in [14] with separate material and geometric 
iterations. 

As reported by Bushneil [14], the stress path differs 
significantly from radial path near the center of the 

plate and since both geometrical and material non-
linearities are significant, this is a good configuration 
on which to verify the analysis and the strategy. 

Results obtained. The total loads of 1000 lbs was 
applied in ten, two and one increments respectively. 
The deflections of the center of the plate is given in 
Fig. 6, where they are compared to the other available 
results. Good agreement with the experimental results 
should be noted. 

Computed results and CPU times are compared in 
Table 1. It is a striking fact that the differences between 
the central deflections, computed in the different load 
incrementation cases, are less than 1%. The differences 
on the final stresses computed in one or ten steps may 
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Fig. 6. Central deflection of an aluminium plate. 

be locally more important and reach 5-10%. The 
comparison of the CPU times shows clearly that 
computing cost can be saved using large incremental 
steps. 

It is also interesting to compare the proposed 
algorithm to the method developed by Bushnell in 
Bosor 5. For the first load step of 500 lbs, this last 
required 12 cycles of material iterations, for each of 
which two to three Newton-Raphson geometric itera-
tions were needed, leading to a total of 30 geometric 
iterations. Up to 45 subincrements were needed in the 
material iterations to ensure that the stresses remain 
on the yield locus. With the proposed algorithm, this 
number was always less than 30 and decreases rapidly 
for successive iterations. The total number of iterations 
was only 7, which emphasize the economy that can 
result by simultaneously iterating on material and 
geometric nonlinearities. 

6.3 Evaluation of the burst pressure of a rocket motor 
Problem description. The last example comes from 

an industrial study. It consists of a rocket motor case 
for which experimental results are available. The 
complete structure shown in Fig. 4 has three different 
material properties. In the first part, denoted com-
posite material, we have anisotropic material which 
behaves elastically. The second part, denoted rubber 
joint, ensures the bounding between the vessel and 
the polar boss. The third part is made of aluminium 
alloy and undergoes important plastic deformations 
during loading. Internal pressure is raised up to the 
burst failure of the rocket motor. Geometric non-
linearities in the vessel and in the rubber joint, which 
undergoes very large strains (shear up to 200%), are 
very important in the behaviour of the structure [3,22]. 
Experimental results are available for strains on the 
surface of the polar boss. 

Fig. 7. Typical rocket motor. 

Results. The internal pressure up to 63.35 bars was 
applied in only four increments, as given in Table 2. 
The finite element mesh used leads to 1965 DOF for a 
total of 271 quadrangular isoparametric axisymetric 
elements. Since the geometric nonlinearities were 
significant, the pure Newton-Raphson method was 
used throughout the analysis. More details about the 
calculation may be found in [22]. The characteristics 
of the solution are summarized in Table 2. As can be 
seen the convergence properties obtained were very 

tpressure / 
|-6o(bars)/ 

-1 -.5 0 .5 f 1.5 
Fig. 8. Evolution of the skin strains of the polar boss. 
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Table 1. Aluminium plate under concentrated load. Comparison of computed solutions 

1 Increments 
number 

10 

2 

1 

Load 
(lbs) 

100. 

200. 

300. 

400. 

500. 

600. 

700. 

800. 

900. 

1000. 

500. 
1000. 

1000. 

Central deflection 
(10-2 in.) 

1.849 

4.979 

9.624 

14.16 

18.01 

21.52 

24.74 

27.81 

30.76 

33.66 

17.95 
33.79 

33.70 

Number of 
iterations 

4 

5 

5 

5 

7 

4 

4 

4 

4 

4 

7 
6 

12. 

CPU times (sec) 
IBM 370/158 

69. 

74. 

76. 

77. | 

98. 

61. 

62. 

60. 

60. 

68. 

114. 1 
99. 

204. 

Table 2. Nonlinear analysis of a rocket motor 

Increment 

Pressure 
(bars) 

Number of 
iterations 

Number of plastic 
elements 

CPU times (sec) 
IBM370/158 

CPU time for linear 
J analysis 

1 

14 

4 

0 

1 213 

2 

34 

4 

58 

1 130 

3 

56 

6 

154 

1 684 

4 

63.35 

5 

167 

1 422 

390 

good and the total CPU time is about ten times the 
time of the linear analysis of the same structure. 
Figure 8 shows the comparison of the measured and 
computed strains for the polar boss. The agreement is 
quite satisfactory. 

7. CONCLUSIONS 
The Newton-Raphson method has been adapted to 

solve for elasto-plastic calculations. Combined with 
the proposed stress state determination algorithm it 
leads to a very efficient iterative method. Fast con-
vergence and accurate solutions have always been 
achieved for stable structures even if large incremental 
loads were applied. The computed solution is quite 
independent of the solution strategy. This allows to 
save both computing time and analysts time, since the 
loading history may be defined more easily even for an 
unknown structural response. 

Additional computational efficiency could certainly 
be gained by using an automatic decision for reforma-
tion or not of the stiffness matrix at each iteration, 
depending on the value of the residual loads norm 
and its rate of decay. 
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Abstract—The usefulness of quasi-Newton methods for the solution of nonlinear systems of equations is 
demonstrated. After a review of the Newton iterative method, several quasi-Newton updates are presented 
and tested. Special attention is devoted to the solution of large sparse systems of equations such as those 
issued from spatial discretization of continua by finite elements. 

The numerical examples presented comprise static and dynamic analyses of geometrical, material and 
combined nonlinear structural problems and a model fluid flow problem with different levels of non-
linearity. All the results are assorted with a complete discussion of the different methods used, of the con-
vergence rates and of the associated computer costs. 

From the present studies, it can be concluded that computational costs for the solution of large nonlinear 
systems of equations can be reduced drastically by using convenient quasi-Newton updates or by adequate 
combined Newton/quasi-Newton strategies. 

The best known method for solving large systems of 
nonlinear equations itératively is Newton's method, 
sometimes modified so as to improve its computational 
efficiency. Davidon, for the minimization problem, and 
Broyden, for systems of equations, introduced in the 
early sixties new methods which, although iterative in 
nature, were quite unlike any other one in use at the 
time [1]. This new class of algorithms has been called 
by the names quasi-Newton, variable metric, secant, 
update or modification methods, the basic idea being 
to replace the costly evaluation of the effective Jacobian 
or Hessian matrix involved by some economically 
obtained approximation. 

In recent years there has been a proliferation of quasi-
Newton methods applicable to the unconstrained 
minimization problem. The same is not true for solving 
nonlinear equations: according to [1], the only quasi-
Newton method that has been seriously used to solve 
nonlinear equations is the one proposed by Broyden. 
In the context of nonlinear structural and continuum 
analysis using the finite element method, the application 
of quasi-Newton methods for the solution of the associ-
ated systems of equations has been suggested for the 
first time by Strang and Mathies [2]. Since then a 
growing amount of literature has developed on the 
subject through various nonlinear finite element 
applications [3-8, 10]. At first sight, quasi-Newton 
methods seem to be particularly attractive to dynamic 
analysis where the unknown increments are necessarily 
kept small in order to achieve a sufficient accuracy in the 
time-marching procedure [3, 4, 7]. In this paper it will 
be shown that various quasi-Newton updates are also 
of interest for static nonlinear problems, either of 
structural or continuum nature and that important 
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savings can be obtained on the total cost of such prob-
lems too. It will also be demonstrated how, in the con-
text of nonlinear analysis using the finite element 
method, advantage can be taken of the sparse pattern 
of the structural matrices to achieve an optimum, 
implementation of the method. 

The remaining of the paper is divided into five sec-
tions: in the second one, we recall the basic Newton 
method for the solution of systems of nonlinear equa-
tions and the composition of such systems issued from 
finite element structural and fluid problems. In Section 
3, the most common quasi-Newton updating formulas 
are described, including rank-one and rank-two up-
dates. Approximations to the inverse Jacobian are 
presented together with the concept of line search that 
can be associated with the iterative procedure. A brief 
outline of stability and convergence properties of 
Newton and quasi-Newton procedures is given. Section 
4 deals with the practical implementation of the updat-
ing method in relation with sparse finite element 
systems of equations. Coupling between Newton and 
quasi-Newton methods is proposed for highly non-
linear problems and a shifting strategy is presented and 
tested. Several numerical applications are described in 
Section 5 where nonlinear structural and fluid flow 
problems with different level of nonlinearity are 
analyzed by Newton method and various quasi-
Newton updates. The final section draws the conclu-
sions of the analysis and present research directions 
that should be explored in the future. 

2. NEWTON METHODS 

Consider the problem of finding a solution to the 
system of equations 

r(q) = 0 (1) 

where r and q are «-dimensional vectors. 
Newton's method of solution can be derived by 

assuming that we have an approximation q to q, and 
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that in the neighbourhood of q the linear mapping 

rL(q) = r(q) + ^ ( q - q ) (2) 

is a good approximation to r(q). A presumably better 
approximation to q can then be obtained by equating 
(2) to zero. 

Thus, Newton's method takes an initial approxima-
tion q0 to q, and attempts to improve it iteratively by 

q i + ^ q j t - S f c - 1 ^ * = o , i , . . . (3) 

taking rk = r(qk) and with the definition of the Jacobian 
matrix 

Sfc = S(qfc) = (4) 

The finite element discretization of static nonlinear 
structural problems leads to systems of type (1) with 

r(q) = K(q)q-g = 0 (5) 

where q is the vector of the unknown displacements and 
g the vector of the applied nodal loads. 

Nonlinearities arise in general from material behav-
ior or adaptation of the geometry; they are implicitly 
contained in the internal forces K(q)q which result 
from the spatial integration of the internal stresses σ 

K(q)q = 1 BTadV (6) 

where K(q) is the structural stiffness matrix. The Jacob-
ian matrix (4) is in this case the tangent stiffness matrix 

S(q) = K'(q) = - [K(q)q ] (7) 

plus a contribution of the external forces dg/dq if 
these forces are dependent upon geometry changes; 
this term is generally omitted to preserve the symmetry 
of the Jacobian matrix. 

In nonlinear structural dynamics, the effective loads 
in (5) are the difference between externally applied loads 
and inertia forces, so that the spatially discretized 
systems read 

r(q) = K(q)q(r) + Mq(i)-g(i) = 0. (8) 
The Jacobian matrix of Newton's method is thus not 
only a function of the tangent stiffness matrix K' but 
also of the temporal integration scheme used in the 
response. If such schemes are limited to those con-
tained in Newmark's formula: 

ii+i=<L+(i-yMi+yhqi+i 

*+ι=*+**+(ϊ-β*\+βΐ*%+ι (9) 
where the subscript i denotes the ith time-step, h the 
time-step size and β, y the Newmark's parameters, the 
Jacobian matrix becomes 

S W - K W + ^ M + f ? . (10) 

The last term appears only for geometry-dependent 
external forces and again is usually omitted for sym-
metry purposes. 

In viscous incompressible fluid flow problems [8], 
the system ofdiscretized nonlinear equations of motion 
reads 

r(q) = [K + C(q)]q-g=0 (11) 

where K and C(q) are the diffusive and convective 

matrices, q is the vector of unknown nodal velocities 
and pressures and g is the vector representing "virtual 
work" equivalent body forces and surface tractions. 
Note that only K is symmetrical and unknown-
independent, so that the Jacobian matrix 

S(q) = K + - [C(q )q ] (12) 

is always unsymmetrical. 

3. QUASI-NEWTON METHODS 
3.1 Direct updates 

The major expense in Newton's method is the cal-
culation of the Jacobian S(qk) and its inversion. 

In contrast, quasi-Newton methods consist in deriv-
ing an approximation G to the Jacobian by evaluating 
r(q) at two successive points q and q. Indeed if we 
expand r around q by Taylor's theorem 

S(q)d = r(q)-r(q) + Ar (13) 
where d = q — q and Ar->0 as q->q. When neglecting the 
term Ar in eqn (13), we obtain 

G(q)d=r(q)-r(q) = y (14) 

which is called the quasi-Newton equation. It is exact if 
r derives from a quadratic functional and nearly exact 
in a sufficiently small neighbourhood of the solution if 
that functional is not quadratic but strictly convex. 
Therefore it is desirable that any matrix candidate to G 
satisfies eqn (14). It is also desirable that the approxima-
tion G to S be easily computable from G(q), y and d 
by adding to G(q) a correction matrix which depends 
upon the above quantities while satisfying eqn (14). 
The simplest among such relations is the single-rank 
update 

[y -Gd]u r 
G=G+^ 

uTd (15) 

where u is an arbitrary vector such that uTd^ 0. 
Quasi-Newton iteration consists thus, given initial 

arbitrary q0 and G0, to calculate a new direction by 
eqn (3) and next, to generate a new matrix Gk + 1 by 
eqn (15), i.e. 

(1) d ^ - G ^ r , 

(2) Compute yk,uk /c = 0 ,1 , . 

n\ r r ■ ^k~GAW 
P ) **k+i = **k+——~TÂ ufcak 

(16) 

(17) 

Several rank-one updates are possible, Obviously 
it is highly desirable that u depends only on d, y and 
G. Broyden proposes u = d, so that 

[y-Gd]dT 

G B = G + i 
dTd 

(18) 

It has been shown that in this way G is tfce "closest" 
to S when measuring the distance by thé Frobenius 
norm [1]. Note that Broyden's update is'tinsymmetric 
and hence does not preserve the eventual symmetry of 
G. / 

For symmetric systems of equations, Davidon 
suggests to use the direction u=y—Gd. The new 
corrective matrix becomes 

GD=G + (y-GdXy-Gd)r 

(y-Gd)rd (19) 
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which insures the symmetry of the successive approxim-
ation matrices. It is known to dispense with accurate 
line searches [12] but there is no guarantee that GD is 
positive definite even if G exhibits this property. 

Rank-two formulas are often proposed, for instance 
the Powell symmetric Broyden update (PSB), the 
Brodie update, etc... Several of them, in addition to 
preserving symmetry, have the property of safeguard-
ing positive definite matrices. Among them, the most 
widely used are the Davidon-Fletcher-Powell update 
(DFP): 

M ' H S M ' T ^ (20) 

and the Broyden-Fletcher-Goldfard-Shanno formula 
(BFGS): 

r - / * . yyr 6 y y r o 

BFGS y7* ^G& 
Both formulas satisfy the quasi-Newton equation (14). 
In the same manner as for eqn (17), the iterative pro-
cedure is obtained by setting in eqns (20) and (21) 
G=Gk+1,G=Gfc,j = yfc,d = dk. 

3.2 Inverse updates 
To solve the linear problem (16) at least expense, 

it is convenient to obtain directly from (15) the new 
approximation to the inverse Jacobian. This is possible 
using the property that [12] : 

(A omT)-1=A-i-ßiizT (22) 

with x = A_1u, z=A"Tv and j5 = a(l + ovTA"1u)~1. 
Thus, the general rank-one update (15) becomes 

for an arbitrary vector v, with vTy ψ 0. Broyden's update 
is obtained when v=G_ Td, ancTDavidon's symmetric 
update when v=d — G ~1 y, i.e. 

t _ 6 " ( d - G ^ G ' 
B drG"'y ( 2 3) 

G° - G + < d 3 G - - ^ y ( 2 3 ) 

All the rank-two updates may also be transformed 
in the same manner to obtain directly the inverse 
matrix G_ 1 , yielding 

-_ ddr G V G 1 

and 

c^(.^>--(.-£)+£. «5, 
It is useful to note that DFP and BFGS updates are 
related by the transformation 

d - y ; G - G 1 

(see eqns 20-25 and 21-24); these updates are called 
"dual" or "complementary" updates [1]. 

3.3 Line search 
In order to improve the convergence rate, an optimal 

step length ak in the direction determined by eqn (16) 
can be evaluated such as to cancel the projection of the 
CAS 13:1-3 - F 

residual vector in that direction, i.e. 

<5 = dfc
Tr(qfc + * A ) = 0 (26) 

and then 

q*+i=q*+tfA. (27) 
This is an expensive operation since it may involve 
numerous evaluations of the residual vector to achieve 
great accuracy. One may expect, however, that the 
more accurate the line search is, the better is the chance 
of achieving convergence in a minimum number of 
iterations. 

In Ref. [3], the authors report that satisfactory rate of 
convergence is obtained without line search when 

|dfc
Tr(qfc+dfc)k^KTr(qk)| with ^ = 0.5 (28) 

This has been confirmed by the numerical experiments 
described in the present paper. When eqn (28) is not 
satisfied, successive linear interpolations may be per-
formed in order to determine the optimal length ak 

such that 

\Alr(qk+akdk)\^Wr{qk)[ (29) 

Strang [13] reports that the choice fy = 0.9 should be a 
good compromise for accuracy vs cost of the line 
search, especially for fluid problems. 

3.4 Stability and convergence of quasi-Newton methods 
[1.12] 

Under the assumption that r is continuously differ-
entiable in an open convex set C pertaining to Rn and 
that there is a solution q* to eqn (1) for which S(q*) is 
nonsingular, then Newton algorithm is known to 
possess a domain of attraction A, which is an open set 
containing q* such that for any q0 e A the Newton 
iterates are well-defined, remain in A and converge to 
q*. This implies that if Newton iterates pertain to A, 
they will remain in A and insures in some sense the 
stability of the iterative procedure. 

Moreover, there exists a sequence {ak} which con-
verges to zero and such that 

I|q*+i-q*k«d|q*-<i1. *=α·· · m 
where || · || stands for the L2 vector norm ||x|| =(Σ,·χ?)1/2 

or the consistent matrix norm. This result is known as 
superlinear convergence. This is more than linear 
convergence for which with a e (0, 1) 

l|qfc+i-q*IM|qfc-q*ll k>k0 (3ΐ) 
and guarantees only that the error will eventually be 
decreased by the factor α<1 . If in addition r satisfies 
a Lipshitz condition at q*, i.e. if there is a constant β 
such that 

| |S(q)-S(q*)| |^ | |q-q*| | , q e C (32) 

then second order or quadratic convergence is obtained, 
i.e. there is a constant y such that 

I k + i - q I M h b - q T . fc=a... 03) 
which is a well-known property of Newton method 
seldom obtained in practice due to requirement (32). 

Any quasi-Newton iteration generated by eqn (16): 

qk+i=qk-Gfc
_1rfc /c = 0, 1 , . . . 

will be locally convergent at q*, i.e. {qk} is well-defined 
and converges to q*, if there is an ε > 0 and a δ > 0 such 

(23) 

(21) 
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that whenever q0eA and G0 e AM (AM is the set of the 
various Jacobian approximations which might be 
used in the iterative process) they satisfy 

Now such a sequence converges superlinearly to q* if 
and only if 

lim l|[Gt-S(q*)](q , - ^ L Q , (35) 
* - o o ||Qfc+i—Qfcll 

An equivalent but more geometric formulation of this 
condition is that it requires dk in the iterative method to 
asymptotically approach the Newton correction 

in both magnitude and direction. This follows from the 
fact that 

d k -d^ = dk + Sk-1rfc = Sk-1[Sfe-Gfc]dk 

and thus eqn (35) is equivalent with 

lî fiU (36) 
fc-oo | |d x | | 

This characteristic of local and superlinear converg-
ence is shared by Broyden's method eqn (15) and its 
modification by Schubert for sparse Jacobians (see 
next section). Convergence of the other direct updates 
or of the inverse updates has only been proved in the 
frame of unconstrained minimization, in which case r is 
the gradient vector (and S the Hessian matrix) of an 
objective function [1, 12]. 

4. COMPUTATIONAL IMPLEMENTATION OF 
QUASI-NEWTON UPDATES 

The natural way of performing quasi-Newton cor-
rections to the Jacobian matrix is in the form implied by 
the updates of Section 3, i.e. by adding a correction 
matrix to the previous approximation or by imple-
menting a correction in product form [2]. 

Inspection of the procedure in a finite element con-
text, where most of the elements of the Jacobian matrix 
S are known to be zero owing to the topology of the 
discretization mesh and where a frontal solution tech-
nique is used with substructuring to perform block 
elimination, reveals that careful attention has to be 
devoted to the correction procedure in order to pre-
serve the sparse pattern of the true Jacobian. Schubert 
[9] has proposed a variant of Broyden's unsymmetric 
update in which Gk + 1 is forced to have the same sparsity 
as S. Such a technique has been developed for sym-
metric correction in [7] since we expect an optimal 
correction procedure for symmetric systems using 
symmetric updates. 

The procedure is however rather heavy to handle 
and another way of performing the quasi-Newton up-
date [2, 7] consists of applying the correction on the 
direction of search d instead of modifying the matrix G 
itself. In fact, using the inverse update as described by 
eqn (23), at the kth iteration, G - 1 can be written as 

G i - ^ G ^ + t f t v r (37) 
i = 0 

For instance, for Davidon's update, eqn (23'), we have 
v ^ f f A - G ^ y , and ft^A-GrWyJ-1. If at 

This procedure is also applied by Crisfied using only one 
correction vector at each iteration [5]. 

Computational efficiency of this updating technique 
stems from the fact that, if an initial sparse Jacobian 
G0 is given, it may be triangularized and stored only 
once. The successive products Gö1r(qk) = dk° needed in 
eqns (38) and (39) may easily be performed solving the 
triangularized system of equation 

G0d° = r(qk). 

In this manner only the nonzero elements of G0 after 
Gauss elimination, the vectors Vj and the coefficients 
ßi have to be stored. When the number of correction 
vectors becomes too large [from our experience, say 
around 10 without exceeding this limit since con-
vergence will not be reached later on], the algorithm 
may be restarted with the initial matrix Gô l . 

In practice a new problem should be attacked first 
with the quasi-Newton iteration procedure. If strong 
nonlinearities are present and require Newton method, 
this latter technique should be used for k iterations 
until the convergence test ε be reasonably approached 
(say ||rfc||<102 ε); then the iterative scheme should be 
shifted to the quasi-Newton update for the end of the 
solution procedure. This changing strategy is illustrated 
in the next section for fluid problems and requires 
obviously the simultaneous implementation of the two 
algorithms into the associated computer program. Such 
an implementation is symbolized on the flow chart of 
Fig. 1. 

A last observation is about the theoretical profit that 
one can expect between Newton and quasi-Newton 
iteration. In Newton method, the computation and 
triangularization of Sk requires 0(rc3) arithmetic opera-
tions. In quasi-Newton method, for every iteration 
from the second, this expense is reduced to 0(n2). 

5. NUMERICAL APPLICATIONS 
5.1 Clamped spherical cap 

The first example considered is the nonlinear struc-
tural analysis of a clamped spherical cap submitted to a 
sudden pressure loading, and where geometric and 
material nonlinearities are simultaneously present. 
Its geometric and material properties are summarized 
on Fig. 2. This is a classical example taken from [10]. 

The structure is modelled with 8 axisymmetric cubic 
shell elements [14]. The resulting finite element model 
numbers 72 degrees of freedom. Only 3 Gauss points are 
used to integrate the constitutive law over the thick-
ness: this relatively crude integration rule may be 
foreseen to generate oscillations in the numerical solu-
tion when plasticity develops. 

Static analysis. The structure was first tested static-
ally with the pressure load described on Fig. 2. 

The iterative procedure is stopped when 

W/dWI+lkJ^10"4 

(34) 

each iteration the correction vector V; and coefficient 
/?,· are stored on auxiliary memory, the feth direction 
can be obtained from (16) as 

(38) 

(39) 

The new correction vector for Davidon's update is then 
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jH 
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yk = rk +i ~rk 
Memorize vkl/?k 

Fig. 1. Flow chart for Newton and quasi-Newton iterative procedures. 

where gint stands for K(q)q in eqn (5). 
The purpose of this analysis is the comparison in com-

puter times necessary to obtain the solutions with 
Newton and quasi-Newton methods. 

In this problem, the only external existing loads are 
the pressure loads. These loads introduce an unsym-
metrical contribution to the Jacobian matrix which is 
neglected in the present analysis (see Section 2). There-
fore, it seems natural that an unsymmetrical quasi-
Newton update would give the best results. 

Table 1 summarizes the performances obtained when 
using a Newton technique and quasi-Newton itera-
tions, with the symmetrical Davidon's update and the 
unsymmetrical Broyden's update respectively. 

In opposition to what was expected Davidon's up-
dates give the best efficiency with a gain of 35% with 
respect to the standard Newton method. In fact, in this 
problem the geometrical nonlinearities are mild and 
thus the successive Jacobian matrices are nearly sym-
metrical. It is the reason why a symmetrical update is the 
most efficient. 

Dynamic analysis. For the nonlinear response to step 
loading, time integration is performed with Newmark's 
scheme 05= 1/4, y= 1/2) and a relatively large time step 
Δί of 1.5 10"5 sec has been adopted. Equilibrium itera-
tion is now stopped within each time step n when 

||rZH/(||g(t„)|| + < 10-3. 

Figure 3 displays the time history of the axial dis-
placement at the apex of the cap for the following 
material and geometrical behaviors: 
—linear elastic, 

—elastic-plastic material, geometrically linear, 
—material and geometrical nonlinearities simultane-

ously present. 
Very little difference is observed in the numerical results 
with different methods of solution. For this example 
also, the only interest of the comparison lies in com-
puter times and numbers of iterations to obtain the 
solution. 

To solve this problem, the comparison has been 
made between Newton iterations and the quasi-Newton 
method using successively the Davidon and BFGS up-
dates. The performances obtained to integrate the first 
17 steps have been summarized in Table 2 for the 
combined nonlinear response. 

The Newton solution corresponds to a strategy in 
which the stiffness is reevaluated at iterations 1,2,5 and 
8 of each time step. 

Quasi-Newton iterations have been performed with 
and without line search. Davidon's update has been 
tested using the vectorial correction (starting from K0 

at each time step). The best results were obtained with-
out line search. 

The last two columns correspond to the BFGS up-
dates with substructure correction (starting from the 
tangent stiffness matrix at each time step) [7]. One 
observes a significant increase in the number of itera-
tions when the process is not restarted at each time 
step, due to the fact that the number of updates on G0 

becomes excessive. 
In spite of the small size of this problem (involving 

only 72 d.o.f.), the difference of computer costs between 
the réévaluation of stiffness (with Gauss elimination) 
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Table 1. Spherical cap static analysis. Efficiency of Newton and quasi-Newton iterations 

1 

2 

3 

4 

5 

Total number of Jacobian evaluations 

Total number of residual evaluations 

C.P.U. Time per iteration 

Total number of iterations 

Total C.P.U. Time* 

NEWTON 

4 

5 

5.34 

5 

32. 

QUASI-NEWTON 

G update 

1 

7 

5.34/2. 

6 

20.6 

G update 

1 

9 

5.34/2.2 

8 

25.9 

x IBM 3 7 0 / 1 5 8 

Table 2. Spherical cap dynamic analysis. Efficiency of Newton and quasi-Newton iterations 

Number of iteration per step 

Total number of Jacobian 

evaluations 

Total number of residual 

eva 1uations 

Total number of Line Search 

C.P.U. time per iteration 

Total number of iterations 

Total C.P.U. time 

NEWTON 

3.35 

40 

57 

-

5.40 

57 

308. 

QUASI-NEWTON 1 

G update 

5 .0 

1 

102 

-

2. 75 

85 

233. 6 

G update 

4 .88 

1 

1 1 1 

1 1 

2.97 

83 

2 4 7, 

GBFGS U p d 3 t e 

3.29 

17 

73 

-

4.83 

56 

271 . 

GBFGS U p d a te 

6.0 

1 

135 

16 j 

3.6 

102 

368. 

V = .3 
f% = 600 lb/in 

E = 10.5 K)6 lb/in2 

f^= 24 K)3 lb/in2 

^ = . 2 1 106 lb/in2 

p = 2.45 lOT l̂b.sec2/̂  

P(t) 

to 
«e 

step pressure load 

Fig. 2. Spherical cap submitted to step pressure loading. 

and the calculation of the residual vector is yet sig-
nificant. Quasi-Newton iteration is the most efficient 
procedure. 

5.2 Two-dimensional fluid flow 
In fluid flow problems the relation between the vis-

cosity and the density of the fluid plays an important 
role in the nonlinear character of the solution. Thus 
similar problems with différents Reynolds number 
become nearly linear or largely nonlinear for lower or 
higher Reynolds number. This interacts with the con-
vergence properties of the solution and is an easy way 
of testing the différents methods proposed here. The 
second example deals thus with the computation of the 
velocity profiles of two-dimensional fluid flow between 
two parallel walls. 

A 4 x 4 isoparametric finite element mesh is used 
yielding a total of 129 d.o.f. Each element possesses a 
quadratic velocity field and a linear pressure field [8]. 
The boundary condition are represented on Fig. 4. 

Table 3 shows the efficiency of the different methods 
used for Re = 10. In all cases the starting solution q0 cor-
responds to the Stokes solution, i.e. the solution of eqn 
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Fig. 3. Spherical cap, displacement W at apex node. 

Fig. 4. 2 D-Flow between parallel walls. 

Table 3. Fluid flow problem (Re = 10). Efficiency of Newton and quasi-Newton iterations 

Total number of Jacobian evaluations 

Total number of residual evaluations 

C.P.Ü. Time per iteration 

Number of iterations 

Total C.P.U. time 

NEWTON 

4 

4 

15.1 

4 

68.8 

QUASI-

G update 

1 

4 

15.1/3.3 

3 

35.2 

NEWTON 

G update 

1 

3 

15.1/3.4 

2 

31 .4 

(11) with C = 0, and the iteration is stopped when Up to Reynolds number 10, quasi-Newton updates 
H M M M M M 3 can be performed from a single Jacobian evaluation. 
llrkl|A||S|| + ||gintl|)

 ι υ They reveal to be quite competitive in comparison to 
where g includes the reactions to the imposed velocity standard Newton iterations. It is remarkable to note 
field and g = [K + C(q)]q (see Section 2). that for the present problem the need for an approxim-
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Table 4. Fluid flow problem (Re = 100.). Efficiency of Newton and quasi-Newton iterations 

Total number of Jacobian evaluation's 

Total number of residual evaluations 

C.P.U. Time per iteration 

Number of iterations 

Total C.P.U. Time 

NEWTON 

10 

10 

14. 

10 

154. 

QUASI-NEWTON 

G update 

6 

12 

14./2. 8 

1 1 

1 1 1. 

GD update 

1 

6 

11 

14./3.8 

10 

139. 

ate unsymmetrical Jacobian matrix makes Broyden's 
update the most adequate. 

For Reynolds number higher than 10, the problem 
becomes strongly nonlinear and a quasi-Newton 
method using directly the linear matrix K as initial 
matrix does not converge. Nevertheless, another 
strategy was successfully tested: during the first itera-
tions the Jacobian matrix was evaluated and then, the 
processus is continued with quasi-Newton updates 
according to the procedure outlined in the flow chart of 
Fig. 1. 

Table 4 shows the comparison of procedures for 
Re = 100. The above procedure is applied as follows: 
the first 6 iterations are done evaluating the Jacobian 
matrix, then the remaining 5 for the Davidon's update, 
or the remaining 4 for the Broyden's update, are done by 
quasi-Newton corrections of the last Jacobian matrix. 
This is the only way to keep quasi-Newton methods 
very competitive. 

Unsymmetrical Broyden's updates exhibit a better 
convergence rate than Davidon's ones but are more 
expensive since the former require the solution of two 
linear systems of equations against only one for the 
latter [see eqns (23Ή23")]. In the present case the 
quasi-Newton procedure was started, in accordance 
with the flow diagram (Fig. 1), when 

IWI/(||g|M|gJ|)<io-'. 

Similar conclusions can be drawn from other fluid flow 
applications [8]. 

CONCLUSIONS 

The adequacy of various updating methods to solve 
nonlinear systems of equations of finite element struc-
tural and continuum mechanics applications has been 
demonstrated, and their implementation for sparse 
systems has been discussed. 

Quasi-Newton methods converge almost always in a 
larger number of steps than an "optimal" Newton 
strategy. The former become thus competitive only 
when the cost of Jacobian evaluation is significantly 
larger than that of the residual vector calculation. This 
superiority of quasi-Newton methods is thus increased 
with the number of unknowns in a problem. 

Conversely, it is observed that strong nonlinearities 
lead to large number of quasi-Newton updates which in 
turn can lead to an ill-conditioned iteration matrix. It is 
thus advised to restart periodically the iteration pro-
cedure either using the initial Jacobian or by calculating 
the effective one in the actual stage of the response. 

As a corollary, the so-called vectorial correction is 
well adapted since it allows for an easy restart of the 
updating procedure from the initial Jacobian. 

The line search does not introduce a significant 
improvement in the convergence of quasi-Newton 
methods for the problems at hand, and should be per-
formed only in exceptional cases. 

Rank-two corrections do not yield an important 
improvement of the convergence rates. Hence, Davidon 
and Broyden rank-one corrections should be preferred 
due to their lower cost. In problems where Jacobians 
are definitely unsymmetrical, Broyden's formula should 
be preferred despite the need for a double linear system 
solution. 

Future research and numerical tests should be de-
voted to optimal coupling between Newton and quasi-
Newton strategies to reach always the minimal cost. 
Safeguarding methods described for these methods in 
the context of unconstrained minimization [12] should 
be explored to ascertain stability and convergence 
properties even in cases when the solution does no 
longer correspond to a minimum of a functional. 
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Abstract An investigation of optimum grid layouts and its consequences on the approximate solution 
in the finite element method for nonlinear constitutive relations is carried out. The criterion for an optimum 
grid is based on direct minimization of the total potential energy of the discrete model with respect to the 
nodal locations contained within the entire continuum. Both the exact solution and the finite element 
formulations are examined. A computer-directed search procedure which can "move" nodes of an initial 
grid to generate a sequence of "improved" grids, which have progressively smaller discretization errors, 
is presented in this paper. A significant reduction in computational cost is observed by uncoupling the 
optimization variables (nodal locations) in the minimization algorithm. In order to study the differences 
between optimum mesh configurations in linear and nonlinear analyses one-dimensional tapered bars will 
be examined with a nonlinear constitutive relation. From these studies optimum grid characteristics were 
identified and consequently led to strategies for obtaining near optimal discretizations in two and three-
dimensional nonlinear analyses. A set of guidelines is developed such that near optimum grids can be 
obtained by the analyst without using the solution algorithm explicitly. 

INTRODUCTION 

Over the past several years there has been a growing 
interest in Finite Element Grid Optimization [1, 2]. 
That is, the generation of a finite element discretization 
which provides the required solution accuracy with 
minimum cost. There are essentially two fundamental 
approaches to achieve this required accuracy. 

Initially an optimal grid can be attained through 
mesh modification wherein the number of elements 
and order of trial functions are kept constant [2, 3]. 
It has been demonstrated that the use of isoenergetics 
to obtain near optimal grid patterns are most effective 
where there are high variations in strain energy density. 

An alternate approach is also available in which 
improved accuracy can be achieved through mesh 
refinement. In this research the main effort is focused 
on permitting the discretization process to be adaptive. 
Specifically, the discretization algorithm endeavours 
to improve the solution or minimize the discretization 
error through refining the mesh by increasing the 
number of degrees of freedom in regions where the 
initial model is inadequate. This refinement procedure 
or change in the number of degrees of freedom can be 
accomplished by adding more elements (/?-conver-
gence) and/or by increasing the order of the element 

trial functions (p-conver gence) [4, 5]. 
Essentially all of the above research has been directed 

at linear elastostatic analyses. However, since the 
computational costs and solution accuracy in non-
linear analyses depends extensively on the level of 
discretization, the implications of optimal grids for 
statically nonlinear problems require special attention. 

Thus the objective of this paper is to thoroughly 
investigate the characteristics of optimal grids for 
nonlinear analyses. Specifically, attention is focused 
on nonlinear constitutive relations. 

STUDY OF OPTIMAL GRIDS IN NONLINEAR ANALYSIS 

Early investigations on mesh optimization dealt with 
a class of one-dimensional tapered bars [3, 6]. From 
these studies optimal grid characteristics were identified 
and consequently led to computational strategies and 
adaptive methods for obtaining near optimal dis-
cretizations in two-dimensional linear analyses. Thus 
in order to study the differences between optimum 
mesh configurations in linear and nonlinear analyses 
the same class of tapered bars shown in Fig. 1 will be 

Fig. 1. Finite element model of tapered bar. 

83 

E Young's modulus of elasticity, a j 
σχ nominal axial stress 
εχ nominal axial strain, du/dx 
a coefficient of constitutive non-linearity, OL2/OL1 
u axial deformation 
P axial force applied at the end of tapered bar 

A, ~Â Section area 
x generalized co-ordinate 

np total potential energy for a conservative system 

UQ strain energy density, 

R residual slope 
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examined with a nonlinear constitutive relation. Not 
only do these examples afford a means of comparison 
but their exact solutions can be obtained. 

The criterion for an optimum grid is based on 
direct minimization of the total potential energy of the 
discrete model with respect to the nodal locations 
contained within the continuum [7]. The theorem of 
minimum potential energy is valid for nonlinear, as 
well as linear stress-strain laws as long as the system 
remains conservative [8]. 

Using a linear Lagrange interpolating polynomial for 
the problem being considered, we have 

\ Λ ί Λ ΐ + 1 / \ Λ ϊ + 1 xiJ 

Thus (6) can be rewritten as 

nPi = E 
1 fui+l-Ui 

~ \*ί+ι x ±u 

A(x)dx-P(ui + 1-Ui) (10) 

MATHEMATICAL FORMULATION 

For the tapered bar shown in Fig. 1, the following 
non-linear stress-strain relation was incorporated 

σ χ = α 1 ε χ ± α 2 ε ί (1) 
where + is for compression and — is for tension. This 
can be rewritten as 

σχ=Ε(εχ±αε2
χ) (2) 

where E=(x1 and α = α2/α1. α is a measure of the con-
stitutive nonlinearity which is zero for linear stress-
strain relations. Given the above material definition 
(2) and assuming small deformations, the governing 
differential equation at a point in static equilibrium is 

du 
dx 

\(du 
^ ± - h r - + a \dx + aEA, 

-=0, a>0 . (3) 

The solution to which is 

"( χ ) ="έ+Γ I V p 
H——— dx for compression 2a aEA, 

(4) 

and 

Μ ( χ ) = +έ~Γ ιλ 2 

2α J α£Α 
- dx for tension 

(X) 

(5) 

\OLEA(. 
^( —J and a>0 . 

Deformation is assumed to be positive for tension. With 
the appropriate definition for Aix), (4) and (5) can be 
evaluated exactly. 

Having obtained the exact solution, the finite ele-
ment method applied to the principle of minimum 
potential energy will be developed for the class of one-
dimensional problems being studied. The total poten-
tial energy πρ for the ith element is 

π ρ ί = ί U0dVt 
Jvi 

dVi+Pui-Pui+1 (6) 

assuming no body forces. 
Following the usual procedures of minimization, and 

incorporating the nodal displacements and co-ordin-
ates as variables the following two general equations 
must be satisfied 

toP_toPi-i 
dui CUi CUi 

and 

ÔX: OX: ÖX: 

(7) 

(8) 

Substituting (10) into (7) and (8) one obtains for the ith 
element 

( D E L ) ? ± i ( Z ) £ L ) i T ^ = 0 (11) 

for the ith node 

il . 
±AaX(xi)[U>EL)?-(O£L)?-1] = 0 (12) 

where 

;Η(2-»:)-<οΕϋ<-'(2-«~ 

{DEL\=- Xi 
A(x) dx 

—- and A(x)i = 
xl + 1 x,· *; + i %i 

Complete formulation of (11) and (12) is contained in 
Appendix A. Employing the above non-linear algebraic 
equations (11) and (12) optimal grids were obtained for 
various tapers, material definitions and load levels. 

SOLUTION SEARCHING TECHNIQUE 

Equation (11) is the finite difference expression for 
(3) by which all nodal displacements can be determined. 
There are two boundary conditions prescribed for this 
system. At the left extreme end, the displacement is 
prescribed as zero and at the right extreme end, the 
surface traction is prescribed as the force P. Thus for 
the 1st element, (11) gives 

P 
~ (13) x 2 —Xi/ — a \ x 2 — xlJ ccEA(x)l 

=0 

where u1 = Q and Xj = 0. 
This can be rewritten as 

1 a / τ α £ 4 4 ι 
(14) 

For a given grid configuration, the only unknown 
quantity in (14) is u2 which can be determined directly 
as 

2 |_"2α + ν(2α) "2 = *2| - — + /hr - l +-7^τ7 2a yl \2OLJ a£A(x)t 
for compression 

(15) 
and 

"2~*2L+25~VW -^£^J for tension 

(16) 
Knowing w2, we can proceed to the 2nd element and 
determine u3 from (11). This procedure can be repeated 
successively until all nodal displacements are obtained 
for the given grid configuration. 

(9) 

file:///2olJ
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In order to obtain an optimum grid, (12) must be 
satisfied simultaneously by all variable nodes within 
the model. The determination of such a configuration is 
tedious and requires a substantial computational effort. 
A non-linear programming would far exceed the cost 
of re-analysing the problem with manually improved 
models. To overcome these obstacles, a simplified 
algorithm is developed using computer-directed search 
techniques resulting in fast convergence with high 
accuracy. 

The first variable node in the model is node 2 and the 
last is node m ; nodes 1 and (m +1) define the boundaries 
of the model, they cannot be varied. Thus for node 2, 
(12) gives 

P 
Έ 

y W3-U2 γ 2 _ ^4(χ2Α _ «2 Λ _ f(x2)Y| 
\χ3-χ2)\ Λ(χ)2) χ2\ A(x)J] 

'«3-̂ 2 Y Λ^Υ 
* 3 - * 2 / W 

±%*Α(χ2) (17) 

If the model has an optimum grid configuration, R is 
zero. However by assuming an initial grid, we can 
determine u2 and u3 from (11) with which R can be 
calculated. The term R has a physical meaning. It is 
the gradient of the total potential energy with respect 
to the generalized co-ordinate x. Thus if R turned out 
to be negative, the minimization criterion guarantees 
that node 2 is left of its optimum location. Likewise 
if R turned out to be positive, node 2 must be right of 
its optimum location as illustrated in Fig. 2. Thus 
with R, we can "move" node 2 towards its optimum 
location in a directed manner. 

The computer-directed search algorithm is shown in 

Fig. 3. Select node 2 as the target node to be moved 
first. The range of movement for node 2 is between the 
limits of nodes 1 and 3. If R <0, node 2 must be moved 
towards node 3. When R = 0, node 2 remains unchanged 
and if R>0, node 2 must be moved towards node 1. 
Each increment of movement is one-tenth the distance 
between node 2 at the starting position and its limiting 
node. Movement will continue in the same direction 
until the condition with R=0 or a change in sign for R 
is obtained. Depending on the relative magnitudes of 
R in the last step, a new generalized co-ordinate for 
node 2 is determined as illustrated in Fig. 4. Then 
node 3 becomes the target node with nodes 2 and 4 as 
its limiting nodes. A similar procedure is applied until 
all variable nodes are "optimized" for this iteration. 
This new configuration is then compared with that 
from the previous iteration. If the difference is below a 
specified tolerance, near optimal grid configuration is 
established. Otherwise, the entire model is optimized 
again in the next iteration. 

Xj » LAST STEP >, 
«! a riiRRFNT <tTFP / GENERALIZED x CURRENT STEP I C 0 0 R D | N A TE 
X; » NEXT STEP ) 1 (PROJECTION) 7Tn 

R;<0 

Fig. 2. Variation of total potential energy with respect to 
generalized co-ordinate. 

i ,« ,x ,x ARE DATA FROM 
1 i-l i i+l LAST STEP 

I:,»:' ARE DATA FROM 1 ' CURRENT STEP 
;· IS FOR TEMPORARY 

DATA STORAGE 

Fig. 3. Flow chart of the computer-directed search 
algorithm. 

R;>0 

x: y 

Fig. 4. Graphical representation of the search algorithm. 

SAMPLE PROBLEMS 

A series of taper bars with a linear taper geometry 
of the form A(x)=ax+b were examined. The taper 
ratio, defined to be the ratio of the section area at 
x=l and that at x=0, was between 0.5 and 0.005. A 
generalized co-ordinate system was used. The co-
efficient of constitutive nonlinearity, a, was assumed 
to be 1.0. The load applied at JC= 1.0 was chosen to be 
such that P/EA(0) = 1 x 10~3. This was to ensure that a 
small deformation condition was maintained. A series 
of models having two to five finite elements (one to four 
variable nodes) were examined. An unoptimized grid 
is defined to be one with the nodes equally spaced along 
the entire length of the bar, while an optimized grid 
is assumed to be the one obtained from the computer-
directed search algorithm. Exact solutions were evalu-
ated and used as the basis for comparison. 

From the various tapered bar examples studied, 
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0.2 0.4 0.6 0.8 
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Fig. 5. Optimal grid configuration for tapered bars of the 
form A(x) = ax+b. 
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Fig. 6. Grid sensitivity of generalized tip displacement. 
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Fig. 7. Grid sensitivity of total potential energy ratio. 

the following factors will be considered in the com-
parison of optimized and unoptimized grids : 

(a) approximations of the displacements and strains 
(b) global minimum total potential energy 
(c) potential energy content per element. 

DISCUSSION 

Typical results are shown in Figs. 5-9 from which 
the following conclusions have been made: 

(1) In order to achieve the same level of accuracy for 
this class of problems the optimal grid required 50% 
fewer degrees of freedom than an unoptimized grid. 

(2) Each element in an optimal grid had the same 
energy content. 

(3) The nodal strains from the optimized mesh were 
exact even though only an approximate solution was 
obtained for the displacements. 

(7TJ: 

(7Tp)EXACT 

2.1 

1.9 

! L7| 
j 
j 
! "-s 

\ i.si 
> > 
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\ 1.0 
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j 
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Fig. 8. Grid sensitivity of potential energy content/element. 
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Fig. 9. Grid sensitivity of finite element strain. 
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(4) The same algorithm in general can be applied to 
other taper configurations. 

(5) Standardized charts can be developed to aid 
finite element engineers in planning grid layouts. 

Thus from this initial investigation optimal grid 
characteristics for nonlinear constitutive relations 
indicate that substantial savings can be achieved and 
suggests possible computational strategies for mesh 
modification and/or mesh refinement. 

FUTURE WORK 

Other nonlinear constitutive relations can be in-
corporated in the algorithm together with new taper 
configurations. As for two-dimensional analyses, the 
use of isoenergetics can assist design engineers in grid 
layouts. Each line orthogonal to the isoenergetic 
contours can be treated as a one-dimensional tapered 
bar. The variation of section area along its length will 
be half the distance between the above lines. However, 
the Poisson ratio effect has not been taken into account 
and further research is required. This concept can also 
be projected to three-dimensional models. 

Finite element analyses with geometric nonlinearity 
have been investigated in a similar manner and promis-
ing results were obtained [9]. However the combined 
effect of both types of nonlinearities are still open for 
further research and development. Other types of 
loading conditions can be examined, such as variable 
traction along the length of the bar. 
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APPENDIX A 
Development of general nonlinear algebraic equations 

The detailed formulation of eqns (11) and (12) in the main 
text is presented here. Considering eqn (10) and differentiat-
ing with respect to wf gives 

A(x)ax 

Xi + i-xJ \xi+i-XiJ J l l ' 
+ P 

(Al) 
and 

fa pi 
du, Ç-fe)-fe;Y]t 

A(x)dx 
— P. 

(A2) 
Substituting (Al) and (A2) into (7) gives 

El(DEL)i_l±a{DEL)ll-\'Ä(x)i_1 

- E[{DEL)i ± a(DEL)f]Ä(x)i = 0. (A3) 
However, for the (m-fl)th node at the boundary where a 
traction is prescribed, (7) reduces to 

dum+1 

and (A3) for the mth element is 
E[(DEL)m ± aiDEL)£ß(x)m - P = 0. 

Thus (7) reduces to the general recurring form 
£[(D£L)t ± 0L(DEL)f']A(x)i - P = 0 

or 
1 

(A4) 

(A5) 

(A6) 

(A7) (DEL)f±-(DEL)i + —=—-=0 

by direct substitution of (A5) into (A3). 
Again, employing eqn (10) and differentiating with respect 

to JC, gives ~. + 1 
A(x)dx 

L2\*i + i - - V \Xi-n-xJ J 
and 

r=-4(Stt)-fe;)lte 
Π fUj-Uj-1 

\_2\Xi-Xi-i 

ax 

ui-ui_i (A9) 

Substituting (A8) and (A9) into (8) gives 

+ E\%DEL)l γ ±&DEIil i}A(Xi) 
+ E[(DEL)f ± oc(DEL)f p(x),· 
-E[%DEL)f ±^a(DEL)f~\A(xi)=0. 

This can further be reduced with direct substitution of 
(A6) into (A10) which gives 

(A10) 

-PiDEL^^+^PiDEDi^^ A(xù 
A(x)i-l 

+ frE{DEL)f_1AM 
A(x) 4- PiDEDi-^PiDEL), ^±%xE(DEL)fA(xi) = 0 (All) 1 A(x\ 

and then 

Î H ' ( 2 - H ; ) - ( D £ L ) - ( 2 - : 
A(xù 

AWi-o 

±%xA{Xi)[(DEL)f -{DEL)f_ J =0. (A 12) 

(A8) 

file:///Xi-n-xJ
file:///_2/Xi-Xi-i
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Abstract—Various explicit integration methods are compared with an implicit method on two dynamic 
problems in solid mechanics. Methods of steplength-control are discussed. Some effects of steplength-
control on the behaviour of explicit and implicit methods are pointed out and illustrated by the problems 
studied. 

1. INTRODUCTION 

In numerical solution of the partial differential equa-
tions of structural dynamics one usually proceeds by 
discretizing the space-variables by the FEM and choos-
ing some discretization scheme for the time-variable. 
As is well known this procedure can be regarded as 
consisting of two steps in which the partial differential 
equations are first converted into a system of ordinary 
differential equations (ODEs) which one then solves 
by some discrete variable method 

We report here some numerical experiments based on 
various implications of the above point of view, that we 
believe should be taken into consideration in the 
solution of dynamical problems in structural analysis. 

Our experiments involved the design of a program 
for computing plane, finite deformations of an elastic 
beam. The equations of motion, in a total Lagrangian 
formulation, were discretized by ordinary finite element 
techniques resulting in a nonlinear ODE of the form 

Mü + k(u) = f(r) (1.1) 
where u(r) is a displacement-vector, M is a mass 
matrix, k specifies the elastic response, and f is a load-
vector. 

A set of initial value problems for (1) were then 
solved by several methods, viz. 

(i) Runge-Kutta-Fehlberg methods of orders 1-3 
[1]· 

(ii) An adaptive Runge-Kutta method with optimized 
stability-properties [2]. 

(iii) The central difference method. 
(iv) The trapezoidal rule or average acceleration 

method. 
The problems and the methods chosen were intended 

to throw some light on various problems that arise in 
the solution of non-linear differential equations. 

In principle, (1.1) can be solved by any of the existing 
methods for ODEs. It is known [8] that an ODE-solver 
can be more or less well-matched with the particular 
FEM applied to the PDEs, so several ODE-solvers 
should be considered for any given problem. To make 
this freedom of choice feasible, a computer program 
CAS 13:1-3 - G 

should be designed in a modular form so that the time 
integrator "sees" only the ODE to be solved. In our 
program this is done by writing the ODE integrators 
for equations of the form 

Mü=F(i,u, ii), (1.2) 

basing all computations including approximations to 
Jacobians (i.e. tangential stiffness and damping matri-
ces) on values of the vector F. The task of the element-
part of the program is then to deliver values of F. 

With any ODE-solver, the steplengths used are sub-
ject to requirements of local accuracy and stability, the 
last term meaning that local errors committed in any 
step should not be unduly amplified in subsequent 
steps. An ODE is classified as non-stiff or stiff depend-
ing on which of the two requirements is the over-riding 
one. Usually a non-stiff ODE can be solved effectively 
by an explicit method, whereas a stiff equation requires 
some form of impliciteness in the integration method. 
Explicit methods involve so much less work per step 
than implicit ones that we think they should be utilized 
more than they are at present in structural problems. 
Besides, coded with a steplength-control, an explicit 
method can detect stiffness [3] and will therefore not 
become unstable, only possibly inefficient. Three of the 
integration methods tested were explicit, having slightly 
differing stability properties. We believe that two of 
them (i) and (ii) have not been tested on structural 
problems before. 

Whether the method chosen is explicit or implicit, 
there remains the problem of deciding which step-
lengths should be used. Automatic step-control based 
or estimates of local errors is contained in all standard 
ODE-solvers, while apparently very few of the pro-
grams presently used for structural problems have this 
feature. Without a step-control one has no indication 
of the accuracy of the results obtained, and in case an 
implicit method is used, its stability-properties can 
mislead one into choosing too large steps. Of the 
algorithms tested, (i) and (iv) have step-control. 
Runge-Kutta-Fehlberg methods are designed with this 
problems in mind and compute a local error-estimate 
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as a difference between values delivered by two R-K-
formulas of different order. In method (iv) we estimate 
local error by the difference between values computed in 
one full step and in two half-steps. How to utilise local 
error-estimates effectively in a step-control mechanism 
is no straight forward matter [4]. Our results on method 
(i) show that a specified accuracy can be obtained, but a 
diagram of steplengths produced by the program 
appear ragged, suggesting that the mechanism could be 
improved. With an implicit method like (iv) the prob-
lem is complicated by the fact that the steplength 
affects the convergence-rate of the iterations performed 
in each step and that the tolerance used in the accept-
ance-test of an iterated value must be related to the 
tolerance used in an acceptance-test of a step-length. 

We have not found any general solution to these 
problems. Improvements in the basic algorithms oan 
probably be obtained for some class of problems by a 
"tuning" of the parameters involved on representative 
problems from the given class. 

2. ONE-STEP METHODS AND STEPLENGTH 
CONTROL 

An initial value problem 
Mü = F(r, u, ü), t^O, 
u(0) = uo, ii(0) = vo, 

may be converted into an equivalent first-order prob-
lem 

(2.1) 

y = f(i,y), t^O, 
y(0)=yo, 

by defining 

v = ii, y = 

Ht, y ) = 

u 
V 

» y0= 

V 

_M~1F(i,u,v)_ 

uo1 

_voJ 

(2.2) 

(2.3) 

The algorithms (i), (ii) and (iv) are best described in 
terms of (2.2), and algorithm (iii) may also be described 
this way if the special structure of fis taken into account. 

A one-step method for (2.2) may be characterized by 
a function E(t, x, h\ depending on f, such that approx-
imations y(t„) are defined by the rule 

y„+i=E(i„,y„, /a (2-4) 
Here h„ denotes the steplength employed at step n. A 
local error for E is defined as follows : let L(T, X, i) denote 
the solution of the problem 

y = f(i,y), ί ^ τ , 
yW=x. 

Then the local error d(t, x, h) is given by 

d(r, x, A) = E(t, x, h)-Ut, x, t + h). (2.5) 

The global error in y„ will be denoted by 

e=yn-y(i„). 
Let ||*|| denote a vector-norm, and suppose that E and 

L are Lipschitz-continuous, i.e. that α(ί, h) and ß(u h) 
exist such that 

\\UU x, h)-UU x', h)\\^a(u A)||x —x'||, 
||L(r, x, t + h)-UU x', t + h)\\^ß(t, Α) | |Χ-Χ' | | . 

The following relations are easily established. 

l|e„+1Na(rn,Mlenll+l|d(^y(aMI^ (2.6) 
lk+1NÄiM,M|en||H-||d(iM,yM,^)||. (2.7) 

If the solution y(t) is bounded, (2.6) shows that to get 
small global errors, we must impose an accuracy-
condition, 

\\d(t„y(tn\hn\\ small, (2.8) 
and a stability-condition 

α(ί„,/z„)^l (2.9) 

(to avoid exponential growth in e„). 
If solutions of the differential equations are stable, 

i.e. if 

for relevant values of t and h, then (2.7) shows that 
global errors will be small if ||d(i„y„, hn)\\ is kept small. 

This last quantity contains the actually computed 
vector y„, and can be estimated. Such estimates are 
usually made in one of two ways: The first employs an 
additional formula E' of an order 1 higher than E, and 
the local error is estimated by 

d(i,x,/0^E(i,x,/2)-E'(i,x,/*). (2.10) 
The Runge-Kutta-Fehlberg methods have been con-
structed for effective application of (2.10). Since values 
given by E' are available at each step, it seems natural to 
compute the vectors y„ by E' instead of E. This is called 
local extrapolation [3]. In the second method one 
calculates the difference between results of- a full step 
and two half-steps and sets 

d(i,x,/z)*(x'-x")/(l-2-*), 
x' = E(r, x,/z), 

x'' = E(i-f/*/2,E(r,x,/z/2),/z/2). 

In this case it is natural to define the solution vectors 
by the values of x" calculated at each step. We have 
based steplength-control for the trapezoidal rule on 
(2.11). 

In our programs the mechanisms for selecting step-
length are as follows. Let δη be an estimate of d(i„, y„, h„) 
and let 11·11 denote the maximum norm. The integration 
is to proceed such that 

W ^ e (2.12) 
where s is a specified tolerance. If a value of h„ calcul-
ated at step n — 1 results in a ||£„|| larger than ε, hn is 
reduced by repeated use of the formula 

An-Hfi/IWI)1 /(P+iu, (2.13) 

until (2.12) is satisfied. Here φ is a fixed factor and p is 
the order of the method. If (2.12) is satisfied, hn+1 is set 
equal to the r.h.s. of (2.13), with some restrictions on the 
size of hn+ Jhn. A detailed discussion of the above tech-
nique may be found in [5]. 

With an implicit method there are two additional 
problems that must be considered when steplength-
control is to be implemented. We discuss them for the 
trapezoidal rule. This method defines E(i, x, h) as the 
solution z of the equation 

z = x + (A/2Xf(i, x) + Ht+A, z)). (2.14) 
The equation cannot in general be solved exactly so 
instead of z, we have to use an approximation z. Put 

s = z—z. 
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The local error is then not d, but d + s, and s should be 
small compared to d. Let Df denote the Jacobian w. r. to 
the second variable of f, and let r(z) denote the differ-
ence between l.h.s. and r.h.s. of (2.14) with z replaced 
by z. 

Then it can be shown that 

s=-(/-(Ä/2)J)-1r(z), 

J = f Df(r + /*,z + £s)d£. 
Jo 

Suppose that (2.14) is solved by a quasi-Newton method 
Γ z(m + 1 ) _ z(m) _ w(m) 

|w(m)= = N-l r ( z (m)) ? ' I2'1 5) 

and the convergence is rapid. We may then infer that 
NxI-(h/2)J, and that an s(m) corresponding to z(m) 

satisfies 

Hence the tolerance for the iterations at each step 
should be related to the specified tolerance ε for local 
errors. In our program we terminate iterations when 

||w(m)||^e/10. 

The next problem concerns the calculation of the 
Newton-matrix N and the influence of the steplength 
on the convergence rate of (2.15). We want to calculate 
and factorize N as infrequently as possible. In our 
method N is an approximation of / —(h/2)Df evaluated 
at some previously calculated solution-point (tk, yfc). At 

Method 

RKFp(p+1) I p+1 

RKFp(p+1)X p+2 

ARK(q) q 

CD 1 

TRAP variable 

A vector is a value of u, v or F. 

step n, the iteration (2.15) is first performed with the 
most recently calculated N. If convergence fails after a 
specified number of iterations, we calculate Df(tw y„) 
and a corresponding N, and start iterations anew with 
the same steplength. If convergence still fails, the step-
length is reduced by a fixed, specified factor, and a new 
N is calculated from £>f(f„, yn). This process is continued 
until convergence is obtained. With this method we do 
not have to specify in advance how often N should be 
evaluated. 

We should remark here that while the discussion 
has been in terms of a general first-order equation (2.2), 
the methods tested have been implemented for equa-
tions specified by (2.1H2.3). This means that the 
Newton-matrix needed in iterations will in fact be an 
approximation of 

M -(h/2)2d¥/du -(Ä/2)öF/dv. (2.16) 

Also, when we call an integration method explicit, we 
disregard inversion (factorization) of the mass matrix 
M. 

3. THE METHODS TESTED. 
A Runge-Kutta-Fehlberg method consists of two 

Runge-Kutta formulas E and E' of orders p and p + 1 . 
We have implemented methods of orders p = l , 2, 3 
given by Tables 3, 5 and 7 in [1]. The methods will be 
denoted by RKFp(p+ 1) with an X appended if local 
extrapolation has been used. Steplength-control is 
incorporated, but may be switched off. 

An adaptive Runge-Kutta method [2] defines an 
E(i, x, h) as follows. Put 

x0 = x, Xj=x + cjf(t + Cj_1h, χ^ά ;'=1(1)<?. 

Then 

E(t,x,Ä)=xg. 
The method is of second order if g ^ 1, cq= 1, and cq_ l 

= 1/2. cQ is always 0, while cp l^j^q—2 may be 
chosen to optimize the stability-properties of the 
method in some sense (see below). Our implementations 
will be denoted by ARK(g). Steplength-control has 
not been included. 

The central difference method becomes explicit for 
equations of the form (2.1) only when F is independent 
of li. We have implemented the method, without 
steplength-control, for equations of the form (1.1). The 
method is denoted by CD. 

Finally, our implementation of the trapezoidal rule 
for equations (2.1H2.3) will be denoted TRAP. 

Some data for our implementations of the methods 
are listed below. 

M ( f a c t o r i z e d ) 

2 ( p + 5 ) v e c t o r s * ^ 

M ( f a c t . ) , 6 v e c t o r s 

M ( f a c t . ) , 6 v e c t o r s 

V\, dJF/du, 9 F / B v , N e w t o n - m a t . , 
15 v e c t o r s 

4. STABILITY PROPERTIES. 
We assume now that the equation to be integrated 

has the form 

Mü + k(u) = q(t) (4.1) 

with a symmetric, positive definite Jacobian (tangential 
stiffness-matrix) 

K(u) = dk/du. 

An integration method will be called unconditionally 
stable if, when applied to (4.1), the resulting E satisfies 
(2.9) without restrictions on hn. The explicit methods do 
not have this property. Arguments based on local 
linearizations of (4.1) indicate that to satisfy (2.9), hn 

must be chosen such that 

ρ\,2Κ<β. (4.2) 

where pn is the spectral radius of M" lK(uH) and β is a 
constant depending on the method. If K is constant, 
(2.9) and (4.2) are equivalent. 

The trapezoidal rule is unconditionally stable if K is 
constant. The unconditional stability probably does 

Table 1. 

U e v a l u a t i o n s 

of F per step J R e q u i red s torage 
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Table 2. The equations for U are 

M e t h o d 

R K F 1 ( 2 ) 

R K F 1 ( 2 ) X 

R K F 2 C 3 ) 

R K F 2 ( 3 ) X 

RKF3(4) 

RKF3(4)X 

ARK(p) 

CD 

1 . 7 

2 . 3 

3 . 0 

P-1 

2 

f 
Jo 

not hold in general, but it seems unlikely that step-
lengths will have to be delimited for stability-reasons 
with this method. 

5. EVALUATIONS OF THE JACOBIANS FOR 
THE TRAPEZOIDAL RULE 

As was mentioned in the introduction, our test-
program consists of two independent parts, of which 
one is the ODE-solver. The task of the other part is to 
deliver a mass matrix and a response-vector. It then 
seemed logical to calculate Jacobians, if needed, by use 
of the response-vector alone. To do this efficiently, we 
have employed a method described in [6]. The idea is 
as follows. Suppose that we want an approximation of 

K(u) = dk(u)/du. 

A simple way is to use differences 
dk^klu + ôejj-kfri) 
duj ~~ δ 

where δ is an increment and ej; thejth coordinate vector. 
If K is a bandmatrix of bandwidth b=2m — 1 so that kt 

is independent of u} if \i— j | ^ m , we may find simul-
taneously approximations of columns j+kb, k=0,1,2,... 
of K from the difference 

In this way we need b 4-1 evaluations of k to calculate 
an approximation of K. We do not know any general 
rule for selecting a value of δ. In our test-cases K(0) is 
known and δ chosen so that the error in the approxima-
tion is small for u = 0. 

6. TEST-EQUATIONS 

Two test-cases are presented. Both concern motions 
of a beam of length /, with a rectangular cross-section of 
breadth b and height h. The material constants are: 
density p = 7850 kg/m3, mod. of elasticity ζ = 3.2 x 1011 

N/m2. In both cases the resulting equation takes the 
form 

Mii + k(u) = q(i) 

k(u)=Ku + Cuuu. 

K is a matrix and C a trilinear operator. 

Case 1. Axially loaded rod 
A rod is kept fixed at one end, and a load 

JP0 sin (πί/0.004), ί ^ 0.004 sec, P0 = 8 x 108 N 
( ί ) _ ( ρ , t> 0.004 sec. 

is applied at the other. Denote displacements by t/(x, t). 

bh | (pVtfiU + SÔE)ax = PàU®\ 

S = ££, EX=UX+U2J2, 

U(x,0)=Ut(x,0)=0, l/(/,f) = 0. 
Indices denote partial differentiations. The dimensions 
used are /= 100, b = h=\. 935 x 10~2. U is approximated 
by a piecewise linear function with 50 elements of equal 
length. 

Case 2. Free oscillations of a hinged beam 
Let x and y denote coordinates parallel and perpen-

dicular to the beam-axis, and let L/(x, t), v(x, t) denote 
displacements in the x- and y-direction of points along 
the axis. The equations of motion are 

cm 
(pΌηδU+pνηδV+ SÔE) ay ax = 0, 

- Λ / 2 

S = i £ , E=Ux-yVxx+V2J2. 

Initial and boundary-values for U and Fare 

l/(x, 0)= U0(x)= -1{δ<χ)2(πβ) sin (2πχ//), 
V(x,0)=Vo(x) = lÔ0Lsin(nx/l), 

(7ί(χ,0)=Κί(χ,0)=0, 
l/(x, ί) = V(x, t) = Vxx(x, t) = 0, x = 0, /, 

u: 

a is a constant. If δ <ξ 1, then with errors of 0(δ2\ 

U{x,t)=U0(x)(cn(a)Uk2))\ 
V(x,t)=V0(x)cn(couk2\ 

ω2 = (1 + α2/4)π4ξ//(ρ/ζ/4), k2 = α2/(8 + 2α2), 
en = elliptic cosine. 

See e.g. [9]. The dimensions of the beam are /=50, 
h = 0.5. U is approximated by a piecewise linear func-
tion and V by a cubic Hermite-spline. The beam is 
divided into 10 elements of equal length. Two values of 
a have been used. With a = 10 ~6 the equations are in 
effect linear, while for a = 4, the nonlinear terms become 
significant. 

7. RESULTS 
Tables 3 and 4 contain results of various runs with 

the methods tested. Where steplength control has been 
employed, the tolerances listed are given relative to the 

maximum value of over the integration interval. Mr)] 
LùwJI 
at a gi\ 

«ηΊ_Γ«ωΊ||/|Γ«(0Ί| 
.vJ wJ I r lwJ 

The relative errors at a given tn are defined as 

Here vn is the calculated approximation of ii(i„), and 
11·|| is the maximum norm. In both cases a reference 
solution was calculated by a RKF3(4)X using a fixed, 
very small steplength. 

8. COMMENTS 
The two test-cases show different behaviour with 

respect to stiffness. We regard case 1 as a non-stiff 
problem. The quantity pj / 2 in eqn (4.2) is O(104), but 
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Table 3. Case 1 : Equations integrated over [0, 0.008]. 

Method 

RKF1(2) 
RKF2C3) 
RKF3(4) 

RKF1(2) 
RKF2(3) 
RKF3<4) 

ARK(4) 

ARK(6) 

CD 

TRAP 

ret. 
tolerance 

5.6E-5 

2.8E-4 

2.8E-4 
1.1E-3 
5.6E-3 

# steps 

146 
88 
110 

142 
59 
74 

80 
32 
32 
20 

80 
50 
40 

113 
66 
28 

ft attempt. 
steps 

166 
124 
148 

173 
79 
99 

151 
91 
46 

U deri v. 
calc. *) 

1 
2 
8 

t i me 
used 

177 
197 
315 

184 
125 
210 

116 
46 
77 
48 

39 
25 
20 

1084 
634 
308 

re I. error 
at 0.008 

1 .3E-1 
2.2E-2 
3.7E-3 

6.3E-1 
5.2E-2 
1.3E-2 

8.4E-2 
UNSTABLE 
1.1E-l 
UNSTABLE 

6.4E-2 
1.3E-1 
UNSTABLE 

1 .3E-2 
3.5E-2 
1.2E-1 

No. of calculations of 8k/9u. 

Table 4. Case 2: a = 4. Equations integrated over one full period [0, 0.874] of 
cn(cou k2\ where ω = 8.135 and k2 = 0.4. 

Method 

RKF2(3) 
RKF3C4) 

RKF2C3) 
RKF3(4)X 

ARK(6) 

CD 

TRAP 

-··-
-"-

rel. 
tolerance 

2.8E-4 

- " -
1 .4E-2 

- ·· -

1.4E-3 
2.8E-3 
2.8E-2 

U steps 

2268 
1417 

2227 
1326 

3496 

8740 

934 
22 
16 

U attempt. 
steps 

3297 
1935 

3220 
1 (t*\J 

1673 
48 
44 

# deriv. 
calc. *) 

160 
19 
15 

t i me 
used 

3385 
2658 

3368 

5498 

2747 

7882 
239 
190 

rel. error 
at 0.874 

1.8E-5 
1.8E-5 

2.8E-5 
T.8C *, 

2.1E-5 

9.0E-6 

6.9E-5 
2.6E-3 
5.1E-2 

No. of calculations of 8k/3u. 

the solution is changing so rapidly (the solution of the 
PDE develops into a shock after about 0.01 sec) that 
to get a reasonable accuracy in the results, the step-
lengths must be chosen such that plJ2hn=0{\\ irrespec-
tive of method. Hence, on this problem, explicit 
methods should be more efficient than implicit ones as 
regards computing time. Table 3 shows this to be the 
case. Computing times per step for the methods are as 
follows: 

where a contains the functions cn(cot) and (cn(a>t))2 with 
ω= 8.135, b is rapidly oscillating, and ||b|| <||a|l. On this 
problem the explicit methods must use steplengths 
hn=O(10"4) to remain stable. 

Steplength-control appears to be able to detect 
instability: When an equation is integrated by an 
explicit method with a local error criterion (2.12), the 
steplengths selected will satisfy (4.2). The reason for this 
is that the local error estimate δη grows rapidly with n if 

Method C D RKF1(2) 

Time 
per step 0.5 1.3 

ARK(4) 

1.4 

RKF2(3) 

2.2 

ARK(6) 

2.4 

RKF3(4) TRAP 

2.9 9.6-11 

The superiority of CD w.r.t. speed is of course evident 
from Table 1. When compared to RKF2(3) (to take a 
method of the same order) the speed of CD should 
however be related to the lack of any means for detect-
ing instability. 

Case 2 is a (moderately) stiff problem. The quantity 
pj/2 is O(104) in this case also, but the solution u(t) has 
the form 

y(i)=a(0+Mi) (8.1) 

hn violates (4.2). If the problem is stiff, the computed 
steplengths, accepted as well as rejected, will oscillate 
around 0/pJ/2, and the method does not become un-
stable, only possibly inefficient [3]. A consequence is 
that the number of steps used and the accuracy ob-
tained may be more or less independent of the specific 
error tolerance. Table 4 shows an example of this. An 
increase of the tolerance by a factor of 50 has almost no 
effect on the behaviour of RKF2(3). 
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Fig. 1. 

With the trapezoidal rule steplengths are delimited 
by the local error criterion (2.12) and convergence 
requirements for the iterative method used to solve the 
implicit equations at each step. 

Table 4 shows that the choice of local error tolerance 
may have a large effect on the behaviour of the method. 
When the tolerance is decreased from 2 . 8 x l 0 - 4 to 
1.4 x 10" 4 , the number of steps goes up by a factor of 
42.5. This can be explained by the form (8.1) of the 
solution. It can be shown that if u consisted of a(i) 
alone, a relative error tolerance of 1.4 x 10""3 can be 
satisfied by a steplength 0.02, so the interval considered 
could be covered is less than 50 steps. The number of 
steps actually used, depend strongly on whether the 
relative tolerance is larger or smaller than ||b||/||a||. A 
model for this behaviour can be found in an equation 

ii + Au = 0 

with A diagonal and constant, and a solution 

i! exp (iœl 
u(il· [ ax exp(îGV)~| 

a2 exp (iœ2 t) 4 2 exp (ίω2 i 

with al>a2>0, and ωχ <^ω2. With the trapezoidal 
rule, the local errors satisfy 

\dl = 2aépfi\ i = l , 2 

where h is a steplength, and 

#(x) = |sin (x—arctan x)|. 

Figure 1 below shows the effect of a criterion 

max \d\^& 
i 

on the steplength. For simplicity we have replaced g by 
a function equal to g when x-arctan x ^ π/2, and equal 
to 1 for larger values of x. 

Table 3 and 4 indicate how the number of calcula-
tions of Jacobians is affected by the local error toler-
ance. With a small tolerance, the steplengths have to be 
small. Convergence-rates are then less dependent on 
the Jacobian which consequently does not have to be 
recomputed very often. When tolerance and step-
lengths increase the Jacobian becomes more important 
for convergence, and the number of steps per evaluation 
decreases. In conclusion we note that explicit methods 

are probably more efficient than implicit ones on 
problems involving wave-propagation and may even 
be more effective on some stiff problems, for low error 
tolerance. In our opinion steplength controls should be 
incorporated in programs for dynamic problems. The 
resulting increase in work per step should be set against 
an increased ability of judging the computed results as 
well as the ability to detect instability and inefficiency 
of a method. 

2. 

3. 

6. 

10, 

11 
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Abstract—The spectral stability theory of initial boundary value explicite finite-difference schemes is used 
to develop a stability analysis method for problems of fluid-structure interaction. By this analysis it is 
shown Üiat due to the interaction between the structure and fluid stability restrictions on the time step may 
be more severe than commonly assumed. Four schemes of practical interest are analyzed in detail. The 
validity of the stability analysis is tested by simulating the effects of underwater explosion on a submarine. 
The computational results corroborate the prediction of the analysis concerning the stability boundary. 

1. INTRODUCTION 

In the explicit numerical integration of fluid-structure 
interaction problems there may be stability restrictions 
on the time step which are more severe than commonly 
assumed. Denote by Atf the maximum time step for 
stable integration in a fluid, by Ats the corresponding 
time step in a structure, and by At the time step for 
stable integration in the coupled problem. Then it was 
found [1, 2] computationally that Δί is smaller than 
either Δ ^ or àts in certain difference schemes. The 
stability analysis currently available [3, 4] do not 
exhibit this restriction because of incomplete treatment 
of the interaction at the interface. 

In this work we consider a fluid continuum interact-
ing with a thin shell at the boundary. The interaction 
effects at the interface, namely (a) the coupling via the 
pressure, (b) the normal velocity continuity are included 
in the analysis while sliding between the fluid and shell 
is allowed. 

Three classes of schemes are possible. They are 
defined by the magnitude of the time step Δί required 
for stable integration of the coupled problem : 

{= min (Δίρ Δί5), for schemes of class I 
< min (Atp Ats), for schemes of class II 
^ min {Atf, Ats\ for schemes of class III. 

We present and discuss four explicit difference 
schemes which demonstrate these thfee classes. Only 
schemes of class I are free from reduction of stability 
due to the interaction between the fluid and the shell. It 
should be noted here that the stability restrictions may 
be overcome by integrating the structure implicitly, but 
only with considerable additional computational ex-
pense [5]. Thus the explicit approach remains attrac-
tive, especially for three dimensional problems. 

2. EQUATIONS OF MOTION 

The structural-hydrodynamic problem consists of 
solving the equations of structure and fluid together 
with-contact, initial and boundary conditions. 

We make these assumptions^ the fluid is acoustic and 
the structure is a thin shell. Furthermore, we use 

|For correspondence: Computer Science Dept., Tech-
nion—Israel Institute of Technology, Haifa, Israel. 

linearized shallow shell equations adequate for stab-
ility analysis. 

We consider an orthogonal curvilinear coordinate 
system (x'1? x2, x'3), where coordinates x\ and x'2 coincide 
with the principal curvature directions of the shell mid-
surface and X3 is normal to the shell surface. The fluid 
extends from x3 = 0. We suppose that for a given shell 
region the principal curvatures κχ and κ2 are constant 
and the diagonal components ^ a n d A2 of the metric 
tensor are equal to one. Then in various cases of prac-
tical interest, the use of simplifying assumptions fol-
lowed by an appropriate orthogonal expansion leads 
to the following one dimensional model [2, 4, 6] : 

d2w 
dr Y + co*w= —p\ (2,1) 

1*3 = 0 

Here w is the normal displacement into the fluid, p 
is the hydrodynamic pressure, t is the time, w, p, t and 
Xj (/= 1,2,3) are non-dimensionalized by L, p^Lja^L 
respectively, where L=psh/pf, and ps, as, h are the 
density, sound velocity and thickness of the shell, pf 

and af are the density and sound velocity of the fluid. 
The frequency ω of the shell depends on the mode of 
deformation (for stability analysis, normally the ex-
tensional mode), type of the shell theory and on the 
boundary conditions. Thus ω is a function of wave 
numbers in the reduced directions, and the parameters 
pJpf,aJaf,KxL,K2L. 

The fluid motion in the acoustic approximation is 
governed by the dimensionless wave equation in the 
(x1? x2, x3) coordinate system 

1 
H1H2H3 

where 

d (H2H3 d 
dxx \ Ηγ dx: + dx7 

HiFIiA 
H? dx. 

+ 
J_fH1H2 δ 
dx?, H3 dx3 

dip 
~dt2 (2.2) 

H1 = A1(\+LK1X3\ H 2 = A2(1 + LK;2X3), H 3 = l . 

Considering the fluid motion in a thin layer near the 
shell surface we can assume LKtx3 <ζ! (i= 1, 2). 

Using the previous assumptions on the shell metric 
and the above mentioned orthogonal expansion, we 

97 
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obtain from (2.2) the following: 
2P 

dt2~dx2 -k2p, (2.3) 

where k is a function of the wave numbers in the 
reduced direction and of the parameters KXL and K2L. 

The contact condition at the interface is: 

a w 
~dtT" 

dp_ 

δχ3 
(2.4) 

1*3 = 0 

Equations (2.1), (2.3) and (2.4) together with initial 
and boundary conditions will be the basic model for 
our fluid-structure interaction problem. 

More details on the model and justification of the 
assumptions may be found in [2]. 

3. NUMERICAL FORMULATION 

We approximate the eqns (2.1), (2.3) and (2.4) by 
the following explicit finite difference scheme: 

(Ds
2W)w"=-pS 

£ C V = - G C P S 

l3a) 

(3b) 

(3c) 

where D2, D2, D2 are the difference operators for 
second time derivatives with time step Δί, G2 and Gc are 
difference operators for second and first spatial deriva-
tives with step Δχ;) and n are space and time reference 
indices; j equal to zero denotes the shell surface. 

In the present work we consider a nondissipative 
case in which D2=D2 = D2 = D2, where D2 is the central 
difference operator. This choice gives rise to a time 
scheme, where the amplitude remains constant. 
Furthermore, the operator G2 is centered and Gc is any 
operator involving two or three spatial points. 

The solution procedure for the scheme (3) is: 
(1) Solve the shell and contact equations (3b) and 

(3c) for ww + 1 and pj using the known displacements 
w"'1, w" and pressures p\ or p\ and p\ for the two or 
three point operators respectively. 

(2) Solve the fluid equation (3a) for p" + 1 using the 
previous pressures p" and p"+1 (j = 1,2,... ). 

The schemes (3) with different types of Gc will be the 
basic model for the present stability analysis. 

4. MATHEMATICAL APPROACH 

The system of eqns (3) may be considered as an 
approximation to an initial boundary value problem, 
where the eqn (3a) describes the fluid (interior) and 
the eqns (3b, c) describe the shell (boundary). By this 
approach the spectral stability theory of initial bound-
ary value finite difference schemes may be applied. 
The state of the art of this theory may be found in [7]. 

For stability analysis the substitution 

Pl = 

5+1 
s - 1 

is made for the sealers p and w. 
The system (3) takes the form 

-k2 d2 = g2 

d2 = '-2- Qc 

The functions d(s, At), g(r, Ax), gc(r, Ax) correspond to 
the operators D, G, G# following the substitution 
above, and are given by 

d2(s,At) = 
4 4 

r, 02(r,Ax)=— (4.2) 
"(s-l)W y v" *' (r-\)2Ax2' 

The following theorem is proved in [2] : 
Theorem The system of eqns (3) is stable if and only 
if the following hold : 

(i) the equation 

where 

h(r,Ax)=f(r,Ax) 

h = g2-k2 and / = ω 2 - ^ -

(4.3) 

(4.4) 

l - 0 c 
(4.1) 

5. STABILITY ANALYSIS 

Let us consider four difference schemes, where the 
operators Gc and the corresponding functions gc a n d / 
are given in Table 1. 

In the following we prove that conditions (i) and (ii) 
of the theorem are satisfied for all operators defined in 
Table 1. The proofs are based upon a separation prin-
ciple in the complex plane. 

Lemma 1. The functions/which are defined in Table 1 
and the function h satisfy the following condition: 

sign Im{h} = sign Im{ —f) (5.1) 

for all Δχ>0 and r such that Re{r] <0. 
Proof. Let r=a + ib, and taken for example, case (c), 
where/(r, Δχ) = [2r/(r2 - 1)Δχ - 2 r ] . We find: 

sign Im{h} = sign | , 2 ^ 1 2 ^ 2 [ = s i ê n {-ab} 

and 

sign /m{/} = sign | ^ g ± ^ 6 J = «gn {-*>}. 

Since, a<0 by assumption, (5.1) is proved. Similarly 
for the other three cases. 

Lemma 2. For real r, the functions/and h satisfy: 

/ < 0 and A>0, (5.2) 

for all Δχ>0 and r in the interval ( - (1 + 4/&2Δχ2)1/2, 
-1 ) . 

has no roots r with Re{r) <0 and Im{r} Φ 0, 
(ii) the eqn (4.3) has no real roots in the interval 

(-(l+4//c2Ax2)1/2, -1) , 
(iii) the time step Δί must satisfy the following condi-

tion 

(4.5) 

(4.6) 

(4.7) 

where Δί, Δί5 and Δ^ are equal to 

over all roots of equation 
(4.4) in the interval ( - 1 , 0 ] 
if there are no roots of equa-
tion (4.4) in the interval 
( - 1 , 0 ] . (4.8) 

In the following section we shall use this theorem to 
analyze the stability of the system (3) for different con-
tact operators Gc. 
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(Description 

Type 

GcPS 

1 GcP,n 

• 9c 

f 

Class I 

(a) Forward two 
point first 
order in Δχ 

pf-p0
n 

Δχ 

2 
(Μ)Δχ 

2 
( Γ - Ι ) Δ Χ - 2 

(b) Forward three -
point second 
order in Δχ 

-3pS+4P;-p^ 

2Δχ 

2(r-2) 

| (η-Ι)2Δχ 

2(r -2) 
(r-\)2Ax-2ir-2) 

L 

ClassD 

(c) Central two- ! 
point second 
order in Δχ 

Pg- Po 
2Δχ 

2r 

( Γ - Ι ) Δ Χ 

2 
(Γ + Ι ) Δ Χ - 2 

Class ΙΠ 

(d) Backward 
two-point first 
order in Δχ 

P,n - PS 

Δχ 

2 
(r+ΠΔχ 

2r 

1 (Γ2- Ι )ΔΧ-2Γ I 

Proof. For r restricted as above we find: 

h{r,Ax) = 

— — — -k2> 
(r2-l)Ax2 

1 + 
k2Ax2 

= 0. 
- 1 Δχ2 

On the other hand it follows from (4.4) that / is nega-
tive when gc is negative, but all gc in Table 1 are negative 
if r < — 1, and (5.2) is proved. 

Now we consider three classes I, II and III of schemes : 
Class I : Schemes where the interaction between the 

fluid and the shell does not reduce the Mobility 
for all Ax 

Lemma 3. For functions/defined by schemes (a) and 
(b) from the Table 1 and for function h the following 
holds for all Δχ and 0 ^ r > — 1: 

Δί,-^Δί,. (5.3) 

Proof. For r and Ax restricted as above functions/are 
continuous and decrease monotonically for all x from 
—ω2 at r— — 1 to/(0, Δχ)> — ω2 at r = 0. Therefore, if 
the eqn (4.3) has a root r0, then 

2 
Δί,^- = AL, 

Vmax |/(r0, Δχ)| ω 
but if the eqn (4.3) has no roots then 

Δί, = Δί5 

by definition, and (5.3) is proved. 
To summarize, by Lemmas 1, 2 and 3 we have two 

forward, first and second order schemes for the contact 
condition (3c), where the interaction does not reduce 
the stability, the stability is defined completely by the 
stability of the fluid and of the shell separately. The 
value of Δχ separating the regions of fluid dominated 
stability as opposed to shell dominated stability is 
given by 

a»k. (5.4) Ax = 2(œ2-k2) -1/2 if 
The typical stability boundaries for schemes of class 

I are given in Figs. 1 and 2 by full curve. 
Class II : Schemes where the stability is reduced for all 
Ax as a result of the interaction between fluid and shell 

To this class belong the scheme with Gc defined by (c) 
from Table 1. This case may be important for practical 
purposes being a second order scheme with a small 
truncation error. 

Class I 
Class Π 

Class ΙΠ 

Δχ Δχ 
ΔΧ 

Fig. 1. Stability boundaries for the three classes of schemes, 
1,11 and III (co>/c). 

Fig. 2. Stability boundaries for the three classes of schemes, 
I, II, and III (oxfc). 

Lemma 4. For function/, defined by the scheme (c) 
from the Table 1, and for function h the following holds 
for all x a n d 0 ^ r > —1 

Δί^ιηΐηίΔί^Δ^) . (5.5) 

Proof: Thefunction/(r,Δχ) = 2rco2[(r2 - 1)Δχ - 2 r ] " l 

decreases monotonically from — ω2 at r = — 1 to — oo 
at Γ=Γν4 = (1-Λ/1+Δχ2)/Δχ. On the other hand the 
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function /z(r, Δχ) increases monotonically from — oo 
at r = — 1 to 4/(Δί /)2 at r = 0 . It follows that there is a 
single root, r0 , of eqn (4.3) in the interval ( — 1,0] where 
| / ( r 0 , ΔΧ) | = |Α(Γ0, ΔΧ) | is larger than both | / ( - l , Δχ)| 
and |/ι(0, Δχ)|. Consequently the lemma is proved. 

To estimate the effect of the interaction on stability 
we investigate some limiting cases. We find [2] assymp-
totic expressions for Δί,- as follows: 

for Δχ->0, Δί = Atf 1 -
Δχ2 

2(4+k2Ax2) + - (5.6) 

for Δχ->οο, Δί ί=< 

Δί , 

Δί. 

Δί, 

1 -
1 

(k2-œ2)Ax 

iïaxk 

1 
(co2-k2)Ax + 

ifœ>k (5.7) 

1 -
yj2œAx - + TJl 

if œ = k. 

We see that Δί, approach Atf and Δί5 when Δχ 
approaches 0 and oo respectively. The typical stability 
boundary is given on Figs. 1 and 2 by the dashed curve. 

The influence of the interaction may be measured by 
the quantity : 

β(Δχ, /c, ω) 
__min(Atp Ats)—Δί,-

(5.8) 
min (Atp Ats) 

An important practical case is ω > /c, which corresponds 
to a shell having higher sound velocity than the fluid. 
Then the region of the greatest reduction of stability is 
the. vicinity of Δχ, defined in (5.4). In this case the 
influence of the interaction on a specific scheme may be 
estimated by : 

- Δ ί , - Δ ί , Ι 
ß(/e,co) = Δί. 

(5.9) 

Using (5.4} and the assymptotic expressions (5.6) 
and (5.7b) Q may be approximated by: 

Q(Ka>)~QA(Kw) = (œ2-k2) ■1/2 (5.10) 

In [2] we considered the response of a steel cylindrical 
shell, submerged in water, to a transverse shock wave. 
For this case the extensional frequency is given by 

w = ctk 

where 0L = as/af ( ^3 .3 for steel shell and water), 
k=npsh/pfR ; n is the circumferential wave number and 
R is the radius of the cylinder. 

The estimate (5.10) for Q reduces to 

fi^fc-V-ir (5.11) 

In Fig. 3 we present the curve QA according to (5.11) 
and the curve Q which is obtained numerically from the 
complete analysis. It is observed that for /c>0.35 QA 

gives a very good estimate for g , whereas for k <0.35 
QA gives an overconservative estimate. 

In [1] it was found computationally for a problem 
using the scheme (c) that the time step Δί for stable 
interpretation of the coupled problem must satisfy 
At<y/2ß min (Atp Ats). This is in agreement with the 
above analvsis. 
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Fig. 3. Comparison between influence of the interaction, 
Q, and its estimate QA. 

Class III: Schemes where the stability is reduced for 
some Δχ as a result of the interaction between fluid and 
shell 

Lemma 5. For function/ defined by scheme (d) from 
Table 1, and for function h, the following hold for 
0 ^ r > - 1 

Ati ^ min (Atfi Ats)9 for Δχ < Δχ < 2 
(5.12) 

Att < m m (Δί/, Ats), for Δχ ^ Δχ. 

where Δχ is the single real root in the interval (0, 2] of 
the equation 

Proof. For 

/ (0 ,Δχ)=Α(0 ,Δχ) . 

Δ χ < 2 the function 

(5.13) 

/ ( r , Δχ) = 2ω/ 
[ ( Γ + 1 ) Δ Χ — 2 ] decreases monotonically from —ω2 at 
,■= — l r o / ( 0 , Δ χ ) < — ω 2 at r = 0 , while the function 
h(r, Ax) increases monotonically from — oo at r = — 1 to 
/ί(0, Δχ) at r = 0. Therefore, there exists a root r0 of eqn 
(4.3) in the interval ( - 1 , 0 ] , if 

/ ( 0 , ΔχΚΜΟ, Δχ). (5.14) 

It may be easily shown (graphically, for instance), that 
eqn (5.13) always has a single real solution A x < 2 , 
thus the inequality (5.14) holds for Δ χ ^ Δ χ . 

For Δχ ^ 2 the funct ion/ has a vertical asymptotic at 
0^rA = (2—Δχ/Δχ)> — 1, and there exists a root r0 

such that [/(r0)|>co2. C sequently, the lemma is 
proved. 

The typical stability boundaries for schemes of class 
III are presented at Figs. 1 and 2 by dotted curve. 

For an important case kAx = 2 (i.e. a square mesh in 
the fluid) the solution of the eqn (5.13) is 

Δ ί = 4 ( 1 + ν ϊ Τ ω ^ ) - 1 / 2 . (5.15) 

For ω-> oo, Δχ->0, and the stability behaviour of the 
scheme of class III approaches the stability behaviour 
of the schemes of class II. 

Asymptotic analysis may be produced for the schemes 
of class III, as we have done for the schemes of class II 
[2]· 

6. APPLICATIONS 

The validity of the stability analysis was tested with a 
nonlinear Lagrangian two-dimensional program 
DISCO [8] . The problem considered is that of a sub-
merged cylindrical shell subjected to a step shock wave, 
simulating the effects of underwater explosions on a 
submarine. The code employs the scheme (a) of Table 1. 
The computational results corroborate the predictions 
of the analysis concerning the stability boundary. As 
an example, for a 50mm-thick steel shell cylinder with a 
diameter of 10m for a 2MPa pressure wave (acoustic 
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Fig. 4. Comparison between the computed and estimated 
stability boundaries, for a submerged cylindrical shell sub-

jected to a step shock wave. 

region) the results are illustrated in Fig. 4, where 
/cAx s 2, as is a typical mesh size in the shell and Δί is the 
maximum allowed time step. 

7. FURTHER STUDIES 

Using the same approach, we are able to produce a 
stability analysis, involving two dynamical equations 
for the shell without reduction to the one shell equation 
model (2.1). We find that the results of such two-
dimensional analysis are similar to results which are 
presented in present work. That means we can estimate 
the stability behaviour of the numerical schemes by 
analyzing a one-dimensional model. The effectiveness 
of this approach depends only on the estimate of the 
highest shell frequence, that which is determining the 
numerical stability. This is confirmed by the agreement 

between the computed stability boundary of a two-
dimensional problem and the estimated stability 
boundary of a one-dimensional analysis, as illustrated 
in Section 6. 

These studies will be presented in a forthcoming 
publication. 
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Abstract—Continuation methods are considered here in a broad sense as the collection of methods needed 
for the computational analysis of specified parts of the solution field of "under-determined" equations 
Fx = c where F:Rm-+Rn, m > n, is given and any suitable m-n of the variables x, are designated as parameters. 
Such equations arise frequently in structural mechanics. In general, the solutions arc (m-n)-dimensional 
manifolds in Rm. Some basic existence results for the case m = n + 1 are presented, and a procedure tor the 
computational trace of the corresponding one-dimensional solution manilolds in K"+1 is discussed in 
detail. Then a general approach is formulated which allows, under certain assumptions, the computation 
of the derivative of F, and which includes, the usual incremental formulations in structural mechanics. In 
finite element applications it is possible to combine the continuation procedure with adaptive mesh-
refinements; for a model problem it is shown that such a combined process can be surprisingly effective. 
The article ends with some comments about the general case m>n+\ and the possibility of assessing 
numerically the structural stability of a structure. 

1. INTRODUCTION 

There appears to be little question that the socalled 
incremental methods represent by far the most popular 
procedures for the solution of problems in nonlinear 
structural mechanics. While these procedures were 
developed more or less independently in the engineer-
ing literature, it is now also recognized that they belong 
to the general class of continuation methods used for 
some time in mathematics in general and in numerical 
analysis in particular. The literature in this area is 
extensive; we refer only to [13] for a description of the 
incremental approach to structural problems as a con-
tinuation procedure, to [8] for a historical overview of 
uses of continuation techniques in mathematics, and to 
[24] for a more recent literature survey of some num-
erical aspects of continuation methods. 

Basically, in structural mechanics, the discretized 
equations of equilibrium have the generic form 

P(x) = P (1.1) 
with a given nonlinear mapping P: DPcRn-*Rn and 
vector p e Rn. In many cases, x represents here the dis-
placement vector and p the load vector. 

In order to focus the subsequent discussion we use 
as an illustration the very simple model of a plane 
structure shown in Fig. 1. Two equal, straight rods with 

Fig. 1. 

tThis work was in part supported by the National Science 
Foundation under grant MCS-78-05299. 

longitudinal elastic modulus y are pin-jointed at the two 
supports and at the tip where a dead-load p acts along 
the vertical symmetry axis. As indicated in Fig. 1, this 
symmetry axis is used as the x-axis with the origin at 
the unloaded position of the tip. Then the total poten-
tial energy of the structure under load p is given by 

^W^W1*^-*)2))2]-^ 
and hence the equilibrium equation (1.1) here has the 
form 

P(x)=y 
l+h2 

l+(h-xY 
- l ] ( A - x)=p, (1.2) 

where the nonlinear function P on the left is now a 
mapping of R1 into itself. 

In general, (1.1) has to be solved for a number of load 
vectors p in order to assess the behavior of the structure 
under different conditions. Often the linear set 
{tp; te R1} of loads is used and hence the family of 
equations 

P(x) = tp (1.3) 
involving the real parameter teR1 is considered in 
place of (1.1). The interest then centers on determining 
continuous paths in Rn 

x:JczR1^R\ (1.4) 

103 

such that x(t) is a solution of (1.3) for each t in the 
interval of definition J. More specifically, a path (1.4) 
is to be found which passes for t = t0eJ through a 
point x° = x(i0) that is a known solution of (1.3) for t0. 
Broadly speaking, a continuation method is now any 
procedure which, starting from x° at i0, produces 
acceptable approximations x' of x(^) for a sequence of 
parameter values tv ...,tNinJ. 

In our simple example (1.2) the load p is already one-
dimensional and thus p may be used in place of the 
parameter t. Clearly for p = 0 we have the solution x° = 0 
and hence we want here a real function x = x(p) which 
solves (1.2) for all p in some interval J and satisfies 
x(0)=0, Oe J. For y = 1, A=0.5 and J = [0, 0.021457...) 
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the solution is shown in Fig. 2. The right end point of 
J is a limit point where the derivative x'(p) of the solu-
tion becomes infinite. This represents a buckling point 
of the structure. 

The above description of continuation methods 
corresponds with the standard concept of these meth-
ods. However, it does not allow us to focus on two 
important aspects of our problem. Since a vector 
x € R" can be said to solve (1.3) only if a corresponding 
value of t e R1 has been given, the solutions of (1.3) 
are in actuality points (x l 5 . . . ,xn , t) of Rn+1. From 
differential geometry it is known, that, in general, the 
set of these solutions in R"+ 1 defines a one-dimensional 
manifold in the space. This means that we should look 
for parametric solutions x—x^s), i = l , . . . ,n , t = t(s) 
involving a^uitable parameter s. The choice of s = t is 
only locally permissible. This is evident from Fig. 3 
which shows for our model problem with y= 1, A = 0.5, 
a portion of the solution manifold in R2 through the 
origin. Clearly, the parametrization s = t breaks down 
at the limit points. It would also fail at bifurcation 
points which our model does not possess. Both types 
of points signify a loss of stability and hence are of con-
siderable importance in our assessment of the structure. 
This suggests that from the outset it may be ,well to 
consider instead of the solution paths (1.4) in Rn the 
manifold of solutions of (1.3) in RH+1. This will be 
discussed further in the next Section. 

The second of the indicated two aspects lacking in 
our earlier formulation concerns the degree of control-
lability of the structure. The variable t in (1.3) represents 
an albeit somewhat artificial control parameter in the 
description of the system. In general, there are other 
parameters entering into the specification of P which 
are in some sense under our control and may have a 
strong influence on the behavior of the structure. Even 
if no such parameters are readily available, more general 
load condition than those of the set {tp; t e R1} may 
need to be considered. In other words, the description 
of the system usually involves not only the "behavior" 
variables xlt...,xH but also a certain number q>0 
of assignable "control" parameters uu u2,---,uq. 
Hence instead of (1.3) our problem has the generic form 

F(x, u)=c (1.5) 

TP 

0.02 

0.0 l· 

0.1 ' θ . 5 \ ' 
/ x^ 

/l .O 

Fig. 3. 

^""^Α"1)*"^ (L6) 
from R3 into R1. The right side c of (1.5) is here zero. 

In analogy to the case of the equation (1.3) the set of 
all solutions (x, y) of (1.5) is a ^-dimensional manifold 
in Rn+q. For our model problem (with y=l) , Fig. 4 
shows the contour lines p=constant of this 2-dimen-
sional "surface" in (x, p, /*)-space. 

where F : Dpc: Rn xRq^Rn is again a given mapping and 
c e R" a fixed vector. In our example, we have the 
control parameters u1=p,u2 = h and hence the mapping 

M. J. Sewell [19] called the solution manifold of (1.5) 
in Rn+q the equilibrium surface of the structure. In 
[21] several simple, but instructive examples are given 
for model, structures with w=l, g = 2, including, in 
essence, our model problem (1.2). The equilibrium 
surface provides global information about the behavior 
of the system under changes of the parameters. For 
instance, the limit points (and bifurcation points) are 
those points on the structure for which the matrix 
Fx(x, u) of partial derivatives of F with respect to x is 
singular. Figure 4 shows one line of limit points for 
our model problems; it gives immediate information 
about the buckling loads and deformations for different 
initial heights h. 

Since the advent of catastrophe theory the interest in 
a deeper study of such equilibrium surfaces has certainly 
intensified (see, e.g. [20]). But, the computational 
analysis of these surfaces is still very much in its infancy. 
More general continuation methods are required which 
permit a trace of any specific path on the surface. For 
example, we may wish to compute directly the line of 
limit points in Fig. 4. Some comments about this will 
be given later. 
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The aim of this paper is to present an overview of 
certain recent results as well as of various open ques-
tions about continuation methods in the setting de-
scribed above. More specifically, Section 2 gives a 
summary of some of the basic properties of the set of 
solutions in Rn+1 of the equation (1.5) in the case q=l, 
that is, when there is only one parameter. Then in 
Section 3 we discuss in reasonable detail a complete 
algorithm for the numerical trace of these solutions in 
Rn+1. Finally, Section 4 covers a number of aspects 
arising in connection with structural problems and 
leading to modifications or extensions of the method 
most of which involve as yet unresolved questions. 

2. THE SOLUTION MANIFOLD FOR ONE-PARAMETER 
PROBLEMS 

This section presents a brief summary of some of the 
basic properties of the set of solutions (x, ux) in Rn+1 

of the equations (1.5) when q=l. This includes the 
case of the original equations (1.3). But in order to 
simplify the notation, it will be useful to set xn+i = ul 

in (1.5) (or xn+ x = t in (1.3)) and hence to write the equa-
tion in the "under-determined" form 

Fx = c (2.1) 

involving a function F: Rn+i-+Rn from Rn+1 into Rn 

and a given vector ceRn. For ease of discussion we 
assume that F is defined and twice continuously dif-
ferentiable on all of Rn+ *. As before some specific solu-
tion x° eRn+1 of (2.1) is supposed to be known. 

A (non-trivial, parametric) solution of (2.1) is defined 
as any continuously differentiable function 

x-.JcR^R"*1, x'(s)^0, s e J , (2.2) 
on some open interval J of R1 such that Fx(s)=c for all 
s in J. Evidently, such a solution remains one under any 
continuously differentiable parameter transformation 
with non-zero derivative. Hence there is no restriction 
to assume that in (2.2) the parameter s is the arc-
length. This choice has certain advantages and has 
been used by various authors. Without attempting 
any historical survey, we mention only the articles 
[10,11,16,18]. 

The set 

R(F)= {x eRn+1; rank F(x)=n} (2.3) 

will be termed the regularity set of the function F. 
Here F'(x) is the derivative of F represented by the 
n x (n + 1) Jacobian matrix of all partial deterivatives. 
This set excludes essentially only the bifurcation points. 
For instance consider the case of our simple model 
problem (1.6) when xl is the displacement, x2 = w1 = p 
and the height u2 = h is a fixed constant. Then (with 
y= 1) we have 

™-('-crÄ~-') »(:;) 
and hence R(F) = R2. On the other hand, if we use the 
displacement xt , x2 = u2=h, and keep the load ul=p 
constant, then 

' w V [ < l + ( x 2 - x , ) 2 ] 3 ' 2 ' [ l + ^ - x , ) 2 ] 3 ' 2 

+ [ ( l+x lX l+ (x 2 -x 1 ) 2 ] ) l " ' 
and for Xi = x2 = 0 the rank of F'(x) reduces to zero. In 

other words, here we have R(F) = {x € R2 ; x^O} and, 
in fact, Fig. 4 shows that in this case the origin is a bi-
furcation point. 

A proof of the following result is given in [16] : 
Theorem 2.1. For any x°e(R(F) with Fx° = b there 

exists a unique solution (2.2) of (2.1) in U(F) for which 
the interval of definition J is maximal under set inclu-
sion, the parameter s is the arclength, and 0 e J, 
x(0) = x°.Ifa6^Jisfinitethenx(s)->^(R(F)or||x(5)||->oo 
as s->a, seJ. 

The task of the desired continuation process is now 
to compute an approximation of this solution for a 
given x° € (R(F). A possible process of this type is dis-
cussed in the next Section. Here we mention only a 
few properties of the solutions characterized by the 
Theorem. 

Since F'(x) is an n x {n + 1) matrix which for x G U(F) 
has n linearly independent columns, there exists a non-
zero vector veRn+l for which F'(x)i; = 0. Obviously, v 
has the direction of the tangent of the solution curve of 
(2.1) through x. In order to obtain a unique vector v 
we need to fix the sign of its direction and its length. 
For theoretical purposes this may be accomplished 
by requiring that 

F'(x)i; = 0, Λ = 1 , d e t ( F ( * M > 0 . (2.6) 

Then 
T:U(F)-+Rn+\ v = Tx (2.7) 

is a well defined mapping from U(F) into Rn+i. For 
instance in the particular case of our model problem 
when F(x) is given by (2.5), we have 

T _ i / i \ A _ (i+/*2)1/2 

iX [1+(\-Α)2γΐ2\\-Α/ (l+(Ä-Xl)2)3/2 

X = X I ) Ê R ( F ) . (2.8) 

It is easily seen that in R(F) any solution of the (auton-
omous) system of differential equations xf = Tx is a 
parametric solution of (2.1) with the arc-length as 
parameter, 

A point x e U(F) is a limit-point (or turning point) of 
(2.1) with respect to the ith variable xi91 ^ i ̂  n + 1 , if the 
ith-component of Tx is zero. In the case of (2.8) this 
may happen only for i — 2 when A = l, that is, when 

xx = h±j(\+h2)ll2>-5 (2.9) 

This is the heavy-dashed curve in Fig. 4. It represents 
the location of the buckling points of the structure of 
Fig. 1 as a function of the height. The corresponding 
buckling loads are found by a simple evaluation of the 
function P of (1.3) and hence are given by p = [(1 + /z2)1/3 

- l ] 3 ' 2 . 
In the case when F'(x) is given by (2.5) there are limit 

points with respect to both variables xls x2. In Fig. 4 
these are the points where the tangent of the curve is 
parallel to the x2-axis or Xj-axis, respectively. Then, 
for example, the x2-coordinate of an xx-limit point 
respresents the critical height for the given load p such 
that for all lower heights the structure is instable at that 
load. 

3. NUMERICAL DETAILS OF A CONTINUATION 
PROCESS 

Let x°e[R(F) with Fx°=c be a given point and 
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x:JczR1-^U(F\ ||x'(s)||2=l, seJ, x(0)=x°, 
(3.1) 

the solution of (2.1) through x° which is guaranteed to 
exist in U{F) by Theorem 2.1. By requiring that the 
Euclidean norm of the tangent equals one we auto-
matically ensure that the parameter s is the arc-length. 

Our task is now to compute a suitable sequence of 
points 

χ;' = χ(5;·), ; = 0 , 1 , . . . , N, s0 <s1 < . , . <sN, (3.2) 

approximating (3.1). Essentially all numerical continu-
ation processes for doing this now are of the predictor-
corrector type. Suppose that the points x°, x 1 , . . . , xk 

have already been computed for some /c^O. Then a 
suitable predictor 

y=n(t\ KJ^R^R"*1, π(0)=χ\ (3.3) 

is calculated which approximates (3.1) on some small 
interval [sk, sk + <5], <3>0 beyond sk. For example, π 
may be the polynomial of degree at most m defined 
by the interpolatory requirements n(sj) = x\ j=k, 
k — 1, . . . , k — m. Alternatively, if the tangents Txj at 
these points are also available, Hermite-interpolation 
may be applied as well. Other than in the case of the 
multistep ODE-solvers for the computer solution of 
initial value problems for ordinary diiferential equa-
tions, we appear to gain very little from the use of high 
order interpolation polynomials for the predictor π 
of our continuation process. Some reasons for this will 
be given later. Generally, the simple Euler predictor 

n(t)=xk + tTx\ t^O (3.4) 

has been found to be computationally optimal. 
Before we can use (3.4), the tangent vector Txk needs 

to be computed, that is, we have to determine the vector 
v specified by (2.6) at the point x = xk. For this the 
nx(w+l) system of equations F'(xk)t; = 0 has to be 
augmented by some (n+ l)st scalar equation. There are 
various possible choices for this (see, e.g. [1]), but from 
a practical viewpoint an affine equation \ντν = ξ has 
obvious advantages. The vector weRn+1 has to be 
such that the resulting {n+1) x (n+ 1) system of equa-
tions is nonsingular. In order to reduce the compu-
tational work it is natural to consider the choice w = é 
where é is the ith natural basis vector of Rn+1 with a 
suitable index i, 1 ^ i ^ n + 1 . It is easily seen that 

d e t ( ^ ) = ((^)V)det(^;i) (3.5) 

and that the determinant on the right will be non-
singular for any xk e U(F). Hence, the index i should be 
chosen such that |(7xk)V| is as large as possible. Gener-
ally, let 

|(73cVV'|=max {\(Txj)Te% /= 1, . . ., n +1}, 
, = 0 , 1 , . . . . 

(3.6) 
Then it is reasonable to use w = el with i = ik_i. Of 
course, this applies only for fc^l; for /c=0 a suitable 
index i is assumed to have been given with x°. Recall 
that xk _ 1 is a limit point with respect to the ith vari-
able if (Tx)k_V = 0. Hence for fc^l we choose the 
index i = ik-1 for which Txk_1 is in some sense furthest 
from a limit point with respect to x,. 

Our basic task is now to solve the system of equations 

( # ) " - ■ · 
which will be non-singular if (Txfc)V^0 and hence if 
xk is not too far from xk_1. Basically, any standard 
method for the solution of a non-singular system of 
linear equations is applicable here. However, F(x) 
often has a special structure and the addition of the 
last row may lead to complications. For example, when 
F is derived from (1.3), that is, when 

Fx = Px-xn+1p, x = ( X ( e r 1 , xeRn (3.8) 
\ X n + l / 

we frequently find in applications that P'(x) is a banded, 
symmetric matrix. Obviously, the matrix of (3.7) has 
lost these advantageous properties and hence some 
special consideration is required to prevent an increase 
in the complexity of the solution process. 

In the particular case of the mapping (3.8) our system 
(3.7) has the particular form 

AO = CM = ( ™ \ B = F(xk). (3.9) 

For i = n +1 we need to solve only the subsystem with 
the matrix B and hence no complications arise. Sup-
pose therefore that 1 ^ i ̂  n. Then A is a bordered matrix 
and our basic approach will be to introduce a decompo-
sition 

A = A0 + abT (3.10) 

of A into the sum of a suitable non-singular matrix A0 

and a rank-one matrix abT. Once the two systems 

A0y = r, A0z=a (3.11) 

with the same matrix A0 have been solved, the solution 
of (3.9) itself is given by 

bTy 

Here, it follows from the well-known Sherman-
Morrison formula that bTz ψ — 1 as long as A and AQ 

are non-singular. 
Among the various possible decompositions (3.9) the 

following one has been found very effective in applica-
tions : 

1 (3.13) 
Here e\ denote the natural basis vectors of R" while as 
before, é are those of Rn+1. It turns out that A0 is 
generally non-singular although there are situations 
when this is not true. Without entering into a theoret-
ical discussion about conditions ensuring the non-
singularity of A0, we consider here only the solution 
of the systems (3.11) for this particular A0. These 
systems have the common form 

/ B i ! * i [ C ! 0 \ / w , \ /d\ 
l'bT'\ß'\'bli'\ \Ιηι \ΙδΛ 
\CT\b2\ B2\0j\w2J \d2J 
\o ; i j o ; o/ W V2/ 

(3.14) 
where U,, B2 are square symmetric matrices. Hence we 

(3.12) 
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need to solve merely the banded, symmetric ( n - 1 ) 
x(n —1) system 

B, ! C 
CT\B2 

rd 

, ~ * / \ » * / Kd2j 
which has a non-singular matrix exactly if A0 has the 
property and for which the band-width does not exceed 
that of B itself. Since always η{—δ2 the remaining 
unknown of the system (3.14) is given by η2—δχ 

-ßo2-b\wl-blw2. 
Evidently, if B = F(xk) has been stored in some 

banded format, then it is unnecessary to store the 
matrix of (3.15) separately. In fact, after saving the 
vectors 6„ b2 and the scalar ß of (3.14) we need only 
zero-out the locations occupied by bv b2 and store 1 
in the location of ß . Then we may work with this n x n 
banded, symmetric matrix in place of the matrix of 
(3.15). 

Once the—necessarily non-zero—solution v of the 
system (3.7) has been obtained, the tangent vector 

Txk (3.16) 

can be computed. Here σ = ± 1 is the direction specified 
in (2.6). By (3.5) we have 

fF'(xk)^ 
°k,i= °k s ig n {Txk)Te\ aki = signdet ' 

<jfc = sign det 

(ef 

V)\ 
Txk)T) (Γχ' 

(3.17) 

Here aki is the sign of the determinant of our system 
(3.7) which is easily computed during the solution of 
that system. By (2.6) we want ak= + 1 and hence we 
should set σ = σ Μ sign (uV). As long as the solution 
curve remains in U(F) this approach is satisfactory. 
However, it does not permit us to detect when we may 
have passed a bifurcation point. More specifically, 
suppose that x* € U(F) is a bifurcation point where 
several solutions xJ: Jjcz^-^UiF), j = l , 2 , . . . , of 
(2.1) (for different c) terminate, that is, for which xj(s) 
tends to x* when s tends to one of the endpoints of Jk. 
In structural applications it frequently happens that 
there are pairs of these solutions, say, x = x l ( s \ x=x2(s) 
for which lim Tx1(s)= - l i m Tx\s\ (see Fig. 5). In other 
words, ifwe disregard the direction ofthe solutions, they 
appear to form one smooth curve through x*. In such 
a case, when the process moves along xi(s) toward x* 
it usually "jumps" over x* onto x2(s). Then, unless we 
reverse the sign of ak we will not move along x2(s) 
away from x* but again toward x* instead. In order to 
avoid this problem the factor σ in (3.16) is defined by 

[ sign vTel,+ x = sign (Txk~ l)Tén+ x 

otherwise 
f-hl ifs 

σ = | - 1 otl 
(3.18) 

and then ck is computed from (3.17). Now for σ^σ1ί_1 

we have a situation as in Fig. 5 and hence we change the 

sign of Txk. Otherwise Txk is used as computed. Note, 
however, that in this case we may well have jumped 
over a bifurcation point of even multiplicity. 

With Txk we now know the predictor (3.4). In order to 
define the corrector, some (n-f l)st equation has to be 
added again to the system (2.1). As in the case of the 
tangent calculation it is natural to use for this purpose 
the following augmented system 

Fx = ( W ( x -n(tk+ Λ) -y ) = 0. (3.19) 

Here ik is defined by (3.6), tk+ ί represents the step to be 
taken along the predictor line (3.4) and the scalar y will 
be fixed shortly. Any locally convergent iterative 
process for solving (3.19) may now be used as the 
corrector. For instance, if Newton's method is chosen 
then the corrector has the form 

F\yi) 
, ( y -y + i )=Fy ,y°=7r ( i k + 1 ) , 7=0,1 

(3.20) 

and the systems of equations to be solved have exactly 
the same form as those in the tangent computations. 

The choice of the step tk+i to be taken along the 
predictor depends on the selection of y. This is equival-
ent with the selection of the point x(sk 4- As) on the 
solution (3.1) which is to be approximated by the 
corrector. In fact, as long as tk+l is not too large the 
equation 

(eikfx(sk'r As) = y Heik)Tn(tk+,) (3.21) 

defines a one-to-one correspondence between As and y 
for all sufficiently small As. Evidently, As = tfc+1 is a 
natural but by no means required choice for As. 

In order to compute y for As = i k + 1 and to estimate 
the distance between the predicted point n(tk + x) and the 
desired solution x(sfc + tfc+1) of (3.18) we proceed as in 
the case ofthe ODE solvers. The quadratic polynomial 

q(s)=xk + (s - sk)Txk + (s- sk)
2wk (3.22) 

w f c =i [Tx f c -^ - (x k -x k - 1 ) ] , 
nk nk 

hk = \\xk-xk ' I ^ S f c - s ^ 

represents a "better" approximation of x(s) than the 
predictor (3.4). In fact, for three-times continuously 
differentiable F the error ||<?(s) —x(s)|| is asymptotically 
of order h3 where /i = max (/ik, |s—sk\) while for the 
predictor it is only of order h2. This suggests that for 
sufficiently small h we may replace x(s) by q(s). If this 
is done in (3.21) then we obtain for As=tk+i the value 
of y as 

1 >JW* )TTxk-j-(eik)T(xk-xk ■■»} (3.23) 

At the same time, the requirement, that the distance 
between n(tk+ x) and x(sk+tk+1) is below some tolerance 
p k + ! > 0 , may be approximated by 

Nt* + i)-4(Sfc+ik+i)NPk+i· (3·24) 
This leads immediately to the estimate 

Pk+i 

IKI|2 
(3.25) 

Fig. 5. 

Before we discuss the choice oïpk+1 it may be useful 
to comment on the computation of the quantities in 

CAS 13:1-3 - H 



108 WERNER C. RHEINBOLDT 

(3.23) and (3.24). The norm of wk represents an estimate 
of the curvature of x(s) at xk and hence it is small when 
the curve is fairly straight. Since wk is proportional to 
the difference of two vectors of length one, the explicit 
computation of this vector may lead to severe loss of 
accuracy due to subtractive cancellation. In (3.23) 
only one component of wk is needed, and it should be 
computed with care and preferably in double precision. 
For the computation of ||w*||2 in (3.25) we use 

1 
||wfc||2=—V2(x —cos ak)=— 

afc = arcos (Txk) (3.26) 

which is a numerically reliable formula as long as the 
last step hk was not overly small. 

We turn now to the choice of the tolerance pk+i>0. 
Ideally, pk+1 should be chosen such that the corrector 
iteration, when started from π(ίΛ+1), is known to con-
verge to a point on the solution curve. In [16] it was 
shown that for any closed segment {x(s), s^s^s} of 
the solution curve which is completely contained in U(F) 
there exists a fixed positive tolerance p >0 such that the 
Newton method (3.20) converges to a point on the 
curve as long as the predicted point has at most a 
distance p from it. This will be the case for all sufficiently 
small steps tk+i along the predictor. But then the 
achievable error ||xk+1 — x(sfc+1)|| is solely determined 
by the termination criterion for the corrector iteration. 
In contrast to this the standard multistep ODE-
solvers involve a corrector equation which is obtained 
by interpolation and hence for which the solutions are 
not, in general, on the exact curve. Asa consequence the 
achievable error for the ODE-solvers depends on the 
history of the process up to that point, and this in turn 
has a strong influence on the selection of the steps. On 
the other hand, in the case of the continuation process 
any step tk+l is acceptable in principle if only the cor-
rector converges from n(tk + l). This is the basic reason 
why it has little sense to use higher order predictors; 
in fact, they rarely provide consistently better starting 
points to save sufficient work in the corrector iteration 
to balance the added effort and storage requirements 
needed for their computation. 

This still leaves us with the question how to choose 
the tolerance pk + l > 0 in (3.25). By definition, for any 
locally convergent corrector iteration at x(sk + 1) there 
exists a convergence radius rk + i>0 such that for all 
starting points within the distance rk + 1 from x(sfc+1) 
the process is guaranteed to converge. A natural idea 
is then to estimate rl,...rk from the performance of the 
corrector iterates at the computed points. In [6] it is also 
x 1 , . . . , xk and to select pk+1 by extrapolation from these 
rJ. Various schemes of this type have been discussed 
in the literature (see e.g. [1, 16, 18]), but the results 
appear to be very sensitive to the properties of the 
problem at hand. Now a recent result in [6] has pro-
vided new insight into the reason for this. 

It is natural to attempt to estimate any convergence 
radius r} on the basis of the corrector iterates at xJ and 
our knowledge of F and F at these points. In [6] it is 
proved that this information is insufficient to obtain 
any lower or upper bound of ry In other words, we 
would need more global information about the prob-
lem to obtain such bounds for r, and this would require 
more computational efforts than is reasonably justifi-

able. The quantities used in the cited articles do not 
represent bounds of the convergence radii but of the 
quality of the convergence of the particular sequence of 
corrector iterates at the compute points. In [6] it is also 
shown that for Newton's method such assessments of 
the convergence quality can be used effectively for the 
determination of suitable tolerances p} even though 
such pj are not estimates of the radii rr 

We proceed here in a more straightforward way 
which is not restricted to a particular corrector process. 
As in the ODE-solvers we need to control both the 
relative growth and the absolute size of the predictor 
step tk+1. Thus we require that 

(i)-hk^tk+1^ph» (ii) U ^ + i ^ t m a x , (3.27) 

where p is some factor, say p=3 , and (^ , imax depend 
on the machine as well as on the requirements of the 
problem. A natural tolerance at the last computed 
point xk is the distance Sk = \\(xk~1 + tkTxk~1)—xk\\ 
between the points where the corrector started and 
ended. However, it turns out that the corresponding 
tentative step 

h + i~ j=hk 
àJK 

2|sin α*/2| ' 
tends to lead to numerical instabilities even if it is 
adjusted to satisfy (3.27). For instance, for small Sk 

the step will be small and the next distance Ôk+1 is 
likely to be even smaller. Thus, especially when the 
curvature does not decrease, the algorithm ends up 
taking minimal steps only. Clearly we need to introduce 
thresholds for the quantities in (3.28). 

Let a 0 > 0 be a small lower threshold for |ak| and set 

= 2 min l\yj2, max sin 

Moreover, let 

-2P
: π_^2 

m p2 4 p2 

(3.29Xa) 

(3.29(b) 

and introduce the relative tolerance 

1ma» if I sin ^ j ^ sin ̂  or ôk^htfmin 

fmin if : V 2 0 I A ^ M m i n 

ôjhk, otherwise. 
(3.29)(c) 

Clearly we need α0>α0 =2 arcsin [(v^p2) - 1] to ensure 
that ^ i n <rçmax. Then for α0 <α0 <π/2 the tentative step 

h+i 
fk + l 

satisfies (3.27)(i), and hence for the step 

ik + i =min{max(ik+1, U X 'max}· (3.30) 
both conditions (3.27) hold. With p = 3 and a*=0.05 
and various values of tmin and t max this step-length has 
been used extensively with excellent results. 

Once the predictor step ik + 1 has been chosen, the 
corrector iteration is started from n(tk+ J. This process 
has to incorporate provisions for monitoring the con-
vergence and for aborting the iteration as soon as div-
ergence is detected. These provisions depend of course 
on the type of corrector used. In the case of Newton's 
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method (3.20) it has been found satisfactory to declare 
non-convergence if either one of the following the 
three conditions is true 

(i) IliVll^ll^V'-1!! f o r somey>l 
(ii) | j y - y ~ 1 | > % ; " ~ 1 - y ~ 2 | | for somej>2 (3.31) 

OU) 7^'max 
with a suitable constant 0, say 0= 1.05, and an integer 
./max» say ./max = 6. On the other hand, the iterate γ is 
accepted as the next point xk+1 if either one of the two 
conditions holds 

(i) | | ^ ° Ν β ι (3.32) (ii) ( | | j y | | ^ 2 ) and ( | | y _ y - i | | ^ 3 + £ 4 | | y | | ) 
for some;^1 

with given tolerances ε^ . . . , ε4 which depend on the 
machine and on the problem. 

In the case of non-convergence the predictor step is 
halved and the corrector is restarted from n(^tk+l) with 
the corresponding value (3.23) of y. However, it is 
required here that \tk+1^tmia otherwise some user 
dependent action needs to be taken to modify fmin or to 
stop the overall process. On the. other hand, if the con-
vergence is declared with xk+1=yj as the last iterate 
then we approximate the exact arc-length by 

h+l=sk+\\x"+i-x% (3.33) 
and, if required, proceed to take a new predictor-
corrector step. 

The continuation procedure described in this section 
has been used extensively with excellent success on 
many problems from structural mechanics and other 
fields. For space reasons we forego including here some 
graphs of the solution of a particular, large problem 
obtained by the procedure. Only a few of the many 
data characterizing any practically meaningful prob-
lem can ever be sketched and this does provide little 
or no insight into the way the continuation procedure 

actually works. Therefore, in the interest of giving a 
more detailed picture of the operation of the process, we 
present here computational results for a small, simple 
problem for which all relevant data can be exhibited. 

More specifically, for a two-bar structure of the form 
of Figure 1 with A = 2 we use the following model 
derived in [13], p. 232: 

(xj - 2 ) 3 + (x1 -2\x\-A)-2x2> cos a 
x2(Xi -2 ) 2 -hx 2 (x^-2) -2x 3 sin a 

(3.34) 

The load of size 2x3 is here tilted by an angle a from the 
vertical direction. Table 1 gives results computed on a 
PDP-10 for the case a=0 , that is, for a vertically down-
ward load. All data are rounded to three digits. In this 
case the horizontal component x2 of the displacement 
/vector x and of the tangent vector Tx is always zero and 
hence is not given. The change of the sign of the deter-
minant ak (see (3.17)) between steps 1 and 2 signifies 
that a bifurcation point has been passed and that the 
direction of the trace had to be reversed. Between steps 
2 and 3 a limit point with respect to the load variable x3 
is encountered. Note that the number of corrector steps 
is essentially constant except—as expected—near the 
bifurcation point where of course the Newton method 
used here becomes singular. The value tmax= 1 was 
used ; the decrease of the predicted steps near the limit 
points is caused solely by the increased curvature; 
otherwise limit points have no effect whatsoever on the 
process. 

Table 2 gives results for the case a = arc sin 0.75 = 
0.8481. Here the limit point for the load variable occurs 
between steps 3 and 4 and a limit point for the horizon-
tal deformation component x2 is encountered between 
steps 4 and 5. If the run is continued a limit point with 
respect to the first variable χλ will be found between 
steps 6 and 7. The solution is here more strongly curved 
and hence the steps are smaller and the number of 
corrector steps is larger. 

Table 1. 

k ! 

0 

1 

? 

3 

4 

S 

Sk 

0 

.503 

1.55 

?.?0 

2.99 

4.03 

I 

k ! x l j 

( T x k) ] 

0 
.243 

.135 

.297 

.595 

.721 

1.23 
.666 

1.66 
.479 

2.14 
.453 

( T x k) 3 

0 
.970 

.485 

.955 

1.42 
.693 

1.31 
- .746 

.649 
| - .878 

-.282 
- .892 

\ 

3 

3 

1 

3 

3 

3 

V l 

.500 

.503 
1.00 

1 .04 
.703 

.650 

.540 

.787 
1.00 

1.05 

Corr . 
Steps 

3 

4 

3 

3 

2 

a 

16.5 

9,98 

-.0697 

-4.24 

-7 .89 

-8.75 
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Table 2. 

0 

1 

? 

3 

4 

5 

Sk 

0 

. 595 

1.55 

2.21 

2.66 

3.45 

"Ï 
(Txk)1 

0 
.131 

.181 

.309 

.568 

.709 

1.05 
.894 

1.42 
.856 

1.86 
.631 

x2 

(Txk)2| 

0 
.595 

.404 

.745 

1.10 
.682 

1.50 
.398 

1.59 
.140 

1.50 
-.183 

k 

*3 

( T x k) 3: 

0 
.793 

.397 

.591 

.921 

.180 

1.15 
-.206 

| .910 
-.498 

.260 
-.754 

\ 

3 

2 

1 

1 

1 

3 

hk ' 

Vi 

.500 

.595 

.829 

.951 

.544 

.665 

.376 

.452 

.496 

.790 
| 1.00 

* of 
Corr. 
Steps 

5 

4 

7 

7 

6 

■ 

a 
e 

20.2 

14.9 

13,5 

13.1 

12.4 

10.9 

E X T E N S I O N S AND MODIFICATIONS 
In this section we consider various special aspects of 

our problem, in particular, as they arise in structural 
applications. Up to now, the function F of (1.5) was 
simply assumed to be given. In practice, however, this 
mapping is derived in a more or less complicated 
manner from the original problem formulation and it 
depends strongly on the form of this derivation how 
much information is actually available about F during 
the solution process. 

In structural applications the mapping F is typically 
obtained by finite element techniques. As a conse-
quence, each evaluation of the vector Fx for a given 
point xeRn+1 involves computations of elemental 
stiffness data, their assembly into global form, etc. 
Hence there is no readily apparent way of computing 
the derivative matrix F(x), and without it the process 
of the previous section requires substantial modifica-
tions. 

The derivative F is an integral part of the computa-
tion of the predictor and it may or may not be needed in 
the corrector iteration. While the various forms of 
Newton's method certainly are well suited as corrector 
processes, there are many other choices available 
which do not depend on an explicit knowledge of F'. For 
instance, quasi-Newton-(update)-methods have been 
proposed for this purpose (see e.g. [23]). Another 
possibility arises when F has the quasi-linear form 

Fx = A(x)x-xn+1p, x = [ )sRn+\ xeRn. (4.1) 
V X n + l / 

This is frequently the case for geometrically nonlinear 
problems. Then the "corrector equation" (3.19) has 
the same generic form. 

Â(x)x = d, À(x)=fâ*lf~?\ (4.2) /A(x) -p\ 
(X)=\W") 

and this suggests the well-known iterative process 
Αψ+1)γ = α, y° = xk, 7 = 0 , 1 , . . . (4.3) 

as a corrector method. 

Evidently, the derivative F may also be avoided in 
the definition of the predictor. For instance, as indicated 
in the previous section we may use the standard 
Lagrangian interpolation polynomial π based on the 
data n(Sj) = x\ j=k, k — 1, . . . , k—m. Unfortunately, 
this requires that the last m-hi points are kept in 
storage. Moreover, it is well-known that the quality of 
the approximation of the solution by π deteriorates 
rapidly outside the interpolation interval [sk_m, sfc]. 

Generally, continuation processes not involving the 
derivative perform noticeably more poorly than those 
based on it. As indicated, the predictions tend to be less 
reliable, and, in most cases, derivative-free corrector 
processes, such as (4.3), converge more slowly or may 
fail to converge altogether in parts of U(F). Fortunately, 
there is a technique which often allows us to obtain F 
without unreasonable effort. It involves what in struc-
tural mechanics is usually called the incremental 
formulation of the basic equations. 

For simplicity we consider the case of the equations 
(1.3). Moreover, before the discretization the original 
equilibrium problem is assumed to have the form 

Hu = tw\ teR1, (4.4) 

involving a mapping H.X^X on some infinite dimen-
sional space X. Usually, X is a Banach- or Hubert-
space of suitable functions on a given finite-dimensional 
domain. The finite-element approximation then intro-
duces a discretization mapping 

(j):X^Rn (4.5) 

from X onto R" and with it the discretized version 
P\Rn^R" of H defined by P(x) = φ{Ηύ) for all x = <ftu), 
u e X. Note, however, that P is only well-defined if φ 
is compatible with φ in the sense that φ{μ) = φ(ν) for any 
w, v € X implies that </>(Hw) = φ(Ην). Now, if, say, 
φ(νν) = ρ, then our discretized problem assumes the 
form (1.3). 

In most applications, H possesses a (Frechet) 
derivative H' which maps X into the space L(X) of 

110 
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bounded linear operators on X. Moreover, it is usually 
rather straightforward to obtain H' from H. The incre-
mental forms, discussed, for instance, in [13], are 
simply H' in the differential form H'(u)v. Now our 
discretization (4.5) induces also the matrix valued 
mapping M:R"-+L{Rn) with Μ(χ)ν = Φ(Η'(ιι)ν), χ = Φ(Λ 
γ = φ(ν), provided only that H' satisfies the appropriate 
compatibility condition. Evidently, the same mechan-
ism used in the computation of Px also allows us to 
compute M(x)y. The question then arises under what 
conditions this discretization M of the derivative H' 
turns out to be the derivative F of the discretization P. 
In other words we have the (Fig. 6) diagram 

,, differentiation 
H n 

discretization 

differentiation 

discretization 

P = M 
I ig. 6. 

and the question is whether the operations of differ-
entiation and discretization are commutative. Since 
M can be computed this would provide us with the 
desired method for computing the derivative P' of P. 

In [14] it was shown that, under suitable assump-
tions, the answer is indeed affirmative. Unfortunately, 
in practical situations these assumptions—and, in 
particular, the mentioned compatibility conditions— 
are difficult to verify. There are also simple examples 
where the commutativity does not hold. However, it is 
conjectured that in most of the finite element applica-
tions to structural problems the result does hold and 
hence that in these cases F can be computed as the 
discretization of H'. A formal proof is expected to be 
given elsewhere. In addition, the general "incremental 
approach" sketched here is beginning to find applica-
tions in fluid-flow problems, etc., where formerly 
derivative-based continuation methods were thought 
to be out of the question. There is certainly a need for a 
broader study of this incremental approach to the 
computation of the derivative of discretizations of 
practically important operators H. 

Generally, in the application of the finite element 
method a very critical decision involves the choice of 
the mesh and the elements. Various approaches have 
been proposed for the design of meshes which are 
optimal in some sense. In particular, in [2-5] a theory 
of a posteriori error estimates for finite elements solu-
tions has been developed which permits the construc-
tion of an adaptive mesh refinement algorithm that has 
been found to be highly effective for a range of prob-
lems. 

Suppose again that in its basic form our problem is 
given by the equation (4.4). Then the desired solution 
may be expected to have the form 

u:J-X, t'J-^R1 (4.6) 
involving suitable functions u and t on some open 
interval J. Evidently, now, our principal aim should be 
to approximate this solution (4.6) of the infinite-
dimensional problem. In order to accomplish this we 
construct first the discretization (1.3) of (4.4) and in turn 
compute its solution curve in Rn+ K This curve depends 
on the discretization (4.5) we have used; moreover the 
approximation-error between it and (4.6) is likely to 

vary considerably when we move along the solution 
(4.6). Since our main aim is to approximate (4.6), it is 
natural to consider different discretizations (4.5) (and 
hence dimensions n) in different parts of the parameter 
interval J. 

In the finite-element setting the discretization (4.5) 
represents a particular selection of the mesh and the 
elements. Thus we are interested in methods for adapt-
ing the mesh and/or the elements to ensure an approx-
imation of (4.6) within a given tolerance throughout the 
entire parameter interval. This is at present still a 
largely unresolved problem. In order to measure the 
approximation error, a theory of a posteriori error 
estimates for nonlinear finite element problems is 
needed, and such a theory is as yet little developed. 
Moreover, each change of the discretization (4.5) 
represents a change of the finite-dimensional problem 
and its dimension. Hence each such change implies a 
restart of the continuation process for a modified prob-
lem in a different space, and at present the interaction 
between these problem changes and the stability of the 
continuation procedure is only barely understood. 

Nevertheless, so far all experience with processes 
that combine continuation and mesh-adaptation have 
been almost startingly effective. As an example consider 
the elliptic two-point boundary-value problem 

a(^^ + b(u) = tf(xlxe I = [0, 11 teR\ (4.7) 
~ d x N 

w(0) = W(l)=0, 

with suitable coefficient functions cz, bj. Let 

Λ: χο = 0 < χ 1 < . . . <x„<xM + 1 = l, η = η(Δ), (4.8) 

be a given mesh on / andS(A) the set of continuous func-
tions on / which are linear on each subinterval 
Ij{A) = [XJ_ i, x j , j= 1 , . . . , n+ 1, and zero at the end-
points of /. For any te R1 the finite element solution 
Μ(Δ) 6 §(Δ) of (4.7) is defined by 

Γ [a(u')v' + b(u)v]dx = t f fodx, ι>«=&(Δ). (4.9) 
Jo Jo 

For fixed; = 1 , . . . , n + 1 let 

ω/χ) = ι4Δ)(χ) + ζ7·ςί7·(χ), q/x) = (x -Xj - ^ (χ , -χ ) , 
xeZ/Δ), (4.10) 

where ZjtR1 is the solution of the scalar nonlinear 
equation 

f [ α ( ω χ · + ( ^ ) - ί / ) ^ ] dx = 0. (4.11) 
J / , Ι Δ Ι 

Then 
ε(Δ) = Σ W 

L/=i 
(4.12) 

represents an a posteriori estimate for the error between 
Μ(Δ) and the exact solution u* of (4.7) under the semi-
norm ||(w—w(A)y||L2(/) which—under proper conditions 
about a, b—is equivalent to the norm of the Sobolev 
space H\(l). 

Evidently (4.9) defines the finite dimensional problem 
(1.3) for the particular mesh (4.8) to which we apply our 
continuation process. At each continuation step the 
error estimate (4.12) can be computed. Then, in line 
with the mesh-refinement algorithm discussed in [5] 
(see also [17]) those subintervals Ι£Δ) are halved for 
which \z\ exceeds a certain tolerance. On the new mesh 
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load t 

an approximate solution is obtained by interpolation 
and then corrected by means of a few Newton steps. 
Now the continuation process is applied again until a 
further refinement becomes necessary. 

Some numerical results with this combined process 
have been given in [5] and are summarized in Fig. 6 for 
the problem (4.7) with 

a(s) = 
1 + s ' 

-l<s<oo;fc(s) = 0, seR1 

)0, otherwise 

This may be viewed as a model of a one-dimensional 
rod of length one which is clamped at the endpoints 
and subjected to a load in the direction of its axis 
specified by tf. The effectiveness of the procedure is 
certainly evident. 

We end our discussion with some words about the 
general continuation problem (1.5) involving more than 
one parameter. As mentioned before, the solution then 
is a ^-dimensional manifold in Rn+q, the equilibrium 
surface of the structure. Various authors have used 
perturbation techniques to analyse local features of this 
surface (see [19] and the many references given there, 
as well as [9, 12] for the same approach in a different 
context). In essence, these techniques allow for an 
analysis of the behavior of a given path on the equi-
librium surface under certain perturbations of a 
parameter. In [19] these techniques are placed in the 
general context of the study of the equilibrium surface 
itself. This permitted a broader exploration of the close 
relationship between the shape of the surface and the 
structural stability of the mechanical system. In a more 
general setting these ideas are pursued further in [20, 
21]. 

These studies certainly suggest the possibility of 
analyzing the structural stability of a system by explor-
ing numerically the shape of the equilibrium surface, 
that is, by computing appropriate paths on the surface. 
A natural aim, for example, is to find and trace any 
paths on the surface consisting entirely of limit-points 
with respect to a given parameter. Since the continua-
tion process discussed in Section 3 is not affected by 

such limit points, this task has certainly become 
feasible. 

For small-dimensional problems with two param-
eters uv u2 such a trace of the limit-point curves has 
been successfully accomplished. Basically, from a given 
starting point a primary curve is followed along which, 
say, u2 is constant. As soon as a limit point with respect 
to M j is encountered the trace is turned to follow the 
curve of these limit points. The technical difficulty is 
here to specify an appropriate auxiliary equation which 
defines this curve on the equilibrium surface. It is easy 
to identify such equations, but in most cases their forms 
are numerically cumbersome. This was the reason for 
the restriction to small dimensional problems. Yet the 
results were in all cases highly interesting and encourag-
ing. It is hoped that the indicated technical difficulties 
can be removed to provide a more general numerical 
approach to the study of the structural stability of 
complex mechanical systems. 
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Abstract—An optimal design problem is formulated as a system of nonlinear equations rather than the 
extremum of a functional. Based on the Chow-Yorke algorithm, another globally convergent homotopy 
method, and quasi-Newton methods, two algorithms are developed for solving the nonlinear system. 
Although the base algorithms are globally convergent (under certain fairly general assumptions), there is 
no theoretical proof of global convergence for the new methods. Some low dimensional numerical results 
are given. 

1. INTRODUCTION 

Most engineering designs are based on linear theories 
of physical phenomena. But since the parameters in 
the design problems are treated as variables, the 
mathematical formulations of the design problems are 
nonlinear. The usual formulation of an optimal design 
problem is to seek the extremum of a functional. If the 
optimality conditions are stated as differential or 
algebraic equations, the optimal design problem can 
be formulated directly as a system of nonlinear equa-
tions. 

The finite element method is used to approximate the 
differential equations. The resulting nonlinear algebraic 
system is the projection of the original optimal design 
problem into a finite dimensional space. The solution 
of the algebraic system approximates that of the 
original problem. The algorithms developed here are 
based on globally convergent algorithms that have 
been used successfully in situations where Newton's 
method for nonlinear systems fails to converge. Ex-
amples of this approach are some nonlinear two-point 
boundary value problems [1], some fluid mechanics 
problems [2], the nonlinear complementarity problem 
[3], and the generalized plane stress problem of 
elasticity [4]. 

Two algorithms are developed here. One is a hom-
otopy method and the other is a least change secant 
update (quasi-Newton) method. To illustrate the tech-
niques, in this paper they are applied to a nonlinear 
algebraic system originating from a generalized plane 
stress problem of elasticity. This same model problem 
was solved in [4] by a globally convergent homotopy 
method. The homotopy map used in [4] was rather 
complicated, more so in order to be able to prove 
global convergence than from practical necessity. The 
homotopy map used here retains some of the essential 
features of the map in [4], but is much simpler, hence 

fThe work of this author was partially supported by 
NSF Grant MCS 7821337. 

easier to implement. Unfortunately preliminary 
numerical results indicate that the homotopy method 
is not globally convergent. Creation of a new homotopy 
method is justified because both Newton's method and 
standard continuation diverge (unless the starting 
point is close to the solution) for this model problem 
[4]. Quasi-Newton methods are not theoretically 
globally convergent and in fact are known to fail for 
the model problem here [4], but a quasi-Newton 
method with a twist was very successful on the model 
problem. 

The generalized plane stress problem of elasticity is 
chosen as a model problem of optimal design. The 
thickness of the sheet is assumed variable. The goal is 
to find the optimal thickness distribution of a given 
loading such that the strain energy density is uniform 
in the sheet. 

The problem reduces to a nonlinear algebraic system 
by the use of the finite element approximation given 
in the next section. 

2. FORMULATION 

A generalized plane stress problem of elasticity 
describes the behavior of an elastic sheet under edge 
loading conditions. The sheet can be manufactured 
with an arbitrary thickness distribution. The optimal 
design problem is to seek a thickness distribution for a 
given loading such that the strain energy density is 
constant. This design uses material optimally in the 
elastic range. If the given load increases proportionally, 
the elastic limit of the material will be reached simul-
taneously throughout the sheet. 

The problem must satisfy the equations of equilib-
rium, 

έ ( Α σ " ) + έ ( Λ σ " ) = 0 (2.1) 
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where h is the thickness and σχχ, axy and ayy are the 
components of the stress tensor. 

The elastic material properties are described by the 
generalized Hooke's law 

du 1 / ^ n 

du dv 
dy dx 

2(1 + v) 
<^=0 

(2.2) 

nonlinear algebraic system is 
K(t)u=f (2.8) 

u'BjU=l i = l , . . . ,m 
where t is an m-vector ; u is an n-vector and f is a given 

vector (m<n). The stiffness matrix has the structure 

K(t)= fi tîKt (2.9) 

where the K{ are the element stiffness matrices which 
are positive semidefinite. 

where u, v are the displacement components in the x, y 
directions respectively; E is the Young's modulus; and 
v is the Poisson's ratio. 

There are six unknowns in the system of eqns (2.1)-
(2.2) in terms of the thickness, stress and displacement 
components. 

If the thickness is regarded as a known parameter, 
the problem can be interpreted as an operator equation, 

0 • i 
0 0 0 

dx ° Eh 

dy dx 

o ± ^ 
dy Eh 

dy 

d_ d_ 
dx dy v 

0 _ 
Eh q, =0 (2.3) 

-2(1 + v) 
Eh 

0 — 
--1 
Eh 

«2 

«3 

where 
i i =h°xx> ai=haxr «3 =Affw (2.4) 

are the edge stress resultants. The differential matrix 
operator is a function of the thickness. A finite element 
method given by Jespersen [8] may reduce (2.3) to 
an algebraic system, 

K(*)u = f (2.5) 

where K is an n by n positive definite matrix called the 
stiffness matrix, h is the vector of thicknesses of the 
elements, u is the nodel displacement vector and f is 
the load vector. If h is known, (2.5) may be solved 
uniquely. 

We shall assume the strain energy density 

K (2.6) -ayy)
2 + a2

xy=U0 

to be constant, t/0, everywhere. In terms of displace-
ments, (2.6) is a differential equation. By the same 
finite element scheme, the condition (2.6) for each 
element has the form 

tfBp=l z = l , 2 , . . . , m (2.7) 

where the B, are n by n positive semidefinite matrices, 
and the constant U0 is used for normalization. The 
total number of elements m is usually smaller than the 
number of nodes n. 

Since the thickness h is non-negative, let Af=i?. The 

3. HÖMOTOPY ALGORIIHM 
The algorithm developed here has the same theo-

retical basis as the fixed point algorithm in [5] and [6]. 
The theory i° summarized in the following lemmas. See 
[5] for the proofs and [6] for an elementary exposition. 
Let En denote w-dimensional real Euclidean space. 

Lemma 1. Let p\En x [0, 1) x En^En be a C2 map such 
that the Jacobian matrix Dp{a, λ, x) has full rank on 
ρ-1(0)={(α, A, x)\p(a, λ, χ)=0}. Then for almost all 
aeE", the Jacobian matrix of ρα(λ, χ) = ρ(α, λ, x) also 
has full rank on p~ l(0)= {(A, χ)\ρα(λ, χ)=0}. 

This is expressed in differential geometry jargon by 
saying if p(a, A, x) is transversal to zero, then for almost 
all a ρα{λ, χ) is also transversal to zero. "Almost all" 
means every point except those in a set of Lebesgue 
measure zero. Alternatively one could say ρα(λ, χ) is 
transversal to zero with probability one. Lemma 1 is 
known as a "parameterized Sard's Theorem". Now 
suppose pa is chosen such that pfl(0, x)-s(x) is a simple 
function with unique zero χ - α , and ρα(1, χ)=/(χ) 
is the function for which a zero is desired. The next 
lemma merely spells out the implications of Lemma 1. 

Lemma 2. Under the hypothesis of Lemma 1, for almost 
all a there exists a zero curve y of pa emanating from 
(o, a) along which the Jacobian matrix ϋρα(λ, χ) has 
full rank, y is a simple C1 curve, is disjoint from any 
other zeros pa might have, and either wanders off to 
infinity or reaches a zero of/(x) (at λ-1). 

Note that if the zero curve y is bounded, it must reach 
a zero of/(x). In general terms, the homotopy method 
is: construct the homotopy map ρα(λ, x), then track 
the zero curve y emanating from (0, a). If y is bounded, 
then the algorithm is globally divergent with proba-
bility one. It turns out that y is bounded for many 
important problems [1-6], hence there are globally 
convergent algorithms for these problems. The hom-
otopy map pa may be simple, as for the Brouwer fixed 
point problem [6], or quite complicated, as for the 
optimal design problem [4]. 

Another observation is that this homotopy algorithm 
is not just continuation or embedding, λ is not an 
embedding parameter that increases monotonically 
from 0 to 1, but is a dependent variable that can both 
increase and decrease along y. Furthermore, the full 
rank of Dpa along y and the way in which the algorithm 
is implemented guarantee that there are never any 
"singular points" along y. Singular points occur 
frequently in standard embedding techniques, resulting 
in their failure. 

The nonlinear system under consideration here is 
(2.8). For comparison, the homotopy map used in [4] 
will be given. Define 
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φ:Ε"x (0, I f x [0,1)x Em x En->Em+n 

by 

φ(α, b, λ, t, u) 

[AK(t)+(l-A)dtag(t?, . . . , tLl , . . . , l ) ]u 

u'[AB, +(1 - A J e / J u - 1 - (1 - W , 

«'[AßM+(l-AVme'm>-l - ( 1 - W « 

where ^ is an «-vector with 1 in the /th component and 
zeros elsewhere, diag (t\,...) is an nxn diagonal 
matrix with diagonal elements t\, Now regard 
a, bt i, u as being complex vectors, so that φ defines a 
complex map 

\jt:CH'm x [0,1) x cm+n->CM+n. 

Next convert every complex vector v=(vl9 v2, · ·.) to 
a real vector (Re vl9 Im vi9 Re v2, ·. ). This converts 
ψ back to a real map 

p:£2 n + 2 mx[0, l)x£2w+2"->jE2m+2", 

and 

ρά(λ,χ) = ρ(α,λ,χ) 

is the homotopy map actually used. The obtuse defini-
tion of φ and the complexification of ψ make it possible 
to prove that the zero curve y of pd emanating from 
(0, a) reaches a zero of (2.8) at λ= 1. 

The proposal here is to use a simpler ψ, but the same 
complexification process. Let ι?=(ί, «), 

]K{t)u-f 

Thus y is the trajectory of the initial value problem 
(3.2H3.3) with initial conditions 

and take 

WBmu-\ 

t^a,A,t;)=AF(i;) + (l-AXi)-a). 

Converting φ to complex and back to real again as 
above leads to the homotopy map 

ρά(λ, x) = AG(x)+(l -AXx-<a /(3.1) 

where x€£2m+2". Lemmas 1 and 2 apply to this ρφ 

hence the proposed homotopy method is to track the 
zero curve y of pd emanating from (0, d). There is no 
proof that y reaches λ—l but it is possible to prove 
that y cannot turn back toward λ=0. 

The details of tracking y are in [6], so that aspect 
will only be sketched here. Parameterize y by arc 
length so A = A(s), x = x(s) along y, and 

Pd(X(sl x(s))=A(s)G(x(5))+(l -A(s)Xx(s)-</)=0. 

Then 

±PM*\m-Dpix,*)(^)=°> (3·2) 

and since the parameter is arc length, 

= 1. |U'ds)||2 

A(0)=0, x(0)=d. (3.4) 

Note that (3.2) does not explicitly specify the derivative 
(cU/ds, dx/ds), which is required by any ODE sub-
routine. However, the full rank of Dpd{X(s\ x(s)), the con-
dition (3.3), and the continuity of (cU/ds, dx/ds) along y 
permit the unique determination of the derivative. 
The details of the numerical calculation of (dA/ds, 
dx/ds) are in [6] for dense Dpd and in [4] for sparse 
Dp* 

The initial value problem (3.2H3.4) is most efficiently 
solved by a variable step, variable order Adams 
algorithm as in [7], for example. Since the ultimate goal 
is to solve G(x)=0 and not to track y, some special 
strategies are called for. These strategies, based on 
computational experience, are discussed in [6] and [1]. 
Since λ is a dependent variable and the ODE solver is 
taking discrete steps, it is unlikely that λ will hit 1 
exactly. As soon as /L(s)> 1, inverse interpolation with 
previous points saved by the ODE solver yields an 
s such that A(s)= 1. The corresponding x(s) is a zero of 
G(x). Note that no extra derivative evaluations or 
steps by the ODE solver are required for the inverse 
interpolation. 

4. QUASH^EWTON ALGORTfflM 

Define v=(t,u) and 

m= 

'K{t)u-f 
viBxu-\ 

(3.3) 

uxBmu-\< 

as in Section 3. The most modern quasi-Newton 
methods, known as least change secant update methods, 
are based on solving 

F(t;)=0 

by minimizing 

When intelligently programmed, they are in practice 
usually globally convergent because they guarantee a 
decrease in ||F(t;)|| at each move [10]. This feature is 
necessary for robustness, but it results in their failure 
on (2.8), because ||F(t?)|| has local minima at which 
Ην)φ0. 

A least change secant update method applied 
directly to F{v) will generally fail (unless the starting 
point is sufficiently close to the solution). The pro-
posal here is to apply the least change secant update 
method in [12] to the complexification 

G(x) 

of F(v% where G is the same as in Section 3. At least for 
the model problems tried here, this trick worked very 
well. G(x) does not have the local minima difficulties 
afflicting F(v). The drawback is that the dimension 
of the problem doubles, but clever programming can 
partially overcome this. 

Least change secant update methods have the form 

x(fe+1) = x(k)-y/ifcG(x(fc)), 
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where Hk is an approximation to the inverse of the 
Jacobian matrix DG(xik)\ and y is chosen to guarantee 
certain desirable properties of the sequence {xik)}. Hk 

is updated at each iteration in 0((n + m)2) operations, 
compared to 0((n + m)3) for Newton's method. The 
precise details are complicated, and can be found in 
[10]. The efficiency per iteration, ultimate superlinear 
convergence, and robustness make least change secant 
update methods very attractive. 

5. NUMERICAL RESULTS 

To illustrate the dependence on m and w, the problem 
(2.8) was solved for various m and n using the data 
described below. Let n=/cm, and Kt be an nx n block 
diagonal matrix with kxk diagonal blocks. All the 
diagonal blocks are zero except the ith, which is 

B = 

Thus 

Kr 

2 - 1 0 
-1 2 - 1 
0 - 1 2 o 
o 

o 

o 

(5.11 

/ 

ß; is an nxn block diagonal matrix with the same 
block structure as X„ and has the form (4.1) with 
B = /. / is an rc-vector with the jth component being 
0.01/. 

Table 1 shows the results. The execution times are 
in seconds on an IBM 370/158. The stopping criterion 
was ||G(x)||a^10~4, and the starting points were 
chosen arbitrarily, but always at least a distance 1 
from the solution. Failure of the homotopy method to 
converge is indicated in Table 1 by a dash. The number 
of Jacobian evaluations is reported in parentheses 
after the CPU times. The computer code used for the 
homotopy method was the fixed point code in [11], 
which also produced the numerical results in [1] and 
[6]. The quasi-Newton code used was the FORTRAN 
subroutine HYBRJ, part of the MINPACK package 
being developed at Argonne National Laboratory [12]. 

The CPU times in Table 1 are from codes which 
assume that the Jacobian matrix is dense, and use 
direct (elimination) methods to compute the kernel 
of the Jacobian matrix Dpd(X, x) (for the homotopy 
algorithm) or factor the Jacobian matrix DG(x) (for 
the quasi-Newton method). Typically the Jacobian 
matrix in optimal design problems is very sparse, and a 
production code would use iterative sparse matrix 
techniques to find the kernel of Dpd or factor DG. An 
important aspect of Table 1 is the number of Jacobian 
evaluations, which would be the same independent of 
how the matrix calculations are done. Note that the 
number of Jacobian evaluations is relatively insensitive 
to the dimensions m and n for the homotopy method, 
which is typical behavior [6]. Since the whole point of 
quasi-Newton methods is to avoid explicitly calculating 
the Jacobian, the quasi-Newton CPU times are the 
important figures. 

Large scale computational results for a realistic 
generalized plane stress problem in elasticity will be 

Table 1. 

m 

2 

2 

3 

4 

3 

1 2 

5 

4 

3 

5 

1 4 

10 

5 

6 

10 

15 

n 

4 

6 

6 

8 

9 

10 

10 

12 

15 

15 

20 

20 

25 

30 

30 

30 

to ta l dimension 

12 

16 

18 

24 

24 

24 

30 

32 

36 

40 

48 

60 

60 

72 

; 80 

90 

CPU 

homotopy 

8.8 (95) 

— 

98.0 (109) 

80.1 (86) 

60.0 (70) 

----

----

— -

— -

— -

— -

— -

-~2 

time 1 

quasi-Newton 

• 4 (1) 

.6 (1) 

.9 (1) 

1-8 (1) 

2.0 (1) 

3.0 (2) 1 

3.6 (1) 1 

8.3 (2) 

20.8 (4) 

18.9 (2) 

61.1 (4) 1 

41.0 (1) 

131.1 (4) 

262.6 (4) 

310.4 (3) 

183.5 (1) 1 
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reported in a future paper. 
In conclusion, recall that Newton's method, quasi-

Newton methods and standard continuation fail when 
applied directly to (2.8). A complicated nonlinear 
homotopy based on the Chow-Yorke algorithm was 
developed in [4], and proven globally convergent for 
(2.8). The existence of a globally convergent homotopy 
algorithm for (2.8) motivated the algorithm of Section 
3. Unfortunately the simple homotopy algorithm of 
Section 3 is not always globally convergent, which 
suggests that the intricacies of the homotopy map in [4] 
may be necessary. Hence there is no completely 
satisfactory homotopy algorithm for optimal design 
problems of the form (2.8) yet. The Section 4 algorithm 
is perhaps obvious, but it is interesting that it works. 
At present the best least change secant update methods 
destroy sparsity {Hk is dense even though DG(x) may 
be very sparse), and thus the quasi-Newton approach 
is (at present) infeasible for large m + n. There are sparse 
matrix techniques for the quasi-Newton updating and 
factoring of a new quasi-Newton method (which retains 
sparsity and superlinear convergence) [13-16], but the 
global behavior and ultimate convergence rate of this 
new method are untested on real problems. Sparsity is 
maintained by sacrificing other desirable features of the 
quasi-Newton update (such as symmetry or positive 
definiteness), and a satisfactory compromise remains 
to" be found. Note that the kernel of a homotopy 
Jacobian can be computed by sparse matrix algorithms. 

There is no simple, globally convergent, feasible 
algorithm for large dimensional problems like (2.8). 
The advantages of both homotopy and least change 
secant update methods are tocj great to rule either 
approach out, and both should pe pursued with regard 
to optimal design problems. 
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Abstract—Many advanced engineering problems suffer from inadequate solution because the appropriate 
constitutive behavior for the materials involved is not available. This is certainly true where polymers are 
concerned because in many situations involving failure analysis the non-linear viscoelastic material prop-
erties become important. 

In this paper a non-linear viscoelastic constitutive law is considered. It starts from the assumption that 
linear viscoelasticity is appropriate under infinitesimal strains and that the material description must revert 
to this case. The non-linearity of this development is derived from the stress dependent time response in the 
deformation process. The physical basis for the description derives from the observation that stress induced 
dilatation effects the mobility of molecular chains through changing the free volume in the polymer. Test 
data for polyvinyl acetate are compared with computations under conditions of relaxation and constant 
strain rate deformation. Excellent agreement is obtained between the proposed model and experiments. 
This agreement would indicate that the free volume model is definitely a possible way of describing non-
linear viscoelastic behavior under small to moderate strains. 

l.INraODUCnON 

The use of high speed computers in mechanics has 
removed a great many obstacles to scientific and design 
problem solving. In solid mechanics and structural 
engineering finite element techniques have made great 
strides in solving problems that were considered ex-
tremely complex by the earlier standards. These ad-
vances were made possible by the discretization of the 
well known field equations for virtually arbitrary 
geometries. The exploitation of these methods has 
become often more a matter of finances than of basic 
ability. 

Besides possibly finances, a severe limitation on 
physically realistic problem solving arises from our lack 
of knowledge of material constitutive behavior. By far 
most structural or "continuum" codes incorporate 
linearly elastic material behavior with only some pos-
sessing capability of modelling non-linearly elastic and 
plastically deforming solids. With regard to time or rate 
sensitive materials only the (physically unrealistic) 
rudiments of linear viscoelasticity seem to be con-
sidered. In connection with today's increased use of 
structural polymers in advanced engineering designs, 
these material descriptions pose severe limitations. All 
the power of computational mechanics developed so 
far is compromised critically if the constitutive behavior 
of the structure is modelled insufficiently well. 

In this presentation we are concerned with non-
linearly viscoelastic material behavior. There are 
several physical reasons why materials behave in a non-
linear manner. We distinguish polymeric solids as 
being single-phase or filled with soft or stiff inclusions 
in the form of particulates or continuous and chopped 
fibers. Examples are solid propellent rocket fuels, 
impact toughened polystyrene, tire tread shock, glass 
and graphite fiber reinforced plastic and structural 
adhesives. 

Macroscopical non-linear material response in such 
materials may be associated with the development of 
discontinuities such as (micro) cracks and separation of 

the phases. On the other hand, grossly non-linear 
behavior in single phase materials may be the result of 
the appearance of crazes which qualitatively have the 
same effect as the generation of multiple cracks. 

Here we wish to address non-linearly viscoelastic 
behavior from more molecular forces which do not 
occur as the result of such internal damage. Thus, this 
type of non-linearity is (possibly) present before 
damage mechanisms become operative. 

Specifically, we are concerned here with the effect of 
stress or strain induced changes in the rate of relaxation 
or creep. In related work [1] we have noted that the 
intrinsic time scale of a material can be modified by 
moisture in the same manner as by temperature. In fact, 
we observed that the time scale was affected by the 
volume dilatation whether the latter was occasioned 
thermally or by swelling. The deduction is then close at 
hand that also stress induced volume dilatation will 
affect the intrinsic time scale of the material. 

The effect of pressure on rheological behavior has 
been studied by several authors, first with a change in 
the glass transition behavior in mind [2-4] and later 
with rheological implications [5]. There seems to be 
no systematic study involving the effect of stress state on 
rheological behavior as a result of associated volume 
changes. Gent has attributed the crazing phenomenon 
in glassy plastic to stress-induced softening and void 
formation in the craze [14]. Very recently Bernstein 
and Shokooh [7] have considered the phenomeno-
logical concept of a "stress clock" which concept is 
akin to the physical basis underlying Gent's considera-
tions and those of volume increase developed here in 
the sequel. It should be mentioned that in connection 
with fibrous and particulate composite thermodynamic 
reasoning led Schapery and Lou [8, 9] to examine 
modification of the relaxation or creep rate through a 
"strain dependent" shift factor. 

For our present purposes we confine ourselves to 
relatively small strains which seems appropriate for the 
deformation of rigid polymers. We thus exclude spec-
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ifically considerations of the large deformations [10] 
associated with rubber elasticity and viscoelasticity. 
Therefore, we may feel justified to begin our considerar 
tions with the linearly viscoelastic behavior of an iso-
tropic solid which must describe its constitution under 
truly small strains or stresses; in.other words, the non-
linear description of material behavior reduces then 
automatically to linear viscoelasticity in the limit of 
vanishing stresses and strains. 

2. THEORETICAL BACKGROUND 

As mentioned in the introduction, several investiga-
tors have studied the effect of temperature and pressure 
on the thermorheology of high polymers [2-5, 11-15]. 
These effects are commonly associated with changes in 
the free volume of the material. According to our 
experimental studies mentioned in the introduction and 
involving parametric variations in temperature and in 
water concentration, the (free) volume offers a unifying 
parameter to describe changes in the time scale of the 
material response. We proceed now to enlarge this 
concept by including the effect of mechanically (stress) 
induced volume dilatation. 

The time dependence or viscosity of the rheological 
response is modified by a time-multiplying factor a 
which depends on the temperature, solvent concentra-
tion and mechanical dilatation, 

a = a(T,c,0). (1) 
Doolittle expressed this factor in terms of the free 
volume by 

B (\ 1 
loga = 

2.303 V/ /o 
(2) 

where / is the fractional free volume defined in terms 
of the total volume v0 of the solid and the free volume 

/ = (3) 

and denotes by / 0 the fractional free volume at some 
reference conditions. We consider the fractional free 
volume to depend on three variables: temperature % 
solvent concentration c, and mechanically induced 
dilatation Θ, or 

f=AT9c,B). (4) 

Let us assume that the change in fractional free 
volume due to any one of the three variables is additive. 
This assumption appears entirely adequate for our 
present purposes since an examination of the partial 
derivitives of/ with respect to % c and Θ reveals that 
only a small error results for ranges of the variables 
encountered normally. We then have differentially 

d/=adT+ydc + <5-d0, (5) 
where a, y and δ are, in general, functions of T, c and Θ. 
Let us assume further that a, y and δ are constants, a 
condition that does not seem poor if we remain below 
the glass transition temperature and below the boiling 
point of the solvent. Then 

/ = / ο + α · Δ Γ + Γο·+<5·0, (6) 

tRepeated indices indicate summation. 

where we allow for zero solvent concentration and zero 
mechanical dilatation in stress free reference condi-
tions. In terms of (6) eqn (1) becomes then 

B oL-AT+yc + δ-θ 
\oga(T,c,0)=-

2.3O3/o/o + a - A r + r c + <5-0" 
(7) 

Through its dependence on the stress induced volume 
changes this shift factor a{T, c, Θ) becomes instrumental 
in the non-linear material response described below. 

Let us consider first the linearly viscoelastic con-
stitutive description of an isotropic solid under 
infinitesimal deformations, in terms of the deviatoric 
stress and strain components (5(/, e^) which are derived 
from the components of stress, τ0· and (infinitesimal) 
strains ε̂ - through the relations 

eu=£ij-ieôij 

(8a) 

(8b)t 
Let μ(ΐ) and K(t) be, respectively, the relaxation moduli 
in shear and volume deformation. We have then at 
reference conditions 

S,=2 f 
J — c 

μ^-ξ^άξ, (9) 

* = 3 Γ 
J — ( 

Κ(ί-ξ)^(θ + α*ΑΤ + γ*ε)άξ. (10) 

If all macroscopic change in volume equal the change 
in free volume then a = a*, y=y* and δ = 1 ; we are not 
prepared to make that assertion now, nor is such an 
assertion absolutely necessary at this time for our later 
development. However, we point out that the compar-
ison of our analysis with that data produces that 
δ= 1( = 0.98). Also we note that for comparison of our 
computation with that data the terms a* AT and y*c 
shall not enter our considerations. 

Generalizing Lee's suggestions [16-18] that the 
time-temperature shifting under non-isothermal con-
ditions be valid instantaneously, i.e. the temperature 
reduced time t relates to the actual time t by the 
differential relation 

df = -
di 

"fl[T(t)]· 
We have, more generally, in view of (7) 

(H) 

Jo^l [nc),c(c),ö(o] Jo« [T(£),c(O,0(O]· 
(12) 

Under conditions of time varying temperature, solvent 
concentration and stress dilatation 

SyU^j" μ(ϊ 
de-

(13) 

τω(ί) - ' Γ . Κ(ϊ-ξ')~(θ + χ*ΑΤ + γ*ο)άξ. (14) 

Inasmuch as the reduced time in the argument of the 
relaxation function depends on the total stress or strain 
history, these relations no longer represent linear opera-
tions that connect stresses with deformations. Thus 
while the appearance of a linearly viscoelastic material 
behavior appears preserved considerable deviation 
from small strain linearity will become apparent. 
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3. EXAMPLES FOR TWO SPECIAL LOAD HISTORIES 

From eqn (12) it is apparent that holding the tem-
perature, concentration and dilatation constant during 
a test would produce a time independent shift of the 
test result since thus t'=constant -t. Experimentally 
such a condition is extremely difficult, if not impossible, 
to impose. The next constraint is posed by available test 
equipment. With a view toward later comparison of test 
data with the evaluations of eqns (13) and (14) we there-
fore consider, for the present, the problems of stress 
relaxation and monotonie loading by a history of 
constant strain rate. 

(1) Relaxation at constant temperature and concentration 
We consider a uniaxial tensile specimen and impose 

the Heaviside strain history 

εη=ε0/ΐ(ί), (15) 
while all stresses except τιχ vanish. The pertinent equa-
tions become then 

f d 
Sii = *n = 2 j / ^ - ^ ( ε η - ε ^ ) , (16) 

3Tkk~ 3 τ ΐ 1 ~ 
J — c 

W - £ / ) ^ ( £ i i + 2e22),(e33 = e22). 

(17) 
Since these relations constitute non-linear operations 
between τ η and the strains ε η and ε22 there is no 
direct analytical way of eliminating ε22 in order to 
obtain a relation between τ η and ε η only, except for 
infinitesimal strains (a{T, c, θ) = constant). In this case 

-I ίΚ'^-ξ&άξ, 

(18) 

(19) 

where the tensile relaxation modulus E(t) is achieved by 

(20) Ε=-5'7 

3K + /1 
bars denoting Laplace transformed quantities. 

The increase X_1(i) of the bulk modulus K(t) is 
determined by 

Jo 
^κ-Ηί-ξ)Κ(ξ)άξ=ι (21) 

Because the non-linear effects considered here are due 
to the stress induced changes in the scale of relaxation 
times, it is reasonable to assume that the same effect 
is prevalent in the simple tensile test. We therefore 
generalize the eqns (18) and (19) by applying the time 
reduction (12) to render 

r n = f Ε(ΐ'-ξ')04±άξ, 
J — 00 δξ 

J - oo H 

(22) 

(23) 

We note once more that (22,23) do not follow direct-
ly from (16, 17); however, since the representation of 
linearly viscoelastic behavior can be given in several 
ways, each of which involves two independent material 
functions, it seems justifiable to start with the represent-
ations (18) and (19) in order to lead to stress induced 
non-linear behavior. 

We now specialize (22) and (23) for step strain load-
ing according to (15) to obtain 

J - c 
Ε[ΐ-ξ')ά(ξ)άξ, (24) 

with δ(ξ) denoting the delta function; this reduces 
further to 

ri i=e°m ^ I W d£ (25) 

which, for infinitesimal strains (0->O) render 

τ η =ε 0 £( ί ) , (26) 

where E(t) is the relaxation modulus for infinitesimal 
strains. Note that (25) represents a decaying stress 
history; however, because t' depends on the stress 
history, which in turn depends on the applied strain 
ε0, the decay history will vary with the applied strain. 
Nevertheless, for short times the same glassy limit 
modulus will be achieved. 

We particularize (17) now to the case of constant 
temperature and zero solvent concentration. There 
results then 

log<i(0) = 
B δ·θ 

2.303/0 f0-ô-9\ 
(27) 

with Θ being given by (23). In order to evaluate (27) we 
need to specify the bulk modulus K{t) or its inverse 
X_1(i). We started this investigation by assuming a 
constant bulk modulus, but when we effected a com-
parison with the experimental data found that a time 
dependent description in the form of a standard linear 
solid yielded much better results. Accordingly, we chose 

K _ 1 ( i )=M 0 + M 1 ( l - e - H (28) 

The complete set of equations governing τη( ί) is then, 
with E(t) as the relaxation modulus at infinitesimal 
strain 

= ε0£(ίΟ, 

Jo a\TQ, o, 

\oga=-
δ-θ 

2303fk f0 + à-ff 

3-ö = (M0-fM1)T11-JIe-i'-^^di. 

(25a) 

(25b) 

(27a) 

(29) 

These equations are solved numerically. In order to 
avoid extensive iteration in their solution, we approx-
imated (29) by replacing t — ξ' with t — ζ, since we believe 
that difference to be relatively unimportant. In fact, for 
our experimental study we have no information on 
K(t\ so that M0, M and τ must be extracted by data fit; 
the physical reasonableness of the values so deter-
mined would then constitute a further test of the pres-
ent considerations. 

(2) Constant rate of strain extension 
Prescription of constant rate of straining in the form 

of 
ε η = έί (30) 

results in the full set of response equations, analogous 
to (25a,b),(27a)and(29)as 

τ η ( ί )=έ f £(t ' -£ ' )d{, (31a) 
Jo 
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r-f-Γ-
loga=: 

-B 

as 
[Τ90,Θ(8)Υ 
<χτΑΤ+δ·θ(ή 

(31b) 

(31c) 

Ö(i)=(M0 + M1)T11(i)-Jie—^^iid^. (31d) 

2.303/0 / 0 + a ^ T + δ - θ(ή 

Again, according to the remarks following eqn (29) 
we have replaced t! -ξ' by t -ζ in (3Id). For later refer-
ence when we compare the evaluation of (31a~d) with 
test data we point out that the experiments with con-
stant strain rates involve relatively short times; the 
transition behavior of the bulk modulus is not involved 
and it is entirely adequate to consider the bulk modulus 
to be constant at its glassy or short time value. Also, 
because test data were obtained at different tempera-
tures, we include here the effect of different but constant 
temperatures. Since all test temperatures are below the 
glass transition temperature we allow only for the 
simple proportionality of the free volume to the tem-
perature change. 

4. COMPARISON WTTH EXPERHVŒNTAL DATA 

In order to test the proposed theory we compare the 
computations with data from measurements on poly-
vinyl acetate. In the interest of brevity we do not account 
here the method of specimen preparation but content 
ourselves with stating that the specimens were machined 
in a cylindrical shape with a test section 0.8 cm (0.312 
in.) in diameter and a test section of 5 cm (2 in.). The 
measurements were made with the aid of an Instron 
tensile testerf. Measurements of strain in the relaxation 
tests were accomplished via bench marks on the speci-
men test section, the relative distance of which was 
monitored with an Optron. Such direct strain measure-
ment also allowed continued monitoring of whether 
specimen slippage occurred in the grips. 

(1) Relaxation tests 
Relaxation tests were conducted at uniaxial tensile 

strains of 1,3 and 5%. While the method of strain meas-
urement allows an accuracy of a fraction of a percent 
the prescription of the applied strain through the mech-
anism of the straining machine was difficult. We were 
therefore not able to prescribe small strains well 
though it could be measured well ; as a consequence, we 
lack precise data at "infinitesimal" strains. 

Relaxation tests were conducted at different tempera-
tures at each of the indicated strains. For each of the 
latter a master curve was prepared by shifting the seg-
ments for a best fit as a master curve. Strictly speaking 
this temperature shifting should not be independent 
of the strain at which measurements are made; how-
ever, as a first approximation we assume that procedure 
to be adequate. 

The experimental master curves are compared with 
those calculated in Fig. 1. Note that a 1% strain pro-
duces a high stress and thus a significant dilatation. As a 
result the 1 %-relaxation data should not agree well with 
the relaxation behavior for infinitesimal strain. Accord-
ingly, we have also calculated the relaxation behavior of 

|We gratefully acknowledge Prof. Tschoegl's assist-
ance, in whose laboratory we could perform the relaxation 
measurements. 
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Fig. 1. Relaxation behavior of polyvinyl acetate in uniaxial 
tension at different strain levels. Dots represent experimental 

results; solid lines indicate non-linear analysis. 

infinitesimal strain, shown as curve A in Fig. 1. 
The calculated curves exhibit some apparent "un-

evenness" which is the result of our uncertainty of the 
true bulk behavior. Apart from this blemish it is clear, 
however, that the general response of the specimens is 
well followed by the calculations, provided we let 

K(t) = [1.34 +2.01 βχρ(- ί /τ)] · 103 bar 
τ = 4· 105 min. 

Note that at least a partial check on the*validity of the 
representation of K(t) is given by comparing the com-
putation of Section 3 with appropriate and independent 
experiments, as described next, as long as the same 
bulk representation is used. 

(2) Constant rate of strain test 
Tensile specimens were strained in a closely control-

led (dry) thermal environment to produce typical 
"stress-strain" response curves. Since we found that the 
discrepancy between theory and experiment was on the 
order of 5% we saw no urgency to compensate for 
changes in specimen cross section. Accordingly, the 
stress is referred to the original, undeformed cross 
section. 

In Figs. 2(a-c) we show experimental results (dotted 
curves) together with the responses computed from 
eqns (31a-d) (solid lines). Also shown are the responses 
which a linearly viscoelastic solid would produce if 
linear viscoelasticity were valid at non-infinitesimal 
strains. It is apparent from eqn (7) and how the in-
stantaneous shift factor affects the stress-strain re-
sponse (27a) and (31c) that the apparently non-linear 
behavior is noticeably affected by the environmental 
temperature. The polyvinyl acetate used possesses a 
glass transition temperature of 28-29° C. To illustrate 
the effect of change in temperature on the stress-strain 
behavior we show in Fig. 2(a) and 2(b) the response at 
two temperatures (24.3 and 26.5°C). The difference is 
so noticeable because the higher temperature is fairly 
close to the glass transition temperature. To illustrate 
the effect of strain rate we include Fig. 2(c) which 
results from an increase in strain rate by a factor of 10 
over that in Fig. 2(b). Here it is interesting to note that 
the range of apparent agreement with the linearly visco-
elastic behavior extends to higher stresses or strains 
than for the slower strain rate, thus emphasizing the 
fact that the non-linear behavior is a rate or time 
related non-linearity. 
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Fig. 2. Uniaxial tensile stress as â  function of strain in 
constant rate of strain test, (a) and (b) illustrate different 
temperatures at the same strain rate, ib) and (c) illustrate the 
effect of different strain rate at constant temperature. 

CONCLUSIONS 

We have presented a theory of non-linearly visco-
elastic behavior which is based on the concept of how 
the free volume affects the internal time scale of the 
material. We have demonstrated that a formulation 
consistent with linearly viscoelastic behavior for 
infinitesimal strains leads to good agreement with the 
test data in uniaxial tension. The computation requires 
numerical evaluation and can be incorporated into 
numerical stress analysis codes. 

While it is not our primary purpose to have to justify 
the polymer physical aspects of the problem, it is of 

fDetermined at our laboratory by Mr. Luc Heymans, 
graduate student. 

interest to note that the constants required for the 
evaluation of the model are either determined by 
measurements independent from those reported here 

β = 0.16| 
/o = 0.01t 

a.r=5.98*10-4/°C (coefficient of thermal volume 
expansion) t 

and by fitting the theory to the test data with the bulk 
representation of eqn (28). Note also that, as mentioned 
before the constant δ = 1 ; this means that the mechanic-
ally (stress) induced dilatation is equal to the increase 
of the free volume. 
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Abstract—The purpose of this paper is to present a theoretical model for predicting the behavior of elastic-
plastic materials subjected to cyclic mechanical and thermal loading. The considerable literature in this 
area gives ample evidence of its significance. Solutions are sought in the areas of laser technology, nuclear 
reactor design, and turbine analysis, to name but a few. 

There are four sections contained in this paper: (1) the formulation of a special purpose constitutive 
law; (2) review of a variational principle for use with the constitutive law; (3) a discussion of the application 
of the model to a computer code; and (4) a comparison of several experiments to results obtained in the 
theoretical model. 

INTRODUCTION 

In this paper the classical isothermal rate independent 
theory of plasticity is extended to obtain a noniso-
thermal theory for thermoplastic materials. This exten-
sion is performed in two parts: first, it is assumed that 
material properties are temperature dependent; and 
second, an uncoupled rate dependent strain term is 
included to account for creep. In order to account for 
the Bauschinger effect during cyclic loading the theory 
includes a combined isotropic-kinematic workharden-
ing rule. The resulting incremental constitutive law 
includes a term attributable to nonisothermal loading 
and not contained in the isothermal theory. The addi-
tion of this temperature dependent stress increment 
into the constitutive law necessitates the derivation of 
a variational principle which differs from the well-
known isothermal principle. Thus, a virtual work equa-
tion is presented for use with the finite element method. 
This section is followed by a short discussion of the 
computational procedure used to implement the con-
stitutive law to a computer. 

In the final section results of several example prob-
lems are presented. The impetus of these sample 
problems is twofold in nature. First, examples will be 
utilized to clarify certain computational aspects of the 
constitutive theory, and second, experimental data 
will be compared to theoretical results as a means of 
verification of the theory. 

PRESENTATION OF THE CONSTITUTIVE THEORY 

Recall that in the incremental theory of plasticity the 
workhardening rule is defined by a yield function in 

tFormerly at Texas A&M University. 

stress space, which for temperature dependent com-
bined isotropic-kinematic hardening is: 

FiStj-a^kVds^n (1) 
where Stj= second Piola-Kirchhoff stress tensor 
af.=coordinates of the yield surface center in stress 
space, dep = uniaxial plastic strain increment, T — tem-
perature, and S άερ is a state variable representing the 
plastic strain history dependence in the yield function. 
Note that the explicit temperature dependence on the 
r.h.s. of eqn (1) precludes kinematic hardening due to 
temperature changes [1]. A schematic representation 
of eqn (1) is shown in Fig. 1. 

Differentiating eqn (1) gives the following consistency 
condition during plastic loading: 

dF
 A<?

 dF
 A 

■2k-:^d?-2k-2fcJ£dT = 0,(2) 

where the term (dF/dSfj·) represents dF(Si7 — a^/dS^· 
evaluated at Su — afj- which can be seen to be equivalent 
to dF/diSij — oiij). Since during neutral loading the 
plastic strain increment and dafj are zero, it is apparent 
that a statement governing loading is: 

5F 1n Λ, dk lrT^ Λ _ - d S , - 2 / c ^ d 7 V 0 . (3) 

In addition to the statement of consistency during 
loading given by (2), the following associated flow rule 
is employed : 

dES«<u|£, (4) 

where d££ represents the plastic strain increment 
tensor. 
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by Yamada [4, 5] in that the term containing dT is 
written as a separate portion of the stress increment in 
the latter's derivation. It will be shown, however, that 
the two are mathematically equivalent. Unfortunately, 
in the form presented in eqn (8) it is not possible to 
determine the stress increment due to the occurrence 
of several undetermined parameters on the r.h.s. 
Yamada has accounted for these terms by introducing 
the plastic work rate. We have chosen a slightly different 
method for determining the effect of these unknowns. 

As presented in a previous paper by us [6], we assume 
that there exists a scalar parameter c, called the harden-
ing modulus, which when multiplied by the plastic 
strain increment and subtracted from the stress 
increment will be parallel to a tangent to the yield 
surface. Mathematically, this may be stated as: 

(dSij-cdEÏj)--^. (9) 

cdFf 

Fig. 1. Yield surface as a function of stress and temperature. 

The stress at any time is assumed to be given by: 

where D\jmn is the elastic constitutive tensor at time t. 
Incrementation of eqn (5) was shown in our previous 
paper [2] to give: 

dS0=D:,^'(d£m„-d£l-d£L-d£L) 
+ dD1,.m„(£L-£:,„-££,-0 (6) 

where D1^ — elastic modulus tensor at time ί + Δί, dS/f= ID\] 
dDijmn=change in the elastic constitutive tensor (due 
to a temperature change) during time step Ar, Emn = 
total strain tensor, Ep

mn = plastic strain tensor, E„n = 
creep strain tensor, ET

mn = thermal strain tensor, and 
all superscripts t indicate measurement at time t. The 
superscript ί + Δί on the elastic constitutive tensor is 
necessary due to the fact that the time step is finite rather 
than infinitesimal. Note that incrementation of the 
constitutive law results in a stress rate which is not 
rotationally invariant unless an infinitesimal strain 
measure is used. Therefore, the resulting theory is 
applicable only to small deformations. 

The final expression required to complete the con-
stitutive law is the hardening rule. According to Zieg-
ler's modification [3] a tensorially correct statement is : 

day = dji(Sy-au* (7) 
where μ is a scalar to be determined by the consistency 
condition (eqn 2). 

The constitutive law is thus obtained by substituting 
eqn (4) into eqns (2) and (6) and solving for the stress 
increment tensor. The resulting equation is : 

The above constitutive law differs from that obtained 

It can be seen from an examination of the consistency 
condition (eqn 2), that in order for the above statement 
to be valid, the following must hold : 

>dF dF , . _ dk_ ,_P. _ dk 
:dspi 'dSu dStl dT 

(10) 

If one employs the normality condition in eqn (10) 
and substitutes the result into the constitutive relation 
(eqn 8), the result is : 

n l + Al dF dF nt + At 

ijmn dSvwdStu
 tumn 

CdSpqdSpq
UpqrsdSpqdSn x(dEmn-dEc

mn-dET
mn) 

lJVW dSvwdStu
 tum 

{ dSpqdSpJ'U™s dSpqdSrS/ 

x (£' -EPt -ECt -ETt) 
y^mn ^mn ^mn ^Ίηη) 

-4-dD (F* —FPt—FCt—FTt) 

The simplicity oTthe above formulation can be seen 
when one uses the normality condition in conjunction 
with eqn (9) to obtain 

(11) 

dF π ς 

CJ^Ï 
dEp

} 
dF_ 

2 dax 
= 3dF' (12) 

Thus, for isothermal loading it can be seen that the 
hardening modulus is simply two-thirds the instantan-

(8) 
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eous slope of the uniaxial stress-plastic strain diagram. 
However, for nonisothermal loadings this is not the 
case. To see this, note that since the uniaxial stress is a 
function of both the plastic strain history and tempera-
ture, an increment of uniaxial stress is given by : 

do t p do lr^ 
άσ=1-¥άερ + -ΓάΤ. 

dv οΤ 

Combining eqns (12) and (13) gives: 
2 / δσάΤ 

C e 3 H + ä T d i 

(13) 

(14) 

where H' is the instantaneous slope of the stress-
plastic strain diagram. Substituting the above equation 
into the constitutive relation (eqn 11), then rearranging 
and employing the normality condition, gives 

dSl 7=C:7 m M(d£m n-d£L-d£L) + clP0·, (15) 

where 

Γ- =D 
t + At 
ijmn 

At dF dF At 

ijvw dsvwdstu
 tumn 

3 dsnadsn„
Upqrs dsnjs„ 

(16) 

and 

d P „ = -

*(ΕΙ 

+ 

lJVW dS„„ 

dF_ 
dStu 

dDth 

J3n dspqds„Up«rsdspq 
r?Ct ?Tt ) + dDtJJiem 

3dStudStu
 ijmn 

dF 
dSmr 

3 dS„dS„"'dS„ 

-FTt) 

(17) 

and the terms H' and doy'δΤ'may be determined from 
uniaxial stress-strain data at time t. It can be seen that 
Cijmn is superscripted at time t since the hardening 
parameters are determined there. Note that the first 
two terms in dPfj represent the change in the effective 
modulus tensor during the load increment multiplied 
by the elastic strain tensor at time i, and the last term 
represents a correction term which results from using 
the hardening modulus, H\ at time t. 

The translation of the yield surface in stress space 
may now be obtained by substituting eqn (7) into eqn 
(2) and solving for d^. The resulting relation is: 

^μ— —ι 

ΛΙ dk Λ-Ρ 
dsr 

Wmn ^mn) 
dF 

(18) 

Equation (18) thus guarantees that the state of stress 
will remain consistent with the yield surface during 
loading even under nonisothermal conditions. 

To summarize, then, the constitutive law is obtained 
by solving, in the following order, eqns (17), (16), (15), 
(18) and (7). 

It should also be noted here that the above constitu-
tive theory satisfies thermodynamic restrictions [7], 
where the entropy generation term is introduced as an 
uncoupled rate independent (plastic) and rate depend-
ent (creep) dashpot in a Maxwell model with nonlinear 
temperature dependent modulus and viscosity. The 

resulting constitutive law is reduced from a set of non-
linear coupled first order differential equations by 
using a first order Runge-Kutta process. 

THE VARIATIONAL PRINCIPLE 

The constitutive law may be applied to the conserva-
tion of momentum via an appropriate variational 
principle. We present here briefly an incremental 
principle utilized in several nonlinear programs such 
as AGGIE I [8], NONSAP [9] and ADINA [10]. 
First consider the virtual work expression within a total 
Lagrangian description [11]: 

f Wôe^dV-Î TkôukdA+ï PoFkèukaV (19) 
Jvo JA JVO 

where 5Î/Ai = the 2nd Piola-Kirchhoff stress tensor at 
time t + Δί referred to the initial configuration at 
time r = 0, <5£$/At = the variation in the Green-Lag-
range strains at ί + Δί referred to the initial configura-
tion V0, Tfc = the surface tractions at time t + At referred 
to the surface of the configuration A, ôuk = the variation 
in the displacements, p0 = the local density in the initial 
configuration and Fk=the body force per unit mass at 
time t -f Δί referred to the initial configuration V0. 

We consider finite strain measure here for two reas-
ons: this is the formulation already contained within 
the above mentioned nonlinear computer codes; and 
the constitutive law presented herein may be extended 
to encompass finite strain using an appropriate hypo-
elasticity theory [12, 13]. 

The virtual work equation is incrementalized using: 

(20) S\^ = S\j+ASip 

and 
ij = = ^ + A £ y . (21) 

The stress increment ASU is then substituted using 
eqn (15) and the strain increment is implaced by in-
cremantalizing the Green-Lagrange kinematic relation 
[2]. The resulting variational principle is then linear-
ized by neglecting terms nonlinear in the displacement 
increment, and this approximation is accounted for 
later by using an appropriate iterative technique 
[14,15]. The linearized variational principle is then cast 
in a finite element matrix formulation by using an 
assumed displacement function. The resulting equa-
tions of motion are : 

[M]{ü'+A'} + ( [ ^ ] + [K'vJ){A«} = {/?'+i '}-{F'}, (22) 
where 

IXI= f Powrmdv, (23) 
JVo 

[KJ=f lAHCMdK (24) 

[KNL]= f [B„ L ] r ( [S ] - [C] [A£ c ] - [C] [>£ r ] 
Jv0 

+ [AP])[BNL]dK (25) 
dAuk κ ; + Δ ί = ί 

A ^ Δ Μ , -
PoFk 

JVo 
MM, 

dK (26) 

and 

-{£'} = f [BL]r({S}-[C]{A£c}-[C]{A£r} 
JVo 

+ {AP})dV, (27) 
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and [£L] and [BNL] are the linear strain displacement 
transformation matrix and the nonlinear strain dis-
placement transformation matrix [2, 11], respectively. 
Also, H is the matrix relating nodal displacements to 
the displacement field [11]. 

COMPUTER CODE IMPLEMENTATION 
The constitutive law and variational principle 

presented herein have been implaced in the finite 
element code AGGIE I [8]. This code has the capability 
to model both geometric and material nonlinear struc-
tural response, and contains two andthree dimensional 
isoparametric elements [16]. Under certain loading 
conditions the constitutive law (eqn 15) may be 
specialized for computational efficiency [2, 17]. Thus, 
the theory presented herein has been implanted in the 
code as four different material models: quasiisothermal 
elastic, nonisothermal elastic, quasi-isothermal elastic-
plastic, and nonisothermal elastic-plastic, where quasi-
isothermal is defined to mean that although the com-
ponent undergoes thermal loading the material proper-
ties may be assumed to be unaffected in the temperature 
range considered. Utilizing the appropriate model has 
been shown to give significant computational savings 
[17]. 

The amount of input data required will depend 
on the model being used. For the nonisothermal elastic-
plastic model (eqn 15) with negligible creep the 
required input data are shown in Fig. 2. If significant 
creep is expected it will be necessary to input additional 
data which will depend on the creep model being used. 
Currently, there are three creep models within the code 
[8]: a microphenomenological equation of state 
approach, an intepolation scheme using creep vs time 
curves, and a nonlinear viscoelasticity model. Nor-
mally, it will be necessary to input either creep curves at 
specified loads and temperatures, or a creep compliance 
tensor [18]. 

One will recall that in order to solve the thermal 

°xi 

OR 

T, T2 T3 T4 

Fig. 2. Materials input data. 

- * - T 

stress problem one must characterize the temperature 
distribution within the medium. It is assumed in this 
theory that the mechanical deformation and heat 
transfer problem may be solved a priori. AGGIE I does 
not have the capability to solve this problem. There-
fore, an additional input requirement is that the spacial 
and time dependent temperature distribution be input 
to the code on a nodal basis. 

The procedure for utilizing the constitutive law is to 
assume a strain increment for each integration point 
based on information from the previous load step. One 
may then check for yielding by assuming eqn (6) holds 
and applying the resulting stress tensor to eqn (1). If 
yielding is not predicted then eqn (6) is correct. If 
yielding occurs, then the stress state is updated using 
eqn (15) and the yield surface location is updated using 
eqn (7). A complete outline of this procedure is con-
tained in Ref. [19]. 

EXAMPLE PROBLEMS 

I. Nonisothermal elastic axial bar subjected to simul-
taneous mechanical load and heat input 
The first example demonstrates the capability of the 

code to predict the static response of elastic materials 
with strongly temperature dependent material proper-
ties to simultaneous mechanical and thermal loading. A 
significant factor in the accuracy of the theory is the 
correct determination of the thermal strain increment 
during a nonisothermal load step. Suppose one assumes 
that the thermal strain increment is given by : 

dsT = at+At(Tt2-Tti). (28) 

This assumption can introduce significant error into the 
analysis. The proper definition is given by: 

dsT = J+At(Ti2-TR)-*XTti-TR) 

= at+àt(Tt2-Tti) + (at^t-oit)(Tt-TRl (29) 
where TR is the reference temperature at which the 
thermal strain is zero. It can be seen that the second 
term in eqn (29) represents the error incurred by using 
eqn (28). Mathematically, eqn (29) may be interpreted as 
representing a chain rule differentiation. 

To illustrate the error which may be incurred by 
utilizing eqn (28), the code is now compared to an 
experiment. An aluminum (6061-T6) axial bar with 
material properties as shown in Fig. 3 is subjected to the 
thermomechanical load history shown in Fig. 4. Due to 
the relatively short time period and low stress level, 
creep strain is assumed to be negligible. Analytical 
results are compared in Fig. 4. Experimental results as 
well as the theoretical result denoted CREEPARHS 
[20] are due to Stone. Three solutions were performed 
in AGGIE I using a single plane stress isoparametric 
element and 26 load steps. In the first analysis it is 
assumed that material properties are not temperature 
dependent and room temperature data are used. In the 
second solution, properties are assumed to vary with 
temperature, and the definition of the thermal strain 
increment given by eqn (28) is used. Finally, the third 
analysis employs temperature dependent material 
properties as well as the definition of the thermal strain 
increment given in (29). It is found that all theoretical 
results except the last are in error by approx. 10% or 
more. Thus, the importance of temperature dependent 
material properties as well as a correct definition of the 



A theory for analysis of thermoplastic materials 133 

42 

36 

30 

24 

18 

12 

6 

n 

i 

^^-~""T = 7leF 
^^^^ (22eC) 

/ ^ f^400^F 
/ ^ (204eC) 

/ / ■ Τ«500Τ 
/ / y (260°C) 

III ^ ^ T = 600eF 
/ / / (3l6eC) 

r i i , 

Fig. 3. Material data for Al 6061-T6 experimental test 
samples. 

Fig. 4. Comparison of analysis to experiment for uniaxial 
elastic thermomechanical loading. 

thermal strain increment are illustrated by this example 
problem. 

II. Nonisothermal elastic-plastic axial bar 
In this example an axial bar with material properties 

shown in Fig. 5 is subjected to the load history shown in 
the same figure. Attempts at experimental verification 
of this problem have failed due to the fact that the 
relatively long heat up time required with the equip-
ment available at this institution induces significant 
creep. Additional equipment is on order and it is 
hoped that experimental verification will be forth-
coming in the near future. This example is included not 
as a verification of the theory, but rather as a corrobor-
ation of the computational efficiency of the model. 

One will recall that in our previous papers [2,19], we 

TIME 

TIME 

Τ+ΔΤ 
l.75ay 
Κ5θσν 
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Fig. 5. Nonisothermal elastic-plastic axial bar with thermo-
mechanical load history. 

proposed that to obtain the effective modulus tensor 
Cijmn for a load step one should use the elastic consti-
tutive tensor Dijmn at the end of the load step. This was 
shown to be mathematically correct and is compu-
tationally supported by this example. In the example, an 
axial bar is loaded isothermally to some plastic state 
and is then simultaneously subjected to a mechanical 
load and spacially constant slow heat input. According 
to the classical incremental theory of plasticity it is 
required that the state of stress and strain move to a 
point on the uniaxial stress-strain diagram for the 
temperature at the end of the step. This requirement 
must be satisfied in order to remain consistent with the 
yield surface during plastic loading. Using the elastic 
modulus proposed by us the theory will predict this 
result exactly. If one utilizes the elastic modulus at the 
start of the load step the state of stress and strain will 
converge incorrectly to a point denoted by the head of 
the dashed line in Fig. 5. This point corresponds to a 
horizontal translation from (ε'χ, σΛ) to the stress-strain 
curve at the temperature at the end of the step, followed 
by a translation parallel to the stress strain curve at time 
Thus, utilizing the elastic modulus at the start of a load 
step does not satisfy the consistency condition. Further, 
if one employs equilibrium iteration and correctly up-
dates the elastic modulus during the iteration proce-
dure, the solution will converge to the correct solution, 
but in exactly twice the computation time encountered 
in our theory. Therefore it is suggested that using the 
elastic constitutive tensor at the end of the step is not 
only consistent but also computationally efficient. 

III. Nonisothermal elastic-plastic axial bar with signifi 
cant creep 

This problem illustrates the ability of the theory to 
predict the response of materials near their ultimate 
strength. An aluminum (6061-T6) axial bar is subjected 
to the load history shown in Fig. 6, such that ultimate 
failure of the specimen occurs. Experimental and 
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Fig. 6. Comparison of analysis to experiment for uniaxial 
elastic-plastic thermomechanical loading. 

CREEPARHS [20] results are due to Stone. Two 
analyses were performed using AGGIE I. In the first, 
creep is assumed to be negligible. In the second, linear 
interpolation of isothermal creep data at a load of 20 
ksi is used. It is seen from results plotted in Fig. 6 that 
the theory produces accurate results even near the 
ultimate strength of the material. 

IV. Nonisothermal elastic-plastic axial bar subjected to 
cyclic load history 

One of the primary purposes of this research has been 
to obtain a theory which can effectively model the 
response of elastic-plastic media to cyclic mechanical 
and thermal loading. Although the literature contains 
abundant verification tools for isothermal cyclic 
loading histories, we have been unable to obtain 
experimental data to verify the nonisothermal problem. 
Therefore, we have undertaken to perform certain 
nonisothermal tests using axial bars on the MTS 
system. Although results of our experiments are in-
complete at this time, analytical results of a cyclic test 
are presented herein. Although the theory is capable of 
modelling creep response, this study is meant to verify 
the time independent behavior of the material. There-
fore, we have chosen the test case shown in Fig. 7. Note 
that the specimen is heated at zero load after prestrain 
so that no creep occurs. This problem thus tests the 
expansion and translation of the yield surface in stress 
space caused by a temperature change. In order to 
verify the applicability of the theory it is necessary to 
perform three materials data tests. Isothermal stress-
strain curves are generated at room temperature and 
200° F. In addition, an isothermal cyclic load test is 
performed to determine the ratio of isotropic to 
kinematic hardening (β) used in the model. Theoretical 
results are presented in Fig. 7. It is seen that the com-
bined hardening model produces results which differ 
significantly from both kinematic and isotropic non-
isothermal hardening theory as well as isothermal 
isotropic hardening theory, indicated by the dashed line 
in Fig. 7. A schematic representation of the trans-
formation of the yield surface is shown in Fig. 8. A 
future paper will compare experimental results to the 
analytical solution presented here. 
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Fig. 7. Elastic-plastic axial bar subjected to cyclic thermo-
mechanical load history. 

Fig. 8. Nonisothermal combined hardening (β=0.5) of yield 
surface for elastic-plastic axial bar. 

CONCLUSION 

We have proposed herein a theory for modelling the 
response of thermoplastic materials. The theory.has 
been shown in this report to be adequate in predicting 
response of many solid media. In addition, it has been 
shown that certain computationally simplified forms 
of the theory are correctly in place in the computer 
code AGGIE I. However, the theory may be inadequate 
in modelling certain physical phenomena. Among these 
are rate dependence, instability near ultimate strength, 
finite stress and strain, phase changes, and violation 
of other assumptions in the theory such as the normality 
condition. Research is currently underway to incor-
porate the above additions to the theory. 
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Abstract—Crack growth resistance curves using the J integral for Type 304 stainless steel at room tem-
perature and at 400° F were generated using experimental data from center-cracked tension panels. 
Two methods were used. The first utilized a finite strain based finite element analysis. The second used an 
estimation procedure. Good agreement was obtained up to maximum load. However, past maximum 
load, the estimation procedure overestimated the / values. Stable crack growth predictions were made on a 
center-cracked tension panel with a different initial crack length. Good predictions were obtained up to 
about maximum load. Limitations on the applicability of the / integral approach to extended amounts of 
stable crack growth is presented and a possible alternative approach is discussed. 

INTRODUCTION 

Type 304 stainless steel is the principal structural 
material for Boiling Water Reactor (BWR) piping 
systems. Because stress corrosion cracks may occur in 
these pipes, it is of interest to determine the margin of 
safety against fracture. Typically, Type 304 stainless 
steel is a highly ductile and very tough material, and 
as a consequence, extensive plastic deformation occurs 
before the initiation of crack growth along with con-
siderable resistance to crack growth [1]. Despite this, 
pipe cracking problems in the nuclear industry have 
been analyzed using techniques of linear elastic frac-
ture mechanics (LEFM). Applications of LEFM using 
crack initiation as a fracture criterion are likely to be 
overly conservative because of the ability of materials 
like Type 304 stainless steel to exhibit considerable 
resistance to crack growth. This clearly suggests the 
need of a fracture criterion which can properly account 
for the effects of plasticity and can accommodate 
crack growth prior to general instability. 

Several plastic fracture criteria have been proposed 
[2-5]. Of them, the / integral-Tearing Modulus 
approach, the crack opening angle (COA), and the 
crack tip opening angle (CTOA) seem most promising 
[6]. This paper focuses on the applicability of the J 
integral. In an effort to assess the applicability of a 
/-resistance curve approach for Type 304 steel, a 
program which involved experimental, analytical and 
numerical work was conducted. The experiments were 
performed on several center-cracked tension panels 
[1, 7]. ./-resistance curves (J vs crack growth) were 
generated from these experimental data at room 
temperature and at 400° F. 

The /-resistance curve at room temperature was 
generated by two independent methods. The first 
method involved a full scale finite element analysis of 
the center-cracked panel, whereas the second utilized a 
/ integral estimation procedure [8, 9]. The finite 
element analysis was conducted using the computer 
program BCLFEM [10] which is based on finite strain, 
large deformation, and the incremental theory of 
plasticity. A comparison of the results permits an 
assessment of the accuracy of the estimation procedure. 

The /-resistance curve at 400° F was generated 
from the test results of an initial 3 in. long crack in a 
center-cracked tension (CCT) panel by using an 
estimation procedure. This resistance curve was then 
used to predict crack growth in a 5.18 in. long crack 
in a CCT panel tested at 400° F via a / integral-
Tearing Modulus approach [3, 11, 12]. These pre-
dictions were found to agree well with the experimental 
results up to maximum load. Because this involves 
only a small amount of stable crack growth even in the 
favorable conditions considered here, alternative 
methods for considering extended amounts of stable 
crack growth are needed. For this purpose, a method 
to improve the predictive capability through a com-
bined //CTOA fracture criterion is also presented. 

PLASTIC FRACTURE CRITERIA 

The incentive for the development of elastic-
plastic fracture mechanics can be attributed to the 
inability of linear elastic fracture mechanics (LEFM) 
to treat conditions where the plastic behavior of real 
materials is important. The very first effort was a 
plasticity correction to the LEFM crack tip charac-
terizing parameter. This was followed by the use of 
strip yield plastic zone models such as that of Durgdale. 
This, however, had limited capability for handling 
many cases of practical interest, such as large scale 
contained plasticity and full plasticity throughout the 
uncracked ligament. 

Tough and ductile nuclear reactor materials undergo 
large plastic deformation before the initiation of crack 
growth. Moreover, crack growth instability in materials 
like 304 stainless steel is always preceeded by some 
amount of stable crack growth. Consequently, applica-
tion of LEFM to such materials, using crack initiation 
as the fracture criterion, gives a considerable under-
estimate of their strength. 

Attempts to account for the extensive plastic 
deformations preceeding initiation of crack growth 
and the additional resistance to growth before crack 
instability led to the development of various plastic 
fracture criteria [1, 2, 5, 6, 13]. A detailed discussion 
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of the applicability and limitations of a resistance 
curve approach based on various fracture criteria is 
given in [6]. The most promising are the / integral-
Tearing Modulus approach, CTOA, CO A, and a 
combination of / integral and crack tip opening angle, 
hereafter denoted by 7/CTO A. These will be described 
briefly in the following. 

The J integral-Tearing Modulus approach is based 
on the use of the J integral as a crack tip characterizing 
parameter, the change in J due to crack growth da, 
that is d//da, and a J-resistance curve, supposedly a 
material property. The applied value of the J integral 
is equated with the value characterizing the resistance 
to crack growth. Hence, during crack growth, 

J(a,a,W,t)=Jmaü(Aa) (1) 

where J is the applied value of the J integral. It will 
depend upon the applied stress σ, crack length a, and 
other dimensions such as width W, thickness i, etc. of 
the cracked body. The parameter 7mati, however, is 
solely the materials response to crack growth and is 
generally considered to be a function of crack growth, 
Aa, only, at least for a given temperature and degree of 
constraint at the crack tip. 

The J integral is based on the deformation theory of 
plasticity; i.e. the value J depends only on the current 
loads and crack length. This is valid provided no 
unloading is permitted. Stable crack growth, however, 
invariably involves unloading behind the crack tip 
which somewhat limits the use of J. Recently, Hutchin-
son and Paris [14] have shown that J can be used for 
situations involving crack growth provided the amount 
of crack growth, Aa, is small and the parameter 

aJ b 
ω = - Γ - > 1 , (2) 

àa J 

where b is the length of the body ahead of the crack tip, 
i.e. remaining ligament. They suggested ω values 
above about 50. But experimental results [2] and work 
by others [5] indicate that values of ω as low as 15 may 
be sufficient to permit the use of the /-resistance curve 
approach. 

Other fracture criteria like CO A, CTOA and J/ 
CTOA were studied in [6]. The average crack opening 
angle (CO A) is defined as the ratio of the crack opening 
displacement at the original crack tip to the total 
amount of crack growth that has occurred. Because of 
this definition, CO A is undefined for a fully blunted 
crack tip and has a large value at small amounts of 
crack growth. But, it decreases with crack growth and 
is found to attain almost a constant value during 
subsequent growth. The crack tip opening angle 
(CTOA), defined as the ratio between crack opening 
displacement at a short and fixed distance s behind the 
current crack tip and s, shows similar behavior. That 
is, there is an initial transition to a constant value 
after some stable growth. 

The attainment of a constant value of CO A or 
CTOA is a very attractive feature in that they can be 
easily used for numerical computations involving 
substantial amounts of crack growth. The COA is 
much easier to define and measure experimentally 
than is CTOA, but its relation to the processes occuring 
at the crack tip is somewhat unclear. The CTOA 
criterion must be directly connected to the events at 

the crack tip, but it is difficult to measure experi-
mentally. From a computational point of view, CTOA 
looks more promising. 

The //CTOA criterion [6] utilizes the attractive 
features of both the J and CTOA criteria. Where J-
controlled growth conditions exist at initiation and 
early stages of crack growth, J is used as a fracture 
criterion. The CTOA is computed simultaneously with 
/ in a finite element computation, and when a constant 
value of CTOA is obtained, further crack growth is 
dictated by CTOA. A drawback of this approach is 
that a finite element method must be used, however. 

J-RESISTANCE CURVES 

Several center-cracked tension (CCT) panels of 
Type 304 stainless steel were tested at room tem-
perature and at 400° F [1, 7]. Figure 1 shows the CCT 
panel, the fixtures and the specimen dimensions. The 
panels were loaded in stroke control and crack growth 
was recorded by means of a movie camera. Relevant 
information, such as panel displacement, LVDT, load, 
cross head displacement, crack opening displacement, 
and remote strains across the width of the panel were 
also recorded. This information was then utilized to 
generate a variety of crack growth resistance curves. 

The center-cracked panels that were chosen for 
generating resistance curves (room temperature and 
400° F) had an initial crack length of 3.0 in. Two 
independent methods were utilized in this study: the 
finite element analysis and the estimation procedure 
[8, 9]. The finite element analysis was conducted only 
for the panel which was tested at room temperature. 

Finite element analysis 
The 12 x 24 in. panel was modeled through a set of 

two dimensional finite elements under plane stress 

Fig. 1. Specimen assembly for the center-cracked tension 
(CCT) panel experiment. 
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conditions. Because of symmetry, only one quadrant 
of the panel was modeled as shown in Fig. 2. The 
model consisted of 476 nodes and 498 elements. The 
computer program BCLFEM [10], which is based on 
finite strain, large deformation and incremental theory 
of plasticity, was used for the analysis. Thickness 
changes due to large deformation are accounted for 
in this computer program. Constant strain triangular 
elements were used in the neighborhood of the crack 
tip to properly simulate the nearly incompressible 
plastic deformation. The remaining elements were of 
the 4-noded isoparametric quadrilateral type. A (2 x 2) 
G integration scheme was used for generating the 
stiffness of the elements. The mesh contained 40 nodes 
across the crack plane. 

The nodal spacing in the immediate vicinity of the 
crack tip was chosen to be 0.0625 in. Along a 2 in. 
length of the uncracked ligament, 19 spring-like 
general elastic elements were located at the nodes to 
provide restraint in the direction of the load. A high 
stiffness (1.0 x 1014 lb/in.) was ascribed to each of these 
general elastic elements to model the homogeneous 
symmetry condition. The simulation of crack growth 
was achieved by gradually releasing the force developed 
in these spring-like elements to zero. The multi-linear 
stress-strain curve (room temperature) shown in Fig. 3 
was used in the analysis. 

The model was loaded to match the remote dis-
placements that were measured during the experiment. 
The consecutive releases of the spring-like general 
elastic elements to simulate crack growth were forced 
to follow the experimental curve shown in Fig. 4. 
The numerically calculated load versus remote dis-
placement curve is shown in Fig. 5 along with the 
experimental record. It is seen that the model under-
predicted the maximum load by about 5%. This 
difference is thought to be due to the stress-strain 

Crack T ip 

Fig. 2. Finite element model for the center-cracked tension 
(CCT) panel with a 3 in. crack. 

- - - Room temperature 
— — 400°F 

Fig. 3. Stress-strain properties for type 304 stainless steel. 

curve used in the simulation which differs from the 
actual experimental curve for that plate due to scatter 
in the mechanical properties from one plate to another. 
Some error is also introduced from the difference 
between the simulated and experimental δ—Αα curves 
(see Fig. 4). This may cause the crossover of the 
predicted and experimental P—δ records in Fig. 5. 
Nevertheless, the agreement between the predicted and 
experimental curve is believed to be satisfactory. 

Figure 6 shows the deformed mesh just prior to the 
initiation of crack growth (remote displacement, 
(5=0.26 in.). It is easily seen that the elements near the 

Crock Growth, Δο, in. 

• Test points 
— Input to analysis 
- A - Simulated curve 

0.6 £ 

| 
0.5° 

0 . 3 * 

—lO 2 

-lo.i 

J Ü e 
Crack Growth, 6 a , mm 

Fig. 4. Experimental displacement vs crack growth data for 
the 3 in. CCT panel tested at room temperature. 
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Fig. 5. Comparison of finite element calculations with the 
experimental load-displacement data on CCT panel. 
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Fig. 6. The crack profile at initiation of crack growth 
((5 = 0.26 in., displacements are magnified five times). 

crack tip undergo severe distortion, and that the crack 
tip elements rotate nearly 90 degrees. The finite element 
analysis also indicated that due to severe blunting the 
crack tip moved inward by about 30-35 mils, giving a 
crack tip blunting of about 100-120 mils. It should be 
pointed out that even the remote ends of the CCT 
panel had yielded prior to the initiation of crack 
growth. 

Figure 7 shows the variations of thickness and the 
true stress normal to the crack plane as a function of 
the distance along the uncracked ligament. At the 
blunted crack tip a reduction in thickness of as much 
as 25% is obtained at the initiation loadt-

Figure 8 shows the crack profile at various stages of 
stable crack growth. Notice that in Figs. 8(b) and (c) 
the leading portion of the crack is almost straight. This 
indicates that crack growth occurs with a constant 
crack tip opening angle. This has been confirmed by 
the movie records from the experiments [7] as shown 
in Fig. 8(d). 

fMoreover, the average stress in the uncracked ligament 
(<7net is significantly higher than the yield stress (38.0 ksi). 
The initial yielding of the entire ligament (based on average 
stress) occurs at a load of about 110 kips ((5=0.026 in.). 

Initiation 
8 = O 26 inch 

Nominal «tress.a^,_= 54^6 ksî  

Nominal thickness * 0.324 

—Thickness, t,(read right) 

_l L 

Fig. 7. The variation of thickness and true stress oyy with 
the distance along uncracked ligament at initiation of crack 

growth. 

Fig. 8(a). The crack profile after 0.361 in. of crack growth 
(displacements are magnified five times). 

Fig. 8(b). The crack profile after 1.296 in. of crack growth. 
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Fig. 8(d). Photograph of the CCT panel after some stable 

crack growth. 

Fig. 8(c). The crack profile after 1.983 in. of crack growth. 
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Fig. 9. Computed J values vs Δα. 

Having established that the finite element analysis 
is consistent with the experimental record (see Fig. 5), 
attention can be turned to crack growth resistance 
curves. While the model was forced to follow the 
experimental curve shown in Fig. 4, J integral com-
putations were made at each step before node release. 
Computations were done for five different contours, 
shown in Fig. 9. The nearest contour was at a distance 
of 2.6 in. from the original crack tip. The definition of 
J integral used was consistent with the finite strain 
formulation, the details of which can be found in [7]. 
Figure 9 shows the computed J-Aa curves. (Crack 
growth refer to growth at one crack tip only.) It is 
important to note that during crack growth J in-
creased to as much as four times its value at initiation. 
J integral values computed through small strain 
formulation for the same problem were 6-7% smaller 
than those of the finite strain presented here [7]. 

Figure 10 shows the crack growth resistance curves 
based on CO A and CTOA. As discussed earlier CTOA 
shows a transition to a plateau value after about 
0.6-0.8 in. of crack growth. 

Estimation procedure 
For the case of an elastic-plastic loading, the J-

integral can be split up into its elastic and plastic parts 
as 

where 
J Jel + Jpl 

Jel=G=-

(3) 

Jpl = plasticity contribution to J. 
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Crock Growth, Δ α, inches 

Fig. 10. Crack growth resistance curves based on CO A and 
CTOA. 

The Pseudo-potential energy rate interpretation leads 
to an alternate but equivalent definition of the line 
integral J as [8] 

(4) ^'^ii^'-l^ 
where P is the load and δρ1 is the plasticity contribution 
to the remote displacements of the panel ends (24 in. 
long), i.e., 

crack case) of a longer crack would be lower. Thus, the 
actual J values are smaller than these obtained by 
using eqn (4). Recently, a method called a Key Curve 
method which utilizes a modification of eqn (4) for a 
growing crack has been proposed [9]. This method 
requires more than one specimen to generate a J-
resistance curve. Since pertinent data from other 
CCT panel experiments [1, 7] could not be extracted 
to use the Key Curve method, eqn (4) was used instead. 

Figure 11 shows a load versus δρ1 curve which was 
obtained from the experimental load-displacement 
record of Fig. 5. As shown for the point X on the curve, 
the shaded area gives the quantity in the square bracket 
of eqn (4). For this point, Jel can be computed easily 
from handbook solutions [15]. Thus, the value of J is 
estimated easily. Its corresponding crack growth is 
obtained from Figs. 4 and 5. 

A plot of the J values with crack growth is shown in 
Fig. 12. For comparison purposes, the results of the 
finite element analysis are also shown on that figure. 
It is seen that good agreement is obtained up to a crack 
growth of approx. 0.5 in. which, incidentally, corre-
sponds to the maximum load (Figs. 4 and 5). Past 
maximum load, the disagreement between the two 
solutions becomes larger due to the fact mentioned 
earlier that J values obtained through the estimation 
procedure are overestimated past maximum load. 

Ôpl=Ô— <5 clastic 

where 2b, 2a and t are the CCT panel width, crack 
length and thickness, respectively. 

The load-displacement record shown in Fig. 5 can 
be replotted in terms of load versus δρ1 by subtracting 
the elastic contribution to δ. For a given load, the 
quantity in the square bracket in (4) is equal to the 
area contained between the P — δρ1 curve and a straight 
line joining that load point and the origin (Fig. 11). 
Equation (4) is valid only for a non-growing crack 
and it assumes that a deep crack exists such that the 
plasticity is confined to the remaining ligaments only. 

The experimental strain gage data at the remote 
ends of the 3 in. crack CCT panel showed plastic 
strains existed there near the initiation load. These 
remote plastic strains increase up to maximum load. 
The plastic displacement due to the remote plastic 
strain was subtracted from the measured δ (LVDT) 
in order to make use of (4) properly. Equation (4) 
gives accurate values of J at the initiation load and 
provides a good approximation up to maximum load. 
Past maximum load large errors are introduced in J 
because the load-displacement record (non-growing 

Crock Growth, Δ α, inch·· 

» Finite element analysis 
_ _- Estimation procedure 

Crock Growth, Δ ο, mm 

Fig. 12. J-Resistance curves for type 304 stainless steel at 
room temperature obtained from 3 in. crack CCT panel. 

The same procedure was repeated to generate J-
resistance curve for a 3 in. crack in a CCT panel tested 
at 400° F [1], the details of which can be found in [6]. 
The ./-resistance curve at 400° F is shown in Fig. 13, 
where it is compared with the room temperature J-
resistance curve of Fig. 12 (estimation procedure). 
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Fig. 11. Load vs δρ1 curve obtained from the experimental 
data of Fig. 5. 

PREDICTION OF CRACK GROWTH 

For a material like Type 304 stainless steel, the stress-
strain curve in the plastic range may be represented as 

(ε/ε0)=α(σ/σ0)" (6) 

where n is the hardening index, a is a material constant, 
σ0 and ε0 are the reference stress and strain, respec-
tively. The latter two quantities may be related to each 
other by σ0/ε0=Ε, the elastic modulus. 

The applied value of / can be written as [3, 16] 

ΛΡΡΙ -=0Lba080Gin(a/b, n).(P/P0)
n 

(?) 
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Crock Growth, Δο, mch·· 

— Room temperature 
— _ 400e F 
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Fig. 13. /-Resistance curves for type 304 stainless steel. 

where P—2baaD(aco = remote uniformly applied stress), 
P0 = 2(b — a)a0 and 2a and 2b are the crack length and 
the panel width, respectively. Gln is a nondimensional 
function which depends on the crack length to width 
ratio and the hardening index, n. Numerical values of 
Gln(a/b, n) were obtained through an incremental 
plasticity /-integral calculation and are reported else-
where [3, 16]. 

The 5.18 in. crack CCT panel had a test fixture 
similar to that of Fig. 1 with the exception that it had a 
free panel length of 18 in. (instead of 24 in., Fig. 1) 
and LVDT was not monitored to measure panel 
displacement. The test was performed in stroke 
control and only cross-head displacement, öCH, was 
measured. Hence, the panal was essentially subjected 
to uniform remote displacement. For a uniform remote 
displacement, eqn (7) takes the form 

/ > o ΛρΡ.=(α) ^-^X-a/b) - ~*GMb,n) 

(eoo/fio) 
/i + l 

(8) 

A curve fit to the true stress-true strain curve for 
Type 304 stainless steel at 400° F (Fig. 3) was used to 
obtain a relation of the form given in eqn (6). The best 
fit within the range of stresses and strains encountered 
by the 5.18 in. CCT panel gave a=6.0, « = 3.1, σ0 = 20.0 
ksi, and ε0 = 7.634 x 10 - 4 in./in. The nondimensional 
function Gln for n = 3 is shown in Fig. 14. 

Fig. 14. Non-dimensionalized function Gln{a/b, n) vs a/b. 

The experimental data for the 5.18 in. crack CCT 
panel are shown in the first four columns of Table 1. 
It should be pointed out that the displacement, <5, of 
the panel is not the same as that imposed by the cross-
head, SCH, due to the compliance of the fixture. The 
fixture compliance, C/ s was estimated to be 1.317 
x 10 "* in ./lb [6]. The panel displacement, δ , was 
obtained by subtracting the fixture displacement from 
the crosshead displacement. Remote applied strains, 
ε^, were then computed through δ, assuming a uniform 
displacement across the remote ends of the panel. 

Other entries in Table 1 came from the analysis. 
ΛρΡι values were calculated by using eqn (8) and 
Fig. 14. With these /a,ipl values, the /-resistance curve 
at 400° F (Fig. 13) was used to predict crack growth. 
The predicted crack growth, Δα, is in fairly good agree-
ment with those of the measured values up to a SCH 

=0.81 in. as shown in Table 1. For oCH>0M in. 
predictions are poor. 

The parameter ω (see eqn (2)) which is a measure of 
/-controlled crack growth is also shown in Table 1. 
It is interesting to note that crack growth predictions 
were good for ω values as low as 4. As mentioned 
earlier, ω values around 15 were suggested as necessary 
for a /-controlled condition in some cases [2, 5]. This 

Table 1. Crack growth prediction in a 5.18 in. CCT panel 

ot - 6 . 0 , n - 3 . 1 , a - 2 .59 , b - 6 . 0 , c f = 1.317 x 10_A i n . / l b 

Experimental Data toalytical P r e d i c t i o n 

P, 
103 lb 

CH' <5 ûa, inch 
inch inch 

appl ied ûa, inch A a / ( b - a ) ' 
i n . - l b / i n . % ■» 

100.0 
102.0 
103.0 
10 A. 0 
103.0 
102.0 
100.0 
97.0 
93.5 
88.0 

0.374 
0.554 
0.624 

0.70 

0.766 
0.810 
0.834 
0.874 
0.914 
0.950 

0.2423 
0.41971 
0.4884 
0.56307 

0.6304 
0.6757 
0.70234 

0.7463 
0.7909 
0.83414 

0.0 
0.09 

0.155 
0.165 
0.36 
0 .51 
0.53 
0.59 
0.76 
1.00 

5 ,136.1 
10,4*5.7 

14,961.9 
18,191.8 

27,274.3 
33,409.3 
36,520.8 
41,974.2 
54 ,767.8 
79,023.1 

0.10 
0 1 7 

0.22 
0.38 
0.52 

0.62 
0.80 
1.50 

__ 

2.9 
5.2 

7.3 
12.5 
18.0 
22.2 
30.7 
78.5 

27.0 
13.0 
10.0 

6.0 

3.3 
2.5 
1.7 
0.4 
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may imply that for Type 304 steel which has a high 
hardening material lower ω values may be justifiable. 
However, it should be clear that this work does not 
severely test the applicability of the approach. That is, 
the ./-resistance curve was obtained from a geometry 
that is quite similar to the one where it was applied. 
All that can really be definitely said is that ω = 4 is a 
lower bound for Type 304 steel. 

CONCLUSIONS 
The simplicity and ease with which resistance curves 

can be generated by a simple estimation procedure 
offers tremendous advantages over expensive finite 
element analyses. The analysis presented in this paper 
further indicates that the estimation procedure may be 
adequate for generation of /-resistance curve up to 
maximum load. However, estimation of J past maxi-
mum load begins to be in error. This error is primarily 
due to the use of eqn (4) which is valid for a non-
growing crack. The key curve method [9] offers some 
advantages in that J-values can be estimated more 
accurately in the stable crack growth portion of the 
load-displacement record even past maximum load. 
To date, the key curve method has not been checked 
against a more rigorous analysis such as the full finite 
element analysis. Further work in this direction is 
presently being conducted. 

The predictive analysis seems to indicate that the 
applicability of / may be extended to ω values as low 
as 4 for material with high strain hardening rates such 
as 304 stainless steel. Crack growth up to 15% of 
the remaining ligament was predicted well by the J 
integral-tearing modulus approach. This amount of 
growth corresponded roughly to crack growth slightly 
past maximum load. Since the accuracy of the J-
resistance curve is in doubt past maximum load, the 
results of the predictive analysis cannot be relied on in 
this region. Moreover, due to loss of J-controlled 
growth, any analysis based on ./-integral will be invalid. 
Recent studies [5, 6, 7] indicate that the loss of J-
controlled growth occurs around crack growth of 6 -
10% of the remaining ligament. This suggests that 
reliable predictions of extended amounts of crack 
growth would require a more general approach. 
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Abstract—Static fracture of notched composites has drawn the attention of numerous researchers in recent 
years and it has been studied both experimentally and theoretically. One of the proposed theories for pre-
dicting fracture of composites is the "average stress criterion" due to Whitney and Nuismer. A similar 
theory based on fracture mechanics has been used by Waddoups et al. Pipes et al have recently generalized 
these concepts by introducing a three-parameter fracture model and a radius superposed method. 

In the present paper the mechanisms behind the cut-off of the stress peak at the notch are investigated 
using the fictitious crack model (FCM). In the intense energy region close to the notch, a fictitious crack is 
assumed to form when the uniaxial tensile strength is exceeded. On the surfaces of this fictitious crack, 
cohesive forces act. These forces reduce with increased width of the fictitious crack and vanish at a certain 
crack width. Hereafter the crack is considered as a real crack. The reduction of the cohesive forces can be 
assumed to follow various curves, three of which are shown in Fig. 1(b). A common feature for all curves is, 
however, that the area under the curve is equal to the fracture energy &c. It should also be emphasized that 
the fictitious crack merely represents a damaged zone in the composite than a sharp crack. 

Some preliminary finite element calculations performed with the fictitious crack model show good cor-
relation with experimental results and the redistribution of stresses at increased external load is illus-
tratively demonstrated. 

1. INTRODUCTION 

1.1 Background 
With the increased use of advanced fibre-reinforced 

composite materials, the characterization of these 
materials for various loadings and geometries has 
become a primary concern for the designer. Incorpora-
tion of composites into vehicles and structures requires 
that holes be drilled into laminates to facilitate joining 
of structural parts or to provide access to the interior 
of the structure. These holes introduce stress concen-
trations which significantly reduce the failure load, but 
the extent of this reduction is not completely under-
stood. Considerable literature is available, both analyt-
ical and experimental, which addresses the problem of 
fracture of anisotropic plates with circular holes. 
However, a generally accepted method for failure 
analysis is still lacking. 

1.2 Aim and scope oj this work 
According to the opinion of the author, new analyt-

ical or computational methods have to be established, 
which in a better way than the now existing ones 
describe the increased "damage" in the composite at 
increased external load and hence the accompanied 
redistribution of stresses and strains. The word damage 
is here used as a general expression for crack formation, 
fibre pull-out, crack bridging, matrix microcracking, 
matrix yielding, fibre debonding, delamination, etc., see 
Fig. 2. The aim of the present work is, after having given 
a survey of existing methods of failure analysis, to make 
a preliminary investigation of a new method termed the 
fictitious crack model (FCM), which earlier has been 
applied by Hillerborg et ai [1, 2] to failure analysis of 
concrete. Two other approaches, which should be 
investigated with respect to their ability of modelling 
fracture of composites, are also mentioned. These are 
the work by Janson and Huit on continuous damage 
mechanics (CDM) [3, 4] and the blunt crack band 
propagation approach (BCB) proposed by Bazant and 
Cedolin [5]. 

Real 
crack 

Frictitious 
crack 

(a) 

Crack 
opening 

(b) 
Fig. 1. The fictitious crack model : (a) real and fictitious crack, (b) reduction of stress with crack opening. 
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Fig. 2. Possible failure modes in a fibre reinforced material. 

2. REVIEW OR PREVIOUS APPROACHES 

2.1 General remarks 
This chapter contains a survey of various proposed 

methods for static failure analysis of fibre reinforced 
composites. Many of these approaches are general with 
respect to the type of material studied. Despite this 
fact, this survey will be restricted to deal with fibre 
reinforced plastics (FRP) and with high strength fibre 
materials such as carbon, glass and aramid. In this 
initial state of the research project, the interest will be 
focused on FRP:s with continuous fibres. A strongly 
increased use of chopped-fibre reinforced plastics, 
especially within the automotive industry, will however 
probably result in a special study of non-continuous-
fibre reinforced plastics later on in this project. 

The three up to now most widely used fracture 
criteria for notched composites are briefly described in 
Sections 2.2 and 2.3. In Section 2.4 some other works are 
surveyed. 

2.2 Inherent flaw criterion 
Waddoups et al. [6] were among the first to apply 

linear elastic fracture mechanics (LEFM) to notched 
composites. On the basis of experimental results such 
as those summarized in Tables 1 and 2 and Fig. 3, 
they used the Bowie solution [7] for the stress intensity 
factor for cracks emanating from a circular hole in an 
isotropic plate to explain the hole size effect. 

The starting point of Waddoups et al. is illustrated 

Table 1. Test results for 25.4 mm wide [0/±45]2s graphite-
epoxy tensile coupons 

Table 2. Test results for 127 mm wide [0/±45]2s. graphite-
epoxy tensile coupons 

Specimen 

Without hoe 

1 φ 1.57 mm hole 

Φ 0.79 mm hole 

φ 0.38 mm hole 

Static strength (MPa) 

464 

310 

355 

420 

Specimen 

Without hole 

φ 25.4 mm hole 

φ 63.5 mm hole 

Φ 76.2 mm hole 

Static strenght I MPa) 

524 

192 

157 

159 

« - h o l e r a d i u s R 
100 mm 

Fig. 3. Unnotched strength er0/notched strength ac vs hole 
radius of [0/±45]2s graphite-epoxy. 

in Fig. 4. They assumed an intense energy region to exist 
at the hole, V being a characteristic length of this 
region. The isotropic stress intensity factor Kl for two 
symmetric cracks of length a is 

KI = aJwf{a/R) (2.1) 

where the function f(a/R\ which is given by Bowie 
[7], takes the value 1 if the hole vanishes. 

The fracture stress ac for the plate with a hole is 
according to eqn (2.1) 

ff«=Vrö/(fl/Ä) i22) 

where KIC is the fracture toughness. For the case with 
no hole but an inherent crack of length 2a, the fracture 
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im i t tMMt lM iMM 
Intense 
Energy 
Region 

l l l i l l I I I I I I 1 1 1 1 1 1 1 
Fig. 4. Intense energy region at the hole. 

stress ση is 
K, 
jna 

(2.3) 

Hence the ratio σ0/σ£ of unnotched to notched strength 
can be obtained by dividing eqns (2.2) and (2.3) 

-*=Jia/R). (2.4) 

A parametric representation of the function f(a/R) is 
given in Fig. 5, where also the experimental results in 
Fig. 3 are shown. The experimental behavior is approx-
imated fairly well by an inherent crack a of length 1 mm. 

<^ 3 . 0 5 — 

1 . 2 7 - J 

0 . 1 ho le r a d i u s R 

Fig. 5. Theoretical and experimental curves relating un-
notched strength a0/notched strength oc to hole radius. 

The existence of an intense energy region was also 
illustrated by Waddoups et al. by strain gauge measure-
ments at the net section of a notched specimen, Fig. 6. 
The maximum strain measured exceeded the ultimate 
strain of an unnotched specimen of the same material 
considerably. 

2.3 Point and average stress criteria 
In a number of papers, Nuismer et al. [8-11] have 

presented a theoretical basis, experimental verification 
and practical application of stress criteria which are 
similar to the inherent flaw criterion. However, LEFM 
is not applied and the stress distribution ahead of the 
notch is obtained using linear elasticity. 

As a starting point we take the stress field in an infinite 

Fig. 6. Net section strains compared to ultimate strain of 
unnotched specimen. σ = 260 M Pa, R = 9.5 mm. 

isotropic plate subjected to uniaxial tension and with a 
circular hole, Fig. 7. The variation of the stress com-
ponent ay can be expressed as in eqn (2.5), where R is the 
radius of the hole and σ is the stress applied at infinity 
[12] 

■«(? (2.5) 

Fig. 7. Stress distribution ahead of circular holes of different 
radii in an infinite isotropic plate. 

For x = R, the well-known value 3 of the stress con-
centration factor (SCF) is obtained from eqn (2.5). The 
stress concentration is however much more localized 
for the smaller hole than for the larger hole. For the 
larger hole, a larger volume of material is subjected 
to high stresses and, hence, the probability of having 
a large flaw in highly stressed regions is greater than 
for the plate having a smaller hole. The conclusion that 
large hole plates should have a lower fracture stress 
oc than small hole plates was also verified experiment-
ally by Nuismer and Whitney [8, 9]. 

In the point stress criterion (PSC), it is assumed 
that the notched strength ac is obtainedwhen the stress 
σ at a certain distance d0 from the notch equals the 
unnotched strength σ0, eqn (2.6) 

σ0 = σ,(χ = Λ0) = [ 1 + ^ + | ί ί Κ 
which can be expressed as 

σ0 2-KÎ + 3ÎÎ 
where 

ί ι = 
R 

R + d0' 

(2.6) 

(2.7) 

(2.8) 
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For pedagogical reasons, the notched to unnotched 
strength ratio in eqn (2.7) was derived for an isotropic 
material. If the material is anisotropic, eqn (2.5) has to 
be modified in accordance with eqn (2.9) [13] 

2 + + 3 - -(Kroo-3) -71 σ 

2 
(2.9) 

where the stress concentration factor K7oc for the 
infinite plate is expressed by in-plane laminate stiff-
nesses Aij [14] in eqn (2.10) and, alternatively, by 
effective elastic moduli in eqn (2.11 ). 

!+Jx, yj Αχ χΑ2 
A\\A12 Al2 

2Ah 

KTx = \+l2 
C,v 

(2.10) 

(2.11) 

In its generalized form, the point stress criterion now 
is expressed as in eqn (2.12) 

^ = 2/[2 + ξ? + 3 ξ ί - ( Κ Γ , -3)(5ξ*-7ξ*)].(2.12) 

In the average stress criterion (ASC), it is assumed that 
the notched strength ac is obtained when the average of 
the stress ay over a certain distance a0 ahead of the 
notch equals the unnotched strength σ0, eqn (2.13) 

i r*R + a0 

σ0=~ <jy(x,0)dx. (2.13) 
ü0 JR 

Substituting eqn (2.9) into (2.13) yields after integration 

^ = 2,1 

where 

-ξ2)/[2-ξ2
2-ξΐ + (Κτ,χ -3 ) (^ -ξ 8

2 ) ] (2.14) 

ζ->=-, 
R + an 

(2.15) 

Figures 8-11 show how the point and average stress 
criteria correlate with experiments performed by Nuis-
mer and Whitney [9] on glass/epoxy and graphite/ 
epoxy. 

At the representation in Figs. 8-11 of the notched 
strength obtained at the experiments is was transformed 
to "infinite plate notched strength" by multiplying by 
the isotropic finite width correction factor KT/KT^ 
according to eqn (2.16) [15] 

KT _ 2 + ( l -2K/W)3 

KV7 ~ ~^{\Z-2R/Wf 
(2.16) 

Fig. 8. Notched to unnotched strength of (0/±45,90)2iS. 
Scotchply 1002 laminates with circular holes. 

Fig. 9. Notched to unnotched strength of (0/90)4s Scotchply 
1002 laminates with circular holes. 

Fig. 10. Notched to unnotched strength of (0/±45/90)2s 
T300/5208 laminates with circular holes. 

Fig. 11. Notched to unnotched strength of (0/90)4sT300/5208 
laminates with circular holes. 

2.4 Other approaches 
The application of fracture mechanics to composites 

has been investigated in a number of papers such as 
Phillips [16], Hahn [17], Morris and Hahn [18], 
Brinson and Yeow [19], Yeow et al. [20, 21] and Awer-
buch and Hahn [22], In these papers the main interest 
was to evaluate experimentally such fracture param-
eters as the crack opening displacement (COD) or the 
fracture toughness expressed as critical stress intensity 
factor (SIF) KJC or fracture energy &c. They are 
mainly concerned with laminates with sharp notches 
or cracks. Lau and Chow [23] present finite element 
calculations of SIF:s in orthotropic plates. An excellent 
review article by Dharan [24] on the subject should 
also be mentioned. 
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Kanninnen et al. [25, 26] have also reviewed the 
current knowledge on fracture in composites. Further-
more, they have proposed a new model in which a local 
heterogeneous region (LHR) is studied which sur-
rounds the crack tip. In this model various micro-
mechanical failure processes are taken into considera-
tion. 

Two other approaches which deserve to be noticed 
are those due to Snyder and Cruse [27] and Pipes et ai 
[28]. In the previous work a boundary-integral equa-
tion (BIE) method was developed by which finite width 
effects and stress intensity factors for Modes I and II 
could be calculated for various geometries and in-plane 
loadings avoiding the assumption of an isotropic cor-
rection factor. Pipes et al presented a three-parameter 
relationship for the notched strength of composites 
which was based on the works by Waddoups et ai [6] 
and Nuismer and Whitney [9]. They put the notched 
to unnotched strength in the following form, 

^ = 2 / [ 2 + y - 2 + 3 / - 4 - ( X ^ - 3 K 5 / - 6 - 7 / - 8 ) ] 

where 

/=!+-

(2.17) 

(2.18) 

Equation (2.17) can be regarded as a generalization of 
eqn (2.12), which was derived from the point stress 
fracture criterion [9]. The undetermined parameters 
in the model are the notch sensitivity factor C and the 
exponential parameter m. 

Finally, two works dealing with the compressive 
failure of notched composites will be mentioned. The 
overwhelming majority of papers addressing fracture of 
notched composites deal with tensile fracture. How-
ever, Nuismer and Labor [11] have demonstrated 
some successful applications of the average stress 
criterion to the compressive strength of graphite/ 
epoxy laminates with countersunk holes. Knauss 
et al. [29] performed an experimental study of graphite/ 
epoxy plates with different layups. 

3. THE FICTITIOUS CRACK MODEL 

3.1 General remarks 
The inherent flaw criterion of Waddoups et al. [6], 

the point and average stress criteria of Nuismer et ai 
[8-11] and the three-parameter criterion of Pipes et ai 
[28] are all of the empirical type, i.e. they all rely upon 
some parameter, eg a, d0, a0, c, m, etc., which has to be 
chosen in such a way that the experimental results are 
approximated by the theory. These parameters can not 
be calculated or postulated on the basis of fundamental 
data of the constituent materials of the composite but 
they are selected on a best-fit basis. 

A theory by which the notched fracture strength 
could be computed from known fundamental material 
data would be much more appealing. It would, how-
ever, not be realistic to expect such a theory to be able 
of modelling all micromechanical fracture mechanisms 
in detail (see Fig. 2). The fracture energy &c represents 
the sum of all energies dissipated in these various 
mechanisms, see Beaumont and Harris [30], and it is 
selected as a suitable parameter for characterizing the 
material. The fictitious crack model (FCM) is a model 

which originally was used by Hillerborg et ai [1] and 
Modéer [2] for fracture analysis of concrete and 
cement. It fulfills the requirements discussed above, 
i.e. only basic material parameters such as stiffnesses, 
unnotched fracture stress σ0 and fracture energy <&c are 
required as input parameters. The entire process of 
crack formation and crack growth, both stable and 
unstable, can be modelled. The fracture load can be 
calculated for various shapes of notches and not only 
circular holes. 

3.2 Description oj the model 
The basic principle of FCM is to gather all micro-

cracks and other local fractures to a fictitious crack, see 
Fig. 12. From a computational point of view, the 
fictitious crack is identical to a real crack with uniting 
stresses acting on the crack surfaces. The fictitious 
crack is formed when the unnotched tensile strength σ0 
of the material is exceeded, Fig. 13(a). 

damaged zone 

potch\ *\ Ιηο 

- I — 
fictitious crack 

uniting stresses 

Fig. 12. Modelling of damaged zone as a fictitious crack: 
(a) Damaged zone, (b) Fictitious crack. 

crack 
2 - opening 
c 2w 

Fig. 13. Stress vs strain and crack opening: (a) stress-strain 
curve of unnotched composite, (b) reduction of the stress 
acting on the crack surfaces with crack opening 2n?. The 
area under the curve is equal to the fracture energy ^c. 

When the crack opening 2w increases, due to an 
increase of the external load, the uniting stresses are 
reduced, Fig. 13(b). This reduction can be expressed 
with a general function /(w), eqn (3.1) 

<7=/(w). (3.1) 
The area under the σ — χν curve corresponds to the 
fracture energy ^c, Fig. 13(b). 

At a limiting value of w, which is denoted wc, the 
stress is reduced to zero and a real crack is formed, 
Fig. 14(a). Upon a further increase of the external load 
the real crack grows. This growth is generally stable in a 
first phase and then it changes to be unstable. The load 
at which the crack growth changes from stable to 
unstable is in the following taken as the fracture load 
according to the computations, Fig. 14(b). 

A very nice property of the fictitious crack model is 
that both formation, stable growth and unstable growth 
of cracks can be followed for quasi-static loadings. The 
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W - ' W w-'w 
fracture load 

fictitious 
crack 

crack 
length 

(a) (b) 

Fig. 14. Crack growth according to the FCM: (a) real and fictitious cracks, (b) computational fracture load. 

latter is true if the analysis is displacement controlled. 
This general property of modelling the behaviour of an 
unloaded and undamaged structure up to fracture is 
unique for FCM and has no counterpart in either 
conventional fracture mechanics or the criteria de-
veloped for composites such as the inherent flaw, point 
or average stress criteria. 

Various approximations can be used both for the 
stress-strain curve and for the stress-crack opening 
curve. In this work a linear stress-strain curve is 
assumed, ie the material is assumed to be linearly 
elastic. For the stress-crack opening curve two different 
approximations are used, Fig. 15. In the first one, a 
constant stress σ0 is assumed to act on the surfaces of 
the crack as long as the crack opening is less than 2wcl, 
eqn (3.2) 

2(7n 
(3.2) 

2w 

Fig. 15. Constant and linearly decreasing stress-crack open-
ing curves. 

In the second case a linearly decreasing stress-crack 
opening curve is employed with the limiting value 2wc2 
of the crack opening, eqn (3.3) 

w c 2 = - c . (3.3) 

4. NUMERICAL RESULTS 

4.1 General remarks 
In the present applications of the fictitious crack 

model, (0/90)4s Thornel 300/Narmco 5208 graphite/ 

F 

_J 

Fig. 16. Geometry of and loading of analysed plate L = 52.0 
mm, £=25.1 mm, 2R = 1.6 mm and 2.8 mm, thickness 

= 2.16 mm. 

epoxy laminates were studied. Experimental results and 
theoretical results obtained from the average and point 
stress criteria have been published by Nuismer and 
Whitney [9], see also Fig. 11 in Section 2.3. 

The geometries of the analysed plates are given in 
Fig. 10 and the data for the material are given in Tables 
3 and 4. These Tables give the elastic data of the graph-
ite/epoxy lamina and the elastic and fracture data of the 
laminate, respectively. In Table 4 the values of the 
fracture energy <&c and the limiting crack openings 
wcl and wc2 are questionable. Nuismer and Whitney 
did unfortunately not give the value of ^c in their 
paper [9] so it had to be taken from the work by 
Phillips [16], who reported experimental results for a 
similar laminate. Hence, the value of <&c which has been 
given in Table 4 can be considerably erroneous. To 
check the influence of the value of &c on the computed 
results, complementary calculations were performed 
with half and twice the value of ^c, see Section 4.5 and 
Section 5. 

Table 3. Stiffness properties of graphite/epoxy lamina 

Stiffness property 

Young's modulus in the fibre direction E„ 

Young's modulus in the transverse direction E22 

Shear modulus G,2 

Major Poisson's ratio υ,2 

Value 

147.7 

1 1.05 

5.32 

0.29 

Units 

GPa 

GPa 

GPa 

-

The stiffness coefficients Au are defined in equation 
(4.1), where N„ Ny and Nxy are membrane forces and 
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Table 4. Stiffness and fracture properties of graphite/epoxy 
laminate with thickness 2.16 mm. The stiffnesses are defined 

in eqn (4.1) and the crack openings in Fig. 15. 

Property 

Stiffness A„ 

Stiffness A22 

Stiffness Al2 

Stiffness A«; 

Unnotched strength σΌ 

Fracture energy Gc 

Crack opening wc, 

Crack opening wC2 

Value 

172.6 

172 6 

7.0 

1 1.6 

638 

20 

15.7 

31.3 

Units 

MN/m 

MN/m 

MN/m 

MN/m 

MPa 

kJ /m2 

/ i m 

μΓΤ) 

εχ, ey and yxy are strains of the laminate [14] 

[Nx-
Ny 

uvl 
= 

pin 
^ 1 2 

_ 0 

A12 

^ 2 2 

0 

0 Ί 
0 

Λ6β] 

Γε^ 

ί: 

[_y 
(4.1) 

In Figs. 12 and 17 the two finite element meshes used 
at the computations are shown. The mesh signified as 
"fine", Fig. 12, differs from the "coarse" mesh in Fig. 
18 only in the element layout along the x-axis. This 
refinement was made to get a check of the discretization 
errors in the analysis. 

At the places in these meshes where two element sides 
coinside with a single side, displacement continuity 
was assured by using the "master-slave" technique and 
subsidiary conditions [42]. In all computations the 
general purpose finite element code GENFEM-3 
developed by Glemberg, Petersson and Wennerström 
[43-45] was used. 

4.2 Large hole 
When the large hole analysis is discussed, we first 

look at the results obtained using the coarse mesh in 
Fig. 17. According to the calculation of the undamaged 
plate, the external stress cr=100 MPa gives a nodal 
force F1 = 172 N in node No. 1, which gives an average 
stress of 172/0.4 = 430 MPa along half the distance 
between nodes 1 and 2. Hence, the external stress 
(7=100-638/430=148 MPa is causing a fictitious 
crack of length c = 0.4 mm, where 638 MPa is the un-
notched tensile strength, Table 4. The next step in the 
calculation is split into two load cases, see Fig. 19. 

By adjusting the external stress σ such that the nodal 
force F2 equals the unnotched strength σ0 multiplied 
by the sum of the two adjacent half element lengths, 
and at the same time checking Wj with respect to wc, the 
growth of the fictitious crack can be simulated. The 
procedure is repeated, and in each step the number of 
load cases that have to be considered is increased by 
one. It is, of course, also necessary to check if any w 
behind the front of the fictitious crack exceeds wc. In 
this way the growth of the real crack is also followed. 

The resulting curves relating external stress σ to total 
crack length a + c for the coarse and fine meshes are 
shown in Fig. 20. 

Fig. 17. Coarse finite element mesh. 

4.3 Small hole 
In the same way as described in the preceding section, 

a plate with a φ 2.8 mm hole was analysed using a 
modified version of the coarse mesh. The maximum 
stress obtained was σ = 443 MPa. If we now apply a 
factor 349/328=1.064, see Fig. 20 to this result, a 
predicted maximum stress σ=471 MPa is obtained for 
a fine mesh calculation of this plate. 

4.4 Variation of fracture energy and stress with crack 
opening curve 

As discussed in Section 4.1, two separate analyses 
were carried out to clarify the influence of the value of 
the fracture energy. For the large hole and the fine 
mesh, the values ^ c = 10 kJ/m2 and 40 kJ/m2 were used 
in addition to the previously applied value 20 kJ/m2. 
The maximum stress obtained for these two cases was 
330 MPa and 412 MPa, respectively, as compared with 
349 MPa, Fig. 20. 

The sensitivity of the results to the shape of the stress 
vs crack opening curve was also analysed. In all calcula-
tions discussed so far, the constant stress vs crack open-
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Fig. 18. Fine finite element mesh. 

Fig. 20. External stress σ vs total crack length a + c for plate 
with φ 7.6 mm hole. 

ing relationship has been used, see Fig. 15. Now, for 
the large hole fine mesh case, the linearly decreasing 
curve was used in combination with a simplified 
procedure. The resulting maximum stress for this 
case was 326 MPa. 

4.5 Comparison with previous results 
In Fig. 21 the results of the pilot study computations 

described in the preceding sections are compared with 
experimental and theoretical results by Nuismer and 
Whitney [9], see Fig. 11. Before the present results were 
plotted, they were modified by the isotropic finite width 
correction factor according to eqn (2.16), which for the 
large and small hole was 1.12 and 1.01, respectively. 

5. DISCUSSION, FUTURE RESEARCH 

The results obtained in this pilot study are encourage-
ing. The fictitious crack model seems to be able to cope 

ΠΤΠΤΠΤΠ 

W 1 ± t 

I 

w1? 

21 "1 "■ - 2 

(a) (b) (c) 
Fig. 19. Superposition of load cases: (a) external stress σ acting, (b) uniting nodal force F{ acting, (c) total load case. 
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1.0 

0.8 

0.6 

0.4 

$ experiments 

■ present calculations 

/ d = 1 .TTmilT— ' . 

Fig. 21. Comparison of present results with experimental 
and theoretical results by Nuismer and Whitney [9]. The 

numbers denote the values of fracture energies #c. 

with the problem of static fracture in notched compos-
ites. Even if the results are somewhat uncertain with 
reference to the value of #c , the hole size effect is 
described in a qualitatively correct way. The major 
advantage of the new technique over existing theories 
is that only basic stiffness and fracture data of the 
material are required. 

Hence, a further study of F C M applied to notched 
composites seems well motivated. Some of the issues 
which then should be investigated more closely are 
listed below : 

(a) Experiments should be searched for, or performed, 
where both the stiffnesses, unnotched fracture stress, 
fracture energy and notched fracture stress are known 

(b) A general computer code based on the procedure 
described in Section 3.3 should be developed. This 
program could preferably be written for a mini or 
micro computer communicating with a large computer. 
Then the condensed stiffness matrix could be evaluated 
in the large computer and sent over to the small one, 
where all FCM computations could be performed 

(c) A careful study of discretization errors and of 
various stress vs crack opening relationships should be 
undertaken 

(d) The F C M technique should then be applied to 
other notches than circular holes and to various types 
of composites 

Parallel to this work, the author feels that it would be 
fruitful to apply the principles of two other recent 
techniques for fracture analysis to composites also. 
These are the continuous damage mechanics approach 
described by Janson and Huit [3 ,4] and the blunt crack 
band propagation technique proposed by Bazant and 
Cedolin [5] . 
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Abstract —This paper describes a computational method for soil/structure interaction problems, with par-
ticular emphasis on reinforced concrete structural response. The computational method involves the 
modeling capabilities of the CRT/NONSAP finite-element computer code which has been extended to 
address soil/structure interaction problems. Some of the relevant improvements include: 
•Refined elastic-plastic material models for concrete and geologic materials. 
•Interface element to model shear transfer and sliding at soil/structure interfaces. 
•Element deletion (removal) procedure for representation of cracking in brittle materials, or failure in 
ductile material caused by large strains. 
The details of these improvements regarding their applicability to dynamic analysis of reinforced concrete 
structures and the effects of soil/structure interaction are described. Also, the nonlinear response analysis 
of a buried reinforced concrete cylinder to an air blast environment is presented. 

INTRODUCTION 
Problems involving nonlinear response of soil/structure 
systems are complicated by three features: (1) non-
linearity in the structural components, e.g. inelasticity 
in concrete and steel reinforcements of reinforced 
concrete structures; (2) nonlinearity in soils, e.g. 
compaction and (3) slip and/or gap at the interface 
between the soil and structure. In this paper a nonlinear 
finite-element computer program developed at Calif-
ornia Research & Technology, Inc. (CRT) is used to 
analyze problems of this type. This code, termed CRT/ 
NONSAP, is an extensively modified version of the 
code originally developed at the University of Califor-
nia, Berkeley [1, 2], and has the capability of dealing 
with elastic-plastic large deformation dynamical re-
sponse of complex structure/media systems. 

The nonlinear material models for soil and structure 
now available in this code include elastic-plastic 
models for complex pressure sensitive materials. These 
models are generalized versions of Drucker-Prager 
and Mohr-Coulomb associated flow models [3,4], and 
can represent soil, rock or concrete types of materials, 
including, if necessary, tension failures, cracking, effects 
of compaction and shear failure dependency on pres-
sure. These models have successfully predicted the 
nonlinear response of geologic media and reinforced 
concrete structures to dynamical blast and shock 
loading. 

fThis work was partially supported by the Defense 
Nuclear Agency. 

^Principal Engineer. 
§Research Engineer. 
{̂Professor of Engineering and Applied Science. 

The combined soil/structure problem is complicated 
by the interface between the soil and structure. In fact, 
experiments [5] have shown that sliding between con-
crete/soil and steel/soil interfaces occurs at interface 
shear levels which are significantly less than the shear 
limit of the soil. Thus, analyses which assume a per-
fectly bonded interface condition overpredict the 
shear transfer and depending on the specific applica-
tion, either over- or underestimate structural response. 

Typical interface data indicates that shear associated 
with interface slipping resembles a Coulomb law. That 
is, the shear limit for bonding is dependent in some 
fashion on the interface normal pressure. Various 
plasticity constitutive models exist which fit the general 
form of the interface shear/normal sliding stress data. 
For example, the Drucker-Prager and Mohr-Coulomb 
yield criterion give a good approximate representation 
of interface sliding data. Interface behavior can be sim-
ulated numerically by explicitly representing the inter-
face boundary with a finite element having a small 
thickness and using a constitutive model that reflects 
the interface shear/normal stress limits. Since the inter-
face element is to simulate the shear/pressure limits 
on the surface between two dissimilar materials, its 
material constituents should reflect interface sliding 
data and not necessarily the constituent laws for either 
of the two adjoining materials. 

Theoretical calculations performed wherein interface 
behavior is simulated using either a Drucker-Prager or 
Mohr-Coulomb yield law and an associated flow rule 
generally do not compare well with experimental data. 
This is due to the fact that the sliding which occurs in an 
interface typically results in large interface shear strain. 
According to the associated flow rule this shear strain 
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causes volumetric expansion in the interface element of 
the order of the shear strains to occur during the process 
of interface slipping. This volumetric expansion can 
cause significant, unrealistic buildup of pressure in the 
structure and surrounding media, especially if the 
problem is confined. 

To avoid this difficulty, a special interface element 
was developed. The yield law employed is a simple 
Coulomb friction law, and the plastic flow rule used 
assumes the direction of plastic strain increment lies 
colinear with the interface sliding, i.e. sliding causes 
plastic shear strains only. This flow rule is nonassoci-
ated and prevents plastic dilatation. The selection of a 
nonassociated flow rule to alleviate plastic volumetric 
dilatation results in a loss of symmetry in the incre-
mental constitutive law (incremental stress-strain 
matrix) and hence leads to nonsymmetric interface 
tangent stiffness matrices. Furthermore, nonassociated 
flow rules can lead to indefinite or negative definite 
systems. An incremental solution procedure is em-
ployed in which only the symmetric portion of the 
interface constitutive law is used to represent the system 
incremental tangent stiffnesses. The errors induced by 
neglecting the nonsymmetric terms are eliminated 
through iteration and the accumulation of errors is 
prevented by reapplication of the errors obtained from 
the previous cycle to the next load step. This approach is 
computationally efficient and permits the retention of 
the usual symmetric linear equation solution procedure. 

In the following sections the detailed mathematical 
features of the numerical modeling and solution tech-
niques are described. Also, the nonlinear response 
analysis of a buried reinforced concrete cylinder to an 
air blast environment is presented. 

function of the hydrostatic pressure (—Jx) permits an 
accurate representation of triaxial compression test 
data. Typical shear failure data for geologic materials 
are shown in Fig. 1. 

-J./3 

HYDROSTATIC PRESSURE 

Fig. 1. Typical shear failure data for geologic materials. 

The constitutive model represents the hysteretic 
effects of compaction using a variable loading and un-
loading bulk moduli formulation where the incre-
mental bulk modulus depends both on the current 
volumetric strain state and the peak volumetric strain 
occurring during the loading history. Figure 2 shows 
typical compaction behavior generally obtained from 
either uniaxial strain or hydrostatic compressions 
tests which are used to fit the variable bulk modulus 
model. 

The effect of compaction is most significant in soils 
and may be ignored for certain types of rock and con-
crete. Similarly, plastic work has little significance on 
the yield/flow surfaces in soils. Thus this general 
material model can be specialized to represent various 
soils, rock and other geologic material such as concrete. 

GENERALIZED DRUCKER-PRAGER 
MATERIAL MODEL 

Inelastic deformation in geologic media and con-
crete materials results from two separate mechanisms: 
(1) plastic strains which accumulate when slippage 
occurs due to excess shear stress and (2) compaction 
(the closing of gaps and voids) which occurs under 
hydrostatic states of compression. Both these mechan-
isms can absorb significant energy, thus modeling their 
effects is essential if theoretical nonlinear models are to 
accurately predict behavior in soil/structure interaction 
problems. 

In the analyses performed herein, the geologic mater-
ial is characterized using a hysteretic pressure depend-
ent elastic-plastic model. With this model, shear failure 
is governed by a pressure/plastic work dependent yield 
law and its associated flow law. The general form of the 
law in terms of the stress invariants Ji and J'2 is as 
follows: 

F = <xJ1 + JJ'2-K (1) 

where 

a = a(J,, Wp) 

K = K(J{, Wp) 

J\=°u 

J'i = ï\aij--fàij\ U-'-fù 

(2a) 
(2b) 

(3b) 

. CKK 
3 

DILATAT IONAL STRAIN 

Wp denotes plastic work, and a and J are scalar param-
eters. Expressing the material parameters a and K as a 

Fig. 2. Typical compaction data for geologic materials. 

REINFORCED CONCRETE MATERIAL MODEL 
The reinforced concrete model developed for the 

numerical calculations presented herein includes an 
explicit representation of the steel reinforcement bars 
(one-dimensional elastic-plastic elements) and the plain 
concrete (elastic-plastic continuum elements). Plain 
concrete is idealized using an isotropic pressure 
dependent yield law with strain hardening and soften-
ing capabilities and an associated flow law. The yield 
criterion has the form given in eqn (1). Expressing the 
yield parameters a and K in terms of J1 (hydrostatic 
pressure) and plastic work (Wp) allows for an analytical 
representation of both the pressure dependency on 
yielding and post-yield strain hardening and softening 
formulations. 

The material parameters for the concrete model were 
evaluated to fit concrete biaxial stress data. This stress 
data was preferred to triaxial because of the basic 
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geometry of the structures analyzed (thin wall cylinder) 
where states of stress remain essentially biaxial 
(σ„<ζσΘΘ). Figure 3 shows a typical failure surface for 
plain concrete in states of plane stress. This biaxial 
failure data can be used to evaluate corresponding 
values of the invariants Jt and yjj'2\ thus when the 
failure data is mapped to J1? y]J'2 space (see Fig. 4), the 
material parameters a and K can be evaluated to fit 
experimental data. 

HYDROSTATIC PRESSURE 

Fig. 3. Biaxial failure data for plain concrete. 

y & y *G1 

Fig. 4. Plain concrete biaxial failure data mapped to Jl5 
y/j'2 space. 

This concrete constitutive model gives an accurate 
representation of concrete behavior until either com-
pressive crushing and spalling or tensile cracking 
occurs. In this event an element deletion (removal) pro-
cedure has been developed where at any cycle of the 
solution procedure, failed elements are physically 
removed from the grid. Two distinct approaches can be 
exercised: (1) removal of both the mass and stiffness of 
the element (simulating the complete removal of the 
material), or (2) removal of the stiffness but retaining 
the mass (idealization of a crack section). This element 
removal technique is by no means an attempt to simul-
ate crack propagation. It is, however, an effective 
means for evaluating the effects on structural response 
caused by changes in load path resulting from localized 
failures occurring in concrete (and steel reinforcing 
bars). 

STRUCTURE/MEDIA INTERFACE MATERIAL MODEL 

This section describes the basic fundamental rela-
tions used to evaluate the incremental constitutive 
equations for the structure/media interface element. 
This includes the stress criterion for slippage and the 

plastic flow rule from which the incremental constitu-
tive laws are derived. 

Experimental data suggests that sliding in structure/ 
soil interfaces in governed by a Coulomb-type criterion, 
i.e. the critical shear stress which causes debonding is 
dependent on the normal interface pressure. Further-
more, experimental data shows that the critical shear 
stress limit is essentially a linear function of the normal 
pressure for a rather large range of interface pressures. 
A general form of the criterion for interface slip which 
defines all combinations of stress states corresponding 
to sliding is as follows: 

^Κ,τ) = 0 (4) 

where ση = interface normal stress; τ = interface shear 
stress; and F(an, τ)=0 denotes interface sliding, and 
F((7n, τ) <0 corresponds to interface bonding. Assuming 
the critical shear limit is linearly dependent on the 
interface normal stress leads to the following criterion 
for slip: 

F = ^T2 + fiGn-C (5) 

where μ = interface coefficient of friction and C = inter-
face cohesion. 

During interface sliding a flow rule is required which 
specifies the direction of the plastic flow given the inter-
face stresses. In order to prevent plastic dilatation the 
following nonassociated flow law was selected: 

dej=0 
d / = dyp 

(6a) 
(6b) 

where deJ = incremental interface plastic normal strain 
and άγρ = incremental interface plastic shear strain. 
Again, an associated flow rule will produce considerable 
volumetric expansion if sliding occurs on the interface. 
Figure 5 illustrates the difference between interface 
element response for associated and nonassociated 
flow rules. 

From the definition of the criterion for slip (i.e. that 
during sliding F=0) and the plastic flow rule, the 
incremental constitutive relations are obtained. During 
sliding, the sliding criterion requires 

or 

F K + d^,T + di) = 0 

d F Λ dF Λ Λ 

— da„ + - -dT = 0 

V 

(7a) 

(7b) 

(7c) 

INTERFACE ELEMENT VOLUMETRIC EXPANSION 

UNDISTORTED INTERFACE DISTORTED INTERFACE DISTORTED INTERFACE 

(NONASSOCIATED FLOW) (ASSOCIATED FLOW) 

Fig. 5. Effect of flow rule on distortion of interface element 
during sliding. 
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The stress increments are evaluated from the elastic 
strain increments and the elastic constitutive relations 

dx=G(dy-dyp) (8a) 

dan = E(dsn-dsp). (8b) 

Use of the nonassociated flow rule which stipulates that 
sliding causes plastic shear strain only (i.e. de£=0) and 
eqns (8) and (7) leads to the following expression for 
άγρ: _ 

Vt2 -dyp = dy + ^— μ-άεη. τ (J 
(9) 

Finally, the incremental constitutive matrix is deter-
mined by substituting eqn (9) into (8), 

:.H<'. 
where 

0, -Φ 
0, E 

μΕ 

(10) 

(H) 

Note that the elastic-plastic constitutive law is non-
symmetric and indefinite. 

Finally, it is recognized that positive normal strain 
(tension on the interface is an indication of a gap form-
ing between the two material boundaries. When this 
occurs, a free surface exists on both material surfaces 
and the materials are no longer coupled through the 
interface. This is simulated by zeroing the interface 
stress and the constitutive laws. 

NUMERICAL SOLUTION PROCEDURE 

Perhaps the most versatile and preferred implicit 
solution procedure for nonlinear problems is an incre-
mental technique wherein effects of nonlinearity are 
taken into account by means of a series of piece-wise 
linear analyses. Each analysis is based through linear-
ization of the nonlinear constitutive law and strain-
displacement relations (for large displacement theory) 
which gives a linear system incremental tangent stiff-
ness for use in the analysis. Errors induced from linear-
ization can be eliminated by an iteration scheme in 
which the errors in system equilibrium are reapplied 
using the previous tangent stiffness to reduce errors in 
the equilibrium equations (modified Newton-Raphson 
method). If iteration is not performed, then the errors 
in system equilibrium can be reapplied to the next load 
increments to prevent the accumulation of error build-
up. 

When nonlinear material behavior is idealized using 
plasticity models with associated flow rules, the system 
tangent stiffness is symmetric even for large displace-
ment theory, provided the external loading is conserva-
tive. The symmetry of the system tangent stiffness is 
advantageous since it greatly reduces storage require-
ments and linear equation solution. If nonassociated 
flow rules are required, linearization leads to non-
symmetric constitutive laws and nonsymmetric tangent 
stiffness matrices. Storage requirements for nonsym-
metric matrices are nearly double the requirements for 
the symmetric stiffness and solution times may increase 
by an order of magnitude due to additional data 
management problems in large systems. 

In many applications it is computationally more 
efficient to neglect the nonsymmetric portion of the 

incremental tangent stiffness and account for the errors 
induced by this approximation either through an itera-
tive modified Newton-Raphson approach and/or by 
reapplication of the unbalanced loads which result 

Trom neglecting the nonsymmetric terms and from 
linearization of a nonlinear system to the next load 
step. This solution approach was used for the calcula-
tion presented herein and was found to give excellent 
results, i.e. this approach gave very stable behavior and 
generally, satisfactory solutions could be obtained 
without iteration. 

The steps outlined below illustrate the basic pro-
cedures employed to evaluate the interface stress state 
and the approximate constitutive laws used in evaluat-
ing the interface tangent stiffness matrix: 

(1) From the previous interface normal strain and the 
current incremental normal strain, determine closure 
of the interface. 

(a) If (ε„ + Δεπ)<0 (closed interface), go to 2. 
(b) If (ε„ -f ΔεΜ) > 0 (open interface), zero out interface 

normal and shear stresses. If interface tangent 
stiffness is to be calculated, set all terms in con-
stitutive matrix to zero and return. 

(2) From previous interface strains, stresses, and the 
current incremental strain, calculate the updated inter-
face stress state from elastic analysis: 

Δσ„ = ΕΔε„ 
Ax = GAy. 

(3) If Ρ(ση + Δσ„, τ + Δτ)^0, interface behavior is 
elastic (bonding), update stress and strains accordingly : 

ση=ση + Δση 
τ = τ + Δτ 

ε„ = ε„ + Δε„ 
y = y + Ay. 

If interface tangent stiffness is to be calculated, select 
the elastic constitutive matrix and return. 

(a) If F(an + Δση, τ + Δτ) > 0, and if previous cycle was 
plastic, then set RATIO to zero. Otherwise, a transi-
tion occurs between elastic and plastic response. In 
this case determine RATIO from the equation 

F{on + RATIO Δσ„, τ + RATIO Δτ) = 0 

Update the stresses to obtain the stress state prior 
to yielding 

σ,l = σ,J + RATIOΔσ,J 

τ = τ + RATIO Δτ. 
(b) Use the remaining portion of the strain increment 

associated with an elastic-plastic response to evalu-
ate the corresponding stress increment. Since the 
constitutive law is dependent on the stress state, 
divide the strain increment subintervals and deter-
mine the updated stress increments through integra-
tion of the constitutive equation, i.e. 

(1-RATIO) I t 7 

[Δε„ 
Δτ 
Δσ, i-ί E 

/τ)μΕ 

Update the total stress and strain states : 

τ = τ + Δτ 
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ε„ = ε„ + ΔεΜ 

y = y + Ay 

If the interface tangent stiffness is to be updated, use 
the approximate symmetric elastic-plastic constitu-
tive law: 

[C] = 
0, 0 
0, E 

NUMERICAL APPLICATION 
This section presents the results of a numerical simul-

ation to demonstrate the ability of the analytical models 
to predict buried structure response. Figure 6 shows the 
numerical configuration of a buried reinforced concrete 
model experiment under explosive air blast loading 
(conducted by SRI International). Figure 7 gives the 
details of the element representation of the test 
model. The results of pre-test calibration experiments 
were used to select appropriate concrete, reinforcement, 
soil and interface material parameters. Figure 8 shows 
the corresponding numerical results for concrete strain 
histories at various axial stations. The numerical 
results compare very well with those observed in the 
test. The failure in the text model corresponds to the 
calculated region of peak concrete strain. 

Additional sensitivity analyses show the effect of the 
soil/structure interface condition. As shown in Fig. 9, 
moderate changes in the coefficient of friction has a 
small effect on concrete response. However, a high 
value of cohesion gives significantly different results. 

P'T) 

DISCUSSION 
The results presented in the last section give a clear 

indication of the ability of the CRT/NONSAP code to 
simulate a complex nonlinear dynamical soil/structure 
response, involving elastic-plastic behavior of soil and 
structure constituents and the soil/structure interface 
behavior. This last effect was modeled using a struc-
ture/media interface element which incorporates incre-
mental plasticity theory to predict interface sliding 
stress states. A nonassociated flow rule was selected to 
prevent volumetric expansion of the interface when 
sliding occurs. The nonsymmetric incremental system 

Fig. 6. Finite element description of surrounding media and 
interface of a buried reinforced concrete cylinder. 

Fig. 7. Finite element description of the reinforced concrete 
structure. 

tangent stiffness which results from the selection of a 
nonassociated flow rule was neglected, and the errors 
associated with this approximation were eliminated 
through iteration and by reapplication of the errors to 
the next load step to prevent error accumulation. This 
approach was very successful. In fact, in most applica-
tions, satisfactory results were obtained without any 
iteration. 

The basic idea of limiting the surface stress conditions 
along boundaries of dissimilar materials using a thin 
interface element whose material constituents reflect 
typical interface behavior can be extended to other 
applications. For example, the basic approach can be 
modified to account for initial gaps existing between 
material boundaries. That is, closing of a gap can be 
detected by monitoring the normal strain in a gap 
element. Subsequently, stress along the interface after 
closure can be limited using the identical procedure as 
employed by the interface element. This gap element 
will be implemented into the CRT/NONSAP finite 
element code for both two- and three-dimensional 
applications. 
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Abstract—A fluid-structure-interaction algorithm has been developed and incorporated into the two 
dimensional code PELE-IC. This code combines an Eulerian incompressible fluid algorithm with a 
Lagrangian finite element shell algorithm and incorporates the treatment of complex free surfaces. The 
fluid structure, and coupling algorithms have been verified by the calculation of solved problems from the 
literature and from air and steam blowdown experiments. The code has been used to calculate loads and 
structural response from air blowdown and the oscillatory condensation of steam bubbles in water sup-
pression pools typical of boiling water reactors. The techniques developed here have been extended to three 
dimensions and implemented in the computer code PELE-3D. 

INTRODUCTION 

We have developed a fluid-structure-interaction algor-
ithm for the analysis of the dynamic response of coupled 
fluid structure systems. The method is incorporated into 
a two-dimensional semi-implicit Eulerian hydrodyn-
amics code, PELE-IC. The code is quasi-two phase 
since we can couple to either a one-dimensional or a 
lumped parameter description of compressible gases. 
The code is written in both plane and cylindrical 
coordinates in order to handle a variety of geometrical 
configurations. The coupling algorithm is general in 
nature and can accommodate a wide variety of struc-
tural shapes. It is capable of following large interface 
motions through the calculational grid. By the use of a 
variable time step we are able to accommodate varying 
flow conditions and maintain computational stability. 
The fluid, structure and coupling algorithms have been 
verified by calculations of solved problems from the 
literature and by comparison with air and steam blow-
down experiments (1) and (2). 

The basic semi-implicit solution algorithm contained 
in the SOLA code (3) was used as a foundation for the 
development of the PELE-IC code. We track the 
movement of free surfaces using a donor cell treatment 
based on a combination of void fractions and interface 
orientation. This gives us great versatility in following 
fluid-gas interfaces for bubble definition and water 
surface motion without the use of marker particles. 

The structural motion is computed by a finite ele-
ment code [4] from the applied fluid pressure at the 
fluid structure interface. The finite element shell struc-
ture algorithm uses conventional thin-shell theory with 
transverse shear. The spacial discretization employs 
piecewise-linear interpolation functions and one-point 
quadrature applied to conical frustra. We use the 
Newmark implicit time integration method imple-
mented as a one step module. The fluid code then uses 
the structure's resultant position and velocity as bound-
ary conditions. The fluid pressure field and the struc-
ture's response are corrected iteratively until the normal 
velocities of the fluid and structure are equal. This 
results in a strong coupling between the two algorithms. 

GENERAL DESCRIPTION OF THE 

SOLUTION ALGORITHMS 

The underlying approach used by PELE-IC for the 
solution of general flow fields is the use of the semi-
implicit SOLA algorithm. The basic assumption of this 
approach is that all flow variables within the computa-
tional grid satisfy the continuity equation for each cell, 
regardless of whether or not the computational cell 
contains a free surface or a moving structure. For in-
compressible fluids this means that all cells are diverg-
ence free. This assumption permits freedofn of motion 
for all surfaces throughout the grid. Superimposed on 
this basic algorithm we have applied the boundary 
conditions for free surfaces, compressible gases, and 
moving structures. 

In this section we will give a brief description of the 
solution algorithms. 

SOLA solution algorithm 
The SOLA algorithm uses a Newton-Raphson itera-

tion on the pressure field to solve the mass conservation 
equation. At each iterative step the pressure in each 
fluid cell is adjusted to satisfy the divergence criteria. 
In this algorithm the pressure is a cell centered variable 
and the velocity components are specified on cell sides. 

The algorithm is solved by first writing the Navier-
Stokes equation for the fluid velocity, w, in terms of the 
time level : 

du/dt = (-V-uu + g + vV2u)n-Vpn+1 (1) 
where the superscript n indicates the time level and 
p = P/p is the ratio of the pressure to the density of the 
fluid. The body acceleration is given by g and the kine-
matic viscosity is specified by the constant v. Setting 
pn+1 =pn + Sp gives 

un+1 = [u + ôt(-V-uu-Vp + g + vV2u)]n-ôtôS7p. (2) 
Defining the term inside the brackets as ιϊ, then the 
equation to be solved is 

un+1=u-ôtôVp (3) 
where ü is found using a slightly modified form of the 
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finite difference formulation of Hirt et al [3]. This 
equation is solved iteratively where we define the 
divergence error, D, for each cell at the ith iteration as 

V-u-D, (4) 

and ü is used as the first trial velocity to start the itera-
tion process. The pressure increment in each cell 
necessary to update the velocity field is given by 

where φ is a correction term (0 <φ < 1) dependent upon 
adjacent cells in the direction of the sweep through the 
grid, and cD/dp is a constant dependent only upon the 
cell size, the time step, and the presence of a structural 
boundary. We update the velocity field in each cell 
with the pressure increment, using 

ôUi= ±ôPiôt/ôz (6) 

where δζ is the cell side in the direction of w, and the sign 
is chosen dependent upon which side centered velocity 
component is being adjusted. Satisfaction of the con-
tinuity equation in any particular cell perturbs the 
velocity field of its neighbors. Hence, the method is 
applied in sweeps throughout the grid until the diverg-
ence error everywhere satisfies 

Vu^D^s (7) 

where ε is a preset convergence tolerance which should 
be set according to the minimum flow field of interest 
in the solution. The final velocity and pressure fields 
are then 

un+l = ü + Y.M and ρη+1=ρηΛ-Έίδρ, (8) 
Since the solution procedure is a Newton-Raphson 

iteration, the rate of convergence is dependent upon the 
magnitude of dD/dp which has the form 

where Fx and Fy are dependent upon structural inter-
faces coupled to the fluid cell. If there is no structure, 
then Fx=Fy=l. From the formula for dD/dp we see 
that convergence is accelerated by the use of large time 
steps and small cell sizes. However, the user is limited 
in his choice by the physics of the problem. In general, 
we require that 

where δζ is the component δχ or δγ in the direction of 
the maximum velocity u. 

Thin shell algorithm 
The finite element module uses simple shell theory 

with transverse shear (see Kraus [5]). The element 
formulation was described by Hughes and Taylor [6] 
for beams and plates, and was extended to axisymmetric 
and plane shells by Goudreau [7]. (Similar results were 
obtained by Zienkiewicz et al [8] at about the same 
time.) The element is a two-node, conical frustrum with 
three degrees of freedom per node. Shape functions are 
piecewise-linear for displacements and rotations. The 
shear "locking" associated with low-order interpol-
ation is removed by one-point quadrature. Large 
deformation (here two to three shell thicknesses) is 

accounted for in an approximate way by reformulating 
the stiffness matrix at every time step. 

The Newmark implicit time integration scheme (see 
Goudreau and Taylor [7]) is used at each time step to 
move the shell. The algorithm has the form 

(Κ + 4Μ/(<5ί))2β"+1 = p n + 1 -4ΜΑη/(δή2 (11) 

where 

A" = Qn + ζ)ηδί + Q η(δή2/4. (12) 

Goudreau [2] gives the derivation of K and a 
FORTRAN listing of the one-step module. 

The thin shell algorithm has been made more general 
by the addition of the following four features: 

(1) Each element may have its own thickness. 
(2) Each node can be specified to have its own separ-

ate restraints and prescribed initial displacement. 
(3) The code computes the static deflection of the 

structure as a result of the initial loading before begin-
ning the dynamic solution. 

(4) The gas pressure in the ullage region is applied to 
the shell as well as fluid pressures. 

Fluid structure interface algorithm 
This algorithm couples the fluid motion to the 

structure's motion within the SOLA iteration loop. 
Normal velocity compatibility between the structure 
and fluid is required where the Lagrangian shell crosses 
either the /-line or J-line intercept which defines the 
centroid of the Eulerian cell. The choice depends on the 
angular orientation of the structure, e.g. for angles 
equal or less than 45° we use the /-line coupling. The 
cell side coupled velocity is the one closest to the struc-
ture along the intercept line. In this manner, we main-
tain a smooth coupling whenever the structure crosses 
an Eulerian grid line. The finite element module uses 
the pressure field supplied by the fluid and provides the 
fluid code with the resultant position and velocity of the 
interface. Each change in the pressure field causes a 
different structural réponse, and each different re-
sponse changes the flow field of the fluid. Therefore, 
the iteration proceeds until both conditions are satis-
fied. Within a single iteration, all Eulerian fluid zones 
are adjusted one by one, using the latest values avail-
able, and then all the Lagrangian shell nodes are sim-
ultaneously adjusted by the implicit time step solution. 

The pressure applied to an element is determined by 
an interpolation along each intersection I or J line 
to the neighboring full fluid cell. These interpolated 
values are weighted by the liquid content of the cell so 
that the proper pressure is applied when a free surface 
is in the same cell. The interpolation procedure provides 
a smooth pressure history whenever the structure 
crosses a grid line. 

The solution strategy is to first set the normal fluid 
velocity equal to the normal structure velocity at the 
coupling point. The structure's normal velocity is found 
by an interpolation between nodal values and the 
intercept angle. The normal fluid velocity is found by an 
interpolation between all four of the cell side velocities. 
This determines the cell side velocity which is coupled 
to the structure. This first step of setting the coupled 
Eulerian cell velocity to satisfy the boundary condi-
tions imposed by the structure causes the cell not to 
satisfy the divergence criteria ; therefore, the second step 
is to adjust the cell pressure using the SOLA algorithm 

(10) 

(9) 
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so that the cell is divergence free. This two step process 
is repeated each iteration until both conditions are 
satisfied. 

The free surface algorithm 
Accurate free surface tracking is necessary to allow 

the application of velocity and pressure boundary 
conditions at fluid-gas interfaces. We track the free 
surface by a combination of void fraction and surface 
orientation in each cell. The void fraction provides for 
the conservation of mass and the surface orientation 
allows us to apply the proper boundary conditions and 
follow the flow from cell to cell. 

The free surface algorithm performs four functions: 
(1) Determines the surface orientation within the 

calculational cell based upon its fluid content and that 
of neighboring cells. This orientation is specified by its 
intercepts on two sides of the cell. Within the cell, the 
interface is considered to be a straight line segment. 
Thus, the surface is tracked by its intersection of grid 
lines. 

(2) Applies the prescribed boundary pressure to the 
fluid surface. This is done by finding the appropriate 
cell centered pressure by an interpolation from the 
nearest full fluid cell to the boundary. Recent additions 
to the code also allow the application of a prescribed 
boundary velocity to the fluid surface. This option 
allows one to drive the surface with a moving piston. 
Both these options allow the boundary conditions to 
be a function of time. 

(3) Calculates the fluid advection based on surface 
orientation using the donor cell method where the 
amount of liquid advected is determined from the 
contents of the upstream cell, the orientation of the 
surface, and the velocity of the common liquid side. 
This method guarantees the conservation of mass 
during advection. 

(4) Uses velocity boundary conditions for the void 
sides of the cell to maintain continuity of the flow field. 
This assures a smooth flow when a surface crosses grid 
lines. 

Special features 
The main application of the code to date has been to 

studies of the pressure suppression systems of boiling-
water reactors during postulated loss-of-coolant accid-
ents. Consequently, various special features have been 
added directed toward the solution of these problems. 
Some of these special features are described in this 
section. 

Downcomer pipes. Downcomer pipes are modeled by 
specifying the bounding grid lines as rigid. A special 
algorithm has been added to the code to allow this 
option. In this manner, pipe wall thicknesses small in 
comparison with a calculational cell can be correctly 
modeled. For vent clearing problems, the specified 
driving pressure is applied as a boundary condition 
between the grid lines defining the pipe. The code has 
the capability of handling up to two rigid downcomer 
pipes with driving pressures in this manner. 

Obstacles and baffles. Obstacles and baffles which 
restrict the flow can be modeled by specifying portions 
of grid lines as rigid boundaries. The code will then 
apply the boundary condition of zero normal velocity 
at this boundary. There is no restriction on the number 

of such obstacles that can be specified. 
Coupling to compressible gas flow. In many applica-

tions the downcomer is driven from a drywell with 
either variable or constant pressure. Sometimes this 
flow is further controlled by the use of an orifice. To 
provide for these situations, a flow model coupled to 
the fluid dynamics was developed. This model couples 
the bubble pressure to the drywell and current bubble 
volume by the equation 

where m = mass flow rate through the orifice as speci-
fied in Vennard [9]. The formula used depends upon 
whether the flow is choked or unchoked, V0 = original 
downcomer volume from the orifice to the water level, 
V= current steam volume including the bubble and 
Pu = initial ullage pressure. The time of integration, t, 
covers vent clearing and subsequent bubble formula-
tion and growth. 

In application we find that the mass flow is initially 
choked and dependent only upon the drywell pressure 
and density. Subsequently, during vent clearing, the 

How becomes unchoked and is dependent upon both 
the drywell pressure and the bubble pressure. Since the 
bubble pressure is dependent upon the bubble growth 
in the pool, there is a coupling between the suppression 
pool and the drywell. 

Variable ullage pressure. During a vent clearing 
event, the bubble growth causes a pool swelling in the 
confined ullage region. This compressed air region then 
provides an uptoad on the confining structure. We 
derive this pressure pulse from the perfect gas law using 
the ullage volume change as calculated from the rise of 
the water surface. In experiments performed at the 
Massachusetts Institute of Technology [10], the test 
configuration applied this ullage pressure to the bottom 
flexible plate. The code has been modified to simulate 
these experiments. 

Collapsing bubbles. In chugging studies of collapsing 
bubbles, we have applied a condensation model to 
provide the applied bubble pressure. This pressure is 
dependent upon the inflow rate of steam and the con-
densation rate; both of which are dependent upon the 
bubble volume time history. The use of the void fraction 
and surface orientation algorithms allow us to monitor 
the bubble volume accurately. 

Compressibility effects. In the mass continuity equa-
tion, the incompressible assumption sets dp/dt = 0. We 
may take into account small changes in compressibility 
by substituting the wave equation 

d-l=±dZ (14) 
dt c2 dt U V 

into the mass equation, where c is the speed of sound in 
the fluid. This, then, changes the specification of the 
divergence leading to 

1 dP 
D = Vu + ̂ ~ (15) 

<r dt 

and 

— = 2ôt ΊΓΪ + -Λ + ΤΎΠ2 1 6 

dp [δχ2 dyz 2c1 or J 
which are used in the iteration and for setting the 
velocity boundary conditions. 

(13) 
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SUMMARY 

We have developed three new algorithms to treat 
free surfaces, fluid-structure boundaries, and steam 
condensation. The first is an air-water surface algorithm 
that has been used to model bubble growth and pool 
swell in reactor pressure suppressure systems. The 
second is a fluid-structure coupling algorithm that 
correctly couples the Lagrangian structure overlaying 
the Eulerian grid. The third provides the driving pres-
sure for bubble growth and collapse dominated by 
steam condensation. 

These algorithms have been incorporated into a 
three-dimensional version of the code, called PELE-3D. 
With this version, we are able to study nonsymmetric 
effects. 
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Abstract A method of solution for the transient response of nonlinear fluid-structure systems is presented. 
Finite element discretization is applied to the nonlinear hydrodynamic equations in Eulerian form. The 
resulting system of equations is solved by Galerkin's method via a Newton-Raphson technique. Interaction 
between fluid and structure is accounted for by iteratively enforcing the interface conditions. The fluid 
finite element mesh is redefined by linear interpolation as the system deforms. The procedures are demon-
strated by solution of a one-dimensional system consisting of a single-degree-of-freedom spring-mass in 
contact with a perfect gas through which a shock is propagated. 

1. INTRODUCTION 

Fluid-structure interaction occurs whenever a fluid and 
a structure are in contact and their motions are inter-
dependent. The phenomenon is present in many phys-
ical systems, yet has received incomplete attention in 
the literature. 

The present investigation is concerned with fluid-
structure systems in which fluid compressibility must be 
considered. Such would be the case for systems in which 
the fluid medium is gaseous or for liquid-structure 
systems in which shocks occur. For example, a problem 
currently receiving much attention is a reactor core 
accident in which shock waves radiate from the core 
through a fluid medium to strike a surrounding struc-
ture [1]. 

The use of finite-difference fluid discretization 
schemes in the solution of fluid-structure interaction 
problems in liquid metal fast breeder reactors (LMFBR) 
has been demonstrated in Refs. [2] and [3]. Belytschko 
and Kennedy [4] have addressed a similar problem by 
use of two-dimensional finite element models for fluid 
discretization. This approach makes use of a quasi-
Eulerian fluid element in which the motion of the nodes 
may differ from the motion of the fluid. In this case 
additional transport terms appear in the momentum 
equation. 

The use of the finite element method for fluid dis-
cretization is advantageous because of the ease with 
which complex boundary geometries may be handled. 
The Eulerian formulation of the hydrodynamic equa-
tions provides large deformation analysis capability 
[1]. Of significance in this study is the method by which 
fluid and structural systems are solved separately with 
iterative enforcement of interface conditions. This 
procedure allows combination of the fluid calculations 
with those of standard structural computer programs. 

The governing compressible fluid equations are 
stated in Section 2. Finite element discretization and 
solution of the resulting set of nonlinear, nonsymmetric 
equations are outlined in Section 3. Solution of coupled 

fluid-structure systems is discussed in Section 4, includ-
ing applicable interface conditions and redefinition of 
the fluid mesh to model deformed geometries. A one-
dimensional example problem is defined in Section 5 
and results are discussed in Section 6. Suggestions for 
future investigation and conclusions are noted in Sec-
tions 7 and 8. 

2. GOVERNING EQUATIONS 

The governing equations for a fluid medium are 
obtained from the principles of conservation of mass, 
conservation of momentum, and balance of energy. 
Application of these conservation laws gives the con-
tinuity equation, the equations of motion, and the 
energy equation, respectively. Thus, 

pH + (pu)9i = 09 (1) 

(pUilt + {pUiUj),j+p„·=0, (2) 
and 

E,t + (Euj),j + lPjUj),j=09 (3) 
where p, p, E and u, denote the mass density, pressure, 
total energy, and the velocity components. Equations 
(1H3) assume no body forces, heat input, or fluid vis-
cosity. In addition an equation of state, 

/ (p ,£ , W i )= / (p , / )=0 , (4) 
is required, where / is internal energy. 
Assuming a perfect gas equation of state and rewriting, 
eqns (l)-(4) become 

Pn+mjj=09 (5) 
mitt + (rriiUjlj + (y -1)(£ -±mjUj)9i = 0, (6) 

1-7 
E9t+y(Euj)9j+-γ- (mkukUj)9j=0, (7) 

and 

m,· —pMf=0, i,j,k=l ...n, (8) 
where the m, are components of linear momentum and y 
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is the ratio of specific heats. The value of the index n 
depends upon the dimensionality of the problem and 
can range from one to three. In the above notation 
repeated indices indicate summation, and a comma 
denotes differentiation. 

3. FINITE ELEMENT DISCRETIZATION 
Consider a fluid system governed by eqns (5H8). 

Discretization and solution of these nonlinear equa-
tions are accomplished as follows : 

(a) Replace all time derivatives with temporal oper-
ators of the form 

ψ ζ , ^ φ ' + ^ , (9) 

where $r(x,·, t) = φ(χί9 t = rAt). 
The symbol φ represents the vector of unknowns as 

defined in eqns (5H8). For a one-dimensional system 
φ would represent 

0'T = [pV£rmr]. (10) 
Applicable temporal operators include the method of 
Park [5], Gear 2-step and 3-step procedures [5], a 
first-order backward difference operator, and others 
which can be written in the form of eqn (9). 

(b) Approximate the fluid continuum by finite ele-
ments. Thus, 

1=1 
(H) 

where N is the number of nodal points per element and 
the hx defines the shape function. 

(c) Linearize by assuming 

^φ^ + Αφ^ (12) 

and dropping higher order Αφι terms, which results in a 
set of equations, 

L ( A ^ , ^ ) = 0 . (13) 
(d) Apply Galerkin's method to the set of discrete 

linearized equations. That is, 

L^^Y)hMaV=^ (14) 

where V represents the finite element volume. Equation 
(14) results in a set of algebraic equations of the form 

3\ΐΑφ}=ΗΦΥ\ (15) 
Note that eqn (15) is in the form of a Newton-Raphson 
method, where k is an iteration cycle and J\f is the 
Jacobian evaluated at the /cth iteration. Solution of the 
fluid system is achieved by application of eqns (13) and 
(15) at each successive time step r. Convergence has 
been achieved when the delta quantities vanish. Varia-
tions of the numerical method, such as a modified 
Newton-Raphson method or an incremental pro-
cedure, are easily programmable and may save comput-
ation time in certain cases [6]. 

(e) Structural equations are cast in the usual finite 
element form, 

M^+C^+K^-Fl. (16) 

Substituting a temporal operator for the time deriva-
tives results in a set of equations 

sutfj=n (17) 
at each time step r. If the structural equations are non-

linear they may be written in the form of eqn (15) and 
solved in a manner similar to the fluid system. 

4. SOLUTION OF COUPLED NONLINEAR 
FLUID-STRUCTURE SYSTEMS 

1 DEFINE INITIAL CONDITIONS I 

FORMULATE FLUID FINITE 
ELEMENT EQUATIONS 

SOLVE INCREMENTAL 
FLUID EQUATIONS 

( STOP ) 

Fig. 1. Flow chart for solution of nonlinear fluid-structure 
interaction problems. 

Solution of coupled fluid-structure systems is ac-
complished using a "substructure" approach. Figure 1 
is a flow chart illustrating a substructure solution 
technique for cases in which either the fluid system, the 
structural system, or both are nonlinear. A converged 
solution of the fluid system is obtained separately from 
that of the structure. Note that the substructure ap-
proach necessitates an iterative enforcement of the 
fluid-structure interface conditions. The limiting case 
is the marching scheme in which the solution of the 
structural system at time step r — 1 is used as data for 
solution of the fluid system at time step r. Thus, only one 
solution of each system is calculated for each time step. 

If it is assumed that the surrounding fluid must always 
remain in contact with the structure, the fluid-structure 
interface condition is 

"A- = ^Wf (18) 
Equation (18) expresses the fact that at the fluid-
structure interface the velocity components of the fluid 
and of the structure normal to the surface of the struc-
ture are equal. The nx are components of a unit vector 
normal to the interface surface. 

Since the hydrodynamic equations (5)-{8) were 
derived in an Eulerian coordinate system, the finite 
element nodal points do not follow the fluid motion but 
represent a fixed location at which the fluid properties 
are evaluated. However, as a structure in contact with a 
fluid deforms, the fluid must deform in order to remain 
in contact with the structure. Depending upon the 
structural deformations, the fluid finite element mesh is 
compressed or extended so that the location of the 
interface nodal points will coincide with the deformed 
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surface of the structure. In these studies, the fluid 
pressure and other system parameters are redefined by 
a linear interpolation of these parameters at the "old" 
nodal point locations. The portion of the fluid mesh to 
be redefined depends upon the extent of the change in 
the fluid domain. Logically, it would seem that numer-
ical inaccuracies would be minimized for a given finite 
element mesh when the change in shape of a given 
element is small in relation to the dimensions of the 
element. 

5. EXAMPLE PROBLEM 

The one-dimensional system illustrated by Fig. 2 
was investigated. Twenty-nine one-dimensional fluid 
elements were bounded on the right by a linear single-
degree-of-freedom spring-mass. By specifying dis-
continuous initial condition a shock was propagated 
through the fluid, striking the mass. Applying the 

Fig. 2. Diagram of fluid-structure system utilized in calcula-
tions for one-dimensional fluid-structure interaction 

problem. 

methods discussed above and illustrated in Fig. 1, 
the dynamic response ofthe fluid-solid system was cal-
culated. The Gear 3-step temporal operator was 
utilized for the fluid while the Newark [7] operator was 
applied in solution of the structural (spring-mass) 
system. Solution of the nonlinear simultaneous equa-
tions was accomplished by a standard Newton-Raph-
son procedure. For each time step, iteration between 
fluid and structural system was continued until the 
solid and fluid interface normal velocities agreed within 
0.1%. As the mass displacement varied, redefinition of 
the fluid finite element mesh by linear interpolation was 
performed on the ten elements bordering the solid. 
Calculations were performed in single precision on a 
CDC Cyber 175 computer. Results are presented in 
Fig. 3. 

6. DISCUSSION OF RESULTS 

For the one-dimensional example problems solved, 
convergence to a solution at a given time step was gener-
ally achieved within three to eight iterations. 

Note from Fig. 3 that the fluid-structure interaction 
solution was compared to a no-interaction solution. 
The no-interaction solution was obtained by applying 
to the spring-mass a Heaviside forcing function of 
magnitude equal to the theoretical rigid wall reflected 

' I — i — i — i — i — i — i — i — i — r 
fi= I,.333 u= 4,0 p = 8,0 g=2, rr^=l, k=IOOOO, *x=.OI75, 

l·- Δί = .001459, Δ NO-INTERACTION SOLUTION O INTERACTION 

SOLUTION STATIC SOLUTION 

0 10 20 30 40 50 60 70 80 90 100 

TIME INCREMENT 

Fig. 3. One-dimensional structural response due to shock 
wave loading. 

pressure. Comparison of the two solutions demon-
strates that considering interaction effects significantly 
alters the structural response. 

Although only one-dimensional systems were in-
vestigated, extension ofthe method to multidimensional 
systems is straightforward. A chief feature of the 
proposed solution procedure is the fact that fluid and 
structural systems are solved separately. Such a tech-
nique possesses the advantage that the fluid formulation 

can be easily combined with many standard structural 
dynamics programs. Moreover, such separate solutions 
may result in fewer numerical difficulties than would be 
the case for a truly simultaneous solution of systems 
possessing widely different characteristics. 

Although the example problem considered only a 
linear structure, it is clear that the methodology may be 
easily extended to include structural nonlinearities. 

7. FUTURE INVESTIGATIONS 

This work was unfunded research and was conse-
quently limited to one-dimensional systems. More 
work is needed on more complex two-dimensional 
problems to better ascertain computational costs and 
the accuracy and generality of the methodology. Com-
parisons of the above factors for this finite element 
formulation with those of other approaches, such as the 
finite difference methods of Refs. [1-3] and the quasi-
Eulerian finite element approach of Ref. [4] would be 
useful. 

8. CONCLUSIONS 

A method of solution for fluid-structure interaction 
problems was proposed. The procedures were demon-
strated for a one-dimensional example and appear to be 
feasible for complex multidimensional systems. Separ-
ate solution of fluid and structural systems with itera-
tive enforcement of interface conditions allows a fluid 
system to be readily incorporated into standard struc-
tural analysis programs. The methodology is also 
compatible with structurally nonlinear systems. An 
Eulerian fluid formulation permits large deformation 
analysis ofthe fluid-region. 
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Abstract- Two nonlinear finite element formulations for application to a series of experiments in the Gas-
Cooled Fast Reactor (GCFR) development program are described. An efficient beam column element 
for moderately large deformations is combined with a finite element developed for an engineering des-
cription of a convecting fluid. Typical results from both elements are illustrated. A combined application 
for a problem typical of the GCFR loss-of-coolant experiments is illustrated. These problems are not the 
usual fluid structural interaction problems in that the inertia coupling is negligible while the thermal 
coupling is very important. 

1. INTRODUCTION 

At the Los Alamos Scientific Laboratory (LASL), 
out-of-pile facilities are currently in use for simulating 
a Protected Loss of Flow Accident (PLOF) for the 
Gas-Cooled Fast Reactor (GCFR) development pro-
gram. The description and results of one of two such 
destructive tests carried out thus far are given in Refs. 
[1, 2]. Design activities are currently underway for 
an even larger test that will employ 438 simulated 
fuel rods to simulate an hexagonally shaped GCFR 
core module and its six boundaries. One of the ob-
jectives of this series of tests is to demonstrate the 
behavior of one of the GCFR modules in the event of a 
loss of coolant flow and subsequent shutdown of the 
reactor to the power level provided by the decay heat. 
Another objective is to provide some insight into the 
structural design for the module by identifying areas 
for which current designs can be improved. This safety 
program is being carried out at LASL in cooperation 
with the General Atomic Company and the U.S. 
Department of Energy. 

One area that has been identified as being of signif-
icant importance in the post-test reviews is the effect 
of the convective heat transfer by the free convection 
of helium. In addition, evidences of duct bowing and 
undue frictional interaction between fuel rod cladding 
and their spacer grids have been observed. Free con-
vection appears to drive the duct bowing process. In 
cases for which thermal bowing of the rods is sufficient 
to cause two-sided contact between the rods and their 
supporting grids (and thus a tendency to "lock up"), 
the subsequent rod deformation caused by the axial 
expansion also appears to be affected by the free 
convection. This paper is aimed at describing the 
analytical developments and applications for ex-
amining the complex processes of the fluid/thermal/ 
structural interaction of these experiments. 

tStaff Member, LASL. 
{University of New Mexico and Visiting Staff Member, 

LASL. 
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Fig. 1. Description of the physical problem of interest. 

2. DESCRIPTION OF THE PHYSICAL MODEL 

The physical problem that is representative of these 
experiments is illustrated in Fig. 1. The electrically 
heated simulated fuel rods are very closely spaced and 
are loosely supported at various points along their 
length by spacer grids. Large thermal gradients cause 
thermal bowing of the rods and a tendency to become 
bound up axially in their spacer grids. The initial 
thermal bowing is then increased by the resulting axial 
loads as the temperature increases. In addition, 
thermal bowing will affect the geometry of the flow 
channel. The temperature field is determined by both 
free convection and conduction through the fluid. 

CAS 13:1-3 - L 171 
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These problems are not the usual fluid structural 
interaction problems in that the inertial coupling is 
negligible. However, the thermal coupling appears to 
be very important. A survey of the literature reveals 
that no satisfactory finite element formulations are 
readily available for application to these experiments. 
Section 3 describes an efficient beam column finite 
element formulation while Section 4 describes the 
fluid element formulation. A coupled example is given 
in Section 5. 

3. A BEAM COLUMN ELEMENT FOR MODERATELY 
LARGE ELASTIC DEFORMATION 

The development of the beam-column element is 
considered in detail in a 1966 Jet Propulsion Lab report 
by Martin [3]. Subsequently, several texts on the 
finite element method have presented beam-column 
elements, such as : Martin and Carey, Prezemieniecki 
and Zienkiewicz [4-6]. A more elaborate and general 
treatment is available in the Massachusetts Institute of 
Technology report by Bolourchi and Bathe as an 
addendum to the ADINA finite element code [7, 8]. 
In both the first two references, the stiffness matrix is 
derived from second derivatives of the strain energy 
with respect to the spatial coordinates. Such approxi-
mation is permissible only when the quadratic terms 
in the strain energy function dominate, while the non-
linear effect is essentially perturbative. Prezemieniecki, 
though following a different approach, basically em-
ployed the assumption of Martin. Zienkiewicz separ-
ated the membrane and the bending strains at an early 
stage. As a result, the bending effect of the membrane 
force in an element is only secondary. Zienkiewicz 
developed the element only for a plate, and the example 
shows the result of covering the plate with 32 elements. 
The ADINA finite element is formulated in three-

dimensional space and takes into account nonlinear 
symmetrical problems. The method of approach is 
based on the virtual work principle, which is con-
sidered most appropriate for nonlinear problems. 

3.1 Formulation of the beam column element 
Because the mathematical model of the element is 

based on the structural theory of the beam column, 
we stipulate that for every element the following con-
ditions are satisfied : that the cross section is uniform ; 
that its characteristic dimension {d) is of small order 
to the element length (/) ; that the slope is small every-
where in the element ; and that the material properties 
are uniform with respect to the axial coordinate for 
one element. 

In this formulation, there is no material nonlinearity, 
but the geometrical nonlinearity will be emphasized. 
The strain energy in general will not be a quadratic 
function of the spatial coordinates. This condition will 
govern the method in deriving the element stiffness 
matrix. 

The kinematic and the loading states of a finite 
element are uniquely defined by the displacement 
vector and the force vector a and f at its nodes. Their 
components are shown in their respective positive 
directions in Fig. 2. Figure 2 shows the coordinates 
(x, y), the nodal point designation (/, / ) , the material 
and geometrical properties (E, A, /), the components 
of the displacements (w, w, Θ), and the force vectors 
(S, R, M) for the element. 

Since both the lateral displacement and its derivative, 
w(x) and Θ, are defined at a node, a cubic function in x 
will be used, while a linear function will be sufficient 
for the axial displacement of a particle along the 
centroidal axis. Hence, the shape function N(x, y) is 
defined as 

NT(x,y)=[NH(x,^)Nvv(x,^)]7 N M ( x , # 1 
Nw(x, y)T 

(1-É) 
0 

material properties. It also takes into account the 
short beam effect by allowing the constant plane cross 
section to change its angle with respect to the neutral 
plane of the beam. However, as a result of simplifica-
tions for a symmetric stiffness matrix, it takes a 
number of elements for a single span of a beam column. 
Other noteworthy literature includes the formulation 
by Belytschko et al [9] and the subsequent application 
to a problem of a reactor structure by Kennedy and 
Belytschko [10]. 

In the current development, the following conditions 
will be observed as applicable to the GCFR experi-
ments. The material shall be linearly elastic. The 
deformation is moderately large according to von 
Karman's postulation. Two or three elements should 
be adequate to cover a single span of the beam column. 
The Euler-Bernoulli condition will be used; i.e. the 
cross sectional plane remains undeformed and orth-
ogonal to the neutral plane. Planar deformation is 
assumed and considered adequate for plane and axi-

(1) 

( 6 / 0 y « l - i ) - J < l - i X l - 3 ö 
Κ1-ξ)2ζ 

-(6/0KU-Ö 
ξ2(1-2ξ) 

νξ(2-3ξ)] 
-1(1-ξ)ξ2 I 

where ξ=χ/1. 
The displacement field in the element is defined 

uniquely by the nodal displacement vector through the 
shape function, as 

u(x, y) 
w{x) 

N„ra 
= Nra, (2) 

MATERIAL PROPERTY YOUNG'S MODULUS-E 

GEOMETRICAL PROPERTIES AREA-A 

AREA MOMENT OF INERTIA- I 

ELEMENT LENGTH - a 

Fig. 2. Beam column element quantities and coordinates. 
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where 

ar=[uIUjWieiwjej]. 

For a system in equilibrium, the principle of virtual 
work must hold regardless ofthe linearity ofthe system, 
that is 

ÔU = ÔU{i) + ÔU(e) = 0, (3) 

where the internal virtual work is the negative virtual 
change of strain energy, that is, ÔU{i)= —δϋΕ. 

With the postulation of the small strain (not small 
displacement) theory and by considering residual stress 
separately, we can use the Hookian Law| 

G ij= C ijkfilk' 

Because of the geometrical nonlinearity, 
8kl = ekl + tfkh 

where ekl = ^ukA + uUk) and nkl=\uhkuKl. 

The global strain energy is 

Hence, 

-ÔU{i) = ÔUe= f GijÔBijdV 

+ j GtfajdÀ (4) 
We shall find the internal virtual work in the form of 

<5£/(i)=-<5aTKa. (5) 
Equation (5) combined with the known external virtual 
work expression 

ÔUie) = ôaTï 

is substituted into eqn (3) to yield 

<5aT(-Ka + f)=0. 

Since the virtual displacement is arbitrary, the equi-
librium equation results as 

f=Ka. (6) 
K is the stiffness matrix. In the derivation there is no 
differentiation of the strain energy density function. 

In eqn (4) the first term on the right hand side contains 
only the linear portion of the strain tensor, while both 
of the last two terms contain the nonlinear portion of 
the strain tensor. We may express eqn (4) as 

ÔU = ÔUL + ÔU(^ + ÔU(
N

2\ (7) 

where the subscripts L and N denote the linear and the 
nonlinear portions ofthe virtual change in strain energy 
respectively. 

For the structural theory of beam column, the only 
nontrivial strain component is the longitudinal fiber 
strain sxx = exx + ηχχ. Using the shape functions, eqn (2), 
the linear portion is 

exx = dxu(x, y) = dxNu(x, # a = ardxNu 

tSummation convention is used and applied to subscripts 
of Roman minuscules. 

and the nonlinear portion is 

(8) 
where d{ indicates the partial derivative with respect to 
coordinate i, and the prime indicates the derivative 
with respect to x. Their virtual variations are 

ôexx=ôaTdxNu 

^ x x = 5a T [ö ,NANj+ N'WN'J>. (9) 

The elastic coefficient Cijkl becomes Young's Modulus 
E. When eqn (8) and (9) are substituted in eqn (4) or a 
term thereof, there will be volume integrals ofthe prod-
ucts of shape functions of varying complexity. 

For the linear term in eqn (4) 

4 àU,= \ EexxôexxdV 

= <5ar \ E ί f dxNMd,Nj<udx a. 

We shall define KL as the integrals in the brackets that 
can be carried out in closed form. 

For the first nonlinear term in eqn (5) we have 

ÔU^ = E^xxôexxdV 

= S*TUEIJ1 j δχΝ^{δχη^Ι + Ν„Ν^Ααξ\. 

We again define the term inside the brackets as Κ^υ. 
In the second nonlinear term of eqn (4), the fibre 

stress is 

/ Λ / x S MR(x)y 

where S is the axial force in the beam element, tensile 
being positive, and MA

V c) is the resistant moment in 
the element such that 

MR = \mI{l-^\-mJl-l -S[w(x)-w7] 

= [ ( 1 - 0 - £ ] Q - S ( N l a - w A 

The first term represents the bending moment due to 
the beam effect alone, excluding the bending from the 
column effect in that element. It is the result of the 
lateral load, .the external moment and the thermal 
moment. Its distribution in the element is approxim-
ated by a linear function. The last term gives the column 
effect. {mjmjY are the resistant moments at the leading 
and terminal ends of the element because of the beam 
effect only. The last term in eqn (4) becomes 

ÔUW Sv2)= f σχ Jv 
Mxx^V 

- δ*τ Γ£ d(WxN I + N'WN'J) d v \ 

The expression inside the brackets is designated Kj^. 
Based on eqn (4), we obtain 

K=KL+KSV
1>+KSV

2). (ii) 

The integration that is defined in writing in eqn (11) 
is carried out and the element stiffness matrix for an 
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element with superscript / is written as 

K' = (EJY 
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0 
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sym 
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sym 
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(12) 

The corresponding displacement and force vectors are 

P^ISJRJM.SJRJMJI 

In the stiffness matrix, there are the nodal displace-
ment terms (u,, u„ vvf, Wj, 07, Θ3) and the element resist-
ant forces (S1, m7, m7). These terms may or may not be 
known. Consequently, a numerical iteration scheme is 
necessary to derive the solution. The displacement 
terms are solved for at each iteration, while the element 
resistant forces must be computed or updated from the 
nodal forces, which are divided into internal and 
external components. 

The nonsymmetry of this stiffness matrix can be 
handled by separating the bending and axial effects 
as shown in Ref. [11]. Because we will combine this 
element with a fluid element, and we will work with an 
available direct nonsymmetric banded solver, we 
choose to maintain this nonsymmetric form. 

A beam column under a thermal load is equivalent 
to one subject to the mechanical load resulting from 
constraints to free thermal expansions. In the linear 
structural member such as the beam column, the 
thermal strain generates two effects. The mean value 
of the thermal strain over the cross sectional area 
results in the axial expansion. Its gradient across the 
cross section effectively bends the member as if there 
were an exterior moment. 

The axial expansion comes from the areal mean of 
the temperature field over the cross sectional area, 
with the coefficients of thermal expansion and the 
Young's moduli as weighting functions. Free axial 
thermal expansion is ignored in the present formula-
tion. A column effect results only when free axial 
thermal expansion is restricted. This restriction is 
treated as prescribed axial displacements at a pair of 
nodes. 

The thermal strain gradient is input as a thermal 
moment. It can result from either a temperature 
gradient or a difference in coefficients of thermal 
expansion across the beam. The external moment is 
further separated into mechanical and thermal com-
ponents with the thermal moment being linearly 
interpolated along the element length. Details are 
available in Ref. [11]. 

3.2 Example problem 
The element formulation has been tested on a 

number of problems for which the solutions are known. 
The type of problem of interest in the GCFR experi-
ments has dimensions and properties similar to that 
illustrated in Fig. 3. This figure shows the exact solu-
tion, a one element solution, and a two-element solution 
for a beam-column that is bent by a thermal gradient 
MT until the end rotations reach 0.015 radians. At 
this rotation, which is typical of the end restrictions in 
a GCFR experimental test fixture, the ends become 
"locked" preventing further axial thermal expansion. 
This figure illustrates that the single element representa-
tion of a beam column span is inadequate while a two 
element representation of a single span can hardly be 
distinguished from the exact solution. These results 
are typical of the accuracy that can be achieved using 
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Fig. 3. Results from a 1- and 2-element thermally loaded beam column. 

only two elements per span. The more accurate results 
are achieved by maintaining the full nonlinear un-
symmetric element stiffness matrix. 

4. FLUID ELEMENT FORMULATION 

Another tool that has been developed for analysis 
of these experiments is a finite element description of a 
convecting fluid. A number of finite element formula-
tions for convective heat transfer analysis are in the 
current literature [12-19]. Several international 
symposia have been held on the use of finite element 
analysis in fluid mechanics [20, 21], and summer 
courses have been given in the subject by the Texas 
Institute of Computational Mechanics at the Uni-
versity of Texas, Austin [22]. In addition, the 1979 
ASME Winter Annual featured a special symposia on 
"Finite Element Methods for Convective Dominated 
Flows" [23]. 

Nearly all approaches currently in use are illustrated 
in Ref. [15], which features a discretization of the 
Navier-Stokes equations. Early in this program, these 
approaches were examined and were rejected as being 
computationally impractical if not impossible for 
application to the experiments of the GCFR program. 
This statement does not detract from their merit, but 
rather emphasizes the difficulties inherent in attempting 
to numerically model a GCFR module consisting of 
237 fuel pins, the supporting spacer grids, and hex-
agonal duct walls with all the associated fluid flow 
channels. Even using gross axisymmetry the problem 
is a formidable one. For these reasons, a fluid des-
cription is needed that captures the relevant physics 
of a convecting fluid flow through the fuel rod bundle 
without a costly description of the fluid. This formula-
tion, then, is based on the fact that there are numerous 
empirical, usually nonlinear, experimental relation-
ships in the engineering literature relating the hydraulic 
gradient and velocity field for steady flows. Reference 
[24] rigorously shows that these relationships should 
exist for porous media based on the Navier-Stokes 
equations. 

The linear form of this relationship is commonly 
known as Darcy's law and we begin the formulation 
with these expressions : 

u=- — \~ 

(13) 
where w, v, w = the bulk velocity of the fluid in the x, y 
and z directions; kx, kr kz = anisotropic flow resistance 
coefficients, which can be functions of the velocities; 
p = the pressure; /z = the fluid viscosity; p = the fluid 
density and g = the acceleration of gravity. 

For steady incompressible laminar flow, the con-
tinuity equation can be written as 

du dv dw 
dx dy dz 

Substituting the Darcy relationship into the incom-
pressibility condition gives an equation of the form 

dx μ dx) dy 
kydp^ 
μ dy dz \ μ dz 

+ dy 
(^*gpoT\=0, (14) 

where we have incorporated the Boussinesq condition, 
p = p 0 [ l - a ( T - T 0 ) ] , with T and T0 being the fluid 
temperature and reference temperature for p0, respec-
tively, and a is the bulk coefficient of thermal expansion. 

The energy equation for steady flow becomes 

^ , dT dT 
pCA U-Z-+V-Z- + W dx dy 

dT_ 
~dz~ 

{1{λ ■d Λ dT\ d Λ dT\ d Λ ^τ 
ΙΤχ\Αχ^χ- +dy\AyJï) + d~z\Az~dz~ 

(15) 
where Cp=the fluid heat capacity; λχ, Xr Az = the 
anisotropic conduction coefficients and ß 9 =the heat 
generation per unit volume. 

(A) Finite element equations 
The method of Weighted Residuals via the Galerkin 

approximation is applied to eqns (14) and (15) to give 
the following finite element equations 

[{ m mT{p)+^ *gpoW 
δ{Ν}Ί 

{T}\dV 
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Fig. 4. Computer simulation of a convective flow experiment. 
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Fig. 5. Sample problem representing GCFR core module 
dimensions used for studying fluid/thermal/structure inter-

action effects. 

- J {jv*Kds=o (16) 

and 

\{pC„{N}{uyiBr{T}HBmLBY{T}}dV 

+ JQt{N}dV-j{N*}q„aS=0 (17) 

where {N} is the vector of element interpolation func-
tions, [B] is the matrix of its derivatives with respect to 
the spatial variables, {T} and {P} are the vectors of the^ 
nodal point temperatures and pressures, {u} is the 
velocity vector evaluated at Gauss points, {N*} are the 
element boundary shape functions, vn and qn are the 
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and rod deformation. 

Fig. 6. Finite element mesh, wall deformation, and velocity 
field. 

boundary velocities and heat fluxes normal to the sur-
face, respectively. Equations (15) and (16) were pro-
grammed into a finite element code using 8-node iso-
parametric elements, Gaussian quadrature, and "seren-
dipity" shape functions. The details of this procedure 
are readily available in the literature [6,25]. Since eqns 
(15) and (16) constitute a nonsymmetric but banded set 
of nonlinear algebraic equations, a Newton-Raphson 
scheme using a banded nonsymmetric solver was imple-
mented for their solution. Temperature, pressure, heat 
fluxes, velocity, and convective boundary conditions 
are available options for the fluid boundaries. 
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This formulation differs from the usual formulation 
in that the pressure rather than velocity is the nodal 
point variable. In effect, the pressure takes the role of a 
velocity potential with velocities being evaluated from 
the discretized versions of eqn (13) at the element 
Gauss points. 

4.2 Sample analyses 
In an effort to illustrate the ability of the program 

to simulate the relevant physics of a convecting fluid 
flow, experimental work was sought such as in Ref. 
[25]. Several problems in this experimental study have 
been simulated. Figure 4 shows one such simulation 
in which an experimental apparatus was used to 
measure the effect of a vertical "stabilizing" tem-
perature gradient on a convective flow established by a 
horizontal temperature gradient. Figure 4(a), from 
Ref. [24], shows the experimental boundary con-
ditions and the streamline pattern that developed. 
Figure 4(b) shows the mesh and boundary conditions 
used to simulate the experiment and Fig. 4(c) shows 
the resulting velocity field. 

The experiment clearly shows the two convection 
cells that develop, as does the computer simulation. 
Because of a lack of meaningful data, no direct velocity 
values were compared, but the streamline prediction 
appears to be in agreement for all problems simulated 
in this study. 

5. FLUID/THERMAL/STRUCTURAL INTERACTION 
EXAMPLE 

The sample problem shown in Fig. 5 has been studied 
to identify areas in the formulations that are important 
in simulating the GCFR experiments. The geometric 
dimensions boundary conditions, and thermal loadings 
were chosen to be representative of those encountered 
in the experiments. For this problem, notice that as 
the thermal gradient deforms the wall, the convective 
flow path for the right hand channel will become* 
constricted, causing higher temperatures and further 
flow constriction. Clearly the mechanism is self rein-
forcing to some extent. Figure 6 shows the final rod 
deformation and velocity field obtained for this 
problem. The reinforcing mechanism was evidenced, 
but not strongly, in the iteration process by a further 
average temperature rise of about 5°C over the tem-
perature initially calculated for the rod as the channel 
became restricted. 

In this example, the average rod temperature is 
calculated as 500° C while the average thermal gradient 
across the rod is 80°C/mm. The maximum moment in 
the rod is computed to be 13.8 N-m occurring at the 
rod supports, while the axial force is computed to be 
1.0 x 104 N. The original gap of 7 mm between the 
rod and the adiabatic wall is closed to 3.8 mm. 

Although this sample problem is only a gross 
representation of the GCFR experiments, these tools 
show promise of being able to accurately characterize 
the relevant physics associated with them. 

6. FUTURE PROJECTIONS AND RESEARCH 

Results of our studies to date indicate that the 
convective flow field does not significantly influence 
the structural response but does significantly influence 
the temperature fields and thus the fuel rod cladding 

melting position. We have also determined that the end 
conditions on the fuel rods are important. Modifica-
tions to the beam column element are underway to 
allow frictional constraints for end conditions that will 
be closer to the actual conditions in the experiments. 

Clearly the experiments are complex and three-
dimensional in nature. Methods for the best usage of 
these analytical tools are being studied. Hopefully, 
conclusions drawn from the numerical simulations 
can be used as a guide in future experimental planning 
and research. 
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Abstract—This paper presents a mixed algorithm for integration of equations of motion for structural 
systems having evolutionary type models for cyclic behavior of their constituent elements. The global equa-
tions of motion are integrated using Newmark's method while the internal resisting forces are calculated 
using an explicit, fourth order Runge-Kutta scheme with the option of using a time-step smaller than that 
used for Newmark's method. The algorithm also takes advantage of the spatially localized nonlinear 
nature of the problem, in the case where nonlinearity is concentrated in discrete parts of the structure. As a 
numerical example, earthquake-induced response of a three-story steel frame tested on an Earthquake 
Simulator, is presented. 

1. INTRODUCTION 

A number of models has been employed to specify the 
force-deformation relationship for inelastic structural 
elements under cyclic loading. Two ofthe most common 
are the bilinear and the Ramberg-Osgood models. The 
bilinear model exhibits sharp transition from elastic to 
inelastic states. Kinematic or isotropic hardening rules 
are used for unloading and reloading. The model fails to 
represent actual material behavior and is computation-
ally quite inefficient because it requires one to keep 
track of all stiffness transition points. 

The Ramberg-Osgood model coupled with Masing's 
rule for unloading and reloading gives a continuous 
transition from elastic to inelastic states. This model is 
quite adequate for steel members but suffers from other 
limitations. For example, it is not possible to include 
isotropic hardening, stiffness degradation, etc. From 
a computational viewpoint, it is a very difficult model 
to use, because it specifies deformation as a function of 
force and therefore determination of forces given 
deformations requires iterative techniques. Moreover, 
Matzen and McNiven [1] have pointed out that the 
model as presented originally is not suitable for random 
earthquake-type excitations. At least thirteen new rules 
have been added to make it applicable to this case, 
making the model even harder to use. Figure 1 shows 
sample hysteresis loops generated by a Ramberg-
Osgood model in which different parts requiring 
special attention have been identified. 

Recently a series of models utilizing internal vari-
ables has been proposed for cyclic behavior of struc-
tural elements [2]. These models take the form of rate-
type evolutionary equations and are sufficiently general 
to include strain-hardening, stiffness degradation, etc. 
Computations are facilitated since the same set of 
equations govern initial loading, unloading and re-
loading and the models behave well in case of arbitrary 
excitations. Since these models are in the form of 
differential equations, conventional methods for inte-
gration of global structural dynamics equations cannot 
be used directly. This paper presents a mixed algorithm 

tThis research was supported by the National Science 
Foundation Grant ENV76-04264. 

for integration of equations of motion for the structural 
systems having evolutionary type models for cyclic 
behavior of their constituent elements. The global 
equations of motion are integrated using Newmark's 
method while the internal resisting forces are calculated 
using an explicit, fourth order Runge-Kutta scheme 
with the option of using a time-step smaller than that 
used for Newmark's method. The algorithm also takes 
advantage of the spatially localized nonlinear nature 
of the problem, in the case where non-linearity is con-
centrated in discrete parts of the structure, such as in 
rigid frames. 

As a numerical example, earthquake-induced re-
sponse of a three-story steel frame containing nonlinear 
energy-absorbing devices is presented. The frame 
chosen was tested on the Earthquake Simulator at the 
University of California, Berkeley. In addition, the sig-
nificance of controlled, localized energy dissipation in 
earthquake-resistant design of structures is illustrated. 

2. A MODEL FOR HYSTERETIC BEHAVIOR 

OF NONLINEAR ELEMENTS 

In Ref. [2], a number of models for describing hyster-
etic behavior of nonlinear elements are presented. 
The particular rate-independent model to be used for 
nonlinear elements in this study is given by the follow-
ing equations: 

F(t) = K0\ 

S(t) = * 

m-Ml^-s 
δ(ή Ht) 

F a 
(1) 

(2) 

where, F(t) is the generalized force, ô(t) is generalized 
deformation and 6(t) is the deformation rate ofthe non-
linear element. F0, δ0, α and n are material parameters. 
Physically, F0 is generalized yield force, δ0 is a general-
ized yield displacement, K0 = F0/ô0 the initial stiffness, 
a is a constant which controls slope after yielding 
(KyxK0[a/Ί + oe]), and n is taken as an odd integer 
which controls the sharpness of transition from the 
elastic to the inelastic region. As rc->Go the model 
approaches a bilinear model. Typical loops generated 

181 



182 M. A. BHATTI and K. S. PISTER 

Fig. 1. Sample hysteresis loops from Ramberg-Osgood model. 

freedom structural system subjected to earthquake 
ground motion can be written as follows [3] : 

Mü(r) + Cii(i)+F(r) = - Mrüg(t) (3) 

where u(i) = [u^t), u2(t\..., uN(t)Y is the nodal point 
displacement vector; ϋ(ί) = nodal point velocity vector; 
ü(t)=nodal point acceleration vector ; M=mass matrix 
of the system, MeIRNx[R/v; C=structural damping 
matrix, CelR^xR*; F = nodal force vector, FeR*; 
r=earthquake influence coefficient vector, r e RN. This 
vector represents displacements at nodal degrees of 
freedom resulting from a unit support displacement. 
For example, r = ( l , 1 , . . . , 1)T for an N story shear 
frame (with one degree of freedom at each story) sub-
jected to horizontal ground motion and üg(t) = ground 
acceleration time history. 

Fig. 2. Hysteresis loops generated by rate-independent model under sinusoidal excitation. 

by this model under deformation varying smusoidally 
with time are shown in Fig. 2. 

It should be pointed out that the above model is just 
one of a class of models for inelastic behavior. This 
particular choice was made for the immediate applica-
tion of the present work to optimal design of frames 
with energy-absorbing devices. More complicated 
models, such as models exhibiting stiffness degrada-
tion, etc., can be obtained by introducing more param-
eters into the basic model, as explained in Ref. [2]. 
These models can be introduced into the present 
formulation without any difficulty. 

3. EQUATIONS OF MOTION FOR THE SYSTEM 

Equations of motion for a discrete, N degree-of-
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4. NUMERICAL SOLUTION OF THE 
DIFFERENTIAL EQUATIONS OF MOTION 

The equations of motion (3) are solved numerically 
with the exact solution u(t), ii(i) and ü(i) approximated 
by u„ ύ, and ü„ respectively, at discrete time intervals. 
The step-by-step integration procedures start with the 
known initial conditions and march forward in time 
giving the solution at discrete points in time. The 
process for a nonlinear system has two distinct phases. 
The first phase is the linearization phase, in which the 
equations are linearized about the current state by 
retaining only first-order terms of a Taylor series 
expansion. Estimates of the solution at the next step 
are then obtained by using these linearized equations. 
The second phase is the state determination phase, in 
which the internal forces in equilibrium with the new 
state of motion are calculated. If the discrepancy 
between these internal forces and the external applied 
loads is within some tolerance level, the solution is 
accepted and the process repeated for the next step. 
Otherwise, a Newton-Raphson type iteration is used 
until the unbalanced forces are within acceptable limits. 

In this study, estimates of the solution are obtained 
using Newmark's method, and internal forces in the 
nonlinear elements are computed using a fourth-order 
Runge-Kutta scheme. Details of the process are given 
below. 

The equations of motion (3) at time τ = t + Δί can be 
written as 

MüT + C ü t + F t = P t (4) 
where Ρ τ = -Mrü /τ ) . 

Define the increments in acceleration, velocity, dis-
placement and force occurring in the time increment Δί 
by 

Aüt=üT-üt 

Δύ, = 1^-11, 

Au, = 11,-11, 

A F f = F t - F , (5) 

Substituting these expressions in eqn (4), the incre-
mental form of the equations of motion is obtained as 
follows: 

MAii, + CAii, + Κ,Διι, = P* (6) 

where P* = Pt - [Müt + Cu, + F j . 

4.1 Newmark's method 
An implicit, single-step, two parameter family of 

integration operators described by Newmark [4] is 
used for the numerical integration of the equations of 
motion. The method assumes that the increments in 
velocity and acceleration are related to the increment in 
displacement and the state of motion at time t, as 
follows: 

(7) 

(8) 

where Δί is time step of integration and γ, β are integra-
tion parameters. A "constant average acceleration" 

operator, which is unconditionally stable for linear 
problems, is obtained with β=1/4 and y =1/2. A 
"linear acceleration" operator is obtained with β= 1/6 
and y = 1/2. 

Substituting (7) and (8) into the incremental equa-
tions of motion (6) and simplifying gives 

K*Au, = R* (9) 
where 

K* 
ßAt ßAt 

R* = P* + M 1 1 
ßAtUt + 2ß 

Ü'] + C ß Ü ' 
+ Δ; 2?-'H 

4.2 Solution of K*Aut = R* 
The most expensive part of the integration process is 

the solution of the above set of linear equations. 
Fortunately, for spatially localized nonlinear problems, 
it is not necessary to form and decompose the whole 
matrix K* at each step. The substructuring technique 
is used to separate effectively the nonlinear part from 
the linear part of the problem as follows : 

Partition the displacement vector such that dis-
placements corresponding to the nonlinear degrees of 
freedom are separated from the remaining displace-
ments : 

Δ"<=[ΔΪ | 
where AuN = incremental displacements corresponding 
to the nonlinear degrees of freedom and Διι£ = incre-
mental displacements corresponding to the rest of the 
system. 

Partition K* and Rf accordingly, as follows: 
Kr 

K, 
ΔιιΕ 

Διι" 
(10) 

The first submatrix equation gives : 
K ^ + K ^ A u ^ R * 

or 

A u ^ K ^ r j ^ - K ^ A u " ] (11) 

The second submatrix equation in eqn (10) gives: 

KN£Au£ + KmyAuiv = RN. (12) 

Substitute eqn (11) into eqn (12): 

KNEK£-i[R£-K£NAu"] + KNNAu"=R» 

Define 

then 

Thus, 
Q — - KNEKEE. 

[KN£Q + KNN]Au» = R" + QrR£, 

A«w = [KJVEQ+KJVW]-1[Rw + QrRJîl· (13) 
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Once the ΔιιΝ are known, Διι£ are calculated from eqn 
(11). 

The computational steps can be summarized in the 
following algorithm. 

Algorithm 
In the beginning of the integration loop 

(i) form K££, 
(ii) triangularize K££, 

(iii) obtain Q by forward reduction and back sub-

LINEAR 

' **£JV> ^NE~ **£JV> 

(iv) 
stitution from K £ £ Q = — K£ 

form Q T and the product K N £ Q. 
At each time step of integration, 

(i) form KNN at the current step, 
(ii) form load vectors R £ and RN, 

(iii) solve [K N £ Q + ΚΝΝ]Διι" = R* + Q r R £ for ΔπΝ, 
(iv) obtain Διι£ by forward reduction and back sub-

stitution from 

KEEAnE = RE-KENAuN. 

4.3 Computation of internal resisting forces 
After the increments in the displacements and veloc-

ities are obtained, the next step is to compute the 
internal resisting forces in equilibrium with this new 
state of motion. The internal forces in the linear 
elements are obtained simply by multiplying the current 
displacement by the appropriate stiffnesses of these 
elements. Computation of forces in the nonlinear 
elements, however, is not so simple, because of lack of an 
algebraic expression for their force-deformation be-
havior, which is described by a set of first-order 
differential equations. These differential equations 
must be integrated numerically to obtain the internal 
forces in the nonlinear elements. An explicit fourth-
order Runge-Kutta scheme, with the option of using a 
smaller time step than the one used in Newmark's 
method, is used in this study. An explicit scheme is 
favored over an implicit scheme because of the added 
complexity of an implicit scheme, which would involve 
an additional iteration cycle. The details of the process 
are given below. 

To integrate force-deformation equations of non-
linear elements from time t to time τ = ί + Δί, some 
assumptions regarding the variation of acceleration, 
velocity and displacement during the time interval (ί,τ) 
are needed. Since the Newmark's linear acceleration 
method has been demonstrated to be quite effective for 
solving nonlinear structural dynamic problems [5] , it 
seems reasonable to assume linear variation in the 
acceleration during the time interval. This implies 
quatratic variation of velocity and cubic variation of 
displacement. These variations are shown in Fig. 3. 

The force corresponding to the ith nonlinear degree 
of freedom is given by eqns (1) and (2). 

FM=K0iôM-\ô/(x{Fl{x) *'"^ (14) ψ-stx) 
. Fo 

Si(x) = (x\ 
(15) 

x e [0, At], 

where <5f(x) is the deformation corresponding to the ith 
degree of freedom. The deformations are related to 
nodal displacements by a transformation matrix which 
depends upon the type of structural system. For 
example, for a shear frame t^—w,·—w,_i, while more 

U(tjj 

Aiit 

Ü(x) = U ( t ) + t : 
At 

QUADRATIC 

= [o,Atl 

u(t) 

U(x) = U ( t ) + U( t ) x + · 

ùCr) 

βΓθ,Δΐ;| 

u(x) = u(t) + u(t)x+ G(t) 

Fig. 3. Variations in acceleration, velocity and displacement 
during time interval [ί, τ = ί + Δί]. 

complicated expressions are required for other types 
of frames. Combining eqns (14) and (15) then 

δ,(χ) - |di(x)| < (a + 1 ) - £ a -^— \ Fi(x) = K0 

L I r 

x e [ 0 , A i ] . (16) 

Equation (16) is integrated by employing a fourth-order 
Runge-Kutta method with time step Δχ, where Ax ^ Δ ί , 
and initial condition Fi{0) = Fi(t). 

The following calculations advance the solution from 
χκ^χκ+ι = Χκ + Δχ. 

K2 = Ax κΙδ£χκ + ±Αχ)-\δ£χκ + ±Αχ)\ 

Fi(xK) + ±Ki δ ^ + ^Αχ))" 
(a+iy 

Fo <50 

Κ3 = Αχ Κ0\ èt{xK + ±Ax)-\ôjtxK + ±Ax)\ 

Κ4 = ΑχΚ0\ δ^χ 

(α+ ι/Μ + Ί*! ΧΗΧΚ + $ΔΧ)Υ 
F o <>o 

■ + Δχ)-\δί(χκ+Δχ)\ x 

where 

(α I iffcJ + K* ^ f c + Δχ) Y 

A$iy
2 

Δ72~ ôi(y) = ôi(t) + ôi(t)y + 

δ&)=δ/it) + Ht)y + Ηήζ + ^ ζ . 
2 Αχ 6 
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then , 

(17) 
4.4 Algorithm for integration of the equations of motion 

The process ofnumerical integration of the equations 
of motion (3) can now be summarized in the following 
algorithm. 

A. Initial calculations 
Data: Integration parameters, /?, y; Time steps, Δί 

and Ax; Convergence tolerance parameter, 
TOL; Structural property matrices, K£, M 
and C; Parameters of hysteretic model for 
nonlinear elements, F0, δ0,α and n. 

Step 1 : Compute the constants 
1 1 

ai~ß(At)2 Ü2~ßAt a3~~2ß 

y y Γ y Ί 
a*=Wt as=ß a*=h\ß-x\ 

Step 2 : Initialize the state of motion, i.e. specify u0, ύ0 
and ü0. 

Step 3 : Form structural property matrices, M and C. 
Partition the stiffness matrix as explained in 
eqn (10), triangularize K££ and form Q. 

B. For each time step 
Step 4: Form K* and R* 

R* = P* 4- M[a2ut + a3üt] + C[a5ii ,+a6üj 

where Ρ * = Ρ τ - [ Μ α , + α ί , + Ρ,] and 
Ρ τ = -ΜΓ^(τ ) . 

Step 5 : Solve 
K*Aut = R* 

for Au„ using the algorithm given previously. 
Step 6 : Update the state of motion at τ = t + Δί 

üT = üt + alAut-a2ut-a3üt 

uz = ut + aAAut-a5ut-a6üt 

uT = ut + Aut. 

Step 7 : Compute the internal resisting forces, F r in 
equilibrium with the current state, as explained 
previously. 

Step 8 : Compute the unbalanced force at time τ 

f = P t - [ M ü T + C ü t + F j . 

Step 9: Compute ||f||2, the Euclidean norm of f. If 
| |f| |2^TOL, no iteration is needed in this step. 
Go to Step 4 for the next step calculations, else 
proceed to Step 10. 

C. Iteration within a time step 
Step 10: Compute K* = fl1M + ii4C + Kr 
Step 11 : Solve K*5ut=f for ôuT. 
Step 12: Update the state of motion 

new ύτ = ύτ + αίδιιτ 

newiit = iit + a4(5ut 

newuT=uT+(5ur 

Step 13: Compute the unbalance as in Step 8. See if 
convergence criterion of Step 9 is satisfied. 
If yes, go to Step 4 for next time step. Else go to 
Step 10. 

5. NUMERICAL EXAMPLE 

As an example, the technique is applied to compute 
earthquake-induced response of a steel frame with an 
earthquake isolation system, tested on the Earthquake 
simulator at the Earthquake Engineering Research 
Center, University of California, Berkeley. The test 
structure is a three-story steel frame with added masses 
at each floor as shown in Fig. 4. The structure is 
supported vertically by specially designed rubber 
bearings whose properties are specified. The bearings 
also provide nominal shear resistance. An energy. 
absorbing device is linked to the base of the structure as 
shown. This device acts as a hysteretic passive con-
troller, supplying a time-dependent horizontal force to 
the base. Details of the test configuration and the 
results can be found in reference [6]. The tests show 
that for strong earthquakes the energy-absorbing 
device yields and absorbs amounts of energy equivalent 
to as much as 35% of critical viscous damping. Thus the 
frame itself is left without damage. 

In the following sections, equations of motion for the 
test frame are given and the response is computed using 
the algorithm given in section 4. It is assumed that the 
frame itself remains elastic, so that the only non-
linearity is in the energy-absorbing device. 

5.1 Equations of motion for the test frame 
As shown in Fig. 4, the structural system consists of 

an assemblage of beam and column sections. Masses 
are assumed to be lumped at the floor levels and rotary 
inertia is neglected. Axial deformations in both beams 
and columns are neglected. Thus, the frame has 12 
degrees of freedom; one lateral and two rotational 
degrees of freedom per floor. Rotational degrees of 
freedom may be eliminated by appropriate partitioning 
of the mass, damping and stiffness matrices associated 
with the discretized structural model of the frame. The 
resulting equations of motion can be written [3] : 

Mü(r)+ Cü(t) + K£u(0 + F(i)= -Mrt i i t ) (18) 

ΓΓ 
I 8000 LB 

t 4'-0" ^ 4'-0" 

f fH^WI0x49L 

fW' W% 
MOTION 

Fig. 4. Steel test frame. 
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where K£ = stiffness matrix of the frame including the 
rubber bearings but not the energy-absorbing device; 
F = force in the energy-absorbing device. The only 
nonzero entry in this vector corresponds to the degree 
of freedom at which the energy-absorbing device is 
connected. In this case, only F 4 will be nonzero and 
r r = [ l l l l ] . 

The structural property matrices, K£, M and C can 
be calculated from the material and section properties 
shown in Fig. 4. Thus, the lateral, elastic stiffness matrix 
of the complete structure, including the stiffness of the 
rubber bearings is (units are kip-inches): 

46.38 

SYMMETRIC 

-66.64 23.04 -2.78" 
144.40 -96.50 18.74 

122.43 -48.97 
34.21 

The mass matrix of the structure corresponding to the 
lateral degrees of freedom is (in kip-inch units): 

M = 

0.02438 
0.02438 

0.02514 
0.02832 

Rayleigh damping is assumed in constructing the 
damping matrix : 

C = aM + 0K£. 

The coefficients a and ß are computed from : 
1 Ί 

(19) 

(20) 

where ω1 and ω2 are first and second mode frequencies, 
and ξ{ and ξ2 are the respective critical damping ratios 

in these modes. The damping matrix for the present 
structures, assuming ξ1 = 3% and ξ2=1%, is given 
below. 

C = 

(14) 

The force in the device is computed from eqns (1) and 
(2), which for this application take the form : 

0.0279 

SYMMETRIC 

-0.0332 
0.0768 

0.0115 
-0.0481 

0.0660 

0.0014" 
0.0093 

-0.0244 
0.0226 

F4(t)=K0 «4.W- H%-'J\ (21) 

S{t) = (x 
ujt) F Jit) 

The tangent stiffness matrix Kt at any time is obtained 
by adding dFJt)/du\ to K44 as follows: 
Equation (21) gives 

FJt) = K0uJt) 1—sign' S(t) 

where 

Thus, 
dFJt) 

du* 

sign=l ifu4(i)>0 
= - l i f i i 4 ( r )<0. 

= X0|^l-sign(^-S(i)Jj 

5.2 Numerical results 
The hysteresis model presented in eqns (1) and (2) 

contains four parameters, namely, F0, <50, a and n. The 
values for these parameters must be chosen so that the 
experimental response closely matches with the pre-
dicted response. From the test results on the mild 
steel energy-absorbing devices [7], the following set of 

6 . 0 

3 . 0 

Fig. 5. First story shear time history. 

5 . 0 

- 5 . 0 
9 1 2 

Τ Ι Π Ε ( S E C O N D S ) — Initial Design 
Optimal Design 

Fig. 6. Second story shear time history. 
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Figure 7 Third Story Shear Time History 
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Fig. 8. Base displacement time history. 
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E L C E N T R O S P A N 7 »0 G R O U N D M O T I ON 

- 2 0 2 

D I S P L A C E M E N T C I N C H E S ] 

Fig. 9. Energy-absorber hysteresis loops (initial design). 

parameters is obtained : 
F0=5.0 <5o = 0.11 a = 0.064 n=\ (22) 

Since the purpose of an earthquake isolation system is 
to minimize forces in the structure, other sets of param-
eters could be obtained which minimize some function 
of these forces. In Ref. [8], an optimal design problem 
was formulated in which the device parameters were 
adjusted so that the sum of story shears in the frame 
were minimized. The optimal values of the parameters 

were found to be : 
F0 = 4.337 δ0 = 0.2503 a = 0.05831 n = 1. (23) 

The response of the structure, subjected to modified 
El Centro 1940NS (see Ref. [8]), is computed by using 
the above two sets of parameters. The parameters given 
in eqn (22) are labeled "initial design" and those in 
eqn (23) are labeled as Optimal design'. The story shears 
and base displacement time histories are shown in 
Figs. 5-8. The energy absorber hysteresis loops are 

CAS 13:1-3 - M 



188 M. A. BHATTI and K. S. PISTER 
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Fig. 10. Energy-absorber hysteresis loops (optimal design). 

3 . 0 

shown in Figs. 9 and 10. The response was computed 
with a time-step of 0.01 for the Newmark's method and 
0.005 for the Runge-Kutta method. Only one iteration 
within each time-step was required in the large motion 
area and none in the rest. The algorithm was very stable 
and was not very sensitive to the global time-step as 
long as internal resisting forces were computed with 
reasonable accuracy. 

It is interesting to note that the story shears obtained 
by using parameters of eqn (23) are much lower than 
those obtained by using values of eqn (22). This shows 
that by proper design of the isolation system, consider-
able reductions in the forces could be achieved in the 
structure. 

6. CONCLUSIONS 
An algorithm for integration of the equations of 

motion for structural systems having evolutionary type 
models for cyclic behavior of their constituent elements 
is presented. One of the principal advantages of the rate 
type of the models, obtained from using internal vari-
ables, is the generality they offer. For example, while it 
is not possible to account for stiffness or yield force 
degradation in a Ramberg-Osgood model, it is very 
easy to incorporate a new internal variable, described 
by a suitable equation, to account for these effects. 
Work is underway to include stiffness degrading models 
for analyzing concrete structures. 
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Abstract—This paper presents partial results of a NSF research project for studying the response behavior 
of inelastic building systems subjected to the simultaneous input of static loads and multicomponent earth-
quake motions that can be applied in any direction of the structural plan. The analysis includes the second-
order moment resulting from the gravity load and the vertical ground motion. 

The building systems may have elevator cores, floor diaphragms, and shear walls of reinforced concrete 
as well as steel beams, columns, and bracings. The material behavior of the steel members is based on the 
Ramberg-Osgood hysteresis loop with the consideration of the Bauschinger effect. Takeda's model is 
employed for the reinforced concrete elements. The system stiffness and geometric matrices, and the numer-
ical integration procedures are developed consistantly with the building characteristics that each floor has 
dynamic degrees of freedom associated with the axial displacements of the columns and one torsional and 
two transverse displacements at the mass center. Thus, computation efficiency can be achieved by eliminat-
ing structural joint rotations from floor to floor with only the displacements associated with the lumped 
masses left for the motion equation. The yielding surface of a steel member is based on the nonlinear inter-
actions and the von Mises yield criterion. 

A computer program, INRESB-3D, has been developed for the inelastic response behavior of (1) the 
transverse, vertical, and torsional movements of a structure; (2) the internal moments and their associated 
rotations of the members; (3) the energy absorption characteristics of a structure; and (4) the requirement 
of the ductility factors and the excursion ratios of various building systems. Included in the paper is an 
example of unsymmetric eight-story building with steel columns and a concrete wall. 

INTRODUCTION 

The effect of a static gravity load on the dynamic 
response of plane structures has been studied by a 
number of investigators [1, 2]. They generally recog-
nized that a gravity load can significantly increase 
plastic drift. Cheng and his associates, among other 
investigators, studied the effect of interacting earth-
quake motions (one horizontal and one vertical) on the 
response behavior of plane structural systems of elastic, 
elastoplastic and bilinear hysteresis models [3, 4]. The 
dynamic analysis of three-dimensional structures can 
be divided into space frameworks [5-8] and building 
systems [9-11]. References [5-8] mainly emphasize the 
various aspects of deriving force-displacement relation-
ships, numerical procedures, and yielding criteria. 
Methods of analyzing tied buildings for static loads, 
buckling loads, and time-dependent forces are pro-
posed in Refs. [9-11]. Inelastic seismic building systems 
can be analyzed by using the computer program 
DRAIN-TAB that is, however, actually devised to 
analyze plane inelastic frames, which are tied by floor 
diaphragms. Thus, the yielding criteria for individual 
columns are based on one-dimensional bending and 
axial forces [12]. 

This paper is to present partial results of a NSF pro-
ject for investigating the effect of two horizontal and 
one vertical interacting ground motions on the re-
sponse behavior of elastic and inelastic three-dimen-
sional structural systems. The earthquake motions 
could be applied in any direction to a structural plan 
whose shape was not necessarily rectangular. The 
building systems were subjected to the simultaneous 

1? 

input of static loads and earthquake excitations for 
which the P—Δ effect of the second-order moment 
resulting from a gravity load and vertical initial forces 
acting on columns was considered. The material 
behavior of the steel members was based on the Ram-
berg-Osgood hysteresis loop for which the loading, 
reversal of loading, and Bauschinger effect were in-
cluded in the stiffness derivation. The hysteresis system 
for the reinforced concrete elements was based on stiff-
ness degrading model. The von Mises' yield condition 
was used to determine the interaction between the 
yielding axial force and the plastic torsional capacity. 
The influence of the interacting axial force with bending 
moments on the flexural capacity of a cross section was 
based on the approximate yielding surface resulting 
from both the theoretical and experimental work that 
has been done on steel wide flange sections. Because the 
shear walls and flexural shear panels mainly have 
moments about their major axes, these members were 
treated as plane elements for which the moments about 
the minor axes were not considered. 

A computer program, which was identified as 
INRESB-3D [13] (INelastic analysis of REinforced 
concrete and Steel Building systems for 3-Dimensional 
ground motions) was developed for the research, and 
the results presented herein were obtained by using an 
IBM 370/168 computer through the computer network 
of the University of Missouri. 

METHOD OF ANALYSIS 

Structural model and its characteristics. The struc-
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tural model is three-dimensional and has the following 
characteristics : 

(1) The structure consists of steel columns, beams, and 
bracings as well as floor diaphragms, shear walls and 
flexural shear panels. The floor plan does not need to be 
rectangular. The floor levels, however, must be horizon-
tal, and the columns, shear walls, and panels must be 
vertical. 

(2) The floor and roof diaphragms are idealized as 
laminae having infinite rigidity in their own planes but 
flexibility out of them. The diaphragms can be thin, 
cast-in-place, concrete slabs on open web steel joists 
or cold formed steel-deck panels with concrete placed 
on them. Because of the rigidity, each floor can have 
three common degrees of freedom : two translations and 
one rotation. However, the individual columns can 
have axial deformations and be able to bend about 
strong and weak axes. 

(3) The structure can be subjected to static vertical 
loads on beams and joints and lateral loads at the floor 
levels as well as to three-dimensional interacting ground 
motions. The dead load of all the floor masses and their 
inertial forces resulting from vertical ground motion can 
induce an overturning moment which is also included 
in the analysis as the second-order moment of the Ρ-Δ 
effect. 

(4) The bracing members are axially-loaded members 
either in tension or compression. The beams may have 
torsion and bending about the horizontal axes but 
cannot have axial deformation nor bending about the 
vertical axis. However, the columns can have torsional, 
axial and bending deformations (about both major and 
minor axes). The torsional and translational displace-
ments of the columns and shear walls as well as trans-
lational displacements of the shear panels at each floor 
can be transformed to three common degrees of free-
dom. The finite length of the rigid structural joints is 
considered in the system stiffness formulation. 

Stiffness condensation. Because the lumped masses at 
each floor are associated with the floor displacements 
of two translations and one rotation as well as with the 
axial deformations of the columns, the rotational 
degrees of freedom at the structural joints can be con-
densed in the motion equation for the purpose of 
increasing the computation efficiency. The reduction of 
degrees of freedom is similar to stiffness condensation 
and is performed through a process of forward elim-
inations of the structural stiffness matrix, story-by-
story, from the top of the building. Thus, during the 
dynamic response analysis, the displacements associ-
ated with the rigid-body motion of the floor displace-
ments as well as the vertical column displacements are 
calculated first, then the joint rotations and member-
end forces are obtained by using backward substitution. 

Step-by-step integrations. Let the incremental dy-
namic motion equation including the Ρ-Δ effect be 
expressed in global coordinates as 

MAif+cAr + (Ke-KJAr = - Μ Δ Γ , (1) 
in which M = diagonal mass matrix; c = damping 
matrix; expressed as aM + ß(Ke —Kg); Ke=structural 
stiffness matrix; Kq=geometric stiffness matrix includ-
ing Mgf and Mrg; Ar, Ar, Ar = incremental displace-
ment, velocity, and acceleration vectors; and A'r3 = in-
cremental ground acceleration vector including the 
vertical (Avg) and horizontal (Δνχ, Δν )̂ components. 
Based on the step-by-step integration method, eqn (1) 

can be expressed as 

>4')"'+(έ+=)»Μ'-«-έ+5 
1 

= ΔΡ + Μ(Αη+αΒπ)- 6_ 
Δί2 + Δί 

1+(3/Δί)0 
3aV 1 X-1+(3/Δί)β 

J9MB. 

j5MBn 

(2) 

in which Δί is the time interval; n represents the re-
response time; AB=(6/At)rll_1 + 3ifll_1;Bll = 3rll_1 + 
(Δί/2)Γη_ι; K=K e -K g , and AP=-MArq. Let c0 

= 3/Δί + 6/Δί2, cx = l/c4, c2 = c0c1, c3 = a -c 2 f t c4= 1 + 
3/?/Δί, then eqn (3) becomes 

ΚΓ = Δ Ρ (3) 

in which K = K + c2M, Ar^l /dJAr- j&B* and ΔΡ 
= M( — ΔΓ^ + A„ 4- c3B„). The expression of the pseudal 
dynamic equation in eqn (3) is identical to the force-
displacement relationship for static loads. Thus the 
well-known Gaussian elimination technique can be 
used both for static and dynamic cases. In the solution 
procedures, the displacements at the foundation are 
set to zero; the complete computation of local dis-
placements and member forces are then carried out 
floor by floor. 

Structural material characteristics. The stress and 
stress reversal of steel members are typically shown in 
Figs. 1-3 and those of concrete elements are sketched in 
Fig. 4. In the figures, the skeleton and branch curves are 
respectively associated with stress and stress reversal. 
Figure 1 signifies the moment curvature relationship 

BRANCH 
CURVE 

Fig. 1. Ramberg-Osgood moment reversal. 

(Μ—φ) for the skeleton curve which may be expressed 

Φ= 
\M\' 

(4) 

in which φ is the curvature, M the bending moment, / 
the moment of inertia of a cross section, and Mp the 
plastic moment capacity whose associated yielding 
moment is My=CMp. C is the ratio of the elastic section 
modulus to the plastic section modulus, a and r are 
positive constants chosen to fit the material character-
istics. For the limiting cases of the elastic and the 
elasto-plastic, one may use a— 1, r= 1, and a>0, r = oo, 
respectively. 

A general description of the moment-curvature 
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relationship of the Ramberg-Osgood model may be 
found in Fig. 1. As shown in the figure, immediately 
after the load is applied, the moment-curvature follows 
the skeleton curve from 0 to N (or from 0 to N'). The 
load is then released, and finally in the opposite direc-
tion, the moment-curvature follows the branch curve 
from N to N'. The point N is treated as the origin of the 
branch curve. In the process of load reversal, the 
moment-curvature relationship is linear for a range of 
moments designated as M'y Because of the Bauschinger 
effect, the magnitude of M'y is less than or at most equal 
to 2Mr The curvature associated with the branch curve 
may be expressed as 

sion in eqns (6) and (7) respectively as follows: 

Φ=Φο+ ΕΙ °li+fll M-M0 

2Mn 
(5) 

in which φ0 and M0 are the curvature and moment at 
the returning point. Figure 2 similar to Fig. 1 is for the 
moment rotation {Μ — φ) relationship. 

FIRST 

Fig. 2. Ductility based on rotation. 

When a member is subjected to an axial force, P, 
which can be either tension or compression, the linear 
tensile load is limited by the yielding capacity, Pr and 
the linear compression should be limited by the critical 
load of buckling capacity, Pcr. The loading and its 
reversal are sketched in Fig. 3. Because the Ramberg-
Osgood model is an increasing function, the analysis 
yields a greater flexibility of the member and does not 
provide collapse conditions. From Fig. 3, one may 
express the skeleton curves for tension and compres-

p TENSION 

SKELETON CURVE 

R,*Pcr 

-BRANCH CURVE 

I COMPRESSION 

ε~Ε{ι+α P 

Py '")■ ■-£('♦· 
p\ 

Pl\ 

r - 1 

For the branch curve, 

e = eo+-^Ë(P-Po)U+a P-PO 
Py + Pcr 

W- 1 

(6,7) 

(8) 

in which P0 is the point at which the load release be-
gins, and Pcr is a result of the critical stress, acr, of long 
or short column [14] multiplied by the cross sectional 
area, A. 

The Ramberg-Osgood torsional hysteresis loop is 
not shown and is similar to Fig. 1. The skeleton curve 
and branch curve can be respectively expressed as: 

TL 
l + a 

To) 

\T 

k 
1 + 

r-

T-T0 

2Tp 

(9) 

(10) 

in which y is the total angle of twist, T the torque, G the 
shear modulus, Iz the polar moment of inertia, and Tp 

the plastic torsional capacity of a given section. 
The moment-rotation relationship (Μ — Θ) of con-

crete elements is based on the experimental work and is 
sketched in Fig. 4 in which the numerals signify the 
rules for generating stiffness coefficients in the com-
puter program during various loading, unloading, and 
load reversal [15]. 

NEW RULE 

ROTATION 

Fig. 4. Stiffness degrading model. 

Stiffness coefficients for Ramberg-Osgood hysteresis 
loops—skeleton curve. The stiffness derivation is 
based on the principle of incremental analysis and the 
transfer matrix technique. A typical member is shown 
in Fig. 5 where the forces (Mt, Vh M7 and V}) and their 
associated deformations (rf, Up τ;·, and v) are positive as 

\ v Δλ: m WH 
Fig. 3. Ramberg-Osgood axial load reversal. Fig. 5. Positive forces and deformations of a member. 
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indicated. Because of the cycling loading process, the 
force-deformation relationships must be expressed in 
two groups of loading and unloading corresponding to 
skeleton curve and branch curve respectively. 

Let us consider a stable determinate beam shown in 
Fig. 6 for which the elastic curvature associated with the 
given moments may be sketched in the accompanying 
figure. The slope at end-i may be expressed on the basis 
of structural mechanics and eqn (4) as 

Jo 
φάχ (H) 

where the moment, M, in the equation of φ should be 
substituted by Mx=ViX — Mt. The deflection at end-/ 
may be similarly obtained 

T 
Jo 

φχάχ. (12) 

V i hMj 

(a) 

Fig. 6. Forces applied at end-I, (a) given beam, (b) curvature. 

Since an incremental procedure must be used for 
analyzing the inelastic structure, the force-deformation 
relationships at end-i can be expressed in the following 
derivative forms: 

(13) 
d i j άτί dvi dt?f 

dM/ dVf dM? dVi' 

Equations (13) are obtained by just using the derivative 
of the integral solutions of eqns (11) and (12) with 
respect to the independent variables Mf and V{ and then 
substituting the equilibrium condition, Vi=(Mf 4- M^L, 
to eliminate Vt. These equations are actually an incre-
mental form of flexibility matrix and can be symbolic-
ally expressed as 

or dA—fdF,·. (14) / n / i2 | l< i* r 

Using the equilibrium condition, one may find the 
incremental forces at end-j. The stiffness coefficients 
are then obtained by using the transfer matrix tech-
nique in the folio wing, form: 

f - i E r -

Ef x E r E - " - 1 
L 

0" 
- 1 
U6, 17) 

The stiffness coefficients in eqn (15) can be expressed 
in terms of the angles, 0f, 0 -, measuring from the chord 

to the tangents. The chord is defined as the line con-
necting two ends, ï and j ' , of a'member, whether the 
member is displaced or not. Using the analogy of 0f and 
6j to Tf and τρ one may find another set of stiffness coef-
ficients for which the shears are not treated as inde-
pendent forces and are dependent on the moments. 

The stiffness coefficients for axial force and torsion 
can be directly derived from eqns (6, 7 and 9). 

Stiffness coefficients for Ramberg-Osgood hysteresis 
loops—branch curve. The unloading case can be clas-
sified into four groups: (a) moment reversal at end-i, 
(b) moment reversal at end-j, (c) axial load reversal, and 
(d) torsional moment reversal. The moment reversals 
and their associated curvatures for groups (a) and (b) 
are sketched in Figs. 7 and 8, respectively. 

c 
S/1f-Mjj + dMj 
i 

V^-Vli + dV, 

x' 
BRANCH 

*w^?^ 

riAif JMl) /K 

(a) 

^^"^ 

J 
Μι-Μ,ι + dM, 

n 0 
Vj-Vji+dVj 

,<ty(dMj) 

w 
L-x' 

Ï 
SKELETON 

ijlMji 

*H<M„> 

Fig. 7. Moment reversal at end-/, (a) given beam, (b) 
curvature. 

Mj-M|j+dM| 

* ( M , ) 

*ΛΡ 

l*l<M,> 

Fig. 8. Moment reversal at end-J, (a) given beam, (b) 
curvature. 

Let the member end-i be subjected to a moment 
reversal, aMb for which the curvature changes from the 
solid line to dashed line as shown in Fig. 7(b). Because 
of the moment reversal, the curvature between o and 
χ'(Φ0χ') is reduced while the curvature between x' and 
^ΑΦχύis increased, wherex' = MJVu. φοχ, and φχ^are 
respectively corresponding to the branch curve and 
skeleton curve for which the slope may be calculated as 

τ , · = - ί ΦοΧάχ-\ φχ^άχ (18) 
Jo Jx' 

from eqns (4) and (5) 
MY-Mn -a*·- El 

rL M 

1+a Mx-M{ 

■ÎM irr \ 1 + ίΖ ΛΛ 

El \ M 

2Mp 

M / - 1 

.-)} dx 

)dx (19) 
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in which and 

(20) Mn 

Similarly 

" - £ χ[φ°-

MJ \Μ0\-> 

M v - M n 
El 

+ I-
1 + fl 

EI 

ΜΎ-Μ( 

2Mn 

1 + fl 
M, 
M, 

dx. (22) 

Similar to the derivation of eqn (14), one must first find 
the derivatives of the integrals of eqns (19) and (22) with 
respect to M, and Vt and then substituting the following 
equilibrium equation into the derivative equations: 
M-ViL-M» Mn=VaL~Mib Mi1A = Mt-Mip Mjid 

= Mj — Mji, and M'p=2Mp. Thus the final incremental 
force-deformation relations are obtained from the 
derivative forms of eqn (13) and the stiffness coefficients 
are then obtained in the similar manner shown in eqns 
(14ΗΠ). 

For the moment reversal at end-j, one may follow 
Fig. 8 and eqns (18H22) to find four derivative equa-
tions of dti/dMj, aTjaVh di^dM,, avJaVi for which the 
following equilibrium equation are substituted: 
M:=V:L~Mh M: 

--MJ-MJJ, 
-VtjL-M» M, ijd- Mi-Mip Mjjd JJ _ . . . 

and M'p=2Mp. The stiffness coefficients 
are obtained from the final expressions of the incre-
mental force-deformation relations. 

The stiffness coefficient for the branch curve of axial 
force or torsion can be directly obtained by inverting 
the incremental form of the flexibility coefficient 
associated with eqns (8) or (10). 

Interaction relations. The values of the bending, 
axial, and torsional capacities of a member are de-
pendent upon the interaction among the internal forces 
at the cross section. Let the shearing stress and the 
shearing yield stress induced by torsion be τ and τ , and 

τ 
m = —, (23) 

then on the basis of the von Mises' yield criterion, one 
may find the maximum normal stress, σ, which can 
occur at a cross section having a torsion, T, as 

σ = σ,[1-»ι2] 1 / 2 (24) 

in which ay is the normal yield stress. The result 
implies that the effect of torsional moment can be taken 
into account in axial force and bending moments by 
reducing their magnitudes by a factor of y/l — m2. 

The interaction relations between the biaxial bending 
and the axial force were employed in this study have 
two sets of interaction equations for checking strength 
and stability. Since the strength criteria was used for 
the numerical example included in this paper, the inter-
action equation introduced herein (eqn 25) is for 
strength only [14]. 

My = 1 (25) 

in which Mx and My are the applied moments about 
the major and minor axes respectively, and Mpcx and 
Mpcy are the modified plastic moments that include the 
effect of the axial compressive force, P. Let p = P/Py, 
then 

-1.19(1 -p2)Mpy^Mp (27) 

(21) Mpx and Mpy are plastic moments about the major and 
minor axes respectively. The exponent, a, is a numerical 
factor whose value depends on the shape of a particular 
cross section and on the magnitude of the axial load. 

dx The variation of a can be approximately expressed by 

= 1 . 6 - ^ 
lnp 

(28) 

in which In is the natural logarithm. 
The procedures for reducing the plastic capacities 

are as follows: At any time step in the structural 
analysis, a reduction of plastic moments, Mpx, Mpy, 
must be made to include the influence of the com-
pressive axial force based on eqns (26) and (27). These 
modified plastic moments, Mpcx, Mpcy, must then be 
reduced because of the torsional effect in the amount of 
yj\—m2 shown in eqn (24). The torsional influence 
should also be applied to the axial force to change its 
capacity. The final reduced moments, Mrpx, Mrpr and 
the axial force, Pr, are employed in the stiffness coef-
ficients for the next time step in the analysis. Because 
the stiffness coefficients are derived on the basis of the 
Ramberg-Osgood hysteresis with strain-hardening that 
is not considered in the interaction equations, the 
internal actions at some loading stage can be greater 
than the plastic capacities at that stage, which must be 
approximately reduced in order to fit the interaction 
equations. 

Response parameters. The response parameters ob-
served in this study are displacements, internal forces, 
seismic input and output energies, ductilities, and 
excursion ratios. This paper only presents some numer-
ical results of ductility studies which are therefore 
briefly discussed herein. The ductility factor, which is 
commonly used as the maximum required deformation 
of a structure, is generally defined as the deformation in 
a region of a system (or an overall response of system) 
that is divided by the corresponding deformation 
present when yield occurs (see Fig. 2). The excursion 
ratio is used as an index of the total severity of the 
inelastic deformation during a response history. The 
excursion is normally expressed in terms of a summa-
tion of ductility factors. If the ductility factors are used 
to describe the deformations of individual regions, they 
are normally measured on the basis of rotations, curva-
tures or strains. In this work, the ductility factors based 
on rotation, variable strain energy, and hybrid strain 
energy were used. The numerical example given in the 
paper, however, is based on the definition of rotation 
as sketched in Fig. 2. Observation of the figure reveals 
that the ductility factor is measured as the maximum 
absolute nodal rotation, |0|max, divided by the yield 
rotation, 0y, as 

l = m^Jy + a ^ l ( α 
(29) 

M = 1.18(1 -p)Mpx^Mp (26) 

in which the yield rotation is based on the antisym-
metrical bending of a member when its two ends are 
subjected to the plastic moment, Mp; thus, 9y=MpL/ 
6EI in which L is the length of the member, and El is 
the member's flexural rigidity. The angle, a, is measured 
from the first yield at which the member stiffness coef-
ficients pass beyond the elastic limit. 

The excursion ratio, ε, corresponding to the due-
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tility ratio can be defined as the total plastic rotation of 
a node of a member divided by the yield rotation of the 
joint. In terms of ductility 

1) (30) 

in which /if is the ductility factor for the half plastic 
rotation, i, and Νμ is the total number of times the 
node becomes inelastic. 

NUMERICAL EXAMPLE, OBSERVATIONS AND FUTURE 

Numerical example. More than one hundred cases of 
several structural systems were investigated in this 
study. The example given is an eight-story building of 
L-shape plan with steel columns and a shear wall as 
shown in Fig. 9. The mass center is at point "/I". The 

The first five seconds of the El Centro 1940 earthquake 
are used with the scale of one, and the N-S component is 
applied in the N-S structural plan. In the analysis, five 
percent damping (a = 0.4305 and β = 0.00581) and 
Δί = 0.005 sec were employed. 

Response observations. The effect of the interaction of 
the three earthquake components on the response was 
investigated by considering (c) the N-S component with 
the Ρ - Δ effect of dead load, (d) the N-S and E-W 
components with the P —Δ effect of dead load, and (e) 
the N-S, E-W, and vertical components with the 
P—Δ effect of both dead load and the vertical earth-
quakes. Thus the ratio, d/c, indicates how the E-W 
component affects the response behavior, e/d shows 
the increase caused by the vertical ground motion, and 
e/c signifies the influence of both the E-W and vertical 
components. The ductility demands in the x-direction 
shown in Fig. 10 of the vertical members are mainly 
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Fig. 9. Eight-story building of L-shape with steel columns 
and shear-wall, (1 ft = 0.305 m). 

transverse masses are shown in the accompanying 
figure. The torsional masses are 62,111.8 k-in-sec2 

(715,604 kg-m-s2) for the first and second floor, 
55,900.62 k-in-sec2 (644,044 kg-m-s2) for the third 
through fifth floor, and 49,689.44 k-in-sec2 (572,483 
kg-m-s2) for the sixth through eighth floor. The masses 
associated with the axial displacements of columns are 
distributed according to the dashed lines shown for the 
floor masses in the figure. The cross-sectional proper-
ties of the shear wall are that the yield moment is 
40,000 in-k (4520 kN-m), the moment of inertia about 
the major axis is 864,000 in4 (0.3596 m4), and the effec-
tive cross sectional area is 720 in2 (0.4645 m2). The 
torsional moment of inertia and the moment of inertia 
about the minor axis are assumed to be negligible. 
For the steel members, a = 1 and r = 20 were employed. 

Fig. 10. Comparison of max. ductilities in X-direction of 
columns with shear-wall ductilities. 

developed at the shear wall for which the maximum 
required ductility is at the first floor. From the second 
floor to the top, the ductilities are demanded slightly by 
the other columns, and the shear wall remains elastic. 
The ductilities in the y-direction sketched in Fig. 11 are 
mainly developed at column 7, for which the critical 
location is at the fifth floor. Because the shear wall and 
column 7 suffer severe damage, the ductilities of these 
two members are plotted along with the maximum 
required numbers for each floor of the system. The 
ductilities and excursion ratios of the beams in the 
y-direction of the floor plan are shown in Figs. 12 and 
13. Inclusion of the E-W component and the vertical 
component apparently demands more ductilities than 
those occasioned by the N-S components only. 

Future research. The future research work may be 
emphasized on the comparative studies of the optimum 
design of building systems for various interacting 
ground motions and code provisions ; recommendation 
on how to strengthen the structural parameters at the 
critical regions of a system and how to improve the code 
provisions. The study is currently undertaken at UMR. 
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Fig. 11. Comparison of max. ductilities in Y-direction with 
Col. 7 ductilities. 

Fig. 13. Comparison of max. excursion ratios in Y-direction 
of columns with Col. 7 excursion ratios. 
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Fig. 12. Max. ductility factors in Y-direction of beams. 
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COUPLING IN THE DYNAMIC RESPONSE OF 
NONLINEAR UNSYMMETRIC STRUCTURES 
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Abstract—A procedure is presented for investigating the stability of the torsional component of response 
in a nonlinear unsymmetric structure subjected to translational excitation. The torsional motion is found 
to be unstable due to the nonlinearity of the resisting elements if the parameters of the system are such that 
they fall within the region bounded by the upper and the lower instability curves. Furthermore, relationships 
for torsional damping and other system parameters determine the minimum torsional damping necessary 
to stabilize the torsional component of the motion. Thus, the procedure presented herein may be applied to 
structures that are susceptible to lateral-torsional coupling arising from nonlinearity of the resisting ele-
ments, eccentricity between the centres of resistance and mass, or a combination of both of these factors. 

NOMENCLATURE 
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plan dimensions of building 
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square of non-dimensional amplitude of 

a single-degree-of freedom system 
non-dimensional eccentricities 
static eccentricities 
average non-dimensional response 

amplitudes in x-, y- and ^-directions, 
respectively aspect ratio (a/b) 

aspect ratio (a/b) 
resisting forces in element j 
time 
amplitude of sinusoidal ground accelera-
tion 
lateral displacements of mass centre 
principal coordinate directions 
geometric parameters of L-shaped build-

ing 
mass radius of gyration 
reference displacement 
in-plane displacement of resisting ele-

ments 
critical damping ratios 
rotational displacement 
non-dimensional response 
coefficient of nonlinearity 
non-dimensional displacement perturba-

tions 
non-dimensional time 
translational fundamental frequency 

ratio {ων/ωχ) 
torsional fundamental frequency ratio 

(ωθ/ωχ) 
sinusoidal ground excitation frequency 

ratio (ω/ωχ) 
uncoupled building frequencies 
frequency of sinusoidal ground excitation 
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1. INTRODUCTION* 
Generally, all buildings are torsionally unbalanced to 
some extent and any form of translational excitation 
will therefore cause torsional response associated with 
the lateral vibration. Field observations of earthquake 
damage show numerous examples of structural failure 
due to such simultaneous torsional motion. 

Earthquake response of linear elastic structures 
where the centre of mass is eccentric to the centre of 
resistance has been the subject of a number of studies 
[1-3]. Hoerner [1] indicated that strong modal coupl-
ing can occur in a rectangular building with a uniform 
distribution of columns in plan if eccentricities and 
translational-torsional frequency differences are small. 
Kan and Chopra [2], after studying the elastic re-
sponse of a torsionally coupled building for idealized 
flat or hyperbolic response spectra, concluded that 
coupling between lateral and torsional motions induces 
torsion and generally reduces the base shear. They also 
demonstrated a relation for the base shear and torque 
between the torsionally coupled and the corresponding 
uncoupled system when excitation is applied in one 
direction. Employing a partially symmetric single-
storey model and the design spectrum concept together 
with suitably conservative procedures for combining 
the modal maxima, Dempsey and Irvine [3] evaluated 
the dimensionless torque and shear as functions of two 
independent parameters, viz. frequency ratio and 
dimensionless eccentricity. 

However, recent studies [4-6] indicate that coupling 
also exists between the lateral and torsional responses of 
symmetric structures. Newmark [4] examined sym-
metric structures exited into torsional motion by the 
rotational component of ground motion about a 
vertical axis. Tso and Asmis [5, 6] studied the coupled 
lateral-torsional motion of elastic, nonlinear, sym-
metric structures subjected to lateral ground motion 
and showed that nonlinear coupling exists between the 
translational and torsional response. 

As a general conclusion of these studies, strong modal 
coupling will occur if the torsional and translational 
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frequencies coincide, for symmetric as well as for un-
symmetric buildings. 

The preceding studies of linear unsymmetric and 
nonlinear symmetric structures are not directly applic-
able in predicting the behaviour of structures that are 
both nonlinear and unsymmetric. Thus, the objective 
of the present study is directed towards (1) providing 
an understanding of the coupled behaviour of buildings 
that are nonlinear as well as unsymmetric, (2) identifying 
the basic parameters controlling the response of the 
system, and (3) investigating the influence of these 
parameters. 

In this paper, it is shown that the nonlinear equations 
of motion are governed by a set of three damped, 
coupled Mathieu-Hill type equations which exhibit 
regions of instability. For illustration, torsional re-
sponse stability curves for an example building system 
are presented and the effect of torsional damping on the 
instability is investigated. Convergence problems, en-
countered in the form of "gaps" in the solution, are 
examined. 

DERIVATION OF EQUATIONS OF MOTION 

An idealized one-storey structure consisting of a rigid 
deck supported on massless, axially inextensible col-
umns having eccentric centre of mass with respect to the 
centre of resistance is considered (Fig. 1). This system 
has three degrees-of-freedom, namely the two horiz-
ontal displacements u and v of the mass centre relative 
to the ground along the x- and y-axes and the rotation Θ 
about the vertical axis. The earthquake ground motion 

The equation of motion of the system can then be 
written as 

Fig. 1. Geometric relationships for building displacements. 

is defined by accelerations üg(t) and vg(t) in the x- and 
^-directions. 

Letting kix and kiy represent the translational stiff-
nesses of the ith resisting element, the translational stiff-
nesses Kx and Ky and the torsional stiffness of the struc-
ture with respect to the centre of mass, Kdm, are given by 

Ky=Tkiy Kx = Z/eix, 

K^=Z(/cixy2 + /c,vx2). 
(1) 
(2) 
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in which M is the mass of the deck, Γ is the mass radius 
of gyration of the deck about the vertical axis through 
the centre of mass, and cx, cy and ce are the translational 
and torsional viscous damping coefficients, respectively; 
the dots represent differentiation with respect to time t. 

Describing the displaced position of the centre of 
mass of the deck by u, v and θ as shown in Fig. 1, the 
three equations of motion (eqn 4) can be written as 

Mu + cxû + slRx(Sl)+s2Rx(ô2) = -Müg (5) 
Mr2Ö+C0ö'+s3ÄJC(^1)-hs4jRx(^2) 

+ s5Ry(ô3) + s6Ry(ô4)=0 (6) 

Mv + cp + SjRJioJ + StRJio^ -Mvg (7) 

where Sj (/'= 1, 2 , . . . , 8) are the parametric constants 
describing the plan profile and dimensions (i.e. length, 
width) of the building; and ôj, (/= 1 , . . . , 4) are the dis-
placements of the lateral resisting elements (Fig. 1); and 
Rx(dj) and Ry{bj) respresent the restoring forces in the 
x- and y-directions of element j . The displacement δ} 

can be expressed as linear functions of displacements 
M, v, Θ and the building dimensions as follows: 

St=u+eFi(ly,yJ 

o2 = u+eF2(lrym) 

S3 = v+eF3(lx,xJ 

ôA = v+eF4(lx,xJ 

(8) 
(9) 

(10) 

(H) 
where /x, ly and xm, ym are the plan dimensions and dis-
tances of the centre of mass from the resisting elements, 
respectively; Fj ( /=1, . . . ,4) are functions of these 
parameters. 

The force-displacement relationship of the lateral 
resisting elements is assumed to be elastic and weakly 
nonlinear with cubic softening-type nonlinearity ex-
pressed as 

Ry(ôj)=kyôj^-X^fJ^ j = 3, 

(12) 

(13) 

The centre of resistance is located at distances ex and 

in which kx, ky are the linear stiffnesses of the resisting 
elements along x- and y-directions, respectively; (50 
is some convenient reference displacement; and A is a 
measure of the nonlinearity of the force-displacement 
relation, with λ < 1.0. 

Substituting eqns (8H13) into equations (5)-(7) 
results in 

the eccentricities measured from the centre ofXmass u + lC^u + is^u-is^u +s13w2ö + s14wö 
along the x- and y-axes and defined by + s150 + s1603)}=- (14) 

ex~ τζ ^Xi^iyn ey=^Zyiki, (3) 
Ö'+2C0co00'+{s310- -(s3203 + s3302w + s349u2 + 535w3) 

-(s3603 + s319
2v + s386v2 + s39v

3) 



Coupling in the dynamic response of nonlinear unsymmetric structures 199 

-(S 4 1 H + S42I?)}=0 (15) 

v + 2Cy(oyv + {s21v —(s22v
3 + s23v

26 + s2Avd2 

+ s25e + s26e
3)}=-vg (16) 

where ζχ, Çy, ζθ represent the ratios of critical damping in 
x-, y- and 0-directions, respectively; ωχ, ωτ ωθ are 
frequency parameters that may be interpreted as un-
coupled frequencies of the system, i.e. the natural 
frequencies of the system if it were torsionally un-
coupled (ex=ey=0). They are given by 

/ K - ; ων= / ^ a n d ü ) 0 = fe. (17) 
M M Μ Γ 2 ' 

The coefficients si; are constants consisting of various 
functions of parameters s^s^ A, δ0, ω^ œr ωθ and Fx-

For simplicity, ground motion is assumed to be sinu-
soidal and directed along the x-axis only. Therefore, 

üa=U cos cor; ü = 0 . (18) 
It is convenient to express eqns (14)-(16) in non-dimen-
sional form with the following changes of variables: 

(19) 

(20) 

(21) 

(22) 

τ=ωα 

A U ■ * - ^ θ'-τχ 
U_ 

ω2 

A / * "W . A ίΛ VM A / X W 
Λ χ ( τ ) = — ; Λ/τ) = — ; Α^τ)=— 

0 01 υΑ 

y ωγ ωγ ωγ 

where τ represents non-dimensional time and Λ^ Ay Αθ 

represent non-dimensional response of the system as 
functions of τ. 

Denoting άΑ/άτ by Ä and substituting eqns (19H22) 
into eqns (14H16) yields the following three coupled, 
non-dimensional equations of motion for sinusoidal 
ground acceleration directed aloag the x-axis: 

Λ . + / Α + {f2Ax -(f3Al +fAA2
xAe+f5AxA

2 

+fe^e +fAl)} = - cos Ωτ (23) 
Ko+h^e+faAe-ihiAî + hgAîA^hsAeAl + hsAl) 

- ( Α 7 Λ , + Α 1 0 Λ , ) } = 0 (24) 

Ay+0iAy + {02Aj,-(03A* + 04AjAe + 0 5 A ^ 2 

+ 06ΑΘ + 07Α2)} = Ο (25) 

where fi9 gt and ht are non-dimensional constants that 
may be expressed as functions of ζχ, ζΤ ζθ, sip Qy and 
Ω„. 

where variables P, Q, R, Φ, ψ, and χ are approximated 
by their average values P, Q, R, Φ, Ψ and χ respectively. 
The averaging procedure thus leads to a set of six non-
linear simultaneous algebraic equations, which yield 
the approximate solution 

Λ,(τ) = Ρα>8(Ωτ + ΦΓ 

Λ,(τ) = <ΐοο8(Ωτ + Ψ) | 

Ae(T) = Rcos(QT + x). 

(27) 

The stability of the solution can be examined by the 
perturbation technique [8,9]. The form of the solution 
expressed by eqn (27) is perturbed by letting 

Λν(τ) = Ρϋ08(Ωτ + Φ) + ξχ(τΠ 
Λ,(τ) = Οοο8(Ωτ + Ψ)+ ί , ( τΛ (28) 
Αθ(τ)=Κοο$(ατ+χ)+ξθ(τ) J 

where ξχ(τ), ξ^τ) and ξθ(τ) represent small perturbations. 
Substituting the expressions of eqn (28) into differ-

ential equations (23H25) and retaining only the first 
order terms in perturbations ξ^ ξγ and ξθ lead to the 
following set of variational equations (damped coupled 
Mathieu-Hill equations): 

ft00! 
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0 o l 

L 9i-

1 *** 

V e ι 
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/ l 0 0 

ξθ}+ 0 ^ 0 ^ςΕ 
Λ2 

0 0 ^ 
02 

ί, 

1 0 0 

p 1 0 

0 0 1 

lu 
fl 

Λ2 Ä 2 

2flf( 

-\ cos 2Ωτ 

in which 

^ 2 . 

Λ2 

0 

Α12 

^ 2 2 

* 2 

4_32 
02 

0 

^ 2 3 

Λ2 

±33 
02 

h2 

02 0 2 , 

^23 , 2/?ιο 

Ä2 Α2 

02 

ζν 

(29) 

STABILITY OF COUPLED RESPONSE 
Equations (23)-(25) can be solved by applying the 

method of averaging, i.e. method of slowly varying 
amplitude popularly known as the Kryloff-Bogoliu-
boff method [7]. This method has been successfully 
applied by Evensen [8] in the vibration of circular rings 
and by Zaouk and Dym [9] for shallow shell vibrations. 
It is assumed that the solution exists in the form 

Λ,(τ) = Ρ(τ)ΰ08[Ωτ + Φ(τ)] 
Λ,(τ)=ρ(τ)εο8[Ωτ + Ψ(τ)] 
Α θ ( τ )=Κ(τ )^ [Ωτ + χ(τ)] 

(26) 

(30) 

^ u = 3/3P2 + 2/4PR+/5R2 

A 1 2 =/ 4 P 2 + 2/5PR + 3/7R2 

A21 = h9R
2 + 2/Z3PR + 3h8P

2 

A2 2 = 3/*4R2 + 2/z9PR + /*3P2 

+ 3h6R
2 + 2h12QR + h5Q

: 

A23 = h12R
2 + 2h5QR + 3hilQ

2 

A32 = g4Q
2 + 2g5QR + 3g7R

2 

A33 = 3g3Q
2 + 2g4QR + g5R

2 

Equation (29) may be written in condensed form as 

^ { + 2Cß{ + [E -^A-^cos2nTB]{ = 0 (31) 
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where 

/ l 

0 
0 

0 

K 
0 

0 
0 
Q 

(32) 

This allows the solution of equation (35) to be expressed 
as 

It should be noted that the above equation contains 
the torsional damping term, hl9 within the inner radical 
term. 

= 0 (33) 

and Ç, E, A and B are defined by eqn (29). 
The principal region of instability of the above equa-

tion can be approximated by [10] 
- § Α + ^ Β - Ω 2 ς -2DÇe 

2QÇE Ε - ^ Α - ^ Β - Ω 2 ς | 

which, upon expansion, becomes a sixth-order algebraic 
equation in Ω2. For the first approximation, let 

Ω=ΩΘ. (34) 

Upon substituting this value into all the elements of 
determinantal eqn (33), except the second and fifth 
elements of the principal diagonal, the following equa-
tion is obtained : 

i-JWh I f ( £ 1 £ 3 - £ 2 £ 4 ) 2 - 4 ^ j E\E\<0, 

Ω yields complex 

values for the boundary frequencies. Thus, the largest 
value of torsional damping for which dynamic instab-
ility is still possible is defined by 

{ElE3-E2Efy04(?j£) E\E\ (38) 

This results in the following expression defining the 
minimum value of torsional damping necessary to 
ensure stability: 
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The foregoing equation is expanded, neglecting terms 
of higher than the second order i n / l s gl and hv To 
express the solution for Ω in concise form the following 
substitutions are made : 

432 
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However, if torsional damping is neglected eqn (37) 
gives rise to two equations, one representing an upper 
bound and the other expressing a lower bound for the 
zone of instability. The upper bound curve is given by 

^4_2 , , V3/4, 
4~ 

Ω2 = / * , - 3 ^ 2 2 

r ^ 3 + A i o u - " 3 2 + 06 

4 3Λ, 

3At 
*+/e 

3A, 
-+/*7 

-Ω? 

Λ -Ω2 3>in 

whereas the lower bound curve is 

(40) 

Ω2 = Λ , - -

Α?+*4^+* 
« a - ^ - Û ? 

Λ12 

+/Λ-Ψ+>>ι 

Λ-^-Ω? 
(41) 

Typical results obtained from the foregoing analysis 
are presented in the following discussion of an illustra-
tive unsymmetric building structure. 

TYPICAL RESULTS AND DISCUSSION 

It is clear that eqns (39H41) involve the geometric 
parameters, damping coefficients, fundamental fre-
quencies, input frequency and the nonlinearity param-
eter λ. Although these equations have been formulated 
for an unsymmetric system, they are equally applicable 
for symmetric structures as well. These equations are 
useful in studying the torsional instability of the system 
as well as in identifying values of the system param-
eters for which such instability may take place. 

Torsional stability in a symmetric structure means 
having no torsional response for purely translational 
excitation. For an unsymmetric system, on the other 
hand, torsional stability is defined as a bound on the 
magnitude of the rotational displacement of the system 
over time. 

To demonstrate the application of the method de-
scribed above, a typical unsymmetrical building, L-
shaped in plan as shown in Fig. 2, is selected for study. 

Application of analysis to example structure 
The elements of lateral resistance are assumed to be 

distributed along the perimeter of the structure as 
shown in Fig. 2. The building is assumed to be nomin-
ally symmetric, i.e. eccentricities ex and ey are small. 
(For the L-shaped building, values of the geometric 
parameters β and y ̂ 0.3 correspond to eccentricities 
^ 10%). For this condition, one may neglect the re-
sponse amplitudes Q and R in eqns (30) and (39H41). 
The upper and lower bounds of eqns (40) and (41) are 
then transformed, respectively, as follows: 
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Fig. 2. Plan of example L-shaped building. 

ψ-4Ψ^ 
!-*£-* 

(42) 

and 

h^P2 

Ω2 = Ω2 + - ν - + 7τ̂ 2 
^1006 

4 " (Ω2-Ωθ
2) 

y4P2 Λ/3Μ*2 

-+Λ + Λ7 

+-
(43) 

It is instructive to transform eqns (42) and (43) in 
terms of the non-dimensional eccentricities of the 
system. The non-dimensional eccentricities, Ex and Ey, 
are given by 

F —£i F — îl (44) 

h-

h-

f6= 

a,= 

=K 

3ÀEy 

Ω* 

ESK 

AH coefficients, except h3, of eqns (42) and (43) can now 
be expressed in terms of Ex, Ey, λ, Qy and Ωβ; namely, 

ΗΊ = Εμ\ 

> (45) 
h10=-Efit 

ΩΪ 

It is somewhat complicated to express A3 in terms of 
Ex and E ; therefore, the expression for h3 is written in 
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terms of the geometric parameters as 

in which 

(46) 

r l I 2 , 

Cl = l-(l-ßXi-

c2=l-(i-ß2)(l 

(47) 

-7) 

-y) 
c 3 = i - ( i - / W - y 2 ) 
c4 = y( l -y) ( l - / î ) 2 

c5 = ^ ( l - ^ ) ( l - 7 ) 2 

c1 = c\ + 4yc5 

and where r is the aspect ratio, a/b, of the building and 
parameters ß and γ, defined in Fig. 2, represent the two 
geometric parameters of a particular L-shaped building 
plan. 

An approximation for the translational amplitude, P, 
in the direction of ground motion for the nominally 
symmetric building is necessary. Kan and Chopra [2] 
provided the following relationship for the two trans-
lational and the torsional responses in a three-degree-
of-freedom linear unsymmetric system : 

V 2 + V 2 + T 2 = l 

in which 

y V 
and T = 

xO 

T 
TV, 

(48) 

(49) 

Here Vx0 is the response in the x-direction of the single-
degree-of-freedom uncoupled system whose mass and 
stiffness are the same as those of the coupled system ; 
Vx, Vy and T are the translational and torsional re-
sponses of the coupled system in the x-, y- and 0-direc-
tions, respectively. 

Equation (48) can readily be transformed into 

P 
(l+Ey)+-%Ql(\+Ex)=l (50) 

V5 
where 

0 = [(1-Ω2)2+(2ζχΩ)2]-1 . (51) 

For input ground excitation in the x-direction, the 
response P ^ Q, since eccentricities are assumed small 
and the building is nominally symmetric. Hence, Q 
can be set to zero and eqn (50) transforms into 

P2 = 
D 

<i+*î) (52) 

Substituting eqns (45), (46) and (52) into eqns (42) and 
(43) yields the following upper and lower bound in-
stability equations: 

Ω2 = Ω2 + 9λϋ V c 3 , 

1 -
9XD 

4(l+£y
2) j 

9/lD 
4(1+£ 2 ) J 

-Ω.Ι 

(53) 

Ω?, = Ω2 + 
IXD 

4(1 +£ 2 1Ϊ! + Ι Ω 2 - Ω 2 

L 4(1+E?)]j 

(54) 

The foregoing allows eqn (39) to be expressed in 
terms of the non-dimensional eccentricites. The largest 
value of torsional damping in a nominally symmetric 
building for which dynamic instability is still possible 
is thus given by 

c„= 
3/lD 

mi+Ef) * * + 4Ω2 

1 - - : 
9XD_ 

MT+ËT) 

1 - 9XD 

3AD 

4(1 +£ 2 ) 

4(1+£2) 
-Ω2 3ÀD 

4(1+£2 - Ω 2 

(55) 

Stability curves for example structure 
Figures 3 and 4 present the stability curves in Ω θ - Ω 

parameter space computed from eqns (53) and (54). 
An interesting feature in the compulation of Ωθ is the 
appearance of a discontinuity or "gap" in the solution 
to the left of Ω = 1, where the approximate solution for 
Ωθ from both the upper and the lower bound equations 
breaks down. To investigate the possible reason for this 
behaviour, examination of eqns (53) and (54) shows that 
when the denominator of the fourth term in these 
equations approaches zero, the term becomes large. 

Curves plotted in Fig. 3 trace the behaviour of the 

&Q 1.5 

Fig. 3. Instability curves for example L-shaped building. 
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fourth term; the curves fox the partial denominators, 

Jl-w£}) and Jl-«J%T)from eqns (53) 

and (54), are seen to cross the upper and lower bound 
instability curves at the location of the gap. A similar 
breakdown in the solution is also noticed for some of the 
lower bound curves, this time to the right of Ω = 1. How-
ever, here the partial denominator curves do not cross 
the expected solutions of the lower bound equation. It 
is found that the gaps diminish with a decrease in 
eccentricity. This is evident also from the fact that the 
numerator of the fourth term contains the eccentricity 
as a compensating factor. A time history investigation 
needs to be performed to understand more fully the 
significance of the gap. It is interesting to note that a 
similar "gap" phenomenon was observed by Evensen 

UPPER BOUND 

---LOWER BOUND 

β*γ*0.5 

λ*Ο.ΟΟΙ 

ζχ*0.02 

ß 
Fig. 4. Effect of aspect ratio r on instability. 

[8] in the study of nonlinear vibrations of thin circular 
rings. 

Figure 4 is the plotting of some instability curves 
similar to those described in Fig. 3 for various values of 
aspect ratio r, to demonstrate the influence of this 
parameter on the zone of instability of the system. It is 
seen that the instability zone decreases and shifts 
towards the ΩΘ=Ω line as r increases in magnitude. 
Also the length of gap decreases with the increased r 
values for both upper and lower bound curves. 

The effect of torsional damping ζθ (eqn 55) is demon-
strated in Figs. 5 and 6. A value of ζθ less than the 
magnitude plotted for a particular system implies that 
the structure is unstable. This equation also exhibits 
computational difficulties, producing a "gap" at or 
somewhat to the left of Ωθ= 1 (Fig. 5), similar to that 
CAS 13:1-3 - N 

The denominator of the second term of eqn (55), when 
approaching small values, is responsible for this gap. 
In Fig. 6 the same equation is replotted in ζ^-Ώ plane 
for several ζχ and Ωθ values to demonstrate the influence 
of the aspect ratio, r. The results show that the smaller 
the value of the aspect ratio, the larger the value of ζθ 

required to stabilize the system. 
In the present study, the resisting elements have been 

assumed to be distributed along the perimeter of the 
structure. However, in actual buildings the resisting 
elements are frequently distributed over the plan area. 
To handle such systems, appropriate expressions for 
£x, Ey, Kx, and Ky should be employed in the general 
formulation expressed by eqns (39H41). 

The system considered here is subjected sinusoidal 
ground motion in only one direction, although earth-
quake ground motion is multi-directional and more 
complex in nature. However, this would not signific-
antly alter the parametric conditions for torsional 
instability. 

SUMMARY AND CONCLUSIONS 
The purpose of this paper is to present the mathe-

matical relationships for the parameters of an un-
symmetric structure subjected to ground motion, in 
order to identify situations where the system will be 
torsionally unstable. 

Two mathematical relationships have been formul-
ated, one for the upper bound and the other for the 
lower bound instability curve. The torsional motion is 
found to be unstable due to nonlinearity of the resisting 
elements as well as the eccentricities between centres of 
resistance and mass, provided that parameters of the 
system are such that they fall within the zone between 
the upper and lower bound instability curves. Also, an 

0 0.4 OS I.2 I6 2.0 

Fig. 5. Minimum torsional damping for stability. 
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Fig. 6. Effect of aspect ratio r on minimum torsional damping. 

expression has been presented for torsional damping, in 
terms of the system parameters. This expression may be 
used to determine the minimum torsional damping 
necessary to stabilize torsional response accompanying 
purely translational excitation. 

Some numerical problems in the computation of 
instability and torsional damping curves have been 
encountered in the form of "gaps". Otherwise, the 
numerical computation is simple enough to be used for 
both truly symmetric and the nominally symmetric 
structures of the present study. 

FUTURE RESEARCH 

In terms of future research, additional study is 
needed to apply the procedure presented herein to 
buildings of other geometries, particularly those ex-
hibiting large eccentricities. Further study is also 
needed to understand more fully the occurrence of 
"gaps" in the solution. Time-history analysis appears 
necessary for the latter. 
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Abstract—Three dimensional elastic-plastic seismic response analysis of structures supporting steam 
generators is carried out. The structural system is idealized as a finite element model composed of elastic 
beam elements and partially of non-linear spring elements. In the equation of motion the nonlinear 
restoring force term is divided into a linear term and a nonlinear term, the latter being moved to the right 
hand side of the equation and regarded as an external force term. The equation is solved by using the mode 
superposition method accompanied by the mass condensation method. The analysis method is shown to 
be of practical use by applying it to a scaled model and to an actual structure. 

1. INTRODUCTION 

In the past, during strong earthquakes in Japan, the 
structures supporting steam generators as shown in 
Fig. 1 have been damaged in such localized parts as 
stoppers. Although these damages are not detrimental 
to the function of the generators, analytical approaches 
to these occurrence are desired to evaluate the damages 
and to keep the safety factors of the structures adequate. 

Generally the elastic-plastic seismic response analys-
is of framed structures such as tall buildings has been 
performed by using the simplified method of idealizing 
the structures by mass-spring systems with dashpots 
[1]. However, with such a simplified idealization, it 
seems difficult to analyze the response of the structure 
supporting the generator and to evaluate directly the 
stresses of each of the structural members, because of 
the complexity involved in the structural system (Fig. 1). 

In this paper, an elastic-plastic response analysis in 
which the structure is idealized as a three dimensional 
finite element model is carried out by applying the 
mode superposition method [2] in conjunction with the 
mass condensation method [3-5]. 

First, considering the aforementioned experiences 
of the damages of actual structures, it can be assumed 
that the structural members of the supporting structure 
and the generator remain elastic, while the stoppers, 
which are provided for the lateral support of the gener-
ator, are elastic-plastic during an earthquake. The 
system is, thus, idealized to be an assemblage of elastic 
beam elements and elastic-plastic spring elements 
having bi-linear restoring force characteristics. 

Next, the nonlinear restoring force term in the equa-
tion of motion of the above system is divided into a 

fAssistant Chief Research Engineer. 
JSenior Research Engineer, Structure and Vibration 

Research Laboratory. 

linear term and a nonlinear term, the latter being 
moved to the right hand side of the equation and 
regarded as an external force vector. The equation is 

Fig. 1. Bird's-eye view of steam generator and its supporting 
structure. 
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reduced by the mass condensation method [3] and 
subsequently solved by the mode superposition meth-
od. The response of each mode is calculated by New-
mark's ß method [6], and the effect of the nonlinear 
term is corrected by the iteration method at each step 
of the integration. 

Finally, a seismic shaking table test was carried out 
on a scaled model, and experimental and calculated 
responses are compared to show that the accuracy is 
practically good. Moreover, calculated and measured 
natural frequencies and modes of an actual structure 
are shown to be in good agreement. Then, the analysis 
method is applied to an actual structure subjected to 
a strong earthquake, and it is shown that the previously 
mentioned actual damages can be explained well by the 
results of the analysis. 

6. IDEALIZATION OF THE STRUCTURE 

The structure supporting the steam generator is of 
complicated construction, consisting of columns, 
beams, vertical braces, and horizontal braces provided 
on each floor, etc. (Fig. 1). The elevation and plan views 
of the structure are shown in Figs. 2 and 3, respec-
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Fig. 2. Elevation view of steam generator and supporting 
structure and location of stoppers. 

tively. The steam generator is suspended from the top 
of the supporting structure through rods and is horiz-
ontally supported by stoppers which are located 
along the height of the generator. The stoppers prevent 
only the horizontal movement of the generator, as 
shown in Fig. 3. 

Each member of the supporting structure is idealized 
as the elastic beam element and treated as the three-
dimensional finite element model shown in Fig. 4. 
The steam generator is also idealized as the equivalent 
beam elements in Fig. 4 and the lumped masses as 
shown in Fig. 5(a). The stoppers are idealized as the 
non-linear spring elements having a bilinear restoring 
force characteristics, as shown in Fig. 5(b). 

Supporting 
structure 

Fig. 3. Plan view ofsteam generator and supporting structure. 

1 Steom generator 

Fig. 4. Finite element model of a prototype. 

3. METHOD OF ANALYSIS 

According to the finite element analysis procedure, 
the basic equation of seismic response for the above 
mentioned structural system can be expressed as : 

M W + M M + W W ) ] W = - [ M ] { £ K (i) 
where {u} : unknown nodal parameter vector 

consisting of displacements and rota-
tions relative to movement of the 
base of the structure, 

[M] : mass matrix, 
[C] : damping matrix, 

[XN({w})] : stiffness matrix (including non-linear 
spring stiffness; the function of {w}), 

{£} : vector showing external force dis-
tribution corresponding to the 
ground movement, 

ii0 : seismic acceleration at the base of 
the structure (the function of time), 

·· =A 
: ~~dt 

The non-linear restoring force term [XN({u})]{«} 
can be divided into the linear restoring force term 
[KL]{w} and the non-linear term {PN({w})} by dividing 
the restoring force of the non-linear spring element into 
a linear term and a non-linear term. By moving the 
non-linear external force term to the r.h.s. of eqn (1), 
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Elastic - plastic 
spring element 

Beam element 

Beam of supporting _ 
structure F^ce (F) 

( a ) Lumped - mass model 
of steam generator 

( b ) Non - linear restoring force 
characteristics of stopper 

Fig. 5. Idealization of steam generator and stopper. 

the following equation is obtained: 

M W + [C]{ii} + [X J{n} = - [ M ] { £ K - {PN({u})}. 

(2) 

To reduce degrees of freedom, the mass condensation 
method is applied, by dividing {u} into the master 
parameter vector {um} and the slave parameter vector 
{MS}, where all the parameters corresponding to the 
elastic-plastic stoppers are selected to be contained in 
the master parameter vector {um}. Then, eqn (2) can be 
divided into the equations with respect to the master 
and slave parameters, respectively, as follows: 

[Mm]{wm} + [ C J i t U + [Cms]{iis} + [_KLmm\{um) 

+ [ ^ L J W = - [ M j { £ m K - {PNm({um})} 

[Ai J{ü,} + \Csm\{ûm} + [C J{ii,} + \KLsm\{um) 

+ [^LS S]k}=-[Ms]{Es}ü0 

where 

[ft]-«· Γ»"1 ώ>™ 
[ c j [ c j J - L C J 

{PNJ{uJ) 
0 

In eqn (3b), assuming that the inertia and damping 
terms are small and negligible, the vector {us} can be 
solved in approximation as the function of the solution 
{um} and ti0[5] ; as follows: 

(3a) 

(3b) 

{«,} = - lKLssy
 llKUm]{um} + [ K t a ] - ' [ M J 

χ[Χ^_ 1[Χι«]{«ϋ 
- [ Κ ^ Γ ' Μ ί Ε , Κ . 

(4) 

By substituting eqn (4) in eqn (3a), the basic equation 
relating to the master parameter vector can be obtained 
as follows: 

[M:]{üm}+[q;]{um}+[K*]{um} 
= -[Mj;]{£*}ü0-{PU{«m})} 

where 

[M*] = [A# J -f [ K i J f K j ^ M f c J - 1 ^ ] 
[C*] = [Cmm] 

[M*]{£*} = [Mm]{£m}-[KLms][XLss]-1[Ms]{£s}. 

Equation (5) is solved by the method of mode super-
position which, comparing calculation time, is con-
sidered to be more economical than the ordinary direct 
integration method in the current problem, because 
considerable degrees of freedom are still there. 

The elastic natural vibration mode vectors of eqn (5) 
are obtained from the following eigen-value equation: 

- ω ϊ [ Μ * ] { ^ } + [ Κ 3 Μ » } = 0. ( « = 1 , 2 . . . ) (6) 

where ωη: nth natural circular frequency. 
{φηη} : nth natural vibration mode vector of 

master parameter vector. 

Using {(/>mn} and con (n = 1, 2 . . . ), eqn (5) can be ex-
pressed, as : 

{«*}=!«.{*«.} <7a> 
n 

α„+2ή„ω„οί„+ωΧ= -/J„*ü0-iV*({um}), («= 1, 2 . . . ) 
where (7b) 

« 
*_ {0mn}T[M*][£*} 

"{Φ™Γ[Μ*]{0„ 
JV*f/„ U {^mn}T{^Nm(K})} 

n U w l ) " { ^ } r [ M * ] { 0 m n } · 

(5) 

The modal damping ratio hn can be determined by 
referring to the measured values, etc. as is usually 
performed. 

A step-by-step integration of eqn (7) is performed 
using the Newmark's β method with /?= 1/6 or 1/4, the 
non-linear terms in the right-hand side of eqn (7b) being 
corrected in each step of the integration by means of the 
iteration method starting from the elastic solution. 
Judgement of convergence is performed by the follow-
ing equation : 
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Fig. 6. View of experimental model on shaking table. 

where i: number of iteration (= 1, 2 . . . ) 
ε : convergence tolerance. 

If the dynamic force terms can be neglected in 
higher order vibration modes compared with their 
static force terms, the higher order equation in eqn (7b) 
may be approximated as follows: 

"ft,= -«ao-NÎ({0)· (9) 
By the use of eqn (9), the time interval of the integra-

tion can reasonably be enlarged without any fear of 
divergence of the solution. 

The slave parameter vector {us} is calculated from 
eqn (4), using {um} obtained in the above manner, and 
stresses of all elements for any arbitrary time can also 
be obtained. 

4. MODEL TEST AND COMPARISON WITH THE THEOR y 
A vibration test was performed and analyzed, on a 

scaled model of an appropriate prototype. As shown in 
Fig. 6, due to the size of the shaking table, the model was 
made of steel and about one to thirty scale. The steam 
generator was divided vertically into five blocks, which 
were suspended one by one from the top of the sup-
porting structure through flexible rods. 

The stoppers were designed so that plastic hinges 
may be produced only in the local regions near fixed 
ends (Fig. 7). The restoring force characteristics were 
obtained from a static loading test, as shown in Fig. 7. 

First, an elastic natural vibration characteristic test 

was performed on the shaking table by applying small 
vibration to measure the natural frequencies, natural 
vibration modes and damping ratios. Second, the 
responses of accelerations and strains at the typical 
points were measured by applying simulated seismic 
vibrations, and gradually increasing the levels of their 
input accelerations. 

In the analysis of model, 30 parameters were selected ; 
20 lateral displacements at both ends of 10 stoppers, 
and 10 respresentative displacements of the supporting 
structure. 

The CPU time for calculation of the natural vibration 
was about 350 sec on CDC Cyber 173. 

4.1 Natural vibration 
Figures 8 and 9 shows a comparison between the 

computed and tested values of the first and second 
vibration modes and their frequencies. The calculated 
values of the first vibration mode show good agreements 
both for frequency and displacement mode. Some great-
er error is shown for the second vibration mode, but it 
may be said to be permissible for earthquake resistant 
design of these structures. 

4.2 Elastic response 
The elastic response at the base acceleration of 150 

gal was calculated using the first and second vibration 
modes, and the measured values as the damping ratios 
(h1 =0.02, h2 = 0.043) for the modal response analysis. 

Figure 10 shows the comparison of the experimental 
and calculated responses at the typical points. Both are 
in good correspondence. 

4.3 Elastic-plastic seismic response 
The elastic-plastic response at the base acceleration 

of 950 gal was calculated using all of the vibration 
modes up to 30th order, where eqn (7b) for frequencies 
higher than 8th order (85 Herz) was approximated by 
eqn (9). In this analysis, it was assumed that the 1st 
and 2nd modal damping ratios were the same as those 
in the case of the foregoing elastic response, and the 
ratios of the modes higher than 2nd order also were 
replaced by the 2nd order damping ratio (0.043). The 
time increment and the convergence tolerance were 
taken as 1/4000 sec and 0.0005, respectively. The CPU 
time for calculation of the response was about 700 sec 
on CDC Cyber 173. 

Figure 11 shows the comparison of the experimental 
and the calculated results, in which the elastic-plastic 
calculation results coincide comparatively well with 
the experimental ones, while elastic calculation results 
show a quite different tendency. And it can be seen that 
the stress response of the stopper tends to remain on the 
same level due to yielding of the stopper. From the 
effects of such elastic-plastic deformations of the 
stoppers, the accelerations and the stress responses of 
the structure also show the phenomena of reduction of 
their responses in comparison with those obtained by 
elastic analysis. 

5. APPLICATION TO ACTUAL STRUCTURE 
This section discusses the practicability of this 

analysis method by applying it to actual structures. 
First, the results of the measurement and the analysis 
of the natural frequencies and modes of an actual 
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Fig. 7. Idealization of restoring force characteristics of 
stopper of experimental model. 

structure are in comparatively good agreement as 
shown in Table 1 and Fig. 12 [7]. Thus, the aforesaid 
idealizing technique can be considered nearly applic-
able to actual structures. 

Next, the response analysis was performed on an 
actual supporting structure that had in fact encountered 
a strong earthquake in which only its stoppers were 
damaged while its main members remained sound. 
Using the acceleration wave recorded in the vicinity of 
the site as the seismic input, two types of calculations 
were performed: one for the elastic response and the 
other for the elastic-plastic response considering the 
previously mentioned elastic-plastic deformations of 
the stoppers. 

Figures 13 and 14 show the response waves at the 
typical points and the maximum axial stress ratios of 
the main members of the supporting structure, respec-
tively. (The stress ratio is defined as a ratio of the axial 
stress to the allowable stress.) As clear from Fig. 13, 
the elastic responses are still increasing in the vicinity 

Calculated 
Experimental 

Frequency (herz) 
Experimental : 14.0 
Calculated : 15.0 

Fig. 8. Comparison of calculated experimental values of first vibration mode and its frequency. 

Calculated 

Experimental 

Frequency (herz) 
Experimental : 
Calculated 

21.2 
25.9 

Fig. 9. Comparison of calculated and experimental values of second vibration mode and its frequency. 
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Fig. 12. Comparison of calculated and measured first 
vibration mode on prototype. 

Fig. 13. Elastic and elastic-plastic seismic responses calcul-
ated on an actual structure. 

Table 1. Comparison of calculated and measured natural 
frequencies on prototype. 

Vibration mode 

First mode in X - d i . 

First mode in Y - d i . 

Torsional mode 

Second mode in X-di. 

Second mode in Y-di 

Frequency (herz) 

Calculated 

1.04 

1.15 

1.74 

2.61 

4 6 9 

Measured 

1.1 

1.25 

-
-
-

Calculated 
(Clastic) 

Fig. 11 

of 11 sec, while the elastic-plastic responses are flat 
after 6 seconds, nearly at which time the stoppers 
begin to yield. From Fig. 14, it can also be seen that the 
axial stresses of the main members of the supporting 
structure are all within the allowable stresses in regard 
to the elastic-plastic response; whereas, in the case of 
the elastic response, there are members exceeding the 
allowable stresses. Thus, the results of the elastic-
plastic response calculation can explain the afore-
mentioned damaged condition of the actual structure, 

. Comparison of calculated and experimental values demonstrating the practicability of this elastic-plastic 
in elastic-plastic response. response analysis method. 

Acceleration) 
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Fig. 14. Stress ratios in main structural members on acctual structure. 

6. CONCLUSION 

The three dimensional analysis of the elastic-plastic 
seismic response of structures supporting steam gener-
ators has been carried out by applying the mode super-
position method in conjunction with the mass con-
densation method. The following results have been 
obtained from some examinations. 

(1) The comparison between the results of the scaled 
model test and the calculation has shown that the accur-
acy of the analysis is comparatively good. 

(2) The results of the measurement and the analysis 
of the natural frequencies and modes of an actual 
structure are in comparatively good agreement. 

(3) The phenomena of actual structures during strong 
earthquakes in the past, in which only localized stoppers 
were damaged, can be well explained qualitatively using 
the elastic-plastic analysis. 

(4) Thus, the present method of analysis is con-
sidered to be of practical use for seismic response 
analyses of structures supporting steam generators and 
similar heavy-framed structures. 
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Abstract—Experimental studies indicate that post-cracking behavior of concrete has a significant influence 
on the intermediate response characteristics of a number of structural members. In order to numerically 
reproduce this post-cracking response of concrete, a significant amount of effort has been invested. Thus 
far this effort has had limited success. In this paper a new concept of the relative strain is introduced. 
Based on this concept together with available test results, constitutive relations for plain concrete in a 
cracked state are proposed. The implementation of these relations into a integrated post-cracking model 
for the plain concrete is also included. 

INTRODUCTION 

Concrete is a composite mixture of a hydrated cement 
paste matrix interspersed with fine and coarse aggre-
gate particles. This composite material exhibits an 
intrinsic brittleness (low tensile strength) through the 
formation of cracks [1-3]. Cracking results in the 
permanent loss of both tensile stiffness and tensile 
strength. Once cracking occurs the internal stress 
pattern of concrete changes to accommodate the 
associated geometric discontinuities. However, through 
the cross-crack transmission of both shear and normal 
stress a somewhat continuous internal stress flow is 
still possible even in cracked concrete. Depending on 
the degree of internal redundancy, cracked concrete 
still may possess a significant amount of load carrying 
capacity before its final collapse. Furthermore, any 
crack closure will restore part or all of the compressive 
strength and compressive stiffness. The fact that these 
additional strengths exist makes the post-cracking 
behavior most important in the study of the ultimate 
load carrying capacity and the deformation character-
istics of concrete. 

In this paper one methodology is proposed for hand-
ling concrete in the post cracked state. Based on this 
concept, phenomenological models pertaining to the 
normal and shear stress transfer across the crack are 
suggested. These models are contrived with realistic 
parameters to reproduce the most important facets 
of the mechanical behavior of cracked concrete without 
violating fundamental principles of mechanics. The 
proposed methodology and its concept together with 
the suggested models are intended to provide a more 
realistic qualitative interpretation as well as a better 
quantitative evaluation of the post-cracking behavior 
of concrete. 

CRACK REPRESENTATION 

Currently, there are two basic approaches for the 
spatial idealization of concrete cracking within a finite 
element modelling, namely, the smeared crack repre-

fTeaching and Research Assistant. 
^Professor. 

sentation and the discrete crack representation. If 
overall load-deflection is sought, the smeared crack 
representation, which distributes damage over a certain 
area of the material, is probably the better choice. On 
the other hand, if detailed local behavior is of interest, 
the discrete crack representation becomes a must. 
However, detailed local behavior generally is of very 
limited practical significance in an engineering applica-
tion. From the computational standpoint, the constant 
changing of topology inherent in the use of the discrete 
crack representation makes the approach very cumber-
some and undesirable. In order to reduce this com-
putational inefficiency, a new network-topological 
approach has been proposed [4], but to implement such 
an approach requires a major overhaul of most existing 
computer programs. The smeared crack representation, 
which corresponds to an averaging (smoothing) pro-
cedure of local discontinuities, allows an equivalent 
continuum treatment with localized anisotropy. It 
simplifies the solution algorithms substantially, and 
fits well into the approximate nature of the finite 
element method with C0—continuity of displacement 
and bounded nonsingular strain and stress fields. 
Because of its generality and simplicity the smeared 
crack representation attracts much of the attention 
of the researchers. 

By passing the question of the validity of fracture 
mechanics as applied to concrete, recently Bazant 
and Cedolin have incorporated the concept of fracture 
mechanics with the smeared crack representation to 
study crack propagation [5]. Ingraffea also has pro-
posed a fracture mechanics discrete crack idealization 
for crack propagation, in which crack initiation is by a 
strength concept [6], Additional research is being 
investigated at other institutions, however, the pro-
cesses are still in the formative stages and will require 
additional investigation before any conclusive evalua-
tions can be made. 

CONCEPT OF RELATIVE STRAIN ACROSS THE CRACK 

From the standpoint of continuum mechanics, a 
crack may be identified as a separation of two neigh-
boring material particles [6]. Upon cracking certain 
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components of displacement will become discontin-
uous, which implies "relative movements" between the 
two sides of the crack surface. Since in continuum 
mechanics displacement and strain are related through 
kinematic equations, it is only natural to assume that a 
set of relative strains exist which represent the relative 
displacements across the cracks. 

In the equivalent continuum treatment of cracked 
concrete (smeared crack approach) the "relative strain" 
is defined as the elastic portion of the corresponding 
strain. The rational behind this assumption roots from 
basic considerations of continuum mechanics. Before 
cracking occurs a complete bonding exists between 
two neighboring particles. It is this bonding that allows 
them to deform or to be strained together. Once 
cracking starts, a separation which implies relative 
movements between these two neighboring particles 
will occur. These relative movements can be inter-
preted as a relaxation of deformation (straining) of one 
particle with respect to the other. Since the plastic 
portion of deformation (straining) is nonrecoverable, 
it is logical to assume that the elastic portion must 
account for the relaxation and the corresponding 
relative movements. In summary, this proposed 
strategy can be outlined as follows : 

(a) The "initial" relative strain across a crack is 
defined as the elastic portion of the corresponding 
total strain which exists just before crack occurs ; 

iff ) ___ ̂ n /ç rack 
^ "''initia! 17 

(1.1) 
E 

wcrack 
^ i n i t i a l ~~ 

(b) The "incremental" relative strain across the crack 
is defined as the elastic portion of the corresponding 
strain increment or decrement due to crack propagation 
or crack closure; 

Δσ„ 
Δε =-

A - Δ τ * 

(1.2) 

(c) The "accumulated" relative strain across the crack 
is defined as the summation of initial and incremental 

ê„ = (ë„)initial+S(AeM) 
ê, = (ês) initiai +Σ(Δε,) 

(1.3) 

where subscripts n and s represent the normal and tan-
gential directions to the crack surfaces respectively; E 
is the Youngs modulus; and G = £/l + v is the elastic 
shear modulus with v the elastic poisson's ratio. 
Schematically the initial and incremental relative strain 
can be illustrated as shown in Fig. 1. 

INTERFACE^STRESS-TRANSFER MODEL FOR CRACKS 
ES PLAIN CONCRETE 

Let n, s and t be a set of right-handed orthogonal 
coordinate directions with n normal and s, t tangential 
to the cracked surface as shown in Fig. 2. 

The 3-D constitutive relations of a crack in terms of 
stress and relative strain components across the crack 
can be described in a matrix form as follows: 

Knn Kns Knt\\è„ 

K,„ Kts Ktt I [St 

(2.1) 

where Knn is the normal stiffness coefficient; Kss, Ktt 

are the shear stiffness coefficients; Ksn, Ktn are the 
coupled shear stiffness coefficients; Kns> Knt are the 
dilatant-contractant stiffness coefficients and Ksv Kts 

are the cross shear stiffness coefficients. 
The stiffness matrix in eqn (2.1) is generally unsym-

metric. Because a symmetric matrix is always desirable 
from a numerical point of view, eqn (2.1) is modified so 
that a symmetric constitutive matrix is achieved as 
shown in eqn (2.2). 

Knl 

KKI 

Ktt + (Ktn — Knt) Y + (Kts — Kst) y 

(2.2) 

(o-n)c 
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Fig. 1. Relative normal and shear strains and strain increments. 
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still enforced in the uncracked subspace of concrete. 
The modified 3-D incremental constitutive relations 
for three different cases are outlined as follows. 

Fig. 2. Material coordinate system for cracked concrete. 

Unfortunately, this modification introduces relative 
strain components into the stiffness matrix, and 
consequently, nonlinearizes the constitutive relations 
in eqn (2.2). This shortcoming is minimal because all 
the stiffness coefficients in eqn (2.1) are intrinsically 
nonlinear. As a result of this nonlinearity an incre-
mental and/or iterative solution procedure is virtually 
unavoidable. Based on this argument, the symmetric 
constitutive matrix in eqn (2.2) is adopted in the 
solution algorithm. Upon replacing the stress and 
relative strain components in eqn (2.2) by the corre-
sponding stress and relative strain increments a set of 
incremental constitutive relations of a crack medium 
are thus obtained in eqn (2.3). 

(a) One crack in the first direction 
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(b) Two orthogonal cracks in the first and second 
directions 
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(3.3) 

Κ„ 

Κη 

Κη 

κη 

Kss+(Ksn — Kns) 

Κ*ι K,MKtn-KJ^+(K,s-Kst)^ } ( Δε,Ι 

(2.3) 

POST-CRACKING MODEL FOR PLAIN CONCRETE 

The 3-D incremental constitutive relations of intact concrete with respect to an arbitrary coordinate 
system can be expressed in a symmetric matrix form as follows : 

j Δ σ η ) K n i i ^ 1 1 2 1 ^ n 31 ^ 1 1 2 2 

^ 2 1 31 

^ 3 1 31 

^ 2 1 21 
symmetric (3.1) 

Cracking occurs when a certain limiting stress or 
strain condition is reached. Once cracking occurs, 
locally concrete loses its isotropy and homogeneity. 
As a result, the material coordinate system is locally 
fixed to either the principle stress or the principle strain 
directions. In the current study, a strain-based cracking 
condition and the principle strain directions are 
adopted to delineate the crack initiation in plain 
concrete. Since cracking is assumed to be perpendicular 
to the maximum principle strain direction, if two or 
three maximum principle strain components are of 
equal values, multiple cracks will occur simultaneously. 
Additional cracks are allowed to occur by the same 
process in the intact subspace of concrete if the same 
strain-based condition is satisfied at a later time. Based 
on this procedure, multi-directional cracks are thus 
possible. 

Upon cracking, eqn (3.1) written in the current 
principle strain directions need to be modified to 
account for the existence of cracks. For this purpose, 
the interface-stress-transfer (1ST) model is used, while 
the constitutive relations for the intact concrete are 

(c) Three orthogonal cracks in the directions 

1ST 
model 

0 

1ST 
model 

1ST 
model 

Δ έ η 

Δέ21 

Δε31 

Δέ22 y 

Δέ32 
Δέ\, 

(3.4) 

Upon cracking, some amount of tensile normal stress 
as well as shear stress across the crack will be released 
and must be redistributed to the remaining material. 
This stress releasing is necessary to accommodate the 
initial opening and slipping between the two sides of 
the crack surfaces. As to how gradual this releasing of 
stresses should be carried out, depends on (a) the 
reinforcement in the vicinity of the crack, (b) the crack 
representation used, and (c) the density of cracks that 
already exist in the material. For reinforced concrete 
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with a smeared crack representation during the early 
stage of its loading when cracks are not densely 
populated, a gradual stress releasing is believed to be 
realistic. Whereas, for plain concrete and a discrete 
crack representation a sudden release is often used. 
However, from the computational point of view, a 
gradual stress releasing tends to improve the numerical 
stability of the solution algorithm and is thus generally 
more preferable. 

A new crack(s) in a new direction(s) is conceivable 
after the old one(s) is closed. In order to always 
maintain an orthogonal set of opening cracks, a new 
crack(s) in a new direction(s) can occur only when the 
number of currently opened cracks is no more than one. 

In the following sections, a series of comprehensive 
mathematical models are proposed for the complete 
definition of eqn (2.1). Considering the randomness of 
irregularities of crack surfaces, it is logical to assume 
that identical relations can be used for shear in both 
the s and t directions. 

INTERFACE SHEAR TRANSFER CAPACITY OF 
CRACKED CONCRETE 

Mattock and his co-workers have conducted a series 
of studies on the peak interface shear transfer capacity 
of reinforced concrete subjected to short term mono-
tonic loading [8-11]. Based on their test findings and 
the work of others [12-15], a mathematical model is 
herein proposed to reproduce the observed relations 
between the peak interface shear transfer capacity, 
τρ, and the normal stress, ση, across the crack. In order 
to be more general in its formulation, both τρ and σ 
are normalized by the magnitude of the unconned 
uniaxial compressive strength of concrete, \σκ\, such 
that, 

~τρ--=τ
ΡΙ\σκΙ and àn = aJ\aK\. 

The proposed model comprises two parts; the first 
part represents the concrete strength "independent" 
portion, and the second part represents the concrete 
strength "dependent" portion of the peak interface 
shear transfer capacity of concrete [8]. The schematic 
illustration of the normalized proposed model is shown 
in Fig. 3. In this model there are four independent 
parameters. 

(a) ât=at/\ac\, where at is the direct uniaxial tensile 
strength of concrete. at = 0.08-0.12 is commonly used. 

(b) 0, the internal friction angle of concrete, Θ = 3Τ-
39° is commonly used for normal weight concrete. 

(c) a, the parameter which controls the interface 
shear transfer capacity of concrete under small tensile 
stress normal to the crack. a = dt is commonly used, 

Asymptotic Lines 

ΙσοΙ' 

Fig. 3. Normalized model for peak interface shear transfer 
capacity of cracked concrete. 

which means there is no interface shear transfer under 
tensile normal stress. 

(d) c, the upper limit of the normalized peak interface 
shear transfer capacity, below which it is concrete 
strength independent. It corresponds to the "dividing 
point" of the two parts in the proposed model. c=0.3 is 
commonly used [11]. 

Besides the afore-mentioned independent param-
eters, there are additional dependent ones shown in the 
figure, 

(e) d9 the normalized normal stress corresponding to 
the dividing point; 

(f) e, the slope of the proposed model at the dividing 
point. 

(g) F, the upper bound of the normalized peak inter-
face shear transfer capacity predicted by the proposed 
model. ASCE-ACI426 suggested F = 0.3-0.45 [16]. 

Part 1—Concrete Strength "Independent" Portion 

(d^än^(ät-al O^V^c) . 
The proposed equation is a hyperbola: 

{àn-otf 
a2 tan2 Θ 

:1 

with 

and 

^ = σ±= c = <7,-Va2H-c2/tan2 

(4.1) 

(4.2) 

~dcr 

tanz 
Va2 + c7tan20. (4.3) 

Part 2—Concrete Strength "Dependent" Portion 

(dn^d,c^xp^F). 

The proposed equation is also a hyperbola: 
1 

: F | 1 + ^ ' · (4.4) 

In order to make the transition between part 1 and 
part 2 C3—continuous, which is numerically desirable, 
the following two conditions are enforced; 

1 
(a) c = Tp|,n=d = F ( l + — 

dx (b) e=M 

which lead to 

and 

Hd 

F 

F — c-\-ed 

H = 

(4.5) 

(4.6) 

In Fig. 4 the proposed model for xp with 6,=0.1, 
0 = 38°, a=0.05 and c=0.3 is plotted, along with an 
averaged xave calculated from the following equations. 

f i=^VH)<0.3 (4.7) ,<0.3 
\°c\ 

.400 + 0.8H < 0 , (4.8) 



Models for the post-cracking behavior of plain concrete under short term monotonie loading 217 

*\ac\ =4000 psi 
+ \ac\ - 5000 psi 
■ Ισ-c! =6000psi -j 

10.7 

H 0.5 

Ό 
e u * 
D O 
υ σ 

»- P 

JO σ 
CO 

0"n 

H 0.4 

0.6 

j i -

-to.3 

- ' • 0 -0 .9 ~ 0 · 8 -0.7 - ° · 6 -0.5 _ 0 4 -0.3 - ° · 2 -0.1 ° 0.1 

Normal stress across the crack 
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Equations (4.7) and (4.8) were originally proposed by 
Birkeland and Mattock, respectively [11]. Because 
both of the equations represent test results reasonably 
well within 0 ̂  f ̂  0.3, the averaged value between them 
is used for comparison with the proposed model. In 
order to study the effect of concrete strength, xave, 
calculated for three different values of |σο| = 4000, 
5000 and 6000 psi, are plotted in Fig. 4. From this plot 
we observe that, 

(a) concrete of lower strength tends to have,a "better" 
interface shear transfer behavior; 

(b) fp=0.3 is a good dividing point between the con-
crete strength "independent" and "dependent" por-
tions, with a much reduced increase rate for the latter; 

(c) fp=0.45 proposed by the ASCE-ACI 426 is a 
conservative upper bound limit for the peak interface 
shear transfer capacity of concrete. 

RESIDUAL INTERFACE SHEAR TRANSFER CAPACITY 
OF CRACKED CONCRETE 

As observed in frictional materials, the peak inter-
face shear transfer capacity will drop to a smaller value 
when the abrupt slip occurs [17-19]. This smaller 
value is commonly referred to as the "residual interface 
shear transfer capacity", TR. Under constant normal 
load with negligible amount of surface deterioration, 
the residual interface shear transfer remains virtually 
constant. As the number of stick-slip cycles increases 
the local roughness deteriorates. Consequently, the 
crack surfaces must travel a longer distance before 
their next match. This smoothing of local roughness 
causes degradation of the peak and the residual inter-
face shear transfer capacities as well as their stiffness 
[17,20]. 

It has been verified through test results that: 
(a) the residual interface shear transfer capacity 

under short term monotonie loading is a function of 
the normal stress across the crack; 

(b) when the compressive normal stress exceeds a 
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Fig. 5. 

threshold value, \Qo\, the ratio between the residual 
and the peak interface shear transfer capacities becomes 
one. 

Based on these observations together with some 
reasoning, a mathematically simple but conceptually 
logical model is herein proposed as follows. 

-Ri„ O^R^i 

R=B+(1-B) 
\àt-a)-
(àt-a)-Q_ 

whenQ^ân^(àt-a) 

(5.1) 

(5.2) 

= 1, when ση Q 

where TR is the normalized residual interface shear 
transfer capacity; R is the residual index and B and Q 
are parameters which depend on the type and loading 
history of the material. 

In Fig. 5 the proposed model for TR with £=0.5 
and 0 = —2.0 is plotted, along with the corresponding 
τρ for direct comparison. 

CRACK OPENING AND CLOSING, NORMAL STRESS AND 
NORMAL STIFFNESS OF A CRACK 

The fundamental crack property which governs the 
normal deformation of cracked concrete is the max-
imum amount of crack closure. Mathematically it can 
be described by the maximum amount of the relative 
compressive normal strain across a crack, ερ, before the 
crack is considered closed. Under compression the 
crack-closed concrete behaves very similarly to the 
intact concrete. On the other hand, due to the perman-
ent nature of damage caused by tensile cracking, the 
already closed crack will reopen whenever there is any 
tensile stress normal to it [19]. As to the initial amount 
of this reopening expressed in terms of the relative 
strain, it is proposed that the same quantities defined 
in eqn (1.1) are used. In this paper a mathematical 
model is postulated to relate the normal stress, ση, and 
the relative normal strain, έ„, across a crack. The der-
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RELATIVE NORMAL STRAIN ACROSS THE CRACK 

Fig. 7. 

ivative of it with respectro ε„ yields the normal stiffness, 
Knn. In order to be more general in the formulation, 
σπ, ε„ and Knn are normalized by the magnitude of the 
unconfined uniaxial compressive strength of concrete, 
|<TC|, its corresponding normal strain, |ec|, and the secant 
modulus, Ec=ac/sc, respectively, such that, 

^ ί τ ΐ ' 8«=l?l· and k™=¥' 
Fc| \£c\ hc 

The proposed relation in terms of the normalized quan-
tities can be written as, 

(6.1) 

*--£"[-«**£M'-«H)1 
(6.2) 

where K=E/Ec,x=sq-ep, ν = ε„-ερ, and ερ^ε„^ε4 
in which ερ is the normalized relative strain quantity 
chosen as the threshold value which defines a fully 
closed crack, ε ρ ^0 and eq is the normalized relative 
strain quantity chosen to define an open crack with no 
normal strength and stiffness across the crack, sq^0. 

In Fig. 6 and Fig. 7 relations for ση and Km with 
respect to ε„ are plotted. Parameters used are ερ= — 1, 
ε<^=0.1,andK = 2. 

INITIAL SHEAR MODULUS, SHEAR STRESS AND 
SHEAR STIFFNESS OF A CRACK 

The shear response of concrete across a crack has 
been experimentally investigated by White, Holley, 
Laible, Gergely, Houde and Mirza [13-15]. Based 
on these tests and supplemented by the test results of 
jointed rock the following observations can be drawn. 

(a) the relation of shear stress vs relative shear dis-
placement (slip) is strongly dependent on the initial 
crack width. Slip increases rather sharply with respect 
to the increase of the initial crack width; 

(b) the above relation is virtually linear between the 
zero stress point and the point where slip is equal to 
40-65% of the current crack width. It deviates from 
linear rather rapidly under further slip; 

(c) considerable variation in shear stiffness has been 
experienced when the normal stress across the crack is 
changed. 

Based on these observations, two mathematical 
models are proposed for the initial shear modulus, 
A, and the shear stress τ5, across a crack. Using the 
concept of relative strain introduced in this paper, 
crack width (relative normal displacement) and slip 
(relative shear displacement) are denoted by the rela-
tive normal strain, ε„, and the relative shear strain, έ5, 
respectively. In order to be more general normalized 
quantities are used in the proposed models, they are 

and 

or A=(K/(l + v))i where K=E/EC, and KSS=KJEC. 

(1) Initial shear modulus 
The initial linear relationship between the shear stress 

and the relative shear strain is described by the initial 
shear modulus of a crack. The value of the initial shear 
modulus depends on the crack width and is bounded 
by zero and the shear modulus of the uncracked con-
crete, G. It can be written as, 

(7.1) 

where ερ is defined in eqn (6.2); 
As and Ns are parameters which control the shape 

of the proposed model to fit the test results, As^0 and 

In Fig. 8 the relation for A vs K with ε ρ = - 1 , 
As= 1, and iVs=4 is plotted. 

(2) Shear stress 
The normalized relation between the shear stress, 

TS, and the relative shear strain, ε5, which is a function 
of the current normal stress, ση, and the relative normal 
strain, ε„, across a crack, is proposed in eqn (7.2). Its 
schematic illustration is given in Fig. 9 
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(i) xs\i_s = ÄS = A0 + A1S + A2S
2 

dTs\ =A = A1+2A2S (b) 
dh 

(c) ~-ρ = ̂ Α2-4Α2Α0 + 4Α2τρ. 

These conditions provide the means to determine the 
coefficients as, 

Al = A-2A2-S 

p2-A2 

(7.5) 

A7=-
Μτ,-A-S) 

-0.5 0 0.5 l0 1.5 20 2.5 30 3.5 40 

Relative normal strain across the crack 

Fig. 8. 

where A = Α(εη\ and τ = τ (σ„). 

(3) Shear stiffness 
The normalized shear stiffness, Kss, is obtained by 

differentiating eqn (7.2) with respect to Is. Such that, 

. Kss=A j + 2 A 21„ when S ̂  ls < T 
(x s s =0 , when T^IS. 

(7.6) 

'•W 

Constant Residual Portion 

Fig. 9. Normalized model for interface shear transfer across 
a crack. 

\TS = ÂK whenO^Is^S( = ml„) 
^S=A0 + Ales + A2~^, when S ^ I S ^ T (7.2) 

where p is the slope at the normalized peak shear 
stress, τρ, designed to allow a more flexible fitting with 
experimental data and m is the percentage of the nor-
malized current relative normal strain, e„. mln sets the 
upper limit of zs for the linear shear response across a 
crack. 

Depending on the current values of ση and επ, two 
special cases which complement eqn (7.2) exist. 

(a) If ση is such that T(=xp/Ä) ^ S( =ml„ \ then 

COUPLED SHEAR STIFFNESS OF A CRACK 
Due to the roughness of the crack surface, the rela-

tive normal displacement across a crack will introduce 
additional slip [18]. If somehow this additional slip is 
restrained, extra interface shear transfer capacity as well 
as the coupled shear stiffness will be mobilized. The 
normalized coupled shear stiffness of a crack, 
Ksn = KJEC, is defined as, 

K*n = (8.1) 

From eqn (7.1) we get 

dA K dk -K 
Zi dsn l + vdsn 1+v 

x {ΑίΑ&-ερ)-
Ν'+ I ] ' 2 · Ns · (ê„-ep)-<»s+1>} 

(8.2) 

when 

β„^ε„ 

τ3=Αε^ w h e n O ^ I s ^ r 
τχ=τΛ, when T^es. 

From eqns (4.1H4.6) and (6.2) we get 

z = ^ l p =
 dlpdZi 2 ds„ dâ„ δε„ 

f 

(b)Ifew^O,thenS = 0,and 

ÏS = A0 + AÎBS + A2E
2
S, w h e n 0 ^ e s ^ T 

Γς = τρ, when T^£s. 

(7.3) 

(7.4) 

-tan Θ - J(a-tan Θ)2 + τ2\ u . J ^ - *- · Kntfi when ση^ά 

In order to determine the coefficients, while main-
taining C continuity between the linear part and the 
parabolic part of eqn (7.2), the following conditions 
are imposed, 

-F 1 
~1Γ '7ΞΊ2 ·Κηη, when d„<d. 

From eqns (7.2) and (7.4) we get 

z =dS J{mln) 
3 dlM dL 

(8.-3) 

= m, when I„>0 
= 0, (8.4) 

CAS 13:1-3 - O 
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Equations (7.5) and (8.2H8.4) give us 

7 JA2_ -A-Zl 

de. 2-(îp-A-S) 

(p2~A2U2-Zs-S-A-Z3) 

4 · ( τ ρ -

dA 

A-S)2 

■ S-2A2-Z3 

~6—d-fn=Z4-S
2 + 2A2-S-Z3. 

Equations (5.2), (6.1), and (6.2) lead to 
\-B 

(8.5) 

(8.6) 

(8.7) 

concrete [18, 21-24]. The significance of dilatancy and 
contractancy in interface stress transfer mechanisms 
has been reported in Ref. [17-20, 25-27]. The normal-
ized dilatant-contractant stiffness of a crack, 
Kns = KJEc, is defined as, 

Z ? - d ! -
K„ 

\(àt-a)-Qj 

when Q^ön^(öt-a) 

=0,whenor„^Q (8.8) 

Based on the proposed model for τ5 in eqns(7.2)-(7.4) 
together with the definitions for Z t through Z7, Ksn 

can be formulated in two cases as follows : 
(a)IfS^7;then 

when 0lsS 

• ε5 + Ζ 4 · ε5
2, when S ^ I S ^ T 

Κ8η = ΖΊ·τρ+Ζ2·Κ w h e n T ^ 
(b) If T ^ S , then 

{Κ^Ζ^ϊρ w h e n 0 ^ 8 s ^ T 
1κ 5 „=Ζ 7 · τ ρ + Ζ 2 ·Κ w h e n T < I s 

(8.9) 

(8.10) 

DILATANT-CONTRACTANT STIFFNESS OF A CRACK 

Due to the rough and irregular nature of crack sur-
faces, any slip between the opposite sides of crack sur-
faces has the tendency to cause additional relative 
dilating or contracting normal displacement. If the 
crack width is restrained from changing, then additional 
counteracting normal stress will be introduced. De-
pending on whether the crack is contracting or dilating, 
the additional normal stress may be of either tension or 
compression. This cross effect either weakens or 
strengthens the interface shear transfer capacity of 

K„ = 
_dondîndïs 

ê„= constant ^ £n ^ Ts ^ £s 

= 

ê„=constant 

Μέ K c , (9.1) 

where, Knw Ksn and Kss are defined in eqn (6.2), eqns 
(8.9), (8.10) and eqn (7.6), respectively. 

CROSS SHEAR 

The term "cross shear" is used to refer to the inter-
action between shears in two orthogonal directions 
across a crack. Although the existence of the cross shear 
phenomenon is quite conceivable, its effect is neglected 

Fig. 11. 
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Fig. 12. 
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in this study due to the lack of experimental informa-
tion and practical significance. 
Using öt=0.1 Θ = 37, a = 0.05, c = 0.3 forrp; 

β = 0.5, ρ = Π θ Γ τ Λ ; 
ερ= — 1, sq=0.l, K = 2 for ση and Km; 

ε ρ = _ l , As= 1, iVs = 4, v = 0.2, K = 2 for A; and 

m = 0 . 5 , p = 0. 

Equations (7.2) and (7.4) are plotted in Fig. 10 with 
ση= - 0 . 4 and ε„= - 0 . 4 , 0 , 0 . 4 , 0 . 8 ; 
Equations (8.9) and (8.10) are plotted in Fig. 11 with 
ση= - 0 . 4 and I s = 0 . 1 , 0.2, 0.3,0.4; 
Equation (9.1) is plotted in Fig. 12 with I„= —0.4 and 
£ „ = - 0 . 4 , - 0 . 8 , - 1 . 1 , - 1 . 6 . 

CONCLUSION 
In this paper the concept of the relative strain is 

introduced. Based on this concept, together with the 
available experimental data and reasoning, a series of 
mathematical models are proposed. These models are 
designed to simulate the interface stress transfer mech-
anisms of a crack in plain concrete subjected to short 
term monotonie loading. In order to verify the validity 
of these models and to broaden their application to 
reinforced concrete, bond slip and dowel action require 
immediate attention. Investigation on these subjects 
and the development of them into an integrated 
analytical system for the behavior of reinforced 
concrete under static as well as dynamic loading is felt 
to be the direction of future research. 
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Abstract—A computer analysis is described for the elastic-perfectly plastic analysis of reinforced concrete 
planar frames. This computer program requires less computer time and memory space and is intended as 
practical analysis and design uses. The computer program is capable of complete analysis of reinforced 
concrete frames from zero load until failure under any system of static gravity and lateral loads. The 
program can cater for any given geometry and end conditions. The analysis of reinforced concrete frames 
uses a computer program as a subroutine to calculate the moment-curvature characteristics under a 
constant load applied at the section centroid. A reinforced concrete frame tested by Cranston and Cracknell 
[1] are analyzed using the computer program developed and the results are compared with the experimental 
results. It is noted that the proposed nonlinear analysis satisfactorily reproduced the behavior of reinforced 
concrete plane frames from zero loads until failure. 

INTRODUCTION 

Many rigorous and computationally complex methods 
[2-9] for predicting the non-linear behavior of rein-
forced concrete frames have been developed over the 
last two decades. Various ones of these methods have 
been devised to include some of the following aspects : 
(i) the nonlinear concrete stress strain relationship; 
(ii) the varying cross section due to nonuniform crack-
ing and inelastic behavior ; (iii) the effect of axial load ; 
(iv) the effects of creep and shrinkage; (v) the post 
yielding behavior of sections ; (vi) the residual effects 
of overloading. Most of the effort in this area has been 
concentrated on developing suitable computer pro-
grams to provide information on strength, ductility 
and elastic and plastic behavior including deflections 
at specific load levels. These analyses were based on 
the matrix flexibility, matrix displacement and finite 
element methods and assumed that a structure behaves 
linearly under small increments of load or deforma-
tion. Many of these computer programs require a great 
deal of computer time and memory space and are 
therefore intended as a research tool. 

This paper presents a more practical and time-
saving computer analysis for reinforced concrete plane 
frames. A computer program developed by Wang 
[13-14] for an elastic-perfectly plastic analysis of steel 
plane frames was modified to account for the behavior 
of reinforced concrete materials and structures. 

PRESENT METHOD 

General 
In any inelastic analysis, it is necessary to consider 

the rotation capacity of the hinging regions before 

establishing the redistribution of bending moments in 
the frame. The post-elastic behavior of the concrete 
frames for both of these aspects is dependent on the 
shape of the moment-curvature and the moment-
rotation curves for the frame members. 

Load-moment-curvature and inelastic rotation 
It is well known that the plastic hinges formed in a 

steel frame have a very large rotation capacity. How-
ever, the rotation capacity of hinging regions in a 
structural concrete member is dependent on several 
parameters, e.g. material properties, member geometry, 
applied loads, etc. Recent limit design research in 
structural concrete has led to the definition of the hinge 
length ; the rotation capacity of the hinge can then be 
calculated from the constitutive relationships for the 
materials and the section geometry. Hsu and Mirza [7] 
have developed a computer program to determine the 
moment curvature characteristics of a reinforced con-
crete section subjected to a constant axial load applied 
at the section centroid. The inelastic rotation capacity 
of the hinge can be calculated using the following 
equations (Mattock [11] and Corley [12]): 

••"(♦■-♦'3$ <"> 

where 0p/ = the inelastic rotation of the hinge; d=the 
effective depth; (/>y=the curvature at yield; My=the 
bending moment at yield ; φυ=the curvature at ultimate 
load and MM=the ultimate bending moment. 

For an under-reinforced section, the moment-
curvature curve can be approximated by an elastic-
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perfectly plastic relationship without any serious error. 
The plastic rotation capacity is then given by 

θρΙ=(Φη~Φγ (lb) 

The following points must be considered in develop-
ing a computer program for an elastic-perfectly plastic 
analysis of reinforced concrete frames : 

(a) The inelastic rotation capacity of the hinging 
region in a reinforced concrete section is dependent 
on the section geometry, material properties and 
applied axial load and can be limited in some cases. 
The axial loads applied at the members are based on 
the values obtained from the linear structural analysis 
for plane frames. 

(b) The appearance of cracks in a structural concrete 
member gives rise to a varying flexural rigidity (El) 
along its length. Flexural rigidity (El) used in the 
present method is on the basis of the flexural rigidity 
after concrete cracking. The zero flexural rigidity is 
assumed after yielding of the tension steels. 

(c) The descending branch of the moment-curvature 
curve at a section (or the moment-rotation curve at a 
hinge) provides the section with added ductility 
although its bending strength decreases. 

(d) The strength of a reinforced concrete section in 
positive and negative bending is dependent on the 
quantity and the arrangement of tension and com-
pression steels. The bending strength of a reinforced 
concrete section can therefore, be significantly differ-
ent under reversal of applied loads. Similarly, the 
ductility of a reinforced concrete section is dependent 
on the reinforcement details. 

(e) The provision of stirrups in a reinforced concrete 
beam does not only prevent shear failures, but also 
increases the ductility of the concrete. This increased 
compressive strain capacity significantly improves the 
rotation capacity of the hinging region although it does 
not add to the strength of the section. 

Elastic-plastic computer analysis and design method 
A computer program was developed by the writers 

[10] for elastic-perfectly plastic analysis of reinforced 
concrete plane frames, based on a modification of 
Wang's program [13, 14] which was developed as a 
general purpose program (matrix displacement formu-
lation) for limit analysis of steel plane frames (see 
Appendix). Wange [13, 14] used the conventional 
mechanism approach to handle the collapse stage in 
steel plane frames. The present program was based on 
an assumed rotational capacity of the "plastic hinges" 
and the formation of a "mechanism" at the ultimate 
load stage 

The reinforced concrete frame was divided into 
several small elements. For each element, the section 
geometry, material properties and inelastic hinge 
rotation are known through the input data and sub-
programs. The computer program developed is capable 
of complete analysis of reinforced concrete plane 
frames from zero load until failure under any system 
of loads. The computer output gives the complete 
load-deformation behavior, the location and the 
sequence of the formation of "plastic hinges" until a 
"collapse mechanism" is formed. The program can 
cater for any given geometry (structural layout, 
member length, section geometry) material properties 

and end conditions (fixed and/or pinned end con-
ditions). 

The details of computer program can be found in the 
Ref. [10]. The flow diagram is shown in Fig. 1. The 
program is coded in FORTRAN IV and can be run 
either on the RAX or O/S systems of IBM 370/155 or 
IBM 360/75. 

Example and discussion of results 
The specimen analysed using the present computer 

program is Frame FP4 tested by Cranston and Crack-
nell [1] (Figs. 2 and 3). It must be noted that the value 
of flexural rigidity (El) used in the main computer 
program is the slope of the moment-curvature curve 
(under a constant axial force at the section centroid). 
Moment-curvature curves for typical sections are 
shown in Figs. 4 and 5. The location of formation of 
hinges and the final collapse mechanism are shown in 
Fig. 6; these have been obtained from the computer 
analysis results. The failure mechanism obtained 
experimentally shows excellent agreement with the 
present analysis results (Fig. 7). 

The experimental and the computed load-deforma-
tion curves are shown in Fig. 8. The computed ultimate 
strengths of the frame is lower than the experimental 

DIVIDE FRAME INTO PRISMATIC 
MEMBERS AS IN STANDARD FRAME 

ANALYSIS 

IF ZERO LOADING COEFFICIENT 
IS ENCOUNTERED IN SOLVING 

INVERSE MATRIX > 
THE DEFLECTION DUE TO UNIT LOADS 
ARE TOO LARGE (> l.E+06) ? > 

SEARCH FOR THE SMALLEST LOAD 
FACTOR AND LOCATE THE PLASTIC 
HINGE AND PRINT ITS LOCATION 

SMALLEST LOAD FACTOR IS TOO 
SMALL (< l.E-iO) ? > 

COMPUTE AND PRINT CUMULATIVE 
DEFLECTIONS, MOMENTS AND 
HINGING ROTATIONS 

CUMULATIVE MOMENT AT ANY POINT 
EXCEEDS PLASTIC MOMENT CAPACITY 

(> l.E-03) ? 

MODIFY THE STIFFNESS MATHIX 
BECAUSE OF THE ADDITIONAL 

PLASTIC HINGE 

PRINT COLLAPSE MECHANISM HAS 
BEEN REACHED AND ITS REASON 
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Fig. 1. Flow diagram : elastic-perfectly plastic analysis of 
reinforced concrete plane frames. 
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value because the moment-curvature relationship used 
in analysis is a conservative elastic-plastic idealization 
of the moment-curvature results obtained from the 
present computer program. However, both horizontal 
and the vertical deflections at the maximum load agree 
well with the test results showing that the curvature 
formulation used is satisfactory. Moreover, there is 
excellent agreement between the experimental and the 
computed Δυ — Δ5 curves. 

CONCLUSIONS 
A computer-aided limit analysis and design of 

reinforced concrete frames was developed to predict 
the failure mechanism and the load-deflection curves. 
The computer program basically follows the limit 
analysis of steel plane frames, and has been outlined 
for incorporating the effects of rotational capacity of 
the plastic hinges by modifying a general purpose 
computer program developed by Wang [13, 14]. 
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Fig. 8. Load-deflection curves for Frame FP4. 

The program can be used to examine the strength and 
ductility of reinforced concrete plane frames and the 
resulting factor of safety against failure. 
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APPENDIX 

Formulations for elastic-perfectly plastic analysis of plane 
frames 

The stiffness matrix of a member S relates the joint 
moments F and the corresponding rotations e as follows : 

F = Se. 

Equation (2a) can be written explicitly for a member ij as 

Fj^Sja+Sjjej. 

(2b) 

(2c) 

It must be noted that eqns (2) account only for flexural 
deformations in the member ij while the axial and sheer 
deformations are neglected. This follows an earlier formula-
tion by Wang [13,14]. A more complete formulation for an 
elastic-plastic material has been developed by Livesley [15] 
and Jennings and Majid [16]. 

Using the results from basic slope deflection equation, 
the member stiffness matrix is given by, 

s=[l;; I»]-[St 2gi] o> 
where £ = t h e modulus of elasticity; /= the moment of 
inertia and L=the length of the member ij. 

If a simple or a plastic hinge is introduced at the y'th end 
of the member ij, the stiffness matrix S gets modified as 

s j " S]=[f//L o] (4) 

Similarly if a simple or plastic hinge is introduced at the 
ith end of the member ij, then S gets modified as 

Γθ 0 Ί=Γθ 0 Ί . 
S=L° sJj] L° ^ / A J 

For a typical member ij in bending 

F=Se 

(5) 

= S ^ F = D F (6) 

1. 

2. 

3. 

4. 

5. 

6. 

7. 
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where D is the flexibility matrix for the member ij and is 
given by 

D = 
L/3EI -L/6EI 
-L/6EI L/3EI 

(7) 

The external rotations Xh Xp and the deflection XV} of 
end j relative to end i are related to the internal rotations 
et and e} by the equation 

where B = the deformation matrix 

1 0 
0 1 

■UL 
-1/L 

and 

Equation (8) can be rewritten as 

e=A'X 

(8) 

(9b) 

(10) 

where A' = B and / denotes transport of a matrix and A is 
the statics matrix relates the externally applied forces F to 
internal end moments F as follows : 

F = A F . (11) 

If there are no hinges either at i or at j , then continuity 
requires that the internal end rotations e as caused by the 
end moments F, be equal to those caused by the external 
joint rotations or displacements. Therefore it follows from 
eqns(6)and(10), that 

(9a) whence 

D F = A X 

F = D "1A,X = SAiX 

(12) 

(13) 

which is familiar equation from the displacement method of 
rigid frame analysis. 

If there is a hinge at any member end, then the hinge 
rotation H is given by the angle from the direction of the 
member as required by the external joint rotations or dis-
placements to that caused by the end moments. Therefore 

H = D F - A ' X . (14) 
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Abstract—The purpose of this paper is to describe the role that inelastic analyses play in the design of high-
temperature nuclear plant components and to identify the problem areas and needs. The design method-
ology, which explicitly accounts for nonlinear material deformation and time-dependent failure modes, 
requires a significant level of realism in the prediction of structural response. Thus, material deformation 
and failure modeling are, along with computational procedures, key parts of the methodology. Each of 
these is briefly discussed along with validation by comparisons with benchmark structural tests, and 
problem areas and needs are discussed for each. 

1. INTRODUCTION 

High-temperature nuclear plant components, by defini-
tion, operate at temperatures where creep effects and 
time-dependent failure mechanisms are significant. 
For the austenitic stainless and ferritic steels used in 
liquid-metal fast-breeder reactors (LMFBRs), these 
effects are implicity assumed by the ASME Boiler and 
Pressure Vessel Code^ Section III, to occur upon 
significant exposure to temperatures above 800 and 
700° F, respectively [1, 2]. Since normal operating 
temperatures of LMFBRs are in the range from 900 to 
1100°F, it has been necessary to develop and utilize a 
design methodology that explicitly accounts for the 
effects of nonlinear material deformation and time-
dependent damage mechanisms and failure modes. 

This methodology has sought a new level of realism 
in the prediction of inelastic structural behavior. 
Efforts to develop increasingly realistic mathematical 
descriptions of elastic-plastic-creep material behavior 
(constitutive equations) have been underway, and a 
number of inelastic structural analysis computer 
programs, which are capable of treating the thermal 
and mechanical loadings and the typical structural 
geometries that are encountered, have been developed 
and made available to the design community. 

This paper describes the role of inelastic analysis in 
the design of high-temperature nuclear plant com-
ponents, with the objective of delineating current 
uncertainties and problem areas as well as future needs 
and directions. Because inelastic analyses are just one 
ingredient of the total integrated design methodology— 
consisting of design specifications, analysis methods 
for predicting structural response, and rules and 
criteria to guard against structural failure—the re-
quirements placed on such analyses, as well as the 
problem areas that exist, cannot be easily divorced 
from the remainder of the methodology. Thus, the 
problem areas and needs are identified herein in the 
context of this total design methodology, and they 

t Research sponsored by the Division of Reactor Research 
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must be addressed in terms of the ultimate goal of the 
design process—to assure a level of structural integrity 
consistent with the high levels of safety and integrity 
required for nuclear equipment. 

The following section provides an overview of the 
high-temperature structural design problem in fast-
breeder reactors, and it summarizes the structural 
design ingredients and the role of inelastic analysis. 
Section 3 then reviews material deformation modeling. 
Currently used models and their shortcomings, as 
well as promising new developments, are briefly 
discussed. Section 4 addresses time-dependent failure 
modeling and current design criteria. Again, short-
comings and needed developments are discussed with 
respect to their effect on analysis. The fifth section then 
addresses current inelastic analyses and the problems 
encountered in their validation. Results from repre-
sentative high-temperature structural tests are com-
pared with analysis predictions for illustration. The 
final section is a summary of the problem areas and 
needs. 

2. THE HIGH-TEMPERATURE STRUCTURAL DESIGN 
METHODOLOGY 

The methodology for the structural design of high-
temperature nuclear plant components has developed 
rapidly during the past decade concurrently with the 
effort to design and build LMFBRs. These plants are 
sodium cooled and consist of primary and secondary 
coolant loops. The primary loop includes the reactor, 
housed in a reactor vessel, a pump, and the primary side 
of an intermediate heat exchanger (IHX). The second-
ary loop includes the secondary side of the IHX, a 
pump, and a steam generator. 

Two features lead to the unique high-temperature 
design problems in LMFBRs. The first is that the 
sodium outlet temperature is well within the creep 
range for the alloys currently used in plant con-
struction—types 304 and 316 stainless steel and 2 1/4 
Cr-1 Mo steel. The second feature is the relatively large 
temperature rise of the coolant as it passes through the 
reactor core—about 300° F vs typically 60° F for a 
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light-water reactor plant. Reactor scrams and power 
changes result in rapid changes in this temperature 
rise, and because ofthe good heat transfer properties of 
the sodium coolant, thermal transient loadings can be 
imposed throughout the system. 

The potential structural effects of such transients can 
be described by means of a simple example—a straight 
section of pipe in a coolant loop, as depicted in Fig. 1. 
Assume that the sodium temperature drops 300° F in 
several seconds (a-b), rises slowly (b-c\ and then is 
constant for several hundred hours (c-d), after which 
there is another thermal cycle. The predicted response 
of the pipe is depicted in (c). Starting with point a, the 
inner surface of the pipe first yields in tension as it 

cations, which give the normal operating and overload 
thermal and mechanical loading histories for which the 
component must be designed, (2) structural analysis 
procedures, guidelines for which are provided by Oak 
Ridge National Laboratory and described in the 
following section, and (3) the criteria for guarding 
against structural failure, which are provided in Code 
Case N-47 of the ASME Boiler and Pressure Vessel 
Code [2]. The specified loading conditions are de-
veloped to provide an upper bound to what might be 
expected, both in number and severity of events, and 
the design analyst is expected to combine these into 
loading histograms that will provide worst case 
predictions. Likewise, the ASME Code criteria, which 
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Fig. 1. Schematic representation of effects of repeated thermal transient loadings. 

contracts, but as the outer surface subsequently begins 
to cool the inner surface stress reverses sign and goes 
into compression. At b, the wall is uniformly at the 
lower temperature; slow heating from b to c causes the 
residual stress to decrease because of the decreasing 
yield condition with increasing temperature. At c, a 
compressive residual stress remains, which relaxes 
during the subsequent hold period. The response to 
subsequent cycles is depicted in the figure. 

The behavior shown in Fig. 1 illustrates three key 
potential failure modes. First, creep-rupture damage is 
accumulated during the hold periods; second, the 
plastic cycles introduce fatigue damage which interacts 
with the creep to produce a creep-fatigue interaction 
damage mode; and third, ratchetting occurs, intro-
ducing the potential for failure due to excessive 
deformation. These are the primary concerns of the 
LMFBR structural designer. He must have inelastic 
analysis procedures to predict the response, and he 
must have criteria that guard against failure by time-
dependent cracking or rupture and by excessive 
deformation. 

In reality, of course, the components to be assessed 
are generally more complex than a straight pipe. 
Figure 2 depicts an intermediate heat exchanger as an 
example. Critical structural areas include the primary 
inlet nozzle-to-cylinder attachment, with its relatively 
thick reinforcing, and several areas such as the tube-
sheet-to-shell attachments, where thick and thin 
sections must be joined. 

The design methodology for a component such as 
the IHX has three constituents: (1) design specifi-
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Fig. 2. Intermediate heat exchanger for LMFBR. (Courtesy 
of Clinch River Breeder Reactor Plant Project Office). 
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will be briefly reviewed in Section 4, contains margins of 
safety to cover unknowns in the material models, 
material variability, etc. 

Together, these three constituents—design specifi-
cation, structural analysis procedures, and design 
criteria—must provide an integrated approach to 
assuring the high level of structural integrity required 
for nuclear components, where a failure might result in 
severe economic, political, and safety consequences. 
But whereas the design specifications and the design 
criteria contain built-in margins of safety, the inelastic 
analysis cannot very easily do so, because a prediction 
that is conservative for one failure mode, e.g. ratchet-
ting, can be nonconservative for another, e.g. creep-
fatigue damage. This introduces a complicating factor 
into evaluating and validating inelastic analysis. 
Analysis procedures are valid if they guide the designer 
to correct decisions in the structural design process and 
if, when utilized correctly and appropriately, they 
assure compliance with the design requirements. 

characterize the material. Both the initial yield surface 
and the subsequent plastic loading surfaces are de-
scribed by an equation of the von Mises form \ 

where 

f^SijS^KtphfoT), 

Sn = G'i} 

(1) 

(2) 

The prime of a\s indicates deviatoric stress, the super-
scripts p and c denote plastic and creep quantities, T 
denotes temperature, and a0 denotes the center of the 
yield surface, which is shifted according to 

1 
da0 =—50(5fcidfffci-d/c). (3) 

The plastic strain increment is given by the flow law: 
1 

ApP.. — ..hki^kr 
ÔK AT ÖK A-* 

-dfaT-Wd£ (4) 

In this formulation, bilinear representations of the 
cyclic stress^strain curves are used. The size of the yield 
surface is characterized by κ, which is related to the 
cyclic bilinear yield points. The hardening coefficient C 
is related to the slope of the elastic-plastic portion of 
the bilinearized stress-strain curve. 

Numerous experiments have been performed to 
provide the bases for the plasticity recommendations 
outlined above. Representative data are illustrated in 
Figs. 3-5. Figure 3 is a typical cyclic stress-strain curve, 
and it illustrates the cyclic hardening that must be 
characterized. Figure 4 is the result of a test on a tube in 
which the yield surface was probed at various points 
along a nonradial loading path. These surfaces repre-
sent points at which nonlinear response just begins (the 
proportional limits), and they clearly indicate the 
appropriateness of a kinematic hardening model 
(kinematic movement of the surface without change in 
size or shape) and of the von Mises surface represen-
tation. 

3. MATERIAL DEFORMATION MODELING 

Mathematical models (constitutive equations) that 
describe the time-dependent inelastic response of a 
material to time-varying thermal and mechanical 
multiaxial loadings are the key ingredient of inelastic 
analysis procedures. These models must be capable of 
predicting the significant behavioral features of a 
material, while at the same time being tractable in terms 
of incorporation into computing tools. The purpose of 
this section is to outline the currently recommended 
models [3] and potential new models, and to discuss 
problems and shortcomings as they relate to, and 
influence, structural analysis. 

Briefly, the currently recommended models assume 
that total strain is the sum of elastic, plastic, creep, and 
thermal components. Use is made of the classical 
theories of plasticity and creep, but these are augmented 
by modifications and ad hoc rules to account for 
observed nonclassical behavioral features and inter-
actions between plastic deformation, creep deforma-
tion, and time. 

The plasticity theory makes use of a yield criterion, a 
multiaxial flow rule, a combination isotropic-kinematic 
hardening law to define yielding subsequent to initial 
yield, and cyclic uniaxial stress-strain curves to 
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Fig. 5. Dependence of cyclic yield stress on inelastic (plasticity or creep) work. 

Although kinematic hardening alone is appropriate 
for the "proportional limit surfaces," some isotropic 
hardening becomes necessary to describe the bilinear 
surfaces that derive from Fig. 3. Figure 5 depicts 
experimental results for 304 stainless steel showing the 
dependence of κ on the accumulation of both plastic 
and creep strains. The data points show results from 
cyclic stress-strain tests plotted against inelastic work ; 
the shaded band represents data from stress-strain 
tests on precrept specimens. The resulting represen-
tative curve is typical of the relation used for κ in eqn 

The model for creep makes use of a multiaxial flow 
rule, a strain-hardening law with auxiliary rules for 
determining creep response under changing stresses and 
temperatures, and a uniaxial creep equation for 
characterizing the material. The flow rule is given by 

3 t (<7, ε") 
/ σ 

(5) 

where ε€ is the effective creep strain rate obtained from 
the creep equation for an effective stress σ and a 
modified effective total creep strain, εΗ, which is the 
measure of strain hardening. Multiaxial data for 
monotonie creep loadings exist to show the reasonable-
ness of the flow rule. Likewise, step-load uniaxial data 
(Fig. 6) exist to generally support the strain-hardening 
rule. The auxiliary rules handle the cases of reversal 
creep, and again uniaxial data show the general 
reasonableness of these rules. 

Additional complications arise due to the inter-

2 14 Cr 1 Mo 
1050°F 

Fig. 6. Result of typical uniaxial step-load creep test com-
pared with strain-hardening prediction. 

actions of creep and plasticity. Rules have been added 
to approximately account for the effect that creep has 
on oty, the measure of yield surface movement. Like-
wise, plastic strains can affect creep hardening, so 
additional rules are furnished to account for this, as 
illustrated in Fig. 7. Here, a hold period was intro-
duced at one end of the measured cyclic loop shown in 
Fig. 7(a). Normally, strain hardening would lead to 
progressively less relaxation from one cycle to the next, 
but for 2 1/4 Cr-1 Mo steel the reversed plastic strain 
loop cancels the creep-strain hardening [Fig. 7(b)]. 
Note that in the case where the specimen was loaded 
from c to d and allowed to relax without the plastic 
reversai, hardening does occur. 

As a final example of the need to augment the 
classical rules, it has been observed in certain types of 
problems that the kinematic hardening plasticity 
model can lead to unrealistic situations because of a 
lack of restraint on the movement of the bilinear yield 
surface. The analytical prediction in Fig. 8(a), which is 
again for the surface of a pipe subjected to repeated 
thermal cycle, illustrates this difficulty—peak stresses 
are becoming very high, and gross yielding occurs even 
before reversed loading in the later cycles. For these 
cases a special "α-reset" procedure has been recom-
mended. Results for the same problem with the a-reset 
procedure, which resets a0 to zero when significant 
stress reversals occur, are depicted in Fig. 8(b). 

The point of reviewing the currently used constitu-
tive models has been to illustrate that the rules are 
complex. Subtle changes can have large effects on 
inelastic analysis deformation and failure predictions. 
Also, although most features have been demonstrated 
experimentally, at least through relatively short-term 
uniaxial tests, many of the features remain to be 
validated, particularly for long-term nonproportional 
multiaxial loadings. 

Much of the increasing complexity introduced into 
the current constitutive equations was necessary 
because of the inherent limitations of the bilinear 
theory and, more generally, of the classical framework. 
Nonlinear theories are being developed and validated 
to overcome the former, and a more general unified 
theory, which simultaneously represents both rate-
dependent plasticity and time-dependent creep without 
distinguishing between the two, is being pursued which 
shows promise of overcoming both limitations. The 
unified theory makes use of two state variables—a 
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Fig. 8. Predicted stress-strain response of pipe wall subjected to repeated thermal downshocks. (a) Without restriction on 
kinematic movement of yield surface ; (b) with α-reset procedure. 

tensorial quantity representing internal stresses or back 
stresses, and a scalar quantity representing isotropic 
hardening—to allow for both hardening and recovery 
to occur simultaneously. The theory is akin to classical 
plasticity in that surfaces are utilized, but they are 
surfaces of constant strain rate. Of importance to 
inelastic analysis is the fact that some solution compli-
cations result from the time integration, which requires 
that a system of differential equations be simulta-
neously solved for each loading step. Nonetheless, it is 
believed that the unified theory will become a practi-
cable tool in inelastic design analysis. It has been used to 
solve a number of practical structural problems, and it 
captures most of the behavioral features that have 
required modifications and ad hoc rules for the current 
classically-based constitutive theory. One example will 
be given here to illustrate this capability. Figure 9(a) 
shows a calculated stress-strain loop in which constant 
strain hold times are introduced at 1, 2, . . . ,7 . The 
predicted response is shown in Fig. 9(b) and qualita-
tively matches the observed behavior of 2 1/4 Cr-1 Mo 
steel. Note in particular that the effect of the plastic 
reversal on subsequent relaxation is correctly pre-
dicted. 

A final point should be made regarding deformation 
modeling. The foregoing discussion has centered on the 
constitutive equation framework and formulation, 
while actual material response is characterized by the 
results of uniaxial stress-strain tests and creep tests. 

Studies at Oak Ridge National Laboratory on some 20 
heats of type 304 stainless steel indicate that the yield 
stress can vary by more than ±20% from one heat to 
the next. For a given stress level and time, measured 
rreep strain can vary by ± a factor of 2 from one heat 
to the next. Yet, the designer generally uses one set of 
properties to represent all 304 stainless steel ; he doesn't 
know a priori the behavior of the particular heats from 
which his component will be built. Heat-to-heat 
variations can significantly affect deformation pre-
dictions; and failure predictions, even more so. 
Studies have shown that much of the intended Code 
design margins can be exhausted by such variations. 
This then is an additional complicating factor which 
must be considered when addressing the requirements 
for, and validity of, inelastic analysis methods. 

4. TIME-DEPENDENT FAILURE CRITERIA 

Although failure modeling and criteria are not a part 
of inelastic analysis, they are a part of the integrated 
design approach, and the validity of inelastic analysis 
for high-temperature reactor components can be 
addressed only in the framework ofthat total approach. 
The purpose of this section is to briefly review the 
current Code criteria along with problems and short-
comings. 

ASME Code Case N-47 has two general categories of 
limits. The first consists of primary stress limits placed 

CAS 13:1-3 - P 
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Fig. 9. Typical example of unjaxial loading illustrating capability of unified constitutive theory to capture key 
behavioral features. The experimental points correspond to the initial relaxation period. 

on elastically-calculated load-controlled quantities, 
such as the internal pressure stresses. The second 
consists of strain, creep-fatigue, and buckling limits. It 
is in meeting these latter limits that inelastic analysis is 
frequently required. 
- The creep-fatigue rules are, by far, the most fre-

quently limiting criteria, so only they will be reviewed 
here. A linear time- and cycle-fraction damage 
accumulation rule, expressed as 

N. 
+ Σ 

i k 
^A (6) 

is used by the Code along with von Mises effective 
quantities to represent multiaxial effects. The time 
fraction represents the time, t, at a given condition 
(stress and temperature) divided by the allowable time 
at that condition. The cycle fraction represents the 
number of cycles at a given condition (strain range and 
temperature) divided by the allowable number of 
cycles at that condition. The quantity, D, which is less 
than or equal to one, comes from an interaction 
diagram that is experimentally determined from creep-
fatigue tests. Both the quantities Nd, which comes from 
a design fatigue curve, and TD, which comes from a 
minimum creep-rupture curve, have design margins 
built into them. 

The Code creep-fatigue rules were chosen on the 
basis of available data. Since then, extensive efforts 
have been underway to validate or improve the 
criteria. Multiaxial creep and fatigue data, although 
generally restricted to relatively short-time, pro-
portional, monotonie loadings, tend to confirm the 
adequacy of the multiaxial strength theories for those 
limited conditions. 

The damage accumulation rules are more question-
able. An extensive test series is currently underway to 
provide data for more fully validating the time-
fraction rule. Existing creep-fatigue data, which are 
restricted to short times and large strain ranges, 
indicate several shortcomings of the linear damage 
summation rule, including excessive data scatter 
relative to the correlation and questionable predictions 
obtained from extrapolations. Nonetheless, alternative 
methods have not been shown to be clearly superior to 
the satisfaction of the Code groups. 

In summary, efforts are still underway to validate the 

t Reference [5] describes a large inelastic analysis per-
formed on an IHX inlet nozzle-to-cylinder attachment 
similar to that shown in Fig. 2. 

failure models, although there are known short-
comings in the damage accumulation rules. The design 
margins included in the Code procedures are intended 
to cover the uncertainties. However, these uncertainties 
introduce another complication to the task of vali-
dating inelastic analysis for design. 

5. INELASTIC ANALYSES AND THEIR VALIDATION 

The incremental and iterative finite-element method 
is the procedure generally employed for inelastic 
design analyses. This approach and its application to 
high-temperature design analyses have been reviewed in 
an interpretive report by Gallagher [4]. Because the 
resulting computer programs involve complex consti-
tutive models and computational procedures, their use 
must be accompanied by a large measure of experience 
and judgment on the part of the analyst. At best they 
are costly and time-consuming to use, and as a result 
their use is limited in practice to only the most critical 
few locations.! 

As with any complex computing procedure, ques-
tions of validity and acceptance of the results naturally 
arise, and they involve more than just verification of the 
computer program. The real question is one of qualifi-
cation of the entire analysis procedure—does the 
combination of mathematical models, geometric dis-
cretization, description of material behavior, represen-
tation of the thermal and mechanical loading histories, 
and boundary conditions, all consistent with the 
program limitations, give an acceptable solution to the 
physical problem ? 

What constitutes an acceptable solution? It is one 
that leads to a correct design. Thus, it must ultimately 
be shown that analysis predictions, together with 
design criteria, preclude structural failures, and in the 
absence of long-term service experience, this demon-
stration must come from comparisons with the results 
of benchmark structural tests. A major portion of the 
high-temperature structural design technology develop-
ment activities funded by the U.S. Department of 
Energy has thus been devoted to the generation of high-
temperature, inelastic structural test data on a variety 
of geometries ranging from the simple to the complex. 
A number of representative test results from this 
series of tests was published in 1975 by the ASME [6] 
along with typical comparisons with inelastic analysis 
predictions. Since then, tests to failure have been 
emphasized. 

To illustrate the process and the problems encoun-
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Fig. 10. Thin capped cylindrical shell after long-term pressurization test to failure. 

tered in evaluating high-temperature inelastic analysis 
methods, three benchmark problem examples are 
briefly presented here. All three structures were 
fabricated from a single well-characterized heat of type 
304 stainless steel, and all were tested in the annealed 
condition. 

The first example is a thin-walled cylindrical shell 
with a flat head. The structure, which was machined 
from a solid bar, was subjected to a step history of 
internal pressure and temperature during an initial 
deformation test period. The pressure was then 
increased and held constant until failure at 1100° F 
after 3300 hr of testing. Figure 10 depicts the specimen 
after testing ; failure occurred by opening of a creep 
crack which propagated circumferentially in the 
junction region between the flat head and cylinder. 

Figure 11 shows typical results from a circumfer-
entially oriented capacitive strain gage, located in the 
most highly strained region of the head, compared with 
analysis predictions. Although the agreement between 
theory and experiment was somewhat better at this 
point than at others where strain gages were located, 
the overall agreement was judged to be reasonable for 
the deformation phase. Large deformations prevented 
completion of the failure phase of the analysis; 
extrapolation of results, however, gave a very con-
servative creep-rupture prediction. 

The second example consists of an 8-in. x 0.375-in. 
dia. wall pipe subjected to 13 thermal transient cycles in 
a sodium test loop. Results from two diametrically 
opposed capacitive strain gages are compared with the 
predicted ratchetting strains in Fig. 12. The predictions 
shown are from an analysis based on properties of the 
actual pipe product form. Qualitatively, the agreement 
is good; however, the quantitative error is significant. 
Furthermore, comparisons for a second test show the 
analysis overpredicting the measured response by more 
or less the same amount as the underprediction in 
Fig. 12. 

The final example is the nozzle-to-sphere model 
shown in Fig. 13. Again, the model was subjected to a 
deformation phase, in which step-pressure and step-
moment loadings on the nozzle were imposed, followed 
by a pressure increase which was held until failure. 
Figure 14 shows measured and predicted elastic-
plastic and creep strains in the critical region of the 
junction for the pressure loading. Except for the 
recovery strains during the zero pressure hold periods, 
the agreement is reasonably good. However, this is the 
best comparison of eight capacitive gage locations. A 
symmetrically located gage, whether due to gage 
problems or real variations, gave a significantly 
smaller strain response than that shown in Fig. 14. 

Based on the scatter band of creep rupture for the 
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heat of material, failure, interpreted as crack initiation, 
was predicted to occur in the junction region some-
where between about 200 and 20,000 hr, with a target of 
2400 hr. Photomicrographs of replicas of the junction 
region were made at 1000 and 2000 hr, and a typical 
result for 1000 hr is shown in Fig. 15. Intergranular 
cracking was visible in the meridional direction and 
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Fig. 11. Typical comparison of measured vs predicted 
strain-time response in capped cylindrical shell. 

extended in some instances for several grain boundary 
facets. Does this cracking constitute failure? 

The previous examples illustrate that essential 
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Fig. 13. Instrumented nozzle-to-sphere specimen of type 304 stainless steel. 
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Fig. 15. Micrograph obtained from surface replica in nozzle-to-sphere intersection after 43 days, of internal 
pressure testing. Wedge cracks are indicative of creep damage. 

deformation features can be predicted, but they also 
point up the difficulties in judging the validity of the 
analysis procedure, especially for predicting failure. We 
have discussed uncertainties in the constitutive and 
failure models and the variations in material behavior, 
even within a single heat. In addition, uncertainties and 
variations must be associated with the test results; 

high-temperature experiments are difficult to perform, 
and great care is required to obtain meaningful strain 
measurements. Also, failures are difficult to define. 
Thus, exact comparisons cannot be expected, and a 
large group of test results will ultimately be required to 
make a conclusive assessment. 
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6. SUMMARY 
The goal of this paper has been to give the reader a 

brief overview of inelastic analysis in the design of 
high-temperature nuclear plant components and of the 
uncertainties and problem areas that require attention. 
Material deformation and failure modeling along with 
computational procedures were addressed. Significant 
strides have been made in the last decade in the de-
velopment and application of detailed inelastic analy-
ses. Experimentally based constitutive models have 
been developed for the three alloys—types 304 and 316 
stainless steel and 2 1/4 Cr-1 Mo steel—of most 
concern in LMFBRs, and these have been incorporated 
into computer programs available to the designer. 
Successful inelastic design-type analyses can be, and 
are, performed. 

Practically, however, detailed analyses are often still 
cumbersome, time-consuming, and costly ; permissible 
loading and geometric complexities are limited by 
computing equipment and by pre- and postprocessor 
software. Thus, if detailed inelastic analyses are to play 
an increasing role in the design process, we must have 
more efficient solution algorithms, and more attention 
must be given to pre- and postprocessors that are 
patterned to the high-temperature structural design 
methodology. 

Program developers and users must be aware of the 
shortcomings and problems associated with material 
deformation modeling and with failure modeling and 
design criteria. Likewise, they should be aware of 
forthcoming developments in material modeling, such 
as the unified constitutive equations, which will place 
new computational requirements on analysis pro-
cedures. 

Current constitutive models, although believed to 
capture most significant behavioral features, are 
complex and have identified shortcomings. They have 
not been completely verified, particularly with respect 
to complex and long-term multiaxial loadings. Further-
more, material modeling is made less exact by the 
significant heat-to-heat variations that exist. 

Time-dependent failure models and criteria, while 
believed to be conservative, also have shortcomings and 
are in need of long-term multiaxial verification. Of 
particular significance is the need for improved creep-
fatigue criteria, which are generally the limiting 
requirement in current design assessments. 

It has been suggested in this paper that a valid 
inelastic analysis is one that will guide the designer to a 
economic, reliable, and safe design. Thus, the analysis 
cannot be divorced from the material models and the 

design criteria, nor can questions of validation be 
ignored. The general range of accuracy that can be 
obtained from the analysis process must be established. 
Likewise, the accuracy requirements that are inherently 
assumed in the design criteria must be ascertained. 
Ultimately, collective assessment of comparisons with a 
significant number of representative benchmark struc-
tural test results will play a key role in resolving these 
problems. 

Perhaps the biggest need, however, is for developers 
and users of computer programs to work hand-in-hand 
with those who are developing the overall high-
temperature structural design technology. Only 
through such a cooperative effort can the future role of 
inelastic analysis in high-temperature structural design 
be assured and placed on a firm basis. 
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Abstract—A summary of previous work is first presented. Then an axisymmetric model is presented in 
which the bending of an infinite straight or curved pipe with external or internal pressure is simulated by 
thermal loading. The model includes geometric and material nonlinearity in the prebuckling analysis and 
bifurcation buckling from the nonlinear prebuckled state. Comparisons with tests on straight pipes and 
elbows are given. The calculations are performed with use of a slightly modified version of the BOSOR5 
computer program. Qualitative agreement with test results is demonstrated. 

INTRODUCTION 

The elastic-plastic collapse and bifurcation buckling 
analysis of straight and curved tubes subjected to 
bending is needed for design and evaluation of nuclear 
power plant piping components, offshore pipelines, and 
other structures involving tubular members. Most of 
the recent work on piping has been motivated by a 
desire to be able to predict stress, stiffness, and limit 
moments of piping systems in nuclear reactors. Since 
the most flexible and highly stressed piping components 
are elbows, a significant portion of the total effort has 
been focused on test and analysis of various elbows 
under in-plane and out-of-plane moments. In the 
offshore oil industry, the laying of under-water oil 
pipelines involves bending of rather large diameter 
straight pipes in the presence of external hydrostatic 
pressure. The degree of ovalization of the pipe cross 
section under bending is very much affected by the 
external pressure, as will be seen later. 

Elastic models 
The bending of elastic piping components is explored 

in Refs. [1-11]. Brazier [1] was the first to calculate 
collapse moments, including in his theory the important 
effect of increasing ovalization (flattening) of the pipe 
cross section as the bending moment increased. Clark 
and Reissner [2] used an asymptotic formulation in 
which ovalization of initially curved tubes under bend-
ing is assumed to be symmetric about a tube diameter 
normal to the plane of curvature of the tube axis. 
Wood [3] expanded Brazier's treatment to include 
pressure, and Reissner [4] further improved the theory 
by including higher order nonlinear terms and intro-
ducing the effect of pressure on the bending of slightly 
curved tubes. Aksel rad [5] was the first to predict 
bifurcation buckling of straight pipes under bending, 
including the effect of flattening of the cross section in 
the prebuckling analysis. In all of the analyses just 
cited, end effects are ignored; the pipes are assumed to 
be infinitely long. Stephens et al. [6] used the STAGS 
computer program [12] to calculate collapse and bi-
furcation buckling of initially straight tubes of finite 
length. For tubes with radius-to-thickness R/t= 100 
they carried out a parameter study, predicting limit and 
bifurcation bending moments for length-to-radius 

ratios 3.4^L/R^20. They included internal and ex-
ternal pressure in their analysis. 

Elastic analyses of piping elbows have been per-
formed by Dodge and Moore [7], who wrote a com-
puter program, ELBOW, based on a model similar to 
Clark and Reissner's [2]. Hibbitt et al [8] introduced a 
curved piping finite element into the MARC computer 
program [13]. This element, called No. 17 in the MARC 
element library, is based on neglect of elbow end effects. 
Discretization is in the circumferential coordinate only. 
Sobel [9] used the MARC No. 17 element in a con-
vergence study with mesh size. He referred to Clark and 
Reissner's asymptotic formulas to establish optimal 
finite element nodal point density in the hoop direction 
as a function of elbow geometry. Rodabaugh et al. [10] 
performed a study of 45°, 90° and 180° elbows, deter-
mining the stiffening effects of straight pipes attached 
to the ends of the elbows. They used the EPACA com-
puter program [14] for their analysis in which end 
effects are included. Although EPACA includes the 
capability to treat structures made of elastic-plastic 
material, the work described in Ref. [10] is restricted to 
elastic behavior. Fabian [11] accounts for geometric 
nonlinearities in determining limit moments of long 
elastic cylinders and bifurcation from the nonlinear 
prebuckled state. Bifurcation is found to occur at 
moments just below the limit moments, a result in 
agreement with Aksel'rad's [5]. 

Bending tests on elastic-plastic straight pipes and elbows 
Several test programs on bending of elastic-plastic 

straight pipes and elbows have been carried out in the 
past decade. Bolt and Greenstreet [15] give load-deflec-
tion curves for 14 commercial 6-in. diameter carbon 
steel elbows and one 6 in. diameter stainless steel 
elbow with and without internal pressure. Vrillon et al 
[16] compare test and theory for the in-plane bending 
of a 180° elbow subjected to both opening and closing 
moments. They used the TRICO program [17] for 
their analysis. Sherman [18] tested several straight 
pipes, noting formation of relatively short axial wave-
length buckles just before collapse. A comparison 
between one of Sherman's experiments and theoretical 
results obtained with a modified version of the BOSOR5 
computer program [19] is given later. Peters [20] de-
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scribes a test on a 90° elbow carried out on the multiload 
test facility (MLTF) at the Westinghouse Advanced 
Reactors Division. Bung et al [21] ran tests at elevated 
and room temperature on 304 stainless steel elbows. 
Comparisons between the test results of Peters [20] and 
Bung et al [21] and theoretical predictions obtained 
with the modified version of BO SO R5 referred to above 
are presented in a following section. Reddy [22] 
presents experimentally measured maximum strains 
in long tubes under pure bending for the range of radius-
to-thickness, 10<α//ΐ<100. 

Elastic-plastic piping analysis 
With one exception known to the writer [23], there 

are basically three types of elastic-plastic piping 
analysis for the prediction of stress, stiffness, and buckl-
ing failure of straight and curved tubes and combina-
tions thereof: 

(1) a "brute force" method in which the tubes are 
divided into a two-dimensional field of finite elements; 

(2) simplified models in which tube end effects are 
ignored and discretization or trigonometric expansion 
is in the circumferential coordinate only; 

(3) a further simplified model in which resultant 
forces and moments integrated over the tube cross 
section are related to strains and changes in curvature 
of the tube axis. 

The STAGSC computer program [12], the EPACA 
code [14], and the TRICO code [17] have been used for 
the "brute force" analysis of elastic-plastic elbows 
attached to straight pipes. Vrillon et al [16], Roche and 

calculate moment-deflection curves for combinations 
of straight pipes and elbows, including elastic-plastic 
material behavior and moderately large deflections. 
These nonlinear analyses require large amounts of 
computer time. The more economical but less rigorous 
one-dimensionally discretized or trigonometric-series 
models have been employed by Mello and Griffin [26] 
and Sobel and Newman [27,28], who used the MARC 
computer program [13] element No. 17 [8], and by 
Gellin [29], who used trigonometric series expansion. 
The most economical and more approximate beam-
type models have been used by Roche et al [30], 
Spence and Findlay [31, 32] and Calladine [33]. An 
efficient analysis method suitable for piping systems is 
derived by Hibbitt and Taylor [23]. This method does 
not fall into any of the three categories identified above. 
It involves linear superposition of beam strains and 
cross section deformation. 

In the following sections an approximate analysis of 
the second type (one-dimensional discretization) is 
described and results given for various configurations. 
The theoretical results were obtained with a modified 
version of BOSOR5 [19]. 

AXISYMMETRIC MODEL OF PIPE OR ELBOW BENDING 
PROBLEM 

In the following analysis an initially uniformly curved 
pipe is treated as if it were part of a toroidal shell. The 
model is similar to that described in Ref. [34]. Bending 
in the plane of the curvature of the pipe centerline is 
applied by means of an appropriate temperature dis-
tribution over the pipe cross section, as will be de-
scribed next. 

Development of the expression for axial strain. Every 
cross section of the uniformly curved pipe is assumed to 
deform identically. Therefore, the structure can be 
treated as a shell of revolution, a torus. Figure 1 shows 

EXTRADOS 

Fig. 1. In-plane bending of curved pipe: (a) initial configura-
tion, (b) uniformly bent configuration. 

the undeformed pipe reference surface with centerline 
radius of curvature b and meridional radius of curva-
ture a. The centerline radius of curvature of the de-
formed pipe reference surface is R and the cross section 
has ovalized such that a generator that was originally 
at a radius r=b + a cos φ is now at a radius R + z, where 
z is given by 

z — (a-\-w) cos φ—u sin φ. (1) 
If we assume that the centerline remains inextensional, 
the reference surface axial strain is 

{R +z)b/R-(b +a cos φ) 
b + a cos φ (2) 

Rearrangement of eqn (2) and use of the relationships 

cos φ = r|R2\ sin</>= — /=— dr/ds (3) 

leads to the expression 
b < /r> ,/x a(l/R-l/b)cos 
R \-\-ajb cos φ 

41/R-l/b)cQs4> 
(4) 

in which R2 is the normal circumferential radius of 
curvature of the reference surface of the undeformed 
torus, r is the radius to a point on the torus reference 
surface, and f is the derivative of r with respect to 
meridional arc length s. Figure 2 shows these quantities. 

Simulation of the pipe bending problem by thermal 
loading of a torus. In order to use BOSOR5 to treat 
the problem of elastic-plastic bending and bifurcation 
buckling of a curved pipe, it is necessary to write the 
axial strain given by eqn (4) as a stress-producing pre-
buckling hoop strain for the shell-of-revolution (torus) 

file:///-/-ajb
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Fig. 2. Discretization of pipe modeled as toroidal segment. 

analysis. This is easily done by definition of the pre-
buckling stress-producing hoop strain as 

£ = ε2_α2ΔΤ (5) 

in which, from eqn (4), it is seen that 

B2=j(w/R2 + u//r) 

α2ΔΤ= -a 
R 

\ Γ cos φ Ί 
) |_l + <2/bcos</>_[ 

(6) 

(7) 

In this way, the problem of bending of a curved pipe is 
simulated by a problem of a nonuniformly heated 
torus. 

In BOSOR5 the temperature rise ΔΤ is assumed to 
be of the form 

àT=f(t)g(s) (8) 

in which/(i) is a function of "pseudo" time t and g(s) is a 
function of meridional arc s. In this application of 
BOSOR5 we can set 

f(t)=T0t=T0 1 _ A 
R~b 

= T0k 

g(s)= —cos φ/Ι 1 +- cos φ 

<x2 = a/T0 

(9) 

(10) 

(11) 

in which T0 is arbitrary. (In the cases studied here T0 is 
set equal to 10 ~5 in order to generate values of ΔΤ in 
the program list output which have enough significant 
figures to provide a check of the input data.) 

To perform the large-deflection, elastic-plastic pipe 
bending and bifurcation buckling analyses, the pre-
buckling analysis part of the BOSOR5 program must 
be modified in a simple way : the expression for reference 
surface prebuckling hoop strain, which for the usual 
shell-of-revolution analysis is 

e2 = w/R2 + ur'/r (12) 

must be changed, in the prebuckling analysis branch of 

BOSOR5 only, to 

e2 = &it+-J(w/K2 + nryr) 

in which the time t is given from eqn (9) by 

^ R - b ' 

(13) 

(14) 

Thus the prebuckling "axisymmetric" problem is solved 
by imposition of a change in torus centerline curvature 
k and calculation of equilibrium with use of the same 
techniques and strategies described in detail in [19] and 
[35]. (The plasticity theory used in BOSOR5 is based 
on isotropic strain hardening and the von Mises yield 
criterion.) No further program changes are required 
for inclusion of internal or external pressure in the 
analysis. No changes at all are needed for calculation of 
axisymmetric or nonaxisymmetric bifurcation buckling, 
since the above prebuckling analysis generates a pre-
buckling state consisting of appropriate membrane 
stress resultants and cross section deformations that 
are axisymmetric about the torus axis of revolution. 

Elastic-plastic bending and bifurcation buckling of 
straight pipes can be predicted by use of a very large 
b/a (see Fig. la). The behavior of a pipe bend under an 
opening moment can be predicted with use of a nega-
tive time t, or k = (1/R - i/b) <0. 

Discretization. Figure 2 shows an example of how 
the pipe meridian can be discretized in the BOSOR5 
analysis. Sobel [9] has shown that this nodal point 
density is more than sufficient for reasonably accurate 
solutions in the elastic regime. A preliminary study of 
an elastic-plastic pipe-bending problem with BOSOR5 
indicates that use of three times as many nodal points 
does not change the predicted behavior by more than 
one percent. 

Bifurcation buckling. The nonaxisymmetric bifurca-
tion buckling modal displacement field is assumed to 
vary harmonically in the circumferential direction 
(normal to the plane of the paper in Fig. 2), as described 
in [36]. The strategy for calculation of bifurcation 
buckling loads (or times) is described in [37]. 
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Boundary conditions. In the prebuckling analysis the 
displacement field is constrained to be symmetric 
about the equator of the torus. Thus the axial dis-
placement w, meridional rotation χ, and normal dis-
placement w are given by u = 0, χ = 0 and w = free at the 
extrados and intrados (shown in Fig. 2). In the bifurca-
tion buckling analysis the buckling modal displace-
ments may be either symmetric on antisymmetric at the 
equatorial symmetry plane. In all cases studied here it 
turns out that the critical bifurcation buckling condi-
tion corresponds to a buckling modal displacement 
field which is symmetric about the equatorial symmetry 
plane. 

NUMERICAL RESULTS 

Bending, limit moment and bifurcation buckling mom-
ent of straight pipes. The straight pipe is simulated by a 
torus with b/a greater than about 103. The theory 

presented in eqns (1)—(14) was checked by comparison 
with results from Reissner's analysis of elastic tubes [4]. 
An example is shown in Fig. 3. The equation numbers in 
Fig. 3 refer to equations in Ref. [4]. Agreement of the 
modified BOSOR5 analysis with Reissner's results is 
excellent. Figures 4-9 pertain to the elastic-plastic 
bending, collapse and bifurcation buckling of a straight 
pipe tested by Sherman [18]. (In Sherman's tests there 
was no pressure, however.) 

Figure 4 shows test results and the results of two 
BOSOR5 runs, one in which the external pressure is 
zero and the other in which the external pressure is 
one-half the external pressure pcr that would cause 
buckling in the absence of an applied bending moment, 
M. The pipe material is elastic perfectly plastic with a 
yield strength of 421 N/mm2. For the case with p = 0 the 
BOSOR5 program predicts bifurcation buckling (non-
axisymmetric wrinkling) with n= 52500 full waves 

2.0x10° Mc r jt (Reissner) = 1.935 x 106 Nm(Eq. 59) 

0.3 

<0 .2 ' 

R = 381 mm 

Moment (B0S0R5) 

5.08 mm 

crit 
from Reissner (Eq.57) 

CURVATURE CHANGE, k(m 

Fig. 3. Moment-curvature-change and ovalization of infin-
itely long elastic cylindrical shell under pure bending; 

comparison of BOSOR5 model with Reissner's results. 

0.05 
CURVATURE CHANGE, k (m"1) 

Fig. 4. Bending of straight elastic-plastic pipe with and without external pressure and comparison with test by 
Sherman. 
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Δ - Outer Fiber -

k - 0.049 m 

k - 0.0432 m ' 

Fig. 5. Ovalization of straight pipe of dimensions shown in 
Fig. 4 with and without external pressure under imposed 

curvature k = 0.0432 m " *. 

1751 

0 

-1751 

Tension 
k ■ 0.013 m"1 

Compression —*~ 

k - 0.0197 m 

45° 90° 135° 

ANGLE AROUND PIPE CIRCUMFERENCE Weg) 

Fig. 6. Growth of plastic region in straight pipe as imposed 
curvature, k, is increased (p = Et3/D3). 

around the circumference of the torus, the centerline 
radius of which is taken to be b=1524 m. Thus, the 
predicted bifurcation buckling wavelength is 

lcr = 2nb/n=l%2mm. (15) 

With p=0, bifurcation buckling is predicted to occur 
at an applied moment slightly below that correspond-

k - 0.049 m 

k" 0.049 m"1 

^ o MERIDIONAL STRESS, σ / σ 

< /\ 
^— Yield Locus 

1 

Fig. 7. Paths in stress space followed by inner and outer 
fiber points on the plane of symmetry as externally pressur-

ized straight pipe is bent (p = pJ2 = Et3/D3). 

k« 0.049 m'1' Inner Fiber 
/ 
| P = pcr/2 

\ 
\ 
\ 

MERIDIONAL STRESS, / 
a Jo / 
1 y / 

-0.5 / 

y Yield Locus 

Fig. 8. Paths in stress space followed by inner and outer fiber 
points at φ = 90° as externally pressurized straight pipe is 

bent(p = £t3/£>3)· 

ing to nonlinear collapse due to flattening of the cross 
section. Thus, in a test of such a pipe (if it were perfect !) 
one would expect to see relatively short axial-wave-
length wrinkles or a single wrinkle appear just before 
failure. Indeed Sherman observed the formation of such 
buckles in his tests. 

With external pressure, ovalization or flattening of 
the pipe cross section is predicted to occur more pre-
cipitously with increasing applied curvature change 
/c = (l/R — \/b). Note, however, that the maximum 
moment-carrying capability of the pipe is not much less 
than that of the pipe without external pressure. In the 
case treated here bifurcation buckling occurs with a 
somewhat shorter axial wavelength 

/cr = 27ri>/84000=114mm (16) 

at a value of k slightly greater than that corresponding 
to collapse due to flattening of the cross section. Hence, 
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Compression Tension 

Bifurcation Buckling at k - (^ - ^) = 0.0354 m 

w(s,9) = w (s )s inn9 ;n » 84000 cire, waves 
n 

Fig. 9. Bifurcation buckling mode for externally pres-
surized straight pipe. 

Fig. 10. Comparison of test and theory for bending of 90° 
elbow. Test by Westinghouse Advanced Reactor Division, 

1978. 

if the moment M is applied rather than the curvature 
change /c, axial wrinkles might not appear before failure. 
Figure 5 shows the predicted deformations of the pipe 
cross sections with and without external pressure at 
k=0.0432 m" i . The deformations are exaggerated but 
plotted to the same scale in Figs. 5(a) and (b). 

Figure 6 shows the circumferential stress resultant 
N2 0 in the torus at several values of applied curvature 
change k for the case with external pressure p = l / 2 
pcr = Et3/D3. Remember that the circumferential stress 
resultant N20 in the BOSOR5 torus model is actually 
the axial stress resultant in the pipe. The plots clearly 
show the growth of the plastic regions as the applied 
curvature is increased. Yielding begins when the ap-
plied moment is about 105 Nm, well below the maxi-
mum moment. The development of extreme fiber stres-
ses at the equator and crown are shown respectively in 
Figs. 7 and 8 for the case p=pcr/2. The plastic biaxial 
loading of the elastic-perfectly plastic material at the 
equator is far from being praportional as the centerline 
curvature k is monotonically increased. Figure 9 shows 

0 50 100 150 200 250 300 

DEFLECTION, Ad (mm) 

Fig. 11. Moment-deflection curves from test and theory for 
180° elbow with opening moment. 

Axial Strain 

Fig. 12. Outer fiber axial strain at symmetry plane in 180° 
elbow with opening moment. 

the plastic bifurcation mode. 
Bending and limit moment of elastic-plastic elbows. 

Figures 10-13 show results from application of the 
modified BOSOR5 analysis to in-plane bending of 90° 
and 180° piping elbows. The BOSOR5 predictions are 
compared to tests and to other analyses. 

Figure 10 gives a comparison of BOSOR5 results with 
a test of a 90° elbow by Peters [20] and an analysis in 
which the MARC element No. 17 is used for the elbow 
[28]. The test was for a closing moment. Analytical 
predictions are shown for both opening and closing 
moments. The quantity ßbeamis the part of the end cross-
section rotation attributable to beam-type bending, 
which is not included in the BOSOR5 model. 
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Hoop Strain 

Fig. 13. Hoop strain at symmetry plane in 180° elbow with 
an opening moment. 

Figure 11 shows a comparison of test and theory for 
a 180° elbow tested by Bung et al. [21]. The theoretical 
results labeled "TRICO" and "TEDEL" were obtained, 
respectively, by Roche and Hoffman [24] and Roche, 
et al [30]. TRICO is a general nonlinear computerized 
shell analyzer [17] and TEDEL is a program based on a 
simplified nonlinear beam model. The axial and hoop 
strains plotted in Figs. 12 and 13 correspond to an 
increase in d of 76 mm. There is reasonably good agree-
ment between the BOSOR5 predictions and measured 
strains. (Note that the definition of hoop angle φ differs 
from that in Fig. 2.) 

CONCLUSIONS 

The excellent agreement with Reissner's results for an 
infinite elastic tube reveals that the model introduced 
here, although approximate, is correct. That the results 
might be said to be only in qualitative rather than 
quantitative agreement with tests on elbows and finite 
length pipes is doubtless due primarily to initial im-
perfections, residual stresses, and end effects. In the 
case of bending of elbows, the straight legs act to prevent 
ovalization near the ends of the elbow, as is clearly 
shown by Sobel and Newman in Ref. [28]. In the case of 
straight pipes, such as those tested by Sherman, it 
appears that the deleterious effects of residual stresses 
and initial imperfections outweigh the strengthening 
effect of end restraint. 
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HIGH-TEMPERATURE INELASTIC ANALYSISf 

A. LEVY 

Grumman Aerospace Corporation, Bethpage, NY 11714, U.S.A. 

(Received 11 May 1980) 

Abstract—Computationally efficient, finite-element methods for accurately predicting small strain, iso-
thermal, three-dimensional, elastic-plastic creep responses of thick and thin shell structures are being 
developed. This work has been performed, in part, to support Oak Ridge National Laboratory's (ORNL) 
High-Temperature Structural Design (HTSD) Program. In order to verify the analytic capabilities devel-
oped and the constitutive relations used for high-temperature inelastic behavior, a high-temperature creep 
test of a nuclear reactor inlet nozzle test model was simulated analytically. (The test is being conducted at 
ORNL as part of the HTSD Program.) The discrepancies between analytic and experimental results are 
discussed and an explanation is given consistent with previous experimental findings. 

nsnraoDUcnoN 
Three-dimensional elastic-plastic creep finite element 
analytic capabilities are being developed at Grumman 
Aerospace Corporation. This work has been performed, 
in part, to support Oak Ridge National Laboratory's 
(ORNL) High-Temperature Structural Design Pro-
gram. The HEX Program [1, 2] of Grumman's 
PLANS system of finite element programs [3] is being 
used for this purpose. Currently this program is 
capable of analyzing small-displacement, isothermal, 
three-dimensional, elastic-plastic creep responses of 
thick and thin-shell structures subjected to mechanical 
and thermal loads. 

The program is discussed in general, including 
constitutive equations, solution algorithm, the use of 
variable inelastic integration points and general 
strategy for solving large problems. The constitutive 
relations and general procedures are in accordance 
with ORNL guidelines for design of nuclear system 
components at elevated temperatures [4]. 

In order to verify the analytic capabilities developed, 
as well as the constitutive relations used for high-
temperature inelastic behavior, a high-temperature 
creep test being conducted at ORNL [5] is simulated 
analytically. The test model is representative of nozzle 
attachments in pressure vessels used in the nuclear 
industry. The analysis indicates the need for more 
sophisticated elastic-plastic creep interactive constitu-
tive relations. The discrepancies between analytic and 
experimental results are discussed and an explanation 
is given consistent with the experimental findings 
presented in Ref. [4]. 

PROGRAM DESCRIPTION 

Constitutive equations 
Consistent with small strain theory, we write the 

differential equation 
de^de'j+dsfj+ds'j+d^j (1) 

where deip dse
ip de?, dec

i} and de\j are the changes in 
total, elastic, plastic, creep and thermal strain tensors, 

tThis work was funded, in part, by DoE/ORNL High-
Temperature Structural Design (HTSD) program, and in 
part by Grumman's Independent Research and Develop-
ment Program. 

respectively. Here we choose the more classical 
approach of separating the inelastic strains into two 
parts, one time dependent (creep) and the other time 
independent (plasticity). This is in contrast to the unified 
theories, in which plasticity and creep are basically 
indestinguishable, such as the treatments presented in 
Refs. [6-8]. 

Continuing on the basis that inelastic strains can be 
separated into plastic and creep components we discuss 
each separately. The isothermal plasticity theory in-
corporated into the HEX Program includes: Hill's 
yield criterion for orthotropic materials, which reduces 
to the von Mises yield criterion for isotropic materials, 
is used to predict initial yield and the subsequent 
loading surface 

/(70-αι,.)-κ(ε^,Γ) = 0 (2) 

where a,; represents the translation of the loading 
surface in stress space σίρ ερ corresponds to effective 
plastic strain 

(3) βΡ — V 3£f/fj 

and Tcorresponds to temperature; the Prandtl-Reuss 
associative flow rule 

(4) 

in which the change in the plastic strain tensor is 
normal to the loading surface; and a hardening law 
based on the Prager-Ziegler kinematic hardening 
theory, 

d a < ^ c ( g P ' T ) d ^ 

where c{ëp, T) is the hardening parameter. 
Differentiating eqn (2) and assuming 

dfc 

(5a) 

(5b) 

(6) 

where β is the accumulated plastic strain, we arrive at 

δσ,, ,J dot,, άαυ-0άε"=Ο. (7) 

249 
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Substituting eqn (5a) into eqn (7) we arrive at 3 ec(ä, t, T, F) 

(8) 

and combining eqns (3), (4), (5b) and (7) we arrive at 

fojj J 

cJLJL+AJLJyLY'2' 
toutou Vda.daJ 

(9) 

Substituting eqn (9) into eqn (4) we arrive at a stress-
plastic strain relation 

^U=Cijkldakl (10) 
where 

L i il 

tou dakl 
ijkl - 'cJLJL+AJLJW1' 

' mn ^"mn 

oft' 
mn/ 

The stress-elastic strain relation can be written 

as^Erjk\dakl (11) 

where Eijkl contains the usual elastic constants. 
Substituting eqns (10) and (11) into eqn (1) and solving 

for datj we arrive at 

do^D^de^-d^-d^ (12) 

where Dijkl = [Cijkl + Ey«" 1 ]" 1 . Substituting eqn (12) 
into eqn (10) gives 

dej. = CyklDklmn(demn - dec
mn - d&l

mn). (13) 

Equations (12) and (13) indicate that the states of stress 
and plastic strain can be determined once the states 
of total, creep and thermal strains are known. Alterna-
tively, using the elastic stress-strain relation, eqn (11), 
along with eqns (4) and (9) we can arrive at λ as 

df 
fo- Eijkiidhi-fcu-ds'u) 

toijdaij 3daijdaij ~da„iJudau 

A detailed description of the complete elastic-
plastic cyclic theory used in the present program, 
which includes elastic-ideally plastic, linear and non-
linear strain hardening behavior, and proportional 
and nonproportional cyclic loading conditions are 
presented in Ref. [3]. 

The constitutive equations for time dependent creep 
are somewhat similar to those for plasticity in that they 
require a flow rule, a prescribed uniaxial "creep law" 
relating creep strain rate to time at constant stress and 
temperature levels, and a hardening rule. 

The flow rule for a multiaxial stress is similar to the 
Prandt-Reuss flow rule for plasticity, i.e. 

itj^^u (14) 
where ε^ and σ^ are components of the creep strain 
rate and deviatoric stress tensors, respectively. The 
scalar factor λ can be found to be 

(15) 
2 σ 

where ε* is the effective creep strain rate, σ is the effective 
stress, 

ει = V 3 %j SU 

° = S°uau 
(16) 

t denotes time and T denotes temperature. 
Uniaxial creep tests are performed at constant stress 

and temperature levels to determine the "creep law" 

(17) 

εϋ = εϋ(σ,ί, Τ). 

Usually this is prescribed in equation form, e.g. 

?=/(σ, Τ)[1-*"Γ(σ·Γ) ί ] + Α(σ, T)t 

where /, r and h are chosen to best fit the data. It is 
easier to handle ε*(σ, ί, Τ) if it is prescribed in equation 
form. Usually an equation can be found to fit the data. 
If needed different equations can be used at different 
stress levels. 

Among the many hardening rules that can be 
considered the two most generally compared are 
strain-hardening and time-hardening. These hardening 
rules dictate the path from one stress state to another. 
The strain-hardening rule 

ec=6c(tf, 7 ^ (18) 
assumes that at constant stress and temperature the 
creep strain rate depends on the existing total creep 
strain while the time-hardening rule 

ε0=ε°(σ, T,t) (19) 

assumes that at constant stress and temperature, the 
creep strain rate depends on the existing time (from 
the beginning of the creep process). While other more 
complicated models may be more accurate it has been 
determined that, in most cases, strain-hardening ade-
quately describes the hardening behavior. The strain-
hardening rule is acceptable as long as load reversals 
do not occur. In order to eliminate observed incon-
sistencies an auxiliary procedure must be used, when 
stress reversal occurs, as described by Greenstreet et al 
[9]. Stress reversal occurs whenever 

ei/Fy<0 (20) 
where &tj is measured from its current creep strain 
origin. At these points the creep strain origin is switched 
to a new value and the analysis continued. 

In addition, because of the assumption of creep 
strain incompressibility, delayed strain recovery upon 
unloading cannot be exhibited. For small strain 
behavior, however, this phenomenon may be more of 
theoretical interest than practical importance. 

Although we have presented the plasticity and creep 
constitutive equations independent of each other, at 
high-temperature both are present and influence each 
other, i.e. plastic behavior is influenced by prior creep 
behavior and creep behavior is influenced by prior 
plastic behavior. ORNL has been experimenting with, 
among other materials common in nuclear reactors, 
annealed type 304 stainless steel. Their conclusions [4] 
are that prior small plastic strains have little effect 
on subsequent creep strain rates, but that prior creep 
strains have a significant effect on subsequent plastic 



High-temperature inelastic analysis 251 

strains, especially at elevated temperatures. In par-
ticular, accumulated creep strains reduce the develop-
ment of subsequent plastic strains through, pre-
dominantly, an increase in the yield stress. In an 
attempt to account for this behavior, Pugh, Clinard 
and Swinderman [10] have recommended modifica-
tions to the constitutive equations. These modifications 
allow the plastic loading surface to translate with 
changes in creep strains, and expand with accumulated 
creep strains in a similar manner as with plastic strains. 
As an alternative, Robinson [8] suggests a unified 
creep-plasticity model which is shown to represent 
qualitatively most of the important phenomenological 
features observed in materials used in high temper-
ature reactors. At the present time neither of these 
approaches has been incorporated into ORNL's guide-
lines for inelastic analysis of high-temperature reactor 
system components. 

Solution algorithm 
From energy considerations the governing equation 

associated with the incremental initial strain method is 
written as 

[X]{AC/} = {AP} + {AQ<} + {AQP} (21) 

{At/} is the incremental nodal displacement vector, 
from which total strains are obtained 

{Ae} = [B-]{AU} (22) 

{AP} is the incremental applied load vector, including 
thermal loads, [K] is the elastic stiffness matrix defined 
as 

[«]=JWr[£][B]dK (23) 

and {AQP} and {AQC} are the pseudo-load vectors 
associated with plastic and creep strains, respectively, 
and defined by 

{AQp}={[B]T[E]{Asp}dV 
and 

{AQc} = j[BY[E]{Asc}dV (24) 

Here we use finite incremental quantities, denoted by 
A. We assume that the differential equations, including 
the constitutive equations, can be integrated over a 
small but finite interval, A, by using linear functional 
forms during the interval. 

The material constitutive model, as described earlier, 
enters the governing matrix equation, eqn (21), through 
the pseudo-load vectors as described in eqn (24). Note 
that the pseudo-load vectors, and hence the right hand 
side of eqn (21), are unknown at the start of an incre-
mental step. Note also that the formulation is iso-
thermal in the sense that the elastic stiffness matrix 
does not change in time, as a function of temperature. 

In the following, we outline an iterative method as 
described in Ref. [11]. Equation (21) is written, for the 
t'the incremental step and nth iteration, as 

[K]{AC/}?= {AP} + {Aßc}?+ {AQP}?+ {R}i (25) 

For the starting value we write, 

{ΔΟΡ}? = |[Β]τ[Ε]{Δε*}Μΐ/ 

{AQc}?=j[BY[E-]{A8c}°dV (26) 

CAS 13:1-3 - Q 

with the inelastic strain increment, 

{Asp}<j> = {Aep} and {Asc}° = (Aec}fR (27) 

taken as a predicted value. \ 
The predictor value for the creep strain is written as 

{ A e ' i f ^ A t , ^ } , - , - * ^ - ^ } , - , - ^ } , - , ] (28) 

where {éc}j corresponds to the converged value for the 
jth step. Équation (28) is a two-term expansion of the 
creep strain rate in time, with a backwards difference 
for the second term and a time increment, At,·. The 
corrector term is the average of the previous two 
iterations, 

| A e c | C O K , n = [ - | A e c | „ + | A e c j r l - | / 2 ^ 

noting once again that {Aec}j corresponds to {Aec}^0R'n 

upon convergence. The predicted value of plastic 
strain is, 

{ Δ ε ' Μ Δ ε ' ν , (30) 

and the corrector, 

{Asp}i={Aep}n
i. (31) 

In this manner 

{AQr^^BrmA^^dv 

{Aßc}?= hBY[E-]{Aec}f0R>n-1 dV 

The equilibrium corrector term in eqn (25), {#},, 
remains constant within an iterative cycle and repre-
sents any equilibrium imbalance brought forward 
from the previous incremental step, i.e. 

{«}ί=|[β]Τ[£][{ΔεΡ}ί , 1+{Δ^}1_1 

-{ΔΕ"}Γ_«-{Δ^Γ«,]αΚ (32) 

This procedure is an extension of the one outlined 
for creep by Mendelson, Hirschberg and Manson [12] 
and modified by Dahl [13]. Within this procedure 
there are a number of options available, including: the 
basic predictor-corrector iterative method, a predictor-
corrector method, i.e. no iterations take place as the 
solution marches forward. In either case, the predictor 
or the corrector can be modified so that the initial 
value is the converged one from the previous step and 
the corrector is the calculated value from the current 
iteration. Different procedures are most practical for 
different problems as discussed in Ref. [11]. 

Much attention has been given to the time step 
increment strategy at this governs efficiency and 
accuracy. The time step is always kept within certain 
bounds. If the time step is too large, accuracy suffers 
and instability may occur, and if the time step is too 
small the expense of solving a problem may be very 
high. The criterion for the time step solution follows 
those outlined by Zienkiewicz and Cormeau [7], and 
is described in Ref. [11]. 

Description of isoparametric solid element 
The basic finite element used is an isoparametric 

solid element as described by Zienkiewicz et ai [14]. 
A variable number of nodes of between eight and twenty 
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is allowed for each element as described by Levy [15]. 
in practice this variable node feature is especially 
useful when a mesh changes character, e.g. going from a 
coarser to a finer mesh. It is also applicable to problems 
in which the mechanical behavior is directional, e.g. 
when bending is significant in one direction and shear 
deformation is significant in another. The use of this 
"variable node" isoparametric element allows the user 
to specify the number of nodes contained in an element 
without resorting to external methods such as node 
elimination or constraint equations, which may be 
costly. 

Variable inelastic integration points 
The calculation of the incremental displacements, 

eqn (21) requires the evaluation of integrals involving 
inelastic behavior. Consequently, the accuracy of the 
solution depends on the accuracy of the inelastic strain 
representation. An accurate representation of the 
elastic-plastic creep behavior within an element is 
achieved by introducing a variable set of inelastic 
integration points, within an element, at which stress 
and strain histories are monitored. Within an element 
the order of the allowable kinematic strain distribution 
depends on the assumed displacement field while the 
order of the allowable elastic-plastic strain distribution 
(or inelastic material properties) and/or allowable creep 
strain distribution depends on the choice of inelastic 
integration points as well as the allowable stress 
distribution. Either Gauss or Lobatto integration 
points can be specified within each element. Lobatto 
points, in which boundary points are included, are of 
particular importance where it is necessary to detect 
initial and subsequent yielding on the surface of the 
element. We can then choose a finite element grid 
based on the kinematic strain variation expected while 
choosing inelastic integration points based on the 
inelastic behavior expected. This results in the use of a 
minimum number of degrees of freedom for a given 
analysis, which is particularly important for elastic-
plastic creep analyses where computational costs can 
be prohibitive. 

Examples are presented in Ref. [11] to demonstrate 
the use of a variable set of inelastic integration points 
for plasticity and creep. Here we repeat one of the 
problems, that of "thermal stress relaxation" involving 
creep alone. 

An infinite plate of width 2c is subjected to a steady 
state temperature distribution across the width, as 
shown in Fig. 1(a). Secondary creep is assumed with the 
creep rate given as 

e<=3-l(T2V*sgn(tf) (33) 

The solution to this problem can be found by sub-
stituting 

a = E(s-ec) (34) 
into eqn (33), yielding 

dec 

- 5 = 3 x l 0 - 2 4 £ 4 d i (35) 
(ε — ε χ 

along with 

e= -0.0051(y2 -1 /3)+ f ε° ay (36) 
Jo 

where e = e—(xT. 

LOBATTO POINTS ACROSS WIDTH 

Fig. 1. Thermal stress relaxation. 

If ε was constant, then eqn (35) would be the stress 
relaxation equation and integrable directly. As it is, a 
numerical procedure must be used to integrate eqns (35) 
and (36). 

One element is sufficient since the element allows 
for a quadratic thermal strain distribution across the 
width. The creep strain will vary through the element 
dependent on the choice of inelastic integration points 
as well as the allowable stress distribution from eqn (34). 

The finite element solution is found for various 
Lobatto point schemes across the width. The creep 
strain distribution at r=100 hr is shown in Fig. 1(b), 
and the stress relaxation is shown in Fig. 1(c). As the 
number of Lobatto points is increased across the 
width, the creep strain profile is represented more 
accurately, resulting in a better approximation of the 
integration performed in eqn (36). A single eight node 
element is sufficient to represent the exact kinematic 
strain distribution. The inelastic part of the total 
strain is found to be more accurate as the number of 
inelastic strain integration points is increased. This is 
equivalent to stating that the integral of creep strain 
in eqn (36) is more accurate as the number of integration 
points is increased. Nine Lobatto points appear to be 
sufficient for this problem as the solution is within 1 % 
of the solution using 17 Lobatto points. Thus, an 
accurate representation of the creep strain distribution 
within an element can be obtained with the use of a 
variable set of inelastic integration points, eliminating 
the need for a finer idealization. For this problem eight 
Gauss points gives the same accuracy as nine Lobatto 
points which is consistent with the accuracy of these 
integration schemes. 

General solution procedures 
In general, the procedures outlined in Fig. 2 should 

be followed for a large scale inelastic analysis. Model 
generation includes determination of the finite element 
grid and choice of inelastic strain integration points. 
Preprocessors include initial data checks, bandwidth 
optimization and model plots. Since inelastic deforma-
tion is a path-dependent process, a restart capability 
is an important feature for large analyses, allowing the 
user to examine the deformation history at intermediate 
load levels before proceding further. The restart pro-
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Fig. 4. Pressure and moment histogram. 

Fig. 2. Problem flow chart. 

cedure incorporates some special features that are 
useful for load cycling. During the initial load-time 
history, restart information can be saved at a number 
of load-time points along the way. The user can then 
restart the computations by loading or unloading 
from any given point in the load history. The restart 
intervals can be decided on as the analysis proceeds. 
Postprocessors include deformed model and contour 
plots. Data processing is also included whereby data 
for specific times and stress points can be gathered, 
sorted and processed to obtain contour plots of such 
quantities as effective and principal stresses and strains. 

ANALYSIS OF fflGH-TEMPERATURE REACTOR 
PIPING œMPONENT 

In order to verify the analytic capabilities developed, 
as well as the constitutive relations used for high-
temperature inelastic behavior, we performed an 
elastic-plastic analysis of a test model, designated 
NS-2 by ORNL. The model is represented in Fig. 3 
and is representative of nozzle attachments in pressure 
vessels used in the nuclear industry. This model is 
composed of type 304 stainless steel and consisting of a 
cylindrical nozzle-toroidal fillet-spherical shell con-

MEAN 
RADIUS 
= 5.04 cm (1.984 IN.) 
THICKNESS 
= 0.284 cm (0.112 IN.) 

MEAN RADIUS 
= 31.24 cm (12.30 IN.) 
THICKNESS 
= 0.838 cm (0.330 IN.) 

3.10 cm (1.22 IN.) 

figuration, and is being tested at ORNL [5]. The test 
is being conducted at 1100° F for a period of 21 weeks 
under combined internal pressure and end moment 
loadings as shown in Fig. 4. 

The creep-strain rate time relation was modeled 
after experimental findings which did not fit the usual 
"creep laws" based on powers of stress and time. The 
data, presented in Ref. [16], was approximated by the 
expression 

ε ° = ν + Σ Ai[l-Qxp(-Rit)'] (37) 

by Ciinard [16]. Linear strain hardening was found to 
be representative of the material (304 Stainless Steel) 
behavior at operating temperature (1100°F) [4]. 

The finite element model, shown in Figs. 3 and 5, are 
based on expected total strains. A model composed of a 
grid with four times the number of degrees of freedom 
was tested elastically and found to give the same total 
strain results as the coarser model so that the accuracy 
of the present model was assured. Based on the findings 
mentioned in the section on modeling, one element was 
sufficient in the thickness direction while the set of 
inelastic integration points in each element was chosen 
based on the expected inelastic strains. As an example, 
combined bending and membrane stresses in the fillet 
region dictated the use of a five point Lobatto scheme 

^ ^ ^ 
Fig. 

Fig. 3. Overall dimensions of piping component. 
5. Finite element representation including gauge loca-

tions. 
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through the thickness. In order to further verify the 
model, including inelastic integration point selection, 
ana elastic-plastic analysis was compared to an ORNL 
experiment reported Dy Gwaltney, Richardson and 
Battiste [17] for the same model at room temperature. 
The analytic and experimental results are shown in 
Fig. 6 and are in good agreement. 

The findings mentioned earlier, pertaining to 
plasticity-creep interaction, indicate in which direc-
tions we anticipate the finite element analysis to differ 
from the true response. In particular, the effect of 
prior creep strain accumulation should increase the 
subsequent yield stress and therefore reduce the 
development of plastic strains. Thus, not accounting 
for this interactive behavior should lead to an over-
prediction of plastic strains in the presence of creep 
strain accumulation. 

The actual analysis was run in 15 segments using 
restart procedures. Typical results are shown at gauge 
location S8, in Figs. 7 and 8 for the pressure loading 
phase and Figs. 9 and 10 for the moment loading phase. 
The experimental results shown were obtained from 
Clinard, Richardson and Battiste [5]. The results show 
an overprediction of plastic strain during the pressure 
loading, which occurs predominantly during the first 
creep period where stress redistribution is pronounced, 
and during the second time-independent reloading 
period. After the first period the increase in plastic 
strain during the time-dependent pressure loading 
phases is negligible, due to the lack of stress redistribu-
tion. In addition, as mentioned earlier, the delayed 
strain recovery exhibited experimentally was not pre-
dictable analytically. The present results agree almost 
identically with those found by ORNL using axisym-
metric analytic methods [18], the only difference being 

CIRCUMFERENCIAL - F.E. 
o CIRCUMFERENCIAL -GAUGES 

LONGITUDINAL - F.E. 
D LONGITUDINAL - GAUGES 

20 30 40 50 60 
PHI, FILLET ANGLE (DEG) 

Fig. 6. Comparison between experimental and finite element 
analysis results for strain at inside south surface for piping 
component under combined pressure (500 psi) and end 
moment (20 k-in) at room temperature (zero degrees corre-

sponds to cylindrical-toroidal intersection). 
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Fig. 7. Pressure load vs circumferential strain at gauge 
at 1100°F. 
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Fig. 8. Circumferential strain at gauge 8 during pressure 
loading, at 1100° F. 

Fig. 9. Moment load vs circumferential strain (during 
loading) at gauge location S8. 
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Fig. 10. Circumferential strain at gauge location S8 vs time 

during moment loading. 

that the present solution predicts plastic behavior 
during the first creep phase. The results shown in 
Figs. 9 and 10 are not compared to experiment since 
the experimental results during this phase are still in 
progress as of this writing. However, the limited data 
available indicates that for the time-independent load-
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-TOROIDAL SECTION H 

Fig. 11. Contour plot of effective creep strain % at end of pressure phase. 

-TOROIDAL SECTION 

Fig. 12. Contour plot of effective strain % at end of moment phase. 

ing phases the plastic strains are overpredicted and for 
the time-dependent loading phases the creep strains 
are reasonable. 

The discrepancies between experiment and analysis 
can be accounted for qualitatively if we consider the 
lack ofinteractive behavior between creep and plasticity 
as discussed earlier, i.e. creep strains at high temper-
atures tend to reduce the development of subsequent 
plastic strains, and accumulated creep strains tend to 
raise the yield stress of the material. 

Typical contour plots are shown in Figs. 11 and 12. 
Note that the geometry is distorted. Here we show 
contour plots of effective creep strain at the end of the 
pressure and moment loading phases. Creep strains are 
directly related to stresses and therefore Figs. 11 and 12 
represent the accumulated effect of the stress history. 

The stresses and creep strains developed in the spherical 
shell are almost completely due to the pressure loading, 
while those in the toroidal and cylindrical sections are 
redistributed due to the moment load as shown. The 
peak stress occurs at gauge location S8 in the toroidal 
region, except for the edge effect near the application 
of the moment. 

FUTURE RESEARCH DIRECTIONS 

In the near future, large scale computer programs 
will be capable of analyzing nonisothermal, large 
strain, inelastic three-dimensional behavior. Solution 
algorithms, finite elements and modeling techniques 
are in a relatively advanced state and have been 
demonstrated by many researchers. The area of most 
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uncertainty appears in the constitutive relations. It is 
apparent that even for general cyclic inelastic behavior 
alone (i.e. isothermal, small displacement, inelastic 
behavior) the present state-of-the-art constitutive rela-
tions are inadequate. An accurate representation of the 
general inelastic material behavior must be established. 
Research in the areas of unified theories and interactive 
relations for a wide range of materials and environ-
ments may solve this problem. 
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Abstract —A finite element program development is presented for elasto-plastic piping systems subjected 
to severe pipe rupture blowdown forces and finite deformations. The piping consists of straight and curved 
elements with relatively thin walls. The effects of varying internal pressure on yielding are included but 
remain uncoupled from the dynamic solution process. 

The elasto-plastic materials are modeled as bilinear with isotropic strain hardening. An incremental flow 
rule associated with the Von Mises yield surface completes the constitutive laws governing these materials 
except for the requirement that stress rates be frame indifferent (as part of a more general requirement on 
constitutive equations). Frame indifference is satisfied by writing the Prandtl-Reuss equations in terms of 
"stretching" (or strain rate) and Jaumann flux. 

In the context of this paper, "large deformations" result from second order effects due to gross changes in 
frame geometry and due to local bending and membrane strains. 

The solution to the typical initial value problem representing the postulated blowdown event within a 
nuclear piping system consists of a step-by-step integration of a set of ordinary differential equations in the 
time domain. The authors have chosen the Newmark Beta method, with variable integration steps for this 
purpose. At each integration step "correction" forces P„ and H„ are found by determining plastic strains and 
rigid body rotations at Gaussian grid points within a pipe element and then performing numerical integra-
tion over appropriate pipe volumes. 

At regular intervals, direction cosines of applied blowdown forces are transformed to follow the rotations 
of traction surfaces, and the stiffness matrix is updated. The optimal interval spacing for solution accuracy 
appropriate and economy is under investigation. 

Comparisons with solutions and experiments in the open literature will be made, wherever possible. 

Despite its low probability, the postulated pipe rupture 
event represents one of the major concerns of nuclear 
plant design. Efforts at restraining high energy pipes 
following such an event include the use of energy 
absorbing restraints, i.e. yielding U-bars, crushable 
materials. Hard restraints, i.e. concrete walls and rigid 
steel frames, occur where clearences are minimal or 
functional operability of components must be main-
tained. Characteristically all such restraints must be 
gapped to allow for free pipe movement during normal 
operating conditions. 

Frequently it is impossible or uneconomical to place 
restraints in certain crowded or otherwise inaccessable 
regions, with the result that long stretches of pipe 
remain unrestrained. The validity of a pipe whip 
analyses for such cases (using small deformation theory) 
may then be questioned (and often is) with regard to the 
accuracy of restraint reactions and pipe deflections 
that result. This paper represents an outgrowth of 
earlier works on large deformations in solids [1] and 
PLAST [2], a computer program for the dynamic 
analysis of elasto-plastic piping systems. In these de-
velopments the Von Mises yield surface and its incre-
mental, associated flow rule [3] are coupled with an 
isotropic strain hardening material. 

BACKGROUND 

The large deformation of flexible systems (i.e. plates, 
shells, frames) is characterized by significant rigid body 

tApplied Physics Department. 
% Analytic and Computer Department Tij

) = τ^ — τ^ω^ — τikœ^k 

rotations of local segments of the system. Local 
deformation gradients may be small but the effect of 
rigid body rotations on these gradients remain sig-
nificant [4]. 

In formulating the solution to dynamic problems in 
large deformations, consideration must be given to the 
"frame indifference" of the constitutive equations [5]. 
Therefore, such terms as strain rate, stress rate, etc. 
must themselves be frame indifferent. The associated 
flow rule for incremental plasticity is sometimes 
parameterized with respect to time, causing plastic 
materials to appear to be rate dependent. Thus, when 
materials undergoing large deformation have elastic 
components of strain that are infinitesmal, the flow rule 
for an elasto-plastic material may be written: 

where 

is the deviator of "stretching" ; 

" 2\dxj dxj 

defines "stretching" ; 

is the stress deviator ; 
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(1) 

(2a) 

(2b) 

(3) 

(4) 
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defines the Jaumann "flux" or stress rate [6] (see 
Appendix A). , , - ,<, ^ x 

defines a term of the "spin" tensor. G is the shear modul-
us, λ is a proportionality factor dependent on the cur-
rent state of stress and condition of yielding, U is the 
material point displacements, δ^ is the kroneker delta 
and/(To)=0 defines a yield surface in stress space. 

The flow rule, as indicated in (1), refers to a current 
coordinate system attached to each particle of a con-
tinuum. As the continuum deforms, individual particles 
experience rigid body rotation as well as straining. The 
Jaumann flux is therefore a rate of stress increment due 
to both the deformation of the particle and the rotation 
of its stress field. This definition of stress rate implies [6] 
stationarity of the stress invariants (and hence the yield 
function) when Τ ^ = 0. The virtual work equations 
may be written in incremental form as follows: 

f (Tfj-v + AT^ÔeijdV^ I pF^ÔU^dV 
Jv Jv 

+ f [T^ÔU^dS (6) 
s 

where n refers to time t{n\ M)ln) = ()ln)-()lH~ l\ [ 7 » is 
the traction on a surface with outdrawn normal v, 
F, is the body force/unit mass, Ξ = Ξσ + Ξν, Sa is the 
surface with tractions specified, Sv is the surface with 
displacements specified and Kis the volume in current 
configuration. 

Prior to transforming (6) into usable matrix form, 
several finite element definitions and equations will be 
l i s t e d : {tf } = [<&]{*} (7) 
defines the velocity of any point within an element in 
terms of the element nodal velocities. 

{D)=[B]{X! (8) 

defines stretching in terms of nodal velocities. 

{T^} = [£]{D(r )-D(P)} (9) 

defines the constitutive equations in rate form and is 
really a restatement of (1), where [Φ] is a shape func-
tion matrix, {X} is the vector of nodal velocities, 
[B] is the matrix obtained by applying the differ-
ential operators of (2b) on (7), i.e. 

[ « ί ) ] = [Γ][Φ({)] (10) 
U is the vector of element internal displacements, [£] is 
an elasticity matrix relating stress rate to stretching and 
D{T\ D(P) in (9) refer to "total" and "plastic" compon-
ents of stretching respectively. 

Equation (4) may be rewritten in matrix form as: 

{ T } = [ T J + [ W ] { T } . (11) 

Multiplying both sides of (11) by ΔΓ„, using (1), (8), (9), 
and rearranging, results in : 

{AT„} = [ £ ] { [ B J { A X , , } - < Î 1 1 K . I } } - [ A H ; ] { T 1 1 _ 1 ! . 
(12) 

The virtual work equations in matrix form are then: 

ÔXJ | B,[{<I-AW„rr„_, +Ε(Β„ΔΧ„-Λ„τ^,)J dK 

= ÖX„T J {p&jFJdV+ÔXÏ j (Î>„Tr„)dS (13) 

where I is the identity matrix. The body force is here 
identified as an inertial quantity: 

¥η=-ϋ„=-ΦΧη. (14) 

The vector SX^ is eliminated from both sides of (13) 
and eqn (13) is rewritten as: 

[M„][X„! + [K„-]{AX„] = {T„!-{/>„} + {H„} (15) 

where 

I X ] = f Ρ„(Φ„ΓΦ„^Κ (16a) 
Jv 

[ X . ] = f [B„TEB„]dK (16b) 
JV 

{T„} = jo„TT„dS (16c) 

{//„}=[ W ^ - , d F (16d) 
Jv 

{ Ρ „ ! = ί B / d - A W X ^ d l / (16e) 
Jv 

d V and dS are the differential volume and differential 
surface with specified tractions, respectively, of a single 
pipe element referred to a current configuration. 

The computation of integrals (16aH16e) can be aided 
by noting that : 

dV=JdV0 (17a) 

and 

dS = \j\^dS0 (17b) 

where J=(dx/dx) is the Jacobian of a transformation 
(see Appendix B) from the initial to a current configura-
tion, |J\= determinant of J and (^x/^x)=J_1, and dV0 

and dS0 are the differential volume and traction surface, 
respectively of a single pipe element referred to the 
initial configuration. 

Equation (15) was written to represent the equation 
of motion for a single element subject to externally 
applied and inertial forces. As connecting elements 
share common nodes, the matrices [M„] and [Kn] 
may be "assembled" at common nodes to provide the 
total mass and stiffness for each node in each of its 
degrees of freedom. A similar assembly procedure 
applies to vectors {Pn} and {//„}. This leads to a set of 
matrix equations of motion for the entire assembly of 
nodal points that is identical to ( 15) in form. 

SOLUTION METHOD 

Equation (15) may be solved by stepwise integration 
methods subject to appropriate boundary and initial 
conditions. In the pipe rupture analysis, the boundary 
conditions include: 

(a) Phased blowdown (inertial plus pressure) forces 
at each elbow of the system, available as time histories. 
Such forces may be obtained from one-dimensional, 
two-phase fluid dynamic codes and are included in 
(16c). 

(b) Gapped, radial, external elastic-plastic, springs 
acting intermittantly and unidirectionally with the 
additional constraint to displace co-directionally with 
pipe. These springs are treated as non-linear "correction 
forces" similar to those of (16d) and (16e). 
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(c) Conventional fixed/free displacement boundaries. 
The step-wise integration procedure in this further 
development of the PLAST Program, is by Newmark 
[7] with parameter j5 = | . The method is explicit and 
uses criteria suggested by Newmark as the basis for 
adjusting each time-integration step. Thus, numerical 
instability is anticipated and the integration interval 
optimized based on these criteria. When frequent 
opening and closing of gapped restraints occurs, 
integration intervals must be adjusted to assure ade-
quate sampling of the restraint responses in addition to 
satisfying the above criteria. An alternative, implicit 
integration procedure [8], using constant integration 
intervals, is unconditionally stable for $^\ and leads 
to more rapid (and somewhat less accurate) solutions. 
However, restraint peak responses will be markedly 
truncated unless the integration interval is very small. 
An additional factor that limits the integration interval 
is the magnitude of incremental plastic deformation 
components. These depend on the stress state close to, 
but just prior to the current stress state. If the variation 
of stress states are large during any integration interval, 
one may expect computational inaccuracy. 

Integrals (16d) and (16e) are evaluated by the applica-
tion of four point Gaussian quadrature along the pipe 
element axis and eight point Filon Quadrature around 
the pipe element circumference. As the pipe walls 
are considered to be thin, these quadrature points lie 
in the mid-plane of the pipe wall. See Appendix C for 
detailed description of pipe element. 

The algorithm used in this analysis is similar to that 

given in [2], with the exception that updating of refer-
ence frames must now be included. 

As magnitudes in levels of frame distortion increase, 
nodal coordinates are updated. This is followed by 
updating of [ß] and [X] matrices and the integrals 
of eqns (16a)-(16e) for each pipe element involved in the 
frame distortion. 

EXAMPLES 

The rigid frame indicated in Figs. 1 and 2 is subjected 
to simultaneous vertical and horizontal loads (indicated 
in Fig. 1). The frame itself consists of 4 in. pipe with the 
following physical properties : 

Area = 3.174 in2 

7 = 7.2333 in4 

£ = 29xl0 6 ps i 
ay=4.6 ksi (at initial yield) 
i? = 0.3 
w= 10.79#/ft. Note: This was multiplied by 675 to 

obtain a period 25 times its 
normal minimum. 

The applied forces are: 

max FH = 5X 
maxF,=20A:. 

The material is treated as bilinear and strain hardens 
isotropically. In the examples chosen, the alternative 
options of allowing the applied forces to remain 
constantly in the same direction, or of allowing the 

X 
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Fig. 1. Vertical displacement of node 4 vs time. 
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Fig. 2. Node 3—horizontal deflection vs time. 

same forces to rotate with the nodal load application 
points are considered. 

An examination of the results in Figs. 1 and 2 indicate 
the following: 

(1) The effects of strain hardening are not significant 
until large distortions of the frame occur. 

(2) In the large deformation regime significant differ-
ences occur in solutions due to different strain harden-
ing rates (all other parameters remaining equal). 

(3) The effect on the solution of allowing applied forces 
to rotate with their point of application is much larger 
than that of switching from small to large deformation 
theory. 

DISCUSSION 

The assumptions of large deformations, in this 
paper, encompass large rigid body rotations accom-
panied by relatively small deformation gradients 
locally. This may be interpreted to mean either than the 
relative rotation of one end of a pipe element with re-
spect to its other end is "large" or that the relative 
rotation of two nodes separated by two or more 
elements is large. In the latter instance, it is assumed 
that the element retains its original shape (either 
straight or curved) following a large deformation. In the 
former case, a straight element may become curved or a 
curved element may change curvature (i.e. radius) 
subsequent to a large deformation. Each of these two 

instances would be realized in coarse and fine meshed 
systems respectively. 

As the time-history solution procèdes, each incre-
ment in nodal displacements is referred to its current 
configuration, i.e. to a set of coordinate axes located at 
each nodal point of the distorted continuum. However, 
if each element retains its original shape after a con-
figuration change, the form of the shape function re-
mains unchanged. This condition, which is consistant 
with the characterization of flexible systems made 
earlier in this paper, has the effect of minimizing the 
"rate-of-rotation" term in the Jauman Flux, i.e. as local 
element axes undergo rapid rigid body rotations, the 
particular rotations, within each element, referred to 
these moving axes diminish. 

If elemental shapes change, subsequent to large 
déformations, then the shape functions must change to 
account for curvature changes in each element. 

CONCLUSIONS 

The characterization of large deformations of piping 
systems, indicate that gross geometric changes and 
traction transformations (rotation of applied loads) are 
primary factors in selecting a solution method. Since 
local deformation gradients are small, local volumetric 
and surface area changes are negligible, i.e. jacobians 
are always close to 1. Since reference axes in the step by 
step solution method move with each node and ele-
mental distortions are assumed to be small, and the 
"spin" components of the Jaumman Flux terms are 
negligible. 



Dynamic analyses of elasto-plastic piping systems undergoing large deformations 261 

FUTURE TRENDS IN NON-LINEAR 
STRUCTURAL ANALYSIS 

There are three main areas requiring significant work 
to improve the efficiency and applicability of large 
scale non-linear dynamic structural analysis programs. 

First, is the development of more accurate models for 
non-linear elements [10,11,13,14] . Second is improve-
ments in techniques for integrating the resulting dyn-
amic equations [12-14] and finally substructuring of 
structural systems into linear and non-linear regions 
and/or stiff and flexible regions [15, 16]. 
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APPENDIX A 
Jauman flux 

The estimates for Jaumann flux at a material point are 
predicated on the assumptions that: (a) transverse shear 
terms in the pipe cross sections are negligible, and (b) pipe 
wall thicknesses correspond to those of thin shells. There-
fore: 

- = τΓ β*0 (Al) 

Consideration of the anti-symmetry of the rate of rotation 
tensor and eqns (Al) in the expansion of eqn (4) lead 
the expression ; 

(A2) 

which represents the expansion of eqn (11). 

h-
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APPENDIX B 
Deformation gradient 
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(Bl) 
represents the deformation gradient of a material particle 
in cylindrical, physical coordinates. 

Consideration of thin wall assumptions reduces all varia-
tions with respect to r to zero, i.e. 

dUr dUo dUx 
~ = ~ = - ~ = 0. (B2) 
or cr or 

Further assumptions include: 
(a) Uniform hoop strain 

cUo_ 

de" 
(b) Unwarped cross-sections due to torsion, i.e. planes 

remain plane 

= 0. (B3) 

dUx 

3Θ 
--0. 

This results in the following determinant: 

\A-
dU. 

1 + -

(B4) 

(B5) 

APPENDIX C 
Pipe elements 

The piping systems is modeled as a series of Euler-
Bernouli prismatic and curved beams connected to one 
another at lumped mass points (nodes). The element is 
defined by two nodes /, J with six degrees of freedom at each 
node. Vector {X} represents the displacements of nodes / 
and J. 

{X} = {U'9 V\ W\ 0', 0', Θ1, U\ V\ WJ, 6J, θ\ Θ3} 

where U, V, W= displacements along x, y, z, axes and 
0X, 6y, θζ = rotations about x, y, z, axes respectively, The 
typical straight and curved pipe elements are shown in Fig. 3. 
In Fig. 3 are shown interpolation points of Gaussian quadra-
ture and Filon Quadrature which are used to evaluate the 
plastic correction force (Integral 16D) and the updating 
correction force (Integral 16E) for each element. 
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Abstract—The effects of material nonlinearities on response spectra resulting from the impact of a com-
mercial aircraft on the secondary containment of a BWR reactor are investigated. A finite element model 
taking into account concrete cracking and crushing and steel yielding is used for the analysis. The results 
show that, for the design considered here, no reduction of the response spectra due to material nonlinearity 
in the impact zone can be expected. As a matter of fact, an amplification results close to the impact area. 

1. INTRODUCTION 

Nuclear regulations in several countries require that 
the reactor building and the equipment be designed to 
resist the impact of a commercial aircraft. 

The present study investigates the effects of material 
nonlinearities on equipment response spectra for the 
impact of a Boeing 707-320 on the secondary con-
tainment of a BWR reactor. 

Much work has been devoted recently to this subject 
[1-5], motivated by the extremely high accelerations 
observed from linear analysis, the hope being that 
nonlinear analysis should prove them to be too con-
servative. These studies, however, do not show a 
general consensus about possible influences of material 
nonlinearity. 

The emphasis is placed here on the influence of 
concrete cracking and crushing and steel plasticity in 
the immediate vicinity of the impact zone. Non-
linearities of the component support or other design 
related influences on response spectra are not addressed 
herein. 

A finite element analysis of both linear and non-
linear response is performed. A loading function 
corresponding to an impact on a rigid target is used 
throughout the study 

The problem statement is given in Section 2, followed 
by a description of the finite element model in Section 
3. Numerical results are described in Section 4 and 
conclusions are drawn in Section 5. 

2. PROBLEM STATEMENT 

The impact of a Boeing 707-320 onto the dome of the 
secondary containment of a BWR reactor is being 
investigated (Fig. 1). 

Since mainly qualitative results are being looked for, 
we restrict the model to a dome sector of radius 22 m 
(without boundary elements), thickness 1.2 m (reduced 
to 1.12 in order to account for the reinforcement's 
position), subject to a vertical impact. 

Geometry 
Figure 2 shows the geometry and describes the load. 

The shell is discretized into three layers of finite 
elements. A special boundary element combining a 
dashpot (following [6]) with a weakened stiffness 
reduces wave reflections and allows for some tuning 
of the first mode, in order to obtain a satisfactory 
similitude between the model and the containment 
structure. 

Load 
The load is uniformly distributed over an impact 

area of 24.63 m2 (radius 2.8 m). The load time-history 
is shown in Fig. 2a). This impact area corresponds to 
the probable average according to [7]. It is smaller 
than the area usually adopted (37 m2), in order to 
favor nonlinear influences, which we expect to be 
moderate. 

As already mentioned we use a preassumed loading 
function (following [7]). If strong energy dissipation 
occurs we could expect the load time-history to be 
significantly reduced, but earlier computations show 
that this is unlikely to reach 10% and since it would 
require a much more costly modelling (including the 
aircraft), we limit the analysis to the induced vibration. 

The total load duration is 400 ms and the adopted 
time step 2 ms, giving satisfactory mode representation 
upto about 80 Hz. 

3. FINITE ELEMENT MODEL 

3.1 Elements 
We use 60-D serendipity isoparametric finite ele-

ments to simulate the massive concrete structure. 
Reinforcement is simulated by degenerated 24-D 
membrane elements without shear stiffness. Typical 
elements are shown in the upper part of Fig. 3. 

The structure is divided into 30 brick-type elements, 
distributed over three layers and 99 membrane ele-
ments. It has 267 nodes (Fig. 3, lower part). 

263 



264 T H . ZIMMERMANN et al. 

Fig. 1. Impact on reactor building. 

3.2 Constitutive equations 
A detailed account of the material model is given in 

[8]. We limit here the discussion to an overview com-
pleted by the more recent modifications. 

Concrete. Concrete in a three-dimensional state of 
strain can be considered as a statistically isotropic 
material. In tension and for moderate compression, a 
linear constitutive law is selected. In the domain of 
higher compressive stress, a nonlinear stress-strain 
relationship is introduced. The failure criterion is 
expressed as a function of the stress invariants, speci-
fied in the spatial coordinates of the three principal 
stresses. The same failure criterion governs the failure 
in tension (cracking), as well as that in compression 
(crushing) and of course all combinations thereof. All 
states of the material behavior are described in the 
following paragraphs. 

The nonlinear behavior of concrete is described by a 
variable shear modulus μ( = (7), function of the second 

(3.1) 
(3.2) 

(3.3) 

(3.4) 

(3.5) 
(3.6a) 

(3.6b) 

stress invariant I2. The bulk modulus K remains con-
stant. No volumetric dilatancy is considered, as this 
effect appears only close to failure. The following set 
of equations defines the stress-strain behavior : 

Hooke's law, 

where 

and similarly for &ir Further 

K=constant 

h>he-
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a) 

Fig. 2. Geometry, load and boundary conditions. 

A typical "μ-law" is shown on Fig. 4(a). The parameters 
which define the law are: the limit of linearity (e.g. 
1/3/?/? = 1/3 uniaxial strength on prism) and the failure 
strain (εΓ=2-3%). 

Under cyclic loading, we check for unloading on 
the second stress invariant I2. When the increment 
Δ/2 is negative we set : 

(1 ) I'2e=/2llt as the new limit of linearity (3.7a) 

(2)μ = μβ (3.7b) 

(3) Δε0 = D " *σ0 : the out-of-balance stressJ 
becomes a permanent strain (this is merely a 
formal transformation). (3.7c) 

Upon reloading, the same μ-law holds again, with the 
new I'2e defined above. A secant shear modulus μ' is 
defined through a new origin on II\12 as indicated in 
Fig. 4(c). 

The failure surface is shown in Fig. 4(b). The surface 
is a general cone centered along the average axis of the 
principal stresses. Any state of stress which is on or 
outside the surface represents a failure. For rupture 
under short-time loading, this failure surface was 
adopted, although much more complicated than the 

f Subscript u holds for unloading point, e for limit of 
linearity. 

JSee the initial stress algorithm in Section 3.3. 

more commonly used ones, in order to give the best 
correlation with published experimental results. The 
analytical form of the failure surface can be found in 
[9]. The parameters to be established by experiments 
are the uniaxial compressive strength of a prism ßpj 

the uniaxial tensile strength ßt( =y · ßp\ and the biaxial 
compressive strength n · ßp. Figure 4b shows the 
surface for ßp= —1, y = —0.1 and « = 1.3. 

Post-failure behavior can take different aspects 
depending on the stress state. Following a tensile 
failure, the concrete is orthotropic; for increasing 
load the principal axes will change leading to tangential 
stresses in the crack plane, while tensile stresses normal 
to crack are forced to zero by means of an "initial 
stress technique" (see Section 3.3). Following a com-
pressive failure (crushing), the behavior becomes 
similar to that of a granular material so that a new 
failure surface can be defined by a conic criterion, i.e. 

71.5/^+^=0 (3.8) 

(suggested κ=0.38). 
Steel. Yielding of the steel is determined by the von 

Misés criterion 

I2-\ö\k)=Q (3.9) 

where a(k) is the uniaxial tensile yield stress function 
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a) 
GAUSS POINTS Of INTEGRATION 
NOOES 

b) 

Fig. 3. Finite elements and mesh. 

of a hardening parameter k. Kinematic hardening 
(Fig. 4d) coupled with total strain theory is used here. 
As the deformation of the steel is strongly influenced 
by that of the concrete, the global response should, 
in general, be insensitive to the material model used 
for steel. 

3.3 Solution of the nonlinear equation of motion 
We want to solve the equation of motion 

Ma+N(d)=Rf (3.10) 
where N is a nonlinear algebraic function of d, corre-
sponding to the type of constitutive laws previously 
defined, i.e. 

σ=ϊ(ε) (3.11) 

with f a specific function. This covers, in particular, 
the nonlinear inelastic behavior described in the 
previous paragraph. 

In order to solve eqn (3.10) we employ an implicit 
Newmark algorithm [10], which consists of the fol-
lowing equations^ 

tSince we introduce material nonlinearity explicitely, no 
viscous damping is considered. 

JSee [11] for implementation details. 

MaM + 1+N(dM + 1)=Rn +i 
At2 

(3.12) 

d n + 1 = d w + A i v „ + — ( 2 K + i + (l-2j5)aw)(3.13) 

v„ + 1 =v„+A^a n + 1 +( l -<5)a n ) . (3.14) 

Assuming a nonlinear material behavior as described 
in the previous section, a solution can be achieved by 
adjustment of the elasticity matrix D, the initial strain 
vector ε0 or the initial stress vector σ0 in the following 
stress-strain equation : 

σ=Ό(ε-ε0)+σ0. (3.15) 
The initial stress approach with constant stiffness is 
used here throughout the nonlinear and dynamic 
iterations. First, we eliminate an+1 in (3.12) using 
(3.13) and define an "effective static problem" 

KSdB + 1 = R*+1. (3.16) 
At each time step, we perform then the following 
computations : 
(1) Initialization 

i = 0 , F i + i = 0 
(2) Iteration 

( a )R* iVi=RÎ + i+F i + i , (3.17) 
i.e. effective force=constant part + "initial stress 

266 
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Fig. 4. Constitutive laws (a) concrete shear modulus, (b) concrete failure surface, (c) concrete hysteresis, 
hysteresis. 

(d) steel 

equivalent force" 

(b)d,,+ 1Ä8diVi = R*iVi 

where 

ffi+1=f(e)-D(eiVi-e0). 

(3.18) 

(3.19) 

(3.20) 

i.e. fictive force increment=integral over the element 
of the out-of-balance stresses (computed at Gauss 
integration points). 
(d) Convergence check 

||Fi+1-Fl' | |/ | |Fi+1| |<tolerance. 
(e) As needed, increment i and go to (a). 

3.4 Data 
The geometry, the load and the discretization have 

been described previously. The material data corre-
sponding to both concrete and steel are given in 
Table 1. 

Boundary conditions. Rotational symmetry is im-
posed in both lateral planes of the shell sector. The 
outer edge of the shell is fixed and smeared radial 
dashpots are introduced in the boundary elements in 
order to damp out wave reflexions. 

The dashpots are dimensioned following [6], i.e. 

C=p · u · A {kg/s} : damping constant 
A= {m2} : area 
u = (E/p)1/2 {m/s} : axial wave speed 
p = 2.5 -103{kg/m3}: density 
£ = 4.2 · 9.81 · 109 {N/m2} : modulus of elasticity 
hence, C = 10.15 · 106 {kg/s · m2} · A. 

Reinforcement. Radial and tangential reinforce-
ment is introduced via membrane elements with no 
in-plane shear resistance. Steel sections as a function 
of horizontal radius are shown in Fig. 5b. For ease of 
implementation average values, constant over ele-
ments, are introduced. For simplicity, the same 
sections are taken in both directions, radial and 
tangential, and for both, upper and lower, reinforce-
ment. 

Shear reinforcement consists of 4 0 18/m (10.2 cm2) 
in each direction, i.e. 16 0 18/m2 (40.8 cm2). The shear 
reinforcement is smeared over the element's faces and 
discretized as described on Fig. 5a. As for bending 
reinforcement we use elements with preferential direc-
tions, normal here to the shell's midplane. 

4. NUMERICAL RESULTS 

In a first step, a linear elastic analysis was performed 
and the corresponding response spectra generated at 
several points. A second computation was then done, 
restarting at t = 140 ms. This corresponds approxi-

CAS 1 3 : 1 -3 -
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Table 1. Material data 

Concrete 

k 
kd 

3b 

^bd 

H 

Eod 

ud 

Yc 

εΓ 

= -240 

= 1.2 

- 1.2 A 

= 1.2 

ikp/cm2} (= 0.8 ßW = 

•ßp - -288 ikp/cm2} 

p = -288 

ßpd = -345.6 

= 2.5 /[£w[~= 43.3 

= 1.2 

■ 19,00 

« 1.1 

= 0.2 

= 2.5 

= 0,003 

Bulk modulus 

I n i t i al shea 

* t - 52 

o /i.2jaw| = 

E0 = 3.96 10 

{103kp/m3} 

uni axial fa i 

3(1-

r modulus μ 

Shear modulus μ = p - α 

—.M— 

_ l l_ 

-"-

3,6 105 

5 

0.8·(-300) ) )* 

I strengths 

) 
) e last ic moduli 
) 

Poisson's coef f ic ient 

specif ic mass 

lure strain 

-2od) 
2.2 105 {kp/cm2} 

^(l+ud) 

he 
, α = 0.59Ö l o W a r , 2 } 

|Steel 

Es =2 .1 10b{kp/cm2} 

Ê  = 2.104 {kp/cm2> 

o = 4,600 {kp/cm2> 

6 t = 5,600 {kp/cm2} 

ïs = 7.85 {t/m3) (set to γ$ = 0) 

Subscripts: 

* p = prism, d = dynamic, w = cube, b = b iax ia l , o = i n i t i a l , t 

r = rupture, c = concrete, e = l i m i t of l i n e a r i t y , s = steel 

= t rac t ion , 

mately to the initiation of material nonlinear behavior. 
Comparison of the nonlinear versus linear displace-

ment time-histories show a significant increase in the 
vertical displacement (28%) in the impact zone (Fig. 6, 
Point A), which fades out rapidly when we move away 
from the impact point (Fig. 6, Points B, C). 

Only moderate and local disturbances appear : multi-
axial cracking, no steel yielding. In Fig. 7, we show 
typical stress fields at t=2\4 and 330 mst. 

Examining the stress time-histories at three loca-
tions (Fig. 8), we observe exclusively tensile failures. 
During loading, the first cracks appear at the intrados, 
simultaneously in radial and tangential direction 
(Fig. 8, Point D, time 150 ms), opposite to the impact 
point. Later on, radial cracks propagate (Fig. 8, 
Point F, time 170 ms). During unloading tensile 

fThe arrows give the orientation and magnitude of 
principal stresses and the shaded zones indicate cracks traces 
in the section's plane, represented at Gauss points. 

^Stress time-histories are defined in the principal co-
ordinates of the final state of stress (at t=40O ms). Line i of 
the orientation matrix gives the cosinus of σ,. 

§In vertical direction. 

cracks also appear at the extrados and within the shell 
(Fig. 8, Point E, time 300 ms), again in both directions. 
This cracking is related to the hysteresis hypothesis as 
follows : during loading permanent compression strains 
form at the extrados, which lead to tensile stresses and 
cracking upon unloading, when the shell recovers its 
initial configuration (Fig. 8, Point E, time 300 ms). 

Accelerations time-histories are shown in Fig. 9§. 
Again we observe, due to nonlinearity, an amplification 
in the impact area (Point A), which fades out when 
moving away (Points B, C). Besides, the nonlinear 
response shows an abnormally high frequency content 
about 250 Hz (Τ = 2Δί) (Fig. 9, Point A). This is also 
indicated by the Fourier transform of the acceleration 
curve (Fig. 10, top). The observed vibration is related 
to progressive cracking: each new crack generates a 
jump in acceleration amplitude, within one At, which 
equals 

A a = M 1 A K d 

and excites eigenfrequencies about 250 Hz. 
Our interest being in response spectra in the fre-

quency range of 10~2-102 Hz we truncate the Fourier 
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Fig. 5. Reinforcement. 

transform of both linear and nonlinear signals at 
some reasonable frequency (150 Hzf). The corre-
sponding nonlinear acceleration time-history is shown 
in Fig. 10 (bottom) and should be compared to Fig. 9 
(Point A, dotted line). 

Response spectra resulting from "smoothed" accel-
erograms are shown in Fig. 11. In our problem, 
material nonlinearity provokes increased accelerations 
close to the impact point over the whole frequency 
range, but especially above 10 Hz. Away from the 
impact the "nonlinear response spectra" tend towards 
the linear ones. 

5. CONCLUSIONS 

For the specific type of structure considered in the 
present analysis, and with the given loading function, 
material nonlinearity leads to an increase of equip-
ment response spectra in the immediate vicinity of the 
impact area (Fig. 11, Point A). Away from the impact 

tResults are not very sensitive to this particular choice. 

zone, about 11-14 m, effects of nonlinearity vanish 
(Fig. 11, Point C). 

The structure being designed in a way that material 
nonlinear behavior appears only close to the maximum 
load (f>150 ms), these results are by no means sur-
prising. 

In order to induce a reduction in the response spectra 
amplitudes, at least in a certain frequency range, design 
should be modified in order to increase the nonlinear 
part of structural response. This point is presently 
being further investigated. 

Also, possible modifications of the numerical 
algorithm in order to avoid interferences between the 
time-stepping procedure and the initial-stress tech-
nique, which were discussed in Section 4, are subject 
to further study. 
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Abstract—An increasing emphasis is currently being placed on the crashworthy design of occupant-
carrying vehicles. The goal of this effort is to design vehicles that can minimize the dynamic forces ex-
perienced by occupants during a crash event while at the same time maintaining them in a survivable 
structural envelope. To accomplish this goal it is necessary to evaluate the dynamic crush behavior of the 
vehicle structure in specific crash situations. 

It is the purpose of this paper to discuss the computational aspects of this problem. This is accomplished 
by outlining the computational methods used for crash simulation, discussing the requirements of a finite 
element solution to the problem and then summarizing results of two large structural crash simulation 
problems. 

INTRODUCTION 

An increased emphasis is currently being placed on 
crashworthiness as a structural design requirement for 
occupant-carrying vehicles. This requirement has been 
expressed recently in the form of military standards for 
U.S. Army troop carrying aircraft and federal motor 
vehicle safety standards for passenger automobiles. 
Consequently, by contract or by law, the crash impact 
condition has been added to the traditional set of 
structural design criteria. The goal of crashworthy 
design is to produce vehicles that during a specified 
crash event, will reduce the dynamic forces experienced 
by the occupants to specified acceptable levels, while 
maintaining a survivable envelope around them. 
Generally, the structure outside of this envelope must 
absorb and dissipate most of the impact energy in a 
well-controlled manner in order to fulfill this goal. 
In order to meet crashworthiness criteria with a 
minimum of effort and time, it is essential that adequate 
crashworthiness evaluation methods be used as early 
as possible in the design process. 

It is the purpose of this paper to discuss the com-
putational aspects of this problem. This is accomplished 
by outlining the development of computational 
methods used for crash simulation, discussing the 
requirements of a finite element solution to the prob-
lem, and then summarizing results of two large 
structural crash simulation problems performed at 
Grumman Aerospace Corporation. 

Current techniques for structural crashworthiness 
evaluation can be characterized as experimental, 
hybrid, or fully theoretical. These methods have been 
discussed in Refs. [1-4] and can be summarized as 
follows : 

Experimental—crash tests of actual full scale vehicles 
or scale models. 

Hybrid—a combined experimental and numerical 
method in which the structure is divided into a number 
of relatively large sections or subassemblies that are 
treated as beam/nonlinear spring elements. The crush 

fStaff Scientists. 

behavior of these components as represented by the 
varying stiffness characteristics of the elements are 
determined externally by test or separate analysis. 

Theoretical—the finite element method in which the 
structure is divided into natural components, i.e. 
beam, stringer, skin panels, etc. The varying stiffness 
characteristics are calculated internally and depend 
interactively on the loading path, the material pro-
perties, and the changing shape and position of the 
structure. 

There are a number of computer programs in 
existence that implement the hybrid method. The 
most generally useful one is the computer program 
KRASH, (Ref. [6]). Numerous nonlinear finite element 
programs are in use, and several surveys are available 
in Refs. \\, 6-8]. Some of these specifically designed 
for vehicle crash simulation, with the capability to 
model beams and thin panels are: ACTION (Ref. [9]), 
DYCAST (Refs. [10,11]), and WRECKER (Ref. [12]). 

Each of the methods outlined has its virtues and 
faults. Tests can provide the best accuracy and realism 
but can be costly and time consuming. Some tests are 
nevertheless absolutely essential. For example, the 
full scale tests at NASA Langley Research Center are 
providing essential insight into many general aspects 
of the light aircraft situation (Refs. [3, 4]). These will 
direct the efforts of researchers and designers into the 
most meaningful areas, and are providing data for 
verifying mathematical methods (Ref. [13]). Small 
scale model tests may also be useful, depending on the 
compromises between small size and realistic con-
struction detail. Scale model tests on automobiles 
have been shown to yield useful results (Ref. [14]). At 
early stages of design however, test articles may not be 
available for destructive evaluation. 

While some impact tests will always be required to 
verify actual performance, the number of tests can be 
reduced by the use of theoretical crash simulation. In 
this sense theoretical crash simulation can be viewed 
as a numerical experiment in which a discretized model 
of a structure is subjected to crash conditions. 

The basic difference between hybrid and theoretical 
simulation models is in the manner in which they 
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represent the details of the actual structural stiffness 
and mass characteristics. In the hybrid method, the 
vehicle is modelled by a relatively small number of 
lumped masses connected by nonlinear springs or 
beam elements. Representative structural sections are 
built or cut from existing vehicles and tested statically 
for their crush characteristics which provide ihe 
nonlinear stiffnesses for the model. In this manner, the 
behavior of any material or special type of construction 
can be evaluated by means of these component crush 
tests. Alternatively, the deformation may be approxi-
mated by analytical estimates, a detailed static finite 
element analysis, or educated guesses. 

The external generation of crush data input can in 
itself be costly and time consuming. In addition the 
data are usually derived by varying only one force or 
moment at a time, whereas the actual nonlinear 
deformation takes place under combinations of several 
load components that are not known in advance. Thus 
it cannot be assumed that the accuracy in one particular 
case will be as good for a variety of impact orientations 
and velocity vectors because the loading combinations 
on the structure will vary. The number of structural 
elements in the model must be limited because of the 
engineering effort required to generate their nonlinear 
stiffnesses. Consequently, hybrid methods usually 
require less computer time than finite element methods 
so that, if stiffness approximations can be made, the 
method is suitable for providing preliminary informa-
tion or gross estimates of vehicle response. 

Since the full finite element method does not rely 
on the existence of an actual structure, in principle it 
can provide a detailed analysis without the need for 
component tests. Once the vehicle finite element model 
is assembled and checked out, it can be easily modified 
by changing material or geometry of individual com-
ponents. Thus detailed design evaluations and opti-
mizations can be carried out. One modelling 
disadvantage is that some new material or construction 
type may not have an adequate finite element repre-
sentation available when needed. This possibility can 
be covered by incorporating hybrid elements whose 
nonlinear stiffnesses are externally supplied. Such 
hybrid elements can also be useful to model a special 
energy-absorbing device or structural component 
whose deformation characteristics are already known. 

The computational problem associated with finite 
element crash simulation is formidable, requiring 
consideration of several interdisciplinary areas that 
include nonlinear structural mechanics, numerical 
analysis, and computer sciences. These areas include: 
the appropriate theory to treat large elastic-plastic 
deformation, techniques to handle nonlinear boundary 
conditions required by variable contact/rebound, a 
library of finite elements appropriate for crash simula-
tion, and accurate and efficient numerical time inte-
gration methods. Although investigations are still 
underway in each of these areas, theories have reached 
a sufficient level of maturity to be implemented into a 
program for crash simulation. Central to any imple-
mentation is the capability to treat nonlinear dynamic 
effects. Here nonlinearities that arise in a crash event 
are due to both material and geometric effects. Material 
nonlinearities are a consequence of plastic deformation 
while geometric nonlinearities are due to large dis-
placements, the nonlinearity of the strain displacement 

relations, and any change in the boundary conditions 
due to intermittent contact/rebound. 

Methods to treat various aspects of this problem 
have been developed by a number of researchers. 
Initially methodology was developed separately for 
each of the phenomena cited above. Reference [15] 
surveys computational methods for nonlinear struc-
tural analysis in its entirety and presents an extensive 
reference list to the pertinent literature. 

Given that there is a sufficient understanding of these 
individual problems to permit crash analyses, the most 
vexing question associated with finite element methods 
is: how detailed a model is required to simulate the 
salient features of a crash, while still permitting the 
resulting analysis to be made economically viable? 

Experience has shown that, while an accurate, 
versatile computer code is essential for an adequate 
crash analysis, it is not enough. Some expertise in the 
"art" of modelling a vehicle for a nonlinear dynamic 
analysis is also required, in order to produce sufficiently 
accurate results with a minimum of time and cost. A 
thorough understanding of the capabilities of the 
theory, and sufficient experience to know what will and 
will not work, is required by the analyst who prepares 
the model and its input data for the computer code. 

This problem of modelling efficiency is much more 
acute in large-deflection nonlinear analysis than in the 
linear cases, because the solution involves a sequence 
of incremental steps each one similar to a complete 
linear analysis in itself. Thus, a dynamic event requiring 
hundreds or thousands of time increments can be 
prohibitively costly, unless the model is reduced to the 
minimum complexity required to produce sufficiently 
accurate results. 

Generally, finite element crash analysis cannot be 
done efficiently in a data vacuum but should use all 
available information, such as past impact tests on 
similar vehicles and existing component crush data. In 
particular, important local deformation modes such 
as the collapse of hollow thin walled tubes in com-
pression and bending require special modelling pro-
cedures. 

Static crush tests on selected individual components 
or subassemblies can be useful to guide the modelling 
choices, but caution must be exercised since there are 
cases in which static collapse modes do not agree with 
the dynamic modes. Some steel structures that collapse 
statically after much plastic yielding can be greatly 
stiffened in a dynamic crush by the increase in the 
material's yield stress due to strain rate sensitivity. In 
addition, the effects of inertial forces due to added mass 
can significantly change the local behavior in some 
sensitive cases. 

In this paper we will address some of these problems 
through the description of the main features of the 
DYCAST program (DYnamic Crash Analysis of 
STructures) and some experience gained in the crash 
evaluation of an automobile and an aircraft structure. 
DYCAST is an outgrowth of the PLANS system 
(Ref. [16]) of finite element programs for static non-
linear structural analysis. It is the result of an on-going 
effort at Grumman Aerospace, partially funded by the 
Langley Research Center of NASA, under a joint 
FAA-NASA project in aviation crashworthiness. Ref-
erence [4] summarizes the scope and goals of this 
project. Usage of DYCAST for the crash simulations 
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of aircraft type structures was reported in Refs. [11,17], 
and more recently, automobile barrier impact analyses 
have been performed. 

DYCAST FORMULATION 

Constitutive relations 
The methods used to implement plasticity theories 

into a finite element code by now are well developed 
and have been reported in many references (see for 
example, Ref. [18]). Here we outline the form of 
constitutive equations in a general way. DYCAST 
makes use of a flow theory of plasticity. Basic to this 
approach is the definition of an initial yield criterion, 
flow, and hardening rule. The initial yield criterion used 
is based on Hill's equations for orthotropic material 
behavior which reduces to the von Mises yield criterion 
for an isotropic material. From the flow and hardening 
rules the following incremental relation between the 
increment of plastic strain and stress is obtained 

{Δε'}=[<3{Δσ} (1) 

where the terms of [C] are path dependent quantities 
that reflect the instantaneous states of stress and 
hardening of the material and the choice of plasticity 
theory. In DYCAST use is made of the Prager-Ziegler 
kinematic hardening theory. Also contained in [C] is a 
material parameter characterizing the hardening of 
the material. In the one dimensional case this is repre-
sented by the slope of the stress versus plastic strain 
curve. This is generalized to multiaxial stress condi-
tions by assuming an effective plastic strain—effective 
stress relation. In either case these data must be input 
either in tabular form or as an appropriate nonlinear 
representation. 

Another assumption that is used to develop the 
appropriate equations is that the increment of total 
strain may be decomposed into an elastic and plastic 
component. This assumption leads to the incremental 
constitutive relations for the stresses and plastic 
strains in an elastic-plastic material 

{Ασ}=[Ώ]{Αε} (2) 

and 

{AsO}=[C][D]{As} (3) 

where {Δε} is the increment in total strain, [D]=[E "* 
+ C] "* and [E\ contains the usual elastic material 
parameters. 

Explicit forms for the relations in eqns (2) and (3) that 
are used in DYCAST are in Ref. [16]. Equations similar 
in form to eqn (2) for perfect plasticity are also shown 
in Ref. [16]. 

Developmen t of equa tions of mo tion 
The approach implemented in DYCAST is the up-

dated Lagrangian formulation (Refs. [19-21]) for 
geometric nonlinearity. The derivation of the governing 
equations based on this approach follows that origi-
nally presented in Refs. [20, 21] for static analysis. 
The essentials of this method are that the solution is 
obtained incrementally, starting from a reference state, 

YR, defined at time t for which the states of stress, strain, 
and deformation are known. The next state, Tc, 
termed the current state at time t+Atis assumed to be 
incrementally adjacent to TR. The problem then reduces 
to solving for the incremental quantities, Au,·, Aaij9 

Δεΐ; which are the increments in displacement, stress 
and strain in going from TR to Tc. Once these quantities 
are obtained the coordinates of all points are updated 
by 

x^Xi + Au (4) 

where Xt is the coordinate locaton in TR and the stress 
measure is transformed to Tc so that Fc is now the 
reference state for the next increment. 

Based on these concepts, the equations of motion 
can be developed by one of several alternative pro-
cedures. Using the principle of virtual work and 
neglecting body forces and damping we can write 

I [Ν\'ρ[Ν\άν{ΰ}η+1+ [ [B\XD\B\dV 
JVR JVR 

+ / [Ω] ' [Σ ] [Ω^ΜΔ< + 1 = W{T^-AT}dS 
JVR Λ JSR 

- [B]*{±}dV (5) 
JvR 

where [N] and [B] are function matrices arising from 
the finite element field assumptions that map nodal 
displacements to the element displacement field and 
linear component of strain, [Ω] is a matrix containing 
first derivatives of the components of [N], [Σ] and {Σ} 
are a matrix and vector of stress referred to VR. The 
matrix [D] comes from eqn (2) and in the absence of 
plasticity is equal to the matrix of elastic constants, [E\. 

The integral quantities of eqn (5) are respectively, 
the consistent mass matrix, [m] the material stiffness 
matrix, [kt], the initial stress stiffness matrix, [k J, the 
consistent load vector, {P} and the vector of internal 
forces in TR at time t, {F}. Summing these integrals 
over every finite element with respect to a common 
coordinate system then leads to the global equations of 
motion, 

[m{^n+lHKt+Kg]{Au}n+l + {F}n={P}n + l. (6) 

Here n denotes the state at the end of the nth increment 
at time t, and n +1 at time t-\-At. 

The updated Lagrangian approach outlined above is 
particularly effective for the nonlinear problem associ-
ated with crash simulation using beam, membrane, 
and plate elements. This is because large shape changes 
due to the progressive crushing and folding of the 
structure are accounted for by successive updating of 
the nodal coordinates. The nonlinearities due to the 
internal loads (for example, the change in stiffness due 
to the "beam column effect") are included through the 
initial stress stiffness matrix. Thus compressive forces 
dominant in a crash event will act through the geo-
metric nonlinearities to reduce the stiffness of the 
structure. 

Discrete time integration 
Much attention has been given to methods for 

obtaining solutions to eqn (6). References [22-25] 
discuss methods for nonlinear dynamic analysis. The 
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starting point for the§e is the choice of an appropriate 
scheme to integrate eqn (6) in time. Various methods for 
both linear and nonlinear structural analysis have been 
surveyed in Refs. [26, 27]. We shall not attempt to 
repeat the survey of these procedures here, but rather 
make some general comments on the integrators used 
in DYCAST. 

One measure used to evaluate a time integrator is the 
size of the allowable time step that can be used to yield 
accurate solutions. At the outset we state that a 
significant factor affecting time step size for a non-
linear dynamic analysis is the degree of nonlinearity 
active in the analysis. That is, the time step must be 
small enough so that the assumptions intrinsic to the 
governing equations, i.e. plasticity theory and geo-
metric nonlinearity, must not be violated. Because the 
nonlinearities may vary during an analysis it is our 
view that an integator implemented in a general 
purpose code for nonlinear dynamic analysis should 
be a variable time step procedure. A variable time step 
procedure is one that enables the time step to be 
changed at different instants of the response, generally 
subject to stability and accuracy requirements. Such a 
procedure has obvious advantages over one with a 
constant time step, particularly in complex problems 
arising in practical applications because the system 
nonlinearities and dynamic response are varying con-
tinuously throughout the response history. This is 
particularly true for problems typical in crash simula-
tion. Based on these comments, variable time step 
integrators have been implemented in DYCAST. 
These fall into two categories, i.e. explicit and implicit. 
These are the explicit Modified Adams (Ref. [28]), 
and the implicit Newmark-ß (Ref. [29]), and Wilson-Θ 
(Ref. [30]) methods. An explicit constant time step 
central difference (Ref. [26]) integrator is also available. 
The formulation of the explicit integrators in DYCAST 
are presented in Ref. [10]. The implicit technique is 
more useful for the structural dynamic response seen 
in a crash analysis. Implementation of the implicit 
technique in DYCAST is essentially as presented in 
Refs. [22-25]. The technique used solves eqn (6) 
iteratively at each time step subject to the recurrence 
relations for either the Newmark-ß or Wilson- Θ 
method. 

A variable time step procedure is defined by requiring 
that the number of iterations in each time step be less 
than a prescribed value. If this criterion is violated the 
time step is halved. Conversely, if the solution con-
verges in one iteration for a prescribed number of 
consecutive steps the time step is increased. An upper 
bound for the time step is also specified. 

Finite element library 
The basis for the derivation of the elements in 

DYCAST are in Ref. [16]. There are currently four 
element types available for structural modelling, as 
follows ; 

Membrane Triangles—Three classes are available: 
a uniform strain triangle, a linear strain triangle, and a 
set of hybrid triangles with one or two sides having 
linear strain variation. 

Stringer Element—Two types are available: one 
having a uniform axial strain, and the other having a 
linear variation of axial strain. 

Beam Element—There are with six degrees of free-

dom at each node, three displacements and three 
rotations. The element is based on a linear axial dis-
placement field and cubic transverse displacement. In 
the completely elastic case, the beam stiffness matrix 
involves elastic material properties and integrated 
quantities that depend on the cross section, the area, and 
moments of inertia. Once points on the beam are 
plastic, these integrals must be numerically integrated. 

To accomplish this, the shape of the cross section 
must be known a priori and the state of stress and 
strain must be evaluated at each integration point in 
the cross section. Towards this end twelve distinct 
cross sections can be specified, including eleven pre-
formed shapes plus a thin-walled section of arbitrary 
closed or open configuration. 

Nonlinear Spring Element—A nonlinear spring 
elements becomes an important element in modelling a 
complex structure. It can be used as follows; 
—to stimulate structural sections for which the axial 
load versus elongation behavior (or moment versus 
rotation) has been obtained either by a crush test or by 
some other means. 
—to simulate an energy absorbing device 
—as a gap element to approximate variable contact/ 
rebound. 

The force versus elongation for this element is 
specified in tabular form. In general, nonlinear spring 
elements dissipate energy by unloading rapidly from 
their last deformation state along some specified 
unloading slope, thereby accumulating non-
recoverable permanent deformation. Upon reloading, 
the path is along the unloading line to the previous 
maximum deformation state, at which point deforma-
tion continues along the originally specified load vs 
deflection curve. 

The nonlinear spring element in principle can be 
used as a gap element in order to simulate variable 
kinematic constraints that describe contact/rebound. 
However in practice, use of a gap element in a dynamic 
analysis leads to high frequency oscillations because 
of the large stiffness associated with a small nodal mass. 
To surmount this difficulty, viscous damping is intro-
duced to the nonlinear spring when used as a gap 
element. The damping coefficient is defined as pro-
portional to the current stiffness so that before contact, 
i.e. zero stiffness, the damping coefficient is zero. 
Spurious rebound is prevented by a "capture" tech-
nique in which both the stiffness and damping para-
meter are maintained as long as the contact point 
oscillates within a certain tolerance of the actual 
contact position. This technique has been effective 
for a number of sample problems. 

Failure criterion 
Assuming continuing and unlimited elastic or plastic 

deformation in a crash simulation is equivalent to 
assuming that a structural element will dissipate 
unlimited energy as it deforms along a particular load-
deformation path. Obviously this can overpredict the 
energy that can be dissipated since actual materials 
will fail at some maximum deformation. To accom-
modate this behavior, maximum strain failure criteria 
have been implemented for every element in DYCAST. 
Once these criteria are satisfied the stiffness and force 
in the elements are deleted. Computationally this is 
straightforward requiring that these quantities not be. 
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assembled in eqn (6). Provision has also been made to 
delete elements "manually" based on some other 
failure criterion or on engineering judgment. A com-
plete discussion of structural failure modes for use in 
crash simulation is in Ref. [31]. 

Additional considerations 
An important and necessary component of the 

solution strategy outlined here is the implementation 
of a restart capability. This capability enables an analyst 
to perform a crash simulation in manageable time 
segments. In keeping with the path dependent nature 
of nonlinear analysis it also allows the results of a 
segment in time to be carefully examined to see if they 
appear to be meaningful, and to see if any critical 
failures have occurred, before deciding if the analysis 
should be continued. Typically, the crash simulations 
that we have already performed have involved restarts 
for many time segments. 

Another practical consideration involves graphically 
displaying the results of an analysis. This has been 
accomplished within the framework of the restart 
procedure by using the saved data set on the restart 
tape with two peripheral post-processing programs 
that can produce views of the deformed structure as 
well as time histories of displacement, velocity, and 
acceleration. Examples of these are shown in the next 
section. 

AUTOMOBILE CRASH SIMULATION 

A crash simulation was performed on a preliminary 
design concept of an automobile in a frontal impact 
into a rigid barrier at 30 mph. This was essentially a 
simulation of a test required by the U.S. Federal Motor 
Vehicle Safety Standards for occupant protection in 
frontal barrier crashes. 

The structure of the vehicle body was made of 
primarily glass fiber/vinyl ester resin with steel mem-
bers in the front end assembly and engine support 
structure. 

A three-dimensional finite-element model was pre-
pared, including all the mass distributions corre-
sponding to a fully-loaded condition, as shown in 
Fig. 1. The body from the rear door post forward was 
modelled as deformable structure. Aft of the rear door 

Fig. 1. Finite element model of left half of rear engined 
automobile. 

post all components were lumped into a single rigid 
mass. The deformable body components were idealized 
using flat membrane triangles, straight rod segments, 
straight beam segments, and nonlinear springs. As to 
be expected, the model contained the most detail at its 
front end, with progressively less detail towards the 
rear. Only the left half of the vehicle was modelled and 
analyzed because of the symmetric loading and the 
nearly perfect symmetry of the vehicle about the 
longitudinal mid-plane. 

The resulting model contained 259 nodes, 504 ele-
ments, and 663 degrees-of-freedom. Triangular mem-
brane elements were used to form the body panels and 
beam elements for body stiffeners, door posts, body 
cross members, and roof. The beams are indicated by 
double lines in Fig. 1. Use of energy-dissipating non-
linear spring elements was an important consideration 
in the overall modelling philosophy. These elements 
were used to approximate the behavior of certain 
structural parts whose force versus deflection behavior 
had been obtained by test or analysis. Modelling these 
components in detail in order to calculate their de-
formation behavior would be expensive at best, even 
if it could be assured that the resulting model could 
indeed produce the essentials of the behavior. The 
dissipative nonlinear spring elements were used to 
represent the longitudinal crush behavior of the front 
bumper, front end energy absorbing struts, the radiator 
and fan assembly, the tire and wheel assembly, and the 
steel front cross-member. The front cross-member was 
formed from steel sheet. While the cross-car bending 
stiffness of this member was modelled by beam ele-
ments, its fore-and-aft crush was approximated with a 
number of nonlinear springs whose properties approxi-
mated the expected behavior. 

Two energy absorbing struts were imbedded in the 
front end as part of an exploratory study and repre-
sented the primary load path and energy dissipating 
capability for front end impacts. Each of these struts 
was simulated by two nonlinear springs deforming at a 
constant force over a maximum distance of 18.5 in. 
These struts, if fully effective, were designed to com-
pletely absorb the kinetic energy of a 30 mph impact 
in 12 in. 

The non-structural items were included in the model 
as point masses and placed in the finite element model 
at the node points closest to their actual locations in 
the vehicle. The occupants were not modelled dynamic-
ally, but the loads they imposed on the structure were 
accounted for in a simplified manner by adding mass 
to the steering wheel hub and lower instrument panel, 
assuming an air-bag restraint system. The suspension 
behavior was modelled by linear elastic springs of 
appropriate stiffness, one at the outer ends of the front 
cross-member at the wheel attachments, and one at 
the rear body mass, connected vertically to freely 
sliding ground points. 

The material properties of the body structure were 
determined by tests on small coupons and larger 
panels. The panel test data were significantly different 
from those of the smaller coupons, and were con-
sidered more representative of the actual body panel 
crushing behavior. Accordingly, the stress-strain curves 
for the body panels were prepared primarily from the 
panel test data. 

The computer simulations produced output data 
in the form of printed values of displacement, velocity, 
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acceleration, strain, stress, forces, and moments as 
well as the locations of material failures, at each time 
increment. Computer-generated graphical output was 
also produced, in the form of plots of displacement, 
velocity, and acceleration vs time for pre-selected 
points in the vehicle, and in the form of drawings of 
the deformed structure at selected instants during the 
crash event. All these output data, involving thousands 
of pages, were examined to evaluate the dynamic 
structural response of the vehicle model, and to check 
on the validity of the numerical calculations. 

The structural deformations and damage due to the 
impact event are illustrated in Fig. 2 in side views at the 
instants of wall contact and at maximum forward 
motion (zero forward velocity). Only the exterior 
panels visible from the side are shown. At 15.4 msec, 
the 8-in. bumper stroke was completed, and the front 
edge of the body structure contacted the wall. At this 
instant the bumper had absorbed 7.8% of the kinetic 
energy, reducing the speed to 28.8 mph. 

Just after body contact, the brittle body structure 
nearest the wall began to fail. Each succeeding body 
panel, as it approached the wall, experienced in-
creasing stress, strain, and deformation, until it failed 

In fact, as time progressed, the nose dropped and the 
rear engine mass rose, so as to increase the offset. 

The structural performance is further illustrated by 
the motion histories of the rear mass shown in Fig. 3. 
The acceleration versus time reveals the effect of key 
events in the front end of the structure. First a small 
acceleration pulse occurs during the 8 in. bumper 
stroke. After the body hit the wall, the acceleration 
rose quickly to the 40-50 g range as the energy absorb-
ing members began to stroke. These components 
behind the struts had to carry the strut loads. Thus, 
the strut loads (and the acceleration) dropped momen-
tarily when the steel cross-member yielded suddenly, 
they rose again as the strain hardening behavior of the 
steel halted the cross-member collapse. Similarly, when 
the outer supports to the cross-member failed, the 
strut load dropped momentarily until the central 
tunnel took over the full load. In spite of the local 
failures, the vehicle came satisfactorily to rest after 
19 in. of total motion (at the rear engine), in about 
65 msec, with an average deceleration of 32 g during 
the body crush phase. The exploratory energy absorb-
ing struts accounted for 95% of the kinetic energy 
dissipated, and performed well. An alternative concept 

0 msec 30.0 mph 

0 in 100% ke 

60.1 msec 0.2 mph 

19.1 in 0% ke 

Fig. 2. Side view of model before and after impact. 

at some point before reaching the wall. The failed 
structural elements were automatically deleted from 
the model during the analysis, and they were also 
deleted from the computer-generated drawings of 
Fig. 2. The greatest portion of the wall thrust was 
generated by the energy-absorbing struts. Note that 
the front body is distorted downward near the wall, 
and that an overall nosedown rotation of the vehicle is 
visible. This was caused by the fact that the wall 
thrust was located at the level of the energy absorbing 
structure, low on the body, below the center of gravity. 

Fig. 3. Predicted acceleration history for rear body/engine 
mass of automobile. 
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would be to redesign the front end to allow a greater 
stroking distance in the energy absorbing structure, 
thereby reducing the internal loads and the average 
acceleration levels, while dissipating the same energy. 

As a result of this analysis of the preliminary design 
concept, we were able to recommend certain specific 
changes to increase the structural integrity of the 
vehicle for the 30 mph frontal crash. 

The simulation covered 70 msec, in 352 time steps, 
using 91 min computer (CPU) time on an IBM 370/168. 

AIRCRAFT CRASH SIMULATION 

As part of an on-going investigation of crashworthy 
design concepts for U.S. Army Research and Tech-
nology Laboratories and Bell Helicopter Textron, a 
series of crash-impact investigations are underway. At 
the time of this writing, the most recent one of these to 
be completed was a comparison of the crash responses 
of two helicopter cockpit sections—one of all com-
posite material with an energy-absorbing concept, the 
other of conventional aluminum construction. This 
work was part of a project in which Bell and Grumman 
jointly surveyed and assessed available data and 
analytical methods for evaluating crash-impact charac-
teristics of composite helicopter airframe structures. 
The final results of the entire project appear in Ref. [32], 
and a separate description of the finite-element crash 
simulations was presented in Ref. [17]. 

This preliminary study was done primarily for the 
purpose of exploring the applicability of the DYCAST 
finite-element code for crash simulation of future 
helicopter airframes constructed of advanced com-
posite materials. 

A cockpit section of fuselage structure (Fig. 4) of a 
typical troop transport helicopter was selected for 
analysis. Details of the two cockpit designs are shown 
in Fig. 5. The all-composite section incorporated an 
energy absorbing concept below the floor. Identical 
vertical impact conditions of 30 fps onto a rigid hori-
zontal surface were used for both sections, representing 
the condition in which the landing gear had already 
reduced the initial velocity. 

The metal section was taken from a representative 
helicopter, and the composite section was designed by 
Bell to replace it. The two cockpits therefore had the 
same overall dimensions and were designed for the 
same flight loads. Their floor structures were composed 
mainly of longitudinal beams, transverse bulkheads, 
an outer skin, and a floor panel covering. The roof and 
door posts were deep channel beams built-up from 

Fig. 4. Location of analyzed helicopter fuselage section. 
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Fig. 5. Original cockpit sections, floor panels not shown. 

thin webs and flanges with angle stiffeners at the corners 
and edges. 

Both sections carried two 1501b point masses, 
representing crew members, each on four rigid seat 
legs. 

The conventional aluminum section had full depth 
webs on the floor beams and bulkheads. The com-
posite section had the lower portion of the longitudinal 
beams replaced by hollow foam-filled tubes, while the 
lower parts of the bulkheads were replaced by diagonal 
tension straps and transverse formers attached to the 
skin. The tubes were PVC foam-filled, and were design 
to dissipate energy while being diametrally crushed. 

The metal cockpit had all aluminum structure except 
for the titanium seat rails. The composite section had 
Kevlar/epoxy laminates for the beam and bulkhead 
webs, skins, floor covers, tube walls, and diagonal 
straps, while all the web caps and stiffeners were of 
graphite/epoxy laminates. 

The finite-element idealizations of the two fuselage 
sections are shown in Fig. 6. Only the left half of each 
cockpit was modelled because of symmetry. 

In the metal cockpit floor section all webs, skins, and 
floor covers were idealized by membrane triangles, 
while beam elements were used to model the web caps, 
stiffeners, and seat rails. Forward of the second bulk-
head, the web caps and stiffeners were modelled by 
stringer elements because of the absence of local 
bending. The floor cover, crew masses, and seat legs 
were removed from the drawings in order to show the 
sub-floor details. Since the belly skin panels were 
expected to buckle under in-plane compression, a 
beam grid was added to those skin panels to account 
for their transverse bending stiffness. The roof frame 
and upper door post were modelled by a single arch 
of beam elements. The roof-mounted equipment masses 
were replaced by a single mass with rotary inertia. 

The material behavior of the aluminum and titanium 
was represented by elastic-perfectly plastic stress-
strain curves to the failure point. 
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(a) Baseline metal section 

(b) Composite section 
with energy absorbers 

Fig. 6. Finite-element idealization of left half of cockpit 
sections—floor panels and crew seat are not shown. 

The metal half-section model contained 111 nodes, 
348 elements, and 419 degrees-of-freedom. 

The composite section had the same idealization 
scheme, except that orthotropic membrane triangles 
were used. The tubes were modelled by membrane 
triangles to form hollow, square-diamond tube walls 
that could flatten as the tubes crushed. In this way, 
the changing values of longitudinal bending, shear, 
and axial stiffnesses of the tube cross section could be 
approximated. The vertical crush behavior of the 
tubes was represented by a series of vertical nonlinear 
spring elements inside each tube, whose force-displace-
ment curves were derived from tests. The diagonal 
tension straps were modelled by nonlinear springs 
having no compressive stiffness ; that is, as cables. 

The composite laminate's material properties were 
represented by linear elastic stress-strain curves to 
failure, with no plasticity. 

The composite cockpit half-section model contained 
144 nodes, 422 elements, and 471 degrees-of-freedom. 

The Newmark Beta numerical time integrator with 
variable time step was used in both cases. The 
aluminum section required 10 msec of event time, with 
71 time steps, using 19 min (CPU) of computer time 
on an IBM 370/168 computer. The composite section 
analysis covered 30 msec, with 197 time steps, using 
56 CPU min. 

The vertical acceleration histories of the 150 lb 
rigid crew/seat masses are compared for both cases in 
Fig. 7. The baseline aluminum floor structure was 
very stiff vertically and developed little plastic deforma-
tion in this impact condition. Consequently, its 
potential for energy dissipation and force attenuation 
was not used. The composite section transmitted much 
less acceleration because of the crushing action of its 
energy-absorbing tubes. The analysis indicated a 
partial local failure under the inboard seat legs of the 
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Fig. 7. Comparison of vertical accelerations of the rigid 
crew and seat. 

composite section, which could easily be prevented by 
addition of vertical stiffeners to the beam webs under 
the legs. It is clear that for both sections, the crew 
compartment was sufficiently intact, but the composite 
section benefitted greatly from the great compliance 
and energy dissipation provided by the crushable tubes. 
Certainly, the aluminum section would also benefit 
from such devices. However, the composite cockpit 
weighed about 30% less than the metal section. There-
fore, this study indicates that the use of advanced 
composite materials in helicopter fuselages, while 
greatly reducing structural weight, need not prevent 
the achievement of crashworthiness goals. 

These results showed that DYCAST could be a use-
ful tool for evaluating the crash performance of 
advanced composite helicopter fuselages. 

This preliminary investigation is being followed by 
an investigation of the impact behavior of a more 
complete all-composite helicopter fuselage incorporat-
ing engine and transmission masses in the roof. 

CONCLUDING REMARKS 
The application of nonlinear finite element tech-

niques to the crashworthiness evaluation of structures 
is a very exciting and challenging endeavor. It is an 
example of the maturing of theoretical techniques that 
have been the subject of vigorous investigation in 
recent years to the point of application to pertinent 
engineering design evaluations. However, because of 
the complexities of the theoretical basis of nonlinear 
dynamic analysis, it is important for users of these 
computer programs to clearly understand their under-
lying theories and to exercise engineering judgment in 
order to interpret results meaningfully. In addition, 
experience has shown that, while an accurate and 
versatile program is essential for adequate crash 
analysis, expertise in the "art" of modelling a vehicle 
for a crash analysis is also required in order to produce 
sufficiently accurate results with a minimum of time 
and cost. The results shown for the two sample analyses 
indicate that theoretical crash simulations can be 
economically used as part of the overall design process. 
Finally, the effort to develop a tool for crash simulation 
is an on-going effort so that the description of DYCAST 
in the paper represents an already obsolete progress 
report. Developments in a number of areas are con-
tinuing, driven by the requirements revealed by the 
increasingly more complex crash simulations under-
way for both aircraft and automobiles. 
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Abstract-Small, flat-fronted cylindrical steel projectiles have been fired at normal obliquity against 
simulated concrete and steel plate targets. Deformation measurements from these firings are compared 
with nonlinear finite element analysis results. For firings against simulated concrete, good agreement 
between analysis and experiment is obtained when an initial transient is added to a quasi-steady-state 
penetration theory. For firings against steel plates, large element distortions result in computational 
difficulties. 

INTRODUCTION 

An analysis technique for determining the deformation 
and fracture of projectiles impacting hard targets has 
been developed [1]. This technique involves finding an 
approximate pressure loading to be applied to the 
front of a projectile to represent forces at the target-
projectile interface and then using this approximate 
loading in a nonlinear finite element analysis to calcul-
ate stresses and displacements in the projectile. For 
impact against thick targets, such as concrete half-
spaces, impact forces cause breakup and flow of the 
target material ahead of the advancing projectile. 
Penetration theory equations [2] can be used to 
calculate these forces. For impact against thin metal 
plates at velocities where perforation occurs, impact 
forces both shear a plug from the plate and accelerate 
that plug to the residual velocity [3], In some cases, 
these shear forces are relatively small and can be 
neglected. 

In the present paper a series of experiments involving 
small, flat-fronted, cylindrical steel projectiles fired at 
normal obliquity against simulated concrete and steel 
plate targets are described. The purpose of the tests was 
to gather data for comparison with the above-des-
cribed analysis technique. Two types of information 
were recovered: the impact velocities at which failure 
occurred (as well as an idea of the nature of the failures) 
and the final deformed shapes of the projectiles after 
the tests. This second information, in particular, has 
been compared directly with projectile deformations 
predicted from finite element analysis. Modifications to 
the penetration theory equations to include an initial 
impact pressure pulse result in good agreement between 
theory and experiment for the projectiles penetrating 
simulated concrete targets. Difficulties have been 
encountered with the finite element analysis of the 
projectiles perforating steel plates due to severe element 
distortion. 

DESCRIPTION OF EXPERIMENTS 

Projectiles 
Three types of blunt, steel projectiles were fired. 

Their cross sectional views are shown in Fig. 1. These 
projectiles were all flat-fronted, hollow cylinders, 2 in. 

TEST PROJECTILE #1 
(TPl) 

TEST PROJECTILE #2 
(TP2) 

TEST PROJECTILE #3 
(TP3) 

PROJECTILE MATERIAL: 4340 STEEL, Rc 38-40 

Fig. 1. Cross sectional views of test projectiles. 

long and 0.5 in. in diameter. However, their internal 
geometries varied. Test projectile No. 1 (TPl) has an 
internal cavity with a wall thickness of 0.05 in. The 
front end of the cavity is flat with a radius at its outer 
edge less than 0.0312 in. The solid disk to the front of 
the cavity is 0.25 in. thick. Test projectile No. 2 (TP2) is 
similar to TPl except that its cavity wall thickness is 
0.075 in. Test projectile No. 3 (TP3) has the same wall 
thickness as TPl, but the front end of its cavity is 
hemispherical rather than flat. All the projectiles were 
machined from 4340 steel rods and were heat-treated to 
a Rockwell "C" hardness of 38-40. 

Targets 
These projectiles were fired against two different 

targets : simulated concrete and steel plate. 
Simulated concrete targets were made of 'Thorite" 

(trademark of Standard Dry Wall Products), a fast-
setting, high-strength concrete patching compound 
consisting of sand, cement, and additives to promote 
rapid curing. The largest sand grains are about 0.04 in. 
in diameter. The targets were cured for seven days 
before being fired into. Half were cured wet for the 
entire period (with their surfaces covered with water), 
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and half were wet-cured for 24 hr and allowed to dry-
cure (with their surfaces exposed to air) for the re-
maining six days. 

Steel plate targets were cut from 0.0625-in.-thick 
sheets of a hot-rolled, low-carbon steel with a Rockwell 
"B" hardness of 55. 

Experimental procedure 

The projectiles were fired from a smooth-bore, 50-
caliber powder gun. Impact velocities were measured in 
the gun barrel with a photo diode system coupled to an 
interval counter. The targets were placed about 18 in. 
from the end of the barrel. The projectiles impacted the 
targets at normal obliquity. Projectiles that perforated 
steel plate targets were captured in a recovery trough 
filled with Celotex slabs placed immediately behind the 
targets. The apparatus is described more fully by 
Goldsmith and Finnegan [4]. 

EXPERIMENTAL RESULTS 

Results against thorite targets 
Thirty shots were fired against Thorite targets. The 

results are summarized in Table 1. Figure 2 is a photo-

graph of selected projectiles after test. 
Impact damage to the TP1 projectiles occurred 

predominantly near the front of the cavity where stress 
waves propagating from the front end encounter a 
greatly reduced cross sectional area. A bulge formed in 
this region (Fig. 2b). The average distance from the 

front end to the point of maximum bulging was about 
0.34 in. For impact velocities above about 2150 fps the 
TP1 projectiles fractured. (OneTPl projectile fractured 
at a lower velocity of 2044 fps.) In some cases the front 
disk sheared completely off across the cavity side wall, 
and the wall then fractured longitudinally into long, 
thin petals (Fig. 2e). In other cases the front disk re-
mained attached to one of the petals, resulting in a 
non-axisymmetric final configuration (Fig. 2d). 

The TP2 projectiles also bulged just to the rear of the 
front disk. The average distance from the front end to 
the point of maximum bulging was 0.33 in. The degree 
of bulging for a given impact velocity was less for the 
TP2 projectiles due to their greater wall thickness. None 
of the TP2 projectiles fractured for the range of impact 
velocities in the tests. 

The TP3 projectiles bulged further back near the 
transition point between the hemisphere and side wall 
(Fig. 2c). The average distance from the front end to 
the point of maximum bulging was 0.45 in. The degree 
of bulging that these projectiles withstood without 
fracture was over twice as great as for the TP1 pro-
jectiles (0.579 in. maximum bulge diameter vs 0.532 in). 
For the TP3 projectiles, fracture occurred at velocities 
above about 2600 fps (again with one exception). 
Impact at higher velocities resulted in shearing off of 
the front portion (back to the hemisphere-to-side-wall 

transition) and peeling back of the rear portion into 
several short, stubby petals (Fig. 2f). There was a 
tendency for some of the petals to break off. It is 
apparent that the hemispherical cavity front is effective 
in increasing the impact velocity at which projectile 
fracture occurs. 

Table 1. Summary of results for projectile firing against thorite targets 

Proj. 
type 

TP1 
TP1 
TP1 
TP1 
TP1 
TP1 
TP1 
TP1 
TP1 
TP1 
TP1 
TP1 
TP1 
TP1 

TP2 
TP2 
TP2 
TP2 
TP2 
TP2 

TP3 
TP3 
TP3 
TP3 
TP3 
TP3 
TP3 
TP3 
TP3 
TP3 

Target 
cure 

Wet 
Dry 
Dry 
Wet 
Dry 
Dry 
Wet 
Wet 
Dry 
Dry 
Wet 
Dry 
Wet 
Dry 

Wet 
Wet 
Wet 
Dry 
Wet 
Dry 

Wet 
Wet 
Wet 
Wet 
Dry 
Dry 
Wet 
Dry 
Dry 
Dry 

Impact 
velocity, 

fps 

1745 
1750 
1900 
1910 
2044 

2044 
2090 
2105 
2140 
2145 

2150 
2170 
2370 
2370 

1830 
1990 
2130 
2190 
2390 
2630 

1930 
2140 
2270 
2435 
2510 

2570 
2580 
2600 
2720 
2955 

Penetration 
depth, 
in. 

2.66 
3.2 
3.4 
3.19 
2.9 
3.9 
3.66 
3.65 
3.4 
3.75 

2.38 
3.4 
2.19 
2.6 

3.94 
4.72 
4.69 
5.1 
6.84 
6.75 

3.75 
4.44 
4.78 
4.19 
2.94 

4.28 
4.84 
3.41 
3.53 
3.09 

Bulge 
diameter, 

in. 

.512 

.519 

.521 

.517 

.529 

.525 

.518 

.532 

.531 

.503 

.505 

.510 

.511 

.513 

.517 

.515 

.515 

.527 

.552 

.579 

.568 

Fracture 
description 

Non-axisymmetric 

Long petals 
Non-axisymmetric 
Long petals 
Long petals 

Stubby petals 

Stubby petals 
Stubby petals 
Stubby petals 
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Fig. 2. Photograph of selected projectiles fired against 
thorite targets, (a) Unfired TP1 ; (b) TP1 at 2140 fps ; (c) TP3 
at 2580 fp; (d) TP1 at 2170 fp; (e) TP1 at 2370 fp; (0 TP3 

at 2720 fp. 

Results against steel plate targets 
Twenty-one shots were fired against steel plate 

targets. The results are summarized in Table 2. Figure 3 
is a photograph of selected projectiles after test. As 
indicated in the table some of the shots yawed coming 
out of the gun or hit the recovery trough and are of 
questionable value. 

The TP1 projectiles bulged at the front end (Fig. 3b). 
There was no distinct bulge to the rear of the front disk 
as was the case for penetration into Thorite. At higher 

velocities the amount of bulging increased and was 
accompanied by fracturing of the central portion of the 
front end. Characteristically, a number of tensile 
cracks could be seen criss-crossing the fractured region, 
presumably due to mushrooming or spreading out of 
the front end. In addition, the higher impact loads 
caused a disk-shaped piece to spall off the rear of the 

front disk. (One such spalled disk, actually from a TP2 
projectile, is shown in Fig. 3d.) At still higher impact 
velocities a circumferential crack appeared at the rear of 

Table 2. Summary of results for projectiles fired against steel plate targets 

Proj. 
type 

TP1 
TP1 
TP1 
TP1 
TP1 

TP1 

TP1 

TP1 

TP2 
TP2 
TP2 
TP2 

TP2 
TP2 
TP2 
TP2 

TP3 
TP3 
TP3 
TP3 

TP3 

Impact 
velocity, 

fps 

1685 
1800 
2025 
2060 
2180 

2430 

2640 

2670 

1990 
2200 
2440 
2500 

2640 
2870 
2900 
3080 

1670 
1910 
2330 
2640 

2930 

Description of projectile after test 

Front bulged. 
Front bulged. 
Front bulged, projectile yawed, deformation not axisymmetric. 
Front bulged, spall at rear of front disk. 
Incipient circumferential fracture near rear of disk, 
spalled piece wedged in cavity. 

Crack around half of outside circumferene at rear of disk, 
spalled, central portion of front fractured. 

Front disk almost sheared out, two .25-inch longitudinal 
cracks in side wall, may have hit recovery trough. 

Crack around half of outside circumference, front fractured, 
spalled, part of spalled piece recovered. 

Front bulged, spalled piece wedged in cavity. 
Front end fractured, spalled. 
Front end fractured, spalled. 
Front end mashed on one side, can see light through small 
cracks, spalled, projectile yawed up, deformation not 
axisymmetric. 

Front end fractured, hole through disk, spalled. 
Front end mashed on one side, spalled, hit recovery trough. 
Front end mashed on one side, spalled, hit recovery trough. 
Front end mashed on one side, spalled, hit recovery trough. 

Front bulged, second bulge at rear of herrisphere. 
Front bulged, second bulge at rear of hemisphere. 
Front bulged, second bulge at rear of hemisphere. 
Front bulged, central portion fractured, second bulge at 
rear of hemisphere. 

Front bulged, central portion fractured, second bulge at 
rear of hemisphere. 
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Fig. 3. Photograph of Selected Projectiles Fired Aga 
1655 fps; (c) TP1 at 2430 fps; (d) TP2 at 2200 

the front disk (Fig. 3c). In some instances the front disk 
was almost sheared off. 

The TP2 projectiles behaved in a similar fashion 
except that due to the increased side wall thickness no 
circumferential crack formed at the rear of the front 
disk and visible damage was confined to the central 
portion of the front disk. In one case (Fig. 3e), frac-
turing was so severe that a hole about 0.0625 in. in 
diameter was formed through the front disk. 

In addition to bulging at the front end, the TP3 pro-
jectiles also bulged at the hem isphere-to-side-wall 
transition, about 0.45 in. from the front end (Fig. 3f). 
At higher velocities fracturing of the central portion of 
the front end occurred, similar to the TP1 and TP2 
projectiles, but no fracturing was observed at this 
second bulge. Furthermore, there was no apparent 
spalling at the front of the hemispherical cavity. Again, 
the hemispherical front end would appear to be 
desirable for enhancing warhead survivability. 

COMPARISON OF EXPERIMENTAL RESULTS WITH 
ANALYSIS 

Penetration into thorite targets 
The penetration theory of Bernard and Creighton [2] 

was used to determine forces acting on a projectile. 
Application of this theory to a projectile penetrating 
concrete has been described in [1]. A similar approach 
been adopted here. 

Use of the theory requires a knowledge of several 
target material properties. In particular, the cohesion 
(taken as one-half the ultimate compressive stress), the 
index of rigidity (defined as the reciprocal of the 
maximum deviatoric strain at failure), and the density 
are required. In an attempt to determine these quan-
tities for Thorite, compression tests in an Instron 
machine were made of cylindrical test specimens, 4 in. 
long and 2 in. in diameter, prepared at the same time as 
the targets. These tests yielded an unreasonably low 
value for ultimate stress (around 2500 psi). This may 
have been because the specimens had too many voids in 
them. In any case rather than use this questionable 
experimental value, a compressive strength supplied by 

inst Steel Plate Targets, (a) Unfired TP1; (b) Tpl at 
fps; (e) TP2 at 2640 fps; (f) TP3 at 2930 fps. 

the manufacturer (3910 psi) was used in the analysis. 
Our experimental compression test data were used, 
however, to estimate the index of rigidity, since no 
other data were available. Within the range of these 
tests, penetration theory results are relatively insensi-
tive to the index of rigidity. 

The theory of Bernard and Creighton applies to 
conical-nosed projectiles, while the projectiles tested 
here are flat-fronted. Experiments with small cylin-
drical, flat-fronted projectiles fired into plaster of paris 
or simulated concrete targets [5] have shown, however, 
that conical caps of target material form on the front of 
blunt projectiles shortly after initial impact. These caps 
are carried along by the projectiles as they penetrate. 
The presence of these caps means that flat-fronted 
projectiles become effectively conical-nosed during 
penetration and can be analyzed using this theory. For 
the projectiles analyzed here, the cone half-angle was 
assumed to be 45 degrees. 

The property values used in determining force-time 
histories and penetration depths for the three test 
projectiles against Thorite targets are given in Table 3. 

A plot of penetration depth versus impact velocity is 
given in Fig. 4. Experimental points are shown only for 
those projectiles that did not fracture. The filled points 
are for impacts against wet-cured targets, while the 
non-filled points are for impacts against dry-cured 
targets. There is no apparent effect of type of cure on 
the penetration results. Also shown are lines corre-
sponding to penetration theory calculations for the 
three types of projectiles. Agreement between theory 
and experiment is reasonably good. For the three 

4iighest velocity TP3 projectiles the experimental 
penetration depths are considerably less than theoret-
ical predictions. This difference may be associated with 
the extreme bulging of these projectiles. Bulging may 
have increased their resistance to penetration. 

Bulging against thorite targets 
Finite element analyses of the projectiles were 

carried out in a manner similar to [1]. The penetration 
resistance force as a function of time for a given impact 
velocity was applied to the finite element model of a 
projectile in the form of a normal pressure uniformly 
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Table 3. Property values for penetration calculations. 

Target density, "lb sec2/ini+ 000198 

Cohesion, psi 1955 
Index of r i g i d i t y 80 
Cone half-angle, deg 45 
Projecti le radius, in 25 
TP1 project i le mass, lb sec2/in 000122 
TP2 project i le mass, lb sec2/in 000161 
TP3 project i le mass, lb sec2/in 000125 

THEORETICAL LINES 
TPI 
TP? 
TP3 , ' D 

EXPERIMENTAL POINTS 
0 , t TPI 
Ο,β TP? 
Δ,Α TP3 
Ο , Ο , Δ DRY-CURED THORITE 
· ■ ▲ WET-CURED THORITE 

1600 1800 2000 2200 2400 

IMPACT VELOCITY, FPS 

2600 2800 

Fig. 4. Penetration depth for test projectiles fired against 
thorite. 

distributed over the front end. Program HONDO II [6] 
was used for the analyses. Runs were made for a time of 
500 m sec (longer in a couple of instances to ensure that 
all plastic deformation had occurred). The material 
properties used for the 4340 steel projectiles are given in 
Table 4. 

Table 4. Material properties for 4340 steel projectiles 
Elastic modulus, psi 30,000,000 
Poisson's ratio 3 
Yield stress, psi 150,000 
Density, lb sec2/™4 000733 

A plot of cavity bulge height versus impact velocity is 
given in Fig. 5. Again, there is no apparent difference in 
the results for the two types of cure. Theoretical points 
for the three projectiles at an impact velocity of 2400 
fps (the circled points) are also shown. It is apparent 
that the amount of bulging predicted for these three 
projectiles is much less than actually measured. An 
explanation for this discrepancy and a modification to 
the analytical procedure that improves the comparison 
have been developed. 

Improved penetration theory including initial pressure 

The Bernard and Creighton penetration theory is for 

conical-fronted projectiles. At the moment of initial 
impact, however, the test projectiles are flat-fronted. A 
certain period of time is required before a cone is 
formed and the conical penetrator model is valid. 
During this initial period forces on the front of the 
projectile are very large. An estimate for the peak 
impact pressure can be obtained from plane wave 
theory ([7], p. 66). 

Pi=pcu (1) 

where p is the target density, c is the wave speed for 
compressiye forces in the target, and u is the impact 
velocity of the projectile. The duration of this load 
pulse, tj, can be taken as the time for a disturbance to 
travel from the front end of the projectile to the surface 
of the cone formed on its front, or 

r 
(2) 

The loading applied to the front of the projectile 
during this initial pulse can then be represented as a 
rectangular pulse of magnitude pl and duration tv This 
pulse will reduce the velocity of the projectile by an 
amount 

AV=nr2pItI/m (3) 

where r is the projectile radius and m its mass. If this 
amount is subtracted from the original impact velocity, 
the new impact velocity can be used in the penetration 
theory equations to calculate the force-time curve. The 
total loading will then consist of the initial pulse plus 
this force-time curve. 

Curves corresponding to the new initial pulse loading 
are also shown in Fig. 5. Agreement with experimental 
results is now quite good despite the gross assumptions 
made in determining the initial pulse. It is significant 
that agreement is so consistent for all three projectiles 
over the entire range of test velocities. 

EXPERIMENTAL POINTS 
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· . ■ > WET-CURED THORITE 

THEORETICAL LINES 
WITH INITIAL PULSE 

TPI 

1600 1800 2000 2200 2400 2600 

IMPACT VELOCITY, FPS 

2800 

Fig. 5. Cavity bulge height for test projectiles fired against 
thorite 
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In addition to bulging near the front of the cavity, the 
test projectiles also bulged at their front ends. Measure-
ments of the front bulged diameters were made. A plot 
of front bulge height versus impact velocity is shown in 
Fig. 6. The experimental points show considerable 
scatter. It is possible that the front bulge may be 
sensitive to a very slight degree of impact obliquity. 
also shown are theoretical lines corresponding to the 
initial pulse loading. The lines are almost coincident, 
indicating that the front bulge is not dependent on the 
cavity geometry. The agreement between theory and 
experiment in this case is still fairly good considering 
the amount of scatter. The experimental points on the 
figure reveal a dependence of front bulge height on 
type of cure, the degree of bulging being greater for 
wet-cured targets. Apparently, the type of cure affects 
material properties primarily near the surface (where 
the front bulge is formed), and to a lesser extent inside 
the material so that the penetration depth and height of 
the cavity bulge (which depend on the entire pene-
tration path) are not different. 
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thorite. 

The final deformed shapes of the finite element 
models of the three projectiles using the initial pulse 
loadings corresponding to an impact velocity of 2100 
fps are shown in Fig. 7. The final deformed shape for 
the TP3 projectile at 2600 fps is also shown. In addition 
to quantitative agreement with experimental bulge 
heights, these shapes also agree quite well qualitatively 
with the overall shapes of the projectiles as shown in 
Fig. 2. 

Use of the initial pulse loading curve will change the 
theoretical penetration depth versus impact velocity 
lines shown in Fig. 4. The amount of this change, 
however, is small, amounting in effect to a shift of the 
lines by about 100 fps in the direction of increasing 
velocity. This would, if anything, result in slightly 
better agreement between analysis and experiment. 

Bulging against steel plate targets 
An approximate loading to be applied to the front 

end of a projectile to represent impact with a steel 
plate target can be derived based primarily on the 
assumption that the forces applied are associated with 
the acceleration of the punched-out disk of plate 
material up to the speed of the projectile and that the 
strength of the steel can be neglected [8]. For an impact 
velocity of 1700 fps (approximately the lowest test 
velocity) the impulse required for this acceleration can 
be calculated as 0.182 lb sec. The time of application of 
this impulse can be taken as roughly twice the transit 
time for a stress disturbance to propagate across the 
thickness of the plate, about 0.625 msec. A force-time 
curve yielding the calculated impulse can be obtained 
by assuming a constant force for this time interval with 
5 msec half-sine transient added at each end to smooth 
out the loading slightly. If this force is applied as a 
uniform pressure over the front end the maximum 
applied pressure is 980,600 psi. 

Difficulties were encountered in the finite element 
analysis of test projectiles using this loading. Due to 
the very high pressure applied, extreme plastic deforma-
tion of the front ends occurred. After about 2 msec, 
the elements at the front outer edge became so distorted 
that the solution stopped. In order to force a longer 
time solution, a nonuniform pressure distribution 
over the front end was tried. Specifically, a sinusoidal 
distribution was assumed with the pressure at center 
twice the pressure at the outer edge. This reduced the 
amount of deformation at the outer edge and allowed 
the solution to proceed. Final deformed shapes for 
the TPI, TP2 and TP3 projectiles perforating 0.0625-in. 
steel plate at 1700 fps using this sinusoidal load 
distribution are shown in Fig. 8. Analytical bulge 
heights and measured heights for TPI and TP3 pro-
jectiles tired at 1685 and 1670 fps respectively are 
compared in Table 5. No measurements were made for 
a TP2 projectile because none was fired at that low a 
velocity. The front bulge heights were measured 
immediately to the rear of the lip, and for the TP2 
projectile the analytical cavity bulge height was taken 
as the radial displacement 0.25 in. from the front end. 

The experimental bulges are considerably less than 
the analytically determined ones, indicating that the 
analytically determined loading is too severe. Neverthe-
less, there is fairly good qualitative agreement between 
theory and experiment for the TPI and TP3 projectiles. 
The lip that forms at the front outer edge and the 
severe distortion of the elements in this region are 
apparent. Most of this lip would be sheared off of an 
actual test projectile. 

Finite element analysis of projectiles at higher impact 
velocities does not appear feasible using program 
HONDO II. Even with a sinusoidal pressure distribu-
tion, solutions would probably stop prematurely at 
higher velocities as element distortion increases. Also, 
the use of an engineering property description of the 
steel rather than an equation of state representation is 
questionable at the extremely high pressure levels 
encountered. 

CONCLUSIONS 
The purpose of the experimental work described here 

was to provide data for comparison with analytical 
results. The results indicate that the Bernard and 
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Fig. 7. Final deformed shapes of finite element models of test projectiles penetrating into thorite. 

TPI TP2 TP3 

Fig. 8. Final deformed shapes of finite element models of test projectiles perforating steel plates at 1700 fp. 

Table 5. Bulge height comparison for projectiles perforating steel plates. 

Project type 

TP1 

TP2 

TP3 

Front bulge height, in. 

Experiment 

.0195 

.0165 

Analysis 

.0282 

.0407 

.0271 

Cavity bulge height, in. 

Experiment 

.0065 

.004 

Analysis 

.0101 

.0113 

.0074 
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Creighton penetration theory for conical projectiles 
can be used for blunt projectiles impacting half-space 
targets at normal obliquity if an initial impact pulse is 
added to the theory. This initial pulse is related to the 
formation of a conical cap of target material on the 
front of the blunt projectile. With this integrated 
penetration force theory, the H O N D O II program 
predictions of residual shapes of plastically deforming 
projectiles were in good agreement with experimentally 
observed values. For perforation of steel plate targets, 
larger local deformation at the impact surface of the 
projectile caused analytical difficulties for H O N D O II. 
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Abstract—The ability of a structure to mitigate energy associated with impacting hard surfaces plays a 
significant role in the design and survivability of internal components. This paper summarizes the design 
and analysis of an efficient nose cone for impacting rigid surfaces. A two-dimensional finite element quasi-
static model, utilizing large displacement, large strain formulations, contact-impact surfaces and elastic-
plastic material models, was used in the design-iteration phase of the study. Results from the analyses 
agreed with experimentally tested scaled nose cones, thus permitting the design changes which resulted in an 
efficient structure for axisymmetric loading to be completed in minimal time. A three-dimensional explicit, 
dynamic, finite element program was used in the evaluation of an asymmetrical static crush. The solution, 
obtained on a CRAY-1 computer also agreed extremely well with experimental tests. Efforts to model the 
material property variation with strain rate led to encouraging results and more work will be required in 
this area. 

INTRODUCTION 

Various parts of a modern strategic bomb are designed 
to mitigate considerable energy when impacting a hard 
surface in order to ensure the survivability of the in-
ternal components. Unfortunately, many factors affect 
the design of each part and their interactions can only 
be clearly understood through a detailed analysis. The 
present study concerns the design and analysis of a 
mitigating nose cone or frontal section of a 1000 k 
bomb, delivered as shown in Fig. 1. 

approximately four months. Therefore, it was felt that 
if an analytical approach could be used to optimize the 
design, a reliable nose design could be obtained in much 
less time. The analysis would also provide a means to 
better understand how certain design changes affect 
energy absorption. 

The design conditions limits the crush displacement 
of the nose cone and the peak deceleration of the bomb 
when it impacts a rigid surface. The impact conditions 
selected for this study were the head on, symmetric 

REEFED PARACHUTE DEPLOYED 

t ■ 0.9 sec. DISREEFED-PARACHUTE OPENING 

t = 1.5 sec. 

Fig. 1. Laydown bomb delivery. 

This study was initiated when the impact require-
ments placed on the bomb were changed requiring the 
nose cone to absorb significantly more kinetic energy. 
Based on previous experience, the time required to 
fabricate and test a particular redesign would be 

tWork supported by the U.S. Dep. of Energy under 
Contract DE-ACO4-76DP00789. 

condition, and an oblique impact of ten degrees from 
the centerline axis. In order to minimize the changes 
associated with a redesign, the nose section was still 
required to be machined from a 21-6-9 stainless steel 
forging using the same exterior contour. Therefore, 
only the interior contour and the shape of the external 
sliding inhibitors (commonly referred to as teeth) could 
be significantly modified. 

295 



296 M. L. CHIESA and M. L. CALLABRESI 

The analytical design approach selected for optimiz-
ing the nose configuration consisted of first using a two-
dimensional model for the axisymmetric load case and 
verifying the analytical results through scale model 
testing. These scale model tests would be tested at a 
slow load rate thereby eliminating any strain rate 
effects exhibited by the material. Once the two-
dimensional model was verified, the nose cone would be 
optimizied for the symmetric load case. A three-
dimensional analytical model of the optimized nose 
would then be analyzed for the oblique load case in 
order to evaluate the optimized design when subjected 
to nonsymmetric loadings. A scale model static test 
simulating the oblique load would be used to verify the 
three-dimensional analysis. After the optimized nose 
design, subject to low strain rates, was Verified, the 
efficiency of the design for impact loading conditions 
would be evaluated using both dynamic numerical 
analysis and scaled dynamic tests. 

TWO-DIMENSIONAL ANALYSIS 
The analytical design-iteration program was im-

plemented using a two dimensional finite element 
computer program to model the nose section of the 
bomb. This symmetric impact case was studied first 
since a two-dimensional model allowed quick evalu-
ation of proposed designs. To eliminate the strain rate 
effects, verification tests, in which the nose tip was 
crushed 1.35 in. at a rate of 0.1 in./min, were used to 
provide the data to be simulated by the two-dimen-
sional static analysis. 

The two-dimensional model was analyzed using 
GNATS [1], a general nonlinear finite element program 
for quasi-static two-dimensional structures. The pro-
gram used a total Lagrangian [2-4] formulation for 
describing the equilibrium of a body in the displaced 
position. At each iteration, Green's strains are com-
puted from the total displacements using the Green-
Lagrange strain-displacement equations. An Almansi 
strain increment, calculated by transformation of the 
Green strain increment, is then input into the material 
subroutines to obtain a Cauchy stress increment. The 
program then iterates using a full Newton scheme until 
the equilibrium equation has converged to a prescribed 
tolerance. 

An efficient numerical material model, developed by 
Krieg [5], for time independent plasticity has been 
incorporated into the GNATS code. This material 
model allows the inelastic material behavior to be 
modeled by several different functions. A very close 
numerical fit to the experimental true stress-strain 
curve for 21-6-9 stainless steel, shown in Fig. 2, was 
obtained using the following function : 

σ = σ, + Κ 1 (ε /2 + κ 3 t a n - 1 ^ ) 

where σ is the effective stress, ay is the yield stress, ερ is 
the effective plastic strain, and Ru R2, R3, RA are 
constants which were determined from a nonlinear 
least squares fit of experimental data. 

Implementation of a contact-impact algorithm 
using a modification of work by Hallquist [6, 7] was 
required so that the contacting tooth problem during 
loading could be solved. The algorithm, based on a 
penalty function formulation, allows sliding of ar-
bitrary mesh lines regardless of differences in materials 
or mesh density of the two contacting surfaces. At each 

É 900 f-

0.2 0.3 

TRUE STRAIN 

Fig. 2. Stress-strain curve for 21-6-9 stainless steel. 

iteration, nodes lying on user defined sliding interfaces 
are tested for penetration by a series of vector cross and 
dot products. For each node that has penetrated, a 
linear spring is inserted that couples the penetrating 
node with the two nearest nodes on the opposite inter-
face and a resisting force, proportional to the depth of 
penetration, is applied to each of the three spring nodes. 

The solution is moderately sensitive to the spring 
stiffness, which can be input by the user or internally 
calculated using the bulk modulus of the material. The 
amount of penetration can become excessive if a low 
stiffness is used and numerical problems can arise when 
using a very high stiffness. Although the formulation 
results in slower convergence, larger bandwidths and 
does not entirely preclude penetration, it is logistically 
simple to implement into implicit codes and yields 
excellent results. 

The finite element mesh, shown in Fig. 3, was used in 
modeling the axisymmetric static crushing. Compli-
cated geometry definition and significant bending 
required 591 nodes and 165 eight-node isoparametric 
quadrilaterals to accurately describe and analyze the 
problem. In addition, sizable geometry changes and 
bending necessitated the use of five elements through 
the thickness. The initial half-bandwidth of the problem 
was increased from 40 to 58 by the inclusion of three 

Fig. 3. Axisymmetric finite element mesh used in two-
dimensional analysis. 
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150 Γ 

CRUSH DISPLACEMENT (cm) 

Fig. 4. Two-dimensional analytical experimental static load-
crush curves. 

sets of sliding interfaces (which were required at each 
contacting tooth). 

Two-ninths scale test units of several intermediate 
design iterations were manufactured and statically 
tested. The excellent agreement between experimental 
and analytical results, depicted in the load-displace-
ment curve (force required to crush the nose versus 
crush displacement) shown in Fig. 4, resulted in the 
curtailment of experimental tests and complete reliance 
on the computer analyses. Results from an intermediate 
iteration are shown in Fig. 4 as this was the last design in 
which accurate stress-strain material data from a nose 
forging was available. Comparisons of the final design 
were also excellent although a slight deviance was 
attributable to material property changes (primarily a 
change in the yield strength due to modifications in the 
heat treatment). The initial teeth shape and inner 
contour were significantly changed, based on the 
computer analyses of more than 40 design iterations, 
until an optimum nose design was obtained. The 
analytical deformation history of the static axisym-
metric loading is pictured in Fig. 5 and the final 

Fig. 5. Deformation history of axisymmetric analysis. 

ffi 

Fig. 6. Comparison of experimental and GNATS final 
deformed shapes. 

displaced shape of the computer analyzed optimized 
nose is compared in Fig. 6 with a photograph of the 
scaled test unit. 

In an attempt to more accurately describe the actual 
impact conditions, two-ninths scale test units were 
tested dynamically using a drop table with a scaled 
mass, simulating the weapon, from a height calculated 
to provide the kinetic energy required to be absorbed by 

CRUSH DISPLACEMENT (cm) 

Fig. 7. Load-crush curves of dynamic and static axisymmetric 
tests. 
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the nose. Dimensions and masses were scaled so that 
stresses, time and thus strain-rates were identical in the 
full and two-ninth scale models. A computer analysis of 
a full scale nose verified that the load-displacement 
curve of the smaller nose would scale as the theory 
predicts. 

The load-displacement curve from the axisymmetric 
dynamic test is shown in Fig. 7 with the curve from the 
static test. The maximum rigid body deceleration was 
increased 22% by the dynamic effects and the deceler-
ation at the first peak increased 56%. Frequency 
calculations indicated that the loading could be 
assumed quasi-static and that the increase in load must 
be attributable to the strain-rate sensitivity of the 
material. An attempt was not made at this point to 
analytically solve the strain-rate problem on the two-
dimensional model. 

Average solution time for the two-dimensional 
model was 1800 central processor seconds per analysis 
with approx. 300 equilibrium iterations. New designs 
based on changes from results of the previous design 
could thus not only be evaluated within two days via 
the computer, but also resulted in significant cost 
savings. The time to reach an optimum design was 
reduced from possibly years to only several months. 

THREE-DIMENSIONAL ANALYSIS 

Since the probability of vertical impact is small, a 
combined experimental and analytical test program 
was initiated to study the relationship between angle of 
attack and amount of kinetic energy absorbed. Scaled 
nose cones were tested statically by crushing at an 
inclined angle of 10° from vertical while the three-
dimensional impact problem was numerically modeled 
using three-dimensional brick finite elements. Due 
to problem size and complexity, the choices of com-
puter codes available for the analysis were limited. 
The requirements, similar to those of the two-di-
mensional model, were large strain, large displacement, 
three-dimensional contacting interfaces and elastic-
plastic material model capabilities. The three-dimen-
sional dynamic explicit code DYNA3D [8] was selected 
to analyze the problem as it was the only finite element 
computer program that met the requirements and 
could solve the problem in a reasonable length of time. 
An explicit dynamic code was used because of the 
unavailibility of an acceptable three-dimensional static 
implicit code and because of the large bandwidth that 
would have been generated. DYNA3D, programmed 
to take full advantage of vector optimization on the 
CR AY-1 (a Class VI machine) executes at less than 0.67 
CPU (central processor units) minutes per million mesh 
cycles. Usage of only eight node bricks and one point 
integration in element stiffness calculations signifi-
cantly reduce core memory requirements and permit 
the solution of very large three-dimensional structures. 

The nose cone mesh consisted of 4356 eight node 
bricks and 6074 nodes as shown in Fig. 8. The final two 
rows of elements, containing a very dense material 
(131 kg/cm3), was used to model the mass of the aft 
section. Five sets of sliding interfaces were required in 
the model, three for the contacting teeth and two sets of 
tied interfaces that allow a reduction in mesh density. 
One tied interface is used near the base to allow a 
reduction from four to three elements through the 
thickness and another tied interface near the tip to 

Fig. 8. Finite element mesh used in three-dimensional 
analysis. 

prevent irregular or wedge shaped elements. The 
material was modeled by a bilinear isotroptic hardening 
law, further reducing computational time by increased 
optimization of the vector calculations, although this 
method results in reduced accuracy for small plastic 
strains. The two-ninths scale nose was impacted into 
perfectly rigid and frictionless wall, modeled by the 
large one element block shown in Fig. 8, with an initial 

Fig. 9. Deformation history of asymmetric analysis. 
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axial velocity of 574 c/sec. 
Due to the size of the model, the problem was 

analyzed at the Lawrence Livermore National Labora-
tory on their CRAY-1 computer. After an initial three-
dimensional analysis of the symmetric impact verified 
the model was working correctly, the oblique analysis 
was run requiring 15 CPU hours. Deformed shapes, 
plotted by the post-processor GRAPE [9] program at 
three millisecond intervals are shown in Fig. 9 and a 
buckle can be seen to be developing in the leeward wall 
within the first 3 msec. A zero energy mode, the result of 
a one point integration in an eight node brick, caused 
the hourglassing which is noticeable in the tooth area at 
the larger deformations. The hourglassing is controlled 
to a large extent by use of an artificial viscosity and al-
though aesthetically displeasing, will not affect the final 

CRUSH DISPLACEMENT (cm) 

Fig. 10. Three-dimensional analytical and experimental 
static load-crush curves. 

results. The crush force, calculated from the global 
rigid body accelerations, is plotted versus the crush 
displacement in Fig. 10 with the results from the 
experimental static test. 

The discrepancy in load values at the first two peaks 
is primarily due to the bilinear stress-strain model in 
which the yield stress (480 MPa) used in this model is 
larger than the actual yield (380 MPa). The three-
dimensional model accurately predicted the buckling 
load since the material model is more representative at 
higher plastic strain values. The final deformed shapes 
of the analytical and experimental noses, shown in Fig. 
11, agree extremely well with the exception of a slight 
difference in location of the buckle, attributable to the 
imperfect modeling of the impact surface (rigid and 
frictionless). 

As initially suspected, the difference between the 
dynamic analysis and static test results is small indi-
cating that inertia effects in the problem are minimal 
and that the increase in load, shown in a dynamic test, 
must be entirely due to material strain rate sensitivity. A 
dynamic test, in which the scaled nose was dropped and 
impacted a nearly rigid steel block at 574 c/sec, showed 
that the lower wall did not buckle indicating that the 
CAS 13:1-3 - T 

strain rate in the wall must increase the yield stress 
enough to prevent the wall buckling that occurred in 
the slow rate test. An attempt was made to model the 
strain-rate behavior in the DYN A3 D code using the 
Symonds-Ting model [10] as implemented in the 
HONDO [11] computer program. The yield stress for 
this model is defined as a function of an effective strain 
rate and the plastic modulus is held constant for 
simplicity, although strain rate tests conducted at 
Sandia on the 21-6-9 stainless steel indicated a sig-
nificant decrease in modulus with increasing strain rate. 
For the Symonds-Ting model, if σ0 is the uniaxial 
yield stress at zero strain rate, then the yield stress, σν. 
at any other strain rate, ε, is given by 

where p and D are constants which have been evaluated 
from a nonlinear least squares fit. Results of the strain 
rate tests on 21-6-9, shown in Fig. 12, reveal a sig-
nificant increase in yield stress at high strain rates. 
Since strain rates at locations in the nose exceed 1000 
sec" S while the maximum rate achieved in the labora-
tory tests were 300 sec"1 due to test equipment 
limitations, the constants for the rate model were 
extrapolated to the higher strain rates. 

Data from the three-dimensional analysis, with the 
rate model included, show an increase in crushing 
force and that the lower wall does not buckle. Although 
the load curve does not increase enough to match the 
experimental dynamic tests, the results have been 

Fig. 11. Comparison of experimental and DYNA3D final 
deformed shapes. 



300 M. L. CHIESA and M. L. CALLABRESI 

ation of why the present material strain rate model 
yielded inaccurate results. 
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FINITE ELEMENT CODE CDC 6600 CDC 7600 CRAY-1 
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DYNA2D 

HONDO 

.50 

15 

20 

(.10) 

2.1 

3.0 

(.02) 

0.4 ! 

(0.6) 

THREE-DIMENSIONAL 

DYNA3D 

1 WULFF 

450 

4500 

75 

750 

15 

(150) | 

STRAIN RATE (sec"1) 

Fig. 12. Yield stress variation with strain rate. 

encouraging and work is presently proceeding to 
determine the discrepancy. 

CONCLUDING REMARKS 

The two- and three-dimensional nonlinear finite 
element models have been shown to be very accurate in 
predicting the response of the crushing nose. The two-
dimensional analysis was invaluable in the design 
iteration of the nose, drastically reducing costs and 
time. Designs were analyzed and results were evaluated 
within two days while manufacture and testing often 
required three to four months per iteration. It was 
shown that accurate and valuable results can be 
achieved from three-dimensional analyses in a reason-
able amount of time providing, as illustrated in the 
Appendix, an efficient numerical program and a Class 
VI computer are available. 

Future work in the area will be to develop a more 
accurate strain rate model based on experimental tests 
of tensile bars and the nose cone data. Noses were 
tested dynamically at three different velocities to pro-
vide ample data for correlation with the analytical 
results. Included in the future study will be a determin-



Nonlinear analysis of a mitigating steel nose cone 301 

computer programs for the large displacement dynamic 
response of three-dimensional solids, Sandia National 
Laboratories, Albuquerque, New Mexico, SAND76-
0096 (Aug. 1976). 

APPENDIX 

Solution times, calculated for possible two- and three-
dimensional analyses using five codes,GNATS [1], a static 
implicit code, and HONDO [11], DYNA2D [12], 

WULFF [13] and DYNA3D [8], dynamic explicit codes are 
listed in Table A1. Value in parentheses indicate that the code 
is currently not available on the respective computer and 
that timings have been approximated from past experience. 
The factor of ten difference in efficiency between WULFF 
and DYNA3D is primarily due to the number of numerical 
integration points used. WULFF, however, does not have 
the hourglass problem since the eight point gaussian 
quadrature eliminates that zero energy mode. 
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Abstract—The results of a combined analytical/experimental design of a high-explosive velocity augmented 
kinetic energy penetrator are presented. The objective of the analysis is the design of a velocity augmentor 
and main charge case. The augmentor design must conform to restrictive volume constraints and provide 
maximum impulse to the main charge which, in turn, must survive the augmentor loading and penetrate 
the target. 

An explicit finite element hydrodynamic computer code, DYNA2D, employing arbitrary zoning, two-
way sliding with gaps, and high explosive equation-of-state is employed as the analytical tool. High strain 
rate material models are used and predictions are compared to experimental deformations. Shock wave 
interactions in the main charge case are analyzed and a combination of shock attenuation and wave trapping 
is employed to reduce loads below failure limits. 

The final design provides maximum velocity augmentation while staying within volume constraints 
and maintaining main charge case integrity. Computed deformations and velocities are experimentally 
verified. This design analysis method using state-of-the-art code and computer capabilities is shown to be 
an effective method of simplifying the design process as well as providing necessary design optimization 
data not previously available. 

INTRODUCTION 

This paper presents the combined analytical/experi-
mental design of a high explosive velocity augmented 
kinetic energy penerator being developed at the Law-
rence Livermore Laboratory. A Lagrangian hydro-
dynamic finite-element computer analysis was com-
bined with high explosive testing to develop the pene-
trator assembly, which consists of a main charge (MC) 
and a velocity augmentor (VA) as shown in Fig. 1. At 
target impact the velocity augmentor detonates increas-
ing the main charge velocity allowing it to penetrate the 
target and come to rest at the desired depth. 

OBJECTIVE 

The overall objective of this analysis is the design of 
the velocity augmentor and main charge case within 
restrictive volume constraints. This objective has two 
parts : 

(1) Design a velocity augmentor to provide maximum 
impulse to the main charge within the volume available. 

(2) Design a main charge case that will survive the 
augmentor impulse while delivering the maximum 
payload to the target. 

In order to meet these objectives, a combined 
analytical/experimental program was developed. The 
approach used to solve this problem applied the unique 
resources of the Lawrence Livermore Laboratory 
which combines an extensive scientific computing 
capability with a conveniently located explosives test 
facility. 

APPROACH 

The approach used to solve this problem was a com-
bined analytical/experimental program that was sub-
divided into four distinct tasks. An objective was met 
in each task before going on to the next. The following 
describes these objectives: 

(1) Computer Model Development. Select an appro-
priate analytical code and computer. Generate a finite 
element mesh and mathematically characterize material 
properties. 

(2) Computer Model Calibration. Validate the com-
puter model by correlating analytical predictions to 
experimental results. 

(3) MC and VA Design Optimization. Optimize the 
VA and design the MC case to withstand the VA im-
pulse. 

(4) Final Experimental Verification. Experimentally 
confirm the computer predictions. 

COMPUTER MODEL DEVELOPMENT 

The computer code selected for the analysis, 
DYNA2D, was developed at LLL by Hallquist [1]. 
DYNA2D is an explicit, two-dimensional, plane strain 
and axisymmetric, Lagrangian hydrodynamic finite-
element code. Particular features distinguish DYNA2D 
from codes previously available for hydrodynamic 
modeling. First, DYNA2D allows gaps and arbitrary 
two-way sliding between adjacent materials. This 
improves the modeling of complex geometries with 
intersecting material interfaces. Specialization of a 
contact-impact algorithm allows such interfaces to be 
rigidly tied allowing variable zoning without the need 
for transition regions. Because less simplification or 
compromise is required in the model, more accurate 
predictions are possible. Another feature of DYNA2D 
is its use of quadrilateral finite element zones. These 
allow arbitrary zoning in which a logically regular mesh 
is not required. Finite elements offer an alternative 
meshing scheme that for certain geometric configura-
tions can result in reduced mesh entanglement. More-
over, the quadrilateral zones afford an added degree of 
freedom and are less stiff than triangular zones used in 
some finite element codes. The third feature is the large 
number of material models incorporated into the code. 

303 
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- Main charge case 

-Main charge explosive 

High explosive 

Velocity augmentor 

Fig. 1. Kinetic energy penetrator assembly. 

Four of the thirteen available material models in 
DYNA2D were used in this analysis. The four material 
models are described briefly below: 

( 1 ) Elastic/plastic/hydrodynamic 
The shear modulus (G), yield strength (Sy), and hard-

ening modulus (Et) are required to define the standard 
engineering properties. An equation of state defines the 
pressure, P, as 

P= Οφ+ Ci/i-f C2p
2 + C3p

3 + (C4 + C5//+ C6ß
2)Ei 

where μ=ρ/ρ0 — \, ρ/ρ0=ratio of current density over 
initial density and £, = internal energy 

(2) Steinberg/Guinan high strain rate model 
The Steinberg/Guinan model is an advanced plas-

ticity model that accounts for thermal softening and 
strain hardening. It assumes that the elastic shear 
modulus and the yield strength of an isotropic material 
depend upon pressure and internal energy [2]. The 
yield strength is also governed by effective plastic strain 
that controls strain hardening. The model is rate-
independent and was formulated for use at strain rates 
greater than 105 sec"*. In this domain it is assumed that 
strain rate enhancement has saturated and is no longer 
a variable affecting yield strength. 

The expected flow curve for a typical material sub-
jected to high strain rate explosive loading is shown in 
Fig. 2. When strain hardening alone is the dominant 
effect, the curve begins at Y0 and strain hardens to Ymax. 
The value of l ^ i s the maximum yield strength to be 
attained from cold work of the material. The dotted 
curve in Fig. 2 shows the effect of pressure and tem-
perature on the flow curve. During the early stages of 
deformation when HE pressure is high, the pressure 
dominates and raises the yield strength. Later in the 
process when the HE pressure is no longer dominant, 
the effects of heating due to a rise in internal energy 
begin to degrade the strength of the material. 

-

/ / 
/ / 

/ / 

/ / ^^ / / 

^- Pressure effect 

-Strain hardening 

-

*- Thermal softening 

;p, effective plastic si 

Fig. 2. Steinberg-Guinan high strain rate model. 

(3) J ones/Wilkins/Lee high explosive equation of state 
[3] 

The JWL equation of state defines the pressure, P, as 

P=A 1 ω e-w + Bll 
R,V V 

where A, B, Rl9 R2 and ω are empirical constants, V is 
the relative volume, and £, is the internal energy. A 
programmed burn model based on detonation velocity 
is used to define detonation times for each explosive 
zone. 

(4) Reactive material equation of state 
The fourth material model used in the analysis was 

the reactive material model. This model characterizes 
a high explosive material acting as a structural member. 
However, if the energy input into any zone exceeds a 
minimum energy in the form of the integral of/?2/, the 
material in that zone detonates using a modified form 
of the JWL equation of state. 

The post processor used for the analysis, THOR, was 
also developed at LLL by Hallquist [4]. THOR reads 
the binary plot files generated by DYNA2D and plots 
contours, time histories, and deformed shapes. It can 
compute a variety of strain measures at either Gauss 
integration or nodal points, interface pressure along 
slidelines, forces along constrained boundaries, re-
sponse spectra, and momentum. 

This analysis was run on the Cray-I computer, the 
most advanced scientific computer currently available 
in the world. DYNA2D coding was vectorized to take 
advantage of the computer's speed capabilities. This 
reduced the computing time (and cost) by a factor of 
seven over the equivalent time of a CDC 7600. 

The computational mesh used in the preliminary 
analysis is presented in Fig. 3(a). The finite-element 
mesh generator, ZONE, developed at LLL by Burger 
[5], was used to develop this mesh. The mesh utilizes 
1033 nodes, 838 quadlateral elements, 5 materials and 
7 slide lines located at material interfaces. 

The models used for the materials shown in Fig. 3(a) 
were as follows : 
4330 V Mod Steel—elastic/plastic/hydrodynamic 
Titanium —elastic/plastic/hydrodynamic 
Copper —Steinberg/Guinan high strain rate 
VA Explosive —JWL high explosive equation of state 
MC Explosive —Reactive material model. 
The constants used for the titanium, copper, and VA 
explosive were found in the literature [2, 3, 6]. How-
ever, the properties of the steel case and main charge 
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Experiment Analysis - Deformed Shape 
Fig. 3. Preliminary experimental/analytical correlation. 

explosive needed additional consideration in order to 
accurately correlate computer predictions to experi-
mental data. 

Static stress-strain data and split Hopkinson bar test 
data were obtained for the MC explosive [7]. This 
data showed that the static yield strength of (0.000217) 
Mbar increased to (0.000374) Mbar at a strain rate of 
2500 sec"1. The bulk modulus of 0.10355 Mbar was 
obtained from ultrasonic tests [8]. 

High strain rate split Hopkinson bar tests were also 
run on the 4330 vanadium modified steel case [7]. 
Strain rates up to 103 sec- 1 are obtainable with the 
test apparatus at LLL. However, rates as high as 
1Ü5 see"* can be expected for HE interaction problems. 
To account for the effect of higher strain rates, the 
tangent modulus in the elastic/plastic/hydrodynamic 
material model was held constant while the yield 
strength was increased until correlation to experimental 
data was achieved. 

CODE CALIBRATION AND EXPERIMENTAL RESULTS 
The objective of this portion of the design/analysis 

was to calibrate and/or validate computer predictions 
of a non-optimized experimental configuration and to 
determine acceptable limits of case strain. The initial 
computer runs were made using three yield strength 
models. Figure 3(b) presents various computed deform-
ations for Sy=0.0113, 0.0136, and 0.0170 Mbar. Also 
shown are the corresponding experimental deforma-
tions from two tests. The predictions of radial deforma-
tion (ΔΛ), base deformation (B) an overall length 
change (AC) were compared to the results of two explo-
sive experiments. Excellent correlation was found using 
the yield strength at 0.0170 Mbar which corresponds 
to a 51% increase over the quasi-static value. Figures 
3(c) and (d) show a comparison of the experimental and 
computed deformed (sy=0.0170 Mbar) geometries. 

Further code verification was accomplished by com-
paring the computed to experimental MC rigid-body 



306 D. B. TUFT and M. J. MURPHY 

velocity from detonation of the velocity augmentor. The 
experimental velocity was determined using a flash 
X-ray system. The computed value of 95 msec compared 
well with the experimental value of 92.6 msec. The case 
deformation of 16% was also used as a limit for further 
designs since the MC survived the augmentor detona-
tion. Although laboratory tests have shown up to 20% 
strain for this material at static rates, it was decided that 
16% deformation should be used for analytical design 
purposes. A secondary factor in this consideration was 
the increased cross sectional area of the MC at the 
higher deformation levels which reduces penetration. 

Although this preliminary velocity augmentor design 
did not meet volumetric constraints, the analysis and 
experiment met the objectives of the first two tasks 
outlined in the program. The following summarizes 
the results of the first half of the development of the 
kinetic energy penetrator assembly. 

(J) Analytical code calibrated and verified. 
(2) Material models defined and confirmed with ex-

perimental results. 
(3) Deformation limits defined. 

VELOCITY AUGMENTOR OPTIMIZATION 
The next step was optimization of the velocity aug-

mentor within the imposed volume constraints. Vari-
ables chosen for this optimization study were tamping 
thickness, tamping materials, and shock wave attenu-
ator thickness. These parameters were identified as 
having a major impact on performance and each was 
isolated and studied. Maximum MC case velocity and 
the experimentally determined limit of 16% radial case 
strain were used as performance criteria. Designs not 
meeting augmentor volume and case deformation con-
straints were not considered. 

Because case survivability is a necessity, the velocity 
augmentor should be designed to do as little damage as 
possible while producing the highest possible velocity. 
One of the parameters affecting case damage is shock 
waves propagating from the augmentor. To reduce the 
effect of these shock waves on the MC case, a shock 
attenuator is required. The attenuator material should 
have high strength, be as light as possible, and have a 
shock impedence mismatch with the steel case. Titan-
ium was initially chosen as the attenuator material due 
to its weight, strength, and shock impedence proper-
ties. At this point in the design analysis, the thickness of 
titanium attenuator was set at 0.953 cm because this 
proved acceptable in the preliminary design. 

H.E. TAMPING OPTIMIZATION 

The next parameter to be studied in the velocity 
augmentor design was the explosive tamper. With the 
above defined attenuator, tamping was added first in 
unequal increments. Throughout the tamping optimiz-
ation, the attenuator thickness and overall outside VA 
envelope was held constant. This results in a trade 
off between HE mass and tamper mass. Figure 4(a) 
shows MC calculated rigid-body velocity and Fig. 4(b) 
shows calculated maximum radial case strain plotted 
vs augmentor charge-to-mass ratio. From this figure 
it can be seen that both MC velocity and strain reach a 
maximum at a charge to mass ratio of 0.17. This con-
figuration was considered to be optimum. Additional 
points at higher and lower tamper densities were also 
calculated. 
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Fig. 4. Calculated velocity and strain vs charge to mass ratio. 

MC explosive 

Longitudinal tamping 

Fig. 5. Penetrator assembly with optimized velocity 
augmentor. 

The resulting optimized velocity augmentor design, 
shown in Fig. 5, consists of radially and axially tamped 
high explosive and a titanium shock attenuator. During 
the velocity augmentor optimization process, shock 
wave attenuation was not optimized and case stress 
levels were not considered. An experimental test of the 
optimized VA design produced catastrophic MC case 
failure. Although the calculated maximum radial case 
deformation for this design was below the acceptable 
level, the tensile stress in the case far exceeded the ten-
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Fig. 6. Shock wave propagation in main charge case. 

sile strength of the case material. A study of the HE 
shock wave interaction at the MC base showed a com-
pression wave reflecting off the outer case diameter was 
responsible for the tensile stress failure in the case. 
Figure 6 illustrates the sequence of shock interactions 
leading to high tensile stresses. The spherical wave 
created by the HE detonation enters the base center 
beginning at about 2/is. The wave then propagates 
striking the upper side of the case base at about 6/is and 
reflecting as a tensile wave as shown in Fig. 6(c). The 
initial wave continues to propogate radially outward 
impacting the outer case wall and reflecting as a strong 
tensile wave beginning at about lO/xs. The stress level of 
the reflected wave grows in magnitude until reaching a 
maximum of about 66 kbar at 12μβ, as shown in Fig. 
6(f). The location of failure in the tested MC case cor-
responds to the location of this calculated maximum 
stress. 

Two approaches toward reducing tensile stress in the 
case were taken. First, the magnitude of the compres-
sion wave impacting the outer wall was reduced by 
optimizing the shock wave attenuator. Second, a radial 
momentum trap was incorporated to absorb the com-
pressive wave at the outer diameter and not allow the 
reflected tensile wave to propagate back into the case. 

SHOCK ATTENUATOR OPTIMIZATION 
The shock attenuator, located between the aug-

mentor explosive and the MC case, is intended to 
reduce shock loading produced by the explosive while 
at the same time allowing maximum impulse to be 
imparted to the MC. From one-dimensional shock 
theory we know that alternating materials of high and 
low shock impedence will result in minimum stress 
transmitted. 

To evaluate the relative effectiveness of different 
material combinations and layer thicknesses, several 
hydrodynamic calculations were performed with 
KOVEC, a one-dimensional code [9]. KOVEC solves 
the Lagrangian finite-difference equations for one-

dimensional elastic-plastic flow and allows explosive 
burn using the JWL equation-of-state [3]. 

The overall geometry for this study is shown at the 
top of Fig. 7(a). The total augmentor length was kept 
constant to reflect VA volume constraints while the 
attenuator materials and thicknesses were varied. 
Hence, explosive thickness varied with changes in 
attenuator thickness. The MC case was represented by 
a steel plate with the same thickness as the bottom 
center thickness of the MC case. 

The parameters of interest in this attenuator study 
were total impulse delivered to the case and maximum 
pressure in the case. As a baseline, a calculation of 
impulse for zero attenuation was made and all sub-
sequent impulse numbers were expressed as a fraction 
of the baseline impulse I0. 

Figure 7(a) shows a plot of impulse ratio ///0, 
pressure transmission ratio PJPi, and maximum case 
pressure as a function of plate thickness for the tan-
talum-lucite combination. This material combination 
represents one of the highest possible difference in 
shock impedence available in common materials. The 
rise in case pressure between 0.0 and 0.159 cm plate 
thickness is due to pressure magnification differences 
between a shock impinging on steel or tantalum. Thus, 
in this instance, two thin attenuator plates are worse 
than no attenuation at all. The pressure ratio decreases 
more rapidly than the impulse ratio for plate thicknesses 
beyond 0.318 cm. This thickness was selected as an 
optimum configuration. 

Several other material and thickness combinations 
were also considered. The results indicated the optimum 
attenuator among those investigated is a 0.318 cm 
tantalum —0.318 cm lucite combination. This attenu-
ator produced the maximum relative impulse while 
reducing case pressure below the calculated acceptable 
level. 

Figure 7(b) shows a comparison of a two-dimen-
sional calculation of pressure versus time in the bottom 
center of the MC case for the titanium attenuator and 
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Fig. 7(a). One-dimensional shock attenuation study. 
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Fig. 7(b). Calculated two-dimensional base pressure for two 
attenuators. 

tantalum-lucite attenuator. The maximum pressure 
has been reduced by 44% and the pulse spread out 
producing a longer duration, less severe push on the 
MC case. 

MOMENTUM TRAP DESIGN 
With the magnitude of the incident stress reduced, it 

was then desirable to prevent the compression wave 
from reflecting as a tensile wave at the outer diameter 
of the case. The momentum trap design shown in Fig. 8 
was incorporated to achieve this effect. The momentum 
trap, which is actually a combination of a third attenu-
ator plate and a radial momentum ring, is made of the 
MC case steel so that the initial compression wave will 
pass from the case into the ring with zero reflection. 
This initial compression wave then reflects from the 
outer surface of the ring as a tensile wave which cannot 
propogate through the material interface back into the 
case. Thus, the tensile wave is trapped and damage is 
limited to the ring. Calculations showed the momentum 
trap design completely eliminated any tensile stress in 
the case resulting from radial wave reflection. By im-
proving the shock attenuation and preventing radial 
wave reflection, the maximum tensile stress in the case 
was reduced from about 66 kbar to below 20 kbar. 
Computed stress from our preliminary experiments 
suggested that 20 kbar was an acceptable level for 
dynamic stress and that the MC case should survive 
with the new velocity augmentor design. 

The new design was tested twice and case integrity 
was achieved in both experiments. A comparison of 
calculated to actual deformed geometry of the MC 
case is shown in Fig. 9. The predicted length, base and 

MC explosive 

}r-Momentum 
trap 

-Tampers 

Fig. 8. Optimized penetrator assembly with momentum 
trap. 

radial deformation0 are within 13% of the experimental 
deformations. At this point all of the objectives were 
met. The augmentor provided sufficient impulse to the 
main charge while staying within the volumetric con-
straints. In addition, the main charge survived the 
impulse and penetrated the target. 

CONCLUSIONS 
The results of this study indicate that the finite-

element calculational method employing arbitrary 
geometry, two-way slide lines, and HE equation-of-
state is a valid method for predicting the mechanics of 
the HE detonation phenomena and resulting shock 
wave interactions. A high-explosive augmented kinetic 
energy penetrator was designed using this tool and the 
results were experimentally verified. Maximum velocity 
augmentation was obtained while staying within VA 
volume constraints and maintaining MC case integrity. 
This method can be used to accelerate and simplify the 
design process as well as provide necessary data for 
design optimization not previously available. 

FUTURE EFFORT 
At the present time a baseline for a velocity augment-

ed kinetic energy penetrator assembly has been 
designed. Feasibility of using a high explosive augmen-
tor within the volumetric and weight constraints has 
been shown. Our future effort is concerned with optim-
izing key parameters affecting the overall performance. 
The following areas of study are planned : 

(1) Optimize Momentum Trap—The current mo-
mentum trap design eliminated undesirable tensile 
stresses in the case. However, a large portion of the aug-
mentor energy was absorbed in this process. Future 
effort is directed toward minimizing the absorbed 
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Fig. 9. Comparison of final experimental and computed deformed geometries. 

energy while maintaining the current stress levels in the 
case. 

(2) Improve overall charge/mass ratio—Effort will 
continue to reduce case weight and increase the amount 
of M C explosive. 
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Abstract—Results from two-dimensional plane stress and plane strain computations simulating the impact 
of a 120c turbine disk fragment on a turbine internal stator blade ring are presented and compared with data 
obtained in recent full-scale experiments. These computations were performed using the nonlinear explicit 
finite-difference computer code STEALTH developed for the Electric Power Research Institute. The 
numerical model employed represents the turbine missile as a rigid body which acts as a kinematic bound-
ary condition on the stator ring. A work hardening, strain-rate dependent material model was used to 
characterize the strength behavior of the stator ring. Friction effects were not modeled. 

Predictions of the deformed shape of the stator ring, line-of-flight displacement of the missile e.g., 
missile rotation angle and rotational velocity agreed well with experimental values. Predicted values of 
missile kinetic energy and line-of-flight velocity were lower than observed experimentally, but showed 
reasonable agreement up to about 3.3 msec after impact, at which time the hold-down bolts were observed 
to move in the experiment. These bolts were not modeled in the analysis. For times less than 3.0 msec, the 
predicted strains compared reasonably well with measured values. 

INTRODUCTION 

The capability to predict the effect of turbine missile 
impact due to the rare failure of a shrunk-on disk is a 
necessity in the design and safe operation of both 
nuclear and fossil-fueled power plants. Recent full-
scale experiments [1] have demonstrated the large 
plastic deformations resulting from turbine missile 
impact and the extent to which a simulated internal 
stator blade ring and a simulated steam turbine outer 
wall can slow the velocity of 120° turbine disk fragments 
in two orientations—blunt and piercing. The objective 
was to provide benchmark data on both the energy-
absorbing mechanisms of the impact process and, if 
break-through occurred, the exit conditions of the 
fragment. 

This paper documents numerical studies conducted 
using the explicit finite-difference computer code 
STEALTH f to simulate and predict the transient, large 
strain, nonlinear behavior resulting from the blunt 
orientation impact of a turbine disk fragment on the 
internal stator blade ring in the full-scale experiment. 
The goals of this numerical simulation were to aid in 
understanding the process by which missile fragments 
are slowed by the stator blade ring, and to demonstrate 
the applicability of the STEALTH code in determining 
the energy absorption of the stator blade ring (due prin-
cipally to plastic flow), by comparison with the experi-
ments. 

TARGET STRUCTURE 

The target structure being modeled is shown in Fig. 1. 
The inner structure, representing the last-stage station-
ary-blade support ring, was 12.7 cm (5 in.) thick, 50.8 cm 
(20 in.) wide and 431.8 cm (170 in.) in dia. The outer 

tSolids and Thermal hydraulics codes for EPRI Adapted 
from Lagrange TOODY and HEMP", developed for Elec-
tric Power Research Institute by Science Applications, Inc. 
under EPRI Contract RP307. 

Fig. 1. Target structure, missile and impact orientations. 

shell, representing a casing cover, was 3.2 cm (1.26 in.) 
thick, 182.9 cm (72 in.) wide and 635 cm (250 in.) in 
dia. The ring and the shell were fabricated from ASTM 
A515, Grade 65 cold-rolled steel with a tensile yield of 
300 MPa (43.6 ksi), a tensile ultimate of 491 MPa 
(71.4 ksi), and an elongation of 26% at room tempera-
ture. 

The ring and the shell were bolted to a massive 
concrete structure and soil overburden weighting 1633 
metric tons (1800 tons). The bolted connections simul-
ated as closely as practicable the horizontal joints in an 
actual turbine. Twelve bolts that were 3.8 cm (1.5 in.) 
in diameter held down each end of the ring; these had 
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an ultimate strength of 11.5 MN (2.6 x 106 lbf) and 
an active length of 25.4 cm (10 in.). Fourteen bolts 
2.54 cm (1 in.) in diameter held down each end of the 
shell; these had an ultimate strength of 6.7 MN 
(1.5 x 106 lbf) and an active length of 15.2 cm (6 in.). 
The bolts were fabricated from A490 steel. 

MISSILE IMPACT CONDITIONS 
The missile was a 120° sector of a last-stage shrunk-on 

disk. Dimensions and mass properties of the 1527-kg 
(3366-lb) missile are given in Fig. 2. The missile was 
made from high-strength alloy steel (ultimate strength 
of 896 MPa or 130 ksi). Note that the turbine sector has 
no blades; it is assumed that the blades break off or 
are crushed during exit. 

MATERIAL MODEL 
The material model used in these calculations was a 

work hardening, strain-rate dependent representation 
for A515 steel. Static tensile stress-strain data from the 
A515 steel used to fabricate the experimental test ring 
are given in Table 1 in terms of true stress σ = σΕ(\ + ε£) 
and true strain ε = In ( 1 + eF). 

Since no data were found in the literature on the dy-
namic behavior of A515 steel, published dynamic data 
for similar types of mild cold-rolled steels were taken as 
the basis for the strain-rate law used. The strain-rate 
dependence of the dynamic flow stress oD used for these 
calculations is given by 
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Fig. 2. Dimensions and mass properties of steel missile segment (120° hub section). 

The missile was mounted on a lightweight support 
sled, which was pushed by a rocket sled. After the 
acceleration stage the rocket sled was braked, allowing 
the missile and support sled to coast toward the target. 
Activation of explosive bolts just before impact separ-
ated the missile from the support sled, which was 
diverted by a striker plate beneath the target structure. 
The missile then traveled in free flight before its 15.5 cm 
wide (6.1 in.) edge struck the center of the 50.8 cm 
wide (20 in.) ring. 

As indicated in Fig. 1, the flight path of the missile's 
center of gravity was offset 51.3 cm (20.2 in.) from the 
centerline of the track and the structure. This simulated 
the trajectory of a turbine segment that leaves the shaft 
translating tangentially from a circle through the 
segment's center of gravity. The rotation of the seg-
ment, which would be at the rotational velocity of the 
turbine at failure, was not simulated in the tests. Instead, 
the total translational and rotational energy of the 
hypothetical turbine segment was included in the trans-
lational energy of the test missile. 

The nominal impact velocity was 151 m/sec (495 
ft/sec). This translational velocity gave the same total 
kinetic energy (17.4xl06J, or 12.8 x 108 ft-lbf) as a 
segment leaving a shaft spinning at 2160 rpm, or 120% 
of operating speed (the so-called design overspeed 
condition). 

Table 1. True stress vs true strain 
for A515 steel 

σ(ΜΡα) 

0 
258.893 
413.893 
491.614 
954.958 

(j(psi) 

0 
37,548 
60,000 
71,300 
138,500 

ε 

0 
0.001293 
0.050 
0.095 
0.75 

where σ0 is the static yield stress. This simple strain-
rate law has been used to characterize the behavior of 
mild steel by Bodner and Symonds [2] using experi-
mental data from Manjoine [3]. 

The stress invariant σ2 = 3J2 is calculated assuming 
the stress changes are elastic. Then, if 

σ<σ(ερ,0) (2) 

the elastic state is appropriate, and no plasticity results. 
The fundamental equation for plasticity, using the 

Prandtl-Reuss flow rule to second order accuracy is 
., σ-σ(ε^έη 

3μΔί 
(3) 

where μ is the shear modulus. This equation is solved by 
Newton's method to obtain the consistent yield stress 
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and plastic strain rate. 

°(n+l) 
— p* — 

3>μΑίέρ
η)-(σ-σ(η)) 

3μΔί + do-
de' («) 

The first guess éf̂  is taken to be 

OP . 
ίσ-σ{ερ,0) 

= Π 1 ΐ η ' - 3 μ Δ Γ - ' ε 

(4) 

(5) 

where έ is the total equivalent strain rate. In all cases, 
the plastic strain dependence is evaluated at the value of 
plastic strain from the previous time-step. 

The calculations were performed using the inelastic 
portion of the true stress vs true strain curve defined in 
Table 1. Table 2 shows the values of Young's modulus £, 
bulk modulus K, Poisson's ratio Y, and shear modulus 
G, used in these calculations where K = E/3(1 —2v) and 
G = £/2(l + v). 

Table 2. Elastic constants used for A515 steel 

E v K G 
Poisson's 

M bar (psi) ratio Mbar(psi) Mbar(psi) 

2.0 0.287 1.5649452 0.777700077 
(2.9006 x 107) (2.2694 x 107) (1.1268842 x 107) 

The mean stress (equation-of-state) model was con-
sidered to be a linear function of the compression μ 
where 

ρ = Κμ = Κ(ρ0/ρ-\) (6) 
where p is the pressure, p the density and p0 a reference 
density (7.85 gm/cm3). 

PROBLEM SIMULATION 
The geometry of blunt impact in plan view is shown 

in Fig. 3. The turbine missile is considered to be a rigid 
body which acts as a kinematic boundary condition 
on the finite-difference grid representing the stator 
ring. Although the STEALTH code does allow for 
multi-material impact (using slidelines), the approx-
imation of a rigid missile would seem to be a good one 
since missile deformation was not observed in the full-
scale blunt orientation tests. Furthermore, to simulate 
the missile with a finite-difference grid would double 
the computer cost. 

5 0 . 0 

^ f ] I I I I I I I I I I I I I I ΙΤΤΤηΐΊ 
- 2 0 0 . - 1 0 0 . 0.00 100. 200. 

cm 

Fig. 3. Undeformed stator ring and turbine missile. 

The turbine missile, is represented as a rigid body by 
straight line segments describing the impact face and 
perimeter of the disk. The disk center of mass is shown 

in Fig. 3 as the end point of the line segment perpendic-
ular to the inner arc of the disk to aid in visualization 
of missile rotation. 

The stator ring is represented by a (4x111) finite-
difference grid consisting of 3 zones through the thick-
ness of the ring and 110 zones circumferentially. As 
indicated in Fig. 1, each end of the test ring was attached 
to a thick base plate by eight thick flanges. Each base 
plate was attached to the back-up structure by 12 pre-
torqued bolts. Early examination of test results indic-
ated that these bolts failed at about 9 msec after impact. 
Inspection of the failed bolts showed little or no in-
elastic elongation before failure. This suggested that the 
supports displaced little during the impact response of 
the ring prior to bolt failure (the base plate would have 
no motion at all until the reaction load exceeded the 
pre-load). In consideration of these factors, the numer-
ical calculations were performed with the assumption of 
rigid fixed supports. Subsequent test data evaluation 
has indicated that the base plates had begun to lift as 
early as 3.3 msec after impact. Thus, this fixed support 
boundary condition is strictly applicable only to about 
3.3 msec after impact. 

COMPUTATIONAL ALGORITHM 
The STEALTH computer code solves the partial 

differential equations of continuum mechanics using 
an explicit finite-difference method formulated in a 
Lagrange (moving) coordinate frame. The STEALTH 
code is based entirely on the computer code technology 
published by Lawrence Livermore Laboratory, Liver-
more, Calif, and Sandia Laboratories, Albuquerque, 
New Mexico. The description that follows has been 
summarized from a descriptive report [4]. The com-
puter code documentation is a separate report [5-8]. 

In the Lagrange system, fixed mass units translate, 
rotate compress, expand, and distort. Momentum is 
associated with the motion of the mass and internal 
energy is fixed to the mass unit. The STEALTH solu-
tions are second-order accurate in space and time. A 
complete description of the Lagrangian equations 
solved by the STEALTH code is given in the user's 
manual [5]. 

Several rezoning options are available in STEALTH 
for updating grid point locations and variables in 
problems with large mesh distortion or grid tangling. 
Pressure discontinuities are handled by smearing out 
the discontinuity with a von Neumann quadratic 
artificial viscosity [9]; zone-to-zone oscillations may 
be damped out by using a linear artificial viscosity 
[10]; grid instability (hourglassing) is controlled by a 
"tensor-triangle" artificial viscosity [10]. Stability of 
the differential equations is automatically regulated by 
the Courant stability criterion [5]. 

The computational procedure used in modeling the 
blunt orientation impact process can be summarized 
as follows: 

On a given cycle, n : 
•The disk perimeter acts as a fixed boundary for the 
finite-difference grid. 
•STEALTH computes the stresses in the ring and new 
grid point positions due to the blunt orientation impact. 
No rezoning is used in the calculation. 
•The forces acting on the disk perimeter due to stresses 
in the ring are computed and summed to give the result-
ant x and y forces and torque acting on the disk center 
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of mass. Frictionless contact is assumed between the 
disk and ring. 
•Rigid body motion of the disk center of mass is com-
puted and new positions for the disk perimeter points 
are determined. These new locations are then used as 
the fixed boundary for the next cycle of the computa-
tion. 

Complete details of this numerical procedure are 
documented in [11]. 

DYNAMIC RESPONSE CALCULATIONS 
Calculations were done in both plane stress and plane 

strain symmetries. The plane stress calculations were 
carried to 9.0 msec. The plane strain calculation was 
carried to 3.3 msec, the approximate time at which the 
hold-down bolts and plates were first observed to move 
in the experiment. Results were quite close for the two 
symmetries with the plane stress values being generally 
closer to the experimental data than the plane strain 
results. Unless otherwise noted, all results presented 
here are from plane stress calculations with a rate 
dependent yield model. 

2 5 0 . "" 
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1 0 0 . ~~ 

5 0 . 0 ~ ~ " ^ 

η 1111111111111111111 m 
- 2 0 0 . - 1 0 0 . 0 .00 100. 2 0 0 . 

cm 
Fig. 4. Deformed stator ring and turbine missile at 3.3 msec. 
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Fig. 5. Deformed stator ring and turbine missile position at 
9.0 msec. 

Figures 3-5 show mesh plots of the undeformed 
stator ring and turbine missile position at 0. msec 
(about 8 μββϋ prior to impact), and the deformed ring 
and missile position at 3.3 msec (time at which the 
hold-down bolts move) and 9.0 msec (time at which the 
hold-down bolts break), respectively. Figure 6 shows 
mesh plots comparing the deformed ring position at 
9.0 msec with the undeformed position at 0. msec. 
Inspection of mesh plots between 3.0 and 9.0 msec (not 
shown here) indicates that bending of the ring begins to 
predominate over stretching after 3.3 msec. Missile 
e.g. position is indicated by the end point of the line 
perpendicular to the turbine disk's inner radius. Missile 
rotation is indicated by the orientation of this same line. 

Figures 7 and 8 show mesh plots of the deformed 

stator ring and turbine missile position at 2 msec for 
strain-rate independent (static tensile data) and rate 
dependent yield models. The effect of rate dependency 
is particularly evident on the right side of the ring where 
less bending occurs with a rate dependent yield model. 

- 2 0 0 . - 1 0 0 , o.oo 
cm 

11111111 m 
1 0 0 . 2 0 0 . 

Fig. 6. Comparison of deformed stator ring and turbine 
missile position at 0.0 and 9.0 msec. 

Fig. 7. Deformed stator ring and turbine missile position at 
2 msec for rate independent yield model. 

Fig. 8. Deformed stator ring and turbine missile position at 
2 msec for rate dependent yield model. 

The experimental deformed ring shape was very similar 
to that exhibited in the rate dependent calculation. 
Figure 9 shows a comparison of experimental and com-
puted missile line-of-flight e.g. displacement histories. 
Both rate dependent and rate independent results are 
shown. The rate independent calculation was carried 
only to 2 msec. The rate independent displacements are 
seen to be greater than those observed in the experiment 
while the rate dependent displacements are lower than 
and closer to the experimental values. Thus, the slowing 
of the turbine missile is better simulated by the rate 
dependent calculation. The rate dependent displace-
ments are seen to agree quite well with the experimental 
data up to about 3.3 msec (the time at which the hold-
down bolts were first observed to move), the difference 
being 3.0% at 1.0 msec, 8.8% at 2.0 msec, and 9.0% 
at 3.3 msec. However, considerably better agreement 
could probably be obtained by using a dynamic effects 
factor with the rate independent model. 
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Figure 10 presents a comparison of computed (plane 
stress and plane strain) and experimental deformed 
shapes at 3.3 msec for the ring midsurface. The plane 
stress and plane strain results are seen to be quite close, 
particularly in the missile-ring contact region. The plane 
strain calculation shows a slightly greater bending of the 
ring near the right hand support and the upper left 
portion of the ring ( -60 in. <x<0) than for the plane 
stress cases. 

■o 

Δ Experiment 

— Stealth plane stress 
-rate dependent yieldl 
model 
Stealth plane stress 
rate independent 
yield model I 

■ Tie down bolts moving 

I I I 1 L _ 
1.0 2.0 3.0 4.0 5.0 6.0 70 8.0 

Time ~ msec 
Fig. 9. Comparison of experimental and computed missile 

line-of-flight e.g. displacement histories. 

Line-of-flight missile e.g. velocity vs time is presented 
in Fig. 11. The computed velocities are in good agree-
ment with measured values at early times. At 1.0 msec, 
the computed velocity is less than 5% below that ob-
served experimentally. At 2.0 msec, the difference is 
about 20% and at 3.3 msec about 24%. Thereafter, the 
calculated results show a steady drop in velocity, 
whereas in the experiment, missile velocity decreases 
at a much slower rate probably due to the hold-down 
bolts moving at 3.3 msec and finally failing at about 
9.0 msec. 

Figure 12 presents plots of missile kinetic energy 
(rotational plus translational), stator ring kinetic 
energy, ring internal (strain) energy and total energy as 
functions of time from the STEALTH calculations. The 
monitoring of these quantities provides a good means 
of assessing the reliability of the finite-difference solu-
tion as the calculation proceeds. In particular, the plots 
of total system energy show that the calculation is 
conserving energy (as the energy is transferred from the 
disk to the ring). For example, at 3.3 msec, the total 
ring energy is 123.9 in-lb and the change in kinetic 
energy of the disk is 123 in-lb, less than 1% difference. 
The greatest difference occurs at about 2 msec where 
the total system energy has dropped by about 10%. At 
9.0 msec, the difference is only 4%. These differences in 
energy are well within the variation shown in most 
finite-difference impact calculations with similar grid 
zoning and would be reduced by using a finer grid with 
additional zones through the ring thickness. 

Figures 13 and 14 show plots of STEALTH com-
puted circumferential strains at the left support (80° 
left of the ring centerline) and at a position 10° left of the 
ring centerline, respectively. The strains are defined as 
(f —W/'o where (/-/0) is the stretch of an element of 
original length /0. The stretches are computed directly 
from the coordinates of the finite difference grid points. 
In Fig. 13, note the transition from small to large strains 
at about 5 msec. A similar change occurs in Fig. 14 at 

Fig. 10. Comparison of computed and experimental deformed shapes at 3.3 msec for ring midsurface. 
CAS 13:1-3 - U 
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2 and 5 msec. Figures 15 and 16 present comparisons of 
experimental and computed strain histories on the 
inner and outer surfaces near the left support. For the 
outer surface, the agreement between experimental and 
STEALTH computed values is good to about 2.5 msec. 
For the inner surface, the peak computed strains up to 
about 5 msec are two to three times the experimental 
values. 

Circumferential strain data was obtained at five 
additional radial locations and is given in [11]. 
Computed strains were generally higher than recorded 
in the experiment with characteristics similar to the 
results shown in Figs. 13-16. For the right support, 
however, the agreement between experimental and 
computed strains was much poorer, especially after 
2 msec, and requires further study to resolve the 
discrepancy. 

Comparisons of experimental and computed time 
histories of missile rotation angle and rotational 
velocity are given in [11]. The experimental values of 
rotation angle agree well with the computed values, 
particularly for times less than 4 msec. The experimental 

o 
1 

4 5 6 7 8 9 
Time'—sec 

Fig. 12. Turbine missile energy histories—STEALTH plane stress. 
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Fig. 13. Circumferential strains at left support (80° left of ring centerline)—STEALTH plane stress. 
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values of rotational velocity remain approximately 
constant rather than falling off as found in the 
STEALTH calculations. This discrepancy is perhaps 
due in part to the bolt motion and subsequent failure 
in the experiment, whereas the STEALTH calculation 
used fixed supports. 

The computer time required for the entire plane stress 
calculation from 0. to 9.0 msec was 850 cp sec on a 
CDC 7600. This calculation time includes restart and 
archive tape writing. 

CONCLUSION 
Results from numerical simulation of the blunt im-

pact of a 120° turbine disk fragment on the turbine 
internal stator blade ring have been presented. Com-
parison of these results with experimental data has 
successfully demonstrated the applicability of the 
nonlinear explicit finite-difference code STEALTH in 
determining the energy absorbtion of the stator blade 
ring. Calculations were performed in both plane stress 
and plane strain symmetries. The numerical model 

employed represented the turbine missile as a rigid 
body which served as a kinematic boundary condition 
on the stator ring. A work hardening, strain-rate 
dependent material model was used to characterize 
the strength behavior of the stator ring. Friction effects 
were neglected. Tie-down bolt flexibility was not 
modeled and the stator ring ends were assumed fixed. 
Incorporation of a constraint model with a bolt-failure 
representation would undoubtedly bring the 
STEALTH results closer to the experimental data. 

Predicted histories of line-of-flight missile e.g. dis-
placement, missile rotation angle, rotational velocity 
and deformed shape of the stator ring agreed well with 
the experiment. Missile energy and line-of-flight veloc-
ity predictions were lower than observed experimentally 
but agreed reasonably well to about 3.3 msec. For 
times less than 3.0 msec, the predicted strains compared 
reasonably well with measured values. 

In order to insure increased confidence in the predic-
tion of turbine missile impact, several items merit 

Tension 

Compression 

4 5 6 

Time~ msec 
Fig. 14. Circumferential strains 10° left of ring centerline—STEALTH plane stress. 
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Fig. 16. Comparison of experimental and computed strains at left support inner surface. 

continued investigation. Among these are: 
•Inclusion of a hold-down bolt model. 
•Numerical simulation of the piercing orientation 
impact and comparison with experimental data. This 
would require a dynamic fracture model. 
•Simulation of three-dimensional effects in the piercing 
impact process, and the turbine model. 
•Incorporation of stator blade models into the impact 
analysis. (The blades were assumed to be broken off 
in the current studies.) 
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Abstract—A three dimensional finite element code has been developed for the elastic-plastic analysis of 
fiber-reinforced composite materials and structures. The geometry, constitutive equations, and stiffness 
relations of the continuum element representing the composite are described. The finite element solution is 
obtained in the context of the displacement method of analysis. Solution of the nonlinear equilibrium equa-
tions is obtained with a Newton-Raphson type iteration technique. Results obtained using the finite element 
program for uniaxial loading of composite laminates show agreement with experiments. Other results for 
laminates describing development of plastic zones and overall stress-strain response are also shown for two 
problems; a plate with a hole and a notched plate. 

INTRODUCTION 

Since the early sixties the finite element method has been 
widely used as a reliable technique for the analysis of 
structures. In the early years of the finite element 
method most attention was focused on the linear elastic 
behavior of materials. However, due to its success in 
regard to linear analysis, the method in conjunction 
with iterative techniques has been used to analyze 
solids and structures in the elastic as well as the plastic 
range of their materials. In the present days many 
finite element codes exist for elastic-plastic analysis of 
structures with isotropic materials but not, to the 
authors' knowledge, for fiber-reinforced materials. 

Nowadays, composite materials, in particular those 
reinforced by strong continuous fibers, have the atten-
tion of many researchers much like metals and other 
conventional materials had in the past. The increasing 
number of applications of fiber-reinforced composites 
in space, and recently, automobile industries demand 
an understanding of the material properties and its 
behavior. In most applications, structural elements 
made of composites are laminated plates. Thus, the 
analyst is faced with two problems in regard to com-
posites; anisotropy and lamination. Real life applica-
tions also encounter complex geometries and loading 
regimes. Evaluation of stresses and deformation at 
edges, cut-outs, and joints is essential in understanding 
the strength and failure of composite structures. In 
addition, elastic-plastic analysis is crucial for metal-
matrix composites since the onset of plastic yielding 
starts very early in the loading process as compared to 

tFormerly, graduate student and visiting assistant pro-
fessor, Department of Civil Engineering, Duke University, 
Durham, NC 27706, U.S.A. 

the composite's ultimate strength. Indeed, such a com-
prehensive analysis can only be achieved by the finite 
element technique. 

Application of the finite element method to fibrous 
composite structures exhibiting elastic-plastic deform-
ation has been very limited. Adams and Miller [1], 
Adams [2], and Foye [3], employed the finite element 
method to unidirectional fiber-reinforced composites 
modelled on the microscale as arrays of brittle-elastic 
fibers embedded in an elastic-plastic matrix material. 
This microscopic analysis provides an understanding 
of the behavior of unidirectional composites, however, 
it cannot be extended to multidirectional laminates. 
Rather, we demand a finite element analysis which 
treats the fibrous composite as macroscopically homog-
eneous. This, however, has been hindered by the absence 
of continuum models which describe the elastic-plastic 
behavior of composites only in terms of the mechanical 
properties of the constituents and their volume fraction. 
Such models can be adopted in a numerical scheme only 
if they yield tractable constitutive equations. 

A continuum material model for elastic-plastic 
composites has been recently developed by Bahei-El-
Din and Dvorak [4-6]. The constitutive equations, 
which describe the behavior of the composite in a 
macroscopic sense, has been generated in matrix form, 
and therefore are tractable and can be readily incorpor-
ated in a numerical scheme. This paper describes a 
finite element code which employs the new constitutive 
theory. First, we describe the geometry, constitutive 
law, and stiffness relations of the three-dimensional 
element used in the present analysis. Next, the compu-
tational aspects of the computer program are described. 
Finally, we present finite element results for laminated 
metal-matrix composite plates. 

321 
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A CONTINUUM ELEMENT FOR FIBROUS MATERIALS 

Geometry 
Various one-, two- and three-dimensional elements 

have been used in finite element analyses to model 
various types of structures. Selection of a particular 
element is dictated by the nature of the structure and its 
response to loads. The laminated structure of most 
composites makes it necessary to conduct a three-
dimensional analysis even for in-plane loads. This is due 
to the significance of the out-of-plane stresses, e.g. 
interlaminar shear and normal stresses, in evaluating 
the behavior of laminates. In the present finite element 
analysis the eight node hexahedral element has been 
used. The element represents a unidirectional composite 
material whose fiber is arbitrarily orientated in the 
structural coordinates. 

Figure 1 shows the hexahedral element employed 
here, together with three coordinate systems. The axes 
Xpj= 1, 2, 3, are the structural overall axes. All struc-
tural type quantities, such as mesh point coordinates, 
stiffness matrix, etc., are described in the overall 
coordinates. The second coordinate system is the 
elemental local coordinate system xp j— 1, 2, 3. The 
local axes are chosen as shown in Fig. 1 such that 
xfaxis is along the vertex line 1-2 and x2-axis lies in 
the plane containing the first four vertices of the ele-
ment. These local axes serve as a mediator between the 
overall axes and the material axes xp j= 1, 2, _3. The 
latter are the principal material axes, where x3-axis 
coincides with the fiber direction and Xjxyplane is the 
transverse plane of the composite material. In Fig. 1, 
x2-axis is drawn such that the fibers must be parallel 
to the plane containing the first four vertices of the 
element. Except for this requirement, the fiber orienta-

Fig. 1. A hexahedral element for unidirectional fibrous 
materials. 

tion is arbitrary and the material axes can be identified 
with a single scalar quantity. 

The orientation of the material axes, xp j= 1, 2, 3, 
can be fixed relative to the overall axes with the angle φ 
as shown in Fig. 2. 

The positive direction of x3-axis must be selected 
such that φ is never greater than 90°. The direction 
cosines of χ,-axis, j = 1, 2, 3, can be determined relative 
to the overall axes as follows: Let tt, i= 1, 2, 3, denote a 
unit vector along the material x>axis described in the 
overall coordinate system. Vector t2 can be easily 
defined since x2-axis is coincident with the local x3-axis 
and the direction cosines of the latter can be found from 
the overall coordinates of the element's vertices. Vector 
t3 can be found from the basic relations t2t3 = 0 and 
t3t3 = 1 which yield the following relations for r31 and 
r32(seeFig. 2): 

(1 —ί|2)ί1ι +Qt2Xt22 cos φ)ί3ί 

+ (t2
22 cos2 φ-ί13 sin2 <£)=0, (1) 

andr3 2 = cos0; if|r21|>0, 

(^3)i31 + (cos2i / )-^3)=0, andr3 2 = cos(/>; (2) 

if t 2 1 =0 , and | i2 3 |>0, 

i31 = sin0, and £32=0; if f21 = r2 3=0. (3) 
Equations (1) and (2) provide two values for i 3 l which 
require additional information to choose the proper 
value. Such information could be the sign ofr31 in case 
2 (Fig. 2), and the sign of i12 in case 1. Finally vector 
ti can be easily found since the vectors t,·, j=\, 2, 3, 
constitute an orthogonal basis. 

Constitutive equations referred to material axes 
Our objective is to describe the constitutive law of the 

composite material relative to the material axes xp 

j= 1, 2, 3, in a macroscopic sense. Here, we adopt a 
constitutive law which has been recently derived from 
a composite model by Bahei-El-Din and Dvorak 
[4-6]. The new model represents unidirectional com-
posites by an elastic-plastic matrix material with a 
unidirectional constraint imposed by the elastic-
brittle fibers. The matrix material is assumed to be of 
Mises-type and exhibiting kinematic hardening behav-
ior. Thus, the inelastic strains of the composite lamina 
are caused by matrix deformation. The elastic con-
straint imposed on the matrix by the fiber affects the 
shape of the lamina yield surface, it leads to additional 
kinematic components in the hardening rule of the 
lamina, and it has an influence on the magnitude of 
overall plastic strains. Figure 3 shows a, schematic 
representation of the initial yield surface, hardening 

Case 2: t2i=0,| t23|> 0 

X2 

t.. = cosine of angle between x.-axis and X.-axis 

Fig. 2. Angle fixing material axes relative to overall axes). 
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MATRIX 

STRESS SPACE 

Fig. 3. Schematic representation of the constitutive equations of unidirectional composites. 

rule, and normality rule in both matrix and composite 
stress space. We summarize here the constitutive 
equations which have been used in the present finite 
element analysis. 

The overall, matrix and fiber stress increments are 
denoted da, dam and daf, respectively, while the res-
pective strain increments are denoted de, dem and def. 
Here, the stress and strain vectors are displayed as 

da = AmMam -(Aj\m - I)da, (7) 

and 

da=[dandG22da33da12dclida23]
7 

de=[d811d622de332d£122d132de132de23]T. 
Let f(a) denote the yield function of the composite 
lamina. Then, the flow rule for the lamina is 

de = Meda, dam=Ameda, daf=A/ed<r, 
if/<0;or/=0, and d/<0, (4) 

and 
dé=M da, do = Am da, daf = \f da, 

if/=0, and d/>0. (5) 

Equation (4) specifies the flow rule for all elastic stress 
increments, where Me is the overall elastic compliance, 
and Are, r =/, m, is the elastic stress concentration factor. 
The flow rule for the elastic-plastic stress increments is 
represented by eqn (5), where M is the overall instan-
taneous compliance, and Ar, r=/ , m, is the instantaneous 
stress concentration factor. 

For a Mises-type matrix material, the yield function 
of the lamina is the quadratic form 

/ = ( â - â f A L C A m , ( â - a ) - y 2 = 0, 

r η Ί 1 - 1 / 2 ~ 1 / 2 

* - K » °>] - Syn. ' τ · 
I is an identity matrix, and Y is the yield stress of the 
matrix material in simple tension. The overall transla-
tion ά of the yield surface is found by integrating the 
following equation along the loading path 

where for a matrix material exhibiting kinematic 
hardening, dam denotes the incremental translation of 
the matrix yield surface (see Fig. 3). The translation 
d(xm can be obtained by adopting the kinematic harden-
ing rule of Prager with Zigler's modification, namely 

dam = dMm((7m-aJ, dμm = ^am-CLm)τCdσm. (8) 
The constitutive equations are completed by giving 
expressions for the compliances Me and M, and for the 
stress concentration factors Amt„ A/t,, Am and Af. These 
are omitted here since the expressions are lengthy, and 
their interpretation is beyond the scope of this paper. 

The formulation of the constitutive equations in a 
matrix form as described above simplifies their incor-
poration in a finite element calculation. A basic feature 
of these constitutive equations is the development of an 
elastic-plastic material matrix L = M _ 1 . During the 
course of the finite element calculations, matrix L will 
simply replace the elastic material matrix Χί,=5ϊιΓ1, 
for every element which has yielded. 

Coordinate transformation 
The constitutive equations described earlier are 

referred to the material axes x7·, j= 1, 2, 3 (Fig. 1). Since 
the fiber orientation may vary within a finite element 
mesh, e.g. for a laminated plate, the material axes are not 
universal per a composite structure. Therefore, the 
constitutive equations must be described in the overall 
axes, Xpj= 1, 2, 3 (Fig. 1). Namely, in the form 

de = Mdtf,dtf = Ld8;L = M - 1 , M = MT, (9) 
where da and de are composite stress and strain vectors, 
respectively, and M and L are instantaneous compli-
ance and material matrices, respectively, of the com-
posite. Our objective is to determine eqn (9) when eqns 
(4) and (5) are known. 

When the geometry of the hexahedral element is 
known as defined earlier, transformation of composite 
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stress and strain can be achieved in the form 
dä = Td<T,de=Nd£;N-1 = Tr . (10) 

The stress transformation matrix T is defined in terms 
of the direction cosines tf, i= 1,2, 3, of the material axes 
as shown in the appendix. Substituting eqn (10) in the 
first of eqn (5), and comparing the result to eqn (9), 
we obtain 

M = TTMT, L = M " 1 . (11) 

Stiffness relations 
Description of geometry and instantaneous material 

properties of the composite element suffices the defini-
tion of its stiffness relations. These, of course, should be 
defined in the overall coordinate system. Then, the 
overall stiffness relations of the composite structure 
are defined by assemblage of the elemental stiffness 
properties. 

For a typical mth element, the total potential energy 
function π is written as 

^=iw™TKmwm-wm7qm, (12) 
where wm represents a listing of vertex displacements in 
overall coordinates. The stiffness matrix K and the load 
vector q are expressed for a continuum element as 
[7,8] 

Km= f BrLBd(vol), 

qm= ί Brpd(vol)+ f 4>Tbd(vol) (13) 

Here, L represents the instantaneous material matrix 
of the composite defined by eqn (11). The first term in 
the expression of q in eqn (13) represents vertex forces 
equilibrating the boundary stresses, and distributed 
loads p, and the second term represents vertex forces 
equilibrating the body forces b. Matrix φ represents 
the shape function of the continuum element and 
matrix B relates the strain vector em to the vertex dis-
placements wm, such that if um is an approximation of 
the displacements inside the element, then 

u = <£wm,em = Au=>em = Bwm, B=A<£, (14) 

where Λ is a suitable linear differential operator. 
In the present finite element analysis each hexahedral 

element is divided into five tetrahedrons. The stiffness 
and load matrices of the hexahedral element are ob-
tained as the assemblage of the stiffness and load 
matrices of all five tetrahedrons. Since a hexahedron 
may be divided into five tetrahedrons in two ways, the 
stiffness and load matrices of a hexahedron are com-
puted as the arithmetic average of two matrices, each 
generated from a set of five tetrahedrons. For each 
tetrahedron the stiffness and load matrices can be 
computed with eqn (13). We choose a linear shape 
function φ, in which case matrix B is constant and the 
integrals in eqn (13) can be easily evaluated. 

In most' applications of fiber-reinforced composites, 
one deals with laminates which consist of thin unidirec-
tional composite laminae. In our finite element analysis, 
each lamina may be represented by at least one element 
in the thickness direction. Obviously, one cannot 
represent two or more consecutive laminae by one 
element since their material axes may not coincide. 
Thus, one will encounter elements of the type shown in 

Fig. 1 which have one dimension much smaller than the 
other two dimensions. In any case, the finite element 
mesh should be chosen such4hat the largest and smal-
lest dimensions of an elementdo not differ by more than 
one order of magnitude. This will eliminate problems 
associated with numerical ill-conditioning of the 
element's stiffness matrix [9]. 

PAC78 COMPUTER PROGRAM 
The three-dimensional composite element described 

in the previous article has been incorporated in a finite 
element code. The computer program, named PAC78, 
which was generated from an existing program for iso-
tropic materials [10] conducts a finite element analysis 
using the displacement method. The nonlinearities 
caused by the elastic-plastic behavior of the material 
are handled by a modified Newton-Raphson iterative 
procedure. A brief description of the iterative solution 
is given next, and followed by a description of the 
PAC78 program. 

Iterative solution of equilibrium equations 
The equilibrium equations at the nodal points in the 

direction of unknown nodal displacements may be 
written in a general form as 

q(u)=P (15) 

where q and P represent internal and external nodal 
forces, respectively, and u represents independent 
nodal displacements. If the behavior of the structure is 
linear, then eqn (15) is linear in u and q is represented by 
Ku, where K is the overall stiffness matrix of the struc-
ture. If, on the other hand, the behavior of the structure 
is nonlinear due to plastic deformation of its material, 
then eqn (15) represents a set of nonlinear algebraic 
equations. In this case, we can write eqn (15) in the form 

r(u) = P-q(u)=0, (16) 
where r is the residual force vector which represents 
the unbalanced forces at the nodes. When u represents 
the true displacements for the equilibrium state cor-
responding to the load P, then r is a null vector. 

The solution of the nonlinear eqn (16) can be obtained 
to a desired accuracy by the modified Newton-Raphson 
iterative method [11]. Thus, successive approximations 
to the true displacements u can be obtained from the 
following recurrence formula, 

uü + D = uO)_[r(0)-|-irü)? 7· = 0 , 1 , . . . , (17) 

where u(0) is the displacement vector in a small neigh-
borhood of the equilibrium state represented by eqn 
(16). The Jacobian matrix r^Hs evaluated at the equi-
librium state corresponding to u(0). Thus, in view of 
eqn (16), we have 

r ( 0 ) = _ q ( 0 ) = _ K ( 0 ) 9 ( 1 8 ) 

where K(0) is the overall stiffness matrix evaluated at 
the equilibrium state corresponding to u(0). 

The recurrence formula 17 can be applied to a se-
quence of incremental loads to obtain the displacement 
vector for a particular loading level. If ΔΡ(ί), i= 1,2,..., 

i represents the load increment at the nodes, the cumula-
tive displacements after application of the load incre-
ment can be obtained as 
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u(I'> = u(i""1) + {Au(i'-;HK(i'0)"1r(i'J')}, 
; = 0 , 1 , . . . . until ||r(iJ)|| <ε, i= 1, 2 , . . . , 

where 
r(iJ) = A P ( 0 _ q ( A u ( i J ) ) 5 

(19) 

(20) 

and 

u(0)=0, Au(i'O) = 0, q(Au(l'O))=q(0)=0. (21) 

The residual vector t(i,j) is computed with the condi-
tions prevailing at the end of thejth iteration of the ith 
load step while K(i'0) is computed from the geometry, 
material, and stresses at the beginning of the ith step. 
The iterative process enclosed in braces in eqn (19) is 
continued until the norm of r is smaller than a pre-
scribed small positive number ε. A rapid change in the 
overall stiffness due to plastic yielding of a large number 
of elements within a load step may result in a slow con-
vergence process since K is generated at the beginning 
of the step. In this case the stiffness matrix may be re-
generated frequently during calculations for a particular 
load step. 

Description of PAC1'8 program 
The PAC78 program has been developed as a general 

purpose finite element program for an elastic-plastic 
medium. The program may conduct a three-dimension-
al finite element analysis for two types of materials: 

(1) Fiber-reinforced composite materials with a 
matrix material which could be nonhardening or 
exhibiting kinematic hardening behavior. 

(2) Isotropie materials exhibiting kinematic harden-
ing behavior. Thus, the PAC78 program can be used to 
conduct a three-dimensional elastic-plastic analysis of 
composites both on the microscale, e.g. unidirectional 
composites with a periodic array of fibers, and on the 
macrbscale, e.g. laminated structures. 

The hexahedral element is the only type that PAC78 
program uses to span the material volume. For fibrous 
materials, the special element described earlier has been 
used. By means of the displacement boundary condi-
tions, any type of deformation may be simulated, e.g. 
beamfc, plates, plane strain, etc. Only mechanical load-
ing iŝ  acceptable to PAC78, however, thermal loads 

may be added to the program pending development of 
a thermoplastic theory of composites. 

The program consists of a main program and four 
major parts. A brief description of the program's four 
parts or links is given in Table 1. Shown in Fig. 4 is a 
flow diagram of the main program of PAC78. Each 
link of the program can be accessed by a main sub-
routine which is being called by the main program. In 
Fig. 5, the flow diagram of the main subroutine of the 
stress link which controls the iteration process, is 
shown. In this flow diagram, ITER and ITERS count 
the load steps and the number of iterations, respec-
tively, PNORM and PNORMB represent the norm 
of the residual vector r and the norm of the load 
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Fig. 4. Flow diagram of PAC78 computer program. 
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Table 1. Link numbers, names and functions for PAC78 program. 

Link 
Name 

GENERATION1 

DEFLECTION 

Function 

Input of the problem is obtained, checked, 
ordered, and printed out if Tecujested. Re-
labeling of mesh points is performed upon re-
quest. Assembly constants are computer. 

Governing equations for deflections are gen-
erated by generating and assembling overall 
stiffness matrix corresponding to instantan-
eous material properties, and generating and 
assembling overall load vector. 

Governing Equations are solved for deflection.' 
and the complete list of nodal deflections is 
obtained and printed out in the overall co-
ordinate system. 

Stresses and strains are computed for all ele-
ments and printed out. Nodal forces are com-
puted and printed out. The iteration process 
is controlled by this link. Information is 
iiiivcid for post-processing . 
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Q FROM DEFLECTION LI 

5. 
NKJ 

SET IMPORTANT PARAMETERS 

SCALE D E F L . AND THE 
NORM PNORMB WITH LOAD 
FACTOR OF CURRENT STEP 

-—5Γ 
CALL RESPNS TO COMPUTE 
INTERNAL RESISTANCE AND 
UPDATE STRESS/ STRAIN AND 
YIELD S, INFORMATION 

Ξ 
READ IN INCR. LOADS FROM 
UNIT ITAS. COMPUTER RESID-
UAL LOAD VECTOR AND PNORM. 
UPDATE CUMULATIVE INFORM, 

FIND LOAD FACTOR OF FIRST 
YIELD AND SCALE THE 
RESPONSE FORMATION 

NO 

[FIND NEXT INCR. LOAD 
FACTOR AND PREPARE FOR 
INEXT STEP 

READ IN LOAD VECTOR 
FROM ITAS ■ 

2 
DETERMINE CPU TIME 

fro GENERATION LINK J 

11 
PREPARE FOR RESTART 

JQB 

2 
DETERMINE CPU TIME 

c END OF JOB j 

> i 
SAVE RESIDUAL LAOD VECTOR 
ON UNIT ITAS. READ IN 
DECOMPOSED STIFF. MATRIX 
FOR SUBSTEP ITERATION 

Fig. 5. Flow diagram of stress link of PAC78 program. 

increment ΔΡ, respectively, ER1 is a measurement for 
convergence of the Newton-Raphson iteration, and 
IYEL is the user's indicator for generation of the 
stiffness matrix within a load step. 

Because not all of the instructions of the program are 
required simultaneously, the PAC78 program is over-
layed such that no more than one of the program's 
four links is stored in the memory during execution of a 
job. All data of the program are manipulated among tEe 
four links by means of a labelled common. To accom-
modate large loading regimes, the PAC78 program has 
a restart capability. If a restart job is to follow the 
current job being executed by the program, all neces-
sary information is saved in an auxiliary storage file 
at the end of the job as shown in Fig. 5. 

Assessment oj accuracy 
To assess the accuracy of the finite element analysis 

presented earlier, solutions for two problems were 
obtained using the PAC78 program. In the first problem 
we obtain finite element results for a thick-walled 
plane strain tube under internal pressure. 

Figure 6 shows that the calculated pressure-expan-
sion curve of the tube agrees closely with that obtained 
by Hodge and White [12] using finite differences and 
presented graphically in [13]. The curve is shown in a 
nondimensional form, where G is the shear modulus and 
k is the yield stress in simple shear. A collapse load has 
been also estimated by tracing the singularity ratio, 
which measures the positive definiteness of the overall 
stiffness matrix, as the pressure is increased, Fig. 6. 
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Fig. 6. Finite element results for a thick-walled cylinder under internal pressure. 
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Fig. 7. Finite element mesh for uniaxial laminate specimens. 

The calculated collapse load was found within a few 
per cent of that obtained with finite differences. 

In the second problem, finite element results were 
obtained for a uniaxial composite laminate specimen 
under conditions which replicate experiments. The 
finite element mesh used for laminate specimens is 
shown in Fig. 7. Figures 8 and 9 indicate how the finite 
element calculations and the experimental results [14] 
compare for a (0/±45/90) symmetric laminate made of 
a 6061 aluminum matrix reinforced by 43 volume per 
cent of boron fibers. In these figures, n and κ denote the 
Ramberg-Osgood parameters used in the analysis to 
describe the stress-strain behavior of the aluminum 
matrix. 

APPLICATION TO LAMINATED PLATES 
WITH DISCONTINUITIES 

To demonstrate the capability of the PAC78 program 
in analyzing fibrous composite structures with complex 
geometries, we present results obtained for laminated 
plates with discontinuities. Two types of discontinuities 
are considered, a central circular hole and a single edge 
notch. The plates are loaded in uniaxial tension past 
their elastic limit. The elastic-plastic response of the 
plates is observed during the course of loading. 

Plate with a circular hole 
In this application a (0/90) symmetric laminated 

plate made of a 6061 aluminum matrix reinforced by 50 
volume per cent of the FP fiber and containing a 
circular hole is loaded in simple tension. The geometry 
and finite element mesh are shown in Fig. 10. Since the 
laminate is symmetric, the finite element mesh consists 
ofonly two layers of unidirectional composite elements 

Fig. 8. Comparison of finite element calculations and experi-
mental measurements of stress- strain curvefora(0/±45/90)v 

B Al plate. 
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Fig. 9. Comparison of finite element calculations and experi- Fig. 11. Stress-strain curves of a (0/90)s FP-Al plate and an 
mental measurements of strains for a (0/ + 45/90)s B-Al 
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Fig. 10. Geometry of a (0/90)s FP-Al plate with a hole. 

in the z-direction. The fiber direction for the outside 
layer of elements (0° layer) coincides with the loading 
direction, while the fiber direction for the inside layer 
of elements (90° layer) is perpendicular to the loading 
direction. The overall stress-strain response of the plate 
is shown in Fig. 11. Also shown in Fig. 11 is the stress-
strain curve for an aluminum plate, which was obtained 
with the PAC78 program. Figures 12 and 13 show 
representative illustrations of the development of 
plastic zones in the layers of the composite plate. Other 
results and discussion of the behavior of the laminated 
plate with a hole are presented elsewhere [15]. 

Plate with an edge notch 
The development of plastic zones at the tip of an edge 

notch in a (0/±45) symmetric plate is predicted using 
the finite element program. The plate, which is made of 
an aluminum matrix reinforced by 45 volume per cent of 
boron fibers, is loaded gradually past its elastic limit by 
a uniaxial tensile load. The load is applied uniformly to 
the ends of the plate which are also constrained against 

P#$W'VJ 

[ / ij 

PLASTIC ZONE IN 
90e ply 

PLASTIC ZONE IN 
| 0° & 90° plies 

Fig. 12. Plastic zones in a (0/90)s FP-Al plate with a hole. 

rotation. Figure 14 shows the geometry of the plate and 
the finite element mesh used in the analysis. First 
yielding starts at the tip of the notch in all off-axis layers 
(±45° layers) of the plate. Increasing the load beyond 
that for initial yield, plastic zones develop in the layers 
of the plate as shown in Fig. 15. 
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Fig. 13. Plastic zones in a (0/90)s FP-A1 plate with a hole. Fig. 14. Geometry of a notched (0/±45)s B-Al plate. 
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Fig. 15. Plastic zones in a notched (0/±45)s B-Al plate. 

CONCLUSIONS 
A three-dimensional finite element analysis for 

elastic-plastic fiber-reinforced composite materials has 
been presented. The analysis, which treats unidirection-
al composite materials as macroscopically uniform, is 
suitable for fibrous composite structures such as 
laminated plates. As a byproduct, the analysis can be 
used for elastic-plastic isotropic materials which per-
mits study of microstructural models of unidirectional 
composites. 

Results obtained with the finite element analysis for 
a composite laminate specimen have been shown to 
agree with experimental measurements. Agreement of 
finite element results with theoretical results for an 
isotropic thick-walled cylinder under internal pressure 

has been also shown. The capability of the finite element 
analysis in predicting the behavior of composite 
structures with complex geometry has been demon-
strated for two laminated plates, one containing a hole, 
the other has an edge notch. 

Of principal concern in the analysis of composite 
structures is the prediction offailure loads. An extension 
of the present finite element analysis to include failure 
analysis of composite structures may be achieved by 
adopting a failure criterion for unidirectional com-
posites. 
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APPENDIX 

Transformation oj stress vectors 

The transformation of the stress vector σ, described in the 
overall coordinates Xrj= 1, 2, 3, to the coordinate system 

Xj,j= 1, 2, 3 can be expressed as 
(Al) 

where σ is the description of the stress vector in the coordin-
ates XjJ= 1, 2, 3, and 

1 1 

'St 
*2 

t\ 
' l l ' 2l 

' l l ' 3l 

'21*31 

32 

*11*22 

'12*32 

'22*32 

' 33 

' l 3 ' 2 3 

'13*33 

' 2 3 ' 3 3 

2 ' l l ' l 2 
2' 2 l ' 2 2 
2*31*32 

*U*22 + *12*2 

*11*32 + *12* 

2*11*13 

2 * 2 1 * 2 3 

2*31*33 

* l l*23 + *.3*2 

2*12*13 

2*22*23 

2*32*33 

*12*23 + *13*2 

11*32 + *12*31 *U*33 + *13*31 *21*33 + ' l 3 ' 3 2 

' 2 l ' 3 2 + *22*3 *21*33 + *23*3 *22*33 + *23*λ 

(A2) 
Here, tu denotes the direction cosine of the angle between χ,-axis and X,-axis, 
U = l , 2 , 3 . 
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Abstract—A finite element formulation is presented for conducting large deformation analysis of laminated 
anisotropic shells. The element adopted herein is a "degenerated" three-dimensional isoparametric ele-
ment. Derivations of the nonlinear geometric element stiffness matrices were made on the basis of updated 
Lagrangian description. The numerical formulations of the shell element were implemented into a nonlinear 
finite program. Numerical characteristics of the element with respect to the mesh size and the use of integra-
tion orders were studied for a plate with simply supports and clamped supports. In addition, several 
examples are included to demonstrate the utility of the element. 

INTRODUCTION 

Finite element analysis of either thin or thick shells has 
been the subject of interest for many years and there is 
abundance of published work in the open literature. 
Most of the research effort was concentrated on the 
linear elastic materials or elastic-plastic material with 
the assumption of small deformation. In recent years, 
interest in this area has expanded to include the effect 
of geometric nonlinearity and post-buckling behavior 
of shells. 

In the context of finite element analysis, numerous 
elements have been proposed for the analysis of shell-
like structures. These range from the simple flat plate 
elements to more sophisticated doubly curved ele-
ments based on the thin shell theory. Comments on the 
merits and shortcomings of the various shell elements 
were given in a review article by Gallagher [1]. Among 
all the shell elements that have been investigated by 
previous researchers, it appears that the "degenerated" 
three dimensional (3-D) isoparametric solid element 
with independent rotational and translation degrees 
of freedom, originally proposed by Ahmad, Irons and 
Zienkiewicz [2] for linear analysis of thin shells, offers 
the best possibility for extension to nonlinear analysis. 
The basic idea of this element is to impose the constraint 
of the straight "normals" to its middle surface in order 
to overcome the numerical difficulty associated with the 
large stiffness ratio in the thickness direction of the 
3-D solid element. With this constraint, the displace-
ment field of the shell can be expressed in terms of the 
nodal degrees of freedom on the middle surface, i.e. 
3—translations and 2—rotations at each node, and a 
maximum of 40 total degrees of freedom. It has been 
shown that this element produced good results for thick 
shells. However, for thin shells the element was found 
to be too stiff to represent the bending action of the 
structure due to the presence of shear stresses which do 
not exist in the structure. In this connection, some cor-
rective steps have been proposed by various research-
ers. One method is the use of semi-Loof element by Iron 
[3], that a set of interpolation functions were derived 
by enforcing constraint conditions at discrete points on 
the element level. The simplest modification of the 
"degenerated" element is to use the reduced integration 
order in the evaluation of element stiffness which leads 

to satisfactory results in linear analysis [4]. Pawsey and 
Clough [5] applied the same reduced integration 
concept, called a selective integration procedure, in 
which the number of integration points varied with the 
strain energy terms associated with the specific strain 
components. Cook [6], Takemoto and Cook [7] 
introduced another improvement by adding a central 
node with 1-5 degrees of freedom. In the same context 
of reduced integration scheme, Hughes et al. [8] and 
Kanoknukulchai [9] separated the stiffness matrix of a 
4-node plate/shell element into two parts: one related 
to the distortional energy and the other, volumetric 
energy. The part related to the distortional energy was 
evaluated numerically by the reduced integration and 
excellent responses were obtained. However, for prob-
lems involving geometric nonlinearity, separation of 
the stiffness matrix into distortional and volumetric 
parts would not be possible. 

The "degenerated" 3-D solid element has recently 
been applied to the geometrically nonlinear static 
analysis of shells by Ramm [10]. In his work, the dis-
placement field was approximated by use of quadratic 
and cubic Lagrangian interpolation functions and the 
equilibrium equations for large deformation analysis 
were derived on the basis of total Lagrangian formula-
tion. Similar work was further extended by Bolouchi 
[11] including both the total and updated Lagrangian 
approaches for the shell element with variable nodes of 
8̂ -16 on the middle surface. Only isotropic materials 
were considered in his analysis. Large deformation 
analysis of shallow shells by use of the hydbrid elements 
was due to Pian and Boland [12]. Bergan and Clough 
[13] proposed a doubly curved quadrilateral element 
based on the von Karman strain expressions for plates 
in conjunction with the Marguerre shallow shell theory, 
and the element was applied to the large deflection 
analysis of shallow shells. A facet triangular shell 
element with a natural mode method was given by 
Argyris et al. [14] for the large deflection and post-
buckling analysis of shells. Moreover, Horrigmoe and 
Bergan [15] presented a snap-through analysis of 
free-form shell by using the flat plate elements with an 
updated Lagrangian formulation. The only large 
deformation analysis of laminated composite shells that 
can be found from the literature is due to Noor and 
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Hartley [16], in which nonlinear triangular and quad-
rilateral elements were derived based on a shallow shell 
theory and the effect of shear deformation was in-
cluded. 

In the modelling of laminated anisotropic or ortho-
tropic materials, Pry or and Barker [17] presented a 
linear finite element analysis of thin plate for which a 
4-node plate element was used. The element stiffness 
was derived by assuming seven degrees of freedom 
at each node; 3 translations, 2 rotations and 2 for 
shear deformations. In the thickness direction, they 
assumed the rotations to be the same for all the con-
stituent layers. Mawenya and Da vies [18] used the 
"degenerated" 3-D solid elements with independent 
rotations for each layer. Consequently, the total 
number of degrees of freedom will increase proportion-
ally with the number of layers of the plate. Panda and 
Natarajan [19] modified the work of Mawenya and 
Da vies by assuming the same rotation throughout the 
thickness of the plate as in [18]. Additional work on the 
bending analysis of laminated anisotropic plate with 
small deformation was due to Noor and Mathers 
[20] using a cubic isoparametric element. 

The objective of this paper is to extend the "degener-
ated" 3-D solid element to the large displacement 
analysis of shells with laminated anisotropic material 
construction. After some assessment of the previous 
work, the 8- node and 9- node elements are selected for 
the present work, although higher order elements may 
offer better accuracy, it nevertheless requires much 
more computational effort. 

For large deformation analysis by finite element 
method, the equations of equilibrium of a structure 
may be derived from two alternative approaches: the 
total Lagrangian and the updated Lagrangian. From 
the theoretical standpoint, both approaches should 
lead to the same results for the same nonlinear prob-
lem. However, in practice the updated Lagrangian 
involves less amount of numerical effort for the prob-
lem considered herein and therefore it is more efficient 
in computation. In this paper, derivation of the element 
stiffness for the updated Lagrangian formulation is 
presented. In addition, the numerical characteristics in 
terms of the number of elements to be used, integration 
order with respect to the element aspect ratio, were 
investigated and the results are presented in the same 
format as the case of linear analysis of plates by Pugh 
et al [21]. Finally, several numerical examples are 
given to demonstrate the applications of the shell 
element. 

INCREMENTAL VIRTUAL WORK EQUATION 

Following Hill's work [22, 23] consider the virtual 
work equation which is written with respect to a refer-
ence frame 0f 

= [ (Fi + AFi)ÔAuidv + f (Ti + AT^UidS (1) 
JvQ JSQ 

where S 0 = Non-symmetric nominal stress tensor at 
time t with respect to the reference configuration 0i? 
Ui= Displacement components at time t, Ff = Nominal 
body forces at time t per unit volume of the reference 
configuration 0i5 7] = Nominal surface tractions at time 
t per unit surface of the reference configuration 0f, 

Δ( ) = Incremental value of ( ) from time t to time t + At 
and δ{ ) = Variational of ( ). 

By selecting the reference configuration at time t, we 
obtain the updated Lagrangian description of virtual 
work equation. Therefore, the reference coordinates 0t 

are chosen to be the updated coordinates xt at time i, 
eqn (1) thus becomes 

= ί (Fi + AFi>5AKidt>+ f (Ti + ATJÔAuAs (2) 
Jvt Jst 

where a0 = Cauchy stress tensor at time i, F =Body 
forces at time t per unit volume at time t and T{ =? Surface 
traction at time t per unit surface at time t 

According to Hill [24], the constitutive relations of 
rate dependent materials may have the following 
general form 

ASfj=CijklDkl (3) 

where ASf} = Jaumann (co-rotational) rate of the 
Kirchhoff stress, Cijkl = A material stiffness matrix 
referred to the updated coordinates at time t. Dkl = Rate 
of deformation tensor 

= 1 fdAuj dAu\ 
2 \ dxj dxt ) 

or in matrix notation, eqn (3) is rewritten as 

{AS*} = [_C]{D}. (4) 

Moreover, the Jaumann rate of Kirchhoff stress tensor 
is related to the incremental nominal stress by 

AS^ASfj+σ^ -(aikDjk+ajkDik). (5) 

Finally, we obtain the virtual work equation for up-
dated Lagrangian formulation as [25] 

= Α(ί + Δ ί ) - f 
Jy^ijôDijav (6) 

where 

Κ(ί + Δί)= f (Fi + AFi)SAuidv+ f (η + ΔΤ^ΔΜ*· 
Jvt Jst 

Equation (5) represents a nonlinear equation con-
cerning the unknown incremental displacements from 
time t to time r + Δί. We can derive the incremental 
finite element equations for the shell structure by using 
the "degenerated" 3-D solid element which are de-
scribed in the next section. 

DESCRIPTION OF THE ELEMENT 

The geometry of shell can be represented by the 
coordinates and normal vectors of its middle surface 
as shown in Fig. 1. The middle surface is modeled by 
the so-called "degenerated" isoparametric element in 
three-dimensional space. Two different types of ele-
ments are considered : Serendipity element (8 node) and 
Lagrangian element (9 node). Each node has five de-
grees of freedom, i.e. three translations in the directions 
of the global axes and two rotations with respect to the 
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axes in the plane of the middle surface as shown in nodal point k, v%l{t) = ith component of unit normal 
Fig. 2. vector to the middle surface at nodal point k and time t 

In reference to a set of rectangular Cartesian coord- and m = Number of nodes of the element. 
inates, let xt{t), i = 1, 2, 3 be the components of the posi- The displacement vector of a generic point at time t 
tion vector of a generic point at time i, also let ξ, η and and the incremental displacement vector can be written 

as 

Middle Surface 

Nodal Point k 

Coordinates ^k( t ) , x2k(t), xk(t) 

Fig. 1. Geometry of shell element at time t. 

u—xM-xiO) 

Aui = xl(t + At)-xl(t). 

(8) 

(9) 
From eqns (7)-(9) the displacement vector at time t 

and the incremental displacement vector are given by 
m r m 

",= Σ Nu&nM+it Σ Nk&riMvUt)-vUO)) (10) 

fc=l lk = \ 

- t&W, (H) 

where ii\ = x%t) - x*(0) and Δι^ = x\{t + Δί) - χ&ί). 
The unit normal vector, v3, and two unit tangential 
vectors \1 and v2, of the middle surface at node k for the 
time varying between 0 to t are evaluated from the 
Cartesian coordinates at that point by 

v» = 
dx\ (dx\ fdxi 

v1=(e2xv3)/ |e2xv3 | 

v2 = v3xv1 

dx-

5η 
(12) 

(13) 

(14) 

-Middle Surface Nodal Point k 

Coordinates xk(t), ^ ( t ) , x,k(t) 

Vectors vk(t), vk(t), vk(t) 

Thickness hk 

Degrees of Freedom Au , Au , Δυ}, Δθ , , 

<«.,· 

Fig. 2. Definition of "degenerated" 3-D isoparametric solid 
element at time t. 

ζ be the natural coordinates of the shell element. Re-
ferring to Fig. 1, the Cartesian coordinates at any 
point of the shell at time t may be expressed by 

m y m 

χ,.(ί)=Σ NtfMt)+± Σ ΝΜ,η^ΑΜ (7) 
where χ,·(ί) = Cartesian coordinate of any point on the 
shell at time t, iVk(i, η) = Interpolation function associ-
ated with node /c, xf (t) = Cartesian coordinate of nodal 
point k at time t, hk=Thickness of shell in ζ direction at 

where e2 is unit vector in x2 direction. 
To obtain the unit normal vector, ν3(ί+Δί), we have 

to approximate in terms of \\{t\ ν2(ί), v3(i) and the incre-
mental rotations from time t to time t + Δί of vector 
v*(i) and \k

2(t). Let Αθ\ and Δ02 be the incremental rota-
tions about \k(t) and v2(t) respectively as shown in Fig. 2. 
By applying the Euler method [26] with the assumption 
Αθ\ and Δ02 being small, the unit normal vector 
v3(i + At) is expressed by 

v*(t + At) = \k
3(t) - ν£(ί)Δ0Ϊ + νΪ(ί)ΔΟ|. (15) 

Substituting the above equation into eqn (11), the incre-
mental displacements can be written as 

m Y m 

+ vUt)A6k
2). (16) 

The unknown incremental displacements in the 
above equation are related to the quantities at time t 
which are already known. To obtain the displacement 
derivatives with respect to the global system x,(i), 
i= 1, 2, 3, we employ the Jacobian transformation, J(t\ 
to relate the derivatives corresponding to the natural 
coordinates to the those of the Cartesian coordinates by 

ôAuj 

dx~ÏÏ) 
dAUi 

dx2(t) 
dAUi 

dx3(t) 

}=V(t)T 

dAuj 

dAu, 
δη 

dAu{ 

(17) 

where the Jacobian transformation matrix, J(t), con-
tains the derivatives of the coordinates, x^i), with 
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respect to the natural coordinates ξ, η and ζ, i.e. 
dx^t) dx2{t) dx3(t)~ 

im= 

δξ δξ θξ 

dx^t) dx2(t) dx3{t) 
δη δη δη 

dx^t) dx2(t) dx3(t) 

(18) 

δζ δζ Οζ 

From eqns (17) and (18) we find 

where 

[Au1 ,iAuU2Aulj3Au2AAu22Au2f3Au3AAu32Au3f3]
T 

(20) 
= [ Au\Auk

2Au\Ae\Ae\ f (21) 

ak 0 
K 0 

-jdA4i(t) hdjikv\,{t)----

-i/A«iiW i/A^i(0----
-hàAAiit) ¥Avk

12(t)-— 
(22) 

{Auk} 

and 

[Bi] = 
- - e t 0 0 
~bk 0 0 
~ck 0 0 
- - 0 
- - 0 
--0 do -\fAvUi) Î/M2W — 
--0 0 «k -^,Αμί,ίί) idMiW — 
- - 0 0 bk -^ekhkv

k
23(t) ïekhkv\3{t)---

_--o 0 ck -i/A«i3(t) i /M3(î)-- · _ 
with 

ak = Jn1Nk,i+Jï2
1Nk,n 

h=J2iN^+J22Nk^ 

ck=JïiNk^+J;iNk^ 

dk=a£ + JûlNk 

ek=bki + J2iNk 

Â=ckC + J^Nk. 

In the analysis, the rate of deformation tensor is used 
and it has six components 

Ο ^ Δ ^ + Δ ι ^ ) . (23) 

After substituting the expressions of Auu] from eqn 
(19) the rate of deformation tensor will be in the form 

{D} = [BL]{uk} (24) 

where 

[BJ = 
{D} = [DnD22£>332i>i22D232I>3i]r (25) 

(19) p . - a , 0 0 -LdMiiit) &MiM — 
- -0 bk 0 -\ekhkv

k
22(t) ^eJiAiit)---

- -0 0 ck -\fAv23(t) tfMiM — 
--bk ak 0 -\hk{ekv

k
21(i)+dkv22{t)) 

\hk(ekv
k
u(t)+dkv

k
2(t))-

- -0 ck bk -jhk(fkv
k
22(t)+ekv

k
23(t)) 

hh(fAi{t)+ekvUi))--
— ck0 ak -îhMM+dtâAt)) 

&AfAM+d,Ä3{t)) — 
(26) 

Combining eqns (4), (5), (6), (19) and (24), the finite 
element matrices corresponding to the global coordin-
ate system can be obtained with the following relation-
ships 

CywDw5Dy dv equivalent to 

(jy [BJÎC][BJ *,){*«*} 

a\pDikDk}àv equivalent to 

^σ^Δι^{Aukj dv equivalent to 

CifiDijdv equivalent to [ β ι ] Γ { σ } < 

Jvt Jvt 

dv 

where B1 and BL are already defined by eqns (22) and 
(26), and 

[B2-] = 

.-a« o 0 -\hkdk^2i(t) \hkdkv\x(t)~ 

-fyk{ekv2i(t) + dkv
k
22< - y y 0 -%{ekv

k
2l{t)+dkv

k
22(t)) \hk(ekv\M+dkv\2(t)y 

ck 0 "k 

2 " 2 -ihk(fkv
k
21(t)+dkv23(t)) \hk(fkv

k
n(t)+dktA3(t))-

k a" 0 ~ihk{ekv
k
21(t)+dkv

k
22(t) ihk{ekv

k
n(t)+dkv

k
2(t))— 

2 2 

K 

-0 £ 2 - ^ ( / Ä W + ^ W ) ^(/^.(O+^îafi))-

-0 bk 0 - ^Λ ί ) 2 2 ( ί ) ï V i ^ t o 

2 2 

- J 0 ^ -iW/^ÎO+^W) iW^W+^W)-

- 0 J I -iM>22(0+^23(i)) i\(/tt>Î2(t) + ̂ 3(î))-

- 0 0 ck -îhkfkv
k
2î(t) ihJAM-

(27) 

file://-/fAvUi
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M= 

[σ] = 

[σ] 0 0 
0 [σ] 0 
0 0 [σ] 

{σ} = \_σησ22σ33σί2σ23σ31]
τ. 

(28) 

(29) 

(30) 

Then, the incremental equilibrium equation of the shell 
structure can be written as 

(iKL] + lKN]){Auk} = {AP}. (31) 

In the above, the stiffness matrix of the structure con-
sists of two major parts : KL is the linear stiffness matrix 
as in the case of small deformation, and KN, the non-
linear stiffness matrix due to large deformation and ΔΡ 
is the incremental load from time t to ί + Δί. These 
matrices are given by 

[ * J = f [Bjr[C][*Jdi> (32) 

[**] = f ([51]rW[ßi]-2[ß2]rM[ß2])dt; 

{àP} = R{t + At)-( [BLY{a}dv 

where BL = Linear strain displacement transformation 
matrix, Bl9 B2 = Geometric matrices due to large 
deformation and a = Cauchy stress tensor. 

MATERIAL MODELING 

The shell structure considered in the present analysis 
may have laminated material construction, whereby 
each layer can be an orthotropic material with a given 
orientation as shown in Fig. 3. For the jth layer, the 
Jaumann rate of Kirchhoff stress is related to the 
deformation rate tensor by 

(35) 

(33) 

(34) 

{AS*}=[caw 

where C is stiïfness matrix referring to the material 
principal axes of the ;th layer which may deform in 
conjunction with the material fibers. Since the shell is 
assumed to be relatively thin, the stress component 
normal to the middle surface can be ignored and the 
stiffness matrix C" has the following definition 

[C] = 

Cll 

Cl2 
0 
0 
0 
0 

Cl2 

C22 

0 
0 
0 
0 

0 
0 
0 
0 
0 
0 

0 
0 
0 
c44 
0 
0 

0 
0 
0 
0 

C55 

0 

0" 
0 
0 
0 
0 

c66 

(36) 

where c'l7s are the orthotropic constants. 
For the evaluation of element stiffness, the material 

matrix referring to local coordinates must be trans-
formed to the global system by using 

[C] = [ 7T [C ' ] [T ] (37) 

where the transformation matrix T is defined, for 
example, in [27]. It is important to note that coordinate 
axes rotations in T include the initial orientation of the 
material axes and additional rotations resulting from 
deformations. 

For the treatment of layering effect, two different 
schemes may be employed. One method is to perform 
numerical integration of the stiffness matrix for each 
layer to capture its material property. The other method 
is to derive an equivalent stiffness for the laminated 
shell by using a smearing process [28]. In this paper, the 
former method is adopted in the same manner as 
reference [19]. We define a variable ζ, in the thickness 
direction for the jth layer; ζ, varies from —1 to + 1 . 
Referring to Fig. 4 the stiffness matrices are then evalu-
ated in accordance with 

[Kj=t f [B^iCliB^dv (38) 
j = i Jvt

 n 

j = i Jv, « 

(39) 

Fiber Direction 

Fig.3. Fiber direction with respect to natural (local) coordin-
ate axes. Fig. 4. Geometry of laminated shell element. 
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where 

hj= Σ ΝΛί> n)hkj (40) 
k = l 

m 

h=^ N^nfik (41) 

ί=-1+τ[ -Α/1-ζ , )+2ΣΑ, | (42) 

/? = total number of layers 

NUMERICAL CHARACTERISTICS OF THE ELEMENT 
In the finite element analysis of shell structures, two 

questions are often confronted by the analysts: selection 
of mesh size and use of integration order for the evalua-
tion of element stiffness. The former factor is purely an 
economical consideration whereas the latter is associ-
ated with the generic nature of the element under 
consideration. As noted in the introduction, the 
"degenerated" 3-D solid element gives the right deform-
ation behavior for linear thick shells. However, for thin 
shell structures, the element was found to be too stiff 
to represent the correct bending action due to the pres-
ence of unnecessary shear stresses. Then, reduced 
integration must be used to compensate such dis-
crepancy. A systematic study on the small deformation 
plate bending was conducted by Pugh, Hinton and 
Zienkiewicz [21] by comparing the integration orders 
with respect to the aspect ratio of the plate (i.e. thick-
ness/span of the plate). Such study for the case of non-
linear analysis has not yet been made. 

In this section, we present a study on the con-
vergence characteristics of both the 8-node and 9-node 
elements by varying 

(i) Mesh size 
(ii) Integration Order vs Aspect Ratio 
Two integration orders are used : exact (3x3x2) 

and reduced (2x2x2) orders. Similar to [21], a 
simply supported plate and a clamped plate are con-
sidered. Linear isotropic material was assumed: 
£ = 30,000 ksi and v = 0.3. Both plates are loaded into 
the large deformation range and the results are com-
pared at a fixed load factor(^4/£/z4) = 200 as seen in 
Fig. 5. Corresponding to this load factor, the maximum 
deflections obtained from the analytical solutions [29] 

E = 30000 ksi 

v = 0.3 

h = plate thickness 

q = 0.2 in 

a = 40 in 

= uniform pressure 

- Present Analysis 

Analytical Solution 128] 

Central Deflection Ratio (W/h) 

Fig. 5. Large deflection analysis of plate subjected to uniform 
pressure. 
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Fig. 6. Simply supported plate subjected to uniform load. 

Simply supported plate: 
Clamped plate: 
t = thickness of the plate 

1.66147 
1.33676 

At first, the effect of mesh size was studied for the plates 
with an aspect ratio chosen to be = 0.005, whereby the 
solution is relatively insensitive to the 8-node or 9-node 
elements or the integration order used. From symmetry, 
only one quarter of the plates were modeled by varying 
the element numbers from 1 to 25. The results are 
plotted in Figs. 6 and 7 for the simply supported and 
clamped plates, respectively. For the simply-supported 
plate, a minimum of 4 elements was necessary to obtain 
the convergent solution whereas the clamped plate 
requires 16 elements due to more complex deformation 
curvature. In either case, the 9-node element appears to 
give much better numerical response as compared to 
the 8-node element. In the second part of the study, the 

1 6 

1 4 

0.8 

X 
\ ^ 

Λ 
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[xact thin plate s 

^-'~~ 

ispect ratio = 0.( 

Dlution 1.3368 
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• — 9 node element with 2x2 integration order 

" · — 9 node element with 3x3 integration order 

Fig. 7. Clamped edge supports plate subjected to uniform 
load. 
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mesh size was fixed with 4 elements for the simply 
supported plate and 16 elements for the clamped plate, 
and the thickness (aspect ratio) of the plate was varied 
from lO - 1 to 10~4. The plate was modeled by both 
8-node and 9-node elements with the exact and reduced 
integration orders. The analysis results are plotted in 
Figs. 8 and 9. For the simply-supported plate in Fig. 8, 
the solution obtained from 8 node element with exact 
integration order deteriorates for the aspect ratio 
smaller than 0.005. In the case of clamped plate (Fig. 9), 
8-node element with either the exact or reduced integra-
tion order gives very poor results for plate thickness 
smaller than 0.005. However, in all cases the 9-node 
element appears to yield satisfactory results whether the 
reduced integration order is used or not. 

NUMERICAL EXAMPLES 

The formulation of the shell element discussed in the 
previous section has been implemented into a nonlinear 
finite element program called NFAP [30]. Four sample 
problems were analyzed by use of the finite element 
program and the results are presented in this section. 

(1) Large deflection analysis of a hinged spherical shell 
The spherical shell is subjected to a concentrated 

central load at the crown. All edges are supported by 
hinges with no translations and the dimensions are 
given in Fig. 10. The material property is considered 
to be linearly elastic and isotropic. From double sym-
metry, only a quarter of the shell is modeled by a 2 x 2 
mesh of 8 node elements. The reduced integration was 
used for evaluation of element stiffness. This problem 
was previously analyzed by Horrigmoe and Bergan 
[15] with a 5 x 5 mesh of triangular elements and closed 
form solution was obtained by Leicester [31]. In the 
present analysis a total of 16 loading steps were used. 
Since the structure exhibits softening behavior, the 
tangent modulus with equilibrium iterations (3 itera-
tions per load step) gives convergent solution all the 
way to the buckling load (before snap-through) of 
50 kN. Good agreement with the known results was 
obtained as seen in Fig. 10. 

(2) Large deflection of a circular cylindrical shell 
The circular cylindrical shell as shown in Fig. 11 is 
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Fig. 8. Simply supported plate subjected to uniform load. 
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R = 2540 mm 

a » 784.90 mm 

h * 99.45 mm 

E * 68.95 N/mm2 

v ' 0.3 

Present Analysis 

Horrigmoe and Bergan [15] 

Leicester [31] 

100 150 

Cf»ntral Deflection (mm) 

Fig. 10. Hinged spherical shell subjected to central con-
centrated load. 

clamped along all four edges and subjected to a uniform 
normal load up to 3 kN/m2. The material property is 
linearly elastic and isotropic. One quarter of the shell 
was modeled by sixteen 9-node elements with the exact 
integration order. In the analysis, the pressure load 
increment was varied at three stages: 0.25 kN/m2 

for the softening part, 0.0625 kN/m2 near the snap-
through deformation, and 0.25 kN/m2 for the stiffening 
part. The incremental solution at the initial stage con-
verges monotonically with an average of 3 iteration 
cycles. For the stiffening part, some oscillation of the 
iterative solution was observed and more iteration 
cycles (5-6) were necessary in order to obtain the con-
vergent solution. The load-deformation response is 
compared with those obtained by Sabir and Lock [32] 
and Horrigmoe and Bergan [15]. Again, good agree-
ment can be seen from Fig. 11. 

(3) A sandwich plate 
To verify the modeling of laminate material, a sand-

wich square plate, (50 in. x 50 in.) consists of two iden-
tical aluminum facings and an aluminum honeycomb 
core. The elastic constants and the thickness of the 
layers are: 

Facing: E= 10.5 x 103 ksi, v = 0.3, thickness = 0.015 in. 
Core : E = 0, Gxz = Gyz = 50 ksi, thickness = 1 in. 

The plate was represented by four 8-node elements 
with the reduced integraion order. The plate is sub-
jected to a uniform load with clamped edges and the 
load was increased well into the nonlinear range 
(geometrically) of the plate. The same plate has also 
been analyzed by Schmit and Monforton [33]. The 
analysis results are plotted in Fig. 12 for the non-
dimensionalized load vs deflection at the center of the 
plate. The present solution correlates quite well with 
those obtained by Schmit and Monforton for both 
linear and nonlinear response. 

Present Analysis 

• Horrigmoe and Bergan, triangles [15] 

■ Horrigmoe and Bergan, quadrilaterals [15] 

* Sabir and Lock [32] 

7.5 10.0 12.5 

Central Deflection (mm) 

Fig. 11. A cylindrical shell subjected to uniform pressure. 
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Fig. 12. Clamped sandwich plate subjected to uniform 
pressure. 

(4) A glass-epoxy thin-walled cylinder 
The last example considered herein is a glass-epoxy 

thin-walled cylinder clamped at both ends and sub-
jected to internal pressure (Fig. 13). By use of symmetry, 
only one-eighth of the cylinder was modeled by a 5 x 5 
mesh of 9-node elements with reduced integration 
order. The material is assumed to be linearly elastic and 
orthotropic and the elastic constants are given by 

Ex = 2 x 103 ksi, Ey= 7.5 x 103 ksi, vyx = 0.25 

G = 1.25 x 103 ksi, G = G Z X = 0.625 x 103 ksi 
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For small deformation theory, the maximum radial 
displacement of the cylinder was found to be 
7.177 x 10~4 in. at the pressure 4 ksi, which correlates 
with the result obtained by Rao [34]. The present 
analysis was also carried into the large deformation 
range of the cylinder. The load-deformation response is 
shown in Fig. 13. N o comparison can be made since 
large deformation analysis of this problem was not 
found elsewhere. 

Radial Deflection (in) 

Fig. 13. Large deflection analysis of thin wall cylinder. 

CONCLUSION 

A large deformation analysis procedure for the 
laminated anisotropic shell is presented in this paper by 
use of a "degenerated" 3-D solid element with 8 or 9 
nodes. The analysis approach is based on the updated 
Lagrangian formulation. From the study of numerical 
characteristics of the element, reduced integration 
order is necessary for the evaluation of stiffness matrix 
when the 8-node element is used. However, the 9-node 
element gives much better numerical behavior as 
compared to the 8-node element. 

Future work will be extended to include nonlinear 
material models, post-buckling behavior of shells and 
more efficient numerical scheme for obtaining con-
vergent solutions. 
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Abstract—Finite-element analysis of the large-deflection theory (in von Karman's sense), including trans-
verse shear, governing moderately thick, laminated anisotropic composite plates is presented. Linear and 
quadratic rectangular elements with five degrees of freedom (three displacements, and two shear rotations) 
per node are employed to analyze rectangular plates subjected to various loadings and edge conditions. 
Numerical results for bending deflections, stresses, and natural frequencies are presented showing the 
parametric effects of plate aspect ratio, side-to-thickness ratio, orientation of layers, and anisotropy. 

The finite-element solutions are found to be in excellent agreement with the exact closed-form solutions 
in the linear analysis. In the nonlinear analysis, the finite-element solutions are in fair agreement with the 
perturbation solution. The load-deflection curve in the shear deformable theory does not deviate much from 
the linear theory, when compared to the load-deflection curve in the von Karman theory. 

INTRODUCTION 

In the finite-element analysis of nonlinear problems the 
geometric stiffness matrix is reformulated several times 
during each load step (also, during each time step in the 
transient analysis), consequently, the computational 
time involved is very large. Further, if the element used 
in the analysis has many degrees of freedom, storage 
considerations may preclude the use of such elements. 
These concerns are reflected in current research in 
computational mechanics, which is largely concerned 
with the development of numerical schemes that are 
computationally inexpensive but possess competitive 
accuracy when compared to traditional schemes. 

Due to their high stiffness-to-weight ratio, and the 
flexible anisotropic property that can be tailored 
through variation of the fiber orientation and stacking 
sequence, fiber-reinforced laminated composites are 
finding increasing application in many engineering 
structures. Plates are common in many engineering 
structures, and therefore have received greater attention 
of the designer. 

Much of the previous research in the analysis of 
composite plates is limited to linear problems (see, for 
example, [1-15]), and many of them were based on the 
classical thin-plate theory (see [1-3]), which neglects 
the transverse shear deformation effects. The trans-
verse shear effects are more pronounced, due to their 
low transverse shear modulus relative to the in-plane 
Young's moduli, in filamentary composite plates than in 
isotropic plates. The shear deformable theory of Yang, 
Norris and Stavsky [16] (see also, Whitney and Pagano 
[17]), which is a generalization of Mindlin's theory for 
homogeneous, isotropic plates to arbitrarily laminated 
anisotropic plates, is now considered to be adequate for 
predicting the overall behavior such as transverse 
deflections and first few natural frequencies of layered 

tProfessor. 
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composite plates. Finite-element analysis of rectang-
ular plates based on the Yang-Norris-Stavsky (YNS) 
theory is due to Reddy [15, 18], who derived the YNS 
theory from the penalty function method of Courant 
[19]. A comparison of the closed-form solutions [17] 
with the finite-element solutions [14, 15] shows that 
the element predicts accurate solutions (see also [20]). 

Approximate solutions to the large-deflection theory 
(in von Karman's sense) of laminated composite plates 
were attempted by Whitney and Leissa [21], Bennett 
[22], Bert [23], Chandra and Raju [24, 25], Zaghloul 
and Kennedy [26], Chia and Prabhakara [27,28], and 
Noor and Hartley [29]. Chandra and Raju [24, 25], 
and Chia and Prabhakara [27, 28] employed the 
Galerkin method to reduce the governing nonlinear 
partial differential equations to an ordinary differ-
ential equation in time for the mode shape; the perturb-
ation technique was used to solve the resulting equa-
tion. Zaghloul and Kennedy [26] used a finite differ-
ence successive iterative technique in their analysis. In 
all of these studies, the transverse shear effects were 
neglected. The finite element employed by Noor and 
Hartley [29] includes the effect of transverse shear 
strains; however, it is algebraically complex and 
involves eighty degrees of freedom per element. Use of 
such elements in the nonlinear analysis of composite 
plates inevitably leads to large storage requirements 
and computational costs. 

The present paper is concerned with the large-
deflection bending and large-amplitude free vibrations 
of laminated composite plates. The finite element used 
herein is a rectangular element based on the extended 
YNS theory (i.e. the transverse shear deformation is 
included) that includes the effect of large deflections 
(in the von Karman sense). The element has three dis-
placements and two shear rotations per node and 
results in a 20 x 20 stiffness matrix for linear element 
and a 40x40 matrix for an eight-node quadratic 
element. Numerical results are presented for deflec-
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tions, stresses and natural frequencies of rectangular 
plates for various edge conditions. 

2. GOVERNING EQUATIONS OF MODERATELY THICK 
PLATES ACCOUNTING FOR LARGE DEFLECTIONS 

Consider a plate laminated of thin anisotropic 
layers, oriented arbitrarily, and having a total thickness 
h. The origin of the coordinate system (x, y) is taken in 
the middle plane, denoted R, of the plate with the z-axis 
perpendicular to the plane of the plate. The thick plate 
theory of Whitney and Pagano [17] is modified here to 
include the non-linear terms of the von Karman theory. 
The displacement field is assumed to be of the form, 

Ui(x, y, z, i) = w(x, y, ή + ζψχ(χ, y, t), 
w2(x, y9 z, t) = v(x, y, ή + ζφ^χ, y , t), (2.1) 

w3(x,y, z, t) = w(x,y, i)· 
Here t is the time; ul9 w2, u3 are the displacements in 
x, y, z directions, respectively; u, v, w are the associated 
midplane displacements ; and φχ and \j/y are the slopes in 
the xz and yz planes due to bending only. Assuming that 
the plate is moderately thick and strains are much 
smaller than rotations, we write the nonlinear strain-
displacement relations 2sij=uij-^ujfi-\-umiumj, 

The nonlinear operator J/\ · ) in eqn (2.3) is given by, 

ε ι = ε ι ι = 3 - + ζ 
du δφχ 1 (dw 

+-dx dx 2\dx 
= e?1+zJf1, 

82 — ε 2 2 — Λ + Z 
ôv d\//v 1 / d w \ 2 

dy+l\fr !=& + '*» 
_„a ôv / # # \ dwdw du 

dy ' dx 

— ε6-\-ζ Jr 6, 

/ -y , ? . dw . dw 
ε3=ε33 = ^ + ^ 5 = ' / ' *+^- , s4 = il/y+ — . (2.2) 

wherein the products of φχ and φν with dujdx and 
du2/dy are neglected. Since the constitutive relations 
are based on the plane-stress assumption, ε3 does not 
enter the formulation. 

Neglecting the body moments and surface shearing 
forces, one can write the equations of motion (in the 
absence of body forces) as 

NUx+N6fy=Ru,tt + Sil/Xftt 

N6tX + N2ty=Rvitt+S}lfyttt 

Qif* + 02.,=-P + Äw „ - MNb w) (2.3) 
M^+M^-Q^fy^ + Su,« 
M6,x+M2fy-Q2 = I\l/yftt+Sv,tt 

where R, S, and / are the normal, coupled normal-
rotary, and rotary inertia coefficients, 

ΛΛ/2 rzm + i 
(R, S, /)= (1, z, z2)p àz = Σ (1, z, z2)p™ dz 

J-h/2 m J 
zm 

(2.4) 
p(m) being the material density of the mth layer, P is the 
transversely distributed force, and Nb Qt and M, are the 
stress and moment resultants defined by 

rh/2 çh/2 

(Ni9 M i > = ( 1 , z)ai dz , (Ql9 ρ 2 ) = (σ χ ζ , ayz) d z 
J-h/2 J-h/2 

(2.5) 

Here σ, ( ί=1, 2, 6) denote the in-plane stress com-
p o n e n t s (σχ = <7X, σ2 = or σ4 = ayz, σ5=σχζ and σ 6 = σχν). 

Mw,NÙ= dx N>3x 

dw\ d 
+ dy 

N( 
dw 

1 ~dx 

dw\ d +dx[N6dy rryy
y2ey 

N,^ 

Assuming monoclinic behavior (i.e. existence of one 
plane of elastic symmetry parallel to the plane of the 
layer) for each layer, the constitutive equations for the 
mth layer (in the plate coordinates) are given by 

HfiS0] 
Q!m)~ (2.6) 

6 j ^°6J 

where QW are the stiffness coefficients of the mth layer 
in the plate coordinates. Combining eqns (2.5) and 
(2.6), we obtain the plate constitutive equations, 
N'\JA" B«lf8'01 ίρΛ 
M,( IB« D„tijr,\' \Q2\ 

'«UP« B « K X 

[ k4A44 

k4k5A4 

k4k5A4 

k2~4 
(2.7) 

The Aip Bip Dij (U j= 1, 2, 6), and A u (z,y=4,5) are the 
respective inplane, bending-inplane coupling, bending 
or twisting, and thickness-shear stiffnesses, respectively : 

pzm + l 
C4y, By, ß.;) = I ' Qft\Lz,Z2)dz, 

m Jzm 

Czm+1 

m Jzm 

Here zM denotes the distance from the mid-plane to the 
lower surface of the mth layer. 

Equations (2.3) and (2.7) must be adjoined by ap-
propriate boundary conditions of the problem. The 
variational formulation of these equations indicate the 
following essential and natural boundary conditions: x 

essential: specify, uw us, w, φη, 
natural : specify, Nn, Nns, q, M„, Mns. 

3. VARIATIONAL FORMULATION 

Toward constructing a finite-element model of eqns 
(2.3), (2.7), and (2.9), we present a (quasi-) variational 
formulation of these equations. The total potential 
energy principle for the problem at hand takes the 
form, 

0=δπ{υ\ v, w, φχ, φγ) 

+ δν^ν,„ + Ξφ^-Ν6,χ-Ν2^ 

+M^+Äwf f t -e l i X-e2 t , - M*, Nä] 
+ ^ x [ ^ x . « + 5 i i i „ - A i l i , - M 6 i , + ß 1 ] 
+ Wy\_Iil/y,tt+Sv,tt-M6,x-M2,y + Q2]}dxdy9 

= F {ôuiRu^ + St^+ôu^N^ôu^Ns 

+ ôv(Rvjtt + Sij/yJ + ôvtXN6 + SvtyN2 

(2.9) 
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dôw dw dôw dw AT , dôw ôw AT 

' dx dx"1* ôy dx^^lxJy N, 
, dôw dwAT 

6 + dy dy"2 

+ δΨΜχ,* + SuJ + οψχ,χΜ ! + οφ^Μ6 + οψχ<2 ! 
+ οφγ(Ιφγαί + SvJ + οφ^χΜ6 + οφ^Μ2 + ô\l/yQ2} 

χ dxdy+ (ôunNn+ôusNns)ds + ôwqds 
Je» Jca 

+ f (οψβη+οψβη^8, (3.1) 

wherein quantities with 4 ' are specified on the respec-
tive portions of the boundary C, and C„, Cq and Cm are 
respectively the (possibly overlapping) portions of the 
boundary on which Nn and Nns, q, and Mn and M^ are 
specified. It should be noted that on the comple-
ments of these portions (i.e. on C-Cn, C-Cq, and C-CJ 
the in-plane displacements u„, and uns, transverse deflec-
tion w, and shear rotations \j/n and ψη# respectively, are 
specified. 

4. FINITE ELEMENT MODEL 

Now we present a finite-element model based on the 
variational form in eqn (3.1). Suppose that the region R 
is divided into a finite number of rectangular elements. 
Over each element the generalized displacements 
(M, V, w, ψ„ ij/y) are interpolated by 

r r s 

ψχ=Σ*χιΦ1> * Γ Σ Μ ? > (4.1) 

where φ\ (α= 1, 2, 3) is the interpolation function cor-
responding to the ith node in the element. Note that 
the in-plane displacements, the transverse displace-
ment, and the slope functions are approximated by 
different sets of interpolation functions. While this 
generality is included in the formulation (to indicate 
the fact that such independent approximations are 
possible), we dispense with it in the interest of simplicity 
when the element is actually programmed and take 
ΦΙ = ΦΪ = ΦΪ (r=s=p). Here r, s and p denote the 
number of degrees of freedom per each variable. That 
is, the total number of degrees of freedom per element 
i s2r+s+2p. 

Substituting eqn (4.1) into eqn (3.1), we obtain 

[K]{A} = o)2[M]{A} + {F} (4.2) 
For static bending, eqn (4.2) becomes 

~[Kn][K1 2] [0] [K 1 4 ] [K 1 5 ] 
[X 1 2 ] [X 2 2 ] [0] [K 2 4 ] [K 2 5 ] 

[0] [0] [K 3 3 ] [K 3 4 ] [K 3 5 ] 
[X1 4] [X2 4] [K3 4] [K4 4] [X4 5] 
[ X 1 5 ] [ X 2 5 ] [ X 3 5 ] [ X 4 5 ] [ X 5 5 ] 

^ (4.3) 

where the {w}, {r}, etc. denote the columns of the 
nodal values of w, v, etc. respectively, and the elements 
Ä#(a,ß = l, 2, . . . , 5) of the stiffness matrix and F\ of 
the force vector can be identified easily from eqn (3.1). 

In the present study rectangular elements with four, 
eight, and nine nodes are employed with the same 
interpolation for all of the variables. The resulting 
stiffness matrices are 20 x 20 for the 4-node element and 
40 x 40 for the 8-node element. 

< 

e 

IV 
|w 
{w} > =< 
{*,} 

e 

{f1} 
\F2}\ 
{F3}} 
<{F4}\ 
{F5}\ 

J 

As pointed out in a recent study [15], the YNS theory 
can be derived from the corresponding classical thin-
plate theory by treating the slope-displacement rela-
tions 

dw 
dx 

dw 
-θν (4.4) 

as constraints. Indeed, when the constraints in eqn (4.4) 
are incorporated into the classical thin-plate theory by 
means of the penalty-function method, the resulting 
equations correspond to the YNS theory with the 
correspondence, 

θχ~Ψχ> Qy~Uy (4.5) 
It is now well-known that whenever the penalty-
function method is used, the so-called reduced integra-
tion (see Zienkiewicz et al [30], and Reddy [20]) must 
be used to evaluate the matrix coefficients in eqn (4.3). 
That is, if the four-node rectangular element is used, the 
l x l Gauss rule must be used in place of the standard 
2 x 2 Gauss rule to numerically evaluate the coefficients 
Kiy The element equations in (4.2) are assembled in the 
usual manner, and the (essential) boundary conditions 
are imposed before solving either for generalized dis-
placements, or for frequencies of natural vibration. It 
should be noted that, since the stiffness matrix [K\ 
depends on the solution {Δ}, any one of the standard 
iterative procedures must be used. 

5. NUMERICAL RESULTS AND DISCUSSION 

The finite element presented herein was employed in 
the nonlinear analysis of rectangular plates. The follow-
ing material properties typical of advanced fiber-
reinforced composites were used in the present study : 

Material I: EJE2 = 259 G12/E2 = 0.5, G23/£2 = 0.2, 
V - = °-25(5.1) 

Material II: EJE2 = 40, G12/£2 = 0.6, G23/£2 = 0.5, 
v12 = 0.25 

It was assumed that Gl3 = G23 and v12 = v13. A value of 
5/6 was used for the shear correction coefficients, 
kl = kl (see Whitney [31]). All of the computations 
were carried on an IBM 370/158 computer. 

To show the effect of the reduced integration, and to 
illustrate the accuracy of the present element, results 
of the linear analysis are presented for four-layer (equal 
thickness) cross-ply (0°/90o/90o/0°) square plate con-
structed of material I. The plate is subjected to sinu-
soidal distribution of transverse loading, and is assumed 

to be "simply-supported" in the following sense (SS — 1): 

w0(x, 0)=uo(x, b)=0, N2(x, 0)=N2(x, fc)=0, 
t>0(0, y)=v0{a, y)=0, JV^O, y) = N1(a, y)=0, 
w(x, 0) = w(x, b) = w<0, y)=w(a, y)=0, (5.2) 
iA*(x, 0) = iAx(x, b)=0, M2(x, 0) = M2(x, b)=0, 
W*> y ) = ^ o . y)=o, MX(O, y)=M^ y)=o. 

Of course, in the finite-element method only the essen-
tial boundary conditions (i.e. those on u, t;, w, ψχ and 
ψν) are imposed after the assembly of element equa-
tions. The finite-element solution is compared with the 
closed-form solution [20], and the 3-D elasticity solu-
tion of Pagano and Hatfield [5] in Fig. 1. It is clear from 
the figure that nondimensionalized deflection obtained 
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3-D Elast ic i ty Solution [5] 
Closed-Form Solution [20] 

3α ι Δ Α Finite-Element Solutions 

AP = Angle-Ply; material I I , SS-2 
CP = Cross-Ply; material I , SS-1 
R - Reduced; F - Full Integration 

^w (AP, 2x2Q-R) 

a/t '10 20 30 40 50 

Fig. 1. Comparison of the exact closed-form solution and 
finite-element solution for four-layer (0°/9079070o), 45°/ 

—45°/45°/45°) square plates under sinusoidal loading. 

Closed-Form Solution 

o FEM (0'790'790'70"); SS-1 

• FEM (45'7-45'7-/+/..., 
8 layers); SS-2 

2x2Q-R 

Fig. 2. Comparison of the closed-form and finite element 
solution for nondimensionalized fundamental frequencies 

square plates (material II). 

2. 
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^ o 2x2L (NDF = 3) 

• 2x2Q (NDF = 3) 
n 2x2L (NDF = 5) 

■ 2x20 (NDF - 5) 

_ o 

8 

Fig. 3. Comparison of the nondimensionalized stress for 
simply supported (SS-3), isotropic (v = 0.3) square plate 

under uniform loading. 

by 2 x 2 mesh of linear elements is very sensitive to the 
integration (i.e. reduced and full integration) in the 
thin-plate range (i.e. a/h > 20). However, the integration 

has virtually no noticeable effect in the thick-plate 
range, for quadratic elements. The solutions obtained 
using the quadratic elements (with reduced and full 
integration) are not plotted in Fig. 1 due to their 
closeness to the closed-form solution. The solutions 
(i.e. deflections and stresses) obtained by various 
elements, meshes, and integrations are reported in 
tabular form in [20]. The solution obtained by the 4 x 4 
mesh of quadratic elements is in excellent agreement 
(indeed, to the third decimal point) with the closed-
form solution. The stresses σχ and oy were computed at 
the Gauss point x = y=0.0625 (close to the center of the 
plate) at z= ±h/2, and +A/4, respectively. 

Figure 1 also shows the nondimensionalized deflec-
tion for four-layer, angle-ply (45°/-45745°/-45°) 
square plate (material II) under sinusoidal loading. The 
boundary conditions used are of simply-supported 
(SS-2) type: 

"o(0, y) = u0(a, y) = 0, N6(0, y) = N6(a, y) = 0, 
v0(x, 0) = vo(x, b)=0, N6{x, 0) = N6(x, b) = 0, 
w(x, 0=w(x, b)=w(0, y) = w{a, y)=0, (5.3) 
ΨΑχ, 0) = ψχ(χ, b)=0y M2(x, 0)=M2(x, fc)=0, 
<Ay(0, y) = i//y(a, y)=0, M^O, y) = Mx{a, y) = 0. 

Again, the finite-element solution (obtained by using 
2 x 2 mesh of eight-node quadratic elements with 
reduced integration : 2Q8-R) is in close agreement with 
the closed-form solution. 

Figure 2 shows the nondimensionalized fundamental 
frequency for four-layer, cross-ply (0°/90o/90o/0°), and 
eight-layer, angle-ply (45°/—457+/— ■ · ·) square 
plates of material II. The support conditions for the 
cross-ply plate were assumed to be those in SS-1, 
and the support conditions used for angle-ply plate 
were those in SS-2. Results for both of the cases were 
obtained using mesh 2Q8-R. The finite-element solu-
tions are gratifyingly close to the exact closed-form 
solutions. 

Having established the credibility of the finite element 
developed herein for the linear analysis of layered com-
posite plates, we now employ the element in the non-
linear analyses. First, results are presented for single-
layer isotropic square plate under uniform loading. The 
essential boundary conditions used are: 
simple-supported (SS-3): u = v = u = 0 on all edges. 
clamped (CC-1 ) : u = v = w = 0 on all edges, 

φχ=0 along edges parallel to 
x-axis, (5.4) 

ψν = 0 along edges parallel 
to y-axis. 

Figures 3-5 show the nondimensionalized deflection, 
w = w/h, and non-dimensionalized stress, σ = σα2/£/22, 
as a function of the load parameter, T = P0a

4/Eh4 for 
clamped (CC-1) square plate, and simply-supported 
(SS-3) square plate, respectively. The results are com-
pared with the Ritz solution of Way [32], double 
Fourier-series solution of Levy [33], the finite-differ-
ence solution of Wang [34], the Galerkin solution of 
Yamaki [35], and the displacement finite-element 
solution of Kawai and Yoshimura [36]. Finite-
element solutions were computed for the five degrees of 
freedom (NDF = 5), and for three degrees of freedom 
(NDF = 3) ; in the latter case, the in-plane displacements 
were suppressed. The present solutions are in good 
agreement with the results of other investigators. Since 
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suppressing the in-plane displacements stiffen the plate, 
the deflections are smaller and stresses are larger than 
those obtained by including the in-plane displacements. 
Solutions of the other investigators were read from the 
graphs presented in their papers. 

Next, results of the large-deflection bending analysis 
of layered composite, thin (a/t=40) plates are presented. 
Figure 6 shows the non4iimensionalized deflection 

I ■ i · I ' | ' - | ■ —■ 

\ ·/ / ' ° 2x2L (NDF = 3) 
fa'' · 2x2L (NDF - 5) 

Γ J/ u 2x2Q (NDF = 3) 
[ yo/

 m 2x2Q (NDF = 5) 

/' - Yamaki [35] 
/ — Levy [33] 

■/ ~ Wang [34] 

3 _L 1 1 1_. 1_. J_ ... i 1 

1 

\ 

J 

H 

Fig. 4. Comparison of the nondimensionalized deflection for 
simply-supported (SS-3), isotropic (v=0.3) square plate 

under uniformly distributed pressure load. 
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/B n 2x2Q (NDF = 5) 
/ ■ 2x2Q (NDF = 3) 

1 , 1 , 1 . 1 

1 β 

J 
«^B 

J 

\ 

-

Fig. 5. Comparison of the nondimensionalized deflection for 
clamped (CC-1), isotropic (v = 0.3) square plate under uni-

formly distributed pressure load. 

2 4 6 8 

P = (P0(2b/h)VE^10"Z 

Fig. 6. Load-deflection curves for antisymmetric cross-ply 
clamped (CC-2), rectangular plates (material II) under 

uniform loading. 

versus the load parameter for two-, and six-layer, anti-
symmetric (O790707... ) cross-ply rectangular plates 
of material II, subjected to uniform loading. The plate 
is assumed to be clamped (CC-2) in the following sense: 

(5.5) 
w=i^x=0 along edges parallel to ^-axis, 
w = ^ y = 0 along edges parallel to x-axis. 
The present solution is in good agreement, for various 
aspect ratios, with the perturbation solution of Chia 
and Prabhakara [27]. Due to lack of tabulated results 
in [27], the relative differences in the two solutions can-
not be discussed. It is clear that the nonlinear load-
deflection curve is not deviated so much from the linear 
load-deflection line. 

Figure 7 shows similar results for two-, and six-layer, 

-o- Two-layer (45 7-45°) a/b - 1.5-

-·- Six-Layer (45"/-45°/-/+ 
(a/t -- 40) 

4 6 

P = (Po(2b/h)VE,)10" 

Fig. 7. Load-deflection curves for antisymmetric angle-ply 
clamped (CC-2), rectangular plates (material II) under 

uniform loading. 

angle-ply ( 4 5 7 - 4 5 7 - / + . . . ) , and clamped (CC-2) 
rectangular plate (material II) subjected to uniform 
loading. Again, the present result is in close agreement 
with that of Chia and Prabhakara [28]. The non-
dimensionalized stress, σχ, for the cross-ply and angle-
ply plates discussed above is plotted against the load 
parameter in Fig. 8. 

4 6 
P = [Po(2b/h)VE,]10' ' 

Fig. 8. Load-stress curves for two-layer clamped (CC-2), 
rectangular plates (material II) under uniform loading. 

The effect of the transverse shear strain on the deflec-
tion and stresses on the load-deflection, and load-stress 
curves is shown in Fig. 9. Note that the deflection for 
ajt= 10 is about 30% larger than that for a/t = 100, at 
P = 10. That is, the deflections predicted by the classical 
thin-plate theory are lower than those predicted by the 
shear deformable theory. 

Figure 10(a) shows the ratio of nonlinear to linear 
fundamental frequencies versus the amplitude-to-
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T ' 1 « r 

Fig. 9. Effect of the transverse shear on the load-deflection 
and load-stress curves lor tour-layer (0°/90o/90o/0°) simply-
supported (SS-1) square plate (material I) under uniform 

loading. 

thickness ratio for two-layer angle-ply (Θ/ — Θ), clamped 
(CC-2) square plate of material II. The side-to-thickness 
ratio (a/t) was taken to be 40 (i.e. thin plate). Similar 
results are presented in Fig. 10b for two-layer, cross-
ply (0°/90°), thick rectangular plates of material II. 
The boundary conditions used were simply-supported 
(SS-1), and clamped (CC-3): 

u = w = ψχ=0 along edges parallel to y-axis, 
v = w = φγ=0 along edges parallel to x-axis. 

The side-to-thickness ratio used in this case was, 
b/t—lQ (i.e. thick plate). Since the present boundary 
conditions are somewhat different from those used by 
Chia and Prabhakara [28], the present solutions do not 
coincide with those in [28]. 

6. SUMMARY, CONCLUSIONS, AND SUGGESTIONS FOR 

FUTURE RESEARCH 

A finite-element model is developed based on the 
combined theory of Yang, Norris, and Stavsky [16] 
and von Karman. That is, the model accounts for the 
transverse shear strain, and large rotations. Numerical 
results are presented for linear and nonlinear deflec-
tions, stresses, and natural frequencies of rectangular 
plates subjected to various edge conditions. The finite-
element solutions are compared with the exact closed-
form solutions in the linear case, and with the perturba-
tion solution in the nonlinear case. 

The finite-element solutions are found to be in excel-
lent agreement with the exact closed-form solutions in 
the linear analysis. In the nonlinear analysis, the finite-
element solutions are in fair agreement with the per-

turbation solution; of course, there is no proof that the 
perturbation solution is close to the exact. The load-
deflection curve in the shear deformable theory does not 
deviate much from the linear theory, when compared 
to the load-deflection curve in the von Karman theory. 

The finite-element developed herein is algebraically 
simple, and involves fewer degrees of freedom per 
element compared to traditional finite elements. Ap-
plication of the present element (or an element based on 
the combined theory) to the following problem areas, 
at this writing, is either in development or awaiting: 

—Transient analysis of layered composite plates 
(linear as well as nonlinear) 

—Transient analysis of bimodulus (see [37-40]) 
composite plates (linear and nonlinear) 

—Forced vibration of ordinary and bimodulus 

composite plates. 
—Static and transient (linear and nonlinear) analysis 

of plates with cut-outs. 
—All of the above for cylindrical and doubly-curved 

thick shells [41]. 
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Abstract—The general nonlinear discretized equations of motion of spinning elastic solids and structures 
are derived as a set of nonlinear ordinary differential equations for the case when the strain-displacement 
and velocity-displacement relations are nonlinear up to the second order. It is shown that the cost of 
generation of such equations is proportional to the fourth power of the number of degrees of freedom. A 
computer program is written to automatically generate the equations for the case of spinning cantilevers 
with initial imperfections. The types and the number of the coordinate functions used in the trial solution 
are parameters of the program. 

The linear equations of motion governing the dynamic 
behavior of rotating systems usually furnish a satis-
factory mathematical model in the analysis and design 
of structural elements such as spinning satellites, 
linkages, helicopter blades, and appendages. However, 
when the spinning elements possess very small intrinsic 
structural stiffness, the linear equations of motion 
become inadequate [1]. A general formulation for the 
nonlinear equations of motion of spinning line-
elements with little or no intrinsic structural stiffness is 
given in [2] considering the second order nonlinearities 
in the strain-displacement, and the velocity-displace-
ment relationships. The formulation assumes that the 
material is linearly elastic. It includes the effects of a 
variety of initial geometric imperfections. The non-
linear equations given in [2] are four coupled quasi-
linear integro-partial-differential equations of para-
bolic type, representing the dynamic force-equilibrium 
equations in axial displacement w(x, t), transverse 
displacements v(x, t), w(x, /), and torsional rotation 
Θ(χ, t), where the independent variables x and / are 
the arclength along the perfect line-element axis and 
the time, respectively. The derivation of the equations 
is based on the Hamilton's variational principle for 
elastodynamics. Defining 

ψτ= [u(x, t), v(x91), w(x, i). 0(x, i)] (1) 

These equations may be formally expressed as 

N | > ] = q f o r O ^ x ^ L and t0^t^tf (2) 

where N is the vector partial differential operator, q is 
the vector of known quantities, and L is the length of 

tThis paper presents one phase of research carried out at 
the Jet Propulsion Laboratory, California Institute of 
Technology, under contract NAS 7-100 sponsored by the 
National Aeronautics and Space Administration. The 
effort was supported by Dr. A. Amos and Mr. R. Goetz, 
Materials and Structures Division, Office of Aeronautics 
and Space Technology, NASA. 

the perfect line-element. Associated with the governing 
eqns (2) are the boundary conditions 

Bv|>] = gv> v = l , . . . a T x = 0 andx = L (3) 
where Bv, v= 1, . . . , are the vector operators, and gv, 
v= 1, . . . , are the vectors of known quantities at the 
boundary points. Reference [2] provides a variety of 
consistent boundary conditions. 

The formulation given in [2] is highly nonlinear, and 
explicit solutions in terms of previously tabulated func-
tions are most likely not possible. However, by suitably 
eliminating the spatial variable x, the quasi-linear 
parabolic partial differential equation problem may be 
transformed to a non-linear ordinary differential 
equation problem. The transient response or the 
stability problem of the spinning line element may then 
be studied through these nonlinear ordinary differ-
ential equations. This is the objective of the work de-
scribed here. 

At the beginning of this study the weighted residual 
methods were seriously considered for the reduction of 
the partial differential equations into the ordinary 
differential equations. In these methods, one proposes 
that the solution may be expressed as 

ψ = φ0 + άί*&(ο)βφμ (4) 
where the repeated indices indicate summation over 
their range. In (4), φ0 and φμ, μ= 1 , . . . , m, are known 
coordinate functions of x, and ομ, μ= 1, . . . , m are the 
undetermined functions of r, diag (ο)μ is the diagonal 
matrix containing the components of ομ on its diagonal. 
The coordinate functions are such that (4) satisfies all 
of the boundary conditions given in (3) regardless of the 
values of cß. Defining the equation residue e of (2) as 

e = q - N [ 0 o + d iag(c )A] (5) 
and selecting linearly independent weighting functions 
ωμ, μ = 1 , . . . , m, of x, the ordinary differential equations 
for the undetermined functions of t may be obtained by 
requiring that e is a null vector in the vector space of 
ωμ, i.e. 
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diag (e) ωμ άΑ άχ = 0 μ = 1,. 
Jo JA 

where A is the cross-section of the line element, 
diag(e) is the diagonal matrix containing the com-
ponents of e on its diagonal. The methods of colloca-
tion, subdomain, Galerkin, and the least squares would 
result, if one were to choose Dirac delta, generalized 
Heaviside, φμ, and εμ derivatives of ere, respectively, 
as the weighting functions. However, because of the 
following reasons the weighted residual methods were 
not used: (i) the partial differential operators are very 
complicated (see [2]). Although they possess some 
structure in their statement, it is very difficult to system-
atically generate from them the coefficient matrices 
involved in the nonlinear ordinary differential equa-
tions. (ii) The fact that the trial solutions in the weighted 
residual methods must satisfy all of the boundary con-
ditions is a disadvantage relative to the methods where 
only the essential boundary conditions are satisfied by 
the trial solutions, (iii) When the ordinary differential 
equations are obtained in the form of c = f(c), presum-
ably the equilibrium states and the stability character-
istics of such states of the original system are reflected 
in f(c). Unfortunately, even in linear problems, unless 
the weighting functions are carefully selected, f(c) may 
be a very bad substitute for the original system (see [3]). 
For these reasons, the ordinary differential equations 
corresponding to the partial differential equations are 
obtained in this work by the Rayleigh-Ritz procedure, 
using the Hamilton's principle directly. As mentioned 
earlier, the formulation given in [2] is obtained from the 
principal functional of dynamics using the Hamilton's 
principle as 

where (7, V, and T are the densities of the strain energy, 
(6) loss of potential energy of prescribed forces, and the 

kinetic energy, respectively, all expressed in terms of 
and geometrically compatible deflection states which as-

sume known values at times i0 and tf. In [2], the vari-
ational statement given in (7) is transformed into the 
partial differential equation formulation of (2) and (3), 
using the calculus of variations. Here, the variational 
statement given in (7) is transformed into a set of 
ordinary differential equations by means of the 
Rayleigh-Ritz procedure. 

ffi 
Jto Jo JA 

(U+V-T)dAdxdt=0 

2. EXPRESSIONS FOR ENERGY DENSITIES 
The spinning cantilever, and the way it is oriented 

in the inertially fixed cartesian coordinate system (X, Y, 
Z) is shown in Fig. 1. The figure also shows various 
other coordinate systems related with the line element. 
The constant spin Ω is about the Z-axis. The fixed 
point of the cantilever is point A in the figure, with 
coordinates (R0, 0, 0) in the (X, X Z) system. The 
coordinate systems (x, y, z), (a1? a2, a3) and ßl9 ß2, ß3) 
all belong to the line element, and are related with the 
perfect, imperfect but unstressed, and imperfect but 
stressed states of the line element. In all these coord-
inate systems, the first axis is tangent to the axis of the 
line element, the other two are coincident with the 
principal axes of the cross-sections. Their origins are all 
located at point A. Consider a coordinate system at 
point A and parallel to (X, X Z). This system may be 
made coincident with the (x, y, z) system with two 
successive rotations, first about Y with the cone angle 
c, and then about the rotated X with the pitch angle p. 
Quantities R0, c, and p are used in specifying the ori-
entation of the line element. The imperfect but un-

(7) stressed state of the cantilever axis may be obtained 
by means of the known deflections u (axial), v' (trans-

INERTIALLY 
.-FIXED COORDINATE 
SYSTEM 

STRESSED 
IMPERFECT 
CANTILEVER 

SPIN 
VECTOR 

UNSTRESSED 
IMPERFECT 
CANTILEVER 

UNSTRESSED 
PERFECT 
CANTILEVER 

Fig. 1. The geometry of the spinning cantilever and the coordinate systems. 
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verse), w' (transverse), and. Θ' (rotational about the 
beam axis) from the perfect axis. The imperfect but 
stressed state of the cantilever axis is obtained by means 
of deflections ü (axial), v (transverse), w (transverse), 
and 17 (rotational about the beam axis) from the perfect 
axis. Other points in the cross-sections can be located 
by means of the Bernoulli-Navier assumptions. The 
unknown deflections w(x, t\ v(x, t\ w(x, t\ and 0(x, t) 
define the system behavior, and may be expressed as 
u=ü—u\ v = v—v', w = w — w\ and θ=~ΰ — θ'. These are 
listed as φ in (1). The energy densities appearing in (7) 
are expressed in terms of the components of ψ [2]. 
A short summary follows. 

Strain energy density U 
Consistent with the beam theory it may be assumed 

that only axial normal and transverse shear stresses 
can develop due to φ. Then one may write 

l/ = ^ T d i a g ( £ , G, G)e (8) 

where E is the Young's Modulus, G is the Shear Modul-
us of the cantilever material, and 

ε — Le11' 2£i2> 2e13J (9) 
where ε η , ε12 and ε13 are the (1,1), (1,2), and (1, 3) 
components of the Green's strain tensor E. Relative to 
point A (see Fig. 1), let r' and r denote the position 
vectors of a material particle in the unstressed and the 
stressed states of the imperfect cantilever, respectively. 
Then 

the comma. Substituting from these equations and 
assuming that ß2 = (x2, ß3=cc3, ßUx=\+üx, one may 
rewrite (11) as 

[u-a2v>x-a3wf, 
k-*3ë3 

\w + (x2ë3 

!

S + 1 -f GC2(wtXê3 - ûjj-a3{vj3 + ü^ 
W ^ + ê f H ^ w , } . (16) 

By replacing bars above with primes, a similar expres-
sion may be obtained from (16) for r'. Using these 
for r and r' in (10) one may obtain expressions for 
the components of the strain tensor E in terms of the 
components of ψ, involving nonlinearities up to the 
second order. The expressions are given explicitly in 
[2]. The use of expressions for ε η , ε12, and ε13 in (9) 
and then ε from (9) into (8) would enable one to express 
the strain energy density in terms of the components of 
ψ, involving nonlinearities up to the fourth order. 
Observing that G = E/[2(l + v)], one may rewrite (8) as 

(17) 
where 

L/ = ±£aTa 

>/2 
» IT-,— £ l 3 I V 1 + v J 

(18) 

For the purposes of the developments presented here, 
it is sufficient to remember that a is nonlinear up to the 
second order in the components of ψ. 

d r T d r - d r ' T d r ' = 2da r Eda (10) 

where df and dr' are the changes in the position vectors 
when the α-coordinates of the particle are changed 
with an infinitesimal amount da = [dal5 da2, da 3 ] T 

(see [4]). With the help of Fig. 1, position vector r of the 
particle with coordinates (x, y, z) in the perfect state may 
be expressed in the (x, y, z) coordinate system as 

+ Tv. (11) 

where"â is the shortening of the beam axis due to trans-
verse displacements v and w , l is the axial shortening 
due to warping of the cross-section, and Tx_ β is the 
coordinate transformation matrix from (β,, β2, β3) 
system into (x, y, z) system. Consistent with the second 
order approximation it can be shown that [2, 5] 

Jo 

+ w2
x)dx 

Ψ2* àx 

(12) 

(13) 

T_„ = 
Ί-Htô +w2«,) 

\--v -2 

v n.e^-w t 

-e3-

(14) 
where χ is the warping function of the cross-section, and 
e3 is the Euler angle defined as 

Jo 
άτ. (15) 

In these expressions a comma in the subscript indicates 
differentiation with respect to the quantity(s) following 

Kinetic energy density T 
Let y denote the unit mass of the material, and let v 

denote the description of the velocity vector in (x, y, z) 
coordinate system. Then, for the kinetic energy density 
T; one may write 

T = tyvT\. (19) 
Let r0 denote the description of the position vector of 
point A (see Fig. 1) relative to a point 0 on the rotation 
axis [i.e., the origin of (X. K Z) system] in the (v. r. r) 
system, and let r denote the description of the position 
vector of the particle defined by r, relative to point 0 
and in (x, y, z) system. Then 

r = r 0 + r. (20) 

Let Ω s denote the description of the spin vector in 
(x, y, z) system. Then the description of the velocity 
vector v in (x, y, z) system may be expressed as 

v = r + Qsxr (21) 

where a dot above indicates differentiation once with 
respect to time t. Noting that r0 is constant with respect 
to time, one may rewrite (21) as 

v = f+Qp (22) 
where 

p = sx(r0 + r). (23) 

In (23) s is the description of the spin direction unit 
vector in (x, y, z) system. Clearly v is nonlinear to the 
second order in the components of φ, since both f and r 
are so. In terms of the rotation angles c and p mentioned 
earlier, the constant vectors r0 and s may be expressed 
in (x, y, z) system as 

Γ0 = Κ0[ΰθ8 c, —sin p sin c, —cos p sin c]T (24) 
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and 
s= [sin c, cos c sin p, cos c cos p]T. (25) 

Density of loss of potential of prescribed force s V 
Let the prescribed forces acting per unit length of the 

imperfect but unstressed cantilever be 

q = [F , .F 2 . F3. F4]7" (26) 
where F t , F2, F3, and F 4 are in the directions of u\ v\ 
w', and e'3, respectively. Then for V one may write 

V= - d r q (27) 

where 

d = (l//4)[(ü-ä)-(w'-Ä'). d-v.w-w'.ës-e'sY. (28) 
Note that d is nonlinear to the second order in the com-
ponents of φ, due to its first and the fourth components. 
In (28) A is the cross-sectional area of the cantilever. 

3. TRIAL SOLUTIONS 

The class of functions which may be used in conjunc-
tion with the variational statement (7) should be admis-
sible, i.e. sufficiently smooth in the solution domain, 
and satisfy the essential boundary conditions. In the 
present problem, the essential boundary conditions 
exist only at x — 0, and they may involve the components 
of φ and their first spatial derivatives. Assuming that 
the essential boundary conditions are of homogeneous 
type, from the trial solution given in (4) one may write 

* = diag (<:)>„ (29) 
as a possible trial solution, provided that each coordin-
ate function φμ satisfies the essential boundary condi-
tions at-x = 0. Notfc that, so long as the essential bound-
ary conditions afe of homogeneous type, there is no 
need for coordinate function φ0. As stated earlier the 
range of μ in (29) is m, therefore there are 4m undeter-
mined functions c(t) present in the trial solution. 

The questions of what to select as coordinate func-
tions, and how many to select are very important, since 
they determine not only the cost of the solution but 
also its accuracy. In the present formulation many 
diverse factors are included as problem parameters. 
Depending upon the values of the parameters, a certain 
number of coordinate functions of a certain type may 
provide a more accurate solution with less cost. For this 
reason, in the present work, the type and the number of 
the coordinate functions are taken as the parameters of 
the discretization. 

The possible choices for the coordinate functions 
include the orthogonal functions, the generalized 
pyramid functions, and interpolating polynomials. 
In linear problems, the orthogonal functions yield 
diagonal matrices, the generalized pyramid functions 
yield banded matrices, and the interpolating poly-
nomials provide a convenient means of truncation error 
estimation. The present work provides insight in these 
matters when the problems are nonlinear. This point is 
further discussed in the paper following the derivation 
of the nonlinear ordinary differential equations for the 
undetermined functions c(t) in terms of the known yet 
unspecified type and number of coordinate functions 

Another very important aspect of numerical solu-
tions is the way the discrete unknown quantities are 

ordered. Here, the way the undetermined functions 
c(t) are ordered may become very crucial as a function 
of their total number. For example, when the problem 
is linear and the coordinate functions are selected as 
pyramid functions, the coefficient matrices in the ord-
inary differential equations become banded only if the 
undetermined functions are ordered as c r = [c[, C2,... , 
c^]. In the present formulation the ordering of the 
undetermined functions is also taken as a parameter of 
the numerical solution. Therefore, the notation c will 
refer to the list of 4m number of undetermined func-
tions c(t) in some order. In fact, from now on, it will be 
assumed that the trial solution contains a total of n 
undetermined functions c(i), i.e. the order of c is n, and 
instead of (29) 

*x,M WÏ (30) 
W(X,t)C γγΦγί 
o(x,t)) ( c , * ; j 

will be used. In (30), as usual, repeated indices indicate 
summation over the range. The ranges of α, β, y, and S 
are nw nv, n^ and ηθ, respectively, such that 

n = nu + nv + nw+ne (31) 
and φν, φν, 0W, and φθ are the coordinate functions φ(χ) 
used in approximating the w, v, w, and Θ components of 
ψ, respectively. The complete list of coordinate func-
tions φ(χ), ordered in the same manner as c, will be 
shown by φ. The components of c and φ will be referred 
to using latin indices, such as ct and φί. Unless other-
wise specified the ranges of latin indices will be taken as 
n. 

4. FORMAL STATEMENT OF THE RESULTS OF 
RAYLEIGFHUTZ PROCEDURE 

Let H denote the density of the Lagrangian function, 
i.e. the integrand of the variational statement in (7), 
so that one may write 

H=U+V-T (32) 

Let Ή denote the Lagrangian function. By definition 

H = f f ΗάΛάχ. (33) 
Jo JA 

From now on we will assume the notation that a bar 
above indicates integration in the spatial domain with 
respect to the spatial independent variables. Using 
(32) and (33), one may rewrite the variational statement 
in (7) as 

δ \ Hdt=0. (34) 
Λο 

If one uses ψ from (30) in (33), after the integration over 
the spatial variables Ή will become a function of c and 
c only, i.e. formally _ _ 

H = H(c,c). (35) 
With this, (34) becomes 

Clf - _ 
(ocTHj+ôcTHt)dt = 0. (36) 

Since (5c vanishes at t —10 and t = tr one has 

ôcTHj at = |ocrHc\Y0- àcT^- Bé dt 
Jto ° Jto dt 

= - fV^ c d f 
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and therefore (36) may be restated as 

ί/φ-οΗαί=α (37) 

From the arbitrariness of dc in the open interval 
(i0, tf\ (37) becomes 

H , - ^ H e = 0 . (38) 

which is nothing but the Lagrange's equations. Sub-
stituting H from (32) into this equation one finally 
obtains 

^ - ^ c + K é - ^ ? c - T c + ^ T é = 0 (39) 

which are the second order nonlinear ordinary differ-
ential equations in the n components of c. These equa-
tions may be restated as 

[M(c)]c + [C(c, c)]c + [K(c)]c= p. (40) 

Using the expressions developed earlier for the energy 
densities in (39), explicit expressions for M(c), C(c, c) 
and K(c) are given in the next section. Note that, when 
the coordinate functions φ(χ) are of the type of gener-
alized pyramid functions, the nth order matrices 
M(c), C(c, c), and K(c) represent the mass, the gyro-
scopic, and the stiffness matrix of the structure. The 
three terms on the left of (40) stand for the inertial, the 
gyroscopic and the restoring forces; the term of the 
right stands for the loading of the system. 

5. EXPLICIT EXPRESSIONS FOR THE ORDINARY 

DIFFERENTIAL EQUATIONS OF MOTION 

One may observe from (39) that the contributions to 
the ordinary differential equations of motion come from 
the strain energy [the first two terms in (39)], the kinetic 
energy [the last two terms in (39)], and the loss of 
potential of prescribed forces [the third and the fourth 
terms in (39)]. These contributions are expressed 
explicitly below. 

Contributions from the strain energy U 
The strain energy density is given in (17) in terms of 

a, and a is defined in (18) in terms of ε η , ε12, and ε13 
which are given in [2]. Since the strain components 
ε η , ε12, and ε13 are second order nonlinear in the 
components of ψ, substitution of φ from (30) yields 

a = a0 + A0c + <'iAic (41) 

where a0, A0, and A„ i = 1 , . . . , n are functions of spatial 
variables only. They are known when the initial im-
perfections, and the coordinate functions are known. 
Recalling that the strain energy Ü is the integral of U 
with respect to the spatial variables, and substituting a 
from (41) into (17) one obtains 

+ Λ , Χ Γ Μ + yCiCjXfXf (42) 

where bars at the top indicate integration with respect 
to the spatial variables. Since U is not a function of 
c, then Üt = 0, which leads to 

^-Î7,c=0. (43) 

However, since U is a function of c, from (42) one ob-
tains 

Ué = £ÄJa0 + £[A JA0 + (ifa jAf) + (ifa J A / 

+ (cJ+ii t .c r )((Ä^) + (ÄTA/) 
+ %Cj\ + Cji^MAfAj) + (AfA/)]c (44) 

where I is the nth order identity matrix, and it is its 
ith column. 

Contributions from the kinetic energy T 
The kinetic energy density is given in (19) in terms of 

velocity vector v which is defined in (22) in terms of Ï, p, 
and the spin rate Ω. Expressions for r and p are given in 
(16) and (23), respectively. From these, it is seen that v 
is second order nonlinear in the components of φ. 
Substitution of φ from (30) into v yields 

v = (b0 + B0c + cflfi) + Q(g0 + G0c + cfifi) (45) 

where b0, g0, B0, G0, and B„ Gi5 i= 1 , . . . , n, are func-
tions of spatial variables only. They are known when the 
initial imperfections, and the coordinate functions are 
known. Recalling that the kinetic energy Tis the integ-
ral of T with respect to the spatial variables, and sub-
stituting v from (45) into (19) one obtains 

+ crc,Bf B0c + ^cTcjCfljBf 

+ Q 2 ( i ^ + c r G ^ + i c r G j G > + c T c i G F g ; 
+ cTcfiÏG0c+±cTciCjG[Gjc) 

+ Q(bJi7+ cTG jbo+c r Bjg^+^c f i [b 0 

+ crBjGoC_+ c^Bfgo+c^.BjGfC+cr
C iBfG0c 

From this equation, by differentiation with respect to 
the components of c, one may write 

T,=Ω2
Τ G Jg0 + Q2y[GjGo + ( i g j G ^ - U g j G / 

+(CiI+fi,crX( G j G ^ G j G ^ 
+ %cfiß. + CjWtJGfGj) + (GfG/)]c (47) 

+ Ωγ Of t , + Qy [(i ,b£G,.)+(i^G/jc 
+ fty[ GjBo + i, gSBi+(ciI+i,.crXGjBi + GrB0) 

+(CjCjlHcih+Cji^GjBjc 
+ y [iJbJB, + i^BfBo + %cjl,+c.ycnjTBjc 

where the symbols are as defined earlier. Similarly, by 
differentiation with respect to the components of c 
one may obtain 

T ; = y B l b ^ B 7 V I ^ _ 
+ y[BÏBo + ci((BÎBi)+(BSBi)r) 
+|c ic/(B, rBJ.)+(BrB/)]c+QyB^0 

+ ΩΤ[Β JG0 + Bjg0if + cfltfG, + BfGo) 
+ cfitfGj]e. (48) 

From this, by differentiation with respect to time t, one 
gets 
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7 > y [ B X + ct<(Bfo) + ( B f o / ) 
+ ^ / ( Β Γ Β , ) + (ΒΓΒ/)]ο 

+ y\BTb0iï + cWÎBd+(fiîm 

+j(cici+cicJ.)((BrBi) + ( B r B / ) ] c 
+ ny[BT

0G0 + Bjg0iJ 

+ aBÎGi + Bl
rG0XciI + cin 

+ BrG/ciciI + c(ciiJ + ci.iD)]c (49) 
where, as defined earlier, I is the nth order identity 
matrix, and i, and i, are its ith andjth columns, respec-
tively. 

Contributions from the potential loss of prescribed forces 
V 

The density of potential energy loss of prescribed 
forces V is given in (27) in terms of d and q which are 
defined in (28) and (26), respectively. Vector q is a known 
quantity, and d involves only the components of φ. The 
substitution of ψ from (30) in (28) yields 

d = d0 + D 0 c + c A c (50) 

where d0, D0, and Df, i = l , . . . ,n , are functions of 
spatial variables only, and they are known when the 
initial imperfections and the coordinate functions are 
known._Recalling that the loss of potential of prescribed 
forces, V, is the integral of its density V, with respect to 
the spatial variables, and substituting d from (50) into 
(27), one may write 

F= - d J i - c r D j q - c l c r D / q . (51) 

Since V is not a function of c, hence V^ — 0, and therefore 

From (51), by differentiation with respect to the com-
ponents of c, one obtains 

Vt= - ^ - [ ( i ^ ) + ( i ^ n c (53) 

where I and i, are the nth order identity matrix and its 
ith column, respectively. 

Thus, having obtained explicit expressions for each 
of the terms of (39), one may obtain explicit expressions 
for M, C, and K matrices by rearranging (39) as in (40). 

6. EXPRESSIONS FOR NONLINEAR MASS, 
GYROSCOPIC SnPENESS AND LOAD MATRICES 

Substituting the expressions given by (44), (43), (52), 
(53), (47) and (49) for the six terms of (39), one may 
obtain n number of coupled second order nonlinear 
ordinary differential equations for the n number of 
undetermined functions listed in c. The rearrangement 
of these equations as in (40) leads to the following 
expressions for mass M, gyroscopic C, stiffness K, and 
load p matrices appearing in (40). 

M ^ ^ + c ^ l + l W ) 
+ ^ / ( Β Γ Β , ) + (ΒΓΒ/)] (54) 

C =y[ -((i j g B j - ( W r ) + ((BfociD -(BfociTV) 
+ ^((BrB/c(cjir + cJJ))-((BrB/c(c i ir + ct-iJ))T) 
+ {tfllBo + ^fij + cfijßTBji] 
+ a7[((BjG0)-(BÏG0)r)4-((Bfg0ir)-(Brgoir)T) 

+ ( ( (Β ^+Β Γθ 0 χ^ Ι+αΓ) ) 
-((B0

TG, + BrG0)(ct.I+cin)T) 
+ (BTG,.(cicJ.I+c(ciiJ + cjilr))) 
- ( ( B r G / c ^ I + ^ i J + c f f l ) ) 1 ) ] (55) 

K = E[AÎA0 + ((tâAf +(W0Ai)
T) 

+ ^/(((ΑΓΑ7.) + (ΑΓΑ/_)οΐΓ) 
+(((ΑΓΑ,) + (ΑΓΑ/)€Ϊη^] 

- Ω 7 [ ( ^ ) + ( ί ^ ) η 

-Q2y[G^G0 + ( ( i f ^ ) + (ifg?G;)T) 
+ici((G0

rGi) + ( G j G / ) 

+ j((((G?Gt.) + (QGf)cinT) 
+ (((G^Gf) + (G0

rG/)cir) 
+jc/(((G?'GJ) + (G?'GJ)r)cg) 
+ (((G[^) + (G[G^r)cil

r)r)] 
- [ ( i ^ H ü ^ D / ] (56) 

p = 5 j q - £ A X + Q 2
7 G j g ; + Q 7 G X (57) 

From (54) one may observe that the contributions 
to the mass matrix is purely due to the mass of the 
material (terms with y factor). These contributions 
consist of 3 sets of real symmetric nth order matrices, 
which are constant, linear, and quadratic in c. 

From (55) it is seen that matrix C consists of the 
contributions from the mass of the material (terms with 
y factor alone), and from the spin (terms with Qy 
factor). The non-spin contributions consist of 4 sets of 
nth order real matrices, the first 3 of which are skew-
symmetric. The spin contributions consist of 4 sets of 
nth order real and skew-symmetric matrices, which are 
constant, linear, and quadratic in c. The same pattern 
may be observed in non-spin contributions. 

One may see from (56) that the contributions to the 
stiffness matrix are coming from the material stiffness 
(the terms with factor £), from Coriolis accelerations 
(terms with Qy factor), from centrifugal accelerations 
(terms with Q2y factor), and from the loading (terms 
with q). Note that the contributions consist of 12 sets 
of real nth order symmetric matrices which are con-
stant, linear, and quadratic in c. 

It is seen from (57) that the contributions to the load 
vector come from the material stiffness, from the centri-
fugal and Coriolis accelerations, and from the loading 
itself. They are all nth order and constant. 

7. GENIRAL NATURE OF THE DISCRETIZATION 
AND ITS COST 

The discrete equations given in (40) with M, C, K, 
and p as in (54)-(57) respectively, for the spinning elastic 
systems, represent the general equations applicable 
not only to the line elements but also plates, shells, and 
solids, provided that the nonlinearities in strain-
displacement, and velocity-displacement relations do 
not exceed the second order. Note that when the 
material is general anisotropic with positive definite 
real symmetric matrix £D, the strain energy density U 
can still be expressed as in (17) provided that a in (17) 
is defined as 

a = D1/2e 
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where ε is the list of engineering strain components as 
« Τ = [ £ ΐ 1 ^ 2 2 ^ 3 3 , 7 ΐ 2 , 7 ΐ 3 ^ 2 3 ] · 

From the definitions of M, C, K and p in (54H57), 
one may observe that the following list of basic matrices 
are sufficient to define the discrete problem, in terms of 
cand c: 

AJAP BjBp GJGP BjGj, i = 1 , . . . , n and ;= 1 , . . . , n. 
(61) 

When the problem is linear, one has to compute only 
the matrices in (59). When the discrete problem (40) 
is to contain matrices which are at the most linear in 
c and c, one should compute the matrices in (59) and 
(60). However, if the quadratic nonlinearities in the 
coefficient matrices are required, one has to compute 
all the matrices listed in (59)-(61 ). Note that 4 nxn and 
4 nxl matrices are listed in (59). In (60) there are 5n 
number of n x n matrices, and 6n number of 1 x n 
matrices, and in (61) there are An2 number of nxn 
matrices. Therefore, the total number of nxn matrices 
is 4 + 5rc + 4rc2, and the number of nth order vectors 
is 4+6n. If one assumes that the cost of generation of 
these matrices is proportional to the number of 
matrix elements, one observes that n2(4+5n+4n2) 
+n(4+6n)=4n4 + 5n3 + 10n2 +4n, therefore the cost of 
generation is proportional to the fourth power of the 
number of degrees of freedom. This should be com-
pared to that of the linear analysis where the generation 
cost is proportional to the second power of the number 
of degrees of freedom or less. 

In spite of its enormous cost, to obtain the nonlinear 
equations of motion of a multi-degree of freedoiri 
system is necessary because of the following reasons : 
(i) Reliable computation of the equilibrium states of 
motion by methods such as the one described in [6] 
requires the explicit expressions for the nonlinear 
equations, (ii) The study of the stability of these 
equilibrium states also requires the explicit expressions 
for the nonlinear equations [7]. 

The nonlinear discrete equations of motion for the 
cantilever in the form of (40) are given in [8] in a differ-
ent format. A computer code is written to generate 
M, C, K, and p of (40) as in (54), (55), (56) and (57), 
respectively, for any selected type and number of 
coordinate functions, and in terms of c and c. 

8. CONCLUSIONS 
The general nonlinear discretized equations of 

motion of spinning elastic solids and structures are 
derived as a set of nonlinear ordinary differential 
equations for the case when the strain-displacement 
and velocity-displacement relations are nonlinear up to 
the second order. It is shown that the cost of generation 
of such equations is proportional to the fourth power 
of the number of degrees of freedom. A computer 
program is written to automatically generate the 
equations for the case of spinning cantilevers with 
initial imperfections. The types and the number of the 
coordinate functions used in the trial solution are 
parameters of the program. 
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Abstract—Described herein are two user-developed elements that have been implemented in the elastic-
plastic capability of NASTRAN. The first element is a thin-walled beam. The second is a flat, triangular shell 
element. The elements are shown to give good agreement with plastic limit analysis for five sample test 
problems. Application is made to static crush of auto frames. Both beam and shell models are investigated 
and good comparison is obtained with test data. 

INTRODUCTION 

Finite element analysis is now widely accepted by 
industry in the design phase of product development. 
Most often an elastic, static analysis is sufficient. 
Many times, some dynamic aspect of the problem is 
also considered. With increasing frequency, even the 
elastic-plastic characteristics must be considered. 
Because of the various analytical capabilities required, 
a large, general purpose finite element program is 
necessary. There are many candidates and no attempt 
will be made here to list or compare them. NASTRAN 
was selected because of its excellent overall capabilities 
and because of the availability of the source code with-
out lease, licensing or other restrictions. NASTRAN 
Level 15.5 was the last "free" version of the code. 
Furthermore, since the elastic-plastic capability has 
remained virtually unchanged since the release of 
NASTRAN 15.5, this code may be linked with later 
versions. The writer has successfully linked this source 
code and the numerous changes described here into 
Version 50A of the MacNeal-Schwendler proprietary 
NASTRAN producing a version of MSC/NASTRAN 
that executes in approximately one-half the time 
required by NASTRAN 15.5. 

The principal weakness in the NASTRAN elastic-
plastic capability—Rigid Format 6—is the element 
library which is limited to only membrane behavior in 
shell elements and rod behavior in beam elements. 
This means present NASTRAN beam and shell ele-
ments will not yield in bending. Consequently, it was 
decided to develop and add to NASTRAN two new 
elements which will yield in bending: a beam element 
and a triangular flat shell element. These elements were 
added to NASTRAN as user developed dummy 
elements. Inclusion of these elements incorporate con-
sideration of geometry changes. Details for adding 
elements to NASTRAN are documented in the 
NASTRAN Programmer's Manual [1]. 

DESCRIPTION AND VERIFICATION 

The elastic-plastic beam element added to 
NASTRAN is the CDUM 3 element. It is an element 
which can be used to model thin-wall beam members. 
The input data includes the connecting grid points 
and an orientation vector. The input section property 

data is in the form of X, Y nodal coordinates and 
thickness data in sequential order around the thin-wall 
section. To describe abrupt thickness changes the 
nodal coordinates may be repeated and the new 
thickness given. Backtracking can be easily effected 
so that sections such as H or I shapes can be described. 

The CDU M 3 elastic-plastic beam does not use the 
hinge concept for plastic collapse. Instead, standard 
finite element formulations were used with numerical 
integration for calculating the stiffness matrix. Hinge 
formation and plastic collapse occur as a consequence 
of reaching the yield strain at sufficient integration 
points. To obtain a beam element capable of plastic 
collapse under these circumstances, the usual beam 
shape function had to be abandoned and a shape 
function with internal degrees of freedom and greater 
flexibility was used. The result is an element different 
from the usual Euler beam element. Comparisons thus 
far between CDUM3 models and Euler beam models in 
static analysis show displacements agree to three 
significant figures while the maximum stresses agree to 
within 1.5%. This is generally adequate for most 
engineering purposes. 

Verification of the plastic collapse capability of the 
CDUM3 beam element will be demonstrated by 
correlation with limit analysis in two test problems. The 
first is a cantilever beam with an unequal-leg channel 
cross-section as shown in Fig. 1. The loading is a 
combined compression and bending. This simple 
example arose from an actual application to auto 
frame crush. This was a rear siderail section and the 
crush load was an eccentric compression through the 
rear bumper. The problem was converted here to one 
with compression and linear bending moment to more 
fully test the plastic collapse capability of the element. 
The theoretical limit analysis load was calculated from 
equilibrium after the plastic neutral axis was located by 
trial and error. The load-deflection curve calculated 
using NASTRAN Rigid Format 6 and the CDUM3 
element is shown in Fig. 1. It is seen to give excellent 
agreement within 1% of the prediction of limit analysis. 

The second example is shown in Fig. 2. It is a simple 
planar frame with a channel cross-section. This 
"building bent" problem is seen in many civil engineer-
ing texts on limit analysis. It is something of a classic 
because this deceivingly simple problem has an unusual 
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RF6 w i t h CDUM3 Λ3-ρ 

JL· ο 
e—Plastic Limit Load 

49 lbs.273 lbs. 

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 

Fig. 1. Plastic collapse of thin-walled cantilever beam. 

failure mechanism. There is no hinge at Grid 2 and 
segment 123 rotates clockwise about Grid 1 in tue 
collapse mechanism. Segment 45 rotates clockwise 
about Grid 5 and segment 34 rotates counterclockwise. 
The plastic limit analysis curve was obtained from 
multiple N AST RAN static analyses using CBAR 
elements and inserting hinges at the CBAR ends as 
plastic hinges formed. NASTRAN Rigid Format 6 
successfully solved this problem predicting collapse at a 
load 8% above the limit analysis as shown in Fig. 2. 

The triangular, flat shell element added to NAS-
TRAN is the CDUM4 element. This element was 
formed by combining the membrane behavior of the 
constant strain triangle witft the bending element 
published by Bazeley, Cheung, Irons and Zienkiewicz 
[2]. Because plasticity is involved, the integration ofthe 
stiffness matrix is done numerically using a com-

bination of Gauss and Newton-Cotes numerical 
integration schemes. The Prandtl-Reuss stress-strain 
law was implemented. Ideal, perfect plasticity may be 
used or the stress-strain curve may be table input. 

Verification of the CDUM4 shell element will be 
shown by correlation with three sample problems for 
which both elastic solutions and plastic limit analysis 
solutions are known. The first, a rectangular cantilever 
beam loaded by in-plane forces, will test only the 
membrane properties ofthe element. The CDUM4 is a 
constant strain triangle in this situation and it behaved 
as expected, i.e. being on the stiff side of what beam 
theory, with shear deformations included, would 
predict. 

Figure 3 shows the load-deflection curve from a 
NASTRAN Rigid Format 6 plastic collapse analysis of 
the model shown. From the elastic analysis, the load to 
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Fig. 2. Plastic collapse of planar frame. 
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1.6r 

Plastic Limit Load 

Beam End Deflection <5/6y 

Fig. 3. Plastic collapse of cantilever beam of CDUM4 elements 

initiate yield is determined. This is then applied and exactly like that expected to form a plastic hinge. 
incremented to failure. It is seen the NASTRAN The second test problem is a square, simply-support-
collapse load underestimates the limit analysis collapse ed, laterally loaded plate. This problem will test only 
load by about 7%. The yielded elements formed two the out-of-plane or bending properties of CDUM4. 
symmetric fields at the wall support in a pattern Studies for both uniform and concentrated loads 

1.2p 

I Upper Bound Solution ____ __ 

W/W Dimensionless Center Displacement 

Fig. 4. Load-deflection for a square, uniformly loaded, simply supported plate. 
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showed good convergence to exact elastic values and 
agreed with the results obtained by the original 
investigators [2]. 

A N AST RAN Rigid Format 6 plastic collapse 
analysis was made for the case of a simply-supported, 
square plate under uniform load. Figure 4 shows the 
load-deflection curve obtained. Although an exact limit 
analysis solution is not available, close upper and lower 
bounds have been obtained by Hodge and Belytschko 
[3], Figure 4 shows close agreement between the 
NASTRAN collapse load and the bounds from limit 
analysis. 

The third test problem is an infinite, circular, 
cylindrical shell with an axially symmetric ring load. 
There are both large hoop stresses and localized 
bending around the applied ring load, so this problem 
will test the combined bending and membrane capa-
bilities of the CDUM4 element. Because displacements 

and stresses damp out rapidly, the infinite shell can be 
approximated by a long, finite shell. The radial 
displacements from an elastic analysis are plotted in 
Fig. 5 as a function of the distance from the load point. 
Good agreement is seen with elastic theory from 
Timoshenko[4]. 

The load-ndeflection curve at the applied load ring 
obtained from a NASTRAN Rigid Format 6 analysis 
is shown in Fig. 6. Again, good agreement is seen 
between the NASTRAN collapse load and the limit 
analysis collapse load obtained by Drucker [5], 

APPLICATION TO AUTO FRAME CRUSH 

Since the mass of the auto frame is a small fraction of 
the total vehicle mass, the crashworthiness of an auto 
can be studied from data extrapolated from quasi-
static crush of the frame. Using this same argument, 
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Fig. 5. Displacements from static analysis of ring loaded cylindrical shell. 

L-0 2.0 3.0 4.0 5.0 6.0 

Dimensionless Radial Displacement - W/W 

Fig. 6. Plastic collapse of ring loaded cylindrical shell. 
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these static crush tests can be made on isolated frame 
parts which is a convenient mode of testing in the 
laboratory. 

The first example of static frame crush is on the 
front-most part of the frame known as the "front horn 
structure". A NASTRAN Rigid Format 6 plastic 
collapse analysis using CDUM3 beam elements and a 
one-half model of the structure is shown in Fig. 7. 
NASTRAN deformed plots have been superimposed 
to illustrate the progressive collapse under a longi-
tudinal crush load. It is interesting to note from the 

deformed plots the obvious formation of plastic hinges. 
Plastic hinges are not used here as analysis tools but 
arise simply as a natural consequence of highly 
localized plastic flow. 

The second example examines that part of an auto 
frame called the "torquebox". It is just behind the front 
horn structure. Figure 8 shows a detailed shell model of 
one-half the structure. That part assumed plastic is 
indicated in Fig. 8 and was modeled with 402 CDUM4 
shell elements. The elastic part was modeled with 140 
CQUAD2 elements and 48 CTRIA2 elements. 

0.01 0.02 0.03 0.04 

DEFLECTION 

Fig. 7. Plastic collapse of auto frame front horn structure. 

Fig. 8. Shell element model of auto frame torquebox. 

-NASTRAN CDÜM3 Bar Model 
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NASTRAN CDUM4 Shell Model· 

fodified Test Data 

'■3--Γ— 

-Actual Test Data 

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2. 

Fig. 9. Torquebox plastic collapse. 
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Figure 9 shows the load-deflection curve from a 
NASTRAN plastic collapse analysis of this shell model 
and compares it with test data. Also plotted in Fig. 9 is 
the NASTRAN collapse analysis of a CDU M 3 beam 
model of this same structure. It is seen the test data 
indicates the actual structure is very flexible. This is due 
to the added deformation of the support and loading 
fixtures. Correcting this by shifting the test data to the 
left so the linear part matches the linear part of the 
calculated curve gives the "modified data1' curve. Good 
agreement is seen between the shell model and the 
modified test data. 

The load-deflection curve in Fig. 9 for the CDUM3 
beam model shows a definite collapse load only 5% 
above test results. However, the overall structural 
behavior predicted by the CDUM3 model is much 
stiffer than test data. Understandably, the beam model 
seems less able to predict the details of the local 
deformation and yielding than the shell model. 

In conclusion, thin-walled beam and triangular 
shell elements have been added to the elastic-plastic 
capability of NASTRAN. These have been verified by 
correlation with known solutions. Both new elements 
are seen to have useful roles in practical, industrial 
applications such as auto frame crush calculations. 

This work is viewed as a first major step in extending 
NASTRAN capability. Areas of interest for future 
work include the metal forming problem, development 
of solid elements and alternative forms for the stress-
strain relationship. 
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LARGE ELASTO-PLASTIC STRAIN ANALYSIS OF 
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Abstract— This paper describes an analysis of stresses and deformation using the finite element method in 
a flanged hole produced by punch stretching during a sheet metal forming process. Due to the complexity 
of the finite strain theory for inelastic materials, the analysis is restricted to the membrane shell theory 
with axisymmetric deformation. The Lagrangian description of motion referred to a set of convected 
coordinates is used in the formulation. A computer program based upon the modified tangent stiffness 
method with an equilibrium check has been written. For the purpose of verification of the program, we 
applied it to compute the finite inelastic deformation of a circular sheet caused by stretch from a hemi-
spherical punch. The present computer solution is in excellent agreement with those in the literature. 

The program was applied to analyze flanged hole forming with four different punch shapes. The results 
reveal that the strain path during the forming process is not affected by the punch shape but the maximum 
punch load depends on the punch shape. 

INTRODUCTION 

An analysis of stresses and deformation using the finite 
element method in a flanged hole produced by punch 
stretching during a sheet metal forming process is 
proposed. Figure 1(a) shows a thin circular sheet, with 
a center hole, clamped along its periphery by a blank 
holder. A punch, of which the shape is a body of 
revolution, moves down to make contact with the 
circular sheet and to stretch this hole thereby forming 
the flange. For automobile components there are 
numerous flanged holes; for example, those holes used 
for inserting rubber bushings in the control arms of a 
suspension system. To be able to predict whether the 
flanged hole can be formed with a given sheet material 
and physical dimensions, such as the radius of the 
hole and the flange height, can save a lot of effort in 
contrast to the conventional trial-and-error approach. 
To analyze this process mathematically, we must use 
the finite inelastic strain theory (maximum strain 

INTIAL SHAPE. 
CIRCULAR PLATE 
WITH CENTER HOLE 

FINAL SHAPE 
FLANGED HOLE 

Fig. 1. Model for flanged hole forming and a material point 
on the meridional section. 

usually larger than 30% in the flange) and solve a 
contact problem in order to get a reliable result. Due 
to such complexity, we restrict our analysis to the 
application of the membrane shell theory thereby 
neglecting the bending effect. This assumption is 
appropriate in the analysis of many automotive parts 
manufactured by sheet metal forming because of the 
thickness of a sheet (blank) is often small in comparison 
to the radius of either the punch or the die. We also 
assume in the analysis that the tools are rigid bodies. 

We apply the Lagrangian description of motion to 
the finite deformation analysis of the thin sheet struc-
ture. Each material point on the middle-surface of the 
sheet is defined by a set of convected coordinates. The 
strain rate effect on the material properties is neglected. 
Due to a sheet formed by the cold roll process, the 
sheet material is only transversely isotropic and Hill's 
modification of Mises yield criterion for orthotropic 
material is adopted. Because unloading in the sheet 
could occur even during the process of punch stretch-
ing, the elastic strain is included in the formulation in 
addition to the plastic strain. To appreciate the physical 
nature of the constitutive equation, we derived it 
based on the relationship between physical components 
of stress and strain rates instead of tensor components. 
In the contact region, the relative motion between the 
sheet and the punch is governed by the frictional force. 
This frictional force is computed by application of 
the Coulomb friction law..A finite element method is 
used to solve this large elasto-plastic deformation 
contact problem. A modified tangent stiffness method 
with the first order self-correction [1] of error due to 
piece-wise linearization is used in the solution pro-
cedure. The joint equilibrium check and contact 
condition verification are also made in the computa-
tion. 

Applying the deformation theory of plasticity and 
neglecting the elastic strain and frictional force 
between the sheet and punch, Wang and Wenner [2] 
have analyzed stretch flanging by means of solving the 
equilibrium equation in the meridional direction. 

CAS 13:1-3 -
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Since they ignored the equilibrium condition in the where 
direction normal to the sheet, their solution is only an 
approximation and the punch load cannot be computed 
from their analysis. 

FORMULATION 

λ = 
0 λ\_ 

(2.11) 

er is the meridional strain rate and έφ is the hoop strain 
rate. We note that èr and έφ are identical to the rates of 
logarithmic strains. 

Strain-disptacemem 
We assume a circular membrane of which the middle-

surface lies on the x-y plane initially in a stress-free 
state. A material point with a set of cylindrical coordin-
ates (p, φ, 0) on the undeformed middle-surface moves 
to (r, φ, w) on the deformed middle-surface of the 
membrane. The deformation is axisymmetric. In other 
words, the motion is restricted such that the meridian 
angle φ does not change. We define the middle-surface 
by a set of convected coordinates (p, φ) and the metric 
tensors on the original and deformed surfaces are 

*«£ =[o; 

0 

Ρ2λ\ 

(2.1) 

(2.2) 

respectively, where λγ is the stretch ratio along the 
meridian and λ2 the stretch ratio along the circum-
ference. Because the deformation is axisymmetric, we 
only need to take a meridional section of both the 
original and the deformed surfaces for modelling. A 
material point with the original coordinates (p, 0) 
moves to (r, w) with displacement components u and w 
in the horizontal and vertical directions, respectively, 
as shown in Fig. 1(b). We note that there is only one 
independent spatial variable, p. The stretch ratios can 
be expressed in terms of the displacement components 
and their partial derivatives with respect to p as 
follows: 

'άξ 
* H £ = i + £ + 

du dw 
(2.3) 

(2.4) 

\dp) \ dp) \dp 

The Lagrangian strain tensor γαβ [3] is defined by 

yaß=%Aaß-aaß) (2.5) 

and in terms of the displacements, the non-zero com-
ponents are 

du 1 
y" = dp + 2 

du\2 (dwV 

PP) VP) 
_, u 1 (u\2 

p y^-p + 2\p)-

(2.6) 

(2.7) 

Because the flow theory of plasticity is used in this 
study, we wanj the rate form. The rate forms of eqns 
(2.6) and (2.7) are 

dû du dû dw dw 
dp dp dp op op 

P 2 ? 2 2 = --:(,+0 
(2.8) 

(2.9) 

Then, the physical components of the strain rate tensor 
become 

=r lii 
(2.10) 

Constitutive relationship 
We extend the concept of the elasto-plastic strain 

theory for the infinitesimal strain to the finite strain. 
The total strain rate is assumed as the sum of the elastic 
and the plastic parts as 

é = ée+èp. (2.12) 

For the membrane theory, the plane stress state is 
assumed and the elastic strain rates are expressed in 
terms of the rates of Cauchy stresses. In the matrix 
notation, they are expressed as 

1 -νΊΓσ, 
v {]\à4 

in which E is Young's modulus, v is Poisson's ratio, àr 

is the rate of meridian stress, and σφ is the rate of hoop 
stress. Following Ref. [2], the equivalent stress for a 
transversely isotropic material during plastic deforma-
tion can be written in the following form : 

2R V'2 

(2.14) 

H- (2.13) 

1 + R 
in which R is the ratio of the plastic strain across the 
width to the plastic strain through the thickness of a 
specimen in the uniaxial tensile test. This is a special 
case of Hill's plastic anisotropic theory [4]. Then using 
the flow theory of plasticity, the plastic strain rates can 
be expressed as 

1 -R/l+R 
_ -R/l + R 1 

where 
1 for plastic loading 
0 otherwise 

έρ is the equivalent plastic strain rate defined as 

?1 ^ r 
$i ' e l · !{;} (2.15) 

1 Γ (2.16) 

and Et is the tangent modulus in the true-stress vs 
the natural-strain curve at the stress level ae. For a 
strain hardening material Et is always greater than zero. 
Adding eqns (2.13) and (2.15) and using eqns (2.14) 
and (2.16), we have the constitutive equation in the rate 
form : 

= Δ" (2.17) 

where 4 is the material matrix of which its elements are 
shown in the appendix. 

As mentioned previously, the Lagrangian formula-
tion referred to the convected coordinates (p, φ) is used 
in this study so that the Kirchhof! stress tensor ταβ [3,5] 
conjugate to the strain tensor yaß will be involved in the 
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virtual work equation. We should convert the Cauchy 
stress rate to the convected rate of the Kirchhoff 
stress tensor τΛβ. The Cauchy stress tensor σαβ is related 
to the Kirchhoff stress tensor ταβ by [5] 

dv 
(2.18) 

where dv and dû are the volume element in the unde-
formed and deformed configuration, respectively. Due 
to small volume change during deformation,t we may 
set 

σαβ χταβ. (2.19) 
We transform the tensor components of the Cauchy 
stress to the physical by multiplying the metric tensor as 

ft}-« (2.20) 

Using eqn (2.19), eqns (2.20) and (2.14) can be written as 

* H t £ » } (2·21) 
2R - . .. I 1 ' 2 

<7e=JAt(t»)2 + A*i 2 T2 2 \ 2 _ ;(pV2) 
l + R 

A2A2tn(pV2) 

respectively. Differentiating eqn (2.21) with respect to f, 
we obtain the stress rate vector 

. ^ U 4 + 2 [ T 0 P V 2 I A J (223> 
it should be noted that γη=λίλί and ρ~2ή11 = λ1λ1 

from eqns (2.5), (2.1) and (12) have been used in the 
derivation of the above equation. Substituting eqns 
(2.10) and (2.23) into eqn (2.17), we obtain the proper 
constitutive equation for the displacement method in 
the finite element solution: 

(2.24) 

For an isotropic material in the plastic range R= 1, it 
can be shown eqn (2.24) is a special case of the con-
stitutive equation derived from a finite strain general-
ization of J2 flow theory of plasticity by Hutchinson 
[6]. 

FINITE ELEMENT AND CONTACT CONDITIONS 

Finite element application 
Considering the axisymmetric deformation, we ap-

proximate the sheet geometry by a series of conical 
frustra; therefore, the meridional section is a series of 
line elements as shown in Fig. 2(a). There are two de-
grees of freedom at each node, i.e. the horizontal dis-
placement component u and the vertical displacement 
component w. The linear interpolation function is used 
to determine the displacement field for an element. 
Using eqns (2.6) and (2.7), we obtain the strain vector 
in terms of nodal displacements for an element 

y={B±Bn)u (3.1) 

P\ © />i+l 

z,w 
(ri ,*i) ris/>j+uj 

(a) 

tAll volume change is due to only elastic deformation 
which is small for most metals. 

Vrel >0 

(r,w) 

( b ) 

(2.22) Fig- 2· A finite element on the meridional section and 
external force components at a contact point. 

in whichy7 = [711p-2722],wT = [W/w/W/ + 1w/+1],JB con-
tains constants and undeformed radial coordinates of 
the element, Ç„ contains nodal displacement com-
ponents, and the superscript T denotes the transpose 
of a matrix or vector. The elements of matrices B and Bn 

are shown in the appendix. Differentiating eqn (3.1)" 
we have the rate form 

y = (B + 2Bn)u. (3.2) 

From the principle of virtual work, the element equi-
librium equation becomes 

J V 
(Β + 2ξη)

Ττάν = ρ (3.3) 

where τΤ = [τ11 ρ2τ2 2], ρ is the nodal force vector, and 
v is the undeformed volume of an element. For a 
membrane 

di; = | a j 1 / 2 d ^ d p d z (3.4) 

where \ααβ\
1/2 = ρ. Taking a segment of 1 radian in the 

circumferential direction and invoking the assumption 
of plane stress, we can simplify eqn (3.3) for an element 
with the uniform initial thickness h0 in the form 

ÇPi + 1 
ho (B + 2Bn)

Tzpdp = p. (3.5) 
JPi 

Following Ref. [7], the rate form of eqn (3.5) is 

2ho 
ÇPi+l çPi+i 

ΒΐΐράρΛ-ho {Β + 2Β„)ττράρ = ρ. 
JPi ' Jpi 

(3.6) 

If we rewrite eqn (2.24) in the form 

i = Dy (3.7) 

and use eqn (3.2), the equilibrium condition in the rate 
form expressed by eqn (3.6) becomes 
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where k0 is the tangent stiffness matrix including initial 
displacements and ks is due to initial stresses. These 
matrices are shown in the Appendix. The global tangent 
stiffness matrix is formed by assembling all element 
tangent stiffness matrices as 

KrV = P (3.9) 

or in the incremental form 

KrAU = AP-Rs (3.10) 

where we have made the piece-wise linear approxima-
tion Δ U = ÜAt, AP = ΡΔί, and Rs is the joint unbalanced 
force vector at the previous time step. At a node i, the 
unbalanced force vector is computed by 

f (Β + 2Βη)
ττάν-ρ\ (3.11 

where the summation is taken over all the elements 
sharing the node i. In this study, we correct the joint 
unbalanced force computed from the above equation. 
Instead of Newton-Raphson type iteration, which 
might cause oscillation in the solution of the plasticity 
problem, to reduce the joint unbalanced force, we apply 
the first-order self-correction method [1] with suf-
ficiently small time step (or external load increment). 

Contact conditions 
In this study, the punch as well as the die is considered 

as a body of revolution. The meridional section of the 
moving punch can be written in the general form 

z=/(p) + i (3.12) 
where t is a time-like coordinate and we set the initial 
position of the punch (at t = 0) being point-contact with 
the sheet in the meridional section. When t>0, i.e. 
after the punch moves, there are three different 
regions—a punch-contact region, a non-contact region 
where the joint force vector P zero, and a die contact 
region—in the sheet. We note that the equation of the 
die shape has the same form as that in eqn (3.12) 
except independence oft, since the die is stationary. If a 
material point with undeformed radial coordinate p is 
in contact the deformed coordinates (r. w ) must satisfy 
eqn (3.12), i.e. 

w=f(r) + t (3.13) 
where r=p + u and u is the horizontal displacement 
component. Two possible contact conditions can exist 
as follows: 

(i) Non-slip contact. Applying Coulomb friction law, 
if 

Ρχ<μΡη 
(3.14) 

where Pt = frictional force, μ = coefficient of friction and 
Pn = normal force at a contact node shown in Fig. 2(b), 
that point will move together with the punch without 
slipping or stand-still on the die. The deformed 
coordinates (r, w) not only satisfy eqn (3.13) but the 
velocity components must satisfy the equation 

0 (3.15) 

For die contact, w = 0 also, eqn (3.15) replaces the joint 
equilibrium condition. Actually it is written in the 
incremental form : 

Au 
Δνν (3.16) 

(ii) Slip condition. The nodal point in contact is 
restricted to move along the punch or die surface; 
therefore, the kinematic condition may be obtained by 
taking the time derivative in eqn (3.13) 

dj 
dr 

û + w = 1 

and the incremental form is 

àf -^-Au + Aw=At-R^2 dr 51 (3.17) 

where Rs2 is the residual correction due to numerical 
error in linearization and computed from Rs2 = w —f(r) 
— t at the previous time step. 

Since the external joint force due to contact is gov-
erned by Coulomb friction law, Ρί = μΡη and Pt and Pn 

are not independent, only one independent equilibrium 
equation at the contact node can be established. The 
direction of the frictional force Pt is determined by the 
relative velocity between the punch and the sheet at the 
contact node 

tve/ = ucos0 + ( l -w)s in0 . (3.18) 

Figure 2(b) shows the positive direction of vrel. The 
external joint force vector at the contact node is de-
composed into the horizontal and vertical component 

[sin 0-sgn (vrel)n cos 0) 
[cos 0 + sgn {vrel)n sin 0J 

where 0 = tan_ 1 (—dw/dr) = g(r). Introducing H and V 
as the horizontal and vertical components, respectively, 
of the internal joint force at a contact node, the joint 
equilibrium equation can be written as 

| H | " (3.20) 

P = Pn (3.19) 

= P. 

Using eqn (3.19), we may condense the above equa-
tions into one independent equation 

H[cos 0 + sgn (ν,.β1)μ sin 0] -

— F[sin 0 — sgn (ι>Γβ/)μ cos 0] = 0. (3.21) 

Differentiating eqn (3.21) with respect to t and using 
eqns (3.20) and (3.19) gives the rate form 

H[cos 0 + sgn (νΓβ1)μ sin 0] 
- K[sin 0-sgn (ννΡί)μ cos 0] -P„(l + μ2)0 = 0. (3.22) 

We note that () = udg/dr and P„ is not involved in the 
above equation. In the actual solution, we adopt the 
incremental form 

AH[cos 0 + sgn (ν,βι)μ sin 0] 
K[sin 0-sgn ( O / ί cos 0] -PM(1 + μ2)Δ0= -Rsl 

(3.23) 

where the residual force is carried from the equilibrium 
check at the previous time step by means of eqn (3.21), 

Rsi = #[cos 0 + sgn (ν,β1)μ sin 0] 
— K[sin 0 — sgn {ννβϊ)μ cos 0]. (3.24) 

Equations (3.23) and (3.17) replace two equilibrium 
equations at a slipping contact node. We note that the 



Large elasto-plastic strain analysis of flanged hole forming 367 

coefficient matrix of the linear simultaneous equations 
for the nodal displacement increment vector Δ17 is no 
longer symmetric. 

NUMERICAL EXAMPLES 

Circular sheet by hemispherical punch stretching 
As a verification of the present formulation and the 

computer program, we applied it to compute the finite 
inelastic deformation of a circular sheet stretched by a 
hemispherical punch. The problem has been solved 
numerically by Wang and Budiansky [8] and the actual 
experiments were performed by Ghosh and Hecker [9]. 
The dimensions of the sheet, punch and die used in the 
computation are shown in Fig. 3. The sheet was made of 
AK steel with £=206.8 G Pa, v = 0.30, and the initial 
yield stretgth σ0 = 103.3 M Pa. In the inelastic range, the 
stress-strain relationship is expressed by the power 
law 

σ = Κεη 

2 * 

(4.1) 

^ Ί 

h 

BLANK 
AHOLD 

DIE 

I Ppm 50.8 mm 
Pt· 59.16 mm 
Pdm 6.35 mm 
h0

a 0.6 mm 

Fig. 3. Die and punch in hemispherical punch stretching. 

where σ is the true stress, ε the natural strain, K = 510 
M Pa and n = 0.21. The coefficient of friction μ between 
the punch and the sheet or the die and the sheet used 
in the computation was 0.17; the ratio of the width 
strain to the thickness strain in the plastic range during 
the uniaxial test was R = 1.8. The equation of the punch 

Z=(P2
P-P2) 2 U / 2 _ PP+t (4.2) 

where pp is the punch radius. We note that the pole of 
the punch (p = 0) contacts the center of the sheet at the 
time-like coordinate i=0 . We modelled the sheet by 
using 10 and 20 equally spaced elements, respectively, 
and took At = 0.01 mm in the first order self-correction 
method until punch reached the maximum displace-
ment of 34.5 mm. The maximum residual error (un-
balanced joint force) has an order of magnitude of 
10"2 vs the maximum contact force of 103. Figures 
4(a) and (b) show the meridional strain and circum-
ferential strain versus the undeformed radial coordin-
ate, respectively, as the punch moved by 34.5 mm. In 
these figures, we plotted the engineering strain measure-
ment er=kx — 1 and βφ = λ2 — 1. We also showed the 
numerical solution of Ref. [8] and test results of Ref. [9] 
in the same figures for comparison. The present analysis 

r (ENG.STRAIN) 

— TEST, REF. [9] 
— 20 E L E M E N T S lp R E S E NT 
» 10 ELEMENTS?9 E S EN 
• NUMERICAL, REF. [β] 

: .sol 

9ώ{ENG. STRAIN) 

UNDEFORMED RADIAL COORDINATE UNDEFORMED RADIAL COORDINATE 
(b) 

Fig. 4. Meridional and circumferential strain distribution 
for hemispherical punch stretching. 

predicted the peak meridional strain occurred at point 
with the undeformed radial coordinate p<ps/2 which 
was observed in the test; while Ref. [8] predicted at 
p>pJ2. The maximum circumferential strain pre-
dicted by the present solution is closer to the test 
result. 

Flanged hole by a spherical punch head 
From the verification mentioned in the previous 

section, we realized the program was reliable so that 
we could apply it to predict stresses and deformation 
in a flanged hole produced by punch stretching during a 
sheet metal forming process. In the example, the sheet 
was clamped at a radius ps= 16.54 mm with ..a hole 
radius ph= 10.16 mm. The sheet was made of the low-
carbon steel with £ = 206.8 G Pa, v = 0.30, σ0= 110.9 
M Pa, K = 500 M Pa, n = 0.20, μ = 0.2 and R=1.0. 
Figure 5(a) shows the initial position of the punch with 
a hemi-spherical head expressed by the equation 

z = ( p J - p 2 ) 1 / 2 - z , + t (4.3) 

Fig. 5. Initial positions for a hemispherical and ellipsoid 
of revolution punch head in flanged hole forming. 
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where pp= 16.51 mm is the radius of the spherical head 
and z, the initial position of the center of the spherical 
head.-We chose zt= 13.01 mm so that only the edge of 
the hole touched the punch for the sheet at the stress-
free state. We modelled the sheet by using 10 equally 
spaced elements and took Δί = 0.0025 mm until the 
punch moved by 19.05 mm when the flange was com 
pletely formed. The strain path [10] upon which the 
metal stamping engineers can predict whether the 
flanged hole will successfully be formed—the major 
principal strain βι = βφ vs the minor principal strain 
e2 = er measured in the engineering sense—at the tip 
of the flange is plotted in Fig. 6. For the final configura-
tion, the flange tip moved by u = 6.35 mm and vv = 5.82 
mm which is the flange height. For pjps=0.6143, 
Fig. 5 in Ref. [2] gives the flange height w = 0.346 

CONICAL 
'FRUSTUM 

\ SPHERE 

Jfi . *v ELLIPSOID OF 
" < \ * S s ^ REVOLUTION 

1.0 5.0 6.0 2.0 3.0 4.0 

PUNCH DISPLACEMENT 

Fig. 7. Punch load vs displacement in flanged hole forming. 

ENG. STRAINS 

cr 
LÜ 

D 
O 

< 
a: 
or o 

MINOR STRAIN (MERIDIONAL) 

Fig. 6. Strain path in engineering measurement at the flange 
tip for flanged hole forming. 

ps= 5.72 mm which is very close to the present solution 
w = 5.82 mm. We also plotted the punch load vs the 
punch displacement during the stretching process in 
Fig. 7. The formulation in Ref. [2] cannot be used to 
compute the punch load. 

Flanged hole by aflat punch head 
To avoid surface contact initially, we replaced the 

flat punch head by a sphere with a big radius as shown 
in Fig. 8(a). The program predicted the same strain 
path but the peak load was the highest and the punch 
moved the least distance as shown in Fig. 7 to form the 
hole. 

Px- 2,540 mm 

/>2= 6.35 mm 

Z js 2,539 mm 

Pps 16.51 mm 

ZJS 17.45 mm 

Λ« 34.29 mm 

Flanged hole by an ellipsoid of revolution punch head 
We used the same steel sheet but the punch had a 

different head to form a flanged hole. The equation of 
the punch head is 

■-?,«- -P
2yi2-Zi+t (4.4) 

where pp= 16.51 mm, pb= 33.02 mm, and zf = 26.03 mm. 
Figure 5(b) shows the meanings of these parameters. 
The program predicted the strain path, ex vs e2, for this 
head identical to that with the spherical head in Fig. 6. 
However, the punch load vs its displacement shown in 
Fig. 7 is entirely different. The peak load is lower; 
while the punch displacement is much more. 

Fig. 8. Initial positions for an almost flat and conical frustum 
punch head. 

Flanged hole by a conical frustum punch head 
Figure 8(b) shows the dimensions of this head. The 

predicted strain path for this head still does not deviate 
from those for other punch shapes. The load versus 
punch displacement is closer to that for the ellipsoid 
of revolution punch head shown in Fig. 7. 

SUMMARY AND DISCUSSION 
In summary, the computer results reveal the follow-

ing information for punch designs for flanged hole 
formation: 
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(1) The strain path—major vs minor principal 
strain component at the flange tip during the forming 
process—is independent of the punch shape for equal 
hole size and flange height. 

(2) The maximum strain at the flange tip only 
depends upon the size of the hole and the flange height. 

(3) The maximum punch loads depend upon the 
punch shape. 
Preliminary test results seem to confirm the computer 
prediction qualitatively. 

In this study, we assume that the sheet thickness is 
small in comparison to the tooling dimensions. Thus, 
the membrane theory of thin shells is applied. It, 
however, should be emphasized that for some chassis 
parts in an automobile structure, the above assump-
tion does not hold. In those cases, a shell bending 
theory or even the three-dimensional continuum theory 
of solids with finite strains is required for more reliable 
prediction. In addition, the strain rate effect on the 
initial yield stress and subsequently hardening co-
efficients of the sheet material should be considered 
so that we can predict the influence of the punch 
velocity on the flanged hole forming for a strain-rate 
sensitive material. 
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APPENDIX 

Material matrix 
The material matrix transforms the stress rate vector to the 

strain rate vector 

where 
'M* 

1 Π 4- <x(E/Et- \)a
2/a2

e - v + a ( £ / £ , - 1)αί>/σ2Ί 
'-~l<l-v + oi(E/Et-\)ab/a2

e 1+a(£/£,- l )b2 /<^ J 

(Al) 

(A2) 

α = σ,.-
1 + R 

b = 
\+R 

°,+σΦ 

1 for plastic loading 
0 otherwise 

Strain-nodal displacement matrix 
Applying the linear interpolation functions to eqns (2.6) and 
(2.7), we obtain B and Bn in eqn (3.1) as follows: 

B-J-Γ 
= P2-P1U 

1 0 

W P - 1 ) o 
1 01 

- ( P i / P - D Oj 
(A3) 

ß„ = 
2(p2 h? L (p2/p-l){(p2/p 

- ( w 2 - " i ) 

-îyui-ipjp-iyuj} 
-(w2-

wi) 

0 -(pjp-
( " 2 - " l ) 

I ) { W P - 1 ) " I - ( P I / P - 1 ) « 2 } 

(w2-w1)~| 
0 J 

(A4) 
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where the subscripts 1 and 2 mean the values at the end 
points, respectively, of a line element. 

Element tangent stiffness matrix 

In eqn (3.6), we denote the second term on the l.h.s. by 

(A5) 
ÇP2 

k0u = h0 (B + 2Bn)
Tipdp. 

JPi 

Using eqns (3.7) and (3.2), we have 

k0ù=<h0 J 2 (B + 2BfD(B + 2Çn)pdplù. 

Since ύ is arbitrary, the tangent stiffness matrix including 
initial displacements can be set 

ISo = h0 Γ(Β+2Βη)
τρ(Β + 2Βη)ράρ 

JPi 

Jik{pl- p\) {{B + 2Bn)TD(B + 2Bn)] ( A 6 ) 

2 l p = ( P i + P 2) / 2 

We denote the first term on the l.h.s. of eqn (3.6) by 

jf*M = 2A 0 j BjTpdp = \h0 J Spdpiû (A7) 

where 

S = -
iß 2 

" τ η + ( ρ 2 / ρ - 1 ) 2 ρ 2 τ 2 2 0 - τ 1 1 - ( Ρ ι / ρ - 1 ) ( ρ 2 / ρ - 1 ) ρ 2 τ 2 2 0 
τ ι ι 0 - τ 1 

τ 1 1 +(ρ 1 /ρ -1 ) 2 ρ 2 τ 2 2 0 
τ1 

sym 
(Α8) 
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Since ù is arbitrary, the tangent stiffness matrix due to initial CPz Mp2~~Pi) 
stresses can be set *s=«o ξρ dp ^ - S. (A9) 

*Vi Δ Ι/' = (Ρι+Ρ2)/2 
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Abstract—Numerical simulation data regarding the statistics of the response of a non-symmetric dynamic 
system are presented. 

A stationary and a modulated non-stationary white Gaussian process have been used as the excitations 
of the system. Non-stationary and stationary statistics of the system response are presented. The numerical 
data are used to extract information on the dependence of the response statistics on parameters such as the 
viscous damping and the magnitude of the nonlinearity of the dynamic system. Furthermore, they serve to 
examine the reliability of a random vibration analysis of the system, based on the technique of equivalent 
linearization. 

1. INTRODUCTION 

In recent years considerable interest has been shown in 
studying the response of dynamic systems to random 
excitations. From an engineering point of view this 
trend of scientific research can be justified by the fact 
that many natural excitations such as earthquakes, sea 
waves, and winds can be successfully described on a 
statistical basis. In addition, many of the physical 
systems dealt with in engineering applications exhibit 
nonlinear behavior attributed to geometrical considera-
tions or to material properties. 

Extensive research effort has been devoted to date to 
study the response of single-degree-of-freedom non-
linear systems to random excitation. Unfortunately, 
exact solutions have been obtained only for a limited 
class of problems. However, approximate solutions are 
obtainable for a large class of problems by means of 
well developed techniques. Pertinent information can 
be found in the review references [1, 2]. 

Undoubtedly, multi-degree-of-freedom nonlinear 
systems are more versatile than their single-degree-of-
freedom counterparts in modeling physical problems 
realistically. Nonetheless, they are more difficult to 
treat analytically or numerically. To the author's 
knowledge no exact solutions have been presented for 
the non-stationary response of multi-degree-of-freedom 
nonlinear systems to random excitation. However, 
exact solutions for the stationary multi-dimensional 
probability density function of the response may be 
obtained for a certain class of problems. This can be 
achieved by solving the corresponding Fokker-Planck 
equation which governs the response probability 
density function. Unfortunately, for the application of 
this method several requirements rarely met in physical 
systems must be satisfied [3]. The scarcity or the non-
existence of exact solutions has necessitated the devel-
opment of methods of approximate random vibration 
analysis [3-14]. Typically, the reliability of an approx-
imate method is examined by conducting Monte Carlo 
simulations using an analog or a digital computation 
system. 

To date, most of the reported random vibration 
approximate analyses or simulations pertain to systems 

which exhibit symmetric nonlinearities with respect to 
the origin of the force versus displacement or velocity 
diagrams. A typical example of the symmetric non-
linearity is the cubic nonlinearity shown in Fig. 1. The 
assumption of symmetric nonlinearity is valid for a 
large class of interesting engineering problems. There 
are cases, however, where the nonlinear characteristics 
of the mechanical behavior of some component of the 
physical system considered are non-symmetric [15-17]. 
An example is the quadratic nonlinearity shown in Fig. 
1. It should be noted that although the components of a 
system exhibit symmetric nonlinear behavior about 
some particular reference configuration, the math-
ematical model governing its dynamical response may 
be non-symmetric if the system is excited about some 
other configuration such as, for example, the position 
of static equilibrium [17]. It seems that there is a need 
for numerical simulations and approximate analyses of 
responses of non-symmetric dynamic systems under 
random excitations. 

In this paper, first the most commonly used methods 
for approximate random vibration analyses are exam-
ined briefly, but critically. Then, a set of data obtained 
by digital simulations of the response statistics of a 
commonly encountered dynamic system are presented 
and discussed. Finally, the numerical data are used to 
assess the reliability of an approximate solution for the 

Fig. 1. Symmetric-nonsymmetric nonlinearity. 
371 



372 P-T. D. SPANOS 

system response statistics obtained by using the tech-
nique of equivalent linearization. However, it is indic-
ated that they could be used for accuracy studies of any 
other technique of approximate random vibration 
analysis. 

component for the response. Nevertheless, in view of 
the fact that appropriate theoretical bounds on the 
accuracy of the approximate methods are extremely 
limited the validity of such solution procedures must 
be investigated by using extensive simulation data. 

2. METHODS FOR APPROXIMATE RANDOM 
VIBRATION ANALYSIS OF M-D-O-F SYSTEMS 

Generally, there exist three techniques of approxim-
ate analysis of randomly excited nonlinear multi-
degree-of-freedom systems. These are: the normal 
modes technique; the perturbation technique; and the 
equivalent linearization technique. 

The normal modes technique is based on reducing the 
coupled equations of motion of the multi-degree-of-
freedom system to a set of one-dimensional equations 
coupled only in the nonlinear terms and having statis-
tically uncorrelated excitations [4]. Subsequently, 
solutions of the decoupled equations can be obtained 
by using any of the available methods of approximate 
analyses applicable for single-degree-of-freedom sys-
tems [1]. Unfortunately, the applicability of the normal 
modes approach is limited by the restrictive assump-
tions which must be made for the dynamical system and 
the random excitation [4]. 

The perturbation technique has been developed for 
weakly nonlinear systems as an adaptation of the clas-
sical asymptotic method for deterministic vibrations, 
to the field of random vibrations [5, 6]. In addition to 
the limitation of weak nonlinearity, considerable diffi-
culties arise in the application of this technique in the 
absence of linear viscous damping from the oscillating 
system. This characteristic of the method is related to 
the more general problem of the lack of a rigorous 
foundation of the series expansion employed in the 
solution procedure. 

Early discussions of the technique of equivalent 
linearization may be found in Refs. [4] and [7]. Sub-
sequently, the method has been extended, used and 
discussed considerably. Typical examples of pertinent 
research effort may be found in Refs, [8-14]. Briefly, 
the concept of the method is to replace the nonlinear 
system by an equivalent linear system in such a manner 
that the ensemble average of the difference of the two 
systems is minimized, and to approximate the response 
of the nonlinear system by the response of the equival-
ent linear system. Numerical methods have been 
proposed in Ref. [8] for the determination of the 
elements of the equivalent linear system. This approach 
would require excessive computation time if it was to 
be applied to large systems. In addition, it could be 
hindered by the fact that the matrix which must be 
inverted for the determination of the equivalent linear 
system could be singular as it has been shown in Ref. 
[14]. Fortunately, direct formulae for the determination 
of the equivalent linear system have been obtained in 
Refs. [9, 10 and 13]. The existence and uniqueness 
of the equivalent linear system have been discussed in 
detail in Ref. [14]. 

The discussed methods have been primarily used for 
systems with symmetric nonlinearities. The response of 
such systems, initially at rest, to zero mean random 
excitations will be a zero mean process as well. For 
systems with nonsymmetric nonlinearities, it seems that 
the only additional parameter which must be intro-
duced in analyzing the system dynamics by any of the 
approximate methods is a non-zero offset (mean) 

3. SYSTEM DEFINITION 

Consider the following nonlinear stochastic differ-
ential equation, 

x + ßx + x[l + 3ε + 3εχ + εχ2] = Xw(t)g(t) ; 
χ(0)=χ(0)=0 (1) 

where g(t) is a time dependent deterministic function 
and w(i) is a stationary zero mean process with auto-
correlation 

<νν(ί)νν(ί + τ)) = (5(τ), (2) 

where δ{τ) is the Dirac delta function. 
The problem has been normalized so that, when 

ε = 0 and g(t)= 1, the stationary variance of x is equal 
to unity; that is, 

λ2 = 2β. (3) 

The parameter ε serves to indicate the severity of the 
nonlinearity. 

Equation (1) has been derived by considering the 
time dependent deviation of a randomly excited 
Duffing oscillator from its position of static equilibrium 
under gravity. The usefulness and the popularity in 
engineering analyses of the Duffing oscillator may be 
attributed to the fact that its restoring force is the 
lowest degree polynomial nonlinear approximation of 
a symmetric nonlinearity. 

No analytical methods are available for the deter-
mination of the exact non-stationary statistics of the 
response x(i). However, if g(t)= 1, the exact stationary 
probability density function ps(x) can be readily deter-
mined by using a general formula given in Ref. [1]. 
Specifically, it is found 

PsW = exp -

£e x p[ 

(1+3ε): -εχ" 

exp - ( 1 + 3ε)- -εχ^—ε—-
4 dx. (4) 

4. SYSTEM RESPONSE SIMULATIONS 

4.1 Procedure for generating response statistics data 
For the purpose of estimating both non-stationary 

and stationary statistics of the solution of eqn (1), a 
collection of three hundred (300) records of the white 
process w(t) was simulated digitally in a CDC-6600 
computation system. The dimensionless time scale 

x = t/T (5) 

was used, where T is the period of oscillator (1), for ε=0. 
For the generation of a single record of the excitation 
νν(τ), a sequence of n random numbers Nj . . . Nn were 
sampled from a distribution with zero mean and stand-
ard deviation equal to one. A Gaussian distribution 
was used. There are several numerical schemes for 
generating numbers belonging to a Gaussian distribu-
tion with specified mean value and standard deviation. 
In the present study, the algorithm examined in Ref. 
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[20] was used. The numbers Nv . 
n successive ordinates, τ 1 =0, 
equal intervals of length 

τ* = 0.01. 

.. Nn were assigned to 
τ2 = τ*,. . .spaced at 

(6) 
Then, the values of νν(τ) at τ;· were taken as 

W(T;) = C N / ^ , J = 1 , 2 , . . . (7) 

where c is a normalization constant specified by the 
intensity of the autocorrelation function, eqn (2), of the 
simulated process. Linear variation of νν(τ) over each 
and every interval τ* was assumed. It can be proved 
that as the number of records tends to infinite (oo) and 
τ*->0 the family of the numerically generated records 
simulates a random process with uniform spectral 
density (white noise). Two different shapes of modulat-
ing functions g(t) were used. Specifically, 

0(t)=l (8) 
and 

0(i) = exp (-0.025i)-exp (-0.25t). (9) 

The envelope defined by eqn (8) yields a white noise 
model for the excitation of system (1), while the envelope 
defined by eqn (9), Fig. 2, belongs to a general class of 
envelopes used in modeling seismic motion [18] and 
atmospheric turbulence [19]. 

Fig. 2. Deterministic modulating envelope vs time. 

The value 

ε = 2.0 
has been used for the nonlinearity parameter. Upon 
generating the first record νν^τ) of the random excita-
tion, the response of oscillator (1) was computed using 
a standard subroutine for ordinary differential equa-
tions. The values of χ(τ) and χ2(τ) at τ ^ Ο , τ2 = τ*, 
τ3 = 2τ*,.. .were stored in arrays of appropriate di-
mensions as the current values of (χ(τ)) and (χ2(τ)). 
These values were subsequently continually updated by 
generating excitation records and computing the cor-
responding system response. In this manner, the storage 
capacity requirements of the computation system were 
kept minimal. 

4.2 Discussion of the data 
Numerical data obtained by the discussed procedure 

are shown in Figs. 3-10. Figures 3-8 show data regard-
ing the non-stationary values of the offset (mean) and 
the standard deviation of χ(τ), and the standard devia-
tion of χ(τ). 
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Fig. 3. Offset (mean) of the system displacement vs time; 
ε = 2.Ο,0(ί)=1. 

Fig. 4. Standard deviation of the system displacement vs 
time; ε = 2.Ο,0(ί)=1. 
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For the uniform envelope, eqn (8), Figs. 3-5 reveal a 
strong dependence of the rise time of the system on the 
damping coefficient β. Define the rise time 7} as the 
time required for the response statistics to reach a frac-
tion / o f their stationary values. Then it is noticed, for 
example, that the system response statistics reach 
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Fig. 6. Offset (mean) of the system displacement vs time; 
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EXPONENTIAL ENVELOPE 

Fig. 7. Standard deviation of the system displacement versus 
time; ε = 2.0, flf(i)-exp (-0.0251)-exp (-0.25f). 

EXPONENTIAL ENVELOPE 

Fig. 8. Standard deviation of the system velocity vs time; 
ε = 2.0, 0(t) = exp (-0.0250-exp(-0.25i). 

approximately/=0.75 of their stationary values in time 
equal to one (1) and four (4) cycles (T) of oscillation for 
0 = 0.20 and 0 = 0.05, respectively. The equality of the 
ratio of the rise times to the inverse of the ratio of the 
damping coefficients seems to be valid for all the simul-
ated response statistics and any percentage/ Therefore, 
it is postulated that 7} is inversely proportional to 0, 
that is 

(10) 

Regarding the dependence of 7} on/, it is noticed, for 
example, that for 0 = 0.20, the standard deviation of 

Fig. 9. Stationary offset (mean) of the system displacement 
versus the nonlinearity parameter ε; g(t)= 1. 

Fig. 10. Stationary standard deviation of the system dis-
placement versus the nonlinearity parameter ε; g(t)= 1. 

x(i) reaches/ = 0.5,0.75,0.99 at approx. 0.5T, T and AT 
respectively. This trend seems to be consistent for all 
the response statistics and it is postulated that 

7 } ~ l n ( l - / ) (11) 
where In represents the natural logarithm of the number 
in Jhe parenthesis. It is noted that due to the normaliza-
tion used, eqn (3), the stationary values of the response 
statistics are identical for 0=0.05 and 0 = 0.20. 

For the exponential envelope, eqn (9), Figs. 6-8 show 
again a strong dependence of the response statistics 
of the damping coefficient 0. It is noted that due to the 
fact that g(t) is non uniform in this case the maximum 
values of the response statistics are not identical for 
0 = 0.05 and 0 = 0.20. Examining Fig. 2, it is observed 
that the maximum of g(t) occurs at a time which is 
approximately equal to 1.5T and the maximum of 
g2{t) occurs at a slightly different time. 

For 0 = 0.05, the maxima of the response statistics 
occur at times which are approximately equal to AT 
At this time the value of g\t) is only equal to approx. 
3/5 of its maximum value. As soon as the response 
statistics reach their maximum values, they start de-
creasing with extremely low time rate, however. 

For 0 = 0.20, the maxima of the response statistics are 
smaller than those corresponding to 0 = 0.05 and occur 
at times which are approximately equal to IT 

As soon as the response statistics reach their max-
imum values they start decreasing with a rate much 
lower than that corresponding to 0 = 0.05. Evidently, 
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these trends of the response statistics are compatible 
with the fact that the system with ß = 0.05 has a smaller 
energy dissipation capacity than the system with 
ß = 0.20. Unfortunately, the energy dissipation capacity 
of a specific system can be used for only qualitative or 
extremely unreliable quantitative predictions obtained 
mainly by extrapolations of trends detected by numer-
ical studies similar to the present. 

Concluding this section it is noted that the simulated 
numerical values x(t) and *(r) for the mean value μ(ί) 
and the standard deviation σ(ή respectively of the 
system response should be viewed as events of statis-
tical experiments on the populations of the mean values 
and the standard deviations of samples of size n = 300. 
Therefore, each datum point could be used only to 
determine the range of the theoretical mean value 
x(t) = n(t) and standard deviation s(t) = a(t) of these 
populations with a certain level of confidence. For a 
specified confidence level, the relative ranges of x(t) 
and s(t) with respect to x(t) and î(t) and vice versa 
depend on the standard deviations a2(t) of the popula-
tions of x(t) and l(i) respectively. For large values of n, 
these quantities carabe approximated by σ,(ί) zxr{t)/y/n 
and a2(t)xa(t)/Jln. Therefore, it should be expected 
that the fluctuation of the simulated from the theoretical 
values should be wider for the mean value than for the 
standard deviation of the system response. This theor-
etical prediction is verified by the numerical data shown 
in Figs. 3-8. 

5. APPLICATION OF EQUIVALENT LINEARIZATION 

An approximate solution for the statistics of system 
(1) can be obtained by using the technique of equivalent 
linearization [21]. In using this technique, an approx-
imate solution of equation (1) is written in the form 

xii)=xm(i)+x(i), (12) 
where xm(t) is the deterministic offset (mean) of x(r), 
and x(t) is a zero mean Gaussian random process. 
Then equation (1) is replaced by the two equations 

χ„ + βχ^ + χ„[1 + 3ε] + ε<χ2[χ + 3]> = 0 (13) 

and 

x-fj5x + x[l + 38 + /cJ = Aw(%(i). (14) 
Equation (13) ensures that the solution defined by eqn 
(12) satisfies equation on the average. The symbol ke 

appearing in equation represents the equivalent linear 
stiffness of the system and is determined so that the 
ensemble mean square error 

£ 2 ^ ( [ ^ + ̂ m + ̂ d + 38) + 6x2(x-h3)-/c,x]2)(15) 

is minimum. Using the analytical results of Ref. [21] 
it can be proved that this criterion is satisfied if and 
only if the equivalent linear stiffness is equal to 

ke= ε ^ [ 3 χ 2 + χ3] = 6εχ„, + 3ε[<χ2> + χ 2 ] . (16) 

Equations (13) and (14) can be written as first order 
differential equations governing the vectors (xm, x J T 

and (x,x)r. The reduction of the order, however, is 
associated with an increase of the dimension of the 
system. Therefore, from an equivalent linearization 
point of view the system described by eqn (1) must be 
treated as multi-dimensional. Using the equations for 
the vectors (xm, xm)r and (x, x) and relying on standard 

methods of analysis of linear systems under random 
excitation, the following equation can be obtained 

X\ =^m = ^2 

^2 = ^ = - ^ 2 - ^ ι [ 1 + 3 ε + 3 ε Χ 1 Η - ε Χ ? ] - 3 ε Χ 3 

X3^jt(x
2) = 2X4 (17) 

X5^jt (*2)= -2(l + 3e+ke)X4-2ßX5+2ßg2(t). 

If g(t)= 1, eqn (17) yields the following relationships for 
the stationary response statistics: 

The set of eqns (17) was integrated numerically for 
identical ε and g(t) to those used in the digital simula-
tions. The numerical results for the offset (mean) Xx and 
the standard_deviation <JX3 of x(t) and the standard 
deviation yfX5 of x(t) are shown in Figs. 3-8. as well. 
It should be mentioned that the computation time 
required to obtain the approximate analytical solution 
is of the order of 102-103 times smaller than the com-
putation time required to generate one complete 
ensemble simulated solution. 

Generally, good agreement between the simulated 
data and the analytical solution for all the response 
statistics for both envelopes and both values of the 
damping coefficient β can be claimed. Not only are the 
proper trends observed, such as shorter rise time of the 
system for larger damping, but the actual numerical 
values given by the two approaches are in fairly good 
agreement, and, in fact, the range of the relative error is 
approx. 0-10%. This agreement is extremely encourag-
ing as the value of ε = 2.0 represents a considerably non-
linear dynamic system. However, attention is called to 
the fact that the equivalent linearization repeatedly 
underestimates the values of the response statistics. 

The set of eqns (18) has been solved numerically to 
determine the stationary values of XijS and X3s. For 
the velocity, x(i), it is found that JX5,S is equal to 
unity. Identical value is given by the exact stationary 
probability density function of the velocity response of 
system (1). For the displacement x(t), the obtained 
numerical values οϊ X1 s and y/X^sare plotted in Figs. 
9-10 vs the nonlinearity parameter ε. In the same 
figures the corresponding exact values of these statis-
tics, determined by using eqn (4), are also shown. It is 
seen that fairly good agreement exists between the 
numerical values generated by the approximate and the 
exact solution even for extremely large values of the 
nonlinearity parameter ε. However, attention is called 
again to the fact that the equivalent linearization 
repeatedly underestimates the values of the response 
statistics. 

6. SUMMARY 

Numerical data obtained by digital simulations of the 
response statistics of a non-symmetric nonlinear dyn-

(18) 
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amie system under Gaussian excitations have been 
presented. The dynamic system has been obtained by 
considering the equation of motion of a Duffing oscil-
lator with respect to the position of its static equilibrium 
under gravity. Two system excitations have been simul-
ated. One has been a stationary white noise. The other 
has been obtained by modulating the white noise by an 
exponential deterministic envelope used in simulating 
seismic motions and atmospheric turbulence. The 
numerical data have revealed a significant decrease in 
the rise time of the system with increasing viscous 
damping. 

An approximate solution for the system réponse 
statistics has been obtained by using the technique of 
equivalent linearization. Comparisons of the numerical 
data with the approximate solution have indicated that 
the latter is reliable within an approximate range of 
0-10% relative error. However, the approximate solu-
tion consistently underestimates both the non-station-
ary and the stationary values of the system response 
statistics. It has also been found that the equivalent 
linearization technique is approximately five hundred 
(500) times more efficient computationally than the 
digital simulations in determining the system réponse 
statistics. 
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Abstract—The potential of using computerized symbolic manipulation in the development of nonlinear finite 
elements is discussed. Three tasks which can be efficiently performed using computerized symbolic manipulation 
are identified: (1) generation of algebraic expressions for the stiffness coefficients of nonlinear finite elements, (2) 
generation of FORTRAN source code for numerical evaluation of stiffness coefficients, and (3) checking the 
correctness of the FORTRAN statements for the arrays of coefficients. 

The symbolic and algebraic manipulation system MACSYMA is used in the present study. Two sample 
MACSYMA programs are presented for the development of the nonlinear stiffness coefficients of two-dimensional, 
shear-flexible, doubly-curved deep shell elements. The first program is for displacement models and the second 
program is for mixed models with discontinuous stress-resultant fields at interelement boundaries. 
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NOMENCLATURE 

shell compliance coefficients, inverse of shell 
stiffnesses 

extensional stiffnesses of the shell 
transverse shear stiffnesses of the shell 
bending stiffnesses of the shell 
stiffness interaction coefficients of the shell 
stress-resultant parameters 

linear stiffness coefficients of the shell element 
nonlinear stiffness coefficients of the shell ele-

ment 
bending stress resultants 
number of nodes of the element 
shape or interpolation functions for generalized 

displacements 
approximation functions for the stress resultants 
extensional (in-plane) stress resultants 
number of approximation functions for each 

stress resultant 
consistent nodal force coefficients 
external load intensities in the coordinate direc-

tions 
transverse shear stress resultants 
contributions of the linear and nonlinear terms to 

the total strain energy of the shell 
displacement components in coordinate directions 
contributions of the linear and nonlinear terms to 

the work done by internal forces 
complementary energy of the shell 
work done by external forces 
orthogonal curvilinear coordinate system 
linear and nonlinear parts of the extensional 

strains 
approximate expressions for e(^ and e%L) in 

terms of nodal displacement parameters ψ/ 
transverse shear strains and their approximate 

expressions in terms of φ/ 
curvature changes and twist, and their ap-

proximate expressions in terms of φ/ 

tProfessor of Engineering and Applied Science. 
tSenior Research Associate in Mathematics and Computer 

Science. 

π, 7Γ potential energy functional and its discretized 
form defined in eqns (1) and (8), respectively 

Π, Π Hellinger-Reissner functional and its discretized 
form 

Π modified discretized functional defined in eqn (20) 
φα rotation components 
φ/ nodal displacement parameters 

Ω,ί1(έ?) domain of the shell and the finite element, res-
pectively 

Range of indices: 
Lowercase Latin indices \-m 
Uppercase Latin Indices 1-5 
Lowercase script indices \-n 
Uppercase script indices 1-8 
Greek indices 1,2 

1. INTRODUCTION 

The idea of developing an algebraic package to sim-
plify the generation of the characteristic arrays of finite 
elements (e.g. stiffness, geometric stiffness and mass 
coefficients) has been suggested and referred to by a 
number of investigators (e.g. Argyris, Zienkiewicz and 
Clough, among others) over the last fifteen years. 
Moreover, several publications have been devoted to the 
use of symbolic manipulation in the evaluation of 
stiffness coefficients for finite elements. The objectives 
of these studies included: (a) reducing the tedium of 
manual algebraic manipulations (b) eliminating the errors 
introduced by numerical quadrature and (c) improving 
the efficiency of element generation (e.g. reducing the 
number of floating-point arithmetic operations). 

Most of the reported studies to-date have been limited 
to linear finite elements and can be grouped in two cate-
gories: (a) Algorithms which synthesize the characteristic 
arrays for any element from a given set of problem 
parameters (e.g. problem type, element shape and field 
variable approximation), and (b) algorithms which take 
advantage of the symmetry and/or other properties of a 
particular element (or set of elements) to efficiently 
generate the characteristic arrays. 

Among the studies of the first category, mention may 
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be made of the algebraic polynomial manipulator 
presented in Ref.[l], and the tensor generator of Ref. [2]. 
In Refs. [3,4] symbolic processors (templates) were 
developed for generating the stiffness coefficients as a 
function of the problem parameters. The MACSYMA 
system was used in the latter two studies. In Ref. [5] a 
symbolic manipulation system INTER was presented for 
generating symbolic matrices, performing symbolic in-
tegration, differentiation, matrix multiplication and 
matrix inversion. The system is written partly in FOR-
TRAN IV and partly in assembler language and is 
operational on IBM 370/168 computer. 

Among the studies of the second category, mention 
may be made of Ref. [6], wherein the FORM AC system 
was used to generate the stiffness coefficients for trian-
gular elements, with approximations of the field variable 
ranging from cubic to sextic polynomials. The FORMAC 
system was also used in Ref. [7] to generate analytic 
expressions of the stiffness coefficients of three-dimen-
sional tetrahedral elements having 4 and 10 nodes (linear 
and quadratic elements). The similarities between the 
stiffness coefficients of the 4- and 10-node elements were 
used to reduce the computational effort in generating the 
stiffness coefficients of 10-node elements. In Ref. [8] an 
ALGOL program was used for the symbolic represen-
tation of the total strain energy in terms of displacement 
parameters for geometrically nonlinear plate and shallow 
shell elements. In a series of publications (Refs. [9-14]), 
the authors studied the use of group-theoretic methods 
(symmetry transformations) in conjunction with sym-
bolic manipulation to reduce the computational effort 
required for element development. 

Two of the aforementioned studies have addressed the 
question of simplifying the development of nonlinear 
finite elements (viz. Refs. [8, 9]), but the full potential of 
computerized symbolic manipulation has not yet been 
exploited. The present study focuses on some further 
aspects of this problem. Specifically, in addition to the 
analytic evaluation of integrals, the tasks which can be 
performed using computerized symbolic manipulation 
include: (1) generation of the algebraic expressions for 
the stiffness coefficients for nonlinear finite elements, (2) 
generation of FORTRAN source code for the numerical 
evaluation of stiffness coefficients and (3) checking the 
correctness of hand-coded FORTRAN expressions for 
these coefficients. 

The present study is performed using the MACSYMA 
symbolic and algebraic manipulation system. A detailed 
discussion of the capabilities of the system is given in the 
MACSYMA manual (Ref. [15]) and a description of 
some of the available and anticipated aids to the MAC-
SYMA user is given in Refs. [16,17]. 

To fix ideas the discussion herein is focused on the 
development of the stiffness coefficients of two-dimen-
sional shear-flexible, doubly-curved deep shell elements. 
Two sample MACSYMA programs are presented in 
Appendix A for the development of nonlinear stiffness 
coefficients of the elements. The first program is for 
displacement models and the second program is for 
mixed models with discontinuous stress-resultant fields 
at interelement boundaries. 

The MACSYMA programs provide some insight into 
the selection of a hierarchy of appropriate intermediate 
variables that result in simplifying the algebraic expres-
sions of the stiffness coefficients and improving the 
efficiency of their numerical evaluation. If intermediate 
variables are not used the expressions of the stiffness 

coefficients can become unwieldy and the the associated 
FORTRAN code will be quite inefficient. 

2. FINITE ELEMENT FORMULATION 

The analytical formulation is based on a modified form 
of the geometrically nonlinear Sanders-Budiansky type 
deep-shell theory with the effects of transverse shear 
deformation and bending-extensional coupling included 
(see Refs. [18,19]). A total Lagrangian description of the 
shell deformation is used, and the shell configurations are 
referred to the lines of curvature coordinates of the 
undeformed shell. Two finite element formulations are 
considered. In the first formulation (displacement model) 
the fundamental unknowns consist of the displacement 
and rotation components of the shell middle surface and 
the element stiffness coefficients are obtained by using 
the principle of minimum potential energy. The fun-
damental unknowns in the second formulation (mixed 
model) consist of thirteen shell quantities: the general-
ized displacements ua, w and φα and the stress resultants 
Ναβ, Μαβ and Qa (a,ß = 1,2). The analysis is based on 
the Hellinger-Reissner mixed variational principle. No 
continuity requirements are imposed on the stress resul-
tants at interelement boundaries and the stress resultants 
are eliminated at the element level. 

Indicial notation is used throughout the development. A 
repeated index (subscript or superscript) in the same 
term denotes summation over the full range of the index. 
However, the rules of index notation are not applied to 
indices between parentheses. 

2.1 Displacement model 
The functional used in the development of the dis-

placement model is given by: 

*{um w, (t>a)=UiL)+ U(NL)- W (1) 

where 

U(L) = - I \C AU (L) 

+ 2Faßyp€aß Kyp + Daßyp KaßKyp 

+ Caiß3(26a3)(26ß3)]d(l (2) 

U(NL) = \f[CaßyA2e%Vy»p
L> 

+ €*£L>€%L>) + 2Faßype
(
a
NßL>KyP] di î (3) 

W = J (*>«««+ρκθ<ΙΩ. (4) 

In eqns (2)-(4), Caßyp, Daßyp and Faßyp are the exten-
sional stiffnesses, the bending stiffnesses and the stiffness 
interaction coefficients of the shell; Ca3/33 are transverse 
shear stiffnesses of the shell; e{tß and €%L) are linear 
and nonlinear parts of the extensional strains; καβ are 
curvature changes and twist; 2βα3 are transverse shear 
strains; pa and p are the external load components in the 
orthogonal coordinate directions xa and JC3. The range of 
the subscripts a, β is 1,2. 

Finite Element Discretization. The shell region is 
decomposed into finite elements Ω(β) connected at ap-
propriate nodes, where superscript e refers to the ele-
ment. A typical element is isolated from the model and 
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the fundamental unknowns are approximated by expres-
sions of the form: 

w = Jf^j 
(5) 

(6) 

(7) 

In eqns (5)-(7) N* are shape (or interpolation) functions; 
φ/ (i = 1-m, / = 1-5) are nodal displacement parameters; 
m equals the number of nodes of the element; the 
superscripts identify the node number; and subscripts 
refer to the ordering of nodal displacement parameters. 
For convenience, the same set of shape functions is used 
for approximating each of the fundamental unknowns. 

Finite element equations. If the generalized displace-
ments in the potential energy functional of eqn (1) are 
replaced by their expressions in terms of the shape 
functions, the resulting discretized functional can be 
expressed in the following form: 

elements Jil(ê  L> 

+ ΙΡ%κΨΜΦκ*+^ΟΪΪ^ 

ΦΜΦκΦ^-ΡϊφΑάΰ. (8) 

In eqn (8) K'h, Ρ'ίϊκ and GÏML are quadratic, cubic 
and quartic functions of Jfl and their derivatives; and P{ 
represents the array of external forces. The range of the 
upper and lower-case Latin_ indices is 1-5 and 1-m, 
respectively. The K, F and G are completely symmetric 
under the interchange of pairs of indices where each pair 
consists of a superscript and the subscript just beneath 
it. 

The governing equations for each element are obtained 
by applying the stationary conditions of the discretized 
functional, eqn (8), and can be written in the following 
form: 

Κίφ/^ΡΐκΨ/φκ11 + ïGfôi>/ty*tyi/: Pi (9) 

2.2 Mixed model 
The form of the Hellinger-Reissner functional used in 

the development of mixed models is given by: 

U(ua, H>, φα, Ναβ, Μαβ, Qa) y(L) + y(NL) _ JJiO _ ψ 

(10) 

where 
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and the arrays A, B and G are shell compliance 
coefficients (inverse of the shell stiffnesses defined in 
eqns (2) and (3)). 

Finite element discretization. In addition to the ap-
proximations of the generalized displacements, eqns (5>-
(7), the stress resultants are approximated by: 

Naß=ÄiHt
a+ß.l 

Μαβ=ΝΉ'α+β+2 

Qa=JtlHi+t 

(14) 

(15) 

(16) 

where JP are approximation functions for the stress 
resultants; Hj (i = 1-n and $ - 1-8) are parameters used 
in the approximation; and n equals the number of shape 
functions used in the approximation. Note that the same 
set of functions is used for approximating eachstress 
resultant and the approximation functions Jf'1 are 
different from the shape functions M'x. 

The discretized Hellinger-Reissner functional U(HJ, 
φΙ) is obtained by replacing both the generalized dis-
placements and stress resultants in Π(«α, νν, φα, Ναβ, 
Μαβ, Qa) by their expressions in terms of the shape and 
approximation functions, eqns (5)-(7) and (14)—(16). In 
the present study the shell compliance coefficients are 
assumed to be constant within each element and no 
continuity requirements were imposed on the stress 
resultants; therefore: (a) the Jf'* are conveniently chosen 
to be orthonormal polynomials and the associated Hj 
are merely coefficients and not nodal stress-resultant 
parameters, (b) the coefficients Hj are eliminated on the 
element level. This is accomplished by taking the varia-
tion of X\(HJ, φί) with respect to Hj and solving the 
resulting equations for Hj. These equations can be writ-
ten in the following form: 

ί ^eLVdfl+f &€%» άυ-ΑαβΎΡΗ\+ρ-

" BaßypH Ύ+Ρ+2■ (17) 

I where Κι{3 are linear stiffness coefficients; Fl}jK and J«1 

G'IJKL are nonlinear stiffness coefficients of the element 
and Pf are nodal load coefficients of the element. The K, 
F, G and P arrays are the integralŝ  over the element 
domain, of the corresponding K, F, G and P arrays. 

JylKaß du — ΒαβΎμΗ r + p - i 
-GaßyPHiy+p+2 = 0 (18) 

)φ"> 
^(2βα3) dû - AaWHß+6 = 0 (19) 

where iaß, καβ and 2βα3 are the extensional, bending and 
transverse shear strain components expressed in terms 
of the nodal displacement parameters φ{. 

If eqns (17)—(19) are used the functional U(Hj, φ{) can 
be reduced to a quartic function of φΐ as follows: 

fiW)= Σ ί (l/eff-WOdn (20) 
elements Jil(e) 
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The effective stiffness coefficients are then obtained by 
taking the variation of the modified discretized functional 
Π with respect to φ/. The resulting nonlinear equations 
for each element have the same form as eqn (9). 

It may be mentioned that by appropriate selection of 
the number of approximation functions, Jf* and JV\ the 
mixed models with discontinuous stress fields at inter-
element boundaries can have better performance than 
those with continuous stress fields (see Ref. [20]). 

3. MACSYMA PROGRAMS 

The MACSYMA programs used in generating the 
nonlinear stiffness coefficients for both the displacement 
and mixed models are listed in Appendix A. The pro-
grams are divided into functional parts to simplify their 
understanding. Appendix A also includes some pro-
gramming comments and sample output from the dis-
placement model program. A brief description of the 
input, intermediate variables used, and output from the 
program is given in this section. 

3.1 Input to the programs 
Generally, it is not beneficial in MACSYMA to 

separate the input data from the program commands in 
the same manner as in numerical programs. Neverthe-
less, certain statements need to be changed when 
developing different types of elements. For the dis-
placement model program these statements can be 
identified as follows: 

(a) Numerical values for 
NDP = number of displacement parameters per 

node 
NSC = number of strain components 
NSCNL = number of strain components with non-

linear terms. 
(b) The matrix LINEARSTRAINMATRIX, whose 

entries are the coefficients of the nodal displacement 
parameters in the expression for the linear strain vector. 

(c) Expression of the nonlinear strain vector in terms 
of the nodal displacement parameters, along with a list of 
intermediate variable names used in this expression. A 
discussion of the use of the intermediate variables is 
given in the next section. 

(d) A matrix CC of coefficients used in the constitutive 
relations of the shell. 

The input to the mixed model program is similar to 
that of the displacement program except that there are 
also a set of substitution commands (lines 284-302 in the 
MACSYMA program) which serve to introduce some of 
the intermediate variables. 

Neither the number of shape functions J^ and Jf nor 
their definitions are specified and, therefore, the resulting 
algebraic expressions for the stiffness coefficients are not 
restricted to a particular element geometry. However, for 
the numerical evaluation of the stiffness coefficients, Jf* 
and Jr as well as the geometric characteristics of the shell 
reference surface must be specified. 

3.2 Intermediate variables and arrays used in the pro-
grams 

In order to reduce the complexity of the algebraic 
expressions for the stiffness coefficients, the following 
set of intermediate variables are used in the programs: 

(a) Basic strain functions. These are defined by 
comment statements (lines 47-72 in the displacement 
model program). They are first used as entries in 
LINEARSTRAINMATRIX (lines 99-107) and as 
coefficients in the three quantities EPS1NL, EPS2NL 
and PHI (lines 118-120) constituting the NON-
LINEARSTRAIN vector (lines 121-125). The same 
functions are also used in the mixed model program. 

(b) Components SjK of LINEARSTRESSMATRIX in 
the displacement model program. This matrix is printed 
at line 175; the identification of the SjK with components 
of LINEARSTRESSMATRIX is given in lines 181-186; 
and the names are generated in line 192. The components 
5iK are first used as coefficients of the nodal displace-
ment parameters in the definition of LINEARSTRESS 
(lines 188-192). 

(c) Coefficients of the nodal displacement parameters 
in LINEARSTRAININTEGRAL in the mixed model 
program. Each of these coefficients represents an in-
tegral over the product of NBU with a basic strain 
function. They are defined by comment statements (lines 
245-250). Their names are generated by pattern matching 
statements (lines 256-260, 262) and they are first used in 
the definition of LINEARSTRAININTEGRAL (lines 
261,262). 

(d) Coefficients of the nodal displacement parameters 
in NONLINEARSTRAININTEGRAL in the mixed 
model program. Each of these coefficients represents an 
integral over the product of NBn times two basic strain 
functions. They are defined by comment statements 
(lines 268-281). Their names are introduced through a 
series of substitution commands (lines 284-302), and they 
are first used in the definition of NONLINEAR-
STRAININTEGRAL (line 303). 

(e) Coefficients SÛA f of the nodal displacement 
parameters in LINEARSTRESSINTEGRAL in the 
mixed model program. The values of these coefficients 
are computed in lines 312-315 and their names are 
generated in line 325. They are first used in the definition 
of LINEARSTRESSINTEGRAL (lines 320-325). 

3.3 Output from the program 
The programs listed in the appendix display a number 

of intermediate results as well as expressions for the 
stiffness coefficients. Sample output from the displace-
ment model program is also given in Appendix A and 
includes: 

(a) The linear and nonlinear strain vectors expressed 
in terms of the nodal displacement parameters. 

(b) The matrix LINEARSTRESSMATRIX whose 
entries are the coefficients of the nodal displacement 
parameters in the expressions for the stress resultants. 

(c) Algebraic expressions for the KK arrays—the in-
tegrands of the linear stiffness coefficients. 

(d) Algebraic expressions for the FF arrays—the in-
tegrands of the quadratic stiffness coefficients. 

(e) MACSYMA-generated FORTRAN source state-
ments for the GG arrays—the integrands of the cubic 
stiffness coefficients. 

The algebraic expressions for the KK and FF arrays 
are in terms of intermediate variables representing com-
ponents of LINEARSTRESSMATRIX. The KK arrays 
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not listed can be deduced from those listed by inter-
changing indices. The FF and GG coefficients listed are 
a subset of those actually produced by the MACSYMA 
program. However, the remaining FF and GG 
coefficients can be deduced from the ones listed by the 
use of permutational symmetry of indices as well as the 
symmetry under interchange of JC,- and JC2-coordinate 
directions. Both symmetries can be built into the FOR-
TRAN code and, therefore, only the expressions for the 
FF and GG coefficients listed in the sample output need to 
be used. 

The MACSYMA-generated FORTRAN source code 
can be simply embedded in a finite element system. 
Often, however, the efficiency of the code can be im-
proved by manual modifications. 

4. TASKS WHICH CAN BE EFFICIENTLY PERFORMED USING 
SYMBOLIC MANIPULATION 

In addition to the analytic evaluation of integrals 
which is discussed in Refs. [9-14], the different tasks that 
can be efficiently performed using computerized sym-
bolic manipulation include: (a) generation of analytic 
expressions for the linear and nonlinear stiffness 
coefficients, (b) generation of FORTRAN code for 
numerical evaluation of the stiffness coefficients, and (c) 
checking the correctness of hand-coded FORTRAN 
expressions. These tasks are discussed subsequently. 

4.1 Generation of analytic expressions for stiffness 
coefficients 

The use of computerized algebraic manipulation in 
generating the nonlinear stiffness coefficients can greatly 
reduce the tedium of the algebraic operations required 
and increase the reliability of the resulting expressions. 
As can be seen from the sample output of the MAC-
SYMA programs presented in Appendix A, fairly concise 
expressions are obtained for the stiffness coefficients. 
Further optimization of the algebraic expressions can 
readily be achieved through the application of MAC-
SYMA, preferably in an interactive manner. 

It is important to emphasize the fact that without the 
introduction of a proper set of intermediate variables the 
expressions of the stiffness coefficients can become un-
wieldy and the associated FORTRAN code will be quite 
inefficient. 

The sample MACSYMA programs provide some in-
sight into the selection of appropriate intermediate vari-
ables. In particular, the following two guidelines are 
listed: 

(a) Basic strain functions should be introduced to 
simplify the expressions of strains in terms of nodal 
displacement parameters. In the case of shell elements, 
the use of these functions allows the generalization of 
the formulation from lines of principal curvature coor-
dinates to general curvilinear coordinates without ap-
preciably complicating the mathematical structure of the 
stiffness coefficients or reducing the efficiency of the 
associated FORTRAN code. On the other hand, if the 
strains are expressed directly in terms of the shape 
functions and geometric characteristics of the surface 
rather than in terms of the basic strain functions, then 
the expressions of the stiffness coefficients become, in 
general, very lengthy. 

(b) Subexpressions which occur repeatedly in the 
results should be defined as intermediate variables (e.g. 
components of the LINEARSTRESSMATRIX in the 
displacement model program). 

In general, the coefficients of the unknown parameters 
in the expressions of the physical quantities appearing in 
the discretized functional are good candidates for inter-
mediate variables (e.g. coefficients of the nodal dis-
placement parameters in NONLINEARSTRAININTE-
GRAL and LINEARSTRESSINTEGRAL of the mixed 
model program). 

4.2 Automatic generation of FORTRAN code 
The sample output in Appendix A provides an example 

of FORTRAN source code automatically generated by 
the MACSYMA system. 

If automatically generated FORTRAN code is desired, 
it can be copied on magnetic tape or cassette and 
transmitted to the computer of the analyst's home in-
stitution. 

The MACSYMA generated FORTRAN code is, in 
general, not optimized for efficiency. Some improve-
ments in efficiency can be made by using MACSYMA 
commands to identify common subexpressions and 
automatically assign intermediate variable names to 
them. However, in the case of multiply nested DO loops, 
minimizing the number of arithmetic operations can only 
be done by hand-coding of MACSYMA's algebraic 
output. 

Through the use of computerized symbolic manipula-
tion alternate programming strategies can be tried and 
the operation counts compared to identify the best stra-
tegy. 

4.3 Checking correctness of FORTRAN expressions 
The process of manually generating FORTRAN 

code, even when it is merely a restructuring of MAC-
SYMA algebraic output, is prone to errors. Com-
puterized symbolic and algebraic manipulation systems 
can be used for checking the correctness of the restruc-
tured (or modified) code by feeding the (edited) FOR-
TRAN expressions of the code to the system, generating 
algebraic expressions from them and comparing these 
expressions with the original algebraic expressions of the 
stiffness coefficients. This process is best done inter-
actively rather than in BATCH mode. 

If the modifications in the automatically generated 
code affect the indices of the variables or the DO loop 
structure of the program, then a complete check requires 
comparing the original and modified symbolic expres-
sions after performing the summation over the full range 
of the DO loops. In many cases, this process can be both 
time and core consuming and a partial check using a 
reduced range of the DO loops may be satisfactory. 

It may be noted that manual optimization of the automa-
tically generated FORTRAN code may become un-
necessary in the future with the development of new 
compilers which can perform the optimization task. 

5. PROBLEM AREAS IN THE APPLICATION OF SYMBOLIC 
COMPUTING TO NONLINEAR ANALYSIS 

There are a number of problem areas which limit 
realization of the full potential of computerized symbolic 
manipulation in nonlinear analysis. Some of these prob-
lems are discussed in Ref. [21]. Herein two major prob-
lems are listed: 

(a) Inability to Optimize the FORTRAN code on 
MACSYMA. At the present time computerized symbolic 
manipulation systems do not have the capability for the 
automatic generation of efficient code for the purpose of 
numerical computation (automatic programming). In the 
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production of such codes intermediate variables need to 
be automatically defined to minimize the arithmetic 
operation count. 

(b) Problems associated with interface between alge-
braic and numerical calculations. These are mainly in 
the data transfer and occur because typically symbolic 
and numerical programs are executed on different com-
puters. 

CONCLUDING REMARKS 

The potential of using computerized symbolic manipu-
lation in the development of nonlinear finite elements is 
discussed. In addition to the analytic evaluation of in-
tegrals which has been discussed in previous pub-
lications, three tasks which can be efficiently performed 
using computerized symbolic manipulation are identified 
as: (a) generation of algebraic expressions for the 
stiffness coefficients of nonlinear finite elements (b) 
generation of FORTRAN source code for numerical 
evaluation of stiffness coefficients and (c) checking the 
correctness of the FORTRAN statements for the arrays 
of coefficients. 

The symbolic and algebraic manipulation system 
MACSYMA is used in the present study. Two sample 
MACSYMA programs are presented for the develop-
ment of the nonlinear stiffness coefficients of two-
dimensional, shear flexible doubly-curved deep shell 
elements. The first program is for displacement models 
and the second program is for mixed models with dis-
continuous stress resultant fields at interelement boun-
daries. Fairly concise algebraic expressions for the 
stiffness coefficients are obtained through the use of a 
hierarchy of appropriate intermediate variables. 

The sample MACSYMA programs provide some in-
sight into the selection of appropriate intermediate vari-
ables that result in simplifying the algebraic expressions 
of the stiffness coefficients and improving the efficiency 
of their numerical evaluation. 
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APPENDIX A 

MACSYMA programs for generating stiffness coefficients of two-
dimensional doubly-curved, deep shell elements 

This appendix includes (a) the MACSYMA displacement-
model program, (b) the MACSYMA mixed model program, (c) 
programming comments and (d) sample output from the dis-
placement-model program. 
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PROGRAM FOR GENERATION OF STIFFNESS COEFFICIENTS 
FOR TWO-DIMENSIONAL DEEP SHELL ELEMENTS 

(DISPLACEMENT MODEL) 

PART 1: Generation of Strain-Displacement Relations 

The problem is formulated in terms of five fundamental 
unknowns'» the generalized displacements Ul, U2, W, PHI1, and PHI2· 

NDP (Number of Displacement Parameters per node) * 5 

The eight strain components are EPS1, EPS2, 2*EPS12, KAPPA1, 
KAPPA2, 2*KAPPA12, 2*EPS13, 2*EPS23; but only the first three 
contain nonlinear terms· 

NSC (Number of Strain Components) - 8 
NSCNL (Number of Strain Components with 

NonLinear terms) - 3 

Discretization is achieved by approximating each fundamental 
unknown within a given finite element as a linear combination of 
shape functions N[I]. The same set of NNPE (number of nodes per 
element) shape functions is used for each of the fundamental 
unknowns. The unknowns thereby introduced may be written as 

A 
PSI 

I 
where A « 1,2,···,NDP and I - 1,2,...,NNPE 

While superscripts will be used in the comment statements, 
the programming commands will either use the superscript indices 
as matrix indices or will incorporate them into variable names 
through use of the concatenation (CONCAT) command. 

If lines of principal curvature coordinates are used, the 
geometry of a shell is characterized by 

Kl, K2 - the principal curvatures in the x- and y-directions' 

Al, A2 - the coefficients of the first fundamental form 

The strain-displacement relations are developed in terms of the 
following basic strain functions: 

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
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* * 67 

* NK1 - N Kl NK2 - N K2 * 68 

* I I I I * 69 
* * 70 
* NXK - NXP (K2 - Kl) NYK - NYP (Kl - K2) * 71 

* I I I I * 72 
* * 73 
* Since integration will be performed by means of numerical * 74 
* quadrature, each basic strain function variable name will need a * 75 
* second subscript IQ (herein suppressed) specifying the quadrature * 76 
* point at which the function is evaluated. * 77 
* * 78 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 79 
* */$ 80 
NDP : 5$ 81 
NSC : 8$ 82 
NSCNL : 3$ 83 

/* 84 
* Generate the vector of nodal displacement parameters. */$ 85 

86 
P S I [ I ] : - TRANSP0SE(MATRIX( [PSI1 [ I ] ,PSI2 [ I ] ,PSI3 [ I ] ,PSI4 [ I ] ,PSI5 [ I ] ] ) )$ 87 

/ * 88 
* Print the vector of nodal displacement parameters. */$ 89 

90 
PSI[K]; 91 

/* 92 
* Evaluate the portion of the strain vector which is linear in the * 93 
* displacements. The row (strain component) index of * 94 
* LINEARSTRAINMATRIX ranges from 1 to NSC . * 95 
* The column (fundamental unknown) index ranges from 1 to NDP . * 96 
* The subscript is the nodal index. */$ 97 

98 
LINEARSTRAINMATRIX [I] :- MATRIX( 99 

[ NXA[I], NA2[I], NK1[I], 0, 0], 100 
[ NA1[I], NYA[I], NK2[I], 0, 0], 101 
[ NYM[I], NXM[I], 0, 0, 0], 102 
[ 0, 0, 0, NXA[I], NA2[I]], 103 
[ 0, 0, 0, NA1[I], NYA[I]], 104 
[ NYK[I], NXKII], 0, NYM[I], NXM[I]], 105 
[-NKKI], 0, NXA[I], N[I], 0], 106 
[ 0,-NK2[I], NYA[I], 0, N[I]] )$ 107 

108 
LINEARSTRAIN [I] :« LINEARSTRAINMATRIX[I] . PSI[I]$ 109 

/* 110 
* Print the linear strain vector . */$ 111 

112 
LINEARSTRAIN [K] ; 113 

/* 114 
* Evaluate the portion of the strain vector which is nonlinear * 115 
* in the displacements. */$ 116 

117 
EPS1NL[I] : - NK1[I ]*PSI1[I ] - N X A [ I ] * P S I 3 [ I ] ; 118 
EPS2NL[I] : - NK2[I ]*PSI2[I ] - N Y A [ I ] * P S I 3 [ I ] ; 119 
PHI[I] : - NXP[I]*PSI2[I ] - N Y P [ I ] * P S I 1 [ I ] ; 120 
NONLINEARSTRAIN[I,J] :« [ 121 

(EPS1NL[I]*EPS1NL[J] + P H I [ I ] * P H I [ J ] ) / 2 , 122 
(EPS2NL[I]*EPS2NL[J] + P H I [ I ] * P H I [ J ] ) / 2 , 123 
(EPS1NL[IJ*EPS2NL[JJ + EPS2NL[I]*EPS1NL[J])/2, 124 
0 , 0 , 0 , 0 , 0 ] $ 125 

/ * 126 
* Print the nonlinear strain vector . */$ 127 

128 
TRANSPOSE(NONLINEARSTRAIN[J,K])»EXPAND; 129 

/* 130 
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* Input a list of names of arrays of Intermediate variables 
* which appear In the nonlinear strain-displacement parameter 
* relations. Use this list to produce a RATVARS list which will 
* govern the ordering of variables in the expressions for the 
* FF's and GG's to be developed subsequently. 

LISTOFARRAYNAMES : [NXA, NYA, NK1, NK2, NXP, NYP]$ 

LISTOFINDICES : [[I], [J], [K], [L]]$ 
RATVARSLIST : []$ 
FOR INDEX IN LISTOFINDICES DO 

FOR NAME IN LISTOFARRAYNAMES DO 
RATVARSLIST : APPEND(RATVARSLIST, [ARRAYMAKE(NAME,INDEX)])$ 

APPLY('RATVARS »RATVARSLIST)$ 
/* 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* 
PART 2: Constitutive Relations 

The constitutive relations are assumed to be linear and to 
have coefficients given by the matrix CC. 
The matrix CC has dimension NSC.by NSC. 

* 
* 
* 
* 
* 
* 
* 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* 
* The portion of the stress vector which is linear in the 
* displacements is evaluated next· Later S is to be identified 
* with LINEARSTRESSMATRIX 

CC : MATRIX( 
[CC11, CC12, CC16, FF11, FF12, FF16, 
[CC12, CC22, CC26, FF12, FF22, FF26, 
[CC16, CC26, CC66, FF16, FF26, FF66, 
[FF11, FF12, FF16, DD11, DD12, DD16, 
[FF12, FF22, FF26, DD12, DD22, DD26, 
[FF16, FF26, FF66, DD16, DD26, DD66, 
[ 0, 0, 0, 0, 0, 
[ 0, 0, 0, 0, 0, 

o, 
0, 

o, 
o, 
o, 
o, 

0], 
0], 
0], 
0], 
0], 
0], 

0, CC55, CC45], 
0, CC45, CC44] )$ 

/* 
LINEARSTRESSMATRIX [I] :- CC . LINEARSTRAINMATRIX[I] $ 

Print the linear stress vector . 

/* 
* 

/* 
* 
* 
* 
* 
* 
* 

LINEARSTRESSMATRIX[K]; 

Evaluate the linear portion of the stress vector · 

LINEARSTRESS[I] : LINEARSTRESSMATRIX[I] . PSI[I]$ 

Generate a new expression for the linear stress vector, this time 
in terms of intermediate variables given by C0NCAT(S,J,K)[I]. 
Here the CONCAT command creates a variable name by concatenation 
of the symbol S with the numerical values of J and K. 
The new variable represents the J,K component of 
LINEARSTRESSMATRIX with nodal index I . 

NULLLIST : []$ 
FOR II IN [I,J,K] DO ( 

LINEARSTRESS[II] : NULLLIST, 
FOR J THRU 8 DO LINEARSTRESS[II] : APPEND(LINEARSTRESS[II], 

[SUM(C0NCAT(S,J,K)[II]*C0NCAT(PSI,K)[II],K,1,NDP)]) )$ 

* 
* 
* 
* 
*/$ 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
*/$ 

*/$ 

*/$ 

* 
* 
* 
* 
* 
*/$ 

131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 
176 
177 
178 
179 
180 
181 
182 
183 
184 
185 
186 
187 
188 
189 
190 
191 
192 

/* 

387 
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* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 194 
* * 195 
* PART 3: Generation of the Elemental Stiffness Coefficients * 196 
* * 197 
* The discretized functional (potential energy) is * 198 
* * 199 
* PI(PSI) - Sumoverelements(U - W) * 200 
* * 201 
* where the strain energy U has the form * 202 
* * 203 
* 1 A A A B * 204 
* U - - Integral[(LINEARSTRAIN + NONLINEARSTRAIN ) CC * 205 
* 2 * 206 
* B B * 207 
* * (LINEARSTRAIN + NONLINEARSTRAIN )] dAREA * 208 
* * 209 
* and the external work has the form * 210 
* * 211 
* W - Integral[Ul pi + U2 p2 + W p, dAREA] * 212 
* * 213 
* Since U is quartic in the displacements, it may be written in the * 214 
* form * 215 
* * 216 
* 1 A B A B 1 A B C A B C * 2 1 7 
* U - Intégrait- KK PSI PSI + - FF PSI PSI PSI * 218 
* 2 I J I J 6 I J K I J K * 2 1 9 
* * 220 
* 1 A B C D A B C D * 221 
* + — GG PSI PSI PSI PSI , dAREA] * 222 
* 1 2 I J K L I J K L * 2 2 3 
* * 224 
* * 225 
* If K, F and G represent integrals of KK, FF and GG9 * 226 
* respectively, over the element area, then the governing equations * 227 
* for an Individual shell element have the form * 228 
* * 229 
* A B B 1 A B C B C 1 A B C D B C D A * 230 
* K PSI + - F PSI PSI + - G PSI PSI PSI - P * 231 
* I J J 2 I J K J K 3 I J K L J K L I * 232 
* * 233 
* The numerical coefficients in the above two equations have been * 234 
* chosen such that the left hand side of the Newton-Raphson * 235 
* equation will have the simple form * 236 
* * 237 
* A B A B C C A B C D C D B * 238 
* (K + F PSI + G PSI PSI ) DELTAPSI * 239 
* I J I J K K I J K L K L J * 2 4 0 
* * 241 
* * 242 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 243 
* * 244 
* Generate the integrands KK of the linear stiffness coefficients K * 245 
* The multiplier (1/2) comes from the definition of the strain * 246 
* energy Ü . */$ 247 

248 
UK : (1/2)* 249 

LINEARSTRESStl] . LINEARSTRAIN[J]$ 250 
/* 251 
* The multiplier 2 comes from the relation between the KK's and U · */$ 252 

253 
FOR A THRU NDP DO ( 254 

KKA:DIFF(UK,CONCAT(PSI,A)[I]), 255 
FOR B THRU A DO DISPLAY( 256 

ARRAYMAKE(CONCAT(KK,A,B),[I,J]) 257 
:: 2*DIFF(KKA,C0NCAT(PSI,B)[J])) )$ 258 

/* 259 



Computerized symbolic manipulation in nonlinear finite element analysis 389 

* Generate FORTRAN source code for evaluation of the KK's . */$ 260 
261 

FOR A THRU NDP DO 262 
FOR B THRU A DO 263 

FORTRAN(CONCAT(KK,A,B,"(I,J)") 264 
- EV(ARRAYMAKE(CONCAT(KK,A,B),[I,J]),EVAL))$ 265 

/* 266 
* Generate the integrands FF and GG of the nonlinear stiffness * 267 
* coefficients F and G, respectively. The multiplier (1/2) * 268 
* comes from the definition of the strain energy U . * 269 
* The multiplier 2 is due to having two cross terms. * 270 
* The multiplier (1/3) is due to averaging over three terms so * 271 
* as to make the FF's totally symmetric under the interchange of * 272 
* the indices I, J and K. */$ 273 

274 
UF:(l/2)*2*(l/3)* 275 

( LINEARSTRESSII] . NONLINEARSTRAIN[J,K] 276 
+ LINEARSTRESS[J] . NONLINEARSTRAIN[K,I] 277 
+ LINEARSTRESS[K] . NONLINEARSTRAIN[I,J])$ 278 

/* 279 
* The multiplier 6 is due to the relation between the FF's and U. */$ 280 

281 
FOR A THRU NDP DO ( 282 

FFA:DIFF(UF,CONCAT(PSI,A)[I])> 283 
FOR B THRU A DO ( 284 

FFAB:DIFF(FFA,CONCAT(PSI,B)[J]), 285 
FOR C THRU B DO DISPLAY( 286 

ARRAYMAKE(CONCAT(FF,A,B,C),[I,J,K]) 287 
:: RAT(6*DIFF(FFAB,C0NCAT(PSI,C)[K])))))$ 288 

/* 289 
* Generate FORTRAN source code for evaluation of the FF's. */$ 290 

291 
FOR A THRU NDP DO 292 

FOR B THRU A DO 293 
FOR C THRU B DO 294 

FORTRAN(CONCAT(FF,A,B,C,"(I,J,K)") 295 
- EV(ARRAYMAKE(CONCAT(FF,A,B,C),[I,J,K]),EVAL))$ 296 

/* 297 
* The multiplier (1/2) comes from the definition of the strain * 298 
* energy U. The multiplier (1/3) is due to averaging over three * 299 
* terms so as to make the expressions for the GG's totally * 300 
* symmetric under the interchange of the indices I, J, K and L . */$ 301 

302 
UG:(l/2)*(l/3)* 303 

( NONLINEARSTRAIN[I,J] . CC . NONLINEARSTRAIN[K,L] 304 
+ NONLINEARSTRAIN[I,K] . CC . NONLINEARSTRAIN[J,L] 305 
+ NONLINEARSTRAIN[I,L] . CC . NONLINEARSTRAIN[J,K] )$ 306 

/ * 307 
* The multiplier 12 is due to the relation between the GG's and U. */$ 308 

309 
FOR A THRU NSCNL DO ( 310 

GGA:DIFF(UG,CONCAT(PSI,A)[I]), 311 
FOR B THRU A DO ( 312 

GGAB:DIFF(GGA,CONCAT(PSI,B)[J]), 313 
FOR C THRU B DO ( 314 

GGABC:DIFF(GGAB,CONCAT(PSI,C)[K]), 315 
FOR D THRU C DO DISPLAY( 316 

ARRAYMAKE(CONCAT(GG,A,B,C,D),[I,J,K,L]) 317 
:: RAT(12*DIFF(GGABC,C0NCAT(PSI,D)[L]))))))$ 318 

/* 319 
* Generate FORTRAN source code for evaluation of the GG's. */$ 320 

321 
FOR A THRU NSCNL DO 322 

FOR B THRU A DO 323 
FOR C THRU B DO 324 

FOR D THRU C DO 325 
F0RTRAN(C0NCAT(GG,A,B>C>D,"((I-1)*NNPE+J,K,L)") - 326 

EV(ARRAYMAKE(CONCAT(GG,A,B,C,D),[I,J,K,L]),EVAL))$ 327 
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/* 1 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 2 
* * 3 
* PROGRAM FOR GENERATION OF STIFFNESS COEFFICIENTS * 4 
* FOR TWO-DIMENSIONAL DEEP SHELL ELEMENTS * 5 
* (MIXED MODEL WITH DISCONTINUOUS STRESS RESULTANTS) * 6 
* * 7 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 8 
* * 9 
* PART 1: Relations Between Strains and Displacement Parameters * 10 
* * 11 
* The problem is formulated in terms of 13 fundamental unknowns * 12 
* - the generalized displacements Ul, U2, W, PHI1, and PHI2 * 13 
* and the stress resultants Nl, N2, N12, Ml, M2, M12, Ql, Q2 . * 14 
* The generalized displacements are CO continuous, but the stress * 15 
* resultants have no continuity conditions imposed on them across * 16 
* interelement boundaries. The stress resultants are eliminated * 17 
* on the element level. * 18 
* * 19 
* NDP (Number of Displacement Parameters per node) = 5 * 20 
* NSR (Number of Stress Resultants) = 8 * 21 
* * 22 
* Discretization is achieved by expanding each generalized * 23 
* displacement within a given finite element as a linear combination* 24 
* of shape functions N[I], and each stress resultant as a linear * 25 
* combination of approximation functions NB[II]. A set of NNPE * 26 
* (Number of Nodes per Element) functions is used for the * 27 
* generalized displacements, and a second set of NNBE (Number of * 28 
* NB's per Element) functions is used for the stress resultants. * 29 
* The unknowns thereby introduced may be written as * 30 
* * 31 
* A * 32 
* PSI where A « 1,2,...,NDP and I = 1,2,...,NNPE * 33 
* I * 34 
* * 35 
* BB * 36 
* H where BB = 1,2,...,NSR and JJ = 1,2,...,NNBE * 37 
* JJ * 38 
* * 39 
* While superscripts will be used in the comment statements, * 40 
* the programming commands will either use the superscript indices * 41 
* as matrix indices or will incorporate them into variable names * 42 
* through use of the concatenation (CONCAT) command. * 43 
* * 44 
* If lines of principal curvature coordinates are used, the * 45 
* geometry of a shell is characterized by * 46 
* * 47 
* Kl, K2 - the principal curvatures in the x- and y-directions* 48 
* * 49 
* Al, A2 - the coefficients of the first fundamental form * 50 
* * 51 
* The strain-displacement relations are developed in terms of the * 52 
* following strain approximation functions: * 53 
* * 54 
* dN dN * 55 
* I I 1 I * 56 
* NXA = NYA = * 57 
* I Al dX I A2 dY * 58 
* * 59 
* N N * 60 
* I dA2 I dAl * 61 
* NA1 = NA2 = * 62 
* I Al A2 dX I Al A2 dY * 63 
* * 64 
* NXM - NXA - NA1 NYM = NYA - NA2 * 65 
* I I I I I I * 66 
* * 67 
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* NXA + NA1 NYA + NA2 
* I I I I 
* NXP « NYP « 
* I 2 1 2 
* 
* NK1 - N Kl NK2 - N K2 
* I I I I 
* 
* NXK = NXP (K2 - Kl) NYK = NYP (Kl - K2) 
* I I I I 
* 
* Since integration will be performed by means of numerical 
* quadrature, each strain approximation function name will need a 
* second subscript IQ (herein suppressed) specifying the quadrature * 
* point at which the function is evaluated. 
* 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* 
NDP : 5$ 

NSR : 8$ 

/* 
* Generate the vector of nodal displacement parameters. 

PSI[I] := TRANSP0SE(MATRIX([PSI1[I],PSI2[I],PSI3[I],PSI4[I],PSI5[I]]))$ 

/* 
* Print the vector of nodal displacement parameters. 

PSI[K]; 
/* 
* Evaluate the portion of the strain vector which is linear in the 
* displacements. The row (strain component) index of 
* LINEARSTRAINMATRIX ranges from 1 to NSR . 
* The column (fundamental unknown) index ranges from 1 to NFU . 
* The subscript is the nodal index. 

LINEARSTRAINMATRIX[I] := MATRIX( 
[ NXA[I], NA2[I], NK1[I], 0, 0], 
[ NA1[I], NYA[I], NK2[I], 0, 0], 
[ NYM[I], NXM[I], 0, 0, 0], 
[ 0, 0, 0, NXA[I], NA2[I]], 
[ 0, 0, 0, NA1[I], NYA[I]], 
[ NYK[I], NXK[I], 0, NYM[I], NXM[I]], 
[-NK1[I], 0, NXA[I], N[I], 0], 
[ 0,-NK2[I], NYA[I], 0, N[I]] )$ 

LINEARSTRAIN[I] := LINEARSTRAINMATRIX[I] . PSI[I]$ 

/* 
* Print the linear strain vector . 

LINEARSTRAIN[K]; 

/* 
* Evaluate the portion of the strain vector which is nonlinear 
* in the displacements. 

EPS1NLUJ : - N K l i I ] * P S I l [ I ] - NXA[I] *PSI3 [ I ] ; 
EPS2NL[I] := NK2[I ]*PSI2[I ] - N Y A [ I ] * P S I 3 [ I ] ; 
PHI[I] := NXP[I]*PSI2[I ] - N Y P [ I ] * P S I 1 [ I ] ; 
NONLINEARSTRAIN[I,J] := [ 

(EPS1NL[I]*EPS1NL[J] + P H I [ I ] * P H I [ J ] ) / 2 , 
(EPS2NL[I]*EPS2NL[Jj + P H I [ I ] * P H I [ J ] ) / 2 , 
(EPS1NL[I]*EPS2NL[J] + EPS2NL[I]*EPS1NL[J])/2, 
0 , 0 , 0 , 0 , 0 ] $ 

/* 
* Print the nonlinear strain vector . 

TRANSPOSE(NONLINEARSTRAIN[J,K]),EXPAND; 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
*/$ 

*/$ 

*/$ 

* 
* 
* 
* 
*/$ 

*/$ 

* 
*/$ 

*/$ 
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/* 135 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 136 
* * 137 
* PART 2: Constitutive Relations * 138 
* * 139 
* The constitutive relations are assumed to be linear and to * 140 
* have coefficients given by the matrix CC. * 141 
* The matrix CC has dimension NSR by NSR. * 142 
* * 143 
* * 144 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 145 
* * 146 
* */$ 147 

148 
CC : MATRIX( 149 

[CC11, CC12, CC16, FF11, FF12, FF16, 0, 0], 150 
[CC12, CC22, CC26, FF12, FF22, FF26, 0, 0], 151 
[CC16, CC26, CC66, FF16, FF26, FF66, 0, 0], 152 
[FF11, FF12, FF16, DD11, DD12, DD16, 0, 0], 153 
[FF12, FF22, FF26, DD12, DD22, DD26, 0, 0], 154 
[FF16, FF26, FF66, DD16, DD26, DD66, 0, 0], 155 
[ 0, 0, 0, 0, 0, 0, CC55, CC45], 156 
[ 0, 0, 0, 0, 0, 0, CC45, CC44] )$ 157 

/* 158 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 159 
* * 160 
* PART 3: Introduction of Strain and Stress Integrals * 161 
* * 162 
* The discretized Hellinger-Reissner functional is * 163 
* * 164 
* PI(PSI,H) - Sumoverelernents(V - UC - W) * 165 
* * 166 
* where * 167 
* * 168 
* AA AA AA * 169 
* V » H Integral[NB (LINEARSTRAIN + NONLINEARSTRAIN ), * 170 
* II II * 171 
* * 172 
* dAREA] * 173 
* * 174 
* AA AA AA * 175 
* « H (LINEARSTRAININTEGRAL + NONLINEARSTRAININTEGRAL )* 176 
* II II II * 177 
* * 178 
* * 179 
* 1 AA -1 AA BB BB * 180 
* UC = - H Integral[NB NB , dAREA] (CC ) H * 181 
* 2 II II JJ JJ * 182 
* * 183 
* 1 AA -1 AA BB BB "* 184 
* - - H (CC ) H * 185 
* 2 II II * 186 
* * 187 
* and the external work has the form * 188 
* * 189 
* W = Integral[Ul pi + U2 p2 + W p, dAREA] * 190 

* 191 * 
* where the integrals are over the areas of the individual elements * 192 
* and pi, p2 and p are the pressures in the x,y, and z-directions, * 193 
* respectively. The variables LINEARSTRAIN, NONLINEARSTRAIN, * 194 
* LINEARSTRAININTEGRAL, and NONLINEARSTRAININTEGRAL appearing in V * 195 
* are all functions of PSI. The functions NB[II] are chosen to be * 196 
* orthonormal with respect to integration over the element area. * 197 
* Thus the integral in the definition of UC evaluates to a Kronecker* 198 
* delta function on the indices II and JJ. * 199 

* * 

392 
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* Variation of PI with respect to the H's yields * 201 
* * 202 
* AA AA * 203 
* LINEARSTRAININTEGRAL + NONLINEARSTRAININTEGRAL * 204 
* II II * 205 
* * 206 
* -1 AA BB BB * 207 
* - (CC ) H = 0 * 208 
* II * 209 
* * 210 
* Because stress resultants are not required to be continuous * 211 
* across element boundaries, a modified discretized functional PIBAR* 212 
* is formed by substituting the above equation into the function PI.* 213 
* The new function PIBAR, which no longer depends on the H's, * 214 
* has a quartic dependence on the PSI's. * 215 
* * 216 
* PIBAR(PSI) « Sumoverelements(U - W) * 217 
* eff * 218 
* * 219 
* where the "effective" strain energy is * 220 
* * 221 
* 1 AA AA * 222 
* U = - (LINEARSTRAININTEGRAL + NONLINEARSTRAININTEGRAL ) * 223 
* eff 2 II II * 224 
* * 225 
* AA BB BB BB * 226 
* * CC (LINEARSTRAININTEGRAL + NONLINEARSTRAININTEGRAL ) * 227 
* II II * 228 
* * 229 
* Let * 230 
* * 231 
* AA AA BB BB * 232 
* LINEARSTRESSINTEGRAL = CC LINEARSTRAININTEGRAL * 233 
* II II * 234 
* * 235 
* AA B B * 236 
* = S PSI * 237 
* II J J * 238 
* * 239 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 240 

* * 241 

* Compute the vector LINEARSTRAININTEGRAL. * 242 
* The subscript is a nodal index (actually, a dummy index which is * 243 
* summed over). Integration is achieved by pattern matching. * 244 
* A number of intermediate variables such as NNXA[I,II], NNYA[I,II],* 245 
* etc. are automatically introduced which represent integrals. * 246 
* For example * 247 
* * 248 
* NNXA » Integral[NXA NB , dAREA] * 249 
* I II I II * 250 
* * 251 
* The following list is the list of array names appearing in * 252 
* LINEARSTRAINMATRIX. */$ 253 

254 
255 

LISTOFARRAYNAMES : [N,NXA,NYA,NK1,NK2,NA1,NA2,NXM,NYM,NXK,NYK]$ 256 
MEMBEROFLIST(XXX) := MEMBER(XXX,LISTOFARRAYNAMES)$ 257 
MATCHDECLARE(NNN',MEMBEROFLIST)$ 258 
MATCHDECLARE(III,TRUE)$ 259 
DEFRULE(RULE1,NNN[IIIJ,C0NCAT(N,NNN)[III,II]); 260 
DEFINE(ARRAYMAKE(LINEARSTRAININTEGRAL,[1,11]), 261 

APPLY1(LINEARSTRAIN[I],RULE1))$ 262 
/* 263 
* Print the linear strain integral vector . */$ 264 

265 
LINEARSTRAININTEGRAL[K,LL]; 266 

/ * 267 
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* Compute the vector NONLINEARSTRAININTEGRAL. Examination of the 
* integrands suggests the introduction of a number of arrays of 
* intermediate variables to represent integrals over the product of 
* NB[II] times two strain approximation functions. For example 
* 
* NNXPNXP = Integral[NXP NXP NB , dAREA] 
* I J II I J II 
* 
* is an array which is symmetric in its first two indices, and 
* 
* NXPYP = Integral[NXP NYP NB , dAREA] 
* I J II I J II 
* 
* is an array without symmetry. 

NONLINEARSTRAIN[I,J]$ 
RATSUBST(NNXANXA[I,J,II],NXA[I]*NXA[J],%)$ 
RATSUBST(NNYANYA[I,J,II],NYA[I]*NYA[J],%)$ 
RATSUBST(NNXANYA[I,J,II]-NYA[I]*NXA[J],ΝΧΑ[I]*NYA[J],%)$ 
RATSUBST(NNXPNXP[I,J,II],NXP[I]*NXP[J],%)$ 
RATSUBST(NNYPNYP[I,J,II],NYP[I]*NYP[J],%)$ 
RATSUBST(NNK1NK1[I,J,II] ,NK1[I]*NKl[J] ,%)$ 
RATSUBST(NNK2NK2[I,J,II],NK2[I]*NK2[J],%)$ 
RATSUBST(NXPYP[I,J,II],NXP[I]*NYP[J],%)$ 
RATSUBST(NXPYP[J,I,II],NXP[J]*NYP[I],%)$ 
RATSUBST(NK2K1[I,J,II],NK2[I]*NK1[J],%)$ 
RATSUBST(NK2K1[J,I,II],NK2[J]*NK1[I],%)$ 
RATSUBST(NXAK1[I,J,II],NXA[I]*NK1[J],%)$ 
RATSUBST(NXAK1[J,I,II],NXA[J]*NK1[I],%)$ 
RATSUBST(NXAK2[I,J,II],NXA[I]*NK2[J],%)$ 
RATSUBST(NXAK2[J,I,II],NXA[J]*'NK2[I],%)$ 
RATSUBST(NYAK1[I,J,II],NYA[I]*NK1[J],%)$ 
RATSUBST(NYAK1[J,I,II],NYA[J]*NK1[I],%)$ 
RATSUBST(NYAK2[I,J,II],NYA[I]*NK2[J],%)$ 
RATSUBST(NYAK2[J,I,IIh,NYA>J]*NK2[I],%)$ 
DEFINE(ARRAYMAKE(NONLINEARSTRAININTEGRAL,[I,J,II]),RATSIMP(%))$ 
TRANSPOSE(NONLINEARSTRAININTEGRAL[J,K,JJ]); 

/* 
* AA 
* Compute the vector LINEARSTRESSINTEGRAL and its coefficients S 
* II 

LINEARSTRESSINTEGRAL[J,II] : CC . LINEARSTRAININTEGRAL[J,II]$ 

FOR AA THRU NSR DO 
FOR B THRU NDP DO 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
*/$ 

B* 
* 

J*/$ 

S[AA,B] : DIFF(LINEARSTRESSINTEGRAL[J,II][AA,1],CONCAT(PSI,B)[J])$ 
GENMATRIX(S,NSR,NDP); 

/* 
* Express LINEARSTRESSINTEGRAL in terms of the intermediate 
* variables SAAB[II,J] 

NULLLIST:[]$ 
FOR U K IN [I,J,K] DO ( 

LINEARSTRESSINTEGRAL [UK, II] :NULLLIST, 
FOR AA THRU NSR DO 

* 
*/$ 

LINEARSTRESSINTEGRAL [UK,II] : APPEND (LINEARSTRESSINTEGRAL [UK, II] , 
[SUM(CONCAT(S,AA,B) [UK, II] *CONCAT(PSI,B) [UK] ,B,1,NDP)]) )$ 

TRANSPOSE(LINEARSTRESSINTEGRAL[J,II]); 
/* 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* 
* PART 4: Generation of the Linear and Nonlinear "Effective" 
* Stiffness Coefficients 
* 
* Let the effective strain energy be written as 
* 

* 
* 
* 
* 
* 
* 
* 
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U UK + UF + UG 
eff 

where 

1 AA 
UK = - LINEARSTRESSINTEGRAL 

2 II 

1 A B A B 
* - K PSI PSI 

2 I J I J 

AA 

AA 
LINEARSTRAININTEGRAL 

II 

AA 
UF = LINEARSTRESSINTEGRAL NONLINEARSTRAININTEGRAL 

II II 

1 A B C A B C 
- F PSI PSI PSI 
6 I J K I J K 

1 AA AA BB 
UG = - NONLINEARSTRAININTEGRAL CC 

2 II 

BB 
NONLINEARSTRAININTEGRAL 

II 

* 
* 
* 
* 
* 

* 
* 
* 
* 
it 

it 

it 

it 

it 

it 

it 

* 

* 

* 
it 

it 

* 
it 

it 

it 

* 
it 

it 

it 

it 

it 

it 

A B B 1 A B C B C 1 A B C D B C D A * 
K PSI + - F PSI PSI + - G PSI PSI PSI = P * 

I J J 2 I J K J K 3 I J K L J K L I * 
* 
it 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* 

Compute the UK, UF and UG contributions to the effective strain 

energy . 

: (1/2)*LINEARSTRESSINTEGRAL[I,II] . LINEARSTRAININTEGRAL[J,II]$ 

: (l/2)*2*(l/3)* 
( LINEARSTRESSINTEGRAL[I,II] . NONLINEARSTRAININTEGRAL[J,K,II] 
+ LINEARSTRESSINTEGRAL[J,II] . NONLINEARSTRAININTEGRAL[K,I,II] 
+ LINEARSTRESSINTEGRAL[K,II] . NONLINEARSTRAININTEGRAL[I,J,II])$ 

: ( l / 2 ) * ( l / 3 ) * 
( NONLINEARSTRAININTEGRAL[I,J,II].CCNONLINEARSTRAININTEGRAL[K,L,II] 
+ NONLINEARSTRAININTEGRAL[I,K,II].CCNONLINEARSTRAININTEGRAL[J,L,II] 
-I- NONLINEARSTRAININTEGRAL [ I , L , I I ] .CCNONLINEARSTRAININTEGRAL [J,K, I I ] ) $ 

1 A B C D A B C D 
— G PSI PSI PSI PSI 
1 2 I J K L I J K L 

are completely symmetric under 
A B A B C A B C D 

and K , F , G 
I J I J K I J K L 

interchange of pairs of indices, each pair consisting of a 
superscript index and the subscript index directly beneath it. 

Then the governing equations for an individual shell element 
have the form 

* 

*/$ 
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UK 
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UG 

CAS 13:1-3 - Z 
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/ * 4<U 
* Generate the linear stiffness coefficients, the K's */$ 402 

403 
FOR A THRU NDP DO ( 404 

CKA:DIFF(UK,CONCAT(PSI,A)[I]), 405 
FOR B THRU A DO 406 

DISPLAY(ARRAYMAKE(CONCAT(K,A,B),[I,J]) 407 
:: RAT(2*DIFF(CKA,CONCAT(PSI,B)[J] ))))$ 408 

409 
/* 410 
* Construct a list of variables. This list will govern the * 411 
* ordering of variables in the expressions for the F's and G's. * 412 
* The input needed is the following list of names of arrays of * 413 
* intermediate variables which represent integrals appearing in * 414 
* NONLINEARSTRAININTEGRAL. */$ 415 

416 LISTOFARRAYNAMES:[NNKINKI»NNK2NK2,ΝΝΧΡΝΧΡ,ΝΝΥΡΝΥΡ,ΝΝΧΑΝΧΑ,ΝΝΥΑΝΥΑ,ΝΝΧΑΝΥΑ, 417 
NXPYP,NNK2K1,NXAK1,NXAK2,NYAK1,NYAK2]$ 418 

419 
LISTOFINDICES : [[I,J],[J,I],[I,K],[K,IJ,[J,K],[K,J], 420 

[I,L] , [L,I] , [J,L] , [L, J] , [K,L] , [L,K] ] $
 421 RATVARSLIST : []$ 422 

FOR INDICES IN LISTOFINDICES DO 423 
FOR NAME IN LISTOFARRAYNAMES DO 424 

RATVARSLIST : APPEND(RATVARSLIST,[ARRAYMAKE(NAME,INDICES)])$ 425 
APPLY('RATVARS,RATVARSLIST)$ 426 

/* 427 
* Generate the F's. */$ 428 

429 
FOR A THRU NDP DO ( 430 

CFA : DIFF(UF,CONCAT(PSI,A)[I]), 431 
FOR B THRU A DO ( 432 

CFAB : DIFF(CFA,CONCAT(PSI,B)[J]), 433 
FOR C THRU B DO 434 

DISPLAY(ARRAYMAKE(CONCAT(F,A,B,C),[I,J,K]) 435 
::RAT(6*DIFF(CFAB,CONCAT(PSI,C)[K])))))$ 436 

/* 437 
* Generate the G's. */$ 438 

439 
FOR A THRU NDP DO ( 440 

CGA : DIFF(UG,CONCAT(PSI,A)[I]), 441 
FOR B THRU A DO ( 442 

CGAB : DIFF(CGA,CONCAT(PSI,B)[J]), 443 
FOR C THRU B DO ( 444 

CGABC : DIFF(CGAB,CONCAT(PSI,C)[K]), 445 
FOR D THRU C DO 446 

DISPLAY(ARRAYMAKE(CONCAT(G,A,B,C,D),[I,J,K,L]) 447 
:: RAT(12*DIFF(CGABC,CONCAT(PSI,D)[L]))) )))$ 448 

& 
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PROGRAMMING COMMENTS 

Displacement Model Program: 

Line No. Comment 

80 Dollar sign as terminator means not to display results. 

82 Value assignments are indicated by : 

87 Function assignments are indicated by := 

91 Semi-colon as terminator means to display results. 

109 Dot indicates matrix multiplication. 

141 FOR loops in MACSYMA are analogous to DO loops in FORTRAN. 

144 APPLY('RATVARS, [A,B,C]) is equivalent to RATVARS(A,B,C). 

The effect of this command is to create a list of 

variable names which will govern the ordering of the 

variables in any subsequent expression which is in the 

internal representation known as the "canonical rational 

expression" form. It has no effect on expressions in 

"general" form. 

192 C0NCAT(S,5,8) (where S is undefined) creates the variable 

name S58. 
5 

192 SUM(EXP,K,1,5) evaluates to Σ EXP. 
k=l 

258 DIFF(EXP,X) evaluates the derivative of the expression EXP 

with respect to X. 

256 DISPLAY command is used within FOR loops to display results. 

264 FORTRAN(EXP) command is used to generate and display 

FORTRAN source code for EXP. 

288 RAT(EXP) puts EXP into canonical rational expression form, 

a form which consists of a quotient of polynomials. 
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Line No. Comment 

296 EV(EXP,EVAL) is used to evaluate EXP using information 

from past assignment statements. 

Mixed Model Program: 

Line No. Comment 

257 MEMBER(VAR,LIST) returns TRUE or FALSE depending on whether 

the variable VAR is in LIST or not. 

258 MATCHDECLARE is used in setting up a pattern match, a 

replacement of one expression by another when certain 

preset conditions are satisfied. In this case one 

condition is that MEMBEROFLIST(NNN) be TRUE. 

260 Here DEFRULE defines a pattern matching rule called RULE1. 

The second argument of DEFRULE is to be replaced by the 

third argument in whatever expression the rule is 

applied to. 

261 DEFINE(FUNCTION,EXP) evaluates its first argument and defines 

it according to the second argument. 

262 APPLY1(EXP,RULE) applies the pattern matching rule RULE to 

the expression EXP. 

284 RATSUBST(EXP1,EXP2,EXP3) replaces the subexpression EXP2 by 

the expression EXP1 wherever it occurs in EXP3. 

303 RATSIMP is a simplifier command similar to RAT. 

315 GENMATRIX(ARRAY,M,N) generates an M by N MATRIX from 

defined elements of ARRAY. 
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* * * * * * * * * * * * * * * * * * * 
* SAMPLE OUTPUT * 
* FROM DISPLACEMENT MODEL PROGRAM * 
******************* 

Linear strain (line 113) 

NKl PSI3 + NA2 PSI2 + NXA PSIl 
K K K K K K 

NK2 PSI3 + NYA PSI2 + NA1 PSIl 
K K K K K K 

NXM PSI2 + NYM PSIl 
K K K K 

NA2 PSI5 + NXA PSI4 
K K K K 

NYA PSI5 + NA1 PSI4 
K K K K 

NXM PSI5 + NYM PSI4 + NXK PSI2 + NYK PSIl 
K K K K K K K K 

N PSI4 + NXA PSI3 - NKl PSIl 
K K K K K K 

N PSI5 + NYA PSI3 - NK2 PSI2 
K K K K K K 

Nonlinear strain (line 129) 

NXA PSI3 NXA PSI3 NKl PSIl NXA PSI3 NXP PSI2 NXP PSI2 NYP PSIl NXP PSI2 
J J K K J J K K J J K K J J K K 

MATRIX([-

NXP PSI2 NYP PSIl NYP PSIl NYP PSIl NXA PSI3 NKl PSIl NKl PSIl NKl PSIl 
J J K K J J K K J J K K J J K K 

NYA PSI3 NYA PSI3 NK2 PSI2 NYA PSI3 NXP PSI2 NXP PSI2 NYP PSIl NXP PSI2 NYA PSI3 NK2 PSI2 
J J K K J J K K J J K K J J K K J J K K 

2 2 2 2 2 

NK2 P S I 2 NK2 P S I 2 NXP P S I 2 NYP P S I l NYP P S I l NYP P S I l 
J J K K J J K K J J K K 

NXA P S I 3 NYA P S I 3 NKl P S I l NYA P S I 3 NYA P S I 3 NXA P S I 3 NK2 P S I 2 NXA P S I 3 NXA P S I 3 NK2 P S I 2 
J J K K J J K K J J K K J J K K J J K K 

NKl P S I l NK2 P S I 2 NYA P S I 3 NKl P S I l NK2 P S I 2 NKl P S I l 
J J K K J J K K J J K K 

- ] . [ 0 ] , [ 0 ] , [ 0 ] , [ 0 ] , [0 ] ) 
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Linear stress matrix (line 175) 

CC16 NYM + FF16 NYK + CC11 NXA + CC12 NAl ] 
K K K K ] 

J 
CC26 NYM + FF26 NYK + CC12 NXA + CC22 NAl ] 

K K K K ] 
] 

CC66 NYM + FF66 NYK + CC16 NXA + CC26 NAl ] 
K K K K ] 

] 
FF16 NYM + DD16 NYK + FF11 NXA + FF12 NAl ] 

K K K K ] 
] Col 2 » 

FF26 NYM + DD26 NYK + FF12 NXA + FF22 NAl ] 
K K K K ] 

FF66 NYM + DD66 NYK + FF16 NXA + FF26 NAl J 
K 

CC55 NK1 

K ] 

+ CC16 NXM + FF16 NXK + CC11 NA2 ] 
K K K ] 

] 
+ CC26 NXM + FF26 NXK + CC12 NA2 ] 

K K K ] 
J 

+ CC66 NXM + FF66 NXK + CC16 NA2 ] 
K K K ] 

1 
+ FF16 NXM + DD16 NXK + FF11 NA2 ] 

: K K K ] 
] 

+ FF26 NXM + DD26 NXK + FF12 NA2 ] 

: K K K ] 
] 

+ FF66 NXM + DD66 NXK + FF16 NA2 ] 
I K K K ] 

] 

CC12 NK2 + CC11 NK1 
K K 

CC22 NK2 + CCI2 NK1 
K K 

CC26 NK2 + CC16 NK1 
K K 

FF12 NK2 + FF11 NK1 
K K 

FF22 NK2 + FF12 NK1 
K K 

FF26 NK2 + FF16 NK1 

CC45 NYA + CC55 NXA 
K K 

CC44 NYA + CC45 NXA 
K K 

FF16 NYM + FF11 NXA + FF12 NAl 
K K K 

FF26 NYM + FF12 NXA + FF22 NAl 
K K K 

FF66 NYM + FF16 NXA + FF26 NAl 
K K K 

DD16 NYM + DD11 NXA + DD12 NAl 
K K K 

ÜD26 NYM + DD12 NXA + DD22 NAl 
K K K 

DD66 NYM + DD16 NXA + DD26 NAl 
K K K 

CC45 N 

FF12 NYA + FF16 NXM + FF11 NA2 ] 
K K K ] 

] 
FF22 NYA + FF26 NXM + FF12 NA2 ] 

K K K J 
) 

FF26 NYA + FF66 NXM + FF16 NA2 ] 
K K K ] 

1 
DD12 NYA + DD16 NXM + DD11 NA2 ] 

K K K ] 
] 

DD22 NYA + DD26 NXM + DD12 NA2 ] 
K K K ] 

] 
DD26 NYA + DD66 NXM + DD16 NA2 J 

K K K ] 
] 

CC45 N ] 
K ] 

3 
CC44 N ] 

K ] 

Col 1 -

- CC45 NK1 
K 

- CC45 NK2 
K 

- CC44 NK2 
K 

Col 4 -Col 3 - Col 5 -
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Linear s t i f fness coefficients - KK (lines 254-258) 

KK11 - S31 NYM + S61 NYK + S l l NXA - S71 NKl + S21 NA1 
I , J I J I J I J I J I J 

KK21 - S32 NYM + S62 NYK + S12 NXA - S72 NKl + S22 NA1 
I , J I J I J I J I J I J 

KK22 - S22 NYA + S32 NXM + S62 NXK - S82 NK2 + SI2 NA2 
I , J I J I J I J I J I J 

KK31 - S33 NYM + S63 NYK + S13 NXA - S73 NKl + S23 NA1 
I , J IJ IJ IJ IJ IJ 

KK32 - S23 NYA + S33 NXM + S63 NXK - S83 NK2 + S13 NA2 
I , J I J I J I J I J I J 

KK33 - S83 NYA + S73 NXA + S23 NK2 + S13 NKl 
I , J I J I J I J I J 

KK41 - S34 NYM + S64 NYK + S14 NXA - S74 NKl + S24 NA1 
I , J I J I J I J I J I J 

KK42 - S24 NYA + S34 NXM + S64 NXK - S84 NK2 + S14 NA2 
I , J I J I J I J I J I J 

KK43 - S84 NYA + S74 NXA + S24 NK2 + S14 NKl 
I , J I J I J I J I J 

KK44 - S64 NYM + S44 NXA + S54 NA1 + S74 N 
I , J I J I J I J I J 

KK51 - S35 NYM + S65 NYK + S15 NXA - S75 NKl + S25 NA1 
I , J I J I J I J I J I J 

KK52 - S25 NYA + S35 NXM + S65 NXK - S85 NK2 + S15 NA2 
I , J I J I J I J I J I J 

KK53 - S85 NYA + S75 NXA + S25 NK2 + S15 NKl 
I , J I J I J I J I J 

KK54 - S65 NYM + S45 NXA + S55 NA1 + S75 N 
I , J I J I J I J I J 

KK55 - S55 NYA + S65 NXM + S45 NA2 + S85 N 
I , J IJ IJ IJ IJ 
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Nonlinear s t i f f n e s s c o e f f i c i e n t s - FF ( l i n e s 282-288) 

FFU1 » ((S21 + S U ) NYP + (S21 + SU ) NYP ) NYP 
I , J, K K K J J J K I 

+ ( S U NKl + S U NKl ) NKl + (S21 + S U ) NYP NYP + SU NKl NKl 
K J J K I I I K J I K J 

FF333 - (S23 NYA + S33 NXA + S23 NYA + S33 NXA ) NYA 
I , J, K K J K J J K J K I 

+ (S33 NYA + S13 NXA + S33 NYA + S13 NXA ) NXA 
K J K J J K J K I 

+ (S23 NYA + S33 NXA ) NYA + (S33 NYA + S13 NXA ) NXA 
I K I K J I K I K J 

FF2U - ( ( - S21 - S U ) NYP + (- S21 - SU ) NYP ) NXP 
I , J, K K K J J J K I 

+ (S31 NKl + S31 NKl ) NK2 + (S22 + S12 ) NYP NYP + S12 NKl NKl 
K J J K I I I K J I K J 

FF311 - ( - S31 NKl - S31 NKl ) NYA + (- S U NKl - SU NKl ) NXA 
I , J, K K J J K I K J J K I 

+ (S23 + S13 ) NYP NYP + S13 NKl NKl 
I I K J I K J 

FF133 - ( - S33 NYA - S13 NXA - S33 NYA - S13 NXA ) NKl 
I , J, K K J K J J K J K I 

+ (S21 NYA + S31 NXA ) NYA + (S31 NYA + SU NXA ) NXA 
I K I K J I K I K J 

FF4U - (S24 + S14 ) NYP NYP + S14 NKl NKl 
I , J, K I I K J I K J 

FF422 - (S24 + S14 ) NXP NXP + S24 NK2 NK2 
I , J, K I I K J I K J 

FF433 - (S24 NYA + S34 NXA ) NYA + (S34 NYA + SI4 NXA ) NXA 
I , J, K I K I K J I K I K J 

FF321 - ( - S21 NK2 - S32 NKl ) NYA + ( - S31 NK2 - S12 NKl ) NXA 
I , J, K K J J K I K J J K I 

+ ( - S23 - S13 ) NYP NXP + S33 NKl NK2 
I I K J I K J 

FF421 - ( - S24 - S14 ) NYP NXP + S34 NKl NK2 
I , J , K I I K J I K J 

FF431 - - S34 NKl NYA - S14 NKl NXA 
I , J , K I K J I K J 

FF432 - - S24 NK2 NYA - S34 NK2 NXA 
I , J, K I K J I K J 
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Nonlinear stiffness coefficients - GG (lines 322-327) 

GG1111((I-1)*NNPE+J,K,L) - (NYP(I)*(NYP(J)*((3*CC22+6*CC12+3*CC11) 
1 *NYP(K)*NYP(L)+(CC124CC11)*NK1(K)*NK1(L))+NK1(J)*((CC12+CC11)*N 
2 Kl(K)*NYP(L)+(CC12-fCCll)*NYP(K)*NKl(L)))+NKl(I)*(NKl(J)*((CC12+ 
3 CC11)*NYP(K)*NYP(L)+3*CC11*NK1(K)*NK1(L))+NYP(J)*((CC12+CC11)*N 
4 Kl(K)*NYP(L)+(CC12+CCll)*NYP(K)*NKl(L))))/2.0 
GG3333((I-1)*NNPE+J,K,L) - (NXA(I)*(NXA(J)*(NYA(K)*((2*CC66+CC12)* 
1 NYA(L)+3*CC16*NXA(L))+NXA(K)*(3*CC16*NYA(L)+3*CC11*NXA(L)))+NYA 
2 (J)*(NXA(K)*((2*CC66+CC12)*NYA(L)+3*CC16*NXA(L))+NYA(K)*(3.*CC26 
3 *NYA(L)+(2*CC66+CC12)*NXA(L))))+NYA(I)*(NXA(J)*(NXA(K)*((2*CC66 
4 +€C12)*NYA(L)+3*CC16*NXA(L))+NYA(K)*(3*CC26*NYA(L)+(2*CC66+CC12 
5 )*NXA(L)))+NYA(J)*(NXA(K)*(3*CC26*NYA(L)+(2*CC664€C12)*NXA(L))+ 
6 NYA(K)*(3*CC22*NYA(L)+3*CC26*NXA(L)))))/2.0 
GG2111((I-1)*NNPE+J,K,L) - -(NK2(I)*(NK1(J)*((-CC26-CC16)*NYP(K)*N 
1 YP(L)-3*CC16*NK1(K)*NK1(L))+NYP(J)*((-CC26-CC16)*NK1(K)*NYP(L)+ 
2 (-CC26-CC16)*NYP(K)*NK1(L)))+NXP(I)*(NYP(J)*((3*CC22+6*CC12+3*C 
3 C11)*NYP(K)*NYP(L)+(CC12+CC11)*NK1(K)*NK1(L))+NK1(J)*((CC12+CC1 
4 1)*NK1(K)*NYP(L)+(CC12-K:C11)*NYP(K)*NK1(L))))/2.0 

GG3111((I-1)*NNPE+J,K,L) - -(NYA(I)*(NK1(J)*((CC26+CC16)*NYP(K)*NY 
1 P(L)+3*CC16*NK1(K)*NK1(L))+NYP(J)*((CC26+CC16)*NK1(K)*NYP(L)+(C 
2 C26+CC16)*NYP(K)*NK1(L)))+NXA(I)*(NK1(J)*((CC12+CC11)*NYP(K)*NY 
3 P(L)+3*CC11*NK1(K)*NK1(L))+NYP(J)*((CC12+CC11)*NK1(K)*NYP(L)+(C 
4 C12+CCll)*NYP(K)*NKl(L))))/2.0 
GG1333((I-1)*NNPE+J,K,L) - -NK1(I)*(NXA(J)*(NYA(K)*((2*CC66+CC12)* 
1 NYA(L)+3*CC16*NXA(L))+NXA(K)*(3*CC16*NYA(L)+3*CC11*NXA(L)))+NYA 
2 (J)*(NXA(K)*((2*CC66+CC12)*NYA(L)+3*CC16*NXA(L))+NYA(K)*(3*CC26 
3 *NYA(L)+(2*CC66+CC12)*NXA(L))))/2.0 
GG2211((I-1)*NNPE+J,K,L) - (NXP(I)*(NXP(J)*((3*CC22+6*CC12+3*CC11) 
1 *NYP(K)*NYP(L)+(CC12-K3C11)*NK1(K)*NK1(L))+NK2(J)*((-CC26-CC16)* 
2 NKl(K)*NYP(L)+(-CC26-CC16)*NYP(K)*NKl(L)))+NK2(I)*(NK2(J)*((CC2 
3 2+CC12)*NYP(K)*NYP(L)+(2*CC66+CC12)*NKl(K)*NKl(L))+NXP(J)*((-CC 
4 26-CC16)*NKl(K)*NYP(L)+(-CC26-CC16)*NYP(K)*NKl(L))))/2.0 
GG3311((I-1)*NNPE+J,K,L) - (NXA(I)*(NYA(J)*((CC26+CC16)*NYP(K)*NYP 
1 (L)+3*CC16*NK1(K)*NK1(L))+NXA(J)*((CC12+CC11)*NYP(K)*NYP(L)+3*C 
2 C11*NK1(K)*NK1(L)))+NYA(I)*(NXA(J)*((CC26-K:C16)*NYP(K)*NYP(L)+3 

3 *CC16*NK1(K)*NK1(L))+NYA(J)*((CC224CC12)*NYP(K)*NYP(L)+(2*CC66+ 
4 CC12)*NKl(K)*NKl(L))))/2.0 
GG3211((I-1)*NNPE+J,K,L) - (NXA(I)*(NK2(J)*((-CC26-CC16)*NYP(K)*NY 
1 P(L)-3*CC16*NK1(K)*NK1(L))+NXP(J)*((CC12+CC11)*NK1(K)*NYP(L)+(C 
2 C12+CC11)*NYP(K)*NK1(L)))+NYA(I)*(NK2(J)*((-CC22-CC12)*NYP(K)*N 
3 YP(L)+(-2*CC66-CC12)*NKl(K)*NKl(L))+NXP(J)*((CC26+CC16)*NKl(K)* 
4 NYP(L)+(CC26+CC16)*NYP(K)*NKl(L))))/2.0 
GG2133((I-1)*NNPE+J,K,L) - -(NK2(I)*NK1(J)*(NXA(K)*((-2*CC66-CC12) 
1 *NYA(L)-3*CC16*NXA(L))+NYA(K)*((-2*CC66-CC12)*NXA(L)-3*CC26*NYA 
2 (L)))+NXP(I)*NYP(J)*(NXA(K)*((CC26+CC16)*NYA(L)+(CC12+CC11)*NXA 
3 (L))+NYA(K)*((CC22+CC12)*NYA(L)+(CC26-K:C16)*NXA(L))))/2.0 
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Abstract—An integrated software system called NICE (Network of Interactive Computational Elements) 
is presently under development at the Applied Mechanics Laboratory. The overall purpose of this develop-
ment is to further the formulation, implementation and application of advanced computational methods in 
fluid and solid mechanics. From a software engineering standpoint, system design stresses functional 
modularity, decentralization, adaptability to interactive computing environments, and ability to accom-
modate research, development, analysis and testing activities. A clear separation is established between 
architectural elements such as analysis control and data management, and result-productive computational 
components called processors. This paper gives a functional overview of the NICE architecture, for which 
the author is responsible. Control functions that shape the user's perception of the system are emphasized. 

1. BACKGROUND 

During the past decade, there has been steady demand 
for expanding capacity and improving throughput of 
engineering analysis software. This demand has been 
fueled by requests for more realistic modelling capabil-
ities, growing interest in interdisciplinary problems, 
and pressure for the establishment of computer-based 
interaction among design, engineering, testing, and 
manufacturing organizations. 

How have these requirements been met? Usually by 
patching up old software, or by developing new soft-
ware based on unstructured, monolithic programming 
techniques. The predictable result has been software 
that is unreliable, difficult to use, costly to modify and 
maintain, overly dependent upon a small group of 
"insiders" who wrote it, and operable only on a 
specific computer system. 

Why have users put up with such monstrosities? 
There has been little choice. Those responsible state 
that large, tightly-coupled centralized systems bring 
economies of scale. Computer time is a precious 
commodity, they argue, not to be wasted by lowly 
humans. (The Godzilla syndrome climaxed in the late 
1960s, when it was seriously suggested that eventually 
one do-everything, gigantic computer program im-
plemented on a pyramid of supercomputers would be 
sufficient to fulfill the needs of all engineering organiza-
tions in the U.S.A.). 

Meanwhile, what has happened to computing? On 
the software side, technical breakthroughs in the early 
1970s have by now crystallized into concepts and 
products such as structured programming, generalized 
database management, flexible control structures, and 
"friendly" operating systems. These tools have been 
sucessfully applied in fields as diverse as real-time 
simulation, information retrieval, business data pro-
cessing, and manufacturing control. On the hardware 
side, impressive advances in microelectronics have led 
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to the availability of vastly more powerful, yet low-cost 
hardware. 

The impact of these advances on scientific com-
puting, particularly engineering analysis, has not been 
impressive. This delay can be ascribed to a combination 
of reasons ; among which overspecialization has cer-
tainly played a key role. Although scientific computing 
constitutes only a comparatively small portion of the 
overall data processing market, it is a portion that 
usually demands highly specialized skills. A closed-
world atmosphere tends to foster the "software guru" 
problem. It is perhaps not surprising then that many 
organizations, through no obvious fault of their own, 
eventually become captive of highly complex systems 
that transcend the comprehension of developers and 
users alike. 

Distributed processing 
The first computer revolution was launched by the 

appearance of the stored-program digital computer on 
a commercial scale. There followed a period of rapid 
but centralized growth characterized by "the machine 
as wondrous object". The second computer revolution 
took shape by the mid-1970s, and was rooted in the 
appearance of LSI circuits. Resulting economic shock 
waves brought a decentralization trend in which more 
and more power is placed at the local level. 

Computer hardware now extends over a fairly un-
broken spectrum ranging from supercomputers to tiny 
microprocessors. Economies of scale have changed : no 
longer is the larger machine the most cost-effective. 
Realization of this fact initiated the boom of distri-
buted processing, in which functionally specialized 
machines of varying power can talk to each other. The 
original concept was that of a tree of linked machines 
sprouting from a big mainframe and eventually ending 
at user terminals. This "pyramidal" view is now being 
superseded by more decentralized models. For exam-
ple, a local computer network might consist of a high-
performance minicomputer that communicates with 
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personal microcomputers on one side and with large 
"corporation database" machines on the other ; in this 
model, number-crunching services are provided by 
specialized local machines, rather than a giant super-
computer. 

Learning a lesson 
It is natural to translate — with due caution — these 

decentralized hardware organization models into en-
gineering analysis software. Many potentially useful 
concepts and tools are now here: top-down software 
design, structured implementation, interactive (and 
soon portable) operating systems, concurrent pro-
gramming, database management technology. 

The dominant theme of such an effort should be 
restoration of human pre-eminence through con-
ceptual simplicity and functional modularization. 
Quoting Kernighan and Plauger ([1], p. 83): "we 
consistently take the view that people cost a lot more 
than machines, and that the disparity will increase in 
the future. Therefore the most important consideration 
is that people get their jobs done with a minimum of 
fuss and bother". 

2. THE GENESIS OF NICE 
The decision 

After two decades of development of scientific and 
engineering software at the Applied Mechanics Lab-
oratory (AML), a decision was made in 1979 to 
construct an integrated software system for compu-
tational mechanics. The decision was prompted by 
factors such as software development becoming a 
major component of in-house activities, many tech-
nology contracts calling for machine-transportable 
production level codes, and perception of a rapidly 
changing computational environment (Section 1). 

A key challenge in building the integrated software 
system has been to accomodate the following con-
flicting usage requirements. 

Research environment. Flexible and visible "white 
box" analysis flow ; prompting conversational control ; 
easy access to intermediate results ; foolproof ways for 
branching "out of the system" into owncode and back 
again; human flow-time critical; computational 
efficiency, extensive error crosschecking and problem 
adaptivity unimportant. 

Production environment. Ability to hide analysis 
details in "black box" fashion; aids for minimizing 
input preparation efforts; extensive data validity and 
consistency crosschecking ; elaborate display facilities ; 
ability to dispatch jobs to linked computers ; reasonably 
efficient utilization of computer resources; problem 
adaptivity desirable. 

Design guidelines 
A real danger in trying to meet both extremes (with 

growth potential thrown in) is that another over-
complex monster may result. This would cripple it from 
birth. To forestall this danger, the following design 
guidelines were agreed upon. 

(1) Clear-cut separation between computational and 
architecture components, with the latter being de-
veloped in advance. 

(2) A network organization for independently execu-
table computational elements called processors. 

(3) Processors data-coupled through a common, on-

line, global database. 
(4) Multilevel control system based on a mnemonic 

command language. 
(5) Modularity enforced by common architecture 

components and processor configuration standards. 
Simple economics suggests that many processors 

will be prepared by the time-honored "divide and 
conquer" technique, i.e. cannibalization of useful 
portions of obsolescent monolithic codes. This hetero-
geneous provenance of processors dictates a database-
coupled organization [2-4]. 

High operational flexibility calls for a system 
organization in which processor execution order is 
unconstrained, that is, a network. This "macro-flow" 
is generally unknown in advance, and may be changed 
by conversational users on the spur of the moment. A 
similar requirement dictates the use of a problem-
oriented command language for micro-flow "white 
box" guidance within a processor. 

Finally, adaptation to the production end as well as 
growth provisions strongly suggests a multilevel 
control structure. The underlying idea is that a user 
should not have to know more about software opera-
tions than that necessary for accomplishing his tasks. 
Inasmuch as one starts with a basic command language 
at the research end, a logical way to move toward the 
"smart black box" end relies on providing user-
selectable procedural levels of increasing detail-con-
cealing power. 

NICE does it 
Finding a happy name for the system turned out to be 

the toughest decision. After many proposals, it 
appears that NICE (Network of Interactive Compu-
tational Elements) has the inside track. It certainly 
lends itself to a bevy of puns, saws, and double enten-
dres. 

3. ARCHITECTURE AND PROCESSORS 

Architecture 
The first design guideline listed in Section 2 calls for 

clear separation between productive computational 
functions on the one hand, and overhead functions 
such as control and data management on the other. The 
latter constitute the system architecture. (The term is 
used here in the sense of "a style and method of design 
and construction".) Architectural software serves 
three major functions. 

Control. General methods for guiding analysis flow 
among network processors (macro flow), and within 
each processor (micro flow). 

Data management. General methods for creating and 
maintaining online databases for residence of volatile 
and permanent data structures. 

Program library. General methods for developing 
and maintaining source code executable on a variety of 
machines and environments. 

In this paper the control function will be emphasized 
on two accounts : it offers the most novel (unpublished) 
features, and it strongly shapes the user's perception of 
the system. 

Processors 
Within the context of a database-coupled program 

network, the term processor is used here to mean an 
executable software element that performs a distinct 
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productive function, and communicates with other 
processors only through the global database. (For more 
extensive nomenclature, see [3] or Appendix A.) 

Figure 1 provides an overall view of the NICE system 
while an individual processor is under interactive 
control of a living user. The processor is shown as a 
"split coconut" to display its shell/kernel structure; 
further organizational details are provided in Appendix 
B. 

First things first 
Following modern programming methods [5-7], 

design of the architectural components proceeds first. 
Implementation preceeds that of any production-level 
processor by a reasonable lead time, estimated to be 
about a year in our case. This schedule does not imply 
isolated development, however; instead, production-
level architecture software is first exercised on a pilot 
network of miniprocessors. 

Why this separation? For most existing large-scale 
scientific codes, "architecture" developments have 
been post-facto reactions to crisis situations; e.g. 
moving to an interactive environment. Poorly planned 
development has led to some weird "spaghetti bowl" 
concoctions such as "data management systems" that 
do matrix calculations! Also, interwoven computa-
tional-architecture components die together when the 
program becomes obsolete. This wouldn't be so bad in 
itself, but cannibalization of potentially useful seg-
ments for building processor kernels (Appendix B) 
can then become excruciatingly painful. 

Two NICE views 
We may distinguish between two "dual" views of the 

NICE system as a network of connected processors. In 
the processor-oriented view sketched in Fig. 2(a), the 
processor is the fundamental entity. Think of the pro-
cessor as a ship moving through a sea of data. The 
largely-volatile working data pictured as the ship's 
wake is the local database, which bears the brunt of 
processor activity. When the processor stops, the wake 

Fig. 1. NICE assembly schematics: Common architectural 
components (Global data manager, CLIP); "Split" running 
processor showing shell (executive, tester, local data 
manager and global-local mover) and kernel; database 
plane (data libraries, command language procedures, help 

database, local database); user. 

disappears. Beyond that extends the calmer sea of the 
global database. 

In the database-oriented view sketched in Fig. 2(b), 
the global database is the fundamental entity, which 
effectively characterizes the network state over a 
timespan substantially exceeding that of individual 
processor executions. Processors may be abstractly 
viewed as auxiliary "data machines" (Fig. 3) through 
which global database contents are slowly modified. 

The processor-oriented view is natural in research 
projects, which emphasize actions and algorithms. As 
one moves into production analysis and large engineer-
ing projects, the database-oriented view dominates. 
Readers familiar with computer science terminology 
may recognize similarities with action- and object-
oriented conceptual views of modern programming 
languages [8]. 

Fig. 2. Dual views of NICE system: (a) processor-oriented; 
(b) global-database-oriented. 

Fig. 3. Processor abstraction as "data machine". 
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4. PROCESSOR CONTROL 

Let's examine the operation of a processor from the 
processor-oriented viewpoint. First we have to define 
some terms used in Fig. 1. 

User. The beneficiary of the processor activity. A 
human user guiding the processor from an online 
terminal provides the simplest example. In more 
advanced situations, "surrogate users" in the form of 
smart non-human controllers and schedulers may 
assume the guidance role. 

Running processor. The NICE processor under 
execution. 

Global data manager. The software element through 
which the global database is accessed. 

CLIP (Command Language Interface Program). A 
software element that works as a 3-way fixture for 
control and communication purposes. It is the only 
control system component that ''accompanies" a 
running processor. Command language syntax details 
arexovered in [9]. 

HD* 

^ 

Fig. 4. User-processor-database operating modes: (a) Pro-
cessor command ; (b) User directive ; (c) Processor directive ; 

(d) Message. 

Operating modes 
The main function provided by CLIP is the support 

of various operation modes. These are briefly des-
cribed below in increasing order of "whizziness". 

The standard operating mode is the processor-
command mode, depicted in Fig. 4(a). Commands may 
be either supplied directly by the user (solid line) or 
extracted from a command procedure residing on the 
global database (dashed line). These commands are 
interpreted by the processor executive. 

The user-directive mode is illustrated in Fig. 4(b). 
Directives are special commands identified by a 
leading keyword whose first character is an asterisk. 
Directives are interpreted directly by CLIP while the 
processor stays "out of the loop". 

Two especially important directives are : definition of 
a command procedure (headed by a *PROCEDURE 
keyword), and reference to an existent procedure 
(headed by a *CALL keyword). Processing of these 
directives travels the dashed-line path of Fig. 4(b). 
Transition from processor-command to user-directive 
mode is automatic. Once the directive is processed, 
CLIP returns to processor-command mode except 
while creating a procedure, in which case it waits for an 
*END directive (procedure definition being the only 
instance of a multi-command directive.) 

Figure 4(c) depicts processor-directive mode. The 
processor supplies a directive or stream of directives to 
CLIP for immediate execution. A particularly impor-
tant case, shown in dashed lines, is a *CALL directive 
that initiates reading of a command procedure. 
Transfer to processor-directive mode is effected via a 
processor reference to an "interrupt" entry point in 
CLIP. The processor-CLIP ensemble stays in this mode 
until the processor signals transfer to processor-
command mode. The user remains "out of the loop" 
throughout. 

Finally, the message mode, illustrated in Fig. 4(d), is 
an advanced variant of the processor-directive mode. 
The processor emits to CLIP a command procedure 
intended for downstream use by another processor. 
CLIP effectively functions as a "mailbox" through 
which the procedure is placed in the global database. 
Although the user is not directly involved in this action, 
he may access the message if desired. 

To read the message, the target processor enters 
processor-directive mode and issues a *CALL [Fig. 
4(c), dashed line]. The message mode forms the basis 
for synchronizing execution of NICE "mininetworks" 
to carry out complex computational processes such as 
coupled-system dynamics or optimization. 

Data management 
Only a brief picture of NICE data management will 

be given here, as the subject is treated in detail in Refs. 
[2-4]. Its key feature is distinction between two types of 
data management : local and global. Local management 
serves intra-processor operations, while global manage-
ment serves inter-processor operations. 

Local data management 
A local database is an organized collection of 

working data used by a running processor. Although 
part of the data may survive program execution (e.g. 
for quick self-restarts), it is inaccessible outside of the 
processor. 

In the construction of local database models, heavy 
emphasis is generally placed upon efficient utilization of 
scratch storage resources such as high-speed memory, 
extended core, drums, and paging disks. Consequently, 
local managers tend to be "made to order" to fit 
specific processors, and it is inappropriate to speak of 
the local database manager. Instead, a basic-level 
manager called VMSYST [10] is recommended for new 
processors. VMSYST is a virtual memory simulator 
based on a demand-paging scheme. There is also a 
basic utility called the "global-local mover", which 
effects transfers of data structures between the global 
database and a VMSYST-controlled local database. 
Both the local manager and mover are viewed as 
constituents of the processor "shell". 

Based on these two utilities, high-level local mana-
gers can be built to support specific needs. An example 
of these is a "nested matrix manager" that handles 
multilevel matrix structures arising in substructuring 
and model-partitioning tasks. 

Global data management 
The global database serves as network skeleton and 

circulatory system. It implements facilities for medium-
to long-term storage of processor-generated data 
structures, command procedures, and help documenta-
tion (see Fig. 1). It is partitioned into data libraries 
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residing on permanent disk files. A data library is an 
indexed file organization containing data sets identified 
by name. A library may be stored as data set of an-
other, a "telescoping" operation useful for tape 
archival. There is a common global database manager 
called EZ-GAL [11], which provides two levels of 
service: processor support and stand-alone library 
access. The global manager shares the same I/O access 
method with VMSYST. 

The global database is the architectural aspect that 
immediately impacts users "moving up the system" 
(Section 5). As such, its main attribute should be ease of 
use rather than computational efficiency. To accom-
plish this goal, global data structures should not only be 
readily identifiable, but subject to strict representation 
and self-description standards, and protected by 
various integrity checks. 

5. WHAT THE USER SEES 

It was noted in Section 2 that the architecture should 
be unobtrusive with regard to user tasks. In this section 
we examine the "incremental" aspect of the control 
functions in support of increasingly demanding usage 
levels. 

Calculator level 
A staff researcher is faced with the problem of per-

forming some simple matrix calculations to complete a 
study contract. Just before leaving for a better-paying 
job in Silicon Valley, his programmer has kindly told 
him that processor MUP (Matrix Utility Processor) 
can do the job. So he swallows his pride, walks to a free 
CRT and logs in. Breezily following the NICE Primer, 
he starts MUP execution. On response to the first 
command prompt, he enters 

DECLARE MATRIX ALFA (carriage return) 
Too late, he suddenly remembers that the type and 

order of ALFA must be also given. However, MUP 
does not seem fazed; it prompts: TYPE? Taken by 
surprise, the user types WHAT? The processor 
responds 
Type must be REAL, DOUBLE, INTEGER, CHAR 
TYPE? 

The user answers REAL. MUP now prompts: 
ORDER? And so it goes. After a while, the user gets in 
the "rythm" of MUPspeak. By trial and error, as well 
as occassional Manual consultations, he learns to load 
matrix values, print, edit, do operations. In a few hours 
the job is done and he triumfantly returns to his desk 
with a bunch of CRT hardcopies. 

This example depicts the ultimate "white box": 
calculator level. A continuous dialogue is established 
between processor and user. The latter is aware of each 
calculation step, may check and recheck inputs, 
intermediate calculations, and final results. Most 
algorithmic decisions take place in the user's brain; 
the processor is just an arithmetic helper. At no time is 
the user aware of the existence of global or local 
databases, command interpreter, processor shell ; all of 
this is irrelevant to the application. 

True, use of a processor as a virtual hand-held 
calculator is extremely wasteful of machine time. (Such 
use should really be carried out on a personal micro-
computer.) But it is very effective as far as human time 
is concerned, which is what matters. NICE users finish 
first. 

The helping calculator 
Next we find our programmerless hero working at 

home on a borrowed terminal, struggling to finish 
another project. He is again talking to friendly MUP. 
But amidst a complex calculation sequence, he 
suddenly can't recall the syntax of a critical command. 
Trial and error is out, saving run state is out (remember, 
he doesn't know about the global database), and, being 
absent-minded, has left the Manual at the office. 
Desperate, he tries HELP, and wonderful things 
happen : MUP informs him that a help library (what-
ever that is) has been attached ; that "command help 
mode" has been entered ; and finally displays a menu of 
help qualifiers. Yes, there is the one! He enters the 
appropriate qualifier and suddenly a condensed 
section of the MUP Manual is printed. To get out of 
help mode, he is told to type END HELP; MUP says 
that the help library has been released, and is ready to 
accept the next computational command. 

The NICE architecture saved our hero when he 
didn't even know of its existence. On intercepting the 
cry for HELP, MUP entered processor-directive mode 
(Section 4), and issued a stream of directives to CLIP. 
The first directive resulted in the attachment of a global-
database-resident help library for MUP. Condensed 
Manual sections pertaining to each MUP command 
were therein stored as command procedures, with their 
content "defused" as comments. 

The "help menu" is merely a table of command 
procedure names. When the user requests concise help 
on command ADD, for example, he enters HELP 
ADD; this causes MUP to re-enter the processor-
directive mode and emit an appropriate *CALL 
preceded and followed by directives controlling termin-
al display format. The end result is that help text appears 
magically on the terminal. 

This help mechanism offers some nice features. 
Any help library can be accessed from any running 
processor (default being that processor's library) at any 
moment. There is no need to store help text in the 
processor itself. Accessing and display procedures are 
part of a uniform architecture external to the processor. 
Text centralization minimizes documentation lags. 
Interim changes or fixes can be rapidly posted as com-
mand procedure text to be *CALL-displayed at 
processor execution start. 

The calcunet level 
Our hero has done so well in the last project that he 

lands a juicy follow-on involving far more complex 
calculations. Preliminary study reveals that the project 
calls for 

(1) Some matrices to be generated by NICE pro-
cessors SH, RD and LU, before being presented to 
MUP; 

(2) Some matrices to be generated by user-written 
code, because no NICE processor would make them ; 

(3) Results from MUP to be postprocessed by 
another user-written code before being sent to a NICE 
graphics processor. 

From conversations with other NICE users, our 
researcher becomes aware of the existence of the global 
database, and its usefulness for moving data among 
NICE processors as well as between NICE processors 
and owncode. He quickly grasps that data structures 
such as matrices can be saved or retrieved from any 
NICE processor by learning a few commands. To do 
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this from owncode is a bit trickier, as more details 
about global database organization (e.g. data library 
creation and access, table-of-contents fields, data set 
storage) have to be mastered; but it is not a big deal. 

We have just sketched the calculator-network level, 
or "calcunet" for short. A user working at this level is 
necessarily aware of the existence of multiple NICE 
processors and the global database ; and of possible use 
of the latter for transmitting data between processors 
and owncode. He need not be aware of local databases 
or fancy command-driven control modes. 

The procedure level 
For most research work the computational facilities 

provided by the calcunet level are sufficient. But as one 
gets into real-world applications, the detailed, com-
mand-by-command guidance of processor activities 
soon becomes intolerable. (The same thing may be said 
for repetitive research tasks involving parameter 
studies.) It is then time to move to the command 
procedure level. This level provides: 

(a) detail-hiding representation of tasks expressable 
as groups of commands ; 

(b) looping (DO WHILE) and branching (IF) con-
constructs controlled by user-defined or processor-set 
PARAMETER-like variables; 

(c) an "encapsulation" mechanism for entities such as 
processor-originated messages (Section 4) and help 
text; 

(d) processor developers the ability to define macro-
like extensions from basic commands right up to the 
"smart black box" level. 

A NICE command procedure can have a very 
general structure. In essence it consists of a header 
identifier, an optional list of formal arguments, a 
"procedure template" body, and a terminator. A 
fairly trivial example : 

*PROCEDURE ADD X TO Y (X ; Y ; Z) 
.Z. = .X. + .Y. 
*END ADD X TO Y 

A possible reference : 

*CALL ADD X TO Y (Z = RESULT; X=OPl ; 
Y=OP2) 
Here OP1, OP2 and RESULT are local matrix 

names, which replace period-delimited matching text in 
the procedure body. Replacement takes place before 
the command is processed, so that the net effect of the 
*CALL is equivalent to issuing the command 

RESULT=OPl+OP2 

For this trivial example the use of a procedure is 
obviously not worth the trouble, but the situation is 
different when one confronts hundreds or thousands of 
commands. 

The keyword-driven, call-by-name mechanism 
allows great freedom in designing high-level language 
constructs. For exam pieman actual argument may be a 
stream of commands or directives, a procedure name or 
even the text of another procedure ! A procedure may 
call another procedure ; the call tree may extend down 
to 12 levels. A procedure may call itself, which greatly 
facilitates production of recursive control systems for 
things such as nested generation of discrete models. 

To make effective use of this level, the user's know-

ledge of the global database (in which procedures 
reside) has to be augmented by a fairly deep under-
standing of the command language. Armed with such 
knowledge, a programmer-user may be able to hook 
his own processors to CLIP. A detailed knowledge of 
local data management, however, is not yet required. 

The macroprocessor level 
We finally arrive at the operational level for which 

NICE was primarily designed: computational pro-
cesses of interest in advanced nonlinear dynamics and 
optimization. Two examples: 

(1) A coupled-field mechanical model is being 
numerically integrated by a partitioned solution pro-
cedure [12, 13]. This involves "almost cyclic" the ex-
ecution of matrix processors. The execution flowpath 
may run sequentially or in parallel; some processors 
may be linear, others nonlinear. There may be irregu-
larly spaced breakpoints corresponding, e.g., to step-
size changes, automatic state save (for possible 
restarts), or user interrupts. 

(2) A mechanical system is being optimized under the 
direction of a mathematical programming processor. 
This involves repeated execution of analysis processors 
such as structural stress, vibration and stability 
analyzers, in response to optimizer requests. Irregular 
references to other auxiliary processors (e.g. a full 
Hessian calculation) may occur. 

We see that computer analysis of these problems 
leads naturally to "quasi-cyclic" processor execution 
streams. Hands-on guidance, even with the help of 
command procedures, may become tedious (im-
possible, of course, in batch operation). Two "pro-
cessor ensemble" constructs, macroprocessors and 
mininet works (often abbreviated to mapros and mini-
nets) cater to these applications. As mininets can 
contain macroprocessors, we deal with the latter first. 

A macroprocessor is constructed by tightly bundling 
a set of processors so that their local databases coalesce. 
For this to be feasible, the same local data manager and 
global-local mover must be used. A master command 
procedure is written as control "wrapper". This pro-
cedure consists basically of one big loop ; references to 
lower-level processor-driving procedures appear during 
loop traversal. In addition, the master procedure 
should take care of run contingencies via branchs and 
interrupts. A mapro online user effectively assumes the 
role of a spectator watching a "smart black box" 
perform like a trained seal, and intervenes only on 
breakpoint emergencies. 

This tightly-coupled organization aims at high 
computational efficiency, as intermediate results can 
share scratch workspace instead of using up permanent 
online storage resources. Macroprocessors may be 
regarded as "problem customized" processors that 
are discarded once the problem is solved. (As they are 
not maintained, the question of monolithic code build-
up does not arise.) Whoever puts a mapro together must 
have a deep knowledge of command procedures, 
command interpretation shells, and the use of local 
databases as communication media. 

The mininet level 
The most advanced usage level considered here is the 

mininetwork. This is a set of processors and/or 
macroprocessors that talk to each other via messages 
(Section 4). The master procedure of the mapro level is 
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impersonated here by a "go-between" controller called 
the mininet scheduler (MNS). 

To illustrate the approach, consider an implicit time 
integration control processor that decides that a step-
size change would be a good idea. To continue the 
integration process, the dynamic stiffness matrix has to 
be reformed and factored. But the time integrator does 
not contain matrix processing facilities; it is only an 
overseer. Also, a NICE processor is forbidden to 
execute another directly. So the integrator prepares a 
command procedure encoded in the language of the 
target matrix processor detailing "things to do", puts it 
into the global database, and goes into hibernation. 
The MNS, which regularly awakens, detects the 
message and calls the matrix processor into action. The 
latter enters processor-directive mode, reads the 
message, performs the operations, leaves the results in 
the global database, and writes a "job done" message. 
MNS then wakes up the integrator, which resumes 
activities. 

Who writes MNS? Another program; in fact, an 
intelligent analysis controller [3]. But this would take 
us too far up the system. 

The mininet mode offers some appealing features : it 
maximizes modularity, permits different local data-
bases, easily adapts to parallel processor executions, 
and can be readily monitored by online users. 

The message-driven coroutine mechanism just des-
cribed in old hat in computer science. But at this level 
we may encounter a major stumbling block : the host 
operating system. It is very difficult, or even downright 
impossible, to implement satisfactorily such control 
sequences on the medieval operating systems of most 
large mainframes. But it is easy on modern operating 
systems such as VAX/VMS, UNIX or SOLO, which 
offer standard facilities for task synchronization (e.g. 
mailboxes, pipelines, semaphores). The fact that most 
of these "friendly" yet powerful operating systems are 
offered on minicomputers (and even microcomputers) 
tells us something about where the action is. 

6. CENTRAL DIFFERENCE INTEGRATION 

To illustrate the appearance of macroprocessors and 
mininetworks in nonlinear dynamics applications, let's 
consider the explicit time integration of an undamped 
mechanical model obeying the equations of motion 

Mx + Fs(x) = Fil(i) (1) 
In eqn. (1), x is the state displacement vector, M the 

mass matrix, F^x) the internal stiffness force vector 
and ¥A(t) the applied force vector. (More complex 
examples are discussed in [13, 14].) Now the variable 
step central difference algorithm of [15] for (1) is: 

(a) Given: x„ and x„_ 1/2 at time station t = tn; 
(b) evaluate force vectors Fs„ and ¥An; 

(2) 
(c) select next stepsize h = tn+1—tn; 
(d) x n + 1 / 2 =x„- 1 / 2 +/ iM- 1 (F^ -F S n ) 
Ve) Xn+ 1 =Xn + "Xn+ 1/2 
(f) n: = n + l; repeat. 

For step (c), access to x„_ ^ and x„_ 3/2 is required. 
The algorithm (2) may be represented in the standard 

data flow diagram ofstructured design [5] as depicted in 
Fig. 5. The three main computational components, 
shown as "bubbles", are : 

(I) Integrator: estimates stepsize, advances solution; 
(A) Analyzer: calculates internal force vector; 
(F) enForcer : obtains next applied force vector. 

It is important to understand that in a data flow 
diagram, "bubbles" (I), (A) and (F) are not yet 
physical processors, but abstractions of processors as 
in Fig. 3. However, the data flow diagram does suggest 
ways in which processors can be written and connected. 

There is much to be said for coding the integrator (I) 
as a separate processor, which can be checked and 
tuned-up once and for all. But the force evaluators (A) 
and (F) are more problem-dependent. In particular, the 
analyzer may be fairly complex if stiffness force 
calculations require access to a library of nonlinear 
finite elements. The applied forcer (F), on the other 
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Fig. 5. Data flow diagram (after [5]) of central difference time integration for nonlinear structural dynamics. 
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hand, is usually simpler and can often be user-coded as 
needed (e.g. to access and digitize an explosion or 
earthquake record), and discarded when done. 

The three processors may be linked in macropro-
cessor or mininetwork form. One virtue of the latter is 
that (F) and (A) may be executed in parallel (see. Fig. 5) 
should that prove useful. Now suppose that the mass 
matrix M varies with t ime; incorporation of such a 
feature in a mininet structure would be fairly trivial as it 
would not affect the internal logic of (A) and (F); or 
even that of (I) provided the stepsize control logic 
accounts for possible mass variations. 

7. CONCLUDING REMARKS 
There is a synergistic effect in program co-operation. 

Their combined power can be much greater than their 
aggregate power as isolated entities. A simple example : 
a structure and a fluid analyzer can, by themselves, 
solve certain problems in structural and fluid mechan-
ics ; if they can be made to work together, a "tensor 
product" domain of fluid-structure interaction prob-
lems can be handled. Through this approach, a vast 
range of problems in nonlinear mechanics can be 
attacked by an assorted combination of tools from a 
"computational benchmark" [16]. This viewpoint 
encourages growth in lieu of reinvention. 

In view of obvious payoffs, why has program 
integration been so difficult? Because if an unstructured 
approach is followed, increases in application power 
are rapidly overwhelmed by the nonlinear growth in 
program complexity [17]. The whole thrust of modern 
software engineering is to devise techniques that abate 
or eliminate this growth. The architecture described 
herein is merely an expression of these techniques 
biased toward a particular application environment. 
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APPENDIX A 
Glossary 

CLIP—Command Language Interface Program. A com-
munications controller described in Sec. 4. 
Closed Interface—An interface in which communication is 
effected by supplying address/name pointers to data 
structures. 
Command—A statement of a command language, trans-
lated as an individual action. 
Command Language— An interprétable language used to 
guide processor execution in step-by-step fashion. 
Controller—A software element whose primary function is 
to direct the activities of other software elements. 
Converter—A kernel processor with single data structure 
input. 
Database—In generic terms, a named collection of data 
organized according to a data model, and serving a specific 
purpose. 
Data library—A named partition of a global database, 
which can be attached to a running processor as a physical, 
directly accessible entity. 
Data set—A named sequence of logical records. 
Distributed database—A global database partitioned over 
several computer systems. 
Global database—A database residing on permanent on-
line storage and accessible by a network of communicating 
programs. 
Help database—A global database containing program 
documentation text for online examination by interactive 
users. 
Interface—The point (or set of points) in a software element 
at which control or data is received or transmitted. 
Kernel processor—A processor that generates only one 
data structure as its main product. 
Local database—A database attached to, and accessible 
only by, a running program. 
Logical module (also: bubble)—The conceptual visualiza-
tion of a software element as a "data machine" that per-
forms a specific function. 
Macroprocessor (also : mapro)—An assembly of processors 
bundled by a master command procedure and communicat-
ing through a common local data manager. 
Manager {Data)—A software element whose primary func-
tion is to store, maintain and retrieve data. 



Architecture of a distributed analysis network for computational mechanics 413 

Mininetwork (also: mininet)—A subnetwork of pro-
cessors and macroprocessors bundled by an message-
handling controller and communicating only through the 
global database. 
Mininet scheduler—A mininetwork task-synchronization 
controller. 
Module (also: box, physical module)—The implementa-
tion of a logical module as a cohesive software element with 
closed and regular interfaces. 
NICE—Network of Interactive Computational Elements. 
The program network discussed in this paper. 
NICE processor—A processor organized as a primary 
module, and which meets the guidelines stated in Appendix 
B. 
Primary module—A module implemented as an inde-
pendently executable program. 
Processor—A software element whose primary function is 
the production of data structures. 
Processor kernel—The productive nucleus of a NICE 
processor. 
Processor shell—A layer of software that interfaces a NICE 
processor kernel with external architectural components 
such as CLIP and the global manager. (Terminology sug-
gested by the UNIX system [18].) 
Program network (also : network)—A set of controllers and 
processors communicating through a common global data-
base manager. 
Regular interface—An interface organized so that the soft-
ware element is minimally coupled with its environment, in 
the sense of Yourdon-Constantine [5]. 
Routine—A processor that does not meet NICE standards. 
Software element—An aggregate of computer-processable 
statements identified by a name, and communicating with its 
access environment through well-defined interfaces. 
Temporary database—The portion of a local database that 
disappears upon run termination. 
Utility (also: software tool)—A module that provides actual 
or potential support to several higher-order modules, but is 
not command executable. The main purpose of a utility 
program is to help develop other programs. 
Working database—The database upon which a running 
program operates at a given moment. It embodies its local 
database as well as possibly segments of the global database. 

APPENDIX B 
Processor characteristics 

Below is a summary of general characteristics of NICE 
processors, which may be of interest to software designers 
faced with a similar development. Although some require-
ments may be altered in light of pilot-network experiences, 
the overall design is expected to be stable. 
Composition: shown in Fig. 6. A computational kernel is 
surrounded by a protective shell (a la UNIX). The shell 
contains four overhead components : executive, tester, local 
data manager, and global-local mover. The executive is a 
control interface that receives or submits commands via 

CLIP 

Executive 

KERNEL >y\q % U . DATA 
AÄ<><v\XX\/ I / MANAGER 

SHELL ~ ^ \ ^ Q 1 X > ^ 
>. Local Manager 

LOCAL 
DATABASE 

Fig. 6. Internal structure of a NICE processor. 

CLIP (see Section 4). The tester is a self-contained 
command-driven checker that exercises kernel operations. 

The data management components are described in Section 4. 
Development : there is only one processor developer, who 
remains responsible for maintenance. An "usage license 
fee" might be instituted to build maintenance funds. For 
new processors, top-down design and implementation as 
well as incremental testing are strongly recommended. 
How big: we are talking about fairly small processors; 
typically having 500-10000 kernel statements. (Indepen-
dently executable program modules of present large-scale 
analysis codes are an order of magnitude bigger : generally 
10000-100000 statements.) 
How many: probably 100-200 produced at a 20-50 yearly 
rate. Complemented by hundreds of user-written, not-so-
NICE routines, which eventually are either discarded or 
enhanced into processors. 
Control: a processor, including its tester, can only be 
executed through command statements. The choice of 
command interpretation and action translation is left at the 
developer's discretion. 
Internal modularity : kernel should not talk directly to the 
global data manager. Communication with the local data 
manager and global-local mover is to be confined to high 
kernel levels. 
Language: FORTRAN 77 recommended. Other languages 
such as PASCAL are acceptable if appropriate FORTRAN 
linkages are provided. 
Local data management: processors potentially useful as 
macroprocessor components (Section 5) must use same local 
data manager and global-local mover utility. 
Error checking and firewalls : in processors especially sus-
ceptible to erroneous or inconsistent inputs, 1/4 to 1/2 of 
kernel programming should be devoted to data validation 
and attendant protection mechanisms. 
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Abstract—The finite element solution program MAGNA, developed for the nonlinear analysis of three-
dimensional structures, is described. The program contains a fully compatible library of nonlinear elements, 
permitting shells, solids and other members to be joined in virtually any combination. Element-level 
computations, whose efficiency is critical in three-dimensional analysis, are discussed, and a method of 
implementation is described which eliminates a number of large matrix manipulations and produces highly 
vectorizable code. Applications are presented to demonstrate the capabilities and efficiency of the program. 
General areas of research which are necessary for the improvement of efficiency in three-dimensional non-
linear analysis are also discussed. 

INTRODUCTION 

Nonlinear finite element analysis experiencing a grow-
ing popularity in the aerospace, nuclear and automotive 
industries as a means of assessing structural integrity 
and safety under extreme service conditions. Structural 
problems involving large-displacements, plastic defor-
mation or buckling instabilities can presently be an-
alyzed with considerable confidence, to reduce the time 
and cost associated with preliminary design and design 
qualification. 

Most practical problems, however, are truly three-
dimensional, and the required nonlinear analysis so 
costly that undesirable simplifications are introduced 
in the finite element calculations. In this regard, it is 
generally stated that equation-solving represents the 
bulk of the computational effort in any finite element 
analysis. In three-dimensional nonlinear solutions, 
particularly with higher-order elements, this is often 
decidedly not the case: computations performed at the 
individual element level (nonlinear stiffness, force 
residuals) may in fact account for as much as 90% of the 
total computing cost. Relatively little research effort 
has been devoted to increasing the efficiency of these 
element-level algorithms, in spite of the fact that sig-
nificant improvement in this area is necessary if three-
dimensional nonlinear calculations are to be performed 
cost effectively. 

Additional difficulties arise in many practical applic-
ations in which it becomes necessary to combine con-
tinuum finite elements (e.g. isoparametric solids) with 
other elements based upon specialized formulations 
(beams, plates or shells). The inherent incompatibility 
of these two classes of elements as implemented in most 
programs dictates the use of special constraints to 
enforce the desired displacement compatibility between 
elements. However, the need to consider rotational 
degrees of freedom which are not vector quantities 
makes the correct specification of these constraints 
particularly difficult. In nonlinear analysis, the precise 
interpretation of incremental rotations also becomes 
important, increasing the likelihood of errors in the 
model. 

This paper describes the finite element solution 

program MAGNA (Materially And Geometrically 
Nonlinear Analysis), which has been developed spec-
ifically to treat practical problems in which general 
modeling capabilities and the consideration of three-
dimensional nonlinear effects are required. Particular 
attention has been afforded the two problem areas 
mentioned above. The element-level computational 
procedures have been designed for efficiency in treating 
nonlinear elements with many degrees of freedom and 
relatively large bandwidth. For modeling flexibility, 
all of the finite elements in MAGNA are fully compat-
ible, permitting plates, shells, solids and other com-
ponents to be joined in virtually any combination. 

The subsequent presentation includes a brief theor-
etical description, a summary of the MAGNA finite 
element library, and a discussion of some of the numer-
ical procedures used for nonlinear element calcula-
tions. Some typical applications are discussed, and 
future areas of research and development are outlined. 
For additional description of the program, the inter-
ested reader should consult Ref. [1]. 

THEORETICAL CONSIDERATIONS 

The nonlinear analysis performed by MAGNA is 
incremental in nature; a total Lagrangian description 
of motion is used, in which all kinematic and force 
quantities are referred to the initial configuration of the 
structure. The governing equations for a single incre-
ment between times t and ί + Δί derive from the 
principle of virtual work in the form [1, 2]: 

Vfiimek^ij+tSiftlij - oPÜM] d V 
JoV 

- (t+At)fMdV-\ {t+At)tfiUiaA (1) 
J0V J0A 

+ [ßifeü+ oPAMI dV= 0. 

Here a left subscript indicates the time at which a 
particular quantity is evaluated, and lack of a left sub-
script denotes an incremental value. In keeping with the 
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Lagrangian formulation, eu represents the (incre-
mental) Green-St. Venant strain tensor, which is 
divided into linear and nonlinear components 

*α=εα+1ί} (2) 
where 

ευ = i(uij + UJJ + tuk,Vkj + tukJukJ) (3) 

Vij=fykjUkJ (4) 
and Ξη are the increments of the symmetric Piola-
Kirchhoff stress tensor [3]. The body forces (i+Ai)/j and 
surface tractions (f+Ai)r, are understood to be the forces 
acting on the body at time t + Δί, per unit initial volume 
and area, respectively. The instantaneous tangent 
modulus tensor tDijkl, at small strains, is determined 
using the engineering stress-strain curve of a material. 

Upon discretization by the finite element method, 
eqn (1) becomes 

(fKT + iKG)Ü + 0MU = ( t + A t ) P - i R- 0 M f Ü. (5) 

Equation (5) is nonlinear and, after discretization with 
respect to time, can be solved iteratively for the nodal 
displacement increments U. The major computational 
tasks in the nonlinear finite element solution are the 
formation of the tangent stiffness KT, the geometric 
stiffness KG and the internal forces R, the repeated 
solution of the resulting system, and updating of the 
state of stress and strain within individual finite ele-
ments. 

The formulation leading to eqn (5) is sufficiently 
general to include large displacements, elastic-plastic 
deformations, and static or dynamic instability. All of 
the finite elements in MAGNA are based upon the 
governing equations outlined above, either directly 
or with slight modifications. Elastic-plastic calcula-
tions are performed directly in terms of the Piola stress 
and Green's strains for efficiency; this simplification 
involves the assumption of small strains and is generally 
not restrictive in practice. For the solution of dynamic 
response problems, eqn (5) is discretized in time using 
the generalized Newmark's method [4, 5], which leads 
to the simultaneous equations 

^e f fU^^ .^Pe f f - ^ -oM.Ü (6) 

which must be solved at each increment. The matrix 
fKcffis the "effective stiffness matrix", a linear combina-
tion of the instantaneous stiffness, mass and damping 
matrices; (i+At)Peff represents the "effective load vector", 
which depends upon the current mechanical and 
inertial forces acting on the model. The choice of an 
implicit method of integration in time is appropriate 
for most problems involving three-dimensional con-
tinua, since critical time steps for explicit integration 
tend to become quite small when solid elements are 
are used. 

FINITE ELEMENT LIBRARY 

Perhaps the most unique feature of the MAGNA pro-
gram is its fully compatible family of elements, which 
permits thin plates, shells, three-dimensional solids, 
membrane-type elements and truss members to be 
joined in virtually any combination. Compatibility of 
displacements on all interelement boundaries is auto-
matically enforced, eliminating the need for the spec-
ification of constraints between dissimilar element 
types. 

For the three-dimensional solid elements (Fig. 1), the 
element displacement shape functions are constructed 
using a variable-number-of-nodes scheme which per-
mits the use of from 8 to 27 node points per element. 
The shape function algorithm is a generalization of the 
8-21 node procedure due to Bathe and Wilson [6], and 
permits the definition of roughly one-half million 
different nodal patterns. This facility provides con-
siderable flexibility in constructing transitions between 
coarse and fine regions of a finite element model. An 
additional useful feature of the solid element imple-
mentation is the ability to treat individual elements 
selectively, as "tangent-stiffness" elements (correspond-
ing to eqn (5)), "pseudo-force" elements (in which non-
linear effects in eqn (5) are collected on the right-hand 
side of the equations), or "averaged-tangent-stiffness" 
elements (see the following section on element-level 
calculations). The option of specifying the method of 
accounting for nonlinear effects separately for each 
element can lead to considerable cost savings in many 
problems. In addition to the 8-27 variable-number-
nodes element, the program contains separately pro-
grammed versions of the eight-, sixteen-, and twenty-
node isoparametric solids, as well as a variable-node 
element based on a maximum of twenty nodes per 
element. 

Shell analysis is performed using elements based 
upon the penalty function formulation of Refs. [7, 8]. 
Equation (1) is rewritten in terms of locally shallow 
shell coordinates, and penalty terms are appended 
which enforce the conditions of thin shell behavior in 
the limit of element size. The most important feature 
of the element, shown in Fig. 2, is its complete compat-
ibility of displacements, on all external surfaces, with 
standard isoparametric solid elements; thus, shell-
solid transitions or layered sandwich-type construc-
tions can be modeled without difficulty. Arbitrarily 
large displacements and rotations can be considered, 
as well as shells with nonstandard edge conditions, and 
lateral boundaries which do not coincide with the 
direction normal to the shell midsurface. Higher-

Fig. 1. Three-dimensional isoparametric solid element. 
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x,u 

Fig. 2. Penalty function shell element. 

order versions of this element and a compatible beam 
element formulation are under development. 

ELEMENT LEVEL COMPUTATIONS 

In three-dimensional, nonlinear elements, the choice 
of an algorithm for evaluation of the matrices of eqn (5) 
is crucial to overall analysis efficiency, since 

(a) three-dimensional elements generally possess a 
relatively large number of degrees of freedom per 
element, and 

(b) the operations generally must be performed 
numerous times during a nonlinear solution. 
A breakdown ofcomputing times for a typical nonlinear 
static solution using isoparametric solid elements is 
given in Table 1. The analysis consists of 16 loading 
increments, performed with a five-element model 
(20 nodes/element) having 147 degrees of freedom. 
Element and system stiffness matrices are recomputed 

at each increment. Table 1 shows that about ten times 
as much CPU time is spent on element-level calcula-
tions as on equation solving. Although this particular 
example is quite small, these proportions do not 
change significantly for problems an order of magnitude 
larger. 

The basis of a number of algorithms for evaluating 
the element stiffness matrix is based upon the use of the 
incremental stress-strain and linearized strain-dis-
placement relations in matrix form, 

s = De (7) 

e = tBu, (8) 

along with the finite element approximation 

u = NU (9) 

where U are the nodal displacements. The tangent 
stiffness matrix for an element then becomes 

,ΚΓ = f ΝΓ
(ΒΓΑΒΝαΚ 

J0v 
(10) 

Equation (10) can be evaluated by numerical integ-
ration to form tKT. The matrix multiplications can be 
performed directly, or a factored form employed, 

¥dV 

where 

, K r = i ,FT, 

tF = fD12,BN 

(in 

(12) 

and ,D1/2 represents the Cholesky factor of ,D. The 
required operations in either case are quite expensive, 
involving numerous inner products between relatively 
short vectors. In geometrically nonlinear analysis, tB is 
a function of the deformation gradients, while in 
materially nonlinear problems, ,D may also vary within 
an element; thus, the integrand of eqn (10) must be 
completely reformed at each integration point. Even 
the use of sparse matrix algorithms does not improve 
efficiency to an acceptable level. 

In the present development, a modification of the 
element stiffness algorithm proposed by Gupta and 
Mohraz [9] is used to improve the effectiveness of 
three-dimensional element calculations. Let Δ be a 

Table 1. Distribution of computing time for a small 3-D nonlinear analysis 

Function 

Input and File 
Initialization 

Matrix Assembly 

Equation Solution 

Loads Processing 

Element-Level 
Computations 

Solution Recovery 

TOTAL 

Times Performed 

1 

16 

16 

16 

17 

16 

-

Total 
CPU Sec+ 

0.254 

1.651 

4.336 

0.330 

43.342 

1.214 

51.127 

Percentage 

0.5 

3.2 

8.5 

0.6 

84.8 

2.4 

100.0 

All computing times fo*· the CYBER-175 computer (CPU speed 
approximately 2X CDC 6600) 
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vector of incremental displacement gradients, 

Δ7 = [u,x u,y u,2 v,x v,y v,z w,x w9y w,J. (13) 

The linearized incremental strains are then written as 

e = tCA, (14) 

and the tangent stiffness is defined by 

<5UT,KrU= f ouJCfOjCAdV. (15) 

If the vector of incremental nodal displacements is 
partitioned as 

so that 
= NU, 

(16) 

(Π) 

tKT — 

K n K12 K 
^ 1 2 ^ 2 2 K 

^ 1 3 ^ 2 3 K 

Defining the symmetric matrix 
. G ^ C ^ C 

then the element stiffness can be arranged in a similar 
fashion, 

(18) 

(19) 
and denoting its entries by g{ij], eqn (15) is rewritten 
using eqn (18), 

£ £ «5UfK,,U,= 
i = l j=l 

Λ 3 3 3 3 

Σ Σ Σ Σ ^[3i-3 + Ui-3 + i ] " A l ^ 
JQV i= 1 j= 1 fc= 1 / = 1 

(20) 

f 3 3 

Ky= Σ Σβΐ3."-
J0v fc=i /= i 

3 + k,3j-3 - , ,Ν^Ν,αΚ (21) 

Equation (21) can be used to advantage in forming the 
element tangent stiffness, as follows. Each of the six 
matrices N ^ N 7 ^ are computed and stored in the form 
of vectors. Each such vector is of length n2, where n is 
the number of shape functions (i.e. nodes) for the 
element. Matrix rG is also formed, and the individual 
matrix partitions, Kf/ in eqn (18), are accumulated in 
vector form as indicated in eqn (21). Once the results 
for all integration points have been summed, the 
vectors containing the Ktj are distributed to the proper 
locations in tKT. Thus, the primary operations to be 
performed at each integration point are simply sum-
mations of scalars times vectors. The length of the 
vectors involved in these operations are relatively large 
(400 for a 20-node element, 729 for a 27-node element, 
etc.), and at most 54 such products are needed at each 
sampling point for the entire matrix. If properly 
arranged, the accumulations of the Kfj vectors into 
rKT are also vector operations, although the vector 
length is only of order n. 

The above computational strategy is also convenient 
for the calculation of the geometric stiffness matrix, 

<5U fKGU = f ÔATl 
J0v 

SAdV (22) 

S = 
τ 

0 

L° 
0 
τ 

0 

οΊ 
0 
τ 

(23) 

and τ is the stress tensor. A simple modification of tG 
can be used to obtain rKG simultaneously with tKT at no 
additional cost. 

It should be noted that, in eqn (21), considerable 
simplification is achieved if the factors g[U] are constant 
within an element. This is generally the case in linear 
analysis. For this special case, the products Ν^,-Ν,,· can 
be integrated over the element once and for all, and 
reused to form each partition K(j. Thus, the needed 
scalar/vector multiplications are performed only once 
rather than at each integrating point. This simplification 
can also be profitably employed in nonlinear analysis; 
if the values of g{l-,n in eqn (21) are replaced by weighted 
average values, nonlinear element matrices can be 
evaluated, albeit approximately, for the same cost as 
their linear counterparts. If the element residual forces 
are computed exactly, this "averaged tangent stiffness'1 

method provides an effective approximation for use 
within an iterative solution strategy. This variation, 
which can be selected element by element in MAGNA, 
tends to provide faster convergence than the commonly-
used modified Newton ("constant stiffness,,) iteration 
in most cases. 

NUMERICAL EXAMPLES 

Four numerical solutions obtained using the 
MAGNA program are presented below, to demonstrate 
its capabilities and accuracy. Analyses including elastic-
plastic deformation, large displacements and rotations, 
and the use of shell and solid elements in combination 
are discussed. 

Thick circular plate 
The simply-supported circular plate shown in Fig. 3 

is subjected to a static load applied through a rigid 
punch. Dimensions of the plate are radius R = 26\ in. 
and thickness t = 0.2615 in. The punch is 0.375 in. in 
diameter. Material properties of the plate, made of 
strain-hardening aluminum, are £=10 7 psi, v = 0.325 
and ay= 10000 psi is the initial yield stress. The uni-
axial stress-strain curve is defined by the engineering 
stress-strain values shown in Table 2. Experimental 
load-deflection data for this example have been col-
lected by Winter and Le vine (Ref. [10], Plate 4A250), 
and analytical results presented by Hunsaker, Haisler 
andStricklin [11]. 

A nonlinear analysis of the plate has been performed 

using MAGNA, with 14 solid elements used to rep-

Table 2. Engineering stress- strain data for aluminum plate 

where 

0 
0 
0. 
0 
0. 
0. 

ε 

00995 
01310 
04502 
11800 
36311 

a 

0. 
1 0 0 0 0 . 
2 0 0 0 0 . 
2 8 0 0 0 . 
3 6 0 0 0 . 
4 8 0 0 0 . 
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Fig. 3. Elastic- plastic analysis of center-punched circular plate. 

resent one quadrant of the plate. The load-deflection 
solution given in Fig. 3 is obtained in 40 equal loading 
increments of 100 lb each, without iteration. The 
elastic-plastic analysis, performed using a subincre-
mental algorithm and with kinematic hardening, shows 
excellent agreement with the experiment, despite the 
occurrence of relatively high strains (33%) at the max-
imum load. 

Sandwich plate under pressure load 
A square sandwich panel, 50 in. on each side, is 

subjected to uniform lateral pressure. The three-layer 
plate (Fig. 4) has aluminum face sheets (E= 10.5 x 106 

psi; v=0.3), 0.015 in. thick, bonded to an aluminum 
honeycomb core one inch thick. The core is isotropic, 
with shear modulus G = 50,000 psi. All lateral bound-
aries of the sandwich are fully clamped. 

& / / / / / / / / / / / / / 

Μ ΐ ΐ μ ΐ ΐ Ι ΐ 

Fig. 4. Clamped sandwich panel under lateral pressure. 

The finite element discretization of one quadrant of 
the panel consists of a total of 75 finite elements, 25 in 
each layer. The face sheets are modeled using eight-
node, thin shell elements; three-dimensional eight-
node solid elements, with a single integration point per 
element, are used for the sandwich core. Note that these 
element types are fully compatible, so that no special 
constraints are necessary for joining the shell and solid 
layers. The nonlinear solution has been obtained in load 
increments of one psi to a total pressure of 20 psi, fol-
lowed by 2 psi increments to 30 psi. 

The nonlinear central displacement of the sandwich 
is plotted versus load in Fig. 5. Nonlinear finite element 
results obtained by Monforton [12], using sixteen 
specially formulated bicubic sandwich elements, are 
shown for comparison. Agreement between the two 
finite element solutions is quite good. Figure 5 also 
shows the perturbation solution of Kan and Huang 
[13], which is valid for deflections smaller than the core 
thickness. Reasonable agreement with the two numer-
ical solutions is observed in this region. 

Clamped-hinged arch 
A deep, clamped-hinged arch (Fig. 6) is subjected to a 

concentrated vertical load at the crown. Due to the 
asymmetry of the edge conditions, the arch is capable of 
executing extremely large, stable deflections prior to the 
onset of buckling. This behavior has been studied 
experimentally by Deutsch [14], and an analytical 
solution based upon Euler's inextensional theory is 
presented by DaDeppo and Schmidt [15]. The pre-
buckling displacements, which exceed the radius of 
curvature, are accompanied by very large rotations; 
thus, the prediction of the arch response presents a 
demanding test of a finite element solution using thin 
shell elements. 

The particular arch under consideration has radius of 
curvature R = 100 in., thickness t = 1.0 in., and a flexural 
rigidity of £7 = 1.0 x 106 lb-in2. The included angle is 
215°. For this set of properties, the analysis of Ref. [15] 
indicates that stable behavior occurs up to a load of 
897 lb, at which time the vertical displacement is 
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Fig. 5. Nonlinear load-deflection results for clamped sandwich plate. 

35 

Fig. 6. Clamped-hinged arch under apex load. 

113.7 in. Only prebuckling displacements are con-
sidered in the present analysis. 

For the MAGNA finite element solution, the entire 
arch is represented by 43 thin shell elements. Dis-
placements normal to the plane of the arch are sup-
pressed to permit comparison with the analytical 
results, which do not account for finite width of the 
structure. The range of loading considered is 0-870 lb, 
applied in six equal increments. Full Newton-Raphson 
iterations are applied at each load step to maintain 
accuracy. 

The deformed shape of the arch at maximum loading 
is shown in Fig. 7. The vertical displacement of the arch 
crown is slightly larger than the radius, and very large 
rotations are observed near the hinged support. Finite 
element results for the entire load-deflection history 
(obtained using 10-lb increments) are compared with 
the solution of DaDeppo and Schmidt in Fig. 8. Agree-

Fig. 7. Deformed arch geometry. 



MAGNA: A finite element system for three-dimensional nonlinear static and dynamic structural analysis 421 

8 l· 
OH 
Q_ 

g 
I 

o 
LU 

M 

ai 
O 

2 h 

1 1 1 1 1 1 

1 n ^^ 

1 JL S'S 
1 ΓΎ S3' 1 / ^^ 
1 rf/ P L ' 

1 rjj J^T' 
Γ *^ ~/r 
1 y ' ^ ^ 

\ j £ / FINITE ELEMENTS ■] 

ËF o VERTICAL DISPLACEMENT, V/R 
ßö ID HORIZONTAL DISPLACEMENT, U/R 

[ ^ ANALYTICAL 

ψ DaDEPPO AND SCHMIDT 

Ë ■ ' i i i 

0.2 0.4 0.6 0.8 1.0 

NORMALIZED DISPLACEMENTS U/R, V/R 

Fig. 8. Deflection history for clamped-hinged arch. 

1.2 

ment between the two predictions is quite good. The 
accuracy of the finite element solution in predicting 
rotations approximately eight times as large as those 
considered by most available thin shell theories is 
extremely good. 

F-16 windshield canopy 
The windshield transparency of the F-16 airplane is a 

monolithic, doubly-curved shell of polycarbonate 
material. Static tests of the windshield, performed as 

part of an impact study [16], have been reproduced 
numerically using MAGNA. 

The undeformed geometry of one half of the canopy, 
modeled with 100 thin shell elements (613 degrees of 
freedom), is shown in Fig. 9. Line supports are assumed 
along the external boundaries, since the reaction forces 
are small for the range of loading considered. Material 
properties of the shell are taken to be £=250,000 psi, 
v =0.325. A load is applied to the windshield through a 
small circular pad, approximately two feet aft of the 
forward edge. Experimental values of the normal dis-
placement have been obtained from deflectometer 
measurements on the inner surface [16]. 

2000 

~ 1500 

1000 

500 □ EXPERIMENTAL 

— FINITE ELEMENT (LINEAR) 

-^FINITE ELEMENT (NONLINEAR) 

0.2 0.4 0 6 0.8 10 1.2 

Fig. 9. Shell element model of F-16 windshield transparency. 

NORMAL DISPLACEMENT (INCHES). 

Fig. 10. Load vs deflection trace for F-16 windshield. 



422 ROBERT A. BROCKMAN 

Fig. 11. Deformed F-16 canopy geometry. 

Experimental and computed values of the canopy 
deflections, for the loading range 0-2200 lb, are com-
pared in Fig. 10. In view of the uncertainties in material 
properties (about 20%), boundary conditions and local 
load distribution, the agreement between measured 
and calculated deflections is excellent. A plot of the 
deformed windshield geometry is shown in Fig. 11. 

It is worthy of note that, though the nonlinear 
analysis consists of ten loading increments with all 
matrices recomputed at each increment, the total 
computing time is only 360 sec on the CDC CYBER-
175. With full Newton-Raphson iterations, an almost 
identical solution is obtained in two increments in 
250 CPU sec. 

The above windshield problem has also been model-
ed using 3-D solid (20-node) elements, resulting in 1110 
final degrees of freedom. Using a 27-point integration 
rule, the solid element solution yields results which are 
slightly stiffer than the shell analysis, but still in good 
agreement with the experiment. The CPU time for a 
ten-increment solution in this case is 920 sec on the 
CYBER-175. The results of nonlinear dynamic analyses 
performed for the F-16 using MAGNA are presented 
in Ref. [17]. 

FUTURE DEVELOPMENTS 
Nonlinear analysis of three-dimensional problems 

presents some unique challenges to the developers and 
users of finite element technology. In contrast to linear 
analysis, and to nonlinear analysis using one- and two-
dimensional elements, three-dimensional element com-
putations are often so time-consuming that analysis 
cost constraints may preclude or discourage the use of 
an adequate model. Additional research in numerical 
methods for this aspect of the calculations is essential to 
improving the cost-effectiveness of nonlinear analysis in 
three dimensions. The element algorithms described 
here are presently being implemented on the CRAY-1 
vector processor; it is hoped that the results will indic-
ate possible directions for obtaining improved effic-
iency in element-level computations. 

Further investigation is also required to develop 
methods of solution which optimize the use of element-
level computations. These include adaptive methods for 
problems in which the character of the nonlinear 

response may vary throughout the analysis, as well as 
methods which rely on "reduced basis" approxima-
tions [18] to track the local behavior of primary 
solution parameters. 

SUMMARY AND CONCLUSIONS 
The MAGNA finite element program, developed for 

use in three-dimensional nonlinear analysis applica-
tions, has been described. Particular attention is given 
in the program to the problems of modeling flexibility 
and efficiency of element-level computations. Several 
applications have been presented to demonstrate the 
analysis capabilities of MAGNA; the results and com-
puting times for these solutions indicate that the pro-
gram/ is applicable to nonlinear problems of consider-
able size and complexity. 
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SURVEY OF COMPUTER PROGRAMS FOR SOLUTION OF 
NONLINEAR STRUCTURAL AND SOLID MECHANICS 

PROBLEMS 

AHMED K. NOOR 
George Washington University Center at NASA Langley Research Center, Hampton, VA 23665, U.S.A. 

INTRODUCTION 

The significant advances made in nonlinear finite element 
technology, coupled with the rapid developments in 
computer hardware and software provided the foun-
dation from which general-purpose nonlinear finite ele-
ment programs have evolved. After more than a decade 
of development, a wide variety of these programs are 
currently being used in government and industry for 
practical analysis and design of structures. Depending on 
the criteria for identifying general-purpose nonlinear 
finite element programs, estimates of their numbers vary 
between twenty and fifty. In addition, several hundred 
special-purpose and research-oriented nonlinear finite 
element programs are in existence. The potential user of 
a nonlinear finite element program is now faced with the 
problems of (1) getting information about, and sorting 
out, existing nonlinear finite element programs; and (2) 
identifying the program that is best suited for his parti-
cular needs. 

Since early 1970 several bibliographies, data sheets 
and tables have been compiled about finite element 
software (e.g. Refs. [1-3] and the two recent surveys of 
nonlinear finite element programs given in Refs. [4 and 
5]). Reference [4] outlines the capabilities of eleven 
general-purpose computer programs for nonlinear 
analysis, and Ref. [5] surveys the capabilities of twelve 
programs used for plastic analysis. The present paper 
aims at complementing these two surveys. Specifically, 
the objective of this paper is to give an overview of the 
current capabilities of thirty-six computer programs that 
can be used for solution of nonlinear structural and solid 
mechanics problems. These programs range from the 
large, general purpose codes with a broad spectrum of 
capabilities, rich variety of element types, large user 
community and comprehensive user support (e.g. 
ANSYS, ASAS-NL, ASKA, MARC, MSC/NASTRAN 
and SESAM-69) to the small, special purpose codes with 
limited user community such as BEAM, BRICK, PAC78 
and WHAMS. The capabilities of the programs surveyed 
are listed in tabular form followed by a summary of the 
major features of each program. It is anticipated that this 
format will help in the initial selection of programs which 
are most suitable for a particular application. The final 
selection of the program to be used should, however, be 
based on a detailed examination of the documentation 
and the literature about the program. 

Before listing the capabilities of the programs, some of 
the sources of information about computer programs and 
references on the background material needed for 
effectively using the programs are listed, and guidelines 
for selecting the code are discussed. 

SOURCES OF INFORMATION ABOUT COMPUTER 

PROGRAMS 

A partial list of users group and software dis-
semination services that provide information about finite 
element programs is given subsequently. A more com-
plete list and a description of each group can be found in 
Ref. [6]. 

• ASIAC—Aerospace Structures Information and 
Analysis Center, AFFDL/FBR Wright-Patterson Air 
Force Base, Dayton, OH 45433. 

• CEP A—Society for Computer Application in 
Engineering, Planning and Architecture, Inc., 358 Hun-
gerford Drive, Rockville, MA 20850. 

• COSMIC—Computer Software Management and 
Information Center, 112 Barrow Hall, University of 
Georgia, Athens, GA 30602. 

• ICES—Users Group, Inc., P.O. Box 8243, Cran-
ston, RI 02920. 

• ICP—International Computer Programs, Inc., 9000 
Keystone Crossing, Indianapolis, IN 46240. 

• NISEE—National Information Service for Earth-
quake Engineering, 519 Davis Hall, University of Cali-
fornia, Berkeley, CA 94720. 

• NTIS—National Technical Information Service, 
U.S. Department of Commerce, 5285 Port Royal Road, 
Springfield, VA 22161. 

These organizations publish catalogues and newslet-
ters describing finite element programs. 

BACKGROUND MATERIAL NEEDED FOR EFFECTIVE 

EVALUATION AND USE OF FINITE ELEMENT PROGRAMS 

The user of a nonlinear finite element program is 
dependent on the detailed knowledge about theories, 
algorithms and assumptions behind the program features 
for the proper selection of models and algorithms as well 
as for monitoring the solution process. There are also 
many nonlinear problems whose solution may require 
modifying (slightly) the program. Therefore, the effective 
evaluation and use of nonlinear analysis programs 
requires, in addition to a basic knowledge of finite ele-
ment discretization procedures, some knowledge about 
the following aspects of nonlinear analysis. 

• Continuum mechanics basis and formulation 
aspects. This is particularly important when solving large 
strain problems. For background material see Refs. [7-9]. 

• Constitutive relations and material modeling (e.g. 
Refs. [10-12]. 

• Solution techniques for nonlinear static problems 
(e.g. Refs. [13-16]). 

• Temporal integration and solution techniques for 
nonlinear dynamic problems (e.g. Refs. [17-20]). 
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• Considerations for the design of software systems 
for nonlinear analysis (e.g. Refs. [21,22]). 

GUIDELINES FOR SELECTION OF A COMPUTER 
PROGRAM 

The analysis capabilities and user features vary con-
siderably from one code to thé other, and therefore, 
it is often difficult to identify the proper code 
that meets a specific need. A number of factors 
which affect the selection of a code are enumerated in 
the succeeding paragraphs. The order in which these 
factors are listed does not necessarily reflect the priority 
which should be given each factor; this remains the 
responsibility of the user of the code. (For a detailed 
discussion of the technical, operational and commercial 
criteria for selecting a code see Refs. [23,24].) 

1. Analysis capabilities 
These include the range of applications and limitations 

of the code. The limitations include both those implied 
by the formulation aspects and numerical solution pro-
cedures adopted by the code as well as the element 
library available in the code. 

2. Adequacy of user-oriented features 
For nonlinear analysis the user's features such as 

automatic (or semi-automatic) mesh (or model) genera-
tion, error checks, displays of original model and of 
various intermediate results are essential for the effective 
use of the analysts' time. 

3. Maintainability 
Because of the rapid advances in computational 

methods, computer software and hardware technology, 
the maintenance of nonlinear analysis codes usually in-
clude updating the computational modules, extending 
the capabilities of the code and improving its per-
formance. There exists well-established formal 
mechanisms for integration and quality assurance of 
software extensions. Maintenance of the code by per-
sonnel other than the developer (e.g. user's organization) 
can be quite expensive and time consuming. 

4. Adequacy of user support facilities 
In addition to the printed documentation (user manu-

als, training manuals, programming manuals, sample prob-
lems and test cases), the following services are desirable: 
training courses, users meetings, hotline consulting, 
assistance by data centers and consulting organizations. 

5. Portability 
Although most of the finite element codes are written 

in standard FORTRAN IV language, a code developed 
on one computer system may not be entirely compatible 
with another system due to differences in I/O facilities, 
operating system, precision of the machine (e.g. UNI-
VAC versus CDC), etc. 

Once a code is acquired and implemented on to the 
user's computer system, it is important to establish its 
reliability by bench-mark problem runs. For a discussion 
on verification and qualification procedures (see Ref. 
[25]). 

PROGRAM SURVEY AND DESCRIPTION 

This section gives an overview of the capabilities of 
thirty-six computer programs for the solution of non-
linear structural and solid mechanics problems. Some of 

the programs have a much more limited scope than 
others. The information presented herein is based on a 
questionnaire sent to the developers of each program. 
The capabilities of the programs are listed in tabular 
form followed by a description of each program. 

SUMMARY OF PROGRAM CAPABILITIES 

In this section a brief description of each of the 
programs listed in the tables is given. These descriptions 
were supplied by the program developers. 

| ADINA [ 

Descriptive Program Title: Automatic Dynamic In-
cremental Nonlinear Analysis. 

Program Developer: K. J. Bathe, Department of 
Mechanical Engineering, Massachusetts Institute of 
Technology, Cambridge, MA 02139, U.S.A. 

Date of First Release and Most Recent Update: 1975 
and 1978. 

General Information : 
ADINA is a proprietary code. The code was developed on 
experiences obtained from codes SAP-IV and NONSAP. 
Development started in 1974. The program is fully 
operational but the analysis capabilities are continuously 
improved. Research and development efforts are being 
financed by a users group of ADINA. Members of the 
users group obtain the source codes of ADINA and 
ADINAT and all new developments as long as they 
remain members of the group. The source codes are 
transmitted with sample data cases and their solutions. 

Program Capability: 
ADINA is a general purpose linear and nonlinear static 
and dynamic three-dimensional finite element analysis 
program. The nonlinearities may be due to large dis-
placements, large strains, and nonlinear material 
behavior. The material descriptions available are, 
depending on the element used, isotropic linear elastic, 
orthotropic linear elastic, isotropic thermo-elastic, curve 
description model, concrete model, Drucker-Prager-cap 
elastic-plastic model, isothermal von Mises plasticity 
model, thermo-elastic-plastic-creep model, and 
Mooney-Rivlin material. The program can be used to 
restart at preselected time steps. Vibration and dynamic 
analysis includes computation of eigenvalues and 
eigenmodes, and dynamic response. Dynamic spectral 
analysis capability is not included. Stability analysis in-
cludes: nonlinear collapse, dynamic and buckling. 
Multipoint constraint conditions and prescribed dis-
placement conditions are available. 
ADINAT has been employed for the solution of heat 
transfer and analogous field problems. 

User Interface and Modeling Capabilities: 
The ADINA and ADINAT programs do not include any 
pre- or post-processors. However, options are available 
to read program input from tape and to write program 
output to tape. Hence, the programs can directly be 
coupled to available pre- and post-processors. A number of 
pre- and post-processing programs are used in connection 
with ADINA and ADINAT, e.g. FEMGEN mesh genera-
tor. INGEN and GIFTS. A pre- and postprocessing 
program specifically designed for ADINA/ADINAT is 
currently under development. 
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Element Library: 
General truss, beam, two- and three-dimensional iso-
parametric (or subparametric) solid elements, a general 
thin shell, and fluid elements are available. Four different 
analysis procedures can be employed depending on the 
analysis to be performed: linear elastic analysis, materi-
ally nonlinear only analysis, total Lagrangian for-
mulation, and updated Lagrangian formulation. 

Solution Methods: 
• Nonlinear dynamic response—Implicit time in-

tegration (Newmark or Wilson) with equilibrium iteration 
option, or explicit time integration (central difference 
method), modal superposition technique. 

• Nonlinear static problems—Incremental solution, 
modified Newton-Raphson method with acceleration 
procedures, BFGS method. 

• Equation solver for linear equations—compacted 
out-of-core solver. 

• Substructuring capability. 
• Extraction of frequencies and mode shapes -

Determinant search or accelerated subspace iteration. 

Notable Items: 
• ADINA and ADINAT offer a very large range of 

applications in linear and nonlinear analysis with rela-
tively few effective elements, a good library of material 
models and effective numerical methods. The programs 
contain state-of-the-art finite element procedures (e.g. in 
the element kinematic formulations, the formulation and 
implementation of the nonlinear material models, the 
iteration procedures in nonlinear static and dynamic 
analyses) with emphasis on reliability, accuracy and cost-
effectiveness. The programs can be employed effectively 
in linear analysis, and then, with only a few input 
changes, in relatively simple and very complex nonlinear 
analyses. 

• A companion general two-dimensional fluid 
dynamics code (ADINAF) is currently being developed. 

Programming Language: FORTRAN IV. 

Hardware!Operating System: CDC 6400/6600/7600, IBM 
and UNIVAC, BURROUGHS, CRAY and CYBER 203. 

Program Size: Approximately 40,000 source statements 
in the core programs. 

Documentation (Program description, sample analyses 
and user's manual—see Refs. [26-29]. 

Availability: Source programs of ADINA and ADINAT 
are available from the developer by joining the ADINA 
users group (for a fee). The program can be used on the 
CDC CYBERNET system. 

fÄNSR.I AND ANSRÏÏ1 

Descriptive Program Title: Analysis of Nonlinear Struc-
tural Response. 

Program Developers: G. H. Powell and D. P. Mondkar, 
Department of Civil Engineering, University of Califor-
nia, Berkeley, CA 94720, U.S.A. 

Date of First Release and Most Recent Update: ANSR-
1-1973; ANSR-II-1980. 

General Information: 
9 General purpose codes for static and dynamic res-

ponse considering both large displacement and inelastic 
effects. ANSR-II is an extended version of ANSR-I. 
Intended primarily for research. Addition of new ele-
ments follows a standard procedure. 

• ANSR-I allows nonlinear static analysis followed 
by nonlinear dynamic analysis. ANSR-II allows arbitrary 
sequences of static and dynamic analysis, and has the 
following features not contained in ANSR-I: restart from 
any earlier state; in-core and out-of-core equation 
solvers; unsymmetrical equation solvers; imposed static 
displacements; imposed dynamic displacements, includ-
ing out-of-phase motions. Elements developed for 
ANSR-I require minor modifications for ANSR-II. 

Program Capability: 
Static load, dynamic load and dynamic ground motion 
analysis of two- or three-dimensional frame and finite 
element systems. No heat flow analysis. No creep 
analysis (although extension to consider creep is within 
the capability of the code). 

Element Library: 
• Truss, beam, two-dimensional isoparametric and 

three-dimensional isoparametric elements. Library of 
released elements currently limited. Many different ele-
ments under development. 

• All nonlinearity is considered at the element level. 
Hence, the programmer may select the amount and type 
of nonlinearity to be considered. Elements with large 
deformations typically use total Lagrangian approach, 
but this is not essential. Elements with small and large 
displacements may be mixed in a single analysis if 
desired. 

Solution Methods: 
• Newton type iteration for static analysis (includes 

step-by-step constant stiffness and Newton-Raphson 
schemes). 

0 Step-by-step implicit integration (Newmark) for 
dynamic analysis, with iteration option within each step. 
Constant time step in each time segment, but time step 
may be changed between time segments. 

Notable Items and Limitations: 
No substructuring. Addition of new elements and 
materials relatively easy. 

Programming Language: FORTRAN IV. 

Hardware!Operating System: CDC 6400/6600/7600. 

Program Size: 
Approximately 5500 source statements for ANSR-I 

7000 source statements for ANSR-II. 

Documentation: 
Theoretical manuals and user guides. See Ref. [30-36]. 

Program Availability: National Information Service for 
Earthquake Engineering, Computer Applications, 519 
Davis Hall, University of California, Berkeley, 
CA 94720, U.S.A. 

Cost approximately $400. 
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IANSYS1 

Descriptive Program Title: ANSYS Engineering Analy-
sis System 

Program Developer: J. A. Swanson and Staff, Swanson 
Analysis Systems, Inc., P.O. Box 65, Houston, PA 15342, 
U.S.A. 

Date of First Release and Most Recent Update: 1970 and 
1980. 

General Information: 
The ANSYS program is a proprietary general purpose 
program developed and maintained exclusively by 
Swanson Analysis Systems, Inc. The program is fully 
documented and kept under careful quality control. 
ANSYS is continuously being enhanced with the ad-
dition of state-of-the-art capability and improved model-
ing and problem solving techniques. Direct com-
munication is available between the user and developer 
through hot-line telephone consulting and TELENET 
data transmission. User training seminars and workshop 
sessions are held periodically at various locations. 

Program Capability: 
• The ANSYS engineering analysis computer pro-

gram is a large-scale general purpose computer program 
employing finite element technology for the solution of 
several classes of engineering analysis problems. The 
program capabilities include structural analyses (static and 
dynamic; elastic, plastic, creep and swelling; buckling; 
small and large deflections), and heat transfer analyses 
(steady-state and transient; conduction, convection and 
radiation). Structural and heat transfer analyses may be 
made in one, two or three dimensions, including axisym-
metric and plane problems. Coupled thermal-fluid flow 
capability, coupled thermal-elastic capability and fluid-
solid interaction capability are also available. 

• A single model may be used for heat transfer, static 
structural, and dynamic structural analyses. Tem-
perature output from the heat transfer analysis is in the 
form required for input to the structural analyses. 
Dynamic analyses may be made on structures that have 
been pre-stressed under static loading conditions. 

User Interface and Modeling Capabilities: 
• ANSYS may be run in either the interactive or the 

batch mode. Prompting commands are returned by the 
program in the interactive mode. Free-format data input 
is allowed in either mode. Plots may be formed "in-
stantaneously" at graphics display terminals. Documen-
tation and status information displays are available dur-
ing interactive sessions. 

• The ANSYS program includes a multiple region 
mesh generation capability within the main program as 
well as general two- or three-dimensional intersecting 
shell or solid mesh generating routines. The multiple 
region generation capability is used to fill in nodal points 
between two specified nodal points, to repeat specified 
sets of nodal points, to generate additional sets of ele-
ments from a specified set to form a group of elements, 
and to generate additional groups of elements. 

• Nodes may be generated in any coordinate system. 
Symmetry reflections and coordinate system transfers 
are available. Nodes may be generated along a user-

defined quadratic line. Digitizing via cross-hairs or tablet 
hardware may be used with the mesh generating rou-
tines. 

• A postprocessing feature of the ANSYS program per-
mits variables calculated from a solution run to be stored 
on a data file and included in a number of mathematical 
operations. The results may be printed and/or plotted. 
The variable operations include addition, subtraction, 
multiplication, division, square and square root opera-
tions, comparison and selection operations, and time 
derivative operations. 

• Scanning is available during postprocessing to allow 
the user to find at which element or node a given 
threshold occurs. Values above, below, within, or 
without, a given range may be found. 

• A postprocessing routine is available for combining 
the results of the seismic mode-frequency analysis. Root-
sum-square combinations, absolute value combinations, 
comparison enveloping, and other operations may be 
performed. 

• A postprocessing routine is available for generating 
a response spectrum based on a given (or ANSYS cal-
culated) displacement versus time history. 

• Results of various solutions involving axisymmetric 
elements with harmonic loadings may be scaled and 
summed to give solution to a non-axisymmetric loading. 

• Postprocessing routines for stress evaluation in 
pressure vessels and piping networks (ASME, BPVC and 
ANSI codes) are available. 

Element Library: 
The library of finite elements available numbers more 
than forty for static and dynamic analyses, fifteen for 
heat transfer analyses, three for thermal-fluid analyses, 
three for thermal-electric analyses, and two for fluid-
solid interaction analyses. The structural element types 
include spars, pipes and elbows, beams, fluid elements, 
plane and axisymmetric membranes, plates, shells and 
solids. Harmonically loaded axisymmetric elements are 
available for non-axisymmetric loadings. Most element 
types contain at least one element having complete plas-
tic, creep and swelling capabilities. Plane and solid iso-
parametric elements are available. Additional structural 
elements include masses, springs, dampers, sliding inter-
faces, gap interfaces and cables. Arbitrary stiffness, mass 
and damping matrix elements are also available. 
Superelements may be formed from other ANSYS ele-
ments. The heat transfer element types include conduct-
ing bars, plates and solids, convection and radiation 
links. All heat transfer elements may be deleted or 
replaced by geometrically equivalent structural elements 
for thermal-stress evaluation. Nearly all elements are 
available with the large displacement option and many 
elements have additional large rotation and stress 
(geometric) stiffening capability. 

Solution Methods for Nonlinear Problems: 
• The ANSYS program uses the wave-front (or 

"frontal") direct solution method for solving the system 
of simultaneous linear equations developed by the matrix 
displacement method. The direct solution method does 
not place a "bandwidth" restriction on the problem 
definition. 

• The "in-core wavefront" is limited by the amount 
of core storage required for a given problem. This tends 
to be restrictive only for analyses of arbitrary three-



Survey of computer programs for solution of nonlinear structural and solid mechanics problems 443 

dimensional structures on small computers. An out-of-core 
solution procedure is also available. 

• The efficiency of the ANSYS program results from 
the selection of efficient solution techniques, such as the 
wavefront equation solver, Guyan reduction (dynamic 
matrix condensation) and Jacobi eigenvalue extraction, 
optimizing these techniques by elaborate programming, 
and tailoring the program to the type of computer system 
being used. An implicit numerical integration routine is 
used in each time step of transient analyses. 

Notable Items and Limitations: 
The ANSYS program contains versatile mesh generators 
and plot displays. This capability, together with the in-
teractive mode of running, simplifies the modeling task. 
The ANSYS program is user oriented and self-contained. 
The user is guided through mesh generation, solution, 
postprocessing, and auxiliary operations within a single 
program. The wave-front solution procedure allows ease 
of modeling and remodeling without any restriction on 
node numbering. Element reordering is available within 
the program to minimize the wave front and the solution 
time. The ANSYS program also runs efficiently on linear 
problems. The program may be learned through self-
education, interactive experimentation, or attending 
ANSYS seminars. 

Programming Language: FORTRAN. 

Hardware!Operating System: CDC 7600/6600/6500; 
CYBER 170 series, 70-series; IBM 360 series, 370 
series, 3030 series; AMDAHL 470, CRAY-1, 
UNIVAC 1100 series, 1108, 1110; PRIME 400, 500 and 
50 series; VAX 11/780; HARRIS 500 and 800 series. 

Program Size: Over 100,000 source statements. 

Documentation: See Refs. [37-41]. 

Program Availability: The ANSYS program is con-
trolled exclusively by Swanson Analysis Systems, Inc., 
and is not available for sale or subject to user source 
modifications. The program may be used on a time-
sharing basis through most major data centers 
throughout the world, e.g. Computer Sciences Cor-
poration, Control Data Corporation, Structural 
Dynamics Research Corporation, United Computing 
Systems, Inc., and University Computing Company. Roy-
alty charges for use of the program are included within the 
data center charges. Lease arrangements for installation on 
in-house computers are also available. 

[ASAS-NL | 

Descriptive Program Title: Atkins Structural Analysis 
System-Nonlinear. 

Program Developer: Atkins Research and Development, 
Woodcote Grove, Ashley Road, Epsom, Surrey KT18 
5BW, England. 

Date of First Release and Most Recent Update: 1980. 

General Information: 
ASAS-NL is a proprietary code sponsored by a number 
of existing ASAS users and geared principally to the 
requirements of the nuclear industry. Development was 
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started in 1978 and an active program of enhancement 
continues. 

Program Capability: 
Φ Although ASAS-NL can be viewed as a generic 

derivative of the general purpose linear elastic ASAS 
finite element code, it is a quite separate program de-
signed ab-initio to solve nonlinear problems. Its architec-
ture reflects the specific needs of nonlinear com-
putations. 

• Most nonlinear static problems due to material or 
geometric nonlinearity can be handled. Over twenty-five 
elements, ten solutions and ten material models are built 
in, thus providing wide ranging capabilities for plasticity, 
creep and swelling, large deflections and buckling. A 
number of novel techniques are available which provide 
cheap, albeit approximate solutions, for preliminary 
design purposes. 

User Interface and Modeling Capabilities: 
ASAS-NL interfaces with all relevant ASAS pre- and 

post-processors including ASASHEAT (transient heat 
flow calculations), COMPAS (superelement interface), 
ASBAND (bandwidth optimization), ASDIS (mesh dis-
play), ASPECT (stress contour plotting), MESH 
3/4MESHMOD (mesh generations). 

Element Library: 
The range of elements available includes two and three 
dimensional isoparametric (serendipity) elements for 
continua, with truss, beam and an isoparametric family 
of shell elements for structures. 

Solution Methods for Nonlinear Problems: 
Any required combination of iterative/incremental pro-
cedures (i.e. Euler, Newton-Raphson), based on a frontal 
(out-of-core) linear equation solver. 

Notable Items and Limitations: 
ASAS-NL is designed to solve static (small strain) prob-
lems quickly and efficiently. Particular attention has been 
directed at the facilities for controlling and adjusting the 
computational sequences, either automatically, or at the 
behest of the analyst sensitive to the peculiarities of a 
given problem. Dynamics and large strain capabilities are 
not available, but their inclusion has been allowed for. 

Programming Language: FORTRAN IV. 

Hardware!Operating System: PRIME, UNIVAC. 

Program Size: Core program—40,000. 

Documentation: See Refs. [42,43]. 

Program Availability: Atkins Research and Develop-
ment, Woodcote Grove, Ashley Road, Epsom, Surrey 
KT18 5BW, England. 

[ASKA | 

Descriptive Program Title: Automatic System for 
Kinematic Analysis. 

Program Developer: ASKA Group, Institute for Statics 
and Dynamics, University of Stuttgart, D-7000 Stuttgart 
80, West Germany. 
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Date of First Release and Most Recent Update: 1970 and 
1980. 

General information: 
ASKA is a proprietary code. Development started in 
1967 and is still continuing. Software maintenance and 
user support is provided on a long-term basis by the 
authors. There are more than seventy installations in 
eighteen countries. 

Program Capability: 
ASKA is a comprehensive software system mainly for 
linear static and dynamic analysis. However, some 
selected nonlinear applications are also covered, mainly 
elasto-plastic analysis and bifurcation buckling analysis. 
For elasto-plastic analysis the von Mises yield criterion 
and associated Prandtl-Reuss flow rule is adopted. Iso-
tropie, kinematic and mixed hardening are included. 
Also, a Drucker-Prager generalization of the linear and the 
parabolic Mohr-Coulomb laws with non-associated flow is 
included. 

User Interface and Modeling Capabilities: 
Standard ASKA does not include pre- and post-
processors. For this purpose there is a separate compre-
hensive interactive graphics package INGA that has been 
developed also at ISD together with ASKA. There is 
also a large number of pre- and postprocessors, e.g. 
FEMGEN and GIFTS, that are used in connection with 
ASKA. 

Element Library: 
At present more than seventy different element types 

are available, including thick shells, shell/continuum 
transition elements, harmonic ring elements, and crack 
tip elements. 

Solution Methods for Nonlinear Problems: Newton-type 
methods. 

Notable Items and Limitations: 
ASKA has a very powerful multilevel substructure 
analysis capability based upon a central data base 
concept. It is capable of solving very large problems, 
even on minicomputers (VAX, PRIME). 

Programming Language: Standard FORTRAN IV. 

Hardware!Operating System: At present installed on 
eleven different computer systems including CDC, 
UNIVAC, IBM, ICL, HB, Burroughs, VAX, PRIME, 
CRAY. 

Program Size: 600,000 FORTRAN statements in the 
core program; 60,000 FORTRAN statements in the 
pre/postprocessors. 

Documentation: See Refs. [44-46]. 

Program Availability: Rent, purchase and support 
through: 

Statik und Dynamik Forschungsgesellschaft mbH 
Postfach 80 10 44, D-7000 Stuttgart 80, West Germany. 

[BEAM I 

Descriptive Program Title: Inelastic Analysis of Rein-
forced and Prestressed Concrete Beams and Beam-
Columns. 

Program Developer: C. N. Kostem, Fritz Engineering 
Laboratory, 13, Lehigh University, Bethlehem, PA 18015, 
U.S.A. (also, J. M. Kulicki—c/o C. N. Kostem). 

Date of First Release and Most Recent Update: 1973 and 
1978. 

General Information: 
Program BEAM is designed to determine the elastic and 
inelastic response of beams and beam-columns. Struc-
ture and loading are assumed to be planar. For given 
loading, the incrementation is carried out until the col-
lapse of the structure. All material nonlinearities have 
been incorporated through Ramberg-Osgood type stress-
strain curve formulation. Cracking, crushing and yielding 
of the constituent materials are considered. 

Program Capability: 
The formulation is based on beam finite elements with 
axial distortion degree of freedom. FORTRAN 
EXTENDED coding permits the full transportability of 
the program. The program has been successfully im-
plemented as a module in many other larger programs 
due to its modular design. BEAM has been developed for 
use as a research tool, and also for employment in the 
conduct of parametric studies on the inelastic analysis of 
beams. This necessitated an optimum code which could 
be easily modified by the user for different needs. 

User Interface and Modeling Capabilities: 
Program BEAM does not have a preprocessor. However, 
it includes a line printer graphics capability for the 
display of stress variation throughout the structure for 
any and every load increment. This permits the use of 
program BEAM with minimal engineering training, and 
no background in finite element method. 

Element Library: 
BEAM contains only one beam element, which has cubic 
flexural displacement and linear axial deformation dis-
placement fields. Each element is layered through the 
depth to monitor the initiation and propagation of non-
linearities and damage through the loading history. Each 
layer is assumed to be in plane stress state. 

Solution Methods for Nonlinear Problems: 
Solution scheme is based on incremental/iterative 
tangent stiffness approach. Load steps, and number of 
iterations are defined by the user, depending upon the 
desired accuracy, 

Notable Items and Limitations: 
The main feature of the program is its self contained 
nature. The program was developed for one purpose, i.e. 
to simulate the inelastic response of reinforced and 
prestressed concrete beams. Other types of material 
could, and have been, considered; however, simulations 
as such can be better achieved by general purpose pro-
grams. 

Programming Language: FORTRAN EXTENDED 
(Control Data Corporation). 

Hardware!Operating System: CDC 6400 with SCOPE 
operating system (BEAM has also been successfully 
converted, and widely tested in Burroughs 5000 com-
puters). 
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Program Size: Approximately 2000 cards. 

Documentation: See Refs. [47,48]. 

Program Availability: Dr. Celai N. Kostem, Fritz 
Engineering Laboratory, 13, Lehigh University, Beth-
lehem, PA 18015, U.S.A. 

iBOSoml 

Descriptive Program Title: Stress, Buckling, Vibration 
of Branched, Stiffened, Elastic Shells of Revolution. 

Program Developer: David Bushnell, Department 52-
33/205, Lockheed Palo Alto Research Laboratory, 3251 
Hanover Street, Palo Alto, CA 94304, U.S.A. 

Date of First Release and Most Recent Update: 1972 
and 1979. 

General Information: 
BOSOR4 is used by more than 150 institutions all over 
the world and has received so much use that it is, for all 
practical purposes, bug free. The program is maintained 
by the developer who sends notices of any bugs found or 
other information of pertinence to all users. Several data 
service companies have BOSOR4, including United 
Computing Systems, Boeing Computer Service, 
McDonnell-Douglas Automation, CDC Cybernet 
(Rockville, Maryland), Information Systems Design, 
Westinghouse, Det Norske Veritas (Norway), CNES 
(France), CERN (Switzerland), FFA (Sweden), Matema-
tischer Beratungs und Prog. (West Germany). 

Program Capability: 
BOSOR4 performs stress, buckling and modal vibration 
analyses of ring-stiffened, branched, segmented, shells of 
revolution with complex wall constructions, loaded 
either axisymmetrically or nonsymmetrically. Program 
branches include large-deflection axisymmetric stress 
analysis, small-deflection nonsymmetric stress analysis, 
modal vibration analysis with axisymmetric nonlinear 
prestress, and buckling analysis with axisymmetric or 
nonsymmetric prestress. Main advantage is the provision 
for realistic engineering details such as eccentric load 
paths, internal supports, arbitrary axisymmetric branch-
ing, and a "library" of wall constructions. A variety of 
loads can be applied simultaneously, loads that increase 
proportionally with each other, or combinations of loads, 
some of which are held constant and others of which 
vary (are eigenvalue parameters) during a case. Two 
unique features of BOSOR4 are that it is stable, and 
hence, reliable and it is fast. The program has been 
extensively used in the field for many years, essentially 
unchanged, so that bugs have been thoroughly shaken 
out. BOSOR4 has been thoroughly qualified by numerous 
comparisons with tests, most of which have been docu-
mented in the open literature. 

User Interface and Modeling Capabilities: 
User interface is via a free format preprocessor, B4PRE. 
Certain commonly occurring geometries, such as cylin-
ders, spheres, cones, etc. are generated with use of 
integer pointers and user-provided end-point coordinates. 
BOSOR4 contains a Fourier series generator for 
automatically breaking down a nonsymmetric load into 
its Fourier harmonics. Also required from user for input 

are number of nodal points, discrete ring geometries, 
ranges and increments of circumferential wave numbers, 
load and temperature distributions, shell wall construc-
tion details, and constraint conditions. Output includes 
lists and plots of displacement distributions, stress resul-
tants, stresses, vibration frequencies, buckling loads. 

Element Library: 
Discretization is by the finite difference energy method, 
which represents a kind of finite element that is 
extremely rapidly generated. 

Solution Methods for Nonlinear Problems: 
• Out-of-core Newton-Raphson solution solving 

technique. 
• Eigenvalues extracted by inverse power method 

with spectral shifts and orthogonalization. 
• Skyline method used for matrix factorization. 

Limitations: 
Fifteen-hundred degrees of freedom (d.o.f.) in nonaxi-
symmetric problems; 1000 d.o.f. in axisymmetric pre-
buckling stress analysis; maximum of 20 Fourier har-
monics per case; knockdown factors for imperfection 
sensitivity not included; radius to thickness ratio should 
be greater than about 10. 

Notable Items: 
The program is fast. Complete (axisymmetric) structural 
systems can be analyzed in a few minutes. Program is 
reliable, since it has been exercised worldwide for many 
years essentially unchanged. Ideal for many preliminary 
design tasks. 

Programming Language: FORTRAN IV. 

Hardware!Operating System: UNIVAC 1110, CDC 6600 
or 7600, IBM 360 or 370, VAX, SC4020 and CALCOMP 
plotters. 

Program Size: About 14,000 statements. 

Documentation: See Refs. [49-51]. 

Program Availability: BOSOR4 is available for use 
through data centers listed above. Also, the program may 
be purchased for $600 from the developer. Purchase 
includes source deck (tape), example cases and docu-
mentation. 

[BOSOR51 

Descriptive Program Title: Buckling of Elastic-Plastic 
Complex Shells of Revolution Including Large 
Deflections and Creep. 

Program Developer: David Bushnell, Dept. 52-53/205, 
Lockheed Palo Alto Research Laboratory, 3251 Hanover 
Street, Palo Alto, CA 94304, U.S.A. 

Date of First Release and Most Recent Update: 1974 and 
1979. 

General Information: 
BOSOR5 is used by more than seventy institutions all 
over the world. The program is maintained by the 
developer who sends notices of any bugs found or other 
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information of pertinence to all users. Several data ser-
vice companies have BOSOR5 including United Com-
puting Systems, Boeing Computer Service, McDonnell-
Douglas Automation, CDC Cybernet (Rockville, Mary-
land), Information Systems Design, Westinghouse, Det 
Norske Veritas (Norway), CERN (Switzerland), FF A 
(Sweden). BOSOR5 does not supercede BOSOR4 as it 
does not perform modal vibration or linear nonsym-
metric stress analysis. BOSOR5 has received extensive 
use for several years at organizations other than that of 
the developer and is reasonably bug-free. 

Program Capability: 
BOSOR5 can handle segmented and branched axisym-
metric shells with discrete ring stiffeners, meridional 
discontinuities, and multi-material wall construction. The 
shell wall can be made up of as many as six layers, each 
of which is a different nonlinear material. In the pre-
buckling analysis, moderately large deflection axisym-
metric behavior is presumed. Failure by axisymmetric 
collapse or by nonsymmetric bifurcation buckling from 
the axisymmetrically deformed prebuckling state are 
calculated. Main advantage is the provision for realistic 
engineering details such as eccentric load paths, internal 
supports, arbitrary axisymmetric branching, and flexi-
bility of loading. A variety of loads can be applied 
simultaneously, loads that increase proportionally with 
each other, or loads that vary during the case in a 
nonproportional way. Two unique features of BOSOR5 
are that it is stable (program not being changed except to 
eliminate bugs) and it is fast. Primary or secondary creep 
can be accounted for simultaneously with elastic-plastic 
behavior. Program has been thoroughly qualified by 
numerous comparisons with tests, most of which have 
been documented in the open literature. 

User Interface and Modeling Capabilities: 
BOSOR5 consists of three processors: pre, main and 
post. Input data is fixed format. Certain commonly 
occurring geometries such as cylinders, spheres, cones, 
etc. are generated with use of integer pointers and user-
provided end-point coordinates. Also required from user 
for input are number and distribution of nodal points, 
discrete, ring geometries, ranges and increments of cir-
cumferential wave numbers, load and temperature dis-
tributions, shell wall construction details, and constraint 
conditions. Output includes lists and plots of displace-
ments, stress resultants, stresses and strains at several 
stations through the thickness, buckling loads. The main 
processor has a restart capability. 

Element Library: 
Discretization is by the finite difference energy method, 
which represents a kind of finite element that is 
extremely rapidly generated. 

Solution Methods for Nonlinear Problems: 
• Newton-Raphson, out-of-core solving. 
• Very carefully designed strategy for combined 

large-deflection, material nonlinearity, involving a double 
iteration loop at each load level. 

• Subincremental strategy for material nonlinearity 
(see Ref. [54]). 

• Eigenvalues extracted by inverse power method 
with spectral shifts. 

• Skyline method used for matrix factorization. 

Notable Items and Limitations: 
Fifteen-hundred degrees of freedom (d.o.f.) in nonaxi-
symmetric bifurcation buckling problem; 1000 d.o.f. in 
axisymmetric prebuckling stress analysis. Knockdown 
factors for imperfection sensitivity not included; radius 
to thickness ratio should be greater than about 10. Iso-
tropie strain hardening with von Mises yield criterion and 
Norton creep law are included. 

Programming Language: FORTRAN IV. 

Hardware!Operating System: UNIVAC 1110, CDC 6600 
or 7600, IBM 360 or 370, VAX, SC4020 and CALCOMP 
plotters. 

Program Size: About 12,000 statements (core program, 
pre- and postprocessors). 

Documentation: See Refs. [52-54]. 

Program Availability: BOSOR5 is available for use 
through the data centers listed above. BOSOR5 may be 
purchased for $500 from the developer. Purchase includes 
source deck (tape), example cases, and documentation. 

[BOVA [ 

Descriptive Program Title: Bridge Overload Analysis. 

Program Developer: C. N. Kostem, Fritz Engineering 
Laboratory, 13, Lehigh University, Bethlehem, PA 
18015, U.S.A. (also, W. S. Peterson-c/o C. N. Kostem). 

Date of First Release and Most Recent Update: 1975 and 
1979. 

General Information: 
Program BOVA was developed to simulate the elastic 
and inelastic static response of simple span beam-slab 
bridges with reinforced concrete slab (or any isotropic or 
orthotropically reinforced plate) and reinforced or pre-
stressed concrete beams. Beams are assumed to be solid, 
i.e. /-, Γ-beams, etc. The accuracy of the solutions 
deteriorate if applied to box-beam structures. The pro-
gram has been extensively tested, and its accuracy has 
been demonstrated. Cracking, crushing, yielding and all 
other forms of material nonlinearities, including fully 
nonlinear stress-strain curves, have been incorporated 
into the program. 

Program Capability: 
The program is capable of providing the full simulation 
of bridge-like superstructures from zero load level up to 
the collapse of the structural system. Overzealous dis-
cretization of the structural system, and high degree of 
precision that may be described by the user, may require 
extensive central processor time. All practical and 
detailed research problems can be analyzed in an 
efficient manner. Program provides voluminous printout 
for all the stress, deformation and damage states for any 
given load level. 

User Interface and Modeling Capabilities: 
Program contains a minimal preprocessing capability, and 
printer plot post processing capability. Additional fea-
tures have been added by other users. The accuracy of 
these modifications has not been fully demonstrated. 
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Element Library: 
Program is built around ACM-plate bending element, and 
cubic beam finite element. Uniaxial deformation field for 
the beams and biaxial membrane displacement field for 
the plate bending elements have also been incorporated. 
Plate and beam elements are further discretized into 
layers to monitor the stress and damage variations 
through the depth of the members. Extremely sophisti-
cated failure criteria have been developed and are for the 
first time incorporated into this program. 

Solution Methods for Nonlinear Problems: 
Solution is based on incremental or incremental iterative 
solution of the system tangent stiffness matrix. User has 
the option of defining the solution scheme, the accuracy 
checks and termination checks. 

Notable Items and Limitations: 
The program simulates the inelastic response of bridge 
superstructures. The program has been extensively tes-
ted, and it has been observed that even with "engineer-
ing" type rough discretization, the program can predict 
the stress and the damage to the structural system fairly 
accurately. The program has been available to the 
Departments of Transportation for wide scale deploy-
ment in the rating of bridge superstructures, and issuance 
of overload permits. This is the first time that bridge 
integrity is related to the load level in the definition of 
permits. 

Programming Language: FORTRAN EXTENDED 
(Control Data Corporation). 

Hardware/Operating System: CDC 6400 (SCOPE 
operating system; employs OVERLAYS) Burroughs 5000 
series. 

Program Size: Approximately 15,000 cards. 

Documentation: See Refs. [55,56]. 

Program Availability: Unsupported version of the pro-
gram is available from Federal Highway Administration 
and Pennsylvania Department of Transportation. For sup-
ported version, contact: Dr. C. N. Kostem, Fritz 
Engineering Laboratory, 13, Lehigh University, 
Bethlehem, PA 18015, U.S.A. 

I BOVAC 1 

Descriptive Program Title: Bridge Overload Analysis-
Concrete Bridges. 

Program Developer: C. N. Kostem, Fritz Engineering 
Laboratory, 13, Lehigh University, Bethlehem, PA 18015, 
U.S.A. 

Date of First Release and Most Recent Update: 1979 
and 198Ö. 

General Information: 
Program BOVAC is an enhanced version of program 
BOVA (Bridge Overload Analysis, by Dr. C. N. Kostem). 
Program was developed for average user without 
engineering background. The program is fully supported 
by the developer. All releases are made available, at no 
cost, to the users of the program. The main difference 

between BOVAC and BOVA is the addition of sub-
stantial preprocessing capability in BOVAC. 

Program Capability: 
Program is aimed at the analysis of beam-slab highway 
bridge superstructures. Extensive libraries have been 
built into the program to predefine the prestressed I-
beam cross sections used in Pennsylvania. Similarly, the 
types of reinforcement detailing are automatically ac-
complished by the program. The program could be 
modified with great ease to enhance the library of bridge 
superstructure details. 

User Interface and Modeling Capabilities: 
Pre- and postprocessors have been built into the pro-
gram. All pre- and postprocessing activities are carried 
out in core through the use of line printer graphics. 

Element Library: 
BOVAC employs ACM plate bending element with 
membrane degrees of freedom, and cubic beam element 
with axial deformation degree of freedom. For the types 
of applications other types of elements are found to be 
redundant. 

Solution Methods for Nonlinear Problems: 
BOVAC employs incremental iterative solution of sys-
tem tangent stiffness equations. The user does not have 
control of the modifications of the solution technique via 
input data stream. 

Notable Items and Limitations: 
The program can be used by individuals without any 
finite element or even engineering background. It is 
intended for use for overload permit applications. 

Programming Language: FORTRAN EXTENDED 
(Control Data Corporation). 

Hardware!Operating System: CDC 6400 (SCOPE 
operating system; employs OVERLAYS) Burroughs 5000 
computers. 

Program Size: Approximately 17,000 cards. 

Documentation: See Refs. [57,58]. 

Program Availability: Unsupported version of the pro-
gram is available through Federal Highway Adminis-
tration and Pennsylvania Department of Transportation. 
For supported version contact the developer. 

1 BRICK 1 

Descriptive Program Title: Inelastic Analysis of 
Masonry Panel Wall-Beam Column Structures. 

Program Developer: C. N. Kostem, Fritz Engineering 
Laboratory, 13, Lehigh University, Bethlehem, Penn-
sylvania 18015, U.S.A. (Also, P. Green—c/o C. N. 
Kostem). 

Date of First Release: 1979. 

General Information: 
Program Brick is built around the appropriate portions of 
Program SOLID SAP. It is envisioned that the future 
developments of BRICK will be carried out for portions 
other than SOLID SAP. The listing of the current 
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version of the program has been provided in the user's 
manual. Future revisions will be related to this listed 
version. 

Program Capability: 
Program BRICK was developed to predict the elastic 
and inelastic response of wall panels consisting of two 
beams, two columns, and masonry wall. Prediscretiza-
tion is provided to model the brick (or any other masonry 
blocks) and mortar. The aim of the program has been (1) 
the determination of the interaction between the 
masonry panel and the structural frame, and (2) to 
determine the damage initiation in wall panel and the 
propagation of the damage. 

User Interface and Modeling Capabilities: 
Program contains minimal amount of preprocessing 
capability in terms of automatic prediscretization. Output 
files have been defined for the prospective users to 
interface with appropriate post-processors. 

Element Library: 
Program employs high order plane stress elements to 
describe the behavior of bricks and masonry. Beam 
elements are used to define the beams and columns. 

These elements have been described in the SOLID SAP 
manual. 

Solution Methods for Nonlinear Problems: 
Program employs incremental tangent stiffness method. 
The program could be considered as the core unit for 
future modifications by researchers. 

Notable items and Limitations: 
Program has been developed as a research tool. It has 
been kept general and flexible enough for future 
modifications. The modifications can be tailored accord-
ing to user needs. 

Programming Language: FORTRAN IV. 

Hardware!Operating System: CDC 6400 (SCOPE 
Operating System). 

Program Size: Approximately 5000 cards. 

Documentation: See Refs. [59,60]. 

Program Availability: Refer to user's manual and/or 
developer. 

1 DANUTA| 

Program Developer: S. A. Chacour, Advanced Tech-
nology Department, Allis-Chalmers Corporation, P.O. 
Box 712, York, PA 17405, U.S.A. 

Date of First Release and Most Recent Update: 1971 
and 1979. 

General Information : 
DANUTA is a highly automated computer program 
which uses the finite element technique for the static and 
dynamic analysis of structures encountered in the 
mechanical and civil engineering fields. The choice of 
elements and gridwork allow curved boundaries on sur-
faces, hence, the ease in simulating complicated struc-
tures such as pressure vessels, mechanical components, 
turbine blades, arched dams, shear walls, shells, etc. 

Program Characteristics: 
• ACCURACY 

Subparametric curvilinear elements whose shape 
functions and high precision enable accurate mathema-
tical representation through relatively coarse modeling 
gridwork. Displacements and their first derivatives make 
up the degrees of freedom allowed at all corner nodes. 

• OPTIMIZED SOLUTION TECHNIQUES 
Low cost results through the use of automated band-

width minimizing procedure. 

> Note: The program accommodates models employing 
both plane stress and axisymmetric two-dimensional ele-
ments by imposing user selected constraints between the 
displacement components at the interface nodes. 

r · EASY MODELING 
• Choice of simple input formats based on single data 

type entries per record or free format. 
• A variety of preprocessors enabling automatic grid 

s generation. 
2 · Input checking program plots geometry, node 
- identification numbers, loading and constraints and pro-

vides complete echo of data deck in printed form each 
record having been checked for format as well as struc-
tural modeling errors. 

• A variety of flexible or rigid boundary conditions 
i utilizing cyclic or reflection symmetry, and transformed 

local coordinates. 

• WIDE VARIETY OF OUTPUT 
• Computer printed output in either condensed or full 

form. 
• Post-processor file for employing superposition of 

r up to 32 separate loading cases. Nonlinear behavior as 
found in problems involving contact can thus be 
obtained. 

• Color coded plots depicting the deflected and 
undeflected structural model for static analysis or mode 

- shape plots for dynamic analysis. 

Programming Language: FORTRAN IV. 

• ANALYTICAL CAPABILITIES 

• elastic and elasto-1 
plastic calculations J 

• natural frequency and modal j 
response to cyclic loading J 

STATIC 

AND 

DYNAMIC 

element family 
one dimensional 

two dimensional 

three dimensional 

(rod) 

ί plane stress 
< plane strain 
[ axisymmetric 

(solid) 
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Hardware!Operating System: CDC 7600 (SCOPE), CDC 
CYBER 170 Series (NOS), CDC STAR, IBM, UNIVAC 
(EXEC8, Double Precision). 

Program Size: 
Core Program: 13300 records 
Preprocessor: 3400 records 

Post-Processor: 2250 records. 

Availability: Program can be used on CDC CYBER 173 
computer. Time sharing arrangements can be set up with 
the York plant. 

Descriptive Program Title: General Purpose Finite 
Element Code. 

Program Developers: Gordon Ferguson and Norman A. 
Cyr, Lockheed Missiles and Space Company, Inc., 1111 
Lockheed Way, Sunnyvale, CA 94086, U.S.A. 

Date of First Release and Most Recent Update: 1975 
and 1980. 

General Information: 
DIAL is a proprietary code which is undergoing con-
tinual development. 

Program Capability: 
DIAL is a general purpose finite element program with 
the ability to perform static and transient nonlinear 
analysis in âddition to linear stress analysis, vibration 
and buckling. The element library consists of a full set of 
modern elements for two-dimensional (including Fourier 
modes) and three-dimensional analysis. The DIAL sys-
tem consists of several independent processors which 
communicate via a generalized data base and file 
management system. Restart, analysis planning and 
branching, communication with other engineering pro-
grams and other logical user problems are easily per-
formed within the architecture of the DIAL system. 

User Interface and Modeling Capabilities: 
User input may be any mixture of free field commands 
and FORTRAN subroutine calls, offering maximum 
flexibility. Full two- and three-dimensional automatic 
mesh generation capabilities are available. Post-process-
ing functions include all standard printing and plotting 
features in addition to extensive data manipulation 
capabilities (e.g. stress rotation, extrapolation to nodes, 
etc.). 

Element Library: 
Complete sets of two- and three-dimensional iso-
parametric (linear parabolic, cubic, mixed order) solids 
and degenerate isoparametric thick shells and curved 
beams are available. Standard thin shell, truss and beam 
elements are also included. Special provisions are made 
for user defined stiffnesses and other elements. 

Solution Methods for Nonlinear Problems: 
Nonlinear static solution techniques include many varia-
tions of Newton type methods with automatic load step 
calculation. Nonlinear transient techniques include 
several implicit schemes using Newton methods and an 
explicit scheme, all with automatic time-step selection. 

Notable Items and Limitations: 
DIAL is a modern processor-oriented code with com-
plete, up-to-date libraries of two- and three-dimensional 
elements capable of performing two-dimensional (plane 
stress, plane strain, axisymmetric with and without 
Fourier modes), and three-dimensional analysis. Due to 
the modular data base concept, user control is very 
versatile and economical. Large problems may be run in 
an interactive environment. 

Programming Language: FORTRAN with selected 
machine coding in inner loops. 

Program Size: 

Analysis Processors: 50,000 
Pre-processors: 15,000 

Post-processors: 20,000. 

Documentation: Program description, user's manual. 

Program Availability: From code developers. 

I DRAIN-2D, DRAIN-TABS | 

Descriptive Program Title: Seismic Response Analysis 
of Inelastic Two-Dimensional Structures and Three-
Dimensional Buildings. 

Program Developer: G. H. Powell, Department of Civil 
Engineering, Division of Structural Engineering and 
Structural Mechanics, University of California, Ber-
keley, CA 94720, U.S.A. 

Date of First Release: 1971. 

General Information: 
Developed as simple general purpose code for research 
in inelastic seismic response. Unsophisticated, but simple 
and efficient. Has received substantial use for both 
research and practical analysis. Designed to allow new 
elements to be added with relative ease. 

Program Capability: 
Static load analysis (for which behavior must be linear) 
followed by dynamic analysis under one- or two-dimen-
sional ground motion. All support points must move 
in-phase. Calculates time histories of node and element 
response. 
DRAIN-2D considers a single two-dimensional structure. 
DRAIN-TABS allows several iwo-dimensional structures 
to be linked together by rigid floor diaphragms, to allow 
modeling of three-dimensional buildings. 

User Interface and Modeling Capabilities: 
No pre-processors. Plotting routines have been 
developed but are not included in the basic package. 
Results may be saved on tape for post-processing. 

Element Library: 
A variety of bar, beam and panel elements are available. 
New elements can be added relatively easily. 
Modeling typically assumes small displacements or 
second-order displacements (P-delta effect included). 
Since all nonlinearity is introduced at the element level, 

1 PIALI Hardware!Operating System: UNIVAC, CDC. 
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large displacements could be considered, but because of 
the solution strategy this is not convenient. 

Solution Methods: 
Implicit step-by-step integration with constant time step. 
No iteration within step. Unbalances due to nonlinear 
behavior carried through to next step. 

Programming Language: FORTRAN IV. 

Hardware!Operating System: CDC 6400/6600/7600, 
DRAIN-2D: IBM 360 also. 

Program Size: 
Approximately 9000 cards for DRAIN-TABS 

5000 cards for DRAIN-2D 

Documentation: Theoretical manual and user guide. See 
Refs. [61-65]. 

Program Availability: National Information Service for 
Earthquake Engineering, Computer Applications, 519 
Davis Hall, University of California, Berkely, CA 94720, 
U.S.A. 

Cost approximately $300 each. 

PLANS, DYCAST 

Descriptive Program Title: Plastic and Large Deflection 
Analysis of Structures, Dynamic Crash Analysis of 
Structures. 

Program Developer: A. Pifko, A. Levy, H. Armen and 
H. Le vine t, Research Department, Grumman Aerospace 
Corporation, Bethpage, NY 11714, U.S.A. 

Date of First Release and Most Recent 
Update: PLANS—1972—Development Continuing; 
DYCAST—1976—Development Continuing. 

General Information: 
PLANS is a group of programs for the static nonlinear 
analysis of structures. PLANS programs consist of four 
programs for material nonlinearity: elastic-plastic 
analysis of three-dimensional built-up structures; 
elastic-plastic analysis of bodies of revolution; elastic-
plastic creep analysis of three-dimensional solids; and 
the elastic-plastic fracture analysis of planar structures. 
Two programs were developed for combined material and 
geometric nonlinearity; one for three-dimensional built-

tNo longer at Grumman. 

up structures and the other for the nonlinear analysis and 
bifurcation buckling of folded plate structures. Initial 
version of PLANS was funded by NASA Langley 
Research Center and is available through COSMIC. In-
dependent development is continuing at Grumman. 
DYCAST is a program for nonlinear dynamic analysis with 
particular emphasis on vehicle crashworthiness. 
Development of DYCAST is continuing under contract to 
NASA Langley Research Center. 

Program Capability: 
PLANS/DYCAST as a group constitutes a general pur-
pose finite element program for nonlinear analysis of 
structures. Having separated the programs by analysis 
class has enabled the implementation of solution al-
gorithms most suitable for each type of analysis. The 
modules that analyze material nonlinearities alone 
employ the "pseudo-load or initial strain" concept within 
an incremental procedure to account for the effect of 
creep and plasticity and include the capability for cyclic 
plastic and creep analysis. The cyclic plastic behavior is 
accounted for by implementing the Prager-Ziegler 
kinematic hardening theory while cyclic creep behavior 
is treated according to the ORNL auxiliary rules for 
stress reversal. The "pseudoload" approach does not 
require that the stiffness matrix be updated at each step 
in the analysis but rather the effect of plasticity enters 
into the analysis as an effective load vector. Geometric 
nonlinearities are included by making use of an updated 
Lagrangian approach, which requires the reformation of 
the stiffness matrix due to changes in the geometry and 
stress field during an incremental/iterative procedure. 

User Interface and Modeling Capabilities: 
Current capability includes one common program for 
data checking, bandwidth optimization and plotting the 
undeformed structure. There are no general purpose 
mesh generators although a number of special programs 
have been written for particular mesh types as needed. 
Postprocessing programs are available for plotting the 
deformed structure and for time histories of displace-
ment, velocity and acceleration. Limited capability exists 
for contour plotting. 

Element Library: 
The elements in PLANS that can be used for static 
plastic analysis are: three-dimensional thin-walled beam; 
two and three node axial force element; 
three to six node family of membrane triangles; higher 
order membrane and bending triangular element (strain 
and curvature degrees of freedom); eight to twenty node 
isoparametric solid; revolved triangle; revolved curved 

Solution Methods for Nonlinear Problems: 
# Nonlinear Dynamic Response 

• Nonlinear Static 
• Material and Geometric 

Nonlinearities 
• Plastic Analysis 
• Elastic-Plastic-Creep 

• Equation Solver 

• Eigenvalue/Eigenvector Solver 

—Choice of four time integrators; Implicit Newmark or 
Wilson and Explicit Central Difference or Variable 
Time-Step Modified Adams 

—Incremental Solution, Modified Newton Iteration 

—Incremental Solution with Equilibrium Correction 
—Incremental Predictor-Corrector Iterative (or Non-

iterative) Method 
—Choice of two routines, in-core or out-of-core com-

pacted solver 
—Diagonal matrix for explicit lumped mass 
—Lanczos Method, Automatic Reduction of Matrix to 

Tridiagonal Form 
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shell and stiffener. Static material and geometric non-
linearity includes the first four element types mentioned 
above. DYCAST includes the first three element types 
mentioned above as well as a general nonlinear spring 
element. 

Notable Items and Limitations: 
PLANS and DYCAST have been written with a modular 
structure so that program size (number of nodes and 
elements and working core) can be easily changed. New 
elements can also be added in a straightforward manner. 
The programs can easily be converted for all existing 
computer hardware. 
DYCAST has be written with vehicle crashworthiness as 
its principal application. 
There are limitations in the element library particularly 
because of the absence of the isoparametric quadra-
lateral and a simple plate bending element. Use of prob-
lem-adaptive controls for modeling nonlinearities should 
be added in order to enhance the "general purpose" 
capability of the program. These involve internal checks 
on the material constitutive equations, and time step/load 
step sizes. 

Programming Language: FORTRAN IV. 

Hardware!Operating System: 
The programs were written for IBM or CDC computers 
and are fully portable among these. Currently operational 
on CDC CYBER 172-175 (NDS) and IBM 370/168 MVT 
(double precision). DYCAST and one of the PLANS 
programs is operational on CDC-STAR-100. PLANS is 
operational on DEC VAX/11/780. 

Program Size: 
PLANS-approximately 18,000 FORTRAN state-

ments per program 
DYCAST—approximately 25,000 FORTRAN statements 

Pre-Post Processors—approximately 5000 FORTRAN 
statements. 

Documentation: 
A theoretical and user's manual is available for PLANS 
(see Refs. [66-68]). The DYCAST manual is under pre-
paration. 

Program Availability: 
Versions of PLANS are available through COSMIC. 
Current versions are available from Grumman Aerospace 
Corporation for a fee (negotiable). 

[ELASSS;) 

Descriptive Program Title: ELAS55 Computer Program 
for Equilibrium Problems of Thermo-Viscoelastic-Plas-
tic Solids and Structures. 

Program Developers: S. Utku, J. Q. Tarnt and G. J. 
Dvorakt, Civil Engineering Department, Duke Uni-
versity, Durham, NC 27706, U.S.A. 

Date of First Release: April 1974. 

General Information: 
ELAS55 has been developed by the resources of the 
Computer Structural Analysis Fund of the School of 

tNo longer at Duke University. 
CAS 13:1-3 - DD 

Engineering of Duke University, Durham, North Carol-
ina. It is based on the ELAS75 program (for the linear 
equilibrium problems of solids and structures) of the 
Fund. ELAS55 may be obtained from the Fund with a 
one-time nominal registration fee payable to the Fund. 
The cost of additional support and maintenance should 
be negotiated with the Fund; however, the basic support 
and maintenance are free. ELAS55 is a general purpose 
computer program for the nonlinear equilibrium prob-
lems of solids and structures, and it uses displacement 
finite element method for the solution. 

Program Capability: 
ELAS55 considers only the material nonlinearities. 
Geometry is defined by hexahedral elements only. Euler-
Navier, Kirchhoff, axial symmetry, plane strain, etc. type 
assumptions may be imposed by means of the multi-
point deflection boundary conditions. Through input 
parameters, various Newton-Raphson algorithms may be 
chosen. There can be up to 99 different materials. Each 
can be any combination of the following arranged in 
series: an anisotropic elastic solid (up to 21 elastic con-
stants), an anistropic viscoelastic Kelvin solid (up to 21 
Kelvin models with temperature dependent Kelvin 
Parameters which are not necessarily thermorheologic-
ally simple), and an isotropic elastic-plastic solid of the 
Mises type (the yield stress may be temperature depen-
dent). Restart capability allows nonproportional loading. 

User Interface and Modeling Capabilities: 
There is no pre- or post-processor to go with the 
ELAS55 program. However, means of working with pre-
and post-processors are already implemented in the pro-
gram. 

Element Library: 
There is only hexahedral element in the program. All 
other elements can be simulated by means of the multi-
point deflection boundary conditions. 

Solution Methods for Nonlinear Problems: 
Through input parameters various Newton-Raphson 
iterations can be chosen. With the input parameters, the 
user can control the frequency of generation of the 
instantaneous stiffness matrix (the Jacobian of residuals 
with respect to independent deflections), the number of 
subiterations using the same instantaneous stiffness 
matrix, and the number of finite elements which can 
yield for a given load increment. 

Notable Items and Limitations: 
In-core decomposition of the instantaneous stiffness 
matrix is a size limitation. Small deformations can also 
be a limitation for some problems. The possibility of 
multi-point deflection boundary conditions, and the 
variety of constitutive relations are strong points. 

Programming Language: 
FORTRAN IV (direct use for IBM 370/165 H compiler). 

Hardware!Operating System: 
Any middle to large size computer with FORTRAN IV 
compiler and a link-editor with overlaying feature. 

Program Size: About 6500 source statements. 

Documentation: See Refs.[69, 70]. 
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Program A vailability : 
One time registration fee payable to Duke University is 
$2000. For the source program, documentation, sample 
inputs and outputs, write to: Computer " Structural 
Analysis Fund, Department of Civil Engineering, Duke 
University, Durham, NC 27706 or call (919) 684-2434. 

| HONDO II] 

Descriptive Program Title: A Two-Dimensional Finite 
Element Program for the Solution of Large Deformation 
Finite Strain, Inelastic Transient Dynamic Response of 
Solids. 

Program Developer: Samuel W. Key, Division 5531, 
Sandia National Laboratories, Albuquerque, NM 87185, 
U.S.A. 

Date of First Release and Most Recent Update: First 
release 1974, second release 1978. 

General Information: 
HONDO II is a nonproprietary code. It was developed 
for use at Sandia National Laboratories on a variety of 
energetic problems including impact and blast loading. 
The program is currently in use at Sandia. Updates to 
correct errors as they become known are sent to the 
known users. No consulting or maintenance is provided 
except on a casual basis. 

Program Capability: 
The program is particularly useful in that it has a sliding 
interface capability which allows multiple independently 
meshed bodies to interact dynamically. 

User Interface and Modeling Capabilities: 
Pre- and post-processors are not included. The program 
accepts a binary file containing information from a mesh 
generator called QMESH. The program writes a binary 
output file which can be post-processed. 

Element Library: 
A four node quadrilateral with a choice of either con-
stant stres§ assumption or variable stress with constant 
pressure. 

Solution Methods for Nonlinear Problems: 
Explicit central difference time integration including 
automatic selection and adjustment of time step to 
maintain numerical stability. 

Notable Items and Limitations: 
HONDO II is a special purpose program which for the 
intended applications works rapidly and reliably. The 
user should have an advanced education in solid 
mechanics covering stress wave propagation and large 
deformations. 

Programming Language: FORTRAN IV. 

Hardware!Operating System: CDC 7600. 

Program Size: 3000 cards. 

Documentation: See Ref. [71]. 

Program Availability: Upon request and submittal of a 
magnetic tape. 

Descriptive Program Title: A Two-Dimensional Finite 
Element Program which Uses a Nonlinear Conjugate 
Gradient Technique for the Solution of the Nonlinear 
Quasi-Static Response of Solids. 

Program Developer: J. H. Biffle, Division 5521, Sandia 
National Laboratories, Albuquerque, NM 87185, U.S.A. 

Date of First Release and Most Recent Update: 1980. 

General Information: 
The code is a production version of a code used to 
research the use of explicit iterative techniques to solve 
highly nonlinear solid mechanics problems. Development 
started in 1978 and many iterative schemes were tried. 
The nonlinear conjugate gradient method appears to be 
the best of all explicit schemes considered. 

Program Capability: 
JAC is a finite element computer program for solving the 
large deformation, temperature dependent static prob-
lems for two-dimensional bodies. Either plane strain or 
axisymmetric geometry may be used. Material properties 
include isothermal and temperature dependent elastic-
plastic, secondary creep and soil large strain models. 
Sliding interfaces can also be modeled. Solutions are 
obtained with the use of a nonlinear conjugate gradient 
technique. To accelerate convergence of the solution 
process during a load step, a fraction of the displacement 
increment of the previous load step may be used as an 
initial incremental displacement to start the solution. The 
formulation uses isoparametric nine-node Lagrangian 
elements which are integrated with a nine point rule 
evaluated at the nodes of the grid. To also accelerate 
convergence, a solution of a load increment can first be 
obtained with the use of four-node elements by using 
only the corner nodes of the nine-node elements. The 
four-node results are then used as a starting displace-
ment vector to obtain the nine node element solution. 
When geometric nonlinearities are present, it is some-
times advantageous to calculate a geometrically linear 
solution and then restart the solution to obtain a 
geometrically nonlinear solution. Therefore, when 
obtaining the final nine node element solution, first a linear 
solution and then a geometrically nonlinear solution can be 
obtained. The program is recommended for use on highly 
nonlinear analyses and not for linear solutions. It is much 
more efficient to solve linear problems another way. 

User Interface and Modeling Capabilities: 
Pre- and post-processors are not included. The program 
accepts a binary file containing information from a mesh 
generator called QMESH. The program writes a binary 
output file which can be processed. 

Element Library: 
A nine-node Lagrangian element is used. 

Solution Methods for Nonlinear Problems: 
A nonlinear conjugate gradient method is used. 

Notable Items and Limitations: 
The program is a serious attempt to use an explicit 
solution technique for nonlinear static problems. It is 
hoped that the research will be most profitable with 
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three-dimensional problems. The convergence of the 
nonlinear problems is reliable, but for problems which 
exhibit a large spread in eigenvalues it can be slow. 

Programming Language: FORTRAN IV. 

Hardware!Operating System: CDC 7600. 

Program Size: 2500 cards. 

Documentation: User's manual is in preparation. 

Program Availability: Upon request when release has 
been approved and manual has been written. 

TLARSTRAN 801 

Descriptive Program Title: Large Strain Nonlinear 
Analysis. 

Program Developer: Institute for Statics and Dynamics, 
University of Stuttgart, Pf affenwaldring 27,7000 Stuttgart 
80, West Germany. 

Date of First Release: 1981. 

General Information: 
Development from scratch since 1977. Software main-
tenance and user support will be provided on a long-term 
basis. Due to a rock bottom standardization in the 
FORTRAN IV coding, the system is machine-in-
dependent to the highest degree conceivable. An open 
concept allows user access in all levels of the program 
hierarchy. 

Program Capability: 
LARSTRAN 80 is a program system designed to provide 
a basis for nonlinear static and dynamic structural com-
putations. Standard applications are the (modified) New-
ton-Raphson procedure, a third order Hermitian non-
linear dynamic algorithm, and an explicit nonlinear 
dynamic algorithm. 
The finite element programs are easily attached to the 
system through a unified concept. 

User Interface and Modeling Capabilities: 
The user data input is facilitated by a simple but power-
ful data generation capability. There will exist a data 
compatibility path to and from the interactive graphics 
package INGA and to other software systems. 

Element Library: 
Currently about twenty different element types are in-
cluded. The number of elements is continually in-
creasing. 

Solution Methods for Nonlinear Problems: 
Newton-type iteration. 
Implicit and explicit time integration. 

Notable Items and Limitations: 
The out-of-core logic is strictly maintained in all parts of 
the coding. Therefore, no limits are imposed in terms of 
some problem size. A central data base and neatly 
designed data structures (being transparent to the user) 
allows for user interaction and provides a stop/restart as 
a standard facility. 

Programming Language: STANDARD FORTRAN IV. 

Hardware!Operating System: CDC, UNIVAC, IBM. 

Program Size: Approximately 30,000 lines of code/500 
subroutines. 

Documentation: See Ref. [72]. An updated users manual 
is in preparation. 

Program Availability: Statik und Dynamik Forschungs-
gesellschaft mbH, Postfach 80 10 44, D-7000 Stuttgart 80, 
West Germany. 

iMARC] 

Descriptive Program Title: General Purpose Finite 
Element Program. 

Program Developer: P. V. Marcal, President, MARC 
Analysis Research Corporation, 260 Sheridan Avenue, 
Suite 200, Palo Alto, CA 94306, U.S.A. 

Date of First Release and Most Recent Update: 1970 
and 1980. 

General Information: 
MARC is a proprietary code supported by MARC 
Analysis Research Corporation with offices in Palo Alto, 
California, Tokyo, Japan and The Hague, Holland. The 
current state-of-the-art of finite element technology is 
adapted and incorporated into the program. New releases 
of the program are generated at the rate of about one per 
year. 

Program Capability: 
MARC is designed for the linear and nonlinear analysis 
of structures in the static and dynamic regime. Its 
extensive element library makes it useful for elastic 
analysis and its broad coverage of structural mechanics 
makes it an invaluable nonlinear analysis tool. The fol-
lowing nonlinearities are handled by the program: elas-
tic-plastic, large displacements, finite strain, creep, 
thermally dependent properties. An eigenvalue for buck-
ling may be obtained after each load increment. Dynamic 
analysis can be carried out by the modal or the direct 
integration procedure. Anisotropie, elastomeric and in-
compressible material descriptions are available. Restart 
capability to restart analysis at any increment or time-
step. A rigid-plastic flow capability and a fluid-solid 
modeling capability are available. The heat transfer uses 
element types of which a structural analog exists, making 
a decoupled thermo-mechanical model using the same 
mesh possible. Extensive constraint and servo link 
capabilities are available. Numerous user interfaces for 
specification of user selected parameters make the pro-
gram extremely flexible. 

User Interface and Modeling Capabilities: 
Extensive pre- and postprocessing capabilities are built 
into the MARC program. They include mesh generation 
and plotting of deflected shapes and contours of element 
quantities. An interactive pre- and postprocessor, MEN-
TAT, assists in the two- and three-dimensional mesh 
generation and other data preparation areas. Post-
processing includes displaced geometries and contours of 
element quantities. MENTAT interfaces to MARC and 
NASTRAN. 
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Element Library: 
Truss; beams; two-dimensional: triangle, linear and 
second order isoparametric; Axisymmetric: triangle, 
linear and second order isoparametric; eight-node quad 
for arbitrary loading; three-dimensional: eight-node, 
twenty-node brick, four-node, eight-node membrane; flat 
plate; generalized plane strain; two- and three-dimen-
sional incompressible Hermann elements; doubly curved 
shells, axisymmetric shells; pipe bend, rebar; heat trans-
fer; reduced integration elements; linear shear panel. 

Solution Methods for Nonlinear Problems: 
# Nonlinear static: Incremental solution, tangent 

modulus with modified Newton-Raphson iteration. 
# Nonlinear dynamic response: Implicit time in-

tegration (Newmark or Houbolt) explicit (finite 
differences). 

# Heat transfer: Backward differences (Crank-
Nicholson). 

Notable Items and Limitations: 
Most of the different options can be used simultaneously 
to cover an extremely wide range of nonlinear ap-
plications. 

Programming Language: FORTRAN IV. 

HardwarelOperating System: CDC 6600, 7600, CYBER 
175, 176, IBM, UNIVAC, PRIME, VAX. 

Program Size: 

Core Program: 60,000 
Pre-processors: 5000 

Post-processors: 10,000. 

Documentation: See Refs. [73-74]. 

Program Availability: Data centers: CDC, McAuto, 
ISD, Boeing, USC, Babcock and Wilcox. Program is 
available for binary or binary and source leases from 
MARC Analysis Research Corporation. 

TMSC/NASTRAN"] 

Descriptive Program Title: The MacNeal-Schwendler 
Corporation, "NASA STfluctural yWalysis" 

Program Developer: 
The initial release of NASTRAN was developed by a 
multicorporation team including MSC and funded by 
NASA; MSC/NASTRAN is a proprietary version of 
NASTRAN developed and maintained exclusively by 
MSC. 

Date of First Release and Most Recent Update: 1969 
and 1980. 

General Information: 
MSC/NASTRAN is an advanced version of the NASA-
funded general purpose structural analysis program. All 
maintenance of the system and development of new 
capability is performed by the MSC staff. It is marketed 
and serviced from MSC's offices in Los Angeles, Munich 
and Tokyo, and is available at most major public data 
processing centers. Customer hotline service is available 
to assist users in critical situations. The user community 
is also aided by a wide variety of available courses and 
by the dissemination of known program errors and their 
avoidances. 

Program Capability: 
• MSC/NASTRAN is a large-scale general purpose 

digital computer program that solves a wide variety of 
engineering analysis problems by the finite element 
method. The program capabilities include static and 
dynamic structural analysis, heat transfer, aeroelasti-
city, acoustics, electromagnetism, and other types of field 
problems. It has been successfully used by large and 
small companies throughout the world engaged in such 
diverse fields as automotive, aerospace, civil engineering, 
shipbuilding, offshore oil, industrial equipment, chemical 
engineering, optics, and government research. 

• The solution options available in MSC/NASTRAN 
go far beyond the scope of the questionnaire. In par-
ticular, the dynamics capabilities contain options for 
several types of dynamic reduction (modal synthesis, 
generalized dynamic reduction, and Guyan reduction), 
dynamic solutions (complex eigenvalues, random spec-
tral analysis, enforced accelerations, and four real 
eigenvalue methods), and coupled nonstructural effects 
(aeroelastic flutter and gust response, hydroelastic effects 
and servomechanisms). 

User Interface and Modeling Capabilities: 
• Because of its wide dissemination, NASTRAN pre-

and post-processors abound, particularly at the large data 
centers. MSC/NASTRAN includes batch mesh genera-
tion inside the system with its MSGMESH module, and 
interactive graphics postprocessing with its VIEW and 
GRASP programs. 

• The basic program processes free and fixed field 
input data and has provisions for user-supplied un-
formatted data files. Output provisions exist for interfac-
ing with most known plotter software. The specific out-
puts, controlled by the user, include displacements, 
velocities, accelerations, applied forces, constraint 
forces, internal element forces. Many diagnostic output 
options are also provided, such as timing factors, matrix 
characteristics and spill messages. 

Element Library: 
Large displacement updated Lagrangain formulation is 
available for rod, prismatic "bar", tapered "beam", 
general quadrilateral and triangular isoparametric plate 
and shells elements, "gap" element, shear panel and a 
family of isoparametric solid elements. In addition, plas-
tic and nonlinear elastic properties, as well as the large 
displacement effects are now provided for the rod, beam, 
gap and plate elements. 

Solution Methods for Nonlinear Problems: 
• Nonlinear static solution sequences provide for 

user-selected combinations of incremental, initial stress, 
Newton-Raphson and modified Newton-Raphson 
methods. 

• The current nonlinear transient procedure contains 
a limited capability for user-defined nonlinear load func-
tions. The delivered Newmark-Beta method may also be 
used to calculate "static solutions" for problems with 
modest nonlinearities. 

Notable Items and Limitations: 
Φ In its initial design, the primary purpose of the 

NASTRAN program was the solution of linear elastic 
problems. Although limited capabilities were provided 
for differential stiffness, Euler buckling, and a piecewise 
linear plasticity analysis, most of the emphasis in the 
development was directed toward a comprehensive 
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dynamics capability and the processing of large order 
problems. 

• Substantial new nonlinear capabilities have recently 
been incorporated into MSC/NASTRAN as part of a 
long range development plan. The large displacement 
analysis has been operational for two years. The newest 
system contains new, highly efficient solution code for 
both large displacement and nonlinear material analysis. 
Planned developments include full nonlinear transient 
analysis, more nonlinear element types, and Quasi-New-
ton options for the solution algorithms. 

Programming Language: FORTRAN IV, with isolated 
machine-dependent assembly language routines. 

Hardware!Operating System: 
A single version is supplied for more than 200 com-

puter installations, including the IBM 360/370, 3X00 and 
4X00 series, the Amdahl series, the Itel A5, the Fujitsu 
M, all CDC systems, the UNIVAC 1100/EXEC 8 series, 
Digital's VAX 11/780, and the CRAY systems. 

Program Size: Approximately 380,000 source statements 
for the delivered system. 

Documentation: The original versions of the NASTRAN 
manuals were published by NASA (see Refs. [75-77]). In 
addition, the following manuals are available from MSC: 

MSC/NASTRAN User's Manual (2 Volumes) 
MSC/NASTRAN Programmer's Manual (4 Volumes) 
MSC/NASTRAN Application Manual (2 Volumes) 
MSC/NASTRAN Demonstration Problem Manual 
MSC/NASTRAN Aeroelastic Supplement 
MSC/NASTRAN Handbook for Linear Static Analysis 
MSC/NASTRAN Primer (book by H. G. Schaeffer) 
MSGMESH Analyst's Guide 

Also, several NASTRAN user's conferences have been 
sponsored by MSC and NASA. Many papers have been 
published in these proceedings. 

Program Availability: 
MSC/NASTRAN is available on most large commercial 
data centers. An executable system, with test problems 
and DMAP files, is available for the computers listed 
above under a lease agreement. 

I NEPSAP [ 

Descriptive Program Title: Nonlinear Elastic-Plastic 
Structural Analysis Program. 

Program Developers: P. Sharifit (original version), S. 
Nagarajan (modular, data base oriented system). Lock-
heed Missiles and Space Company, Inc., Department 
81-12/Bldg. 154, 1111 Lockheed Way, Sunnyvale, 
CA 94086, U.S.A. 

Date of First Release and Most Recent Update: 1972 and 
1980. 

General Information: 
NEPSAP is an LMSC proprietary code. It is a fully 
production^ system of modules linked together with a 
centralized data base system, and has been used by 
various divisions of Lockheed for several years. There 

tCurrently with: Merlin Technologies, Inc., 977 Town 
and Country Village, San Jose, CA 95128, U.S.A. 

is, however, a continuous development effort directed 
towards the inclusion of addition new capabilities. The 
NEPSAP system is available under licensing agreements 
for either a binary version alone or both binary and source 
code. 

Program Capability: 
NEPSAP is a general-purpose, three-dimensional, non-
linear finite element code capable of large displacement, 
thermo-elastic-plastic and creep analysis of arbitrary 
structures. The program can be used to model one-, two-
and three-dimensional structural models composed of 
frame members, membranes, thick/thin plates and shells, 
isoparametric solids, or any combination of these. Al-
though the code is formulated to account for both 
geometric and material nonlinearities, linear problems 
may be analyzed with no loss of efficiency. There is no 
inherent program limitation on the size of the models 
analyzed using NEPSAP. Analyses may be restarted at 
any load or time step. Finally, enhancements may be 
introduced rather easily due to the modular structure of 
the code. 

User Interface and Modeling Capabilities: 
Several pre- and post-processor modules are available as 
part of the NEPSAP system to enable the user to inter-
face easily with the code. The model may be generated 
using either a user-written FORTRAN driver or by exe-
cuting a very flexible preprocessor code which accepts 
keyword and list directed freefield data cards. A com-
plete graphics package enables the user to debug and 
verify the model rapidly as well as to display the analysis 
results. Utility modules are also available to interrogate 
and/or modify the contents of the random access data 
base files and for selective review of output data. 

Element Library: All of the element types available in 
NEPSAP may be used for nonlinear analyses. 

Solution Methods for Nonlinear Problems: 
A variety of incremental and iterative strategies may be 
selected by the user for both nonlinear static and 
dynamic problems, with the default method being the 
incremental method using a built-in load correction fea-
ture. For transient dynamics, implicit time integrators 
used are (a) generalized Newmark, (b) Houbolt, (c) Park 
and (d) user-defined single or multi-step methods. 

Notable Items and Limitations: 
NEPSAP offers a wide range of capabilities and proven 
utility over the last seven years for practical engineering 
problems. In addition, continued research and develop-
ment efforts are undertaken in order to expand its 
capabilities. The modularity of the code enables 
enhancements to be introduced easily in a given module 
without affecting other modules. The centralized data 
base system also enables new modules to be created that 
can communicate easily with the rest of the NEPSAP 
system. 

Programming Language: FORTRAN; a few selected 
routines are coded in assembly language. 

Hardware!Operating System: 
UNIVAC 1100/43, 1100/83 (EXEC 8); CDC CYBER 

175 (Scope 3.4), CDC 7600 (Scope 2.1); CRAY-1 (CRAY 
OS); IBM 3033; TI/ASC; currently being adapted for 
VAX 11/780. 
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Program Size: Approximately 70,000-80,000 statements 
in the analysis modules and 5000-10,000 statements in pre-
and post-processor modules. 

Documentation: See Refs. [78-80]. 

Program Availability: 
Program is currently not available on any service bureau 
network but may be made available in the future. Both 
the binary and the source codes may be obtained under 
licensing arrangements. Please contact: Dr. S. Nagara-
jan, Lockheed Missiles and Space Company, Inc., 
Department 81-12/Bldg. 154, 1111 Lockheed Way, 

Sunnyvale, CA 94086, U.S.A. 

| PAC78[ 

Descriptive Program Title: Plastic Analysis of Com-
posites. 

Program Developer: Y. A. Bahei-El-Din, Department of 
Civil Engineering, Duke University, Durham, NC 27706, 
U.S.A. Permanent Address: Structural Division, 
Department of Civil Engineering, Faculty of Engineer-
ing, Cairo University, Giza, Egypt. 

Date of First Release: 1980. 

General Information: 
Development of PAC78 started in 1978 on experiences 
obtained from ELAS65 code and composite research 
conducted by the developer at Duke University. 
Research and development efforts were financed by the 
U.S. Army Research Office and the Department of Civil 
Engineering at Duke University. Updates and further 
development efforts are financed by a user's group of 
PAC78 initiated at Duke University in 1980. 

Program Capabilities: 
PAC78 is a general purpose three-dimensional finite 
element analysis program. The program may be used for 
linear elastic analysis or nonlinear elastic-plastic analy-
sis. Two material types are acceptable to the program, 
isotropic materials and fiber-reinforced composite 
materials. The composite material model is a three-
dimensional continuum model with unidirectional elastic 
fibers and an elastic-plastic matrix. The matrix could be 
nonhardening or exhibiting kinematic hardening 
behavior. The isotropic material model is a three-dimen-
sional continuum model exhibiting kinematic hardening 
behavior. For either of the material models, Mises yield 
criterion and the hardening rule of Prager with Ziegler's 
modification are employed. A restart capability is built in 
the program which allows analysis of problems with 
previous loading history. Loads handled by PAC78 are 
mechanical loads with any loading, unloading, and 
reloading, sequence. 

User Interface and Modeling Capabilities: 
PAC78 program does not include any pre- or post-
processors. Users may prepare their own subroutines for 
automatic generation of nodal coordinates, element pro-
perties and connectivity, boundary conditions, and yield 
and hardening information of all material types. 

Element Library: 
The three-dimensional solid element (eight-node hexa-

hedron) is the only type that the PAC78 program uses to 
span the material volume. By means of the deflection 
boundary conditions, any type of deformation may be 
simulated, e.g. beams, plates, plane strain, etc. 

Solution Method: 
Governing equations are generated in the context of the 
displacement method of analysis. Linear equilibrium 
equations are solved by Cholesky method. Nonlinearities 
are handled by a Newton-Raphson type iterative 
scheme. 

Notable Items and Limitations: 
PAC78 offers a means for predicting the elastic-plastic 
behavior of fiber-reinforced composite structures which 
could not be predicted otherwise, even for simple 
geometries. Since both isotropic and composite materials 
are handled by PAC78, users may use the program to 
analyze composites on both the microscale and the 
macroscale. New constitutive equations may be incor-
porated in the program with no major difficulties. 

Programming Language: FORTRAN IV. 

Hardware!Operating System: IBM 370/165 with H-
compiler. Program operational on other hardware sys-
tems after minor changes in the source program and the 
overlaying instructions. 

Program Size: 7150 statements 

Documentation: 
A user's manual which includes program description, 
input and output description, and sample analyses is in 
preparation. 

Availability: 
Program may be obtained through membership of 
PAC78 Users Group. Members of the group pay a one 
time membership initiation fee of $2000 and are entitled 
to receive a magnetic tape containing the source program 
and the overlaying instructions, a user's manual, and all 
updates of the program as they are available. Inquiries 
should be directed to Dr. S. Utku, Director, Computer 
Analysis of Composite Structures Fund, Department of 
Civil Engineering, Duke University, Durham, NC 27706, 
U.S.A. 

IPOLO-ΠΝΓΤΕ | 

Descriptive Program Title: POLO-FINITE: A Structural 
Mechanics System for Linear and Nonlinear Static 
Analysis. 

Developers'. L. A. Lopez and D. R. Rehak, Department 
of Civil Engineering, University of Illinois-Urbana, 
Urbana, IL 61801, U.S.A., and R. H. Dodds, Department 
of Civil Engineering, University of Kansas, Lawrence, 
KS 66044, U.S.A. 

Release Dates: First release 1975. Current release is 
Version 2.3, 31 January, 1980. 

General Information: 
POLO-FINITE is a comprehensive, integrated structural 
mechanics software system designed to meet the needs 
of three types of users: end users performing finite 
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element analysis; finite element and nonlinear material 
constitutive model researchers; and software engineers 
working in large systems design. POLO, an engineering 
supervisory system, was completed in 1974. Develop-
ment of FINITE, a POLO subsystem, began afterwards 
and continues now at the Universities of Illinois-Urbana 
and Kansas. Major development efforts are directed at 
nonlinear dynamic analysis using substructured models, 
integrated graphics to support existing multi-level sub-
structured analysis, and new nonlinear constitutive 
models. 

System Capability: 
POLO-FINITE is a general purpose finite element soft-
ware system for the linear and nonlinear analysis of two 
and three-dimensional structures subjected to static 
loads. FINITE supports a user-defined multi-level sub-
structuring annd static condensation capability. Mixed 
linear and nonlinear substructures are permitted. Non-
linear effects due to strain-displacement relations and 
material constitutive behavior may appear separately or 
combined on a substructure-by-substructure basis. 
FINITE automatically determines all operations neces-
sary to fulfill linear and nonlinear computational 
requests. A completely automatic restart capability al-
lows a user to modify any aspect of the problem 
specification. FINITE voids only the computed results 
dependent upon the modified data. Both interactive and 
batch processing modes are supported. Virtually any 
size-problem may be handled through the substructuring 
facilities. Specified boundary displacements and multi-
point constraints may be imposed on both linear and 
nonlinear substructures. The system is designed on a 
virtual data base concept that greatly simplifies main-
tenance and expansion. 

User Interface and Modeling Capabilities: 
Users communicate with FINITE through a problem 
oriented language (POL) in both batch and interactive 
modes. The POL includes sophisticated coordinate and 
incidence data generation commands that minimize the 
need for "preprocessors". A separate, stand-alone 
graphics system currently exists to display the model and 
some analysis results. 

Element Library: 
General truss, beam, two- and three-dimensional iso-
parametric elements, including isoparametric transition 
elements, are currently available for nonlinear analysis. 
The extensive linear library (over 60 elements) of plate, 
curved shell, and shell-to-solid transition elements is 
being extended to incorporate nonlinear effects. 

Solution Methods: 
• Nonlinear static problems: All forms of the in-

cremental Newton-Raphson method are supported. 
Users may specify multiple convergence tests and exer-
cise complete control over the solution parameters in 
time-sharing or through restart in batch. 

• Equation solver: Choleski hypermatrix for sym-
metric equations; Crout hypermatrix for nonsymmetric 
equations. Both are efficient out-of-core solvers im-
plemented with the POLO virtual data base facilities. 

Notable Items and Limitations: 
The unique aspects of FINITE include the friendly user 
interface, the multilevel substructuring capability, and 

the extensive element library. No limitations are placed 
on the size of structure that may be analyzed. Specified 
displacements and multi-point constraints are especially 
convenient in nonlinear analysis for displacement control 
loading and modeling situations. A formal communi-
cation protocol allows researchers to readily add new 
nonlinear elements and material models without detail 
knowledge of the system organization. The lack of 
dynamic capability and more exotic material models are 
the major deficiencies. 

Programming Language: ANSI 66 FORTRAN. 

Hardware/Operating System: 
• Burroughs—Large Systems (B6700, B6800, B7700, 

B7800)/MCP 2.8.1 and beyond. 
• CDC CYBER/NOS 1.2 and beyond. 
• Honeywell—HIS 6000, Series 60 Level 66/GCOS 4J 

and beyond. 
• DEC-DEC10/TOPS. 
• PRIME 400, 500 and 50 series. 

Program Size: 
• POLO—10,000 lines. 
• FINITE—60,000 lines. 
• Element and material libraries—80,000 lines. 
• Associated graphics system—15,000 lines. 

Documentation: See Refs. [81,82]. 

Availability: 
The system is normally distributed in object form and is 
made available to universities for no charge. Non-educa-
tional users should contact developers for details. 

1 SAMCEF ! 

Descriptive Program Title: Systeme d'Analyse des Mil-
ieux Continus par Elements Finis. 

Program Developer: M. G. Sander, L.T.A.S., Aerospace 
Laboratory, University of Liege, Rue Ernest Solvay, 21, 
B-4000 Liege, Belgium. 

Date of First Release and Most Recent Update: 1970 
and 1980. 

General Information: 
SAMCEF is a university code. The package was first 
developed for research purposes. Progressively, further 
developments were financed by industries and since 
1970, the program is fully operational. New develop-
ments are continuously added. It is being used in an 
industrial as well as research environment. The LTAS 
Group provides the users with the service they require 
for using the program, which is available for various 
computers. The price includes the source code, in-
stallation, documentation and training. A yearly con-
tribution allows the users to obtain the updates. 

Program Capability: 
SAMCEF is a general purpose linear and nonlinear, 
static and dynamic, three-dimensional finite element 
analysis code. The program can perform a static analysis 
(linear and nonlinear) including the thermal effects, a 
dynamic analysis (linear and nonlinear) with computation 
of eigenvalues, eigenmodes and dynamic response, a 
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stability analysis including buckling and postbuckling and 
a weight optimization analysis of structures subjected to 
several static and dynamic constraints. The finite element 
library is very vast. In addition to the general elements 
(truss, beam, plate, shell), displacement and stress type 
elements allow a dual analysis of various problems. 
Hybrid and mixed shell elements are also available. A 
few scalar field elements provide a solution to some fluid 
mechanics problems. In most of the elements the 
material can be anisotropic. The thicknesses, cross-sec-
tions, moments of inertia may vary linearly inside the 
element. Shell elements can be made of sandwich 
material. The nonlinearities may be due to large dis-
placements, large strains and nonlinear material behavior. 
Any analysis may be performed step by step: data pre-
paration, element generation, structural assembly, and 
solution. 

User Interface and Modeling Capabilities: 
SAMCEF has pre- and postprocessors as well as 
graphics displays for the data and results. 

Element Library: 
General truss, beam, two-dimensional (plate and shell), 
three-dimensional (isoparametric) solid elements are 
available. For most of them the field is approximated by 
a variable degree polynomial. Therefore, it is easy to 
choose the degree of approximation which can vary from 
place to place in the same problem. 

Solution Methods for Nonlinear Problems: 
# Linear static analysis: Gauss elimination and sub-

structuring. 
# Linear dynamic analysis: Guyan condensation with 

either power or subspace iteration; Lanczos iteration. 
0 Nonlinear dynamic analysis: Newmark time in-

tegration (explicit and implicit) method with equilibrium 
iterations. 

# Nonlinear static analysis: Incremental solution, 
Newton-Raphson method. 

Notable Items and Limitations: 
SAMCEF offers a very large range of applications. 
Specified displacement boundary conditions are in-
cluded. The front width is limited to 1000 degrees of 
freedom. It is possible and easy to incorporate new 
element types. 

Programming Language: FORTRAN IV. 

Hardware!Operating System: IBM (OS, DOS, VS, 
CMS)—UNIVAC (double precision required)-CDC 
6400/6600/7600—DEC 2040-VAX—SIEMENS. 

Program Size: 
Approximate number of source statements: 180,000. 
Approximate number of subroutines: 2000. 

Documentation: See Ref. [83]. 

Program Availability: 
SAMCEF can be used on an IBM computer and a CDC 
computer. Source program is available from the 
developer for a fee. 

| SAMSON | 

Descriptive Program Title: A Computer Code for 

Dynamic Stress Analysis of Media Structure Problems 
with Nonlinearities. 

Developers: R. L. Chiapetta, R. L. Chiapetta and Asso-
ciates, 9748 Roberts Road, Palos Hills, IL 60465, U.S.A., 
T. Belytschko, Department of Civil Engineering, 
Northwestern University, Evanston, IL 60201, U.S.A. 

Date of First Release: 1971. 

General Information: 
SAMSON was developed at IIT Research Institute under 
contract for the Air Force Weapons Laboratory, Kirt-
land Air Force Base, New Mexico. An update is planned 
for release in 1981. Government agencies or contractors 
can obtain the program from Kirtland Air Force Base. 

Program Capability: 
SAMSON was developed for determining the transient, 
nonlinear response of buried structures with a two-
dimensional or axisymmetric three-dimensional 
geometry. Only material nonlinearities are included. The 
following material laws are available: elastic, elastic-
plastic, and the cap model. 

User Interface and Modeling Capability: 
Rudimentary mesh generators are included. A versatile 
postprocessor is available from Kirtland Air Force Base. 

Element Library: 
Triangular and rectangular two-dimensional and three-
dimensional axisymmetric element; springs; membrane 
elements. 

Solution Methods: 
Explicit time integration by Newmark 0-method (0 = 0). 

Notable Items and Limitations: 
The code has unlimited size capability and makes 
efficient use of extended core. However, only rectan-
gular, not quadrilateral, elements are available. 

Program Languages: FORTRAN IV. 

Hardware!Operating Systems: CDC 6600/7600 (NOS). 

Documentation: Program description, technical manual 
and user's manual—see Ref. [84]. 

1 SESAM-69 | 

Descriptive Program Title: Super element Structural 
analysis Program Modulus. 

Program Developer: A.S. Computas, Det Norske Veri-
tas, P.O. Box 310, 1322 H0vik, Norway. 

Date of First Release and Most Recent Update: 1969 and 
1979. 

General Information: 
SESAM-69 is a proprietary code developed and main-
tained by A. S. Computas which is a subsidiary and the 
data division of the Norwegian classification society Det 
Norske Veritas. Development started in 1969 which is 
also the year for the release of the first program 
parts. All program developments are financed by Det 
Norske Veritas. The program is supported from the 



Survey of computer programs for solution of nonlinear structural and solid mechanics problems 459 

headquarters in Oslo, Norway, and from four European 
branch offices (London, Paris, Rotterdam and Hamburg). 

Program Capability: 
• SESAM-69 is a general purpose program system for 

linear and nonlinear analysis. Both for static and 
dynamic analyses the solution algorithm is based on the 
multilevel superelement-technique. Considerable ad-
vantages are obtained with this technique both for linear 
and nonlinear problems. 

• The total system is split into program modules of 
pipes, beams, membranes, shells and solids which may 
be executed autonomously or in combination with the 
superelement program. Nonlinearities include elas to-
plasticity of three-dimensional membrane and solid 
structures, and combined large displacements and elas to-
plasticity for shells. The program has complete saving-, 
restart-facilities. Vibration and dynamic analysis in-
cludes: computation of eigenvalues and eigenvectors, 
modal analysis and stepwise integration. Stability analy-
sis includes: nonlinear collapse, and postbuckling analy-
sis of shells. 

User Interface and Modeling Capabilities: 
• SESAM-69 utilizes highly efficient preprocessors 

both for the geometric modeling and specification of 
loads, boundary conditions, etc. Both interactive graphic 
and batch input specifications are available. The system 
also contains automatic coupling to programs for load 
calculation, thermal analysis, etc. A modulus in the pro-
gram is available for calculation of three-dimensional 
added mass of submerged structures. The input data-
generators have extensive checking and visualization 
facilities. 

• The postprocessors perform print and plot of 
selected results (displacements, stresses, etc.) in the form 
of tables, isoplots, curveplot, etc.). 

Element Library: 
The nonlinear elements include: general truss, beam, 
membrane and three-dimensional isoparametric ele-
ments. Doubly curved thin/thick subparametric shell 
elements are available. The elements contain: linear 
elastic, elasto-plastic material formulations with different 
flow rules. Geometric nonlinearities are analyzed with 
the updated Lagrangian formulation. 

Solution Methods for Nonlinear Problems: 
• Nonlinear dynamic response: Implicit integration, 

Newmark's method. Nonlinear static response: In-
cremental solution, Newton-Raphson method. 

• Equation solvers for linear equations: Compact out-
of-core solver (skyline). Gauss elimination on sub-
matrices. 

Notable Items and Limitations: 
Due to extensive use of superelements, SESAM-69 gives 
very few limitations with respect to problem size (num-
ber of elements, nodes, etc.). Relatively few nonlinear 
material models are available (only elasto-plasticity). 
Specified static boundary conditions are available. 
Dynamic loading from given displacements, velocities 
and accelerations are under development. 

Programming Language: Simplified ANSI FORTRAN. 

Hardware!Operating System: CDC 6600, 7600, CYBER 
72, IBM 370 (OS/VS), UNIVAC 1100 series. 

n Program Size: 
). 

Preprocessors: 50,000 statements 
Core Program: 100,000 statements 

>r Postprocessors: 30,000 statements. 
d 
ie Documentation: 
i- Extensive general descriptions, users manuals, main-
ir tenance manuals and example manuals are available 

from the developer (see Refs. [85-87]). 
)f 
y Program Availability: 
ie The program is available at several European service-
>- bureaus and computer installations. For further infor-
d mation the developer should be contacted. Normally 
>- absolute versions only are distributed, however, program 
-, sales will include also source code. Program fee to be 
l- negotiated with the developer. 
s, 
/- \ SMART 1 
i-

Descriptive Program Title: Structural Mechanic ana ly -
sis in the Reactor Technology. 

rs Program Developer: SMART-Group, Institute for Sta-
)f tics and Dynamics (ISD), University of Stuttgart, D-7000 
ic Stuttgart 80, West Germany. 
Ώ 

id Date of First Release and Most Recent Update: 1976 and 
)- 1980. 
al 
i- General Information : 
»n Development started in 1971 and is still continuing. 

Software maintenance and user support is provided on a 
)f long term basis by the authors. There are four in-
m stallations in West Germany. 

Program Capability: 
SMART is a software system mainly for static (SMART 

n, I) and diffusion problems (SMART II). Both packages 
e- are fully compatible. Nonlinear applications are for 
ill SMART I: limit load analysis, viscoelastic creep prob-
ir lems and for SMART II: nonlinear, nonstationary cou-
nt pled hygrothermal analysis. 
th 

User Interface and Modeling Capabilities: 
There is a separate interactive graphics package INGA 
that has been developed also at ISD. 

n, 
i- Element Library: 

Fifteen different elements for static-nonlinear part (the 
t- same element types for nonlinear diffusion) including 
b* three-dimensional, two-dimensional, axisymmetric solids, 

flanges, cables, membranes, link-elements, and boun-
dary-elements. 

es Solution Methods for Nonlinear Problems : 
n- SMART I: iterative initial load solution. 
ar SMART II: successive substitutions. 
/). 
Ie. Notable Items and Limitations: 
es No limitation of problem size because of multilevel 

substructure technique, same as ASKA. 

Programming Language: Standard FORTRAN IV. 

<R Hardware!Operating System: At present installed on 
three different computer systems: CDC, UNIVAC, IBM. 
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Program Size: 

Core program: 350,000 
Pre/postprocessor (INGA): 60,000 

Subroutines: 4000. 

Program Availability: Rent and purchase through: In-
stitut fur Statik und Dynamik der Luft-und Raumfahrt-
konstruktionen, Universität Stuttgart, Pfaffenwaldring 
27, D-7000 Stuttgart 80, West Germany. 

| STAGSC-l | 

Descriptive Program Title: Structural Analysis of 
General Shells Version (-1). 

Program Developer: B. O. Almroth, Dept. 52-53, Bldg. 
205, Lockheed Palo Alto Research Laboratory, 3251 
Hanover Street, Palo Alto, CA 94304, U.S.A. 

Date of First Release and Most Recent Update: 1980. 

General Information : 
STAGSC-l is available to the public at a nominal fee. Its 
development has been supported by NASA, Air Force 
and Lockheed. The program represents an extension of 
previous versions, STAGSA and STAGSC. Maintenance 
is funded by members in a users group. This includes 
updates and consultations. The version is "frozen" with 
respect to its scope %but improvements in efficiency and 
ease of use may be included in updates. 

Program Capability: 
STAGSC-l is a computer code for structural analysis of 
shell type structures. It contains options for static 
stress analysis, bifurcation buckling, vibrations and 
transient response. Geometric and material nonlinearities 
may be included. While primarily intended for shell 
analysis, STAGSC-l includes spring and beam elements. 
A number of substructures can be defined separately. 
Input is particularly simple when these belong to a set of 
standard geometries. Shell wall may consist of orthotro-
pic layers with different orientation, discrete stiffeners 
may be included. Thermal as well as mechanical loading 
may be considered. The latter case includes options to 
define forces or displacements. Initial shape imper-
fections and cutouts may be defined. 

User Interface and Modeling Capabilities: 
Although the currently available version of the code 
(STAGS-C1) is batch oriented with limited plotting 
capability, a new version of the code is being developed 
which has been integrated with the GIFTS package 
resulting in a totally interactive, graphics-oriented user 
interface. The integrated software system (GIFTS-
STAGS or 'GIST') features GIFTS pre- and post-
processing modules (plus bandwidth optimizer), STAGS 
analyses modules, corresponding "transformer" modules 
linking the two data bases and a conversational "control 
module" which guides the user through an analysis, 
employing automatic data-management and interactive 
"manipulation" of all participating program modules 
(which may perform in batch or interactive mode). The 
new system has been completed except for a finalization 
and verification stage currently in progress. 

Element Library: 
STAGSC-l includes triangular and quadrilateral shell 

elements. Triangular elements are based on the Tocher 
triangle. Quadrilateral elements can be either based on 
combination of triangles or flat elements of a type 
developed especially for STAGS. Presently a curved 
AHMAD type element and a hybrid plate bending ele-
ment are introduced as options. Linear springs and non-
linear beam elements are included. 

Solution Methods for Nonlinear Problems: 
For linear equations the skyline method (with Cholesky 
decomposition) is used. Eigenvalue problems are solved 
through the generation of invariant subspaces by simul-
taneous inverse power iteration. Nonlinear equations are 
solved by use of the modified Newton method with some 
automatic features for control of step size and relaxation 
factors. Time integration is done by explicit (central 
differences) or implicit (trapezoidal and stiffly stable) 
methods. 

Notable items and Limitations: 
STAGSC-l does not include creep or visco-elasticity. It 
does not include three-dimensional elements. Boundary 
conditions are linear. Bifurcation buckling analysis does 
not include plasticity. Vibration analysis is linear. The 
nonlinear analysis is limited to "moderate rotations". 

Programming Language: FORTRAN IV. 

Hardware!Operating System: CDC 6600/7600 (Scope, 
NOS), UNIVAC (EXEC), IBM, VAX. 

Program Size: 50,000. 
Documentation: See Refs. [88,89]. 

Program Availability: Program is available through 
COSMIC fees presently under negotiation. Tentatively: 
$2500 initial fee. $2500 a year membership fee in users 
group. 

I STRAW I 
Descnptive Program Title: 5tructural Transient Re 
sponse of Assembly Wrappers. 

Developer: J. M. Kennedy, Argonne National Labora-
tory, Reactor Analysis Safety Division, 9700 South Cass 
Avenue, Argonne, IL 60439, U.S.A. 

Date of First Release and Most Recent Update: 1973 and 
1980. 

General Information: 
STRAW was developed at Argonne National Laboratory 
using an early version of WHAMS as a starting point. 
The program is to be available from the Argonne Code 
Center. 

Program Capability: 
STRAW was developed initially for determining the 
short duration transient, nonlinear response of core 
subassemblies for safety analysis in the Liquid Metal 
Fast Breeder Reactor Program. The program has since 
been developed along a more general purpose nature 
with recent emphasis on inclusion of quasi-Eulerian-fluid 
elements and linear and nonlinear thermal stress capabil-
ity in the implicit time integration version. Problems are 
limited to two-dimensional or three-dimensional 
axisymmetric geometry. The material models are elastic 
a.nd elastic-plastic with isotropic hardening and tem-
perature varying properties. 
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User Interface and Modeling Capabilities: 
Simple mesh generator is a feature. Output includes 
user-selected time histories, pictures, printer plots, Cal-
comp plots of time histories and the deformed 
configuration. 

Element Library: 
Two dimensional beam, conical shell, a quadrilateral 
plane and axisymmetric continuum element, Lagrangian 
and quasi-Eulerian plane and axisymmetric fluid ele-
ments. 

Solution Methods: x 

Explicit (Newmark 0-method or central difference 
method) and implicit (Newmark 0-method) time in-
tegration. 

Notable Items and Limitations: 
Employs dynamic allocation allowing one to use small or 
large core storage depending on type of problem being 
studied. 

Programming Language: FORTRAN IV. 

Hardware!Operating System: IBM. 

Program Size: Explicit -4000 cards, Implicit -6000 
cards. 

Documentation: See Refs. [90-93]. 

Availability: Available from developer or in the near 
future from the Argonne Code Center. 

Descriptive Program Title: Thermal Elastic-Plastic 
Stress Analysis. 

Program Developer: Tai-Ran Hsu, Department of 
Mechanical Engineering, University of Manitoba, Win-
nipeg, Manitoba, Canada R3T 2N2. 

Date of First Release and Most Recent Update: 1973 and 
1980. 

General Information: 
TEPSA is a proprietary code. The use of this code can 
be arranged through the developer. The code was 
developed initially for the assessment of the multi-dimen-
sional thermo-mechanical behavior of nuclear reactor fuel 
elements. The program is fully operational but new rou-
tines for many other applications are continuously 
developed. Comprehensive users manual is available at the 
cost of printing. 

Program Capability: 
TEPSA code is constructed on the basis of incremental 
variable stiffness finite element thermo-elasto-plasticity 
theory. Triangular and/or quadrilateral plates and torus 
elements are used for two-dimensional planar and three-
dimensional axisymmetric structures. Both thermal and 
mechanical analyses are coupled; i.e. the thermal analy-
sis is performed on the structural geometries at the 
immediate last load step. Code accepts temperature and 
strain-rate dependent material properties. Isotropie har-
dening rule is used for monotonie load increments and 
kinematic hardening rule for cyclic thermomechanical 

loadings. Special gap and crack elements are 
available for thermomechanical contacting 
surfaces and allow crack growth through elements. Code 
is constructed on the "modular" basis. Modules for 
special purposes such as finite strain plasticity, Fourier 
series coupling and thermomechanical creep can be 
readily adapted to the main program. The code can also 
handle solids involving phase change by special time-
difference algorithm. 

User Interface and Modeling Capabilities: 
Mesh generator is available for the users. 

Element Library: 
Triangular/quadrilateral plate and torus (ring) elements 
are available for plane stress, plane strain and 
axisymmetric structures. 

Solution Methods for Nonlinear Problems: 
Incremental variable stiffness method is used for the 
nonlinear thermo-elastic-plastic analysis. Contact 
analysis is handled by the artificial noncompressive fluid 
concept. Successive reduction of stiffness is used for the 
crack propagation through elements. 

1ULARC | 

Descriptive Program Title: Ultimate load Analysis of 
Small Plane Frames. 

Program Developer: G. H. Powell, Department of Civil 
Engineering, Division of Structural Engineering and 
Structural Mechanics, University of California, Ber-
keley, CA 94720, U.S.A. 

Date of First Release and Most Recent Update: 1970. 

General Information : 
A simple-minded code for calculation of collapse loads 
for small steel and reinforced concrete frames. 

Program Capability: 
Applicable to arbitrary plane frames in which plastic 
hinges may form. Calculates load-deflection relationship, 
sequence of hinge formation, rigid-plastic collapse load, 
and collapse mechanism. Also allows cyclic and non-
proportional static loading, including allowance for un-
loading and reforming of hinges. 

User Interface and Modeling Capabilities: 
No pre- or post-processors. No mesh generation. 

Element Library: 
Two-dimensional beam elements with concentrated 
hinges at ends. 

Solution Methods: 
Piecewise linear analysis, with load forming each new 
hinge calculated automatically. 

1 TEPSA 1 Program Availability: Through the developer. 

Limitations: 
Limited in the element library. 

Programming Language: FORTRAN IV. 

Hardware!Operating System: IBM, AMDAHL, CDC. 

Program Size: Approximately 3000 statements. 
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Programming Language: FORTRAN IV. 

Hardware!Operating System: CDC 6400/6600/7600. 

Program Size: Approximately 1100 cards. 

Documentation: Users Guide. 

Program Availability: National Information Service for 
Earthquake Engineering, Computer Applications, 519 
Davis Hall, University of California, Berkeley, 
CA 94720, U.S.A. 

Cost—approximately $100. 

| WECAN | 

Descriptive Program Title: Westinghouse Electric 
Computer Analysis. 

Program Developer: Analytical Mechanics, West-
inghouse Research and Development Center, Pittsburgh, 
PA 15235, U.S.A. 

Date of First Release and Most Recent Update: 1973 and 
1980. 

General Information: 
WECAN is a proprietary code. It was and is developed 
jointly by Westinghouse Research and Development and 
other Westinghouse user divisions to be efficient, capable 
and easy to use. WECAN and its close relatives WAPPP 
(WECAN Auxiliary Pre- and Post-Processors) and 
FIGURES (Finite Element Interactive Graphics t/ser 
/EoutiniiS) were designed to provide a complementary 
system of computer programs for structural analysis. 
Maintenance is funded by a surcharge. New develop-
ments are funded by user organizations desiring new 
development. 

Program Capability: 
WECAN is a general purpose linear and nonlinear static 
and dynamic three-dimensional finite element analysis 
program. WECAN can solve static, modal, seismic re-
sponse spectrum, harmonic response, linear and nonlinear 
dynamic transient, linear buckling, and heat transfer and 
analogous field problems. Isotropie, orthotropic, and 
anisotropic materials are permitted. Material properties 
are defined as a fifth order polynomial of temperature. 
WECAN can use the initial stress matrix to calculate 
static, modal or linear buckling problems. Substructures 
are linear but can be combined with nonlinear elements 
in the solution phase. Multilevel substructures are per-
mitted. Substructures may be rotated, reflected or scaled. 
WECAN may be restarted at preselected time steps. 

User Interface and Modeling Capabilities: 
WAPPP is a collection of batch pre- and post-processors 
for WECAN. The pre-processors generate meshes and 
loads, check isoparametric elements shapes, reduce wave 
fronts, prepare input for general matrix input and for 
composite materials. The post-processors edit heat 
transfer results, edit mode shapes and frequencies, 
combine results, plot contours, deformed shapes, tran-
sients and general xy curves, process seismic data, cal-
culate /-integrals and calculate Fourier coefficients. 
FIGURES is a collection of interactive pre-processors 

that prepares input for WECAN. It can interactively plot 
what is being generated. 

Element Library: 
Spars, beams, straight pipes, elbows, thin shells, two-
and three-dimensional isoparametric (with the capability 
to have different number of points on different edges of 
the same element), one-, and three-dimensional gap ele-
ments, a one-dimensional slider, a two-dimensional fric-
tion interface element and a three-dimensional iso-
parametric friction interface element are available for 
nonlinear analysis. 

Solution Methods for Nonlinear Problems: 
Φ Nonlinear dynamic response—Implicit time in-

tegration (Newmark or Houbolt) or modal superposition 
(three-dimensional gap element now permitted for modal 
superposition with plasticity and three-dimensional fric-
tion element to soon be added). 

• Nonlinear static problems—Method of successive 
elastic approximations with extrapolation. 

• Equation solver for linear equations—Wave front 
with as much in core as possible. 

Notable Items and Limitations: 
WECAN offers a very large range of applications but some 
features are lacking. Fluid-structure interaction is under 
development. Interactive post-processing of results is 
under development. Cyclic symmetry is under develop-
ment. Basic workshops and advanced training sessions 
are offered periodically to train inexperienced and 
experienced WECAN users. An annual User's Col-
loquium is held each fall where users present papers in 
competition for prizes. 

Programming Language: WECAN and WAPPP are 
over 99% FORTRAN IV, and less than 1% COMPASS. 
FIGURES-100% FORTRAN IV. 

Hardware!Operating System: WECAN AND WAPPP— 
CDC 7600 (SCOPE). FIGURES-Data General Eclipse 
S230 (AOS). 

Program Size: 
• WECAN 110,000. 
• WAPPP 50,000. 
• FIGURES 10,000. 

Documentation: See Refs. [94-%]. 

Program Availability: 
Program can be used on Westinghouse PSCC Engineer-
ing Computer System for a surcharge on each run of 
WECAN, WAPPP or FIGURES. 

| WHAMS 1 

Descriptive Program Title: Program for Transient 
Analysis of Two-Dimensional Structures and Continua. 

Program Developer: T. Belytschko and R. Mullen, 
Department of Civil Engineering, Northwestern Uni-
versity, Evanston, IL 60201, U.S.A. 

Date of First Release and Most Recent Update: 1973 
and 1980. 
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General Information: 
WHAMS is a research oriented program. The program 
has been used by about ten outside users but no formal 
mechanisms for updating the program or correction of 
bugs is available. 

Program Capability: 
WHAMS is primarily intended for transient problems of 
short duration with material and geometric nonlinearities. 
Large strains may be treated by some of the elements. 
Although implicit time integration is available, the 
emphasis in development has been on the explicit time 
integration. Problem geometry is limited to two-dimen-
sional or three-dimensional, axisymmetric. The following 
material models are included: elastic, elastic-plastic with 
isotropic strain hardening, the cap model for soils. User 
supplied material laws can easily be added for explicitly 
integrated problems. 

User Interface and Modeling Capabilities: 
Simple mesh generators are included. Output includes 
user-selected time histories, pictures, printer plots, Cal-
comp plots of time histories and the deformed 
configuration. 

Element Library: 
Two-dimensional beam, conical shell, plane strain and 
axisymmetric elements with three to eight nodes, and 
Lagrangian fluid elements. 

Solution Methods: 
Explicit time integration with a maximum of two 
different time steps: explicit-implicit, and implicit time 
integration. 

Programming Language: FORTRAN IV. 

Hardware!Operating System: CDC 6400/6600 (NOS). 

Program Size: 16,000 cards. 

Documentation: See Refs. [97,98]. 

Availability: Source is available from developer for $300 
(1980). 
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