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To you, the student ofengineering using this book:

This is a workbook, not a textbook. We think it can help you if you are on a
foundation or first year degree course. You learn mathematical skills by doing
mathematics - not by reading about what others have done, although others can
guide you. So do the exercises and activities as you come to them!

Do your mathematics with your tools and technology next to you. These should
perhaps include pen and paper, calculator, graphic calculator, spreadsheet,
Computer Algebra System (CAS) such as Derive, Mathcad, Maple,
Mathematica, or TI-Interactive. This is not however an instruction manual for
particular technologies, as these go out of date quickly. Instead, we encourage
you to learn to use whatever tools you have to get a rich view of what
mathematics is about, and to get your understanding and your answers.

With all this technological power, you have multiple ways of getting answers, so
you should never "get the sums wrong". Your technology is very good at
repetitive calculations and giving answers, but it cannot think for you.

• Many of the most common mistakes come from simple things such as
not entering expressions properly into your technology. Remember
BODMAS, and work through the early chapters carefully, even if you
think you know this "easy" stuff already. Work on your understanding
of the meaning of algebraic expressions. Mathematics is a language
with meaning, not just a collection of algebraic tricks.

• Never take an answer at face value until you have checked it
independently and can convince yourself that you are right and your
answer is sensible. To this end, we do not give many answers to
exercises, but will suggest ways in which you can check your own.

You will find that you might take an algebraic, or a graphical or a numerical
approach. You may also have to describe what is happening. All these skills and
ways of thinking are useful to you as an engineer. We call it going for a SONG ­
a mix of Symbolic, Oral, Numerical and Graphic approaches.

Be conscious of how you are learning. Use mind tricks such as Predict-Observe­
Explain: predict an answer by one means (perhaps on paper or by drawing a
picture), observe what the answer is (perhaps using some technology) and
explain to yourself, and to anyone else who will listen, about any discrepancies.

so ... do the examples and check what you do by whatever means you have.
Talk to people about what you are doing, both if you are pleased and if you are
stuck. Mix old (paper) and new (electronic) technology. Use algebra, use
numbers, draw pictures, and learn to interpret what these mean. Look for
understanding, not just for learning tricks without knowing why they work.
Above all, ENJOY IT!
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1
Numbers, Graphics and Algebra
"Can you do addition?" the White Queen asked. "What's one and one and one and one and one and one
and one and one and one and one?" "I don't know," said Alice. "I lost count." Lewis Carroll: Through the
Looking Glass

1.1 NUMBERS, GRAPHICS AND ALGEBRA
The purpose of these first few chapters is to get you to look with fresh eyes at

some basic mathematical ideas that you might think you already know all about. You
will see how technology can help you to do that and can help to develop a deeper
understanding of those ideas. You need this understanding and "feel" for what
numbers and pictures can tell you about the world. You will almost certainly see
"doing maths" differently from the way you saw it earlier in your life.

This chapter does not give a complete treatment for beginners in its topics. It
provides a fresh look at, and reminder of, a mixture of ideas that you will find useful.
You will think again about numbers and how they behave and how you can very
simply represent them by letters - the idea of algebra. You will revisit simple
geometry, as well as the ideas of trigonometry, describing the links between
distances and angles. You will also develop ideas about the strong links between
numbers, algebra and pictures - the pictures are what bring the numbers to life.

As you work through this chapter, and those which follow, remember that
mathematics is a "doing", not a "watching" activity, so make sure you keep on doing
the exercises and activities as you go.

1.2 WHAT NUMBERS ARE
First you need to remind yourself of the basic terminology of numbers - bearing

in mind that in mathematics some words have a precise meaning which is more
specialised than in standard English.

Natural numbers are the positive whole numbers 1, 2, 3 ... (0 may be included).
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2 Numbers, Graphics and Algebra [Ch.l

Integers are all whole (including negative) numbers ... -2, -1, 0,1,2,3 ....

Rational numbers are those which can be written as fractions in the form ~
b

where a and b are integers.

Some important and useful numbers cannot be written in rational form - e.g. the

special numbers 1r "" 3.14159 .. , e "" 2.71828 .. and J2"" 1.41421.., which you will
meet later, if you have not already done so. Such numbers are called irrational and
occur with infinitely many non-repeating decimal places.

When the rational and irrational numbers are combined, they are called real
numbers and these are what you will normally think of as decimal numbers.

It is useful to think of numbers graphically being represented by their position on
a horizontal straight line, with distance away from a fixed point 0 governed by their
value, and with negative numbers to the left and positive to the right (see Figure 1.1).

o ,
5

I

4
,

3
,

2
I

11----------1-2-3-4-5-6-7

Figure 1.1 The number line

1.3 HOW NUMBERS (AND LETTERS) BEHAVE
You will be familiar with the arithmetic operations - add, subtract, multiply,

divide, exponentiation (raise to a power), and the use of brackets. You should of
course be used to using your calculator (graphic or otherwise) to do such things, but
you will find that even with technology, if we do not all agree to use the same rules
and language, then you can have serious problems. You must communicate properly,
not only with other people, but also with machines.

First let us ask you a question in words - answer it without using your
calculator: "What is one plus two times three?" DO IT NOW!

Some of you may get the answer 7, and others may get 9. Can you explain why
two answers are possible? Check it on your calculator. You see that we need to agree
the order of operations: if you do the addition first, you get 9; doing the
multiplication first gives 7.

Thus, in this section, we give you the chance to remind yourself of the rules. We
must all agree to use BODMAS, which some remember as Please Excuse My Dear
Aunt Sally, to tell us the order in which to carry out operations:

BODMAS (Brackets/OrderlDivisionlMultiplication/Addition/Subtraction)

PEMDAS (Please Excuse My Dear Aunt Sally ­

ParentheseslExponentslMultiplicationlDivision/Addition/Subtraction) .

This means that brackets can override any other order of operation by forcing
calculation of quantities in brackets first; then powers are done; then multiply and
divide at the same level of priority working from left to right, and, finally, add and
subtract working from left to right.

�� �� �� �� ��



Sec.1.3] How Numbers (and Letters) Behave 3

DO THIS NOW! 1.1
Investigate the order in which your calculator does numerical operations, by
looking at the following expressions (note we use * here for "multiply" and / for
"divide", just as many technologies do). Recall two negative quantities multiplied
together make a positive. Set your calculator accuracy (number of decimal places) to
a sensible level before you start. First, predict without technology which of the
expressions in column A is equal to the corresponding expression in column B.
Look particularly at the effect of brackets. Then use your calculator to check
whether you are right, explaining any discrepancies.

A B

1+2 2+1

1-2 2-1

(1 + 2) + 3 1 + (2 + 3)

(1- 2) - 3 1 - (2 - 3)

3*4 4*3

3/4 4/3

7 + 3*2 (7 + 3)*2

-3 + 4 -(3 + 4)

6/3 + 4 6/(3 + 4)

(3/4)/5 3/(4/5)

Notice if you have a graphic calculator, it probably has two different "-" keys.
One will be the unary, or leading minus, often made with three pixels, as in (-1). The
other is the take-away minus sign - which often has five pixels. See Figure 1.2 to
see the unary minus in action. Sort this out on your personal technology NOW.

Figure 1.2 The unary minus in action

DO TillS NOW! 1.2
Predict by hand the value your calculator will give for the following expression, and
then check by doing it on your calculator, explaining, step by step, what your
calculator has done to evaluate this and what rule, as well as BODMAS, it is using:

2*3*4/5/6/7 + 8 - 6 =?

1.4 FRACTIONS, DECIMALS AND SCIENTIFIC NOTATION
Although you probably studied fractions years ago, we find that many people

have forgotten the rules, or worse still, think they remember them but do not. It is
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4 Numbers, Graphics and Algebra [Ch.l

true that you can do fractional number calculations on your calculator, and get your
answer as either a fraction or a decimal, and that you can deal with algebraic
fractions using a CAS (Computer Algebra System) such as Derive. However, it is
part of getting a feel for what is happening, to be able to do some simple
manipulations with algebraic expressions involving fractions, so here is an
opportunity to do just that.

First, here is a quick reminder of the rules:

To add or subtract two fractions, put them over a common denominator
(bottom) so that you are adding or subtracting like with like.

Example 1.4.1
I 2 3 4 7
-+-=-+-=-
2 3 6 6 6

and
2 1 4 3 1---=---=
3 2 6 6 6

To multiply two fractions, multiply the numerators (tops) and multiply the
denominators (bottoms). To divide two fractions, just turn the second one upside
down and multiply!

Example 1.4.2
1 2 lx2 2 1
-x-=--=-=-
2 3 2x3 6 3

and
I 2 I 3 Ix3 3
-+-=-x-=--=-
2 3 2 2 2x2 4

Note you can simplify a fraction by multiplying or dividing top and bottom by
the same number:

Example 1.4.3 l = .!., dividing top and bottom by 3. This is commonly called
9 3

cancelling. However remember that you cannot simply add or subtract numbers on
top and bottom - a quick example should convince you of that:

4+ 1 5 1. 4
Example 1.4.4 --=- =- IS not the same as -. That is to say you cannot

9+1 10 2 9
cancel the +1 terms if they are added (or subtracted).

DO THIS NOW! 1.3
Evaluate the following expressions by hand, giving your answer as a single fraction.
In each case, check with your calculator, considering carefully how you must type
things in to take account of My Aunt Sally and so on, and finding out how to make
your calculator give you the answer as both a decimal and a fraction.

2 3
(a) -+­

5 7

2 3
(c) -x-

5 7

(b) ~_l
5 7

(d) ~+l
5 7

Make up extra problems of your own if you need more practice, checking your own
answers on your calculator.
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Sec.1.5] Powers and Indices 5

To close this section, here are a few miscellaneous points to note.

• Fractions are converted into decimals by dividing the numerator by the
denominator.

• A fraction is converted into percentage form by multiplying its decimal form by
100 and writing % after the result.

• A ratio is one of the ways of comparing one thing with another. This can be done
for instance by comparing part with part. For example two quantities in a ratio

. 15 20
15:20 make up fractional amounts - and - of the whole.

35 35

• To round to a given number of decimal places, go to the decimal place specified.
If the next digit to the right is 5 or more, then round the number in the specified
final decimal place up; if it is less than 5 then round down. To round to a given
number of significant places, start counting significant figures from the first
non-zero digit on the left and follow the rules for rounding.

• In scientific notation, positive numbers are expressed in the form axlOn where
a is between 1 and 10 and n is an integer. Note the use of E in most technologies
to represent the power of 10 - see Figure 1.3 for a graphic calculator

representation of the number (in scientific notation) 1.862996833xl0-4 .

23/123457
1•862996833 E -4

Figure 1.3 A typical calculator representing a number in scientific notation

• For any numerical problem always give the answer in the appropriate form and
accuracy. For instance if your data are recorded to one decimal place then it is
inappropriate to give an answer with more places.

DO THIS NOW! 1.4
Express the following fractions .!.

7 '
2 123
3' 43'

23
123457

(i) as percentages,

(iii) to three significant figures,

(ii) as decimals rounded to 6 decimal places,

(iv) in scientific notation.

1.5 POWERS OR INDICES
You need to remind yourself about how powers or indices behave. Recall that if n

is a natural number, an means do aXaxaX...Xa where a occurs n times. a is called
the base, and n is called the index or power. Simple rules for combining powers
emerge from this:

If you multiply the numbers, you add the powers.
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6 Numbers, Graphics and Algebra

If you divide the numbers, you subtract the powers.

[Ch.l

Raise to one power after another: multiply the powers.

These simple rules lead to natural meanings for powers other than natural numbers.

m

This is because ~ == 1 (obviously?), but also
am

-n 1
a ==­

an

ali=~

Thus ali

Similarly a Yn =~

Thi . b 1 a
0

O-n -nISIS ecause -==-==a ==a
an an

behaves like a square root.

is the nth root.

DO THESE NOW! 1.5
For each expression which follows, work on paper using the appropriate law to
express it as a single power of the base, with no fraction. You do not need answers
because you can check using your calculator whether you are right.

(i) 23 x2 4 (") 1 (iii) 1.23.4 x 1.25.7 (iv)
1

11 -
5.6T2.392

39 453.4
(vi) (54 ) 3 (vii) . (viii) (6.7 3.5 ) 7.8 •(v) - V11~

34 4.5 .

1.6 ANGLE AND LENGTH· GEOMETRY AND TRIGONOMETRY
1.6.1 Angle measurement

Having spent some time looking again at numbers, you should now remind
yourself of some of the basics about mathematical diagrams - in this case geometry
and trigonometry. First, look at angles. There are two common unit systems for
measuring these, the first being degrees. The Babylonians divided the circumference
of a circle into 12 sections, and divided each of these sections into 30 equal parts ­
thus creating 360 divisions around the circle, each corresponding to one degree (l0).

The other angle unit is the radian. The angle formed at the centre of a circle by

an arc equal in length to the radius is defined to be one radian (1 rad == 1C). See
Figure 1.4. Thus there are 21& radians in one full revolution and therefore

3600 == 21&c , so that is 360 degrees is the same as 21& radians.

�� �� �� �� ��



Sec.l.6] Angle and Length - Geometry and Trigonometry 7

Figure 1.4 The definition of a radian

1.6.2 Triangles and connections between length and angle
A triangle is a polygon with three sides. The sum of its internal angles is 1800 or

tr radians. If all three sides are the same length then it is called an equilateral

tr C

triangle and all angles are 60° or - . If two sides are of equal length then it is an
3

isosceles triangle and the two angles opposite the equal length sides are equal. The

area of a triangle is .!. ah where a is the length of the base and h is the height. This
2

can also be written as .!ab sin 8 where a and b are two side lengths and 8 the
2

angle between those sides.

1.6.3 Right-angled triangles and basic trigonometry
A right-angled triangle is one such as ABC, as shown in Figure 1.5, where in this

case C is the right angle and sides of lengths a, b, and c are opposite the angles A, B
and C. The side opposite the right angle is known as the hypotenuse.

One special relationship here is given by Pythagoras' Theorem. This tells us

that for a triangle such as ABC, the lengths are related by the formula a 2 +b2 = C2 .

You should also remind yourself of the trigonometric ratios. These can be
defined initially in a right-angled triangle such as that in Figure 1.5, as below.

A

c
b

8
c·l-L------""s

Figure 1.5 A standard right-angled triangle

Sine Cosine Tangent

sin(A) = ~ = opposite cos(A) = !!. = adjacent tan(A) = ~ = opposite
c hypotenuse c hypotenuse b adjacent
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8 Numbers, Graphics and Algebra [Ch.1

There are many relationships between these; for instance start from Pythagoras'

Theorem a2 +b 2 =c 2 and divide both sides by c2
• This gives a: + b: =1 or in

c c

other words sin 2 A + cos 2 A =I .

DO THIS NOW! 1.6

Isosceles
equilateral

1~ 2 2
k

h .II .., 6
1 1 1

Figure 1.6 Trigonometric ratios on special triangles

For the triangles in Figure 1.6, use Pythagoras' theorem to work out the values of
lengths h and k giving your answer in terms of the square roots of 2 and 3.

Using these triangles and the definitions of sine, cosine and tangent, complete the
following table giving values in terms of the square roots as above. Check your
answers with your calculator, making sure you are in the right mode!

Angle A in degrees 0 30 45 60 90

Angle A in radians 0 1& 1& 1& 1&
- - -
6 4 3

sin(A)

cos(A)

tan(A)

END OF CHAPTER 1 - CALCULATOR ACTIVITIES - DO THESE NOW!

Activity 1.1 Warm-up basic calculator exercises

If you are asked to find the value of X2 +%+%'you might do one of the two

things shown on the calculator screen in Figure 1.7:

5/12+2/3+3/4
1.83333333

5/12+2/3+3/4~Fra

c 11/6

Figure 1.7 Fractions or decimals?

The first answer, presented in decimal form, shows you are competent, but the
second answer shows you understand that it is more appropriate to give your answer
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Ch.1] Calculator Activities 9

2

2

2

as a fraction, since that is how the question is posed. Always think about the sensible
form in which to present your answers» fraction or decimal, accuracy, etc.

Now evaluate, in appropriate form, the answers to (a) - (h) below, to help you get
comfortable with your calculator or CAS (Computer Algebra System), and to check
that you can handle these basic operations with some confidence. Think about how
to verify your own answers, and do so before checking our answers.

9 11 (b) Subtract 5.% + 2.% from
(a) -x6+-x4

24 12 8%-2U
3~x%_l 0.056 0.035 0.14(c) 5 9 19

(d)
~x4% - ){2x5~

--x--+--
0.15 0.0023 4.5

O.203xO.OO5x1.7 (f)
1.23+ 456.7 + 8.9101

(e)
0.006x 0.0029 51.34-4.04

(g) .J18x19x 567 + 29 (h) 25 +1% + 2~ -3.57
28

Do you agree with our answers just below here? Are you convinced? What form
have you used? Why?

(a) 7){2 (b)-56.%52 (c) 148'%03 (d) 182.61 (e) 99.17 (t) 9.87 (g) 81.77 (h) 0.97

Activity 1.2 More warming up with your calculator
The graphic calculator screens in Figure 1.8 show the importance of being able to

enter your expressions properly into your calculator - just two of several ways to
enter powers. Learn NOW how yours works by tackling these activities below
and always remember BODMAS.

3 x.fe

5 x.f32

32"'( 1/5)

Figure 1.8 "Talking" properly with your calculator

1.2.1 Evaluate (a) to G), using your calculator and checking appropriately:

(a) 73 (b) 37 (c) 5-2 (d) 2-5 (e) (_2)6

(f) _26 (g) (1.234)8 (h) 2.345-5 (i) (-6.78)"4 G) _6.78-4

1.2.2 Evaluate (a) - (d), using your calculator and checking appropriately:

(a) 23 x25 x27 (b) 33 x3-4 (c) 46 x4-7 +4-5 (d) 55 x5-
3

54 x5-2x5-7
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10 Numbers, Graphics and Algebra [Ch.l

1.2.3 Use the laws of indices to express (a) - (h) as single powers of 2:

(a) 25 X27 (b) 210 + 27 (c) 25 +24 (d) 23 + 2

(e) 24 + 24 (t) (23
) 4 (g) (24

)3 (h) (24
) 4

1.2.4 Use the laws of indices to express (a) - (h) as single powers:

(a) l X l (b) JO + x7 (c) c7 + c4

(e) l + l (t) (a3l (g) (a2
)3

(d) x3 + x

(h) (tf)5

Activity 1.3 Using your calculator properly - food for thought
Whether you are getting solutions by hand or machine you should always be

sceptical and question your answers until you convince yourself they are right. Many
times your pencil and paper or machine will give you an answer which may be
incorrect. Get in the habit of verifying what you are doing in at least two ways - for
instance, hand calculation and at least one technology. From this comes conviction if
they agree, or understanding if you have to find out why there was a difference. Read
on ...

As a warning about blindly trusting your technology, look at the graphic
calculator screens in Figure 1.9:

1

2

4

1

2

2

.~

"

.:.'j'" iar
ur«;
onnec .,e.­
e·=iuent. i a
e·'j 1
I

Figure 1.9 Never let you calculator do the thinking for you!

What has gone wrong? Surely 1 + 2 = 3 and 12 = I? THINK NOW about what
may have happened before looking at Figure 1.10 for the explanation.

Sci Eng
~r--.w123456789

Degree
ar Pol Seq

Dot
SiMUI

a+ " re>.....et.
Horiz G-T

Figure 1.10 Know your technology!

Figure 1.10 shows the mode screen for the calculator (how it is set up) and it reveals
through the Float line that the machine is set to display numbers to 0 decimal places!
In fact A is 1.4 and B is 2.4, and you are seeing the effect of rounding - NOW work
out the precise effect this is having and never forget it!
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2
Linking Algebra and Graphics 1
".; patterns, like the painter's or the poet's, must be beautiful; the ideas, like the colours or the words, must
fit together in a harmonious way". G. H. Hardy

2.1 ALGEBRA AND PICTURES
You should have met the idea of algebra before - the practice of using letters to

represent constant or variable quantities, which proves so useful in describing
engineering systems. We assume that you have. However many people find the rules
for handling algebraic symbols difficult to manage. One reason may be that you try
to remember the rule rather than to understand the principle behind the rule. In this
chapter we try to give you space to revisit and expand some of your knowledge of
algebra. By reading on and doing the exercises, we hope you will gain insight into
algebraic processes; give meaning to algebra by linking it to pictures; and investigate
how technology can help you to become confident with your algebra.

You will handle symbols, constants, variables, brackets, powers, and algebraic
fractions. You will review the difference between an expression and an equation.
You will look at solving an equation, in a variety of ways, including through
algebraic manipulation, by pictures, by numbers, and using technology. When
dealing with pictures, we will restrict ourselves to those involving straight lines only
in this chapter. Finally, you will use these ideas with some engineering formulae.

Remember to keep on doing the exercises and activities as you reach them.

2.2 NUMBERS, LETTERS AND BRACKETS
Here are a few exercises to get you into simple manipulations, involving

numbers, letters and brackets. It is not a comprehensive algebra course but should
get you thinking about what you have met and becoming more confident with it.

2.2.1 Multiplying out brackets
First recall how to multiply out brackets. Remember the number outside the

bracket multiplies every added or subtracted term inside the bracket; remember also
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12 Linking Algebra and Graphics 1 [Ch.2

that if you multiply two negative terms together, you get a positive. Be careful when
you attempt supposedly simple calculations - these are where it is easiest to make a
mistake! If ever you are in any doubt when doing simple algebra, think whether what
you are doing would work with numbers.

Example 2.2.1
(a) First with numbers only:

Simplify 5(6 + 2) - 3(4 - 6) =5x6 + 5x2 - 3x4 - 3x(- 6) =30 + 10 - 12 + 18 =46.

(b) Now substitute with a letter, as follows:

Simplify 5(t + 2) - 3(4 - t) =5t + 5x2 - 3x4 - 3x(- t) =5t + 10 - 12 + 3t =8t - 2 .

Next, expand these ideas to multiply two brackets together.

Example 2.2.2
(a) What is (3 + 6) x (1 + 2)? Adding the numbers in the brackets first, the answer
is of course (9)x(3) = 27. Can we get the same answer by multiplying out the
brackets? Yes, by forming the sum of all possible cross-multiplications of terms
inside the brackets. One way of making sure this works is to use FOIL:

First Outer Inner Last

(and don't forget My Dear Aunt Sally, still here after Chapter 1.)

Thus (3 + 6) x (1 + 2) =3xl + 3x2 + 6xl + 6x2 =3 + 6 + 6 + 12 =27 again.

F 0 I L

Check this again by typing the expression (3 + 6)(1 + 2) into your calculator.
Does your machine need a multiplication sign (perhaps *) between the brackets, or
will it understand that when you write two brackets next to each other, you mean
"multiply"? FIND OUT NOW!

(b) Now here is a similar example with algebra.

(a+b)x(c+d) = (a+b)(c+d) = ac+ad +bc+bd

F 0 I L

2.2.2 Simple factorisation
Now recall how to put brackets into expressions - that is, to factorise. People

generally find this harder than multiplying out brackets.

Example 2.2.3
You can factorise simple expressions simply by looking for common factors

through all terms. For example:

(a) 5x+ lOy = 5(x+ 2y) , taking the common factor of 5 outside the bracket. Check

this by multiplying out the bracket again to see if it works in reverse.

(b) 3ab2c +9ab =3ab(bc+3) using the common factor of 3ab.
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Once more you can check by multiplying out the bracket. Another way to check
is to use a Computer Algebra System (CAS) such as Derive, Mathcad, Maple or
perhaps your graphic calculator. Explore what tools you have available NOW.

DO THIS NOW! 2.1
1. Multiply out these brackets. In each case check your answer (a) by substituting
numbers for the letters and seeing if the answer works, and (b) by using your local
CAS package - FIND OUT NOW how to enter an algebraic expression and expand
it (that is, multiply it out).

(a) 5(t + 2) - 3(4 - t)

(d) (2a+b)(a-b)

(b)

(e)

(a + l)(b +2)

(2x- y)(x-3y)

(c) (a+b)(b+c)

2. Put these expressions into factorised form as far as possible. In each case check
your answer by (a) multiplying the brackets back out and seeing if you get back to
what you started with, and (b) by using your local CAS package - FIND OUT
NOW how to enter an algebraic expression and factorise it:

(e) ac+ad +bc+bd .

(a) 3a+6b (b)

(d) 24xyz -16x2y +20xy2

5a2 -25ab (c) 12ab+15ab 2

2.3 "SPEAKING" ALGEBRA
One very useful skill is to be able to take problems expressed in words, and turn

them into algebraic problems. For instance:

Example 2.3.1

(a) From the sum of 2a 2 +ab - band 2ab +3b, subtract a 2 - ab +band
simplify your answer as far as you can:

( 2a 2 + ab - b )+( 2ab +3b ) - ( a 2 - ab +b ) = a 2 + 4ab +b .

(b) Multiply a 2 +ab +b 2 by a - b and simplify your answer as far as you can:

This gives the expression below, which we multiply out by a logical
development of FOIL:

(a 2+ab+b2)(a-b)= a3-a2b+a2b-ab2+b2a-b3 =a 3_b3.

DO THIS NOW! 2.2
Do the following algebraic sums. In each case express the answer as a single
algebraic expression, in the simplest form you can find.

1. From the sum of x 2 - 3x+ 7 and 2x 2+4x , subtract 3x 2 + 4 .

2. From the sum of a +3b - 2c , 3a - b - c and a +6c , subtract the sum of a - 3b and
2b-c.

3. Multiply x 2-3x+5 by 2x 2+6x+2.

4. Multiply a 2 -ab+2b2 by 2a+b .
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Example 2.4.2

2.4 ALGEBRAIC FRACTIONS
The rules for algebraic fractions are the same as for numerical fractions.

You can multiply or divide top and bottom of a fraction by the same (non-zero)
quantity.

Example 2.4.1 3a =~ ,dividing top and bottom by a (where a ::f:. 0). Remember this
Sa S

is called cancelling. Although it is less obvious with letters than numbers, you
cannot cancel added or subtracted quantities - see this next example:

a+ I *!!.- Verify by putting in numbers - say a =2 and b =3.
b+1 b

To add or subtract two fractions, put them over a common denominator
(bottom) so that you are adding or subtracting like with like - that is, once you have
created the common denominator, just add or subtract the tops.

and !!.-_~= ad _ cb = (ad-cb)
bd bddb bd

You must realize that as one fraction has b on the bottom and the other one d,
then the common denominator will have to be bd.

To multiply two fractions, multiply the numerators and multiply the denominators.
To divide two fractions, just turn the second one upside down and multiply!

a c aXc ac
Example 2.4.4 -x- =--=­

b d bxd bd
and

a cad ad
-+-=-x-=-
bd bc be

The problem with algebraic fractions is that there are rules for handling them, but
to the uncritical eye, correct and incorrect rules can look equally plausible. Be
careful, check your answers by more than one means and don't use a rule with letters
unless you would use it with numbers and believe it. Also. get used to using brackets
on the top and bottom of a fraction. This will often stop you following illogical
processes and will also help you to put expressions into your machines.

DO TIllS NOW! 2.3
1. In the light of your experience above, express the following as single algebraic
fractions:

I I I
-+- = =
a b a b
1 1 1 1
-x- = -,- =
a b a b

2. Simplify the following expressions as far as you can, checking your working with
substituted numerical values:

(2a 2 -2ab)
=

(6ab-6b 2 )

(x-2)

(4x-8)
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2.5 SOLVING SIMPLE EQUA nONS
Solving equations is a basic mathematical activity with which you need to get to

grips. We shall start with so-called linear equations, saying more about why they are
called that in a short while. However heavily these are disguised, they involve, at
worst, terms like ax (a constant times x), and terms which are just constant. You may
have learnt various solution methods in the past, but if you are not confident with
these, we suggest you study this area using the ideas below.

Example 2.5.1 Solve, by hand, the equation

2(x+9) = IS .
3

The rule is to think of the equals sign as a balancing point and so, to keep the
equation in balance, whatever you do to the left hand side (LHS) of the equation you
must do exactly the same to the right hand side (RHS). In general you should:

Get rid of fractions first, by multiplying both sides by something.

Get rid of brackets next by multiplying them out.

Get everything involving the unknown x onto the LHS.

Get everything else onto the RHS.

Leave just x on the LHS by dividing both sides by something.

So

Remove fractions by multiplying both sides by 3

Remove brackets

The original equation is 2(x+9) = 15 .
3

2(x+9) = 45 .

2x+18=45.

Divide both sides by 2, to make coefficient of x equal 1

Get x terms on LHS and all else on RHS by subtracting 18 from both sides
2x=45-18=27 .

x= 27 =13.5 .
2

To check, substitute the answer back into the original equation and see if it really
does make the LHS equal to the RHS.

. . 2(x+9) 2(13.5+9) 2x22.5 45
Substitute x = 13.5 mto the LHS of = 15 to get = =-

3 3 3 3
which is indeed 15. So the solution works.

Figure 2.1 shows this process can be simply done step by step by a machine to
conftrm results.
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2 '(x + 9)
• 3 =15

.(2'(X
3+9)

=15).3

• expand(2 -Ix + 9) = 45)

.(2·x + 18 = 45) - 18
2'x=27

• 2

2'(x + 9)
3 =15

2'(x + 9) =45

2·x + 18 =45

2'x=27

x = 27/2

Figure 2.1 Use your technology to check your results.

Many calculators and CAS also have a Solver feature which will solve such
equations directly, without having to go through the intermediate steps - but of
course you must know how to put your equation in correctly and accurately!

DO THIS NOW 2.4!
Does your calculator have a Solver function? Does your CAS? If so, find out how to
use it NOW and check the answer to Example 2.5.1. Does the technology agree with
your manual solution? If not, which one is wrong? How can you tell?

For each of the following, first solve by hand and then check your results twice, both
on your calculator or CAS, and also by substituting back in the original equation.

(a) x+8 =14 (b) x-5 = 21

(c) 5x+4=4x+7 (d) 7x-6=x+12

3
4(y-3) =1.+9(e) -(x-2)=2x+4 (t)

8 2

(g) 2y +1= 1.+6 (h) d+7=4 (I-d) .
3 3

2.6 CONNECTING STRAIGHT LINES AND LINEAR EXPRESSIONS
Your aim in working through this section should be to remind yourself (or to find

out) about the mathematics of straight lines and how the graphs of straight lines are
related to linear algebraic equations.

You will need to plot quite a few graphs quickly as you work through this section
and there are various ways in which you could do this. We recommend that you use
a graphic calculator, but you could use a spreadsheet such as Excel, you could use
your CAS, or you could plot them by hand. When you are planning your graph
plotting, by hand or by technology, think carefully about what is a sensible scale
upon which to plot.

Here is the basic algebraic fact in the form you have probably met it before.

The equation of a straight line can be written in the form y = mx+c

. th I (vertical) d . h' (I h I' . )m IS e S ope . an c IS t e y-mtercept va ue were me cuts j-axis
horizontal

This section consists mainly of activities - do them to recall what these facts mean.
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y = -3x .

DO THIS NOWl 2.5
Preferably using your technology, plot on the same axes the graphs of

y = x y =2x y =3x .

Predict what the graph of y =4x will look like and plot it to see if you are right.

What do you think y = 100x will look like? Check it out.

Now starting again, plot on the same axes the graphs of
y=x y=-x y=-2x

Predict what the graph of y = -4x will look like and plot it to see if you are right.

Now taking c = 0, complete the following sentences by either deleting as
appropriate, or completing in your own words:

Ifm is positive, then the graph of y = mx slopes up/down to the right.

• If the graph of y = mx slopes down to the right, then m must be positive/negative.

• If m starts at 0 and increases in a positive direction, the graph of

y=mx .

• If m starts at 0 and becomes more negative, the graph of

y=mx .

All lines of the form y = mx pass through the point .

DO THIS NOWl 2.6
Plot on the same axes the graphs of

y=x y=x+l y=x+2.

Predict what the graph of y = x +3 will look like and plot it to see if you are right.

What do you think y = x -1 will look like? And y = x - 2 ? Check them out.

Complete the following sentences by either deleting as appropriate, or adding your
own words:

If c is positive, then y = mx +c cuts the y-axis above/below the x-axis.

If the graph of a straight line y = mx +c intersects x = 0 below the x-axis then c

must be positive/negative.

If c starts at 0 and increases in a positive direction, the graph of y = mx+c

moves ,.

If c starts at 0 and increases in a negative direction, the graph of y = mx+c

moves .

If m is kept constant and c varies, then a family of lines is produced which are
all .
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Straight lines do not always appear immediately in the standard form y =mx+c .

DO TIllS NOW! 2.7
Plot the following on the same axes:

y=x y=x+l y=2(x+l) y=-3(5-2x) x+y=l.

Are they all straight lines? What is it algebraically that makes them so? Try to
transform each of them so that they are in the standard form y =mx+c .

You should find that this is the common factor that makes them all straight lines.
Check your working by verifying that your calculated values for m and c in each
case agree with what you observe from the graphs.

2.7 SOLVING LINEAR EQUAnONS GRAPIDCALLY
You have seen that a straight line has a standard equation y =mx+c and a linear

expression involves, at worst, terms like ax (a constant times x), and terms which are
just constant. Since these say the same thing, you might suspect that there is a
relationship between the solution of a linear equation and the graph of a straight line,
and you would indeed be right. The word "linear" is in fact derived from the word
"line".

Example 2.7.1 Do these two things:

• Solve the equation 3x +21 =0 .

• Plot the graph of y =3x+21 and observe where it crosses the x-axis,

You should find the solution to the equation is x = -7.

If you plot the graph you should observe that it crosses the x-axis where x =-7.

Why are these two values the same? Put simply, the place where the line crosses
the x -axis is the place where y =0 and setting y =0 gives exactly the equation we
are solving!

DO TIllS NOW! 2.8
Check this out by plotting/solving these matching equations and lines (satisfy
yourself that they do match first!).

(a) Plot y = -5x+16 and solve -5x+ 16 = 0 .

(b) Plot y=x-26 and solve x-5=21 .

(c) Plot y=x-3 and solve 5x+4=4x+7 .

Can you see another way to solve these last two graphically? (Hint. For example
with (b), you could see where the straight line y =x - 5 produces a y value of 21.)

2.8 TRANSPOSING FORMULAE
This section is here because the algebraic "magic" art of transposing formulae,

sometimes called changing the subject of a formula, follows the same rules as
equation solving in section 2.5. Sometimes more letters are involved and the
expressions are often not as simple. The method is a useful one, even though one of
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its uses - finding the value of one variable in a formula when you know all the others
-is built into much mathematical technology including a CAS and spreadsheet.

Example 2.8.1 The formula for calculating the period T of a simple pendulum of

length L, is: T = 2trt .
where g is the acceleration due to gravity. T is the subject of the formula here.

If we want to change this to make L the subject, then you would just have to follow
the same sorts of rules quoted in section 2.5 for solving linear equations.

Divide both sides by 21l ~ - [L
2tr -ri .

L

g
Square both sides to remove the square root

Multiply both sides by g

(:trr
gc:r =L

This approach can work for many but not all formulae. Here is another example.

Example 2.8.2 The elevation e of the outer rail of a railway line is given by
2

e = 4WV , where W is the distance between the rails, V is the average speed and R
5R

is the radius of the curve. Find V in terms of the other symbols.

A purely symbolic process is necessary here and although we could confirm our
answer with a few numbers, this does not guarantee a correct solution. A CAS
package could be used to confirm our solution. Thus:

Example 2.8.2 Method 1: Pencil and Paper

. b ., h . 4WV 2 b d to ziFollowing steps as erore, t e equation e = --- can e rearrange to give
5R

5 Re =V 2 => V =±~5 Re
4W 4W

Example 2.8.2 Method 2 A CAS system

)D 1130RBD RUTaMRIN

[
4·w·v2 )

• solve e =----s:r--' v
J5-e..rr e . r -J5-e..rr •

v= 2'JW and -w-~e or v= 2'JW

Figure 2.2 Changing the subject of a formula using a TI-89 hand-held. Derive-based CAS
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DO THIS NOW! 2.9
In each of the following examples, find your answer using pencil and paper and
check using technology.
(a) 1 kg is approximately equal to 2.2 lb (British pound weight). Write this as a

formula:

P =2.2K where K is the mass in kg and P is the mass in lb. By transposing the
formula as necessary, use this relationship to convert:

(i) 5 kg to lb

(ii) 61bto kg.

(b) Using the equation E =mv 2
, find by hand, transposing the formula as

necessary:

(i) the value of E if m = 20 and v = 7

(ii) the value of v if m = 20 and E = 640.

(c) If U =V(l- cr.;L find N in terms of U, V, D , c.
D-vN

(d) From the formula ~R2+(2;gL)2 =V ,findLintermsofR,f, Vand 1.
I

(e) A formula for the safety thickness of a beam is kt = ~[2; ,where t is the

thickness, 1 the length, b the breadth, W the load and k a constant. Obtain the
formula for l in terms of the other symbols.

2.9 STRAIGHT LINES IN ENGINEERING
You can describe the behaviour of many engineering systems, either exactly or

approximately, by straight lines. Such systems are called LINEAR. Linear
relationships occur in any system where two connected variables vary in a way
which is proportional to each other. In particular many physical laws and
relationships are linear, although the letters used will not always be x and y, and you
must become flexible enough to deal with this. There are many examples to illustrate
this; representing a relationship by a straight line usually comes from collected
experimental data and the straight line is called a mathematical model of the data.

Example 2.9.1 The length L of a wire under load T satisfies the relationship
L = aT +b where a and b are constants. Plot the readings below on a graph and you
should be able to estimate a and b by estimating the slope and the intercept on the L
axis. What are the physical meanings of a and b?

LoadT 50 100 150 200 250

LengthL 10.7 ll.8 12.8 13.95 15
. . ..

(Answer: a"" 0.02 1S Increase In length per additional unit load, b ""9.63 is unloaded
length)
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100
34.1

80
31.25

60
28.35

40
25.6

20
22.8

DO TIDS NOW! 2.10
(a) The electric resistance R of an iron wire varies with the temperature to C
according to the formula R = Ro(1+at) where Ro and a are constants. Plot the

following data values and hence estimate Ro and a . What are the physical meanings
ofRoand a?

Tempt
Resistance R

(b) The volume V of a gas at constant pressure varies with temperature t C according
to the formula V =Vo(l+at) where Vo and a are constants. Plot the following data

values and hence estimate Voand a. What are the physical meanings of Voand a?
Temp t 10 40 70 100 130

Volume V 50.8 56.25 161.7 67.1 72.6

(c) Fahrenheit (F) and Celsius (C) temperatures are related by:

F =2. C +32
5

Plot the graph of F against C (what is a sensible range?). What is the F intercept?
What is the slope? Where does the graph cut the C axis?

2.10 STRATEGIES FOR HANDLING LINEAR EQUAnONS AND GRAPHS
. There are several ways, algebraic, graphical, technological, of both thinking

about and handling linear equations. By looking at the same idea from different
directions, you can understand it better and can really convince yourself, and others,
that your mathematical conclusions are correct.

Example 2.10.1 Describe at least three ways of solving 9x - 4 =3x +2 .
You could solve it completely algebraically; do some algebra to reduce it to standard
form y = mx +c and then find where it cuts the x-axis; plot and see where the

straight line y = 9x - 4 meets the straight line y = 3x +2 and this will ensure that

the LHS =RHS; and so on.

Example 2.10.2 Here is an example of a more complicated equation for which a
numerical solution is sought and for which several different approaches are taken.

Solve the equation
x+3 2x+7
-----=x.

5 3

Example 2.10.2 Method 1: Pencil and Paper
Multiply by 15 (to remove fractions) 3(x+3)-5(2x+7) =15x .
Remove brackets 3x +9 -lOx - 35 =15x .
Subtract 15x and (9 - 35) from both sides 3x -lOx -15x = -9 +35 .
Tidy up -22x = 26 .

26 13
Finally x =--=-- == -1.1818 to 4 dp..

22 11
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-13
x=--

11

Example 2.10.2 Method 2: Graphically

x+3 2x+7
Plot y = --- -- and y = x , and see where they cross, as illustrated in the

5 3
graphic calculator output in Figure 2.3.

~"""",,'
: ......~

ll="1.1818i8 'i= "1.181818

Figure 2.3 Solving a linear equation graphically.

You can read the crossover point more accurately by using any "Zoom" or "Find
intersection" feature on your calculator. Find out about these NOW.

Example 2.10.2 Method 3: Numerically
You can tabulate the function values on, say, a graphic calculator tabulation function
(e.g. Figure 2.4) or a spreadsheet, and simply read where the two functions are equal.

X ""'1 ""':2:
-1.18:2: -1.18:2: 8Wf:li3I
-1.18:2: -1.11:2: -1.11:2:
-1.11:2: "1.11:2: -1.11:2:
-1.11:2: "1.11:2: "1.11:2:
-1.11:2: -1.11:2: "1.11:2:
-1.11:2: -1.18:2: -1.18:2:
-1.18:2: "1.18:2: -1.18:2:

""':2:--1.1818181818

Figure 2.4 Solving a linear equation through tabulation.

Example 2.10.2 Method 4: Built-in features in Software Packages

Many CAS packages have built-in Solve features: this can provide a quick check of
your working. For instance Fi ure 2.5 shows the TI-Interactive "solve" feature.

(
X+ 3 2·x+7 )

solve 5 - 3 =x, x

Figure 2.5 Solving a linear equation using a typical built-in "Solve" function.

Example 2.10.2 Method 5: Bya spreadsheet Solver (e.g. Microsoft Excel)

Spreadsheets are widely available and, amongst other useful purposes, a very useful
verifier of solutions.

You can see some typical techniques in Figures 2.6(a) and 2.6 (b) on the next page.
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Figure 2.6(a) Solving a linear equation using the Excel "Solver" function:

the set-up using Solver from the Tools menu.

Figure 2.6(b) Solving a linear equation using the Excel "Solver" function:

the final result.

23

All these approaches then confirm that we have the "correct" answer. With this
much power it is actually quite difficult to be wrong! Remember two things though.

• The final verification comes from putting the answer in the original expression
but with "real" questions, where the answer has to be recorded to a certain
number of decimal places, there is ALWAYS some small error involved.

• Remember to present your answer in a suitable form: Whom are you convincing?
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2y+l =1.+6
3

(b)

DO THIS NOWl 2.11
Take these three examples (which you should have done, algebraically and
otherwise, earlier in DO THESE NOW! 2.3) Solve them by a range of methods,
algebraically, graphically and using technology, as in Example 2.10.2 above.

Remember you must be flexible about the letters used - your unknown variable
plays the role of "x" even though it may not be called x - in fact it might really
confusingly be called y!

(a) 4(y-3) =1.+9
2

(c) d+7=4 (I-d).
3

END OF CHAPTER 2 • MIXED ACTIVITIES - DO THESE NOW!

Activity 2.1 More on linear functions

(a) Determine the slope and y-intercept of the line 2x+3y-5 =O.

(b) Find the equation of the line passing through (10, 0.4) which is parallel to the
line y=2x-7.

(c) Find the equations of the lines shown in the graphical calculator screens in
Figures 2.7(i) - (iv), and plot your equations to make sure they are right.

Figure 2.7(i) Figure 2.7(ii)

Figure 2.7(iii) Figure 2.7(iv)

(d) Working both graphically and algebraically, find the value of x which satisfies
the equation 5x - 3 =2x - 7 .

�� �� �� �� ��



Ch.2] Mixed Activities 25

Activity 2.2 More on formulae

p-d 7
(a) Make d the subject of the formula E = --. Evaluate d by hand when E =-

p 8
and p = 3. Check using your technological solver.

(b) Make n the subject of the formula I = a + (n -l)d .

How many ways can you think of to verify your answer? Do it!

(c) Rearrange the formula .!.. +.!.. =.!. into each of the following forms
abc

(i) a =? (ii) b =? (iii) c = ? .

Use your rearranged formulae to fill in the ? places in the following table,
checking your answers technologically.

a b c

2 3 ?

-4 ? 3

? 1.3 4.7

(e) Find a formula for w if

(d) In a certain machine the applied effort E and the resistance overcome Ware
modelled by the equation E = a +bW , where a and b are constants. It is found
by experiment that when W = 50, E = 11.7 and when W = 150, E = 27.7. Find a
and b and find the value of W when E = 15.

c= E+~E2_4Rw
2R

a c a+c
-+-=--
b d b+d

(d)

Activity 2.3 Test your algebraic expertise

For (a)-(h), state ALWAYS TRUE or NOT ALWAYS TRUE, and explain why.

1 1 2 1 1 x+ y
(a) -+-=-- (b) -+-=--

x y x+ y x y xy

x+l x 1
(c) --=-+­

y+l y 1

(g)

(e) x-2 = -2
x+5 5

2a+5b = 2a +b
5 5

(f)

(Answers: F ,T, F, F, F, F, T, F)
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3
Linking Algebra and Graphics 2
"An idea which can be used once is a trick. If it can be used more than once it becomes a method" George
Polya

3.1 MORE ON CONNECTING ALGEBRA TO GRAPHS
In Chapter 2, when discussing the links between algebra and graphs, we

restricted ourselves mainly to talking about linear functions - that is, those of the
form y =mx+c.

This does indeed allow you to describe many, but by no means all, engineering
systems. You now have the chance to go on and look at further mathematical
functions which are important in engineering. Many of the general points about
linking algebra and graphs will continue to be useful with these other functions.

To make our notation easier to extend, we shall start writing the linear expression
mx+c as Clo +a,x, using the powerful subscript notation, with aoand a, representing
constant quantities. To see why, we mention that the linear expression is an example
of what is called a polynomial expression - which is any expression of the form:

ao+a,x +a2x2 +a3x3 +a4x4...+anxn . That is, it just contains terms which look like a
constant times an integer power of x. The highest power present (n in this case) is
called the order of the polynomial.

In this chapter we go on to look in some detail at polynomials of order 2, or
quadratic polynomials (from the Latin quadra meaning "a square"). These are of
fundamental importance in engineering, for instance in modelling suspension
systems and electronic circuits, and the work in this chapter is an essential building
block for several future chapters. So as usual, as you work through the chapter, just
remember to keep on doing all the exercises and activities.
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3.2 QUADRATIC FUNCTIONS
In the general subscript notation we would write a quadratic expression as

y =ao +a\x+a2x2, but many textbooks use a standard notation y =ax 2 +bx+c, so
to match with what you have probably met before, we shall follow that for now.

The first useful thing to do with a quadratic expression y =ax 2 +bx +c is to plot

its graph for various values of a, band c, to get a ''feel'' for what these parameters do

to the graph. First look at the simplest quadratic graph y =x2 in Figure 3.1.

y=1t

Figure 3.1 The simplest quadratic graph.

Note that adding the higher power term has made the graph curve in a particular
way - it is no longer a straight line. Now go on to do these exercises to see what kind
of features these functions have.

DO TIDS NOW! 3.1
Plot the graph of y =ax2 +bx +c for various values of the parameters a, b and c as
below (on your favourite technology). Observe how the graph changes as the
parameters change and describe what you see in your own words.

In each case, fix the axes and scales:

(a) Plot together y = x 2
, Y =x 2 -1 and y =x 2 +1 .

Changing just c moves the quadratic how?

(b) Plot together y =x 2
, Y = 2x 2 and y =3x 2

•

Changing just a does what to the graph?

(c) Plot together y =x 2 and y = _x2
•

Making a negative does what to the graph?

(d) Plot together y =x 2
, Y =x 2 +x and y =x 2 +2x

Can you say anything simple about changing b?

You might have made the informal comments that changing c moves the graph
up and down vertically; changing a changes the "sharpness" of the curve, and
making a negative turns the graph upside down. Changing b shifts the curve
sideways and downwards, but not in a simple way - more about this in chapter 5.
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3.3 SOLVING QUADRATIC EQUATIONS
3.3.1 Connecting pictures and algebra with quadratics

As with straight lines, if you plot the graph of the quadratic curve y = ax2 + bx + c

and look for the places where it cuts the x-axis, then those are the places where

y =0, that is, where ax2 +bx + C =0 . That is, the values of x at those points give you

the solutions or roots of the quadratic equation ax2 +bx +c =0 .

Th I f . b he f 1 - b ±~b 2 - 4ac h' h . 1ese va ues 0 x are given y t e rormu a x = , W IC you wil
2a

almost certainly have met before. You can read about the derivation of this formula
in section 3.4, but to explore a little more, work through the following exercise.

DO THIS NOW! 3.2

Plot the quadratic y = ax2 +bx+ c for the values of a, band c given below, and from

your graphs and some calculation, fill in the table below where possible:
a b c b 2 -4ac No. of times curve

-b±Jb2 -4ac
meets x-axis x=

2a

1 3 2 +1 2 -1 and-2

1 4 3

I I 0

I 2 I

I 0 0

I I I

4 4 I

What do you observe about the relationship between the number of times the curve

meets the x-axis and the value of b 2 -4ac? Does the formula in the right-hand
column indeed give the places where the curve meets the x-axis? Why do the sixth
and seventh cases give difficulty - geometrically and algebraically?

Verify your conclusions by using other values of a, b, and c.

You should observe that the quantity b 2 -4ac is crucial in deciding the
properties of both the curve and the solutions of the related quadratic equation.

• When b2
- 4ac > 0 , the quadratic cuts the x-axis twice.

• When b 2 - 4ac = 0, the quadratic cuts the x-axis once, although formally it
"touches" the axis and cuts twice in the same place!

• When b2 -4ac < 0, the quadratic does not cut the x-axis. In this case you will
find that the formula for the roots involves taking the square root of a negative
number and so involves complex numbers (see chapter 6).
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The f I - b ±Jb 2 - 4ac d . d d zi h 1 h h drati• e rormu a x = oes In ee give t e pace were t e qua rauc
2a

graph cuts the x-axis - in other words, it gives the roots.

DO THIS NOW! 3.3
Your calculator, particularly if you have a graphic calculator, may well have a direct
polynomial solver which will find the roots of a quadratic equation if you feed in the
values of a, band c. FIND OUT NOW if this is available on YOUR calculator!
Find out how to use it and repeat the examples of DO IT NOW 3.2!

3.3.2 Connecting roots and factors with quadratics.

In the event that b 2 - 4ac 2:0 then we can find so-called real roots or solutions
of the quadratic equation. Let's label these a and p. We claim that it is then possible,
and useful, to write the quadratic expression in the form: ax2 +bx + c =a(x - a)(x - {3)

where (x - a) and (x - {3) are called the linear factors of the quadratic.

Earlier mathematics courses may have taught you the trick of finding these
factors by inspection, but this is only of limited use in engineering, where the
numbers are nearly always not simple and rarely whole. Using the formula to find
the roots and then expressing the factors in terms of these, gives a foolproof way of
finding the factors. To give you the confidence that this works, you could find the
roots and factors and then simply multiply the brackets back out to see if you get
back to the original quadratic, as in this example.

Example 3.3.1 Start with y =x 2 + 5x +6.

• Plot it, and note where it cuts the x-axis, as in Figure 3.2.

x
Y=(I

Figure 3.2 Finding the roots of a quadratic graphically.

• Now find its roots a and {3, either using the formula or your built-in
calculator function or preferably both. If you use both, make sure they give
you the same answer! This should give x = -2 and x = -3 which agrees
with the graph in Figure 3.2.

• Write down a(x - a)(x - {3) and multiply out the brackets, and you should

get back to the original quadratic.

a(x - a)(x - {3) = l(x - (-2»(x - (-3» =(x+ 2)(x +3) =x 2 + 5x +6
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DO THIS NOW! 3.4
Repeat Example 3.3.1 for these quadratic functions.

(i) y = x2+4x+3 (ii) y = x2+4x+4 (watch this special case)

(iii) y =1.23456x2 +3.45678x - 5.6789 .

3.4 AN ALGEBRAIC TRICK - COMPLETING THE SQUARE
There are various algebraic tricks associated with quadratic equations, some of

which are made redundant by technology. One trick which may still prove useful is
completing the square.

For example, the formula for finding the roots of a quadratic equation is derived
by using this trick. It will also be useful at other times, for instance when dealing
with Laplace transforms (see Chapter 17). Like so many algebraic tricks it is just a
particular way of rewriting an algebraic expression, in this case a quadratic
expression.

To see what it is about, consider

(check this out!)

This shows that any linear bracket squared can turn into a quadratic.

The "complete the square" method asks the reverse question:

Can you take any quadratic

Y=(X+A)2+B?and write it as a bracket squared plus a constant

That is we want to choose A and B so that

y =ax 2 +bx+c =(x+A)2 +B

The answer is "Yes". First you see that a must be 1, but this can always be made the
case just by taking out a factor of a (see DO THIS NOW 3.5!). Then, to see how the
method works, it is easier to multiply out the bracket. Thus

y =ax 2 +bx+c =x 2 +2Ax+A2 +B

and by comparing coefficients of:l-, x and the constant, we get

b
2A=b or A=­

2
giving A

and A 2 + B =c or B =c - A 2 giving B.

Example 3.4.1

Write the quadratic expression y =x 2 +4x+9 in the completed square form.

Check that it is correct by multiplying the brackets back out again.

In this quadratic: a = 1, b = 4 and c = 9 .
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b
Therefore A =- =2

2
and

In completed square form then, y =x 2 + 4x +9 =(x + 2) 2 +5 .

Multiplying back out reveals that this has indeed worked:

y=(x+2)2 +5=x2 +4x+4+5=x2 +4x+9

DO THIS NOW! 3.5
Complete the square with these quadratic expressions. verifying your answers:.

(b) y=x2 -4x+12

(c) y=2x2+6x+16 (Hint-rewrite this one as y=2(x2+3x+8) and just

complete the square on the bit in the bracket) .

We shall use this method again later but, just to finish off, here is an optional
chance to derive for yourself the familiar formula for solving quadratic equations.

DO THIS! 3.6 (Not for the faint-hearted)
Derivation of the formula for solving a quadratic equation.
It is your job here to fill in all the steps.

Start with ax 2 +bx+ c = 0

Divide by a (assuming a ;to)
2 b c

x +-x+-=O
a a

Complete the square ( b)2 4ac-b
2

0x+- + =
2a 4a 2

Rearrange
-b±~b2 -4ac

x=
2a

Of course if you don't like all this algebra you can always get your CAS system
to solve the equation - for instance Figure 3.3 shows a screen from a TI-92.

reAD AurDMAIN

• so1vee a . x 2 + b . x + c =8 , x)

Jb 2 - 4 . a . C - b -(Jb 2 - 4 . a . C + ~
x = 2 . a or x = 2 . a

---:::........;::...----1

Figure 3.3 Deriving the quadratic roots formula using CAS.
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3.5 A DIVERSION - MATCH THE GRAPHS WIm THE FUNCTIONS
In this section you have the chance to work on developing your mathematical

"feel" by trying to match given algebraic quadratic equations with their graphs.

DO THIS NOW! 3.7
Below are 6 graphs and 12 quadratic expressions. Match each graph number with an
equation letter. Verify your choice by plotting it.

Figures 3.4 (1 ... 6) Match expressions to these curves

(a) y =x 2 -6x+12

(c) y=x2 -12x+13

(e) y=-x2-6x-6

(g) y=x2 -12x+13

(i) y = x 2
- 2x+ 2

(k) Y =2x 2 -12x + 6

(b) y =O.25x2 +1.5x+3

(d) y = O.25x2 +1.5x+ 12

(f) Y = _x2 -2x+l

(h) y = O.25x2 + l.5x- 6

(j) y=-x2+4x-6

(1) y =x 2 +4x+3
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3.6 STRATEGIES FOR HANDLING QUADRATIC FUNCTIONS
To summarise, if linear models are not sufficient then we have to use a "curvy"

model and the simplest "curve" we can use is the quadratic function. Hence it is
necessary to be familiar with this type of expression. It has one unknown and
contains powers up to the square:

2 2 by=02X +OIX+OO =ax + X+C .

The solution of quadratic equations forms a cornerstone in many engineering
applications and in this section we are going to look at various methods of solution,
summarising so far and introducing some new ideas.

The problem, then, is to solve

We shall illustrate the various approaches and methods through examples.

Example 3.6.1 Solve the equation x 2 - 5x + 6 = 0 .

Example 3.6.1 Method 1: byfindingfactors

This is commonly the first method to be taught in schools, with "nice" whole
number examples, but is of little use in engineering as the numbers are rarely "nice".
Here is an outline, just to demonstrate the method and make links to what you may
have done before, but it is not recommended.

We aim to rewrite the equation in the form (x-a)(x-p) =0 .

Multiplying out the brackets gives x 2
- (a + p)x + afJ = 0 , and comparing this with

the original equation, we see that we must find a and p to satisfy

(a+p)=5 and ap=6.

By inspection, this requires a = 2 and fJ = 3 .

Thus the quadratic equation can be rewritten as

It is clear that either x = 2 or x = 3.

Example 3.6.1Method 2: byformula

(x-2)(x-3)=0.

-b+~b2 -4ac
The roots of the quadratic are given by: x =------­

2a

For x2-5x+6=0,wehave a=l, b=-5 and c=6

-(-5)± '(_5)2 -4xlx6 5+ '25 24 6 4
d V - "" - = - or - = 3 or 2 as before.an so x = 2xl 2 2 2

Note the careful use of brackets here to help avoid getting the algebra wrong.

The two methods agree about the answer, but only Method 2 is easily extendable to
cases where the numbers are not whole and convenient.
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Example 3.6.2 Solve the equation x 2 -5x-8 = 0 .

Example 3.6.2 Method 3 by plotting the graph.

Figure 3.5 shows graphic calculator plots for y = x 2 -5x-8 .

Figures 3.5 Finding quadratic roots graphically on a graphic calculator.

You can read from the graph, by "zooming in" as necessary, or by using any built-in
features (in this case the "Zero" feature) that the roots are -1.27492 and 6.27492.

Example 3.6.2 Method 4: by using a spreadsheet such as Excel

The spreadsheet is more than an accounting tool. It can be useful for illustrating
mathematical ideas and as a calculating tool. You can set it up to plot a graph as in
Figure 3.6, to see that the roots exist. Then, from the Excel Tools menu, Solver or
Goal Seek can be used to establish the values as accurately as necessary.

So we use the graph wizard to confirm that there are two roots near -I and 6.

Figure 3.6 The result of plotting a quadratic graph in Excel

We can then use Goal Seek from the Tools menu as set up in Figure 3.7, to
verify the roots obtained by Method 3 - but note that a good guess near each root is
needed for the searcher to find the value.
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Figure 3.7 Refining the estimate of a quadratic root using Goal Seek in Excel.

35

Alternatively, we can use Solver from the Tools menu, as set up in Figure 3.8, but
again a good first guess is required.

Figure 3.8 Refining the estimate of a quadratic root using Solver in Excel.

Example 3.6.2 Method 5: by customised software

Because solving quadratic equations is something an engineer must be able to do
easily, there are many basic direct tools to do this. For instance, Figure 3.9 shows
screen dumps from a graphic calculator showing such a package:

POLY alx"l+alx+aa-0 alx"l+~lx+aa=0
order=2 al=1 xl=6. 74917

al=-5 xlEl-1. 274917
aa=-8

i ( R4 I I I lsaLYu IcaErsi STa. I I I I

Figure 3.9 Finding quadratic roots using a built-in graphic calculator function.

FIND OUT NOW what technology you have available to you for solving quadratic
equations and make sure you know how to use it correctly.
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3.7 WHERE NEXT WITH POLYNOMIALS?
Be warned: when you have powerful technology it can easily take you into new

areas, sometimes before you are ready. Look at Figure 3.10 to see what happens if

you use a graphic calculator to solve x 2 +2x +5 =0 :

..IX.... ~+~1t x+.a~l'.
xll(-1.000.2~000)
x~=( -1.000. -".000)

Figure3.10 A graphiccalculatorfinds complexroots of a quadraticequation

The notation is unfamiliar, since b 2
- 4ac =4 - 20 < O. There is no intersection

with the z-axis, so solutions will not be real numbers. You are, in fact, meeting
complex numbers - but you must wait for, or head for, Chapter 6 to find out more!

Finally, it is worth noting that polynomials generally are useful to approximate
any function. For instance, the next most complicated in the polynomial family is the

b· 2 3cu IC Y=ao +a\x+a2x +a3x

One of these is plotted in Figure 3.11 and you might observe that the extra term
gives the possibility of two "bends" in the function. We shall deal with higher order
polynomials in more detail in Chapter 18.

Figure 3.11 A cubic curve

END OF CHAPTER 3 ACTIVITY - DO mIS NOW!
The general quadratic equation is:- ax 2+bx+c = 0

Solve it in each of the following cases by the formula method, verifying your results
by plotting graphs and also by using as many methods and technologies as you have
available to you.

a b c Root XI Root x,

5 30 44.2

8 -54 63

-0.7 0.53 0.6

7 -23 5
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4
Other Essential Functions
"In certain problems that I have done it was necessary to continue the development of the picture as the
method before the mathematics could really be done" Mark Kac

4.1 ESSENTIAL ENGINEERING FUNCTIONS
This chapter will allow you to run through the basic facts about some further

mathematical functions which are fundamental to engineering - the exponential and
logarithm functions, and the trigonometric functions. It will provide by no means a
comprehensive view of these, but will allow you to encounter the main facts. These
functions occur in many areas of engineering, so as you use them more and more,
you will become more familiar with their behaviour and properties.

In informal descriptive terms, exponentials and logarithms describe systems
which grow or decay; trigonometrical functions describe systems which oscillate, or
have a periodic nature).

The key functions you will be handling are:

A general exponential function y = a' .

The exponential function y =e" =exp(x) where e"" 2.71828....

There will be more about why this number e is special in section 4.3.

The natural logarithm function y =In(x)=loge(x) .

This is also called the logarithm to the base e.

The sine function

The cosine function

y = sin(x) .

y = cos(x) .

As you work through this chapter, just keep on doing the exercises and activities.
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4.2 THE BASICS OF EXPONENTIALS AND LOGARITHMS
4.2.1 The number e and natural logarlthms
DO THIS NOW! 4.1
Do this first and then read our comments below.

Plot the following functions on your favourite technology, over the range
-4 < x < 4, thinking about what is a sensible range for y:

y = e" = exp(x) y=x y =loge x =lnx

Comment on what symmetry you observe on the graphs. You should plot on equal
scales on both axes - some calculators have a Zoom Zsquare mode for this - why?

You should have seen graphs something like those in Figure 4.1 below, which
were plotted on a graphic calculator.

You must plot on equal scales in both directions, otherwise you will not see the
symmetries - for example if you plot a circle on a scale of 1 unit per em in the x­
direction and 2 units per em in the y-direction then it will not look like a circle, even
though it still is one.

If you do this you will then see that the picture is symmetrical about the 450 line

y =x . In other words, the graph of y =e" =exp(x) is a reflection of the graph of

y = loge X = In x in this line of symmetry. Note that probably in your calculator the

logarithm log e x =In x and exponential e" =exp(x) functions share a key, to reflect
this close relationship.

Pl~~1 Pl~~~ Pl~~~

....Y1E1e-""(X)

....Y~ElX

....Y~E11n(X)

....YIt =

....Ys:=

....Y&=

....Y7= Y=1 .

Figure 4.1 The symmetry in logarithm and exponential graphs.

Explore this more, by doing this next exercise, then reading our comments below it.

DO TIDS NOW! 4.2
Evaluate on your calculator:

Predict the value of loge (e5 ) ? Check on your calculator ... are you right?

Evaluate on your technology:

What would you predict is the value of e1n 5 ? Check on your calculator. What
general conclusion do you draw about the relationship between the logarithm and
exponential functions?

�� �� �� �� ��



Sec.4.2] The Basics of Exponentials and Logarithms 39

You should see that log. e" = e1n x = x i.e. exponential and logarithm are inverse

functions - one "undoes" the effect of the other. This explains the way the keys are
set up on your technology.

Another way of writing this is that if y = e" then x = log. y - an exponential on

one side of an equation becomes a logarithm on the other.

Incidentally this gives meaning to the logarithm function - the logarithm to the
base e (or natural logarithm) of a number y is just the power to which the base e must
be raised to give that number y. So a logarithm should behave just like a power.

4.2.2. Logarithms to other bases

Most commonly as engineers and scientists you will use natural logarithms
y =log. x =In x - note the two ways of writing it. However you must also be aware

that logarithms to other bases are also used.

Example 4.2.1 Common logarithms (base 10)

If y = lOX then x =log 10 Y is the power to which 10 must be raised to give y. This

is the logarithm to base 10, or common logarithm. It is used in the definition of
decibels and is also common because we have 10 fingers!

Example 4.2.2 Logarithms to base 2

If y = 2x then x =log , Y is the power to which 2 must be raised to give y. It is

used in information theory.

DO THIS NOW! 4.3
It is important to know how your machines and software represent these various
exponential and logarithmic functions. For instance eX is sometimes written exp(x)
and in some software"e" has a special symbol (e.g. in Derive it is on a pad as e.)
In Microsoft Excel for example (see Figure 4.2) the general log function has two
parameters log(number,base), although LN and LOGIO are also there.

Figure 4.2 Finding logarithms amongst the standard functions in Excel.

Look NOW at your software and hardware and make sure you know how to work
out the various logarithmic and exponential functions you need to use.
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4.3 HOW THE EXPONENTIAL FUNCTION BERAYES

4.3.1 The effect of kin y = elu and y = e-lu
•

It is important for you to get a good feel for how the graph of the exponential
function behaves - it is a very commonly occurring function in engineering, as you
will see for instance in Chapter 15 in cooling or heating curves, radioactive decay, or
electrical charge and discharge, and it has some interesting and useful properties.

DO THIS NOW! 4.4!
Do this first, then read our comments below.

Explore the GROWTH curve by changing k > 0 in y = e lu
•

Graph the following functions: 3xy=e .

What would you predict y = e4x looks like? Plot it and see if you are right.

Describe in your own words the effect on the graph of y = elu of changing the
parameter k.

Explore the DECAY curve by changing k > 0 in y = e-lu

Graph the following functions: -3xy=e

What would you predict y = e-4x looks like? Plot it and see if you are right.

Describe in your own words the effect on the graph of y = e-kx of changing the
parameter k.

Repeat the exercise above but with the function y =1- e-kx .

You should have observed that, for k > 0, the positive exponential y =elu

models growth, as y increases with x, and that as k gets bigger, then the rate of

growth increases. Correspondingly, the negative exponential y = e-lu models decay,

as y decreases with x, and as k gets bigger, then the decay happens more quickly.

4.3.2 A magic property of y = e" •

The function y = e' has a magic property. This is that at every point, the

function has a value equal to the value of the slope of its graph at that point. This
property is very important in the calculus, as you will see in various chapters later.

Recall that e == 2.71828. This is only an approximate value - it is an irrational
number with an infinite number of non-repeating decimal places. You might wonder
what is so special about this number that it should have magic properties, but there is
no answer to that question - it is just the way things are!

Explore this property a little more now.
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DO THIS NOW! 4.5
Given the two calculator screens in Figure 4.3, match up the functions with the

curves. Describe what you observe about the set of curves y = a" as a increases.

X=.97B72

Figure 4.3 Match the functions to the curves

'1'=1

Try to reproduce these graphs on your own technology. In each case what is the
value of y at x =O? From your graphs estimate the slope of each curve at x =O.
Which has a slope closest to its function value at this point?

Answer all these questions NOW before reading on.

(You should observe that for 0 < a < 1 the curves decay; when a =1 the curve is just
a horizontal line; and as a increases beyond I, the curves increase to the right more
and more quickly. All curves have a value of 1 when x =0, but different slopes. It is

curve Ys, which is y = e' , which has a slope of 1 when x = 0.)

Now concentrate on the curve y = eX (Y, in Figure 4.3). Working with your own

graph on your technology, investigate the relationship between function value y and
curve slope at other points. Figure 4.4 shows a few screens with the "tangent lines"
drawn to help you with estimating the slope - work out the y value at the tangent
point and look at the slope of the line.

./..
X=.S:
"'=1.6ItB72X+.B21t~6

X=-.1
~=.9(1ItBItX+.99s:n

Figure 4.4

Finish doing this before reading on.

(You should find that for y = e X the value of y is the same as the value of the slope

at every point - as we stated at the beginning of this section.)
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4.4 HOW THE LOGARITHM FUNCTION BEHAVES
4.4.1 The laws of logarithms

A logarithm then is just a power, so logarithms and indices behave similarly.

There are laws for logarithms (which actually work for any base but which we
present here for base e - natural logs), which correspond to the laws for indices,
which you should have met before and with which you should become familiar:

Law 1: In(AB) = In A + In B .

A
Law 2: In(-) = In A -In B .

B

Law 3: In(An)=nlnA .

I
Law4: In(-)=-ln(A) .

A

Law 5: In(1) =0 .

Law 6: In(eX
) = x .

DO TmS NOW! 4.6
In the following list, each of the expressions in the left hand column has an
equivalent in the right hand column. Without using your calculator to evaluate the
logarithms, match the pairs, stating which rule you are using. Only then, check using
your calculator:

In3+ln6 31n5

In24 -ln8

Ine 0

In4-lnl6 In6+ln4

In5 3 Inl8

InO.125

In1 In0.25

4.4.2 Using the exponentialllogarithm relationship

The inverse function relationship between y = e" and x = loge y gives us a very
useful algebraic tool. Here are some examples, of increasing difficulty, followed by
some exercises for you to have a go at.

You will need to use a combination of ordinary algebraic skills and the laws of
logarithms.

Example 4.4.1 Solve the equation e-x = 0.2 .

If e-x = 0.2 then -x = loge 0.2, and so x = -loge 0.2 "" 1.609

Example 4.4.2 Solve the equation e 2x
+! = 0.2 .

If e2x
+! = 0.2 then 2x+ 1= loge 0.2, and so

loge (0.2)-1
x= ""1.305 .

2
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Example 4.4.3 Solve the equation 5x
+

1 = 0.1 .

If 5x+! = 0.1, then simply take natural logs of both sides.

This gives

Using Law 3

After a little manipulation:

In(5x+1 ) = In(O.I) .

(x +1)In(5) = In(O.1)

x = In(O.I)-I =:: -2.431
In(5)

Example 4.4.4 Solve the equation e-2x = 3e-3.5x and check the answer graphically.

Once more take natural logs of both sides

Using Law I and Law 6

Using Law 6 again

Finally doing some algebra

In(e-2X ) = In(3e-3.5X ) •

- 2x = In(3)+ In(e-3.5X )

-2x = In(3)- 3.5x .

x = In(3) =:: 0.732 .
1.5

~AD AUTa rUNe

The graphical check can be done, for instance, by plotting y = e-2x and

y = 3e-3.5x and seeing where these two curves intersect, as shown in Figure 4.5.

I~+-'=- I_ ntersectionL-,..,."..........................._1
xc:.73248e

MAIN ~AD AUTa

Figure 4.5 Solving an exponential equation graphically.

You can of course also check your solutions to Examples 4.4.1, 4.4.2 and 4.4.3
graphically! DO THIS NOW.

DO TIDS NOW! 4.7
Solve these equations to 4 decimal places, first algebraically using logarithms and
then confirming your results graphically.

(a) e" = 4

(d) e" .e2x = 3 (e)

(g) r x =5

(b)

(h)

e-x = 0.1

(f)

(c)

(i)

4e 3x- 2 = 15

0.423x = 5.432

log , b is the power to which base a is raised in order to get b. Use this to evaluate

the following without using your calculator, then use the calculator to check.

(j) In (e 3) (k) log 10 (0.1) (1) e 10(5) (m) log 10 1000
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Example 4.4.5 Some harder examples need a little imagination.

First solve graphically the equation e-I +e-21 = 1 .

We get t to be about 0048, by plotting y = e-I +e-21 and seeing where y = 1. Do this

yourself. What do you get? Do you agree?

Now can you see how you could solve this equation algebraically?

In fact you need to write it as a quadratic equation, with e-I as the unknown - one
set of mathematical skills building on top of others!

Begin with

Rewrite this as

Letting x =e-I and noting (e-I )
2 =e-21

Solving this (by formula or whatever)

x 2 +x-l =0 .

-1±.J5x=---
2

However since x = e-I ,and e-I

we can only use the positive root

So

This gives

is always greater than 0 (look at its graph!), then

-1+.J5
x=--~

2

e -I = -1+.J5 "" 0.62 .
2

t "" -In(0.62) "" 0048 .

which verifies the graphical answer!

Finally, here are some activities which will prepare the way for the next section.

DO TillS NOW! 4.8
Find the solution t for each of (a) - (c), checking your answers both by substitution
and also graphically by plotting the exponential function and seeing if your solution
really does give the value on the left hand side:

(a) O.6=e-1 (b) O.6=0.8e-2.51 (c) 60 = 80e--{)·0291 .

4.4.3 The exponential function in action
In engineering, exponential decay occurs more often than growth. For instance,

in movement, friction tends to wear down the motion. The decay graph y =Ae-lex

has properties which are worth exploring, because of its common occurrence.

Example 4.4.6 Radioactive half-life

The level of redioactivity R in radioactive substances decays over time t, following a

curve of the form R = Roe-kl where Ro and k are constants which change from one

substance and situation to another.
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Ro is the level of radioactivit6when t =0 - check this out by putting t =0 and
recalling from Chapter 1 that e =1.

k describes how quickly the radioactivity level decays - it is called the decay
constant. Recall how this works by referring back to DO THIS NOW 4.5!

For Carbon 14, Ro=6.53 picocuries per gram, and k is _1_.
8300

DO TillS NOW! 4.9
Do these activities before reading our comments which follow.

I
--t

Plot the graph of the radioactive decay curve for Carbon 14: R = 6.53e 8300 •

From your graph read off how long it takes for the level of radioactivity to fall to
3.265, one half of its initial value.

Repeat this with any other point - that is, choose a starting value for t, read the value
of R there and then record how long it takes for the level of radioactivity to fall to
half of that value.

You should find that wherever you start, for a given substance with a given value
of k, it takes the same length of time for the level to fall to one half of its starting
value. This is called the radioactive half-life of the substance.

You can see that this will always be so by doing a little algebra as below - this
shows you some of the power of algebra.

Starting with the decay curve R = Roe-kt
, we ask the question how long it takes for

R
R to fall to one half of its starting value Ro. In other words, what is t when R =_0 ?

2

So we must solve for the value of t.

Divide both sides by Ro:

Ro R -kt-= oe
2

1 -kt
-=e .
2

Finally:

Using Logarithm Law 6:
1 1

In("2) =loge ("2)=-kt .

1 1
t = --log (-) .

k e 2

Note that Ro has been cancelled out, so the length of time it takes for the level to
halve is independent of the starting level - which you should have found before.

The half-life does however depend on k - different substances have different half­
lives. Note that the half-life is NOT half the time it takes for the radioactivity to go
completely!

Finish by checking, using this formula, that your graphical solutions were correct.
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DO THIS NOW! 4.10
Try to get the answer to this puzzle without looking at the hints or the answer. Only
look at them if you are really stuck!
The police discover a murder victim at 6:00a.m. The body temperature of the victim
is measured then and found to be 25°C. A doctor arrives on the scene of the crime
40 minutes later and measures the body temperature again. It is found to be 22°C.
The temperature of the room remains constant at 15°C. The doctor, knowing that
normal body temperature is 37°C, is able to estimate the time of death of the victim.

If the cooling process is modelled by the equation () = (}oe -kt , where ()is the excess

temperature over room temperature, estimate the time of death of the victim.

(Hints: Remember to work with () as excess temperature above room temperature;
work in minutes; take t =0 to be at 6.00a.m. Use the two measurements taken to find
the values of (}o and k. You can then identify the time of death when () = (37 -15) ,

either by plotting the exponential curve and reading the value from the graph, or by
solving the equation algebraically, or preferably both! Round off appropriately.)

(Answer: we made the time of death -88 minutes, or 4.32a.m.)

4.5 THE BASICS OF TRIGONOMETRIC FUNCTIONS
4.5.1 Extending the definitions to all angles

You saw in Section 1.6 how the sine, cosine and tangent of an angle are defined
in terms of ratios of lengths of sides of a right-angled triangle. However this
inevitably limited the definition to angles between 0° and 900 only.

In this section you will see how the definition can be extended to include all
angles. This is done by imagining a point with co-ordinates (x, y), moving round a
circle centred on the origin of radius r, as in Figure 4.6, with the angle () being that
measured from the positive x-axis as shown. The anti-clockwise sense creates a
positive angle and the clockwise creates a negative angle. Trigonometric functions
are often called circular functions for this reason.

Figure 4.6 Defining the parameters for a general definition of trigonometric functions.

We thus re-define the trigonometric functions as

Sine Cosine Tangent

sin(O) =2'. cos(O) =~ tan(O) =2'.
r r x
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4.5.2 The graphs of the sine and cosine functions
Having made definitions which can work for all angles, you now need to see how

the graphs of the sine and cosine functions look and behave. You will see that they
are useful for describing processes which oscillate or vibrate periodically - how
many engineering situations can you think of where that happens?

y = 3sinxy = 2sinx

DO THIS NOW! 4.11
Do all these activities and write your own comments before going on to read our
comments which follow.

Plot the following sets of functions as specified over the range -4 < x < 4. Choose a
sensible range for y. An important point is that you should now get used to working
with your angles in RADIANS. Thus if you are using a calculator make sure your
mode is set for this. You have already seen in Chapter 1 that 21!radians Gust over
6.28) is equivalent to 360°; thus one radian is about 57°. There are good reasons for
doing this - as you will see when we start discussing calculus in Chapter 7. Note that
we sometimes use brackets to clarify expressions - this is a good habit.

(a) Plot together:
y = sin x

Describe in your own words the effect of changing the parameter A (amplitude) in
the function y = A sin x .

(b) Plot together:
y = sin x y = sin(2x) y = sin(3x)

y = sin(x - 0.5)y = sin(x+l)

Describe in your own words the effect of changing the parameter a; (angular
frequency) in the function y = sin(OJx).

(c) Plot together:
y = sinx

Describe in your own words the effect of changing the parameter ¢ (phase) in the

function y=sin(x+¢).

You should observe that:

• The sine function forms a wave-like graph. Amplitude A changes the height of
the sine wave so that y = Asin x varies between values of +A and -A.

• A sine wave y = sin x repeats itself every 21!radians - this is called its period

and is usually labelled as T. Angular frequency a; changes the speed of

repetition of y = sin(OJx)so that the period becomes T = 21! .
OJ

• A sine wave "starts" (that is, it takes a value of 0 and is increasing) at x = O.
Phase ¢ moves the wave sideways so that y = sin(x + ¢) "starts" at x = - ¢.
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DO TIllS NOW! 4.12
(a) Repeat the exercises of DO THIS NOW 4.8! but with cosine instead of sine.

You should observe the same conclusions and also note that a cosine graph is

identical to a sine graph, except that it is shifted to the left by a distance x =- ~ .

(b) Repeat also with the tangent function, y = tan x .

You should observe that the same conclusions can be drawn again, but you should
also spot that the tangent function repeats itself every 1r radians, and also becomes

infinitely large at some values of x (e.g. x = 1r ). Explain why this is so.
2

DO THIS NOW! 4.13
Here is a challenge - to see if you can make sense of the very rich pictures in Figure
4.7. If you can understand them (interpreting technological output is a useful skill) it
may help you to consolidate your understanding of how trigonometric functions are
linked to circles. Study the diagrams now - these comments may help.

You should see that there are three graphs.

• The first is a circle, where the point (x, y) which traces it out is given by
x = cos(t) and y = sin(t) , and t is the angle made by the line OP with the

positive x-axis. On the technology this is ytl against xtl.

• The second is a cosine wave y = cos(x) , yt2 against xt2 on the technology.

• The third is a sine wave y =sin(x) ,yt3 against xt3 on the technology.

• The trace marker shows how the point (-0.5,0.866025) on the circle corresponds
to a cosine value of -0.5 and a sine value of 0.866025.

Figure 4.7 Unravel the puzzle to see what these diagrams tell you.
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4.5.3 Some equivalences and symmetries with trigonometric functions
There are many relationships between and symmetries within the trigonometric

functions. You should not expect to meet everyone here but, as you find useful
relationships, make a note of them.

DO IT NOW! 4.14
In the following, each of the functions in the left hand column is identical to one of
the functions in the right hand column. By observing the graphs, match up the pairs:

y = sine-x) y = -cosx

y =tan(-x) y =cos x

y =cos(-x) y =-sin x

y=sin(x+~) y=-tanx

y=sin(x-~) y=sinx

y = sin(x+ 2ntr) (n is any integer (whole number))

y = cos(x + 2ntr)

y = tan(x + ntr)

Particular features you should notice include these:

• sin(x+ 2ntr) =sin(x) expresses the fact that y =sin x repeats itself every 2tr

radians in the x direction; in other words if you increase x by any whole
multiple of 2~ you get the same y value.

• cos(-x) =cos(x) says that y =cos x is symmetric about the y-axis - going in the

-x direction gives you a perfect reflection of the shape going in the +x direction.
A function with this symmetry is called an even function.

• sine-x) = - sin(x) says that y = sin x is anti-symmetric about the y-axis - that is,
going in the -x direction gives you an upside-down reflection of the shape going
in the +x direction. A function with this symmetry is called an odd function.

In addition to these simple relationships there are many others, more complex.
Sets of tables of these are readily available.

DO IT NOW! 4.15
Plot the graph of y = sin2 x +cos2 X ; then plot the graph of y = I. Deduce from your

graphs that sin 2 x + cos 2
X = 1. Refer back to Chapter 1 to see the alternative

justification of this by Pythagoras's theorem.

Use a similar graphical method to satisfy yourself of the validity of the following
trigonometric identities; start building your own tables:

(a) sin(2x) = 2sinxcosx .

(b) cos(2x) = cos2 x-sin 2 x = 2cos2 x-I = 1-2sin 2 x .
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2 sin A cos B = sin(A +B) +sin(A - B)

2 cos A cos B = cos(A+B) +cos(A - B)

2 sin A sin B = cos(A - B) - cos(A+B)

Technology can help you to use these relationships, although you have to educate
yourself as to how each tool handles them.

Example 4.5.1

A set of particularly useful relationships involves sines and cosines of sums and
differences.

sin(A+B) =sin AcosB+cosAsin B

sin(A-B) =sin AcosB-cos A sin B

cos(A+B) = cosAcosB-sin A sin B

cos(A-B) = cosAcos B+sin A sin B

You can find these in a CAS (see for instance Figure 4.8 for a TI-92 screen) but
you can see there that it is not always obvious where they are.

f'Fl~ll rt. ITI n. Jl r~. ,fp, rs ITI r,. ,T• F Algebra Calc Other rgl'lIO Clean Up

• tExpand(sin(a + 8))
cos(a)'sin(8) + sin(a)'cos(8)

• tExpand(cos(a + 8))
cos(a)' cos(8) - sin(a)' sin(8)

• tCollect(sin(a)' cos(b))
sin(a - b) + sin(a + b)

2
tlltIIIiUiQlllifii)4IR':I)'
MAIN A U )1

Figure 4.8 Trigonometric function formulae in a CAS system.

4.6 INVERSE FUNCTIONS AND TRIGONOMETRIC EQUATIONS
4.6.1 Inverse trigonometric functions

You are used to solving algebraic equations but now we are going on to look at
solving equations which have trigonometric functions in them.

This will in the simplest cases lead to the idea of inverse trigonometric functions.

Example 4.6.1 Solve sin x = 0.5 .

A way of stating this problem in words is to say, "Find the angle whose sine is
0.5." You will be used to using your calculator to do this using the inverse sine

button, which may be labelled as sin -10 or perhaps as arcsim), or even asinr) in the

Derive CAS. Note that the use of the notation sin,lO must NOT be confused with
raising to the power (-1) - the (-1) denotes the inverse function of sine - "the angle
whose sine is" - rather than raising to a power.

Thus the answer is x =sin -I (0.5) =arcsin(0.5) '" 0.524 ,

where the value 0.524 (in radians, note) comes from your calculator.

However the graph of y =sin x reveals that things are not quite as simple as this.

Take a look at Figure 4.9. It shows y =sin x plotted on the same graph as y = 0.5.

It is clear that while the two graphs meet at x ~ 0.524, called the principal root, they

�� �� �� �� ��



SecA.6] Inverse Functions and Trigonometric Equations 51

also meet at many other places - for instance x::::: 2.618, x::::: 6.807, and so on. In fact
there are an infinitely large number of solutions. You should always be aware of this
range of possible solutions.

Il'Itlirslicti(ll'l
~=2.1i179939 y=.s

Figure 4.9 The graph shows multiple solutions of a trigonometric equation.

DO TIDS NOW! 4.16
Text books often present the trigonometric function graphs with the x-axis marked in
multiples of 1! (Figure 4.10). This usefully emphasises the symmetries in the
waveform, but never forget that these are just numbers. Graphs made by technology
often mark in numbers, so e.g. 1! will appear as approximately 3.142.

sin(x)
1

f---+_-\-_-+-_f---+_-+_-+--jX
2lt

Figure 4.10 A graph of the sine function.

(a) Complete this table
0 0 30 45 60 90 180 270 360

radians (decimal) 0 0.524 3.142

rad (multiple of 1t) 0 % 1!

(b) Find all solutions of sin x = 0.5 over the range -21! < x < 21! expressing your
answers in degrees, in decimal radians, and in radians expressed as multiples of 1!.

Hint (only read this if desperate, or after you have produced your answers to part

(b)): the first solution is 300 or %or 0.524; using the symmetry from the picture,

another is 1! - %'and so on.
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Since cosine is a shifted version of sine, the next activity should not surprise you.

DO THIS NOW! 4.17
Repeat the process of Example 4.6.1, but this time with the equation cos x =0.5 .

This should generate the idea of the inverse cosine function cos -1 0 or arccost) or

acost) in Derive, to be understood as "the angle whose cosine is".

Principal root as given by calculator is x =cos -1 (0.5) =arccos(0.5) "" 1.047 , with

other roots distributed according to the graph of y = cos x .

Things are slightly different with the tangent function. Look at this.

DO THIS NOW! 4.18
Repeat the process of Example 4.6.1, but this time with the equation tan x = 1. This
generates the idea of the inverse tangent function tan-1 0 or arctant) or atant) in

Derive, to be understood as "the angle whose tangent is".

Principal root as given by calculator is x = tan-I (1) = arctan(l) = 0.785, with other

roots distributed according to the graph of y = tan x, but note that this time the

pattern of symmetries is different because you should recall that y =tan x repeats

itself every .n-radians, and not only every 2.n- like y = cos x and y = sin x .

4.6.2 More general equations involving trigonometric functions
In section 4.6.1 you met simple equations which led to the idea of the inverse

trigonometric functions. In this section you will work with more complicated
equations, but will still be using the same ideas.

In each case a graphical method - plotting aspects of the equation to see where it
takes the right values - is indispensible for identifying where multiple solutions
occur. Algebraic methods will make a contribution too.

Example 4.6.2

Find all solutions in the range -2.n- < x < 2.n- of the equation sin(2x+~)=0.6.

To understand the multiple solutions, it is best to plot the graph of the function on

the left hand side y = sin(2x+~) over the given range (see Figure 4.11), and then

read from the graph where that function takes the value y =0.6. Values from the
graph can be refined either by Zooming in, or by using any built-in solver to refine
the value after a good first guess from the graph.

1=sil'l(~lC·1I'n)

Figure 4.11 Looking for multiple solutions to a trigonometric equation.
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Example 4.6.3

Find all the values x of arcsin(O.4) (that is, sin -I (0.4)) in the range -4/i < x < 4/i .

To solve this, plot y = sin x over the given range and identify the places where the

graph takes the value y = 0.4. Note there are multiple answers.

END OF CHAPTER 4 - MIXED ACTIVITIES!

First, here are a couple more chances to work with the relationships between
trigonometric functions; we have concentrated on sines and cosines as these are the
most commonly used and you can always express problems in terms of them.

Activity 4.1

If sin(x) = cos(x+a), what is the smallest positive value of a to make it true? What

is the smallest negative value? (Thus even a cosine can always be turned into a sine!)

Activity 4.2
Find values of A, Band C so that an equation of the form y = A cos(Bx + C)

corresponds to the graph in Figure 4.12. Each tick mark represents 1 unit. Check
your answer by plotting it.

Figure 4.12 Hunt the function to fit the graph.

Activity 4.3

The graph of y =(cos(x)) 2 (sometimes written y =cos2 (x) ) is shown in Figure 4.13,

in the viewing window -/i ~ x ~ /i and 0 ~ y ~ 1. Find an equation in the form

y = k + A cos(Bx) that has the same graph and check by plotting it.

-It

Figure 4.13 Hunt an alternative function to fit the graph.
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Activity 4.4

Adding a sine and a cosine of the same angular frequency OJ is a useful trick. It
produces another sinusoid (sine wave) of the same angular frequency, but with
different amplitude and phase. Work through this example.

Find R and a in the following:

R sin(2x+ a) = 2sin(2x)+3cos(2x)

Expanding the left hand side with standard formulae (section 4.5) gives:

Rsin(2x)cos(a)+ R sin(a)cos(2x) = 2 sin(2x) + 3cos(2x) .

Making the sin(2x) and cos(2x) terms on both sides match:

Rsin(a) =3 (A4.3.1) Rcos(a) =2 (A4.3.2) .

We therefore need to solve these two equations for R and a. This is a standard
process.

Square and add A4.3.1 and A4.3.2:

Simplify

Recall that sin 2 (a) + cos 2 (a) = 1

(Rsin(a))2 +(Rcos(a))2 = 32 +22 .

R2(sin 2(a)+cos2(a)) =13 .

R2 =13 or R=.Jl3 ::::3.606 .

Divide A4.3.1 by A 4.3.2
Rsin(a) 3

=
Rcos(a) 2

Simplify tan(a) = 1.5 or a = arctan(1.5) :::: 0.983 .

You can check your values by technology, either using built-in features (see for
example Figure 4.14 which is a TI-92 screen), or by plotting both LHS and RHS and
seeing that they match.

rrl~lf F2" ill F).. J( F~" .11 FS )ll F&" ,I..~ Algebra Calc Olher Prgl'lIO Clean Up

-lCollecl(2' sin(2' x) + 3· cos(2· x)
m· cos(2' x - lan-t(2/3»

-lCollecl(2· sin(2' x) + 3· eescz x»
3. 6El6·sin(2.ElElEl·x + .983)

tliMl"iU4ftt+J:Ulji.«tJ:I)]
MOIM RAD AUTD FUMe 21"

Figure 4.14 Using CAS to find trigonometric formulae.

Repeat this example but with R sin(x + a) = 4 sin(x) + 5 cos(x), and check your

values for R and a by plotting both sides and seeing if the graphs are the same.
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Combining and Applying Mathematical
Tools
"concepts may be communicated easily in a format which combines visual, verbal, and symbolic
representations in tight coordination" Scott Kim

5.1 USING YOUR TOOLBOX
In this chapter you have a chance to work some more with the basic ideas and

tools you have met in Chapters 1-4, to try to understand them better. You will also
have the chance to use those ideas to make a simple mathematical model.

5.2 THE MOST BASIC FUNCTION - THE STRAIGHT LINE
As an engineer, you are a keen observer of real physical situations and processes

and must be interested in the ways in which mathematics can describe and help you
to understand and predict those situations. It is extremely useful then to keep a set of
pictures of your basic functions clearly in mind. It is a very valuable ability to "see"
these functions, combine them simply together, and transform them, to make them fit
and describe your situation.

Different situations are described by different functions, as you will see later in
the book. Decay processes, such as radioactive decay, electronic discharge, or
motion under friction, are frequently modelled by an exponential function like

y = Ae -kt . Oscillatory or vibratory processes are often modelled by a function such

as a sine wave y = A sin(wt +¢) .

However, many real situations can be modelled simply by straight lines. We shall
discuss this further in Chapter 18 when we deal with the Taylor series, but suffice it
for now to say that if we look at any mathematical description of a system in close
enough detail, every localized complex part appears linear. In Figure 5.1(a) you see a
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definitely non-linear function; in Figure 5.I(b) you see the area into which we are to
zoom; and in Figure 5.I(c) you see the result of the zoom - which appears linear!

Figure 5.1 Zooming in to see local linear behaviour

This perhaps helps to explain why straight lines are regarded as so important in
engineering mathematics (apart from the fact that they are easier to handle!).

5.3 TRANSFORMAnONS OF GRAPHS
Continuing the theme of connecting algebra to graphics, we now suggest you do

some work to see how to move the standard graphs around by algebraically changing
or transforming them.

5.3.1 The function notation
First you should make sure that you are comfortable with general function

notation. We generalise this from functions you have already met, such as
y =mx+c or y =sin(x), to create the notation y =/(x). The way to think about

this is to consider / as an operation that changes elements that are put into it. For
instance f(x) =x 2 +3 is the operation "square the input which appears in the

brackets after/and then add 3". Thus for instance /(2x) = (2x) 2 +3, replacing every

x by 2x. Other examples appear in diagrammatic form in Figure 5.2.
The / function

a
zak

~I 2======::: Ax) = x + 3

Figure 5.2 lllustrating the notion of a function.

4

a 2 + 3
(zak) 2 + 3
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DO mrs NOWl 5.1
If g(x) = 2x 2 -1 and h(x) = sin(3x) write down NOW:
(a) g(5) (b) h(2) (c) g(a) (d) h(2x+l) .

Answers: (a)49 (b) -0.279 (c) 2a 2-1 (d) sin(3(2x+I))=sin(6x+3)

One important and useful skill is that of understanding the effect on the graph of
a function, of changing the x in brackets to something else involving x, for instance
y = !(x)+a, y = !(x+a) , or y = !(ax).

To help you, technology such as a graphic calculator provides an easy way of
drawing graphs quickly, and you should use your technology to develop your
understanding and feel for the effect of algebraic transformations. A good way of
dealing with this is not to go straight to plotting the graph, but to follow POE, an
idea we borrow from Richard White and Richard Gunstone':

Predict what the outcome of an algebraic change will be.
Observe what actually happens by using the technology.
Explain the outcome.

You will often find your prediction will differ from your observed outcome, but
these may be the situations where you learn most, as you have to explain what has
gone wrong! Keep this in mind through the next sections.

5.3.2 Transformation of axes • vertical translations
To understand how to represent vertical translations of graphs algebraically, we

ask the question: "Given a function y(x) and its graph, what does y(x) + a , where a

is a constant, look like,?"

Example 5.3.1
For the function y(x) =x 2 examine, using graphing technology, the graphical effect

of the transformation y(x) + a over a range of values of a =-4, -3, ... , 3, 4.

Figure 5.3 shows the results of plotting the graphs on a graphing calculator.

1l=0

XMin=-2.35
XMax=2.35
Xsc.l=l
YMin=-6.2
YMax=6.2
Ysc.l=l
Xres=l

'1'=0

Figure 5.3 Vertical shift of a function graph

, Gunstone R and White R (1992) Probing Understanding, The Falrner Press.
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You can see that what the algebraic transformation has done is to move the original
curve y(x) = x 2 vertically by an amount a. If a > 0 it moves the curve upwards;

a < 0 moves it downwards. In general this transformation of y(x) to y(x) +a is

called a translation of the graph, parallel to the y -axis, of a units.

DO THIS NOW! 5.2
(a) Reproduce the graphs in Example 5.3.1. Change them to handle instead the
function y(x) = x2 + 2x -1. Predict, using your own words, the effect of adding a

constant to y(x) to form y(x) +a , when a =8. What happens when a =-8? Plot
appropriate graphs to convince yourself that your prediction is a true statement.

(b) If you need further convincing, choose another function (e.g. y(x) = sin x) and

repeat the exercise with different values of a.

5.3.3 Transformation of axes • horizontal translations

Now we tum to how to describe horizontal translations of graphs algebraically. In
this case we ask the question: "Given a function y(x) and its graph, what does
y(x+a), where a is a constant, look like?"

Example 5.3.2
Once more we start with the simple function y(x) =x 2 and examine, using graphing

technology, the graphical effect of the transformation y(x+ a) over a range of

values of a =-4, -3, ... , 3, 4.

Figure 5.4 shows the results of plotting the graphs on a graphing calculator.

,/=0

XMin=-2.35
XMax=2.35

jG::~:;::'4"""'~--I1 Xsc.l=1
YMin=-6.2
YMax=6.2
Ysc.l=l
Xres=l

Figure 5.4 Horizontal shift of a function graph.

You can see that what the algebraic transformation has done is to move the original
curve y(x) = x 2 horizontally by an amount a. If a> 0 it moves the curve to the left;

a < 0 moves it to the right. Beware here, as some people feel that this is the "wrong
way round", since they are used to right being positive! In general, the
transformation of y(x) to y(x+ a) is called a translation of the graph parallel to

the x -axis of a units.
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DO THIS NOW! 5.3
(a) Reproduce the graphs in Example 5.3.2. Change them to handle instead the
function y(x) =x 2 + 2x -1. Predict, using your own words, the effect of adding a

constant to y(x) to form y(x+a), when a =6. What happens when a =-6? Plot

graphs to convince yourself that your prediction is true.

(b) Define a function I(x) = sin x and create its graph. Predict what the graph of

I (x +2Jl') looks like; then create it. What is happening here?

(c) If you need further convincing about any of this, choose another function (e.g.
y(x) = x 3 ) and repeat the exercise with different values of a.

5.3.4 Stretching transformations
You have seen what happens when you add a constant to x or to y. Now what

happens to the graph when you multiply x or y by a positive constant? We combine
these together to ask the question: "Given a function y(x) and its graph, what does
y(ax) , where a is a positive constant, look like, and what does ay(x) look like?"

Example 5.3.3
To examine y(ax) , take the function y(x) = x 2 again with values of a as 1,2,3,4.

Figure 5.5 shows the results of plotting the graphs on a graphing calculator.

Xl'lin=-2.35
Xl'lax=2.35

11---~:WIo.IIoiIIW:~-.....J I Xsc1=1Yl'lin=-6.2
Yl'lax=6.2
Yscl=l
Xres=l

f"oti f"ot2 f"ot3

Figure 5.5 Horizontal "stretch".

You can see that what the algebraic transformation has done is to "squeeze" the
original curve y(x) = x 2 inwards horizontally, with the amount of "squeeze"
dependent upon a. For instance if a = 2, then the whole graph is squeezed inwards by
a factor of -t. The example may convince you that changing y(x) to y(ax) is a

stretch, parallel to the x-axis by a factor .1 .
a

DO THIS NOW! 5.4
(a) Reproduce the graphs in Example 5.3.3. Change them to handle instead the
function y(x) = x 2 + 2x - 1. Predict, using your own words, the effect of multiplying

x by a constant a in y(x) to form y(ax), when a = 6. Predict what happens when

a = -t. Plot appropriate graphs to convince yourself that your prediction is a true

statement.

(b) If you need further convincing about any of this, choose another function (e.g.

y(x) = x 3
) and repeat the exercise with different positive values of a.

�� �� �� �� ��



60 Combining and Applying Mathematical Tools [Ch.5

Example 5.3.4
To examine ay(x) take the function y(x) =sin x with values of a as 1,2,3,4.

Figure 5.6 shows the results of plotting the graphs on a graphing calculator.

Figure 5.6 Vertical "stretch".

You can see that what the algebraic transformation has done is to "stretch" the
original curve y(x) = sin x vertically, with the amount of "stretch" dependent upon

a. For instance, if a =2, then the whole graph doubles in height. In general, ay(x)

gives a stretch parallel to the y-axis by a factor of a .

DO THIS NOW! 5.5
(a) Reproduce the graphs in Example 5.3.4. Change them to handle instead the
function y(x) =x3 • Predict, using your own words, the effect of multiplying y by a

positive constant a in y(x) to form ay(x) , when a =6. Predict what happens when

a =t .Plot appropriate graphs to convince yourself that your prediction is true.

(b) If you need further convincing about any of this, choose another function (e.g.
y(x) = cos x) and repeat the exercise with different positive values of a.

Why do you think we keep saying in these stretching cases that a must be positive?

5.3.5 Reflection of graphs
When we looked at the graphical effect of multiplying by a constant, we avoided

negative constants. This is because allowing a negative constant introduces the
complication of reflection. Here is the question: "Given a function y(x) and its
graph, what does the graph of y(-x) look like?"

Example 5.3.5
To examine y(-x) , take the function y(x) = x 3 and plot both y(x) and y(-x) .

Figure 5.7 shows the results of plotting the graphs on a graphing calculator.

Figure 5.7 Reflection in the y-axis.

You can see that changing the sign of x has reflected the graph in the y-axis.
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DO THIS NOW! 5.6
For the functions f(x) =sin x and g(x) =cosx , predict the shapes of the graphs of

f(-x) and g(-x). Plot graphs to convince yourself that your prediction is true. Say

what you see in terms of odd and even functions, as identified in section 4.5.3.

5.4 DECAYING OSCILLATIONS
Many systems, for instance car suspensions, undergo motion which decays to rest

or to a stable condition eventually, but the behaviour before reaching that often
involves vibration or oscillation. It is therefore useful to have a mathematical
function which describes this kind of behaviour and this is created by multiplying an

oscillating function such as y = Asin mt by a decaying function such as y = e-kx
.

You will find out when you study differential equations that this choice of function is
not just lucky, but emerges as the right choice when certain assumptions are made
about the dynamics of the system. More about that in Chapter 16.

Example 5.4.1 Plot the graph of y = e-O
,l x sin x for x> O.

Figure 5.8(a) shows the basic shape of the graph. The range is chosen this way, since
we can think of the x-axis as time, with movement starting at x =0, and the y-axis as
a displacement, where the oscillatory behaviour becomes clear.

Figure 5.8(b) shows the same graph, but with the graph of y = e-O
,l x superimposed

so it is clear that it is the exponential that is damping down the motion.

(a) (b)

Figure 5.8 Representations of the decaying sine wave.

DO THIS NOW! 5.7
Plot on the same screen the graphs of y =e<kx sin x for k =0.1, 0.2, 0.3 and 1.

Write down, in your own words, the effect that k has on the graph of the
mathematical function and on the moving system that the function describes.

5.5 A FOGGY FUNCTION
This is the first of two illustrations with which we finish this chapter, of how

mathematics can be used to describe situations. They are different in style: this one
concerns the use of a formula to find the reading age R of a piece of text. This is

given by the FOG INDEX: R = 0.4( A + IOOL) .
n A

where A =number of words, n =number of sentences, and L = number of words
with 3 or more syllables (excluding -ing' and '-ed' endings).
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DO IT NOW! 5.8
(a) Find four or five passages from a mixture of books, newspapers and magazines of
varying reading difficulty. Using your common sense only, estimate the reading ages
for each of these.

(b) Now work out the reading age of each using the FOG formula and compare with
your estimate. Do you agree with the formula?

(c) Try to explain in your own words why you think the formula has been put

together the way it has. For instance what do A or!::. represent?
n A

Rearrange the equation so that you can find n given the other values. You could
check your rearrangement here using a CAS technology, as shown for example with
the TI-92 screen in Figure 5.9.

r~l~TAIJ~braTc~icTO{h;rTPr~I'lIOTCle~-; upT

[ [ a lee'l) )• solve r= .4· n +-a- ,n
.4oo·a2

n= a.r - 49.eee.l
IMIlUitcl..eq;diQliInlGilMliJ
MftlN RftD aurl rUN it"

Figure 5.9 Changing the subject of the FOG index.

5.6 HEAT LOSS IN BUILDINGS· A MATHEMATICAL MODEL
5.6.1 Asking the question and building the model

In section 5.5, you met a formula which you were given and we asked you to
explain why you thought it had been designed in the way it had.

In this section, you will approach an extended problem from a slightly different
angle. You will take a situation and, with guidance, apply mathematical formulae to
it, drawing conclusions about the artificial situation we present to you, and then
having the opportunity to apply it to real life.

The situation concerns heat loss from buildings. In particular, we pose the
question, "If you have a two-storey house, do you lose more energy if you only heat
the downstairs, or if you heat both the downstairs and upstairs?"

The strategy is to partition the house into different zones and then to express the
problem in terms of the heat flows from one zone to another through the various
types of partition which separate them.

Do not underestimate the thought that lies behind the last sentence: how to set up
a problem and how to express it in mathematical terms, is a skill you must work to
develop. In this section, we will be leading you through that process, but at every
stage you should be asking yourself why we suggest you do things the way we do.
This is one stage of the process of mathematical modeling - a process which also
involves a stage ofmaking sense ofthings once you have "done the maths".
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5.6.2 Setting up the variables and formulae
First take the main features of the situation and set them up in terms of algebraic

variables, making any assumptions explicit.

Zones
For a two-storey house, use three zones: downstairs (d), upstairs (u) and outside (0).
Label the temperatures in each zone as Td , Tu and To COC) respectively.

Label the temperature difference between zone a and zone b as 3I'ab =Ta - Tb •

Label the rate of heat flow from zone a to zone b as qab . Thus, for instance, quo
will be the heat flow from upstairs to outside (in watts W).

Partitions
Between any pair of zones, we shall assume:

• N is the number of types of partition materials (wall, window, etc), with each
type being given a number i =1,2, ... etc;

• Ai is the area of partition type i (in m2
) ;

• Vi is a coefficient measuring insulation strength of partition type i (in Wm-2 oC-I).

Assumptions

• The temperature in each zone will be constant and uniform.

• Each partition area - wall, window, etc - is of uniform construction.

• We treat doors as if they are walls.

The simplest model we can then use is that rate of heat flow will be proportional
to partition area, to insulation coefficient (U value) and to temperature difference. A
good principle in modelling is to start simply and see what insights that gives you.

For two given zones a and b, this then leads to the formula:

N

Total heat flow through all partitions between zones a and b = q ab =LApi3I'ab .
i=1

DO TIllS NOW! 5.9
The way we use mathematical notation can make a difference to how easy your
written mathematics is for you and others to understand. Think about this.

We use subscripts such as ito label lists of similar quantities (e.g. partition number).

We use double subscripts such as du to make it clear that quantities (e.g. heat flow)
depend on two other features (e.g. from zone d and to zone u).

We use the summation symbol L, a mathematical shorthand for writing down the
sum of a list of similar expressions, ranging over the summation variable.

4 4

E.g. Li=1+2+3+4=10 Li2 =1 2+22+32+42 =30
i=1 i=1

N

qab = L AP i 3I'ab = (AIU I +A2V 2 + ....+ANVN)3I'ab
i=1
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0.55 (Wm·2°C1
)

2.9 (Wm·2°CI
)

0.34 (Wm·2°CI
)

0.46 (Wm·2°C1
)

1.0 (Wm·2°C1
)

windows

upstairs ceiling and roof

downstairs floor

downstairs ceiling and upstairs floor•

•

•
•

5.6.3 Using the model for a particular house
In a particular house, the following detailed data are given:

• The house is 10m deep, 6m wide and each storey is 2.5m high.

• Each floor has a total window area of 8 m2
•

• The average external temperature is 5°C.

• When the heating is running in a given storey, a temperature of 20"C is
maintained in that storey.

• The U value for the external walls of the house is

qdu = 60(Td - Tu) .

DO THIS NOW! 5.10
Use the data given to work through the steps below:

(a) Show that heat flow from upstairs to outside is

(Walls, windows, ceiling/roof.)

(b) Show that heat flow from downstairs to upstairs is

(Ceilinglfloor.)

(c) Show that heat flow from downstairs to outside is qdo = 90.4(Td - To) .
(Walls, windows, floor.)

(d) Use part (a) to find the rate of loss of heat, in watts, from the upstairs through the
walls, windows and roof, when the heating is on both upstairs and downstairs.

(e) Use the expressions you obtained in parts (a), (b) and (c) to find the temperature
upstairs when the heating is on downstairs but not upstairs. (HINT: in a steady
state, heat flow into upstairs =heat flow out of upstairs). Hence, find the rate of
loss of heat from upstairs in these circumstances.

(f) Find the saving in the rate of loss of heat when the heating is on downstairs only,
compared to when the heating is on both downstairs and upstairs.

(We get (d) 1248, (e) 11.28, 522.2, (f) 725.5.)

If you enjoyed this activity, you might like to extend it in various ways.

DO THIS NOW! 5.11
Do some or all of these:

(a) Set up a spreadsheet which will enable different configurations, areas, U values
and temperatures to be investigated by just changing numbers in cells.

(b) Apply the above procedure to your own home environment and draw
conclusions. Can you generalise the model by answering the question in
algebraic terms only?

(c) How can the model be improved? (E.g. by including doors separately, etc.)
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6

Complex Numbers
"In the real world, complex numbers don't exist." Dr. Phillip Christie

6.1 THE NEED FOR COMPLEX NUMBERS
All engineers need to know about complex numbers (which they sometimes refer

to as j notation), why they are important, and how to handle them. If you would like
to see one example of why, you might like to have a quick first look at Section 6.10,
before reading each section and, most importantly, doing the exercises.

6.2 THEj NOTATION AND COMPLEX NUMBERS
The idea of a complex number springs from the seemingly peculiar step of

seeking the solution to the equation

(6.1)

Clearly this has no solution in the usual sense, since squaring any "real" number,
positive or negative, leads to a positive answer. You might think that is that, but
mathematicians made a bold step by supposing there is a solution and calling it i.
Engineers call it j so as not to mix it up with electric current, so we shall use that,
but be aware when using technology that mathematical software often uses i.

This seems to be a strange step to take but, surprisingly, what follows has real
meaning and a deep impact in engineering, as you will see later.

In detail then j is defined as:

so that squaring this

j=~

.2 1J =- .
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Thusj is a solution to equation (6.1) as required. Becausej is not a number in the
way you normally understand, it is necessary to build an understanding of how this
bit of mathematics behaves by looking at what happens in various circumstances.
Begin by looking at what happens if you repeatedly multiply by j .

.3 .. 2 .
J = J.J =-J.

j4 =jl =j.(-j)=-P =-(-1)=1.

Starting to multiply by j again just goes around the same cycle again: j, -1, -j,

1 and so on. To investigate these ideas further, it is useful to solve more quadratic
equations.

Example 6.2.1 Solve z2 =-4 .

The solution (by hand - you may also try this on your technology) is

z=±.J=4=±.J-lx4=±H.J4=±2j.

You see that you do not need any additional strange steps: square roots of any
negative number can be expressed in terms ofj in this way.

2
Example 6.2.2 Solve z +4z + 5 =O.

The solution (using the quadratic formula) is

_4±~42 -4xlx5 -4±.J"=i -4±~.J4 = -4±j2 2+"1 2+'
z= 2xl = 2 = 2 2 =- -J =- -J.

Once more the only strange step needed is to use j. Again you may try to get your
technology to do this: here it is on one graphic calculator:

• cSo1ve(z2 + 4'z + 5 = e,z)
z= -2+i or z= -2-i

'4&.iN,.,.....·.]
MAIN BAD AUTD FUNe 1130

Figure 6.1 Solving a quadratic equation on a TI-89

(You will meet more of how these ideas interact with quadratic equations in
Chapter 16 when you tackle differential equations.)

Note that the answers always come out in the form z = x + jy = x + Y.i ; that is,

one part not multiplied by j (x - the real part), and another part multiplied by j (y ­
the imaginary part).

A number such as z is called a complex number.

The real part of z is defined as Re(z) = x = part not multiplied by j.

The imaginary part of z is Im(z) = y = part multiplied by j (but not including j).
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Thus for example Re(3 + j2) = 3 and Im(3 + j2) = 2 (note j is not

included). A complex number for which y = 0 is called purely real; one for which x
=0 is called purely imaginary.

You should see that only one new step is needed - once you are allowed to use

j =~ , all these mathematical problems can be solved in terms of j. No other

new steps are needed, although how you think about the new ideas is important.

6.3 ARITHMETIC WITH COMPLEX NUMBERS
All the normal rules of arithmetic and algebra apply. Just remember that

.2 1J =- .

Many calculators and computer packages will handle complex number arithmetic
straightforwardly and you should find out about what your technology does.

To see how it works, it is best to look at some examples. Suppose then that there
are two complex numbers z = 1+ j2 and w = 2 - jl = 2- j.

Then addition and subtraction are straightforward:

z + w = (1+ j2) + (2 - jl) = (1+ 2) + j(2 -1) = 3 + jl = 3- j

z - w = (1+ j2) - (2 - jl) = 1+ j2 - 2 + jl = (1- 2) + j(2 + 1) = -1 + j3 .

Multiplication is also straightforward if you remember about multiplying

brackets out (see Chapter 2) and recall that / = -1 .

z.w=(1 + j2).(2 - jl) = lx2+ lx(-jl) +(j2)x2+ (j2)x (-jl)

= 2 - jl + j4 -l.2 = 2 - jl + j4 - (-1).2 = 4 + j3

Division is slightly more complicated by hand (although not with your
technology of course!) because you want to write the answer in the form x + jy, so

you need an algebraic trick to get the j off the bottom of the fraction. This trick
involves the complex conjugate.

The complex conjugate of a complex number z =x + jy is defined as

Zor z* =x - jy (that is, the conjugate is the same as Z except that the imaginary

part has had its sign changed). It has the special property that for any complex

number, z.z = (x + jy)(x - jy) = x
2

+ / + OJ = x
2 + / which is purely real.

Now to sort out division of complex numbers, you just multiply the top and the
bottom of your quotient by the complex conjugate of the bottom. Thus for example:

w (2 - jl) (2 - jl)(1- j2)
=---=

z (1+ j2) (1 + j2)(l- j2)

(multiplying top and bottom by conjugate of bottom),
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(2- jl- j4+ j 22) (0- p) 0'1 .
= = - J =-J.

(l+j2-j2-j24) (5)

[Ch.6

Note we have tidied up and taken care with signs; j has disappeared from the bottom
as planned, and in this example the real part happens to be 0 so at the end we leave it
out. Checking on the graphic calculator:

Figure 6.2 Complex arithmetic on a 11-89

DO THIS NOW! 6.1

Complex arithmetic on calculators:

Most recent calculators will handle complex arithmetic. Find out now how your
technology handles complex numbers, concentrating for now on how to add,
subtract, multiply, raise to a power and divide. Identify whether your technology
uses "i" or 'T' or some other form; check that you know how complex arithmetic
works by doing the examples below. Work out how to find conjugates and real and
imaginary parts. Talk to someone about it if you cannot sort it out.

Solve aU of the following problems, both by hand and using appropriate
technology, and thus check your own answers!

1. Solve the quadratic equations (a) x 2 =-9 (b) x 2 + 2x + 2 =0 .

In each case identify the real and imaginary parts of the roots.

2. Let z =1+ j and w =-2- 5j . Calculate by hand and check by technology:

(a) z+w (b) z-w

(c) z,w (d) z

(e) w (1) z.Z

(g) 2w-3z (h) w/z

(i) Re(z.w) (j) Im(z,w)

6.4 GEOMETRY WITH COMPLEX NUMBERS: THE ARGAND DIAGRAM
It is always useful to have a way of thinking about a mathematical idea through

pictures. With complex numbers, the geometrical model for visualisation is called
an Argand diagram. In this, the complex number z =x + jy is represented by the
point (x, y) in a two-dimensional plane, as in Figure 6.3.
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Figure 6.3 An Argand Diagram

The horizontal axis is called the real axis, as this measures x, the real part of z, The
vertical axis is called the imaginary axis, as this measures y, the imaginary part of z,

The complex conjugate of z, z* or Z • appears as the reflection of z in the real axis.

A complex number then is in a sense a two-dimensional quantity, represented by
two real numbers in a certain order, x first, then y, i.e. an orderedpair. Indeed some
graphic calculators reflect this by showing the complex number x + jy as (x, y).

ICxample6.4.1

Let z=1+j and w =-2 - 3j . Observe the positions on the Argand diagram in

Figure 6.4.

lm

w

z

Re

z*

Figure6.4 An exampleof an Arganddiagram

DO TIllS NOW! 6.2

Plot these complex numbers on an Argand diagram:

(i) 1+ OJ(= I)

(iv) o-Ij(=l)

(ii) O+Ij(=j)

(v) I+Oj(=j4)

(iii) -I +OJ(= f)

What do you observe about the five numbers you have plotted? How would you
describe what is done to the position of a complex number on the Argand diagram
when you multiply by j? Think about and answer this before reading on into the
following bracket.

(You should get the idea that multiplying by j rotates the complex number anti­
clockwise through 90 ~ Try it with some other examples ofyour own now.)
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Dealing with a geometrical representation here leads to ideas for other ways of
representing complex numbers and this is followed up in the next section.

6.5 CARTESIAN AND POLAR FORM, MODULUS AND ARGUMENT.
The Argand diagram makes it clear that to each complex number there

corresponds a unique point on the x-y plane. Thus any way we can define how to
reach a point on that plane gives another way of representing the complex number.
This leads to the idea of polar form.

Figure 6.5 Polar form and the Argand diagram

Look at Figure 6.5. The standard definition of x + jy says "start at the origin, go x
units in the real (Re) direction, then go y units in the imaginary (1m) direction". This
is called the Cartesian or rectangular form of the complex number.

An alternative way of reaching that same point is to say "start at the origin facing
in the real direction, turn through an angle 0 anti-clockwise, then go r units in that
direction. This is known as the polar form of the complex number, sometimes
written rLO, (r,O) or rcisO.

Since these two forms represent the same number (and point), then there must be
a way of going from one form to the other; this comes from the right angled triangle.

Figure 6.6 Geometrical connection between Cartesian and polar form

From Figure 6.6, two relationships are apparent, using either Pythagoras'
theorem, or the basic definitions of the trigonometric functions:

Converting from (r, 8) to (x, y)

x =rcos(O)

y = rsin(O)

Converting from (x, y) to (r, 8)

r =~rx-2-+-y-2

o=arctan( ~ )

Beware the multiple values of the arctan function though - see
section 4.6.1 and Example 6.5 below.
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There is some jargon associated with this:

r = ~x2 + i is the modulus of z, which can also be written Izi or abs(z).

(J =arctan(~ ) is the argument of z, which can also be written arg z or angle(z)

Since x = r cos (J and y = r sin (J , then by replacing x and y in z = x + jy there

is a different way of writing z, as z =r cos (J + jr sin (J =r(cos (J + j sin (J) .

Summary: z =x + jy = r(cos (J + j sin (J) = rL (J

Example 6.5.1 Convert the complex number z = 1+ jl to polar form.

Applying the formulae:

r=~=/2 z1.414.

(J =arctan(f) =arctan(l) =45° =: radians z 0.785 radians.

• 1 + i

.1 + i

'UI
MAIN RAD AUTO

i'n
~-4- ..f2

~.785398·i·1.41421

rUNe sno

Figures 6.7(a) and (b) Checking conversion by picture and by technology

Figures 6.7(a) and (b) shows how this ties in geometrically, and with the technology.
Note the currently unfamiliar way this particular machine presents the result. See
Section 6.6 for some explanation of this. Check the conversion using any direct P-R
or R-P converter on your own technology.

Example 6.5.2 There is a complication with the fact that the tangent function
repeats every 180 ~ so when using the arctan function you should also check that
you are in the correct quadrant, as in this example.

Convert the complex number z = -1- jl to polar form.

Applying the formulae:

r =~(_1)2 +(_1)2 =/2 "" 1.414.

(-1) ~(J = arctan - =arctan(l) =45° =- rads =????
-1 4

Now on the face of it this looks like it is turning out exactly the same as Example
6.5.1, but that cannot be right since they are different numbers in different positions
on the Argand diagram
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To sort out what is happening, look at Figure 6.8:

Figure 6.8 Watch your quadrant!

o 0
You should note that tan(45 ) =1, but so also does tan(-135 ) =1(check on your

calculator). Thus arctan(l) has two possible values, 45° and -135°, separated by

180°. To see which is the right one ALWAYS DRAW THE PICTURE TO CHECK.

As a back-up, you should see that the direct P-R or R-P converters or equivalent
on your technology will sort this out automatically. In this case then the answer is
shown and confirmed by technology in Figure 6.9.

1
,=1.414

-1 0 3Hc
8 =arctan (-=1) =arctan( 1) =-135 =--4-

Figure 6.9 Checking the answer using technology - see Section 6.6 for explanation of notation here.

Example 6.5.3 Convert 5L2.2 C to rectangular form.

5L2.2c =5(cos(2.2) + j sin(2.2» ... -2.94 + j4.04.

The multi-value complication does not occur this way round.

DO TIDS NOW! 6.3

In this box, Z = 2 + j5 and w =-1 - j2 . In each of the following problems, do the

calculations by hand and check by using the direct P-R or R-P converters or your
own equivalent technology, and also by drawing Argand diagrams.

1. Evaluate: (i) Izi (ii) arg(z).

2. Convert both z and w to polar form, either using the formulae, or using your
technology, or preferably both, quoting the angles in both degrees and
radians. Confirm that your solutions are correct by placing them on an
Argand diagram and seeing if the diagram fits with your figures.

3. Convert to rectangular form (a) 2LI.3 C (b) 3L35° .
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6.6 EULER'S RELATIONSHIP AND EXPONENTIAL FORM
One of the most astounding properties of complex numbers is Euler's

relationship. This shows that, if you raise e to a complex power, then the
exponential function is very closely related to trigonometric functions. This may
surprise you, as you may be used to exponentials representing decay or growth, and
sines and cosines representing oscillations. Nevertheless, without any proof, here it
is - put it in your personal handbook.

Euler's relationship: e
j 8 =cosO+ jsinO (Note 0 must be in radians)

This amazing result is surprisingly very useful in engineering mathematics,
especially in analysing communication systems, and solving differential equations.

You will meet the justification of it in Chapter 18, but for now it is useful to
become familiar with it, so here are one or two examples.

Example 6.6.1 j~ (K) . . (K) J2 .J2 07071 '0e =cos - + Jsm - =-+ J-::::. + J .7071.
4 4 2 2

Example 6.6.2 Here is a very nice one: e
jJr

= (cos K + j sin K) = (-1 + jO) = -1 .

In other words, combine s; which you can never know exactly, with e which you
can never know exactly, with j, which is a figment of your imagination - and you
end up with just the number -1 . This is a remarkable result!

Exponential form

What Euler's relationship gives you is another very useful way of representing
complex numbers. You have met already: z = x + jy = r(cos 0 + j sin 8)

But from Euler's relationship, cosO + j sin 0 = e
je

, and so you can write z in

the form

z = x + jy = r(cos 0 + j sin 0) = re j8 - remember 0 in radians!

This is called the exponential form of the complex number z. You will note that
it does not require any more calculation to find it. Once you have polar form then
you have exponential form, as long as () is in radians. This might help you to
understand the notation appearing in the technology screens in Figures 6.7 and 6.9.

Example 6.6.3

z = 1+ jl "" 1.414(cos 45° + jsin 45°) from Example 6.5.1

"" 1.414(cos ll' + j sin ll' ) = 1.414L ll'
4 4 4

.Jr
J-

= 1,414e 4 with the angle in radians.
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DO TIllS NOW! 6.4

Complex Numbers [Ch.6

1. You have already converted Z = 2 + j5 and w = -1 - j2 to polar form in "DO

THIS NOW 6.3!". Convert z and w to exponential form.

2. Euler's relationship allows you to find more complicated complex exponentials.
If z =x + jy, the result allows you to find

e' =e x+jy
=ex e jy

=eX(cosy+jsiny).

Evaluate the following (by hand and/or by technology - how directly will your
machine do this? Find out NOW):

(a) e j (b) e-1.I+3j

(c) Re(e-1.I+3 j ) (d) Im(e-1.1+3j).

3. If you plot Re(e(-1.1+3j)x) you are plotting the graph of y =e-l.1x cos(3x) .

Satisfy yourself about this both algebraically and by plotting it on your
technology.

4. Experiment with curves of the type

y =e
QX

cos(bx) and y = e
QX

sin(bx) , as suggested below.

Describe in words what happens when a is (a) positive, (b) 0, (c) negative.

Describe what happens when b is changed from small to large values.

Why do you think this type of function is useful in engineering? What kind of
motion can it represent?

5. If z = -0.1 + j3 and t is an independent variable, use Euler's relationship to

write down

(b) Im(e
2zt)

Predict the shape of the graphs of both these functions for t ~ 0 and confirm by
plotting them on your technology. Explain what you see in words.

If you use your technology to turn symbols into pictures, you can "see" the
importance and use of Euler's relationship in engineering. Figures 6.10(a) and (b)
show an example of how a complex exponential can represent damped oscillations:

Figures 6.1O(a) and (b) Complex exponentials represent damped oscillations
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6.7 SOME USES OF POLAR AND EXPONENTIAL FORM
It turns out that it is particularly neat to handle multiplication, division and

powers of complex numbers in polar form. Here is why. Have a look at these two
complex numbers:

'8 '(J
ZI = rlLBI = 'ieJ I and Z2 = r2LB2 = r2e

J
2.

Then their product is Gustusing the laws of indices)

ZIZ2 = ('iLBl)(r2LB2) = ('iej~ )(r2e
j(J2) = 'ir2ej(~+(J2) = 'i r2L(BI +(2) .

ITo multiply two complex numbers, multiply the moduli and add the arguments.

Their quotient is (again just using the laws of indices)

j~.s., (rIL81) = (rle.
8)

=.2-ej(~-82) =.2-L(8
1
-(

2).
Z2 (r2 L B2) (r2eJ 2) r2 r2

ITo divide two complex numbers, divide the moduli and subtract the arguments.

To raise to a power n (once more the laws of indices are needed):

To raise a complex number to the power n, raise the modulus to the power n
and multiply the argument by n,

Example 6.7.1

Let z =3 - 2j and w = 1- j. These give (check on your technology) in polar form
c

c 1r
Z "" (3.606LO.588 ) and w "" (1.414L - 4" ) .

Plotting these on an Argand diagram together with jz, pz , j3z and z.w

gives Figure 6.11:

--­zw=(5.1<-.2D]

).).z

1·I·j·z

Figure 6.11 The picture shows the same story as the algebra
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The multiplication by powers of j again illustrates the rotational aspect of j (900

in the anticlockwise direction) and zw shows the addition of angles 0.588 + (- f)
and multiplication of the moduli (3.606*1.414).

DO THESE NOW! 6.5

1. Convert the numbers 2 + 3j and 4 - 3j to polar form. HENCE evaluate the
following:

(i) (2+3j)(4-3j)
2+3'

(..) J
11 --

4-3j ( J
2

(iii) 2 + 3j
4-3j

Check your answers with your technology (Beware! Make sure you know and
understand in what form they appear.)

Show the two original numbers on an Argand diagram. Add to the diagram your
answers to (i), (ii) and (iii), explaining how the rules in polar form, particularly
concerning adding and subtracting angles, show themselves on the diagram.

2. Evaluate

(a) (2+3j)3 (b) (0.1-0.2j)9

Check your answers here by using technology.

6.8 COMPLEX ALGEBRA
All of the above principles apply when you deal with complex algebra as

opposed to just arithmetic, that is, with letters instead of or as well as numbers. The
main differences are (a) you will have to do some algebra (!), and (b) you will need
to use a CAS technology to check answers or to work out the more complicated
cases.

Example 6.8.1
Figures 6.12(a) and (b) show a few simple algebraic examples, carried out on hand­
held CAS technology, illustrating some basic rules. Can you identify them?

l:"11l!lf fl· III n· J( f~· -li fS lTe f'· ,T II:l~lAI ;~bralc~lclO{~;r IPr~Pl I 0be~'; Up1•~ Algebra Calc Other PrgPlIO Clean Up
.~a + b'i)'~c + d'i)

a'c - b·d +(a'd + b'c)'i • tCollect« rl .! al)'< r2 .! a2»
• <a.!45°) -a',f2 a·,f2 . .,i '(al + a2)'rl'r2

( b.! ;x) 2T + ""2-'b.&

• tC 11 t« rl .! a1))
.,i '(al - a2)'rl

-3'i 'x o ec <r2 .! a2) r2
.<2.!45O) .,--4-

·2/3 • tCollect((< rl .! al»)3) .,3·i 'al' rl3<3 .! -x)
ttll"'*"1ffJJ _'dliC"riti.Wil
MAIN AD AurD fUNe )/99 MAIN UD Aura fUNC )/'

Figures 6.12(a) and (b) Complex algebra on a hand-held CAS system
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Complex Algebra 77

Find out NOW how your CAS handles complex numbers. Test it out on the
examples below, which as usual you should do on paper as well as on your machine.

I. Find the real and imaginary parts of z when

I 2 1
-=--+--
z 3+2j 4-3j

2. If z =a + jb and w =c + jd confirm by paper and pencil that your CAS is

giving appropriate answers to the following:

z+w z-w 3z-2w zw zz
z
w

Izi arg(w)
1

(w+z)

You may also like to substitute some numerical values in for a, b, c and d for
checking purposes. Make sure you know about and can use the different modes
of CAS output (rectangular, polar or exponential forms) available to you.

6.9 ROOTS OF COMPLEX NUMBERS
De Moivre'sTheorem

Note that (cos(B) + jsin(B))n =(e j 9 r =ej n9 =cos(nB) + jsin(nB). This result

is known as de Moivre's theorem. This helps to clarify and inform the way to raise
a complex number to a fractional power - for instance to take square roots:

z n = r" e j n9 = r" (cos(nB) + j sin(nB)) .

In fact it is a little more complicated than this, since sine and cosine have period
21t, so increasing Bby 21t will change nothing. Thus in general

j9 j(9+2JZk) h k' . t (0 +1 +2 + 3 ) dz = re = re were IS any In eger ,_ ,_ ,_, ....... ,an so

Normally the possibility of an extra 21t does not matter, but it does when n is a
fraction, as it will indeed be when finding roots of complex numbers.

Example 6.9.1

Solve the complex equation z 2 = -9 .

In general exponential form z 2 =-9 =ge j(tr+2JZk)

Taking the square roots of both sides gives

..!. ..!.
z =(-9) 2 =9 2 e j (tr+2JZk )12 =3e j (Jr+2JZk )/ 2 =3e j (Jr /2+JZk)

Note that we take the positive square root of 9 here.
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To interpret this, remember that k can take any integer values. All values of z
have modulus 3 - that is, they lie on the circle centred on the origin of radius 3. Now

at what angles do they lie? Taking k =0 gives a z value at ()=~ . Taking k =1

gives a z value at ()= 3~ . Taking further values of k simply repeats these two

positions. There are thus just the two distinct values and just two square roots of -9.
A diagram is a good check here since all the roots have the same modulus and in this
case have an angle of 21t12 between their arguments.

fm
21

No_2p1l2
~.ba 1
arc-..•f
..t.......a

2.2

2

Re

Figure 6.13 Roots are equally spaced around the circle

~lUlmple6.9.2

Solve the equation Z3 =0.1- 0.2j.

In exponential form we have 0.1- 0.2j =.223607e j (1.10715 + 211k) so all solutions are

given by 0.606962e j (0.36905+211k / 3) with k = 0, 1 and 2.

i.e. 0.606962e j(O.36905) , 0.606962e j (2.46345) , 0.606962e j (4.455784) •

Note that in this case the roots are all separated by 21t13 (120°) and effectively cut

the circle Izl =0.606962 into 3 equal sections.

6.10 MINI CAS~ STUDY
Complex numbers occur, for instance, in two important areas of engineering:

electronic circuit theory and differential equation theory. Because you meet more
about differential equations in Chapter 16 onwards, we choose to present here a little
case study about an electronic circuit.

An alternating current flowing in the circuit shown in Figure 6.14 is given by
I =10 sin(aJt) (OJ is a constant and t is time). The corresponding voltage drops

depend on OJ and on the resistance R, capacitance C and inductance L of the circuit.
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For a resistance R, the voltage V is V = loR sin(ox) and this is "in phase" with the

current.

R

L

c
Figure 6.14 A simple series LCR circuit

For a capacitance C, the voltage V =!JL sineOJ t - 1! ) , a phase
c£ 2

the current.

"lag" of !!.- behind
2

For an inductance L, the voltage V = OJ L 10 sin(OJt + 1!), a phase "lead" of 1r
2 2

ahead of the current.

If the current I = 10 sin(wt) is regarded as the imaginary part of a complex number

I =Im(loe jOX
) then these various voltage drops can be represented very succinctly

by recalling (refer back to Figure 6.11) that multiplication by j gives a lag of !!.- and
2

division by j (which is the same as multiplication by -j) gives a lead of !!...
2

Thus for resistance

For capacitance

For inductance

V=RI.

V = -jI .
«c

V=jOJLI.

In general if V = IZ the factor Z is called the complex impedance, which is thus

Z= R for a resistor, Z = _--L for a capacitor, and Z = jOJL for an inductor.
ox:

END OF CHAPTER 6 - MIXED EXERCISES - DO ALL THESE NOW!
For each of the following, predict the answer by hand, check and observe by your
technology, and explain and put right any discrepancies.

1. Let z\ = 2 - j, Zz = -1 + 2j, Z3 = 3+ 4j . Evaluate without using polar form, and

present your answers in Cartesian form:

(ii)
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(iv)(iii) z\ Z2

Z3

2. Where it is an advantage to do so, repeat the calculations of question 1 using
polar form, and present your answers in polar form.

3. If Z =-o.1+5jand t is an independent variable, use Euler's relationship to write

down and plot the resulting function of t, for t ~ 0 in each of (i) and (ii):

(ii) Im(2e zt
) •

4. The voltage E across an alternating current circuit is obtained by multiplying the
total impedance, Z, of the circuit by the current I flowing in the circuit: i.e,
E=I.Z.

A certain circuit, in which a current I = 4 + 5j flows, consists of three separate

impedances, Z\, Z2 and Z3 arranged so that the total impedance Z is given by

Z = Z\ + (Z2Z3) I(Z2 + Z3)' Obtain the symbolic expression for the voltage E

and calculate its value (lEI), given

(i)

(ii)

Z\ = 2+3j

Z\ = a+bj

Z2 =4+3j

Z2=4+3j

Z3 =2-5j

Z3 =2-5j.

5. Solve the equation Z3 = 8 + j8 and plot the results on an Argand diagram.

6. (Harder) Given z = 4 + 5j, write the following numbers in terms of z.

-9+40j .09756-.12195j -236-115j 1.7921c .15617.
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Differential Calculus 1
Calculus is, alas, full of inert material." Peter Lax

7.1 THE NEED FOR DIFFERENTIAL CALCULUS
In any engineering system which actually or potentially changes, there will be a

need to describe mathematically how quickly it changes - to find the rate of change
of the quantities which describe the system. This is the subject of the differential
calculus, and the process of finding rate of change is called differentiation.

You should understand the idea of a rate of change, interpreting it numerically
and graphically. This will concern plotting a function and finding its slope. You will
also use a symbolic approach which seems unrelated to what the process means!

To gain some idea of what it is that the process means, look at the next section,
7.2, where there are some short practical examples. These are simply presented
there: they will be solved later, in Chapter 8. If you bring some previous experience
of differential calculus with you, then you could try to solve them yourself before
moving to chapter 8. Once more remember to do the exercises and activities.

7.2 DIFFERENTIAL CALCULUS IN USE
Differential calculus has many uses in describing the world. First here are

several examples, NOT NECESSARILY FOR SOLVING NOW, but just to give
some idea of the range of application. Having looked at them, you can go on to study
the mathematical ideas here in Chapter 7, returning to these examples to solve them
in Chapter 8. You should see how mathematics helps with understanding the
processes and you should end up with a variety of ways to deal with such problems.

Example 7.2.1
A piece of A4 paper 29.7cm by 21.Ocm is to have four identical square pieces with
side of length x em removed from the comers, so that it forms a template for an
open-topped box. Find the dimensions of the box with the largest volume.
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Example 7.2.2
(A similar, slightly harder situation.) An emergency petrol tank is designed to carry
1 gallon of petrol (4546 crrr'), Its shape can be considered a cuboid. The base of the
cuboid is a rectangle with its length double its width. Find the dimensions of the
tank that minimise the surface area required.

Example 7.2.3
A suspension system has displacement y given at time t by the function

y = e-o·5t sin(8.5t). What is its speed (rate of change of position or displacement) at

time t =6 seconds?

Example 7.2.4

In simple electronics you may have come across the relationship I =Q , where I is
t

the current, Q is charge and t is time. This is only true for constant current. If the

current varies with time, then the relationship is i(t) = dq which is the notation for
dt

the instantaneous rate of change of charge with respect to time.

In one circuit, the charge varies according to q(t) =O.le -o.u sin(5t). What is the

maximum value reached by the current? What is the value of the current after a long
time?

Now go ahead and explore the concept of differentiation.

7.3 WHAT DIFFERENTIATION MEANS GRAPHICALLY

7.3.1 Differentiation as finding the slope of a curve
This section provides first a classical description of the graphical interpretation of

differentiation and suggests some graphically based activities which illustrate and
expand the basic ideas of the differential calculus.

The process of differentiation is about finding the rate at which a function is
changing. In graphical terms, this is represented by the slope of a graph of the
function. This is where you will meet the mathematical ideas; later you will find
these ideas applied in engineering situations.

Geometrically, the process of differentiation gives the slope of a curve at any
point. In fact, to be more precise, it gives the slope of the line which is the tangent to
the curve at each point. Algebraically, the process of differentiation of a function y
=fix) with respect to the variable x is defined mathematically as:

dy L' .(Y(x+&)-y(X»)- = tmtt ..:......;---'--~'-'-

dx &-.0 & ,

but this formula needs some interpretation, first with the notation and terminology.
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dy is called the derivative, or derived function of y(x) with respect to x. It gives the
dx

change in y
slope of y(x) at any point x and looks like it is something to do with ----'='---~

change in x

7.3.2 Exploring graphical differentiation through an example

Perhaps it is worth looking at a simple example of a function, drawing its graph,
and investigating it to see what the definition of differentiation means in terms of a
picture.

Mathematically the simple function usually chosen in books is y =x 2 and we

shall not break that tradition!

Figure 7.1 Getting at the idea of differentiation

To calculate a slope you need the change in y and the change in x, so consider

two points a small distance h apart: P is the point (1, 12
) and Q the point

«(1 + h), (1 + h) 2), where h is the distance from P to the point R, that is, it is the

change in x from P to Q. The change in y from P to Q is correspondingly given by

«I + h) 2 _1 2
) . You can then find the slope of the line PQ by dividing the change in

y by the change in x.

Algebraically you can express this as

Slope := y(x+h)- y(h) = (1+h)2 _1
2

h h

The "approximately equals" sign is because, as you can see from Figure 7.1, the
slope of PQ is not exactly equal to the slope of the curve at P. However, the smaller
h is, the closer the slope of PQ will be to the slope of the curve at P. The definition
of the derivative can then be visualized as the limit of the slope of the line PQ as Q
slides down the curve towards P - that is as the value of h nears O.
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DO THIS NOW! 7.1
Explore this idea of a limiting process using technology: (graphic calculator or
spreadsheet?). The expression for the slope, or value of the derivative, of y(x) is

dy L' (Y(X+h)-Y(X)) L' [(I+h)2_12J EI [(I+h)2_12J &-= lm = lm . va uate lor
dx h~O h h~O h h

various values of h, for instance h =1, then 0.1, then 0.01,0.001,0.0001,0.00001,
etc. In other words, let h ~ 0 and see what value the expression approaches.

Why can't you take it as far as actually calculating for h =O?

You should find that the value of the expression should tend towards 2 as h gets

smaller. Thus the slope of the curve Y =x
2

at x =1 is actually 2.

Figure 7.2 shows a quite neat way of doing this on a graphic calculator (in this case a
TI-83-Plus using the Table key).

~1o~1 ~1o~~ ~1o~3
,r~gr~t~~l~~ X 'Y1

'Y1B«1+X)2-1)/X 1.0000 3.0000
or:::.Tbl=l .10000 ~.1000

,y~= 5~dpnt: Auto~ .01000 ~.O100
.00100 2.0010

'Y3= epend: £iJIiI! s 1.0E"1j
~'YIj= 1.0E-'

,Ys=
,y,= Y1 =2. 000001

Figure 7.2 Approaching differentiation via a table of numbers.

DO THIS NOW! 7.2

Repeat the limiting exercise for y = x 2 but this time at x = 2. That is, estimate the

d [(2+h)2 -2
2Jvalue of .J.... = Lim . You should get an answer of 4. Repeat for

dx h~O h

various other values of x, say {-I, 0, 2, 3....}
dy

Plot the graph of y against x. Plot also your calculated values of against x.
dx

Hence can ou ess a formula for the derivative at an value of x?

You should guess that the formula giving dy when y =x 2 is dy =2x. Thus your
dx dx

plotted points should lie on the line Y = 2x. You can confirm this using one of your

technologies. For instance Figure 7.3 shows it on a graphic calculator.

• Define y(x) =x2 Don

• li I'l ( y( X + h) - y( x) ) 2 .
h+8 h

MAIN RAD AUTD FUNe 2199

Figure 7.3 Using CAS to confirm a differentiation formula
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There is an algebraic way of showing that this is the case; you will meet with that
approach in section 7.6.

When you plot both the function y =x 2 and its derivative y =2x on the same axes,

as in Figure 7.4, you can make sense of the picture as follows:

• When x = 0, the function y = x 2 is horizontal and so has zero slope. Sure

enough, at this point the derived function has a value of 0.

• As x becomes more positive, the function y = x
2

has an increasingly positive

slope, and the derived function has an increasingly positive value.

• As x becomes more negative, the function y = x
2 has an increasingly negative

slope, and the derived function has an increasingly negative value.

Thus the derived function sensibly describes the variation in the slope of the curve.

Figure 7.4 A function and its derived function plotted on the same axes.

Explore this approach to the idea further by doing the next example.

DO THIS NOW! 7.3
Plot, by any technological means you choose, the function

y = sin(x) (Range - 21& < X < 21&)

Note from the graph the place(s) where the slope is 0, where it is at its largest
positive value, and where it is at its largest negative value.

• dy
Hence predict roughly what the graph of - against x for this function will look

dx
like. Do you find it possible to put rough values on this graph yet? If so, how?
Check your conclusions by plotting the graphs as follows either:

(a) on a graphic calculator, plotting y = sin(x) and using any built-in numerical

differentiation feature, such as NDERIV on the TI-83-Plus, or

(b) using the algebraic knowledge that dy = cos(x) , or otherwise.
dx
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7.4 VARIOUS WAYS OF FINDING DERIVATIVES
Graphical calculators mostly use a numerical approach to differentiation,

estimating the slope as you have been doing. Those which do not have a CAS
(Computer Algebra System) will present the results numerically or graphically.
Further exploration of this idea follows in section 7.5.

There are pencil and paper algebraic techniques for finding a formula for the rate
of change of a function - the slope of its graph at any point. This is the traditional
emphasis in engineering mathematics courses and is tackled in section 7.6.

The technologically supported way to find a derivative is to use a PC-based CAS,
such as Derive, Mathcad, Maple, Mathematica, or TI-Interactive! or hand-held
machines such as the TI-89, Voyage 200, or Casio ALGEFX2.0PLS. You can use
these to build up a table of standard derivatives of your own, to keep in your
personal handbook, and you can think of symbol manipulators as a large and flexible
look-up table. Some discussion of these appears in section 7.7.

7.5 NUMERICAL DIFFERENTIAnON

The rate of change of a function y(x) is approximately change in y , with a limiting
change in x

process being needed if the rate of change is not constant. A graphical calculator
uses numerical differentiation to calculate the derivative curve, as in Figure 7.5:

Figure 7.5 A graphical calculator screenshot showing a function and its derivative.

. change in y Yz - Y1
To find the gradient at (Xl' Yl) , then .'" .

change In x Xz -Xl

The calculator will then repeat this with the point (Xz, yz) , which lies on the

curve to the right of (Xl' Yl)' moving closer to (xl' Yl) until there is less than a
specified amount of change in the calculated value of the gradient. This is then
repeated on every point of the curve to build up the graph of the gradient.

In the next activity we suggest you make use of a spreadsheet - we have used
Microsoft Excel - to explore numerical differentiation in action, to see how it can
help you to understand the concept of differentiation and to find out about the
dangers and difficulties inherent in the process.

The spreadsheet is often thought of as a tool just for handling money, but it is
actually very good for illustrating and implementing a variety of general numerical
methods, although it has some shortcomings for specialist use. You will find it useful
to learn basic spreadsheet commands such as how to link cells together by formulae
and how to draw graphs. Get in the habit of labelling carefully what it is you are
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Sec.7.S] Numerical Differentiation 87

doing on the sheet - it is easy to get lost when the links between cells become
complicated.

DO THIS NOW! 7.4 A Spreadsheet activity

Figure 7.6 A spreadsheet to illustrate numerical differentiation.

To see numerical differentiation in action, look at Figure 7.6. This particular diagram
was produced on Excel. Note the usual adding of $ signs to fix cell references.

Column A contains x values, set up to change as step length h is changed. Column B

contains the function definition, in this case y = x 2 again. Column C contains the

numerical derivative y(x+ h) - y(h) . Both y and its numerical derivative are plotted.
h

Set up a sheet like this for yourself, vary h, and observe how:

(a) the slope is more accurately calculated as h becomes smaller;

(b) if h gets too large then the derivative values calculated are very unreliable.

Finally change the function being studied in column B to another of your choice and
again experiment with changing h. Predict what shape you think the derived function
curve should be, plot it, and explain why it agrees or not with your prediction.

7.6 PAPER AND PENCIL APPROACHES TO DIFFERENTIATION
There are rules for differentiating functions algebraically, which you can look at

and gain some practice with in this section. We shall actually derive only one rule

algebraically, that for differentiating y = x 2
, because you have already explored this

function numerically and have some idea of how it behaves.
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We shall then simply present a table of the other common standard derivatives
without proof.

7.6.1 The rule for dilTerentiating Y = x 2

The derivative of y =x 2 is given by

dy =Lim(Y(X+h)- Y(X))= Lim[(X+ h)2 -X
2]=Lim[X2

+2xh+h
2

_x
2]

dx h~O h h--+O h h~O h

= Lim[2Xh + h
2 J= Lim(h(2X + h)) = Lim(2x + h))= 2x

h~O h h~O h h~O

If you look at what is happening, you cannot simply put h =0 at the beginning,
because that would result in 0 divided by 0 and the answer is not determinable. You
have to simplify the expression inside the brackets until it is clear how the various h
terms interact. When the h in the denominator cancels out, then it is possible to put
the value of 0 in for h, as you are no longer dividing by that.

7.6.2 Rules for other functions
You may derive for yourself some of the other standard derivatives in the table in

Figure 7.7, using limiting processes as above. It is usual however just to use such
tables to look up the standard derivatives. Note all derivatives are presented "with
respect to X". This just means that x is the independent variable. If a different

independent variable is used then just replace x. Thus for example, if Y = x 3 then

dy =3x2 . So also if y =t 3 then dy =3t 2 , and so on.
dx dt

Figure 7.7 Table of standard derivatives (k, a, n, and ware all constants)

Here are some examples of using the tables to differentiate some basic functions.
Note that there are several different notations used to represent differentiation. You

must get familiar with all of them. Note the useful shorthand y' for dy
dx
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d x x
Example 7.6.1 - (e ) = e

dx

2. y =..r; .Find dy .
dx

d
[ - ( ) is so called "operator" notation and means

dx
"differentiate with respect to x whatever follows
in the brackets"]

Example 7.6.2 If Y = sin(2x), then from the tables with OJ= 2, y' = : = 2cos(2x) .

Now here are some to practice on.

DO THIS NOW! 7.5
Use the tables to carry out the following differentiations, checking your own answers
either using a CAS, or graphically.

1. y = x 5
• Find dy .

dx

3. Find .!!....(~)
dx x 3 •

5. Find s. (In(2.5x»).
dx

dx
4. x = cos(3t) . Find dt .

6 -2x.,
. y=e . Fmdy.

7.6.3 Rules for differentiating various combinations of functions

There are four rules for dealing with combinations of standard functions.

The sum and constant rule

d du dv
-(au +bv) = a-+b­
dx dx dx

where u and v are functions of

x, and a and b are constants.

Example 7.6.3
d

Find -(2ex +4sinx)
dx

Note that a = 2 and b = 4, and u = eX and v = sin x, and so:

d x x
- (2e + 4 sin x) = 2e + 4 cos x
dx

The product rule. Spot the '~X"

This rule allows you to find the derivative of a product of two functions. It is

d dv du
-(u.v) = u.-+ V.-, where u and v are functions of x.
dx dx dx

�� �� �� �� ��



90

~xanmple 7.6.4

Differential Calculus 1

Find dy if y = x.sin(x).
dx

[Ch.7

First identify this as requiring the product rule. It can be helpful to tabulate the parts
of the formula; it does not matter which way round you choose u and v, since
uv = vu. It is critical to notice that although the multiplication sign may not be
written, it is implied.

Choose u = x. Choose v = sin(x).

du dv
Then - = l. Then- = cos(x) .

dx dx

Thus
dy d dv du
- = - (u.v) = U.- +V.- = x.cos(x) + sin(x).l = xcos(x) + sin(x)
dx dx dx dx

~xanmple7.6.5

The quotient rule. Spot the " +"
This rule allows you to find the derivative of a quotient of two functions. It is

du dv
_d (_u) __ v. dx -u. dx

where u and v are functions of x.
dx v v 2

Remember to take the denominator v first and note the negative sign.

Often this rule is ignored since it is really a product of u.v-1
•

F· d dY'f sin(x)m - 1 y=--.
dx x

First identify this as requiring the quotient rule. Once more a tabulation can be
helpful, but this time it matters which is u and which is v:

Choose u = sin(x). Choosev=x.

du dv
Then - = cos(x). Then-=l.

dx dx

And so applying the rule:

du dv

: = ~(~) = v'd;v~u'd; = x.cOS(X~~Sin(X).1

The chain rule or function of a function Rule Spot the "[ ( )]"

This allows you to find the derivative of a function which is built up from two
functions, one "inside" the other. People often find this rule a little harder to use.

It is
dy d dF du- =-[F(u(x)] =-.­
dx dx du dx
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Interpret what this means: differentiate the "outside" function as if it had just an x
inside it. Then, to allow for the fact that it is not just an x, multiply by what you get
if you differentiate the "inside" function.

Example 7.6.6

dy x 2 2
Find -, if y = e = exp(x ). First, identify this as requiring the chain rule -

dx
this can be the hardest part! Once this is done, again a tabulation helps:

Inside function Outside function

u =xz F(u) =exp(u)

du dF 2
-=2x - =exp(u) =exp(x )
dx du

Finally then, just multiply the two bottom hnes together:

dy d dF du 2 x 2
- =-[F(u(x)] =-.-=exp(x ).2x =2xe
dx dx du dx

These are the rules which, together with your favourite set of tables of derivatives,
should enable you to do any messy combination of functions. Note that with CAS
technology around (section 7.7) you should always get these derivatives correct.
Sometimes, answers in books may not look like yours, since there are many different
forms of the same answer. One test is to graph both answers and, from the result, you
should be able to "see" that you are correct. If there is no agreement, then checking,
possibly algebraic manipulation, and discussion with others is necessary.

Example 7.6.7

If Y = sin(x) , with x ::j:. 0 (why is this needed?), straightforward use of quotient rule
x 2

. dy x 2 cos(x)-sin(x).2x b TI I .,. dy cos(x)
gIves - = 2 ut - nteractrve: gIves - = ---

dx (x 2 ) dx x 2

These look different, but are equivalent - explore this issue now.

2sin(x)

x 3

DO THIS NOW! 7.6
In example 7.6.7, use your technology to plot both versions of the derivative against
x, and convince yourself they are the same.

In example 7.6.7, show algebraically that the two answers are equivalent, by starting
with the first form and using algebraic steps to reduce it to the second form. Make
sure you explain and can verify each step you take.

In example 7.6.7, check and explain to yourself how the shape of the graph of dy
dx

against x (either form, since they are the same!) does indeed represent the slope of
the graph of y against x. (Hint: plot both graphs on the same axes.)
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DO THIS NOW! 7.7
Here are some general differentiations to practice on. Differentiate with respect to
the appropriate variable and verify your own answers by other means (graphical
perhaps, or using a Computer Algebra System or CAS).

(a) y = 2sin(4x) (b) y = 2x 3 +5x 2 -3x+6

(c)
2 5 (d) y=,J;+_I_y=---
x x 2 ,J;

(e) y=t.e-2t (f) y = e-t sin(t)

( ) cos(aJ) (h) y = sin(x 2 + 1)g y=--
aJ2

7.7 COMPUTER ALGEBRA SYSTEMS OR SYMBOL MANIPULATORS
The Computer Algebra Systems (CAS) is now commonplace. You should

become comfortable with it, as well as developing your pencil and paper methods,
and becoming comfortable with handling symbols. You can use CAS to check
calculations, and use your calculations to reinforce and understand CAS output.

There are two general points here. One, is that you should not mindlessly accept
what any technology tells you, but always find an independent way of verifying. The
second is crucial and concerns what you put in. If you cannot communicate correctly
with a CAS, the results you get out will not be reliable.

Consider for example, the problem of finding .!!..- (sin 2(x» . If you feed into CAS the
dx

function sinA2(x), most of them will not ''understand'' you. You would have to
express this as (sin(x»)A2. It seems, then, that the quirks of computer-based systems
are sharpening up the notation we use. Note the shaded part of Figure 7.8 which
illustrates how careful you have to be in communicating with technology (this is
from a graphic calculator with CAS). When in doubt, use brackets!

Figure 7.8 Take care when entering expressions into CAS.

DO mrs NOW! 7.8
We suggest that you learn enough about your local CAS to check NOW the
enhanced table of derivatives in Figure 7.9. You can also add other functions of your
own choice and go on adding asyou need to in the future. Use the techniques in DO
TmS NOW 7.6! if your CAS answer differs from that in the table.

For a sample of these, plot both the original and the derived functions, and satisfy
yourself that the derived function really does give the slope of the original function.
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Table of standard derivatives

(Note k, a, n, and Ware all constants in this table.)

93

constant k

kx

e kx = exp(h)

In(ax)

sin( ltlX)

cos(ltlX)

tan(ltlX)

e - kx sin(a.lt)

-lote cos(lilt)

sin x

x

Figure 7.9 Table of Standard Derivatives.

o
k

nx n- 1

kekx =k.exp(kx)

x

(i) cos( ltlX)

- (i) sin( ltlX)

<kx <kx .
al? cos(a.lt) - ke sm(lilt)

- al? - lot sin(a.lt) - ke- lot cos(lilt)

x.cos(x) - sin(x).l

x 2
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Differential Calculus 2
I'm very good at integral and differential calculus, I know the scientific names of beings animalculous; In
short, in matters vegetable, animal, and mineral, I am the very model of a modem Major-General. Gilbert,
W.S.

8.1 DIFFERENTIAL CALCULUS: TAKING THE IDEAS FURTHER
In this chapter you will get the chance to explore further the ideas you met in

Chapter 7 on differential calculus. Amongst other activities you will look at the
problems which were introduced at the beginning of that chapter and see how the
ideas of calculus can be used to solve them; this will include looking at simple
optimizing techniques. You will also meet a variety of extensions to ways of
thinking about differentiation. This will include higher derivatives, parametric
differentiation, implicit differentiation, and partial differentiation. Finally you will
have the chance to work through a rather more extended case study.

We begin then by looking again at the short practical examples introduced at the
start of Chapter 7. Once more remember to do all the exercises and activities.

8.2 SOLVING THE EXAMPLES FROM CHAPTER 7

Example 8.2.1: Solving Example 7.2.1 - the Maxbox problem

The first study is a classical problem known commonly as the maxbox problem.
It may appear to be somewhat artificial but you may know that the flat-pack
cardboard box industry (making pizza boxes and so on) is highly successful, and
economic use of resources is an important aspect of that success. In this problem of
optimizing volume with a given area of material you should note a range of ways to
deal with the situation - by hand, using a graphic calculator, using spreadsheet, using
a CAS, with or without the need for calculus.
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Often the hardest part is to formulate the problem to express it mathematically ­
this is just as much a part of mathematics as handling the algebra. Using
mathematics to describe engineering processes is really what you are aiming to be
able to do. Take note that we are using pictures to help to understand the situations
as much as possible, and the technology can often help here.

Recall the problem was this: an A4 sized piece of card (29.7cm by 21cm) has
four identical square pieces with side of length x em removed from the corners so
that it forms a template for an open-topped box. Find the dimensions of the box with
the largest volume. This situation is illustrated in Figure 8.1.

x

x

x

x

Figure 8.1 The maxbox problem

In formulating the problem mathematically, choice of variable is important, and
we decide to say that the removed squares have sides of length x - this is because
once this is decided then you can express the volume V(x) in cm3 by

V(x) = x(29.7 - 2x)(21- 2x) .

The maximum possible value of this volume can be found in various ways and
this is where we can explore the diversity of approaches.

a) Solving the Maxbox problem using a graphic calculator

We use the graphic calculator to plot V(x) against x and look for the maximum.
Take a moment to think about the sensible range over which to plot V(x). x cannot be
less than 0; nor can it be bigger than 10.5 em (why not?). Thus we set the plotting
range and plot the graph as in Figure 8.2:

XMin=0
XMax=10.5
Xscl=l
YMin=0
YMax=2000
Yscl=200
Xres=l

Figure 8.2 Solving the maxbox problem graphically.

Now you could use any built-in trace and zoom facility to identify the maximum
volume in this range, or perhaps your calculator has a built-in maximum finder
(Figure 8.3):
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Figure 8.3 The maximum fmder on a TI-83 Plus.

The answer emerges that the size of square to be removed is x =4.04 em, and that
the maximum volume corresponding to this is Vex) =1128.5 cnr'.

b) The Maxbox problem classical solution, algebraically on paper

You may note from Figure 8.3 that at the so-called "local" maximum point, the
function Vex) is horizontal - that is, it has a zero slope. We could therefore identify

the point by looking for places where dV = 0 , as in this series of simple steps.
dx

Multiply out the expression for Vex) giving: Vex) =4x 3 -101.4x 2 +623.7 x .

Differentiate the result: dV 2-=12x -202.8x+623.7.
dx

Equate this derivative to zero and solve the resulting quadratic equation for x:

x = 4.04 and x = 12.86 .

Note that Vex) is a cubic and so the overall cubic shape gives Figure 8.4:-

Figure 8.4 The function Vex) plotted over a wider range.

Only one of these solutions, x =4.04, lies within the allowable range 0::;; x ::;; 10.5
and so given what we know about the shape of the curve it must give the maximum.
The corresponding value of volume is V (4.04) = 1128.5. This agrees with what we

found in (a).

For a closer look at finding and identifying maximum and minimum points on a
curve see section 8.4.

c) Using a symbolic manipulation package to solve the Maxbox problem

Having formulated the problem, a CAS system can be used to carry out the
algebraic details, as for example in Figure 8.5. This shows the volume function
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defined, the point of zero slope identified, and the calculation and use of the second
derivative, which is discussed in sections 8.3 and 8.4.

Figure 8.5 Using CAS as part of solving the maxbox problem.

DO THIS NOW! 8.1
Use your CAS system to carry out and check the algebraic steps in producing the
answer to the Maxbox problem.

d) Using a spreadsheet to solve the Maxbox problem

A spreadsheet can be used to plot the function, Excel has a Solver facility on the
Tools menu which you can use to find a maximum or minimum, as shown in Figure
8.6. It is useful to plot the function first, as for successful use the solver needs a good
initial guess at the maximum.

Figure 8.6 Using the Excel Solver to find the maximum.

�� �� �� �� ��



98 Differential Calculus 2 rcs.s

(8.4)

(8.5)

V =2x2z=4546 .

A =2(xz + 2xz + U) =2(3xz + U) .

Example 8.2.2: Solving Example 7.2.2· another optimisation problem

Example 7.2.2 is another variation on the theme of optimisation. An emergency

petrol tank is designed to carry 1 gallon of petrol (4546cm3). Its shape can be
considered a cuboid. The base of the cuboid is a rectangle with the length double the
width. Find the dimensions of the tank that minimise the surface area required.

Once more the difficult part is to formulate it. Take it one step at a time:

The first thing is to name the variables. Let the tank be x cm. wide by y em. long on
the base, by z em, high, and let the volume be V em'.

Then V =xyz =4546. (8.1)

If the base is x by y, then y =2x. (Note x and yare interchangeable!) (8.2)

The surface area A =sum of four vertical sides + top + bottom,

that is, A =2(xz +yz +xy) . (8.3)

This looks messy until you realise that you can use (8.2) to remove y from the
problem.

Thus (8.1) becomes

and (8.3) becomes

(8.4) gives

Following on, you realise that you can use (8.4) to remove Z now:

4546
z= 2x2 •

and so from (8.5) A =2(3x. 4546 +2x2 ) =13638 +4x2 •

2x 2 x

This A is now the function for which we need to find the local minimum.

DO THIS NOW! 8.2

Finish off this problem to find the value of x giving minimum surface area A and
hence work backwards to find y and z. Use at least one of the techniques in Example
8.2.1, and preferably more than one, to check. (We got x =11.95 cm. Do you agree?)

The next examples show that often to "do maths" you need to read the words.

Example 8.2.3 Solving Example 7.2.3 • a suspension system model

A suspension system has displacement y given at time t by the function

y = e~·5t sin(8.5t)

What is its speed (rate of change of position or displacement) at time t =6 seconds?

It is apparent that the rate of change of displacement y will give the speed, so what

we need here is the value of dy when t =6 seconds. Using the product rule:
dt
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dy =-o.5e-0.51 sin(8.5t) +8.5e-0.51 cos(8.5t) and when t =6, dy =0.297 .
dt dt

DO TIDS NOW! 8.3
Check our answer by hand and by CAS (as e.g. in Figure 8.7). Do you get the same
answer? If not, have you checked your calculator mode - are you working in radians
as you should be?

.It(~ -.s·t· s i n(S.5·t))

S. 5ee·(. 6(7) t. cos(S. 5ee· t) - •5ee·(. 6(7)~

• ~- .5'(. 68653(65971264) t. sin(S. 5· t) It = E
.29

Figure 8.7 Check your algebra using CAS.

Example 8.2.4 Solving Example 7.2.4 • an electronic problem

In simple electronics you may have come across the relationship I = Q , where
t

I is the current, Q is charge and t is time. This is only true for constant current. If

the current varies with time then the relationship is i(t) = dq = rate of change of
dt

charge with respect to time.

In one circuit, the charge varies according to q(t) =o. le-Q.11 sin(5t). What is the

maximum value reached by the current?

DO TillS NOW! 8.4

In Example 8.2.4, find the current by differentiating the expression for q(t). Using
one of the techniques you have met, find its maximum value. Check it by another
method. (We got a maximum value y =0.097 when t =0.31. Do you agree?)

8.3 IDGHER ORDER DERIVATIVES AND THEIR MEANING

Once you can differentiate a function then you can generally go on and
differentiate the result again. For a function y(x), the first derivative with respect to x

is written dy . If you now differentiate this result you obtain the so-called second
dx

d . . d (dY) d
2y

Nth' d h . .erivattve - - = --2' ote e notation an ow It anses.
dx dx dx

You can repeat this process to get the third derivative ~(d2;) =d3

; , etc.
dx dx dx

This raises the matter of what meaning to give to what you are doing. The first
derivative gives the rate of change of a function, or the slope of its graph. If you
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differentiate again, then you are getting the rate of change of the rate of change, or
how quickly the slope is changing as you move in the x-direction!

Example 8.3.1

Note that in the highly profitable industries of rollercoaster and lift design, in
(position s) versus (time t) diagrams, these higher derivatives are useful.

ds
Familiar quantities are velocity (rate of change of displacement) v = -, and

dt

I . ( f h f velocity) dv d 2S Le ~ '1' ..acce eration rate 0 c ange 0 ve ocity a = dt = dt 2 ' ss ramiuar quantities are

. da d 2v d 3s

jerk (rate of change of acceleration) 1 =- =-- =-- and perhaps strangest of
dt dt 2 dt 3 '

II " ( I . f accelerationj j dj d 2a d 3V d 4 Sa IS Jounce acce eranon 0 acce eration 10 =- =-2- =-3- =-4-'
dt dt dt dt

The names are suggestive of their significance and of course requirements for
their behaviour are quite different in the two industries!

Geometrically, the second derivative can be given meaning by talking about how

quickly the slope of a curve is changing as you move in the x-direction. d 2Y is
dx 2

clearly then going to be related to how "curved" a function is. If d 2;, is large in
dx

magnitude then the slope is changing quickly and the function is very "curved". If it
is small in magnitude then the function is not very curved.

Example 8.3.2

For a straight line, y =m.x + C , the slope is dy =m and the second derivative
dx

2

d ;' = O. This value of 0 for the rate of change of slope makes sense as a straight
dx

line is not very curved - the slope does not change!

For a quadratic function y = x 2
, the slope is dy = 2x and the second derivative

dx

d 2 y
-2- = 2. In this case the rate of change of slope is 2. That is, the slope doubles for
dx

every unit distance moved in the x direction. This accords with your knowledge of
the quadratic curve, where the slope is large and negative to the left, but steadily
increases (i.e, becomes more positive) through zero to become progressively more
and more positive as you move to the right.
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DO THIS NOW! 8.5

dy a?
For the function y =x 3 + x 2

- X - 0.5, find - and ----f by hand. Check by another
dx dx

means.

Study the graphic calculator output of Figure 8.8. Note that Y1 is y, Y2 is dy and Y3
dx

2

is d ; . Work out which curve is which on the graph by studying the relationships
dx

between the graphs. Check by plotting them yourself.

P'1(J t1 P'1(J t 2 P'1(J t ~ ,...-oy------........--,.------,.----,

....y1aX~+x2-X-0.5
~$2anDeriv(Y1,X,

X$~anDeriv(Y2,X,

....y ... =•

....ys:=
Figure 8.8 Match the curve to the derivative.

DO THIS NOW! 8.6
The equation of motion of one of a set of automatic doors in a shop is modelled, in
terms of its displacement y from its fully closed position at time t, by the equation:

y = -41.3t4 + 16413 - 213.7t2 + 15lt 0 ~ t ~ 2

By differentiating on paper and/or a CAS, find expressions for the velocity v,
acceleration a, jerk j and jounce jo of the door's motion at time t. Verify that the
maximum displacement occurs when t:::: 1.84 and that the jounce has a constant
value of -991.2. By plotting graphs of y, v, a,j and j, against t, describe in words the
motion of the door.

8.4 FINDING MAXIMUM AND MINIMUM POINTS
The process of finding maximum and minimum points needs a closer look. Such

points where the slope is horizontal and the first deriviative is 0 are often called
turning points or perhaps stationary points (from their meaning when applied in
distance-time type problems). They are classified as local maxima (minima) if they
are the biggest (smallest) value in the region, and global or overall maxima (minima)
if they are the biggest (smallest) value the function takes anywhere. This
classification can often be done either visually from the graph or by appealing to the
real situation. For instance, in Example 8.2.1, the turning point at x = 4.04 is
obviously a local maximum, both from the graph (for instance in Figure 8.2) and
because of the physical nature of the situation. It is also however possible to deal
with this identification mathematically.
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There are two tests, the First Derivative Test and the Second Derivative Test.

8.4.1 The First Derivative Test
Evaluate the first derivative, or slope, at points just either side of the turning

point. If the sign of the slope is positive to the left and negative to the right of the
turning point then it is a maximum. This is illustrated in Figure 8.10 relative to
Example 8.2.1. If the signs are negative to the left and positive to the right then it is a
minimum. If the sign does not change then further graphical investigation is the best
approach.

Figure 8.10 Identifying a maximum using the First Derivative Test.

8.4.2 The Second Derivative Test
Evaluate the second derivative at the turning point. If it is negative, it

corresponds to a slope which is decreasing as you go from left to right - in other
words a maximum. If it is positive, it corresponds to a slope which is increasing as
you go from left to right - in other words a minimum. If it actually equals 0, then the
test is inconclusive and graphical investigation is the best way forward.

DO THIS NOW! 8.7
For the function V(x) = x(29.7 - 2x)(2l- 2x) from Example 8.2.1, perform both the

first and second derivative tests to show that there is a maximum at x =4.04 .

Also perform both the first and second derivative tests to show that the turning point
at x =12.86 is a minimum.

8.5 PARAMETRIC DIFFERENTIATION
There are other ways to represent relationships apart from y =!(x) - the so­

called explicit function representation. One way is called parametric representation,
which can be very useful in writing down a mathematical representation of two­
dimensional motion. In this case we still need to be able to calculate rates of change.

Example 8.5.1
A point moves around on the screen of a cathode ray oscilloscope, painting out a

curve as it goes. Its position on the screen is controlled by two sets of electrical
plates: one controls left/right position x as a function of time t, the other controls
up/down position y as a function of time. Thus the curve drawn by the point (x, y) as
it moves is governed by two functions x(t) and y(t). This is a parametric definition of
the curve, with t being the parameter which controls the movement.

For instance if x(t) = 2sin(t) and y(t) = sin(4t), then Figure 8.12 shows the curve
which traced out as t increases from 0 to 21t.
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Figure 8.12 A parametrically defined curve.

103

DO THIS NOW! 8.8
Using your favourite technology, find out how it plots parametrically defined curves
NOW, and check that you understand by seeing if you can reproduce Figure 8.12.

Now given that a curve has been traced out, and that we know x(t) and yet), what can
we say about the rate of change or slope of the x-y curve?

We could for instance find dx = 2cos(t) . This is the rate of change of x with respect
dt

to t, or in other words, the speed of the point in the x direction as it traces out the

curve; similarly we could find dy = 4cos(4t), which is the speed of the point in the
dt

y direction as the curve is traced out.

d d% 4cos(4t)
From these we can use the formula -I --i!i = which we present

dx dY:tt 2cos(t)'

without proof, to get a formula for the slope of the curve in terms of t.

DO THIS NOW! 8.9
A curve is defined by the set of parametric equations x(t) =cos(t) and yet) =sinu) .

First use algebra to find a connection between y and x not involving t (hint: square
each equation and then add them together). Use your technology in parametric mode
to plot the curve generated. Describe the curve you get. (Note you will not see the
curve properly unless you arrange for your x- and y-axis scales to be equal, and
therefore non-distorting.)

Calculate dx, dy and dy in terms of t.
dt dt dx

You should see a circle ofradius 1 with its centre at the origin. Work out and mark

which points on the circle correspond to t = 0,%'~ ,s, 3~ ,2tr. (Remember

RADIANS!). Calculate the slope at each of these points using your answer for dy ,
dx

and satisfy yourself that these make sense in terms of your diagram.
dy cos(t)

(Note you should get - = --- .)
dx sin(t)
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8.6 IMPLICIT DIFFERENTIAnON
One way of understanding the idea of a function is to see it as a connection or

relationship between two quantities, often labelled x and y, which gives a unique
value of y for each value of x over the range for which it is defined. Sometimes that
relationship is explicit, e.g. y =sin(x), that is, given an x value you can immediately
use the formula to find y. Sometimes the relationship is defined by a formula in
which the x and y values are mixed up together. This is called an implicit function.

Example 8.6.1

The relationship x3 + Y = l + 2 is an implicit definition. Note the difficulty of

evaluating y given a value of x.

Example 8.6.2

A common example is the implicit definition x 2 + y2 =1 of a circle of radius 1

centred on the origin. This arises from the use of Pythagoras' Theorem, as shown in
Figure 8.13.

Figure 8.13 Defining a circle in terms of x and y.

It does raise the issue of the uniqueness of the y value for a given x value,

because the formula can be rewritten y =±.Jl-x 2
, and the square root can have

either positive or negative values. Strictly speaking then, for this to be afunction we
would have to state that we are restricting ourselves to only positive or only negative
values. To take account of both possibilities, mathematicians would use the word
relation rather than function, as multiple values would then be allowed - the word
function is used in a precise way.

Now having seen what an implicit definition looks like we can then ask how you
find the slope of an implicitly defined function. The answer is that you simply use
the rules of differentiation as developed in Chapter 7. Let us do it for the circle
example.

Example 8.6.2 (continued)

The circle is defined by x 2 + y2 =1. To find the slope dy ,just differentiate the
dx

whole equation term by term with respect to x:
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Rewriting

Differentiating

~(X2 + y2)=~(I) .
dx dx

~(x2)+~(y2) = ~(l)
dx dx dx

d 2
2x+-(y )=0.

dx

(We are just using standard formulae or technology.)

We are left to differentiate a function of y, which itself is a function of x, with
respect to x. You may recall the chain rule or function of a function rule (section
7.6), which says that you simply differentiate the "inside" function, then the
"outside" function, and then multiply the results. In this case that can be interpreted
in a simple way: that you differentiate the ("outside") l term with respect to y to

give 2y; then differentiate the "inside" term y with respect to x to get :' then

multiply them together. This gives

2x+ 2yd
y =0 .

dx

Effectively you have treated the y term as if it were x, but have to remember to

multiply by dy to take the y into account. You can see now that this can be solved
dx

for dy to give its value in terms of both x and y:
dx

dy x
-=--
dx y

DO TIDS NOW! 8.10
Plot the circle (remember you must have equal scales in x- and y-directions if your
circle is to look undistorted), calculate some (x, y) points on it, and then substitute

those values into the formula for dy to check that they make sense in terms of what
dx

the slope looks like. Compare it with your results from DO THIS NOW 8.9!

DO TIDS NOW! 8.11
The magnetic bottle function - used to model containment of hot metals - is

x.% +y.% =1.

Find an expression for its slope.

Its parametric form is x(t)=sin3(t),y=cos3(t). Use this form to sketch the curve,
and then use the curve to check that your expression for the slope makes sense.

�� �� �� �� ��



106 Differential Calculus 2 [Ch.8

8.7 PARTIAL DIFFERENTIATION
8.7.1 Functions of more than one variable

Sometimes one quantity will depend on more than one other variable - in this
case we say we have a function of more than one variable. This raises two questions:
how can we build a concept of these functions in our minds; and what does rate of
change mean in this context?

8.7.2 A geometrical way of thinking about functions of two variables

A good conceptual way of thinking about functions of two variables is to think in
terms of x and y as position east/west and north/south on a flat map, and of z as being
the height of the land at each point (x, y) on the map. One example is shown in
Figure 8.14. The height z is then a function of two variables z(x, y).

Figure 8.14 A way of visualising functions of two variables.

Example 8.7.1
Figure 8.15 shows a plot of the function of two variables z = x 2 + y2 •

Figure 8.15 A Derive plot of a function of two variables.

Note that in this case z(x. y) will always be non-negative.
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Example 8.7.2

Figure 8.16 shows a plot of z = ~l - x - y .

107

Figure 8.16 Another Derive plot of a function of two variables.

Once more note the range here - since z must be purely real to be plotted, we
require that the expression inside the square root must not be negative. Thus we must
have 1- x - Y ~ 0 .

DO THIS NOW! 8.12
Find out NOW which of your mathematical technologies will plot functions of two
variables and find out how to do it. Test whether you understand by reproducing the
plots in Examples 8.7.1 and 8.7.2.

Explore Example 8.7.1 by calculating z at few values of x and y and seeing how
these fit in with the technologically produced graph.

(Harder) If in Example 8.7.1 we put y =0, then the function reduces to Z =x 2
• This

corresponds geometrically to taking a vertical slice through the diagram along the

direction y = 0, producing a 2 dimensional graph corresponding to Z = x 2
• Sketch

what this graph looks like, arguing both from the picture and from the equation

z =x 2
•

Plot (thinking about what is a suitable range) the functions:

(a) z=sin(x+y)

8.7.3 Rates of change and functions of two variables

What do we mean by the rate of change of a function of two variables, z(x, y)? It
depends on what the rate of change is with respect to. If we have a situation where
we treat y as constant and differentiate the function with respect to x, we are finding

the rate of change of z as x changes with y constant. This is written (az J ,withax y

curly a being used rather than straight d to remind us that we are holding something
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constant. It is known as the partial derivative of z with respect to x at constant y. This

is often written just dZ if it is obvious what is being held constant. Geometrically it
dX

means finding the slope of the surface z =z(x, y) in the x direction. Correspondingly

you can find (dZ) or dZ , being the rate of change or the slope in the y direction.
dy dYx

Example 8.7.3

Return to Z = x 2 + y2 , illustrated in Figure 8.15. In this case

and

dZ
-=2x+O=2x
dX '

dZ
-=O+2y=2y
dy

One immediate point is that these partial derivatives can depend on both x and y ­
all that is saying is that the slope of the surface Z =z(x, y) varies from one point to
another, and that is obvious if you look at Figure 8.15.

It is useful to compare Figure 8.15 with the expression for the x direction slope

dZ = 2x. You can say that when x is zero the slope in the x direction is zero: this
dX

means someone walking on the surface in the positive x direction would feel
themselves neither climbing nor descending as they pass x = O. If x is positive, then
so is the slope, and as x gets bigger then so does the slope: this means someone
walking in the positive x direction with x > 0 would experience climbing, with the
slope getting steeper as you go further. Correspondingly, if x is negative then the
slope is negative and our walker moving in the positive x direction would experience
walking downhill, with the slope being steeper further back in negative x.

This idea is illustrated in Figure 8.17. If you take a section through a surface as
shown, say along the plane at y = I, you can see how the slope of the surface varies
in that direction, and in fact you can plot the section as a graph in 2-dimensions.

z
...l

x y

11 2

-2 .

Figure 8.17 A cross section through a function of two variables too illustrate the meaning of partial
derivative.
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DO THIS NOW! 8.13

In each of the following cases, find the two partial derivatives ~ and ~;

(a) z =sin(x+ y) (b) z=~I-x2 - / .

You have already plotted these in DO THIS NOW 8.12! Describe using words and
pictures how you see that the expressions you have found for the partial derivatives
do correspond to the shape of the functions you have plotted.

8.8 AN ENGINEERING CASE STUDY
In this section you have an opportunity to work through a real case study.

DO THIS NOW! 8.14
Have an uplifting experience!

Some of the main aims of the position control system in a lift are: to bring the lift car
to the correct floor: to minimise travel time; to maximise passenger comfort by
providing a smooth ride; to accelerate, decelerate and travel within safe speed limits.

Acceptable functions for a "flight path" to describe vertical position set) (metres)
with respect to time t in seconds for 0 ~ t ~ 40 are given by:

SI(r) = -o.00009t 4 +0.0094t 3
- 0.3703t 2 + 6.3723t

and S2(t)=0.OOOO8t 4 -0.0078t 3 +0.2167t 2 -0.274It .

Using your knowledge of the meaning and use of differentiation, decide which is the
preferable function, describing in your own words why.

Hint:- look at the acceleration and use the ideas of section 8.3. Bigger hint: we think
the second one provides the best ride - do you agree?

END OF CHAPTER 8 EXERCISES - DO ALL THESE NOWl

Check your own answers by confirming answers both algebraically and graphically
and, where you can, seeing if they are physically sensible.

I. Plot the function y = x3 + 2x2 - 6x - 2 and identify graphically and using

calculus methods any local maximum and minimum points.

2. Find the number of revolutions per minute (n) which gives the minimum
frictional couple (F) on a bearing where:

F = (l80000-1200n-45n 2 +n 3 ) / 80000 .

3. A clockwork toy train is released from. Its speed, V m S·I, varies with time t and
is given by

V = 0.17(t - 0.0007t3
) (0 s t s tmax ) ,

where t seconds is the time since the train was released, and tmax seconds is the
time the train takes to come to a halt. What is the value of tmax? Find the time
when the speed of the train will be at a maximum.
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4. (Harder) Two corridors, 4m and 2m wide, meet at right angles. Find the length of
the longest scaffold pole which can be carried round the comer in an
horizontal position.

5. A wooden packing case is made in the form of a rectangular block without a lid
and standing on a square base. Its volume is 0.2 m3

• If x m is the length of a
side of the base, find the value of x for which area of wood is a minimum.

6. If a ball is thrown up with a velocity of 70 ms' the height x m reached in t s is

given by x = 70t - 4.9t 2
• Find the greatest height reached.

7. A cylindrical tank, closed at both ends, is to have the volume of 300cm3
• Find its

height and radius when the total surface area is a minimum.

8. There is an oil well 2 miles offshore and a refinery on shore at a point 5 miles
down the coast from the closest point on the coast to the well. It costs £40000
per mile for pipe under water and £15000 per mile for pipe on the beach. At
what point P should the pipe be brought to the coast to give the minimum
cost? For what range of costs on land will it be best to take a direct path from
the well to the refinery?

well

o refineryp

water

beach

--- 5 mile ---

9. A wheel rolls with constant speed along a level road. The position of a point A on
the rim at time t seconds is given by x =0.6(t - sin t), y =0.6(1- cost) where

x is the distance in metres measured horizontally and y is the distance in
metres measured vertically upwards. When t =1 second, find

(a) the horizontal velocity dx of the point A;
dt

(b) the vertical velocity dy of the point A;
dt

(c) the gradient dy of the curve along which A moves.
dx

10. Find the first partial derivatives of each of the following:

(i) z=2x3 +3xy+4y2 ;

(ii) z=cos(xy) .
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Integral Calculus 1

'There is too much preoccupation with what might be called the magic in calculus" Peter Lax

9.1 THE NEED FOR INTEGRAL CALCULUS
This section provides activities to introduce you to the ideas of the integral

calculus and the process and concept of integration. There are two ways of viewing
integration, and it is a remarkable thing is that these two views involve the same
process.

• It is a summation process, and can be used to add up total areas, volumes,
moments of inertia, centres of gravity, charges, stresses, strains and indeed any
cumulative process where an overall effect is required but the quantities vary
internally. To an engineer perhaps this is the most important property, but it is
also necessary to know about the other aspect.

• It is the process of ''undoing'' differentiation - that is, given the derivative, what
is the function it came from? Differentiation and integration are inverse
processes - one undoes the effect of the other.

You will need to understand both views of integration, to interpret the ideas
numerically and graphically, and to handle the process symbolically. The numerical
and graphical idea concerns interpreting and understanding integration as a
summation process. As with differentiation, the symbolic approach concerns a set of
algebraic procedures which seem to have no relation to what the process means!
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d(sin(x) +1)

dx

To gain some idea of what the important concept of integration involves, you
should work through all the activities and exercises in this chapter. If you bring
some previous experience of integral calculus with you, then this is an excellent
chance to renew your knowledge and skills.

9.2 INDEFINITE INTEGRATION AND THE ARBITRARY CONSTANT

If two functions fix) and g(x) are related by dg = f(x) then the inverse
dx

statement is written g(x) = ff(x)dx +C where C is an arbitrary constant.

That is, integration is the inverse of differentiation - iffis the derivative of g then

g is the integral of f Note the notation: the integral sign f<..)dx operates on the

functionf(x). The dx is an essential part of the symbol and notation. It confirms what
the integral is "with respect to" - that is it tells you what the independent variable is,

and (in crude engineering terms) sets its units. The integral ff(x)dx is called the

indefinite integral of fix), for reasons which will emerge shortly from DO THIS
NOW! 9.1.

DO THIS NOW! 9.1
Perform the following three differentiations (using your technology or by hand):

(a) d(sin(x»
dx (b)

(c)
d(sin(x) + C)

(C is any constant).
dx

Which of these differentiations is reversed when you integrate f(x) = cos(x) ; that

is, when you perform the integral y = fcos(x)dx?

You should have noted that all three of the functions when differentiated give the
same result: f(x) = cos(x). Any added constants disappear completely when
differentiated (the rate of change of a constant is zero!) so when you come to reverse
the differentiation (to integrate), then you don't know if the constant was there or
not. You must thus always allow that there might be a constant there, but you won't
know its value unless you have extra information - that is, its value is arbitrary (not
fixed), hence the name arbitrary constant.

If you do have extra information, such as y =2 when x =0, then you can identify

the value of the constant, thus: y = fcos(x)dx = sin(x) + C ,

and if y = 2 when x = 0 then 2 = sin(O) +C and so C = 2.

These facts and ideas become important when you are dealing with differential
equations (Chapter 15), and do make sense in engineering terms: a derivative tells
you how a system varies or changes, but to get full information you need to know
where the system started from too!
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9.3 USING A COMPUTER ALGEBRA SYSTEM TO MAKE A TABLE OF
INTEGRALS

You can build up a table of standard integrals just as you did with the table of
derivatives. Actually, because integration is the inverse of differentiation, you could
use the differentiation tables right to left, but it is more convenient to have separate
integration tables. We shall look at a small set of paper and pencil integration
techniques in Section 9.7, using the simpler functions in these tables as building
blocks for more complicated functions, but for now get your table of integrals started
using a CAS.

DO THIS NOW! 9.2

Use your own CAS to check and enhance the table of integrals in Figure 9.1. You
can also add other functions of your own choice and go on adding as you need to in
the future. Pick a sample of these and check they really do work by differentiating
the result again and seeing if you get back the original function (± an arbitrary
constant, of course). Note your CAS may not show the arbitrary constant.

f(x) (a, b, k, n,A, ~ ¢constants) ff(x)dx (C arbitrary throughout)

constant k kx+C

kx kx2

-+C
2

kxn (n :;t:-I - why?)
kxn+1

--+C
n+l

k(ax + b)n (n:;t: -1 - why?) 1 k(ax + b)n+l
- +C
a n+l

k klnx+C-
x
k kln(ax+b) +C--

ax+b a

ae-kx ae-kx

--+C
-k

A sin(a« + ¢) A
--cos(a«+¢)+C

OJ

Acos(a« + ¢) A sin(a« + ¢) + C
OJ

I
I 1 (x+a) C

(x+a)(x+b)
--n--+
(b-a) x+b

Figure 9.1 A table ofmtegrals.
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9.4 DEFINITE INTEGRATION AND AREAS.
9.4.1 Definite integrals and areas under curves

We now move to considering integration as a summation process. The process of
integration calculates the area between the curve y = !(x) and the x-axis between x

values of a (the bottom limit) and b (the top limit), as shaded in Figure 9.2(a),
limiting ourselves for now to !(x) ~ 0 between these limits. Why does this work?

y

Y=ft.x)

Area
A(x)

a x b x

Figure9.2(a) Findingthe area. Figure9.2 (b) lllustratingthe integrationprocess.

To see why, it is best to imagine the area being built up by a vertical line varying
in length as the height of the function, starting at x = a and sweeping to the right
across the area to x =b . This means the area will be built up as a function of x. Let
this area under the curve between x =a and any intermediate value x be called A(x).
Figure 9.2(b) shows what this looks like when the line has reached a general value x.
It also shows that when the line sweeping out the area moves on by an additional
small amount /ix, then the area increases by a corresponding small amount &\. Note
two things here. First, this splitting of the area into vertical strips will become a
feature of our approach to understanding the use of integration. Next, it is usual, and
you should get used to it, to use the Greek letter 0 to denote a small change in a
quantity. Returning to the diagram, the area of the additional strip is approximately
the height y times the width /ixof the strip, so the two small quantities are related by

&\"'yat
This may be rewritten

&\
-"'y
at

In the limit, as we let at get smaller and smaller, the relationship becomes

dA = y . That is, height is the rate of change of area with respect to x. Turning this
dx

the other way round: A = Jydx + C . That is, the area is the integral of the height of

the curve above the x-axis. This says how area varies as you move along the curve.

It remains only to put in information about where the area starts and ends, and this
works as follows.
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This area is given by

b

The area is calculated using the so-called definite integral jf(x)dx, which is
a

defined in terms of the indefinite integral as follows:

b

If jf(x)dx=g(x)+C then jf(x)dx=g(b)-g(a)
a

That is, do the indefinite integral, evaluate the result at the top and bottom limits,
and take away the bottom result from the top result. Note that the limits appear at the
top and bottom of the integral sign and the arbitrary constant disappears.

Example 9.4.1

Find the area between the curve y = eX and the x-axis between the values x = 0

and x=1.

Area = feXdx= [!ex]l .

° 2 °
We have done the indefinite integral, and note that we have carried the limits

across from the integral - take note of the notation here. Now we complete the
definite integral:

Area = feXdx= ~xt=e1_eO ""1.71828.

°
Thus while the indefinite integral gives an algebraic expression, the definite

integral is just a number.

9.4.2 Positive and negative areas

There is inevitably a complication, as you will find out now:

DO THIS NOW! 9.3

Plot the function y = cos(x) over the range - ;r < x < 3;r (in radian mode!)
2 2

11"

2

Evaluate the definite integrals (a) j cos(x)dx
11"

and

311"

2

(b) jcos(x)dx.
11"

2 2

Looking at your answers and your graph, delete as appropriate in the following:

Areas above the x-axis appear in an integral as (positive/negative).

Areas below the x-axis appear in an integral as (positive/negative).

You should see that an integral will calculate any area which lies below the x­
axis as a negative quantity. The idea of a negative area may seem strange, but just
remember that it simply means that it lies below the x-axis.
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DO TmS NOW! 9.4
311"

2

Predict the value of fcos(x)dx from your plot in DO TillS NOW 9.3! Explain your
11"

2

prediction and verify it by doing the integral.

Finally, plot the function y = x 2 +3x +2 over a suitable range, show by integrating
--{).5

this function that the integral fx 2 +3x+2dx has a value 0, and explain this result
-2

in terms of areas above and below the x-axis.
311"

2

So, in a case such as fcos(x)dx, where it is clear from the curve plot that there
11"

2

are equal amounts of area above and below the x-axis, the integral will predict a total
area of zero, as the positive area above the axis cancels out the negative area below.

9.4.3 Splitting the range of Integration
Sometimes in engineering, systems behave differently at different times - they

must then be described by so called "piecewise defined functions".

Example 9.4.2

{
1 for x < 0

The graph of the function defined by f(x) = is plotted in Figure 9.3.
x for x z O

fill)

Figure9.3 The graphof a piecewisedefinedfunction.

If we need to integrate this function, say between limits of -1 and 1, then we simply
split the range of integration up like this:

1 0 1 0 1 [ 2]1 1 0
ff(x)dx= ff(x)dx+ ff(x)dx= f1dx+ fXdx=[x]~1 + x

2
=0-(-1)+"2-'2=1.5

-I -I 0 -I 0 0

This is OK since integration is just a summation process, so you just add up the
contributions to the area (integral) from the different sections of the curve - in this
case the areas are just a square and a triangle, so you can easily verify your answer ..
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DO TIllS NOW! 9.5

You are given the function describing a half-wave rectified sine wave, defined by:

{
sin(t)

f(t) = o
O<t<1r

1rs t s 21r

with f(t + 21r)=f(t) (this means the function repeats every 21rin the t direction.)

Plot the graph of f(t) against t for - 21r ~ t ~ 21r, and find the integral of f(t)

with respect to t between the limits of 0 and 31r, splitting integration range as
2

necessary.

The concept of a periodic function - one which repeats itself regularly - as
introduced in DO THIS NOW! 9.5 is a very useful one and you should note the
notation used and ensure you understand its meaning.

9.5 USING AREAS TO ESTIMATE INTEGRALS.
If an integral can be evaluated analytically (that is, by algebraic methods), then

its value (and the value of the area under the curve) can be found exactly. If it
cannot, then you can do things the other way round - an estimate of the area will give
an estimate of the value of the integral.

To illustrate this point, here is an example which can bedone either by evaluating
the integral or by finding the area.

Example 9.5.1

3

Evaluate f2dx, both by doing the integral, and by "seeing" the area.
o

Figure 9.4 Finding the area both by integration and by seeing it.

3

By integral: from the tables the integral is J2dX =[2x]6 =6-0 =6.
o

By area: it is evident from the picture that the integral value corresponds to the
shaded rectangular area, which has a value 2 x 3 =6 .

We are delighted to find that the two methods agree about the size of the area!
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DO THIS NOW! 9.6

Integral Calculus 1 [Ch.9

Using your technology, and also by hand, evaluate the following definite integrals:

1

(i) fXdx
o

o
(ii) fXdx

-1

1

(iii) fxdx
-1

3

(iv) fxdx.
1

With reference to the graph of y =x, verify and justify your answers in terms of the
areas of appropriate triangles and rectangles. Remember the area of a triangle is
:given by area =half (basexheightj),

These examples so far are artificially easy, in that both the area and the integrals
can be evaluated fairly easily. If fix) is more "curvy" then things are more
complicated, in that the integral may be more difficult (or simply not possible), and
the shape of the area may not have a simple formula associated with it.

What then is the best way to think about an integral as it calculates area "under
the curve"? The brief discussion at the start of section 9.4 gives a clue. Developing
the idea of a vertical line sweeping across the area, adding to the sum total of the
area by one vertical strip at a time, you see that you can think of the process of
integration as splitting the area into small strips of thickness Ox and height y =f(x)

(i.e, lots of tall, thin, almost rectangles) for x values between a and b, and then
adding up all the areas of these strips. This really emphasises the idea that integration
is a summation process.

y=f(x)

dx dx dx dx
• b x

Figure 9.5 Conceiving of integration as "adding up the strips".

Figure 9.5 illustrates this idea and we go on to explore this a little more in the
next section 9.6.

9.6 APPROXIMATE INTEGRATION - THE TRAPEZIUM RULE AND
SIMPSON'S RULE.

You can think of an area "under the curve" as being divided into vertical strips of
width h (this letter is often used when we are approximating, rather than Ox), and the
overall area is found by adding up the areas of the individual strips. Of course, the
question then arises as to how to find the area of the each strip. This situation is
represented in Figure 9.6.
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y=f(x)
y3 y4

y1 y2

Y1~
h h h h

a b x
a strip

119

trapezium rule.

Figure 9.6 Evaluating area by adding areas of vertical strips.

The key to finding the area of each strip lies in what assumption is made about
the shape of the top of each strip - it will in general be of different heights on each
side. There are two commonly used rules. We present them with a brief explanation
of their underlying assumptions, but not with a full derivation.

If the tops are joined with straight lines, you get the trapezium rule:

h
Integral » -(Yo + 2YI + 2Y2 + 2Y3 + Y4)

2

(This arises because each strip is a trapezium, with area equal to half the sum of the
parallel sides times the distance between them, with the total area corning from
adding up all of the strips.)

If the tops are joined with quadratics, you get Simpson's rule; (you must have an
even number of strips here):

h
Integral ::::-(Yo +4YI +2Y2 +4Y3 + Y4) Simpson's rule.

3

(This formula is obtained by taking two strips at a time, fitting a quadratic curve
through the top points and then integrating between the limits, giving

!!.. (y left +4Ymiddle + Yright) , and then again adding up all the pairs of strips. )
3

Example 9.6.1

Find the area between the x-axis and the curve Y = e-x over the range a~ x ~ I

(Figure 9.7) using direct integration, the trapezium rule and Simpson's rule.
Compare and discuss your answers.

1

Direct integration: Area = fe -xdx =[-e-x t =-e -I - (-e -0) =1- e-I =0.63212.
o

�� �� �� �� ��



120 Integral Calculus 1 [Ch.9

Figure 9.7 The area under an exponential.

If we are to use the trapezium rule or Simpson's rule, the first choice is the number
of strips to use. We shall choose four strips (Figure 9.8) but explore this further
shortly.

Figure 9.8 Numerical integration with four strips.

The value of h to use in the formulae is thus h =0.25. The Y values to use are
presented in the following table:

x 0 0.25 0.5 0.75 1

Y 0 YI = e--{)·25 Y2 = e--{)·5 Y3 = e--{)·75 -I
Yo =e Y4 = e

=1 = 0.779 = 0.607 = 0.472 = 0.368

By trapezium rule: Area =~(Yo +2Y1 +2Y2 +2Y3 + Y4)=0.63541 .
2

By Simpson's rule: Area = ~(Yo +4y; +2Y2 +4Y3 +)'4) = 0.63213 .
3

You may like to verify these results by spreadsheet calculation, as a spreadsheet is
ideally suited to regular numerical calculations such as this.

Figure 9.9 Numerical integration on a spreadsheet.
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You see that the three values differ by a small amount, with the Simpson's rule
estimate being closer to the actual value than that of the trapezium rule. This is
because the quadratics used to create Simpson's rule can follow more closely than
straight lines the actual function shape of the top of the strip as used in the integral.

However you might guess that the number of strips used also has an effect on the
accuracy of these rules. This next exercise gives you the chance to explore this.

DO THIS NOW! 9.7

2

Plot Y = cos x between the limits 0 < x < 1t . Perform the integral fcos xdx
2 0

(a) analytically (by hand and/or technology);

(b) using trapezium rule with 2 strips;

(c) using trapezium rule with 4 strips;

(d) using Simpson's rule with 2 strips;

(e) using Simpson's rule with 4 strips;

(f) on a graphic calculator.

You may find it easier to do the numerical work on a spreadsheet. Compare and
contrast the various estimates you get in the light of the facts, explaining any
differences.

You should observe that

• Simpson's rule gives a more accurate estimate of the integral than the
trapezium rule (as before);

• if more (and therefore narrower) strips are used, then the answer becomes
more accurate.

This second point is important. If the strips are narrower then it is apparent that what
you assume about the shape of the top becomes progressively less important - the
closer you get to a curve the more it looks like a straight line anyway. See Figure
9.10.

Figure 9.10 On a large enough scale, most curves look like straight lines.
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In fact, if you allow the number of strips to get bigger and bigger then eventually
the estimate provided by either rule can be made to get as close to the actual value of
the integral as you wish. This is how the actual integral formula is theoretically
constructed. A practical point is that, given the amount of computing power you
have, then the number of strips can be increased as much as you like without much
extra effort, so the trapezium rule is often quite adequate. When finding a definite
integral you could for instance obtain an answer for a given step length and then
halve the step length and compare the results. This process could be repeated to get
the required accuracy. This is the approach programmed into graphical calculators.

9.7 PAPER AND PENCIL APPROACHES TO INTEGRATION
9.7.1 Some general remarks

Finally in this chapter, here is some work for you to do on paper and pencil
approaches to integration. There are many different techniques for integrating by
hand, and you will inevitably only meet a few here, but you should note that:

• many integrals occurring in engineering are definite, and are done numerically
using perhaps the trapezium rule or something similar;

• indefinite integrals (as well as definite integrals) can be done using a CAS;

• not every integral can be evaluated analytically - this includes commonly useful

integrals, for example fe-
x2

dx - and so these must be done numerically anyway.

Nevertheless it is worth getting some skills in integration to get a sense of how
the variables behave and what answers mean.

9.7.2 Standard integrals from the tables
If you do want to do an integral by hand, the first hope is that it is in some tables

- such as the one you started building up earlier.

Example 9.7.1

fsin(2x)dx = -tcos(2x) + C

1f

2

f sin(2x)dx = 1 (Fill in the details yourself)
o

DO THIS NOW! 9.8
Do these integrals (i) - (iv) using the results in your table.

(i) fx1.5dx (ii) fe-2Xdx

!!..
4

f
4 1r

(iii) 5cos(2t)dt (iv) f3sin(4t+-)dt
o 0 4

Always check your own answers using your CAS technology.

Doing integrals analytically is a set of skilful tricks or recipes, and to study every
technique would go far beyond the scope of this book. We will look at just a small
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collection of methods: parts, partial fractions, substitution or change of variable, and
use of special trigonometric function formulae.

9.7.3 Integration by parts

If the product rule for differentiation is reversed then this gives the process called
integration by parts. It is mainly used for the family of integrals involving

expressions like xcos(x) or xsin(x) or xe", The integration by parts formula is:

Ju.: dx=u.v- Jv.: dx .

The idea is that by choosing u and v right you can use this formula to reduce an
undo-able integral to a do-able one, possibly in your tables. Teachers (and students)
tend to like this technique as it has a definite formula and set of rules, but bear in
mind that it is only of use in a limited range of integrals in engineering!

It is important then to choose u and v the right way round - you can do this using
the mnemonic LATE to choose u - choose any Logarithm first, if not that then an
Algebraic expression, then Trigonometric function, then Exponential function.

Whatever is left becomes dv in the formula.
dx

The best way to see how it works is to follow this example:

Example 9.7.2

Evaluate Jxe"dx .

Having first identified it as a case for integration by parts (this can be the hardest
bit!), then you first need to choose u using LATE (LogAlgTrigExp). There are no
logarithms, but there is an algebraic expression x, so:

Choose u = x. That means you must choose dv to be e": The original integral then
dx

corresponds to Ju.: dx in the formula. To complete the use of the formula now,

du
you need to calculate - and v.

dx

You have u = x and so differentiating du = 1. You have dv = eX and so v = e" by
dx dx

simple integration.

Putting all this together into the formula,

JxeXdx=Ju.:dx=U.v- Jv.:dx=xeX- Jex.ldx=xex-ex+C.

Note that if you choose u and v the wrong way round then you make things worse ­
try it and see! Also note that you can check your answer (or even avoid all this)
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using a CAS for indefinite or definite integrals, or numerical methods (perhaps on a
spreadsheet) for definite integrals.

DO THIS NOW! 9.9

Evaluate these integrals using the parts formula and check your answers using
technology (CAS or otherwise):

(i)

(iii)
tr

f t sin(2t )dt
o

(ii)

(iv)

tr

ftcos(t)dt
o

f1n(x)dx .

(Hint for (iv) - treat it as lxln(x) and apply the formula.)

9.7.4 Integration by partial fractions

The technique of algebraic partial fractions allows you to split a complicated
algebraic fraction into a sum of less complicated expressions, and this can help with
integration. We shall restrict ourselves at this stage to dealing with relatively simple
expressions of the form (x - a) - the method can be extended to more

(x-b)(x-c)

complicated expressions later as necessary. The technique states that this fraction can
be broken up into a sum of smaller parts (partial fractions) of the form

(x-a) = _A_+_B_. The trick is to find values for A and B to make it
(x-b)(x-c) (x-b) (x-c)

work. First we present an example which shows the method for finding A and B.
Then we use this approach to evaluate an integral.

Example 9.7.3

I
Split the expression into partial fractions. First note that this can be

(x-l)(x-2)

split into fractions of the form
1 A B

-----=--+--.
(x-I)(x-2) (x-I) (x-2)

Simplfy:

To find A and B there are two approaches:

Approach 1:

Multiply both sides by the denominator of the LHS:

(x -1)(x - 2) A(x -I)(x - 2) B(x -I)(x - 2)
-'------'--'---'- = +---'----'----'--
(x-I)(x-2) (x-I) (x-2)

I=A(x-2)+B(x-l) .

Note that this must work for any value of x otherwise it is useless, so we could
choose say x = I and x = 2 (it will be obvious why in a moment).
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Choosing x = I:

Choosing x = 2:

Paper and Pencil Approaches to Integration

I=A(l-2)+B(I-I) and so I=A(-I) or A=-I

I=A(2-2)+B(2-1) and so I=B(I) or B=I

125

I -I I
Thus the fraction can be split into parts as =--+--- .

(x-l)(x-2) (x-I) (x-2)

Approach 2: The cover up rule

This rule is very convenient but generally only works for linear factors so will
not extend to more complicated cases.

We aim to find A and B in
I A B

----- =--+---.
(x-I)(x-2) (x-I) (x-2)

The cover-up rule is this: to get what goes over (x -I) , choose the value of x making

this 0 (i.e. x = I), cover up (x - I) in the LHS and substitute x = I in the rest of the
I

LHS. Thus A=--=-I.
(1-2)

Similarly for B, choose x =2, and substitute this into LHS, covering up (x - 2). Thus

B =_1_ =I , agreeing with Approach I.
(2-1)

Now we shall apply this to an integral.

Example 9.7.4

Evaluate f I dx .
(x-I)(x- 2)

Again the first problem is to identify that the technique you need is partial fractions.
Having done that, we have just seen in Example 9.7.3 that we can write

I -I I
-----=--+---.
(x-I)(x-2) (x-I) (x-2)

Thus the integral becomes

f I dx= f~+_I-dx=-ln(x-I)+ln(x-2)+Cusing tables.
(x-I)(x-2) (x-I) (x-2)

Note once more that you can check your answer using a CAS for indefinite integrals.

In(x - 2) - In(x - 1)

• expand( (x 1/(X - 2))
•J(_I- -_1_)clx

x-2 x-I
IQ"W.NiWiiitii

I 1
x-2-x-l

HftlN "MIl T , Me ZI"
Figure 9.11 Checking your integral with CAS - using both partial fractions and integration.

There is a sophisticated issue which is perhaps worth a brief mention here, which is
that there is a problem if the range of integration includes the points x = I or x = 2.
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This is because at these points the expression to be integrated has a zero on the
bottom, and division by zero is not allowed. As with any case like this, care must be
taken, but full discussion is beyond the scope of this book.

DO THIS NOW! 9.10
Evaluate these integrals using partial fractions and check your answers using
technology (CAS or otherwise):

(i) f 1 dx (ii) f 2 dx
(x-2)(x-3) (x-l)(x+l)

1 f x+l dx(iii) f 1 dx (iv)
o (x+ 1)(x+ 2) (x+2)(x+3) .

9.7.5 Integration by substitution or change ofvariable

The technique of changing variable, or substitution, is sometimes found the
hardest to learn, but is unfortunately one of the most useful. It is the ''undoing'' of the
"chain rule" for differentiation! It is useful in several different circumstances, but we
shall only look at one here, which is that you can apply it to integrals of the form

f(somethinginvolving a function !(X»x: dx.

In functional notation, we can express this rather messy form as

fg(f(x».!'(x)dx. In other words you are looking for a function and its derivative

to be present. This can be hard to spot unless you have good algebraic skills. You
then create a new variable u = lex) and work with that.

Once more the general idea is best illustrated through an example, but really
several examples are needed to show the range of this method:

Example 9.7.5

Evaluate j2xSin(x2)dx.

You first note that the expression f(x) =x 2 is there in brackets and so is its

derivative d! = 2x. You therefore change the variable by letting u = x2 • This
dx

means that du =2x , and so in informal terms du =2xdx. Note you have to replace
dx

everything involving x by the equivalent thing in u - it is like changing units - you
must either work entirely in inches or entirely in centimetres but you cannot mix!

Thus we can replace the integral with

j 2xsin(x2)dx = jsin(x2 ).2xdx = jsin(u)du = -cos(u)+ C = -cos(x2)+C

(It is generally a good idea to change back to x at the end.)
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Note once more that you can check your answer using CAS, or by taking your
answer and differentiating it to see if you get back to the original expression.

DO THIS NOW! 9.11

Evaluate these integrals by change of variable and check your answers using a CAS.

(i)

(iii)
1

Jsin(x) cos(x)dx
o

(ii)

(iv) J~ln(X)dX

9.7.6 Integration by use of trigonometric function formulae

Finally in this section, we note and recall from Chapter 4 that there are many
relationships between trigonometric functions, and these can often allow an integral
to be evaluated if used at the right moment! It is very difficult to give general rules
here - we merely present a first example and then throw you in at the deep end with
your list of trigonometric formulae and your fertile imagination.

Example 9.7.6

Evaluate Jcos 2 xdx (This integral is required to find root-mean-square current in an

electrical circuit - see chapter 10).

Make sure you understand the notation here - cos2(x) is a poor notation which means

cos(x)xcos(x) = (cos(x» 2 •

Recall that there are two useful formulae involving squared trigonometric functions,
apart from the well known sin2(x)+cos 2(x) = I, which are:

cos 2 A= 1- (1+ cos(2A» and sin 2 A = 1- (1- cos(2A»

The first of these looks promising, and indeed the integral can be written

fcos 2 xdx = H(l+ cos(2x»dx = H+'!-cos(2x)dx =,!-x+isin(2x)+C

Yet again note that you can check your answer using your CAS, although it may well
be the case that, as we commented earlier in the book, the corresponding answer may
not look the same (e.g. Figure 9.12). In this case do not despair. You can either use
your algebraic skills to show both solutions are the same, or check by differentiating
the result, or perhaps even plot both results and see if their graphs are the same!

(COS(x)? dx
sin(x) COS (x) X

_-'--..:.-_......:...-:.....+-
2 2

Figure 9.12 Check your trigonometric integrals using a CAS.
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DO TIllS NOWl 9.12

Evaluate these integrals by using an appropriate trigonometric formula and check
your answers using a CAS.

1f

(i) fCOS2
xdx

o
(ii)

1f

fsin
2

xdx
o

(iii)
1

f 2sin(x)cos(x)dx
o

(iv)
2

fcoS(x)COS(2x)dx .
o

(c) f..jl+xdx

(0 f 1 dx
(x-l)(x-4)

END OF CHAPTER 9 • MIXED EXERCISES - DO ALL THESE NOWl

1. Evaluate the following integrals where possible, both by hand and checking by a
CAS. In each case indicate any finite values which may cause problems if the
integrals become definite.

(a) fx%dx (b) f(1+x 2 Pdx

(d) 1_3-dz (e) 1x~x 2 + Idx
2z+5

(g) fte-tdt
2

(h) f te' dt

(HINT: All true!)

3 5 5
(b) f f(t )dt+ f f(t)dt = ft(t)dt

1 3 1

2. The figure shows a graph of a functionj{t) over the range 1::;; t ::;; 5 .
1ft)

1

5

-1

For each of the following statements answer always true or not always true, and
explain your answer in words or diagrams:

3 5
(a) ff(t)dt=-ff(t)dt

1 3
3

(c) ff(t)dt<3
1

3. For (a)-(d), where j{t) and get) are any functions of t, and c and a are any
constants, answer always true or not always true, and explain why.

(a) Jc.f(t)dt=c Jf(t)dt (b) Jf(t).g(t)dt= Jf(t)dt.Jg(t)dt

J J Jf (t)dt = Jf(t)dt(c) f(at)dt = a.f(t)dt (d)
get) Jg(t)dt

(HINT: Only (a) is true.)
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Integral Calculus 2
"Mathematics consists in proving the most obvious thing in the least obvious way," George Polya

10.1 INTRODUCTION
In Chapter 9, you met the idea of integration in its two aspects: as a summation

process and as the inverse process of differentiation. In this chapter, you will have a
chance to explore both those ideas a little further. You will begin by going further
into the summation process as it applies to finding mean and root-mean-square
(RMS) values, electrical charging processes, volumes of revolution and surface
areas.

Finally, you will meet some very simple ordinary differential equations, an area
of crucial importance in engineering systems, and will see how integration can be
used to solve them in these simple cases. These important ideas are picked up and
developed in Chapters 15 and 16.

Once more, remember to do the exercises and activities.

10.2 INTEGRATION AS SUMMATION: MEAN AND RMS
10.2.1 The mean of a function

The mean of function over a given range in some sense describes the average, or
middle value, of the function - or the value around which it is balanced. This idea is
illustrated in Figure 10.1.
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M=1.196BOB5 'I'=.76:3:67'tOB
Figure 10.1 Graphic representation of the mean of a function over a range.

d d d fi .. f h f f v values i sum of y valuesThe stan ar e mmon 0 t e mean 0 a set 0 y va ues IS ---=---'-----
number of values

This definition would be fine if Y were only defined at a finite number of points, as in
Figure 10.2. In that case, we can write:

n

LI&
;=1

n n n n

LY; LY; LY; LY;&
mean = y=.l=!..-- which can be expressed as y= .l=!..-- = .l=!..--x & = ....:.;=...:1__

n n n &LI LI
;=1 ;=1

y,
y, Y2 y.

Y~1

v«

!Ix !Ix !Ix

Figure 10.2 Representing a set of discrete values.

However, this is not the case if Y is defined as a continuous range of values - an
infinite number of values across a finite range. How are we to deal with this? We
give only a very brief and non-rigorous description here. Just as with areas in
Chapter 9, the number of Y strips increases and the gap & between them decreases.
Once more, each of the summations becomes an integral between limits a and b.
with & becoming the dx at the end of the integral.

Thus, the mean of a function y(x) over a range a :;;; x :;;; b is given by the formula

n b b

LYi& Jy(x)dx Jy(x)dx

y= Lim ;=1 = a = a

dx-+O n b b-a
LI& JIdx
;=1 a
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That is, the mean over the interval is

b

fy(x)dx
y=..::.a _

b-a

. . - sum of y values b _ integral of y values
Intuitively the formula y = ecomes y =--=--_~_-

number of values length of interval

Example 10.2.1

Plot the function y = t over the range 0 ~ t ~ 1. Evaluate the mean of this function
over that same range and mark it on your diagram to see if it looks right.

1

Jtdt

The mean over os- s: is y=_O_=[tt2]~ =t.
1-0

Figure 10.3 shows the plot of the function, with mean value marked, and it does
indeed look sensible.

y=f(t) andy= 1/2

08

0&
>- J--_~-_._;,L ,_._-

04

Figure 10.3 "Seeing" whether your mean value is right.

DO THIS NOW! 10.1

Use the formula to work out the mean of the waveform y = sin(t) over the range

o :s; t :s; n . Draw a picture to see if your answer is sensible. Next, by considering the
symmetry of the situation (draw a picture again), predict the mean of this function
over the range /t:S; t ~ 2/t. Check your prediction by working out the mean using
the formula. Finally, predict the mean of the sine wave over the range 0 ~ t:S;2/t,
and verify your answer using the formula.

Repeat all the parts of this exercise for the so-called half-wave rectified sine wave
(important in electronics) given by

{
sin(t) 0 < t s /t

y= o 1t<t~21t

yet + 2/t) = yet) (i.e. repeating every 21tseconds)

Once more, predict answers where possible, before calculating them.
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10.2.2 The Root-Mean-Square of a function
The mean does not give a good measure of the average size of a function, in the

sense of "how big" the function is, regardless of sign. The measure used to do this is
the root-mean-square (RMS), defined by:

r-------
1 b

YRMS = --J(Y(t))2dt
b-a

a

The RMS is (the square Root of (the Mean of (the Squared values of y))).

This rather complicated looking definition is used because squaring Y removes
the effect of any signs and just measures the size. Also it can have physical
meaning. In electrical theory, for example, it is related to power consumption.

Example 10.2.2

Evaluate the RMS of the function y = t over the range 0 ~ t ~ 1. Plot the function
over that range and mark the RMS on your diagram to see if it looks right. Also,
mark the mean as calculated earlier. Are they the same? Are they close? What would
you expect here?

1 1

The RMS over O:S; t s;1 is 1-0 Jt
2dt =~[tt3 ]~ =.ff "" 0.577 .

o
Figure 10.4 shows the plot of the function, with both RMS and mean value marked.
It does indeed look sensible, and you should note that mean and RMS do not give the
same answers, even over ranges where the function is always positive.

y=f(l) ,y=112

i/
;/~.. s

/

/

1/
/'

0.2 0.4 0.6 O.B
I

Figure 10.4 Graph showing both mean and RMS of a function.

DO THIS NOW! 10.2
Use the RMS formula to work out the RMS of the waveform y =sin(t) over the

range 0 ~ t < 1&. Draw a picture to see if your answer is sensible. Compare with the
mean over the same range. Next (draw a picture again), predict the RMS of this
function over the range 1&:;;; t :;;; 21&. Check your prediction by working out the RMS
using the formula. Next predict the RMS of the sine wave over the range 0 ~ t ~ 21& ,
and verify your answer using the formula.

Repeat all the parts of this exercise for the half-wave rectified sine wave as defined
in DO THIS NOW! 10.1 Comment on differences between your results here and
there.
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10.3 INTEGRAnON AS SUMMAnON: CHARGE ACCUMULAnON

You have already met the relationship i = dq between charge q(t) and current
dt

i(t). Turning the relationship the other way round, you get q = fidt. Here is an

example of the application of this formula.

Example 10.3.1

An initially uncharged capacitor is charged through a resistor so that the current

flowing at time t is i(t) =O.03e-31
• Find the charge q(t) on the capacitor at time t.

The indefinite integration gives (with an arbitrary constant of integration C):

q(t) = fidt = fO.03e-31 dt = -o.0Ie-31+c .

To find C you can use the fact that the capacitor initially holds no charge, that is
when t = 0, q = O. Putting this into the solution

0= -0.01 + C, and so C =0.01.

Thus, the full solution is q(t) = 0.01(1- e-31) .

We could ask supplementary questions.

What is the charge after 0.2 seconds? Simply put t equal to 0.2 in the formula.

What is the eventual value of the accumulated charge after a "long time"? (a "long
time" here just means "long enough for things to settle down".) Note that after a long

time e -31 approaches 0, so the eventual settled level of charge is 0.01.

The above approach used an indefinite integral. There is an alternative approach
using a definite integral, which gives the same result. The charge accumulating
between times t1 and t2 is given by the definite integral

12

charge =q = fidt.
I,

Example 10.3.2

In a particular circuit, the current is given by j(t) = 2sin(t) . Using the definite

integral formula, find the charge accumulating between the times t =0 and t =;r .

If

Charge = q = f2sin(t)dt = [- 2cos(t)] ~= -zcosor) - (-2cos(0» = 4 .
o

DO THIS NOW! 10.3

In Example 10.3.2, what would you predict to be the charge accumulating between
the times t = 0 and t =21t! Explain your prediction and check if you are right by
doing the integral.
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10.4 INTEGRATION AS SUMMATION: VOLUME AND SURFACE AREA
The set of ideas used to justify the fact that the area under a curve (see 9.4) can

be found by an integral can be used much more widely, as indeed in 10.2 above. We
saw there, and earlier, the application of the idea that you can deal with finding the
area under a continuous function by treating the area as a set of vertical strips or
elements, and then realising that when the number of strips gets larger with each
individual strip getting narrower, the end of that process is that the sum of the strip
areas (that is, the total area under the curve) approaches the value calculated by the
definite integral.

This idea can be extended to find volumes of revolution, as shown in Figure 10.5.
In this figure, a curve defined by y =fix) in the range a:S; x:S; b is rotated about the
x-axis to create a so-called volume of revolution, as shown. In engineering terms,
such a body could, for example, be part of a gas storage vessel, and the question can
arise of how to calculate the volume enclosed by this cylindrically-symmetric body.

~dY
dx

d

x

Figure 10.5 A volume of revolution.

The clue lies in the diagram. Instead of splitting an area into thin vertical strips,
we split the volume into thin radial slices. The radius of one of these slices, or disks,
isf(x) on one side, and the thickness is &, so its volume is approximately (using the
formula for volume of a cylinder) 0'1-:::::. tr(j(x)i&. This is only approximately equal
because actually the disk will have a slightly differing radius between one side and
the other, but as we take more and more disks and each disk is thinner and thinner,
this difference will matter less and less.

The total volume is found by adding up all the volumes of the disks

V "" L try2& , and if we now go through that process of slicing more and more
aI/disks

finely so the disks become thinner and thinner, the summation becomes an integral,
& becomes dx, and the "approximately equals" becomes an "exactly equals":

b

V = Jny2 dx
a
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Example 10.4.1

The curve y =~ between x = 0 and x = 1 is rotated around the x-axis. What size

volume is generated?

Using the formula:

y

1 1

V = f1ZY2dx = fK(~)2 dx = ~ "" 0.20 .
o 0

x

Figure 10.6 The volume of revolution in Example 10.4.1.

The picture in Figure 10.6 shows that in this example we are actually making a
cylinder, of height 1 and radius ~, and the formula for volume of a cylinder says

the volume should be

2 1/2 KV = ttr h = K(74) .1=-
16

This agrees with what we have found from the integral approach.

DO THIS NOW! 10.4

Apply geometrical arguments as above to show that the curved surface area of a
volume of revolution carved out by rotating y(x) for values of x between x = a and
x = b around the x-axis is given by the formula:

A= j21ZY~1+(:)2dx.
a

Use this formula to deduce that the curved surface area of the body generated in

Example 1004.1 is K .
2

Does this accord with what you would calculate using the standard formula for the
curved surface area of a cylinder?

(HINT: Area =2K.rh.)
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DO rms NOW! 10.5

To do this exercise you will need to get a polystyrene cup of the sort commonly used
to serve tea or coffee. This is not a purely academic exercise as the same kind of
shape occurs for example in modelling buckets of molten steel. The object is to
calculate the volume of the cup. Start by aligning the cup with the co-ordinate axes
as shown in Figure 10.7:

x

y-mx+.c

h

y
.~ -, -

~• R
Y r

-
--11-- -- dx

~.....

Figure 10.7 A coffee cup as a volume of revolution.

You see that you can regard the cup as a body formed by rotating the line y =mx+ c
around the x-axis as shown. The volume of revolution will be given by the integral

b b

V = fny2dx = fJr(mx+c)2dx .
a a

Now, using a ruler, measure the radii of the top (R) and the bottom (r), and measure
the height h. Hence find the values of m and c for your cup. If you cannot do this
read this hint - but have a go first!

(Hint: the value of y intercept "c" is r; the value of slope "m" is R - r )
h

You also need the limits "a" and "b" for the integral. What are these?

(Hint: these are the x values at the bottom and top of the cup: a =0 and b =h.)

Write down the integral you need to evaluate to find the volume and evaluate this
integral by more than one means - CAS, graphic calculator, by hand, etc.

Is your answer reasonable? How can you check? Think NOW before reading on '"

(Hint: Here are some suggestions for checking:

• The volume must lie between that of the outer cylinder of height h and radius R,
and that of the inner cylinder of height h and radius r. (Why?)

• Perhaps look at the bottom of the cup and read what is there!)

You can now extend this in several ways, for instance by finding the curved surface
area and checking how sensitive the answer is to the accuracy of your measurements.
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10.5 A FIRST LOOK AT DIFFERENTIAL EQUATIONS
Now we move away from integration as summation and have a first look at how

the methods of integration can be used to solve so-called differential equations. In
simple terms these are equations which involve not only a function you don't know
but its derivatives too. These equations are very important because many laws
governing physical systems arise from describing not variable quantities themselves,
but their rates of change - such as acceleration. This is only a brief introduction at
this stage - you will see much more of these in Chapters 15 and 16.

In some simple cases you can solve these equations just by realising that to
"undo" a differentiation you just do an integral!

Example 10.5.1
A simply supported beam rests on two supports 2 metres apart, one at either end

of the beam, with both supports at a height O. The vertical displacement of the beam,
at distance x from one end, is given by y, the beam profile, which has slope given by
the equation

dy = O,OO2x-0.002 .
dx

Find the beam profile y(x).

This is an example of a simple ordinary differential equation - it is differential
because it involves the derivative of the function you want; it is ordinary because it
only involves ordinary (and not partial) derivatives. Solving it involves finding y(x)
in terms of x. In this simple case, you can solve the equation by reverse­
differentiating (i.e. integrating) both sides, using the fact that integration is the
inverse of differentiation:

y = f(0.002x-0.002)dx = 0.00 Ix 2 -0.002x+C .

Note that an arbitrary constant C has appeared because this is an indefinite integral.
To find that constant you need an extra bit of information - in this case that at the
left-hand end when x = 0 , the beam is at height 0 and so y = 0 . Putting this in:

0= 0.OOlx02 -0.002xO+C or C= O.

Thus the profile is y = O,OOlx2 -O.002x .

A plot of this (Figure 10.8) shows that the answer we have predicts a sensible beam
shape.

Y1=O.001K:l:-.(II)2:K

K=1 Y=",001

Figure 10,8 The beam shape in Example 10.5,1.
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DO THIS NOW! 10.6

Integral Calculus 2 [Ch.1O

Given the differential equation dO = 2e-o. 1t and a "kick off' set of conditions that
dt

0= 10 when t =0 ,find the time t taken for 0 to reach within 1% of its eventual
steady state. We make it about 42 seconds. What do you get?

END OF CHAPTER 10 EXERCISES - DO ALL OF THESE NOW!

1. (a) Find the area enclosed between the curve y = x2 and the lines y = 0 and x = 1.

Find the mean and RMS values of y =x2 over this range.

(b) Find the area enclosed between the curves y = ~ and y = x~. (Draw a

picture!)

2. A hollow casing is formed by rotating the curves y = 2 - x2 and y = 5 - ~
between x =0 and x = 1 about the axis of x. Find its volume. (Hint: Find the
volume generated by the outer curve first, then by the inner curve, then subtract
them.)

3. In finding the bending moments at points on a beam, it was found that

M = l00x - 5x2 +A where M = bending moment, x = distance from one end of the
beam and A is a constant. Also M = 520 when x = 10.

Find A. Find also the area included between the curve M = l00x - 5x2 + A, the
axis of x, and the lines at x = 0 and x = 20.
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11
Linear Simultaneous Equations
"Mathematical concepts may be communicated easily in a format which combines visual, verbal, and
symbolic representations in tight coordination." Ralph Abraham

11.1 THE NEED FOR LINEAR SIMULTANEOUS EQUATIONS
Many engineering systems need to be described by more than one variable. It

might be something as simple as specifying the position of an object on a table ­
which needs two co-ordinates. It might be a simple electronic circuit such as the one
shown in Figure 11.1 below, where the state of the circuit is described by the two
electric currents it and iz.

v

Figure 11.1 A simple network of resistors.

Often, understanding the system involves solving equations to find the values of
the variables. In general, to find 2 variables with unique values you need 2
independent equations; for 3 variables you need 3 equations and so on. It is of course
a little more complicated than this, and it is this mathematical idea of solving so
called simultaneous equations that you will study in this chapter.

The ideas involved in solving linear simultaneous equations lend themselves
nicely to both graphical and numerical/algebraic approaches, particularly when only
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two variables are involved. Even when more than 2 variables are involved the ideas
developed with just 2 variables provide a useful framework for thinking about these
problems. In this chapter we shall restrict ourselves to just 2 variable cases.

Before going on we shall answer two questions. Why do we call them linear
simultaneous equations? The answer is that we shall only be looking at equations of
the form ax + by = c for constants a, b and c. Such an equation can be rewritten in

the form y = _!: x +~ , which you can see is the equation of a straight line - hence
b b

linear. Linear equations are well understood. If we extend to non-linear equations
then life becomes significantly more complicated!

The second question is this. What do we mean by solving a set of linear
simultaneous equations? The answer is simply (for example in the case of two
equations involving unknowns x and y) that we need to find values of x and y which
simultaneously make both equations true.

As you work through this chapter, keep on doing the exercises and activities.

11.2 WHERE SIMULTANEOUS EQUAnONS OCCUR - TWO EXAMPLES
Example 11.2.1 A simple circuit

Figure 11.1 shows a simple resistor network circuit, with unknown currents i l and h.
Application of Kirchoff s first and second laws shows that the currents i l and hmust
satisfy the linear simultaneous equations

(R1 + R3 )i l - R3 i 2 =V

- R3i l + (R2 + R3 )i 2 = 0

Example 11.2.2 Modelling a road bend

Figure 11.2 shows a segment of road from above.

t
lo'

ABEnD In THE FiOAD

Figure 11.2 A section of a bend in a road viewed from above.

The road engineers wish to model this curve with a quadratic equation of the form

y = ax2 + bx. They specify that it must pass through the points (0, 0) (already

satisfied); (1, 1) and (2, 1). Substituting these (x, y) values in turn into the quadratic
equation gives:

1=a1
2 + bl

1 =a2 2 +b2
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Thus in order for the quadratic expression to fit the curve, the values a and b must be
the solutions of the simultaneous equations

a+b=1

4a +2b = 1

11.3 SOLVING SIMULTANEOUS EQUATIONS GRAPHICALLY
When there are only two simultaneous equations in two unknowns, there are

powerful ways of representing the concepts and solutions graphically. Perhaps the
easiest way to introduce these graphical notions underlying linear simultaneous
equations is to present an example.

Example 11.3.1

Consider the set of two equations for the two unknown variables x and y.

4x+2y=8

8x-5y=-2

(11.1)

(11.2)

With a few simple manipulations (check our working!), these two equations
(11.1) and (11.2) can be re-written in the form:

y=-2x+4 (11.3)

8 2
y=5"x+5 (11.4)

These equations (11.3) and (11.4) carry exactly the same information as (11.1)
and (11.2). It is just that now you may recognise in this form that each of the
equations represents a straight line of the form y =m.x + c.

Thus if a pair of values (x, y) makes one equation true, then the point (x, y) lies on
the corresponding line when we draw it. If it makes the other equation true, then the
point (x, y) lies on that other line when we draw it. Finally the key point: if a pair of
values (x, y) makes both equations true simultaneously, then the point (z, y) lies on
both lines when we draw them. That is, (x, y) is the point where the lines cross each
other - the point of intersection of the lines. This also means the pair of values (z, y)
form the solution of the original simultaneous equations.

Pl~t1 Pl~t~ Pl~t3

....Y1B-2X+4

....Y~B8X/5+2/5

....Y3=

....YIt=

....Y§:=

....Y,=

....Y7=
Figure 11.3 Solving Example 11.3.1 graphically.

Continuing with the example, Figure 11.3 shows the two straight lines (11.3) and
(11.4) on the same diagram. It is apparent from the diagram that they cross at the
point given approximately by x =1 and y =2.
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DO THIS NOWl 11.1

Plot these two lines on your own favourite piece of graphical technology and set the
window so that you find the intersection point. Zoom in on the graph until you have
convinced yourself that to at least 3 decimal places the intersection point is actually
(1.000,2.000).

Now substitute these values back into the original equations (1Ll) and (11.2) and
convince yourself that the values x =1 and y =2 really do satisfy those original
equations - that is, they are the solution to those equations.

11.4 SOLVING SIMULTANEOUS EQUATIONS WITH SIMPLE NUMBERS
The graphical method can be backed up by simple tabulation of the y values

coming from both equation (11.3) and equation (11.4), followed by inspection of the
table for places where the (x, y) values coincide, which again gives the point of
intersection

This is illustrated for the equations of Example 11.3, in Table 11.1 below.

X Y1 Y2:

t- It .It
2: 2:

2: (I :3:.1i
:3: "2: 5.2:
It -It 1i.1
5 -Ii I ....
Ii -I 1(1

X=l
Table 11.1 Solving Example 11.3.1 in a table.

11.5 SOLVING SIMULTANEOUS EQUATIONS ALGEBRAICALLY
If you have met simultaneous equations before (which you almost certainly have

in some form or other) then you probably will have used algebraic methods to solve
them. There are various approaches to this, but we shall look at just two of them.

11.5.1 Elimination of variables

The numbers in the equations will affect how easy this approach is to apply. We
shall illustrate a typical solution strategy with equations (1Ll) and (11.2) again.

4x+2y=8 (ILl)

8x-5y =-2 (11.2)

A possible strategy is to eliminate x from the equations by taking twice equation
(1Ll) away from equation (11.2). Thus

(11.2) - 2x(I1.1) (8- 2x4)x+ (-5-2x2)y = (-2- 2x8)

which simplifies to -9y=-18 or y = 2 as before.

To find x either eliminate y similarly, or substitute the value of y back into either
equation and solve that to find x. E.g. substituting back into equation (1Ll) gives:

4x +2 *(2) = 8 which is solved to give x = 1.
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11.5.2 Cramer's rule and determinants
A more systematic algebraic way of solving simultaneous equations is Cramer's

rule. This is a little old-fashioned as an algorithm for actually solving equations, but
is useful because it is a way of introducing and emphasising some important general
points which will help you to understand simultaneous equations; such as the
connection between the shape of the equations and the way they are written, and the
crucial role played by the important notion of the determinant.

It will be helpful to introduce a general way of representing equations, which
relates the variable and constant names to their position in the equations, and which
will expand easily as we go to more equations, without running out of letters to use.
Thus the general set of two equations in the two unknowns XI and Xzcan be written

allxl +al2x2 =bl

a21 xI +a22x2 =b2

(11.5)

(11.6)

Note that the constant coefficient names are subscripted - that is XI is multiplied
by all and so on. The coefficient subscripts are chosen to represent the position in
the equations, in the form of row number followed by column number. That is, all is
in row 1 column I, alZ is in row I column 2, and so on. It is helpful to write this in
matrix farm as in equation (11.7) (see chapter 12 for what a matrix is in general).

(11.7) .

This form helps you to see the essential shape of the equations - as long as they
were written neatly and systematically in the standard form of (11.5) and (11.6) in
the first place! To see how this helps, we shall go on and generate Cramer's rule.

You can, with some algebraic pain, or maybe using technology as in figure 11.4,
solve equations (11.5) and (11.6) to give the general solution of any pair of linear
simultaneous equations. We shall spare you the details and just present the solutions.

bl a 22 -b2a 12
XI =

alla22 -a21 a12

a ll b2 -a2l bl
(11.8)

Irrl~lf n· J( n.J; F~.:li F5 ITI Fli· ,T•~ Algebra Calc Other Prgl'lIO Clean Up
-(a12'x2 - bl)

• solve(eqn6, x2) Ixl = all
all·b2 - a21·bl

x2 = all. a22 - a12' a21
all . b2 - a21 . bl

• solve(eqn5. xl) Ix2 = all, a22 - a12' a21
-(a12'b2 - a22'bl)

xl= all ...22-a12'a21
.waJ'JDi'i.7BI.U......t4foJIl
MAIN RAP AUTO FUNC10no

Figure 11.4 Solving simultaneous equations using CAS (TI-92).
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This is messy, and difficult to read and remember, but it can be made clearer
using the idea of a determinant. You might notice that without getting too detailed
you can see that all sections of the solutions have the general form (a.d -cb) . This

prompts us to define a thing called a two by two (2x2) determinant, as

\: :1 = (a.d -cb)

Note two things here.

1. The determinant is written with straight lines down either side, not brackets.

2. Although it is laid out as an array, it is just a number - calculated by

(top left x bottom right -bottom left x top right).

Now to see why we have defined this in this way, let's return to the general
solution formulae from above.

The equations in matrix form (11.7) were

with solutions from (11.8)

bl a22 -b2a l2
Xl =

all a22 - a21 al2

allb2 -a2lbl
X2 =-:.:......=----=-'---'--

all a22 - a21 a 12

(11.9)

These solutions can now be written in terms of determinants, and when you do
that, you get is what is called Cramer's Rule:

I:: :~:I
x, = I::: ::1

Note that Cramer's rule (11.9) is easier to remember than the general form (11.8),
because its expression in determinant form is related to the shape of the equations:

1. The determinant on the bottom of each solution is that coming from the left-hand­
side (LHS) matrix of the equations.

2. The determinant on the top of the first variable solution is the LHS, but with
column one replaced by the right-hand-side (RHS) matrix in the equations.

3. The determinant on the top of the second variable solution is the LHS, but with
column two replaced by RHS in the equations.

Example 11.3.1 revisited (again!)

Solve the equations of Example 11.3.1 again, but this time using Cramer's rule.
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The equations are
4x+2y=8

8x-5y =-2

(11.1)

(11.2)

Renaming the variables to Xl and X2, these can be written in matrix form as

Cramer's rule applied to (11.10) then says:

1_
8
2 _251

Xl = 14 21
8 -5

(11.10)

(11.11)

Simplifying the determinants in (11.11) then gives the same answers as before:

-40-(-4) -36
Xl = = --=1

-20-(16) -36

-8-(64) -72
x 2 = =--=2.

-20-(16) -36

DO THIS NOW! 11.2

Solve the following sets of equations using Cramer's rule and check your answer by
algebraic elimination, by geometrical solution, by tabulation, and by substituting
back into the original equations to see if the answers work!

(a) x+3y=7 (b)
a+5b=21

x+ y=3 a+2b= 9

(c) Xl - 2X2 =-4 (d)
-a+5f3=0

3x\ +X2 = 15 a+2f3= 9

11.6 SOLVING SIMULTANEOUS EQUATIONS USING TECHNOLOGY

Your various technologies will have a variety of ways for solving simultaneous
equations. Some will have a direct solver; some will require you to use matrix theory
(see Chapter 12). Some will be able to handle general algebraic equations but others
will be restricted to just numbers.

DO THIS NOW! 11.3

Find out NOW how your favourite piece of technology, graphic calculator or a PC
package, deals with linear simultaneous equations. Does it have a direct solver built
in? If not, what is available? (If you must use a matrix inverse then you need to go
on to Chapter 12 here before being able to use your solver!). Does it have computer
algebra capability or will it only deal with numbers? Will it deal with complex
numbers as coefficients?

Check out whether you can use your technological solver, by verifying your answers
to the exercises in DO THIS NOW 11.2!
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DO TIllS NOW! 11.4

2x+ y=lO

x-y=2
(b)

Check that you have understood so far, by solving the following sets of equations:

1. Solve them all by technology.

2. Solve them all algebraically, by elimination and/or Cramer's rule.

3. Solve them all graphically.

4. Check your answers by substituting them back into the original equations and
making sure they make the LHS =RHS.

x+ y=12
(a)

x-y=6

4x+ y=IO
(c)

3x+y= 9
(d)

2x+3y=11

4x+ y=12

11.7 EQUATIONS WITH NO UNIQUE SOLUTION· SINGULAR
EQUATIONS

Things are not always as simple as you have seen so far. Consider this example:

Example 11.7.1 Singular equations with no solutions

2xI + X2 = 3 (11.12)
Try to solve the simultaneous equations

4xI +2X2 =10 (11.13)

You should find you hit a problem. For instance if you try to eliminate XI by doing

(11.13) - 2*(11.12), you get: 0 =4 .

Both variables have disappeared and we have an impossible equation!

(11.12) and (11.13) form an example of what we call a singular set of equations. The
problem may be thought of in different ways:

• The two equations are incompatible. To see this, divide (11.13) by 2:

2xI +X2 =3

2xI +x2 =5

(11.12)

(11.14)

These cannot both be true simultaneously since the left hand sides are identical
now and must either equal 3 or 5, but cannot equal both.

• Algebraically, if we try to use Cramer's rule, then the solution for both variables
involves dividing by the determinant of the LHS. In this case that determinant is

I~ ~I =(2 x 2 - 4x 1)= 0 , and since this is 0 you cannot divide by it.
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• Geometrically, you can rewrite the two equations (11.12) and (11.13) in straight
line form (note that X2 is "y" and Xl is "x" when we plot) and try to find where
they intersect:

(11.12)

(11.13)

X2 =-2xl +3

-4xl +10
X2 = 2

Try now to solve the simultaneous equations

Figure 11.5 Getting a graphical understanding of singular equations.

The plots appear in Figure 11.5. It is apparent that the lines look (and indeed are)
parallel, so they never meet, they have no point of intersection, and the equations
therefore have no simultaneous solution.

There is a variation on this problem, illustrated in Example 11.7.2.

Example 11.7.2 Singular equations with an infinite number of solutions

2xl +X2 = 5 (11.15)

4xl +2x2 =10 (11.16)

Again you can see that the determinant of the LHS is 0, so you know there will be a
problem - which algebraically will show itself by a zero determinant in Cramer's
rule. What is interesting here is to see what is happening geometrically.

Rewrite the two equations (11.15) and (11.16) in standard straight line form:

(11.15)

(11.16)

X2 =-2x\ +5

-4x\ +10
x2 = -2x\ +5

2

You can see that actually both equations represent the same straight line and will
therefore meet at every point along their length - there are infinitely many solutions ­
any point on the line! In fact there is really only one independent equation here at all,
so the rule that you need two independent equations to give a unique solution to two
unknowns is broken.

. Singular and non-singular equations

In general if the determinant of the LHS is not zero, then a set of equations will
have a unique solution, and we call the system non-singular. If the determinant of
the LHS is zero, then a set of equations will have either no solutions or an infinite
number of solutions, and we call the system singular.
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DO THIS NOWl 11.5

Linear Simultaneous Equations [Ch.ll

A set of simultaneous equations with unknowns x and y and constant a , is defined
in matrix form as follows:

Explain in your own way, both algebraically and graphically, why it is not possible
to find a unique solution to the pair of equations, for each of the two cases (a) a = 2 ,
and (b) a = 4.

11.8 ILL CONDITIONED EQUATIONS
Sometimes numbers do not behave well, even with linear equations. We are used

to rounding answers to a certain number of decimal places, but in certain
circumstances such rounding can be part of a big problem, called ill-conditioning.

With certain sets of simultaneous equations, in certain circumstances, the
solutions can be very sensitive indeed to any rounding of the coefficients, as
illustrated in Example 11.8.1. You will see that the problem arises when the
determinant of the LHS is not exactly zero, but is somewhere "near" to zero.

Example 11.8.1 An example of ill-conditioned simultaneous equations

Let us try to solve equations (11.17) and (11.18) for various values of constant a.

2x\ +x2 =3 (11.17)

at\ +2x2 =10 (11.18)

First note that if a = 4 exactly then the equations are singular and there are no
solutions.

Now we solve them for (a) a= 4.01, and (b) a= 3.99. That is, we make just a very
small change in a and see what effect it has.

Case a=4.01

Equations are
2xI +x2 =3

4.01xl + 2x2 =10

(11.17)

(11.19)

and the solutions (check it out with your favourite method or technology) are
x\ =400 x2 =-797 .

Case a=3.99

Equations are
2XI+X2=3

3.99xJ +2x2 =10

(11.17)

(11.20)

and the solutions (again check it out with your favourite method or technology) are
XI =-400 x2 =803 .
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Now it is time to reflect. The first point as you compare the solutions of the two
cases is that you may wonder whether you have made a mistake with the signs - a
reasonable thing to check - check it out and you will find that you have not!

Next, look at what has happened. One coefficient in the equations (a) has
changed by a very small percentage (approximately 0.5%) - which is a very
reasonable error in engineering terms. But the solutions for Xl and X2 have changed
enormously, by about 200%.

How can we understand what is happening here? Have a look at the problem
geometrically. Equations (11.16) and (11.17) are translated into straight line form in
equations (11.21) and (11.22). Figure 11.6(a) shows the corresponding geometrical
representation of these equations, for the case a = 4.01; Figure 11.6(b) shows that
for the case a = 3.99.

X 2 = -2x1 +3
-a 10

x2 =-x1+-
2 2

(11.21)

(11.22)

(a) (b)

Figure 11.6 The drastic effect of ill-conditioning.

It is apparent that in each case the two lines are very nearly parallel to each other.
This shouldn't be surprising. If the LHS determinant had been exactly zero they
would be exactly parallel, so as it is nearly zero they are nearly parallel. Thus the
point where they meet and cross will be very sensitive to the slope of each line. A
small change in slope can move the intersection point from one place to another one
far away. In Figure 11.6(a) they meet in the bottom right hand comer; in Figure
11.6(b) they meet in the top right hand comer.

So, since the slope of the second line, -a, is determined by a, then a small
2

change in a leads to a small change in the slope, and because the lines are nearly
parallel then this leads to a disproportionately large change in point of intersection,
or solution of the equations.

This is what we call ill-conditioning. You might think it is something of a rarity.
While it is true that it does not occur very frequently, it can appear in engineering
situations often enough that it is useful that you are aware of the possibility of
extreme sensitivity to rounding errors in certain circumstances.
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DO TIllS NOW! 11.6

Linear Simultaneous Equations [Ch.ll

A set of simultaneous equations are defined in matrix form as follows:

where p is a constant.

(a) If p= 2 , it is not possible to find a solution. Explain in your own way why not,

both algebraically and graphically.

(b) Solve the equations for the two cases where p=2.1 and where p=1.9 . Explain

in your own way both graphically and in algebraic terms how these two solutions
illustrate the concept of ill-conditioning.

11.9 SOLVING THE "REAL" PROBLEMS
In Section 11.2, we introduced two small examples of where simultaneous

equations arise in engineering. You now have a whole range of ways of dealing with
two simultaneous equations in two unknowns. You should understand the process
geometrically as well as algebraically. You should have sorted out how to use
technology to solve equations and you should have noticed that technology can deal
with larger sets of equations.

DO TIDS NOW! 11.7

Finish Examples 11.2.1 and 11.2.2 in Section 11.2, by solving the equations by any
means. In Example 11.2.1, take R1 =1000, R2 ,ooסס1= R3 = SOOO, V =1.

Satisfy yourself that your answers are correct by using another solution method.

END OF CHAPTER 11 • MIXED EXERCISES - DO THESE NOW!

4x+3y=8
1. Solve the equations using each of the methods (a) - (e) below. In

Sx+7y=4
each case list the advantages and disadvantages of the method as you see them.

(a) Graphical solution methods.

(b) Use of tabulation and zooming.

(c) Algebraic direct elimination.

(d) Cramer's Rule.

(e) Use of technology.

2. Solve the following two sets of simultaneous equations using at least two
independent ways to confirm your results.

(a)
4x+Sy=7.89

x - y=l
(b)

1.23x+4.S6y = 7.89

-0.12x-3.45y =-6.78
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3. The perimeter of a rectangular plate is 160 em. If the length was 3% longer and
the breadth 5% longer, the perimeter would be 166 em. Find the length and
breadth of the plate. (Hint: Let x = length and y = breadth.)

4. Using 9 machines of type A and 7 of type B, each making the same unit, a
manufacturer's output is 287 units per day. If they use 7 of type A and 9 of type
B, the output is 305 a day. How many are made per day on each type of machine?

5. Solve the general equations for Xl and X2 as generated in section 11.5.

allx\ +a12x2 =b\

a2\x\ +a22 x2 =b2

You might solve these algebraically, or using a CAS system, or preferably both.
Check your answer by seeing if it agrees with what was quoted in section 11.5.

6. Note this example generates 3 equations in 3 unknowns. Think about how you
will handle this: perhaps use technology or wait until Chapter 13.

The vertical profile curve of a roller coaster is shown in Figure 11.7. To estimate
the forces on such a ride it is necessary to work out the equation of this curve.
The co-ordinates of three points on the profile may be seen in the frames in
Figure 11.7.

WINDOW
xMin=-6.3
xMax=6.3
xScl=l
':IMin= -3. 1
':IMax=3.1

..J..':IScl=11
II'(x)= I WIND I ZOOM ITFiitCE IGIUIF'H ~ X=.1t

1'=1.1S7S:t;

Figure 11.7 Roller Coaster profiles for question 6.

The profile over the range 0 < X < 6 is to be modelled by the equation:

w(x)=ax2+bx+c.

Use the data in Figures 11.7 to write down three simultaneous equations for a , b,
and c, and solve those equations to find a , b, and c. Check your answer by
plotting the curve and seeing whether it does indeed provide the right shape.
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Matrices
"Why,"said the Dodo, "thebest way to explain it is to do it." Lewis Carroll

12.1 MATRICES: WHAT ARE THEY, AND WHY DO YOU NEED THEM?
If you have read Chapter II, you will have seen the use of what we called the

"matrix form" of the simultaneous equations. This was recognition that the "shape"
of the equations was square or rectangular, and that the position of different numbers
or symbols within the rectangle had meaning. This is true in other systems too,
engineering and otherwise (see later in this chapter). It leads us to define an object
called a matrix (plural matrices) and to make rules for handling these matrices.

A matrix is a rectangular array of numbers or symbols. In this book we will
denote matrices by a bold upper case letter.

Examples 12.1.1

All of the following are matrices:

A=G~) B=(~) X=(;:) D=(I 5 -2)

E=(~ ~I) F=(S).

But the array G2) is not a matrix as it is not rectangular.

When a matrix consists of a single column or row, it is often called a column or
row vector, and some technologies talk of vectors of vectors. See Chapter 14.
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The order of a matrix describes its shape, in the particular form:

(no. of rows) x (no. of columns). Read this as "number of rows by number of
columns". The individual components of a matrix are called its elements.

In the matrices of Example 12.1.1, A is of order 2 x 2 (''two by two", a square
matrix), B and X are 2 x l, D is 1 x 3, E is 2 x 2 and F is 1 x 1.

Example 12.1.2 Matrix form of simultaneous equations

The simultaneous equations from Example 11.3.1

4x+2y = 8

8x-5y=-2

can be written in matrix form as follows:

This involves one 2x2 matrix and two 2xl matrices. We shall see how matrix
operations help you to understand and solve these equations in section 12.4.

Example 12.1.3 Robots, computer games and computer graphics

Matrices play a crucial part in providing a mathematical description of the
geometry needed for programming computer games, robots and graphics on a
computer or video screen. We shall say more about this in section 12.5.

Here is a reminder again that as you work through this chapter you should
remember to keep on doing the exercises and activities as you go.

12.2 ARITHMETIC AND ALGEBRAIC OPERATIONS WITH MATRICES
In this section you will meet the rules for handling matrices. Some of these rules

will seem obvious. Some of them will seem odd and definitely not obvious, but they
have been made the way they have for good reasons, which will become clear as you
proceed.

12.2.1 Equality of matrices

Two matrices can only be equal if they are of the same order or shape, and all
individual corresponding elements equal.

Example 12.2.1

If(;:)=(~3) then Xl = 1 and x2=-3.

12.2.2 Addition and subtraction of matrices

Adding and subtracting matrices is defined in an obvious way. That is, two
matrices can only be added and subtracted if they are of the same order or shape.
Then corresponding elements are added or subtracted.
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Example 12.2.2

Using the matrices of Example 12.1.1:

A+E=(1 2)+(0 -1)=(1+0 2+(-1))=(1 8
1).

3 4 2 4 3+2 4+4 5

A_E -_ ( 1 2)_(0 -1) __ (1-0 2-(-1)) __ (1 3)
O

(Watch your signs closely!)
3 4 2 4 3-2 4-4 1

A ±B = (~ ~)±(~) cannot be done as A and B are of different orders.

12.2.3 Scalar Multiplication

Scalar multiplication is the multiplication of a matrix by a scalar (or number),
using the simple rule that all elements of the matrix are multiplied by the scalar.

Example 12.2.3

5A=5(1 2)=(5XI
3 4 5x3

12.2.4 Matrix Multiplication

Matrix multiplication, or the multiplying together of two matrices, is sometimes
but not always possible. It is defined in a strange and non-obvious way, but you will
have the chance to see the sense of the definition when you see matrices being used
in solving simultaneous equations, or in computer graphics.

To help you to see how it works, we shall first describe the process step by step,
then do an example, and then discuss the theoretical points arising.

The method is so-called "row-by-column" multiplication. Here are the steps.

1. Take a row, say row i, from the first matrix, and a column, say columnj, from the
second matrix.

2. Lay these alongside each other.

3. Multiply corresponding elements, and add up the results of these multiplications.

4. The result of this goes into row i, columnj of the product matrix.

5. Repeat for every possible combination of rows from first matrix and columns
from second matrix, and this will give the product.

Example 12.2.4

In this example we work out A.E (with A and E as defined in Example 12.1.1).

A.E =G ~)(~ -4
1).

Start with row I, column 1.
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Step J Row 1 from A is (1 2) and column 1 from B is (~).

Step 2 Lay these alongside each other (you have to slide the A row "round the
corner"

GX~) .
Step 3 Multiply corresponding elements and add the results: 1xO+ 2x2 = 4

Step 4 The value 4 goes into row 1, column 1 ofthe product matrix.

Step 5 is to repeat for every possible combination of rows and columns. Thus

Row1,Column 2 gives 1x(-1)+2x4=7,

Row2, Column 1 gives 3x (0) + 4x 2 = 8 ,

Row2, Column 2 gives 3x(-1)+ 4x4 = 13

This has dealt with all possible combinations, so the product is

A.E = ( : 1
73).

This process will soon become familiar as you practice, although like all of us
you will be very vulnerable to mistakes such as getting signs wrong!

There are some general points to make here.

You cannot just multiply any old pair of matrices together - they must clearly
have the right shapes - we say they must be compatible. This is because in Step 2,
when we lay the row from the first matrix alongside the column from the second,
they must "match up". That is, there must be something for each element to
multiply! For this to be true, the number of columns in the first matrix must match
the number of rows in the second.

In our example A.E is order (2x2) times order (2x2). A shorthand check is that
the middle two numbers when you write the orders down must be equal for the
multiplication to be possible. Then the outside numbers give the shape or order of
the result. In our example the middle numbers are both 2 and the result is indeed
(2x2).

Here are some other examples.

Example 12.2.5

Note that A.B =G~){~) is (2x2) times (2x1). The middle numbers match (both

2) and the result is predicted by the outside numbers to be (2x1).
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The result (you check this!) is AB = (~~) .

But B.A =G){~ ~) is (2x1) times (2x2). The middle numbers 1 and 2 do not

match and so the matrix multiplication simply cannot be done.

You may have noticed that in the last example A.B and B.A were not the same ­
indeed one of them cannot be done! It is true that even in cases where you can
reverse the order of multiplication and still do the operation, the result is not
necessarily the same. We say that matrix multiplication is non-commutative. You
therefore have to be careful, when writing down operations involving matrix
multiplication, to retain the order in which multiplications occur. Pre-multiplying
(multiplying in front) and post-multiplying (multiplying behind) must be retained.

Example 12.2.6

A.E = (I 2){0 -I) = (4 7) from above,
3424813

but (check our working here!)

E.A =(0 -1){1 2) =(-3
2 4 3 4 14

-4) which is not the same.
20

DO TmS NOW! 12.1

Ifyou have not already done so, check the working in Examples 12.2.5 and 12.2.6.

12.2.5 Matrix Division

This is a quick and easy one to deal with: YOU CANNOT DIVIDE MATRICES.
There is no matrix division defined! That was easy. On to the next thing then.

12.2.6 Transpose of a matrix

A final operation which may be needed and which does not correspond to a
standard arithmetic operation, is finding the transpose of a matrix. This simply
means swapping rows and columns over, so Row 1 becomes Column 1, etc. The
notation used is either AT or A'.

Example 12.2.7

A=G ~) so AT=G~)·

B=G) so BT=(35).
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12.3 MATRICES AND TECHNOLOGY
Your various technologies will have ways of entering matrices, and performing

the operations you have just met with them.

DO THIS NOW! 12.2

Find out how your favourite technology handles matrices. Can it deal with all we
have defined above? Can it handle both algebraic and number-only matrices? Get
some practice by doing ALL these problems.

(4 -1)You are given matrices G = 2 6

Calculate the following expressions, where possible, by hand and also checking your
results with your favourite technology. If an expression is not possible, explain why.

2G 3G+H G+K G-H G.H H.G G.K K.G

12.4 MATRICES AND SIMULTANEOUS EQUATIONS - THE MATRIX
INVERSE

You have seen in Chapter 11 how the mathematics of simultaneous equations
works. Matrix theory provides a strong framework within which to understand linear
simultaneous equations. First you will need two more definitions.

12.4.1 The determinant of a square matrix

You have already met the idea of a determinant. This can now be linked to matrix
theory as follows. We can define the determinant of a square 2x2 matrix

A=(::: :::) as

det(A) =IAI =la ll

a21

just as we defined a determinant in Chapter 11. Note this is just a number, associated
with a square matrix, and that the brackets round the matrix have turned into straight
lines in the determinant. The determinant can be defined for larger square matrices
too, but we shall postpone that discussion for now.

12.4.2 The identity matrix

You will also need the idea of the identity matrix I. This is the matrix that does
the job of the number 1, in that multiplying by it changes nothing. The identity
matrix is square and there is one for each possible size.
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The 2><2 identity is I = (~ ~). The 3x3 identity is I =(~ !nThe general

pattern is to have a 1 all the way down the diagonal from top left to bottom right (the
so-called "main diagonal") and zeroes everywhere else.

Your technology should find determinant and identity; see for example Figure 12.1.

-l'lata2

- det(l'lata2)

- i dent.i ty(2)

tluMiRii!liiJ
M81N ~8D U a

[
a ll a12]
a21 a22

all'a22 - a12'a21

[
1 e]
a 1

FUNC /)0

Figure 12.1 Matrix operations in a CAS system (TI-89).

DO THIS NOW! 12.3

(a) Find out NOW how your technology handles determinants and identities.

(b) Calculate I.A and A.I and check that the answer in each case is just A.

12.4.3 The idea of a matrix inverse

Finally we come to how these ideas help with simultaneous equations. First have
a look at a single equation in the unknown x:

a.x=b.

If you wish to solve this, without using division (matrices have no division!) you
cannot "divide both sides by a". What you must do is find a number which when you
multiply a by it then you get 1. We call this the inverse or reciprocal of a, and usually
write it a'l. Then you can multiply both sides by this inverse and solve the equation.

a-I.a.x = a-I b and so Lx = a-I b which is just x = a-I b .

Example 12.4.1

If 2.x =4 , then a =2 and a,l =0.5, so we can solve this equation without division
by multiplying both sides by 0.5.

0.5x2.x=0.5x4 and so x=2.

This idea carries over into simultaneous equations, if you write the equations in
matrix form. Recall that the equations in general form may be written

allxl +alzxz =bl

aZlxl +azzxz =bz

and that these can be written in matrix form as
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Note now that, where the two matrices are written next to each other, that really
does mean they are multiplied.

DO THIS NOW! 12.4

Satisfy yourself that if you multiply out the LHS matrices you really do get back to
the original equations.

Now let's start using the power of the matrix notation. These equations can be
written in shorthand form as A.X = B,

a
12)

(XI) (bl
),X= ,andB= .

a22 X2 b2

Now IF we can find an inverse A-I which does actually satisfy A-I.A = I, then we
can just pre-multiply both sides of this equation by the inverse, like this:

A-I.A.X = A-I. B

or I.X =A-I. B

or X =A-I. B

since multiplying by I is just like multiplying by 1.

Thus you can see that to get the solution of the simultaneous equations, all you
have to do is calculate the matrix product A"I. B. We return then to the matter of how
you find this matrix inverse, if you can!

12.4.4 Finding the matrix inverse

It turns out that for the 2x2 matrix A = (au aI 2
) . the inverse is given by

a21 a22

swapping the elements on the main diagonal (top left to bottom right), changing the

signs on the other diagonal, and multiplying the matrix by __1_ .
det(A)

That is:

-(-I)}=_I(6 I).
4 26 -2 4

For larger square matrices the calculation is more complicated but we delay that
discussion until chapter 13.

Example 12.4.2

If G =(~ ~I) then

G-I _ I (6
det(G) -(2)
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DO THIS NOW! 12.5

Find out NOW how your technology handles matrix inverses. (One example is
shown in Figure 12.2.)

rUNe ~no

al1'a22 - a12'a21

-a12 ]all'a22 - a12'a21
all

all, a22 - a12' a21

mfim'
MAIN MO AUTO

Figure 12.2 Finding a matrix inverse on CAS.

Find the inverse of H = ( 0 3) by hand, and check that it works by calculating
-1 4

both RI.H and H.H-I. Check your matrix inverse with your favourite technology.

Check (by hand and by machine) that for Example 12.4.2, G-I.G really does give

1= (~ ~). Incidentally, check that G.G- I also gives the same answer.

12.4.5 Using the matrix inverse to solve linear simultaneous equations

We can now apply these ideas to an example of simultaneous equations.

Example 12.4.3

Consider the equations
4xI -x2 =2

2xI +6xz =3

In matrix form these are

which is

(~ ~1)(;:)=G),

G.x=G) .
where G is as above, for which we know that G -1 = _1_ (6 4

1).

26 -2

The solution is then

Finally then XI = 0.577 and Xz = 0.308 to 3 d.p.
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DO THIS NOW! 12.6

Solve the simultaneous equations below by using the matrix inverse of the LHS
matrix. In each case find the inverse by hand and check using technology. Check
your answers by using a simultaneous equation solver in your technology, or using
what you learnt in Chapter II, or both!

4x+3y =8
(a)

5x+7y =4

4x+5y = 7.89
(b)

x- y=1

1.23x+4.56y = 7.89
(c)

-0.12x-3.45y = -6.78

12.4.6 Singular matrices

You might recall (Section 11.7) that there was a problem with simultaneous
equations, which is identified if the determinant of the LHS is O. The equations are
then called singular. If this is the case, it means that there is not a unique solution to
the equations - there are either no solutions at all, or an infinite number of solutions.
If the matrix inverse is to be useful it must reflect this same fact.

To see how this shows itself, look back at how to calculate the inverse.

[

a ll
For the general 2x2 matrix A =

a21
a12) th A·1 - I [a22en ----
a22 ' det(A) -a21

. . . 'J

....

You can see that to find the inverse you need to divide by the determinant of the
matrix A. If this is zero we cannot divide by it, so we simply cannot find the inverse,
and so as before we cannot solve the equations uniquely. If det(A) =0, then we call
the matrix A singular. Correspondingly if det(A) '* 0, then we call the matrix A non­
singular. This is one of many strange uses of language that you should be getting
used to in mathematics!

12.5 MATRICES AND GEOMETRICAL TRANSFORMATIONS
In this section we give you the opportunity to explore how matrices can be useful

in changing or transforming 2-dimensional pictures - an essential part, for example,
of computer graphics, computer games and, when expanded to three dimensions,
mathematical description of the position of robot arms.

We start by setting up an activity for you to work through and describe what you
find, and then we give a brief summary at the end of the section of what we think
you should have found.

Begin by giving the matrix

P =[x1 x2

YI Y2

geometrical meaning, by interpreting the pairs of values (x;, y;) (i.e. each column of
the matrix) as points in the Cartesian (x-y) plane.

As an example we shall use the matrix which we shall give the name SHAPE

[
I I 2 3 3 I]SHAPE = .
123211
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Plot this set of points on the x-y plane, in the order they occur from left to right in
the matrix, joining them in that order. This gives the diagram shown in Figure 12.3.

Figure 12.3Spreadsheet extract representing matrix"SHAPE".

We have produced this diagram in a spreadsheet (Microsoft Excel actually), and
have also carried out all the other calculations here in that medium too. We
recommend strongly that the spreadsheet is a tool you should learn to use, both in
designing your own operations and using built-in functions. See the end of chapter
exercises for a little more information. Watch out for well-hidden tricks though. For
instance if you want to use matrix commands such as MMULT in Excel, you must
hold down both Shift and Control keys when pressing Enter to carry out the
operation, but this is not well publicised!

DO THIS NOW! 12.7

For each of the matrices T below in turn, form the product T x SHAPE - that is,
pre-multiply the matrix SHAPE by each matrix in turn.

The resulting matrix in each case should be the same order (shape!) as the matrix
SHAPE, and so could be represented as a figure on the same diagram as the original
matrix. Make a conjecture about the geometrical effect that multiplying by the
matrix has had on the picture; then actually plot the new transformed matrix on your
diagram and describe what you see, commenting on the effect the matrix T has had
on your picture.

Repeat for all the matrices below. Can you draw any general conclusions about
particular types of matrix? Try to do that and then refer to the end of this box to see
what we suggest.

For example if T=[1 0] then TXSHAPE=[ I 1 2 3 3 I].o -I -I -2 -3 -2 -I -1

Plot this and you will see that the plotted object has been turned upside down - or
more precisely reflected in the x-axis.

(DO THIS NOW 12.7!continued overleaf)
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(vi) T=[~ ~]

(iii) T = [-~.5 -~.5]

DO THIS NOW! 12.7 (Continued)

[
0.9 0] [0.5(i) T = (ii) T =° 0.9 °

(iv) T= [I °] (v) T= [0.5° -I °
(vii) T=[O I] (viii) T=[O -0

1]
(ix) T=[cOS(!!/3) -Sin(!!/3)]

-I ° 1 sine!! /3) cos(!! / 3)

[
COS(!! / 6) - sine!! / 6)] . T [0.5 °][COS(!! / 3) - sine!! / 3)]

(x) T = (xi). =
sine!! /6) cos(!! /6) ° 0.5 sine!! /3) cos(!! /3)

Create your own matrices to explore all this further. Remember RADIANS!

You may have reached the following conclusions:

I. A matrix of the form T = [~ :] scales the picture by a factor of a, with the

centre of the scaling at the origin. A more general result is that a matrix of the

form T = [~ ~] scales the picture by a factor of a in the x direction and b in

the y direction.

2. A matrix of the form T = [~I ~] reflects the picture in the x-axis. A matrix of

the form T = [I 0] reflects the picture in the y-axis.° -I

[
COS(0) - sine0)]

3. A matrix of the form T = rotates the picture through an angle
sin(O) cos(O)

Oin the anti-clockwise direction, with the origin as centre.

4. You can get more complex effects by combining the simple matrices together ­
but remember that matrix multiplication is not commutative, so the order of
matrix multiplication matters. For example try the effect of matrix (vi) on
SHAPE followed by matrix (vii) on the result of that, and see what happens;
and then try them on SHAPE in reverse order. You will see the result in each
case is quite different.

DO THIS NOW! 12.8

Any animation fans might like to look at designing a shape of their own, then
designing matrices to make it spiral off into the distance. For instance you could
create a matrix by combining say a rotation of 45° together with a shape reduction of
0.9, and then applying this matrix repeatedly and successively.
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END OF CHAPTER 12 • MIXED EXERCISES - DO ALL THESE NOWl

1. You are given matrices A , B and C where

A=G~) B=C ~1) c=G)
Calculate the following expressions where possible, by hand and also checking
your results with technology. If an expression is not possible, explain why.

2A A+4B A+C A-B AxB BxA

AxC CxA A2 B2 C2 AT

CT CTxC CxCT det(A) det(C) det(B)

A+31 AlB C-1 B-1

2. Where possible, and using the matrices A, B, and C as defined in question 1, with

X =(;~) , use the matrix inverse to solve the following matrix equations for Xl

andx2:

(a) B.X = C

(b) A.X=C

Explain with the aid of diagrams or otherwise any difficulties you meet in trying
to solve these two sets of equations.
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13
More Linear Simultaneous Equations
"Mathematical skills are like any other kind .... If you are learning to play the piano, you usually start by
practicing under supervision" Ralph Boas

13.1 LARGER SETS OF SIMULTANEOUS EQUAnONS
In chapters 11 and 12 you found out about how to handle two simultaneous

equations in two unknowns, as well as meeting some matrix theory. The ''paper and
pencil" methods you met there do not extend easily to larger systems of equations.
For instance finding bigger determinants, or inverses of bigger matrices, using
theoretically based techniques, is clumsy and not practical, particularly when
engineering systems can lead to sets of hundreds, thousands and even millions of
equations. This is not uncommon, and you will meet, and deal with, an example of
such a system in this chapter in section 13.5.

However, the theoretical principles you have met, such as the crucial role played
by the determinant of the LHS of a system of equations, carry over. The only
question is how to define and calculate matrix operations in such a way that the job
is done. Briefly, we recommend that for systems of more than two equations, you
apply appropriate technology to find determinants and matrix inverses, or to solve
simultaneous equations. However we think it is useful for you to have some idea of
the kind of methods your technology is using. This chapter is about these so-called
numerical methods and some examples of using the technology to implement them.

Overall, there are two classes of systematic solution method for linear
simultaneous equations suitable for use in technology: direct and iterative. You will
meet a direct method (an elimination method) in section 13.2, and some iterative
methods in section 13.3. There are other methods too, but in this book we will
restrict ourselves to just these.
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Before going on, here is a reminder again that as you work through this chapter,
just remember to keep on doing the exercises and activities as you go.

13.2 ELIMINATION METHODS: GAUSSIAN ELIMINATION
An elimination method is perhaps the most commonly used type of direct

solution technique. Such a method appears often in the simultaneous equation
solvers built into graphic calculators, albeit hidden behind a button or menu.

The general idea is to systematically eliminate all variables except one, solve for
that one, and then systematically substitute backwards to find the others. You will
notice that we emphasise the word systematic: this is because if a machine is to be
programmed to implement a method, then you cannot rely on mathematical flair and
spotting shortcuts - the machine is stupid and will only do exactly what it is told, so
the method must have no surprises! The first method we present here is Gaussian
elimination and we do so by means of a simple 2 by 2 (two equations in two
unknowns) example. After that we apply the method to a larger system.

Example 13.2.1: A 2 by 2 example of Gaussian Elimination

5Xl +4X2 = 2
Solve for Xl and X2, by Gaussian elimination, the equations

2xI -4x2 = I

(13.1)

(13.2)

The general strategy is to use equation (13.1) to eliminate Xl from (13.2) by
subtracting an appropriate multiple of (13.1) from (13.2). You then solve the
resulting equation for X2, and substitute back into (13.1) and solve for Xl.

Subtract %(13.1) from (13.2) -5.6x2 =0.2 (13.2').

2(5" (13.1) makes the 5Xl into 2x(, and therefore Xl disappears as equations

subtracted)

Solve (13.2') for X2

Solve (13.1) for Xl

X2 =~ =-0.0357
-5.6

XI = 2-
4x

2 =0.4286.
5

The method can be generalised for any number of equations, eliminating each
variable in tum. The systematic element comes from addressing the equations in a
standard order. In the elimination phase for instance, you use equation (1) to
eliminate Xl from all equations below that, then the new equation (2) to eliminate X2

from all equations below that, and so on. You then enter the back-substitution phase
starting with the last variable, which should by then be alone in an equation, so you
can find it. You go back one equation, and knowing the last variable you can find the
last-but-one, and so on back to Xl. This method becomes progressively less efficient
as the number of equations increases.

Perhaps a wordy explanation is not the best way, and you will be able to see
better what is going on by looking at a 3 by 3 example.
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Example 13.2.2: A 3 by 3 example of Gaussian Elimination

Solve these simultaneous equations by Gaussian elimination:

xI - 2x 2 +3x3 = 9 (13.3)

- XI +3x2 = -4 (13.4).

2xI - 5X2 +5X3 = 17 (13.5)

The layout of the equations helps to keep track. Write these equations as an
augmented matrix - that is, the LHS matrix next to the RHS. Thus anything you do to
a row is like doing that thing to both sides of an equation. Each column represents
the coefficients of a variable, XI in column 1 etc. Here is the augmented matrix:

Now we set the elimination stage ofthe algorithm going:

Step 1

Use Rowl (Rl) to eliminate Xl from Row 2 (R2) and Row 3 (R3) as follows:

Do R2 =R2 - (-II1)Rl:

[
coeff.of XI in (2»)

(Note RI is multiplied by . to make sure XI disappears from R2.)
coeff. of XI In (1)

Do R3 = R3 - (211)Rl:

(This time the factor is (211) to make sure XI disappears from R3)

The augmented matrix - which represents the equations - thus becomes:

The intended effect is that column 1 has a 1 in the XI position with zeroes below that.
We are left with R2 and R3 involving X2 and X3 only.

Step 2
Use the new R2 to eliminate X2 from R3 as follows:

[
coeff. of X2 in (3») .

Do R3 =R3 - (-1/1)R2: Factor this time is
coeff.of x2 in (2)

This gives
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Step 3

Make the Xl coefficient in Rl, the X2 coefficient in R2 and the X3 coefficient in R3
equal to 1 (iftheyare not already so) by dividing through each row (equation) by the
appropriate number. This gives:

This last matrix is in so-called row echelonform.

The lower left triangle is all Ds and the main diagonal (top left diagonally
downwards) is all Is, The first three columns, representing the LHS, have become an
upper triangular matrix. Doing things in the order we have makes sure that later
steps do not mess up what was done in the earlier steps. We now translate this latest
augmented matrix back into the set of equations that we are left with:

Xl - 2 X2 +3X3 = 9

X2 +3X3 =5

X 3 =2

(13.6)

(13.7) •

(13.8)

You can see that the row echelon form that we have produced means that:

• it is easy to solve the third equation (13.8) for X3: x3 =2 ;

• back-substituting this value, it is easy to solve the second equation (13.7) for X2:

x2+ 3 x 2 = 5

or x2 =5-6=-1 ;

• finally, back-substituting again, it is easy to solve the first equation (13.6) for Xl:

Xl -2x(-I)+3x2=9

or Xl = 9 - 6 - 2 = 1 •

At the end, you should check that your answer is right by two means, as in DO
THIS NOW! 13.1.

DO TIDS NOW! 13.1

Check that the answers in Example 13.2.2 are right by two means:-

1. Substitute the values obtained for the unknowns back into the original equations to
see if they work and really do make the LHS equal to the RHS.

2. Solve the original equations on your favourite piece of technology, which should
handle three equations just as easily as it handles two!
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DO THIS NOW! 13.2

Iterative Methods 169

Repeat the whole process with the equations below, checking your own answers as
in DO THIS NOW 13.1!:

5x) -4x2 +2x3 =9

XI -3x2 =-2 .

3x) +4x2 +2x3 =14

DO THIS NOW! 13.3

Some technology has these processes built in, for instance as shown in the graphic
calculator screens in Figure 13.1. Find out NOW whether the technology available to
you has such features built in, perhaps under a name such as "row operations".

*row+ ( 1:- [A] :- 1 :- 2)
[A]

[ [ 1 -2 3 9 ] [ [ 1 -2 3 9 ]
[ -1 3 o -4] [0 1 3 5 ]
[2 -5 5 17]]

----0
[2 -5 5 17]]

~

*row+(-2:-Ans:-1:-3 *row+(1:-Ans:-2:-3)
)

[ [ 1 -2 3 9][ [ 1 -2 3 9 ]
[0 1 3 5 ] [0 1 3 5]
[0 -1 -1 -1] ] [0 0 2 4]] ~

*row(1/2,Ans,3)
[ [ 1 -2 3 9]

[0 1 3 5]
[0 0 1 2]]

Figures 13.1 Graphical calculator screens showing row operations

13.3 ITERATIVE METHODS
13.3.1 What is an iterative method?

An iterative approach involves making a guess at the solution of the equations,
and then using a systematic algorithm (sequence of calculating rules) to
progressively and repeatedly update this guess so that it converges to (or approaches
closer and closer to) the solution of the equations. There is no guarantee in every
case that such a guess-and-correct approach will converge towards the solution of the
equations, and some theoretical basis will be needed.

There are several different iterative approaches to solving linear simultaneous
equations. You will meet here only two of them - the Jacobi method and the Gauss­
Seidel method - but you should be aware that the use of numerical methods is a
highly developed area. These examples give you an idea of major features though.
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13.3.2 The Jacobi method

The general idea of the Jacobi method is this:

• You algebraically solve "equation (1)" for Xl in terms of the other variables,
"equation (2)" for X2, and so on.

• You guess starting values for Xh X2 and so on.

• You use your forms of the equations to find new values for Xh X2 and so on.

• You repeat the previous step until you are getting no further change (within your
required accuracy) in Xh X2 and so on. As they are not changing any more, these
values of Xh X2 etc. make the LHS equal to the RHS, and so they are the
solutions to the equations.

Example 13.3.1 An example using the Jacobi method

(13.9)

(13.10)

(13.12)

(13.11)
Step 1 Solve (13.9) for Xl and (13.10) for X2.

8x l + x2 =2

2xl -9x2 =1

2- X 2
xl=--

8
1- 2xl

x2=--
-9

Note that (13.11) and (13.12) are just the original two equations rewritten.

Step 2 Make a guess at the solution, say Xl = 0 and X2 = o.
Step 3 Use (13.11) and (13.12) repeatedly to calculate updated values of Xl and X2.

(Don't use the new values until each complete cycle of updating is
complete.) Keep going until the values of Xl and X2 are not changing any
more to within the accuracy that you want to work. When that happens, then
Xl and X2 are the solutions to the original equations.

Here are the figures which result:

Solve for Xl and X2 using the Jacobi method

Step 0 1 2 3 4

Xl 0 0.250 0.264 0.257 0.257

X2 0 -0.111 -0.056 -0.054 -0.054

It seems that things stop changing at step 4, so the solution has converged (to three
decimal places) to a solution Xl =0.257 and X2 =-0.054.

DO THIS NOW! 13.4

See if you can reproduce (and thus check) our figures NOW. Check the solutions
now in some independent ways - by substituting into the original equations, by
Cramer's rule, by using your technology and so on.

Repeat the process for the equations
lOx} +X2 = 3

3x} -8X2 =2

(13.13)

(13.14)
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13.3.2 The Gauss-Seidel method

This is entirely similar to the Jacobi method, except that you use each new value
as soon as it is calculated, instead of waiting for the end of each cycle. It is a
common feature of numerical methods that such seemingly small changes can make
a significant difference to the outcome. You might guess that this change is going to
speed up the convergence, so follow through the calculation to see if that is the case.

Example 13.3.2

Here the equations of Example 13.3.1 are solved using the Gauss-Seidel method.

Step 0 1 2 3

Xl 0 0.25 0.257 0.257

X2 0 -0.056 -0.054 -0.054

The process converges to the same answers as before but with one iteration fewer.

DO THIS NOW! 13.5

Repeat and check our workings NOW. You already know the solutions are correct!

Carry out both the Jacobi and Gauss-Seidel methods for equations (13.15) and
12xl +2x2 =1 (13.15)

(13.16). Comment on relative speed of convergence:
Xl -9X2 = 6 (13.16)

Technical note The convergence of these iterative procedures is guaranteed only if
the LHS matrix is what is called diagonally dominant: the absolute value of the
coefficient of the diagonal element for each equation aii is greater than the sum of
the absolute values ofthe coefficients ofall other elements in that row, that is

~I .. , I "1 {i = 1,2,.....n£..J alj < all ..'
i=l J *,

This is often the case for "real" problems (asfor instance in Section 13.6).

DO THIS NOW! 13.6

Extend the Jacobi and the Gauss-Seidel methods to three simultaneous equations, by
solving the following to 4 decimal places and comparing how many iterations it
takes in each case for the method to converge to the solution:

8Xl - 2x2 + x3 = 9

Xl + 6X2 -2x3 =-2

-Xl +2X2 -8x3 = 14

(13.17)

(13.18)

(13.19)

You might find it best to use a spreadsheet to carry out your calculations. We do!

Check for diagonal dominance.

Check your own solution again by substituting answers you find back into the
original equations, and also by using your technology.
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13.4 THE GAUSS-JORDAN METHOD
We now return your attention to elimination methods, to see how all this relates

to the matrix inverse. The Gaussian elimination method can be extended by a further,
similar set of extra elimination steps, to solve the equations completely without
requiring the back-substitution stages. Recall that you use "equation (1)" to eliminate
X\o "equation (2)" to eliminate X2 and so on, until you have made the entire lower
triangle full of zeroes, and the main diagonal holding nothing but Is. Look back
again at Example 13.2.2 if you want to remind yourself of these elimination steps.

With this "Gauss-Jordan" method, instead of back substituting, you carryon with
the elimination process using the last equation to eliminate the last x from all
preceding equations, and so on in reverse order all the way back to using "(2)" to
eliminate X2 from "(1)". You will see, in Section 13.5, that this incidentally gives a
general way of calculating the inverse of a square matrix of any size.

Again, wordy descriptions are difficult to make clear, so here is an illustration of
this process, continuing Example 13.2.2 from the end of the elimination phase.

Example 13.4.1 Gauss-Jordan elimination (continuing example 13.2.2)

Recall we reduced these equations (13.3), (13.4) and (13.5):

Xl - 2X2 +3x3 = 9

-Xl +3X2 =-4

2xl -5x2 +5x3 = 17

(13.3)

(13.4)

(13.5)

to these (13.6), (13.7) and (13.8), using a series of systematic elimination steps:

xl-2x2+3x3=9 (13.6)

x2+3x3=5 (13.7)

x3 = 2 (13.8)

or in terms of the augmented matrix:

Now instead of back-substitution, we continue the elimination process:

Step 4 Use R3 to eliminate X3 from Rl and R2 by doing

R2 = R2 -(3/1) R3 and Rl =Rl - (3/1) R3

Step 5 Use R2 to eliminate X2 from Rl by doing

Rl =Rl- (-2/1) R2
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This last matrix is then in what we call reduced row echelon form, with Os in the
upper right triangle as well. Some technologies do this directly - see Figure 13.2.

rref([A])
[[1 0 0

[0 1 0
[0 0 1

1 ]
-1]
2 ]]

Figure 13.2 Reduced row echelon form on a graphic calculator.

In fact you can see that the first three columns have moved from being the LHS
matrix to being an identity matrix. Converting the augmented matrix back into
equations shows why this form is useful, because as you will see, they immediately
give the solutions Xl =1, X2 =-1 and X3 =2, as in the RH column.

DO THIS NOW! 13.7

Take the equations which you have solved by Gaussian elimination and back
substitution in DO THIS NOW 13.2!

SXI -4x2 +2x3 =9

Xl -3X2 =-2

3xl +4X2 +2x3 =14

and solve them by replacing the back substitution stages with the extra elimination
steps of the Gauss-Jordan method. Verify that you get the same answers again!

13.5 FINDING A MATRIX INVERSE BY THE GAUSS-JORDAN METHOD
The Gauss-Jordan method gives a way of finding the inverse of any non-singular

matrix, which is more practical and useful than other more theoretical methods. This
is illustrated through Example 13.5.1.

Example 13.5.1

We shall use the LHS matrix of the equations of example 13.2.2 again:

Xl - 2x2 +3x3 = 9 (13.3)

- Xl + 3x2 = -4 (13.4).

2Xl -Sx2 +SX3 = 17 (13.S)

Form the augmented matrix, but instead of putting in the RHS column, replace it by
an identity matrix like this:

[
1 -2 3100]

-1 3 0 0 1 0 .

2 -S S 0 0 1

Then simply carry out the steps you would have carried out to perform Gauss-Jordan
elimination, making Steps 1 - S so that at the end the first three columns are left
forming an identity matrix. The last three columns will then have become the inverse
of the original LHS matrix! The steps follow.
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Step 1

Use Rowl (Rl) to put zeroes into column I of Row 2 (R2) and Row 3 (R3).

R2 =R2 - (-l/l)Rl.

R3 =R3 - (211)Rl.

[~
1 -2 3 1 0

I 3 1 1

-1 -1 -2 0

Step 2

Use the new R2 to put a zero into column 2 of R3 by doing:

R3 =R3 - (-l/l)R2.

[

1 -2 3

013

002

I 0 0]
1 1 0 .

-1 1 1

Step 3

Make the main diagonal coefficient in each row equal to 1 by dividing through each
row by the appropriate number. This gives:

[

1 -2 3 1 0 0 ]
013110.

o 0 1 -0.5 0.5 0.5

Step 4

Use R3 to create zeroes in column 3 of rows Rl and R2 by doing

R2 =R2 -3R3.

Rl =Rl- 3R3.

[~
-2 0 2.5 -1.5 -1.5]
1 0 2.5 -0.5 -1.5 .

0 1 -0.5 0.5 0.5

Step 5

Use R2 to put a zero into column 2 of Rl by doing

Rl =Rl - (-2)R2.

[~
0 0 7.5 -2.5 -4.5]
1 0 2.5 -0.5 -1.5 .

0 I -0.5 0.5 0.5
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Now you can see that the first three columns have become an identity matrix, so the
inverse of the original LHS matrix is the last three columns.

[

7.5 -2.5 -4.5]
2.5 - 0.5 -1.5

-0.5 0.5 0.5

(13.20)

Using technology to check gives the right hand side of the matrix as

rref([B])
...7.5 -2.5
...2.5 -.5
... -.5 .5

-4.5]
-1.5]
.5 ] ]

Figure 13.3 Graphic calculator display of Gauss-Jordan result.

DO THIS NOW! 13.8

Check that (13.20) really is the inverse matrix, first by multiplying it by the original

LHS matrix [~1 -3

2

~] and seeing if it satisfies A-l.A = A.A-'=I, then by the

2 -5 5

most convenient technology. Use the row operations of the Gauss-Jordan method to

find the inverse of the matrix [~ =; ~], and check your answer as above.

342

(You might find a spreadsheet to be the best tool to help you here with the Gauss­
Jordan calculations.)

13.6 ENGINEERING CASE STUDY: HEATING AND COOLING
13.6.1 The engineering problem

Simultaneous linear equations arise in many practical situations. One such is the
use of so-called finite difference methods to model heat conduction situations.
Similar methods are widely used to model for example electric, gravitational and
magnetic fields, fluid flow, and stress and strain. We shall not do a full treatment
here, but give a brief indication of where the equations come from and the issues that
arise in solving them. One such issue is that you can very soon have a very large
number of equations to solve.

In steady-state heat transfer problems in two dimensions, the temperature Ttx, y)
at any point (x, y) satisfies an equation called the Laplace equation.

a2T a2T
-2-+-2-=0.ax ~

This is a partial differential equation and most methods of solving it are beyond
the scope of this book. However there are straightforward methods of getting an
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approximate solution to the equation by using the fact that it is a mathematical
statement of the law of conservation of energy - in this case heat energy. One such
method uses what are called finite differences. One way of implementing this
method is to cover the region of interest with a square grid and to calculate only the
approximate temperatures at the nodes of the grid. One such rectangular region, with
temperatures specified around its boundaries, is shown covered with a coarse grid in
Figure 13.4. We must find temperatures inside the region.

T=O

T= 0 I--t--+---;T= 90

T=O

Figure 13.4 Finding the temperature in a rectangular region - figures are temperatures in degrees.

13.6.2Extracting the equations fromthe physical situation
To see how the physical situation gives rise to mathematical equations, consider a

little square area ABCD of the heat-conducting plate as shown in Figure 13.5.

3

T,2

D

ITO ~.

C 0

4

T

Figure 13.5 A magnified element of the region.

The values TO, n, Tl; 13, and T4 represent respectively the temperatures at the
central point (or node) and the four surrounding equally distant nodes. These nodes
correspond to places where the gridlines cross in Figure 13.4. For the sake of
simplicity, suppose the length of side of the square ABCD is h, and that each of the
temperature nodes n, n, 13, and T4 are a distance h from TO.

The law of conservation of energy in this case says that the net heat flowing into
ABCD must equal the net heat flowing out, as energy cannot be created out of
nothing. The heat flowing across a boundary of ABCD is proportional to the
temperature gradient there. Thus conservation of energy says

(a:::: i:C)+( ac~:::~D) =(a::::o~) +(a::::o;~) .

The heat coming in across AC is (approximately) proportional to temperature
gradient (TO - n)/h, and also to the length h of AC, and so on. Thus:

TO-Tl h TO-T4 h T2-TO h T3-TO h---x + x = x + x,
h h h h
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TO=+<T1+T2+T3+T4) .
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The law of conservation of energy gives the mathematical rule that temperature
at one node = average of temperatures at the four nearest surrounding nodes.

DO THIS NOW! 13.9

Think about and explain why this is approximate. Do not read on until you have
thought about this. STOP AND THINK NOW.

It is approximate because:

• our expression for the temperature gradient is only approximate - remember
how the derivative is formed - h must be small and in the limit tend to zero to get
an exact value for the gradient.

• saying that the heat flow is proportional to the length of side assumes that the
gradient is constant all along that side, which ofcourse it isn't.

What is evident is that the smaller h is (that is, the finer the overlaid grid is) the
more accurate our answer will be.

13.6 1 Finite differences in action

To illustrate the method in action we shall solve the problem shown in Figure
13.4, using the coarsest possible grid as shown there.

Example 13.6.1

The flat plate as shown in Figure 13.4 has the temperature on three of its edges
held at T = 0, with the fourth edge held at a temperature of T = 90° (Figure 13.6).

T=O

T1 12

T=O

Figure 13.6 Setting up the temperature problem with the coarsest grid possible.

An approximate value of the temperature at certain points is obtained as follows:

• Place a regular square grid over the plate as shown.

• Name the temperatures at the two inside nodes of the grid T1 and 12.

• Then according to the finite difference model above, the values of nand 12,
which are approximate values of the temperature at those points, can be
found by noting that the temperature at each node is the average of the
temperatures at the four surrounding nodes.

This results in two simultaneous equations, which can be solved for nand 12. The
equations are:

Tl=±(O+O+O+T2) and T2=±(O+Tl+O+90) .
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Rewriting these equations in standard form:

Solving these simple equations (DO THIS NOW!):

4Tl- T2= 0

-Tl+4T2 =90

Tl =6

T2=24

Apart from checking your working you can also ask if these answers are sensible
and obey engineering common sense. For instance, do they lie between 0 and 90, and
do they get hotter towards the right hand end of the plate? The answer is yes. As an
engineer you should always be looking to see if your answers are reasonable - for
instance if you made an error with the arithmetic here and got a temperature of
10000 then we would expect you to notice that all is not well!

Example 13.6.2 Refining the grid

To get a more accurate figure for the temperature distribution across the plate,
you could put a finer grid over the plate. The next finest square grid is that shown in
Figure 13.7. Temperatures at the nodes of this grid can then be estimated by noting
that each temperature is again the average of the four surrounding points. You might
notice that two of these points, marked by circles, correspond to the points of the
first, coarser grid, so we will have a basis for comparison.

T=O

T=O t---+~L>--+--1o---t--t T=90

T=O

Figure 13.7 Covering the region with a finer grid.

DO THIS NOW! 13.10

Think briefly about each of these questions before reading the response to each.

At how many points must the temperatures now be calculated?

There are now 15 internal points so we need temperatures at 15 points, which means
we must solve 15 simultaneous equations.

Can symmetry help?

The answer is that there is symmetry across the central horizontal line in this
problem, so that the temperatures on the top line must equal those on the bottom
line. There are thus only 10 temperature values to find.

What are the equations for the temperatures on this refined grid? Once more you
get these by using the averaging rule. First label the temperatures, as partially shown
in Figure 13.8.
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T=O

TI 1"2 T3

T6 TlO

TI T5

T=O

T=90

Figure 13.8 The finer temperature grid in more detail.

Thus the equation for T1 is

DO THIS NOW! 13.11

T1 = t(O+O+T6+T2).

The 9 other equations can be similarly generated for the other 9 points. Find these
other 9 equations now. Leave them for now in the form T1 =...,n =..., etc.

Now how would you solve these equations? You might answer that you would
use your technology, but you can see that the number of equations is beginning to
grow. For instance if you try to use your graphic calculator, you have a lot of
algebraic rewriting to get the equations into the right shape. You will also run off the
screen and it becomes difficult to keep track.

In terms of method, it is most natural to use the Gauss-Seidel iterative method, or
something like it, to solve the equations, especially since as they are formulated, the
first equation automatically gives T1 in terms of the other variables, the second
equation gives n in terms of the other variables and so on.

We now move to an open-ended approach, and suggesting various things for you
to do, but without detailed instructions. Enjoy seeing how well you can handle this.

DO 'nns NOW! 13.12

Look into using the Gauss-Seidel method to solve the 10 equations you have
generated from Example 13.6.2. If you attempt this on paper, you will quickly find
the calculations very burdensome, repetitive and open to error.

We suggest you think about ways in which you can make a spreadsheet such as
Excel do the repetitive Gauss-Seidel calculations for you, using just spreadsheet
formulae to implement the algorithm.

Check any answers you obtain by whatever means you can: comparison with the
finer grid case, engineering common sense, sample checks back into the original
equations, and so on.

Look into the possibilities offered by any other technology available to you; CAS
systems often have simultaneous equation solvers, but can be open to the same issues
as graphic calculators; often engineers will write their own software to implement
numerical methods, sometimes calling on standard commercial software libraries
such as NAG (Numerical Algorithms Group).
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DO THIS NOW! 13.13
Sometimes there are special possibilities in certain technologies. For instance, Figure
13.9 shows a spreadsheet set up to use Excel's "iteration" feature to implement the
Gauss-Seidel method as required in DO THIS NOW 13.12! Study Figure 13.9 and
see if you can set up a spreadsheet like this for yourself. Here are some hints:

The spreadsheet mirrors the physical shape of the area, with each node temperature
appearing in a cell in its corresponding position.

Each cell formula makes its value equal to the average of the four surrounding cells.
This will lead to "circular references", but they can be removed as follows.

You must implement iteration by Gauss-Seidel, by choosing "Calculation" from the
"Tools" menu and changing mode to "Iteration" as shown.

You can plot temperature profile across the plate as shown using a "Surface plot".

With this technological support, you can easily refine the grid further by using more
cells. The number of equations increases rapidly but the spreadsheet deals with that!
Note the current limit on number of columns in Excel is 256 (!).

Figure 13.9 Using the powerful Iterationfacilityin Excel.

7Xt -X2 +2x3 =7

-2Xl +9X2 + x3 =3

Xl -2X2 +8x3 =10

(a)

END OF CHAPTER 13 EXERCISE - DO THIS NOW!
For the equation systems (a) and (b) below, solve them by:

(i) Gaussian elimination (with back substitution);

(ii) Gauss-Jordan elimination;

(iii) Gauss-Seidel iteration;

(iv) using more than one technology - e.g. graphic calculator, CAS, spreadsheet.
lOXl +x2 +2x3 -X4 =3

- 2xl +l lx2 + x3 +3x4 =5
(b)

2Xl - x2 +9x3 +x4 = 10

-2xl +2X2 +8x3 -lOx4 = 1

Check that your answers agree in each case. Compare the pros and cons of the
different approaches in each case.
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Vectors
"It's all visual. It's hard to explain." Richard Feynman

14.1 INTRODUCTION
The notion of a vector allows you to deal with physical quantities which have not

only a magnitude but a direction as well. If a quantity has magnitude only it is called
a scalar. If it has both magnitude and direction it is called a vector.

Words used imprecisely in everyday language need to be used precisely once this
distinction is recognized. For example, velocity is a vector, being speed in a given
direction; speed is a scalar, measuring how fast but not specifying direction. Weight
is the action of mass in a given direction (under gravity) and is thus a vector; mass is
the tendency of a body to resist force, and is a scalar. Other examples of scalars are
time and temperature; other examples of vectors are position, acceleration, and force.

A scalar can be specified by a single numerical value together with its units;
vectors are specified by a numerical size and a direction in space. In a two­
dimensional space such as a plane, two numbers are needed to specify direction; in
three dimensions three numbers are needed to specify direction.

Vector theory is important in engineering. It allows vector quantities to be
handled mathematically in very concise ways so that complexity in the mathematics
does not obscure the engineering. You must learn how to handle these mathematical
objects. This chapter gives you a simple introduction. Do the exercises and
activities to become familiar with vectors.

14.2 REPRESENTING VECTORS
14.2.1 Basic Cartesian notation

You can represent a vector geometrically by an arrow pomtmg in the right
direction, with its length proportional to the size or magnitude of the vector. The
vector can also be represented algebraically, in the same way as a point in space, by
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the co-ordinates of the end of the arrow relative to the origin O. In two dimensions
we need x and y co-ordinates, called the components of the vector; in three
dimensions we need x, y and z components. You can see the two-dimensional case in
Figure 14.1, where the position of a point P, which is a vector, is represented as
(x, y) . We denote a vector by a bold, underlined lower case letter. Thus the position

vector of the point P is labelled as ! =(x, y) .

P

x
Figure 14.1

Because the vector starts at the origin 0 and ends at the point P, another notation
often used is shown in (14.1), where the arrow shows the direction of the vector.

-+
r=OP (14.1)

(14.2)

14.2.2 Magnitude and unit vectors

The size of the vector [, as represented by the length of the arrow, is called the
magnitude of ! and is written ~.

It is useful to have the idea of a unit vector, written !, which is the vector of

magnitude 1, pointing in the same direction as !. The unit vector! is then related to

!: by

A r
r =-=-
- ~

You can see from Figure 14.1 that the magnitude of a two-dimensional vector is
the length of the line OP, which is given in terms of x and y by Pythagoras' theorem

In 3 dimensions, magnitude is similarly given by

~=~x2+y2+Z2

(14.3)

(14.4)

You will notice that there are many parallels between two-dimensional vectors
and the ideas of complex numbers, which you met in Chapter 6.

14.2.3 Direction cosines

Another very useful associated idea involves the direction cosines of a vector.
These are useful in many ways, for example in robotics, and in finding the lines of
principal stresses and strains in stress analysis.
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The direction cosines are the cosines of the angles made by the vector with the
three Cartesian axis directions x, y and z. For the three-dimensional vector

r == (x. y. z] == xi + yj+ z~ they are given respectively by:

x
1=cos(a) =I!I m = cos(f3) = L

I!I
Z

n = cos(y) = I~

The letters l, m and n are conventionally used to represent direction cosines, and
the idea is illustrated geometrically in Figure 14.2.

Figure 14.2

14.3 THE ALGEBRA OF VECTORS
14.3.1 Vector addition

Two vectors can be added both geometrically and algebraically, to form what is
known as their resultant. The geometrical approach relies on the use of a vector
triangle as shown in Figure 14.3. The two vectors to be added are placed head to tail.
This forms two sides of a triangle. The third side of the triangle forms the sum or
resultant.

--+ --+ --+
InFigure 14.3 for instance, !3 =!I +!z or AC = AB+BC .

c

Figure 14.3

Algebraically, to add two vectors, you add each component individually. Thus if
~ = (al ,aZ,a3) and !!= (bl ,bz,b3) , then ~+!! = (al +bl ,az +bz , a3 +b3)·
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14.3.2 Multiplication by a scalar

If a vector is multiplied by a scalar, the rule is that every component must be
multiplied by that scalar.

Thus: k! =k('l ' '2' '3 ) =(k'l ' k'2' k'3 )

The geometrical meaning is that the length of the vector is extended by a factor k.

k! is a vector in the same direction as ! but of magnitude k times !.

14.3.3 Vector subtraction

One case worth mentioning is the vector (-I)! =-! ' which is a vector equal in

magnitude to ! but in the opposite direction. This then gives us the mechanism for

subtracting vectors. If you want to subtract !, you simply add -!.

This is shown geometrically in Figure 14.4 where, to form !4 =!l -!2' !2 is
reversed and added.

o

(d)

(a)

(b)

(c)

Figure 14.4

Example 14.3.1

Given the vectors !l= (1, 2), .!!..= (0, -1) and.£..=(2, 3), find

(a) !! + 21! (b) !! -I! (c)!! + I! - £ (d) a unit vector parallel to £

Here are the solutions:

!! + 21! = (1, 2) + 2(0, -1) = (1, 2) + (0, -2) = (1,0)

!!-I! =(1,2)-(0,-1) =(1,3)

!!+I!- s =(1,2)+(0,-1)-(2,3)=(-1,-2)

A unit vector parallel to £ = 1£1 = (2,3) ::::: (0.15, 0.23)
s ~22 + 32

Figure 14.6 displays these results produced on CAS technology (TI Voyage 200).
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-[8 -1]+b
- [2 3] + c
-a+2'b
-a-b
-a+b-c
_ c

norl'l(c)

[8 -1
[2 3
[1 8
[1 3

[-1 -2

[2·m 3·m
13 13

Figure 14.6

14.3.4 The standard basis vectors

Unit vectors pointing in the directions of the x, y and z axes are denoted by
i, j and ~ respectively. All vectors can be represented very simply in terms of these.

In two dimensions: ! == (x. y) == xi + yJ

In three dimensions ! == (x,y,z) == xi + yJ+ z~

(14.5)

(14.6)

DO THIS NOW! 14.1

Find out now how your technology - graphic calculator, CAS, etc - handles vectors.

1. Given vectors! = (4, 3),!! = (-I, -2) and £ = (0,4), find

(a) ! + 2!! (b) 3! - 2!! (c) !! -!! - £ (d) a unit vector parallel to!!

2. Given the vectors! = (1,1, 1),!! = (-1, 2, 3) and £ = (0,3,4), find

(a) ! + !! (b) 2!!-!! (c) ! + !! - £ (d) a unit vector parallel to £

Check your own answers using your technology.

14.4 PRODUCTS OF VECTORS
There are two kinds of products of vectors: the scalar or dot product and the

vector or cross product. They are each defined the way they are because they have
particular uses when vectors are used in engineering and science.

14.4.1 The scalar or dot product

The scalar or dot product of two vectors ~ =(ai' a2) and !!=(bl ,b2 ) is defined
in two equivalent ways, one algebraic and one geometric, as follows:

Algebraically: ~. !! = a l bl +a2b2

(~.!! = a.b, +a2b2 +a3b3 in 3D)

Geometrically: !! .!!=I~I~ cos8

(8, (0 S; B S; tr), is the angle between the two vectors.)

~.!! is a scalar Gust a number). The dot between the vectors is an essential part
of the notation. The definitions are equivalent, although we shall not prove that here.
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There are some simple but useful rules obeyed by the dot product:

!!.! =!.!! (14.7)

!! '!! =1!!1 2
since in this case 8= O. (14.8)

!!.(y+~~:)=!!.!+!!.w (14.9)

Example 14.4.1

Given the vectors! = (0, -2),!! = (3, 4) and £ = (2, 1), evaluate

(a) ss (b) zs (c) (~+!!).~ (d) ~·(2!!+3~) (e) (~.!!)~

Solutions

(a) a- c

(b) b-e

(c) (~+!!).~

(d) ~·(2!!+~)

(e) (~. !!)~

= (Ox3 + -2xl) = -2

= (3x2 + 4xl) = 10

= (0+3,-2+4) . (2,1) = (3,2) . (2,1) = 8

= (0,-2).(6+6,8+3) = (0,-2).(12,11) = -22

= (Ox3+(-2)x4)£ = (-16,-8) (Note this is a vector!)

Figure 14.8 shows some of Example 14.4.1 carried out on a CAS enabled graphic
calculator.

-[6 -2] -t a
- [3 4] -t b
- [2 1] -t c
- dotP(a. c)
- dotP(b. c)
- dotP(a + b. c)
- dotP(a. 2·b + 3'c)

FUNe un

Figure 14.8

[6 -2]
[3 4]
[2 1]

-2
16
8

-22

DO TmS NOW! 14.2

1. Verify rules (14.7) - (14.9) for.!! = (1, 2, 3),! = (-1, 4, 2),~ = (-2, -3, 5).

2. Given the vectors! = (-1, 2),!! = (0, 6) and £ = (5, -5), evaluate

(a) s s (b) !!.~

14.4.2 Uses of the dot product

Some of the properties of the dot product have special uses, as in these examples.

Perpendicular vectors

The geometrical form of the dot product includes a term cos( 8). If (J = 900 then
cos( 8) = 0, and so the dot product will be zero. Therefore, providing !! and ! *' 0 ,

then g .! = 0 tells you that g and ! are perpendicular.
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Resolving vectors into x and y components

It is useful to be able to find the component of the vector ! along a given
direction - for instance to see how much of a force pushes in the x or y directions.
From Figure 14.7, you can see from the right-angled triangle that the component of
vector! in the direction of OP is given by ON =I!!/ cose .

If we take a unit vector along OP to be ft then Iftl = 1and ON can be written:

ON =I~I cosB = 1~llftl cosB = ~ .ft
Thus the component of vector! in the direction defined by the unit vector ft is

given by ~·ft.
A

l!

8

o N

Figure 14.7

Example 14.4.2

Given the vectors! = (1, 2), J! = (-1, 1) and £ = (2, 2):

(a) Evaluate the angle between! and J!

(b) Identify if any of g, J! and £ are perpendicular to each other.

(a)! .J!= I~"!!I cos B=alq +a2~

Now I~I =.J5 and I!!I =.J2 and!.J! = lx(-I) + 2xl = 1

Thus 1 = .J5 x.J2 x cos(B) and so

e=COS-I(I~'I:I) = COS-l(la) =1.249 radians to 3 d.p.

(b) J! and £ are perpendicular to each other.

You can check both answers by drawing the picture.

DO THIS NOW! 14.3

Find out now how your technology implements the dot product, and test yourself out
by reproducing the results of Example 14.4.1 and DO THIS NOW 14.2!

Use the dot product to find the component of the vector E.= (1, -2) in

(a) the i direction

(c) the direction (2,-1)

(b) the direction (3/5, 4/5)
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(14.10)

14.4.3 The vector or cross product

The other type of product between two vectors !! and h is the vector or cross
product. Its result is a vector which is at right angles to both !! and h. It thus
necessarily involves the third dimension. One use is in describing moments of forces
in mechanical engineering problems.

The product is again defined in two equivalent ways, one geometric, and one
algebraic in terms of components. It is best to meet the geometrical definition first.

Geometric definition ofcross product

For two vectors g and h the vector or cross product is defined geometrically as

!x~ =I!II~I sin B~

where B is the angle between !! and h (0 ~ e ~ 1t), and fi is the unit vector

perpendicular to both !! and h pointing in the direction such that !!, h and fi form a

right-handed set, i.e. if Bis measured fromg to h, the direction of the vector product
!x~ is the direction in which a right-handed screw would advance when turned

from g to h.
As with the dot product there are some simple rules.

! x ~ = -~X! (reversingg to h reverses direction of fi)

!X~x£):# (!X~)x£ in general

!X~+£)=<!x~)+(!X£)

axa=O (because the angle Bbetween!! and itself is 0)

(because g is perpendicular to ! x ~ )

(14.11)

(14.12)

(14.13)

(14.14)

Algebraic definition ofcross product

The equivalent algebraic definition of cross product in terms of vector
components is obtained by looking at the effect of the cross product on the three

basic unit vectors !. Jand ~ defined in section 14.3.4. These satisfy:

txt =0 jxj =0 ~x~=O

!xj=~ JX~=! ~x!=j

There are some nice patterns here. This happens often with vectors.

DO THIS NOW! 14.4

Satisfy yourself that these are true by thinking about the geometrical definition of
cross product.

We can use these results to find the algebraic component form of the vector
product. The derivation is complicated; you should at least aim to note the result.
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Take ~=(al,a2,a3)=al!+a2J+a3~ and !!=(bl,b2,b3)=bl!+b2J+b3~

Then using the rules above:

ax b = (al! +a2J+a3~)x(bl!+b2j+b3~)

= albldxj) + alb2dxj)+ alb3dx~)+

a2bl (Jxh + a2b2(jxJ) + a2b3(jx~) +

a3bl~x!) +a3b2(~x j) +a3b3(~X~)

= alb2~+alb3(-J)+a2bl (-~)+a2b3!+a3 btJ+a3b2(-h

Finally then

axb = (a2b3 -a3b2)!+(a3bt -atb3)j+(alb2 -a2bt)~ (14.15)

This looks unmemorable and complicated, but there is a way of remembering it
using an extension of the idea of a determinant as you met in Chapter 12, to include
3x3 matrices. A 3x3 determinant as defined below is written in terms of three 2x2
determinants. In fact this definition works for any 3x3 determinants, but you can see

the benefit in this particular case in terms of pattern: the first row is just !. Jand ~,

the second row is the components of ,!, and the third is the components of J!.

i

DO THIS NOW! 14.5
Multiply out the 2x2 determinants in this expression and show they do give the
expression (14.15) derived for ~x!!.

Example 14.4.3

If!..= (2, 2, -1) and h..= (3, -6, 2) find ~x!!.

Solution

i j k
axb = 2 2 -=-1 = ~ 2 -11_ ~2 -11+ kl2 _21

3 _ 6 2 9- 6 2 13 2 93 ~

= f(4-6)-J(4+3)+~(-12-6) =(-2, -7, -18)

Figure 14.9 shows a check of this answer using a CAS.
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- [2 2 -1) ~ a
-[3 -6 2] ~ b
- crossP(a, b).

Vectors

Figure 14.9

[2 2 -1
[3 -6 2

[-2 -7 -18

[Ch.14

DO THIS NOW! 14.6
Find out now how your technology handles the vector product, and test your
understanding by verifying the result of Example 14.4.3.

Verify rules (14.10) to (14.14), using the algebraic definition, for g = (1, 2, 3),
!! =(-1, 4, 2), and £ =(-2, -3, 5).

END OF CHAPTER 14 EXERCISES - DO ALL OF THESE NOW!

In each case perform calculations on paper and check by technology.

1. Given g = (1, 1,0), !! = (2, 2, I) and £ = (0, 1, I) evaluate

(a) a+b (b) ~+!!/2+3~ (c) a-2b (d) I~

(e) I!!I (f) I~ -!!I (g) ~ (h) ~

(i) a·c (j) (axb)-c (k) (~. !!)~- - -
2. Find the angle between the vectors g =(1, -3, 5) and!! =(1, 2, 4).

3. Find the component of the vector f = (-2, 1, 5) in

(a) the i direction

(b) the direction (1/3, 2/5, 2/5)

(c) the direction (0, 0, -1).

6. You are given g = (5, 4, 2),!! = (4, -5, 3) and £ = (2, -1, -2).

(a) Find ~.!!.

(b) Find the angle between g and b.

(c) Find a unit vector perpendicular to!! and b.

(d) Find the components of all three vectors in the direction (2,-3,0).

7. (Harder) Given the triangle DAB, where 0 is the origin, and denoting the mid­
points of the opposite sides as 0', A' and B', use vectors to show that the lines
DO', AA' and BB' meet at a point. (Note that this is the result that the medians of
a triangle meet at the centroid).

8. (Harder) A plane is flying at 400 knots in a strong wind, blowing from the NW at
a speed of 50 knots. The plane wishes to fly due west. In what direction should
it head to achieve this, and what will be the actual ground speed of the plane?
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15
First Order Ordinary Differential
Equations
"Trying is the first step towards failure" H Simpson

15.1 INTRODUCTION
In Chapter 10, as you explored the idea of integration further, you met the

beginnings of the idea of ordinary differential equations (ODEs). These are equations
involving not only the quantity you want to find, but information about its rate of
change too. Such equations are important since many physical laws involve not the
quantity you seek but the rate at which it changes. For instance, Newton's second law
of motion states that force F(t) is equal to mass m times acceleration, which is rate of

change of velocity v(t). The equation of motion is then F = m dv . If you wish to
dt

know how the speed varies for a known force F, then you must solve this differential
equation for the speed v(t). The equation is differential since it involves a derivative
of the unknown function v(t).

Other examples of engineering situations modelled by such equations include
simple cooling models, a capacitor discharging or charging through a resistor, and
radioactive decay. You will explore these models further in Section 15.4.

These equations are called ordinary differential equations because the unknown
function is a function of one variable only - we shall use time t because engineers
and scientists often have to deal with systems which vary in time, although many
text books insist on using x as the independent variable. This is as opposed to partial
differential equations where the unknown function can be a function of more than
variable, for instance a temperature varying in both time and position. Although
these equations are not covered in this book you will have seen in Section 13.6 an
example of their use and approximate solution.
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In this chapter we look at simple first order ordinary differential equations. To
call the equation first order means that only the first derivative of the unknown
function occurs, and no higher derivatives. We shall mention a few of the forms
these first order equations can take, and just a few of the many methods available to
solve them. You will find out that solution methods vary according to the form the
equation takes.

Keep on remembering to do the exercises and activities as you go.

15.2 OVERVIEW
15.2.1 Solving an ODE is equivalent to integration

The general form of a first order ordinary differential equation is F(t, y, d
y

)=O.
dt

That is, it is a mixture of terms involving the unknown function y(t), its first

derivative dy and the independent variable t. Different solution methods work in
dt

different cases depending upon the exact form of the equation.

Solving a differential equation involves finding y as a function of t, so that the
behaviour of the system being modelled can be seen and understood. Whether it
looks like it or not, the process of solving a first order equation is equivalent to doing

one integration, since what you are doing is "getting rid of' dy to leave just y - and
dt

integration is the process of undoing a derivative. Indeed in some methods, for
example using the Laplace transform (see Chapter 17), it seems that integration has
nothing to do with what is going on - but remember that the process is equivalent.

Now because solution is equivalent to integration, an arbitrary constant will be
involved, and the value of this can only be found by having extra information ­
typically in a time dependent system this would involve specifying the initial state of
the system, say the initial temperature, position or voltage when t =O. This makes
sense in engineering terms - the differential equation tells you how the system
varies, but to see what it is doing at time t, you must also know where it started from.

15.2.2 Types of solution method

An analytical solution to a differential equation is an algebraic relationship
between y and t which satisfies the differential equation. A general solution is one
which contains an arbitrary constant. A particular solution is one which satisfies a
particular (perhaps initial) condition e.g. y =1 when t =O.

The solution methods will include: a recapitulation of the direct integration
method as met in Chapter 10; the method of separation of variables, together with
some engineering case studies; then a simple (so-called) approximate numerical
method, implemented through a spreadsheet. Finally you will use a technological
solver to get used to a very important engineering activity - producing a picture and
getting a feel for how the solution behaves as the controlling parameters are varied.
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15.3 DIRECT INTEGRATION REVISITED
You have already met an example using direct integration in Section 10.5, but

here is a summary of the technique, in more general terms. It can be applied to any

equation taking the very simple form dy = f (t) where fit) is any given function of
dt

time t only. The solution is given by using the definition of an integral:

y = f f(t)dt + C , where C is an arbitrary constant.

Of course whether you can find an explicit algebraic solution or not, depends on
whether the function fit) is one which can be integrated.

Example 15.3.1

Solve dy = cos(t) , subject to the initial condition yeO) = 1.
dt

Integrating gives the general solution y = fCOS(t)dt + C =sin(t) + C

But you are also given that yeO) = 1 (that is, y = 1 when t = 0), and so

1 = sin(O)+ C or C = 1.

Thus the particular solution is y = sin(t) +1 .

You can check this result on a CAS system, for instance as in Figure 15.1. Perhaps
simply plot your answer and check if it satisfies your initial condition. Alternatively
use a built-in solver (e.g. deSolve in Figure 15.1) and plot the result ofthat.

Figure 15.1 also illustrates the effect of the arbitrary constant C (represented by the
@l symbol there) by plotting some of the family of graphs produced by the general
solution as C takes different values.

• deSolve(.,,' ~ cos(t.). t. • .,,) ." = sin(t.) + 121
• deSolve(.,,' =cos(t.) and .,,«(3) =I. t. • .,,)

.,,·sin(t.) + 1
I

HIlIN aM • TD rUN 21"

Figure 15.1 Solving a first order ODE using a built-in solver on CAS.

Example 15.3.2

Solve dy =e-t 2
, subject to the initial condition yeO) =1.

dt

The theoretical solution to this equation is y = fe -t
2

dt + C , but this integral cannot

be done algebraically to give an explicit solution. In this case then we would have to
take an approximate, numerical approach.
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DO THIS NOW! 15.1

Solve the following first order ordinary differential equations by direct integration:

(a) dy = e-t , subject to the initial condition y(O) = 1.
dt

(b) dy = -2t , subject to the boundary condition y(l) = O.
dt

In each case plot your solution using technology and check that the picture confirms
that your initial condition is satisfied,

Investigate what technological first order ODE solvers you have available to you,
and check your answers here using them.

15.4 SOLUTION BY SEPARATION OF VARIABLES
Certain first order ODEs occurring commonly in engineering situations can be

solved by the method of separation of variables. We shall illustrate this in one
special and interesting case, where the rate of change of a quantity is directly
proportional to its value at any point. This includes situations as diverse as cooling
curves, radioactive decay, and simple discharge of a capacitor. This situation can be
expressed mathematically as

or

(rate of change ofy) oc (value of y)

dy
-ocy.
dt

Putting in a constant -k of proportionality dy =-Icy .
dt

(We use -k since most engineering cases involve negative proportionality.)

Solving the equation means finding y(t) explicitly as a function of t. This

involves somehow "getting rid" of the dy to leave just y(t), so solving is equivalent
dt

to one integration. In that case, once more there will be one arbitrary constant, and
you will need another piece of information to find that constant of integration - again
usually some information about how the system starts.

Here is a model solution. Read it and understand it, then absorb the conclusion.

The equation is

Separate the "f's and the "y"s
dy
-=-kdt.
Y
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(You might have been told previously that you should not treat the dy symbol like a
dt

fraction because it carries more meaning than that. This is true, but this is just a
notational trick which works and which will help you to get to the solution.)

Integrate both sides

Do the integrals

fdY = f-kdt .
Y

In(y)=-kt+C . (Carbitrary.)

We do not stop here, as we want y and not just In(y). Recall that to remove a natural

logarithm you use an exponential function since exp(ln(mess» = mess!

Thus

or

expilnty) = exp(-kt +C) .

y = exp(-kt) x exp(C) .

We rewrite this using the other exponential notation (you should be comfortable with

both). We also define A = e C to tidy up the involvement of the arbitrary constant.
This changes nothing important - C is arbitrary and so then is A!

Thus y = Ae-kt
• (A = eC arbitrary.)

To find the arbitrary constant A you then need some more information. For example
if you know that y = Yowhen t = 0, then you can write:

Yo = Ae-kO
, which gives A = Yo.

That is, A represents the initial value of y, when t = O.

Conclusion: The solution of dy = -ky is an exponential curve y = Ae<, The
dt

constant A represents the initial value of y.

This does perhaps give more reason why the exponential function is so important.

Example 15.4.1

Solve dy = -3Y with y(O) = 4.
dt

There is no need to go through all the solution procedure every time. You should

recognize the equation as being of the form dy = -ky and write the solution down
dt

immediately y = Ae-3/ •

y(O) = 4 will give A = 4.

DO THIS NOW! 15.2

Solve (a) dy =-7y withy(O) = 10.3.
dt

(b) 4
dy

=-2y withy(0)=2.
dt
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15.5 ENGINEERING CASE STUDIES
The type of ODE discussed in section 15.4 occurs often in modelling engineering

systems in which the rate at which a quantity changes at any time is proportional to
its value at that time. Important physical laws are based upon this principle.

DO THIS NOW! 15.3

There follow three simple engineering case studies, in three very different physical
situations, but which all lead to the same mathematical differential equation - which
is of the type discussed in section 15.4.

Work through at least one of these case studies now. Preferably work through all
three, to get a feel for how the same mathematics can describe very different
physical situations - a real illustration of the power of mathematics.

DO THIS NOW! 15.3.1 Case Study 1 How do things cool down?

Newton's Law of Cooling states that the rate at which an object cools is proportional
to the excess of its temperature above the surrounding or ambient temperature.

Thus if () is the excess temperature, then this is expressed mathematically as:

dB = -kB with -k the constant of proportionality.
dt

Write down the general solution of this equation by separating the variables and
doing the integrals which arise. Explore graphically the effect of varying the
parameter k. Use any technology you wish.

Put the kettle on

A cup of tea is made with boiling water. Take the moment it is made as t =O.

The average surrounding room temperature is 20°C. After 10 minutes the tea has
cooled to a temperature of 80°C. Use the exponential model derived from Newton's
Law of Cooling to find out (graphically or algebraically):

(i) what the tea's temperature is after 15 minutes;

(ii) how long it will be before it reaches a temperature of 50°C.

On a separate occasion, three cups of tea are made from the same kettle of boiling
water, at almost exactly the same time. After 10 minutes, one cup has cooled to
80°C, one to 75°C, and the third to 70°C. What reasons can you think of to explain
the differences?

What time did the victim die?

A murder victim is discovered by the police at 6:00a.m. The body temperature of
the victim is measured then and found to be 25°C. A doctor arrives on the scene of
the crime 30 minutes later and measures the body temperature again. It is found to
be 22°C. The temperature of the room has remained constant at 15°C. The doctor,
knowing that normal body temperature is 37°C, is able to estimate the time of death
of the victim. What would be your estimate for the time of death? How accurate
would you say your estimate is? (We got between 4.53 and 4.54a.m. Do you agree?)
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DO THIS NOW! 15.3.2 Case Study 2 Radioactivity: How old is Pete Marsh?

When an organism is alive it maintains a mix of radioactive Carbon 14 and stable
Carbon 13 which means it has a steady radioactivity level of 6.53 pico-curies per
gram. When it dies this level starts to decay. Measuring how far the level has
decayed provides the basis for Radiocarbon Dating. Let R(t) be the radioactivity of a
gram of carbon inside a dead organism (plant or animal) t years after death. The rate
of decay of radioactivity R per year is

1--xR.
8300

Ernest Rutherford in 1908 first expressed this decay mathematically as the

differential equation dR = __1_ R .
dt 8300

Use Rutherford's equation together with your knowledge of the radioactivity at time
t =0 (i.e. time of death) to find R as a function of t.

Now try to answer this question:

Pete Marsh was the name given to some ancient human remains found well
preserved in a bog in Cheshire. Carbon 14 radioactivity levels were measured at
about 5.3 pico-curies per gram. Roughly how old is the body? (We get 1732 years.)

How sensitive is your estimate of the date to the accuracy of the reading of the
radioactivity level? How accurate is the radiocarbon dating process, and what are
the practical constraints on using it?

DO THIS NOW! 15.3.3 Case Study 3 How does a flashgun work?

Investigate how a capacitor can discharge electrical energy causing a brief sharp
current to flow. Start with a much simpler circuit than that in a real flashgun, by
analyzing the circuit in Figure 15.2 using Kirchoffs Laws. Show that the equation
for the voltage vet) across the capacitor in terms of C, R and the applied e.m.f E(t) is

CR dv + v = E(t) . (You may need to use the capacitor law C dv = i .)
dt dt

1 ~1~
Y_E(ll__J.J'
Figure 15.2 A simplified discharger circuit.

To find out how the circuit discharges the capacitor from an initial voltage of say 3
volts, try taking an applied e.m.f E(t) =0, and v(O) =3.

Draw some pictures of the discharging curve, and experiment with the effect of
changing C and R - or the so-called time constant CR.

Find out what you can about real flash gun circuits, and compare what you find
about them with the analysis you have performed here.
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15.6NUMERICAL SOLUTION METHODS - THEEULERMETHOD
15.6.1Theneed for numerical solutions

We have seen that some commonly occurring first order differential equations

have analytical solutions. For example dy =-0.5y with initial condition y(O) =1,
dt

has the solution y = e-0.5/ .

However many real situations are modelled by using differential equations of the

general form dy = !(t, y) where !(t, y) is a function of t and y, for which,
dt

unfortunately, analytical solutions may be difficult to compute, or even do not exist
at all. In these cases numerical methods may be used to provide a solution. A
numerical solution to a differential equation is a numerical approximation of a
y-value for a given t-value. Although these solutions are often called approximate,
and in that way seen as inferior, given modern computing power, they can often be
made as accurate as required for engineering purposes.

To give an idea of how the ideas behind some of these methods work, we shall
look at just the simplest numerical method - Euler's method.

15.6.2Euler's method

Suppose we are told that y =Yo when t = to, as a starter condition, where Yo and to
are given constant values. The general idea is that we generate approximate values of
y, which we call Ylt Y2, Y3, ...., at successive equally spaced values of t spaced a
distance h apart, which we call tit t2' t3, ..... This situation is shown in Figure 15.3.

Y

_rter

I Y,

Y.

Yo

'.,
h

'0
h

"
h h h '. ...... --.,

Figure 15.3 The set-up for Euler's method.

Specifically we define t, =to + h, t2=t, + h, and in general tn+l =tn +h.

h
time t« by

We know the y value Yo corresponding to the first t value to. To calculate the
subsequent y values corresponding to the other t values, we use an approximate form

of the differential equation, dy = !(t, y). In fact we approximate the derivative at
dt .

dy difference in y values Yn+! - Yn Yn+! - Yn
-=::l = =
dt difference in t values tn+! - tn
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Using this, an approximate form of the differential equation is then

Yn+l - Yn = j(tn'Yn)
t n+1 -tn

which can be rewritten

Thus if we know what Y is at t« we can use this formula in a systematic way to
find Y at the next value tn+\ and so on. And since we know that y is Yo at our starting
point to, then we can calculate Y by stepping forward (or back!) in time from there.

This is the process known as Euler's method. Before following through an
example it is interesting to see what is happening geometrically, as in Figure 15.4.

For the first step, the Euler equation can be written Y\ = Yo + hf(to, Yo), and

then rewritten again as Y\ - Yo = j(to, Yo). Butj(to, Yo) is just the slope of the
h

solution curve at to. Thus y\ - Yo "" dy at to.
h dt

y

RQ=h f(to,yo)
starter

L ........,~ y, approx
//~_-+----y(t)

P ~ LJ (actual)

Yo

h h
to t,

Figure 15.4 The geometrical reasoning behind Euler's method.

In terms of Figure 15.4, then, if PR is the tangent at time to then QR is YI - Yo'

and instead of calculating values of y by "going up" the "exact" solution curve y(t),
we are predicting the next value by going up the tangent to the solution curve.

15.6.3 An example of Euler's method in action

One good way to implement this method is through a spreadsheet. It can also be
implemented through a simple computer or graphic calculator program, but the
spreadsheet makes what is going on very explicit.

Example 15.6.1

Solve the differential equation dy = _1_ with the initial condition y = 0 when t = O.
dt 1+ t 2

We choose this particular example because an analytical solution is possible, and can
be obtained by direct integration. This will give a benchmark against which you can
compare the numerical solution to see how well it works, and to see what the issues
are when you use the numerical solver.
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DO THIS NOW! 15.4
Show by direct integration (tables or technology) that the analytical solution of

dy = _1_ with Y = 0 when t = 0 is given by y = arctan(t).
dt 1+ t 2

Now we shall set up the Euler method. In this case to = 0, Yo = 0 and !(t,y) =_1_.
l+t2

We shall generate values for y with a time step h of size 0.1 as shown in the
spreadsheet in Figure 15.5. The formulae used are:

to=O, Yo=O and tn+l=tn+h (n=0,1,2,3, ... )

Yn+! = Yn +hj(tn,Yn)= v, + h(_1_2J.
1+ tn

The Euler solution appears in Figure 15.5, and the analytical solution in Figure 15.6.

Figure 15.5 Solurion of Exampte 15.6.1 by Euler's Method

Figure 15.6 Solution of Example 15.6.1 by separation of variables
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At early values of time, the numerical solution stays close to the exact solution, but
as time goes on, it drifts further and further away.

DO THIS NOW! 15.5

Recreate the spreadsheets in Figures 15.5.and 15.6.

Your numerical solution will become more accurate if you use a smaller time step, h.
For instance, if you halve the time step, h. to a value of 0.05, you get the situation in
Figure 15.7. The approximate solution stays close to the exact solution for longer.
Indeed, one strategy in using this kind of method is to use this "interval halving"
technique - to go on halving the time step until the solution changes no more to
within the precision required over the range of values that the solution is needed.

Figure 15.7 Smaller time step equals more accuracy in Euler's method.

DO THIS NOW! 15.6
Show by separating the variables that the analytical solution of the first order ODE

dy =y (which models unlimited growth - rate of change of y is equal to y, and so
dt

the bigger y is, the faster it grows!) is y = yoel .

Modify your spreadsheet as created in DO THIS NOW! 15.5 to solve the same
ODE approximately using Euler's method.

Start with a time step of 0.1. Comment on how well the Euler method approximates
to the exact solution. Implement a strategy of time step halving, and comment on
how quickly the accuracy improves.

15.7 EXPLORING THE PARAMETERS
A very useful skill for engineers is to get a feel for how the values of the

parameters (or constants) in a differential equation affect the nature of the solution in
that equation. With modem technological solvers, particularly if they give graphical
output, this skill can be readily acquired. You may use a numerical solver on a
spreadsheet, or built-in solvers in a CAS system to help you with this.
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DO THIS NOW! 15.7

Find out what technological solvers - CAS or otherwise - you have available. You
should at least have the Euler spreadsheet you created for DO THIS NOW 15.5!

Use a solver to investigate and describe in writing how the solution of the equation

dy = _ay changes as the parameter a varies (take perhaps y =1 when t = 0).
dt

Make your descriptions particularly in terms of the solution as presented graphically.
Describe what happens to the graph in the ranges a = 0, a> 0, and a < 0, and also
what happens as a becomes more positive, or more negative. Do this before reading
the Hint below this box - then compare your comments with ours.

(Hint: you should see that if a < °then the solution describes exponential decay
from the initial value ofy down to zero, and that as a gets more negative, the rate of
the decay increases - that is the decay happens in a shorter time. If a> 0, then the
solution describes exponential growth from the initial value of y without limit, and
that as a gets more positive, the rate of the growth increases - that is the growth
happens in a shorter time. If a =0, then the solution should just remain constant at

. dy
a value of 1. ThIS corresponds to the case where - =-ay =°and so you would

dt
expect no change because the rate ofchange is 0.)

END OF CHAPTER 15 MIXED EXERCISES - DO ALL OF THESE NOW!

1. Solve the following ordinary differential equations by direct integration, or
separation of variables, as appropriate:

(i) The constant acceleration, a, of a body is equal to its rate of change of

velocity, dv . Determine an equation for v in terms of a, u and t given that
dt

the velocity is u when t = O.

(ii) The angular velocity, (4 of a flywheel of moment of inertia, I, is given by

I dOJ +N = 0, where N is a constant. Determine OJ in terms of t, given that
dt

OJ= lQ) when t = O.

2. Modify your Euler's method spreadsheet to investigate how well the method
works for the differential equation describing exponential decay:

dy =_y subject to the condition y = 2 when t = 0.
dt

3. Modify your Euler's method spreadsheet to investigate how well the method
works for the differential equation describing limited population growth:

dy = 3 - y subject to the condition y = 2 when t = 0.
dt
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4. Modify your Euler's method spreadsheet to investigate how well the method
works for the differential equation describing logistic growth:

dy = y(3 - y) subject to the condition y =2 when t =0.
dt

5. For questions 2, 3, and 4 check out your answers against the analytical solutions
we have obtained from a CAS system (Figure 15.8). Can you reproduce these
answers from your own CAS or indeed using pencil and paper?

(Tl :"'Il!1f n... .Te n ...J( F~'" .] rs III FS'" .T... F Algebra Calc. Other Prgl'lIO Clean Up
• C1e::.o!ve~ y = y'~.) - yJ and y~"') ':<:, to, YJ.

6·#3·t
y=

2·#3·t + 1
• deSolve(y' = 3 - y and yea) = 2, t, y)

y = 3 - #-t
• deSolve(y' = 'y and yea) = 2, t, y)

y=2·#-t

Id!' _i"'EU•••XWJj
MAIN RftD AUla rUNe )/"

Figure 15.8 CAS output from a built-in solver.

6. Investigate and report in writing on the effects on the solutions of changing the
dy

parameter a in the differential equation - = 1- ay. Take an initial condition,
dt

say, y = °when t =0.

Look particularly at what happens in the ranges a =0, a> 0, and a < 0, and
describe also what happens as a becomes more positive, or more negative.

6. (A harder modelling exercise.) A cylindrical can has depth lOcm. and circular
cross- sectional area of 6 cnr'. Water is escaping through a hole in the bottom and
when the depth of water is x em the rate of escape from it is 0.3cm3

S·I. If the can
starts off full, how long will it take to empty?
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16
Second Order Ordinary Differential
Equations
.. 'To Start Press Any Key.' Where's the ANY key?" H. Simpson

16.1 INTRODUCTION
In Chapter 15 you have just met some of the basic ideas of differential equations,

through looking at first order equations. In this chapter we extend these ideas to
second order equations. This is a crucial area of study for engineers, as second order,
linear, constant coefficient, ordinary differential equations (O.D.E.s) provide
mathematical models for engineering systems such as suspension systems, LCR
electronic circuits, control systems and many other situations. Many of the ideas
from first order equations carry over in a logical way.

Throughout this long chapter, remember to do the exercises and activities.

16.2 SECOND ORDER DIFFERENTIAL EQUATIONS
As with first order equations, we first mention a few general points before

looking at how we can solve these equations. The general form of a second order
linear O.D.E. with constant coefficients is

d 2 dy
a--.l.. +b-+ cy =f(t)

dt 2 dt

We begin by defining the terms we use:

• second order means that the highest derivative of y present is second order.
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• linear means that there is a (constant x y) term, a (constant x d
y)

term and a
dt

d 2y
2 dy

(constant x dt
2

) term, but no more complicated terms like y or Ydi" there.

• constant coefficients means that the quantities a, band c are constants.

Solving the equation involves finding yet) explicitly as a function of t. As with
first order equations, solution must be equivalent to an integration process, as what

2

you are doing is getting rid of dy and d ! to leave just y. The difference now is
dt dt

that it is equivalent to two integrations to get rid of a second derivative, and so we
must expect two arbitrary constants to come into the answer. Thus we will require
two boundary or initial conditions to find these constants.

16.3 CASE STUDY: A SUSPENSION SYSTEM

Before looking any more at the mathematics, let's have a look at one example of
where such an equation comes from. Figure 16.1 shows a simple model of a
suspension system, consisting of a mass connected to a fixed point by a spring and
damper system, and shaken around by an external force.

t External
force F(t)

damper

Fixed
end

y(t

(16.2)

Figure 16.1 A simple representation of a suspension system.

You can analyse the vertical movement of the mass M using Newton's second law.

d 2

Force =Mass x Acceleration = M--f
dt

Assume that the spring force obeys Hooke's Law:

Springjorce =-A.y (minus because ify increases, this force works to decrease it).

Assume also that the damper force is proportional to the speed of the moving mass:

Damper jorce = - k dy (again minus because the faster you move the mass, the
dt

more this opposes the motion).
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Putting these into equation (16.1) leads to the equation:

dy d 2y

-Ay-k-+F(t)=M-
dt dt 2

. d 2 Y k dy A F(t)
which can be rearranged to --+--+- y =--

dt 2 M dt M M

Comparing (16.3) with the standard form in (16.1), you can see that:

"a"=1 Arranged by dividing through by M.

(16.3)

"b"=..!...­
M

ftc"=~
M

Thus b represents the size of the damping force.

c represents the size of the spring force.

Note in ''real'' systems the parameters a, band c are always positive.

16.4THE SOLUTION OF LINEARSECOND ORDER O.D.E.S
We repeat the general points we made earlier:

• All solution methods (and there are several of these) are equivalent to integrating
twice, even if it does not feel as if that is what you are doing. This is because you

are taking something with d
2

; in and going from there to gety(t).
dt

• Therefore the solution should always have two arbitrary constants in it, one for
each integration.

• To find the value of these constants, two extra bits of information are needed ­
these will usually take the form of boundary or initial conditions - for example,

position y(t) and speed dy when t =O.
dt

There are then many possible approaches to solving a second order equation, each
with their strengths and weaknesses; common methods are:

• The Complementary FunctionlParticular Integral method.
This is a good way of seeing the structure of the solution, and one which helps
you to understand what is happening. Technology can help with what can be
heavy algebra. You will have a look at this method in Sections 16.5 to 16.8.

• The D-operator method, which is a bit out of fashion now.

• The Laplace transform method. This provides the language of control theory and
of much electronics, and is one of the most widely useful transforms. It is an
essential part of an engineer's knowledge, and you will meet it in Chapter 17.

• Extensions of numerical methods such as Euler's method (Chapter 15).

• Direct technological solvers, such as those built into CAS packages like Derive.
These are very useful for gaining an understanding of a system's behaviour by
varying the controlling parameters and seeing how the solution changes.
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16.5 THE COMPLEMENTARY FUNCTIONIPARTICULAR INTEGRAL
APPROACH.

This is not necessarily the best practical approach, but it is very good for
allowing you to see the structure of a solution, and therefore understanding it. The
explanation is necessarily quite long, but then you can work through some examples.
The method splits the solution into two parts (which have meaning both
mathematically and in engineering terms) - and these can be found separately.

• The Complementary Function (CF) is the part of the solution which arises from
unforced motion (F(t) =0), that is it is the natural behaviour of the system when
no external force is pushing it around. It is also called the transient term.

• The Particular Integral (PI) is an extra term added on to take account of the
effect of any external force. It is also called the steady-state term.

Thus y(t) = CF + PI = transient + steady-state

=(natural system-dependent term) + (external force-dependent term).

16.6 THE CF • FINDING OUT ABOUT UNFORCED CHANGE.
16.6.1 The basis for the CF solution

We start with the CF term - which is the term reflecting the natural unforced
behaviour of the system. In this case then there is no external force, and F(t) =O.

d 2y dy
Thus the CF is the solution of the equation: a-- +b-+ cy =0 (16.4)

dt 2 dt

How can you solve this? When faced with something like this, it is a good idea
to look at a simpler case, for instance at the corresponding first order equation:

dy
b-+cy=O.

dt

The solution of (16.5), by separation of variables, is

DO THIS NOWl 16.1
Solve equation (16.5) by separation of variables now.

(16.5)

c
-t

y(t) = Ae b

Perhaps then it is reasonable to guess that the solution to the second order case will

also be exponential? Thus we shall try as a solution y(t) = Aemt and substitute it into

the equation (16.4) to see if it works, and if so, for what values of A or m. Here goes:

You need

Then you can find

and

Substituting in (16.4):

y(t) = Ae mt
•

dy =mAemt

dt

d 2 y__ =m2Ae mt

dt 2

am 2Ae mt +bmse'" + cAemt = 0 .

�� �� �� �� ��



208 Second Order Ordinary Differential Equations [Ch.16

am 2 +bm+c=O.

system over-damped.

system critically damped.

You can divide through by Ae mt
, as it is not zero (since both e'" *" 0, and A*"O

because if it were 0 then the whole solution would disappear):

Thus am2 +bm+c=O . (16.6)

What does this say? It says that yet) = Ae mt is indeed a solution to (16.4) as long

as m is a root of the quadratic equation (16.6). There is no condition on A, which is
therefore arbitrary. The quadratic equation (16.6) is called the auxiliary equation.

16.6.2 Summary of the solution for the CF

Let's see what this means in practice. Recall that the roots of a quadratic
equation can be real and different, repeated real, or complex. The form of the O.D.E.
solution differs depending on which of these forms the roots take. The process of
finding the CF for each of these cases is long, so we present a summary of the results
first so that you can see the overall simplicity, and so that the details of the
derivation do not get in the way of that. The derivation follows in section 16.6.3, and
examples applied to particular equations in section 16.6.4.

SOLUTION FOR THE C.F. - NO EXTERNAL FORCE

d 2 dy
For the ODE a--

y
+b-+cy=O

dt 2 dt

the auxiliary equation is

Case 1: b2 -4ac>0

The damping force prevails, the roots of the quadratic equation are real and different
from each other, and if their values are a and Pthen the solution ofthe o.d.e. is:

yet) =Ae at + Bef3t

Case 2: b2 -4ac=0

Transition from dominant damping, the roots of the quadratic equation are real and
equal, and if the value of the root is athen the solution of the o.d.e. is:

yet) =(A + Bt)eat

Case 3: b 2
- 4ac <0

The damping force is relatively smaller, the roots of the quadratic equation are
complex conjugates, and if the values of the roots are p + jq and p - jq then the
solution of the o.d.e. is:

yet) =ePt(Ccos(qt)+Dsin(qt)) system under-damped.

16.6.3 The derivation of the solution for the CF

-b+Jb2 -4ac
Remember the roots of the quadratic (16.6) are given by Roots =-------­

2a

and their nature is determined by the quantity b2
- 4ac .

�� �� �� �� ��



Sec.16.6] The CF: Finding out about Unforced Change 209

Case 1: b 2 -4ac>0

The roots will be real and different, say a and p, and so there are two possible

solutions Ae Q1 and BePt (A and B are arbitrary, and not necessarily the same).

You can then generate a general solution by adding these two together (this sum
certainly is a solution, and it has the required two arbitrary constants).

Thus in this case CF =y(t) =Ae Q1 + BefJr.

Since b2
- 4ac > 0, this means that b2 > 4ac. In other words the damping force

term represented by b dominates the spring force term represented by c. In this
case we say the system is overdamped.

Case 2: b2
- 4ac = 0

The roots will be real and equal, say just ~ and so the only exponential solution

is Ae Q1. We need another arbitrary constant to make the solution complete, and it
turns out that this can come from another solution, which only works for this

special case, BteQ1· The general solution is formed by adding these together.

So in this case C.F. =y(t) =Ae Q1 + BteQ1 =(A + Bt)e Q1.

This is the transition from the damping force prevailing to the spring force
prevailing, and we say the system is critically damped.

Case 3: b 2 -4ac<0

The roots will be complex (and conjugate), say p + jq and p - jq, so in this case
the solutions are Ae(P+ jq)t and Be(p- jq)t . The general form is the sum of these:

CF = y(t) = Ae(P+ jq)t + Be(p- jq)r

= Aeptejqt + Bepte-jqt

= e pt (Ae jqt + Be- jqr)

= e!" (A(cos(qt) + j sin(qt» +B(cos(qt) - j sin(qt)))

= e!" «A+B)cos(qt)+ j(A-B)sin(qt»

= e'" (C cos(qt) + D sin(qt»

Note C and D are real and arbitrary constants. This can be confusing, but makes
sense once you realize that y(t) must be real as it represents a real displacement or
current or voltage etc. The intermediate stages can appear complex but not the
final answer. This is possible as long as A and B are complex conjugates.

In summary for Case 3: CF= y(t) = ePt(Ccos(qt)+Dsin(qt)).

In this case the damping force is becoming less important, since the damping
constant b is decreasing relative to the spring constant c, and we say the system is
underdamped.
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16.6.4 Examples of finding the CF

Although the development of the solution procedure has been long, its
implementation turns out to be surprisingly simple, and only needs the summary
facts as in section 16.6.2, as these examples show.

Example 16.6.1

d 2y dy
Solve a-2-+b-+ cy=O where a = 1, b = 3 and c = 2.

dt dt

b2
- 4ac = 9 - 8 > 0; system over-damped.

Roots are -1 and -2, both real; solution is y =Ae-It +Be-2t .

Example 16.6.2

d 2y dy
Solve a-2-+b-+ cy=O where a = 1, b = 2 and c = 1.

dt dt

b2 - 4ac = 4 - 4 = 0; system critically damped.

Roots are both -1, real repeated; solution is y =(A + Bt)e -It.

Example 16.6.3

d 2y dy
Solve a-2-+b-+cy=0 wherea= 1,b=2andc=2.

dt dt

b2 - 4ac = 4 - 8 < 0; system under-damped.

Roots are 1 + j and 1 - j, (p = 1, q = 1) complex conjugate; solution is
y = e-1t (Acos(lt) +B sin(lt».

DO TIllS NOW! 16.2

Use the summary to write down the solution of the following a.D.E.s, identifying
your solutions as over-damped, under-damped or critically damped:

(Hint: check b2 - 4ac; find the quadratic roots; write down the solution according
to the above)

(i)
d 2y dy
-+5-+4y=0
dt 2 dt

d 2y dy
(ii) -+4-+4y=0

dt 2 dt

d 2y dy
(iii) --+4-+5y=0

dt 2 dt

(y=Ae-lt + Be-4t) ;

(y=(A+Bt)e-2t) ;

(y =e-2t(Acos(lt) + Bsin(lt») .
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16.7 FINDING THE ARBITRARY CONSTANTS BY USING INITIAL
CONDITIONS

Look at the solutions you have obtained in DO THIS NOW l6.2! If you wanted
to plot these to get a feel for how each system behaves, you would need values for
the arbitrary constants. You could just put any old value in to get a plot, but normally
you will need to find these values using extra information, which frequently

(although not always) comes in the form of initial conditions, or values of y and dy
dt

when t = O. Here are some worked examples, and exercises for you to do.

Example 16.7.1

From DO THIS NOW! 16.2 (i) d
2

[ +Sdy +4y=0 has general solution
dt dt

y = Ae-II +e«:":

Suppose the initial conditions are y = 0 and dy =1 when t =O. You can apply these
dt

as follows:

y = 0 when t = 0 gives 0= Ae-Ixo +Be-4xO = A+B (16.7)

dy =1 when t =0 requires dy =-Ae-II -4Be-41, and putting in the condition gives
dt dt

l=_Ae-Ixo _4Be-4xO=-A-4B . (16.8)

These equations (16.7) and (16.8) can now be solved simultaneously for A and B,

giving values A = .!.. and B = _.!.., and so the particular solution satisfying the initial
3 3

conditions is:
1 -II 1 -41y=-e --e
3 3

A quick check via a CAS solver, and a plot, are given in Figure 16.2 to verify this is
correct and looks right in terms of the system and its initial conditions.

dy/dx=.333333
MAIN ft#lD "UTD FUNe

1/-deSolve(y" +5'y' +4'y=O and y(O)=O.
e-\. e-4'\'

y=-3---3- I~-------------I
MiiiIh&¥U.dlIW.,I.*"It.dliU!bJ
MAIN ~ftD flUTD rUNe 1,.."

Figure 16.2 Checking an a.D.E. solution using a built-in solver in CAS.
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Example 16.7.2

From DO THIS NOW! 16.2 (ii) d 2! + 4 dy + 4y = 0 has general solution
dt dt

y =(A + Bt)e-2t .

Suppose the boundary conditions are y = 0 when t = 0 and y = 1 when t = 1 (in this
case they are not both initial conditions but the essential method is the same), and
you can apply these as follows:

y=Owhent=Ogives 0=(A+BxO)e-2xO =A . (16.9)

y = 1 when t = 1 gives 1=(A+Bxl)e-2Xl or e 2 =A+B . (16.10)

(16.9) and (16.10) give values A = 0 and B = e 2
"" 7.39, and so the particular

solution satisfying these initial conditions is

y=7.39te-2t .

Once more a quick plot can be used (Figure 16.3) to verify that this looks right in
terms of the system and its initial conditions.

Y1=o;:'"(2:)lfcKlfco;:'"( -2:K)

K=l Y=l ---·1
Figure 16.3 Using a plot of a solution to see if it looks sensible.

Example 16.7.3

As a final example, take DO THIS NOW! 16.2 (iii) d 2! + 4 dy + 5y = O. This has
dt dt

general solution y = e-2t (Acos(lt) +B sintlr) .

Suppose the initial conditions are y = 0 and dy = 1 when t = O. You can apply these
dt

as follows:

y = 0 when t= 0 gives 0= e-2xO(Acos(lxO) + Bsin(lxO» =A (16.11)

and so A =0 and there is no cosine term in the answer.

dy =1 when t= orequires dy =~(e-2tBsin(lt»=-2e-2tBsin(lt)+e-2tBcos(lt),
dt dt dt

and putting in the condition gives
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1= -2e -2x0 B sin(1x 0) + e -2><0 B cos(1x 0) = B (16.12)

(16.11) and (16.12) then give values A = 0 and B = 1, and so the particular solution
satisfying these initial conditions is

y = e-2t sin(lI))

Yet again a quick plot can be used (Figure 16.4) to verify that this looks right in
terms of the system and its initial conditions.

Figure 16.4 Verifying and plotting a solution using CAS.

DO THIS NOW! 16.3

Repeat the examples above to find the values of A and B for the following boundary
conditions:

For DO THIS NOW 16.2 (i), use y =1 and dy =1 when t = O.
dt

For DO THIS NOW 16.2 (ii), use y = 0 and dy =1 when t = O.
dt

For DO THIS NOW 16.2 (iii), use y = 0 when t = 0, and y = 1 when t = ~ .

In each case plot your resulting solution to see how it behaves and to check that the
boundary conditions are indeed satisfied.

DO TIDS NOW! 16.4

Here is an exercise to let you explore these ideas a little further.

Solve the simplified standard O.D.E. d 2; +b dy + cy =0 for an under-damped
dt dt

case, say where b = 2 and c = 2. What happens if you fix the spring term c at a value
of 2, and reduce the damping term b until you eventually remove it altogether? What
does the O.D.E. look like in this case? What is its solution? Plot the solution and

comment on it (use as your initial conditions yeO) = 0 and dy (0) = 1).
dt

Hint: Exponential part of the solution disappears and leaves undamped oscillations.
Eventually x(t) =sin(t). Not unexpected since you have removed the damping term.
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(16.13)

16.8 FINDING THE P.I•• THE EFFECT OF FORCING CHANGE.
So far in finding the CF you have only been looking at unforced motion - that is

the case where the RHS of the O.D.E. is O. Once the RHS is no longer 0, an external
"force" influences the motion, and an extra term is needed in the solution to take
account of that force, called the Particular Integral (PI) or steady state term. This can
be found by a variety of methods, one of which includes intelligent guesswork, using
the observation that the steady state of a system will be driven by, and will therefore
mirror in some sense, the external force driving it.

Example 16.8.1

Find the general solution of d 2 Y +4 dy +3y = 6 .
dt 2 dt

The overall solution is y(t) = CF + PI.

For the CF we solve the auxiliary equation mZ + 4m +3 = 0 as above. This gives:

CF = y(t) = Ae·3t +s« . (16.14)

Now the PI term is to take account of the external force - and referring back to
(16.3) this force is on the RHS of the equation. In this case RHS = 6 is equivalent to
a constant external force, so it reasonable to guess that the steady state response to
that will also be constant. Thus we guess that the Particular Integral (PI) is y(t) = k
(a constant) and substituting this into (16.13) we find that PI = k = 2.

(Note that no further arbitrary constants are coming into this. We already have the
number of arbitrary constants we need from the CF part of the solution.)

Thus the general solution is given by

y(t) = CF + PI =Ae·3t +Be·l + 2 .

DO THIS NOW! 16.5

. . . dZy dy
(1) Fmd the general solution of -z- +4-+ 3y =9 .

dt dt

Hint: for the P.I., guess y(t) = K and find K by substitution in the equation.

Find and plot the solution for the case where y = 1 and dy =1 when t = O.
dt

(ii) Find the general solution of d
Z;

+ 4 dy +3y = «",
dt dt

Hint: for the P.I., guess y(t) = Ke·2t and find K by substitution in the equation.

Find and plot the solution for the case where y = 1 and dy =1 when t = O.
dt

You can see that the general principle is that you base your guess for the PIon
the shape of the RHS, and substitute it into the equation to see if it works. We shall
not dwell on this further here, but will move on to alternative, practical approaches,
both technological and analytical.
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16.9 TECHNOLOGICAL SOLVERS
16.9.1 Types of solver

There are many software packages to solve O.D.E.s, both analytically (if it is
possible) and numerically. These include CAS packages both hand-held and desktop
such as Derive, Tl-Interactive, Mathcad and Mathematica, and numerical approaches
implemented through a spreadsheet or programming language.

DO THIS NOW! 16.6

Find out now what CAS packages you have available to you which will solve second
order O.D.E.s, and use them to solve the equations in DO THIS NOW 16.5! and
earlier exercises.

You will find that these solvers will provide solutions to all the standard
problems, but in many real problems, engineers must use more flexible numerical
approaches. You have the option to explore numerical approaches further in the End­
of-Chapter exercises.

16.9.2 Exploring the effect of varying the parameters
Some software packages allow the exploration of families of solution of an

O.D.E by varying the parameters, for instance a, b, C, and constants in ft.t) in
equation 16.1. This ability to "play" with parameters can be particularly helpful, for
instance in trying to understand and optimize system behaviour. The process can be
supported in some cases by the use of sliders, as illustrated in the TI-Interactive
extract in Figure 16.5.

Figure 16.5 Exploring the effects of varying the parameters in TI-Interactive.

DO THIS NOW! 16.7

Find out now if your CAS system supports the use of sliders, and use what you learn
to revisit DO THIS NOW 16.4! using any built-in O.D.E. solver, and varying busing
a slider if that is possible.
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DO TmS NOW! 16.8

The suspension system introduced in section 16.3 and shown in Figure 16.1, exhibits
behaviour which is modelled by the O.D.E.

d 2y k dy A
-+--+-y=F(t) .
dt 2 M dt M

One particular system with appropriate values of the parameters is modelled by:

d 2y dy
dt 2 +0.6 dt +3.3y=0 .

By finding the CF, write down the general solution of this equation.

The initial conditions are y =0.5 and dy =2 when t =O. Show that the solution in
dt

this case is

y = e--{)·3t (0.5 cos(1.79t) +1.2sin(1.79t))

This solution that results is displayed graphically in Figure 16.6:

Figure 16.6 Displaying the solution graphically is a powerful confirmation.

Set up your CAS solver to confirm the solution to this equation.

By varying the appropriate parameter, by means of sliders if possible, describe
briefly with the aid of sketches what happens to the solution and system when:

(i) The damping constant ..!::...- of the system increases or decreases from 0.6;
M

(ii) The spring constant ~ of the system increases or decreases from 3.3.
M

16.10 SOME FINAL EXAMPLES
We can pull together many of the threads of this chapter through a final example.

Example 16.10.1

Solve the O.D.E. d
2! +0.1 dy + Y =e-O.5t subjectto conditions y(O) =dy (0) =O.
~ ~ ~
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FMAX
x=~.n~$Ou O~

DO THIS NOW! 16.9

(a) Show that the roots of the auxiliary equation are m = -0.05000 ±j 0.99875.
(Figure 16.7 gives a check by graphic calculator!)

a~xl\~+a1x+aD=0

x1=(-.05000,.99875)
x~a(-.05000, -.99875)

Figure 16.7 Checking quadratic roots by graphical calculator.

(b) Show that the CF is CF =e-{)·05t (Acos(0.99875t)+Bsin(0.99875t) .

(c) By guessing y =ke?" show that PI =0.83333 e-
O.5t.

(d) Hence write down the solution y(t) =CF + PI.

(e) By using the boundary conditions show that A = -0.83333 and

B =0.37547.

(e) Hence write down the overall solution.

(f) Check this solution using your technological solver.

(g) To see if this is reasonable, plot this solution (see Figure 16.8):

IR~~~~=0
xMax=15
xScl=l
~Min=-1.5
~Max=1.5
':IScl=l

Figure 16.8 Plot you solution to see if it looks sensible.

The graph looks reasonable; it displays oscillations and damping, and the
boundary conditions appear to be satisfied,

We should still ask is the detail of the solution valid? The numbers involved are
excruciating. Most books have "nice" values but engineering problems are not like
that, and there are many possible sources of error: rounding, carelessness, etc. We
need some more convincing.

DO THIS NOW! 16.10
Check your answer to DO THIS NOW! 16.9 using your local CAS package(s). Get a
plot of the solution. Do you get something like Figure 16.9, produced in Derive?

Figure 16.9 Checking again using Derive.
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END OF CHAPTER 16 MIXED EXERCISES - DO ALL OF THESE NOW!

1. Solve the differential equation

where t is the time, y is the displacement of a particle along a line, and n is a

constant. Show that the motion of the particle is periodic and of period 21& .
n

2. Solve the ordinary differential equation

d 2y dy
--+k-+6y=2
dt 2 dt

where k = 5 and the initial conditions are y(O) = 0 and dy (0) = O.
dt

Identify the transient and steady-state terms in the solution, state whether the
system described by the equation is over-damped or under-damped.

What value of k must be taken to ensure critical damping?

3. The equation of motion of a person on a bouncing toy which consists of a seat on
a spring bouncing in a vertical direction is given by the differential equation:

d 2y dy
m-

2
- + 9- + 120y = sin(2t ) ,

dt dt

where y is the distance measured vertically upwards from the position of the seat
when the person ftrst sits on it, m is the mass of the person and t represents time.

In equilibrium, when the person sits on the seat at rest, the value of y is O.

In the following problems suppose that the person is initially at rest at y =0.2,
obtain a graph of the motion of the device for a person of mass 20.

Conjecture how does this graph change if the person has mass 10, 30, 40, 50?
Plot the graphs for these cases. Do the graphs conftrm your conjecture(s)?

4. Consider the equation d
2
: + p dy +qy = Rsin(ax)

dt dt

Set up your CAS system to provide a solution to this equation for the case where

R = 0, p = 1, q = 4, with initial conditions y(O) = 0 and dy (0) = I .
dt

You should find the solution is y(t) =0.516e-o·5t sin(1.936t). A suitable plot of

this function is a straightforward two-dimensional graph of y against t.

Question 5 continues with this problem, but looking at alternative ways of
representing the overall behaviour of the system.
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5. Take the equation of question 4 and set up your CAS system to provide a
solution for the case where R =0 and q =4, with initial conditions y(O) =0 and
y' (0) =I, but this time leaving damping p unspecified.

Thus your system should give y as a function of two variables

2e-{)·5pt sin(o.5t~16-p2)
y(t,p)= I .

V16 - p2

(We produced this using the DSOLVE2 function in Derive.)

Now consider how you might usefully plot this to represent the information
contained in the formula, and to explore and explain the effect of varying the
parameter p.

One possibility is to use 3D plotting facilities, plotting y(t. p) on the vertical axis
against t and p on the two horizontal axes, producing a graph like that from
Derive in Figure 16.10.

Interpret what this graphical object is telling you. If you follow any line along the
t direction you will see a time plot for a particular value of p. If you look how
these plots change as you move across the surface in the p direction you will see
the system making the transition from under- to over-damping. Study the graph
and make sense of it in your own words.

,

.~,

Figure 16.10 Different ways of "seeing" your solutions can help you understand and check them.

6. We mentioned that you could extend a numerical method such as Euler's method
to second order differential equations. In this problem you will have a brief
opportunity to explore that - although this will only be a sketch treatment. You
might like to see if you can fill in the details yourself, and make it work. We give
you some details and set it as a kind of detective trail - can you decode the
spreadsheet, see what we have done, and make a similar spreadsheet work for
yourself?
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d 2y dy
Consider then the equation -2- + kl - + k2 y = 0 .

dt dt
The general idea is to represent this as two first order equations, and then to solve
them together using Euler's method as explained in Chapter IS.

Thus we define Xl = Y and X2 = dy , and in that case the single second order
dt

a.D.E. becomes two first order a.D.E.s:

dx,
-=X2
dt

dX2
-- = -k 2x1 -k1X 2
dt

These equations are expressed in numerical form for Euler's method as

XI (new) =Xl (old) +hx2

x2 (new) = X2 (old) +h(-k2x 1 - k1x2)

We take kl =0.6, k2 =41.5, y(O) =-0.46 and y'(O) =4.14. (This was real data
observed from a bungeejump!) We use a time step of 0.01.

The spreadsheet in Figure 16.11 shows our implementation of this procedure,
with the plot being Xl (or y) against t. Can you decode and reconstruct?

Figure 16.11 Extending Euler's method to second order equations: can you decode?

Good luck with this. Remember that you may have to reduce the time step until
you are convinced that you are getting an accurate answer. You can always check
your answers using another method, such as a built-in CAS tool.
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17
Laplace Transforms And Ordinary
Differential Equations
"It's a kind of magic. There can be only one." Queen

17.1 THE USEFULNESS OF THE LAPLACE TRANSFORM
The Laplace transform is one of several transforms you may meet in engineering.

It is perhaps the one most commonly used. It takes problems expressed in terms of
time t (which may appear as ordinary differential equations) and by using a
mathematical transformation. re-expresses them in terms of another variable s, in
such a way that the problem becomes easier to solve. The method is so powerful
because what the transform does is to turn a differential equation involving t into
merely an algebraic equation involving the new variable s. Thus. while it may look
magical and laborious. it gives a simpler approach to complex problems.

Ordinary differential
Laplace

Algebraic equation to be

equation to be ... solved forX(s). the
transform ...

solved forx(t) Laplace transform of x(t)

Direct Sirrple

solution algebraic

difficult solution

"
,t

x(t) explicitly in terms .... Inverse Solution X(s) explicitly

oft .... Laplace in term;of s

transform

Figure 17.1 A diagrammatic view of how the Laplace transform works.
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(17.1)

(17.2)

You will find that the Laplace transform is much more than just a way of solving
ODEs, being also a powerful language to describe the behaviour of control systems,
electronic circuits, communication systems, and other engineering devices.

To become familiar with this technique, keep on doing the exercises and activities.

17.2 WHAT IS THE LAPLACE TRANSFORM?
17.2.1 Definition of the Laplace transform

The transform from time domain to s domain is carried out using the formula:

00

Xes) = fx(t)e-S1dt .

o

where x(t) (little x) is the function in question, and Xes) (capital X, sometimes written
L(x(t» is its Laplace transform. Points to note are:

• t disappears when the integral is done. which is why Xes) is a function of s;

• s behaves something like a frequency. It is in fact a complex number. It is best to
put its meaning and significance on hold until you are used to seeing it in action;

• this integral is messy to do and in some cases difficult as well. and so engineers
use previously built-up tables of Laplace transforms to allow them to move easily
between t and s.

In relation to this last point, we shall not derive the transforms of every function
from the definition, but here is one simple example just to see what is involved.

Example 17.2.1 The Laplace transform of a constant.

Find the Laplace transform of the function x(t) =k where (k is a constant).

Using the definition (17.1) the Laplace transform is:

00

Xes) = fx(t)e-S1dt

o
00 00

= fke-Sldt = k fe-S1dt

o 0

_k[ 1 _SI]OO- --e
s 0

1 k
=k(O)-k(--)=-

s s

Note we have assumed that everything goes to 0 at the top, infinite limit. This
turns out to be a safe assumption with the functions we need to use.

Thus if x(t) =k (constant) then its Laplace transform is

k
Xes) = L(x(t» = - .

s
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Sec.17.2] What is the Laplace transform? 223

17.2.2 Building up a table of Laplace transforms

You can build up a table of the Laplace transforms of all the common functions,
by going through a process similar to that in Example 17.2.1. Table 17.1 below
shows some of the most commonly occurring ones:

x(t) Xes)

k
k
-
s

ke-ar k
--
s+a

k sin(at)
k01

s2+ 012

k cosrez)
ks

s2 +012

ka
k(l-e-ar )

s(s +a)

dx sX(s)-x(O)-
dt

Table 17.1 Common Laplace transforms.

Fuller tables follow at the end of the chapter, but Table 17.1 will suffice for now.

- laplace(f'(t), t)

-laplace(k'~-a·t,t)

-laplace(k·cos(,,·t), t)

UP-LACE RI1ID AUTD F'UN ..no

Figure 17.2 Laplace transforms can also be handled on some CAS.

Some CAS technology has the Laplace transform built in, as shown for instance
in Figure 17.2. You will find that the amount of manipulation you need to do to use
the method depends on the depth of your tables or the power of your technology.

DO 'nns NOW! 17.1

1. Derive by hand at least one of the other formulae in Table 17.1 from the
definition of the Laplace Transform in equation (17.1) (the next easiest is perhaps

that for x(t) = ke-ar ).

2. Find out now whether your CAS can handle Laplace transforms and, if so, use it
to check some of the entries in Table 17.1.
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dx
17.2.3 The Laplace transform of - •

dt
The last entry in Table 17.1 shows why the Laplace transform is so useful in

solving differential equations. You can see that it turns differentiation of x with
respect to t into simple multiplication of X by s (give or take an x(O) term, that is one
involving the initial value of x). This is an important result and here is its derivation:

L(:) =j: e-S'dt =~(t)e-str-jX(t)(-Se-S/)dt (using integration by parts)
o 0

00

=-x(O) + s jx(t)e-S'dt =sX(s)-x(O) .

o

Do not worry if this algebra seems difficult, but make sure you note the result:

• this is just s times X(s), the Laplace transform of x(t), together with an adjustment
term involving x(O);

• we have assumed again that at the infinite limit everything goes to O.

17.3 THE LAPLACE TRANSFORM IN ACTION: FIRST ORDER ODES
In this section you will meet examples that show how the result of section 17.2.3

allows the solution of simple first order linear ODEs, of the type you have previously
met in Chapters 10 and 15. The examples will follow the process through from start
to finish, and although they are very simple cases, they will contain all the essential
points of the method.
Example 17.3.1

Solve the first order linear ODE dx +x =1, subject to the initial condition x(O) =O.
dt

The Laplace transform is used like this:

Step 1: Take the Laplace transform of the whole equation L[: + x =1] .

This leads to L[:]+L[X]=L[I].

Each of these terms can be found from Table 17.1 to give
1

sX(s)-x(O)+ X(s) =- .
s

Step 2: Put in the initial condition x(O) =0:
1

sX(s)-O+X(s)=- .
s

1
Step 3: Solve for X(s): (s + I)X (s) =- ,

s
1

which may be re-arranged X (s) =--­
s(s +1)
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x(t)=I-e-1

Step 4: Take the inverse Laplace transform.

Use Table 17.1 from right to left choosing the correct entry in terms of

where s is. That is, pick the formula ka and choose k =1 and a= 1.
s(s+a)

This gives the solution

Note that:

• this solution could also have been obtained by separation of variables;

• the arbitrary constant is implicitly found as the initial condition is built in;

• CAS technology can deal with both the inverse Laplace transform, and indeed
direct solution of the ODE, as shown for instance in Figure 17.3.

Figure 17.3 Finding the inverse Laplace transform using CAS.

DO TIllS NOW! 17.2

Make sure you understand Example 17.3.1, then, using the same method, solve the
following equations (a) using Laplace transforms, and (b) checking by either using
CAS technology or separation of variables:

dx
subject to x(O)= 0 (Sol. x(t) =1- e-21 ).1. -+2x=2

dt

2.
dx

subject to x(O)= 0 (Sol. x(t) = 2(1- e-I) ).-+lx=2
dt

3.
dx

subject to x(O)= 0 (Sol. x(t) = 2(1- e-51
) ) .-+5x=1O

dt

You have now seen how the Laplace transform can be used to solve ODEs. More
complicated cases can be dealt with in essentially the same way, but with a little
more algebra. There is often more than one way through the algebra of a problem;
for example sometimes you could use partial fractions or completing the square, but
this extra algebra can often be avoided if your tables are comprehensive enough.

We cannot hope to cover every possible case, but here is another example to
show a different problem. - you have to make sure you know your way around your
tables, and use them well, combining this with some algebraic imagination and
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technological support. The tables referred to are those provided at the end of this
chapter. Follow the next example and plot out the solution to see what it looks like.

Example 17.3.2.

Step 2: Using x(O) =0:

Solve

Step 1:

dx + 2x =e" subject to x(O) =O.
dt

Using tables, take Laplace transforms of both sides:

1
[sX(s) - x(O)] + 2X(s)=­

s+1
1

(s + 2)X(s)=-
s+1

1
Step]: Thus X(s)=----

(s + 1)(s+ 2)

Step 4: To invert, look at the tables. The correct form is k with k =1,
(s+a)(s+ p)

a= 1 and {3= 2.

Thus the inverse is x(t) = k (e-llI'-e-/3t)
({3-a)

1 (-11 -21) -11 -21=-- e -e =e -e
(2-1)

You can confirm this solution for instance by CAS, as in Figure 17.4, although the
CAS used there (TI Voyage 200) presents the solution in a slightly different form.

Fl· .1L F~. !11 n·ll, F~••TOiff Eq Laplace Fold Help

• ilaPlace((s + l)\S + 2)' -l 1 1

-;r - (..tf
• SOlved( It(x(t)) + 2· x(t) = e -t. {x(t) 8»

x(t) =_1___1_
.. t ( e t)2

waIlAW_•••DjIiD]
LAPLACE AAD AUT" FUNC>no

Figure 17.4 Confirming your solution using CAS.

DO THIS NOW! 17.3

(Sol. ~(e-I _e-31»
2

(Sol. ~(e-31 -cos(t)+3sin(t»)
10

subject to x(O) =0

subject to x(O) = 0

Make sure you understand the examples above. Then, using the same method, solve
the following first order linear ODEs using the Laplace transform, and check your
answers otherwise:

1. dx +3x = 5e-1

dt

2. dx +3x =sin(t)
dt
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17.4 USING THE LAPLACE TRANSFORM WITH SECOND ORDER ODEs
You can solve second order ODEs using basically the same steps as for first

order ODEs. You will find that the main extra complication occurs because there
will be a quadratic term, corresponding to the quadratic auxiliary equation. As you
have seen in Chapter 16, the nature of the solution varies according to whether this

quadratic has real roots or not. The solution therefore depends on "(b 2
- 4ac)". It is

not surprising that this issue turns up in Laplace transform approaches, as these are
the same ODEs we are solving!

The steps are the same, but extra complication will occur when you look at the
tables to try to find your inverse. If your tables are comprehensive enough then each
form will be there; if not then you may have to do some algebraic pre-processing
such as partial fractions or completing the square. Another difference is that two
initial conditions are needed for second order equations. We reiterate that we cannot
cover every type of example that will turn up - you will need your tables, technology
and algebraic skills! The following examples illustrate a typical range of problems.

Example 17.4.1 A second order ODE.

d 2x
Solve --+9x =1 subject to x(O) =x'(O) =O.

dt 2

We shall now move to using Table 17.2 at the end of this chapter; it includes the
results from Table 17.1, but is more comprehensive.

Step J: Using Table 17.2, take Laplace transforms of both sides of the equation
(you will need to use the transform of a second derivative now):

[s2 X (s) - sx(O) - x'(O)] +9X(s) =.!.
s

Step 2: Using x(O) =x'(O) =0: (S2 +9)X (s) =.!.
s

Step 3: Solving for X(s):
1

X(s) = -----,:---
s(s2 +9)

Step 4: To invert, look at Table 17.2, and find the correct form, which is

\ 2 with k =1, a= 0 and OJ= 3.
(s+a)(s +OJ )

Thus the inverse is: xU) = 2 k 2 (e-m -cos(ax) + a sin(ax))
(a + OJ ) OJ

= 2 1 2 (e-Ot -cos(3t)+.Qsin(3t))
(0 +3 ) 3

1=- (1- cos(3t))
9
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You have more than one means to check the outcome here. You could use CAS
as illustrated in Figure 17.5, either as a table substitute, or indeed to solve the ODE
directly! Alternatively, you could substitute the solution into the ODE and see if it
works, checking that the initial conditions are satisfied too, of course.

Figure 17.5 Checking again using CAS.

Here is another example.

Example 17.4.2 Another second order ODE

d 2x dx
Solve --+ 4- + 3x = 0 subject to x(O) =0 and x'(O) =1.

dt 2 dt

Step 1: Using Table 17.2 again, take Laplace transforms of both sides:

[S2X(s) - sx(O) - x'(O)] +4[sX(s) - x(O)] +3X(s) = 0 .

Step 2: Using x(O) =0 and x'(O) =1:

(s2+4s+3)X(s)-I=O.

1
Step 3: Thus X(s) = .

(s2 +4s+3)

Step 4: Invert this Laplace transform. First, check whether the auxiliary quadratic

m2 +4m+3=Ohas real roots using b2 -4ac=16-12=4>O. This is
positive so it has real factors (x - rootl)(x - root2) where rootl and root2
are the roots of the quadratic. The roots are -1 and -3, and thus the factors
in this case are (x + l)(x + 3), and the transform can be rewritten

1
X(s) =---­

(s+I)(s+3)

Looking at Table 7.2, the correct standard form is k P' choosing
(s+a)(s+ )

k =1, a= 1 and p= 3, and thus the tables say the inverse is

() k[ 1 (-aJ -fJt)]-I[ 1 (-II -31)] 1(-1 -31)X t = e -e - -- e -e =- e -e
(p-a) (3-1) 2

DO THIS NOW! 17.4

Find the solution of this ODE via the complementary function. Do you get the same
result? (You should!)
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You can check the result by substituting into the original ODE, although this
becomes more complicated as the ODE does so; or you can use CAS technology as
in Figure 17.6; or you can use an alternative method as in DO THIS NOW 17.4!

\lC: .192
lAD AUTD rUNe

• deSolve(x' • + 4·x' + 3'x =e and x(e) = e •
e -to .. -3't,

x =-2- --2- Ih:l=:>=:------------I
el••,u " .
MAIN RIID UTa 3D l/!lll =~__""""""-'-__-="'-- ......

Figure 17.6 Always think about whether you answer is right, and check by other means if you can.

Example 17.4.3 A more complicated second order ODE

d 2 x dx
Solve --+4-+3x = 1 subject tox(O) = 0 and x'(O) = O.

dt 2 dt

Step 1: Using Table 17.2 again, take Laplace transforms of both sides:

[s2X(s) - sx(O)- x'(O)] + 4[sX (s) - x(O)] + 3X (s) =.!.
s

Step 2: Using x(O) = x'(O) = 0:

(s2 +4s+3)X(s)=.!. .
s

1
Step 3: Thus X(s) = ,

S(s2+4s+3)

and factorising the quadratic as in Example 17.4.2:

1
X(s)=---­

s(s +1)(s+ 3)

Step 4: To invert, look at Table 17.2: the correct standard form is

k withk= 1, a=O,p= 1 and y=3.
(s +a)(s +P)(s +n

From Table 17.2 then, the inverse is:

x(t) =k[ 1 e-at + 1 e-{3t + 1 e-)t]
(p -a)(y-a) (a- P)(y- P) (a- y)(P - y)

_ 1[ 1 -oIl_it 1 -31 ]-----e + e + e
(1- 0)(3 - 0) (0 -1)(3 -1) (0 - 3)(1- 3)

1 1 -II 1 -31=---e +-e
3 2 6

Once more you have the usual range of checks (see Figure 17.7).
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"~IR1J~bralcilcIO{~;rIPr~..IOIClea·'; upl "~lz~Z;..IT'!~ceIRe9~aPhIMa"i'hlo~;wl~ ~ IIii
2

• deSolve(x' , + 4·x' + 3'x = 1 and xeS). S • -:•~.t. ~·3·t.
x=~+-6-+1/3

":Ell I.~] xc'4.37S YC'.327
"' ftlll ftUTa rUNC • MIlIN atl.iIlUTD FUNC

Figure 17.7 ... and checking again ...

Example 17.4.4 An under-damped, secondorder ODE

Solve d
2

x + 2 dx +26x =0 subject to x(O) =0 and x'(O) =1.
dt 2 dt

Step 1: Using Table 17.2 to take Laplace transforms of both sides:

[s2 Xes) - sx(O) - x'(O)] + 2[sX(s) - x(O)] + 26X(s) =0 .

Step 2: Using x(O) =0 and x'(O) =1:

(S2 +2s+26)X(s)-1=0

Step 3: Thus Xes) = 1
(S2 +2s+26)

Step 4: To invert, we must begin by checking whether the auxiliary quadratic has

real factors. In this case b 2
- 4ac = 4 -104 < 0 , so there are no real factors,

and we have an under-damped system. In this case the best way to proceed
is to complete the square on the quadratic expression:

s2 +2s+26=(s+1)2 +25=(s+1)2 +52 •

The transform can then be written:

k
This form appears in Table 17.2 as 2 2' and we must clearly

((s+ p) +liJ )

choose k =1, P=1 and oJ =5. Table 17.2 then says the inverse is

x(t) =s.,» sin(ax) =.!.e-1t sin(5t) .
liJ 5

DO THISNOW! 17.5

Find the solution of this under-damped ODE via the complementary function. Do
you get the same result? (You should!)

Again you have the range of ways of checking what you have done, including
using CAS technology, as illustrated in Figure 17.8.
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Figure 17.8 Checking an under-damped case.

DO TmS NOW! 17.6

Make sure you understand the examples above. Then, using the same method, solve
the following equations:

I. d
2

: +25x =e- I
, subject to x(O) =x'(O)=0 (Sol. _1«: -cos(5t)+!sin(5t))).m 26 5

d 2x dx
2. dt 2 +3 dt + 2x =2, subject to x(O) =x'(O) =0

3. d
2

; +5 dx +6x =e-I ,subjecttox(O) =x'(O) =0
dt dt

d 2x dx
4. dt 2 +5 dt +6x = 0, subject to x(O) =0 and x'(O)=4

d 2 x dx
5. -2+5-+6x = 0, subject to x(O) =4 and x'(O)=0

dt dt
(Sol. 12e-21 -8e-31

) .

17.5 A FINAL SPECIAL CASE - RESONANCE
This final example raises a possibility of which every engineer should be aware ­

the phenomenon of resonance. Resonance is associated with vibrations. Second order
vibrating engineering systems have a natural frequency at which they will vibrate,
given by the complementary function part of the solution as found in chapter 16. If
an external force oscillates at the same natural frequency then the vibrations in a
system can grow with catastrophic results.

One example of resonance occurred when the Broughton Bridge near
Manchester, England collapsed in 1831 as a result of soldiers marching over the
bridge in step at just the right (or wrong!) marching rate. Another well-known
example involves shattering wine glasses with the amplified voices of singers.

Perhaps one of the most famous examples of the disastrous effects of resonance
was the Tacoma Narrows bridge collapse in 1940, where the wind blew at the right
speed and from the right direction to set up natural frequency vibrations which grew
and led to the collapse of the bridge.

Resonance can occur in any vibrating system, including bridges, electrical
circuits, and the human body. It is important in any system design that this
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Solve

phenomenon is recognized and taken into account or the results can be disastrous.
Here is an example which illustrates how resonance arises mathematically.

Example 17.5.1 A potentially resonant vibrating system

You may find the algebra in this example particularly demanding, but even if that
causes you a problem, make sure you understand the meaning of the solution!

d 2x
-2+ 4x =sin(Qt) subject to x(O) =x'(O) =O.
dt

Note the external force on the RHS vibrates at a frequency Q.

Step 1: As before, use Table 17.2 to take Laplace transforms of both sides:

[s2X(s) - sx(O) - x'(O)] + 4X(s) = Q
S2 +Q2 .

Step 2: Using x(O) =x'(O) = 0:

Step 3: Thus

(s2+4)X(s) = 2 Q 2
s +Q

Step 4: Now when it comes to inverting, it is apparent from the tables that the
correct form is different according to whether Q2=4 or not.

Step 4 The non-resonant case Q 2 *4 .

with k =1, Q =1 and (J)= 2.

Thus in this case the inverse is

x(t) = k 2 (.lsin(Qt)-.lsin(tU)) = 2 I 2 (!sin(lt)-.!..sin(2t))
({J)2 - Q ) Q (J) (2 -1 ) 1 2

= .!.(sin(t) -.!..sin(2t))
3 2

Figure 17.9 displays this solution, and it is clear that all is well - the
solution does not grow uncontrollably, but remains at finite values.

Figure 17.9 The solution of Example 17.5.1.
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Step 5 The resonant case Q 2
::::; 4 .

On the other hand if Q 2
::::; 4 then Q::::; 2 ::::; a;, and the vibrating external

force on the RHS of the ODE is working at the same frequency as the
natural vibration frequency of the system, so we must expect problems.

In detail, the standard form from Table 17.2 is k and we must
(s2 +W2)2

choose k::::; I, w::::; Q ::::; 2, and in this case the inverse is

x(t)::::; ~(sin(lll) - t COS(lll))::::; _1_
3

(sin(2t) - tcos(2t))
2w 2x2

::::; -.!- (sin(2t) - t cos(2t))
16

The plot of this in Figure 17.10 shows this solution (and the non-resonant
solution) and shows how when Q ::::; 2 the solution grows without bound as t
increases. Thus the real physical phenomenon of resonance emerges
naturally from the mathematical model we have constructed for a vibrating
system in Chapter 16 and here. A squared quadratic factor tells you that
something is going drastically wrong with your engineering system!

MAIN ft. UT , N

Figure 17.10 Graphical display of the resonance case.

DO THESE NOW! 17.7

Make sure you understand the examples above. Then, using the Laplace transform
method, solve the following equations:

1. d 2 X +25x::::; sin(t) , subject to x(O) ::::; x'(O) ::::; 0
dt 2

2. d 2 X + x::::; sin(t) , subject to x(O) ::::; x'(O) ::::; 0
dt 2

Comment on the difference between these solutions.

(Sol. _1 (sin(t)-.!.sin(5t))).
24 5

(Sol. .!. (sin(t) - t cos(t)) .
2

END OF CHAPTER 17 EXERCISES - DO ALL THESE NOW!

1. Use the Laplace transform technique to find the solution of the ordinary
differential equation

dy +5y::::;e-3t

dt
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subject to the initial condition y(O) =O. Calculate the value approached by y(t)
after a long time, and also the maximum value reached by y(t), explaining how
you reach your answers.

2. Using the Laplace transform technique, solve the ordinary differential equation

d 2y dy
-2-+ 3.6-+ cy = O
dt dt

where c =2.88 and the initial conditions are y(O) =0 and y'(O) =1.

Identify the transient and steady state terms in the solution and, giving reasons,
state whether the system described by the equation is over-damped or under­
damped.

What value of c must be taken to ensure critical damping?

3. (Beware! Complicated algebraic tricks required if you do this by pen and paper!)
An engineering system is described by the ordinary differential equation

d 2 y
-2- + 1.44y =5.le-Dol t

dt

The initial system conditions are y(O) = y'(O) = O.

Solve the equation, by Laplace transform, and/or CFIPI method, and/or using
technology (either directly or to support the Laplace transform approach).

Identify the transient and steady state terms in the solution and, giving reasons,
state whether the system described by the equation is over-damped or under­
damped. Describe the behaviour of the system after a long time.
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x(t) Xes)

k
k
-
s

k
kt -

s2

kt n k
- --
n! sn+l

ke-at k--
s+a

~sin(OX) k

0) s2 + 0)2

k cos(ox)
ks

s2 + 0)2

~(l-e-at) k

a s(s+a)

k
kte-at

(s+ a)2

~ (sin(ox) -t cos(ox))
k

(s2 +0)2)220)

k (~sin(o.t)-..!..sin(OX)) k
0)2 *- 0. 2

(0)2 _0. 2) 0. 0) (s2 +o. 2)(s2 +0)2)

k (-at -f3t) k
a*-fJe -e

(fJ-a) (s + a)(s + fJ)

k (fJe -f3t _ ae -at ) ks
a*-fJ

(fJ - a) (s + a)(s + fJ)

k[ 1 e-ar + 1 e-f3t k
(fJ-a)(y-a) (a- fJ)(y- fJ)

(s + a)(s + fJ)(s + y)
1 -if )

a*-fJ*-r+ e
(a - y)(/3 - n
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k[ -a -aJ -P -{Jt kse + e
(p-a)(y-a) (a-p)(y-P) (s+a)(s+ P)(s+ y)

+ -y e-")
a*P*r(a-y)(p-y)

2 p2
k[ a -aJ -{Jt ks 2e + e

(p-a)(y-a) (a-p)(y-P)
(s + a)(s + P)(s + n

2
+ Y e-1t)

a*P*r(a-y)(p-y)

2 k 2 (e-aJ -cos(ax)+ a sin(ax))
k

(a +cv ) cv (s+a)(s2 +cv2 )

2 k 2 (_ae-aJ + acos(ax) + cvsin(ax))
ks

(a +cv ) (s+a)(s2 +cv2)

!:...e-P sin(ax)
k

cv (s+p)2+ CV2

ke-{Jt cos(ax)
k(s+ p)

(s+ p)2 +cv2

k(e-/Jt cos(ax)- P sin(ax))
ks

cv (s+p)2+ CV2

2 k 2 (e-aJ -e-{Jt cos(ax)
(cv +(a-p) ) k

+ a- P e-Pt sin(ax))
(s+ a)((s+ p)2 + cv2)

CV

!:...e-Pt sin(ax)- ka (e-aJ

CV (cv2+(a- p)2) ks

-e-/3t cos(ax)+ a- P e-Pt sin(ax))
(s+a)((s+ p)2 +cv2)

cv

Formulae for derivatives of functions

dx sX(s)-x(O)-
dt

d 2x dx
s2 Xes) - sx(O)--(0) =s2 Xes) - sx(O) - x'(O)

dt 2 dt
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18
Taylor Series
''Visual mathematics: no magic bullets, but such tantalizing potential!" David Olson

18.1 mE ESSENTIAL ROLE OF TAYLOR SERIES
Often the mathematics needed to describe an engineering system is non-linear

and therefore complicated: that is, functions more complicated than straight lines are
required. However, it is useful sometimes to be able to use an approximate model of
the situation which is linear - that is, described by straight lines. You can then make
good use of your knowledge of straight lines.

Example 18.1.1

To see how this can work, consider Figure 18.1(a) - (c). This shows plots of the
function y(x) = xsin(20x)e-o·2x for x;;:: 0, successively zooming in on the point

x = 1 on the curve.

Figure 18.1(a) Figure 18.1(b) Figure 18.1(c)

You can see that as you zoom in more closely, the function appears progressively
less curvy and, when magnified enough, the function eventually looks like a straight
line. Engineers often use such thinking to obtain practical simplified linear laws
which work locally - in time, space, or in whatever domain the model works.
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If a straight line is not adequate, then we can extend this idea by using an
appropriate higher order polynomial such as a quadratic or cubic, to give an
approximate form of a function which works over the range we want. Polynomials
are simple, manageable functions which can be built up in order to enable engineers
to model complicated situations. One example of this approach, is the finite
difference method as used in heat transfer, fluid flow and similar engineering areas.

These are the ideas which lie behind the Taylor series. You have the opportunity
in this chapter to explore these important ideas a little further. To help you do that,
do the exercises and activities as you come to them.

18.2 LINEARISATION
If we are to approximate a function locally by a straight line, say near to a point

x = a • then it is necessary to work out how to find the equation of the right straight
line in terms of the function we are approximating.

Take the function y(x) close to x = a . We shall call the straight line which "fits"
to the function p.Ix), Thus:

y(x)""PI(x)=co+clx. (18.1)

The two questions we must ask are:

• For a given function at x = a, what are the right values of Co and Cl?

• How well does the line fit to the curve?

Take the first question first. To find Co and cI' first make the line PI (x) fit

exactly to y(x) at the point x = a . Algebraically, this gives

(18.2)

Next, make the slope of the line PI' (x) fit exactly to the slope of the curve y' (x)

at the point x = a . Using the derivatives of PI (x) and y(x), this gives:

PI '(x) =y'(a) =ci . (18.3)

You can then solve (18.2) and (18.3) to give the values of Co and ci in terms of

y(x) and y' (x)

Co = y(a)-ay' (a)

c i = y'(a)
(18.4)

Thus if you know y(x) you can find the straight line which "fits" it near to x = a .

Algebraically y(x) "" Co +cIX = y(a)-ay'(a)+ y'(a)x

or near x=a, y(x)""y(a)+y'(a)(x-a). (18.5)

This is called afirst order or linear approximation to y(x) about x =a, or afirst
order Taylor polynomial.

The equation on the RHS represents a straight line, which has the same value and
slope as y(x) at x =a.
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Example 18.2.1

Linearisation 239

Find a first order approximation to the function y =e' about a =0 .

Use the formula (18.5) with a = 0:

y(x) "" y(O) + y'(O)(x-O) (18.6)

(18.7)

(18.8)

yeO) = eO = 1

d
y' (0) = eO = 1 because - (e") = e"

dx

Putting (18.7) and (18.8) together into (18.6) then:

y(x)""l+I(x-O)=I+x.

In this case

and

It is useful that you can check visually that you have the right line, by plotting

y =eX and y =1+ x on the same graph, as in Figure 18.2.

3

-1

Figure 18.2 A straight line approximation to an exponential curve

To answer the second question, you can see that the fit is good "close to" x =0 in
both directions, as it was designed to be, but as x increases, the two curves move
apart. Thus the linear approximation is good over a restricted range only.

In this particular case, where a = 0, the formula (18.5) becomes

y(x) "" yeO) + y' (O)x (18.9)

and this is called afirst order Maclaurin polynomial.

This is just a Taylor polynomial which will be a good fit near to the point x =o.
You might note that the Taylor polynomial is just a translation of the Maclaurin
polynomial by a value of a in the x direction.

Example 18.2.2

A more complex function arises from Example 18.1.1. The principle is the same:
the algebra is a little more complicated. We aim to find a linear approximation to
y(x) =xsin(20x)e--D·2x which is valid close to a =1.

Using (18.5) again, but with a = 1 this time: y(x) "" y(l) + y' (l)(x -1) .
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(18.10)

DO TIllS NOW! 18.1

Show, using technology or otherwise, that y(1)=0.747456 and y' (1)=7.28015.

The line is then y(x)=0.747456+7.28015(x-1). This is plotted in Figure 18.3,

and once more it is apparent that the fit is good near to the specified point x =1 .

Figure 18.3 Taylor polynomial fit at x = 1.

DO TIllS NOW! 18.2

Fit a linear approximation to each of the following as detailed. In each case plot the
original function and the approximation and validate your calculations by observing
how good the fit is:

(Note you must use RADIAN measure for the trigonometric functions)

1. Approximate y(x) =sin(x) close to x =0.

2. Approximate y(x) =cos(x) close to x =°.
3. Approximate y(x) =e" close to x =1 .

4. Approximate y(x) =sin(x) close to x = tr .
2

5. Approximate y(x) = e-2x close to x =1 .

18.3 MACLAURIN SERIES
18.3.1 What is the Maclaurin series?

The idea of approximating one function locally by a simpler function can be
extended and generalized from a linear approximation in order to represent the
function by a series of powers of x: a so-called power series or polynomial
expansion about a point. Thus near to x =°we could ask if a function y(x) can be
represented by a series of the form:

( )
_ 2 3

Y X -Co+C\X+C2X +C3X +....

It turns out that this can be done for many common functions, and such a
representation is called a Maclaurin series.
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There are various points to make about the Maclaurin series, before going on to
look at an example which will illustrate some of the points.

• The series is infinite and, in the cases where it works, it gets closer and closer to
the function as more terms are added - in that case we say the series converges.
Proving which series do converge is beyond this book - one needs to take care
with infinite processes - but you do need to be aware that in some cases this
approach does not work. Usually tables of series for standard functions will state
when and where they work.

• As you add more terms, the series fits better and better to the function over a
wider range, but the fit is best at and "near" x =O. Taking only the first two
terms gives the linear approximation derived in Section 18.2.

18.3.2 Finding the coefficients in the Maclaurin series

The coefficients co' c1 , cz, c3"" of the series depend on the function being
approximated, and are given by:

Co = y(O)

dy
c1 = y'(O) =-(0)

dx

C =y" (0) =! d zy (0)
z 2! 2! dx z

y''' (0) 1 d 3 Y
C3 =--=--(0)

3! 3! dx 3

and in general (18.11)

Note that the general formula (18.11) works even for Co as long as you recall

that O!=1. How do we justify these formulae? Here is the derivation of the first
three, just to show you how it works.

To find Co startwith(18.10)andsetx=0:

y(O) = Co +Cl O+czO
z

+C303 + .... = Co

To find c1 start with (18.10), differentiate once, and then set x = 0 :

y' (x) = CI + 2czx + 3C3XZ + 4C4X3 + ....

and so

To find Cz start with (18.10), differentiate twice, and then set x =0 :

y"(x) = 2cz +3x2c3X+4X3c4XZ +....

so y" (0) = 2cz + 3x 2c30+ 4x3c4 OZ + .... = 2cz
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and hence
y"(O)

C2=-- •
2!

The pattern continues - to find Cn start with (18.10), differentiate n times, and

then set x =O.

You can tell from the formulae for the coefficients that this process is certainly
only possible when the function can be differentiated as many times as necessary at
some point on the function.

Example 18.3.1

Find the Maclaurin series for y(x) = e" .

We shall find the first five terms using (18.11) and then look to see if a pattern is
emerging. Note that the derivatives in this case are easy to find. Here they are up to
the fourth derivative:

y(x) =y' (x) =y" (x) =y'" (x) =y(iv)(x) =e"

and so y(O)=y' (0) =y" (0) =y'" (0) =y(iV) (0) =eO =1 .

Thus the coefficients are

Co =1

c, =1

1
c2 =-

2!
1

c3 =-
3!
1

C4 =- .
4!

A pattern is emerging, that
1

cn =-.
n!

The series is then
X x 2 x 3 x 4

e =l+x+-+-+-+......
2! 3! 4!

To see how the series represents the function, you can plot y(x) = e", and also

each successive approximation to it using the series, forming the so-called partial
sums, adding up the first term, then the flrst two, then the first three, and so on. As
more terms are added in, you can see how the shape of the series graph stays close to
that of the function over a wider range. You can see this effect in Figure 18.4.

�� �� �� �� ��



Sec.18.4] Taylor Series

l+x
1+x+~ .
1+x+~+X3 _

243

(18.12)

(18.13)

Figure 18.4 Maclaurin polynomials fit progressively better to the exponential as their order increases

DO THIS NOW! 18.3

Derive the Maclaurin series for the functions below (remember RADIANS!)

1. y = sin(x)

2. y =cos(x)

3. y=e-2x

Convince yourself that they are correct by plotting the original functions and the
partial sums of the series, and note how accurate the approximations are and for what
ranges.

18.4 GETTING AWAY FROM x =0: TAYLOR SERIES
The Maclaurin series gives successive approximations to y(x) which work for

values of x close to O. It is useful to be able to generalise this idea by saying we want
a series giving successive approximations to y which works for values of x close to
any given value a. This more general form is called the Taylor series. It is formed by
taking the result for the Maclaurin series and shifting it along the x-axis to x =a.

Combining (18.10) and (18.11), the Maclaurin series can be written:

y" (0) y" t (0)
y(x) = y(O)+ y'(0)x+--x2 +__x 3+.....

2! 3!

Moving this to x =a leads to the Taylor series:

II (a) "'(a)
y(x) = y(a)+ y'(a)(x-a)+-y--(x-a)2 +-y--(x-a)3 +.....

2! 3!

If we let h =(x - a), this is the distance of the point x away from the point a. It
can then sometimes be useful to represent the series in terms of h, rewriting (18.13)
in the form:

h 2 h3

y(a+h) =y(a)+hy'(a)+- y.. (a)+-y"'(a)+ ....
2! 3!

The next example shows a Taylor series in action.

(18.14)
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Example 18.4.1
Find the Taylor series for y=ex near to x =1.

From (18.13) the Taylor series is:

y"(a) 2 y"'(a) 3
y(x) = y(a)+ y'(a)(x-a)+--(x-a) +--(x-a) +....

2! 3!

We want an expansion which works near to x =1, so we take a =1:

"(1) "'(1)
y(x) = y(I)+ y'(I)(x-I)+-y-(x-I)2 +-y-(x-I)3 + .....

2! 3!

To find the terms in the series, as with Example 18.3.1, we need

y(x) = y'(x) = y"(x) = y"'(x) = y<iv) (x) = e" ,

but this time we must work values out at x = 1:

y(I) = y' (1)= y" (l) = y'" (1)= y(iv) (1)= e' = e .

(18.15)

(18.16)

Putting these values into (18.15) the Taylor series expansion around x =1 is:

y(x) = eX = e+e(x-I)+":"(x-I)2 +':"(x-I)3 +.... ,
2! 3!

which you can usefully rewrite as:

X (x-I)2 (x-I)3
e =e(I+(x-I)+ + +....) .

2! 3!

Once more you can check the validity of your answer by plotting the original
function and the partial sums of the series, gradually adding more terms, and see how
good the fit is around x = 1. Figure 18.5 shows how good the approximation is close
to x = 1, even if only the first three terms of the series are added in - a quadratic
approximation to an exponential function!

eX "" 2.71828+ 2.71828(x-I)+ 1.35914(x-I)2

Figure 18.5 A quadratic fit to the exponential function near to x =1
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DO THIS NOW! 18.4

Uses of Taylor and Maclaurin Series 245

Find Taylor series for the functions as specified below, and explore the
approximation graphically in each case.

1. y =sin(x) about x =1[ .

2

2. y =cos(2x) about x =1[.

3. y =e-2x about x =2 .

18.5 USES OF TAYLOR AND MACLAURIN SERIES
Taylor and Maclaurin series have many important practical uses, not least

because the ideas form an important part of evaluating solutions to field equations,
for instance, for electric, magnetic or flow fields. There are many other mathematical
uses, and we describe some of these below.

18.5.1 Approximations to functions
You have seen illustrations of this aspect in Sections 18.3 and 18.4. Do not forget

that when you are dealing with infinite series, you must be sure that the series
converge, and to find the series coefficients you need to be able to differentiate the
function as many times as necessary and to evaluate it at a particular point.

You have seen that many common functions can be usefully expressed as
polynomials for some range. In fact all computing machines and calculators use
forms of these power series to work out values for common functions such as

y = sin(x) , y = cos(x), y = e" and so on.

18.5.2 Approximate values
A related application of power series is to find particular values of functions. For

instance if you worked on the railways years ago, before the advent of calculators,
you would need tables of values for y = sin(x) ; but for many measurements for the

construction of railway tracks the angle x is small. This means that, as long as you
work in radians, the Maclaurin series for y = sin(x) gives the approximation

sin(x) "" x (ignoring terms of x 3 and higher) and the tables are not needed.

DO THIS NOW! 18.5

Investigate the approximation sin(x) "" x and find out how accurate it is. It is perfect

at x =0, but how big does x have to be before the error reaches 1O%?

18.5.3 Indeterminate forms
An indeterminate form is one where substituting values in directly leaves

. h he value i a I' ki sin(x) huncertainty as to w at t e va ue IS. ne examp e IS wor ng out say -- w en x =
x

O. Direct substitution gives.Q which as it stands is indeterminate. To investigate
0'
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what happens when x gets close to 0, we can apply the Maclaurin series

• X
3

X
5

sm(x) = X--+-- .... thus:
3! 5!

sin(x)
--=

x

x3 x5

x--+--... 2 4
3! 5! =1-~+~-

x 3! 5!

. sin(x)
You can then see that what happens as x approaches 0 IS that -- approaches

x
a value of 1 - the "divide by zero " problem has disappeared as x has been cancelled
out.

DO THIS NOW! 18.6

Use the appropriate Maclaurin series to establish the behaviour of some of the
following indeterminate forms in Figure 18.6 - noting as you go that some CAS
technology has this process built in.

rrl~ll rz:", ITc~)· ~ll .r.~. on n III r,. ,T•~ Algebra ale Other Prgl'lIO Clean Up

• lil'l [ sin(x) - X) -1/6
x+8 x 3

[ eX + e -x - 2) -1/2• lil'l eos(2'x) - 1x+8
• lil'l (tan(x) - x) 1/3

><-ifl I x 3 J

Figure 18.6

18.5.4 Establishing relationships between functions
There are many relationships between functions which can be established using

Maclaurin series.

Example 18.5.1

Use Maclaurin series to demonstrate that.!!...- (sin(x)) = cos(x) .
dx

x 3 x 5
Start withsin(x) = x--+-- .... and differentiate it term by term - assuming it

3! 5!
is OK to do this with an infinite series!

d. d x 3 x 5 x7 3x2 5x4 7x 6

-(sm(x))=-(x--+---+....) =1--+---+....
dx dx 3! 5! 7! 3! 5! 7!

x 2 x 4 x6

=1--+---+.... =cos(x)
2! 4! 7!

as the last series is just the Maclaurin series for y(x) = cos(x) .
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_ II .~ ; 5 3

:-l=tll:':OO + 3r:2:':'0 - 512140 + 120 -T"

DO THIS NOW! 18.7

Use similar methods to Example 18.5.1 to show that:

1. s.(cos(x)) = - sin(x)
dx

2. sin(2x) = 2 sin(x) cos(x)

3. cos(2x) =cos ' (x)-sin 2 (x) =1- 2sin 2 (x) =2cos2(x)-1

DO THIS NOW! 18.8

One of the major mathematical relationships, introduced in Chapter 6, is Euler's
relationship:

e jx = cos(x) + jsin(x)

Establish this relationship by using the Maclaurin series

e jx = 1+ . + (jx)2 + (jx)3 +JX .... ,
2! 3!

splitting it into real and imaginary parts, and relating it to the series for y = sin(x)

and y = cos(x). (You will need to remember that / = -I)

END OF CHAPTER 18 PROBLEMS - DO ALL THESE NOW!
1. In this question, work on paper and then confirm using CAS - you can see CAS

output from one system in Figure 18.7.

Determine the first 6 terms of the Maclaurin series for y =sin(x) about x =0 .

Plot the graph of both the function and the series approximation.

Hence determine the value of sin(O.3C
) correct to four decimal places.

"'y2
y3=
y4=

• l.aylor(sln(x), x , 11) y~=

·x l1 x 9 x 7 x 5 x 3 ~7~
39916888 + 362888 - 5848 + 128 -6 + x Y!j=

1mmm.,(tiHiWI " 'i2(x) -x"lU39916800+x"9 .....3628",
MIlIN AfIID flUTD 3D 1110 HilliN AflDflUTD rUNe

xc:.3
MilliN ~flD fIIuya

ye: .29552
rUNe

Figure 18.7 A Taylor series fit on CAS.
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2. Determine the first 6 terms of the Maclaurin series for y =cos(x) expanded

about x =o.
Plot a graph of both the function and the series approximation using the first 6
terms.

Hence determine the value of y = cos(x) at x =O. to four decimal places.

Hence write down the series for y = cos(3x) .

3. Determine the first five terms of the Maclaurin series for y =In(1+ x) .

Why do you think there is no Maclaurin series for the function y =In(x) ? (Hint:

plot this function and see how it behaves near to x =0.)

The infinite Maclaurin series for y = In(1+ x) is valid only for I~ < 1 - why do

you think this is?

4. Complete the following table of standard Maclaurin series for the functions
given, either by calculating them (you may already have done this for some) or
by looking in any standard reference book on mathematical functions):

y(x) Series

sin(x) x 3 x 5 x7
x--+---+ ....

3! 51 71

cos(x)

tan(x)

eX

sin-\x)

In(l+x)

esin(x)

eX sin(x)

5. Determine the Taylor Series about a for y = cos(a + h) and hence determine

cos(32°), correct to 6 decimal places.

(Hint: start with equation (18.14), take a = 30 0, and suitable value of h.
Remember that although the angles here are specified in degrees you must do
your workings in RADIANS otherwise formulae derived using calculus are not
valid.)

6. Find the Taylor series expansion of y =tan(a + h) as far as the fifth power.
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Statistics And Data Handling
"Oh, people can come up with statistics to prove anything." H Simpson

19.1 WHY ENGINEERS NEED DATA HANDLING SKILLS
Engineers need to understand the systems they must work with, and base their

knowledge on the facts of the situation and not on prejudice or instinct. Statistics is
about gathering, organising and using data to understand and manage those systems.
There are two main aspects:

• Descriptive statistics: this is about organising, summarising and presenting data
to understand a situation.

• Inferential statistics: this is about using data in rational ways to inform decision­
making processes. It can involve using small samples of data to make inferences
about larger systems about which you do not have full information.

Not every system is completely described and understood, so we must gather data
(often partial) and use the information to try to understand what is needed. An
engineer may need to play a role in managing a large project or company and to
understand the economic side - wages, prices, availability of resources, etc.
Alternatively it might be necessary for instance to ensure that the breaking strain of
concrete beams is extremely unlikely to lie outside certain tolerance limits. In either
case this raises the question of what data are to be gathered and what is to be done
with the information which arises from the data.

Thus choosing the right pool of data from which to gather sample readings is a
necessary skill. This pool is called the population. You must then decide which
characteristics you are going to measure, and what the measure is to be - this
measure is called a random variable. You must also decide what your strategy will
be for gathering samples of data, taking due account. of the fact that there will
inevitably be variability between samples. This must be informed by what you intend
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2003

25.9

to do with the data. It is not useful to gather data, and only then to start thinking
about what to do with the information!

Having gathered the data, presentation matters. Presenting data in pictures is an
excellent way to get to grips with the information, and choosing the best form of
picture is an important skill. Sometimes, relationships between random variables can
become clear only when the right picture is produced.

(A linguistic point - the word "data" is a plural word, coming from a Latin root. It is
best equated with the word "facts". Thus we would say "data are" etc. rather than
"data is". The singular of "data" is "datum".)

This chapter will be restricted to discussing descriptive statistics and some of the
basic techniques for handling data - including a simplified, initial approach to curve
fitting. The full intricacies of inferential statistics and scientific decision-making are
left for other books. The chapter is largely built around activities, mainly to be
carried out on a spreadsheet. So do the exercises and activities as you go.

19.2 PRESENTING DATA IN PICTURES
19.2.1 Basic pictures

Presenting data in pictorial form can help you to understand what information the
data hold, in a way that a page or file of numbers cannot. This section encourages
you to explore the possible ways of representing the data graphically.

We assume that you are competent in using the basic graph plotting features of a
spreadsheet such as Microsoft Excel. If you are not, then you must acquire this skill,
as spreadsheets are now a standard part of the business and engineering toolkit.

You can choose from a variety of ways of presenting data pictorially, e.g.
histogram, pie chart, bar chart, x-y graphs. This next exercise encourages you to
explore the possibilities in your local spreadsheet.

DO THIS NOW! 19.1 Choosing a style of graph

The government regularly records many statistics, and one example is the average
weekly hours worked by all persons. Recent data are shown in Table 19.1.

Year 2000 200I 2002

Hours worked 23.8 24.2 25.0

Table 19.1 Average weekly hours worked by all persons March - May over a four year period

(Source: National Statistics Online at http://www.statistics.gov.ukl)

Type these data into your spreadsheet and explore how well the data are represented
by different kinds of plot (pie chart, x-y graph, column chart, histogram).

What is the difference between the column chart and the histogram? Does one show
you something the other does not?

What if you first make your "Hours worked" scale start from 22.5 (Excel defaults to
this), and then force the scale to start at O. Do the data tell you a different story then?
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Authors' comments: a histogram has no gaps between "boxes" and it is the area of
a box which reflects the number of values in that category, whereas with the column
chart it is the height or length of the box. Of course these will have the same effect if
all categories are of equal width, but not otherwise. The bar chart and histogram
offer the same kind of information. See Figures 19.1 (a) and (b).

Figure 19.1 (a) Column chart Figure 19.1 (b) Histogram

Excel note: produce the histogram in Figure 19.1 (b) by plotting the column graph,
then right clicking the chart, and using Options on the Chart menu to change the gap
between categories. Be precise with your terminology and adventurous with menus!

If you start your "vertical" scale at 22.5, it exaggerates the effect of any year on year
changes; starting the scales at 0 gives a better indication of the scale of the changes.

The pie chart is not really helpful in this case.

19.2.2 Pictures comparing more than one data set

Pictures can play an important role in the initial exploration and comparison of
data sets.
DO THIS NOW! 19.2 Comparing data sets

The data on average weekly working hours recorded by the government are also
broken down between men and women, and recent data are presented in Table 19.2.
It would be helpful to be able to plot these data in a way which allows comparison.

Year 2000 2001 2002 2003

Hours worked (men) 15.6 15.5 16.0 16.5

Hours worked (women) 8.2 8.7 8.9 9.3

Table 19.2 Average weekly hours worked by men and women March - May over a four year period

(Source: National Statistics Online at http://www.statistics.gov.ukl)

Type these data into your spreadsheet and explore how you might represent the three
dimensional data to allow you to gain some information about the differences
between hours worked by men and women. In Excel you might explore the use of an
x-y graph or a 3-D column chart.

Does one representation show you something the other does not? Do you get useful
information about the differences between hours worked by men and women,
including the trends?
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Authors' comments: Either picture gives some indication of the differences between
hours worked by men and women, and the trends year on year.

19.2.3 The use of cumulative data

Sometimes the presentation of data category by category does not give a clear
impression of what is going on, whereas if one were to look at the cumulative effect,
say over a period of time, that may clarify what is happening.

DO THIS NOW! 19.3 Using cumulative graphs

Type the data in Table 19.3 below into your spreadsheet, and produce an x-y plot
showing both sets of data on a single graph, perhaps by marking all three rows and
choosing a line graph. Next arrange for the spreadsheet to reproduce the cumulative
figures shown in Table 19.4, using formulae rather than calculating by hand. Now
plot these cumulative figures on a similar single graph.

Which of the plots do you find most informative? Why?

Timeperiod 1 2 3 4 5 6 7 8 9 10 11
Machine 1 39 86 97 102 74 53 62 69 80 53 48
Machine 2 45 67 61 77 71 51 45 58 48 62 36

Table 19.3 Production from two similar machines

Time period 1 2 3 4 5 6 7 8 9 10 11
Machine 1 39 125 222 324 398 451 513 582 662 715 763
Machine 2 45 112 173 250 321 372 417 475 523 585 621

Table 19.4 Cumulative production for datafrom Figure 19.2

19.3 SUMMARISING DATA SETS IN A FEW NUMBERS
19.3.1 Basic ideas

Original data often comes as a page (or pages) of numbers, which can be difficult
to interpret. As you will have seen above, pictures can help in understanding the
information contained in the data, but you can enhance your information by using
what are called summary statistics: numbers which summarise certain aspects of the
data. For simple data analysis these fall into two categories:

• Measures of central tendency, which give you some indication of where the
"middle" of the data set is. These include the mean, the mode or modal group and
the median.

• Measures of spread or dispersion, which give you some indication of how
widely spread the data set is around its "middle". These include the variance and
standard deviation, the range and the semi-interquartile range.

Each of these quantities is defined below, and they will all be illustrated in terms
of the same data set, as presented in Example 19.1.
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Example 19.1

The data in Table 19.5 concern items manufactured to a given nominal mass. A
sample of 60 items has been chosen at random from the production line, and the
mass of each, in kg, is recorded.

22.1 23.3 21.1 19.6 21.1 20.4

19.0 21.9 19.5 20.4 20.6 20.5

21.2 23.0 22.1 18.0 19.5 19.8

19.4 21.8 19.5 20.1 18.2 20.3

19.6 19.8 20.0 19.8 20.7 21.7

17.3 18.9 20.3 16.5 19.6 20.1

21.4 19.8 23.6 17.9 19.8 19.6

20.3 20.6 21.4 19.9 21.6 18.7

19.1 18.0 20.3 21.7 21.7 20.1

19.6 21.3 19.1 19.9 20.4 21.1

Table 19.5 Masses of a sample of 60 Items from a production line, In kg,

Throughout this section the individual readings are labelled using subscripted
variables Xl, X2, X3, •••• , XN. where N is the number of readings.

19.3.2 The mode (or modal group)

The mode tries to capture the idea of the most frequently occurring reading. With
data such as that of Example 19.1, with its values given to 1 d.p., this idea is most
meaningful if we group the data as in Table 19.6, and give the information as the
modal group - the range of readings with the most values in it.

Thus we count up and record how many values fall into various ranges 16 - 16.9,
17 - 17.9 etc. The size of group is an issue here. A good rule of thumb is to keep
things simple, and to have only about 6 - 9 groups of equal size.

Class
16- 17- 18- 19- 20- 21- 22- 23-
16.9 17.9 18.9 19.9 20.9 21.9 22.9 23.9

No. of readings 1 2 5 19 15 13 2 3

Table 19.6

For Example 19.1 then, the modal group is 19 - 19.9.

19.3.3 The median, range and seml-interquartlle range

The median is defined as the "physical middle" of the data. That is, if all the
readings are laid out in ascending or descending order, the median is the middle one.
If there is an even number of readings it is the average of the two middle readings.

The data from Example 19.1, when sorted, look like Table 19.7 (we show the
lowest, the highest, and the middle):

11~.5 11~.3 11~.9 I I 2~~1 I 2~\ I I 2;~3 I 2~~6 I
Table 19.7 Data from Example 19.1 sorted into ascending order.
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As there is an even number of readings, the median is thus the average of

d· 30 d 31 di 20.1+20.1 201rea mgs an : me tan = = ..
2

The range is one measure of spread, and is simply the difference between the
highest and lowest values in the data set. For Example 19.1, the lowest value is 16.5
and the highest is 23.6, so the range is 7.1. This can be quite misleading about the
scope of the data, as it can be seriously distorted by one extreme reading.

Another useful measure of spread is the semi-interquartile range. This uses the
same idea as the median. Instead of working with the halfway point, it finds the two
quarter-way points (or quartiles) and measures half the distance between those.

In Example 19.1, the lower quartile is reading number 15 in ascending order
(19.5), and the upper quartile is reading number 45 in ascending order (21.1)

The semi-interquartile range is therefore (21.1- 19.5)/2 =0.8.

19.3.4 The mean, variance and standard deviation

A different approach to representing the centre and spread of a set of data uses
the mean and standard deviation.

The mean or average is defined as the sum of all readings divided by the number
- 1 N

of readings N: Mean = x = - ~>. . (19.1)
N i=! I

In Example 19.1, N = 60, and the sum of all readings is 1213.6 (you can get your
spreadsheet to do these calculations for you - and indeed probably to find the mean

- 1
as well!). The mean is therefore x =-(1213.6) =20.23.

60

The first measure of spread or dispersion is the variance, and its square root,
which is the standard deviation.

The idea of the variance is that it is the average value of the squared distance of
each reading from the mean. Each distance is squared to remove the effect of any
minus signs - we do not care whether a reading is above or below the mean, only
how far from the mean it is. The standarddeviation is used because by taking the
square root of variance the measure is back in the same units as the original readings,
whereas the variance is in (units)",

Sample variance

2 1 ~ - 2
S =- ,L,[(xi -x) ] .

N i=!

Sample standard deviation

1 N - 2
S =.Jvariance = - L[(xi -x) ] .

N i=!

(19.2)

(19.3)
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There is a technical complication. To find an average you would normally divide
by the number of readings N, and indeed if all you want is to find the variance for the
sample set of readings you see then that is what you should do. However if you are
using the sample variance and standard deviation to estimate the values for the whole
population from which the sample is drawn, then you should divide not by N but by
(N - 1), as this will give a better estimate. Books on sampling theory give a full
explanation of why this is. This measure is frequently distinguished from s by using
sN-I. and is the one which is most frequently used. For large samples (i.e. large

values of N) it makes little difference whether you divide by N or by (N - 1).

Thus estimatedpopulationvariance is

2 1 ~ - 2
SN_I =--L,,[(Xi -x) ] .

N-l i=1

Estimatedpopulationstandarddeviation is

(19.4)

(19.5)

In the case of Example 19.1, the variance is SN_1
2 =_1 (112.5273) = 1.91.

59

The standard deviation is thus SN_I=1.38.

19.3.5 Comments

Note that the three measures of centre give different answers, but they each have
their useful properties. For instance the median tends to play down the effect of
extreme readings within data sets (a largest reading of 200 in Example 19.1 would
have no more effect than the actual largest reading on the median. It would however
have a distorting effect on the mean - where the actual value is taken into account
rather than its position in ascending order).

Some machines work these statistics out as standard functions. For instance
Excel has built-in functions AVERAGE, VAR and STDEV. Alternatively Figure
19.2 shows output from built-in statistics functions from a graphic calculator.

l-Var Stats l-Var Stats
x=20.2250 tn=60.0000
Ix=1213.5000 MinX=16.5000
Ix2:=24654.9500 Q1=19.5500
Sx=1.3773 Med=20.1000
Cl'x=1.3657 Q3=21.1500

.J..n=60.0000 MaxX=23.6000

Figure 19.2 Typical statistical output from a graphic calculator.
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DO THIS NOWl 19.4

60.00

1

15.00

3

10.00

19

Table 19.8 shows wage distribution data from a small engineering firm, in terms of
the number of people on various hourly rates of pay.

Hourly rate (£) 4.50 8.00

Number of staff 6 21

Table 19.8 Data showing hourly pay rates and number of staff at those rates at a small engineering firm.

There are thus 50 members of staff, and N =50. Note that the rate 4.50 occurs 6
times, and so on, and this must be taken into account in all calculations. Find:

(i) the mean hourly rate (ii) the modal group

(iii) the median hourly rate (iv) the standard deviation

(v) the range (vi) the semi-interquartile range.

You can check your answers in the box below.

Comment on why the mean and median are different, and which figure you would
quote for comparison with other companies if you were a union negotiator!

Explain which version of standard deviation you have used and why. Comment on
why the standard deviation and serni-interquartile range are different.

Author's notes on DO THIS NOWl 19.4 (and 19.3)

We get (i) £9.80; (ii) £8.00; (iii) £8.00; (iv) £7.53; (v) £55.50; (vi) £1.00.

We have used SN because we have data for the whole population here.

The single person on £60 per hour distorts mean, standard deviation and range, but
not median and semi-interquartile range (semi-IQR). This figure would not be
directly relevant in comparisons with like workers, although it may have a bearing
on the negotiating atmosphere!

There is a standard, and very useful graphical way of representing median, range and
semi-IQR, using what is known as a box-and-whisker plot. This can also often make
differences between two data sets apparent. For instance Figure 19.3 represents the
data from DO THIS NOW 19.3! as two box-and-whisker plots, with plotted values
from left to right representing lowest reading, lower quartile, median, upper quartile
and highest reading.

",;:-:1=69 _

Figure 19.3 Box and whisker plots on a graphic calculator.
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19.4 FITTING LAWS TO EXPERIMENTAL DATA
Sometimes with statistical analysis you are trying to find out if there is a

relationship between two variables and, if so, to determine which mathematical law
describes that relationship best. One good preliminary way to study what kind of
relationship exists is to plot a graph of one variable against the other, and also to plot
on the same graph any mathematical curves which may fit the data.

Initially one checks how well the mathematical law fits the data visually, but the
scientific and objective way is to use the method of least squares. A full treatment of
this lies beyond this book; here is a simple spreadsheet approach.

DO THIS NOWl 19.5
Table 19.9 shows the length of a steel wire under various loads.

Weight (N) 20
Length (m) 2.00042 2.00086

40 60 80 100
2.00132 2.00176 2.00219

Table 19.9

Place the data into the first two columns of your spreadsheet, and plot them as an x-y
scatter graph (just points, not joined by lines, as they are individual readings).

You should be able to speculate that the points lie on a straight line and therefore the
two variables are connected by a linear relationship, of the form y =a + bx

Estimate the values of a and b to give the "best" fit of the straight line to the data.
First do this by eye, by making the third column of your spreadsheet hold the values
of a + bx for each value of x, and having a and b in cells on the spreadsheet. Add
these values to your graph as a separate curve, joining points by lines to distinguish
them from the measured data (your spreadsheet should look like Figure 19.4).

Figure 19.4 Setting up a spreadsheet to fit a straight line to data points on a graph.
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Now play with the values of a and b on your spreadsheet to try to get the best fit you
can between the data points and the line y =a + bx.

Let us remind you again however that this is not the scientific way of fitting a
straight line, as two people might not agree on what is the best fit. The agreed
method is called the method of least squares, which in many packages is
implemented as a built-in function. For instance, in Excel one opens the graph by
double clicking on it, selects the experimental data set by clicking once on anyone
data point, then from the Chart menu selects "Add trend line" and follows simple
instructions, giving Figure 19.5. Other packages and technologies have similar built­
in functions. Look at your technology to identify what it can do.

Figure 19.5 The result of using Excel's built-in "Insert trendline" feature.

In fact the "Add trendline" feature has a collection of curves which can be fitted to
data according what "shape" the data has. See Figure 19.6.

Figure 19.6 A range of curves can be fitted using "Insert trendline".

The trendline feature is using the method of least squares. To see how this works,
you can carry on and have a go at DO THIS NOW! 19.6 You should find that it
gives the same result as the trendline in DO THIS NOW! 19.5.
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DO THIS NOWl 19.6

Fitting Laws to Experimental Data 259

You can see how the method of least squares works by using the Solver feature of
Excel as follows. Start by making your spreadsheet look like Figure 19.4. Make the
links to the a and b cells live, so that as you change them they move the line. Get a
good estimate of a and b by experiment.

Now, in the fourth column, calculate the values corresponding to

(observed y value - model y value)2

for each x value. These are the squared errors. Find the total of these values (the sum
of squared errors). The idea is to minimize this sum of squared errors (hence the
name least squares) by changing a and b. Experiment with changing a and b and you
should see the sum changing - getting smaller as your line fits better.

Excel has a Solver function which will find the minimum of the sum of squared
errors as a and b change. You may find this Solver on the Tools menu. The set-up is
shown in Figure 19.7. Pressing Solve should make the line fit and give the same
answer as the trendline. Make your spreadsheet do this now!

Figure 19.7 Setting up Excel's Solver to minimize squared errors.

We leave the topic of Statistics here. You should note that if you wish to take this
topic further, you will probably need to learn other packages such as SPSS or SAS.
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20
Probability
"Now what are the chances of that happening?" HarryHill

20.1 WHAT IS PROBABILITY?
20.1.1 Probability, uncertainty and risk

We live in an uncertain world. The future can surprise us at any time. The fact
that something has never happened does not mean that it will not do so in future. The
fact that something has always been so does not mean it will be so forever. In the
midst of this uncertainty, we have to live and make rational decisions. Probability
theory is a mathematical attempt to quantify the chances of different events
occurring. It is a crucial tool in engineering, whether attempting to quantify the risk
of a piece of equipment failing so as to have a rational and safe replacement and
renewal policy; assessing likelihood of producing and selling a poor quality item
from a production line; or trying to design an investment policy which will manage
movements in the stock market.

We all have a gut instinct about the chances of a particular event occurring,
although some seem to get it right more often than others! In fact there are two ways
this instinct comes about, and we must realise there are two kinds of probability:

a priori probability: this is where the probability can be reasoned out before the
event (the meaning of the Latin phrase used). For example we can reason that a
(fair!) coin is equally likely to come down heads or tails without tossing it.

a posteriori probability: this is where the probability can only be estimated in
terms of what has gone before (a posteriori means "from behind"). A good example
is the Fatal Accident Frequency Rate, in which the risk of future death in various
activities (hang-gliding, ballroom dancing, working in the engineering industry) can
be quantified in terms of historical accident rates, expressed as number of deaths per
unit of time exposed to the risk. Of course this carries with it the possibility that if
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(20.1)

the situation has changed then rates from the past may no longer be a good predictor
of the future.

Accepting all this, we state our feelings about probabilities in various ways, e.g.

"There's a 50-50 chance of getting a head when you toss a coin."

"I've got an even chance of getting a head when I toss a coin."

"The odds are 1 to 1 that I will get a head when I toss a coin."

Thus perhaps the first thing we need to do is agree to use a common language.
Mathematicians defme probability on a scale from 0 (no chance at all of something
happening) to 1 (an event is certain to happen). Here is the definition:

20.1.2 Definition of Probability

If an event can occur in N distinct equally likely ways, and S of these ways
possess some particular property A (we often think of this as corresponding to a
"success"), then the probability of A occurring, denoted by P(A) is defined as

P(A) =!-. =Number of successful outcomes .
N Number of possible outcomes

The number of "successful" outcomes cannot be less than 0, and since it also
cannot be bigger than the total number of possible outcomes (!), then 0 ~ S ~ N ,

and so dividing through by N which is positive 0 ~ !-. ~ N =1.
N N

That is O~ P(A)~ 1 (20.2)

and probability lies on a scale from 0 to 1 as we said above.

You can see that if S = 0 then P(A) = 0 and this means no chance of success.
Correspondingly, if S = N, then P(A) = 1 and all outcomes are successful.

You will find that using probability ideas in engineering situations does not make
large demands on algebraic skills. Technology cannot help much, as the biggest
difficulty is usually deciding what approach to take. That is, it is taking a problem
which is often defined messily in words, extracting the relevant information and
ignoring the irrelevant, and applying the right mathematical rules and ideas to get a
sensible answer. In fact then, the best way to get to grips with the ideas of probability
is to keep trying to apply them to different problems, so remember keep on doing
the exercises and activities.

20.2 SIMPLE EXAMPLES - COMPLETE ENUMERAnON
It is difficult to go straight into modelling probability in what can often be

complicated engineering situations, so we begin with some simple and commonplace
situations around which you can develop your thinking about probability. Simple
situations can often be analysed by just writing down all the possible outcomes and
calculating probabilities directly from there - so-called complete enumeration.
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Example 20.2.1

Toss a coin once. There are two possible outcomes (N =2), head (H) and tail (T).
These are equally likely. Thus you can see simply that:

S 1
P(H)=-=­

N 2
and peT) =J.- =~ .

N 2

This fits with the instinct that heads and tails are equally likely.

Example 20.2.2

Toss a coin twice. There are now four possible outcomes (N =4), two heads (HH),
two tails (TT), head followed by tail (HT) and tail followed by head (TH). Again
these four are equally likely, and you can see simply that:

P(HT) =J.- =~
N 4

and
S 1

P(TT) = - = - and so on.
N 4'

You can also see that P(a head and a tail in any order) =J.- =~ =~
N 4 2

DO THIS NOW! 20.1

Use complete enumeration to analyse tossing a coin three times, calculating the
probability of three heads HHH, ofTHT, and of two tails and a head in any order.

Example 20.2.3

Roll two fair six-sided dice and add the numbers showing. Analyse the probabilities
of various outcomes by complete enumeration, for instance:

(i) event A ={scoring 12} (ii) event B ={scoring 7}

(iii) event C = {scoring 3 or less} (iv) event D = {scoring more than 3}.

All the possible outcomes (a complete enumeration of the sample space - there are
N = 36 of them - count them!) are best presented as pairs of scores in a table:

1,1 1,2 1,3 1.4 1,5 1.6

2,1 2,2 2,3 2,4 2. S 2,6

3,1 3,2 3,3 3,4 3,5 3,6

4, 1 4,2 4,3 4,4 4,5 4,6

5, 1 , 5,2 5,3 5,4 5,5 5,6

6.1 6,2 6.3 6,4 6,5 6.6

Table 20.1

(i) peA) = P(scoring 12) = _1 (there is only one way of scoring 12).
36
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(ii)

(iii)

(iv)

P(B) =P(scoring 7) =~ =..!.. (there are six ways of scoring 7 - see
36 6

shaded cells in Table 20.1.)

P( C) =P(scoring 3 or less) =~ =-.!..- (there are three ways of scoring
36 12

3 or less - see bold cells in Table 20.1.)

P(D) =P(scoring more than 3) .

You could count up the number of ways of scoring this as above, or you
could realize that if there are three ways of scoring 3 or less, there must
be (36 - 3) ways of scoring more than 3. Thus

P(D) = 33 =.!..!..
36 12

This example is picked up later in section 20.3.

DO THIS NOW! 20.2

When rolIing two dice, calculate the probabilities of:

(v) making an odd numbered score;

(vi) scoring 6 or 7.

20.3 MORE COMPLEX SITVATIONS - THE LAWS OF PROBABILITY
In many situations using complete enumeration can be complicated and long­

winded, and in these cases it is useful to have laws for combining together
probabilities of two or more events A, B, etc.

20.3.1 The Addition Law of probability

IfA and B are two events then

P(A or B) =P(A) + P(B) - P(A and B) . (20.3)

Note the use of the word "or" here. It is an example of how mathematicians can
take a good English word and give it a slightly, but importantly different, meaning. It
is the "inclusive or", in the sense that it means either A or B or perhaps both happen.
This is as opposed to everyday usage which tends to be the "exclusive or": "I'm
either having chips or pasta for lunch" (but presumably not both!)

One pictorial way to visualize this idea uses a Venn diagram as in Figure 20.2.

Figure 20.2 A Venn diagram showing events A and B which are not mutually exclusive
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20.3.2 The Addition Law for mutually exclusive events

If the two events A and B cannot happen simultaneously, then we say they are
mutually exclusive. In this case peA and B) =0, and so the addition law becomes
this:

IfA and B are two mutually exclusive events then

peA or B) =peA) + PCB) .

The Venn diagram changes to represent this idea (Figure 20.3).

(20.4)

Figure 20.3 A Venn diagram showing events A and B which are mutually exclusive

Some examples will clarify the use of the law. We shall use the standard western
deck of 52 playing cards to illustrate the law in action.

Example 20.3.1

Pick a single card from a deck of 52 (N = 52). First note some simple probabilities.

Event K ={a King is drawn}

Event Q={a Queen is drawn}

Event H = {a heart is drawn}

P(K)= ~=~
52 13

4 1
P(Q) = 52 =13

P(H) =.!l =.!- .
52 4

Now using the addition law you can find the probabilities of various combinations of
these events:

(a) Note that K and Q are mutually exclusive (a card cannot be both a King and a
Queen!) and so

PeKing or Queen is drawn) = P(K or Q) = P(K) + P(Q) = ~+~ =~ .
13 13 13

(b) Note that on the other hand K and H are not mutually exclusive - there is one
card that can be both a King and a Heart (the King of Hearts!) - and so

PeKing or Heart is drawn) =P(K or H) =P(K) + P(H) - P(K and H)

1 I 1 16 4
= -+---=-=-.

13 4 52 52 13
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Note what is happening here. The figure of J.. includes the King of Hearts, and
13

so does the ..!.-, so to prevent this card being counted twice towards the probability,
4

its probability _1_ must be subtracted once. The law thus makes sense in terms of the
52

complete enumeration of the situation.

DO THIS NOW! 20.3

In the situation in which a single card is drawn, calculate the probabilities that:

(i) a red card is drawn. (ii) a 2 or 3 is drawn (iii) a 2 or a red card is drawn.

20.3.3 Complementary events

This is a natural point at which to pick up an issue which arose at the end of

Example 20.2.3. First we need a bit of notation: If A is an event, then denote by A

the event that A does not happen (many people read this as "not A"). A and A are
called complementary events.

A Venn diagram gives a good way to represent this idea, as in Figure 20.4.

Figure 20.4 A Venn diagram showing complementary events.

Now clearly A and A are mutually exclusive (A cannot both happen and not

happen simultaneously). Also, either A or A must happen (either A happens or it
does not). These facts can be interpreted in mathematical statements:

P(A or A) = P(A) + P( A) (mutually exclusive).

P(A or A) = I (either A or A must happen).

Putting these together gives

or

P(A) + P( A ) = I

P(A) = 1- P(A) . (20.5)

It is often easier when finding the probability that A happens, to find first the

probability of A, and then use (20.5) to find P(A), as illustrated in the next example.
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Example 20.3.2

Return to Example 20.2.3, where two dice are rolled. Suppose you want to find the
probability of scoring 11 or less. There are many combinations which produce a
score of 11 or less, but working with the complementary event makes things simpler:

Let A ={scoring 11 or less}

The event complementary to this is:

A ={not scoring 11 or less} ={scoring more than 11} ={scoring 12}

This is easier to work with as there is only I way out of 36 to score 12:

- 1 - 1 35
P(A)= - and so P(A)=I-P(A)=I--=-.

36 36 36

DO TIDS NOW! 20.4

Use the complementary event approach to calculate the probability that a coin tossed
four times does not show the same result on all four tosses. (We get 7/8)

20.3.4 The Multiplication Law of probability

The multiplication law deals with the probability of two events both happening.
First you need the idea of a conditional probability. If A and B are two events then
denote by P(B/A) the probability that B happens given that A happens.

Then the multiplication law is this:

If the probability of A happening is P(A), and the probability of B then happening
given that A happens is P(B/A), then the probability that both A and B happen is

P(A and B) =P(A).P(B/A) . (20.6)

Example 20.3.3

Two cards are drawn from a pack of 52 without replacement. What is the probability
that both are clubs?

Let A = {the first card is a club), and let B = {the second card is a club}.

Then

and

P(A) =Q='!'
52 4

12 4
P(B/A) = -=­

51 17

(there are 13 clubs out of 52)

(there are 12 clubs out of 51 cards left).

It is clear here that A affects B since when the second card is picked, the first card
(which was a club) has already gone and has not been replaced. Finally then:

141
P(both cards are clubs) =P(A and B) =P(A).P(B/A) =-x-=-.

4 17 17

You could also find this by complete enumeration, writing down all the ways in
which the two drawn cards can come out, but using the law is far simpler.
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20.3.5 The Multiplication Law for independent events

In some cases the second event is not influenced by the first, The events are then
called independent. In this case P(B/A) = P(B), and the multiplication law becomes
simpler.

IfA and B are independent events then

P(A and B) =P(A).P(B). (20.7)

Example 20.3.4

Return to Example 20.3.2 where a coin is tossed twice.

Let A = {first toss yields a head} and let B = {second toss yields a head} .

One would assume that each toss of the coin is independent of any previous tosses,
so A and B are independent events. Thus

P(getting two heads in two tosses) =P(A and B) =P(A).P(B) = .!.x.!. =1. .
2 2 4

Note that this agrees with the result which came from complete enumeration back in
Example 20.2.2 - which is reassuring!

DO TInS NOW! 20.S

Two cards are drawn from a pack without replacement. What is the probability that
both are kings? (We get 1/221. What do you get?)

Answer the same question in the situations where the number of cards drawn is
three, then four, then five. (We get 115525, 11270725,O. What do you get?)

20.4 TREE DIAGRAMS
It has been a recurring theme of this book that a picture paints a thousand words.

In dealing with probability, the Venn diagram can help with getting a picture of
some of the concepts, but one of the most useful tools in helping to apply the laws
correctly is the tree diagram, a graphical technique which helps you to sort out the
realities of a situation and apply the correct law at the correct time. It is best
introduced by an example.

Example 20.4.1

A box contains 14 light bulbs. 12 of these work and 2 do not. Someone comes in
and picks two out at random to use.

What is the probability that (a) neither works, and (b) just one works?

Let A = {the first one works} and let B = {the second one works}. This fust step
of setting up the problem mathematically by making definitions of the events can be
under-emphasized, and can be a source of some difficulty.

For instance if you try to build an image of the situation by thinking in terms of
taking out both bulbs simultaneously then that makes it more difficult. It is easier to
see how taking two bulbs affects the probabilities, and entirely equivalent, to think of
it as taking out the bulbs one after the other.

�� �� �� �� ��



268 Probability [Ch.20

You can then analyse this situation using a tree diagram as shown in Figure 20.5.
The tree diagram is a graphical way of forcing you to think the events through step
by step. See if you can interpret the diagram, with the help of the comments below.

11 12 11

~
B -x-

14 13

12 A

Z ~ 12 2
B -x-

13 14 13

12

-

~
B 2 12

A
-x-

14 14 13

~ B 2 1
13 -x-

14 13

Figure 20.5 A tree diagram for Example 20.4.1.

The "tree" grows from left to right. You can see that all probabilities are thought
out step by step, so any issues of independence must be dealt with as you go. Also
each path followed along "branches" from left to right is separate, so mutual
exclusivity is automatically dealt with.

As you travel along a path from left to right, you take in one probability AND
then the next, so you multiply probabilities as you go, and get the overall probability
of arriving at the end of that path. Then you choose the path(s) that you are interested
in, and since these will be one OR the other, you add the resultant probabilities from
each path you require. A good check is that all the probabilities down the right hand
side must add up to I, as you have to end up somewhere on the right hand side.

The answers to our particular questions are then:

(a) Only the bottom branch relates to the event that neither works, so:

P(neither works) =2.x~ =~.
14 13 91

(b) Both middle branches have just one bulb working, so include both and add them.

. 12 2 2 12 12 12 24
P(just one works) = -x-+-x- =-+-= - .

14 13 14 13 91 91 91

DO THIS NOW! 20.6

Extend the tree diagram of Example 20.4.1 to deal with the situation in which three
bulbs are taken. Answer the equivalent questions. That is, calculate the probabilities
that (a) none of the three bulbs works and (b) just one of the three works.

Hints: Your tree will need three left-to-right layers so leave enough space for that!
Some branches may come to an end before the third layer. Why?

We get (a) 0 and (b) 33/91. What do you get?
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20.5 SOME MORE PROBABILITY PROBLEMS

Finally, here are some probability problems which bring in more realistic and
engineering-related situations.

Example 20.5.1

Valves control gas flow through a pumping station. They are combined in various
arrangements to increase safety by building in back-ups. These valves have a certain
probability of staying open when the signal is sent to close ("failing open") and of
failing to close when the signal is sent to open ("failing closed"). Here is an analysis
of the probabilities that some configurations of valve will fail either to stop gas or
allow it through when ordered to do so.

Suppose for each individual valve:

P(failing open) = 0.02 and P(failing closed) = 0.03

Example 20.5.1 (a) Two valves in series (Figure 20.6)

Figure 20.6 Gas valves in series.

Let A = {gas stops flowing when both valves are open and are ordered to close}

To find P(A) directly is complicated as there are several ways in which the gas could
stop, with either of the individual valves, or perhaps both valves working. However
there is only one way that the gas could continue to flow, so this is a good chance to
use the complementary event

A = {gas still flows when both valves are open and are ordered to close}.

P( A ) = P(both valves fail open) = P(first fails open and second fails open)

=P(first fails open).P(second fails open) =0.02xO.02 =0.0004.

Finally P(A) =1 - P( A ) =1- 0.0004 =0.9996.

Example 20.5.1 (b) Two valves in parallel (Figure 20.7)

Figure 20.7 Gas valves in parallel.

Let B ={gas stops flowing when both valves are open and are ordered to close}

This time the head-on approach is the natural one, as there is only one way in which
the gas will stop - that is, if both valves work.
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Thus P(B) =P(both valves work) =P(first valve works and second valve works)

=P(frrst valve works) x P(second valve works).

You can get these probabilities that each valve works by simply subtracting from 1
the probability that the valve fails open.

Thus P(B) =(l - 0.02) x (1 - 0.02) =0.98 x 0.98 =0.9604.

DO TillS NOW! 20.7

Apply the ideas of Example 20.5.1 to the configuration in Figure 20.8.

Figure 20.8 A more complicated (and realistic) valve arrangement.

(a) Find the probability that gas continues to flow when all valves are open and are
ordered to close.

(b) Find the probability that gas flows when each valve is closed but is ordered to
open.

(Hint: break the problem down - that is, find the probability for each parallel
subgroup, then combine them together in series.)

We get (a) 0.001568, and (b) 0.998201. What do you get?

Example 20.5.2

In a factory, a piece of equipment will function only if 3 components A, B, and Care
all working. The probability of A failing during one year is 0.05, that of B failing is
0.01, and that of C failing is 0.10. What is the probability that the equipment fails
before the end of the year?

DO mIS NOW! 20.8

Try to finish Example 20.5.2!

Try first without reading these following hints, but if you are having problems, read
the next paragraph and then have another go.

Hint: Once more, if you try to tackle this problem head-on, it will be complicated. as
there are many ways in which the equipment can fail, but only one in which it can
function properly. So deal with this problem by finding the probability that the
equipment does not fail by the end ofthe year, and then use the complementary event
rule to answer the original question.

We get 0.15355. Do you agree?
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DO THIS NOW! 20.9

Try to tackle this problem using the methods you have been learning about. Some
hints appear at the end of this box if you are having trouble getting started.

Metal rods are manufactured at a factory to a given specification - that they must be
of length 40 ± 0.2 em. Rods are made on one of three nominally identical machines
A, B, and C in the factory. Machine A makes 43% of the rods, machine B makes
35%, and machine C makes the remainder. Of the rods made on machine A, 5% lie
outside the tolerance limits; for machine B this figure is 4%; and for machine C it is
3%.

(i) Calculate the probability that a rod picked at random from the factory's output
lies outside the tolerance limits.

(ii) Given that a rod lies outside the tolerance limits, calculate the probability that it
was made on machine C.

Hints:

For part (i), use a tree diagram, with two layers of branches, one split by A, B, C, and
one for goodJbad in each of those cases.

For part (ii), use the multiplication law P(A and B) =P(A).P(B/A), but in rearranged

form P(B I A) = P(A and B) .
P(A)

Choose your A and B carefully in this law to fit the problem.

We get (i) 0.0421 and (ii) 0.15677. Do you agree?

20.6 WHERE NEXT WITH PROBABILITY?

When you construct a tree diagram, or do anything else to find all the relevant
probabilities in a situation, you are constructing what is called a probability
distribution. This effectively means coming up with a formula or table which gives
all probabilities in a given situation.

Often, you will find that the same mathematical distributions of probability will
occur in very different practical situations, so these are given names - for instance,
binomial, Poisson, Normal, uniform and exponential distributions. Study of these
would be the next logical step in your learning about probability, but they are beyond
the scope of this book.

If you have managed to do all of the DO THIS NOW! 20.1-9, exercises you
should be feeling a little more confident in your understanding of probability now.
Go back and do them now if you haven't already done so!
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In the pages which follow we have gathered together a collection of main facts and
helpful formulae and terms. We hope you find this useful.

Gl GREEK ALPHABET
A a alpha N V nu
B ~ beta E ~ xi
r y gamma 0 0 omicron
A 0 delta II 1t pi
E E epsilon P p rho
Z ~ zeta 1: a sigma
H " eta T 't tau
e e theta y u upsilon
I 1. iota <I> 4> phi
K K kappa X X chi
A A. lamda 'P 'If psi
M J.1 mu ,Q 0) omega

G2SIUNITS
The International System of units (SI units) is an internationally agreed set of units
and symbols for measurement.
The base units for this system are metre, second and kilogram (symbols m, s, kg
respectively).
Prefixes may be added, for instance:
c centi (10.2) m milli (10'3) J.1 micro (10.6) k kilo (103) M mega (106

) .

Many software packages and machines (see for instance screen dumps in Figure Gl )
have settings available to make sure you work in the appropriate units. Make sure
you know what your technology does.
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Figure GI Graphic calculator screens for specifying units.

G3 COMMON GRAPHS TO NOTE
G3.1 Identify which graph goes with which equation.

y=mx+c

y=x2

1
y=­

x

y=l~

G3.2 Identify which graph goes with which equation.

y=eX

y=e-x

y = In(x)

273
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G3.3 Identify which graph goes with which equation.

y = sin(x)

y =cos(x)

y = tan(x)

G3.4 Identify which graph goes with which equation.

y = sinh(x)

y =cosh(x)

y = tanh(x)

G3.5 Identify which graph goes with which equation.

y = sin -I (x) = arcsin(x)

y = COS-I (x) = arccos(x)

y = tan -I (x) = arctan(x)

y=x

G4 POWER SERIES
Maclaurin's Series:

2 3

!(x) = !(O)+x/,(O)+:5- !"(O)+:5- /,"(0)+ ...
2! 3!

Taylor's Series:
h2 hn~ hn

!(a+h) =!(a)+h/,(a)+-!,,(a)+·+--r-I(a)+-r(c)
2! (n-l)! n!

where a :s; c :s; a +h .
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Common Series

( )
n 1 n(n-l) 2 n(n-l)(n-2) 3

l+x = +nx+ x + X +...
2! 3!

(1+X)-1 = l-x+x2 _X3 + ...

x 2 x 3

eX =1+x+-+-+...
2! 3!

x 2 x 3 x4

In(l+x) = x--+---+ ...
2! 3! 4!

x3 x5 x7

sin x = x--+---+...
3! 5! 7!

x 2 x4 x6

cosx = 1--+---+...
2! 4! 61

x3 2x 5 17x7

tan x = x+-+-+--+...
3 15 315

. 1 x 3 lx3 x 5 lx3x5 x7

arcsInx=x+--+----+ + ...
2 3 2x4 5 2x4x6 7

1[ .
arccos x = - - arCSIn x

2

x 3 x5 x 7

arctan x = x--+---+...
357

x3 x 5 x7

sinh x = x +-+- +-+...
3! 5! 7!

x2 x4 x6

cosh x = 1+-+-+- + ...
2! 4! 6!

x 3 2x 5 17x7

tanh x = x - - + - ---+...
3 15 315

1 x3 1·3 x5 1·3 .5 x7

arcsinhx = x---+------+...
2 3 2·4 5 2·4·6 7

1 1 1·3 1 1·3·5 1
arccoshx = In2x-----------...

22x2 2·44x4 2·4·66x6

275

valid for

Ixl < 1

All x

-1::>x::>1

All x

All x

Ixl<1

All x

All x

Ixl < 1[
2

x ~1
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arcsin(x)

arctan(x)

- .z or z

j
Re(z)

Im(z)

exp

arccos(x)

Izi
arg(z)

(r, (J)

GS COMMON NOTATION
> greater than
~ greater than or equal to
< less than
~ less than or equal to

an a to the power n

..;;; the non negative square root of a, where a ~ 0

!if;; the nth root of a , where a ~ 0

a-n the nth root of a where a*" 0

a '% ~ ,where n » Oand a ~ 0
00 infinity
(x, y) the Cartesian coordinates of a point

"" approximately equal to

sin 2(x) (sin(x)) 2 a peculiar mathematical notation

[a,b] set of all numbers between a and b, including a and b

(a,b) set of all numbers between a and b, not including a and b

[a,b) set of all numbers between a and b, including a but not b

Ixl the absolute value of x

e base for the natural logarithm function and the exponential
function (e:::: 2.718281 )
the exponential function

angle in interval [0, Jr] whose cosine is x. ( cos -1 (x) )

angle in interval [- Jr , Jr] whose sine is x. (sin -1 (x) )
2 2

angle in interval [- Jr , Jr] whose tangent is x. ( tan -1 (x) )
2 2

logarithm function to base a

natural logarithm function to loge where e ::::2.718281

H
the real part of z
the imaginary part of z
the complex conjugate of z
the modulus of the complex number z
the argument of the complex number z
the polar form of a complex number, where r is the modulus and

(J is an argument.
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f' or
dl
dx

Glossary

the (first) derivative of the function I with respect to x.

277

d
21I" or

dx 2

fl(x)dx·

b

fl(X)dx
a

yea) =b

A
AB
AD
A+B
A-B
kA
I
A-I

det A
aij

Ax=b
o

the (second) derivative of the function I with respect to x.

the indefinite integral of I(x) with respect to x

the definite integral of I(x) with from a to b

the condition that y = b when x = a

a matrix
the product of matrices A and B

the nth power of the square matrix A
the sum of the matrices A and B
the difference of the matrices A and B
the scalar multiple of the matrix A by a real number k
the identity matrix

the inverse of the invertible matrix A
the determinant of the square matrix A
the element in the i th row and j th column of the matrix A

the matrix form of a set of simultaneous equations
the zero matrix.

G6 TABLE OF TRIGONOMETRIC FUNCTION FORMULAE

sin(A+ B) = sin AcosB+cosAsin B

cos(A+ B) = cosAcosB-sin Asin B

tan(A + B) = _ta_n_A_+_ta_n_B_
l-tanAtanB

sin(A -B) = sin AcosB-cosAsin B

cos(A-B) = cosAcosB+sin Asin B

tan(A _ B) = tan A -tan B
l+tanAtanB

sin 2A = 2sin Acos A

tan 2A = 2 tan A
l-tan 2 A

cos2A=cos2 A-sin 2 A=I-2sin 2 A=2cos2 A-I
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. A . B 2' (A+B) (A-B)sm + sin = sin -2- cos -2-

(A+B) (A-B)cosA+cosB=2cos -2- cos -2-

sinAcosB = .!.{sin(A + B) + sin(A- B)}
2

1
cosAcos B= -{cos(A + B) + cos(A- B)}

2

Glossary

. A . B 2 (A+B). (A-B)sm -sm = cos -2- sm -2-

2 . (A+B) . (A-B)cosA-cosB=- sm -.-2- sm -2-

sinAsinB= .!.{cos(A - B) -cos(A + B)}
2
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