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Preface

“The natural sciences are concerned with how things are. ... Design, on the
other hand, is concerned with how things ought to be, with devising artifacts to
attain goals.” H. A. Simon, Sciences of the Artificial, 1969, ch. 3.

Later on, he says, "... in large part, the proper study of mankind is the science
of design, not only as the professional component of a technical education but
as a core discipline for every liberally educated man."

Understanding the design process has long been a goal of engineers, architects,
and others. Such an understanding could lead to better designs, more rapid
production of new designs, and greater progress towards meeting real needs and
improving our environment. Expert systems, often referred to as knowledge-
based systems, provide a new tool for this, by allowing us to express design
knowledge in terms that both humans and computers can do something with.
Humans can read and improve the expert knowledge, while computers can aid in
exercising and applying it, achieving (at least partially) the results that human
experts do. Often expert systems serve as partners on complex design projects.

The main theme of this book is the application of expert system techniques to
a variety of engineering design problems. This is conveyed by presenting a
series of case studies of research done at Carnegie Mellon University, within the
Engineering Design Research Center (EDRC). Thus the book can be of use in
graduate-level courses in engineering design or expert systems, most likely as
supplementary reading. The papers illustrate a variety of approaches in a wide
sampling of engineering disciplines. The emphasis is on techniques that have
application to more than one engineering discipline, and it is the main goal of
the EDRC to develop such interdisciplinary approaches and tools. While the
papers use techniques of interest to a wider audience, there are technical details
on how the techniques are used to solve specific design problems in Chemical
Engineering, Civil Engineering, and several others.

This book covers new techniques in the following areas:

« synthesis, the creation and development of alternative designs;

¢ the nature of design expertise, and the sorts of computer tools that
can enhance the expert’s decision-making;

e integration of existing tools into intelligent, cooperative
frameworks; and
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e the use of graphics interfaces with built-in knowledge about the
designs being configured.

The book represents our progress towards establishing a science of design, as
urged by Simon in the above quotes.

The editor gratefully acknowledges assistance from the EDRC staff,
including Nancy Pachavis, Georgette Demes, Jacqueline Willson, Carol Strauch,
Kathy Staley, Debbie Sleppy, Judy Udavcak, Keith Stopen and Drue Miller.
The director of the EDRC, Arthur Westerberg, has been instrumental in creating
the environment where research such as this can flourish.

The editor has received research support during the period of preparation of
this book from the National Science Foundation, AVCO Lycoming TEXTRON,
Aluminum Company of America, Westinghouse Electric Corp., and ITT
Advanced Technology Center. The EDRC is supported in large part by the
National Science Foundation. Formatting for this book has been done using the
Scribe® document production system, by Scribe Systems, Inc. Much of the
computing was done on a computer granted by Gould, Inc., Computer Systems
Division. A workstation granted by Hewlett Packard was used throughout.
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1 Research 1in

Expert Systems for
Engineering Design

MICHAEL D. RYCHENER

Abstract

Expert systems offer a number of advantages as a technology for applications of
Artificial Intelligence. They are introduced in this chapter from the point of
view of the demands of engineering design. The use of expert systems in design
domains 1s the culmination of a twenty-year search for the foundations of a
science of design. There is a strong potential for building on the works reported
in this book to progress towards such a science. Expert systems are one of the
main research areas of the Carnegie Mellon Engineering Design Research
Center, whose history, goals, and organization are presented here. The trends
that are evident as we move into a new generation of design tools are enhanced
by the use of expert systems in a number of roles. An overview of the book
reveals some of those roles. Included in this chapter is a glossary of terms.

1 Introduction

In the past few years, a new computing technology has emerged from research
in Artificial Intelligence (Al) to be applied to a variety of technical domains.
This technology is expert systems. The expert system approach is to take
knowledge from human experts and represent it as a knowledge base, which can
then be processed to solve difficult problems in the same way the expert would.
A knowledge base is formulated and encoded in such a way that the system can
readily explain why it arrived at its answer. It can also be examined and used in
a tutorial mode, allowing a novice to learn how an expert works on a problem.
It is rare, of course, that the system has the same performance as the expert on
every problem, given that expertise usually requires years of experience to
acquire. But it is common for an expert system to perform well on all routine
problems and many of the more difficult ones. In practice, this amounts to more
than 90% of what experts are called upon to do.

Expert Systems for Engineering Design Copyright © 1988 by Academic Press, Inc.
All rights of reproduction in any form reserved.
ISBN 0-12-605110-0



2 Michael Rychener

An expert system can free up valuable human expertise for difficult problems
and for more creative activities such as research. It often expands the scope and
flexibility of applying expertise. A computer system is much easier than a
human to copy and transport to various locations where it is needed. Many
useful and profitable expert systems have been developed in medicine, computer
manufacturing and sales, mineral exploration, telephone systems, power plants,
locomotives, aircraft, and other areas. Waterman [65] and Harmon and King
[29] are good introductory texts on this field. Hayes-Roth, et al, [31], Buchanan
and Shortliffe [8], and Weiss and Kulikowski [67] provide good overviews of
technical details and practical approaches. The field of Al has several good
introductory texts, including Rich [49] and Winston [68].

There are a wide variety of ways that expert system technology can assist the
engineering process. To see this, we’ll analyze the components of design, and
then consider what sorts of tools are appropriate. But first, the next section of
this chapter will present an introduction to expert systems and describe a
representative set of the available tools. This will provide a basis for
considering whether the tool needs of engineers can be met by the current
technology. The research reported in this book illustrates many of the
possibilities implied by this analysis. In fact, the set of projects presented here
are being carried out by a group of cooperating faculty at Carnegie Mellon,
within the Engineering Design Research Center. This center has a wide
diversity of approaches, which reflects the nature of engineering at large. The
history that is presented in this chapter will show that this is no accident: the
faculty have been thorough in pursuing applications of computers to engineering
problems. Thus, the lessons learned by looking at how engineers in the center
are able to cooperate and coherently attack the problems of design will be
important ones. We will see an overall approach with diverse aspects that has
the potential of covering most of the field’s important problems.

2 Expert Systems

The term "expert system" refers to a computer program.that is largely a
collection of heuristic rules (rules of thumb) and detailed domain facts that have
proven useful in solving the special problems of some technical field. Expert
systems to date are an outgrowth of artificial intelligence (Al), a field that has
for many years been devoted to the study of problem-solving using heuristics, to
the construction of symbolic representations of knowledge about the world, to
the process of communicating in natural language, and to learning from
experience. Expertise is often defined to be that body of knowledge that is
acquired over many years of experience with a certain class of problem. One of
the hallmarks of an expert system is that it is constructed from the interaction of
two very different people: a domain expert, a practicing expert in some technical
domain; and a knowledge engineer, an Al specialist skilled in analyzing an
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expert’s problem-solving processes and encoding them in a computer system.
The best human expertise is the result of years, perhaps decades, of practical
experience, and the best expert system is one that has profited from close contact
(via the knowledge engineer) with a human expert.

2.1 Expertise: Definition, Advantages and Costs

What are the defining characteristics of an expert system? Foremost among
them is excellent performance - accuracy, speed, and cost-effectiveness of
information-gathering techniques. But expert systems are also typified by a
collection of other properties, many of which are taken for granted in human
experts:

e The ability to explain and justify answers, either on the basis of
theory, or by citing relevant heuristic rules, or by appeal to past case
histories;

e The closeness of reasoning procedures to those used by human
experts (the system is not a mysterious black box using obscure
mathematical formulas);

e The ability to deal with uncertain or incomplete information about
the current problem situation;

e The ability to summarize and point out features of the problem
situation that were most important in leading to an answer,
including information about which other factors might still have an
effect, if they were to become known;

e The use of verbal or symbolic encodings for knowledge, most of
which is readily communicated in natural language;

e The ability to grow gradually by adding new pieces of knowledge,
usually in the context of solving an unfamiliar problem.
These qualities make the expert system more effective as a consultant and in
other expert roles, since there is some way of backing up answers and of
building confidence in the system’s abilities. Also included are the possibilities
of improving the system by conversational means, and of using the system as a
tutor or trainer.

Why would someone go to the trouble to build an expert system? Inherent
complexity of a problem area and scarcity of good human experts are prime
motivating factors. Often building an expert system can help to systematize a
body of knowledge, so that it can be widely dispersed. Some expert systems are
applied in hazardous or uncomfortable surroundings, such as nuclear reactors.
Retirement of key personnel can spark interest in industrial settings. An expert
system is often a good means for pooling the expertise of a number of
specialists, to produce a system that is more effective than any of them working
alone. Fully automated systems can often use the capabilities of an expert
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system to avoid the need for human intervention in many of the routine day-to-
day failures and emergencies.

Which kinds of problems are most amenable to this type of approach? Those
requiring knowledge-intensive problem solving, i.e., where years of
accumulated experience produce good human performance. Such domains have
complex fact structures, with large volumes of specific items of information,
organized in particular ways. Often there are no known algorithms for
approaching these difficulties, and the domain may be poorly formalized.
Strategies for approaching problems may be diverse and depend on particular
details of a problem situation. Many aspects of the situation need to be
determined during problem solving, usually selected out of a much larger set of
possible data readings - some may be expensive to determine, so that an expert
needs to weigh carefully the seriousness of a particular need.

The advantages of an expert system are significant enough to justify a major
effort to build them. Decisions can be obtained more reliably and consistently.
Explanation of the final answers is an important side product. A problem area
can be standardized and formalized through the process of building an expert
system for it. An expert system may be especially useful in a consultation mode
on difficult cases, where humans may overlook obscure factors. An expert
system can often serve as an example of good strategy in approaching a
problem, which might be useful in training situations. Expert systems can be
more easily expandable than conventional software, so that they can be
gradually improved as their problem domain evolves. Expert systems are often
implemented in an interactive, decentralized environment, taking advantage of
emerging, cost-effective personal computing resources. Ready availability of an
expert consultant program can improve the training environment in industrial
settings.

Currently there are four major areas where expert systems have proven
successful, as shown in Table 1.

To summarize and re-emphasize a few points from above, to be considered a
proper expert system, a system must encode knowledge from a human expert.
This expert knowledge is much more than just the basic facts, but has been
organized and "compiled’ through its intensive use on practical problems over a
period of many years. Often, in fact, a novice cannot follow the reasoning steps
of an expert, because the expert’s process of organization and compilation has
advanced very far; a psychological presentation of this can be found in
Anderson’s work [3] and that of Rosenbloom, Newell, and Laird [36, 35].

2.2 The Components of Expert Systems
The key aspects that distinguish expert systems are summarized in Figure 1.

The User Interface in the figure is shown as a collection of capabilities:
knowledge acquisition, debugging and experimenting with the knowledge base,
running test cases (perhaps systematically, from a library), generating
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Table 1: Application areas for expert systems.

Area Key Aspects Example
Diagnosis and repair; Fixed set of alternatives Medical
complex, data-dependent Question-answer dialog diagnosis
selections and Differential weighting (8]
interpretations.
Event-driven or Intricate details Computer
data-driven procedures; Complex, data-dependent configuration
detailing pre-specified orderings [37]
plan.
Modelling and Declarative knowledge Management
simulation of representation systems
organizations and and inference techniques [24]
mechanisms.
Design and planning; Open-ended space of Molecular
generative, goal-directed alternatives genetics
problem-solving. Coordination of multiple [61]

experts

summaries of conclusions, explaining the reasoning that led to a conclusion (or
to a question by the system), and evaluating system performance (including
sensitivity of an answer to particular data items, present or absent). The main
computation engine is in the center of the diagram, containing search guidance
and inference components. It searches the knowledge base for applicable
knowledge, and makes inferences on the basis of current problem data. The
search guidance component selects which portion of the knowledge base is most
important to try to apply at any point in the problem-solving session. It may use
general knowledge-base considerations, or it may make use of user-specified
strategic rules (sometimes called meta-knowledge). The inference component
evaluates individual rules and interconnections among concepts in the
knowledge base, in order to add to the Working Memory. The Working
Memory is a store of the current problem data, e.g., answers to questions about
the problem and results of diagnostic tests.

The knowledge base is the main repository for domain-specific heuristics. It
is considered to be in four levels, each one built out of elements of the next
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Knowledge Base

Strategies 3
Models User Interface

Inference Engine
Acquire Data &
Rules — Search Knowledge

Concepts = Deb
L _ ug
= Experiment Q@
Test cases

[~ Inference

b = = o

Working Memory Summarize
Problem data — EE::]‘::&

Disgnostic test
results

Figure 1: Components of an expert system.

lower level:!

Concepts. Declarative representation of domain objects, with both abstract
classes and concrete instances; complex interrelationships can usually be
represented and used in making inferences and in constructing similarities.
Usually this knowledge can be obtained from textbooks, and includes the basic
terms of the problem domain.

Rules. Empirical associations linking: causes and effects; evidence and likely
hypotheses to be concluded; situations and desirable actions to perform; etc.
This level of knowledge is the main form that is obtained from an expert, and is
based on experience. The knowledge is empirical (difficult to obtain from
textbooks), and may have associated with it "certainty factors” indicating
degrees of belief in its applicability. Experts may not agree on knowledge at
this level.

Models. Collections of interrelated rules, usually associated with a particular
problem hypothesis or overall diagnostic conclusion. Sometimes this represents
a subsystem within a complex mechanical or natural structure. Rules within
models interact much more strongly with each other than with rules in other
models, in a way similar to Simon’s weakly decomposable systems [53]. This
level of organization is often achieved using contexts as an organizational
device [37].

Strategies. Rules and procedures to aid in the use of the rest of the knowledge
base, e.g. guiding search and resolving conflicts when several equally plausible
rules apply to a given situation.

ISome of this terminology follows Reboh’s [46].
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These can be illustrated with an example from the domain of automobile
trouble-shooting.2

Concepts include such things as brakes (which can be subdivided into disc
and drum types), master cylinder, and brake lines. The concepts might include
classification information (as in the case of brake types) and also basic
knowledge about how the parts interrelate and interconnect, both in terms of
physical structure (the brake line is connected to the master cylinder, etc.) and in
functional terms (the master cylinder controls the pressure in the lines).

Heuristic rules are diagnostic connections between observed symptoms and
probable causes, as in the following:

IF there is poor gas mileage,
THEN (LS=10.0, LN=0.1l) probable cause is
faulty carburetor adjustment.

In this rule, "LS" stands for "likelihood sufficiency”, a measure of how strongly
the "IF" part supports concluding the "THEN" part. "LN" stands for "likelihood
necessity”, a measure of how strongly the "THEN" part would cause the "IF"
part, i.e., how discouraging it would be not to have the "IF" part.

Models in this domain are subsystems of automobiles, namely things like:
engine, fuel system, cooling system, braking system, transmission, and electrical
system.

Strategies include meta-rules such as:

IF car performs poorly
and is less than three years old,
THEN check fuel system before engine system.

2.3 Building an Expert System

The steps to be taken to build an expert system involve building up the
knowledge base from the simplest elements to the most complex, i.e., building
up the concepts first, then rules, then models and strategies [46]. During the
beginning phase, a small number of test cases are used, to establish the desired
system behavior on a range of typical problems. The knowledge engineer can
use the test cases to build up an initial (very incomplete) set of rules and to
establish the overall model organization. When these preliminary items are
implemented, and the domain expert has approved, the work of filling in more

’The author is not an expert in this domain, nor has he consulted one in connection with these
examples, but the domain was chosen for its likely familiarity to many readers. The details are
meant only to be illustrative, not correct as a real-world system.
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and more details can begin, primarily with the acquisition of rules. Continuing
progress in this second phase results in better system coverage of problems in
the domain, and also can involve filling in other aspects of the knowledge base
that are necessary for advanced kinds of user interaction with the system.

After the rule-building phase is fairly complete, field evaluations can be
carried out, and the task of the knowledge engineer shifts to adding sources of
knowledge in addition to the empirical rules. For instance, in some domains it is
useful to have a historical database, to help distinguish among various possible
occurrences that are similar when only present diagnostic tests are used.
Another source of knowledge that may be needed in some domains is
background theory, a ’deeper’ kind of knowledge of the domain. These and
other sources of knowledge are not always required, and it is usually best to
build up a good knowledge base of empirical rules before deciding to embark on
other aspects of expertise, given that the rules are often easiest to elicit from a
human expert and implement. Many domains have been found to be adequately
modelled by a purely empirical rule base.

Experience in building expert systems so far indicates that the first phase of
the activity takes on the order of six staff-months to one staff-year. Usually a
limited working prototype can be constructed and demonstrated within a few
months of the start of a project, allowing managers or research sponsors to get
an early idea of how the system might look when completed. The next phase -
can take from two to five staff-years, as the system is gradually expanded and
refined to handle more and more domain problems. During this period, it is
critical to sustain the effort to obtain the experts’ knowledge, which often
requires a continuing (and usually increasing) managerial commitment to the
project. There is also an issue of finding the right person to act as expert
informants: they must not feel threatened by the possibility of a system
containing their knowledge; in fact, they must have a strong motivation to have
the expertise preserved and mechanized. This motivation can come from a
desire to reduce workloads on routine problems, or from a desire to leave
something behind on retirement. Thus a successful expert system can only
result from a combination of technical, managerial and sociological successes.

2.4 Languages and Tools

There are several approaches available for building an expert system. One can
take a traditional programming approach, using one of the programming
languages suitable for Al in general: LISP [60], OPSS5 [23, 6], PROLOG [5],
Smalltalk [27], or one of a variety of other specialized languages for system-
building. It is often necessary to combine such techniques with a frame-based
system, a language formalism for representing declarative facts (concepts,
taxonomies, and semantic relations). The topic of frame-based, rule-based and
logic programming is explored in more detail in a recent journal issue [25].
Object-oriented programming is introduced in [11], and a recent survey shows
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how the concepts of object-oriented programming apply in engineering domains
{34]. Within the past three years, a number of tools have been developed that
allow a higher-level approach to building expert systems in general, although
most will still require programming skill. A few provide an integrated
knowledge engineering environment combining features of all of the above-
mentioned Al languages (ART, Knowledge Craft, and KEE are the leaders in
this area). These are suitable and efficient for use by Al professionals. A
number of others are very specialized to specific problem types, and can be used
without programming to build up a knowledge base. See [50, 26] for surveys of
some of the most powerful ones, including a number of small tools that run on
personal computers. A common term for these more powerful tools is shell,
referring to their origins as specialized expert systems whose knowledge base
has been removed, leaving only a shell that can perform the functions of
inference engine, user interface, and knowledge storage medium.

For computer-aided design applications, however, good expert-system
building tools are still being conceptualized and experimented with. Some of
the most effective design systems in Al (discussed in the section below on
design research) may become the basis for powerful tools. Also, as discussed
immediately below, a number of the components of the design process fall into
the diagnostic / selection category, and these can be attacked with existing
shells. Many systems are now being developed along these limited lines. But
building a shell that has the basic ingredients for assisting or doing design is still
an open research topic. Some crucial components of the design process are not
covered by the current population of tools. The area of design methodology for
engineering still contains many open questions, so building computer tools to
assist it must be difficult.

One of the main problems being attacked currently is-to provide tools for
allowing various design systems to communicate with each other dynamically
and cooperatively while working on the same design problem from different
viewpoints. What this amounts to is having a diverse team of experts, as
represented by their expert systems, available at all stages of a design. This
leads to a view of design in which technical expertise can be shared freely in the
form of expert systems. It allows some teams of human designers to work on
parts of a problem independently, using expert systems for other teams within a
company in order to answer some questions at points where the design requires
that the teams cooperate. This would allow, for instance, one team to produce a
complete design and get an evaluation of it from the standpoint of another team,
without actually involving the people concerned. This results in a much more
rapid consideration of major design alternatives, and can thus improve the
quality of the result. A particular designer or team can take into account
technical evaluations from areas outside their own specialized domain.

An important class of tool constructed along these lines is blackboard
systems [18, 30|, which provide a set of computational primitives and data
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management for specifically the purpose of allowing programs to cooperate. In
their paper in this book, Talukdar and Cardozo discuss ways to generalize and
make this scheme more powerful and flexible, by analogy with more complex
human organizational schemes. Finger, Fox, et al, [22] have formulated a
potential approach to solving communication among different parts of an
organization as involving the expression and transmission of constraints. A
variation on this is to package design knowledge into "critics” [21] that function
to monitor and maintain certain key constraints in a design. Howard and Rehak
[48] have developed languages and formats for allowing various databases and
expert system programs to share information. Topics such as these are
discussed in a number of the papers in this volume.

2.5 The Components of Engineering Design

It is fruitful to examine design, in order to isolate areas where expert system
techniques are applicable. The main approach here is to look first at specialized
areas within design disciplines, in order to apply current expert system
technology. When a number of areas within a discipline have been explored in
this way, we will be in a better position to integrate the results into a more
comprehensive, "automated” design system. We expect the integration to pose
significant challenges in the area of tool-building, and thus there is good reason
to want to look at the entire problem, but it is necessary first to work on the
pieces to be integrated.

In order to describe the subproblems within design that might be appropriate
for expert systems, we can utilize knowledge that Al research has gained about
broad types of problems that exist in real-world domains. Two types of problem
are examined: diagnosis and design. A similar analysis, with more examples of
types of problems, appears in {31].

2.5.1 Diagnosis

The dominant paradigm of expert systems has been a diagnostic one:
weighing and classifying complex patterns of evidence, to evaluate a situation
that is either abnormal (as in diseases or faults) or developable in new ways (as
in mineral prospecting). This is very similar, though, to many types of complex
selections that take place in engineering problem solving; e.g., selections are
made of what materials to use, what fabrication processes will be most effective,
and what pre-existing components will best meet design objectives. Diagnosis
involves applying a standard set of tests, whose extensiveness or cost usually
allows only a small portion of them to be performed. Thus selectivity an
important aspect of a diagnostic program. Another constraint is that results may
be unreliable or approximate. Expert systems have demonstrated the ability to
infer possible causes of symptoms (evidence), to gather data efficiently, and to
discriminate competing hypotheses.

The major components of diagnosis can be summarized as follows:
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¢ Givens:

* a case of malfunctioning, unusual "symptoms";
* a standard set of diagnostic tests.

¢ Goals:
« to fit case into known "disease" categories;

* to find probable causes of symptoms;
* to recommend treatment methods.

¢ Constraints:
« the tests may be numerous and difficult to select;

* the tests may be costly (in time or money);
* the tests may be unreliable or imprecise.

¢ Operations:
« infer possible causes of symptoms;

* gather data about symptoms and characteristics of the case,
1.e., ask questions and do tests;

» classify possible causes into disease hypotheses;
* discriminate competing hypotheses;

* take account of the interactions of several causes;
* take account of the history of the system;

*reason on the basis of general causal knowledge of the
system, or on the basis of theory.

2.5.2 Design

The process of design involves some of the same constraints as diagnostic
processes, in that tests may be costly, imprecise, and difficult to select. But a
design problem involves a different objective: to construct a system or object
satisfying a given specification. Design can be broken down into several phases
(see, e.g., [20]), as shown in Table 2.

Usually there are analytic tests or simulations that can be performed on a
proposed design, and the components from which the construction is to be done
are known and have known properties and interrelationships. Selection and
connection of components are important operations in designing, as are
deducing and testing properties of subsystems of the proposed result. As
proposals are generated, they must be checked for consistency with the
specifications. Designs undergo evolution and updating operations after being
formed, and a system to aid in design must be able to track such changes and
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Table 2: Phases of the design process.

Phase Activities

Preliminary design Selection of overall forms, environment,
and functional requirements
(sometimes described as synthesis)

Preliminary component design Selection and elaboration of components
Detailed design Further refinement takes place
Analysis and optimization Verify and evaluate all aspects of the design

Documentation and
detailed project planning.

check that new variations are correctly designed and updated. New components
are sometimes created, along with constraints that apply to them. A variety of
guidelines and environmental regulations have to be followed. A number of
these facets of design can be seen to be appropriate for the application of expert
system techniques.

The main components of design can be summarized as follows:

¢ Givens:

» the specification of the desired object or system, giving its
features, functions, constraints, budget, etc.;

s standard analytic tests on systems and components that are
proposed or designed;

* possible components, their properties, their interrelations.
e Goal: to produce an object or system that meets the specifications.

e Constraints: (the same ones as for diagnosis)
s the tests may be numerous and difficult to select;

= the tests may be costly (in time or money);
» the tests may be unreliable or imprecise.

¢ Operations:
* select overall forms;
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« select, and specify details of, components;

sinfer properties of the desired system from the given
specification;

* put components together into (sub)systems;
« check specifications (features, constraints, costs);
* perform analytic tests to predict behavior;

+ evolve and update the designed system, using feedback from
tests, recording reasons for decisions and inter-dependencies
of details, and maintaining constraint satisfaction;

« create, represent and utilize new components and new
constraints;

« observe design guidelines for efficient procedure;
« apply optimization procedures;

* consider non-economic criteria (safety, environmental
protection, esthetics).

2.6 A Projection of Expert Systems Techniques for Design
The above analysis suggests that building knowledge-based systems to aid the
design process can be approached by building systems to handle problems posed
in the various components, and then integrating the resulting systems so that
results can be communicated and the overall process can be repeated as designs
are refined and improved. There are already tools to aid in building expert
systems for the steps involving selection and diagnosis, as discussed in the
preceding section. The procedure used for expert systems in general would
apply to design problems, namely, build up concepts, then rules, then organize
the models and specify strategies for problem-solving within such steps. But the
integration of the separate knowledge bases and the management of the overall
design process are tasks that require custom-built Al systems rather than
commercially available shells. The section above on languages and tools also
discussed some of the best candidates for tools for integration, and chapters in
this book also consider this question.

The most important potential impact areas of expert systems on the design
process can be summarized as follows:

1. rapid checking of preliminary design concepts, allowing more
alternatives to be considered in a given time period;

2. strategies for iteration over the design process to improve on
previous attempts;

3. assistance with, and even automation of, complex components and
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substeps of the design process where expertise is specialized and
technical;

4, strategies for searching in the space of alternative designs, and
monitoring of progress towards the targets of the design process;

5. integration of a diverse set of tools, with expertise applied to the
problem of coordination and efficient use of the various tools; and

6. integration of the various stages of design, manufacture, and use of

a product, by having knowledge bases that can be readily

distributed for wide access.
The three parts of this book correspond to those impact areas as follows: in the
part dealing with synthesis, there are approaches to the first two areas, and to the
fourth; in the part on design expertise and methodology, there are developments
with respect to the third and fourth areas; and in the part on integrated systems,
the last two areas are considered. The overall organization is discussed further
towards the end of this chapter.

2.7 The Future of Intelligent Design Systems

Starting from current views of the design process and of the impact of expert
systems, it is apparent that there can be a rapid evolution of the application of
intelligent systems to design, with three generations of tools and approaches
visible.

The first generation of computer-aided design is what we currently have: a
variety of tools and a variety of media for representing designs and design
information, not integrated and not even well cataloged in some cases. It has the
following features:

o Information flows consume half the time of personnel involved;

¢ Engineers spend more than half their time on managerial rather than
technical tasks;

e Constraints from downstream (e.g., manufacturing) are costly to
consider;

¢ Typical design cycle time for new products is 5 years; and

e Major innovation occurs mostly in small companies.

Five years from now, we expect the adoption and wide-spread use of
knowledge-based systems and tools, marking a second generation. In this,
techniques are available that allow first-generation tools to be gracefully
integrated, networked, and coordinated. A few companies are fully networked
and tool-integrated. The following projections can be made for this second
generation:

e Knowledge-based tools are developed to complement and replace
first-generation shells; these are targeted for design assistance,
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rather than for general-purpose use; especially, tools for selection
problems can be enhanced and expanded for engineering
applications;

e Various design strategies are built into expert system shells, so that
knowledge from a new area can be entered and utilized
appropriately;

¢ A few organizations have large-scale application systems available
as demonstrations (but the approach is not pervasive yet);

e Expertise in the form of expert knowledge bases can be packaged
and distributed around an organization; this includes manufacturing
constraints and other downstream concerns;

e The design process can be measured within an organization,
bottlenecks detected, scope enlarged, and improvements
recommended; developing and deploying tools to aid the process
will still be a multi-year endeavor;

¢ Design history has been represented and codified for access and
active use; this requires not just blue-prints to be stored, but also
justifications, inter-dependencies among decisions, and other notes;
geometric (3D) reasoning will be a key capability in many domains;

¢ Prototype systems exist that can innovate in a few key areas
(depending on which companies invest in the research efforts
neeeded); deep (theoretical, causal) understanding of technical areas
will be key.

Projecting further, the third generation will arise as there is widespread
automation of the application of knowledge-based tools. This will require
advances in the application of machine learning and knowledge acquisition
techniques. The third generation will also have automated the process of
applying the tools to design organizations. Other future developments can
include the automation of innovation and of custom design and fabrication
processes.

With each generation, the key aspects of the previous generations become
more and more widespread as technology moves out of the development
laboratories and into commercial products and tools. To summarize the above
projections, trends are expected in these areas:

¢ Degree of integration and networking of tools;

¢ Degree of automation of application of tool technology;
* Sophistication of general-purpose tools (shells);

e Degree of use within industrial organizations;

¢ Degree of understanding of the design process;
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® Degree of formal representation of designs and concepts; and

® Degree of understanding of innovative and creative aspects.

3 Design Research

The field of design research in engineering has its roots in Simon’s book, The
Sciences of the Artificial [53]. The main goal of that work was to establish the
basis for studying human endeavors that are concerned mainly with human
products as opposed to natural phenomena. Simon located the tools for such a
study in the fields of Cognitive Psychology, Operations Research, and Artifical
Intelligence, at that time a minor branch of the new field of Computer Science.
At Camnegie Mellon University, an interdisciplinary group of engineers,
computer scientists and operations research specialists formed to pursue these
ideas. It was known as the Design Research Center.

Simon made further contributions to the available concepts with his paper on
the nature of ill-structured problems [54], of which design is a prime example.
In studies of designers solving simple layout problems, Simon found that a
design problem is only well-defined at the end of the problem-solving process,
since part of the problem appears to be the discovery of constraints that will bear
on the outcome. In particular, architects were observed to formulate many items
of information of importance to their designs only by recognizing their
applicability while working out details of a solution. They could not start out by
first making a list of the criteria that they were seeking to satisfy with the
newly-created layout. Thus the search for a good design is also a search for the
proper information with which to evaluate it. Work by Eastman [17] served to
support and expand these conclusions, and Pople [45] has commented more
recently on a related type of ill-structured problem.

Meanwhile, Carnegie Mellon’s engineering school had adopted a strategy of
gathering prominent researchers in areas relating to design research and
especially the use of computer tools in engineering design. One of the main
issues soon became, and still remains today, to find a formulation of the design
process that allows the construction of tools that can serve the diverse needs of a
variety of engineering disciplines, thus getting at the heart of what design really
is. Past studies of design methodology, primarily by architects such as Cross

[12] and Jones [33] have shed some light on the process of creating and

evaluating designs, but have not produced approaches to computer tools. More
recently, Akin [2] has synthesized that architectural methodology with the
Newell and Simon [44] techniques of problem-solving analysis to produce new
insights. Several other prominent researchers have described design
methodologies with their fields in a special issue of the Proceedings of the IEEE
[13]. There we have views of design research from the standpoints of electrical
engineering, civil engineering, and chemical engineering. But the unification of
efforts was not to occur until new developments from the field of artificial
intelligence became widely known.
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Expert systems have started to revolutionize many technical fields, as already
discussed above. The same is potentially true of engineering design. A number
of pioneering works have explored some of the possibilities, as surveyed by the
author in [52] and by other authors, for specific engineering disciplines, e.g.,
[47, 58]. As discussed above, engineering design can be broken down into a
number of components, many of which can be attacked separately by existing
techniques. The advantages will be the same as for expert systems in general, as
discussed above, namely, improved utilization of scarce resources. In addition,
if knowledge-based systems become more widespread and routinely utilized in
many aspects of design and manufacturing, there is a possibility for major
qualitative changes in the industrial design process. Design in many major
manufacturing enterprises takes on the order of five years, and we can hope to
significantly reduce that time, while at the same time improving quality of
designs by allowing more alternatives to be explored in detail. We can also
anticipate more flexibility, allowing a wider variety of more effective products
to be designed and fabricated.

While engineers have started to exploit and apply expert system techniques,
interest has grown from within the field of artificial intelligence to study the
many challenges of engineering problem solving. An early effort at the more
routine side of design, namely configuration of parts into customized computer
hardware systems, was McDermott’s XCON system [37]. Stefik’s MOLGEN
was a system to design molecular genetics experiments, and to do this task
required a complex, multi-layered planning system. Following up on that
promising beginning, there have been a number of projects reported, e.g.,
Mitchell’s work in circuit design [39], Farinacci et al’s work on Aluminum alloy
design [19, S51], and others [S5]. A recent workshop, summarize by Mostow
[41], lays out a number of challenging issues that can be addressed. Among
them are how to represent the knowledge contained in a design (including its
history and justification), making the design process’s goal structures explicit,
and making design decisions, assumptions, commitments, and rationales
explicit. He also brought out the need to control the process intelligently, to
apply learning techniques, to integrate heuristic and algorithmic methods, and to
work in multiple problem spaces simultaneously. In order to control the design
process, we’ll certainly need to develop more ideas in the area of planning [10].

A number of universities have set up inter-disciplinary groups and
laboratories to pursue design research. In addition to Carnegie Mellon, which
will be discussed at length below, some notable examples are University of
Massachusetts, focusing on mechanical design [15, 40], MIT [28, 42], MCC
(Microelectronics and Computer Technology Consortium) [7], Ohio State
University [9], Oregon, with work on mechanical design [64], Rutgers, working
on computer chip design [62], Stanford, which has a Center for Design Research

[59], UC Berkeley [1], and UCLA, with its EDISON system for mechanical
invention [16]. A recent workshop gathered researchers in applying Al to
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engineering [63, 55], an issue of Computer was devoted to expert systems in
engineering [32], and there is a series of annual international conferences that
started in 1986 [56, 57].

3.1 Goals of Current Research

The Engineering Design Research Center (EDRC) at Carnegie Mellon
University is one of the longest-lived groups of its type. It is composed of
faculty and researchers from: five engineering departments (Chemical, Civil,
Electrical & Computer, Mechanical, and Metallurgical & Materials), two fine
arts departments (Architecture and Design), and seven others (Computer
Science, Engineering & Public Policy, Industrial Administration (Operations
Research), Mathematics, Robotics Institute, Software Engineering Institute, and
Urban & Public Affairs). The goals of the EDRC include:

¢ Expanding the scope of computer aids for engineering design,
¢ Increasing the speed of design, and

¢ Understanding the design process.
The Center receives support from the National Science Foundation and from a
growing number of industrial sponsors, and has committed itself to providing
American industry with tools, concepts and methodologies for improving design
practice [14]. It is attacking problems that have a major impact on the quality
and competitiveness of industrial products.

The EDRC represents a concerted, coordinated approach to making such
major improvements. After careful analysis of where the critical problems are,
and of which problems are most suitable for academic research, it formulated
three broad areas where research is being carried out:

e Synthesis, which encompasses the preliminary (conceptual) stages
of design, where alternatives are generated and judged as to their
potential. Past design work (which is largely done by people, with
few ideas as to how to automate even its more routine aspects) has
often been hampered by a failure to consider more than one or two
main alternatives. This certainly excluded most truly innovative
approaches. It has also meant that the search for alternatives has
not been systematic and thorough. One important factor has been
the difficulty of accessing past designs, which are often available
only as blueprints, without documentation as to past alternatives
considered and justifications for adopted features.

e Design environments and tool integration, in which issues of
productivity and effectiveness of hardware and software that
support the design process are studied. For instance, design
organizations in which half of a designer’s efforts are spent in
transforming information that is output from one program so that it
is suitable for input to another can certainly be improved. The
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design process itself needs to be examined in situ, to develop
taxonomies of styles, knowledge about the range of variation that
tools need to account for, and so on. The same is needed for
software and hardware tools that are currently in use and are in need
of integration and coordination with each other.

¢ Design for manufacturability, in which there is an attempt to
improve designs by bringing in considerations from areas that have
traditionally been separated, namely from manufacturing and
construction. In the past, the separation meant that designs took
longer to develop and were of lower quality, since problems that
should have been worked out in early design stages were not
discovered until much later, at the start of the manufacturing setup
process. Thus, their resolution required a return to a much earlier
stage, making for an overall design cycle of inordinate length.

Given its unique degree of inter-disciplinary cooperation, the EDRC has the
potential of developing solutions that are general enough to serve a broad
spectrum of the engineering community. It is researching fundamental issues
rather than building specific expert systems, as in many of the research studies
cited above (valuable though that activity may be). The Center’s current
activities are based on some work that is in the same vein as the mentioned
studies, namely, projects to solve specific engineering problems using
knowledge-based system techniques. Such research is the prelude to the main
EDRC thrusts listed above; a representative sampling of papers of this type is
contained in this volume. Other papers are more forward-looking and in the
nature of general surveys. Projects that are attacking the main issues more
coherently are still in progress and may be reported in future volumes.

3.2 Organization of the Book

The papers in this book fall into three categories:
¢ Techniques for synthesis,

¢ General work on design methodology and expertise, and

¢ Tool integration and software organizations for effective computer-
aided design.
Thus the book addresses directly the first and second of the EDRC’s main
research thrusts, but has only general methodological contributions to the third.
This is a reflection of current progress in the field, however, since design for
manufacturability has only recently emerged as a research area. We can expect
that area to start out by building on the results reported here.
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3.2.1 Overview of Part 1, Synthesis of Designs and Alternatives

Design begins with a process of synthesis, that is, of assembling or
generating concepts around which the design will grow. In this stage, the focus
is on creating a set of alternative preliminary designs, from which a choice will
be made for more detailed synthesis and evaluation. Some expert systems are
based on rules formulated by experts for generating these initial designs. Often
the initial configurations of design elements will arise from an analysis of the
overall requirements for the end product. This analysis can also be rule-driven,
and thus captured in expert systems. Expert designers can often predict the
outcomes of later detailing steps performed on their initial ideas. They do this
during the preliminary stage, so one research strategy is to seek this type of
expertise and encode the knowledge using standard expert system techniques
(usually rules). All of the knowledge just described must fit into a strategy of
hypothesize and test, where a number of candidates are considered, some are
rejected and some are selected for further detailing. This strategy, when
implemented in knowledge-based systems, can be built using experience from
past Al systems, many of which used clever search management and planning
techniques to systematize the consideration of many alternatives.

A variation on this approach to initial design can also be used in many
problems of re-design and design improvement, where again there is a need to
make additions and changes in order to meet new design requirements. Indeed,
the design of a new product will go through several iterations of synthesis,
detailing and evaluation, and on each iteration, there will be a repeat of this
hypothesize-and-test search strategy. Rules and other knowledge used to
generate initial concepts for design can also be used in generating candidates for
design improvement.

The first part of the book contains papers describing implementations in five
areas of engineering design: structural design of high-rise buildings, selection of
catalysts for chemical processes, design in architecture, design of special-
purpose computers, and design of materials. In fact, each of these systems goes
beyond the initial synthesis phase and ends up with detailed designs. Their main
contribution to engineering design, however, will not be in the detailing but in
their overall approaches to processing the alternatives that they generate.

3.2.2 Overview of Part 2, Expertise and the Nature of Expert Decisions

The synthesis phase of design is followed by detailed expansion and
evaluation of selected design candidates. The process of detailing will
necessarily show more diversity than is evident in preliminary design, with less
application of general search techniques such as those developed in past Al
systems. Traditionally there has been a research focus on methodology within
this detailing area, since practitioners are often concerned with detailed, domain-
specific issues. The two papers in this part of the book focus on specific aspects
of how designers think and what kinds of tools can support their problem
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solving. The two topics covered are the nature of expertise in architectural
design and the use of graphics to aid in complex decision making. More
material on these topics is reflected in the computer system organizations
described in the papers in Part 3, since they are derived from human design
processes and are in most cases directed towards supporting human-computer
interaction during design.

3.2.3 Overview of Part 3, Integrated Software Organizations

In addition to getting started on a design with effective concepts and
candidates, the engineer is also faced with the task of applying computational
tools to ensure that the details are numerically, logically, legally, and
scientifically correct. The third part of the book contains papers that are
concerned with tools and their combination in the service of design goals.
Computer-aided design tools are difficult to integrate for a number of reasons,
including their diverse subject matter (applying to different components or
subproblems of the process), their diverse algorithms and data structures, and
their application to different stages of the design process (from synthesis to
manufacturing to maintenance).

Several papers in this part are written by Electrical Engineers, due primarily
to the advanced state of computerization that has been achieved in their field.
This advanced state is in turn due in part to the rapid growth in complexity of
the design problems that computer designers must solve, and also to electrical
engineers’ facility with computer techniques. Their work 1s considered to be
trend-setting for other engineering fields, which will certainly follow them in
advanced applications of computers in design, and is thus of crucial importance
to all the areas touched on by this book. We can see evidence of this trend in the
application of integration techniques to high-rise building design and automobile
parts, in this part’s final two papers.

4 Glossary of Expert System Terms

Here are brief definitions of technical terms that appear in this book. A good
reference for more detail and historical information is the Handbook for
Artificial Intelligence [4].

Al Artificial Intelligence, the endeavor to construct computer systems that
perform tasks (especially intellectual ones) that are considered to require
intelligence. The main areas of pure Al research are problem solving and
search, common-sense reasoning and deduction, representation of knowledge,
learning, and system architectures for Al. Areas such as robotics, natural
language processing, image understanding (vision), and expert systems are
considered applications of the core Al concepts.

Antecedent reasoning. See Forward chaining. _
Backtracking. A systematic search for a solution by exhaustively considering



22 Michael Rychener

all the altematives. When a dead end or other difficulty is reached in the search,
decisions are retracted until the most recent choice point is reached, and
something else is tried at that point. The straightforward version of this is
referred to as chronological backtracking, since it is based on undoing the most
recent decision rather than using more informative criteria. See dependency-
directed backtracking.

Backward chaining. A problem-solving search strategy that starts with the
goals and targets of the problem, and infers data items (subgoals) that would be
needed in order to establish those goals. The new subgoals and data items are
then used to infer further subgoals and data. This continues until contact is
made with data given with the initial statement of the problem. Other terms for
this are goal-directed search and consequent reasoning. The name is based on
using the right-hand-side of logical rules as a starting point, and trying to
establish the left-hand-side, thus going backwards in the rule, and so on. The
PROLOG logic-programming language is based on this type of search.
Blackboard architecture. An approach that allows multiple, diverse program
modules, called knowledge sources, to cooperate in solving a problem. This is
analogous to a committee of people standing around a blackboard. The
blackboard is a database that is used to hold shared information among the
participants. There is usually a separate module responsible for scheduling and
coordinating strategy among the others.

CAD. Computer-aided design, software and hardware tools that support the
process of design, especially with graphic displays of altematives, databases of
components, and analytical routines to evaluate altematives. This term often
refers specifically to the design of computer circuits.

Causal knowledge. Knowledge at a deep, theoretical level, as opposed to
experiential, superficial knowledge. It is often expressed as mathematically
rigorous models, as opposed to heuristic rules.

Certainty factor (CF). A number attached to a piece of information or to a rule
or procedure that is used to make inferences from uncertain information. It can
be a probability value between 0 and 1, but there are also systems using
certainty factors with other ranges of values and based on other mathematical
theories.

Consequent reasoning. See Backward chaining.

Constraint. A symbolic or quantitative expression that puts limits on the
allowed variation in some property or process. Some constraints can be
stringent, strictly required to be satisfied, while others are optional and can be
weakened in order to balance the demands of a number of conflicting ones.
Context. A subset of the information contained in a body of data. Often,
contexts are used to consider hypothetical configurations, allowing inferences
made from specific assumptions to be kept separate from other, more certain,
data. Another term for this is viewpoint or perspective.

Data-directed search. See Forward chaining.
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Dependency-directed backtracking. A systematic trial-and-error search
procedure that improves on a chronological strategy of backing up and retrying
alternatives, by recording specific dependencies among choices. This allows the
source of an error to be pinpointed, and specific choices to be made to avoid that
error.

Demon. A procedure attached to some data item that is triggered whenever that
data item is accessed or changed. That is, the demon is "watching” or
"guarding” the item, and is set up to do something when the item is used or
changed. Demons can be used, for instance, to handle automatic updating of
data structures when some item within the structure changes.

Design. The construction of an object that satisfies a given set of goals or
criteria. The goals or criteria are often called constraints. The design of a
procedure for doing something is called planning.

Declarative knowledge. Knowledge that is represented by static symbolic
expressions, as opposed to represented by programs. Each symbolic expression
is a precise description of a concept (as would be found, for instance, in a
dictionary). The precision derives from following a specific format, with certain
ingredients. See Frame-based representation and Schema.

Deep knowledge. See Causal knowledge.

Domain knowledge. Knowledge in a particular technical field.
Domain-independent. General-purpose, applying across many domains.
Experiential knowledge. Knowledge gained from long practice in solving
problems in a domain. This is often referred to as empirical knowledge, in
contrast to theoretical, textbook knowledge. The knowledge is often manifest as
shortcuts, as intuitive jumps, as educated guesses, as heuristic rules, or as
specific remedies that worked in similar cases in the past.

Forward chaining. A problem-solving search strategy that starts with features
of the data and infers their immediate consequences. Those consequences are
added to the available data and further inferences are drawn. This continues
until the goals or targets of the problem have been reached. Other terms for this
are data-directed search and antecedent reasoning. The name is based on using
the left-hand-side of logical rules as a starting point, and going forward in the
rule to infer the right-hand-side, and so on. Languages such as OPS5 are useful
for this style of reasoning (although they can be used for backward chaining,
too).

Frame-based representation. A format for expressing declarative knowledge,
in which an object is represented by a data structure containing a number of slots
(representing attributes or relationships of the object), with each slot filled with
one or more values (representing specific values of attributes or other objects
that the object is related to). The data structure has been termed (equivalently) a
frame, a schema, a unit, or an object; which one is preferred depends on which
implementation or tool is being used. The object has a name, each slot is named
(and may be described in more detail by a separate frame), and values can be
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symbolic, numeric, lists of values, etc. The term frame is based on an analogy
to picture frame in the visual world. Frames in the mind (according to a theory
by Minsky [38]) are called up whenever an external scene is viewed, and
provide assumptions about what is likely to occur, so that the computation of an
understanding of the scene is computationally tractable. Some aspects of a
frame will remain unchanged when the frame is applied to the world, while
others will change according to perceived data. Most frame systems allow for
some slots to be filled in by inheritance rather than by specifically stored values.
The types of relationships among frames include taxonomic (hierarchical,
classificatory) relations, time precedences, and resource dependencies. For
example, the frame,

{{ carbon
is-a: chemical-element
symbol: C
atomic-number: 6
atomic-weight: 12.01
valence: 4
family: IV-A
similar-elements: silicon germanium tin lead
crystalline-form: diamond graphite
sources: coal petroleum asphalt limestone
applications: organic-molecules steel
storage-batteries

b}

describes the element carbon and indicates its relations to other elements, its
uses, its structure (implied by atomic number and weight), etc. Certain key
relationships, such as its family and its being a chemical-element, will allow
other facts and properties that are common to all members of those categories to
be deduced.

Fuzzy reasoning. Logical inference that is based on an expanded set of truth
values, i.e., values other than simply true and false. Often certainty factors are
called into play, and complex inference procedures are required in order to
maintain consistency and soundness.

Generate and test. A method of search in which a program called the generator
alternates with one called the tester. The generator constructs potential solutions
to the search problem, and the tester judges whether or not the solutions are
valid or satisfactory according to some measure.

Goal-directed search. See Backward chaining.

Heuristic rule. A rule of thumb, a condensation of experience that is useful for
solving problems, for making guesses and approximations, and for jumping to
conclusions. See Production rule and Rule.

Heuristic search. A method of search similar to generate and test, with the
additional mechanism of providing detailed feedback or other knowledge



1. Research in Expert Systems for Design 25

(termed heuristic knowledge, or just heuristics) to the generator to allow it to
direct the search more efficiently. Heuristics can incorporate domain knowledge
that is based on experience in solving similar search problems.

Inference engine. A procedure that uses items in the knowledge base of an
expert system in order to draw conclusions and solve problems. The inference
engine is usually domain-independent, e.g., based on statistical theory or fuzzy
logic.

Inheritance. The process of finding a value of an attribute in a schema by
searching for values of similar attributes in related objects, and then mapping
those values back to the original schema. When the related objects are
taxonomically more general than the schema, the mapping of values is the
identity mapping, since properties of a class in general are true of members of
the class (e.g., feathers on birds as a class will allow a system with inheritance to
infer that a robin has feathers). Inheritance allows a lot of repetition in a
knowledge base to be avoided, thus enhancing storage efficiency; but processing
speed is slower.

Knowledge. Information organized for efficient problem solving, or for action
according to the principle of rationality (cf. Newell, [43]).

Knowledge acquisition. For expert systems, the process of determining and
then encoding into a knowledge base what the expert knows that will give the
system good performance in the domain. Techniques for doing this include
interviews, questionnaires, and letting an expert critique a prototype expert
system.

Knowledge source. A module in a program (particularly, in a Blackboard
system) that contains knowledge about some problem area along with a pre-
processing pattern or procedure that can determine whether the knowledge
source may be able to answer a given question or contribute to a given goal.
Least-commitment strategy. A strategy in planning systems whereby decisions
are postponed until enough information is available to reduce the uncertainty (or
the size of the set of choices) associated with the decision.

LISP. A programming language whose strongest features revolve around
symbolic data representation, dynamic storage allocation (especially for linked
list structures), flexible variable binding, the processing of programs by other
programs, and the computation of recursive functions (e.g., as are involved with
trees, graphs, and other complex data structures).

Logic programming. A programming language or methodology based on
predicate calculus.

Means-ends analysis. A problem-solving method in which difficulties in a
situation are analyzed according to which of the available operators might be
appropriate to resolving those difficulties and reaching the goals (ends).
Meta-knowledge. Knowledge for reasoning about, or controlling the application
of, other knowledge.

Mixed-initiative strategy. A combination of forward and backward chaining,
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i.e., making inferences both from goals and from given data, in order to find a
common meeting ground, thus establishing a path from the givens to the goals.
Object-oriented programming. Programming where procedures are organized
as attachments to objects. Objects in such a system are usually organized
taxonomically, such that the procedures attached to an object high in the
taxonomy will apply in a general way to all the objects below it. Procedures are
usually invoked by sending messages to objects, and the procedures executed
will depend on the object itself plus procedures above that object in the
taxonomy. This methodology promotes desirable degrees of modularity and
controls how code can interact, since program elements are hidden within
objects and not generally available globally. The objects are often capable of
representing knowledge similar to that in frame-based systems.

Pattern-directed inference system. An organization of procedures such that
they are invoked and executed according to whether certain patterns of data are
present in a global database. This is a general term for the type of system
exemplified by production-rule systems.

Pattern matching. The detailed, piece-by-piece comparison of a template with
a configuration of data objects. The template has structure similar to the objects
being matched, but it may have variables and other constructs in it that allow a
comparison to succeed if one of a number of alternatives is present, for instance,
or if anything at all is present, for another instance. Thus the template is an
abstraction and can match objects in a number of different ways.

Planning. A process of figuring out ahead of time a sequence of actions that
need to be executed in order to achieve some effect. The term can also refer to
the formulation of a strategy for solving a problem, without going into enough
detail to actually solve it (this process of approximation would be much quicker
than actually doing that). A planner may use abstractions that only approximate
the actual problem data, in order to save time.

Problem. A state of affairs in which some desired goal is not satisfied. One
often has a number of given items or attributes of the state that can be changed,
and a set of actions that can be performed to make changes, transforming one
state into a new state. If the new state is still a problem, further changes will be
needed, and so on.

Problem space. A formal expression of a problem, containing a specific set of
givens, a set of legal operators, and a goal. For a given problem, there may be
many problem spaces that are possible, since, for instance, different problem
spaces may represent the state in different ways.

Procedural knowledge. Knowledge in the form of a program, a sequence of
actions to perform (possibly with some actions done only under certain
conditions), rather than simply described declaratively.

Production rule. A pattern or set of conditions followed by a sequence of
actions to be performed if the pattern is determined to be (by pattern matching)
satisfied. See [66] for details.
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Production system. A collection of production rules that is interpreted to
produce behavior according to a specified procedure called the production
system architecture. Usually, there is a Working Memory of assertions in the
architecture, against which the patterns of the rules are matched. A properly
specified architecture also has a method (termed Conflict Resolution) for
deciding which rule(s) to select in case more than one is matched to the current
situation (which is a state of the Working Memory). Rule actions primarily
affect only the contents of the Working Memory, but can also perform input and
output. A continuous stream of behavior is produced by repeating a cycle of
pattern matching, conflict resolution, and execution of actions.

PROLOG. A language for logic programming.

Qualitative reasoning. Reasoning based on symbolic representations of a
system rather than on quantitative (numerical) calculations or simulations.
Algebraic equations and frames can both be a basis for qualitative reasoning, for
instance. Qualitative reasoning is usually less precise but easier to compute than
quantitative.

Recognize-Act Cycle. An infinite repetition of the basic steps of interpreting a
production system, namely recognition (pattern matching), conflict resolution,
and action execution. The repetition can stop, actually, if the recognition step
fails to find any true matches. Some systems also contain an explicit action for
stopping. This cycle is often used to model human cognition.

Representation of knowledge. The formal expression of knowledge into some
format such as frame-based or procedural.

Rule. Either a production rule (q.v.) or a logic rule (see logic programming).
(There are also grammar rules, first described by Chomsky, which are used to
generate sentences in a language, including natural language; 'rule’ in this book
doesn’t include these, however.) A heuristic rule (g.v.) is a type of production
rule.

Satisficing. Meeting a given set of criteria or constraints, without necessarily
optimizing an objective function, but at least having a value above some
threshold. Thus a satsificing solution is good enough without being the best
(where it might be much more expensive to find the best).

Schema. Another term for frame. See frame-based representation.

Search. A systematic process of trying to find something that meets given
criteria, e.g., the solution for a problem. Heuristic search, generate and test, and
means-ends analysis are search methods. Usually operators are given that can
make changes to, or move in a particular direction from, a current situation, in
order to create new possibilities for examination.

Semantic network. A set of representations of concepts or objects (termed
nodes) that are interconnected by links that have a semantic meaning. Examples
of some links are "is a kind of", "is a part of”, and "is an analogy for". Frame
systems can be considered as semantic networks that are partitioned so that a
group of nodes are considered as a unit.
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Shell. A tool for building new expert systems, consisting of an inference
engine, a user interface, and a knowledge storage module. A shell originates as
a specialized expert system whose knowledge base has been removed, leaving
only a shell that can perform the main expert system functions. Shells usually
contain a variety of representation languages and inference mechanisms, so that
they can be used in diverse domains. Examples: ART, Knowledge Craft, KEE,
and EMYCIN [50, 26].

Synthesis. A process of constructing design alternatives, subject to a given goal
specification. Its opposite, analysis, is concerned with evaluating the products
of synthesis. A synthesis procedure may produce abstract or partial
specifications, leaving the process of detailing to other procedures. This would
allow many more alternatives to be considered before narrowing the selection
down to the best candidates.

Truth Maintenance. The process of ensuring that items of information in a
database are kept consistent with each other. Usually this is done by storing
explicitly the dependencies among the items, and then when changes occur,
using the dependencies to make other changes that must occur as a consequence.
Uncertainty. See Fuzzy reasoning.

Unit. Another term for frame. See frame-based representation.
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Part 1 Synthesis

The Generation of Alternative Designs

Design begins with a process of synthesis, that is, of assembling or generating
concepts around which the design will grow. In this stage, the focus is on
creating a set of alternative preliminary designs, from which a choice will be
made for more detailed configuration and evaluation. In this first part of the
book, five systems are presented. They approach synthesis with different
concepts and techniques, but the use of expert knowledge is a common theme.
That is, actions of synthesis are guided and specified by particular pieces of
knowledge, whether heuristic rules or descriptive frames.

HI-RISE, described in Chapter 2, is an expert system that takes in an
architectural specification of a high-rise building and synthesizes alternative
feasible structural systems for the building. The program reasons with various
levels of design knowledge, using a fixed task decomposition according to
structural function. The system combines rule-based inference with frames and
demons. This work points the way to many new possibilities for improving the
structural engineering of buildings, and represents a template that can be copied
and applied to the design of other engineered systems.

DECADE, described in Chapter 3, adopts the blackboard model as its main
organization, in attacking the problem of selecting a catalyst for a chemical
process. (Though selection is used to describe it, design is also an appropriate
term, since often a new, unique catalyst is formulated.) This allows a very
flexible interaction among several types of independent expert-system modules,
ranging from thermodynamic theory calculations to a database of existing
catalysts. DECADE, like HI-RISE, is a hybrid of several Al and traditional
approaches. It achieved the skill level of a first-year graduate student in the
area, and has produced results comparable to those found in the literature. The
approach taken by DECADE appears to be a fruitful one for a wide variety of
synthesis problems, especially those where a number technical specialties must
work cooperatively.

Expert systems are just beginning to be applied in a substantive way in the
synthesis stages of architectural design (previously, computers were used only
as sophisticated drafting tools). Chapter 4 describes how two modes of use are
envisaged for rule-based systems: as a descriptive and systematizing tool, since
rules can capture precisely the patterns expressed in existing buildings; and as
encodings of architectural expertise of the type that criticizes (constructively)
Expert Systems for Engineering Design Copyright © 1988 by Academic Press, Inc.
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design alternatives as they are generated. The former type of rule-based
knowledge is useful for generating new vanants on previous designs, while
keeping within their overall style and thus maintaining a family resemblance and
architectural coherence. The latter type of knowledge is difficult for architects
to express outside of the context of actually considering design alternatives.
Thus in this case, an expert system program that systematically generates
designs and takes in feedback from an architect is the best knowledge
acquisition mode. Flemming describes a rather sophisticated approach to such
generation, providing descriptions of layouts at an abstract level in order to
maximize the power and scope of applicability of any knowledge acquired in
that way. Overall, these two approaches add up to a revolution in how architects
can view design.

The MICON system, described in Chapter 5, is the most comprehensive and
effective design system described here, since it not only does synthesis, but
integrates the designs produced with fabrication tools so that a single-board
computer can be produced in 24 hours. As in the above system, there is a
rule-based synthesis component. Details are worked out at 3 levels of
abstraction. The current advanced prototype is able to reproduce the design of
several distinct commercially available and custom-made computers. By its
success, the MICON project can show the way for a variety of design
disciplines.

The final paper in Part 1, on the ALADIN system for aluminum alloy design,
describes a design procedure that accommodates and coordinates knowledge in
several technical areas, and at several levels of abstraction. The system uses
heuristic rules for reasoning about alloys at a qualitative, approximate level, and
various types of calculations and mathematical models for more precise
specification and prediction. The system also makes use of a broad array of
design history, in the form of a database of past alloys, both commercially
successful and experimental ones. The ALADIN methods for planning, for
controlling search, for using history, and for using multiple levels of abstraction
promise to be useful in the design of other types of materials.



2 HI-RISE:

An Expert System for
Preliminary Structural
Design

MARY LOU MAHER

Abstract

HI-RISE is an expert system for the preliminary structural design of high rise
buildings. HI-RISE generates feasible feasible alternatives for two functional
structural systems: the lateral load resisting system and the gravity load resisting
system. The user takes part in the design process through the selection of a
functional system to be pursued further. The output from HI-RISE serves as the
starting point for a more detailed analysis of a selected structural system.
HI-RISE represents the design knowledge in the form of schemas and rules.
The schemas contain the description of the design subsystems and components,
and the rules represent design strategy and heuristic constraints. The schemas
are linked by two kinds of relations, an "is-alternative" relation and a "part-of™
relation, indicating an OR and an AND connection. Both relations allow
unrestricted inheritance of attributes and attribute values. The rules are
expressed in an OPS5-like syntax and are executed in a forward chaining style.

1 Introduction
The formal education of a structural engineer typically emphasizes behavior and
analysis of structural components and systems, that is, the evaluation of the
response of a specified system to its intended environment. The structural
components and systems studied vary in complexity, as do the analysis
techniques. Upon completion of his formal education the structural engineer is
well prepared in the areas of analysis and general problem solving. This is in
noted contrast to his exposure to the design of structural systems, that is, the
decisions required to specify a structural system such that the applicable set of
constraints is satisfied.

This lack of student exposure to the design of structural systems may be due
to the practice of design, where system synthesis and selection is largely based
Expert Systems for Engincering Design Copyright © 1988 by Academic Press, Inc.
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on designers’ experience. This imbalance provides a motivation for the
development of an expert system for preliminary structural design: to record a
process that is not otherwise formally recorded. There have been recent books
on the subject of preliminary structural design. T. Y. Lin and S. D. Stotesbury
[7] discuss the considerations in preliminary building design, stressing that the
problem be approached hierarchically. Other books (Cowan [2], Schodek [12],
Salvador [11], Fraser [4]), though not as comprehensive as [7], discuss many of
the aspects of preliminary design.

Recording the process of preliminary structural design in the form of an
expert system raises basic issues concerning the representation of the design
information and the decomposition of the design process. This paper describes
HI-RISE [8], an expert system for the task of preliminary structural design of
high rise buildings. HI-RISE serves as a prototype solution to the problems of
representation and task decomposition that arise in the development of an expert
system for preliminary engineering design.

The next section presents an overview of the preliminary structural design
process. Then the scope of HI-RISE is described in terms of the input to the
system and the output to the user. This is followed by a discussion of the
representation of structural system information and the design decomposition
used in HI-RISE. The last section includes a discussion of the conclusions and
directions drawn from the experience of developing HI-RISE towards expert
systems for engineering design.

2 Structural Design of Buildings

The structural design process starts with a need to transmit loads in space to a
support or foundation, subject to constraints on cost, geometry, and other
criteria. In building design, the need to transmit loads is specified by
architectural drawings from which functional and spatial requirements are
derived. The final product of the design process is the detailed specification of a
structural configuration capable of transmitting these loads with the appropriate
levels of safety and serviceability. The design process may be viewed as a
sequence of three stages:

1. Preliminary design involves the selection of a potential
configuration satisfying a few key constraints.

2. Analysis is the process of modelling the selected structural
configuration and determining its response to external effects.

3. Detailed design is the selection and proportioning of structural
components and connections such that all applicable constraints
are satisfied.
There may be significant deviations between the properties of components
assumed at the analysis stage and those determined at the detailing stage, which
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would necessitate a reanalysis. Other major and minor cycles of redesign may
also occur.

The preliminary structural design of buildings involves the selection of a
feasible structural.configuration satisfying a few constraints. The key terms in
this definition are selection and constraints. The selection of a structural
configuration implies that there is a set of potential configurations from which to
choose. The set of feasible configurations for a particular building must be
defined with that building in mind. Classes of generic structural subsystems
may be used as a basis for the generation of the set of feasible systems. Some
examples of structural subsystems are rigidly connected frames, cores, trussed
tubes, and braced frames. These subsystems are not complete structural
systems, because they are not specified to the extent needed for evaluation of
alternatives or input to the next stage of design, namely, analysis. The generic
structural subsystems are used as a starting point for the specification of the
feasible systems and are expanded and combined to fit the needs of a particular
building.

The constraints applicable to preliminary structural design may be grouped
into several categories, ranging from subjective constraints imposed by the
architect to functional constraints imposed by the laws of nature. Some
examples of constraint categories are static equilibrium, economy, strength and
serviceability. The preliminary structural design of a building requires decisions
as to which constraints are applicable and when these constraints are to be
considered.

3 Scope of HI-RISE

HI-RISE addresses the preliminary design stage of structural design. The major
concern of HI-RISE is to generate feasible configurations only to the level of
detail needed for selection among alternatives and to provide the initial estimate
of geometric and mechanical properties for a detailed structural analysis. HI-
RISE has been restricted to a relatively small class of buildings to facilitate the
development of a prototype design system. The class of buildings HI-RISE can
design are commercial or residential, and the structural system can be placed on
a rectangular grid. The scope can be clarified by examining the input and output
of HI-RISE.

The input to HI-RISE is a three dimensional grid. An example of an input
grid is shown in Figure 1. HI-RISE begins structural design upon completion of
space planning. This means that HI-RISE does not automatically revise the
grid; the grid must be manually changed by the user if other design alternatives
are desired. The input grid specifies to HI-RISE the spatial constraints the
building must satisfy. The topology of the grid is defined by the number of
stories and the number of bays in each direction. The geometry is defined by the
dimensions of the bays and the minimum required clearance for a typical story.
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Other spatial constraints, such as the location of vertical service shafts or
internal spaces, are specified on the input grid. Other input information required
by HI-RISE is related to the intended use of the building.

Service
shaft

Mechancial
floor

min
clear I
8 ft

.
)

|<—>{ 25 ft
10 ft

2 bays
wide direction

4

3 bays
narrow direction

Figure 1: Input to HI-RISE.

The user specifies the input to HI-RISE through a menu driven graphical
interface by Barnes [1]. The menu allows the user to choose among geometry,
topology, and spatial constraints. Upon selection of one of the menu items, the
interface prompts the user for specific information and updates the graphical
display to reflect the user specifications. The grid appears as a three
dimensional wire frame, using color to identify spatial constraints. For example,
if the user specifies a service core, the core will appear on the grid in red. The
user may also view the grid from different perspectives, using pop up menus
provided by the interface.
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As HI-RISE generates and checks the feasible combinations of structural
subsystems and material properties, a tree-like display illustrates the current
state of the design. The nodes in the tree represent design decisions, or
selections among discrete alternatives, and the links represent feasible
combinations of decisions. A path through the tree is a feasible configuration.
The representation of the design alternatives as a tree is discussed in more detail
in Section 4. The display of the tree provides the user with a view of the current
state of the design solution.

The output from HI-RISE includes the feasible configurations for first, the
lateral load resisting system, and second, the gravity load resisting system. The
user selects an alternative for consideration from the tree-like representation.
HI-RISE then presents the alternative to the user graphically, using the original
grid and indicating the type and location of the structural alternative in a
different color. More detailed information about the structural system can be
requested by pointing to a component of the grid with the mouse. The interface
provides the user with a text description of the component as a set of attribute-
value pairs. For example, a beam may be described by its span, depth, width,
maximum moment, etc.

The user is also presented with the results of an evaluation of the alternatives.
The evaluation results include features of the alternatives and the relative values.
The evaluation function is described in more detail in Section 4. The user then
has the option of choosing a feasible system or letting HI-RISE choose on the
basis of the evaluation.

4 Representation of Design Knowledge

The representation of design knowledge can be considered in two categories:
design description knowledge and design task decomposition knowledge. The
representation of design task decomposition identifies a reasoning process to
produce a design description. The decomposition of the design process provides
a mechanism for considering the process as a sequence of simpler subprocesses.
This decomposition occurs until a given task can be implemented directly. In
HI-RISE, the design process is decomposed into several tasks, each of which is
considered independently. This is appropriate when the tasks are loosely
coupled, i.e. the interaction between the tasks can be represented as constraints
on decisions made in any given task.

The design description representation provides a basis for reasoning about
generation of feasible alternatives and evaluation and selection among
alternatives. The design description knowledge comprises both the
representation of the components and subsystems in their generic form and the
representation of the artifact currently being designed. In HI-RISE, the latter
serves as templates for the representation of the structural system currently
being defined. This section first describes the design task decomposition,
followed by the design description hierarchy incorporated in HI-RISE.
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4.1 Process Task Decomposition

The structural design process is decomposed into two major tasks, each
concerned with the design of one functional subsystem of the building. The
structural system of a building can be decomposed into the lateral load resisting
system and the gravity load resisting system. Although the two functional
subsystems "share” components, in the sense that a single beam may be part of
the lateral and gravity systems, they can be designed and analyzed sequentially.
This is an example of decomposing the design process into loosely coupled
subprocesses; the interaction is represented by constraints.

In HI-RISE, the design of the lateral load resisting system is completed
before the design of the gravity load resisting system. The justification for
fixing the order in which these tasks are considered arises from the assumption
that the design of the lateral load resisting system usually governs in high rise
buildings due to the cantilever effect of wind load on tall buildings. Fixing the
order of the tasks also facilitates the representation of constraints and ensures
that information about the lateral system is available when designing the gravity
system.

The design of each functional system is further decomposed into the
following subtasks: synthesis, analysis, parameter selection, evaluation, system
selection. The general goals for each subtask are similar for both functional
system design, however, the details of reaching these goals are dependent on the
system function. These subtasks are described below.

4.1.1 Synthesis

The synthesis of feasible alternatives involves a search for combinations of
design components that do not violate any constraints. The design components
are organized into a hierarchy, in which each level in the hierarchy represents a
goal or decision at a particular level of abstraction. There are several discrete
components associated with each hierarchical level. The synthesis process is
modeled as a constraint directed depth-first search through this hierarchy.

An alternative is generated incrementally by sequentially considering each
level in the hierarchy. As an element is added to an alternative, the alternative is
checked by heuristic elimination constraints. If the alternative is eliminated, the
next element in the physical hierarchy is considered. A feasible alternative is
one that has not been eliminated at any level. The following are representative
elimination rules for the lateral system synthesis:

IF the number of stories > 50
AND 3D system is core
THEN alternative is not feasible.

IF 3D system is tube
AND 2D system is solid shear wall
THEN alternative is not feasible.
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IF 2D system is rigid frame

AND material is concrete

AND number of stories is > 20
THEN alternative is not feasible.

The synthesis of a lateral load resisting system requires the placement of the
lateral load resisting system alternative within the grid. For the case of a core or
tubular building this step is trivial (by definition, the core is placed around the
service shafts and the tube on the periphery of the building), but for a system
composed of 2D rigid or braced frames in each direction there are several
possibilities. The placement decision is treated as another level of abstraction in
the hierarchy, with a discrete set of alternatives for consideration. Common
placement schemes are selected and considered in the same way components or
subsystems are considered. An example of a common placement scheme is to
place rigid frames at the ends of the building extending the entire length of the
building. The placement of the gravity system is assumed to be all grid lines, as
defined by the input, therefore this is not a decision made during the synthesis of
the gravity system.

Once the search for a configuration has reached the lowest level of
abstraction, a feasible alternative has been found and HI-RISE moves on to the
next subtask, analysis. The synthesis subtask is responsible for ensuring that the
configuration satisfies heuristic constraints, the analysis subtask checks
structural feasibility. Structural feasibility is represented as a constraint whose
satisfaction depends on a structural analysis of the configuration.

There is a distinct constraint associated with each generic subsystem HI-
RISE knows about. For example, if the configuration includes a rigid frame the
feasibility constraint is "rigid-frame-ok”. The evaluation of this constraint
involves the use of an analysis function. In all cases the evaluation of this top
level constraint requires the formulation and satisfaction of more detailed
constraints, typically associated with components of the configuration, i.e.
beams and columns. The request for evaluation of the feasibility constraint
triggers the next task, analysis.

4.1.2 Analysis

The design alternative is analyzed only to the extent required to determine
system feasibility.  The analysis performed at this level of design is
approximate. In some cases this requires that a statically indeterminate system
be simplified and analyzed as a statically determinate system.

For illustration, the approximate analysis of rigidly connected frames is
described. The rigidly connected frame is a statically indeterminate structural
system, in which the properties of the components must be known in order to
analyze the system. In HI-RISE, the rigidly connected frame is analyzed as a
statically determinate system by making some assumptions about its behavior.

The lateral load analysis of the rigidly connected frame is adapted from the
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portal method of Lin and Stotesbury [7]. The portal method is based on the
assumptions that the moment in each column and girder is 0 at midheight or
midspan and the shear force on the interior columns is twice the shear on the
exterior columns. HI-RISE analyzes the rigidly connected frame as an
assemblage illustrated in Figure 2. From this assemblage the internal forces in
the columns and girders can be calculated. The internal forces provide the
required load capacity of the system components.

S S < 0
S5 >0 >4 >0 A

H/6 H/3 H/3 H/6

where H is the shear force

h is the storyheight

Figure 2: Assemblage for rigidly connected frame analysis.

The results of the analysis task include the required load capacity of the
system components. This constitutes a subset of the ingredients needed to
evaluate the feasibility constraint. The remaining ingredients concern the
geometric and material properties of the system and its components; this
information is generated in the parameter selection task. The final step in the
analysis task is to formulate the strength and serviceability constraints applicable
to the components. The request for evaluation of these constraints will trigger
the next task, parameter selection.

4.1.3 Parameter Selection

The purpose of the parameter selection task is to define the parameters of the
components. Component parameters include cross section shape, dimensions,
and load capacity. The parameters of the system are approximated using
heuristics. Some heuristics for parameter selection are:
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e Steel column design: typically a wide flange section, usually one of
the W14 shapes, is used.

® Reinforced concrete slab design: the depth of the rectangular
section is approximated such that the span/depth ratio is 28.

® Braced frame diagonal design: typically a double angle section is
used.

The initial parameters are used to evaluate all constraints formulated by the
analysis task. If a constraint is violated, some heuristic recovery rules are
applied to revise the parameters. Once satisfactory parameters are selected, i.e.,
all applicable feasibility constraints are satisfied, the alternative is then
evaluated in the next task.

4.1.4 Evaluation

Evaluation of a structural design may be based on many diverse features of
the design. An evaluation is usually done by designers in an abstract form.
Some of the features that may be considered are aesthetics, economics,
efficiency, and structural integrity. HI-RISE considers the features of a
structural system in a linear evaluation function:

V=21 ¢F,
where V is the value of the function
c; is the weighing factor for feature i
F, is the value of feature i.

The features in the context of this evaluation function are a subset of system
features that may be quantified. The features and weighing factors are particular
to each functional system. The features are heuristic characteristics of the
system that are used to determine the relative value of one alternative as
compared to another. The following are lists of features for evaluating the two
functional systems:
1. Lateral load resisting system: drift (stiffness), size of columns,
number of steel moment connections, number of interior walls
blocked, and approximate cost of materials

2. Gravity load resisting system: deflection, depth of floor system,

fire-proofing, mechanical system compatibility, and approximate

cost of construction
Weighing factors are used in the evaluation function to cause one or more of the
features to have a larger influence on the evaluation than the others. These
weighing factors may be determined by HI-RISE or specified by the user. In
order for the weighing factor to have this influence, the numerical values
assigned to the features are normalized by forcing the value of each feature to be
within a predefined range. Normalization does not necessarily imply that all the
features have the same units.
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4.1.5 System Selection

The purpose of the system selection task is to select one of the feasible
alternatives for each functional system. This task is invoked upon completion of
the depth first search of the synthesis task, when all feasible alternatives have
been synthesized, analyzed, and evaluated. HI-RISE presents all structurally
feasible systems to the user indicating which system has been determined to be
the "best", selected as the system with the minimum value assigned by the
evaluation function.

The user graphically views the generation of the of the context tree showing
the relative cost and evaluation of each alternative. The user may request
information about the alternatives generated for the functional system under
consideration, such as details about components or different graphical views of a
particular alternative. These requests are handled by the graphical user interface
[1]. The final system selection is controlled by the user. The default selection
is the alternative determined as the "best" according to the evaluation. The user
may override this decision by selecting one of the other feasible alternatives.

4.2 Design Description Hierarchy

As the design of a building progresses, the amount of information generated
increases rapidly. The efficient representation of this information is critical to
the feasibility of the expert system. The representation in HI-RISE went
through many revisions until it became clear that the representation of design
information fell into three general levels. These levels are the specification,
functional, and physical levels. The three levels and their associated schemata
are shown in Figure 3.

The specification level contains the input to the preliminary design process.
In HI-RISE, this information includes attributes of the building, such as
occupancy, and the three dimensional grid topology and geometry. This level of
information serves to specify the design problem, while the other levels specify
the design solution.

The specification level is comprised of two schemata: building and grid as
shown below. The building frame stores information about the occupancy and
the design loads. The grid frame stores information about the structural gnd,
such as the number of stories, the number of bays in each direction, and their
dimensions. There are procedural attachments to some of the grid attributes to
automatically store information about ratios and total dimensions when the
appropriate information is provided to infer these values.

{ building
occupancy
wind-load
live-load }

{ grid
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Speci
building

grid
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fication Level

/ \ Functiona! Leve!

lateral gravity
Physical Level
3D-systems 2D-horizontal
2D-systems support-edges
material support-divide
components components

Figure 3: Hierarchical levels of design description.

part-of building
stories
story-dim
min-clear
narrow-bays
narrow-dim
wide-bays
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wide~dim
mech-floor
shaft
shaft-sym ... }

The functional level decomposes the design description according to
structural function. In HI-RISE, the design description is decomposed into two
major functional systems: the lateral load resisting system and the gravity load
resisting system. The schemata used to represent this decomposition, as shown
below, include relational information and the results of evaluation.

{ 1lateral
part-of grid
best-lat ... }
{ gravity

part-of grid
uses lateral
best-grav R

The frames that represent the physical level are hierarchically defined
according to function. The 3D-lateral, 2D-lateral, and material frames
represent decisions made for the configuration of the lateral load resisting
system. The 2D-horizontal, support-edges, and support-div frames represent
decisions made for the configuration of the gravity, or floor, system. There are
additional frames in the physical level that represent the information associated
with components such as beams, columns, and diagonals.

{ 3D-lateral
is-alt 1lateral
3D-description }

{ 2Db-lateral
is-alt 3D-lateral
part-of
uses
direction
2D-description }

{ material
is-alt 2D-lateral
mat-description
dead-load-est 125
story-dim-est 10.0}
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{ 2D-horizontal
is-alt gravity
hor-description }

{ support-edges
is-alt 2D-horizontal
sup-edges }

{ support-div
is-alt support-edges
subdivide-direction ... }

The schemata described above are used as templates for defining the
alternative feasible structural systems. The schemata are linked by the following
relations: is-alt, part-of, and uses. The is-alt relation is essentially an OR
connection, indicating that the descendants of a node form alternative solutions.
The part-of relation is an AND connection, indicating that the descendants of a
node are part of one alternative solution. The uses relation forms a horizontal
inheritance link to connect functional systems.

The instances of the template schemas form a tree of solutions; an example of
a portion of a solution is shown in Figure 4. As shown on the bottom of the
figure, the following alternatives are feasible lateral load resisting systems:

1. A structure composed of orthogonal two dimensional vertical
subsystems. The vertical subsystems in the narrow direction are
steel braced frames (the narrow direction is parallel to the narrow
dimension of the rectangular building). The vertical subsystems in
the wide direction are steel rigid frames.

2. A core structure composed of concrete shear walls.

3. A core structure composed of steel braced frames.

5 Implementation

HI-RISE is implemented in PSRL, a frame based production system language
developed at Carnegie-Mellon University by Rychener [10]. The development
of HI-RISE was facilitated by the following aspects of PSRL:

® Rule-sets: In PSRL a rule set is defined as a small production
system that has its own control strategy. Rule sets are used in
HI-RISE to control the order of tasks, to synthesize structural
systems, to group constraints and to evaluate alternatives.

e Schemas: A schema in PSRL is similar to an object or frame in
other frame representation languages. A schema may have any
number of slots and slot values. A slot may simply be an attribute
or may be a relation, Slot values may be attribute values or other
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Building
4
part-of
Grid
/ ~~—— gart-of
Lateral < uses Gravity
is-alt
2D-
orthogonal Core
part-of 4 is -aft
Narrow Wide
is-alt is-alt
Braced Rigid Shear Braced
Frame Frame Wwall Frame
4 4 4 4
is-alt is-alt is-alt is-alt
Steel Steel Concrete Steel

O ® ®

Figure 4: Feasible lateral load resisting systems.

schemas. This representation allows the definition of a tangled
hierarchy with inheritance most often occurring from parent to
descendant. Schemas are used in HI-RISE to represent the design

description.
® Demons. A demon is a function to be evaluated when a certain

condition exists. A demon may be associated with any slot in a
schema. Demons are used in HI-RISE to trigger the execution of a
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rule-set or to evaluate a Lisp function. The ability to evaluate Lisp
functions provides a means for representing analysis procedures that
may be difficult to represent in pure if-then rule form.

6 Conclusion

HI-RISE serves as a starting point for the development of expert systems in
engineering design. Two major issues are addressed: the representation of the
design description and a design decomposition for preliminary design. The
hierarchial representation of the design description, using inheritance for sharing
information among levels, facilitates the reasoning about alternative solutions.
The use of a schema for each preliminary design decision provides a complete
trace of the preliminary design process. The subtasks of synthesis, analysis,
component selection, evaluation, and system selection provide a modular
approach to knowledge representation.

The experience of developing HI-RISE has led to the identification of two
major areas of research for the development of expert systems in design. One
area of research is to develop a model of design that is common to a class of
design problems. A model that employs the constraint directed depth-first
search for feasible solutions has been developed and implemented in a system
by Maher and Longinos called EDESYN [9]. EDESYN is a domain-
independent synthesis processor that accepts a hierarchial decomposition of the
design description and heuristic constraints as a knowledge base, and provides
feasible alternatives for a given specification.

The other major area of research involves the study of domain specific expert
systems that address the formalization of a particular design domain. For
example, the development of an integrated design environment for buildings.
This is being pursued in a project by Fenves, et al., that integrates the building
design process from architectural design through construction planning [3].
Other projects in this area are reasoning about locating structural systems on a
grid by Smith [13], generating and evaluating floor systems by Karakatsanis [6],
and the use of prototypes to organize a knowledge base for structural design by
Gero, et al. [5].
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Abstract

DECADE (Design Expert for CAtalyst DEvelopment) is a prototype expert
system for catalyst selection, which has many attributes in common with other
engineering design problems. From a specified reaction it attempts to propose a
set of materials with high probability of being good catalysts for the input
reaction and the conditions at which the proposed catalysts should operate. In
some cases, novel combinations of materials are proposed. The class of
reactions for which DECADE has specific knowledge is carbon monoxide
hydrogenation. A major objective of DECADE’s development has been to
investigate and evaluate the applicability of expert systems technology to the
solution of chemical engineering problems. DECADE’s architecture and
implementation illustrate the integration of different software paradigms along
several dimensions of expert systems: knowledge representation, problem-
solving methods, and levels of knowledge abstraction. All these properties are
achieved through the use of different languages (FranzLisp, OPS5, SRLL.5)
brought together in a blackboard model architecture.

There are three levels of responding to a request for catalyst selection: from
published experimental results in the DECADE knowledge base; by a multi-
level classification of the reaction; and by determining surface steps and
selecting materials on that basis (strengthening and suppressing steps according
to their desirability). The most interesting results are produced at the third,
deepest level of abstraction. Catalysts are proposed at this level using a
generate-and-test procedure with a priori and dynamically generated constraints.
Explanation of the results is available for any material that was taken into
consideration. In view of the limited size of the knowledge base, the results and
explanations for this level of abstraction are satisfactory.
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1 Introduction

The most important goal of this study in catalyst selection is to evaluate the
feasibility of applying knowledge-based systems to the engineering design area.
This goal has two aspects: proposing new computational methods of solution for
tasks that traditionally have been approached "by hand”, and integrating those
solutions with the results of the algorithmic parts of the problem.

By examining the development of a program for selection of catalytic
material given a specific reaction, along with its characteristics and behavior, the
applicability of hybrid knowledge-based systems to engineering becomes
evident. Since the problem is not new and solutions do exist, the objective is not
to solve a previously unsolvable problem or to replicate exactly known
solutions, but to gain insight into the problem and the nature of the solution.
This leads to a computer aid flexible enough to be expanded further. Therefore,
results should be considered as a testbed and an evaluation of the feasibility and
necessary resources for the subsequent development of commercially viable
knowledge-based systems aiding in the design task for chemical engineering.

Designing a complete catalyst goes one step beyond proposing a material,
since a good catalyst may consist of several materials. In general, there are no
data on the behavior of all the possible combinations of different materials; it is
thus necessary to rely on a strategy that accommodates a flexible schedule of the
tasks that are required for the selection of a catalyst. This activity — like many
of the activities that constitute the design procedure — is ill-structured in nature.
That is, the solution path cannot be specified a priori, and, given that there are
many alternatives at each step, the choice among them must be guided locally
(McDermott, [30]). The reason for this is that the catalyst design problem is a
very complex and inexact activity, based to a large extent on experience.
Furthermore, the underlying theory for catalyst selection is not complete enough
to permit the prediction of a unique, complete and certain answer.

In practice the solution of such a problem has been performed by human
experts proposing a set of catalytic materials having a high probability of being
appropriate; the best material is then selected from this set by a series of
experiments which test catalytic performance and by an economic evaluation.
Clearly, a good solution is one in which a minimal set of catalysts are proposed
without overlooking a promising material, since the problem of testing is a
combinatorial function of the size of the proposed set.

Knowledge-based systems (sometimes referred to as expert systems) are
programs whose performance depends strongly on the use of facts and
heuristics. Some of them have been specifically developed to deal with
uncertain, incomplete, inexact and unformalized problems (i.e. ill-structured
problems). General strategies are available that are complemented “~ith domain-
specific techniques. Very little translation is involved, and therefore the solution
mechanism is (or may be) transparent to the user. They are, in contrast to
algorithmic programs (in which explicit instructions on how to solve the
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problem are given), free to search through and reason about the knowledge in
order to reach a goal. This strongly suggests their suitability to the present task.

We have had previous experience applying expert systems to chemical
engineering problems.  After using the framework of the Reboh et al.
PROSPECTOR [36] expert system in the implementation of CONPHYDE (4] (a
prototype expert system for the selection of a physical property method for
vapor liquid equilibria), we felt the need to investigate alternative possibilities
for expert system implementation. The reasons for such a decision were mainly
two:

e The most severe limitation encountered while developing
CONPHYDE was the difficulty of implementing calculation
capabilities (see [8]). Several authors have recognized this need for
applications in chemical engineering (see Motard {32] and Umeda
[42]). The tools described below make this capability possible.

¢ The PROSPECTOR framework only allows solution of diagnosis or
classification problems, while many of the problems encountered in
engineering are of a more complex kind — problems of design or
synthesis (as explained in {6]).

2 Background on Catalyst Selection

The selection of a catalyst has a major impact on the economics of chemical
processes because the catalyst affects the feasibility and the degree of
conversion of raw materials to final products, and generally raw material and
product costs dominate the total cash flow of a process. From the point of view
of the design process, it is important to realize that not only the reactor, but the
totality of the plant, are designed taking into account, in a direct or indirect way,
the characteristics of the reaction (conditions of temperature and pressure in
which it must run, side products, conversion).

2.1 The Catalyst Selection Problem
Selecting a catalyst is not an easy task since there is little information on:

¢ which are all the properties of a catalytic material that affect the
characteristics of a reaction,

¢ how each of these properties affect the characteristics,

e the interactions that the components of combined -catalysts
(catalysts with more than one component) have on each other in
relation to the reaction that they are catalyzing.

In short, the underlying theory for catalyst selection is not enough to permit the
prediction of a unique, complete and certain answer.

The selection of a catalyst is a problem that is currently solved only by a
relatively small number of experts interacting in a consultation environment
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with the user. It is prone to decomposition into smaller and very different
subproblems, some of them amenable to algorithmic solution, but the majority
only solvable through the use of heuristic reasoning given their lack of
formalization. Also, since the order of execution of the subproblems is not
fixed, but varies greatly depending on the characteristics of the individual
problem, a flexible solution strategy is needed. The solution to the overall
problem should not only preserve the functionality (proper selection of
catalysts), but the form (interactive environment with the user) as well.

Some attempts have been made to formalize the process of catalyst selection,
e.g., the one described in Trimm’s book Design of Industrial Catalysts [41].
The "scientific basis of design of catalysts” described in the book, and other
methodologies contained in some other publications, although different,
coincide in prescribing a number of subtasks that are useful to perform when
selecting a catalyst (for the other methodologies see for example the section
"Catalyst Selection” in Klier [27]). An enumeration of the subtasks follows.
Stoichiometric analysis. Write down all the reactions that come from all
possible combinations of the reactants and products of the target reaction,
incorporating only chemically stable compounds, and without making reference
to the reactions on the surface. This task is akin to the one solved in the Ph.D.
thesis of R.B. Agnihotri ([1]). A simplification of this step consists of listing
only the target reaction, the reactions producing useful or acceptable side
products, and the reactions that need to be inhibited because they produce
unacceptable side products.

Thermodynamical analysis. Calculate the Gibbs free energy of the listed
reactions in order to identify those which are (thermodynamically) feasible.
Calculate the equilibrium conversions. Calculation of the enthalpy of reaction is
also useful in terms of the thermal stability required from the catalytic material,
and for heat transfer calculations.

Literature Search. One step that is consistently stressed is the literature search.
As a matter of method, it is advised to search for all available information about
the target reaction, analogous reactions, and data like activity patterns, heats of
adsorption, proposed mechanisms, observed intermediates, etc. The search for
general data should be done prior to the selection process (this practice can
prune the search space considerably), while search for very specific information
can be done whenever it is needed.

Classification of reactions. 1t is convenient to group the reactions listed in the
stoichiometric analysis in terms of their class. The list of possible reactions may
be very large, but the list of classes of reactions is considerably smaller. This is
important because many of the heuristics are given in terms of the classes of
reactions rather than reactions themselves (e.g. the activity patterns).

Identify types of chemical bond rearrangements occurring in each reaction.
Although this step is not explicitly mentioned in some of the methodologies, it is
consistently used as the basis for the proposal of surface steps whenever there is
no experimental data available.
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Proposal of a surface mechanism. None of the methods have a formalized
strategy for the proposal of the surface steps, all of them either extract them
from the literature, or obscurely propose them using a priori knowledge. This
step could many times be considered as the basis of the design, in that the
information conveyed from it supplies pointers to many alternative methods of
enumerating and ranking catalytic materials.

It is worth mentioning that a mathematical method for the enumeration of all
possible mechanisms has been proposed (Happel and Sellers [21]). Its inputs
are the possible intermediate species and elementary surface steps that the user
wants to consider, even though it is often necessary to obtain such data from the
literature. The availability of the surface data is assumed, when many times
such data are uncertain and difficult to find.

Reaction path identification and preliminary catalyst material selection. From
the data obtained in the mechanism prediction, those steps that have to be
favored, and those steps that have to be inhibited are identified. This will
produce a list of requirements to demand from the materials that will be
catalysts.

Experimental testing. Sometimes, during the process of selection, a set of
experiments is proposed. Such experiments have the purpose of either obtaining
missing data or studying the behavior of a partial solution (e.g. study the
interactions between the different components of a catalyst).

Nevertheless there are subparts of the problem that not only are far from
being formalized, but also where there is not even a consensus of which
methodology to follow. Take for example the specification of the problem.
There is no information on what is considered enough input information for the
prediction of catalysts. In the method proposed by Trimm, the input information
is the desired product. A combination of other data like the available raw
materials or the ranges of operating conditions can also form part of the input,
but there is no clear idea on what is the minimum amount of data needed. As a
rule of thumb, the more information that is available from the user, the easier it
is to prescribe a catalyst; data are not always available though.

2.2 The Fischer-Tropsch Reaction
The knowledge in DECADE has been focused to a single reaction: the Fischer-
Tropsch reaction (for more information about this reaction, consult the book
written by Anderson, et al. [2], the monograph by Dry [15], or the short article
by Haggin [20]). While constraining the area of knowledge reduces the search
space in size, we think that it maintains the important characteristics of the
domain. The Fischer-Tropsch reaction is thought to be a representative reaction
in terms of catalyst selection, given the fact that enough studies have been made
about it, but no one can claim to understand it perfectly well, leaving room for
the application of knowledge-based systems.

The Fischer-Tropsch reaction is named after two German chemists: Franz
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Fischer and Hans Tropsch, who, in 1926, described it for the first time. The
Fischer-Tropsch reaction can be considered the main reaction of C; chemistry.
It can be described as the production of hydrocarbon and oxygenated organic
molecules via the reaction of carbon monoxide and hydrogen. The mixture of
carbon monoxide and hydrogen is known as synthesis gas or syngas. The
molecules so produced have predominantly straight carbon chains, at least in the
C, — C; range (Haggin [20]).

The range of subreactions possible when using carbon monoxide and
hydrogen as reactants falls into three divisions (King [26]):

1. Direct process from syngas (see Figure 1),

2. Indirect process from methanol' or methanol mixed with syngas,
and

3. Indirect process by combining a third molecule with syngas or
methanol.

Only the first division is of specific interest to this study.

CO + H,
FUELS CHEMICALS
;:-soli: ——' 4P r:t.hyl:n-:oly—c:‘ —-i
SNG e 3 tic acid
T
I tuel oil | <+ | dimethyl ether |
l alcohol fuels I 4——p polyethylene l

Figure 1: Some products derived from direct processes of synthesis gas.

All the Fischer-Tropsch reactions are exothermic, and produce water as a side
product (at certain conditions, a reaction known as water-gas shift
{CO + H,0 — H, + CO,} may change the overall side product from water to
carbon dioxide). One other side reaction is the decomposition of carbon
monoxide ({2 CO — CO2 + C}; also known as the Boudouard reaction).

INote that in this instance methanol is a derived product of the hydrogenation of carbon
monoxide.
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Given a set of starting conditions for the Fischer-Tropsch process, the
Schultz-Flory equation predicts the proportion of C; products to higher carbon-
number products. The product distribution depends on such variables as the
catalytic material, reaction temperature and pressure, and feed gas composition.
However, only methane and methanol can be produced with a 100% selectivity.

Several mechanisms have been proposed over the years, but no single
mechanism is applicable to all catalytic surfaces. A very complete review can
be found in the work of Rofer-DePoorter [38]. A mechanism worth mentioning
for its simplicity and generality is the one proposed by Bell [10], for the
formation of hydrocarbons over Group VIII metals.

3 Background on Hybrid Knowledge-Based Systems
Among the problems that are well suited for hybrid implementations are design
problems (in particular in engineering). The justification for the need of hybrid
systems is that, since engineering knowledge is heterogeneous (in terms of the
kinds of problems that it encompasses and the methods used to solve them), then
the use of heterogeneous representations is natural. Another important factor to
take into account is the fact that some programs that solve a part of a given
problem may already exist, and it would not be feasible or convenient to rewrite
them into another format only to make them compatible with the overall system.

A system may be hybrid in several ways. Attempts to characterize this
hybridization have resulted in the following classification of the properties that
may be of importance when constructing a knowledge-based system: knowledge
representation, problem-solving strategy, knowledge abstractions, and
implementation language. These are considered in turn below. A broader
discussion of these issues is found in [7].

3.1 Knowledge Representation

Knowledge representation deals with what is known in traditional numerical
applications as the database, and in knowledge-based systems as the knowledge
base. It can be considered as the description of the problem space, its properties
and internal laws.

Knowledge has different forms. It can be certain or uncertain, formalized or
unformalized, structured or unrelated, etc. It can be found in formulas, tables,
staternents, traditional practices or embedded in methodologies, but, when it has
to be translated in such a way that it can be stored and used by a computer, a
knowledge representation mechanism has to be chosen. The issues that affect
the selection of knowledge representation are the naturalness of representation,
efficiency of storage and manipulation, and consistency and compatibility with
the rest of the representations in the system.

The following are three representations used in DECADE:

Production rules. Production rules or IF-THEN statements consist of a
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conditional part and an action part. The conditions of a rule have to be satisfied
in order for the rule to act. The actions of a rule execute a series of operations
that will modify the state of the problem. Demons and active values (Kunz, et
al. [28]) are special cases of productions rules. Production rules are prescribed
for the representation of control mechanisms, problem-solving strategies,
heuristics, and in general any kind of knowledge that is applicable only when a
given context is present. A reference to the usage and advantages of production
systems is Brownston, et al. [11], while Hayes-Roth [22] is a good introductory
document.

Frames. A frame is a structure that represents a concept. It can have any
number of artributes or properties attached to it, some of the properties can be
relationships. An attribute may have any number of values (i.e. no value, one
value, several values). The importance of being able to represent relations is
that a given frame can inherit properties (attributes and/or values) from the
frames to which it is related. Frames are a convenient and natural way to
represent descriptive information, that is, objects, their properties and their
relations. They also represent very naturally the information carried in
hierarchically structured domains. For an introduction to frames consult Fikes
and Kehler [17].

Procedures. Procedures are probably the best known representation structure to
engineers. Traditional numerical formulas map in a straightforward way into
procedures. The concept is more general though, since one can think of
procedures that deal with symbolic data rather than with numerical data.
Sequential execution of statements, iteration and recursion are the three control
schemes available to procedures. A procedure can be used as an action of a
production rule, or as the mechanism that manipulates the information contained
in a frame.

3.2 Problem-Solving Methods

Problem-solving is the process of developing a sequence of actions to achieve a
goal. It encompasses the set of methods that can be used when attacking a
problem. The methods describe how to manage the available information and
how to obtain the missing information in order to achieve a goal state. In terms
of the problem space, problem-solving methods prescribe the way in which one
should move from the initial state to the solution state passing through the
partial solution states. If the reader is interested in further information about the
subject, we recommend Cohen and Feigenbaum [14] as a reference. Now we
present two specific examples of the use of these methods in DECADE.

3.2.1 Depth-First Search

DECADE uses the depth-first search method during the process of
classifying a reaction. Figure 2 shows the process of classification for the
reaction of producing ethane. Each of the nodes in the tree is a frame. The
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Figure 2: Depth-first search to classify reaction producing ethane.

nodes in the upper levels represent classes of reaction, those leaf nodes in the
fourth level (i.e. ethane synthesis and propane synthesis) are instances of a
reaction. Because of space limitations some of the nodes are grouped into
rectangular boxes.

In order to classify a reaction, the problem reaction is tested to check if it
satisfies the constraints contained in a node. If it does, the constraint satisfaction
is tested recursively for each of the child nodes. In the particular case of the
reaction to produce ethane, the evaluated nodes are shown in solid lines, and the
satisfied nodes in bold lines. The result of the classification presents the
problem reaction as of class "Fischer-Tropsch”, and recognizes that it is
identical with the "ethane synthesis” reaction already stored in the knowledge
base.

3.2.2 Means-Ends Analysis

The Means-Ends analysis method is used in DECADE for the proposal of
reaction steps on the surface. Figure 3 contains the means-ends analysis table
with the necessary entries to propose steps for alkane forming Fischer-Tropsch
reactions (a different kind of product requires an additional set of entries). The
horizontal entries represent the differences. There are two kinds of differences:
the phase where the species are present (gas or solid), and the difference in
bonds from one species to another. The input data consists of the set of
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Figure 3: Means-ends table for prediction of mechanism for alkanes.

reactants and products of the target reaction. Aided with a knowledge base
containing the bonds present in different chemicals, two lists of bonds are
compiled: one containing the bonds present in the reactant side of the reaction,
and the other one containing the equivalent list for the product side. The
objective of the process is to find the necessary steps that transform the first list
into the second.

The upper vertical entries stand for the operators, for which the
preconditions are given in the lower vertical part of the table. There are two
kinds of operators corresponding to the two kinds of differences described
above. The first type represents the physical steps that transport a species from
the gas phase to the surface and vice versa. The second type stands for the
surface steps that can break, modify or form a bond. For space reasons, some
entries are represented by large-font symbols, as follows:

eR1: *OH,_+*H — *OH,, (x=0,1)
e R2: *CH, + *H — *CH,, x=0,1)
* R3: *CH, + *Csz - *Cy+le+z x,y>0;2>2)
o R4: *CxHy +*H — *CxHy+l x>0;y>1)
o A: species are in the surface

Each one of these operators has preconditions, which can be seen as constraints
to be satisfied before the operator can execute its action.

The schematic of the action of the means-ends analysis process on the
methanation reaction is presented in Figure 4.
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Figure 4: Means-ends analysis applied to the methanation reaction.

The symbols represent the species that are likely to exist in the reaction process.
Symbols preceded by a **’ are adsorbed species, the others are species in the gas
phase. The lines joining the symbols represent the operators needed to
transform the species, and the overall flow of information goes from left to right.
The list of proposed steps produced by the means-ends analysis cannot be
considered as a series of mechanistic events (in the sense that there is no claim
that the steps will occur in the exact order, or that some steps could be concerted
rather than sequential). It is nevertheless useful in that it provides pointers to
some of the necessary surface events that have to take place in order for the
reaction to occur.

3.3 Knowledge Abstraction

It is a common method of decomposing the problem into subproblems (in a
more general way it could be considered as one particular problem-solving
strategy). More abstract representations hold less information about the problem
but are easier to work with. A solution in an abstract level can be used as a
guide for the search of the solution of a less abstract one.
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The abstraction of knowledge is a useful technique for the decomposition of
complex problems. It divides the problem space into levels, each level holding a
different representation or view of the problem. The more abstract a level is, the
simpler it is to find a solution since less information has to be managed.

There are two useful general classifications in terms of abstraction. The first
one was proposed by Michie in [31], and according to it there are two kinds of
knowledge:

1. The "low road" or heuristic type, represented by
[pattern — advice], and

2. The "high road” or causal type, represented as
[situation x actions — situation]

Chandrasekaran and Mittal [13] expanded this concept, proposing the following
division: table look-up; partial pattern-matching; compiled structures; and deep
structures.

For DECADE, three levels of knowledge abstraction are used. As mentioned
earlier, the more abstract the level is, the easier it is to solve a problem, but with
less understanding of the causality.

1. Reaction Level. The objects managed at this level are reactions.
Reactions have pointers to materials that can catalyze them. If the
problem reaction is identical to a reaction contained in DECADE’s
knowledge base, then the properties attached to the known reaction
are associated with the problem reaction (in particular the catalytic
material).

2. Molecular Level. In this level the objects are molecules.
Molecules are parts of a reaction if they are contained in the
reactant side or the product side of that reaction. It is possible to
deduce properties of a reaction by observing the molecules that
form it (in particular, it is possible to classify it). Once a reaction
is recognized as a member of a reaction class, something
additional may be said about the materials that can catalyze the
problem reaction.

3. Species/Metal Surface Level. The objects in this level are species
that can exist on the surface of a metal while a reaction is taking
place. With these species (which are deduced from the molecular
level and a set of heuristics), and a collection of rules, it is possible
to propose a mechanism or series of steps that have to take place
on the surface in order for the reaction to take place. These steps
are affected by the reaction conditions and the nature of the
surface (i.e. the catalytic material).

The above classification goes in decreasing level of abstraction, increasing
level of difficulty in terms of problem solving, and decreasing level of accuracy
in the prediction.
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3.4 Implementation Language

There are many possible implementation procedures available inside the
knowledge-based systems domain. Their choice depends on the basic approach
taken, as described in detail by Hayes-Roth, et al. [24]. DECADE uses mainly
two languages.

34.1 OPSS

OPS5 is a programming language used extensively in knowledge-based
system applications and in other Artificial Intelligence areas. OPSS5 primitives
are production rules that "fire" (i.e. execute its actions when its preconditions are
matched) according to the content of working memory, and whose actions
modify that working memory, create other production rules, or perform
information input/output. For a better description of the language, consult
Forgy’s manual [19], and the Browston et al. book on OPSS5 programming [11].

3.4.2 SRL

SRLI1.5 {43] (or SRL for short) is a language extension of FranzLISP, which
runs on a VAX computer using the UNIX operating system. It has been
developed by the Intelligent Systems Laboratory at Carnegie-Mellon University.
It is appropriate for declarative knowledge, and it is therefore used for
descriptive purposes in DECADE. SRL supports a very sophisticated
representation of concepts and their relations, and the support is very flexible. It
is possible to inherit values from related schemata, specify the inheritance path,
modify the inheritance mechanism, etc.

3.5 Conclusions on Hybrid Systems

In summary, it would always be important to consider the use of the most
appropriate language for the representation and solution of a subproblem. This
factor has to be weighed against the advantages of uniformity. One
disadvantage of using hybrid systems is that a diversity of representations may
hide some of the sequencing of a task. Another is that since data types are in
general not the same, it is necessary to check for data type consistency and
compatibility.

4 DECADE as a Hybrid Knowledge-Based System

As we have seen so far, there are advantages to using different representation
and control structures within the same system. The blackboard model is a
general and simple architecture that allows the integration of dissimilar program
modules (see Hayes-Roth [25] for a good introduction to blackboards).
DECADE is an example of a hybrid system in which the blackboard integrates
both representations and problem-solving methods. More details on blackboard
issues may be found in [7), and complete details are in [9].
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4.1 The Blackboard Model

The blackboard model is a paradigm that allows for the flexible integration of
modular pieces of code into a single problem-solving environment, it is a
general and simple model that allows for the representation of a variety of
behaviors. Given its nature, it is prescribed for problem-solving in knowledge
intensive domains that use large amounts of diverse, errorful and incomplete
knowledge, therefore requiring multiple cooperation of knowledge sources in
the search of a large problem space. In terms of the type of problems that it can
solve there is only one major assumption: that the problem-solving activity
generates a set of intermediate results.

It was originally proposed in the development of Hearsay-1I, a speech
understanding system that interprets spoken requests for information from a
database Hayes-Roth and Lesser [23]. Since then it has been used in a number
of application programs, for example for signal processing (Nii, et al. [33]),
design of alloys (Farinacci, et al. [16] and Chapter 6 in this volume), VLSI
design (Bushnell and Director [12]), and several more. The Talukdar and
Cardozo paper in this volume discusses related issues.

The blackboard model consists of a data structure (the blackboard) containing
information (the context) that permits a set of modules (Knowledge Sources or
KSs) to interact (as illustrated in Figure 5).

Blackboard

50
e ©

Figure 5: General structure of a blackboard.

In the following subsection the structure of a typical blackboard model is
described in more detail.
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4.1.1 The Blackboard

The blackboard can be seen as a global database or working memory in
which distinct representations of knowledge and intermediate results are
integrated uniformly. It can also be seen as a means of communication among
knowledge sources, mediating all of their interactions. Finally, it can be seen as
a common display, debugging, and performance evaluation area.

It may be structured so as to represent different levels of abstraction and also
distinct and possibly overlapping intervals in the solution. The division of the
blackboard into levels parallels the process of abstraction of the knowledge,
allowing elements at each level to be described approximately as abstractions of
elements at the next lower level. This partition of the knowledge may be not
only natural, but useful, in that a partial solution (i.e. group of hypotheses) at
one level can be used to constrain the search at adjacent levels.

4.1.2 The Knowledge Sources

The Knowledge Sources in DECADE are kept separate, independent and
anonymous (i.e. they do not have to know of the existence of the rest). This
separation can be interpreted to be a decomposition of the problem space, useful
in that it makes the problem more tractable by reducing the size of the problems
to be solved and on occasion the size of the combinatorial problem. In addition
to this, the separation eases the modification and evaluation of the system.

Knowledge Sources in DECADE are divided into two components:

1. Condition, Precondition or Front End. Monitors the blackboard
for elements matching its precondition. The precondition has the
double purpose of finding a subset of hypotheses that are
appropriate for an action and of invoking the knowledge source in
that subset. The subset has been called the Stimulus Frame of the
knowledge source instantiation (Lesser and Erman [29]). Each
knowledge source is data-directed in that it monitors the
blackboard for data matching its precondition.

2. Action- or Knowledge-Specific Component. When the precon-
dition component is matched, a copy of the knowledge source is
instantiated (invoked) and finally executed. In the case that more
than one knowledge source fulfilled its precondition part, the
execution is subject to the result of a conflict resolution process
(more on this in the blackboard model control section).

The knowledge sources may be classified in a number of different ways,
depending on the characteristic that is used to discriminate them.
e Generic vs. Specific. The knowledge source may be useful in a
whole set of knowledge-based systems (e.g. the Focus of Attention),

or specific to one application (e.g. the mechanism prediction
knowledge source).

¢ Unique vs. Redundant. Several knowledge sources performing the
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same task but with different capabilities may be present in the same
system. The difference in capabilities can be in terms of accuracy,
consumed resources, certainty of the result, required preconditions,
etc.

® Local vs. Distributed. Knowledge sources may reside in the same
processor or in different ones.

® Homogeneous vs. Hybrid. Knowledge sources may have the same
structure and/or control, but they may be completely different in
either.
Table I lists the current components of the blackboard environment present in
DECADE. The headers of the table reflect the dimensions in which DECADE
is a hybrid system.

Table 1: DECADE as an example of a blackboard model.

Name Knowl. rep. PS method Language Levels
Specify rules search OPS5s 2
Reaction frames numerical SRL
Thermo functions generate & test Lisp 1
Checking rules numerical OPS5
Classify functions search SRL 2
Reaction frames OPS5
Select rules search SRL 3
Catalyst frames OPS5

functions
Surface rules means-ends OPS5 2
Mechanism frames SRL
Focus of rules agenda OPS5s -
Attention
User rules OPS5 -

Interface
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4.1.3 The Context

The context is the set of entries or context elements contained in the
blackboard that contain the information representing the state of the solution
process.  Those entries may include perceptions, observations, beliefs,
hypotheses, decisions, goals, interpretations, judgements, or expectations. Also,
they may have relationships to one another. In particular, one such organization
may combine a set of entries as the representation of a single object viewed from
different levels of abstraction.

In DECADE there are objects that represent goals (goal), questions and
information messages (messg), knowledge sources (EKS), and other general
concepts in the blackboard. There are also domain-specific objects: those which
represent reactions (reaction), catalysts (catalyst), surface steps (ss), etc.

4.2 Blackboard Model Control

The blackboard model can accommodate a range of control mechanisms and
problem-solving strategies. This flexibility in range applies at all levels: from
each of its components (knowledge sources), to the system as a whole.

In DECADE, the overall control is determined by one of the knowledge
sources: the Focus of Attention. A simplified description of the behavior of the
Focus of Attention is schematized in Figure 6. A lower case string can be
interpreted to be a production rule that is part of the Focus of Attention
knowledge source. The rectangles represent parts of the process where the
control passes to knowledge sources other than the Focus of Attention.
According to the figure, after the user selects the kind of problem he wants to
solve, the rule post goal will post in the blackboard a description of the goal that
needs to be solved. Any knowledge source that has access to the blackboard and
is able to solve such kind of problem can post an estimate for the solution of the
previously posted goal. Since this last step is performed by modules other than
the Focus of Attention, it is depicted as a rectangle. The Focus of Attention
waits until all the estimates have been submitted, then it evaluates them,
assigning priorities to each of the knowledge sources that submitted an estimate.
Once each knowledge source is rated, the best one is assigned the original goal,
and that module will start the solution of it.

There are three possible outcomes after a goal has been assigned to a
knowledge source.

1. The module solves the problem, it posts its solution in the
blackboard and returns the control to the user (if the goal was
originally requested by him), or to the part of the Focus of
Attention that assigns the next goal (when the goal was requested
by another knowledge source as a subgoal — see next item)

2. The module cannot solve the requested problem because it needs
some other partial results. In this case a subgoal is posted, or,
more accurately, a goal with a pointer to the parent goal is posted
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Figure 6: Simplified version of overall control in DECADE.

in the next level of recursion. The subgoal is to be treated exactly
as any other goal, with the only difference that any outcome from
it 1s not considered a final solution, but i1s passed to the knowledge
source that requested it. There is no limit to the levels of recursion
that can be used.

. The module cannot solve the requested problem; it failed. In this

case the control is handed back to the part of the Focus of
Attention that assigns the execution of goals. If more estimates are
present, the goal is assigned to the next best estimate; otherwise,
the control is handed back to the user.
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5 DECADE’s Blackboard Structure

Now we will describe the structure and function of each of the knowledge
sources that make up the system by examining the general purpose knowledge

sources, followed by the domain-specific ones. Complete details are presented
in [9].

5.1 General Purpose Knowledge Sources

General purpose knowledge sources are domain-independent modules, and
therefore they deal with general objects such as goals, estimates, information
messages, question handling, etc. General purpose expert knowledge sources
have knowledge about the structure of the program, internal representation and
desired interaction with the user, within the experts, and with other programs.
DECADE contains three such modules: User Interface; Focus of Attention; and
Scheduler.

5.1.1 User Interface

This module permits the interaction of the user with events inside the
blackboard and indirectly with the rest of the knowledge sources comprising the
system. This interaction may occur in both directions;

by the user’s modifying the flow of control of the system by means
of commands and answers to questions, and

® by the system’s informing the user of important events, prompting
him or her for answers, or explaining decisions.

The User Interface manages the question and answer protocols and informs
the user of important events during DECADE’s execution. Among its most
important capabilities are the following: it checks if an answer is valid (based
on prespecified or dynamic menus or constraints), advises the user on valid or
desirable answers, manages default values, checks for spelling mistakes, and
automatically completes incomplete answers. It is limited to one-word answers
in DECADE. This module is implemented in 12 production rules and 16
Franzlisp functions.

5.1.2 Focus of Attention

Conflicts between the knowledge sources may arise when, after a goal has
been posted on the blackboard, more than one knowledge source submits an
estimate for the solution of the pending goal. The Focus of Attention acts as a
manager resolving these conflicts. It also decides what to do in the event of a
failure or in the event that a precondition has not been executed. It uses the
results of the knowledge sources’ evaluation functions to decide which
knowledge sources to instantiate.

A different Focus of Attention can change the behavior of the whole
knowledge-based system and, in particular, change its "functionality" to tutor or
diagnose instead of design, while keeping the same Knowledge Base (i.e. the
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same domain-specific knowledge sources). The size of the Focus of Attention
knowledge source is 23 OPS5 rules and one Franzlisp function.

5.1.3 Scheduler

The scheduler knowledge source performs a census procedure that prompts
every knowledge source at initialization. For information purposes, it constructs
a dynamic list of accessible knowledge sources, the type of problems they solve,
their status, etc. Information to construct the list is provided by polling the
knowledge sources.

The scheduler can be extended to aid the Focus of Attention in the
synchronization of parallel and sequential subgoals. New expert knowledge
sources can be added or existing ones excised at any time. Executing the
scheduler after adding or removing a knowledge source updates the list of
accessible knowledge sources, allowing DECADE to continue to operate
correctly.

The scheduler consists of 9 production rules.

5.2 Domain-Specific Knowledge Sources

For coordination and communication purposes every domain-specific expert
knowledge source has to have the following set of rules for each goal that it can
solve (it is possible that one source can solve more than one goal):

1. Minimum of one rule for issuing estimates.
2. One rule to answer the census.

3. One rule to receive information of goal assignment from the Focus
of Attention.

4. One rule to inform the Focus of Attention of the completion of a
goal, and

5. As many rules as needed for subgoal posting and information
retrieval.
For general communication and control reasons, the objects they have to manage
are the same general objects with which the General Purpose knowledge sources
deal. In addition to them, they deal with domain-specific objects (e.g. reaction,
raw material, product material, etc.).

Every domain-specific knowledge source should be able to solve at least a
partial goal in the problem goal space. In principle the goal space must be
divided by the programmer (that is, the programmer must decide how every goal
can be decomposed into other subgoals).

A knowledge source may or may not have preconditions. A precondition is a
subgoal that must be solved before the knowledge source can attempt the
solution of a goal. If the precondition is not present, then the knowledge source
posts it as a subgoal and waits for its solution in order to proceed with its
operation.
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Each domain-specific knowledge source in DECADE is now presented in
more detail.

5.2.1 Specification of the Reaction

This knowledge source interacts with the user in order to specify the reaction
for which catalysts are going to be selected. It uses extensively the User
Interface knowledge source to query the user for the input reaction. This
module is the most basic one in DECADE; all the other knowledge sources
require it (directly or indirectly) in order to acquire the description of the
reaction on which they are going to operate. Because it is basic to the others,
this knowledge source has no preconditions that have to be matched in order to
start its execution. It has 50 production rules and 25 SRL schemes.

The minimum description of a reaction is given by declaring two sets: one of
reactants (here called raw materials), and another one of products. In addition,
each of the elements in both sets has to have its corresponding stoichiometric
coefficient. This coefficient can be either given by the user or obtained through
an atomic balance of the reaction.

5.2.2 Thermodynamic Feasibility

The thermodynamic feasibility knowledge source has as its explicit
precondition the specification of a reaction. Implicitly, it requires that all the
chemical compounds that form part of the chemical reaction are contained in the
SRL knowledge base with information about their enthalpy, entropy, specific
heat constants, enthalpy of vaporization and boiling temperature. The properties
for the different chemicals are obtained from "Appendix A" of Reid, et al., [37].
The type of knowledge in this knowledge source is mostly algorithmic:
mathematical formulas for the estimation of thermodynamic properties as a
function of temperature alone (see for example Pitzer and Brewer [35]). The
size of this knowledge source is 25 rules and 4 functions.

5.2.3 Reaction Classification

The required precondition for the classification of a reaction 1s that the input
reaction has been specified. After the precondition is cleared, a typical
diagnosis task is executed; given an input reaction (defined as a set of reactants
and products and their stoichiometric coefficients), its place in the taxonomy of
reactions is found. This is done using the depth-first search method, and its
operation was described above in connection with Figure 2. We need only give
implementation details here. The task is achieved using SRL frames for the
representation of the nodes and links of the tree and FranzLisp functions for the
traversal of the tree and the evaluation of the constraints.

The classification task is performed using superficial knowledge about the
reactions rather than deep knowledge on the structure of the chemicals involved.
This level of knowledge has been sufficient for the present application, but
deeper and more extensive knowledge would improve the application of this
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knowledge source. This module is implemented in 14 production rules and 15
FranzLisp functions.

5.2.4 Prediction of Surface Steps for a Reaction

As a precondition for the proposal of surface steps, the input reaction should
have been classified, since the only type of objects that this knowledge source
can manage are the ones present in syngas reactions. In section 3 of this paper,
the means-ends analysis method was introduced as a technique for the
prediction of surface steps, and a general description of the prediction process
was given. In order to predict the surface steps that take place during a reaction,
a set of lists is prepared which reflects the breaking and forming of bonds; these
are the differences that the means-ends analysis method is going to reduce: kept
bonds, broken bonds, created bonds, and modified bonds.

The operators that reduce the differences are individual surface steps. These
operators can be grouped as: adsorption on the surface, desorption from the
surface, modification of bonds, dissociation of surface species, addition of
surface species, and dehydrogenation of surface species. It should be
emphasized that these steps are not elementary steps. In fact, the actual
mechanism is expected to be different from the proposed steps which are all
treated as sequential and do not necessarily proceed through the correct
intermediate. The usefulness of this approach, however, lies in its ability to
identify key events (such as the breaking of a particular bond) which are
necessary for a reaction sequence to occur. The proposal of surface steps in
DECADE should thus be viewed as a bookkeeping activity.

Once the differences and the operators have been presented, it is important to
understand what exactly is the /nput to the means-ends analysis and the output
resulting from it. As an input, the program expects the description of a reaction
("REACTANTS" and "PRODUCTS") and data about the bonds present at each
side of the reaction. The output is a path that would link the reactants and the
products of the reaction through a series of intermediate steps connecting
intermediate species (the steps are then transformation operations on the surface
species).

In the end, a unification rule detects pairs of species with the same name but
with the characteristic that one species has been created by a surface step but not
transformed, and the other has been transformed but not created; these pairs are
recognized as being a single species and unified into one.

The representation used for the chemical species is not powerful enough to
make a distinction among isomers. This deficiency was not of consequence for
this work since there are no specific Fischer-Tropsch catalysts in DECADE’s
database that would distinguish in their selectivity among isomers. This
knowledge source also calculates the maximum weight fraction that could be
expected of a given product by using the Schultz-Flory distribution function

[18]. We used 42 OPSS rules and 36 FranzLisp functions in its development.
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5.2.5 Catalyst Selection _

The catalyst selection knowledge source is divided internally into three levels
of abstraction: (1) reaction level, (2) molecular level and (3) catalyst surface
level (or bond level). As a single knowledge source it has one precondition: the
specification of an argument reaction. In addition to the common precondition,
the second level of abstraction requires the classification of the argument
reaction, and the third level requires the prediction of surface steps. Therefore,
levels two and three require in effect two preconditions each.

In terms of results, the subdivision of a knowledge source into several levels
of abstraction is equivalent to having several knowledge sources, each one
corresponding to one of the levels. In terms of programming, the former
approach is more difficult to implement than the latter though. The internal
control structure of this knowledge source is described in Fig. 3c of [7].

Figure 7 shows one of the catalysts present in the SRL database: "CuO plus
ZnO on AI203 catl." The information should be easy to understand without
knowing all about SRL.. The name of a catalyst is arbitrary, but it is important to
point out that, since one material may affect different reactions in a different
way, unique names are used (by appending a suffix like 'catl’ or 'pcs0045’ to
the original name). Note that the catalyst has a set of relations linking it with its
components (primary component, promoter and support), which in turn are
pointing to the original materials ("CuQO", "ZnO", and "Al203"). Furthermore,
the catalyst is recommended for a specific reaction with a certainty attached, and
it may also contain its operating conditions and references to the literature.

The problem-solving structures of the first and second level of abstraction are
quite simple and similar. The selection of catalytic material at the third level of
abstraction is altogether different from the first two and is presented separately.

In the first level, the catalytic materials are searched for a specific input
reaction. Figure 8 shows how a hypothetical reaction "abc” has been prescribed
Raney nickel, nickel on alumina, nickel on kieselguhr, and ruthenium as
possible catalysts. This is accomplished by retrieving the value(s) of the
"CATALYZED BY" slot when such a slot exists. If a reaction has no pointers
to catalytic materials (i.e. no "CATALYZED BY" slot or no values in it), then
the search is done in its identical reaction (i.e. the reaction contained in its
"AKA" (also known as) slot, this reaction has the same set of values for the
"REACTANTS" and "PRODUCTS" but a different name). At this point if no
pointers to materials have been found, the search is considered a failure.

At the second level, materials are prescribed by combining the results of two
selection procedures:

1. Search by traversing the taxonomy of reactions. All the catalytic
materials that are referenced by the parent nodes of the problem
reaction are retrieved and inherited with a certainty that reflects
how near the reaction is to the parent node; i.e. the nearer the
higher the certainty.
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{ {CuO plus ZnO on AI203 catl
INSTANCE: catalyst”
HAS PRIMARY COMPONENT: "CuO pcl”
HAS PROMOTER: "ZnO prml”
HAS SUPPORT: "Al203 sup4"
FUNCTION: "methanol synthesis"
TEMPERATURE RANGE: (500.0 573.0) K
PRESSURE RANGE: (50.0 100.0) atm
H2:CO-RATE RANGE: (3.03.0)
REFERENCE: |[Klier 82]| |[Pearce et al, 81]| |[Thomas 70]|
CERTAINTY: 1.0

b

{{CuO pcl
INSTANCE: "primary component”
HAS COMPONENT: "CuO"
IS PRIMARY COMPONENT OF:
"CuO plus ZnO on Al203 catl”

b

{{ZnO prm1
INSTANCE: "promoter”
HAS COMPONENT: "ZnO"
IS PROMOTER OF: "CuO plus ZnO on A1203 catl”

b

{{A1203 sup4
INSTANCE: "support"
HAS COMPONENT: "AI203"
IS SUPPORT OF: "CuO plus ZnO on A1203 catl”

Figure 7: Catalyst representation in the SRL database.

2. Assignment of the catalyst found in a "similar sibling reaction." A
“similar sibling reaction" is defined as a reaction that has the same
parent node, and has a similar main product. If such a reaction
exists and it has pointers to catalytic materials, those materials are
copied into the problem reaction.

The first and second levels of catalyst selection have some properties in
common: First, the catalysts found and their proposed operating conditions are
obtained from the literature and in general have been used commercially.
Second, these levels have the capability of working with materials (e.g.
instances of metals, metal oxides, etc.}, and groups of materials (e.g. group IVA
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{{abc
INSTANCE: 'reaction”
REACTANTS: (CO-1)(H2-3)
PRODUCTS: (methane 1) (H20 1)
AKA: "methanation"”
1

{ {methanation

INSTANCE: "reaction”

REACTANTS: (CO-1) (H2 - 3)

PRODUCTS: (methane 1) (H20 1)

CATALYZED BY: "Raney Nicatl" "Nion Al203 catl”
"Ni on kieselguhr cat1” "Ru catl”

M

Figure 8: Catalyst selection at the first level of abstraction.

metals). When appropriate, they can recognize the need of substituting a group
by its elements (for example consider the case of a group of metals that is
recommended with a high certainty but one of its elements has been rated with
low certainty; the group would be substituted by its elements, and only the
certainty of the conflicting material alone would be adjusted).

5.2.6 Catalyst Selection (Third Level)

Since the selection process is complex, the descriptions of the individual
subtasks have been separated and enumerated using Roman numerals.
I. The input to this knowledge source consists of the surface steps as predicted
by the surface step prediction knowledge source (see Section 3.2.2 above). For
a given reaction, the needs of occurrence of a set of surface steps are established.
The first and second columns of Table 2 show the correspondence between the
surface steps and the needs.
II. Once the needs have been established, they are evaluated. This means that
a symbolic qualifier is attached to them. The assignment of the qualifiers is
made by a set of production rules that rate the extent to which a need is required.
It is difficult to assign a physical meaning to the qualifier, so it should be seen
more as a computer variable than as a real measure. For some of the needs,
assignment of the qualifiers is a straightforward task with little or no possible
error. This is the case for the dissociation of adsorbed hydrogen and the
reduction of adsorbed atomic oxygen. Both of these needs are always qualified
as total, the first one because of the observation by Araki and Ponec that
hydrogen must be adsorbed and dissociated on the surface before it reacts (Araki
and Ponec [3]) and the second because water is always produced as a side
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Table 2: Correspondence between surface steps and needs.

Surface Steps Needs Allowed Qualifier Range
adsorption adsorption of species [high — low]
dissociation dissociation of species [total — none]
C:C addition chain formation [high — none])

C:H addition hydrogenation [high — low]

O:H addition *Q reduction [total or none]

C:H elimination dehydrogenation [high — none]

product (when methanol is produced and water is not a side product, the need of
*0O reduction is qualified as none). In other cases, like the production of
methane, total *CO dissociation is certain. However, in some cases the
assignment of the qualifiers is a somewhat arbitrary task. This is the case of
carbon monoxide dissociation in the ethanol synthesis reaction; one of the
carbons has lost its original oxygen, and the other one has kept it. In general,
the range of qualifiers used in the program are: total, high, medium, low, and
none. Some of the needs have a more restricted range of applicable qualifiers
(e.g., it does not make sense to talk about the need for total dehydrogenation).
The third column in Table 2 specifies the range of qualifiers for each one of the
needs.

Given the information that is encoded in the system (which reflects the
information found in the literature), the only needs that affect the selection of
catalysts in DECADE are those that originate from the following surface steps:
*CO dissociation, ¥*H2 dissociation, *O reduction, hydrogenation of carbon, and
C:C addition.

III. Once the needs have been evaluated, a set of materials are proposed taking
into account those needs and their qualifiers. Currently only three of the needs
are used for this process: dissociation of adsorbed carbon monoxide,
dissociation of adsorbed hydrogen, and reduction of adsorbed oxygen (reliable
information relating materials with surface steps was found only for these three).

Generally, *CO dissociation is the most important factor in the preliminary
proposal of materials. This should not be much of a surprise since the
dissociation of carbon monoxide determines whether hydrocarbons or
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oxygenates are going to be produced (total dissociation will yield hydrocarbons,
partial or no dissociation yields oxygenates) and also determines if a chain is
going to be formed (since we are assuming the chain grows by addition of *CH2
groups — a product of *CO dissociation). The fact that this is considered the
most important step resembles the case of ammonia synthesis, where *N,
dissociation is the most important surface step. Data about CO dissociation is
accessible through a search in the "DISSOCIATION DATA" slot of the "*CO"
scheme (see Figure 9).

{{*Co
IS-A: "adsorbed chemical”
WHEN DESORBED: "CO"
DISSOCIATION DATA: "group IIB dissoc *CO"
"Fe dissoc *CO" ....
DISSOCIATES TO: "*C" "*Q"
1)

Figure 9: Access to the dissociation data for an adsorbed species.

As an example, Figure 10 presents the general behavior of iron metal towards
the dissociation of adsorbed carbon monoxide: "Fe" dissociates "*CO" at a
temperature greater than or equal to 300 K with a certainty of -1.0 (a 1.0
certainty would mean that iron does not dissociate carbon monoxide).

{ {Fe dissoc *CO
INSTANCE: ‘reaction”
IS-A: "dissociation relation”
TO BE DISSOCIATED: "*CQO"
SURFACE MATERIAL: "Fe"
TEMPERATURE RANGE: (300.0 *)
CERTAINTY: 1.0
REFERENCE: |[Broden et al, 76]|
1)

Figure 10: Representation of dissociation data.

Working memory elements are created for each of the materials mentioned in
the dissociation data schema. They contain the name of the material that was
examined, the type of need that it can (or cannot) achieve, and a constraint
stating at which conditions the material can achieve the need. Figure 11 is an
instance of such a working memory element. It represents the specific behavior
of iron towards the total dissociation of carbon monoxide.
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(material Amaterial FE  Agroup Igroup VIIIA|
Areaction methanation
Akey *CO_dissociation  Aqualifier total
Aconstrained temperature
Accompare greater-than-or-equal “constraint 300.0
Apointers [Fe dissoc *CO)|

)

Figure 11: Proposed material before criticism.

The values assigned to the Aconstrained, “ccompare, and “constraint
attributes are obtained by applying a function whose results are shown in the
third column of Table 3. The parameters of the function are the Aqualifier of the
need (first column in the table) and the "CERTAINTY" of the dissociation data
(second column in the table).

Table 3: Assignment of constraints to proposed materials.

Qualif. of Need  Cert. Test Constr. Imposed (values assigned to:
Aconstrained  “ccompare Aconstraint)
total (certainty=1.0)  <variable>  greater-or-eq. <low bound>
none (certainty<0.0) no constraint
(certainty >0.0) <variable> less-or-eq. <low bound>
[high — low] (certainty>0.0) <variable> near-to <low bound>

For the dissociation of adsorbed hydrogen the only useful data in terms of
proposing an initial set of catalytic materials is that the metals of group IB and
group IIB will not dissociate hydrogen at low to medium pressures (Spencer
[40]). The search is similar to the one performed for the dissociation of carbon
monoxide, only now data is found through the "*H2" schema. Therefore metals
of these two groups must have an operating pressure of at least 50 atmospheres
if the dissociation of hydrogen is desired.

For the reduction of adsorbed oxygen, the "HYDROGENATION DATA"
slot of the "*O" schema is searched instead. It reflects the fact that groups IVA
through VIIA of the periodic table form stable oxides. They are difficult to
reduce (i.e. react with hydrogen) at the Fischer-Tropsch temperatures of



3. The DECADE Catalyst Selection System 81

operation. The metals of these groups are assigned a constraint of a temperature
of operation greater than or equal to 800 K when water is produced. This
constraint 1s generated for all reactions except the synthesis of methanol, where
no water is produced as a side product.

IV. The materials that have been initially proposed are criticized using overall
constraints. These constraints are independent of the selected materials and of
the characteristics of the reaction that is being used. As of now only the global
constraints to restrict temperatures to lie between 300 K to 700 K. are used.
Low temperatures result in too low a reaction rate; high ones cause surface
graphitization (Somorjai [39]). The program can handle any number of overall
constraints though, and therefore the user may add new overall constraints or
modify the existing ones.

In order to start ruling out materials, a set of rules is used to compare these

overall constraints with the individual constraints of every group or material that
have been proposed. Since more than one working memory element may have
been created for each material (each one reflecting a link between a surface step
and a recommendation for that particular catalyst), it is necessary to propagate
the violation found in one material through the rest of working memory.
V. After the process of preliminary elimination of the proposed materials, a
new set of constraints is created. They are created using the set of needs for the
reaction and a group of heuristic relations. They are therefore dependent on the
characteristics of the problem reaction.

The best way to understand this generation of constraints is by following a
specific example. Let’s assume that the production of pentane is being pursued.
The following need would be present in working memory:

need Areaction mk-pentane *key *CO-dissociation Aqualifier total ....).
p y q

There is an inverse relation between the pressure of operation and the
dissociation of carbon monoxide expressed in the relation depicted in Figure 12.
[t is easy to see that since the *action of the relation in Figure 12 is the same as
the need for the mk-pentane reaction, something can be said about the
Acondition of the relation (in this case the pressure of operation). A need of
“total” *CO dissociation can be achieved only at a "low’ pressure of operation; a
new constraint has been introduced to the system. The introduced constraints
are identical to overall constraints except for their name; they have the same set
of attributes, but, when created, they keep a symbolic constraint (e.g. low)
instead of a numeric one. The values for the Areference and *explanation
attributes are taken from the relation that originated them.

The rules that generate the constraints deal with generic descriptions of needs
and relations, so the number and content of the needs and relations mentioned
are open to modification, expansion and removal by the user.

For the same variable more than one constraint can be generated, so it is
necessary to have a mechanism for the unification of these constraints. When
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(relation Acondition pressure
Aaction *CO_dissociation
Atype inverse
Aclass causal
Aexplanation
[high pressure factors molecular adsorption of CO)|
Areference |[Pearce & Patterson 81]| |[Huang et al 85]|

)

Figure 12: Relation between pressure and *CO dissociation.

two constraints on the same variable are identical (i.e. have the same symbolic
qualifier), one of them is deleted. When two constraints on the same variable
have a different symbolic qualifier, one constraint with a compromise qualifier
is created (e.g. if one prescribes a high CO:H, ratio and the second constraint a
medium one, the new constraint will prescribe a medium-high ratio). This is
perhaps the weakest point of the selection process because the implication of
this action is that the reasons supporting both constraints are equivalent. The
proper procedure is not clear, since an appropriate decision should be made on a
case by case basis. In both cases the references of both of the unified constraints
are recorded with the surviving constraint.
V1. The symbolic constraints are translated to a numerical equivalent. For this
purpose there are three working memory elements containing the equivalence.
The numbers have been selected so as to reflect the levels found in the literature,
but they are subject to easy change by the user.

The overall constraints are transformed into normal constraints in order to
join redundant constraints. One example of a redundant constraint would be
when the following two elements are present:

(constraint  *constrained temperature
Accompare greater-than-or-equal  Aconstraint 500.0

)
(constraint  Aconstrained temperature
Accompare greater-than-or-equal  *constraint 600.0

)

Clearly, the second constraint is redundant. After the constraints are joined, step
IV is repeated, augmenting the number of materials which are rejected.

VII. The selection process is considered finished. A list of constraints that
apply to all the systems, and the list of materials and groups that were not
rejected, are printed for the information of the user. At this point DECADE can
explain its choices at the user’s request.
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5.2.7 Explanation
No explanation is necessary in the case of the first and second level of
abstraction. The selection is made as a search process in the knowledge base (in
the first case simple, in the second somewhat more complicated). Each material
found has a pointer to the literature.
For the third level, explanation is given for several objects:
1. Materials (whether selected or not) are explained based on the
need of the presence of a surface step and the constraints that were
passed/violated.

2. Constraints are explained in terms of the needs and relations that
generated them.

3. Needs are explained using the specific characteristics of the
reaction being catalyzed.

4. Relations are listed with an attached explanatory text. Also,
literature references are included.
The explanation process is interactive (see the example run in [5]). The
"selection of catalyst” knowledge source is the largest one in DECADE, its three
levels requiring 143 production rules and 59 Lisp functions.

5.3 Overview of Program
While explaining the function of each knowledge source above, we have
indicated the number of OPS5 production rules and FranzLisp functions used for
their implementation. Not all the code has been presented though. There are
assorted FranzLisp functions used in the communication of OPS5 and SRL.
Also, we did not mention the frames or schemas constituting most of the
database (they were not counted because there is no clear-cut assignment of a
given schema to a knowledge source).

As of the beginning of 1986, DECADE consisted of eight knowledge sources
implemented as:

¢ 318 OPS5 production rules. Used for the overall control, the
interaction among the parts, and the inferential steps.

¢ 328 SRL schemas (or frames). Describing the domain concepts
(their properties and relations) and contained in the Knowledge
Base.

¢ 203 FranzLisp functions. Used for the numerical calculation and as
means of communication between OPS5 and SRL.
A complete description of the modules and suggestions on their future
development can be found in [9].
Also, it is worth mentioning one of the side effects of using a hybrid
implementation. At different times in the execution of the program, different
pieces of information about a reaction are required. In general it would be
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desirable to have all the information inside OPS5 working memory since it is
there that the pattern matching mechanism of the production rules operates.
However, only a minimum amount of information is kept in OPS5 working
memory in order to avoid its saturation and the consequent reduced speed of
operation. The SRL knowledge base contains all the information that has been
established about an object. It presents practically no problem in relation to the
size of information that can be stored, and it also provides the user with more
representational power.

An information flow is established in both directions: information is acquired
through the operation of OPSS rules and recorded in working memory, and,
once such a new piece of information is acquired, it is passed to the SRL
knowledge base. When the information is no longer in use it is removed from
working memory, but a pointer is maintained indicating that the information is
known and kept in the SRL knowledge base. If that piece of information is
required again, it can be retrieved from SRL. Changes have to be updated in
both memory repositories. This exemplifies the typical trade-off between
memory space and computing time.

An example of an interactive session with DECADE is given in [5], and more
details are in [9].

6 Analysis of Results
Comparison of the results at the first and second levels of abstraction for
different types of reactions will not yield new or interesting results, since the
materials selected at those levels were found in the literature. At most, the
analysis would show discordances between experimental results and/or an
incomplete literature search.
It would be more interesting to analyze the following:
1. Results between the third and first level of abstraction for the same
reaction. Differences between these groups would indicate either:

¢ an overlooked factor at the third level that caused a faulty
prediction, or

e the possibility that the third level is right and the knowledge
at the first level is faulty (because of an incomplete literature
search, a non-reported finding, or an unknown result).

2. Results between different reactions at the third level. This
comparison can provide an idea on the sensitivity of the system
towards different cases.

First, we will analyze the results for the methanation reaction. A summary of
the results for the methanation reaction at the first and third level of abstraction
is shown in Table 4.

The prediction of temperature of operation coincides for both levels. The
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Table 4: Results for methanation at different levels of abstraction.

Level Temp.(K) Press.(atm) Prescr. Matenals
1 600-700 10-70 Ru
1 526-673 10-70 Ni/Al,O,,
Ni/kieselguhr,
Raney Ni
3 600-700 <10 Fe,Ru,Co,Rh,Ni,Pd

pressure of operation ranges do not agree. When asked about the reasons of its
selection of pressure constraint, DECADE answered:
The constraint that the pressure should not be greater-than 10.0 atm is
originated from:
(1) The NEED of having a total *CO_dissociation step (because no
oxygenates are produced), and

(2) The fact that there is a RELATION stating that at low pressure —
total *CO_dissociation (because high pressure favors molecular
adsorption of CO)  reference: {Pearce & Patterson 81 [34]}

(1) The NEED of having a none C:C_addition step (because no
formation of chain is required), and

(2) The fact that there is a RELATION stating that at low pressure —
none C:C_addition (because Le Chatelier principle applies)
reference: { Anderson & Kolbel & Ralek 84 [2]}

By allocating the pressure at the lower range of operation, DECADE was
attempting to minimize the chain growth probability and avoid the formation of
oxygenate products. Furthermore, the numerical constraint of 10 atmospheres
was more or less arbitrarily set; there are authors that would consider 25
atmospheres a low pressure.

In terms of the prediction of materials, DECADE’s result coincide with
literature results to the extent that its database permits (1.e. materials like Raney
Ni are not related to any object of the third level of abstraction). Table 5 shows
catalysts and operating conditions recommended by DECADE at the third level
for the synthesis of methane, ethane, methanol and ethanol.

These species include no chain formation (methane, methanol), chain
formation (ethane, ethanol), complete CO dissociation (methane, ethane), partial
dissociation (ethanol), and no dissociation (methanol).
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Table 5: Results for different reactions at the same level of abstraction.

Product Temp.(K) Press.(atm) Prescr. Materials
methane 600-700 <10 Fe,Ru,Co,Rh,Ni,Pd
methanol 500-600 > 100 groups IB&IIB,Rh,
Ir,Pd,Pt,Cu
ethane 500-600 ~10 Fe,Ru,Co,Rh.Ni,Pd
ethanol 500-600 ~10 Rh,Ir,Pd,Pt

Compare the reactions that yield components with the same carbon number
(i.e. methanation vs. methanol synthesis and ethane synthesis vs. ethanol
synthesis); the prescribed materials are very different as is to be expected. With
respect to the operating conditions, a large difference is proposed between the
C, reactions as DECADE recognizes the need of CO dissociation in forming
methane but not in forming methanol. The situation is less clear-cut for the C,
compounds, as the formation of ethanol involves both associative and dissociate
CO. In this case no difference in operating conditions is proposed by DECADE.

The same materials are prescribed for C; and C, hydrocarbons as DECADE
is not sensitive enough to differentiate these two products other than to suggest
different operating conditions. In the case of methanol versus ethanol, groups
IB, IIB, and Cu are not recommended in the latter case since these materials do
not readily dissociate CO.

Thus, DECADE performs satisfactorily in that its actions and explanations
are consistent with the rules in its knowledge base. Even though these rules are
limited in number and, as often is the case in the catalysis literature, their
certainty and general applicability may be debated, the fact remains that
DECADE functions well given a specific set of rules and relations. We can
expect a more sophisticated performance with the refinement and addition of
more rules to DECADE’s knowledge base.

7 Conclusions

All the features described in this paper have been implemented and tested.
Nevertheless, DECADE is a prototype system in the sense that its breadth of
application is reduced. The usefulness of a knowledge based system is
proportional to the amount of knowledge contained in the system, and the most
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important lack in DECADE is knowledge. For example, DECADE does not
know anything about secondary components and reactions other than syngas.
Although this lack of knowledge is due in part to the time constraints of the
project, a very real limitation is that, in catalysis, there are not many generalized
formalisms which can be readily coded. Very often the issue has been to find
the proper compromise between the amount of knowledge and its reliability for
prediction purposes (and not only for explanation).

A more concrete set of requirements can be formulated for the computational
part of DECADE:

¢ Give the user the capability to inspect and modify most of the
internal structures of the program.

A very conscious effort was made to separate and leave exposed the variables
inside the system that in one way or another control the results. To a very large
degree this was achieved, but only knowledgeable users can make
modifications. Adding an interface to these variables would make their change
accessible for any user.

¢ Create competing knowledge sources.
Currently only one knowledge source is present for each of the possible tasks
that DECADE can tackle (the three levels of abstraction in the selection of
catalyst knowledge source can be more properly seen as complementary
modules rather than competing ones). The reason for this situation is that, at the
state of implementation of DECADE, the bottleneck is knowledge acquisition.
Only the knowledge sources themselves need to be added. The conflict
resolution mechanism is already in place, and has been tested with dummy
knowledge sources. If anything, this conflict resolution mechanism could be
refined.

e Increase the participation of the blackboard architecture in the
structuring of the knowledge.
As already mentioned, DECADE’s blackboard architecture is primarily used for
communication purposes (as opposed to using it for structuring the context in
several levels of abstraction). A tighter integration of the knowledge sources
through the blackboard should make DECADE’s behavior more interesting.
Given the diverse nature of engineering knowledge and the large numbers of

programs already coded, a necessary characteristic of a knowledge-based system
applied to engineering is flexibility. In terms of flexibility, the following
properties are desirable characteristics of a knowledge-based system:

1. Hybridity

2. Modularity
3. Separation of knowledge from metaknowledge

4. Several levels of abstraction. This characteristic is implementable
in two possible fashions:
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a. duplication of knowledge sources for the same task,

b. knowledge sources with several levels.
All of the above properties were achieved in DECADE to a large extent.

There have been previous efforts towards formalizing the selection of
catalysts, at least for certain reaction systems (e.g. Trimm [41], Kher [27]).
However, a representation that can be automated with a computer is lacking.
DECADE is a software system capable of representation of diverse problem-
solving strategies, and also of the diverse knowledge present in this and other
representative areas of chemical engineering. Within the narrow domain of
Fischer-Tropsch synthesis and its limited knowledge base, DECADE is capable
of recommending materials that can lead to a specific product, suggesting
operating conditions in terms of temperature and pressure, and explaining its
actions.

References

1. Agnihotri, R. B. Computer-Aided Investigation of Reaction Path Synthesis.
Ph.D. Th., Chemical Engineering Department, University of Houston, August
1978.

2. Anderson, R. B., Kolbel, H. and Ralek, M. The Fischer-Tropsch Synthesis.
Academic Press, Inc., New York, 1984.

3. Araki, M. and Ponec, V. "Methanation of Carbon Monoxide on Nickel and
Nickel-Copper Alloys." Journal of Catalysis 44, 3 (September 1976), 439-448.

4. Banares-Alcdntara, R. "Development of a Consultant for Physical Property
Predictions.” Masters Th., Chemical Engineering Department. Carnegie-
Mellon University, May 1982,

5. Banares-Alcantara, R., Ko, E. 1., Westerberg, A. W, and Rychener, M. D.
"DECADE: A Hybrid Expert System for Catalyst Selection. Part II: Final
Architecture and Results." Computers & Chemical Engineering Forthcoming
(1988).

6. Bafiares-Alcantara, R., Sriram, D., Venkatasubramanian, V., Westerberg,
A. and Rychener, M. "Knowledge-Based Expert Systems for CAD ." Chemical
Engineering Progress 81, 9 (September 1985), 25-30.

7. Bahares-Alcantara, R., Westerberg, A. W., Ko, E. 1., and Rychener, M. D.
"DECADE: A Hybrid Expert System for Catalyst Selection. Part I: Expert
System Considerations." Computers & Chemical Engineering 11,3 (1987),
265-277.

8. Bafiares-Alcdntara, R., Westerberg, A. W. and Rychener, M. D.
"Development of an Expert System for Physical Property Predictions.”
Computers & Chemical Engineering 9, 2 (1985), 127-142.



3. The DECADE Catalyst Selection System 89

9. Bafares-Alcantara, R. DECADE: A Hybrid Knowledge-Based System for
Catalyst Selection. Ph.D. Th., Chemical Engineering Department, Carnegie-
Mellon University, January 1986.

10. Bell, T. A. "Catalytic Synthesis of Hydrocarbons over Group VIII Metals.
A Discussion of the Reaction Mechanism." Catal. Rev. - Sci. Eng. 23,1 & 2
(1981), 203-232.

11. Brownston, L., Farrel, R., Kant, E. and Martin, N. Programming Expert
Systems in OPS5. An Introduction to Rule-Based Programming. Addison-
Wesley Publishing Company, Inc., Reading, Mass., 1985.

12. Bushnell, M. L. and Director, S. W. "ULYSSES: An Expert-System Based
VLSI Environment." Department of Electrical and Computer Engineering,
Carnegie-Mellon University, Pittsburgh, PA 15213, 1985.

13. Chandrasekaran, B. and Mittal, C. "Deep versus compiled knowledge
approaches to diagnostic problem-solving." International Journal of Man-
Machine Studies 19 (1983), 425-436.

14. Cohen, P. R. and Feigenbaum, E. A. "Chapter XV: Planning and Problem
Solving." In The Handbook of Artificial Intelligence, W. Kaufmann, Inc., Los
Altos, CA, 1983, pp. 515-522.

15. Dry, M. E. "The Fischer-Tropsch Synthesis." In CATALYSIS. Science and
Technology, Anderson, J. R. and Boudart, M., (Eds.), Springer-Verlag, New
York, 1981, ch. 4, pp. 160-255.

16. Farinacci, M. L., Fox, M. S., Huithage, I. and Rychener, M. D. "The
Development of ALADIN, an Expert System for Aluminum Alloy Design."
Robotics 2 (1986), 329-337.

17. Fikes, R. and Kehler, T. "The Role of Frame-Based Representation in
Reasoning." Communications of the ACM 28, 9 (September 1985), 904-920.

18. Flory, P. ). Principles of Polymer Chemistry. Cornell University Press,
Ithaca, New York, 1953.

19. Forgy, C. L. OPS5 User's Manual. Department of Computer Science,
Carnegie-Mellon University. Pittsburgh, PA 15213, 1981. CMU-CS-81-135.

20. Haggin, J. "Fischer-Tropsch: New Life for Old Technology.” Chemical &
Engineering News 59 (October 26 1981), 20-32.

21. Happel, J. and Sellers, P. H. "Analysis of the Possible Mechanisms for a
catalystic reaction system.” In Advances in Catalysis,
Academic Press Inc., 1983.

22. Hayes-Roth, F. "Rule-Based Systems." Communications of the ACM 28,9
(September 1985), 921-932.



90 Bafiares, Westerberg, Ko, Rychener

23. Hayes-Roth, F. and Lesser, V. R. "Focus of Attention in the Hearsay-II
Speech Understanding System." Proceedings of the Fifth International Joint
Conference on Artificial Intelligence, IJCAI, Cambridge, MA, August, 1977, pp.
27-35.

24. Hayes-Roth, F., Waterman, D. A., and Lenat, D. B., (Eds.) Teknowledge
Series in Knowledge Engineering. Volume 1:Building Expert Systems.
Addison-Wesley Publishing Company, Reading, Massachusetts USA, 1983.

25. Hayes-Roth, B. "The Blackboard Architecture: A General Framework for
Problem Solving?" Heuristic Programming Project Report No. HPP-83-30,
Computer Science Department, Stanford University, May, 1983.

26. King, D. L., Cusumano, J. A. and Garten, R. L. "A Technological
Perspective for Catalytic Processes Based on Synthesis Gas.” Catal. Rev. - Sci.
Eng. 23,1 & 2 (1981), 233-263.

27. Klier, K. "Methanol Synthesis." In Advances in Catalysis,
Academic Press, Inc., 1982, pp. 243-313.

28. Kunz, J. C., Kehler, T. P. and Williams, M. D. "Applications Development
Using a Hybrid Al Development System." Al Magazine 5, 3 (1984), 41-54.

29. Lesser, V. R. and Erman, L. D. "A Retrospective View of the Hearsay-II
Architecture.” Proceedings of the Fifth International Joint Conference on
Artificial Intelligence, IICAI, Cambridge, MA, August, 1977, pp. 790-800.

30. McDermott, J. "Domain Knowledge and the Design Process." Proceedings
of the 18th Design Automation Conference, ACM/IEEE, Nashville, TN, 1981.

31. Michie, D. "High-Road and Low-Road Programs." Al Magazine 3, 1
(1982), 21-22.

32. Motard, R. L. "Computer Technology in Process Systems Engineering."
Computers & Chemical Engineering 7,4 (1983), 483-491.

33. Nii, H. P, Feigenbaum, E. A., Anton, J. J. and Rockmore, A.J. "Signal-to-
Symbol Transformation: HASP/SIAP Case Study.” Al Magazine 3, 2 (1982),
23-35.

34. Pearce, R. and Patterson, R. W., (Eds.) Caralysis and Chemical Processes.
John Wiley and Sons, Scotland, 1981.

35. Pitzer, K. S. and Brewer, L. (revision of Lewis and Randall)
Thermodynamics. Second Edition. McGraw-Hill Book Company, Kogakusha
Company, LTD., Tokyo, Japan, 1961.

36. Reboh, R. "Knowledge Engineering Techniques and Tools in the
PROSPECTOR Environment." Technical Note 243 SRI Project 5821, 6415 and
8172, Artificial Intelligence Center. SRI International, June, 1981.


file:////Building

3. The DECADE Catalyst Selection System 91

37. Reid, R. C., Prausnitz, J. M., and Sherwood, T. K. The Properties of Gases
and Liquids. Third Edition. McGraw-Hill Book Company, New York, 1977.

38. Rofer-DePoorter, C.K. "A Comprehensive Mechanism for the Fischer-
Tropsch Synthesis." Chemical Reviews 81 (1981), 447-474.

39. Somorijai, A. Gabor. "The Catalytic Hydrogenation of Carbon Monoxide.
The Formation of C1 Hydrocarbons.” Catal. Rev. - Sci. Eng. 23,1 & 2 (1981),
189-202.

40. Spencer, D. N. and Somorjai, A. G. "Catalysis." Reports on Progress in
Physics 46 (1983), 1-49.

41. Trimm, L. D. Chemical Engineering Monographs. Volume 11:Design of
Industrial Catalysts. Elsevier Scientific Publishing Company, Amsterdam, The
Netherlands, 1980.

42. Umeda, T. "Computer Aided Process Synthesis." Computers & Chemical
Engineering 7, 4 (1983), 279-309.

43. Wright, J. M. and Fox, M. S. SRL 1.5 User Manual. Intelligent Systems
Laboratory. The Robotics Institute., Carnegie-Mellon University. Pittsburgh,
PA 15213, 1983.



4 Rule-Based Systems in

Computer-Aided
Architectural Design

ULRICH FLEMMING

Abstract

Perhaps the most important obstacle preventing more substantive applications of
computers in architectural design (as opposed to attempts aimed solely at raising
productivity) is the lack of a theoretical basis for the field. In this connection,
rule-based systems are interesting for two main reasons:

1. They can lead to formally rigorous specifications of design
operations from which general properties of the process or its
product can be deduced (e.g. the well-formedness of the generated
objects or the exhaustiveness of the search);

2. They provide a natural and effective means to encode and make
operational the "special case reasoning characteristic of highly
experienced professionals”. In fact, they prove excellent vehicles
to discover this knowledge: rule-based systems typically evolve
through iterations in which experts observe the system while
solving realistic problems, criticize its performance, inspect the
rules that have been used and suggest additions or modifications.
These changes can be carried out with ease owing to the inherent
modularity of rule-based systems.

The paper demonstrates the significance of these points through two recent
projects dealing with the design of objects in two and three dimensions. It also
argues that rule-based systems might even provide a useful medium for the core
of architectural design, which does not consist of problem solving.

1 Introduction

During the design of a building, architects typically produce sequences of
sketches each of which elaborates or changes an idea or aspect captured in a
preceding sketch. This process is by no means linear. Some sequence might
lead to a dead end, and the ideas pursued are subsequently abandoned; other
Expert Systems for Engincering Design Copyright © 1988 by Academic Press, Inc.
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sequences might reflect competing ideas or alternative approaches from among
which a selection has to be made at some point. What is important here is the
fact that each step in the sequence modifies in some way the state of the design
reached in the previous step. Furthermore, the modifications themselves are by
and large incremental, and a final design is reached only after a great number of
modifications has been accumulated.

Cognitive scientists use the term computation in a very general sense to refer
to a series of operations performed on a symbolic representation of the types of
objects under consideration. Based on this definition, the design process
outlined above indeed constitutes a computation: the sketches produced
represent the evolving design, and the operations generate the transition from
one sketch to the next sketch, or the transformation of one design state into the
next state. I believe that this observation has profound implications if one tries
to assess the potential of computers for aiding or augmenting design, not only in
architecture, but also in other disciplines. For it means that design can not only
be conceived of as computation, but also (in principle at least) be realized as
computation, namely through computer programs whose purpose is precisely to
perform operations on symbolic representations.

One must realize, however, that the operations performed by designers are
ill-understood, at least at the level of precision and explicitness needed if they
are to be expressed through a computer program. Except for well-understood,
special cases, no theories exist that would lead easily to programs able to
perform interesting design tasks. In this connection, rule-based systems are
interesting for three main reasons: (i) They are, first of all, able to model the
process of incremental design as outlined above in a natural and intuitively
appealing way for tasks that are well-understood. (ii) For tasks that are less well
understood, they can serve as an effective vehicle to deepen our understanding
and thus can lead to the discovery of regularities, to generalizations, and to the
formation of theories where these do not exist at the outset. (iii) Conversely,
they offer opportunities for formalization and for the construction of deductive
theories in contexts that are well-understood.

In the following sections,! I shall try to support these claims through non-
trivial examples taken from my own work. As a preparation for readers not
familiar with rule-based systems, I shall provide in the balance of the present
section a brief introduction to key concepts and terms.

The term rule will be used throughout not to denote some form of restriction
(as in "rules and regulations”), but in the sense in which it is used in rule-based
programming and Artificial Intelligence, where it denotes a condition/action

!This is an extended version of a paper published in the Proceedings of the First International
Symposium on Computer-Aided Design in Architecture and Civil Engineering, Barcelona (Spain):
Institut de Tecnologia de la Construccidde Catalunya (1987) pp. 69-71
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pair or an IF/THEN statement. The condition or IF-part specifies a condition or
context in which a certain operation can be performed, and the second or THEN-
part specifies the operation itself (or its result). The following rule, for example,
expresses an operation frequently used in the development of a floor plan:

IF a plan contains a rectangle

THEN divide this rectangle into two rectangles by placing a line
segment through its interior parallel to one side.

A particularly important form for expressing a rule is that of a recursive
re-write rule. It consists of a left-hand side (LHS), which represents the
condition part, and a right-hand side (RHS), which represents the action part.
An arrow is customarily used to separate the two sides from each other and to
write the entire rule in the form

LHS — RHS.

The objects or states on which such rules work must be represented in a
unified and well-defined form, and both the LHS and RHS have this form (with
the possible inclusion of variables). By definition, a re-write rule can be applied
to a current state, s, if its LHS is part of that state (where the "part” relation is
defined based on the representation used). An application of the rule substitutes
its RHS for its LHS in 5. For example, if collections of line segments are used
to represent polygons such as rectangles, the rule given above in words can be
specified as a re-write rule as shown in Figure 1(a). This rule can be used to
successively subdivide a rectangle into smaller rectangles as shown in Figure
1(b).

(a)

®)

— > >

Figure 1: (a) A recursive re-write rule; (b) Successive applications of the rule.
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The core of a rule-based system consists of a collection of rules. In addition,
the system must contain an initial state or starting configuration which is part of
the LHS of at least one rule; that is, the action specified by the rule can be
performed on this state. In architectural design applications, the initial state
usually depicts the context for a design problem, for example, a site and the
structures surrounding it, or the boundaries of a room in which equipment or
furniture has to be laid out; sometimes, it represents not much more than the
empty page. Modifications made to this state through successive rule
applications describe the evolving design. The place where the initial state and
modifications made to it are stored is often called working memory.

Finally, the system must contain a control strategy which, for any current
state, (a) finds all rules that can be applied (because the current state satisfies the
conditions specified in their LHS); (b) selects from among these a rule for
application; and (c) executes the operation specified by the selected rule and
thus generates a new current state.

A system that consists of a collection of rules, a working memory and a
control strategy is called a production system.

2 Example: Constructive Analysis of Designs

2.1 Background

A collection of recursive re-write rules is called a grammar. Grammars have
been defined using a broad range of representations (see [7] for an introduction
and overview). Among these, shape grammars are of particular interest for
architectural design [11]. They work on shapes, which are geometric objects
defined in 2 or 3 dimensions by collections of line segments, with the addition
of labelled points that can be used to mark parts of a shape.

Shape grammars have been used extensively for the "constructive analysis”
of collections of artefacts that are similar to each other because they share
important properties or because they are based on common conventions. In a
constructive analysis, these properties are extracted and encapsulated in rules
that can be used to generate objects with precisely these properties. But shape
grammars can also be used to develop and test a collection of rules able to give
coherence and character to a new design (or, if one uses a term that is currently
fashionable among architects, to develop an "architectural language” for a
project).

In each case, the collection of rules is tested by inspection of the objects
generated through their application. In the present section, I intend to
demonstrate the advantages of this approach through results taken from a
recently completed project.

The project concentrated on the housing stock in Pittsburgh’s historic
Shadyside district. It posed the question how new construction can be fitted into
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the fabric of the district so that its visual coherence and identity are not
destroyed, but strengthened and, possibly, re-established (a full account can be
found in [6]). The study thus fell naturally into two parts: (1) a characterization
of the historical patterns and types found in the district; and (2) the development
of new patterns able to achieve the stated objectives. We used shape grammars
in each part of the study.?

2.2 Plan Characteristics
The housing stock that gives Shadyside its character was built between 1860 and
1910. It contains examples of all the major styles dominating residential
construction during that period in the United States; among these, Queen Anne
and Colonial Revival houses are particularly well represented. In analyzing
these houses, we found that aspects of plan organization could be separated
from those of exterior articulation or style, and we consequently derived
separate grammars to express the conventions underlying each of these aspects.
All plans in our sample are "peripherally additive” ( [10], page 14). The main
organizer is the hall which gives access to all other public spaces and thus forms
the hub of the plan. The rooms surrounding the hall form a relatively compact
core; that is, they fill more or less tightly a rectangular area (except for the back,
which can be more irregular). We tried to capture these principles through the
rules of a shape grammar able to generate plans that obey those and only those
principles.

Initial shape Sample rule B X
R
B B B X -
r I l A
H H
H
F F X=F or X=B

Figure 2: Initial shape and a selected rule from our layout grammar.

The initial shape consists of an entrance hall, given by a rectangle whose
center point is labelled H, and of labels F and B that mark the front and back of
the plan (independent of compass orientation; see Figure 2). A sample rule is

21 am using the first person plural in the following when describing work done by the entire
project team, which included, apart from the present author, R. Coyne, R. Gindroz and
S. Pithavadian.
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shown in the same figure. It creates a compact core with the hall as its hub by
adding a room from the side or back. This rule applies only to shapes in which
the hall reaches the back or side (otherwise the newly added space could not be
adjacent to the hall). The hall and all other spaces that have been allocated
previously remain unchanged. This rule can be applied to the initial shape to
place a first room against the back or side of the hall, and it can be used again to
add further rooms. The derivation of cores that are possible using this rule alone
is shown in Figure 3. It is important to note that rules can be used in reflected or
rotated versions, which increases their power. The present rule could be used to
generate mirror images of the plans shown in Figure 3 or, if the initial shape
were rotated, rotations of these plans.

Further rules are needed to generate all types of cores found in our sample, to
add a kitchen and to select a dining room from among the rooms allocated
around the hall. Examples of plan types produced by application of these rules
are shown in Figure 4. Additional rules place a staircase next to the hall. All of
these rules are described in detail in [3].

2.3 Swylistic Articulation

The plans shown in Figure 4 are detailed enough for articulation in three
dimensions according to the conventions of a particular style. The first rule used
for this purpose is rule (a) shown in Figure 5. It takes a room, extrudes it
vertically and adds a second room with the same horizontal dimensions on top
of it. If applied sequentially to all rectangles in a plan, this rule generates a
configuration of spaces on two floors, where the layout of the second floor
mirros that of the first floor, an important characteristic of the houses under
consideration (see the example shown in Figure 6).

Such configurations are ready to be developed and articulated according to
particular styles. We concentrated on Queen Anne houses, which dominated
construction in Shadyside during the 1880°s and early 1890’s, because they are
geometrically the most complex. A basic rule used in the derivation of a Queen
Anne house is rule (b), which selects a corner room at the front or back and pulls
it out, thus creating a break in the facade. This rule, in combination with rules
that generate similar effects at the sides, creates the irregular contours and
"picturesque” silhouettes characteristic for the style (see the examples shown in
Figure 7). We added rules to generate complicated roof geometries on top of the
second floor and to introduce various volumetric additions and refinements,
notably wrap-around porches in various forms (Figure 8). Further rules could be
added to elaborate individual elements and to apply decorative details to an
arbitrary level of resolution.

While developing our grammars in both parts of the study, we were forced to
look at examples with a degree of closeness that is hardly needed if the analysis
proceeds in the traditional, intuitive way. In order to be able to generate realistic
layouts and to develop a house in three dimensions, we had to study our
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Figure 6: Stepwise extrusion of a plan.
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precedents in all aspects. We were forced, in particular, to deal with aspects of
plan organization, massing and articulation that are usually neglected in style
descriptions, or are treated in less precise terms. As a result, we were able to
demonstrate how the various parts and features of a house relate to each other
and to explain its overall geometry.

During this work, the grammars underwent numerous revisions. Initial
versions did not always produce the desired effects or were less efficient or
elegant than we wished them to be. It is through these revisions that we
developed a deeper understanding of the issues involved, a process that is
greatly helped by the modular structure of a grammar, whose rules can be added,
deleted or modified individually. The revisions themselves were suggested by
applying the rules of a current version in the design of houses and by inspecting
the results, that is, by a process that has come to be known as knowledge
acquisition in current work on expert systems.

Shape grammars are able to facilitate this process through their flexibility,
modularity and constructive nature: each shape rule captures a particular
convention and shows how it can be geometrically realized. Since shape rules
are well-defined, they can be implemented as computer programs, which are
essential if the process of knowledge acquisition is to proceed effectively and
efficiently. In the present case, we used an implementation in Prolog (details are
given in [6]).

Through their constructive nature, the grammars developed in part 1 of the
study also provided a solid basis for the derivation of new types that satisfied
our goals. The main emphasis of part | carried over into part 2, where we again
concentrated on issues of scale, massing and overall geometry and were thus
able to avoid a mere copying of isolated decorative features, which is
characteristic of many developments with similar goals.

3 Example: Generation and Evaluation of
Design Alternatives

3.1 Background
When dealing with the automated generation of solutions to design problems, I
find it useful to distinguish between design and performance variables. The
former denote the geometric and physical properties of a solution that designers
determine directly through their decisions, for example, the position of a wall,
the material of a floor, or the shape of a window. The latter denote those
properties that are derived from combinations of design variables, for example,
the view from a room, the heat loss through a wall, the comfort provided at a
work place, or the image conveyed by a building as a whole.

In general, the relations between design and performance variables are
complex: a single design variable is likely to influence several performance
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variables, and conversely, a single performance variable normally depends on
several design variables (see Figure 9 for an illustration). As a consequence,
neither design nor performance variables should be considered in isolation.
Whenever a design is evaluated, it should be reasonably complete (relative to
the particular level of abstraction at which it is conceived), and it should be
evaluated over the entire spectrum of performance variables that are relevant for
that level. It is for this reason that design, whether done intuitively or by
computer, tends to separate the generation of a design from its subsequent
evaluation (as opposed to optimization, where the two processes are more
intimately linked).

Desiqn variables Performance variables

Window dimensions

Window placement Heat loss

Window construction
Daylight coefficient
Wall finishes
View
Wall construction

Wall dimensions Appearance from outside

Cetling fintish

Figure 9: Complex relations between design and performance variables.

This distinction assumes further importance because design takes place under
resource limitations. Any allocation of resources favors certain performance
vaniables over others. Of particular interest are the trade-offs inherent in a
particular allocation (represented by a particular combination of design
variables) and a companison of the trade-offs connected with alternative
solutions (see [9] for a demonstration of these effects). My work on design
automation has concentrated on programs that are able (a) to systematically
enumerate alternative solutions with promising trade-offs and (b) to take, at the
same time, a broad and diverse spectrum of performance variables into account.
The underlying assumption is that the human cognitive apparatus is not
particularly well-suited to perform either of these tasks and that computers
might be of particular importance in this context.

Based on the distinction introduced above, we are currently working on a
prototype system with two central components: a generator able to find
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alternatives in a systematic fashion and a tester able to evaluate these solutions.?
We have concentrated on the generation of floor plan alternatives for several
reasons: through work that has been going on for more than twenty years,
layout design or space planning is better understood that other aspects of
building design; it permeates building design at most of its stages and thus
provides a rich context for the investigation of problem domains with various
degrees of complexity; and it may establish connections with other disciplines
that also deal with layout design. We are currently implementing a second
version that takes the experience gained from work with version 1 into account
(see [5] for a description).

3.2 Representation

The systematic enumeration of solutions that are made up of geometric objects
becomes complicated by the fact that certain design variables (such as the
position or dimensions of an object) can vary continuously (or in very small
increments). The set of solutions thus appears "messy" at the outset and cannot
be searched efficiently. In layout generation, like in other domains, this problem
can be circumvented if the objects can be represented at a level of abstraction
that suppresses the continuous variables and turns the set of solutions into a
space that can be systematically searched.

To simplify the problem, we accepted the restriction that we can deal only
with layouts composed of rectangles that are pairwise non-overlapping and are
placed in parallel to the axes of an orthogonal system of Cartesian coordinates;
we call such layouts loosely-packed arrangements of rectangles. But within this
restriction, the generator is completely general and enables us to investigate the
design of layouts in various domains, such as buildings on a site, rooms on a
floor, or furniture in a room.

Any rectangle, z, in a layout is completely described by the coordinates of its
lower left corner, (x.,y.), and by the coordinates of its upper right corner,
(X,,Y,). The spatial relations above, below, to the left and to the right can then
be defined on sets of rectangles as follows. If ¢ and z are two rectangles, then

¢ Tz (read cis above ) <=>y 2 ¥, (1)
zd ¢ (read z is below ¢) <=> ¢ Tz (2)
¢ <z (read c is to the left of z) <=> X < x, 3)
z —> c(read z is to the right of ¢) <=> ¢ ¢ z. @)

¢ and z do not overlap if at least one of relations (1)—(4) holds between them.

3My collaborators on this project are R. Coyne, T. Glavin and M. Rychener.
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Crucial properties of a loosely-packed arrangement of rectangles can be
expressed in terms of these relations; examples are adjacencies, alignments or
zoned groupings that play an important role in the design of layouts. As a
consequence, a broad spectrum of performance variables can be expressed as
functions of these relations, and layouts that are described in terms of these
relations can be evaluated accordingly. We therefore used relations (1) to (4) as
basic design variables in terms of which differences between alternative layouts
are defined and enumerated.

Figure 10: An orthogonal structure representing a
loosely-packed arrangement of rectangles.

We formaily represent the relations that hold between the rectangles in a
layout by an orthogonal structure, a directed graph whose vertices represent the
rectangles in a layout and whose (colored) arcs represent spatial relations
between pairs of rectangles. An example is shown Figure 10, which shows the
structure representing a configuration of four rectangles forming a pinwheel (we
add external vertices labelled E to represent the four sides of the "external
rectangie”). The conditions of well-formedness or syntactical correctness are
known for orthogonal structures; (these are the conditions that assure that the
relations depicted by such a graph can be simultaneously realized in a layout of
rectangles that are pair-wise non-overlapping (see [2] for details).
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3.3 Generator

Based on these conditions, we formulated rules that allow us to construct well-
formed structures from well-formed structures. To set up the system, we used
simple domains such as the design of bathrooms and residential kitchens. For
these domains, the single generation rule specified in Figure 11 proved
sufficient. The rule is again a recursive re-write rule that can be applied to an
orthogonal structure containing the LHS of the rule as a sub-graph; the
application again consists in substituting the RHS for the LHS in the structure.
Intuitively, one can view the rule as ’pushing’ rectangles v,...,v, ’to the
side’, thus creating space for the insertion of a new rectangle, n. The rule can
thus be used to build up layouts from a starting configuration by successive
insertions of rectangles. In Figure 11, the rule is specified in a particular
orientation, But it should be noted that it can be applied also in rotated versions.

The following theorems can be proved ( [4], page 33-35):

Q)] The graph resulting from an application of the rule to a
well-formed orthogonal structure, G’, is a well-formed
orthogonal structure.

2) An application of the rule leaves the spatial relations
between the vertices in G unchanged.

Theorem (1) is important because it guarantees certain formal properties for
every object, which facilitates testing. Theorem (2) is important because it
implies that performance criteria (which are expressed as functions of spatial
relations) that are not satisfied by a certain layout cannot be satisfied by layouts
generated from that layout. The theorem consequently allows us to prune the
search tree based on the results obtained from the tester, which evaluates each
layout immediately after it has been generated and directs the generator in its
search for promising alternatives.

The rule shown, together with a suitably selected starting structure, forms a
mini-grammar suitable for generating simple layouts. I went to some length in
describing the rule and the representation on which it based in order to support
point (iii) made in the introduction, which is frequently neglected when rule-
based systems are discussed. These systems are not only effective vehicles for
the incremental construction of theories through knowledge acquisition, they can
also serve to form such theories a priori: mathematical induction works for
recursive re-write rules making, e.g., proofs of theorems (1) and (2) easy.

3.4 Tester

The generator is defined in purely "syntactic” terms and domain-independent.
Domain-specific knowledge enters the generation process via the tester, which
has to be built individually for each domain. It should be able to deal with the
entire spectrum of concerns that determine the quality of a layout in a particular
domain, from explicitly documented requirements, such as dimensional
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Figure 11: Generation rule (top); geometric interpretation (bottom).

constraints and building codes, to those based on the experience and convictions
of a particular designer, who might not even be aware of them when using them.
But designers are often able to articulate these requirements when they are
confronted with a solution that obviously violates them. Knowledge acquisition
aims at triggering precisely this mechanism, and I would like to use the present
tester for a demonstration.
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For our simple domains, we started with a tester able to evaluate dimensional
fits, not only with respect to the physical dimensions of the objects allocated, but
also with respect to the clearance areas needed for their use. For this purpose,
each rectangle in a structure is identified as an instance of a particular class
(sink, refrigerator etc.), and based on the spatial relations in the structure and the
dimensions of the objects in the initial context, the tester determines upper and
lower bounds for the corner coordinates of each newly allocated object (which
might involve updates for the objects that were allocated previously). Based on
this information, rules for the evaluation of various criteria can be formulated.
The following rule checks, for example, if an object has minimum clearance (the
rule is given in a simplified version):

IF x is an object that needs clearance, and for each of the
spatial relations (1) to (4), there exists an object which
overlaps the minimum clearance area of x in the direction of
the relation,

THEN record a constraint violation for the layout under evaluation.

By using rules like this, the tester derives a performance record for each
layout. That is, the tester builds a second description in terms of performance
variables in parallel to the description that is produced by the generator and
based on design variables. Only those structures that represent layouts with the
best record are further developed until all objects have been allocated.

A handful of rules was needed to generate the most simple layouts in our
domain; an example is given by layout | in Figure 12. But these rules registered
constraint violations for layout 2, which is perfectly feasible. The reason was
that clearance areas were assumed to have the same width as the object to which
they belong, a restriction that does not hold for bathtubs and similar objects. We
subsequently modified the test rules to make the proper distinctions. This
improved version passed correctly layout 2 as well as similar layouts, for
example, layout 3. But it also passed layout 4, because all objects have minimal
clearance. But in this solution, not all objects are accessible from the door,
which suggests that our collection of clearance rules should be subsumed under
a more general criterion of accessibility or spatial continuity. Figure 13 shows
two alternative solutions found by the improved system (among other
alternatives) for the remodelling of a residential kitchen.

These examples are intended to illustrate how knowledge acquisition takes
place during the development of a rule-based system. They are also intended to
suggest that in architectural design, like in other disciplines, rules provide a
natural and efficient device to capture and make operational the "effective
special-case reasoning characteristic of highly experienced professionals” [8].

The two case studies described here appear quite diverse in terms of the
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Figure 13: Two alternatives for remodelling a residential kitchen.

issues addressed; they were meant to demonstrate the breadth of concerns that
can be handled by rule-based systems. In each case, a particular representation
was used to describe the objects under consideration. An important criterion for
selecting a particular representation, aside from its ability to capture all of the
needed properties, is the degree to which it supports the writing and efficient
execution of rules. The two cases presented here illustrate the two classes of
representations that are particularly important for the design disciplines: (i)
coordinate-based representations (such as shapes) that are the natural choice for
the representation of objects with precise shapes and locations; and (ii) more
abstract structures that are convenient precisely when exact coordinates are not
needed, not wanted or actually not known.
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4 The Making of an Architectural ’Puzzle’
Rule-based systems stimulate experimentation. The ease with which they can be
modified and expanded makes them ideal tools for the exploration of poorly
understood problems. They can thus lead to the formation of theories where
none existed at the outset. Conversely, they can also form the basis for a priori
theories in well-understood contexts. The examples described in the previous
sections were meant to demonstrate these points.
But it might appear that the applications shown do not reaily touch the core
of architectural design. Architects are not always solving problems, and they
clearly do more than copy historical precedents. Archea has called "what
architects do when no one is looking" puzzle making:
"Instead of specifying what they are trying to accomplish prior to their attempts
to accomplish it as problem solvers do, architects treat design as a search for
the most appropriate effects that can be attained in a unique context. They seek
sets of combinatorial rules that will result in an internally consistent fit between
a kit of parts and the effects that are achieved when those parts are assembled
in a certain way" [1].

I like to call this activity the “"game of solitaire architects play with themselves".

In making the puzzle, architects typically produce sequences of sketches as
described in the introduction. The "rules” mentioned in the quote and their
combinations are explored in this process until an acceptable fit has been found.
It is important to note in this connection that the transformations from sketch to
sketch can again be modeled with the help of rules in the sense in which I have
been using the term, specifically as recursive re-write rules that delete and add
features in close parallel to the way in which a designer erases (or leaves out)
parts of a sketch and substitutes other features for them.

These observations suggest to me that rule-based systems might be able to
function as an alternative to pencil and paper in the making of an architectural
puzzle. Rules are a natural device to express the "rules of the game" played by
architects, and rule-based systems, through their flexibility and modularity, offer
a potentially very exciting medium for the explorations that characterize the core
of architectural design. We gained a glimpse of these possibilities in the second
part of the study described in Section 2, where we explored different rules for
the design of new patterns that were developed from, but by no means identical
with, the rules underlying historical precedents.

In order to realize this possibility, one would have to create a system that

e enables designers to specify contexts and rules in an easy way,
using graphical means as much as possible

e is able to show to designers the various ways in which rules can be
applied

¢ makes it easy for designers to modify rules and to edit the evolving
design.
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At the present time, the design and implementation of such a system is an open
and, as I believe, very interesting research problem.

5 Conclusions

The general appeal of rule-based systems for architectural design ultimately
stems from the fact that design can indeed be viewed as computation, if one
accepts the general meaning in which this term is used in cognitive science: as a
series of operations performed on a symbolic representation of the artefact being
designed. These systems are able to model design operations in a natural and
intuitively appealing way for tasks that are well-understood. For tasks that are
less well-understood, they can serve as an effective vehicle to deepen our
understanding and thus can lead to the discovery of regularities, to
generalizations, and to the formation of theories where these do not exist at the
outset. Conversely, they offer opportunities for formalization and for the
construction of deductive theories in contexts that are well-understood.
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5 Single Board
Computer Synthesis
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Abstract

MICON is an integrated system that designs, builds, and tests single board
computers. Central to the MICON system is a rule-based program called M/
which synthesizes logic for the computer system. M]I’s problem-solving
method is based on a five step design model which covers the selection of
various components and hardware structures to the integration of these
structures into a design that meets the designer’s specifications. Much of M1’s
design ability is attributed to the use of templates, a knowledge representation
technique for hardware structures. This chapter covers MI’s problem-solving
architecture and knowledge representation techniques.

1 Introduction

The MICON system is an integrated set of programs that design, build, and test
single board computer systems. The system objective is to accomplish these
tasks within 24 hours, providing a rapid prototyping capability. The ability to
rapidly design and build a computer system is dependent upon efficient use of
available resources and the elimination of iterations in the design process.
Efficient resource utilization can be achieved by applying proven automation
techniques where applicable and by providing an integrated environment within
which a designer and tools can interact.

Design iterations are more difficult to eliminate because they are often related
to design errors caused by a variety of sources, ranging from improper
specifications to errors in logic design. The use of automatic synthesis tools can
provide leverage in eliminating many design errors and can, thereby, accelerate
the design process.

The MICON system uses a rule-based synthesis program, called M1, to
generate the logic necessary to implement a user-specified design. M1 exploits
an effective problem-solving approach that utilizes hardware expertise about
micro-processor-based systems to develop correct designs in the first iteration.
Expert Systems for Engineering Design Copyright © 1988 by Academic Press, Inc.

All rights of reproduction in any form reserved.
ISBN 0-12-605110-0
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The MICON system delivers complete systems on a single board — no
backplane is required for interconnecting subsystems. These computers are used
for embedded applications, such as controllers. MICON generates the following
subsystems:

¢ Single Micro-processor

* Memory
¢ Input/Output (10)
¢ Testing Support Circuitry

e Miscellaneous Support Circuitry (e.g. address decoding logic,
memory refresh logic)
Limitations on size of memory or number of 10 devices are a function of the
available board space and size of the board connectors. The interconnection of
subsystemns is based on a generalized internal bus structure. Figure 1 shows a
general single board computer design and interconnection scheme.

Data Bus

Addr Bus
Read

Write
6809 PROC_1 | Data Ack
NMI

IRQ

FRQ

Bs 6809 MEM 1
BA

Init_Out
Clock
Clock 2

Hold MEM7CS[

Init_In 6809_ADDR DEC_1

Power-UP D Req
6809 DMA 1 6809_10 1 10cs

Reset C_Ack

Figure 1: Single board computer subsystems.
A standardized bus, called the MICON bus, interconnects them.

This chapter discusses the MICON system. After a system overview, we
focus on the MI synthesis program. The fundamental concepts of MI,
templates and the design model, are discussed. The initial implementation of
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these concepts in MO MICON, the MICON system prototype, are described.
Finally, the current implementation is presented from the viewpoint of the
system architecture and knowledge base.

2 MICON System Description

The MICON system integrates a variety of tools to support all main design
activities in the construction of single board computers. Figure 2 illustrates the
complete MICON system. The programs and their functions are the following:
MI. Generates logic for a design from a set of user’s specifications.

Physical Design. Takes the logic description from M1 and produces a set of
manufacturing instructions by specifying the placement of the logic components
on a board and routing the networks. Presently, the P-CAD! system is being
used for this task.

Manufacture. In-house manufacturing provides wire-wrapped boards,
produced by a semi-automatic wire-wrap machine. Printed circuit boards can be
produced by an external manufacturer directly by transmitting the information
from the physical CAD system over a telephone modem link.

Test. A custom test processor exercises the manufactured board with a set of
test programs developed during the synthesis process.

The tools are integrated into a single system via two software subsystems: a
set of translators and a common database. Translators are used to convert data
formats between different tools. In addition to syntactically translating data
between MI and the physical design tools, the translator also performs
rudimentary allocation of logic to physical packages. The database, Ingres [3],
supplies data about components and boards to the MICON tools.

A designer interacts with MICON in several ways. Through the initial
interactions, the designer supplies a set of functionally-oriented specifications to
MI1. Figure 3 presents an example set of specifications for a simple MC68092
design. During subsequent interactions with M1, the designer may be required
to resolve design decisions which arise in the synthesis process. During the
physical design process, the PCAD system requires the designer to assist in
various placement and routing tasks. Finally, the designer is involved in the
testing process by setting up the board in the test jig and monitoring the
execution of test and diagnostic programs.

'P-CAD is a trademark of Personal CAD Systems, Inc.

IMC6809 is a registered trademark of Motorola Corporation.
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file
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Figure 2; Complete MICON system diagram.
Tools supporting the range of design activities are shown.

3 Essential Concepts
The M1 synthesis tool is a knowledge-based system. The tool uses a large
amount of specialized knowledge, gathered from both designers and the
literature (for example, integrated circuit application notes and magazine
articles), to produce its designs. An essential concept in knowledge-based
systems is the technique used to represent domain knowledge. Templates are a
technique for representing micro-processor structures used by M1.

Another essential concept in knowledge-based systems is the problem-
solving method, or problem-solving architecture, used to accomplish the tasks
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Input the area of the board [sq. inch]

Processor Specification
Processor name:
Minimum Clock Speed [MHz]
Data Bus Width :
Minimum Address Space desired [Kbytes]
Power dissipated upper bound [mW]
Cost upper bound [$]
Average Instruction Execution Time upper bound [ms]

Sub-system Specification
Do you want a Memory sub-system (y/n) ?:
Do you want a IO sub-system (y/n) ?:
Do you want a DMA sub-system (y/n) ?:

Memory Specification
Do you want ROM/SRAM/DRAM memory (y/n) ?:
chip name
Amount of memory required [Kbytes]
Starting address of memory
Power dissipated upper bound [mW]
Cost upper bound [$]

Parallel IO Specification
Do you want PIO (y/n) ?:
PIO chip name
How many PIO ports do you want
Address of PIO device :

Serial IO Specification
Do you want SIO (y/n) 2:
SIO chip name
How many SIO ports do you want
Address of SIO device
Baud rate for SIO port [bps]
Do you want RS232 compatible port (y/n) ?:

Figure 3: Part of M1 input dialog, consisting of functional specifications.
Note: same memory specifications are repeated for ROM, SRAM,
and DRAM. No implementation details are given to the system.

required of the program. Single-board computer design is a complicated process
lacking a well specified algorithm. In order to develop a problem-solving
technique, a design model for the domain was developed. The design model is a
systematic framework for describing design tasks and their relationships. A
problem-solving architecture can be derived from a design model. The M1
design model is discussed more fully later in this section.
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3.1 Template-Based Design

Templates are used extensively in the M1 synthesis program. They provide a
simple and powerful mechanism for representing knowledge about structures
commonly used in the design of single board computer systems. A template is a
portion of a design which specifies how a set of components should be
interconnected to achieve a set of functions. Characteristics of templates are the
following:

o Template component. The major functional component whose
support structure is defined by the template.

e Fixed functional boundary. The functionality of external signals
required for its operation.

o Support circuitry. Components that are necessary to support the
operation of the template component.

e Hierarchy. Links allowing reference to other templates, which are
to be expanded in the calling entity (self-reference is not allowed).

e [nvocation conditions.  The application opportunity of each
template, which is well-defined and unambiguous with respect to
other templates. It is never the case that two sets of invocation
conditions are exactly the same.

An example template is shown in Figure 4. This template details how to
connect a UART to a processor bus and the external world. The template
component in this example is the MC6850°. It is surrounded by three support
components: the baud_rate_generator, the RS232_driver, and an RS-232 output
port. Designs are synthesized by selecting the appropriate templates from a
large collection of templates and then interconnecting them.

The application of templates for storing structural information about
computer system design is natural. Studies of computer architectures show that
within a given computer class designers take a given structure and make
incremental modifications to generate new designs [6, 7, 8]. This indicates that
designs may be viewed as being composed of subsystems and for any given new
set of specifications, only a relatively few number of subsystems need to be
re-designed. If a wide range of modules can be collected over a period, the entire
range of computer structures can be captured. However, this range is only
sparsely populated with actual computers. It should be possible to interpolate
between existing designs to create new ones simply by configuring systems with
different pieces.

Micro-processor families represent an excellent opportunity to exploit these
ideas. Each family comes with a set of functions corresponding to well-defined

IMC6850 is a registered trademark of Motorola Corporation.
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Figure 4: UART template, with support components. MC6850,
baud-rate generator (8116), RS232-driver (MAX232), and port.

subsystems. The interfaces between parts in a given family are well-defined,
using a standard protocol.

Representing design knowledge through templates does not reduce design to
a trivial exercise, however. Many other design variables and constraints are are
still present when interconnecting the components. One constraint not covered
completely by templates is signal timing. Critical signal paths in a design must
be checked for the proper delay margins since they generally cross subsystem
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boundaries. It is impossible to determine when a template is created if it will
meet all timing constraints with respect to other subsystems templates.

Figure 1 shows a generalized template for a computer at a high level of
abstraction, corresponding to an architectural view of the system. This view
presupposes a micro-processor based implementation. The input and output
signals are defined for the entire system, and represented in the bus structure.
However, the implementation details of each of the blocks in the schematic,
such as the PROCESSOR, are not yet known.

There is a trade-off between the amount of information represented in a
template and the range in which the information is applicable. The range of
applicability should be as wide as possible for greatest utility of the knowledge.
The range of applicability generally increases as the template size decreases, but
the number of templates necessary to design adequately increases
correspondingly.

Template size and range of applicability are a property of the design domain.
Micro-processor families have a standard bus; thus, all components in the family
share a common interconnection scheme. This allows development of templates
which are common to many components in a family. However, in application
domains where a stylized representation is not acceptable or possible, the
number of templates for good designs grows rapidly.

For example, if the interconnection structure of a micro-processor varied for
each particular chip to which it is connected, the number of templates necessary
to perform even rudimentary design would be prohibitively large. Consider a
case where all components have unique interconnection schemes. If there are n
devices within a micro-processor family O(n?) templates would be necessary to
connection these devices. If a design program were to work with m micro-
processor families the number of templates grow potentially to O(n™). In the
case where a uniform interconnection structure is used within a family, the
number of templates necessary is dependent on number the interconnection
styles used in the family, usually one for memory interconnection and one for 10
device interconnection. The number of templates required here is considerably
less than the first case. If this scheme is expanded to m micro-processor
families, the number of templates is reduced approximately to O(m).

Templates are static structures. Each time a template is invoked it has the
same effect on the design. New designs are created by unique combinations of
templates. This eliminates a degree of design freedom, since the structures
captured by templates will not change. In fact, the designs produced by pure
template-based design are enumerable a priori. In practice, a very large number
of templates is used, providing for the development of a broad range of designs.
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3.2 Template Representation in M1

Templates are organized hierarchically in M1. The highest level tempiates
allow M1 to concentrate on developing an overall system architecture, with
emphasis on ensuring correct interconnections between subsystems. As the
design progresses, M1 moves through the hierarchy to design the subsystem
interiors. A template at one level of the hierarchy may resuit in the assertion of
multiple templates at the next lower level in the hierarchy.

There are three levels of abstraction in M1:

Level 0. Represents a canonical description of the subsystems comprising a
single board computer system (see Figure 1). implementation details for any
subsystem are provided. The central feature of Level 1 is the MICON bus used
to describe the interconnection structure between subsystems.

Level 1. Provides a general representation of the single board computer system
being designed with respect to a processor family. At this level, the MICON bus
inherits characteristics of the processor chosen for the design.  The
characteristics include timing information and signal functions; however, time-
multiplexed buses are de-multiplexed wherever possible (e.g. time-multiplexed
address and data buses are separated into individual buses). An example Level 1
template is shown in Figure 5.

Level 2. Contains all implementation details for individual subsystem
components. For instance, the PROCESSOR subsystem would be implemented
as an MC6809 with all its support circuitry including such components as
resistors and capacitors.

Now consider the development of an 10 subsystem. The Level O template
specifies the gross functionality of the signals into and out of an 1O subsystem.
After a micro-processor for a given design has been selected, a Level 1 template
for the micro-processor family is chosen. The Level 1 10 subsystem template
for an MC6809 based design is shown in Figure 6. Next, a UART device is
selected and inserted into the design. A Level 2 (Figure 7) template for a UART
is selected from the template library which allows the device to be
interconnected to other subsystems in the design, in this case the processor
subsystem. Notice how the Level 2’s template boundary matches that of Level
1. This process continues over the course of the design. Each template is
transformed into a set of components until all Level 1 subsystems are actuaily
implemented as a set of components. The Level 1 design acts as a guide for the
subsystem interconnection process.

A difficult problem for synthesis tools is deciding how to connect
components. Connections are based on creating an electrical network between
all signais which have the same function. Ideaily, all components should have
the same name for common signals and their associated pins. The connection
process would then be to interconnect all pins having the same name. For
example, all DO (data bus, bit 0) pins should be connected. However, names do
not follow a standard used throughout the industry and, in some design
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6809 PROC 1
-t Data_Bus
T Addr_Bus
Init_In"' Read
Init_Outt “TWrite
BST -+ Clock
BAT ~TClock_2
Holdt ~TData Ack

—t 1
NMI IRQ FRQ

Figure 5: Level 1 MC6809 processor template. Signal names have taken
MC6809 functionality as compared with Figure 1 PROCESSOR
subsystem.

situations, special considerations may override the obvious interconnection of
similarly named signals.  These factors combine to make a simple
interconnection scheme based on name alone useless. This situation is
exacerbated when components in different micro-processor families need to be
interconnected. In this case not only are the signal names different, but the
timing schemes may be incompatible even between similarly named and
functioning signals.

The combination of a standardized bus and a set of templates consistent with
the bus overcomes this problem by providing a reference frame in which to
define interconnections. The reference frames are Level 0 and Level 1. Level O
is the same regardless of the micro-processor family chosen, so the basic
functionality of signals are defined. All M1 compatible micro-processors must
supply these signals in some form. Level 1 buses are therefore functionally
compatible. If a designer can describe how to convert from BUS A to BUS B in
the form of a template, M1 can use this template to interconnect components of
different micro-processor families in a general fashion. Figure 8 provides a
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simple example of how a Z80* and a MC686813, which have different bus and
interrupt structures, can be interconnected.

6809 10 1
-t Data Bus
—t Addr_Bus
T Read
Init Out}
<10 CS
BST T Clock
BA- —tClock_2
—tData_Ack
b

NMI IRQ FRQ

Figure 6: Level ! 10 Template defined with respect to the MC6809.

3.3 Design Model

M1’s design model is an informal one, intended to provide a methodology for
single board computer design. The model is based on the tasks a human
performs in single board computer design as illustrated in Figure 9. The tasks
are the following:
1. Specification: A designer generates a set of specifications for the
computer system. These are segregated into those that are system-
wide and those that are specific to individual subsystems.

2. Selection. Given a set of specifications, a designer chooses the
most appropriate components and templates for a design. With the

4780 is a registered trademark of the Zilog Corporation.

SMC68651 is a registered trademark of the Motorola Corporation.



124 Birmingham and Siewiorek

Data Bus

DO Dl D2 D3 D4 DS D6 D7
RS Tx CLK

Addr Bus

]

6850 Rx CLK

10_¢s cso
cst Tx DATA
cs2 Rx DATA

Read R/W
Clock E crs

pcp
RTS

1RO
00 DI D2 D3 D4 D5 D6 D7

Clock_2

IRQ
FRQ

NMI
Data_Ack |~ Ve veC
Tlin
Cle Tlouthy
BA I XTAL -L MAX232 T2in
BS c1- T20ut H——1
oo [I RlinH -’
c2+ 1
Init Out f Riout
nit_Ou o o—} XTL XTL R2inH
o RA c2- R2out H
o—1 RB FR—J V- GND
=
© RD g116
o STR
o TA RS_232_PORT
™ FT
o—Y/ T
™ ™ 1
o o— STT R M
o crs
RTS
- DCD
GND il

Figure 7: Level 2 template for MC6850, which maps into Level 1 10 template.

large variety of components available and level of specification
provided, this can be a time consuming task.

3. Intra-subsystem Design. Once the set of components is chosen the
designer will then configure them to meet the requirements. For
example, after a memory chip has been chosen, the chips are
organized into an array to provide the correct data word width and
total storage capacity as specified.

4. Inter-subsystem Design.  After an individual subsystem is
designed, it must be integrated with other subsystems. A template,
if available, is applied. If a template i1s unavailable, the designer
will have to design glue hardware.

5. Evaluation. Evaluation consists of comparing critical features in
the developing design against relevant specifications. A
convenient place for evaluating the design is after a subsystem has
been integrated with other subsystems.
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Figure 8: Interconnection between two micro-processor families. Templates
used to convert between Level 1 buses provide design flexibility.

The design model steps are repeated for each subsystem in the design. The
order of these steps during M1’s design process may not coincide exactly with
that in Figure 9 due to M1 implementation issues and due to iterations in the
design process.

During synthesis iterations through the design steps (not shown explicitly in
the model) are unavoidable. There are three causes for iterations: unrealistic
specifications, sub-problem dependencies, and lack of appropriate knowledge.
Unrealistic specifications will cause a design to be either under-constrained or
over-constrained. This results in a failure to synthesize an appropriate design. A
change in the specifications is necessary which, in turn, will repeat at least some
of the previously executed design steps. Often ill-formed specifications can
only be uncovered after a design synthesis attempt is made.

Sub-problem dependencies, the second cause of iterations, is a property of the
design domain. The design model assumes that intra-subsystem design can be
broken into a set of nearly-independent sub-problems. That is, the synthesis of
the interior of a subsystem is nearly independent of the synthesis of other
subsystem interiors. Nearly-independent problems are weakly connected, where
a satisfactory solution can be developed for one class of problems independently
of the solution developed for a related class of problems. Within the single
board computer design domain this property is true for some synthesis problems.
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However, often information from other areas of the design is necessary before a
subsystem may be synthesized.

The MICON bus is an example of how information can propagate between
different synthesis activities. The bus interconnects all subsystems. As a design
develops, the MICON bus inherits properties from different subsystems. For
example, the data and address bus width are inherited from the PROCESSOR
subsystem. If a design’s processor is changed and the previously defined data
and address bus widths change, other subsystems which were sensitive to these
bus widths (e.g. the memory subsystem) will have to be re-designed.

Iterations due to coupling between sub-problems are difficult to reduce. It is
possible that as more knowledge is gained about the design process a better
understanding of the sub-problem interactions will be uncovered and a means of
de-coupling them will be developed.

The third cause of iteration comes from the lack of complete knowledge for a
task. Lack of appropriate knowledge requires a program to search for a solution.
Search is manifested by synthesizing a portion of a design, evaluating it and
redesigning as often as necessary. For example, the design of a dense memory
array often requires the synthesis of several arrays using different memory chips
before the best array can be chosen. As design knowledge is accumulated the
amount of search will decrease resulting in fewer iterations.

4 The Prototype System

An initial version of the MICON system, recently dubbed MO MICON [2], was
developed to explore single board computer synthesis techniques discussed in
the previous section. MO, the MO MICON synthesis program, produced designs
for the Z80°, the TI99007, and the iAPX801868. A Z80 design was constructed
using a set of handcrafted physical design tools and a semi-automatic wire-wrap
machine.

The complete MO MICON system, shown in Figure 10, was composed of the
following programs: the MO synthesis program; a set of special-purpose
placement and routing tools; and an interface to a semi-automatic wire-wrap
machine. The MO system contained prototype versions of the tools contained in
MICON, with the exception of a testing facility and a central dataoase.

6780 is a registered trademark of Zilog, Inc.
7T19900 is a registered trademark of Texas Instruments, Inc.

8iAPX80186 is a registered trademark of Intel Corporation
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Figure 9: Single board computer design model, with major design activities.
Iterations between activities are not shown.

4.1 Template Representation in MO

MO exploited templates for synthesis, but the template representation used in MO
is significantly different from that used in M1 (as described in Section 3.2). The
templates in MO are not organized hierarchically; instead, a single abstraction
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Figure 10: MO system diagram, with tools that were prototypes for MICON.
MO designed and built a Z80-based single board computer,

level was used to captured an entire generic design for a given micro-processor.
The template included all components. Since templates were organized around
an entire system design, a clear distinction between subsystems — processor,
memory, and 10 — was absent. Figure 11 shows an MO template. Notice that
this template represents an entire Z80 design.

The synthesis approach with templates was also significantly different.
Instead of adding different templates to form a complete design, unneeded
portions were removed from the MO template. Note, however, that the MO
templates had provisions for cascadable components, such as memory.

4.2 MO Design Model

The design model used by MO is a simplified version of M1’s design model.
Since subsystems do not exist per se in MO no steps exists for subsystem
synthesis. The MO design model contains the following steps:

1. Specification. The same as M1 design model.

2. Selection. The same as M1 design model. In addition, at this step
the template for the entire design was chosen.

3. Instantiation. The selected components are inserted into the
selected template at the appropriate location. Any modifications to
the template also occur at this point.
Each of these steps was repeated in sequence for each subsystem. The design
model was found to be adequate for MO’s design tasks.
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Figure 11: MO template for a Z80, representing an entire design.
Portions not needed for the design were deleted from the template.

4.3 MO Discussion

The MO system provided an opportunity to explore and refine essential concepts
in the MICON system and to show the viability of a rapid prototyping system.
While MO successfully completed the design of a small computer system, the
large grain size of its template representation caused two significant problems:
the knowledge base was difficult to expand and the degrees of design freedom
were limited.

The knowledge base of MO needed to grow over time in order to capture
design knowledge about new components and design styles. The template
representation used in MO hindered further development of the knowledge base
by not clearly demarcating the difference between inter-subsystem design and
intra-subsystem design. With MO’s template representation, it was impossible to
update the design knowledge for one subsystem without effecting the design
knowledge associated for other subsystems. In addition, design knowledge that
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was common between different subsystems could not be shared. For example,
the interface between the Z80 family bus and the MC68000 family bus
described earlier would have to be replicated for each component in both
families.

The large-grained templates limited M0’s degrees of design freedom. Since
each template was oriented towards a particular micro-processor and its family
of components, it was difficult to use components outside of the micro-
processor’s family [1].

5 M1 Implementation
The implementation of M1 is presented in this section. The implementation is
viewed from two perspectives: the system architecture and the knowledge base.

5.1 MI Architecture

M1 must have the following abilities: to bring the appropriate knowledge to bear
on the a problem at the correct time; and, to recognize when a design is
complete or impossible to complete. Performing these tasks is a problem
solving process which requires knowledge of the design domain (to perform
synthesis) and a design process. The knowledge base supplies the synthesis
knowledge and the architecture supplies the problem-solving knowledge. The
wedding of these two distinctly different types of knowledge forms the basis for
the M1 system.

5.1.1 Architectural Concepts

The architecture’s task is to sequence the program (apply design synthesis
knowledge) through an ordered series of steps to achieve the goal of designing a
single board computer. The steps used for the architecture are derived from the
design model described in Section 3.3. The architecture cycles the program
through each step for each subsystem in the design. The design steps are
considered a set, {d,}, and are labeled:

d, : specification

d, : selection

ds intra-subsystem design
d, inter-subsystem design
dg evaluation

A design may be composed of m subsystems, each denoted as s' with i = [1.. m].
For each s' a set of steps {d} is visited at least once. If there is iteration in the
design process, at least one d for a given st will be repeated. There is no limit
on the number of design iterations or steps visited.
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The M1 architecture was designed around the concept of operators. Two
types of operators exist in the program: design step operators and synthesis
operators. Design step operators constitute M1’s architecture and move the
program between the design steps. Synthesis operators perform the synthesis
operations necessary for the task domain.

Operators have pre-conditions and post-conditions. Pre-conditions define
when an operator is applicable. Post-conditions define the state resulting from
the operator’s application. Rules are a natural representation for operators in
M1’s domain. Each operator is implemented as a set of rules (a set may contain
as few as one rule). The left hand side (LHS) expresses the pre-conditions and
the right hand side (RHS) expresses the function of the operator. The result of
the operator can be observed from the changes made to the design state.

In Section 3.3 the dependencies between sub-problems were discussed.
Dependencies in M1 are stated explicitly as sets of constraints and variables.
Each design step operator has a set of pre-conditions defined for its execution
relative to the constraint set. So, whenever the pre-conditions are satisfied the
operator is applied and the design will move into the next design step. Note that
the sequencing of design operators is based entirely on the constraint set, no
explicit sequencing is specified in the architecture’s operators (except as noted
below). This approach has the advantage of making the definition of new design
states and new chunks of design knowledge independent of what already exists
in the program.

The generation of values which can satisfy pre-conditions occurs through two
mechanisms:

o User generated: Values that are design specifications must be
specified by the user. Examples are shown in Figure 3.

¢ Self generated: Values are generated by M1 during the synthesis
process, as the result of the application of synthesis operators. Most
values are self generated.

Recognizing the satisfaction of an operator’s pre-conditions is done by the
weak method match [5]. If match fails, no pre-conditions are satisfied and the
design process halts (either in success or in failure). Some simple mechanisms
of heuristically relaxing selected constraint values exist and may be employed to
allow the system to continue if it halted in failure. During the course of a design
M1 proceeds along several non-conflicting lines of reasoning simultaneously.
For example, once all the pre-conditions for memory subsystem design and
processor subsystem design are met, the design of these system can continue in
parallel and without preference. However, M1 does not support the
simultaneous development of conflicting lines of reasoning. MI will not, for
example, develop designs which stem from different choices of a design
decision.
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5.1.2 Implementation

The design steps, {d;}, become more detailed in the actual problem-solving
architecture. Each of the detailed steps is an intermediate step in the problem-
solving process specific to M1’s implementation. Figure 12 shows the process
for gathering the specifications for a subsystem. A portion of the M1 rules
which implement the diagram in Figure 12 are shown in Figure 13.

The result of a design state operator is a set (usually one) of goals which
specify the current objective of the design process. There are situations where
an operator will assert several goal elements specifically ordered for some pre-
defined set of actions, this is commonly called a plan. Plans are useful in areas
where a given set of steps always occur in a fixed sequence. When plans are
used, the goals are resolved in a last in/first out (LIFO) order with respect to the
relative time they were asserted.

Goals link the architecture to the synthesis operators. Synthesis operators
have two-part pre-conditions. The first part describes the goal under which the
operator is applied. Recall that operators are implemented as a set of rules, with
each rule describing a different means of providing the operator’s function. The
second part of the pre-condition describes the unique set of constraints and
variables (i.e. the design state) under which each rule (or each method) should
fire. So, for each goal the rules comprising the appropriate synthesis operator
may become candidates for execution, but the design state will eliminate all but
one rule to fire (or none if the operator is not defined for the design state).

Controlling operator execution in this fashion requires a complete description
of the design state and design constraints for accurately chosing the correct rule.
In cases where it appears two rules match the same conditions, more detail is
added until the rules are disambiguated. Notice that a very strict separation
between the design state operators and synthesis operators is preserved. Without
this separation, addition of knowledge and design steps would be a difficult task.

5.2 Knowledge Base

The knowledge base is a well structured collection of design and problem-
solving knowledge enabling M1 to design single-board computer systems. The
structure is based on the function of different pieces of knowledge. The
knowledge base has been designed to facilitate the addition of new domain
knowledge.

5.2.1 Types of Knowledge
The knowledge base is composed of different types of knowledge, each type
corresponding to some function or specialized task. The types are the following:

e Selection. Knowledge of how to resolve a set of specifications to
select an appropriate component.

o Specification. Knowledge of what parameters must be specified for
a particular subsystem or component.
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Figure 12: Detailed steps for gathering specifications, which, taken together,
realize the larger grain step d,.
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subsystem.
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RULE determine_if IO is_required
BEGIN RULE LHS

&a (goal name = io_needed)
END RULE LHS

BEGIN RULE RHS
write("Do you want a IO sub-system (y/n) ?: ")
answer = get_response()
IF answer = yes
THEN make (goal name = assert IO 1)
make (goal name = query IO functions)
END THEN
END RULE RHS

RULE assert_IO level 1 part
BEGIN RULE LHS

(goal name = assert IO 1)

&a (part subsystem = processor)
END RULE LHS

BEGIN RULE RHS

assert_part (IO _1, &a.name)

; assert_part makes a call to the database

; for a part. For Level 1 parts,

; the functionality and processor family are
; necessary. The processor

; family is deduced from the name of the
;processor, given by &a.name.

END RULE RHS

RULE determine if PIO_is required
BEGIN RULE LHS

(goal name = query IO functions)
END RULE LHS

BEGIN RULE RHS

write("Do you want PIO (y/n) ?:")

answer = get response()

IF answer = yes THEN make (goal name = get_ IO specifications)
END RULE RHS

Figure 13: Example rules implementing portion of specification design step.
The fine-grained steps shown in Figure 12 have rule
representation similar to that shown. Rules shown query designer
about 10 subsystem and PIO device within that subsystem.

All other functions within IO subsystem have similar rules to PIO.

¢ [nter-subsystem integration. Knowledge of how to integrate a
subsystem into an existing design.

¢ Design constraints and variables. Knowledge of the constraints in
the design process and the variables which are affected by them.
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e Problem-solving. Knowledge of how to sequence the program
through a set of states to synthesize a design. A discussion of this
knowledge type was given in Section 5.1.

e Inference Engine and support. Knowledge of how to perform the
recognize-act [4] cycle for OPS83 rule execution and how to
implement various program suppport functions.

The inference engine and support knowledge instructs the underlying
programming support environment, OPS83, how to perform conflict resolution.
It also contains descriptions of the various internal data structures and routines
to support program execution, such as the IO routines. This knowledge is
represented as procedures and functions.

Each subsystem has a set of specifications which describe the designer’s
requirements for function and performance. The designer enters his
specifications through a set of queries directed by M1. A set of rules in M1’s
knowledge base direct the query process. The specification process reacts to the
designer’s input, seeking different information from the designer depending on
the specifications. The dialog in Figure 3 illustrates the specification process.

The method of determining the best component for a particular set of
specifications is given in the selection procedure. M1 uses a simple objective
function to compare different feature specifications to features of a class of
candidate components. The function has the form:

Fs = [Isy - £51 / wyl + .. + [Is; - £,1 / w,]

where:

Fs : is the objective function

8, : is a feature of the specification defined
over the range [0 .. i]

£, : is a feature of the component defined
over the range [0 .. i]

W, : a user supplied variable indicating the
relative importance of this
specification feature with respect to
other specification features, also
defined in the range [0 .. i]

Specification features are performance, physical, or electrical attributes of the
subsystem. The value for the set of features for all components is entered into a
database and recalled when the component becomes a candidate for selection.
This formula is applied to all components in the class and the component with
the lowest Fs value is selected. This formula was developed empirically and is
is used for all component selection tasks.
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Design constraints are represented in the system in two ways. The first
scheme is as rules in the architecture describing the dependencies between
problem-solving steps (described in Section 5.1). The second scheme is through
explicit rules. The rule expresses the constraint and calculates its value. For
example, if a constraint states that the system cycle time should be less than or
equal to the product of the memory cycle time and the number of wait states, a
rule of the following form would be created:

RULE calculate_system cycle time

BEGIN RULE LHS
&a (Variable name = memory cycle_ time)
&b (Variable name = number of wait_states)
&c (Variable name = system cycle_time)

END RULE LHS

BEGIN RULE RHS
&x = &a * &b
if &c > &x
& ¢ is violated
END RULE RHS

The violation of this constraint may cause the architecture to change its current
line of design synthesis activity.

The intra-subsystem and inter-subsystem construction knowledge comprise
the largest share of the knowledge base. These knowledge types represent
techniques for actually synthesizing the design; capturing a designer’s expertise.

Intra-subsystem construction knowledge details how to configure structures
using cascadable chips. Examples of these structures include: arrays (as in
memories); wired-or buses ( as in interrupt lines); and trees (as in priority
encoding and carry look-ahead). These fundamental structures are applied
without major changes across large classes of chips. However, there are minor
variations depending on the types of chips used and the signal naming
conventions. The structure resulting from intra-subsystem knowledge forms the
template component (see Section 3.1) The recognition of a difference between
intra-subsystem knowledge and inter-subsystem knowledge is important, since it
provides flexibility in updating the knowledge base and sharing knowledge.
This capability was missing in the MO MICON prototype system.

Inter-subsystem knowledge is the template knowledge discussed in Section
3.1. Subsystem integration knowledge details how to connect a subsystem to the
existing design and also specifies the required support components.

The template in Figure 7 is represented in Figure 14 in its rule form. The
LHS of the rule specifies the conditions under which the rule should execute.
Notice the goal, integrate 6850, under which this template is active. The
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remaining conditions uniquely specify when the rule should fire. The RHS of
the rule describes the actions taken when the rule is fired. This rule asserts a
netlist and performs some control maintenance actions.

RULE integrate_6850_version 1.1
BEGIN RULE LHS
(goal name = integrate_6850)
(variable type = baud_rate; range <= 9600)
(part name = 6809)
(variable type = external connection;
drive_type = RS-232;)
END RULE LHS

BEGIN RULE RHS
; assert part 2 makes a call to the database for a part. For
; Level 2, the arguments for assert_ part are the part name and
; a unique part identifier.
assert_part 2 (MAX232,gl)
assert part_2(8116,g2)
assert_part_2(RS_232_PORT, g3)
assert part 2 (XTAL, g4)
assert_part 2 (capacitor, g5)
assert _part 2 (capacitor, gé)
assert_part_Z(DIP_SWITCH,g?)
; A netlist is given of the connections for
; the template follows. For the
; sake of brevity, an example connection is given.
; A connection is made between the RxCLK and TxCLK lines for the
; 8116. Notice the identifier in the assert_part 2 call is
; substituted for the part name.
connect ( to_part = g2; to pin name = RxCLK ; from part = g2;
from pin_name = TxCLK ; );

END RULE RHS

Figure 14: Example template rule, which executes to achieve integrate 6850
goal, when design state variables shown (called variable) are
satisfied.

5.2.2 Knowledge Base Growth

MI’s domain is knowledge-intensive, meaning the knowledge base will
continue to grow during the useful life of the system. This is primarily due to
the constant improvements in integrated circuit technology, fueling the
development of new components and new design techniques. M1 must have the
ability to continuously grow to keep pace with technology.

All constituents of the knowledge base do not grow uniformly. For example,
the system architecture will remain constant unless dramatically new design
techniques, such as design for reliability and/or testability, are added. If this
were to happen, new design state operators would be added to M1, expanding
the architecture.
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The portions of the tool which will grow significantly are specification and
subsystem integration knowledge. New components require a unique set of
specifications causing a set of rules to be developed. Note that selection
knowledge does not have to be updated since it is not dependent on any specific
design or component knowledge.

The major growth of knowledge will occur via the addition of new templates.
As M1 matures, the number of rules (templates) will grow for each of the
synthesis operators. For example, the addition of a new micro-processor to M1
will generate at least one new rule for each synthesis operator which deals with
micro-processor design. It is possible that new synthesis operators will have to
be included if a new component or design style contributes a capability not
known to the system previously. For example, the addition of a micro-processor
with an innovation such as virtual memory support would demand new synthesis
operators. A micro-processor which extends an existing concept, such as moving
to a 16-bit data bus from an 8-bit data bus, would not require a new synthesis
operator.

The subsystem construction knowledge will not grow as quickly, since there
are a only a fixed number of structures in which a component can be configured.
In addition, all structures these chips are capable of supporting are known a
priori.

6 Summary

The M1 synthesis program is based on two concepts. The first is the use of
templates to represent structural information between components in a design.
The second concept is the use of a simple design model to act as a guide for
developing a problem-solving approach to synthesis.

The M1 architecture uses design state operators to sequence the program
through its problem-solving actions. The operators are defined in relation to a
system of constraints and do not explicitly provide operator sequencing
information.

The synthesis knowledge is organized around operators. The operators are
represented as rules in the system. These rules are defined relative to an
operator and to the set of system constraints. As the expertise of the system
grows, more rules are added to the synthesis operators. New operators may be
added if necessary.

M1 is designed to facilitate expansion of its knowledge base. Problem-
solving is kept fully in the design state operators and synthesis expertise is kept
fully in the synthesis operators. A linking occurs through the assertion of a goal.
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Abstract

ALADIN is a knowledge-based system that aids in designing Aluminum alloys
for aerospace applications. Alloy design is characterized by creativity, intuition
and conceptual reasoning. The application of artificial intelligence to this
domain poses a number of challenges, including: how to focus the search, how
to deal with subproblem interactions, how to integrate multiple, incomplete
domain models, and how to represent complex metallurgical knowledge. In this
paper, our approach to dealing with these problems is described. We provide a
technical overview of the project and system, covering these aspects: project
goals, overview of knowledge base and representation, problem solving
architecture, the representation and use of domain models, snapshots from a run
of the prototype and conclusions.

1 Introduction

Alloy design is a metallurgical problem in which a selection of basic elements
are combined and fabricated resulting in an alloy that displays a set of desired
characteristics (e.g., fracture toughness, stress corrosion cracking). The quest
for a new alloy is usually driven by new product requirements. Once the
metallurgical expert receives a set of requirements for a new aluminum alloy,
he/she begins a search in the literature for an existing alloy that satisfies them.
If such an alloy is not known, the expert may draw upon experiential, heuristic,
and theory-based knowledge in order to suggest a set of new alloys that might
exhibit the desired characteristics.

There are several ways in which a specialized computer system could aid
alloy designers. First, the search for a suitable alloy design may require many
hypothesize/experiment cycles, spanning several years. To reduce the number
of iterations, even by one, or to shorten the average time of a cycle would be
Expert Systems for Engineering Design Copyright © 1988 by Academic Press, Inc.
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ISBN 0-12-605110-0



142 Hulthage, Farinacci, Fox, and Rychener

significant gains. Second, computational theories exist that link structure,
composition and property. Providing easy access to these would aid the alloy
designer. Third, not all alloy design experts are created equal. Some are more
"expert” than others, and their expertise covers different areas of knowledge.
Capturing alloy design knowledge used by a variety of specialists in an
accessible form would facilitate everyone’s design efforts.

The goal of ALADIN has been to perform research resulting in the design
and construction of a prototype, Al-based, decision support system for designing
aluminum alloys. The decision support system provides a knowledge base of
alloy knowledge, and a problem-solving capability that utilizes the knowledge
base to suggest and/or verify alloy designs.

Alloy design is a combinatorially explosive problem dependent upon the
choice and amounts of elemental constituents of the composition, and upon the
selection, parameterization and sequencing of processing steps. Theoretically,
one should be able to determine the properties of an alloy from its
microstructure. Practically, the theories are incomplete, requiring the addition
of experiential knowledge to fill the gaps. As a result, there exist multiple
partial models of alloy design that relate:

¢ composition to alloy properties,

¢ thermal-mechanical processing to alloy properties,
¢ micro-structure to alloy properties,

e composition to micro-structure, and

¢ thermal-mechanical processing to micro-structure.

The simplest models of alloys deal only with the relationship between
chemical composition and alloy properties. From the point of view of modemn
metallurgy only a few structure-independent properties (such as density and
modulus) can be determined with precision from these models. However,
empirical (and less precise) knowledge does exist about other properties, e.g.,
beryllium causes embrittlement in aluminum. Quantitative comparisons can be
made between alloys of varying composition, everything else being equal, which
yield some useful quantitative knowledge about properties through regression
analysis.

There are also (somewhat more complex) models that describe the
relationship between thermo-mechanical processes and properties. Since only
composition and process descriptions are needed to manufacture an alloy, it
could be assumed that no other models are needed to design alloys. As a matter
of fact, historically, many alloys have been designed with composition and
process models only. Research progress in metallurgy is currently giving new
insights into the relationship between the microstructure of alloys and their
physical properties. The deepest understanding of alloy design, therefore,
involves models of microstructure effects on properties along with models of
composition and processing effects on microstructure.
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Thus, the task performed by ALADIN requires expertise in the areas of alloy
properties, chemical compositions, metallurgical microstructure, and thermo-
mechanical (fabrication) processes. ALADIN works by taking in a description
of the properties of a desired alloy, and then searching to construct a plausible
candidate alloy to meet those requirements. Alloy candidates are specified by
giving their chemical composition and the sequence of processes (including
temperatures, timings, and other parameters) to be performed during their
fabrication, along with predictions of their properties. ALADIN also produces a
description of the expected microstructure of each alloy, which can be of use in
analyzing an alloy, but is not a part of the specification used to produce them.

A number of issues arise in the construction of a system to aid in the design
of alloys. First, what is the appropriate architecture for the explicit
representation and utilization of multiple, parallel models, and how is search in
this space of multiple interacting models to be focused? One particularly
important problem is the degree to which design decisions are dependent. Each
change in composition or process alters a number of properties. Thus there is a
level of interaction among sub-problems that exceeds the usual experience
described in the Al planning literature.

A second issue is concerned with representation. Knowledge of the
relationship between alloy structure and its resultant properties is at best semi-
formal. Much of it is composed of images of microstructure and natural
language descriptions. Quantitative models rarely exist, and even if they do
exist, they are rarely used.

The rest of this article describes how ALADIN was designed to deal with
these issues. We begin by describing ALADIN’s representation of knowledge.
Several different representations of expertise are present in ALADIN:
declarative frames (schemata) of past alloys and their properties, mathematical
models of properties, statistical methods for interpolation and extrapolation, and
empirical expertise in the form of if-then rules. Section 3 then describes the
problem solving architecture of ALADIN. It must search in a space where many
alternative hypotheses (designs) can be formulated, so search management is a
key problem. We wish to keep the search as opportunistic [5] and flexible as
possible, in order to exploit unexpected advantages that are discovered
accidentally, e.g., additives that are added for one purpose but are found to have
beneficial effects on other properties as well. In section 4 it is described how
qualitative and quantitative domain models are represented and how they can be
used interactively by the expert. Section 5 provides a detailed example of the
operation of ALADIN, followed by conclusions. The reader is referred to
previous articles for more details on the ALADIN system {15, 7, 20, 14, 6].



144 Hulthage, Farinacci, Fox, and Rychener

2 The Knowledge Base

Artificial intelligence (Al) has been applied to a number of fields of engineering
design. Although there are some features that the various design areas share,
such as the need to integrate heuristics with algorithmic numerical procedures,
there are also some important differences. Each field of engineering seems to
recognize the importance of representing declarative concepts, although specific
needs vary. In electrical engineering, for example, the representation of
components with their spatial and functional relationships seems to be vital. In
mechanical engineering, the representation of solid geometric shapes has been
studied and is viewed as being crucial to the successful evolution of CAD/CAM
systems [4, 19]. Materials science identifies the microstructure as crucial to an
understanding of the relationship of materials characteristics to composition and
processing. A powerful representation of microstructural features is therefore
vital to the construction of a materials design support system.

In this section, a representation of declarative metallurgical knowledge is
described. The aim is to show how qualitative and quantitative knowledge
available to the expert in a variety of forms, e.g. tables, diagrams, natural
language and pictures, can be given a structured representation that allows the
knowledge to be utilized through well known Al techniques. Although many of
the Al concepts and approaches used in the representation are routine, the
application to the domain of microstructure appears to be novel. In fact, a
review of the literature indicates few attempts to define a taxonomy for
describing microstructure [11] and no attempts to use a taxonomy of schemata
for a computerized knowledge base of microstructure information.

A version of this knowledge base was also used in the development of a
corrosion diagnostic system [1]. ALCHEMIST [18] also uses a schematic
network to represent plans for designing alloys, tests that defines properties and
microstructure causality. While the examples in this section deal primarily with
aluminum, we are convinced that the framework of the knowledge
representation is useful for other alloy families and to some extent even for other
materials.

It has been proposed [25] that knowledge representation approaches be
Judged based on two features. One is expressive adequacy, which includes the
ability of the representation to make all important distinctions and to remain
noncomittal about details when faced with partial knowledge. The second
feature is notational efficacy and concerns the structure of the representation and
its influence on computational efficiency of inferences, conciseness of
representation and ease of modification.

In addition, the representation was required to meet the following standards:

e the representation should seem natural to materials scientist, to
support knowledge base development and maintenance by domain
experts
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e the representation should be general enough to support expansion of
the system to non-aluminum materials
These goals and the goals of expressive adequacy and notational efficacy with
respect to the domain of alloy design, were considered during the development
of ALADIN.

The declarative knowledge is structured through the use of hierarchies of
schemata. The representation has a hierarchy of abstraction levels which
contains different degrees of detail. The facilities of Knowledge Craft [3] are
utilized to define relationships and inheritance semantics between metallurgical
concepts [8]. The most commonly used relations are IS-A and INSTANCE. The
IS-A relation and some other relations define hierarchies of classes or groups
where each higher level subsumes the lower level classes. The INSTANCE
relation declares a particular object to belong to a class or a group and the
description of the class serves as a prototype of the instances.

The knowledge base contains information about alloys, products and
applications, composition, physical properties, process methods, microstructure
and phase diagrams. The representation is very general, the goal has been to
create a representation for all knowledge about aluminum alloys and metallurgy
relevant to the design process.

The representation of alloys is representative of most of the database and will
therefore be discussed in some detail, followed by a discussion on
microstructure which requires a more complex representation. The complexity
is largely handled by using the meta information features of Knowledge Craft.
This enhances the expressive adequacy of the representation by allowing
optional finer distinctions. For a discussion of the phase diagram representation
see [14].

2.1 Alloy Hierarchy - Composition, Properties and Processing
Alloys, when viewed from the standpoint of their design, are interrelated and
grouped together in a number of different ways. We have defined a number of
formal relationships, with different inheritance semantics [8], to enable our
schemata to reflect this domain organization. For example, alloys are grouped
together into series and families by their composition. They are also related by
the processes that go into their fabrication (e.g., heat treatment, cold rolling, and
tempering), by the type of application that an alloy is designed for, and by the
form of product (e.g., sheet, plate, or extrusion). Relations have been defined to
reflect degrees of abstraction within the hierarchy, e.g., the relationship between
a family and a prototypical member. These relations are utilized at various
points in the design search in order to make hypotheses and estimates. Since
they allow analogies to be drawn along a number of different dimensions by
defining classes of similar alloys with which one can look for trends. Figure 1
depicts some of this knowledge-base structure.

A representation for more than twenty physical property measurements has
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Figure 1: Alloy groups.

been developed. At the top level of classification, the properties are divided into
mechanical, chemical, thermal, electrical, and miscellaneous groups. The
classes of mechanical properties are shown in Figure 2.

The classification hierarchy of process methods is used in ALADIN to make
inferences about the effects of various operations, on both microstructure and
properties of alloys, since groups of methods often have similar effects. Before
and after relations are used to represent time sequences of operations.

2.2 Symbolic Microstructure Representation

Microstructure is the configuration in three-dimensional space of all types of
non-equilibrium defects in an ideal phase [11]. Such defects are created by
thermal and mechanical processing methods, e.g. rapid cooling and cold
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Figure 2: Mechanical property hierarchy program display.

working. These defects include voids, cracks, particles and irregularities in the
atomic planes. These features are called microstructural elements and are
visible when the material is magnified several hundred times with a microscope.
Metallurgical research has shown that the geometric, mechanical and chemical
properties of the microstructural elements, as well as their spatial distributions
and interrelationships, have a major influence on the macroscopic properties of
the material. The microstructure is often described in abstract, conceptual terms
but is rarely characterized numerically. The objective of the microstructure
representation in ALADIN is to allow classification and quantification of the
microstructure of alloys in order to facilitate the formulation of rules that relate
the microstructure to the macroscopic properties of alloys.

Although much of the empirical knowledge about alloy design involves the
microstructure, it is difficult to represent in a useful way with standard
quantitative  formalisms. Metallurgists have attempted to describe
microstructural features systematically [11] and quantitatively [23], but in
practice, neither of these approaches is commonly used. Most expert reasoning
about microstructure deals with qualitative facts. Metallurgists rely on visual
inspection of micrographs, which are pictures of metal surfaces taken through a
microscope. Information is communicated with these pictures and through a
verbal explanation of their essential features.

In response to this observation a symbolic representation of alloy
microstructure was created and is a crucial part of the ALADIN database [12].
The two main features of an alloy microstructure are the grains and the grain
boundaries, and are described by an enumeration of the types of grains and grain
boundaries present. Each of these microstructural elements is in turn described
by any available information such as size, distribution, etc., and by its relations
to other microstructural elements such as precipitates, dislocations, etc. This
representation allows important facts to be expressed even if quantitative data
are unavailable, such as the presence of precipitates on the grain boundaries.The
microstructure is further characterized by a specification of the microstructural
elements that are present. The basic elements of microstructure are grains,
particles, lattice defects and interfaces. Figure 4 shows several types of these
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Figure 3: Classification of microstructure.

elements.Each of these microstructural elements can be further described by its
phase, size, shape, volume fraction and distribution, as shown in Schema 2.

2.3 Example of Microstructure Representation

A typical alloy in the ALADIN data base contains a microstructure description
that enumerates all microstructural-elements known to exist within the material.
If some features of an elements is also known, that information is attached to the
corresponding item of the enumeration.

An example of a microstructure [24], is shown in Figure 5.1t shows an alloy
after solution heat treatment, cold water quenching and peak aging at 400°F for
48 hours. The corresponding ALADIN representation of the alloy is Schema 1
with the microstructure in Schema 2.

Vasudevan et al verbally describe this microstructure, which he refers to as
figure 1(b), as follows:

"Figure 1(b) shows the microstructure in the pcak-aged alloy (condition B),
where the strengthening matrix &’ precipitates are seen together with coarse
grain boundary § precipitates; these are seen as white regions surrounded by

dislocations ... and a & precipitate-free zone (PFZ) 0.5 um wide which has
given up its solute to the grain boundary 8."
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Figure 4: Types of microstructural elements.

Characteristics of the microstructure, i.e. that it is recrystallized, has high
angle grain boundaries, elongated grains parallel to the rolling direction and low
dislocation density are also represented. The schema representation is not
limited to characteristics that are apparent on a micrograph and includes
quantitative information.

It is also important to point out that the recursive nature of the representation
(i.e. each microstructural element could contain any other microstructural
element even one of the same class) makes it possible to represent any
imaginable microstructure. For example suppose that the solution heat treated
alloy has subgrains inside each grain and that each subgrain consists of several
cells separated by dislocation angles. In ALADIN, such a structure would be
represented as grains with high angle boundaries containing small grains with
low angle boundaries, which in turn contains even smaller grains (or cells) with
low or medium dislocation density of the boundaries. Since grains at each
"level” can have variety of microstructural elements, all possible microstructures
can be easily represented using this method.

Many microstructural elements are associated with a phase and ALADIN has
a phase diagram representation as well. ALADIN uses thermodynamic
equations, when available, to describe the boundaries of each phase. Often,
however, the boundaries are determined experimentally. In this case, each
region of an n dimensional phase diagram may be described as the union of
(n+1)-point lattices in n dimensional space (see [14] for more details).
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Figure 5: Micrograph of Al-3Li-0.5Mn in Peak Aged condition
(from [24]).

3 Problem Solving Architecture

An alloy design problem begins with the specification of the desired physical
properties of the material to be created, expressed as constraints on these
properties. The objective of the designer is to identify chemical elements that
can be added to pure metal, appropriate amount as a percentage and processing
methods that can be employed to yield an alloy with the desired characteristics.
The line of reasoning that designers use is similar to the hypothesize-and-test
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{{ Al-3Li-0.5Mn-pa
MEMBER-OF: experimentAl-Li-Mn-series
MICROSTRUCTURE: Al-3Li-0.5Mn-pa-strc
ADDITIVES:

Li
nominal-percent: 3.0
unit: weight-percent
Mn
nominal-percent: 0.5
unit. weight-percent
PROCESS-METHODS:
cast
class: direct
solution-heat-treat
temperature: 1020
time: 30
stretch
percent-stretch: 2
age
time: 48
temperature: 400
level: peak
class: artificial }}

Schema 1: Representation of Al-3Li-0.5Mn in Peak Aged condition.

method. The designer selects a known material that has properties similar to the
design targets. The designer then alters the properties of the known material by
making changes to the composition and processing methods. The effects of
these changes on the various physical properties are estimated, and
discrepancies are identified to be corrected in a later iteration.

In order to select among variables that changes the properties, the designer
may consider known cause and effect relations, such as:

e [FF Mg is added THEN the strength will increase

o [F the aging temperature is increased beyond the peak level THEN
the strength will decrease

Microstructure models provide a powerful guide for the search process since
they constrain composition and processing decisions. For example, if meta-
stable precipitates are required, then the percentage of additives must be
constrained below the solubility limit, certain heat treatment processes must be
applied, and aging times and temperatures must be constrained within certain
numerical ranges.

While the human design approach can generally be characterized with the
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{{ Al-3Li-0.5Mn-pa-strc
MICROSTRUCTURE-FOR: Al-3Li-0.5Mn-pa
STRUCTURE-ELEMENTS:

grain
size:
length: 415
aspect-ratio: 4
alignment: rolling-direction
texture:
copper
volume-fraction: 0.02
brass
volume-fraction: 0.02
S
volume-fraction: 0.02
cube
volume-fraction: 0.70
Goss
volume-fraction: 0.24
recrystallization-level: 100
phase: alpha-Al-Li
structure-elements:
precipitate
phase: Al3-Li
size: 0.03
probability-distribution: log-normal
aspect-ratio: |
distribution: uniform
volume-fraction: 0.23
local-volume-fraction-distribution: log-normal
missfit-strain: 0
dispersoid
phase: Al6-Mn
size: 0.2
aspect-ratio.: 3
geometry: rod
length: 0.3
volume-fraction: 0.005
missfit-strain: high
dislocation
type: mixed
element-density: low

Schema 2: Microstructure of Al-3Li-0.5Mn in Peak Aged Condition.
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grain-boundary
phase: alpha-Al-Li
angle: high
impurity: Na K
pfz-zone: 0.25
structure-element:
dislocation
rype: mixed
element-density: high
precipitate
phase. AlLi
aspect-ratio: 1
geometry:
spheroid
diameter: |
volume-fraction: 0.04
missfit-strain: high )}

Schema 2, continued

hypothesize-and-test method, a more detailed study of metallurgical reasoning
reveals a number of complexities which must be taken into account. To some
extent, knowledge is applied in an opportunistic fashion. When relationships or
procedures are identified that can make some progress in solving the problem,
then they may be applied. On the other hand, there are also many regularities in
the search process. Furthermore, the strategies that designers use to select
classes of knowledge to be applied vary among individuals. For example, in the
selection of the baseline alloy to begin the search, some designers like to work
with commercial alloys and others prefer experimental alloys produced in a very
controlled environment. Still others like to begin with a commercially pure
material and design from basic principles. When searching for alternatives to
meet target properties, some designers construct a complete model of the
microstructure that will meet all properties and then they identify composition
and processing options. Other designers prefer to think about one property at a
time, identifying a partial structure characterization and implementation plan
that will meet one property before moving to the next. Still other designers
prefer to avoid microstructure reasoning whenever possible by using direct
relationships between decision variables and design targets. All designers
occasionally check their partial plans by estimating the primary and secondary
effects of fabrication decisions on structure and properties. However, the
frequency of this activity and the level of sophistication of the estimation models
varies among designers.
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3.1 Planning and the Design Process
The ALADIN architecture has been designed to support opportunistic reasoning,
at different levels of abstraction, across multiple design spaces. A multi-spatial
reasoning architecture akin to a blackboard model [5, 10] was therefore chosen
for ALADIN. There are five spaces:
1. Property Space. The multi-dimensional space of all alloy
properties.

2. Structure Space. The space of all alloy microstructures

3. Composition Space. The space where each dimension represents a
different alloying element (e.g., Cu, Mg).

4. Process Space. The space of all thermo-mechanical alloy
manufacturing processes.

5. Meta Space. The focus of attention planning space that directs all
processing. The meta space holds knowledge about the design
process and control strategies. Planning takes place in this space
in that goals and goal trees are built for subsequent execution.

Property
Structure
Composition Process

Figure 6: Spaces of domain knowledge.

Activity is generated on different planes and levels in a way similar to
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Stefik’s MOLGEN system [22]. Planes contain one or more spaces, and levels
are subdivisions within the spaces. ALADIN’s planes are: Meta or strategic
plane, which plans for the design process itself, establishing sequencing,
priorities, etc.; Structure planning plane, which formulates targets at the phase
and microstructure level, in order to realize the desired macro-properties; and
Implementation plane, encompassing chemical composition and thermal and
mechanical processing subplanes.

Each of the partial models for alloy design are represented as a set of rules.
Each rule set can propose and verify hypotheses at multiple levels of abstraction
and in either direction. For example, the rule set linking structure and
composition can propose alloying elements in the composition space which
enable a structure specified in the structure space. In the opposite direction,
rules can predict properties of a proposed mixture of elements proposed in the
composition space by checking whether there would be a phase change in the
structure space.

The alloy design process typically starts in the structure space with decisions
on microstructural features that imply desirable properties. These decisions are
thereafter implemented in composition and process space. Overall, the search is
organized according to three principles that have proven successful in past Al
systems:

Meta Planning, the establishment of plans for the design process itself, with
sequencing and priority decisions handled by explicit rules based on design
principles and user experience;

Least commitment, meaning that values within hypotheses are expressed as
ranges of values that are kept as broad as possible until more data is present to
force them to be restricted, which allows the system to avoid backtracking in
selecting values; (ALADIN’s domain lends itself very readily to this technique:
most numerical variables admit to ranges of values, and in compositional
variables, the number of element additives is kept to a minimum;) and

Multiple levels, under which plans are developed first at an abstract level, and
then gradually made more precise, allowing global consequences of decisions to
be evaluated before effort is spent in detailed calculations.

These principles and other aspects of the ALADIN system have been
designed in large degree to meet the demands of the domain.

The qualitative and quantitative levels of the Structure, Composition and
Processing spaces are activated as appropriate, to generate hypotheses that
specify design variables in their own range of expertise. Hypotheses generated
on other planes and levels constrain and guide the search for new hypotheses.
An existing qualitative hypothesis obviously suggests the generation of a
quantitative hypothesis. Certain microstructure elements can be produced by
compositional additives, while others are produced by specific processes with
the composition restricting the choices available.

Ideally, ALADIN proceeds to specify designs by a regular hypothesize and
test cycle:
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1. Evaluate the current hypothesis to see where it falls short of the
target; the result is a set of estimates and a focus on particular
properties of interest.

2. Generate hypotheses in order to meet a given target (focus) or
combination of target properties; the result is a set of hypotheses
with initial credibilities attached to aid in selection.

3. Select the best hypothesis to pursue further and go to 1.

In practice, control sequencing among these steps is more flexible, as
demanded by some features of the design domain. For example, the selection
from among a set of new hypotheses often requires that they be evaluated in
detail. Decisions about control at this level are made in the meta space. Within
the steps in the hypothesize-and-test cycle, there is a sequencing of reasoning
based on the causal relations represented by links in Figure 6. For example, in
order to evaluate the current hypothesis, the effects of composition and process
decisions on the microstructure of the alloy are determined. These
microstructure estimates are then used to determine the physical properties of
the alloy. While generating a new hypothesis, on the other hand, causal
relations are examined in the reverse direction. From the target physical
properties, microstructure and then composition and process design alternatives
are identified. Control flow can be still more flexible in response to the
demands of the domain. For example, when the necessary microstructure
knowledge is not available, the system may search for weaker, process —
property relations, bypassing the microstructure plane. Again this strategy
utilizes the existence of several models. On the qualitative level
multidimensional constraints are used to describe the design target, property
estimates and hypotheses. A multidimensional constraint is represented as a lisp
expression involving any function or variable, which must evaluate to a non
negative result.

In the hypothezise-and-test cycle, evaluations are now constraints on
properties, hypotheses are constraints on design variables and selection of
hypothesis is based on the possibility of finding feasible points that satisfies the
current set of multidimensional constraints. The result of the qualitative plan is
used to determine the variables to be constrained. The percentages of the
elements selected on level 1 in composition space are obvious variables, but
others like quantifiable structure or processing variables are also important. The
formulas for density and modulus immediately yield constraining equations, and
constraining equations for other properties can be obtained by regression in the
alloy database. Another source of constraining equations are the phase
diagrams, several heuristic rules involving phase boundaries and solubility
limits. ALADIN 1s not restricted to lincar constraints since it uses a variant of
the gradient method described by Hadley [9] to find a feasible point for a system
of inequalities.
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Microstructure decisions serve as an abstract plan that cuts down the number
of alternatives in the composition and process spaces. In this way the role of the
microstructure has both similarities and differences with abstract planning as
described by Sacerdoti {21]. The main differences are:

® Microstructure concepts are distinct from composition and process
concepts, not merely a less detailed description.

¢ The microstructure plan is not a part of the final design, since an
alloy can be manufactured with composition and process
information only.

e The microstructure domain is predefined by metallurgical expertise,
not defined during implementation or execution of the ALADIN
system.
These differences lead to the following contrasts with a MOLGEN-like system:

o Instead of one hierarchy of plans there are three (structure,
composition and process), each of which has abstraction levels (see
Section 3.1).

e Since structure decisions don’t necessarily always have the highest
“criticality” (as defined by [21]), opportunistic search is important.

e The effect of abstract hypotheses is more complex because
decisions in the structure space cut the search by constraining the
choice of both composition and process hypotheses. The existence
of more than one level in each space also introduces new types of
interactions.

4 Model-Based Inference
Experience from interaction with metallurgists and insights gained during the
work with the Design Expert suggested that there is a need for an alternative
mode of operation. The typical user of ALADIN will, for forseable future,
himself be a metallurgists with considerable expertise in at least some aspects of
alloy design. Each metallurgist has a certain style and often firm opinions on
what approach should be taken. A metallurgist may therefore sometimes be
better served by a system that leaves the top control to the user but assists the
design by making a menu of operations available. That is the purpose of the
Design Assistant mode. In this mode the metallurgist guides the search in the
direction he wants. The elaboration of hypotheses is also put under user control
by making available to the user a set of models which can be used to derive new
information.

The Design Assistant applies the very general and powerful notion of models.
A schema based representation of models and a domain independent inference
engine that invokes models to infer values of attributes in schemata is created
[13]). Domain dependent information, facts, qualitative and quantitative models,
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as well as much of the domain independent control knowledge, is uniformly
represented in schema form.

The reasoning process involves inferring values of attributes in existing or
newly created schemata. If acceptable values can be obtained through simple
retrieval, with or without inheritance, the value is considered known and no
model needs to be invoked. Otherwise a value will be inferred, if possible,
through a search for the "best” model that yields an acceptable result. The
selection of models is done in three stages. First the domain of validity of the
model is determined. The domain of validity is a subset of all schemata specified
with the CRL restriction grammar [3], e.g. the DOMAIN attribute in schema 3
limits the use of that model to the temperature of (meta-)schemata that is of
CLASS artificial.

{{ AGE-TEMPERATURE-DEFAULT-MODEL
IS-A: model
MODEL-OF: temperature
CREDIBILITY: 0.2
DOMAIN: (type class artificial)
TEMPERATURE: 400 }}

Schema 3: Schema representation of a model
of typical aging temperature.

Second, the valid models are ranked by determining their credibility. Third, the
value generated by the model has to satisfy range and cardinality restrictions,
e.g. the DOMAIN of schema 4 must be one or two of (type class natural) and (type
class artificial).

{{ AGE-TEMPERATURE-MODEL

IS-A: model

MODEL-OF: temperature

CREDIBILITY: 0.9

DOMAIN:
range: (or (type class natural) (type class artificial))
cardinality: (1 2)

TEMPERATURE;
demon: age-temperature-model-procedure } }

Schema 4: General age temperature model.

The search and ranking of models as well as the determination of domain,
credibility and range are inferences that can be performed by control models.
The system has a set of domain independent control models that can be
augmented and superseded by domain dependent control models whenever
appropriate.
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The simplest use of a model to infer the value of a specific slot in a schema is
to take the value from the same slot of another schema that is in some sense
similar. This schema then becomes a model or an analog of the first schema. To
take a simple example, if one wants to determine the aging temperature for the
alloy represented by schema 1 then one could use knowledge about the typical
temperature for artificial aging (see schema 3) as a model and assume that the
temperature is 400 degrees Fahrenheit. The schema AGE-TEMPERATURE-
DEFAULT-MODEL is declared to be a model of temperature through the
relation MODEL-OF.

Algorithmic and numeric models can be introduced through procedural
attachment, i.e. by attaching a piece of code, called a demon, that generates a
value. The schema 4 is a model that invokes a procedure specified by the
AGE-TEMPERATURE-MODEL-PROCEDURE schema.

CEWESRYREEY :contaxt ALADIN
INSTANCE: ALLDY
MEMBER-0F: EXEPIMENTAL-LI-MH-SEPIES
MICROSTRUCTURZ : 3L-3LI-8.SMN-PA-STRC
ADDITIVES: LI MmN
PROCESS-METHODS: CA3T SOLUTION-HEA™-TPEAT STRETCH AGE
1}

Command Choices
Infer Value
Infer Slot
: Add new slot
: Add new value
Add new value w/ editor
Insert new value
Replace current value
: Edit current value
: Delete current jtem
HOUSE-L-2: Edit the schema for the selected item
HMOUSE-H-2: Edit meta-information for the selected item
HOUSE-H-3: Return to previous schema
Meta-X: Extended command level
NOUSE-R-3: menu of global commands

Qo -~ CCu

Figure 7: Infer Value and Infer Slot items can be selected.

The system described here can be thought of as an extension of the features
of more conventional schema representations and is implemented as a function
(infer-value) to be used instead of the function provided by the schema
representation system (get-value). This system allows representation of more
than one possible value, or lists of values, for an attribute. The mechanisms for
searching and selecting models of attributes makes it possible to distinguish
cases based on complex criteria, e.g. numerical relationships. Conventional
relational databases only distinguish classes that are defined by schemata and
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referred to by relations. The range and cardinality checks on inferred values
implement a simple backtracking feature. Successfully inferred values are
optionally stored in the schema, with meta information on their source. Hence,
if the same call to the infer-value function is repeated, the value will be obtained
by simple retrieval. This is also true about input data and intermediate results
obtained by recursive calls to the infer-value function either by the selected
model or the infer-function itself. This is a simple learning process.

If a convention is adopted to store only facts as regular values and represent
default values as models, then this architecture provides a clean cut between
defining properties and default properties, which is a well known problem in
knowledge representation [2].

The design assistant allows the user to invoke models and and enter
information in an interactive environment. The environment is similar to the
Knowledge Craft schema editor and includes simple editing commands. Figure
7 shows the menu of top level commands. Selecting the Infer Slot command
generates a menu of slots, i.e. attributes, that are appropriate in the displayed
schema. In this case the menu would look much like the one in Figure 10.

Figure 8: Menu of properties for user to constrain quantitatively.
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Selecting an attribute introduces it in the displayed schema. The infer Value
command activates the inference engine described above and inserts the
resulting value. Figure 9 shows the result of inferring the density.

I\(RL-GLI-G.E.HN-F‘R reontert  ALRDIN

INSTANCE: ALLDY
MEMBER-QF : ENSERIMENTAL-LI-MH-SERIES
MICROSTRUCTURZ: 3AL-3LI-8.5MN-PA-STRC
ADDITIVES: LI MN
PROCESS-METHORS: CR3T SOLUTION-HER™-TPEAT STRETCH AGE
DENZITY:
i)

Figure 9: Infer Value item gives the result.

The ALADIN system attempts to couple symbolic and numeric computation
deeply by not treating algorithms as black boxes. A calculation is typically
broken down into calculations of the various quantities involved, and the exact
course of a computation is determined dynamically at the time of execution
through the selection of methods to determine all the quantities needed to obtain
the final result. These selections are based on heuristic knowledge that
estimates the relative advantage and accuracy of the choices and by the
availability of data. ALADIN couples qualitative and quantitative reasoning in
several ways. The design is made at two levels, first on a qualitative and second
on a quantitative level. Examples of design decisions that are made first are
what alloying elements to add and whether the alloy should be artificially aged
or not. These decisions are followed on the quantitative level by a determination
of how much of each alloying element should be added and at what temperature
aging should take place.

5 The Prototype

ALADIN runs on a Symbolics LISP Machine under Genera 7.1 within the
Knowledge Craft 3.1 (KC) [3] environment at a speed that is comfortable for
interaction with expert alloy designers. The design run outlined in this section
takes about half an hour, and involves considerable interaction with the user,
whose choices influence the quality of the outcome. Its development is at the
mature, advanced-prototype stage, where it can begin to assist in the design
process, particularly as a knowledge base and as a design evaluator. These are
two of the main modes of use that we set out to develop, independent design and
discovery being the third mode. We must point out, though, that its knowledge
is presently focused on narrow areas of alloy design, with expertise on only
three additives, two microstructural aspects, five design properties, and with
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Figure 10: Property priorities are largely determined by application.

Figure 11: User may select product form of interest.
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some heuristic rules being ad hoc rather than integrated into the strategy-
planning-implementation hierarchy. We are dealing in depth only with ternary
alloys. But these restrictions are by our own choice, so that we can go into
depth and train the system on the selective areas of greatest import to our expert
informants and sponsors. Within these restrictions lie a number of commercially
important alloys, whose rediscovery by ALADIN would be a major milestone.

The first goal of ALADIN is to obtain a target for the desired alloy. A design
target is generally described in terms of target values on various physical
properties. The user therefore specifies these property targets early in the design
run as shown in Figure 8. These target acts as constraints on the target alloy.

Since the search for a new alloy usually is driven by product requirements,
the designer usually have an application in mind. As shown in figure 10 the user
may select an application and this information is used by the system to select a
strategy for the design. ALADIN pursues one target at a time and therefore
needs to prioritize them.

ALADIN utilizes its database of known commercial and experimental alloys
for qualitative and quantitative comparisons. Such comparisons are best made
between alloys of similar product forms and figure 11 shows how product forms
can be selected.

Figure 12: Six microstructural hypotheses, for low density.
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Once the problem is defined and the search is set up, a cycle of hypothesis
generation, selection and evaluation is entered. Figure 12 shows a generation
phase.

In figure 13, only a qualitative evaluation is performed. The subsequent
selection phase assigns credibilities to the alternative hypotheses to form a basis
for selection. In this case no quantitative constraints are available that could
have an impact on the selection.

The hypothesize, select and evaluate cycle adds details of the design
incrementally and builds a tree of hypotheses as shown in figures 13 - 16.

6 Conclusions

Alloy design is thought to require a high degree of creativity and intuition.
However, we have found that hypothesize-and-test, abstract planning,
decomposition and rule-based heuristic reasoning can reproduce a significant
portion of the reasoning used by human designers on prototype cases. The
metallurgist working with us on the system have concluded that the
representation and reasoning are sufficiently powerful to warrant the expansion
of the knowledge base so that it can be used on a routine basis. (The current
ALADIN system has approximately 2400 schemata, 250 CRIL.-OPS rules, and
200 lisp functions.)

ALADIN’s major accomplishments include:

e representing the concepts of a complex domain, the metallurgy of
Aluminum alloys;

e formulating an architecture in which expertise in the domain can be
readily expressed as production rules;

¢ developing a framework and applying a set of techniques that allow
effective coupling of symbolic (qualitative) and numerical
(quantitative) reasoning, within a structure containing various
representations of information;

¢ finding ways to reason qualitatively with constraints that are
expressed quantitatively.

¢ The system reasons qualitatively and quantitatively about science
and engineering problems and achieves a deep coupling of symbolic
and numeric computation [17].

The overall goal of ALADIN as an industrial application of Al techniques
has been to make the process of alloy design more productive [16]. This process
as currently practiced involves several iterations over the course of five years.
We are confident that a tool such as ALADIN can achieve significant
productivity improvements and aid in the discovery of better alloys. It can do
this by making the generation of alloying experiments more systematic, by
aiding in the evaluation of proposed experiments, and by allowing individual
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Figure 13: Qualitative density evaluation, with user selection.

Figure 14: Hypotheses on heat treatment and composition are added.
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Figure 15: Quantitative hypotheses are generated.

designers to supplement their own specialized expertise with that of the
program, which is a pool of expertise from various sources, helping to fill in
gaps where a specialist may be weak.

While the main objective of this project was to produce an application system
for our sponsors using developed ideas, the complexity of the domain has given
us the opportunity to extend the frontiers of artificial intelligence research. We
feel that search in the space of abstract models (in our case, microstructure), has
potential to be applied in other design areas as well, such as the design of other
metallic or nonmetallic materials and other designs that are dominated by non-
geometric constraints and require a combination of qualitative and quantitative
reasoning. We also feel that the model of strategic knowledge, with flexible
user control, is a powerful way of combining knowledge from multiple experts
into a single system. We hope that these ideas will be useful to developers of
future expert systems.

ALADIN’s present state of completion can be a good starting point for a
variety of engineering design problems. Aluminum alloy design, as we have
formulated it, is a problem typical of a wide range of alloy / mixture design
problems.  These are typified by flexible, opportunistic application of
knowledge from several diverse technical areas. The aim in this class of
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Figure 16: Quantitative constraints are checked for consistency.

problem is to produce a slate of experiments to perform, some of which may
lead to materials that meet most of the desired properties, but at least most of
which will lead to new knowledge that can aid further search for better designs.
Knowledge in such domains is mostly heuristic, residing in the experience of a
few human experts, whose skills are in high demand in their industrial settings.
The best solutions usually depend on combining heuristic and quantitative
results.
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Part 2 Expertise

The Nature of Expert Decisions

In Chapter 7, Akin presents a study of the architect’s expertise. This is done
using the techniques of cognitive psychology, particularly the Newell and Simon
(1] approach of protocol analysis. Akin describes a series of experiments in
which architects, students and non-architect professionals solve simple layout
design problems. Architects are shown to be most proficient at stepping back
and redefining their overall approaches to problems. They use abstract scenarios
that have been built up by years of experience, and are able by using these to
simultaneously resolve most of the problems posed by difficult spatial and
organizational constraints. Other professionals relied mostly on memory of
layouts that they were familiar with, while students used more formal trial-and-
error search techniques without as much higher-level guidance from an overall
plan. A study such as this proves the effectiveness of the approach, and could
be applied to any engineering discipline to improve understanding of the design
process and of the details of design expertise.

In Chapter 8, Wiecha and Henrion present evidence for how experts work by
exhibiting a user interface approach that has proven effective in supporting
expert decision-making activities. In order for computer-aided design tools to
be effective, we must create interfaces that provide the user with enough
information to make decisions, but not so much as to overwhelm the user. The
information presented must also be organized so that the user can have a clear
picture of where he or she is in the overall design search; i.e., the user must not
get lost or disoriented. The authors discuss graphical approaches to such
presentation issues, and draw on some studies of difficult policy decision
problems. The results have important implications for all computer tool
designers, and will be increasingly important as the systems we use become
more comprehensive and integrated, and thus complex.

Both of the papers in this Part have a bearing on the systems presented in Part
3. The research of Schmitt, Chapter 11, is especially pertinent in this regard,
since 1t deals with architecture and with an integrated system whose complexity
demands a very effective graphical interface approach.

Expert Systems for Engineering Design Copyright © 1988 by Academic Press, Inc.
All rights of reproduction in any form reserved.
ISBN 0-12-605110-0



172 Part 2. Expertise

References

1. Neweill, A. and Simon, H. A. Human Problem Solving. Prentice-Halil,
Engiewood Cliiffs, NJ, 1972.



7 Expertise of the
Architect

OMER AKIN

Abstract

As expert systems begin to be applied to architectural design, the need arises to
understand the nature of architects’ expertise. It is also useful to consider the
nature of design problem solving in general. How architects make decisions is
studied in this chapter by studying behavioral protocols of simple design
sessions, allowing comparison of architects’ performance with that of students
and professional non-architects. Architects are found to rely on scenarios,
powerful problem-structuring devices, during the process of applying their
knowledge to produce better solutions. A number of implications for computer
aids are derived from the study.

1 Expertise and the Professional

Architecture, like most of the engineering fields, entered the age of computing
through the use of Computer-Aided Drafting tools during the ’60s [16].
Subsequently, as the struggle to realize the levels of efficiency promised by
autoration kept intensifying, new research goals for computing applications in
architecture emerged. These included the undertaking of mundane tasks with
greater speed and accuracy, improving communication between various
building-design professionals, responding to a greater number of design
constraints in a shorter time, and reaching greater levels of precision and rigor in
the design of buildings. These new avenues lead to the development of a myriad
of tools suitable for design and production of building specifications, such as
integrated databases, solids modelers, rectangular packing routines, scheduling
and other information management tools.

As architects got busy with integrating these tools into the daily routine of the
office, universities and R&D divisions of corporations were busy with the
development of a new set of tools for design. These, generally called
knowledge-based expert systems, attempt to bring tehniques developed in the
area of Artificial Intelligence to bear on design problems. Today a variety of
automated tools exist starting with ones that are for the initial conception phase
Expert Systems for Engineering Design Copyright © 1988 by Academic Press, Inc.

All rights of reproduction in any form reserved.
ISBN 0-12-605110-0
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of designs through to ones for the production of construction documents; tools
which can generate alternatives based on parameters specified by the architect;
tools which can verify consistency and desired performance levels in alternative
solutions; tools which bring a body of expert knowledge to bear on these
generative and evaluative tasks.

While these goals present enormous challenges for architects and researchers,
there is an equally, if not more, important simultaneous challenge for them.
This is the codification of the architect’s expertise. In spite of the very long and
by some measures illustrious history of the building activity carried out by
architects, there is precious little known about the expertise of the architect.
There is also constant debate and disagreement about the correctness or
goodness of design even among experts.! Therefore, before we consider the
expertise of the architect in empirical terms and the implications of this for
automated design, it is necessary to consider, albeit briefly, the sources and
definitions of the expertise of the architect.

Architects have consistently tried to distinguish their profession from its
sister professions, or in some instances crafts, since its early beginnings in the
17th and 18th centuries. The primary reason for this has been the need to
protect the business of the architect from invaders of a hostile kind. In the past
these invaders have been the craftsmen and the artisans involved in building
trades. More recently the threats have also been felt with respect to builders and
developers as well. In the meantime, the area of expertise of the architect has
been defined and redefined numerous times, sometimes as a result of reactionary
positions towards potential invaders and at other times in order to identify it
with those of existing and more sympathetic practices.

In the 19th Century the architects aligned their goals with that of the artist in
an attempt to elevate themselves above the craftsman within the building
industry. At the turn of the century, this was followed by a realignment with the
goals of the political elite, then in the "20s and ’30s the industrial revolution;
next in the '50s and '60s the medical and legal professions; and finally in the
"70s the manager and the developer. It is in such a complex cultural milieu that
the definition of the area of expertise of the architect as a professional has
evolved. Thus, the current popular image of the architect as one who is
knowledgable about design and aesthetic concerns dates back to the early days
of self-identification.?

'In fact, this is an issue which presents a particular difficulty in evaluating the results of the
empirical data we will discuss in Section 2,

2The political and professional contributions of two of the leading firms of 19th century America,
by R. M. Hunt and McKim Meade and White provide some of the better known contributions of
architects to the "high-style” image attributed to them even today [24]. In fact it is the efforts of
such firms in the political, economic, and intellectual arenas which has lead to the creation of the
modern professional powerhouses of the free world: AlA in the US and RIBA in Great Britain.
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Today, institutions of architecture both in educational and professional terms
are inheritors of these historical circumstances. The salient assumption
underlying the entire process of evolution is that architects possess an expertise
which is germane to their field of practice. And in a sense every book ever
written on the subject from the first known source, entitled Ten Books on
Architecture by Vitruvius [28], describes an aspect of this expertise. In spite of
the abundance of scholarly references of this sort, there is very little known
about what as a professional the architect is most qualified and skilled at doing.

During the last two decades we have seen the emergence of a number of
studies that deal with this subject. Some of these works see the architect’s
expertise in terms of a skill for representation [19, 27]. Others see it in terms of
methodology and attempt to prescribe the design process [6, 7, 15, 21, 30]. Yet
others see it in terms of codifying and describing the intuitive design process as
a form of information processing [4, 9, 25, 26, 29].

Work in the area of representation, the first approach, particularly in the area
of shape grammars, has enabled the formal and systematic exploration of
building types and made the study of rational decision-making easier. Attempts
at prescribing how the design process ought to work, have lead to new insights
for designers and suggested new forms of practice. Participatory planning,
design by patterns, performance measures, and specifications are some of the
concrete results of this approach. In spite of these remarkable advances neither
of these two approaches explains the expertise underlying the use of the method
and the skill the architect generally brings to his practice.

The third approach, the description of the intuitive design process, in essence
is both an illusive and strangely enough a more traditional preoccupation than
the former two. Vitruvius opens the first chapter of his first book [28] with a
definition of the architect that foreshadows even contemporary ones:

"The architect should be equipped with knowledge of many branches of study
and varied kinds of learning, for it is by his judgement that all work done by the
other arts is put to test. This knowledge is the child of practice and theory.
Practice is the continuous and regular exercise of employment where manual
work is done with any necessary material according to the design of a drawing.
Theory, on the other hand, is the ability to demonstrate and explain the
productions of dexterity on the principles of proportion.” (p. 5)

To cite a considerably more recent source, Encyclopaedia Britannica [12]
defines architect as:

"one who, skilled in the art of architecture, designs buildings, determining the
disposition of both their interior spaces and exterior masses, together with the
structural embellishments of each, and generally supervises their erection.”

The same source goes on to explain the involvement of the architect of the past
with the construction process and his diminishing role, during current times, in
this respect.

As both sources suggest, the task for which the architect seems to bear the
greatest responsibility, and therefore at which is most skilled, is design.
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Vitruvius attributes both practice and theory to skills directly related to
designing, namely, translating from drawings and using principles of proportion.
Encyclopaedia Britannica refers to determining disposition of spaces and
massing and structural embellishment as aspects of design which constitute the
architect’s expertise. These descriptions, while insightful and probably correct,
at best rely on their author’s personal observations or, at worst, on second hand
narrations of similar observations by others.

Systematic and explicit studies of the design process is a recent area of study
triggered in the '60s and ’70s after the advent of Systems Theory, Operations
Research, and computers. In spite of the relative immaturity of the area the
results so far are sufficient to show that the architect’s design process is both
more diverse and heterogenous than what is suggested in the two sources quoted
above, or in other scholarly works in the area, for that matter [4]. Design
decisions, from architectural programming? to construction or shop-drawing
phases of the design delivery process, are made with the participation of many
others, such as clients, users, engineers, public officials, community
organizations, site designers, developers, financiers, project managers, and
contractors.

Knowledge brought to bear on the problem and the procedures of decision
making also vary with each participant. Due to the diversity of the sources of
this knowledge and the power of control which comes with the possession of
knowledge, architects more often than not are mere participants rather than
leaders in this process. The single phase of this complex process in which the
architect is still the sole decision maker is that of preliminary design. Tt is
generally believed that the essentials of the architects’ creation are shaped
during this phase. This is where the designer exercises his creative input and
develops the central concept for the entire design which is critical to the
development of all of the other phases. As a consequence, preliminary design
among all the other phases of the design process, such as programming, design
development, working drawings, bidding, construction, and so on, is the one
which conforms to standards and conventions the least. And also, it is regarded
both as one that is most relevant to the architect’s expertise and one that is most
difficult, if not impossible, to describe with any degree of precision.

Recent work shows both tangible progress and promise towards acceleration
of research results in the future [2, 3, 5, 11, 13, 17, 29]. In this Chapter we shall
review some of the recent findings about preliminary design and try to describe
the expertise of the architect based on these findings. Obviously, in light of the
scope of the entire volume, our effort in this chapter will be confined to only a
few of the most salient issues of this broad topic. Section 1 introduces concepts

*An architectural program, distinct from a computer program, is the set of functional and
performance specifications which must be adhered to in order to develop an architectural solution.
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fundamental to this area. Section 2 presents findings of recent empirical work
about the expertise of the architect. And Section 3 reviews the salient findings
in relation to implications for Computer-Aided Design applications.

1.1 Architectural Design Problems

Some of the most important insights about the architect’s expertise come from
studies that show, in terms of preliminary or conceptual design, how well
architects do in comparison to lay people [2, 3, 5, 13, 14]. Foz [13] reports that
architects, during the developent of a parti,* perform much better than people
not trained as architects because they:

e examine the problem at breadth before selecting a particular
approach to the solution,

e sketch profusely as they consider ideas,

e debate the full implications of even those ideas which have no a
priori likelihood to succeed before they are discarded,

e avoid adoption of any solution until after a number of strong
alternatives are considered, and

e use solutions known from prior experience to develop solutions for
the present problem.

Henrion [14], more so than highlighting the differences between architects
and non-architects, has shown some of the remarkable similarities that exist
between them. In solving well-defined space planning problems, both architects
and lay people use similar approaches while working towards satisfying
predefined constraints. These results suggest that architects, while clearly
different in their approaches to designing in general, are indistinguishable from
others when it comes to satisfying a set of predefined constraints.

Is this a contradiction in terms or is there a way of explaining how it may in
fact be possible? It turns out that the answer to this question points towards a
paradigm which represents one of the critical ingredients of the architect’s
expertise. This paradigm is the extra ingredient which is needed for solving
ill-defined problems and thus explains the differences in the findings of Foz and
Henrion as well as many other researchers who have studied the same topic.
This is the central question we will try to address in this chapter.

1.2 lll-Defined Problems, Well-Defined Sub-Problems

Let us now consider problem solving in general terms before reviewing specific

4A term borrowed from the Ecoles Des Beaux Arts to refer to a diagram, usually in the form of a
floor plan, of the basic concept of a design.
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observations about design problem solving. Many ordinary problems, puzzles,
and questions are solvable because they exist in a context of well-understood
ground rules. When familiar with the principles of algebra, it is trivial to solve a
set of simultaneous equations that have a matching number of equations and
unknowns. When knowledgeable about reading road maps and signs, it is an
easy task to travel from Pittsburgh to Washington, D.C. These are typical
examples of well-defined problems.

Other problems, some extraordinary, others quite ordinary, present more
challenging circumstances. Finding a new house to buy, especially in a new
town; playing the stock market; starting an automobile which refuses to start;
designing a new kitchen; are all examples of this category. Here, the problem-
solver or the designer also has to use principles and conventions at least similar
in form to those used in solving well-defined problems. The difference lies in
finding ways to bring these principles to bear on the problems at hand which
ordinarily neither beg nor readily accept such applications.

For example, the automobile which refuses to run may have stalled due to a
failure of the distribution system or alternatively due to the failure of the
condenser. One may or may not have all of the necessary tools to make the
diagnosis or the repair that is needed. Furthermore the problem may be solved
completely extraneously by taking a bus, taking a taxi, or towing the automobile
to a garage. Hence the solution to the problem is a function of the statement of
the problem. Is the problem that one can not go to work or that one can not sell
the auto due to the breakdown? Is the problem to know what is wrong or is it to
rectify it; and in this context what does "to rectify it" really mean?

In the case of problems resembling this latter set, which are usually called
ill-defined, it is necessary to know:

¢ how to decompose the ill-defined problem into well-defined parts,
e how to resolve these well-defined parts, and

e how 10 reassemble these partial solutions into a general solution for
the entire problem [25].
In most recent literature in the area, this skill has been called problem-
structuring [2] or puzzle-making [8]. Problem structuring tums out to be one
activity in which the experienced architect, compared to the lay person, displays
a remarkable skill, providing evidence about the true nature of his field of
expertise [4, 5].

1.3 Problem Structuring

The first step in solving any design problem involves the description of what
needs to be accomplished and with what elements and resources this must be
accomplished. Designing a house for example can be described as a need to
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organize a particular set of rooms (i.e., kitchen, dining room, living room,
bedrooms, bathroom, and so on) in a particular way on a particular site.> The
determination of the rooms which will constitute the house and their attributes
forms the initial structure of the design problem. Given this or rather having
described this in some form the architect can begin to manipulate the elements
of the house with a clear evaluation function® in mind.

As the architect develops solutions or partial solutions that begin to meet
some of the requirements of the initial problem description, comprehensive
evaluations of these solutions are performed. Next, the architect invariably
alters the structure of the problem in ways which lead him to more successful
results. A common form this restructuring takes is the addition or deletion of
problem constraints or solution parts (rooms, furnishings, etc.) from the initial
problem description.

Restructuring through constraint modification means the alteration of both
the data used by the architect and the process to be applied to this data. For
example, adding a set of new constraints or solution parts to the problem during
restructuring implies that, in addition to satisfying these new constraints in the
new solution the architect’s focus of attention must also shift to these
components of the design problem almost immediately. Similarly, deleting a set
of constraints or solution parts implies that these constraints or solution parts
should not be included in the solution and other parts of the solution affected by
these changes have to be considered first during the next iteration of design.’

Studies of architects’ behaviors [4] show that constraint modification occurs
as a result of detecting conflicts in a given partial solution. As the architect
realizes, for example, that two functions placed side by side interfere with each
other’s privacy he will modify the constraints of the problem to induce design
measures which will eradicate the conflict either by relocating one of the
functions or by introducing walls to separate them. This example illustrates the
point that conflict detection is one of the keys to problem restructuring viewed
as a process of developing successive approximations towards a viable solution.

Design, obviously, is not purely a process of successive approximations. In
fact more often than not architects shift their orderly strategy of "evolving" a
solution, almost without warning. This suggests that problem restructuring takes
place in response to things other than conflict detection, for example through the

5t is obvious that the actual design of a house is a much more complex process with extensive
technical issues involved. For the purposes of this discussion it has been abbreviated to one of its
essential aspects, i.e., spatial organization.

SEvaluation function, here, refers to an objective measure of success in the sense it is used in
optimization problems.

THowever, some constraints deleted due to the overconstraining of the problem are not totally
discarded but treated as secondary constraints which can be met but do not need to be met.
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examination of alternative solutions which may or may not be related to the ones
under consideration. Even in cases where successive refinements of current
solutions are viable, alternatives may be preferred over them. This is largely
due to the recognition of alternatives as counterpoints to current considerations
or as opportunities that open the door for multiple solutions.

1.4 Categories of Expertise

Before we examine any experimental results in detail let us consider a general
description of the architect’s expertise based on the preliminary notions
reviewed up to this point. As implied above, the architect, in order to resolve
ill-defined design problems, must be skilled both at resolving well-defined ones
and at redefining the ill-defined problem as a sequence of well-defined ones. In
more concrete terms, a sizable portion of his training is geared towards
configuring structural elements, stairs, door swings, and so on. These are well-
defined sub- problems as they exist in completely specified contexts, as part of a
design or a site. In addition, as the architect gains experience in design, he
becomes even more skilled in knowing when and how to perform these sub-
tasks, in other words, how to structure the design problem to match his personal
capabilities.

It has been shown repeatedly in protocol studies of designers that, given a
design problem, the architect first sets out to identify the important requirements
of the problem [4]. Then he selects from these requirements a well-defined
subset of the design problem: for example, configure the roof form, develop a
plan parti, lay out the stairs, locate the driveway, and so on. Each subset of
requirements defines a certain sub-problem. As each sub-problem is solved the
architect realizes new requirements that must be met and priorities that must
exist between these requirements. As he incorporates these new priorities he in
effect restructures the problem, setting up new sub-problems to solve. Cycling
between different problem structures leads him eventually to the best set of
requirements and responses which he can develop.

In (re)structuring problems, particularly ones that deal with composing
functional entities, such as the ones given in an architectural program, the
architect uses several important strategies. These can be grouped under four
topics: scenarios, alternatives, evaluation, and prototypes.

1.4.1 Scenarios

Architects create scenarios that organize parts of the architectural program
into a plausible operational order. A scenario is an organizational idea, such as a
hierarchical office, an open classroom school, a theatre in the round, where a
consistent behavioral idea is in evidence. Such a scenario defines the principal
proximities, hierarchical relationships, privacy and access patterns which have
to exist between parts of the program. It also provides conceptual constructs
which can be consulted in answering questions that arise during design: Is the
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program consistent with its context? Is the site appropriate? Should there be
other functions anticipated? How can change of uses be accommodated over
time? In summary, the scenario is the proverbial "better" check-list of issues
which must be considered during design.

1.4.2 Alternatives

Architects create new problem structures, often with the help of alternative
scenarios, in order to avoid settling for a mediocre solution. In operational
terms, alternatives allow the architect to select among several satisficing
solutions [25] bringing the final solution closer to a pareto optimal one [22].
Different scenarios often enable the designer to study solutions which are of
completely different types. This leads to the consideration of diverse
possibilities and a more comprehensive understanding of the ramifications of
design choices.

1.4.3 Evaluation

As solutions or partial solutions are developed architects evaluate the degree
to which these satisfy the overall goals of their designs. If they find that certain
requirements are restricting the emergence of "good" solution ideas, then these
requirements become candidates for being discarded. If some desired solutions
suggest requirements not yet identified in the program, these become addenda to
the requirement list. If new scenarios are suggested by the earlier problem
structures, then an entirely new set of requirements are developed and a new
agenda of explorations is identified. Thus, evaluation of earlier design steps
becomes the key for finding successful future steps for the design process.

1.4.4 Prototypes

Architects use formal and physical ideas to create problem structures. What
if the site were over the waterfall rather than on the opposite bank? What if the
building had no interior partitions? What if the building was a glass box? These
hypothetical "what-if" questions illustrate historical circumstances surrounding
the design of Fallingwater by F. L. Wright or the Farnsworth House by Mies van
der Rohe. These circumstances emerged from physical considerations and were
so all-encompassing that the requirements for the entire problem were developed
from these decisions. In other words, the problem structure was the clear result
of a physical order rather than an operational one, such as the ones cited above.
In the following section we shall examine each of these strategies in greater
detail, based on empirical results.

2 Empirical Study of Problem Structuring by
Architects

In a series of publications by Akin, et al. [2, 3, 5] the problem structuring

behavior of designers as well as non-designers has been closely studied. In their
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latest publication, entitled "A Paradigm for Problem Structuring in Design,” the
authors focus on the mechanics of the problem structuring process and draw
specific conclusions about the expertise of Architects (A) in comparison to both
Students (S) of architecture and professionals who are Non-Architects (N).

In this study, protocols of six subjects from each of these categories were
collected. Each subject was given half an hour and asked to solve a space layout
problem. The problem was to allocate four functional areas, a Conference room
(C), a Chief Engineer’s room (CE), a room for two Staff Engineers (SE) and a
Secretary area (S) in a given site. There were three different sites, square,
rectangular, and L-shaped, each equipped with two exterior entry ways and three
windows, shown in cardboard cutout form. The functional components of the
problem were also represented as two-dimensional cardboard cutouts of the
furniture pieces in 1/4" = 1’-0" scale. Experimental design consisted of two
subjects from each of the three subject categories solving the layout problem for
each of the three sites.

Design behavior of all subjects were recorded on videotape. These protocols
were transcribed as text and diagrams. The designs developed at the end of each
experimental session are shown in diagrammatic form in Figures 1, 2, and 3.
Transcriptions of subjects’ verbalizations, which we shall refer to throughout
this chapter, were in turn codified as operational segments and subsequently
analyzed for underlying problem solving and problem structuring behaviors.
Below we shall discuss the results of this work in terms of the four strategies
outlined above.

2.1 Architects vs. Non-Architects

A primary question we asked was how the performance of the Architects,
compared to the Non-Architects and Students in general terms. Furthermore, we
asked how these differences explained aspects of the problem structuring
process in design. In evaluating the subjects’ performance, a primary criterium
used was the satisfaction of design constraints in the final solutions proposed. In
all of the protocols examined, these constraints were related to at least one of
five general categories: zoning of functions, efficiency of use, privacy of use,
circulation and control of flow, and use of windows.

Zoning of functions deals with the division of available floor area into parts
which correspond to individual or groups of functions required in the program.
This is not only for the allocation of adequate space for each function but also
for insuring proper spatial contiguity among the parts.

Efficiency of use is concerned with the appropriateness of the floor area
allocated to the various functions called out or implicit in the program, such as
circulation areas. Cramped arrangements as well as ones that are too loose are
equally objectionable problems, because, often, looseness in one part implies
that other parts are deprived of space which might have been otherwise
available. Privacy of use includes constraints that require privacy needs of each
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function and avoidance of privacy violation due to proximity of other functions
or circulation areas. A private function too close to the main entrance, for
instance, is problematic, just as a public function which is isolated from public
access.

Circulation and control of flow has to do with establishing proper access
links between functions that require them. Furthermore, control of public access
through the strategic placement of the "reception” function and ease of access
without trespassing through other use spaces are also important issues for proper
circulation.

Use of windows stipulates the allocation of natural daylight and ventilation to
those functions that need it without violation of the operationality of the existing
windows. By the same token, proximity of windows to human functions is a
generic requirement which must be met in most circumstances.

The sites, due to their own formal configurations, allowed or disallowed
certain geometric layouts as solutions and influenced the ability of the subjects
in satisfying these constraints. Let us now turn our attention to the designs
developed for each of these three sites.

2.1.1 TheL Site

In the case of Site 1, that is the L-shaped site (Figure 1) a natural, topological
match between the site and the required functions (such as the one for Site 2,
which 1s discussed below) did not exist. Thus, it was necessary to partition the
site into two or three rectangles, each of which corresponded to a topological
part of the L-shape, such as the wings and the comer, in order to accommodate
the major components of the program, namely, Chief Engineer (CE),
Conference (C), Staff Engineers (SE), and Secretary (S). These programmatic
components, in turn, had to be organized into two or three logical clusters in
order to match them with the partitions of the site.

This was accomplished in the case of the two Architect’s (A1, A4) solutions
by linking S with SE and pairing C with CE. In one case (A1) S and SE occupy
the corner of the L-shaped site leaving the wings of the L to C and CE, and in
the other (A4) the same functions occupy one of the wings of the L leaving the
other wing to C and CE. In each case the access, entry, circulation, zoning of
functions, use of windows, efficient use of floor area, and privacy issues are
virtually problemless.

In the case of the Non-Architects and the Students there is no indication
supporting a similar interpretation of the topology of the site. The outcome is a
haphazard partitioning of the space into rooms and areas resulting in the division
of windows by partitions (N1, S5), cramped and inefficient use of floor area
(N1, N4, 82), artificially lit spaces (S2, N4), and unclear circulation paths (N4,
S2).
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Figure 1: Solutions for the L-shaped site.

2.1.2 The "Square” Site

In the case of site 2, the "square” site (Figure 2), the topological structure of the
site and its correspondence to the program is an obvious clue and was utilized by
all subjects in their solutions, without exception. Given the proportions of the
site and the location and number of windows and doors the only viable solution
has been to place the three engineers near the window side and C and S on the
door side. In spite of the need to provide natural light and ventilation for S none
of the subjects were able to solve this problem and decided that it was not
possible to do so without giving up more important things from their solutions,
namely the zoning of the entire layout.

Having resolved the general solution in at least topological terms the only
improvements the subjects could affect on top of this had to do with the
efficiency of use of the floor area, access between rooms, privacy, and
organizational needs of the offices. Five of the solutions (two by Students, two
by Non-Architects, and one by an Architect) enclosed C by walls. Three of
these (N2, N5, S1) created hallways on all three sides of C causing severe
inefficiencies in floor area usage. The other two (AS, S4) took advantage of the
second entrance and created a private entrance way into C thereby including
more useful floor area in C. The sixth subject (A2) avoided the problem entirely
by enclosing CE and thus eliminating privacy-related conflicts between C and
CE.

Both Architects (A2, AS) placed S in close proximity to the main entrance
and paired up the two SE in such a way that they enabled the secretary to
perform the role of "receptionist” with respect to all three engineers. Also S
became a natural circulation hub and social center for the entire office. In the
case of the two Non-Architects and the Student (N2, N5, S1) who enclosed C on
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Figure 2: Solutions for the "square” site.

all three sides this was not possible. The other Student (S4) who enclosed C on
two sides placed CE behind C creating a very difficult circulation path between
S and CE which had to pass through SE.

2.1.3 The Rectangular Site

In the case of Site 3, the rectangular site, the problem was one of laying out
four rooms on a linear relationship based on a set of non-linear functional
requirements and then to fit it into a long rectangular space with three windows.
To resolve the difficulty of three windows for four functions, a zoning strategy
similar to the one used on Site | is needed. To solve the problem of circulation
in a long and narrow site requires the placement of the most frequently accessed
functions in the center. Finally it is also necessary to minimize the doubling up
of functions along the short, critical dimension of the site.

Four of the subjects (A6, N3, N6, S6) attempt to double up two functions or a
function and circulation hallway along the narrow dimension of the site. This
created tightness (N6, S6) and disconnection from windows for some functions
(n3, N6, S6). The most successful zoning strategy developed for this site
seemed to be the one developed by the two Architects and one of the Students
(53). They placed all functions linearly on the site. The Architects also placed
S near the center door and C and SE on either side leaving the other door for
Chief Engineer’s private use. The infrequent yet ceremonial connection
between S and CE was served by two paths, either directly from the outside or
through the function placed in between them. This clearly is a compromise, but
one considered worth making in light of other compromises that would have
been necessary in order to avoid it.

The problem of three windows versus four functions also did not find a
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Figure 3: Solutions for the rectangular site.

graceful solution in this case. The strategy which comes closest to an acceptable
solution was the clustering of two functions around a single window (A6, S6,
N3).

Table 1 provides a checklist of the constraints satisfied by each subject.8 In
the end, it appears that, with the probable exception of Site 3, the solutions
provided by Architects resolve more constraints than either of the other subjects.
Architects, while generally more successful, did not perform better than Non-
Architects, however in response to needs of "privacy.” Also, they performed
marginally better than Non-Architects in terms of access and Students in terms
of use of windows. Non-Architects and Students on the other hand did generally
poorer than Architects, with the solutions to Site 2 providing a notable
exception, largely due to difficulties Architects encountered in dealing with this
site.

2.2 Design Scenarios

The comprehensiveness displayed in the Architects’ solutions is partially
accounted for in their explicit use of scenarios. There is ample evidence in the
protocols supporting this point. Consider for example subject A2 when he says:

"Placed the three higher paid, more skilled people closest to the windows in
deference to the secretarial space. (line 93)"

Clearly what he is considering is the hierachical organization one finds in a
traditional office setting in order to organize the physical layout of the functional
components of the program. Later, A2’s explicit remarks about the undesirable
nature of “landscaped” office layouts, an alternative to the traditional layout,
also reinforces this point:

¥Although there are many shades of gray in the degree to which any of these solutions satisfy a
given constraint, in the table we provide three ratings: satisfaction, partial satisfaction and no
satisfaction. For our purposes this provides an accurate enough measure to observe some general
patterns.
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Table 1: Rating of subjects’ solutions.

Site S1: L-shaped S2: "square” S3: rectangular
Subject Al A4 NI N4 S2S5 A2 A5 N2 N5 S1S4 A3 A6 N3 N6 S3S6
Zoning e e 0 00O e e o000 o g O0deo
Efficiency e e 0 0 O o e e 0 00 e e e o (O e 0O
Privacy de e e O o e o 0o 0 o0 d0 0do0oO0
Access ® e o g O o e o dddoO dd d o & d
Windows e e 0 & & O dd dddd o0e 0 ded
Key constraint satisfied

S e

constraint partially satisfied
0 constraint not satisfied

"Personally found lacking in offices, being able to carry on certain operations
with the confidence that is required. I've occasionally had to ask the
employees to leave the room. Landscaped office arrangements are [found] to
be inadequate. (lines 141-143)"

Scenarios are also used, as stated earlier, to develop viable, alternative
solutions. For example, Subject A4 after working with a formal entrance
remarks about his desire to explore alternative scenarios:

"What that means is this is private and you don’t put the public... clients back
in the drafing room. They don’t really go back there. They (SE) work here.
this space here than becomes the main work room. Next strategy I would use
in a different version is to sacrifice some of the better qualities. (lines 65-72)"

Subsequently, he goes on to reverse the entire layout in order to follow up on his
stated intentions.

Scenarios provide for the architect topological templates which are adaptable
to different programmatic requirements. Scenarios are topological in the sense
that they define physical relationships without fixed geometric attributes. These
relationships link functions in desired ways and still allow malleability in
geometric terms. Thus, they can be accommodated in sites with specific
geometric dimensions and shapes and fixed window and door locations. Non-
Architects and particularly Students did not display any evidence that they were
using scenarios and consequently, their solutions did not seem to benefit from
known, topological patterns, as did the Architects’.

Non-Architects and Students, while evaluating partial solutions relied
primarily on specific constraints and pragmatic conflicts. In doing so, the Non-
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Architects were preoccupied with drawing from their personal experiences of
the office setting. Students, on the other hand, were relying almost solely on
analytical techniques. After having developed his final solution, for example,
subject N1 explains:

"I am trying to fit the pieces in a way that I perceive to be functional
organization. I can put the secretary over here and have people walk in the
front door and find the CE. 1 feel they ought to see the secretary first. (lines
34)"

No doubt, the subject is concerned with making an office like the ones he has
seen before, worked in or likes, if for no other reason, than for the reason of
familiarity. As a result he can propose solutions which meet a number of
performance criteria normally satisfied by these familiar patterns. However, the
less than perfect results achieved are due to the difficulty of mapping solutions
expressed as geometric entities into specific sites. The geometric properties of
these sites -- dimensions, locations of doors and windows -- not being in
agreement with the geometrically fixed physical features of the pattern recalled
from experience, result in significant compromises. In all sites, with the
exception of Site 2 which happens to be proportioned to accommaodate just about
any kind of small office layout, the solutions by Non- Architects have severe
zoning difficulties (Table 1).

Students, in comparison to Non-Architects, operated from the point of view
of a more liberal perspective, i.e., generating new layouts to fit the given
problem. Yet, they confined their efforts only to analytical considerations. For
example, subject S2 evaluated the final design in the following terms:

"Seems entrance is all right. Because lot of people come in here. But there is
tightness around SE desk.. Although they probably don’t do all that much
ciculating. This seems very tight here. And there is a lot of space here. Need
more space in the reception area...(so on)..(line 115)."

The strategy for developing a solution 1n this case is accomplished by isolating
all performance issues and meeting them one by one. Because of such an
analytical approach, Students in general were less comprehensive in their
responses, ended up attempting to reinvent each layout from scratch and did not
benefit from prototypical solutions, either geometric or topological. In the end,
this strategy also resulted in solutions with shortcomings in terms of circulation
and layout (Table 1).

It is not surprising then that in general the most number of constraints were
recognized and met by Architects, while Non-Architects satisfied fever
constraints but did it with less effort than Students who expended the most effort
and satisfied almost just as few constraints. Architects were the only ones who
explicitly and consistently used scenarios in structuring their problems as well as
their solutions.
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2.3 Design Alternatives

As stated earlier one form of problem structuring occurs due to a desire to
consider other options or alternatives to the solution at hand. This represents a
mechanism equivalent to searching for a pareto optimal solution as opposed to a
satisfying one [25]. Accepting the first solution which satisfies the number of
constraints necessary for a minimum level of acceptability is essentially
equivalent to settling for a satisfying solution. Most experienced designers,
including the Architects, however, consider alternative solutions even if a
satisfying solution is available. This results in the consideration of a much
greater portion of the solution domain and possibly a solution better than the
satisfying one, if not a pareto optimal one.

In the protocols we examined Subjects simply came right out and stated that
they were about to do just that as they started to examine an alternative solution.
There were a total of eighteen instances of this in the protocols (Architects 9,
Students 6, Non-Architects 3 times). In the majority of these cases the
alternative considered was one which reversed a problem parameter. The most
common example of this was the switching of the main entrance from one
exterior door of the site to the other.

Even in cases when a viable solution was at hand some subjects (A1, A4, A6)
chose to consider alternatives. Some of these alternative solutions, which
invariably resulted in restructuring the problem, lead to global modifications of
the problem, such as reversal of main entry location, reorientation of the entire
scheme, or swapping the locations of the two major components of the layout.
Both Non-Architects and Students used similar problem restructuring strategies,
and the operations they used were similar to those used by Architects. However
neither Non-Architects nor Students came up with global conflicts or
restructuring operations, while the Architects did.

2.4 Design Evaluation
Problem structuring ultimately hinged on the evaluation of the previous
solutions or attempts at solutions. More often than not this took the form of
detecting conflicts within a solution or partial solution. In the protocols there
were five conflict categories roughly corresponding to the constraint categories
indicated in Table 1: privacy, access-proximity, space, outside- opening match,
and light and ventilation. Out of these the access-proximity category showed
the greatest variance between subjects. Partly for this reason we shall devote
more time later to discussing it. In considering the other conflict categories that
lead to problem structuring we observe some important differences between the
behaviors of the three subject categories.

First of all, Architects on the average restructured the problem more than
(3.83 times, 40% of all conflicts) both other subjects (3.0 or 31.2%, and 2.66 or
27.9%, N and S, respectively). In case of the Privacy issue his pattern is most
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pronounced, 12.2% versus 5.2% and 3.5%, respectively.” In terms of Space
(tightness and looseness problems) however, all categories were equally
involved, 12.2%, 12.2% and 10.5%, respectively.

In the remaining conflict categories there were too few data points to draw
any significant conclusions (total of 14 data points or 24.5% of all data points in
a five by three space, in other words, on the average, less than one data point per
category). However, some interesting patterns can still be discerned. One is the
absence of light and ventilation conflicts in the Architect’s and the Student’s
protocols. Another one is the oversight of a major programmatic element (i.e.,
the conference room) which took place only in two of the Student protocols.

It was also evident in the data that some contlicts used in the restructuring of
the problem were local (particularly for privacy, access, and space conflicts)
while others were global. It seemed that the restructuring responses of the
subjects treated their domain in a consistent fashion: global conflicts resulted in
global modifications of the problem and local conflicts in local modifications.
For example, local conflicts such as lack of privacy in a room resulted either in
moving that room to a more private part of the site or blocking the intruding
spaces around it by buffer activities, such as reception area. On the other hand,
when these conflicts were of a global nature the entire topological solution was
modified in some way or a series of constraints were added to the problem
definition. These global responses, often resulting from spatial conflicts of
tightness or looseness, caused modifications of the entire layout and the
arrangement of functions in the solutions.

In dealing with global conflicts or alternatives the designers treated the
solution space in chunks, groups of design elements larger than the individual
elements given in the problem (i.e., chairs, desks, typewriter desks, file cabinets,
and so on). It is obvious that during design some chunking mechanism is at
work which organizes the problem into manageable subparts in a hierarchic
manner [4]. For example, the two SE were almost always chunked together.
Architects in particular seemed to have more complex chunks which they
manipulated with ease, such as the Entrance-Reception-S-CE or the S-CE-C
sequence. This is consistent with findings linking expertise with chunk size in
certain problem solving domains such as Chess [10], Go [23] and design [1].

2.5 Design Prototypes

It is clear from the above discussion that qualitative differences between the
Architects’ design process and those of Students and particularly of Non-
Architects can be suggested. Non-Architects, for whom the typical office layout
in a professional settings is a familiar entity, seemed to rely on prototypical

9This is also consistent with Architects’ difficulty in meeting the privacy constraint in a large
number of the final solutions.
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patterns known to most lay people. This is consistent with the background of
our subjects included in the category of Non-Architects, who were selected from
full-time faculty in the professional colleges of Carnegie Mellon University. In
contrast Architects, while familiar with similar layouts, spent a great deal more
time trying to develop new solutions and layout patterns from scenarios.
Students seemed to behave like the architects except they relied a lot less on
typical solution patterns and a lot more on performance analysis.

These observations are further supported by the number of attempts made at
restructuring design problems in the protocols. In the access-proximity category
on the average Architects explicitly discussed and satisfied 11.67 constraints in
their protocols. Corresponding numbers for Non-Architects and Students are
7.17 and 6.67, respectively. This indicates that Architects articulated and
satisfied more constraints than either of the other two subject categories. Non-
Architects came next and Students last.

Perhaps a more interesting implication of this can be seen by comparing these
numbers against the number of times each subject group recognized conflicts
due to the violation of an access-proximity constraint and then subsequently
restructured the problem (Table 2). Here we see that the Students encounter the
most number of constraints, on the average, 1.66; Architects the next, 0.83; and
Non-Architects the last, 0.33. When corrected against the number of constraints
ultimately satisfied (# of constraints satisfied / # of constraints used in
restructuring ) we see that Architects satisfy, on the average, 14.06 constraints
for each conflict they recognize in response to access-proximity needs. The
same number for Non-Architects and Students is 21.72 and 4.02, respectively.

Table 2: Satisfying the access-proximity constraints by the subjects.

A-P Constraints Architects Non-Architects Students
1. Discussed 11.67 7.17 6.67
2. Used in Restruc. 0.83 0.33 1.66
3, Ratioof 1 t0 2 14.06 21.72 4.02

These results in one sense are startling. When we consider the number of
conflicts they encounter and the number of constraints they satisfy, Non-
Architects seem to be most efficient in terms of access-proximity issues.
Architects are next on this scale, satisfying about two-thirds as many constraints
as the Non-Architects, followed by Students who satisfied about one-third as
many constraints as Non-Architects and one-fourth as Architects.

It seems that the ordering between Students and Architects is as expected and
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the deficiency in Student’s performance compared to Architects’ can be
attributed to the relative knowledge and skill each possess of their subject area.
However, the dramatically greater efficiency observed in the performance of the
Non-Architects suggests that they were doing something drastically different
than both Architects and Students. On the surface this suggests that they were
simply restructuring the problem fewer times than both Architects and Students.
But why?

One plausible explanation is that they were relying on prototypical solutions
familiar to them from their own work environments, as was argued earlier,
rather than trying to create or invent new designs. As a consequence they were
able to generate solutions which satisfied a number of constraints with ease and
a small number of restructurings were necessary to develop a satisfying solution.
This 1s supported by the total number of constraints explicitly considered and
satisfied in the Architect’s protocols in comparison to both Non-Architects and
Students.

3 Conclusions

While one could say a great deal more about the specifics of problem structuring
and its significance for the architect’s expertise, we have covered many of the
salient issues here and it is time to bring our exploration to a close. This will be
done through two vehicles. One is summarizing a few of the major findings
discussed above. The other is indicating the implications of these for computing
applications in architectural design.

3.1 Summary of Observations

One of the significant results of the empirical work described here is the models
of knowledge brought to bear on the restructuring function. There seems to be
differences between the models relevant to each of the three subject categories.
Architects, for example, use scenario-like constructs to represent knowledge
about a given functional type, such as hierarchical, landscaped versus
participatory office layouts. On the other hand, Non-Architects use actual
physical templates and Students rely on performance evaluation, to bring
appropriate knowledge to bear on the design problem.

Scenarios used by the Architects embody topological assemblies which are
instrumental in satisfying the essential relationships required by different
prototypical office layouts. Scenarios are also representations of malleable,
geometric relationships between the functional units of the program. As they
are used to create layouts in the context of an existing envelope or site, their
topological parameters are kept and their geometric parameters adapted to the
particulars of these external constraints. In this way they enabled the meeting of
a large proportion, if not all, of the constraints called for in the specific site.
Furthermore, as scenarios are selected and their parameters modified, new
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alternatives are generated. This is reflected in the design process as
restructuring. Thus, understanding of scenarios and their use in design provides
valuable insights about the problem restructuring function.

Physical templates, used by Non-Architects in lieu of scenarios, are
potentially as powerful as scenarios. They embody geometric assemblages
which satisfy the essential relationships required in different office types. And
herein lies the reason why the information they contain about the relationships
of functional components is less malleable and the adaptation of the template to
a specific site is much more problematic. This is borne out by the results of the
protocols of Non-Architects. With the notable exception of Site-2, which
naturally lends itself to both geometric and topological templates with ease,
Non-Architects experienced severe difficulties in adopting their solutions to the
sites. Consequently, while meeting many of the internal proximity and space
requirements these solutions violated many other constraints, such as entry,
window use, and privacy.

Students, who employed neither scenarios nor templates, approached the
design problem in a constructivist manner, assembling their solutions from
individual analytical observations about the way each partial solution performed
in terms of each problem constraint. While theoretically sound, this approach
failed to take advantage of known solution patterns and as a result did not
resolve as many constraints as it otherwise would.

The second set of significant findings to be discussed here have to do with
global versus local modifications of solutions. In restructuring the design
problem all subjects relied on conflicts that arose and alternatives which
suggested themselves during search. Some of these conflicts and alternatives
were local. These were simply remedied by local modifications to the current
design. Such conflicts and their remedies do not normally infringe on any
aspects of the problem other than the location to which they are confined.
Dealing with global conflicts, on the other hand, involved alterations in all or
nearly all parts of the solution. Tightness in one part of the solution, lack of
proximity between two or more functions, and unsuitability of the location of
the main entrance into the office suit, for example, are global conflicts which
normally require global modifications.

Architects, as evidenced by their behavior in the protocols, dealt with global
conflicts and alternatives initially before bothering with local ones. Non-
Architects and Students, on the other hand, consistently engaged in resolving
local conflicts, first and foremost. They also tried to resolve the design problem
altogether without getting involved in global modifications.

3.2 Implications for CAD

Study of problem solving behavior at this level of detail is motivated by the
desire to learn more about human problem solving and as a result, to develop
models and strategies which can be used in automating parts of the design
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processes. Thus, before concluding, it is necessary to refer to a number of ideas
about how these results may benefit system designers particularly in the area of
architecture. It is also necessary to caution the reader about their preliminary
nature. Naturally, before effort is spent on building sytems on these ideas,
greater effort is needed to verify and develop them further.

First, it is important to recognize that one of the invariants in all of the
protocols we examined was the distinction between local versus global
constraints. Data in any CAD system should be organized to reflect these
distinctions. Based on the experience of the designer, the scope and range of
remedies necessary to resolve design conflicts can be seen at several levels of
hierarchy. It should be possible to organize problem constraints which come,
either implicitly or explicitly, with the problem description, into these levels of
hierarchy. In this way, dependencies between conflicts caused by these
constraints and design elements can be calibrated by individual users of the
CAD tool.

Second, special representations of design elements are needed so that the
dependencies between hierarchically organized constraints and design elements
can be automatically propagated. Such a tool would allow the designer to
predict the consequences of modifications made at one level on elements and
representations, at another. If the secretary is moved, for example, in order to
get it closer to the chief engineer, the system should alert the designer to other
constraints that are being violated, that might be violated as a consequence or
that might be satisfied easier, for that matter, all due to the initial move.

Third, the models of knowledge brought to bear on the design problem by the
three subject groups suggest drastically different ways of integrating knowledge-
based systems with the design process. Depending on the sophistication of the
user, the CAD system may assume different parameters. Professional architects,
the most likely users of CAD systems, would prefer to work with topology-
based schemata in organizing their initial design ideas. Subsequently, as a
prerequisite for finalizing these ideas into designs, architects need ways of
testing geometric properties of their ideas as well as other performance-based
aspects of the solution.

Fourth, in response to the architect’s tendency to return to previously
encountered alternatives or alternatives generated from earlier states of the
solution, some kind of memory of earlier search states must be simulated in
CAD applications. In its simplest terms this would bea chronological file of
significant interim results, with the capability to return to these and generate
new alternatives with relatively little effort.

Finally, a myriad of evaluative tools are routinely used by all subjects in
determining the manner in which a design problem must be restructured. These
include testing for adjacency, proximity, access, natural light, ventilation,
circulation, privacy, spatial tightness and so on. Most of these are qualitative
and context sensitive measures which are extremely difficult to quantify.
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However, it is almost inconceivable to imagine CAD systems which can be
effective in the preliminary stages of architectural design, without capabilities
such as these.
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3 A Graphical Design

Envirqnment for
Quantitative
Decision Models

CHARLES WIECHA
MAX HENRION

Abstract

Traditional decision support systems, including spreadsheets and other non-
procedural programming languages, are effective tools for developing models
whose structure, limitations, and appropriate applications are understood. Many
problems, however, involve considerable uncertainty which should be addressed
during model design by debate and discussion within in a modeling team.
Computer-based design environments for such problems must support modeling
teams by making model structure understandable, and by encouraging an
iterative design methodology. Demos and Demaps are design tools which
address these goals by integrating documentation with model statements, and by
displaying model structure graphically. This chapter gives an example of the
application of Demos and Demaps to an extensive model of the effects of acid
rain in North America.

1 Introduction

Demos (the Decision Modeling System) is a non-procedural language for
designing quantitative models of decision problems [9, 10]. Examples of
Demos applications include a cost/benefit analysis of passive restraints in
automobiles [7], and ADAM, an extensive model of the effects of acid deposition
on lakes and forests in North America [13].

Demaps is a graphical user interface which displays Demos models as
influence diagrams. An influence diagram shows the structure of models by
joining nodes, standing for model variables, using links, representing the
algebraic dependencies among the variables. Demaps diagrams can be
decomposed into a tree of subdiagrams, each of which shows the structure of a
Expert Systems for Engineering Design Copyright © 1988 by Academic Press, Inc.
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single component of a complex model. The focus of this chapter is to give an
extended example of how Demaps has been used in the implementation of one
such complex model, ADAM. !

We begin by reviewing the advantages of implementing complex decision
models using Demos rather than conventional programming languages. Next
we describe Demaps, which runs under Carnegie-Mellon’s Andrew [17]
environment, by giving an overview of the ADAM model. Finally, a sample
session with Demaps shows how its graphics are a powerful aid in structuring
models during the early stages of design.

2 Using Quantitative Models to Structure
Group Discussion

Documentation should be adequate for others to be able to verify all calculations
and results in a model. In many cases decision models are formulated as large
computer programs, and a number of surveys of such models have concluded
that it is all too common that the program, the assumptions, and the data used
are not documented well enough to make such verification practical. For
example Greenberger et al [8] on the basis of case studies of the use of policy
models in the US government, concluded:

Professional standards for model building are nonexistent. The
documentation of model and source data is in an unbelievably primitive state.
This goes even (and sometimes especially) for models actively consulted by
policy makers. Poor documentation makes it next to impossible for anyone but
the modeler to reproduce the modeling results and to probe the effects of
changes to the model. Sometimes a model is kept proprietary by its builder for
commercial reasons. The customer is allowed to sec only the results, not the
assumptlons,

In some cases the problem is not the physical lack of documentation, but
rather the vast mass of it, rendered indigestible by poor organisation and cross-
referencing (This was a major criticism by the Risk Assessment Review
Group [11] of the Reactor Safety Study [18]).

Almost by definition, policy analysis deals with problem situations that are ill
defined: it is a matter of debate which variables are the decision variables and
which the state variables; there is great uncertainty on scientific/technical issues
and about the preferences of people concerned; they are complex mixtures of
interdependent problems which are hard to disentangle without losing essential
aspects. They have been termed 'messy’ by Ackoff [1], and ’wicked’ by
Rittel [19].

The philosopher of science, Paul Feyerabend, proposes that even in the

lThroughout this chapter, the names of Demos and Demaps models and variables are distingushed
by SMALL CAPITAL letters.
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traditional sciences the choice of paradigm and hence the choice of theory is a
matter of judgement, and suggests that progress arises mainly from debate
between partisans of alternative theories [4]. Hence he stresses the importance
of proposing counter-theories which offer alternative explanations and provide
maximal challenges to a theory, and so stimulate constructive debate. In
wrestling with these problems in policy analysis, Mason [14] and Mitroff [16]
have made similar suggestions about the importance of finding counter-models
which provide alternative explanations of the situation, and offer concrete
references for the assessment of a given model. They suggest policy analysis as
a dialectical process, in which a model is proposed, and one or more counter-
models are offered in response. Debate ensues about the relative merits and
failings of the alternatives, and, with luck, an improved model can be
constructed from a synthesis of the initial ones. The process may then be
repeated.

This can take place at two levels: first within a particular study, the model
development should involve iterative exploration of alternative formulations,
which are proposed and critiqued by members of the project team. Second,
among studies on a particular topic, each project should, of course, start by
examining accounts and critiques of previous models and hence synthesise the
most useful elements into the new model. The Energy Modeling Forum [23]
was set up to foster precisely this kind of process. But as yet it is unusual and in
many areas such review and debate may be hampered by the problems outlined
above, of inadequate documentation and publication, inadequate treatment of
uncertainty, and the lack of peer review.

3 Computer Aids for Modeling

On this view it is hopeless to expect a model to be ’correct’; progress comes
from developing alternative models and from informed debate about their
relative merits and failings. In this case the value of a model lies partly in the
extent to which it stimulates such informed debate; thus a model that is not
exposed to scrutiny and criticism can contribute little. Demos is a high-level
language intended to expose quantitative models to discussion and critical
review. Demos employs mathematical and logical forms close to the concepts
familiar to the analyst. In particular, as a non-procedural language it can allow
the modeler to specify functional relationships between variables without
needing to specify sequences of execution and other details that can be better
taken care of by the system. Each statement asserts a relationship which is
conceptually in parallel with other statements; the sequence in which they are
entered is immaterial to the system and can be chosen according to the
conceptual convenience of the modeller. The logical independence of
statements makes a modular structure that is easy to verify by inspection, and
easy to modify. It also is feasible for the analyst to code a model personally
without an intermediary.
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Demos helps to manage documentary text by integrating it with the
mathematical model. Demos encourages the modeller to enter the mathematical
structure and an explanation of what it represents and why it was chosen, all at
the same time, while it is still fresh in his or her mind. When modifications are
made to the model Demos prompts immediately for changes to the
documentation and so helps to maintain consistency between structure and
documentation. It also uses parts of the documentation to annotate output tables
and graphs semi-automatically.

Our early experiences with Demos [10] showed that it was only partially
successful in supporting the process of modeling outlined above. While Demos
models appeared to be better documented and significantly shorter than
equivalent Fortran programs, important difficulties in understanding models
remained. Users often had difficulty understanding even moderately complex
models without using hardcopy listings. With the limited display space
provided by conventional alphanumeric terminals, only a very few variables
could be seen at one time. Users became disoriented even though Demos has
commands for displaying variables and information about local interactions
among variables. The disorientation we observed seems to be related to
problems in global rather than local understanding of model structure. As
Simon [21] has observed

In [complex] systems the whole is more than the sum of the parts, not in an
ultimate, metaphysical sense but in the important pragmatic sense that, given
the properties of the parts and the laws of their interaction, it is not a trivial
matter to infer the properties of the whole.

Disorientation is a major impediment to the understanding of complex
information systems. In Demos it reduces the discussion and debate which are
essential to the modeling process. Disorientation also reduces the effectiveness
of other systems as shown by Mantei’s [12] empirical studies of ZOG [20, 15].
Furnas [6], Engelbart [2, 3], and Woods [25] have suggested methods for
structuring displays to provide sufficient context to reduce disorientation.

Our approach to the problem of model understanding and disorientation has
been to develop a graphical interface to Demos called Demaps (for Demos
maps). Demaps diagrams are abstractions which highlight those model’s
features relevant to understanding its structure. Other features, particularly
relevant to model behavior, are shown in nearby textual displays. To stress the
structure of models we have designed displays which highlight the dependencies
among Demos variables while suppressing information about their algebraic
definitions. These displays, called influence diagrams, can be used to
understand what variables are present in a model, and what the influences are
among them, without reading their algebraic definitions.
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4 An Example Decision Model: ADAM

This section describes the structure of Demaps diagrams by introducing ADAM,
an extensive model on the effects of acid rain. The structure and meaning of
Demaps diagrams are explained first for the finished model. In the subsequent
section we describe how the model was created by presenting the interactions
which occured with Demaps during the design of ADAM.

Figure 1: Top level view of the ADAM model in Demaps. Pollutant emissions,
atmospheric transport, and environmental effects models are shown
as boxes. Individual variables are shown as ovals, and links between
them indicate the flow of data. Related variables from other model
views are shown by small square connector nodes.
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The Acid Deposition Assessment Model (ADAM) [13] is a large model on the
effects of acid deposition on the lakes and forests of the US and Canada. ADAM
is a comprehensive integrated assessment model, developed to aid in systematic
studies of acid deposition and its control. The integrated model links component
models of pollutant emissions, atmospheric transport and deposition, lake
acidification, and damage to fish and forest populations. The cost of reducing
pollutants is also considered for a variety of emission reduction strategies. The
major components of the model surveyed in this chapter are listed in Table 1 and
shown graphically in a Demaps diagram in Figure 1.

Table 1: Major submodels in the ADAM acid rain model.

¢ Emissions, describing the amount and composition of pollutants
emitted during electricity generation, industrial activity, and from
transportation sources.

¢ Transport, to relate the emissions to deposition of acids in various
remote geographic regions,

¢ Effects, relating the concentrations of deposited acids from the
emissions and Transport models to the fraction of fish and trees
which will no longer be able to survive, and

o Indices, to select regions of the country of interest for analysis and
display.

The major input to ADAM is the trend in SO, emissions from electricity
generation, industrial activity, and transportation. The base scenario in ADAM
considers the effect of a 50% reduction in emissions over 30 years and is plotted
in Figure 2. Under this assumption, the fraction of both lake and brook trout
able to survive in the Adirondack receptor regions increases by nearly 5% as
shown in Figure 3.

The three major intended uses of ADAM are (1) as a research management
tool to help organize and prioritize information; (2) as an assessment tool to
identify the consequences of alternative hypotheses, policy scenarios and
judgments, including the effects of uncertainty; and (3) as an educational tool to
demonstrate the various components of the problem, and the linkages among
them, to the research and policy communities [13]. Demos was selected as the
implementation language for ADAM because of its extensive support for model
documentation, its ability to perform monte-carlo simulations in treating
uncertainty, and because of its capabilities for sensitivity analysis.
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Figure 2: Trends in SO, emissions over time. Since future emissions are
uncertain, 10% and 90% confidence bands are plotted along with the
median values.
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Figure 3: Fraction of lakes able to support brook and lake trout in the
Adirondack region over time.
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4.1 The Structure of Demaps Diagrams

In this section we explain the structure and meaning of Demaps diagrams by
explaining the implementation of each component of ADAM. The EMISSIONS
submodel takes as input the number of kilotons of SO, generated in each of five
different sectors (utility and industrial combustion, non-ferrous smelters,
transportation, and other sources) for the base model year of 1980. These data
are input to EMISSIONS from the variable EMIT_BASE shown in Figure 1. The
annual changes in these emissions are specified in YEARLY_DELTA and are used
to generate forecasts of emissions through the year 2010.

Individual variables are shown as nodes shaped like ovals in the diagram.
Each node has two connection points, one below the node for links from
variables it depends on, and the other above the node for links to variables it in
turn influences. Data flows in the direction of the arrows, from the bottom to
the top of the diagram in Figure 4. Collections of variables called submodels are
shown as boxes in Figure 1. Like variables, submodels have inputs and outputs
which are variables outside of the box which influence or are influenced by the
contents of the submodel.

Submodels have both external and internal views. An external view, for
example of the EMISSIONS submodel in Figure 1, displays the interface between
the submodel and its external context. The external view consists of a box
representing the submodel along with connections to variables which are inputs
to, or depend on outputs from, the submodel. The internal view of EMISSIONS
shown in Figure 4 displays the submodel implementation by showing the
variables and connections relating the submodel’s inputs to its outputs.
Submodels are a form of abstraction in Demaps diagrams which allow models to
be understood by hiding information about components which are not relevant
In a given context.

Influence diagrams are another abstraction of model structure in that their
links specify what variables are related, but not how they are related. The
detailed way in which each variable depends on others 1s specified in algebraic
definitions which are shown in attached text displays, and in pop-up cards
described below. In addition, only the direct influences on each variable are
shown. Indirect influences, i.e. those which act through intermediate variables,
can be inferred by tracing through successive links in the diagram. This is
relatively easy to do within a given diagram but could be difficult when
following links to other diagrams.

To help trace influences from one submodel to another, small square
connector nodes are used. The connector nodes can link inputs or outputs to a
submodel: in Figure 1 EMIT BASE and YEARLY_DELTA are inputs to EMISSIONS.
Connectors are also used in internal submodel views, as in Figure 4, to show in
detail how inputs and outputs interact with variables in the submodel. Finally,
connectors can link one model to another directly as in Figure 1, when the
outputs of one submodel are directly input to another. In all cases, connector
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nodes have pop-up cards listing the names and definitions of the variables they
represent.

Ut_emissions

Pargni Mode —
Adan anspor var .
BeCects Title

4  variable Emit_by_src

Title S02 Emis By Src

Units KTonS02/¥r

Description Annual S02 emissions by U § stats ot Cansdian provincs, «
sunaed over the smissian aecCtcrs

Definition Sum( Emit by year. Sector .

Variahle Emit by year

Title Anvwal S027Emissions

Units KTonS02/Yr

Description Annual S02 emissione by U 5 state or Canadian province, -
broken aut by emission sector

Definition ( Emit base * UC_base ) * Ysarly delta * UC emissions

Figure 4: The detailed view of the emissions submodel. Variable
EMIT_BY_YEAR gives the pollutant emissions for each source by year
broken down by sector (electric utilities, manufacturing, etc).
EMIT_BY_SRC sums over the sectors to give a single emissions value
for each source and year.

The hierarchical set of submodels is displayed using the control panels at the
center of Figure 1. Each panel contains the names of the displayed model’s
parent, sibling, and child submodels. The current model view can be shifted to
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any of these other submodels by clicking on one of their names. In the future,
multiple displays will be supported to view several model diagrams
simultaneously.

Figure 5: Contents of the atmospheric transport submodel. Submodels nested
in Transport compute the deposition of SO, and SO, at receptor
sites, and the resulting rain pH. Variable RAIN_PH is the only
value passed into the downstream model on aquatic effects.

The internal view of the next stage of ADAM, the TRANSPORT submodel
shown in Figure 5, is a good illustration of how connector nodes function.

TRANSPORT contains two additional submodels: DEPOSITION which determines . :
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the fraction of emissions from each source which are carried in the atmosphere
to each receptor site, and RAINPH which determines the pH of rainfall for a given
level of acid deposition. The links in Figure 5 indicate that DEPOSITION has
some inputs from outside TRANSPORT and provides one or more values which
influence variables in the RAINPH model. RAINPH in turn has additional external
inputs, and computes one or more values passed to other submodels in ADAM.

Each of the connector nodes has a set of cards (which can be displayed using
the mouse) which list the name, title, units, and definition of all variables the
node represents. Figure 6 shows the list of variables which appears over
DEPOSITION’s input connector node. The information provided in these pop-up
cards reduces the time and effort needed to page between different model
displays. Similar cards which appear over each variable reduce the need to shift
attention away from the diagram to examine the variable in the attached text
display [24].

In the last stage, submodel EFFECTS takes as input the pH of rain computed by
RAINPH and computes the key model output shown in Figure 1: VIABLE_LAKES,
the fraction of lakes which will be able to support fish. This output is
determined by the CHEMISTRY submodel in EFFECTS which relates the pH of rain
to fish viability using empirical observations of alkalinity and fish survival in
lakes in the Adirondack region of New York State [22].

4.2 Sample Interaction with Demaps: Designing ADAM

Demaps diagrams are important in designing models as well as in understanding
existing ones. First, the abstract view of a model given in the diagram allows
inferences to be made about the structure of the model, and about its scope, i.e.
about which variables do and do not exist in the model, without considering the
definitions directly. Second, the lack of an explicit representation for algebraic
operators in the diagrams allows models to be read and designed in stages,
including

e What are the significant variables that should be, or are, included in
a model, and which lie outside of its scope?

¢ What are the qualitative dependencies among the variables included
in the model?

¢ How should variables be grouped to reflect major computational
units?

¢ What are the quantitative algebraic definitions which implement the
dependencies?

Demaps does not force a linear progression from stage to stage. Rather, the
abstraction of model structure facilitates each type of consideration without
overly constraining the later stages. By focusing attention on different
considerations at each stage, the diagrams can be an important aid in structuring
debate about alternative model designs. Like the idea graphs of Cognoter [5],



208 Wiecha and Henrion

Figure 6: Menus that pop-up over nodes give abbreviated textual descriptions
of each variable. The four inputs to the DEPOSITION submodel of
TRANSPORT are listed over the leftmost connector node in Figure 5.

influence diagrams in Demaps help make model structures transparent and invite
others to comment on and revise them.

Many decision support systems today are oriented toward the quantitative
implementation rather than the qualitative structuring stages listed above.
Implementation involves coding model statements once they have been derived,
and exercising the model using a variety of methods for sensitivity analysis.
Lacking, however, is effective support for the initial derivation of the equations
which define a model. The structure of a model evolves from very qualitative
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Figure 7: The AQUATICS model computes a probability density function for the
pH of lakes in the receptor region. Submodel CHEMISTRY takes the
data base on current lake alkalinity and pH, and uses selected values
of the rain pH input from the Transport model (in variable
SELECT_PH), to compute the fraction of lakes able to support fish.
This output is shown in variable VIABLE_LAKE in model ADAM.

ideas about the important variables and their interrelationships, to quantitative
definitions. Demaps can be used both for model implementation and for
structuring early qualitative design ideas. In the sample session which follows
we describe how Demaps might have been used in structuring ADAM.

Demaps can be used to structure a model by creating and describing the
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relationships among variables without committing to detailed algebraic
definitions, and by grouping variables into related clusters. These decisions can
be made in practice as follows. As each variable 1s added to the diagram by
dragging an oval icon from the column at the left of the diagram a blank
template of attributes is created in the text display. In Figure 8 the major input
and output variables in ADAM have been created in the diagram and described in
the scrolling text display.

As links are drawn to other variables using the mouse, the textual definitions
are automatically modified to reflect the new dependencies. Since graphical
links are abstractions of the definitions, the text cannot automatically specify the
actual functional form of the resulting dependencies. Demaps creates a
FunctionOf relation to represent the abstract dependencies in text form. For
example, if links were drawn from variable EMIT BY_YEAR to varnables
EMIT_BASE and YEARLY_DELTA in Figure 9, the definition of EMIT BY_YEAR in
the text display would be set automatically to: FunctionOf( EMIT_BASE,
YEARLY_DELTA). Links may be removed between variables graphically by
using the dagger icon from the left column. As each link is cut, the FunctionOf
definitions are altered to reflect the new set of dependencies.

Once a number of variables have been created, they can be grouped together
into submodels. In Figure 10 additional vanables have been added to ADAM for
the atmospheric transport and rain pH calculations. Using the mouse, a box has
been drawn around those variables which will become the EMISSIONS submodel.
Once the mouse button is released, the external view of the resulting submodel
appears as shown in Figure 11.

Though the model is not yet complete, submodels can be created now and
edited later to add new variables. The strategy of alternately creating variables
and grouping them into submodels is an example of "middle-out” model design.
Middle-out design contrasts with pure top-down design in which a hierarchy of
empty submodels is created then filled with variables and with bottom-up model
design where a flat network of variables is built then later partitioned into
submodels. Middle-out design is a hybrid practice in which parts of the network
are built, and then broken down into submodels, while other submodels are
empty, serving as placeholders for unspecified variables. Middle-out design can
be helpful when the requirements for parts of a model are understood, but others
are uncertain, Variables in the better understood submodels can be created
immediately, while the less certain submodels remain empty to be refined later.

In the final stage, algebraic definitions are entered textually for each vanable.
In Demaps the links already present in the diagram are not constraints on what
definitions can be entered. Thus if the definition mentions vanables that do not
yet exist in a model, or fails to use all of the variables with current links in the
diagram, the diagram will be updated automatically to reflect the actual
definition. In general the text and diagram are alternative views on the same
model. Either representation can be edited with the system taking care to



8. Graphical Design Environment 211

Figure 8: Stage 1 of model design: choosing significant variables. Variables
are created by dragging a copy of the oval icon from the palette at
the left into the diagram. Blank templates for the new variable’s
attributes are added to the scrolling text display below the diagram.
The title, units, and other attributes may be completed immediately,
or later once all of the variables have been created.

propagate changes to other representations or to other views which may include
the modified object.
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Figure 9: Stage 2 of model design: creating qualitative links between
variables. Variables may be related to each other without giving
their algebraic definitions by drawing links using the mouse.
Textual definitions are updated automatically to reflect the
dependencies created graphically.

4.3 Discussion: Generalizations from ADAM

Most of the anticipated problems in this implementation were related to the large
number of variables, links, and submodels in ADAM. There are roughly 600
links among the nearly 200 variables in the full model. Variables are grouped
into 66 submodels in four major areas as described in Table 1. In addition to its
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Figure 10: Stage 3 of model design: grouping variables to create submodels.
Variables may be repositioned in the diagram by dragging them
with the mouse. Once grouped together, submodels are created
by enclosing a cluster of variables in a box.

large number of links, variables, and submodels, ADAM contains large amounts
of model text. The hardcopy listing is 75 pages long, with some variables
having algebraic definitions in excess of 35,000 characters.

We originally expected that the major problem to emerge during the
implementation of ADAM would be that displays of large models would become
very cluttered. Too many crossing links would render the diagram less readable
and useful as a means of conveying model structure. Our preliminary results
indicate two reasons that diagrams do not become cluttered.
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Figure 11: The diagram after the EMISSIONS submodel has been created.
The inputs to EMISSIONS include EMIT_BASE and YEARLY DELTA.
The outputs influence DEP_MATRIX.

First, vanable relationships tend to be clustered so that most links go to a
limited number of neighboring variables rather than to variables in remote parts
of the model. The abstraction mechanism of submodels is thus effective in
isolating these clusters of related variables so that most links in a submodel are
to other variables in that submodel. Programming environments for procedural
languages often have displays related to both data and control flow. The
structure of many data flow diagrams is related to the influence diagrams used in
Demaps, and hence similar clustering may be found in such displays.
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Second, the way in which Demaps displays connections between submodels
is effective in reducing the display space needed for large models. Linkages
between variables in different submodels are represented by offpage connectors,
shown as small squares in the figures above. The structure of the diagram is
thus a form of fish-eye view [6] in that details of a limited area of the system are
selectively augmented with those objects at a greater "distance” from the focus
of attention which are significant given the current view.

Offpage connectors reduce screen clutter by aggregating connections from a
given variable to all remote variables into a single link. Pop-up cards give the
name, units, an abbreviated description, and the definition of each variable
represented by such a link. In this way offpage nodes give a compact view of
external connections. The information in the pop-up cards is often sufficient to
avoid displaying the entire contents of the remote submodel.

5 Conclusions

We plan to continue experimenting with Demaps by testing new methods for
browsing networks of nodes and links. One idea is to allow users to expand
nodes on demand, rather than displaying all of the nodes in a given submodel.
When expanded, each node would add links and nodes to the diagram for
variables it depends on. By showing only those parts of the model of active
interest, this scheme could use much less screen space than the displays
currently produced by Demaps.

A second strategy for browsing model networks would be to expand the
nodes lying between two or more "anchor variables” of interest. Demaps would
automatically expand the display to indicate those paths of influence which link
the indicated nodes. Such a "spreading activation” display could be used to
trace the influences between specific input and output variables, or to understand
how changes in one part of the model might propagate to other parts of the
model.

Finally, the diagram could be used to describe the behavior of models as well
as their structure. Node sizes might be varied depending on the strengths of
interaction among variables. Nodes could be suppressed entirely if their values
do not change over a set of model scenarios or between alternative versions.
Links might be coded to indicate if the values they carry are deterministic or
probabilistic, or if they affect a particular policy option considered by the model.

Even if Demaps’ current and future diagrams can provide the technical means
to facilitate substantially understanding and debate about models, it is important
to recognize that there may be major social and institutional obstacles to these
goals. In many cases there are powerful disincentives for analysts to be explicit
about their uncertainty and to expose their work to detailed scrutiny. Analysts,
who may be keenly aware of the sometimes unavoidable deficiencies in their
models, may be understandably reluctant to make themselves more vulnerable to
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criticism than absolutely necessary. Obviously no simple technical fix can by
itself be expected to improve such situations, but the availability of tools which
invalidate some of the traditional technical excuses for obscurantism in policy
modeling could provide strong support to those who wish to promote a more
open and constructive process.
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Part 3 Integrated

Software
Organizations

Design Tools and Environments

In addition to getting started on a design with effective concepts and candidates,
the engineer is also faced with the task of applying computational tools to ensure
that the details are numerically, logically, legally, and scientifically correct.
This part’s four chapters are concerned with tools and their combination in the
service of design goals. Computer-aided design tools are difficult to integrate
for a number of reasons, including their diverse subject matter (applying to
different components or subproblems of the process), their diverse algorithms
and data structures, and their application to different stages of the design process
(from synthesis to manufacturing to maintenance). Often they are programmed
by different people in different languages and using different operating systems
and hardware.

In Chapter 9, Daniell, Dewey and Director present a survey of the
applications of Al to VLSI computer design. They draw some conclusions on
its power and scope, and project how it will help in the future. The chapter
considers Al systems of three types: synthesis design tools, where the system
solves important subproblems in the overall design process; apprentice systems,
where the system attempts to be more comprehensive, often assisting by offering
critiques of a user’s designs; and design environments, where a number of other
tools are integrated, using knowledge-based techniques to do it intelligently.
Several systems in each category are discussed. They conclude that Al
techniques, when combined with traditional approaches, improve the design
process by making it more interactive and more comprehensive in its coverage
of the design space. Of course, many challenges lie ahead, including better
common sense reasoning and new approaches to creativity and innovation.

In Chapter 10, Talukdar and Cardozo discuss the limitations of the
organizations of systems presented earlier in this book. These become evident
as we move towards more comprehensive integration of design systems. The
authors have considered the variety of human organizations and have invented a
kernel software system that would allow a wide variety of them to be modelled.
At the same time, they were also aiming to exploit the full power of networked
Expert Systems for Engineering Design Copyright © 1988 by Academic Press, Inc.
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engineering workstations by supporting software that would distribute
computational tasks and data over the network. The kernel for distributed
problem solving, DPSK, is described, along with its use in several applications.
The applications are diverse enough to demonstrate DPSK’s general usefulness
for design tools within many disciplines and methodologies.

In Chapter 11, Schmitt describes the first version of ARCHPLAN, a system
that provides a flexible, graphics-based user interface to an integrated set of
expert systems that assist in building design. It organizes the overall knowledge
that an architect or engineer brings to bear in designing a building into four
major areas, and provides a way to specify aspects of the overall design in each
of those areas. At the same time, it integrates them by collecting their work in a
single "database" that is displayed pictorially and graphically. The designer can
make detailed choices in the design and receive immediate feedback about their
effects. He or she can follow various strategies in specifying the necessary
information, according to personal preference or problem demands. While the
present system contains one independently developed expert system, it has
several knowledge bases built in and has the objective of integrating a number
of existing engineering systems. ARCHPLAN points the way to a new style of
computerized design assistant.

In Chapter 12, Rehg, et al., present another style of integration of design tools
in a computer-aided mechanical design system. CASE, for Computer-Aided
Simultaneous Engineering, was developed to support mechanical design at the
project level, and to serve as a means of integrating concerns from various
stages of the lifecycle of a product. The system has three types of software tool:
design agents, design critics, and design translators. These form an integrated
testbed for research in representation, problem-solving, and systems integration.
A key contribution of CASE is its coordination of multiple levels of abstraction
in representation, using its three types of software tool. Constraints in different
representations are automatically translated to different levels as design
decisions are made in particular levels. Knowledge about different aspects of
the design process is often most readily expressed in a variety of different
representations, so this organization makes it possible for the first time to
capture many aspects of expertise, and thus improve the automation and power
of the system.
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Abstract

As computer chips have become increasingly complex, there has been an ever
increasing need for better computer-aided design (CAD) tools to assist the
designer. This need has brought forth a wealth of computer programs which can
aid in design and has also demonstrated the need for more powerful
programming paradigms. Artificial Intelligence (Al) is considered to be one
such paradigm that can help to design a new generation of more powerful
computer tools. This chapter reviews the progress of Al for the design of
integrated circuits and analyzes nine case studies in an effort to determine the
role Al should play in CAD for VLSI chips.

1 Introduction

Recent advances in Very Large Scale Integration (VLSI) technology have
allowed the realization of integrated circuits that contain over a million devices.
This increase in complexity has made the computerization of the VLSI design
process mandatory. As a result, in the last two decades, a number of Computer-
Aided Design (CAD) tools addressing various aspects of the design and
fabrication process were developed. Unfortunately, VLSI technology has
continued to advance to the point where traditional CAD technology is
approaching its limits in many situations. Recent advances in the area of
Artificial Intelligence (Al) have led some to experiment with these techniques to
see if they could overcome some of the bottlenecks that are plaguing traditional
CAD techniques.

Expert Systems for Engineering Design Copyright © 1988 by Academic Press. Inc.
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In this chapter, we review some of this work to examine the degree to which
Al has contributed to VLSI Design Automation (DA) technology. We assume
that the reader has some knowledge of Al and VLSI design, although we do
review the VLSI design process in the next section. In addition to reviewing
several Al-based CAD tools, in Sections 2-4, we discuss the advantages and
disadvantages of Al techniques.

1.1 The VLSI Design Process

We begin our review with a general discussion of the VLSI design process. The
objective of the VLSI design process is to produce an integrated circuit that
performs a desired function within a set of performance specifications.

The VLSI design process typically starts with design capture in which the
objective is to extract from the designer information concerning the desired
functionality, performance goals, and design constraints. Once the target design
is specified, the next step is design synthesis in which the object is to determine
what electrical elements (resistors, transistors, capacitors, etc.) are to be used,
their specific values, how the elements will be connected, and where the
elements will be placed on the integrated circuit. In general, synthesis is
conducted in a top-down, hierarchical fashion that involves a series of synthesis
steps that transform the original, high-level specification into a connection of
functional units. The specifications for the functional units are, in turn,
transformed into a connection of logical gates, which are, in turn, decomposed
into transistors, capacitors, and resistors. Throughout design synthesis, there is
the need to perform analysis to evaluate the quality and correctness of the design
in progress. If analysis reveals that the design is unacceptable, part of the design
may have to be resynthesized. A typical method of analysis is simulation.
There are several different types of simulators, such as behavioral, logical,
timing, and circuit simulators. Once the design is complete and believed correct
via simulation, the circuit is ready for fabrication.

After fabrication, the design must once again be tested to determine if it
complies with all original specifications. Testing involves developing an
appropriate set of test patterns that when applied to the inputs of the integrated
circuit will verify that the circuit is indeed functional. This task is nontrivial and
computer programs have been developed to automatically generate a set of test
patterns for a given design as well as a set of likely faults.

1.2 New Challenges For CAD: The Nature of the Problem

As mentioned in the Introduction, current DA technology has been unable to
keep pace with the increasing demands of VLSI technology which has been the
principle motivation in investigating new approaches to design automation. In
this section, we would like to explain in more detail the new challenges that
VLSI technology is placing on DA and why traditional DA technology is
proving inadequate.
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Advancing VLSI technology is presenting basically two new challenges to
design automation: computationally intractable tasks and ill-defined tasks.
Computationally intractable tasks represent problems that have out grown
previously acceptable well-formed algorithmic solutions. The shear size of the
task introduces too many details or degrees-of-freedom; thereby, rendering an
exhaustive, algorithmic solution intractable. An example would be the
conventional gate-level automatic test program generation algorithms discussed
in Section 3.2. Ill-defined tasks represent problems that have no well-formed
mathematical theory and, as such, are extremely difficult to cast into a
straightforward algorithmic solution. An example would be the decision-
making process a designer executes in designing a low-noise operational
amplifier. The entanglement of numerous subproblems throughout the design of
such an amplifier (which may have conflicting goals) makes the generation of an
algorithm nearly impossible. These tasks are ill-defined because they attempt to
capture the creativity and ingenuity of the designer’s thought process.

Past design automation efforts have been able to rely heavily on conventional
algorithmic programming methods for implementing most tools. However, as
discussed above, the nature of current and future design automation efforts
suggests that substantially more sophisticated and flexible programming
techniques will be required to efficiently implement the next generation of tools.

2 Synthesis Design Tools

In this section we discuss three synthesis DA tools that incorporated Al-based
techniques. VEXED [16] was one of the early DA tools to develop a formal
notion of the design/synthesis process and to employ constraint propagation
methods. DAA [13] was one of the first DA tools to effectively capture
heuristic synthesis knowledge via a rule-based expert system. WEAVER [11]
was the first DA tool to investigate the integration of Al-based techniques with
conventional algorithmic techniques via a blackboard-based expert system.

2.1 VEXED: VLSI EXpert EDitor
The VEXED system, developed under the AI/VLSI Project at Rutgers, was
aimed at the synthesis of datapaths associated with conventional processors in
terms of electronic components. Computers are generally broken down into two
components: a datapath and a control path. The control path controls the flow of
data through the operators contained in the datapath in order to accomplish a
specific computation. Two aspects of VEXED of particular note are that it
formalized several aspects of the design process and incorporated constraint
propagation for integrating top-down design with bottom-up implementation.

A formalized notion of design is required to provide a framework to capture
and efficiently use an expert designer’s design/synthesis knowledge within a
computer program. VEXED views the design process as a successive
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decomposition of an initial functional specification into a hierarchical collection
of "modules”. As modules are decomposed into submodules, more detail about
the structure of the design is revealed. The decomposition process stops when
all modules have been broken down into "primitive modules". The overall
control of this synthesis process is the responsibility of the designer in that the
designer selects the order in which the modules are to be decomposed.
However, VEXED saves the decisions made by the designer in a plan. This plan
can be used later to answer questions about why a particular synthesis action
occurred or to back up the synthesis process in order to reverse an earlier
designer decision. The synthesis process employs three types of knowledge: 1)
implementation knowledge, 2) control knowledge, and 3) causal knowledge.

Implementation knowledge concerns alternative ways in which a particular
function can be implemented. For example, the various ways to design an
adder, such as carry-lookahead, carry propagate, or carry bypass, form the
implementation knowledge for the domain of adders. For a given domain, the
implementation knowledge defines the search space which is explored via the
control knowledge which results in a choice of a particular alternative for each
module, submodule, etc.

Causal knowledge characterizes the behavior of the various modules and
plays an important role in determining whether a decision made about a certain
module implicitly or explicitly imposes any restrictions or implications on any
other module. VEXED employs causal knowledge, via constraint propagation,
to determine the interactions between successive synthesis actions. [t is often
the case that the realization of a module imposes constraints on other modules.
If an affected module has not been designed yet, these constraints can be used to
refine its functional specification. However, if the affected module has already
been designed, the constraints must be checked to see if they are satisfied or if a
potential conflict exists. If a conflict exists, a modification must be made to the
design by changing one of the modules in conflict or by possibly adding a new
module. Constraint propagation provides the capability of being able to process
partially incomplete specifications, often referred to as a "least-commitment
strategy".

2.2 DAA: The Design Automation Assistant

DAA is an automatic datapath synthesis program. DAA takes as input a
functional description of the target computer and applies knowledge of data flow
and hardware allocation to provide a technology independent hardware
description that realizes the datapath. This synthesis is accomplished in three
basic steps. First, the functional representation, expressed in the language ISPS
(Instruction Set Processor Specification), is transformed into a dataflow
representation, known as the Value Trace (VT). >From the Value Trace
representation, DA A begins an initial hardware assignment. This second phase
corresponds to a very simple and unoptimized hardware solution to the design.
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A third phase, called the Expert Analysis phase, is then used to improve the
design by employing design heuristics that are used by "design experts". DAA
is constructed as a rule-based expert system.

The advantage in speed of automated synthesis is typically gained at the
expense of quality of the design as compared to hand-crafted designs. DAA
tried to overcome the deficiencies of automated synthesis by employing a rich
knowledge-base to characterize the design task. In addition, DAA allowed user
access to various levels of the design process in order to provide the user with
greater control over the synthesis process.

As a test of its effectiveness, DAA was used to implement the IBM 370
instruction set. Expert designers at IBM reviewed the results of DAA and were
able to verify its correctness. Furthermore, a detailed comparison between the
results of DAA and a version generated by engineers at IBM (termed the p370)
was performed. The actual u370 was smaller and slower than the DAA design
since it utilized smaller busses and different cache schemes, while the DAA
design used less pipelining and wider datapaths to achieve a higher throughput.
However, IBM designers apparently felt that is was on the level expected from a
"better design engineer.” [13]

There are two principle reasons for DAA’s success. A great deal of effort
was spent on carefully gathering, encoding into rules, and verifying the
necessary knowledge needed to perform the "expert” aspects of datapath.
Secondly, DAA generally mapped from the functional to the structural level. It
was left to the user to map from the behavioral to the functional level. By
constraining DAA to the functional/structural synthesis activity, the design
process was greatly simplified. In all, DAA showed that a rule-based expert
system is a viable means of implementing a VLSI synthesis tool particularly
when a carefully constructed and complete rule-based is created.

2.3 WEAVER: An Expert Channel Router
WEAVER [11] was developed to automatically route wires (termed nets) on a
chip. Typically, such automatic routers perform either channel routing (where
wires enter from two opposite sides of a rectangular region) or switch-box
routing (where wires enter from all four sides of a rectangular region). Most
routers use two or more non-overlapping layers for routing where each layer has
unidirectional (i.e. horizontal or vertical) routing. The two layers may be
connected through a conduction path known as a via. The minimum number of
wiring tracks needed to route a region (if one employs undirectional routing on a
layer) is termed density. Generally, it is desirable to minimize the number of
vias because vias impede the progress of signals passing through them, thereby,
making the overall chip slower. It is also desirable to route as densely as
possible to minimize chip area.

WEAVER was the first VLSI CAD tool to employ the "blackboard model” as
the architecture of the expert system. The blackboard architecture was
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originally developed for the Hearsayll speech understanding system. [10] The
blackboard architecture supports a problem solving methodology where a
collection of experts are assembled around a blackboard. A problem is posed to
the blackboard and the various experts work in an opportunistic fashion to solve
the problem. When the solution has progressed to a point that a certain expert
has enough information to make a contribution, that expert, or knowledge
source, activates, addresses a portion of the problem, and adds the pertinent
results to the blackboard for other experts to work on. In WEAVER, each
expert is responsible for a specific aspect of the routing problem and generally
operates in one of two modes: consultant, planner, or (in some cases) both. As a
consultant, an expert criticizes the proposed contributions of another expert,
while as a planner an expert attempts to add to the partially completed wiring
specification. The various experts were designed to operate independently of
each other. One of the experts focused on the more difficult parts of the
problem, another expert had common sense knowledge, and another expert
cleaned up the results of other experts. Some of experts involved heuristic
knowledge, while others involved knowledge that was more algorithmic in
nature. It is this blend of heuristics and algorithms that makes WEAVER
interesting and powerful. In all, eleven experts were used, one of which is the
designer. The ten programmed experts in WEAVER consisted of 700 rules.

WEAVER performs both channel and switchbox routing by employing
multiple optimization metrics such as wire length, vias, and congestion as well
as preassigned nets and single layer availability of pins. It routes using two
layers with the ability to have preassigned nets and fixed availability of pins on a
given layer. In addition, WEAVER exhibited the notion of graceful
degradation in that when WEAVER was run under conditions of impaired or
missing experts, it was able to continue to route with poorer and poorer
performance until only the minimal experts remained active. These capabilities
enabled WEAVER to route many classical cases with results that were much
better than was previously achieved. WEAVER efficiently completely routed
provably unroutable (for unidirectional wiring) switchboxes.

3 Evaluation Design Tools

The synthesis tools discussed in the previous section play an active role in the
design process in that they actually alter the design. Evaluation DA tools on the
other hand are passive in that they evaluate a design in order to determine how
well it performs. In this section we review some evaluation-type CAD tools that
incorporated Al techniques.
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3.1 DIALOG: A Design Critic

DIALOG is a knowledge-based design aid for critiquing MOS VLSI circuits
developed by the VLSI Systems Design group at IMEC in Belgium. {6, 7] More
specifically, DIALOG analyzes a VLSI circuit for design-style dependent design
errors. DIALOG contains knowledge about good and bad design practices for a
certain design style (e.g. a specific gate technology and clocking scheme for a
given fabrication technology). This knowledge includes information about logic
configurations, noise margins, charge sharing, non-static CMOS gates, excessive
capacitive loads, etc. By employing a knowledge-based approach, DIALOG can
more intelligently detect design errors than is possible through the use of
conventional simulators. Conventional simulators have no global knowledge of
the nature of the particular design being analyzed and, as a result, often do not
detect errors that represent bad design practices or potentially marginal
performance. In addition, some serious design errors may cause a simulator to
fail in an unusual manner that does not indicate the actual error. Hence, the
need to complement the numerical analysis methods with high-level, qualitative
analysis appears evident.

Knowledge is loaded into DIALOG via a language called LEXTOC
(Language EXpressing TOpology Constraints) that provides a means of defining
and constructing a level of abstraction, or a way of representing the MOS
circuit, and then defining a set of design rules that apply to the user-defined
level of circuit abstraction. The concept of allowing the user to define design
rules with respect to an arbitrary level of abstraction, instead of a fixed-level of
abstraction, is referred to as “circuit decompilation”. A user-defined circuit
representation provides an important flexibility to define design rules for
different design styles. =~ Whenever DIALOG’s qualitative knowledge is
insufficient to adequately analyze a circuit, the portion of the circuit in question
is extracted and presented to the user for detailed inspection and simulation.

3.2 Hitest: An Test Generation System

Hitest is a knowledge-based test generation system developed by Cirrus
Computers and the UK Department of Industry. [1, 17] The motivation for
developing Hitest was the observation that conventional Automatic Test
Program Generation (ATPG) techniques are inadequate for large sequential
digital circuits. In particular, the current ATPG practice is to use algorithms to
compute the input patterns required to cause the effect of a given fault to be
detectable at the output. ATPG algorithms are computationally intensive and
generate test patterns that may have little supporting structure or rational in that
the order of the tests may or may not be grouped according to the functionality
of the design or for the efficient execution by a tester. In contrast, an
experienced test engineer who posses a more detailed understanding of the
global structure, behavior, and intended use of the circuit can often quickly
focus on a set of tests that will sufficiently exercise the most critical portions of
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the design. Thus, once again, we see the need to meld the advantages of the
human expert knowledge and the conventional algorithmic procedures to
address a complex task.

Typical ATPG algorithms use a gate-level description of the design. Hitest
employs knowledge of the functionality and intended modes of operation of
higher-level modules (e.g. aggregates of gates such as flip-flops, counters,
RAMs, etc.) to more effectively target the generated tests towards the most
important and probably faults. Once the knowledge about the design is
captured, the knowledge must be used to generate the tests. Hitest generates the
tests by dynamically and incrementally building a description of the test in a
language called CWL (Cirrus Waveform Language). The CWL is a framework
which provides an inherent degree of structure, organization, and
transportability for the generated tests.

Hitest uses a "frame-based" knowledge representation [14, 18] to store and
process expert knowledge. Frames provide a means of grouping pieces of
knowledge that are related to each other in some manner, where each piece of
knowledge may have a widely differing representation. The pieces of
knowledge are referred to as “slots” in the frame. For example, all the
information concerning the testing of a RAM chip can be conveniently
encapsulated in a frame. The various slots could contain knowledge such as
simple symbolic data indicating manufacturer, heuristic rules indicating likely
failure modes, or procedures for test routines. Frames themselves can be
grouped to form a hierarchy of contexts.

3.3 LEAP: A Learning Apprentice
LEAP [15] is a learning system that is layered on top of the VEXED system
discussed in Section 2.1. LEAP allowed VEXED to learn new rules for
simplifying boolean equations and for the generation of new boolean networks.
One of the more interesting aspects to LEAP is the way in which it interacts
with VEXED. During the course of a VEXED session, LEAP remains passive
until such time as the user of VEXED over-rides a VEXED suggestion. Without
the user explicitly entering a training-mode, LEAP activates and begins to build
a rule which would characterize why the user made the change that he did.
When a rule is built, LEAP then attempts to generalize the rule both in its
context (the left hand side of the rule) and its actions (the right hand side of the
rule). If LEAP were distributed to 1000 VLSI designers (using VEXED), it is
theoretically possible for a large and powerful knowledge-base to be
automatically created since LEAP had learned from a large body of designers.
LEAP is an expert-system which has expertise in "learning” from interactive
training examples. It is composed of three major modules which are the Right
Hand Side (RHS) generator, a Left Hand Side (LHS) generator, and an
Analytical Simplifier/Verifier. The LHS and RHS generators are procedural
while the Analytical Simplifier/Verifier is a production system. Several features
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which allow it to achieve good results are the following: the interactive nature
of the VEXED system, the use of a powerful analytical production system to
generalize new rules from examples, and the ability to separate knowledge of
correct design information from knowledge which indicates when a
representation is preferred.

The interactive nature of the VEXED design session allows LEAP to operate
within a context rich environment. This means that many design constraints,
preferences, and goals can be combined to help form the context (LHS) of the
rule to be built. Since LEAP is only activated when the designer overrides or
supplies a design alternative to VEXED, LEAP is guaranteed to be supplying a
piece of knowledge that VEXED does not have.

LEAP uses an analytical approach to generating rules. This means that it
does not have to attempt to learn from a large population of user supplied
examples. Instead, it generates an initial very specific rule (from the RHS and
LHS generators) and then operates on this rule to analytically generate a more
general rule. This helps to eliminate cases where LEAP would build rules that
are either wrong or unclear to a person.

Finally, LEAP addresses a major bottleneck in knowledge acquisition. LEAP
partitions the knowledge-base into rules that indicate which implementation is
correct and rules that indicate which implementation is preferred. This is a
fundamental problem with homogeneous rule-bases. It must be made explicit
not only what constitutes correct design but also optimal design. One of the
major criticisms of computer generated VLSI designs is that, although correct in
construction, they lack a clear design strategy which would make them either
smaller, faster, and generally better. By attempting to acquire knowledge of
both types, LEAP should provide VEXED with a knowledge-base that is more
powerful and better able to represent the way in which persons design VLSI
chips.

4 Design Environments
A major problem associated with employing the current set of CAD tools for
complex VLSI system design is that of tool integration. The need for a suitable
tool integration methodology, as well as an environment that implements this
methodology, stems from three problems. First, the number and complexity of
CAD tools used during the design process continues to increase. Secondly, even
though more tools are in use, standards for interconnecting tools have not
evolved sufficiently to allow easy integration. This means that a large amount
of effort must be expended in converting the output of one CAD tool to the input
of another CAD tool. Finally, the sheer number of design details is such that the
designer has no choice but to rely on the computer to maintain and verify the
design database.

A VLSI CAD tool integration methodology, and the design environment that
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implements it, should be capable of managing the numerous details that arise
during the course of a design, track design dependencies, efficiently allocate
computer resources, and automatically execute CAD tools if appropriate. To
this end, design environments typically contain a design representation or design
database through which the design is controlled. Much like a software
maintenance package, the design environment provides version control, may
automatically use verification tools to assure correctness, and logs the user’s
actions within the system. The design environment will interact with a set of
resident CAD tools and will attempt to act as a manager of the CAD tools by
handling input/output requirements, invocation parameters, and possibly
automatically sequencing the CAD tools. In short, a design environment
provides a design platform which acts as a rich framework which, in effect,
shields the designer from cumbersome details and allows the designer to work at
a high level of abstraction.

The concept of such a design environment is not new; however, the previous
or ongoing efforts in this area have not yielded the expected results to date. This
is due, in part, to the ever changing number and type of CAD tools that an expert
designer uses. This, coupled with the fact that representation of the design space
is also complex, has lead to the construction of design environments which are
slow, hard to maintain, and difficult to extend as CAD tools change. As
research into design environments has progressed, several issues have emerged
to become major impediments on the road to the creation of a true design
environment. These issues are as follows:

¢ How do we represent the design as well as the design space?
* How do we model knowledge of design and design activities?
¢ How do we apply CAD tools to assist in the design process?

¢ How do we integrate the results of various (and possibly dissimilar)
CAD tools?

Three design environments will be discussed with respect to these issues
listed above. In particular, Palladio [2] centered mostly on the issues
surrounding the design representation and how the user of the design
environment views the design in progress. ULYSSES [4, 5] was designed to
address the issue of CAD tool integration as well as the modeling of design
knowledge and design activities. Finally, ADAM [9, 12] focuses on the ability
to automatically invoke CAD tools as needed and to provide a flexible design
representation. It is important to note that research is ongoing in this area and
creation of a powerful design environment is still considered a major milestone
needed in the design of the next generation of computer chips.
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4.1 Palladio

Implemented in 1983, Palladio [2] was one of the first attempts at developing a
VLSI circuit design environment. Its goals were to develop a mechanism for
representing CAD knowledge, handle the various types of knowledge that exist
at different layers in the design hierarchy, and deal with the interdependencies of
this knowledge. Palladio employed the notion of a perspective, or view, of the
design as seen from some point in the design process. The design process itself,
therefore, involves successive refinement from a global perspective with
incomplete specifications to a specific perspective with a complete specification.
The Palladio paradigm incorporates the fact that not all steps in the design
process are followed in some rigid order. Rather, it allowed an expert designer
to shift focus (and therefore perspectives) during the design process. This
allowed the designer to constantly work on various pieces of the design and to
focus attention on what he or she felt was currently important.

A key feature of Palladio was its ability to handle a mixed internal
representation scheme so that arbitrary objects can be represented. Such objects
could take the form of a user-defined block, an ALU, a register, or even a
discrete gate. This allowed for a complex design hierarchy capable of
representing the design at different levels of granularity. Furthermore, the
hierarchy provides a data hiding mechanism so that details of the design are
only visible at the level that they are needed. Thus, the designer (or designers)
could all operate on a single representation which could be examined at varying
levels of detail. The notion of perspectives is based upon this hierarchical
design data representation scheme.

The implementation of this hierarchy was done so that the structure of a
circuit is defined through an object-oriented mechanism. This implies that the
design can be represented by a hierarchy of objects with each object
representing a piece of the design, with the various pieces having inheritance,
procedural attachments, and exception handling. For example, if the design is
based on generic bit-slice objects, we attach a procedure to this generic object to
generate the appropriate n-bit equivalent as needed. This expanded cell (e.g. an
eight bit register) may have inherited an assignment of signals to its pins via its
parent object (e.g. a generic state machine object).

Another important aspect to design is constraint propagation (also discussed
in Section 2.1), for it is through constraint propagation that the design goals are
aligned with implementation constraints. The Palladio project showed that
constraint propagation is achievable through data-directed invocation. Data-
directed invocation is the mechanism that allows the design to be incrementally
built as the goals and needs of the designer become apparent. In this fashion,
the design constraints will change and propagate with each modification to the
partial design. This is important since the design requirements typically can not
be determined a priori. By providing this form of constraint propagation, the
design interdependencies are developed during the life-cycle of the design. This
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is more natural, transparent, and intuitive than attempting to provide complex
estimation routines which try to map estimated cost of implementation to
original goals and constraints.

Once the Palladio representation was designed, a set of CAD tools to
manipulate it were developed. Each tool was designed to work with the other
tools in the Palladio environment. The Palladio designers were willing to
recreate a CAD tool suite since it was believed that this new representation
scheme would result in substantial gains. Using the fact that they were starting
from scratch, they explicitly built the environment’s representation scheme into
each CAD tool. Furthermore, they were able define the CAD tool interaction
requirements and also design these into the new tools. This allowed the Palladio
designers complete freedom in the selection and creation of CAD tool
interaction criterion. Pictorially, the loose collection of the Palladio toolset is
shown in Figure 1.

Figure 1: Palladio System Architecture.

While Palladio is not a "good" production environment, especially in terms of
execution speed, its development did result in a basic understanding of the
nature of the tool integration problem. The use of mixed modes of
representation gave it unprecedented versatility. A major drawback to
Palladio’s approach, however, lies in the difficulty of mapping its hierarchical
representation of a chip to some other intermediate form such as DIF [3] or
VHDL. [8] Thus the Palladio design environment can not accommodate the
large number of existing CAD tools. All CAD tools used in Palladio must be
specifically written for that purpose. This represents an explicit bottleneck in
the Palladio environment since it can not accommodate new or existing CAD
tools that were not intended for it.
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4.2 ULYSSES

ULYSSES [4, 5] was a first attempt to develop a VLSI design environment that
addressed the fundamental issues of integrating arbitrary CAD tools. In addition
to being able to integrate arbitrary CAD tools, ULYSSES could automatically
execute CAD tools, support a design space capture mechanism, and handle
complex interaction between dissimilar CAD tools. ULYSSES employed a
blackboard architecture, discussed in Section 2.3, to handle interaction between
the necessary CAD tools and distribute design information. Design activities
were described via a language called "scripts”. These scripts could be
"compiled” to automatically execute the CAD tools needed for a given design
activity. Since the use of the blackboard architecture and scripts are the two
most pertinent aspects to the of ULYSSES, we discuss them more fully below.

ULYSSES employed a blackboard (Figure 2) as a global database through
which cooperating processes communicated. In ULYSSES, the various goals
and intermediate results were stored on the blackboard, which, in turn, caused
the execution of a CAD tool, the generation of new internal data, or the
modification of information that already existed on the blackboard. Control of
the blackboard was explicitly maintained by the ULYSSES Scheduler. [4] The
Scheduler’s job was to examine all pending operations and decide in which
order they should be executed. The Scheduler used many criterion to arbitrate
between CAD tools; including job priority, whether the task required human
interaction (in case the designer had left), whether or not the expected computer
resources are available, and whether the job would help satisfy a pending goal.
The use of the blackboard facilitated developing the loosely coupled architecture
depicted in Figure 2.

The ULYSSES script was a high level representation of a design task that
contained knowledge of the CAD tool execution sequence, the reasons for each
step in the sequence, and how the output of one tool could be used as the input
to another tool. In order to develop a script, a designer had to have a complete
and detailed knowledge of ULYSSES and the CAD tool suite and its operation.
However, once a complex CAD tool task was encoded in a script by an expert
designer, a novice designer could then employ the script with little or no
knowledge of how it was developed. The script could be compiled by the
Scripts Compiler [4] which would create a set of LISP and OPS5 statements
which would activate or interact with the blackboard.

ULYSSES demonstrated that the blackboard is an effective means for
automatic execution of appropriate CAD tools to meet a specified set of
requirements. Furthermore, the Scripts Language [4] (and its associated
compiler) produced a mechanism that "understood” CAD tool sequencing and a
format to explicitly represent CAD tool interaction. Since ULYSSES had the
ability to arbitrate between competing CAD tools, the scripts writer could
partially decompose the problem by formulating a large design task in terms of a
set of smaller scripts. ULYSSES would then properly sequence the runtime
requests and actions.
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Figure 2: The ULYSSES Design Environment Architecture.

4.3 ADAM

The Advanced Design Automation system [9, 12] (ADAM) is another attempt at
creating a design environment for VLSI chip design. At present, the ADAM
research is still ongoing but several key aspects to the ADAM project are of
note. First, ADAM is inspired by the original research done on Palladio and
loosely follows the Palladio paradigm. In particular, the emphasis is on a
hierarchical representation termed the design representation, a knowledge-base
containing design strategies, and a planning engine which applies the design
knowledge to the representation space.

In addition to the hierarchical description of a design, ADAM also
decomposes the design into unique and independent "subspaces'. These
subspaces represent the design as four classes of information which may be
equated to four Palladio meta-level perspectives. These four subspaces are as
follows:

¢ Data Flow Behavior Subspace - A data flow graph that specifies the
behavior of the device.

e Structural Subspace - The hierarchical representation of the design
from the logical level down to (but not inclusive of) the physical
realization.

e Physical Subspace - The physical constraints and properties
associated with the actual physical design. Examples of this are the
size and power constraints as well as the physical layout
information.
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e Timing and Control Subspace - The constraint hierarchy that
specifies the desired window of operation as well as the necessary
control dependencies.

The total design space which consists of the four subspaces is termed the
Design Data Structure (DDS). This is an attempt to formalize and enumerate
the generic classes of information that are required for the design process. Like
Palladio, ADAM has established a unique representation on which to base the
CAD tool operation. Therefore, it suffers the same general drawbacks that
Palladio did as the designer is not able to select arbitrary CAD tools.

However, ADAM has begun to address how the CAD tools of the future
should operate. Unlike Palladio, ADAM separates design knowledge from the
design mechanism. In this case, design knowledge is stored in a design
knowledge-base and the ADAM planning engine [12] uses this information to
manipulate the design subspaces. By attempting to separate the design task
from the design knowledge, a great deal of flexibility and versatility may be
gained. While it is still difficult to integrate tools into the ADAM environment,
the ADAM project has begun to explore new ways of automating the design
process.

5 Contributions of Artificial Intelligence to DA
Technology

We have reviewed nine CAD tools that incorporated elements of artificial

intelligence. It is instructive to examine the effect that Al had, if any, on the

performance of these tools when compared to CAD tools that used more

traditional methods.

5.1 Advantages

In general, it is fair to say that Al techniques have provided a more flexible
means of applying heuristic knowledge to address computationally intractable
and ill-defined tasks through new knowledge representation schemes, CAD tool
architectures, and approaches to search, planning, and nondeterministic
decision-making. The result being a set of problem solving skills that can
exploit the knowledge of an expert to codify design activities and pare down
overly complex issues.

The use of powerful design representations (Hitest, Palladio, ULYSSES, and
ADAM) has given rise to a much more natural way to manage and manipulate
the design space. Data abstraction and data hiding facilitated the handling and
manipulation of complex data and constraints. By allowing multiple
perspectives, the designer could more easily structure the information to more
closely fit the application. In the case of Hitest, the test patterns generated were
motivated by an understanding of the target design and therefore, were more
closely related to the patterns a person would develop (as well as more
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efficiently generated than older ATPG’s). The use of mixed mode
representation (i.e. for structure and behavior) that can share the same design
space is becoming a useful paradigm.

Rule-based and blackboard-based architectures have improved construction
of CAD tools. Those CAD tools that used a blackboard architecture (such as
WEAVER and ULYSSES), were able to integrate different cost metrics and
different problem solving paradigms. A very complex piece of code would be
required in order to create the same flow of control in a normal programming
regime.

An important consideration is the dramatic explosion in search spaces that
occur in the CAD domain. Since CAD design activities are very "hard", brute
force code becomes prohibitive to use for large problems. Through the use of
the focus of attention expert, WEAVER employed a best-first search strategy in
that it would tend to work on the important part of the problem. The search
space is paired down by the advice of consultanting experts. This eliminates the
many dead-ends and meaningless attempts that brute-force code would try.
DAA is another example of best-first search by using the knowledge of an
"expert" to guide the initial synthesis decisions.

The Scheduler in ULYSSES is an example of planning. The Scheduler was
able to decide, in a nondeterministic fashion, which CAD should be executed
next in order to most effectively complete the task. In addition, the Scheduler
was able to resolve conflicts between competing CAD tools and initiate the
necessary corrective actions when a particular CAD tool was supposed to be
invoked, but could be invoked due to a missing file.

5.2 Disadvantages

In general, we can not escape the fact that most Al related technologies are
considered slow. WEAVER would typically spend hours, if not days, routing
some problems. Although this issue is considered moot in the academic setting,
it is of valid concern to the commercial viability of such projects. In response to
this problem, faster LISP implementations have been developed, LISP machines
are fairly common, and OPS5 now has a faster successor (OPS83) written in the
C programming language. Of course, the current generation of engineering
workstations are much more powerful and can more easily support the needs of
both computational and memory intensive applications.

A number of the Al-based CAD tools employed production rules (DAA,
ULYSSES, VEXED, DIALOG, and WEAVER); however, little attention was
paid to the price for their use. In DAA, a significant portion of the construction
and life cycle costs are directly attributable to the difficultly in generating good
rules. Kowalski points out [11] that the rule extraction process can be painful
and may never be entirely complete. Upwards of 30% of the rules in DAA were
associated with overhead and cleanup. In ULYSSES, Bushnell was forced to
revamp part of the rule-matching control structure to allow for more capabilities
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in the selection and firing of rules. In WEAVER, the 700 rule rule-base proved
difficult to maintain due to the nondeterministic nature of rule firings. Often the
addition or modification of a single rule has significant impact on the operation
of the tool as a whole. Therefore, while rule-based expert systems may achieve
a more opportunistic reasoning structure and are very quick to prototype, long
term maintenance issues must be carefully considered.

6 Conclusions and Future Directions

It is unfortunate that the growing number of unfulfilled promises and
expectations about the capabilities of artificial intelligence seems to have
damaged the credibility of Al and eroded its true contributions and benefits.
The early advances of expert systems, which were based on 20 years of
research, were overextrapolated by many searching for a magical solution to
their increasely complex problems. In attempting to find solutions to today’s
problems, short-cuts or easy solutions are rare and omniscient solutions are
temerarious. Notwithstanding the problems of Al, we feel that artificial
intelligence research has produced a set of techniques that can profitably be
employed in developing improved VLSI CAD tools. However, we are not
suggesting that Al in and of itself is sufficient, nor that Al is somehow mutually
exclusive with traditional DA technology. Rather, we would opt for a more
synergistic view. In order to develop a proper perspective on the relationship
and interplay between Al technology and conventional VLSI DA technology, it
is necessary to have a framework that provides a metric or a dimension by which
Al techniques can be compared and contrasted relative to traditional DA
technology. Knowledge engineering provides such a framework.

Knowledge engineering is a problem solving strategy and an approach to
programming that characterizes a problem principally by the type of knowledge
involved. At one end of the spectrum lies conventional DA technology based on
well-defined, algorithmic knowledge. At the other end of the spectrum lies
Al-based DA technology based on ill-defined, heuristic knowledge. Knowledge
engineering is not solely associated with artificial intelligence, nor is Al-based
DA technology inherently more powerful or intelligent than conventional DA
technology. Clearly, a Fast Fourier Transform implemented as a deterministic
algorithm using traditional programming practices involves just as much
"knowledge" as optimization techniques for boolean logic using heuristic rules.
Its just that the nature of the knowledge is different, placing the tasks at different
points on the knowledge spectrum, and requiring different programming
paradigms. However, both solutions can be considered examples of knowledge
engineering. This synergistic view towards Al and conventional DA technology
is evidenced by the evolution of AI CAD tool architectures. As previously
discussed, the early expert design tools used rules as the basic data structure to
address heuristic knowledge. From the rule-based expert system, we have seen
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a shift to a more powerful architecture based on the notion of cooperating
experts (termed blackboard architectures) that allow for the melding of
algorithmic approaches with Al techniques.

In closing, artificial intelligence techniques represent a suite of new methods
and programming practices that can be used to augment current DA technology
to yield a more powerful repertoire of problem solving skills required to develop
the next generation of CAD tools. It is the responsibility of the CAD tool
developer to analyze the nature of the task and to judiciously decide what mix of
Al techniques and conventional DA techniques would yield the most efficient
implementation.
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10 Building Large-Scale
Software Organizations

SAROSH TALUKDAR
ELERI CARDOZO

Abstract

This paper describes DPSK, an environment for building organizations of
distributed, collaborating programs. DPSK has evolved from a traditional
blackboard architecture to incorporate a number of collaborative mechanisms,
called lateral relations, borrowed from human organizational theory. This paper
traces the evolution of DPSK, describes its principal features and illustrates its
use with some simple examples.

1 Introduction

Many scientific and engineering areas are desperate for ways to integrate large
numbers of people and large numbers of computer tools into smoothly
functioning, efficient systems. Engineering design is just one such area. The
number of computer aided design (CAD) tools is growing rapidly and is well
into the hundreds in some disciplines. However, most of these tools are of the
stand-alone variety. To use them requires humans to serve as go-betweens and
supervisors. It would be far better if other tools could take over these roles,
making it possible to integrate the CAD tools into software organizations, and
freeing the humans for more rewarding tasks. In the remainder of this paper we
will discuss some of the issues involved in putting together such organizations.

1.1 Terminology

Organization. An information processing system for performing intellectual
tasks like designing cars.

Complex task. A task that decomposes into difficult subtasks that require
different problem solving skills. For instance, the task of designing a car which
decomposes into designing its outer shape, engine, door systems, manufacturing
processes, and so on.

Agents. The active components of organizations. An agent may be a human or
a computer program.
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Uncertainty. The deficit in "up-front knowledge" needed to preplan the
operations (activities) of an organization. Some common components of this
deficit are: incomplete knowledge of the state of the world, inaccurate
predictions of the future, imperfect agents, and unfamiliar tasks. Uncertainty is
dependent on both the task and on the structure of the organization used to
tackle the task.

Contingencies. The consequences of uncertainty, namely, the obstacles that
arise to block the successful completion of subtasks. For instance, an important
problem may turn out to be unsolvable, an algorithm may fail to converge or a
vital piece of data may prove to be unobtainable.

Large-Scale Organization. An organization with many independent agents that
can work in parallel, can collaborate and usually have high computation to
communication ratios. Later, we will argue that complex tasks and uncertainty
call for large-scale organizations.

Collaboration. The exchange of raw and processed data.

1.2 Human Organizations
In seeking ways to build large-scale software organizations it is well to look to
human organizations for guidance. The reasons are two-fold. First, human and
software organizations are similar in principle [6], [9]. Second, human
organizational theory is much more mature. We would rather borrow techniques
from it than reinvent them.

Human organizations are able to complete very complex tasks in highly
uncertain circumstances by:

e using large numbers of agents,

e providing a variety powerful mechanisms for agents to collaborate,
and

¢ employing parallel (concurrent) approaches.

Human organizations routinely assemble very large teams of intelligent
agents — hundreds, and sometimes even thousands, of engineers, scientists and
managers with widely varying knowledge and skills. A number of mechanisms
have evolved to promote collaborations among these agents, making it possible
for them to focus their skills on big tasks. These mechanisms rely on lateral
channels for information flow that run across the lines of authority. More will
be said about these channels later.

Another important aspect of human organizations is the parallel approaches
they take to problem solving. The advantages are more profound than mere
increases in speed. Some examples will be used to explain. First, consider a
task that decomposes into a set of invariant, partially ordered steps. (Meaning
that some of the steps can proceed in parallel without changing their outcomes.
This is the sort of task that is usually thought of for parallel processing in
computers.) Since the steps are invariant, the only gain from parallel processing
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is a saving in time. Now consider a quite different sort of task — that faced by
one team in a football game. The team’s members must work in parallel. The
overall task would be impossible if only one team member were allowed to be
active at a time. The reason, of course, is that the overall task decomposes into a
much easier set of parallel subtasks than sequential subtasks. There are many
analogous situations in engineering. Designing the different aspects of a product
is a good example. If the aspects are tackled in parallel, there is the opportunity
for negotiations, compromise and coordination. However, if they are tackled in
series, the upstream stages invariably make choices that impose difficult or
impossible constraints on the downstream stages.

1.3 Software Organizations

Despite the theoretical similarities between human and software organizations,
there are profound practical differences between them, especially along the
following dimensions:

¢ Expandability. ~ While human organizations readily grow to
encompass many agents with diverse skills, large-scale software
organizations suffer from acute growing pains and are relatively
rare.

o Distributed problem solving. Concurrent, distributed activities with
high computation to communication ratios and dynamically varying
subtasks seem to be the basic mode of operation of human
organizations. In contrast, computer systems that use concurrent
computations usually concentrate on the finer grains of parallelism
and tasks that decompose into invariant subtasks.

e Collaborative mechanisms. Human organizations use a much richer
set of mechanisms than software organizations.

These differences exist because of a lack of good tools with which to build
large-scale software organizations. Traditionally, there is an overwhelming
amount of software effort required to integrate a number of dissimilar software
packages. To further illustrate building a problem-solving organization with
agents written in programming languages of significantly different orientations,
consider the idea of building a human organization with individuals, each of
whom is from a very different cultural and educational background, and who
speak and write different languages. Coordination is nearly impossible. With
the varying styles of problem solving to be expected, there are further
difficulties that prevent understanding even when interpreters are employed.
(Interpreters are also cumbersome and expensive.) Add to this the problems of
one individual trying to understand the information files of another. The
metaphor can be carried quite far.
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1.4 Blackboards

In the last few years, blackboards have emerged as both the principal too! and
conceptual form for building large-scale software organizations [13]. In
essence, a blackboard is a database with a built in set of support facilities that
allow it to be shared by an expandable community of programs. The idea is to
make important raw and processed data visible to the community. The
computational cycle i1 modeled after that of a production system and has two
steps:

1. Select a program (this step is done by an embedded control
system).

2. Run the program (and as a result, change the contents of the
blackboard).
Clearly, this computational cycle is designed for a single processor but has an
obvious extension for distributed processing, namely:
1. Select several programs.

2. Run the selected programs concurrently.

In some cases it might be desirable to ensure that these steps are strictly
separated in time, while in others, it might be desirable to allow them to overlap
and proceed in parallel.

1.5 COPS

Having repeatedly been reminded of the importance of distributed approaches to
engineering tasks (see [5], [12], [14], for instance), we set out some years ago to
produce an environment for implementing such approaches. The first result was
a set of tools called COPS (Concurrent Production System) [8]. COPS is written
in OPS5 and provides facilities for creating multiple blackboards distributed
over a network of computers. Programs communicate with remote blackboards
via "ambassadors” (Fig. 1). Each ambassador is a set of rules that represents the
interests of its parent program. The computational cycle for each processor
remains the same as in the uni-processor case except that the first step may
result in the selection of a program that 1s an ambassador. When this happens,
the second step results in an exchange of data between processors.

In working with COPS, certain differences in the control issues for uni- and
distributed processing have become clear to us. In the uni-processor case, the
paramount control issue i1s deciding which program to run. In the distributed
case, this issue becomes progressively less important with increase in the
relative number of processors, and disappears entirely when each program has
its own processor. Instead, the paramount control issue becomes the selection of
mechanisms for collaborations among programs. What is the range of
alternatives for these mechanisms? We will use human organizations as our
models in identifying alternatives. The reasons are three-fold. first, human and
software organizations are close enough in structure to share alternatives.



10. Building Large-Scale Software Organizations

\\\\\\\\g\\

WSS HSI Y

Blackboard Process
(in processor 1)

v

working
memory
(blackboard)

production
memoty

engine

interence L\\\\\\\\\T\\

loca!
proyram

ambassador

process -A's

%

////////////////

AN

1A S/ S SISV S Y

7

Process

A

(in processor 2)

G ST A9 S5 YV S YV AV S ST S Y H o o oY Y S VYA 0 0 0 77 1V AV 7

Y

inls.wnce | working
sngine memory
production
memory
focal
program

%
é///////////////////////////////////////////////

245

Figure 1: Ambassadors allow rule-based process to work as blackboard.

Second, human organizational theory is much more mature; considerably greater
amounts of thought, effort and experience have gone into its development. And
third, we do not wish to reinvent techniques that can be transferred from other

disciplines.
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2 Design Alternatives

2.1 Structural Representations

The structures of both human and software organizations can be represented by
directed graphs with two types of nodes and three types of arcs (Fig. 2). the
nodes represent agents and databases; the arcs represent channels for commands,
signals and data flows.

Figure 2: An organization graph.
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The command-arcs establish lines of authority and usually flow from the top
down. They provide routes for messages like: "do this subtask,” "send me a
progress report,” and "stop." If only the command arcs and agent-nodes are
preserved, the graph degenerates to a traditional organization chart. The signal
arcs usually flow from the bottom up. they provide routes for feedback,
particularly, to report unexpected happenings like commands that cannot be
executed.

The data flow arcs represent the channels provided for the movement of
information other than commands and signals.

2.2 Operations

By operations we mean the activities of agents over time. Consider agents A, B,
and C from Fig. 2. In general, they can work concurrently, as in Fig. 3. Since
they share a database, they can exchange information. These exchanges can
occur at preplanned points in time, as happens between A and B, or
spontaneously, as happens a little later among A, B, and C.

Much of the cooperative activity in human organizations relies on
spontaneous (asynchronous, opportunistic) communications. Software
organizations can also benefit from such communications. By way of a simple
example, consider the task of solving a set of nonlinear algebraic equations.
Many numerical methods are available for this task, but no single method can be
relied upon to always work well. One way to deal with this situation is to
arrange for several methods to search for solutions in parallel, exchanging clues
and other useful bits of information as they find them (i.e., spontaneously). As a
result, solutions are found faster than if only preplanned communications are
allowed, and also, solutions are found in cases where the methods working
independently would fail hopelessly [12].

2.3 Contingency Theory and Lateral Relations

Contingency theory has been derived mainly from empirical studies of large
human organizations and consists of recommendations for structures that either
prevent the occurrence of contingencies or facilitate their handling {7]. The
recommendations can be divided into two categories: adding resources and
improving communications. The latter category can be further divided into:
strengthening the vertical information system and creating lateral relations. To
explain these terms, consider the essential mode of operation of an organization
which is to recursively apply a cycle with three steps: decompose a task into
subtasks, perform the subtasks, and integrate the results. The natural
organizational structures for performing these cycles are hierarchical with charts
that take the forms of trees. The natural lines of information flow in these trees
are vertical. Some improvement in performance of an organization can usually
be obtained by improving these vertical channels. However, by far the biggest
improvements in performance, especially in the handling of contingencies, is
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Figure 3: Preplanned and spontaneous collaborations.
Tasks (thick arrows) change as result of the latter.

obtained by establishing lateral relations — mechanisms that support horizontal
exchanges of information. Five that seem particularly applicable to software are
listed below and illustrated in Fig. 4.

Direct contact. A horizontal dataflow or signal arc between two agents at the
same level. Without a horizontal arc, information to be exchanged between
these agents would first have to flow up to a common manager and then back
down. Besides taking longer, the information could become distorted along this
vertical path.

Groups. Sets of agents or independent organizations that share data. Markets
are a special case of groups. In a market, the shared data include offers to buy
and sell services.
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Figure 4: Some types of lateral relations.

Representatives. To make known and protect the interests of remote agents.

Task forces. When several departments (sets of agents) have overlapping
concerns, the pair-wise exchange of representatives can be less convenient and
effective than the information of a task force with members from each
department. As an example, consider the process of simultaneous engineering
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for automobile parts. Decisions made during the design stage of these parts can,
of course, have profound effects on downstream stages like manufacturing and
testing. For instance, a designer may incorporate a feature that is difficult or
impossible for the available machinery to manufacture. To prevent such
contingencies, a task force is formed with representatives from tooling,
manufacturing, testing and other departments. The task force oversees the
designers’ efforts and intervenes when the interests of its parent departments are
threatened.

Matrix management. Two or more command arcs terminate in a single node.
This arrangement allows A and B to share the services of C (Fig. 4¢). Among
the benefits are increased reliability (C can be reached through B when A fails)
and quick response (B can intervene even when C is working for A). Among
the costs is the possibility for C to become confused.

3 DPSK (Distributed Problem Solving Kernel)

3.1 Overview

DPSK provides the software builder with a small set of primitives. These
primitives have been designed to be inserted in the instructions of an expandable
set of languages. At present, this set is: C, Fortran-77, OPS5 and Lisp (Franz
and Common). With the primitives, software builders can readily synthesize all
the alternatives from the preceding section and thereby, assemble arbitrary
organizations distributed over a network of computers. In theory, the numbers
of programs and computers can be arbitrarily large.

DPSK itself is written in C for networks of computers running Unix 4.2,
Internally, DPSK works with the aid of a shared memory that is distributed over
the participating computers.

We elected to build DPSK around a shared memory for two reasons. first,
blackboards have demonstrated that shared memory is very useful in assembling
communities of collaborating programs in uni-processors. (In fact, we feel that
shared memory is by far the best feature of the blackboard idea). Clearly, the
characteristics that make shared memory attractive in uni-processors can only
become more attractive in distributed processor environments. Second, the
representations that we prefer in thinking about organizations rely heavily on
shared memory (cf. Figs. 2 and 3). It is easier to build a system that closely
parallels one’s favorite representations. However, before finalizing the choice
of shared memory we also considered message based systems and remote
procedure calls. They were rejected because we felt they would be far less
powerful [2].
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3.2 Primitives

DPSK contains 12 primitives that can be divided into four categories -
commands, synchronizers, signals, and transactions. The primitives themselves
are listed in the appendix. Brief descriptions of their categories are given below.

The command primitives are used to activate and control programs. An agent
can "run,” "suspend,” "resume,” or "kill" other agents in any of the processors in
the network. this also allows for any number of program clones to be created
and run in parallel.

The synchronization primitives are used to create and check for the
occurrence of “events". The events enable concurrent processes to be
coordinated. for instance, to ensure that some activity in Agent A finishes
before Agent B is allowed to begin, one would insert primitives into A at the
appropriate point to assert an event X, and in the beginning of B to wait for the
assertion of X.

The signal primitives are used to signal the occurrence of a contingency or to
interrupt the execution of preselected groups of processes and cause them to
execute portions of their code designated to handle such exceptions.

Transaction primitives are used to structure and access the shared memory.
(A transaction is a time stamped operation designed to maintain consistency and
correctness in distributed databases [4,10].) The data to be shared is stored in
Objects, each of which consists of a Class designation followed by Slots for
attribute-value pairs. the values can be character strings, integers or floating
point numbers. For instance:

"non

{line
[name HB]
[sb 2]
[eb 8]
[resistance 0.09854]
[reactance 1.232]}

is an object of class "line"” with five attributes. Objects are accessed through
pattern matching. For instance, the pattern:

{line [eb 8]}

would access the above object and all the others in shared memory that belong
to class "line" and have "eb” = 8.

3.3 Usage

The transaction and synchronization primitives are used to synthesize operating
alternatives and those structural alternatives that require shared databases. The
command and signal primitives are used to synthesize the remaining structural
alternatives. This covers all possibilities except "dynamic rewiring”". Aside
from the creation of "children" by cloning programs, the present version of
DPSK provides no special facilities for the dynamic reconfiguration of an
organization.
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4 Examples

4.1 A Simple Distributed Team

Consider the problem of searching a tree for a solution, given a number of
computers and a program called S. Suppose that S, can identify the children of a
given node and determine if one of them is the desired solution. One way to
tackle this search problem is by representing nodes by objects of the form:

{Node [Number 12] [Parent 5]
[Children (16 17 18)] ----}

Copies of S are placed in the available computers and set to working in parallel
by a small program whose essential functions are: (1) Identify the unexpanded
nodes by retrieving objects that match the pattern:

{Node [Children nil]};

and (2) Assign a searcher (copy of S) to each unexpanded node by adding a siot
to the node-object with the searcher’s name in it. Each searcher retrieves nodes
to which it has been assigned, expands them and adds the new nodes so obtained
to the shared memory.

In all, about 30 lines of new code have to be written, and this number is
independent of the number of computers used [2]. We believe that a comparable
system written without DPSK in Lisp or C would require at least ten times as
much code.

4.2 A Distributed Diagnostician

Disturbances occur continually in electric power systems and their effects are
reported by streams of alarms. A large storm can cause hundreds of alarms to
appear in a matter of minutes. A process called "patchwork synthesis" for
generating hypotheses to explain the alarms has been described in [3]. Each
hypothesis consists of a set of events (disturbances, equipment malfunctions and
other errors). Patchwork synthesis uses two crews of programs and a manager
to coordinate their efforts (Fig. 5). The first crew selects candidate events with
which to expand incomplete hypotheses. The second crew evaluates the
candidates and rejects any that make little or no progress towards explaining the
given alarms. When implemented in DPSK using three Microvaxen, this system
produced diagnoses fast enough to be useful for real time applications in power
systems.

5 Conclusions

There are two distinct types of benefits that can be gained from distributed
processing. The first is widely recognized - modular, expandable computer
networks that allow the amount of computing power that is made available to be
easily increased. The second is not well known in software engineering but is
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Figure 5: Organization for patchwork synthesis.

taken for granted in building human organizations - namely that many difficult
tasks have parallel decompositions that yield easier subtasks than serial
decompositions.  In particular, decompositions that promote opportunistic
collaborations among parallel subtasks seem to provide easier and better ways to
solve problems than serial decompositions.

When a single processor is used to house a number of programs, the principal
control issue is deciding which of the programs to run. With distributed
processors, however, some or all of the programs can run simultaneously and the
principal control issue becomes how to arrange collaborations among them.

Case studies of human organizations indicate that different tasks benefit from
different collaborative mechanisms. This paper lists several mechanisms,
adapted from human organizational theory, that seem especially suitable for
software organizations. These mechanisms, along with a variety of other design
alternatives, have been made available to the software builder through a tool kit
called DPSK.

We feel that the best way to develop large-scale software organizations which
integrate numeric and symbolic problem solving agents, and to expand the
capabilities of existing systems to include nonalgorithmic programs will be to
make the software couplings through an optimized version of DPSK, and

optimized version of DPSK, and networked workstations to provide for effective
concurrent operation.
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Appendix: DPSK Primitives

A problem-solving Agent has a set of twelve primitives for all interaction
with DPSK. These primitives are callable from C, OPS5, Common Lisp, and
Franz Lisp. A subset is available to FORTRAN77 programs.

Transaction Primitives
Any Agent may access the shared database.

¢ Begin-Transaction (class, mode) Initiates access to a portion of the
shared database designated by class. The mode can be READ or
WRITE. A number of Agents can simultaneously have
READ-access to a class in the database, but only one Agent may
hold WRITE-access at a time. this call returns a Transaction-ID
which is used by other primitives to designate this database access
session.

e Op-Transaction (Transaction-ID, type, pattern) Facilitates all
operations on the shared database. Objects can be CREATEJ,
READ, UPDATEd, and DELETEd, depending on the type of access
specified. Access is made to all Objects in the class which match a
pattern of <ATTRIBUTE—VALUE> pairs,

e Abort-Transaction(Transaction-ID) Aborts a  transaction
currently in progress (not commonly used).

¢ End-Transaction (Transaction-ID) Terminates this database
access session.

Command Primitive
An Agent may startup and control other Agents.

¢ Proc-Control (agent, action, processor) Facilitates run control of
agents in any processor. Agents may be RUN, SUSPENDed,
RESUMed, and KILLed as indicated by action.

Synchronization Primitives (events)
An Agent may name many different events for synchronization purposes.
o Affirm-Event (event) Affirms (or "raises") an event.

¢ Check-Event (event) Checks to see if the event is affirmed.

o Walt-Event (event, sec, usec) Waits for an event to be affirmed.
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To designate the length of time to wait, sec and usec, indicate
seconds and microseconds.

¢ Negate-Event (event) Negates (or "lowers") an event.

Primitives for Interruptions, Exception Handling and
Sending Signals

Any number of groups may be named by any Agent. Signals can be any
integer number.

e Set-Group (group) Sets the calling Agent into the indicated group.

¢ Set-Handler (handler) Designates the routine within this Agent
which will be asynchronously called when this Agent is signaled.

¢ Sig-Group (signal, group) Sends this signal to all Agents in the
indicated group.
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Architectural Planning
Front End to
Engineering Design
Expert Systems

GERHARD SCHMITT

Abstract

ARCHPLAN is a knowledge-based ARCHitectural PLANning front end to a set
of vertically integrated engineering expert systems. ARCHPLAN is part of a
larger project to explore the principles of parallel operation of expert systems in
an Integrated Building Design Environment. It is designed to operate in
conjunction with HIRISE, a structural design expert system; with CORE, an
expert system for the spatial layout of buildings; and with other knowledge
based systems dealing with structural component design, foundation design, and
construction planning. ARCHPLAN operates either in connection with these
expert systems or as a stand-alone program. It consists of three major parts: the
application, the user interface, and the graphics package. The application offers
a knowledge based approach towards the conceptual design of high-rise office
buildings, taking into account qualitative and quantitative considerations.
Strategies used for design are prototype refinement, evaluation, and local
optimization. The four major modules in the ARCHPLAN application deal with
massing, building functions, vertical building circulation, and structure. The
user interface provides a graphical environment for the interactive design of
buildings and monitoring program states. The graphics package allows the
workstation to function as the external representation medium of design
decisions made by the user and the application. A particular emphasis of
ARCHPLAN is to explore the usefulness of object-oriented programming
techniques to support the abstract representations of the design process and the
resulting building.
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1 Introduction
Computer-aided drafting tools are employed to record and manipulate the results
of design decisions. In that sense, the present use of computers differs only
slightly from the traditional recording of design ideas and designstages on an
external medium, such as paper. Only the geometric properties and a few other
quantifiable attributes of design are represented by the models or abstractions
used in current computer-aided design programs. This approach places heavy
emphasis on the syntactic aspects of design and represents a building at a very
low level of abstraction. Due to the lack of appropriate abstraction and
representation methods for the process of design, and their consequently missing
computational counterpart, the semantic and conceptual aspects of design
decisions are not sufficiently covered and must be supplied entirely by the user.
As a result, most designs created on computers are one-dimensional in their
treatment of the complex issues involving the design process. Moreover, when
quantifiable properties of the design are evaluated, for example the energy
performance of a building, the user is forced to take descriptions and quantities
from the lowest level of representation, in this case the geometric representation.
Abstractions must be made on the geometric model, which in itself is an
abstraction, and as a consequence, the results of evaluation are unreliable. We
therefore propose to start the quantitative and qualitative performance
description and evaluation of architectural design at a higher level of abstraction.
This approach towards architectural design modeling requires a representation
and abstraction concept different from traditional approaches. A hybrid system,
consisting of traditional and object-oriented programs is explored to model the
conceptual design of high-rise buildings.

2 Representation of Architectural Design

Over the last few centuries, design professionals have developed one of the most
powerful forms of representation: the graphical image whose syntax induces
semantic explanations in educated viewers. In other words, we have become so
familiar with the symbols and techniques of graphical representation, that we are
able to interpret meaning where the untrained eye or the computer would
recognize only lines or surfaces.

Representation involves abstraction. Abstraction is the reduction of a real
world object (a building, a tree, an idea) to its most important characteristics,
according to a certain model. Abstraction and with it representation became
necessary with the paradigm change from making buildings towards planning
buildings [18]. It is crucial that the creator and the viewer or user of the
abstraction base their work on the same model. With the introduction of
computers in the design process, new forms of representation and abstraction
become necessary. Several approaches were explored in the past, three of which
are of particular interest in this context:
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Geometric models (4], [5]. Geometric models describe the geometric properties
of a design. They are based on the assumption that the architectural design
stages are representable with data structures of varying complexity [12]. The
simplest data structures for two-dimensional representations are lists of points,
lines, and polygons. Three-dimensional representations require more complete
information, especially if realistic views of the object are a concern. Winged
edge and boundary representation data structures are only two of a number of
possibilities if solids are represented,and the typical set operations of union,
difference, and intersection are to be performed. While the data representations
are quite efficient and workable for present computer programs and are
increasingly employed in commercial CAD packages, they are not transparent to
the designer who thinks and designs different categories and operations.
Relational Databases. Relational database management systems are important
tools in business. The underlying principle of relations or tables is useful in the
representationof design as well. The relational model is able to express
properties (in the rows and columns of the table) and relations (through primary
and foreign keys in the table) in a straightforward manner. The relational model
has higher semantic quality than, for example, the hierarchical model. Although
there were approaches to use the relational model for solids modeling,
widespread applications of the model to represent design in its different stages
are not yet implemented. This approach takes the existing relational view of
data and extends it, treating shapes as attributes {13].

Frames [15]. Frames, also known as schemata and scripts, are abstractions of
semantic network knowledge representation. A collection of nodes and links or
slots together describes a stereotyped object, idea, or event. Frames may inherit
information from other frames. Frames are similar to forms that have a title
(frame name) and a number of slots (frame slots) that only accept predetermined
data types. Frames are effective in expectation driven processing, a technique
often used in architecture, where the program looks for expected data, based on
the context [17].

None of the above described representation methods alone is ideal for
describing architecture and the design process. Researchers using these methods
apply existing theory from other fields to model particular aspects of design as
closely as possible. Although it is possible to express particular design
knowledge in other forms, such as semantic networks, predicate logic,
production systems, or decision tables, all of these representations develop
serious shortcomings if applied to non-trivial design problems. The reason is
that design and the artifact being designed have various degrees of "softness" in
the process. In the early or conceptual design stage, for example, the application
of solids modeling would be too "hard" and exact a representation, whereas later
in the process it is a welcome help. On the other hand, production systems that
are of use in the early stages of design, supporting the user with explanations
and rule-of-thumb knowledge, are of little use in a phase of design when exact
analysis results are needed.
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These observations lead to the search for a more flexible and less restrictive
abstract representation of the architectural design process and the design artifact.
The method we selected is related to the concept of object-oriented
programming (OOP). OOP has two fundamental properties, encapsulation and
inheritance. Encapsulation means that a user can request an action from an
object, and the object chooses the correct operator, as opposed to traditional
programming where the user applies operators to operands and must assure that
the two are type compatible. The second property, inheritance, greatly improves
the reusability of code, as opposed to traditional programming where new
functionality often means extensive re-coding [3]. From an architectural
standpoint, object-oriented programming is interesting for the following reasons.
Data + Operations. Objects represent data as well as operations to be
performed on these data. This important property of objects is a combination of
properties from geometric modeling and semantic networks. The representation
of a building as an object, for example, may allow the rotation of an early
concept only around the vertical z-axis, whereas a roof plane as part of the
building may be rotated around all three axes.

Breadth of Representation. Objects can represent physical objects, ideas,
building functions, relations between building functions, and other real world
entities. Semantic networks and frames have a similar capacity, whereas
geometric modeling is less complete in this respect. In architecture, the
functional diagram of a building is very important in the conceptual design
phase. This diagram, developed normally from the building program, with
matrices expressing relations between spaces, kinematic maps and other forms
of abstractions, can be implemented as an object. The implementation of the
functional module in ARCHPLAN, described in detail below, is an example for
this approach. Such an object has the advantage that it can be related to other
objects, that is, the error prone traditional process to translate the meaning of
one representation (the kinematic map, for example) and a second representation
(the adjacency matrix) into a third representation (a floor plan) is improved.
Inheritance.  Objects can inherit knowledge from other objects. Class
inheritance, also a property of semantic networks, allows the establishment of
hierarchical and other forms of order between building elements and functional
relations. This capacity is crucial in architectural design because useful spatial
or functional constructs are defined once and then inherited completely or
partially by other constructs on a different level of abstraction. Standard test
cases are the movement of a wall containing doors and windows, and the
rotation of an entire building with all its associated elements.

Local Decision-Making. Objects can contain some form of "local intelligence”.
Identical messages exchanged between different objects can have different
effects, and different messages exchanged between different objects can have
the same effect. Through the possibility to embed decision mechanisms into
each object in form of rules or type and range checking procedures, the objects
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can "decide" if they accept particular operations or not. The previous example
of the higher degree of freedom of roof rotations versus building rotation applies
here as well: after the building location and orientation are fixed, the degrees of
freedom for the roof rotation may be reduced by a simple rule in the roof-object
to the x- and y-axis.

For the above reasons, we decided to implement ARCHPLAN based on the
object-oriented programming approach. The language is Lisp, with the object-
oriented extensions supplied by Hewlett Packard [9]. Direct access to LISP
helps to avoid some of the possible shortcomings of OOP, such as too strong a
reliance on hierarchical structures in design.

3 The ARCHPLAN Concept
ARCHPLAN is a conceptual tool for the design of high-rise buildings and has
four major purposes:

1. To provide a graphical feedback and representation of decision
processes in the conceptual design of high-rise buildings.

2. To provide a general graphical front end for a set of engineering
design expert systems.

3. To describe the desired attributes of a high-rise office building in
different decision-making domains,

4. To create a building design according to this description that will
satisfy the requirements either through interactive design or
partially automated or optimized decisions.

The first purpose deals with the visualization of analysis and decision
processes and the implementation of an appropriate graphics package. The
second purpose addresses with the development of a general user friendly
graphical interface. We selected the StarBase graphics package which provides
Common Lisp language interfaces [19]. Purposes 3 and 4 deal with the
implementation of a particular design application. The design strategy we chose
to simulate with ARCHPLAN is that of rational decision making, which breaks
down into four steps [1]:

o the generation of alternatives,

e the prediction of consequences for each alternative,

¢ the evaluation of each alternative, and

» the selection of an alternative for implementation.

This conceptual strategy determines the ARCHPLAN architecture and the types
of abstractions needed. For interactive generation, analysis, evaluation, and
selection of alternatives a modular structuring approach is best suited. These
activities take place in each of the decision making domains, which are at the
moment

o Site, Cost and Massing (SCM). After a site is chosen, preliminary
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design starts on developing a massing model that will fit a given
budget. Cost and massing options are inter-dependent variables
based partially on site characteristics.

¢ Function. Examples for building functions are office, retail, and
parking space. Each function has particular requirements and
affects the layout, appearance, and cost of the building.

e Circulation. Vertical circulation in high-rise buildings is part of a
central service core or externally attached to the building. Asitis a
spatial and structural vertical continuum through the entire building,
its size and location are important for design.

e Structure.  The structural system of a building is affecting
architectural expression, functional layout, and cost. In some cases,
design develops after the structural system has been determined, in
other cases the structural system is the result of design decisions.

Each of these domains is responsible to a general building database,
implemented as an object, whose responsibility is to maintain the high level
consistency of the building abstraction, to warn the user if the consistency is
violated, and to direct control to the appropriate decision making domain to
correct the problem. The decision making domains are responsible for local
decisions which will be of no concern to the general database unless they violate
important parameters.

The overall model to simulate the decision processes is best described as
prototype refinement on a global level, and of simulation and optimization on a
local level. Prototype refinement means that a typical prototype for a particular
building type is chosen at the beginning of the design process which is
subsequently changed and refined {7]. Simulation includes operations on an
abstract model of the design to predict consequences of design decisions [18].
Optimization involves finding optimal solutions for one or more pre-defined
design parameters [16].

In the context of ARCHPLAN the above described decision making domains
are implemented as four separate modules. Once the user has established a
building prototype in the SCM module, all other modules can be visited and
consulted in arbitrary order. Their responsibility is to refine the preliminary
building description. All modules and HIRISE are accessed by selecting a menu
item from the top left window provided by the user interface (see Figure ).

In the global context of the Integrated Building Design Environment (IBDE),
ARCHPLAN’s main responsibility is to establish a site and architectural
building description, based on client’s needs. This description is posted by a
system controller on a blackboard which is accessible by the engineering expert
systems HIRISE [10], FOOTER [11], SPEX [10], PLANEX [8], and by CORE
[6], the architectural layout generator. As an option, HIRISE can be accessed
directly from ARCHPLAN by selecting the appropriate menu item on the top
level user control screen (see Figure 1).

This section must end with a disclaimer: we are aware of the extremely
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complex interactions in the human design process and do not suggest that
ARCHPLAN will be able in the near future to simulate or improve all of them.
Therefore, the decisions supported by ARCHPLAN are a subjectively selected
set. The criteria for selection were the ease of formalization techniques available,
and the expertise and availability of specialists in the particular areas of interest.

4 The ARCHPLAN Modules

The four presently implemented decision making modules will be described in
detail. Each of the modules contains algorithms, rules and weighting factors to
determine the importance of decisions and parameters. The common abstraction
for all modules is that of objects. The exchange of information is achieved
through the passing of messages. This also applies for the general design
description which is an object with slots for the most important building
characteristics. There is no predetermined order in which the modules must be
accessed and executed, which allows idiosyncratic design interaction. The
exception is the SCM module, which must execute first to establish the basic
parameters for the following session.

4.1 The Building Object

The general database is an object which contains information about the crucial
parameters of the building and a set of actions to protect this database from
becoming inconsistent through the decisions of the other modules. The object
resembles a complex frame which provides for the expression of geometric and
numeric data, relations, constraints, and rules. Depending on the amount of
knowledge available at any given time in the design process, the content of the
object is specified and changed. Because ARCHPLAN is also producing output
for the other expert systems in the integrated building design environment, the
central building design description contains slots with additional information. A
simplified example for the frame-like part of the building object is the
following:

SITE INFORMATION

SLOT VALUE (default)
site_longitude 60 degrees
site_latitude 40 degrees
site_rotation_angle 0 degrees

site x 300 feet

site y 200 feet
degree_days 6600

max_wind load 120 mph
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BUILDING INFORMATION FRAME

SLOT

base x

base_y

building rot_angle
structure _grid x

structure grid_y
arch_mod x

VALUE (default)

50 feet

50 feet

0 degrees

(10 20 20 20 20 20
20 20 20 20 20 20
20 20 20 10)

(15 20 30 20 15)

5 feet

265

arch mod y 5 feet

ground floor-height 18 feet
floor_height 12 feet

num of floors (0 15)

core (70 130 35 65 0 15)
occupancy office
Structure_system trussed frame
spaces {(atrium, mechanical,

retail, office,
parking)

In the execution of ARCHPLAN, these default values will change based on
program needs and user requirements. The building object expresses itself
graphically through the interface and acts as a "read only" object. Changes may
occur only through user action in the ARCHPLAN modules. Permanent output
is produced through screen dumps and for the blackboard to be accessed by the
other expert systems. Eventually, these expert systems will have a critique
function and will have authority to change slots in the object.

4.2 Module One: Site, Cost, And Massing - SCM
At the very beginning of the architectural design process, decisions must be
made concerning the building site, the building cost, and the basic footprint and
massing of the building. While this is not the only approach towards designing
a building, it is a valid initial assumption. The crucial parameters for the
building site are the dimensions, the required setbacks from the site boundaries,
the setback angle (city zoning laws normally require a builder to respect sun
angles and daylight access to surrounding buildings), and the climate (important
for energy budgets and for wind loads for high-rise buildings).

The second, and often most important, aspect is the building budget. We
chose a simplified model to simulate the relations between the original, given
budget, and parameters influencing the total budget. Given a certain budget, the
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program selects a range of possible building areas from the Means catalogue
{14]. The total building cost is of course not only a function of the area, but
also of the number of stories, the height of each story, the functions of the
building, and the length and material of the perimeter. These relations are listed
in the Means tables and are based on empirical data.

The user is able to set each one of these parameters manually (the allowable
ranges are checked by the program). As one option, the user may choose to
optimize the building for first-cost only. As expected, the results are not very
exciting, because the program will merely minimize all expensive parameters.
As another option, the user can choose a cost optimization that takes into
account more than one criterion. The emphasis in this option is on life-cycle-
cost which is influenced by factors such as user satisfaction and maintenance
costs (up to 92% of an office building’s cost over its life time consists of the
occupant’s salaries; therefore absentee rates caused by user dissatisfaction have
a substantial negative impact on the financial success of a building). Due to the
difficulty of quantifying relations between user satisfaction and the building’s
physical appearance, this option is highly hypothetical, but acts as an interesting
testing ground for the integration of qualitative and quantitative criteria.

Based on the initial parameters, constraints, relations between parameters,
and the allowed actions (see below), the program then displays the preliminary
massing of the building on the site, together with the parameters that influence
the massing (see Figure 2). The parameters are shown as normalized bar graphs.

The SCM decision module is an object with the following parameters:

Variables:

Total Building Area (ranging from 5,400 to
1,000,000 sq. ft.).

Ground Floor Area (8,100 to 160,000 sq. ft.).

Total Building Cost ($432,000 to $200,000,000).

Cost Per Sqft ($80 to $200 per sq. ft.).

Total Building Height (9 to 1,000 feet).

Number of Floors (1 to 100 floors).

Constants:

Site X (the east-west length of the site,
ranging from 75 to 400 feet).

Site Y (the north-south length of the site,
75 to 400 feet).

Site Area (22,500 to 160,000 sq. ft.).

North Setback (0 to 100 feet).

East Setback (0 to 100 feet).

South Setback (0 to 100 feet).

West Setback (0 to 100 feet).

Setback Angle (45 to 135 degrees).

Maximum Building Height (13 to 1,000 feet).
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The differentiation between variables and constants is flexible, that is, through
the use of weighting factors from 1 to 10 (1 for least commitment, 10 for highest
commitment), some variables are de facto transformed into constants. The
constants listed are also represented in the database object and are constraints
that are established at the very beginning of the process. They can only be
changed if absolutely necessary. The SCM module allows the interactive
editing of a set of default parameters. The most important building parameters
are organized as objects in an activation network [2]. In an activation network,
each node represents an object and each arc represents a relationship between
two objects. If the arc is labeled, the label is a number indicating the strength of
the relationship. When a node is processed, its activation level may change, and
the effects of the change are propagated along arcs to related nodes, resulting in
changes to their activation level. The SCM module can be expressed as an
activation network of the following form:

ground floor x cost_per_ sqft
\ \
o- yround floor_ area o- total cost
/ \ /
ground floor_y o- total area
/
no. of floors
\
o- total height
/

floor_ height

The objects in the above activation network communicate with each other by
sending and receiving messages. When an object receives a message, it consults
its data base and the appropriate rules to decide what action to take. The rules
may be stored directly with the object or in a different object. In ARCHPLAN,
the result of any change is represented numerically in the related change of other
variables, and graphically in the change of the normalized bar charts and the
massing of the building.

4.3 Module Two: Function

The distribution of different functions in a building is of crucial importance to
the appearance and performance of the structure. It could be argued that the
functional, three-dimensional layout is the first design decision to be made.
However, a close look at the design practice suggests that the functions are less
form-determining in the conceptual design phase in the majority of modern
high-rise buildings than the parameters dealt with in the SCM module. This
observation also coincides with the global strategy of prototype refinement.

The program is capable of handling five different building functions:
¢ office

e retail
® atrium
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e parking

e mechanical
Circulation, a building function in close relation to all of these, is treated in a
separate module.

The Function module assists in the vertical and horizontal distribution of the
different building functions within the basic massing volume (see Figure 3).
Since this module relies heavily on built-in heuristics, user input is restricted.
The decisions are made and reflected locally, unless the constants in the global
building description object are violated. In this case, the program backtracks
and control is passed back to the SCM module. In the SCM module, the user
can choose either to automatically adjust the design description to the
informationreceived from the Function module, or make changes manually.

In a typical session, the user selects the Function module from the previous
screen and makes the Function window current. The program then presents a
chart with the five available functions and allowable percentages. Certain
constraints apply:

¢ office space (ranging from 80% to 100% of net square footage)
e retail space (ranging from 0% to 20% of net square footage)
e atrium space (ranging from 0% to 10% of net square footage)

The sum of office, retail, and atrium space is always 100% of the net square
footage. The mechanical floor is at least 5% of this area (typically, one
mechanical floor every twenty stories, or at the top of the building for less than
20 floors). Parking is presently placed underneath the building, at the rate of
one parking floor per seven building floors.

The program starts by checking the slots in the central database and assigning
the percentages for each function by built-in knowledge. The user can also
change the default percentages by graphically moving the bars that represent
them. Built-in knowledge is used because in the SCM module no functional
decisiens are made. Examples of this knowledge, in the form of design advice,
are:

e Start by dividing the total volume into 70% office space, 20% retail
space, and 10% atrium space.

e Start by placing retail at the ground floor and office above.

o If the building is high, place the atrium on the lower level.

o If the building is low, develop it from the top level down.

¢ Do not run a service shaft through the atrium if the atrium is at the
top of the building.

¢ Explore several options of combining office and retail three-
dimensionally: ground floor only office, ground floor only retail,
ground floor office and retail.

The rules are contained in "advice-objects”, which give advice to control
objects that modify the Function module object. The knowledge in the advice
objects is quite limited at the present; the intention is to develop an interactive
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Figure 3: User view of the Function module. Top: wireframe
representation of the building, office area displayed
as a solid. Bottom: elevator and service shafts.
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advice object that learns through induction from direct user input and from the
frequency of user choices of particular functional arrangements. The advice
objects send messages to the Function module object which expresses itself
graphically. The Function module object also checks with the building object
for conflicts in the two databases. If they are discovered, and are substantial, the
user is prompted to resolve the problem on the Function module level. If the
inconsistency produced by user choice or action in the Function module is
substantial and the user refuses to resolve it on this level, the program returns to
the SCM module and corrects the problem there, giving the user feedback how
the previous decision influenced height, cost, massing, and the other parameters.

The Function module produces three-dimensional output and interactively
highlights functions to better understand their distribution in three-dimensional
space (see Figure 3). The Function module also produces output for CORE, the
generative expert system for the design of core and space layouts [6]. CORE
accepts the two-dimensional plan information from ARCHPLAN and begins the
individual layout of the functional spaces which ARCHPLAN only produces as
conceptual building blocks.

4.4 Module Three: Circulation

Circulation in high-rise buildings addresses the problem of moving occupants
and equipment from floor to floor and within floors, and to guarantee the safe
evacuation of the occupants in emergencies. Circulation is not only a
transportation and evacuation problem, but has a major impact on the internal
functioning and on the architectural expression of a high-rise building. The two
extreme cases for the placement of vertical circulation are the completely
internal (service and elevator core in the center of the building) or the
completely external solution (service and elevator cores attached to the outside
of the buildings). Most high-rises have vertical circulation systems that lie in
between those two extremes and therefore ARCHPLAN concentrates on
creating vertical circulation proposals based on variations of these two
prototypes.

The Circulation module is accessible as soon as the SCM module has
established a "base case" building. If Circulation is started as the second
module, then the Circulation object inherits the existing data of the building
object. Supplied with this knowledge, the program starts to present the list of
parameters which influence the location and size of the circulation cores. If
Circulation is accessed as the third or fourth module, then it inherits the
additional decisions that were made in the previous modules. The choice of a
location for the circulation core is important, as it affects decisions about
structural system and function distribution. Several issues play a role in the
determination of the location, size, and number of the vertical circulation.
ARCHPLAN considers the following factors:
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available exterior window space --> east
available exterior window space --> west
available exterior window space --> south
available exterior window space --> north
minimize total surface area

intention to add new adjacent building --> east
intention to add new adjacent building --> west
intention to add new adjacent building --> south
intention to add new adjacent building --> north
require external stair case (fire escape security)
visual interest image --> east

visual interest image --> west

visual interest image --> south

visual interest image --> north

equal distance access to cores

increased elevator accessibility

flexible tenant distribution

deep office space

fixed multitenant occupancy

structural simplicity

circulation takes lateral forces

For this module, it is particularly important to make the inference process the
program uses as transparent as possible and consequently graphically present the
above parameters that influence the decision of the circulation location (see
Figure 4). As in the SCM module ARCHPLAN uses weighting factors to
represent the relative importance of one parameter. In the Function module,
however, parameters are defined by sliding a bar from left (least importance) to
right (highest importance). An example from the Circulation module:

® A deep, uninterrupted office space is very important (weighting
factor 10 is assigned by sliding the bar graphically to the right).

¢ A deep, uninterrupted office space is not necessary (weighting
factor O is assigned by sliding the bar graphically to the left).

An example from the SCM module:

¢ The total building budget is $25,000,000, and it must not be
exceeded (the user enters 25,000,000 and a weighting factor of ten
numerically by typing over the default numbers).

¢ The total building budget is $25,000,000, but other factors may be
more important (the user enters 25,000,000 and a weighting factor
from O to 5 numerically by typing over the default numbers).
Besides exploring the behavioral difference of parameters with absolute
values and weighting factors and factors with relative importance only, we were
also interested in the user reaction to the two different input modes. First results
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show that offering graphical interaction with sliding bars leads to about three
times more experimentation than the strictly numerical interface.

In a typical session, the user starts by first examining the above parameters
which are all set to default values. Two options are available to see the
program’s proposal for the location and configuration of the circulation:
discover (the equivalent to forward chaining) and determine (the equivalent to
backward chaining). The options normally produce distinct solutions for size,
configuration, and location of the vertical circulation, represented in two-
dimensional floor plans. The user can also start by changing the value of the
parameters immediately and so produce a large set of possible circulation
layouts.

In case of conflict with the building database (the Function module may have
assigned the elevator in the center, the Circulation module on the outside), the
program will try to first solve the discrepancy on the level of the conflicting
module, in this case the Circulation module. If the conflict cannot be resolved,
the program backtracks to the SCM module where the central building
description can be adjusted manually or automatically. Changes from this
adjustment are propagated to the other modules.

4.5 Module Four: Structures

All design decisions in the previously described modules have an impact on the
type and performance of the building’s structural system. An architect
interacting with ARCHPLAN will probably not start with the structure module,
whereas an engineer might want to see the impact of the building’s form on the
structural system and vice versa. Both approaches are possible, as the Structure
module is directly accessible after the SCM module.

This module is intended to give the designer an overview over possible
structural types appropriate for the building design (see Figure 5). The synthesis
of a structural system for a design developed with ARCHPLAN is reserved for
the HIRISE structural design expert system [10]. The Structural module
considers at the moment the following structural systems:

e Cantilevered slab

® Flat slab

¢ Suspension

¢ Rigid frame

e Core & rigid frame
® Trussed frame

® Tube in tube

* Bundled tube

If the building object has been defined through the previous design decisions,
the options are limited. If the Structure module is executed early in the design
process, the set of selectable structural types is larger. After the user has
accepted the proposed structural type for the given building, or has made an
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Figure 5: User view of the Structure module. A maximum of
eight different structural types is offered, if the
selection has not been restricted by previous constraints.
The options which are blotted out, in this case 1, 3, and 5,
should not be chosen.

independent choice, the structure is displayed three-dimensionally for the
current building object. The program solves conflicts that may arise out of the
user’s choice in the same manner as in the other modules.

5 Critique and Future Developments

ARCHPLAN is incomplete at this point and serves as a testing ground for
different design methodologies and their computational representation. We
expect not one final method, but a combination of methods for different design
applications and design stages to emerge as the optimum. ARCHPLAN uses a
spatial representation closely related to that of HIRISE which restricts it at the
moment to rectangular structures. The implementation of ARCHPLAN in
Common Lisp and its object-oriented extensions is advantageous in terms of
programming and experimentation. The production of a transparent and friendly
user interface is a separate project of importance for the practical application of
ARCHPLAN. Based on these and other critical remarks, the following
developments are planned:
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¢ Improvements in the flexibility of the module structure.

¢ Addition of optimization routines where possible (existing presently
only in the SCM module).

® Addition of explanation modules ("Why" and "How" options).
* Addition of a decision history option for future induction purposes.

¢ Exploration of design creativity in the framework of ARCHPLAN.

Some of these problems, such as explanation and decision history, can be
solved without further investment of research work, as ARCHPLAN is now
being translated in a commercial expert system shell (ESE) which allows access
to external functions and offers extensive interactive user interface support.

6 Conclusion

ARCHPLAN has proven to be a valuable framework for the testing of design
ideas and their representation in an integrated computational environment.
Simplified representations of existing high-rise buildings, such as the Lloyds of
London building in London, England, the Bank of Hongkong offices in
Hongkong, and the Fifth Avenue office building in Pittsburgh, Pennsylvania,
can be generated with ARCHPLAN as test cases. The test cases provided an
invaluable tool to develop and test the knowledge base. Knowledge is
represented in several forms, derived from Artificial Intelligence research,
namely as algebraic relations and as as rules, both embedded in the object-
oriented programming environment.

The project demonstrates the importance of real time graphical feedback for
knowledge based architectural design systems. The object-oriented
programming approach applied to design and graphics problems is powerful and
on a level of abstraction that is closer to the human designer than traditional
programming approaches. ARCHPLAN shows that hybrid programs - being
part knowledge based systems, part traditional algorithmic programs - can be
realistic architectural design tools. One of the most valuable experiences in
developing ARCHPLAN is the acquisition of new insights into the design
process through the necessary formalization of design knowledge and decision
mechanisms in each of the ARCHPLAN modules. This experience also
suggests that future design programs will have extensive idiosyncratic
characteristics.

At the moment, ARCHPLAN is a design assistant to produce meaningful
high-rise building design descriptions that are used by engineering expert
systems and to compare manually designed buildings to those designed with
ARCHPLAN. Future program development has two main emphases: one is
increasing design automation and optimization on a global level in producing
feasible high-rise design solutions. The other is refining local decision making
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in particular design aspects such as building circulation and functional
distribution.  Along with this development in which the system is now
"learning” from existing design test cases, cost tables, and personal design
experience, its future role will be that of a design tutor which could teach and
explain design to novice users.
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Abstract

This chapter discusses the development of software tools for automatic design
synthesis and evaluation within the integrated framework of a computer-aided
mechanical design system known as CASE, which stands for Computer-Aided
Simultaneous Engineering. CASE was developed to support mechanical design
at the project level, and to serve as a means of integrating into the design process
concerns from other parts of the lifecycle of a product. CASE is composed of
three types of software tools, known as design agents, design critics, and design
translators, which form an integrated testbed for research in representation,
problem-solving, and systems integration for computer-aided mechanical
design. A prototype version of CASE has been applied to the domain of
window regulator design, and is capable of automatically synthesizing regulators
to meet a set of specifications and performing tolerance and stress analysis on
developing designs.

1 Introduction

The quality of objects designed with traditional CAD techniques is adversely
affected by two features of the design process: limited scope in addressing
problems that arise in the many stages of the development of a product, and a
lack of understanding of the essential processes involved in engineering design.
Both of these are related to systems integration issues. In our view, the lifecycle
of a product can be described by a collection of projects, where each project
involves a coherent set of attributes, such as the design, manufacturing, or
assembling of an artifact [6]. Traditional CAD tools typically address some
narrow aspect of the design project, but fail to provide any sort of integrated
Expert Systems for Engineering Design Copyright © 1988 by Academic Press, Inc.
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support for product development. In addition, these tools are typically isolated
from each other and often employ incompatible representations of the design
process, requiring manual data translations between tools.

This chapter presents a new system for computer-aided mechanical design
known as CASE, for Computer-Aided Simultaneous Engineering. Simultaneous
engineering involves the coordination of the various projects involved in the
lifecycle of a product to eliminate problems due to lack of communication and
compatibility between different areas of concern, such as design and
manufacturing. It ensures that, in achieving the goals of one project, the goals
of another are not made unreachable. The CASE system has two main
characteristics that distinguish it from traditional CAD systems:

¢ The use of multiple Design Agents and Design Critics that embody
the various different domains of expertise required in the design of
an industrial device, from the conceptual stage to the manufacturing
1ssues.

e The use of multiple Design Representations that are tailored to each
of the specific design tasks performed by the Design Agents and
Critics, and the use of translation mechanisms to ensure the
compatibility and integrity of the representations.

In the sections that follow, we explain the philosophy on which the CASE
system 1s based, present its overall architecture, and discuss its major
components. We conclude with an evaluation and an outline of issues for future
research.

1.1 Issues in Design Automation

The CASE system has been designed to address some of the problems with
traditional CAD systems for mechanical design. While CAD systems have been
quite successful in domains such as VLSI design, that are characterized by a
clear taxonomy and a layered problem-solving structure, they have had a much
smaller impact on the practice of mechanical design. Some reasons for the lack
of success of current CAD systems include:

e Design tools address very specific aspects of the design process,
and provide no support for the design cycle as a whole.

» Different tools have been designed and applied in different contexts,
without any provision for their interaction. As a result, they use
incompatible representations that require manual translation of
information from one tool to another.

¢ The kinds of abstraction, reasoning and problem decomposition that
are natural for mechanical design are usually not supported. This
lack of support stems in part from a lack of understanding as to the
kinds of information and problem-solving techniques required for
mechanical design.
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e Current design tools are typically cumbersome to learn and use,
making their introduction in industrial environments difficult.
In response to the difficulties outlined above, new generation CAD systems
should address the following issues:

¢ Development of multiple, integrated representations.

¢ Development of distributed, cooperative problem-solving approachs
to design, with multiple problem-solving mechanisms.

® Incorporation of "down-stream” concerns, such as manufacturing,
material selection and assembly issues, into the design process.

® Development of new sets of tools to support the kinds of problem-
solving activities that are essential to mechanical design, such as
spatial and geometric reasoning [9].

e Automation of a variety of non-creative design decisions, to relieve
the designer from low-level drudgery and free him to pursue
creative design choices and explore design alternatives.

¢ Encapsulation of expert design knowledge in design agents and
critics.

2 Overview of Implementation

In this section we describe the current implementation of the Computer-Aided
Simultaneous Engineering system, which was designed to address the CAD
system design objectives discussed earlier and provide a testbed for research and
development in CAD systems for mechanical design. It was developed with
three broad objectives in mind:

o At the level of individual programs, we are concerned with
developing specific types of software tools to aid in the mechanical
engineering design process. We address three main classes of tools:
agents, critics, and translators.

e At the level of design representations, we are interested in
advancing our understanding of the design process through the
development of a taxonomy of design representations with well-
defined properties that exist to meet specific problem-solving needs.
We distinguish between design representations for synthesis, and
representations for analysis.

e At the system level, we are concerned with the development of tools
that support  simultaneous engineering by facilitating
communication and coordination among the different projects
involved in the lifecycle of a product.
The CASE system was developed in conjunction with Fisher-Guide, a
division of General Motors Corporation, for the specific problem domain of
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manual window regulator design. A window regulator is a mechanical device
for raising and lowering automobile windows. It is located inside the door of a
vehicle and is composed of three major parts: lift arm, sector, and backplate.
The lift arm acts as a lever and controls the height of the glass; the sector
transforms handle motion to lift arm motion; and the backplate fixes the entire
regulator assembly to the inner door panel. An idealized window regulator is
depicted in Figure 1.

Sector

Pinion Gear

Lift Arm \ Backplate
cal .

———F

Figure 1: An idealized window regulator, with its three major
components: backplate, lift arm, and sector.

Although currently oriented towards window regulator design, the CASE
system provides a integrated software platform of programs and representations
that could be easily extended to other forms of mechanical design. We are
currently investigating its extension to additional design domains, such as seat
adjusters.

2.1 Program Modules

The program modules that constitute the CASE system can be classified into
three main types, as defined below. This taxonomy characterizes the range of
software tools that are useful in mechanical design.

Design Agent. A design agent is a program module that manipulates one or
more design representations to develop and extend a design in response to a
group of specifications. Design decisions can be made automatically, through
the use of stored domain knowledge and algorithms, or interactively, by a
human designer. We are currently developing design agents for synthesis and
tolerancing activities.

Design Critic. An analysis tool that evaluates a developing design with respect
to certain criteria is called a design critic. A critic module is capable of
performing an analysis task, interpretting the result, and communicating the
results to a design agent in an appropriate form (ie, message for a synthesis
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program, graphical display for a human designer.) In the ideal case, critics
would perform continous evaluation of the design without prompting from the
designer. The two main design critic tasks are:

o Local analysis. Some design critics are concerned with the
immediate results of design decisions. For example, the finite
element analysis critic determines if the thickness of the lift arm is
sufficient to meet the stress requirements of the design.

e Consequence evaluation. Other design critics address concerns that

lie outside the immediate scope of the current design project. These

critics evaluate the consequences of a design decision with respect

to the other projects, such as assembly or testing, that make up the

product life cycle, and thereby provide a means of achieving

simultaneous engineering. For example, the interference and

clearance critic will deliver a warning when a given lift arm design

is in danger of colliding with the lock module over the course of its

travel through the door interior.
Design Translator. A design translator is a program that maps one design
representation into another. The two representations do not have to be
informationally equivalent, but the translator module should not disturb any of
the design decisions that have been made. For example, a program to generate
finite element meshs would use information not present in the design to
determine the spacing of grid lines, but the geometric structure of the part being
modelled would not be altered. Translators are required because the outputs of
design agents are rarely compatible with the input requirements of design critics,
or even other design agents.

2.2 Design Representations

All of the representations currently employed for synthesis activities have a
common structure: they are composed of primitive design elements arranged in a
semantic network, where each design primitive is described by a set of
parameters and a set of application rules that expresses the conditions under
which it can be instantiated into a developing design. Primitive parameters are
the design variables; these variables are imbedded in a constraint network which
expresses the limitations imposed on their values by both the structure of the
design and the performance requirements. In contrast to the representations for
synthesis, design representations for analysis are unstructured— each analysis
module is provided with the information it needs in whatever form is most
appropriate.

2.3 CASE System Organization

The CASE system is an integrated design environment that currently consists of
two design agents, three design critics, five design translators, and eleven design
representations. Figure 2 shows the various modules and representations and
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their interconnections. Note that the stick and feature representations are
hierarchical in the sense that they can each be divided into three component
representations. The performance of the system as a whole can currently be
described in terms of four basic tasks: Design Synthesis, Tolerance Generation,
Interference and Clearance Analysis, and Finite Element Analysis. The modules
and representations involved in each of these tasks are shown in Figure 2, and
are explained in detail in the sections that follow.

Translation

Module
Design Specs

Stick Model Synthesis

Stick Model
Constraints

Stick Model Structure

Feature Model
Synthesis
L3 X Solid Model
Interference/Clearance

Critic Evaluation
] 4. Functional Model
_@G‘mim Element McsD—% Finite Elzn:i;r: Analysis Evaluation

Tolerance Specification(——> Tolerances

T

0 e ot

Figure 2: The CASE System Architecture. Rectangles are design agents and
critics, lozenge shapes are design representations, and triangles are
translators.
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3 The Design Synthesis Task

One of the goals of the CASE project is to explore automated design synthesis in
the context of multiple design representations. We believe that both programs
and humans involved in design activities need to employ multiple design
representations. In order to address this concern, two design agents were
developed that could employ three different representations of a mechanism,
each described below, to synthesize a design to meet a set of specifications.

The current application of CASE to window regulator design involves a
design scenario in which existing backplate and sector designs are chosen from a
parts library to meet a given set of requirements, while the lift arm is designed
"from scratch”, along with some smaller components, to interface to the existing
backplate and sector and meet the specifications. This scenario is analogous to
actual design practice in many industries.

3.1 Routine Design

The classification of design problems into types with explicit properties is an
open research issue in the design community. Although there is no consensus,
some classification schemes have been proposed, such as Brown’s three classes
of design problems [1]. Most attempts at classifying design focus on two
charactenstics of a design problem: the nature of the design space and the
charactenstics of the decision sequencing.

The design space i1s a useful construct for visualizing all possible types of
designs that a system can produce. Design problems can be classified on the
basis of whether the dimensions of the design space can be specified in advance
and fixed, or must be allowed to change in some controlled way as the program
operates. In routine designs, the dimensions of the design space, which
correspond to the total set of design decisions that must be made, are assumed to
be known in advance.

Decision sequencing, the other criteria of interest, refers to the order in which
design decisions are made. For routine synthesis problems, the system
developer can explicitly account for all possible sequences of design decisions
in specifying the flow of control. So design problems for which the design
space can be enumerated and the sequence of design decisions completely
specified in advance are known as routine design problems, or Class 3 problems
in Brown’s taxonomy.

It is important to realize that even the most routine designs under
consideration have a degree of complexity that makes it infeasible to store them
in a large database indexed by specifications and perform synthesis through
some type of table look-up. Although the decisions involved at each point are
simple ones, computation is still required to trade-off between the design
objectives. Routine design assumes that these computations can be specified
explicitly in advance.
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3.2 Design Representations

In the paradigm described above, design synthesis consists of two activities: the
selection of a group of primitives that meet the design performance
requirements, and the instantiation of a set of parameter values that meet the
design constraints. In routine design, the correct primitive group is assumed to
be known in advance and synthesis activity essentially involves constraint
satisfaction in multiple representations. Therefore, within a given
representation, the synthesis routines need only employ the constraint network
representations of the design object. However, to maintain consistency between
the representations and automate other aspects of the design task, at least three
other design representations are employed, as described below.

Stick Representation. The stick representation corresponds roughly to the
planar kinematic diagram commonly employed in mechanism design [2]. It
captures the basic skeleton of the mechanism and those key parameters that
determine its motion. Within this representation, the synthesis task consists of
choosing the major link dimensions and gear ratios necessary to meet the design
specifications. As a result of the choice of stick representation primitives,
essential device parameters can be determined without considering the full detail
of a manufacturable part.

Following the representational paradigm described earlier, the stick
representation is composed of two groups of primitives: links and joints. Links
define the skeletal structure of the mechanism, while the joints define
permissable relative motions of links. There are four types of link primtives and
four types of joint primitives, which are depicted in Fig. 3 along with their
parametrizations.

The stick representation consists of a network of interconnected link and joint

primitives, given as a graph in Fig. 4 and a diagram in Fig. 5. Note that with this
representation, it would be possible to define transformation matrices for each
link and joint and then generate design equations by traversing the network and
symbolically multiplying matrices [7].
Parts Representation. While the stick representation captures the essential
kinematic information about a design object, the parts representation provides a
description of the object at the level of detail necessary to manufacture it.
Unlike the stick representation, the choice of manufacturing process is important
at the parts level, for it determines the types of primitives that will be employed.
For example, because the window regulators are manufactured through a
progressive die operation, the parts primitives consist mainly of formed sheet
metal objects and rivet-type connectors.

Although the parts representation is more domain specific than the stick
representation, it is identical in form. The two classes of primitives it employs
are parts, which consist of the manufacturable elements necessary to design the
mechanism, and connections, which represent the specific fastening
technologies employed in assembling the device. The part and connection
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Figure 3: Stick Representation Primitives. The links and joints depicted
above are sufficient to build a stick representation for a
window regulator. Stick design is accomplished when the
primitive parameters are instantiated with values that satisfy
the constraint network in which they are imbedded.

primitives necessary to describe a manual window regulator are given in Table
1.

There is not a one-to-one correspondence between connections at the parts
level and joints at the stick level, due to differences in the design primitives. In
fact, the task of matching primitives between representations is one of the more
difficult problems in employing multiple design representations [3].

Feature Representation. Unlike the stick representation, primitives in the parts
representation are not parameterized at the parts level. Instead, each part has a
feature representation, which describes the part as a combination of more
detailed primitive design elements. In the current implementation, the
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Figure 4: Stick Representation Network, with stick primitives interconnected
in the stick representation data structure network.

development of feature representations has been restricted to the lift arm. Other
parts, such as the backplate and sector, are characterized at the feature level by a
single parameter list.

The feature representation of the lift arm is based on the three classes of
primitives shown in Fig. 6: slabs, formations, and seams. The body of the arm
is composed of slab primitives, joined together by either flat or bend seams. Flat
seams are used when two slabs that lie in the same plane joined together, while
bend seams are used where a change in vertical orientation occurs. Viewed
from the side, the lift arm consists of alternating parallel and slanted sections
connected by flat and bend seams, respectively. Each individual slab can in turn
contain any of the two formation primitives: holes and slots.

In a manner similar to the stick primitives, the feature primitives are arranged
in a semantic network, as depicted in Fig. 8. There are two possible network
connections: connected-to and contains.  As before, the primitives are
characterized by a parameter set. Fig. 7 shows the top view of the arrangement
of primitives that form the lift arm.

Formation primitives can be combined into macro-formations, which consist
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Figure 5: Stick representation diagram of the stick model in the graph
of Fig. 4. Unnecessary design detail has been suppressed.

Table 1: Parts Primitives. The 11 specific components that make up a
manufacturable window regulator are listed below, along with the
types of connections that join them together. Note that many of
the connection types are similar to those employed in the stick
representation.

Parts Representation Primitives

Parts | Pinion Mechanism | Slider Stud Bearing Backplate
Sector Slider Spring
Lift Arm | Pivot Stud Bearing Sash
Catch Door
Connections Rivet Mount End Mount Catch Mount
Pure Rotation Pure Sliding Gear Contact

of a list of formations whose parameters are constrained to a particular spatial
orientation. For example, the hole array at the end of the lift arm in Fig. 7 is a
macro formation, composed of four holes of equal radius located at the corners
of a square. The definition of the macro includes transformations that locate
each of the component formations, given the macro location. In the case of the
hole array, the transformations locate each of the four holes relative to the array

center.

The arrangement of slabs, formations, and seams is constructed to reflect the
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fact that, within manufacturing limits, sections of sheet metal can be placed at
arbitrary relative heights of elevation, with slanted sections connecting the
layers. Any slab can also be worked to include formations such as punched
holes or slots. Although the other major regulator parts, like the backplate,
originate from the same manufacturing process, it is likely that the current set of
primitives would have to be expanded to represent these more intricately
detailed parts.

1) Rectangle Slab

l

1) Hole Formation

w | =length Xy
w = width r
h =height change |—_
! =thickness (xy ) =location

r = radius

o

2) Flange Slab
w
! 1

2) Slot Formation

‘ W = width
Xy
[\ 1y ey ,
h h =height change
12 ! = thickness
i x = location
3) Tip Slab x Z 9 ;m
! ! = length
| =length
W wy, W, W = width 3) Flat Seam
! = thickness No parameters
4) Bend Seam
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Figure 6: Feature representation primitives slab, formation, and seam
are necessary in building a feature representation of a lift arm.
Slabs are actually parameterized, three-dimensional elements.

3.3 Operation of the Synthesis Architecture

In the current implementation of CASE, synthesis occurs in two stages. In the
first stage, the stick model synthesis program solves the stick model constraints
to obtain a set of stick model parameters that meet the design specifications (see
Fig. 2.) A sample set of design specifications is given in Table 2. The stick
synthesis module produces a skeletal window regulator design, in which the
major design decisions have been made. The design, however, lacks the detail
that would make it a manufacturable part.
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Figure 7: Lift arm feature representation diagram, showing manner
in which it is composed of feature primitives in Fig. 8.

In the second stage, the remaining design detail is added by the feature model
synthesis program, which solves the feature model constraints to obtain the
feature model parameters. After the feature synthesis program has performed its
task, the design is complete and ready for analysis. Table 3 gives a partial list of
the lift arm feature parameters generated by the system in response to the
specifications in Table 2.

Note that within each design stage the problem-solving process is the same,
but the design representations differ in the view of the design object they
present. This separation permits the design process to occur in a hierarchical
fashion that strongly resembles actual design practice. While the current design
process is sequential, we are presently developing a more flexible problem-
solving approach in which the stick and feature synthesis modules can interact in
producing a design.

Located between the stick and feature representations in Fig. 2 is a design
translator module that maps the effects of design decisions made in the stick
representation to constraints on design decisions made in the feature
representation. The presence of the translator is necessary to ensure that, for
example, the length of the feature model lift arm is compatible with the length of
the binary link that corresponds to the lift arm in the stick representation. A
description of the operation of the translator module is given in [5].

3.4 The Synthesis Modules

The problem-solving technique employed by the individual synthesis modules is
an adaptation of the agent hierarchy approach suggested by Brown and
Chandrasekaran [1]. In CASE, groups of design parameters are “assigned” to
problem-solving agents that contain the domain knowledge necessary to
generate parameter values through the use of heuristic rules and constraint
propagation. These agents are arranged in a hierarchy, and communicate
through message-passing. This synthesis approach facilitates the incremental
development of the system and provides a well-organized structure for the
acquisition of domain knowledge. A more detailed description of the operation
of the synthesis modules is given in [5].
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Figure 8: Feature Representation Network, depicting the combinations
of slabs, formations, and seams necessary in describing a lift arm
design. Note the hole array macro-formation in the upper left.

4 The Tolerance Specification Task

A critical design decision is the setting of tolerances for the parts of an
assembly. It is desired to find a set of tolerances on the manufacturing
dimensions that are both cost effective and adequate to ensure that certain
performance specifications for the assembly are met. An inappropriate choice of
tolerances can result in low quality products, expensive or difficult
manufacturing steps, or even both.
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Table 2: Sample design specifications provided as input to the system
for a window regulator design task.

Glass in full up position, x coordinate =
Glass in full up position, y coordinate = 450 mm.
Glass in full up position, z coordinate =

Glass in full down position, x coordinate = 300 mm.
Glass in full down position, y coordinate
Glass in full down position, z coordinate
Glass weight = 15 1lb.

Handle location, x coordinate = 0 mm.
Handle location, y coordinate = 250 mm.
Handle location, z coordinate = 290 mm.

Center of gravity rel. to edge of glass = 126 mm.
Maximum allowed number of handle turns = 4.5 rev.
Maximum allowed handle effort = 2.0 N-m.

Minimum force req. for spindle abuse test = 18.5 N-m.

Table 3: Sample feature parameter output, with six of the lift arm
parameter values (in millimeters) generated by the synthesis modules
in response to the design specifications in Table 2.

Lift arm width
Lift arm thickness
Tip offset height

(arm_width la 45.0)
(arm_thickness_la 2.2)
(tip off hgt la 15.0)

P R T . T T e

(scha_loc la 130.0) Sector hole array location
(rl hole Toc la 280.0) Slider hole location
(rl hole rad la 2.6) Slider hole radius

For complex designs, tolerances are frequently determined by tradition, trial
and error, or intuition. A common method employed by designers is to select
the dimensions that are considered important, and then specify the tightest
tolerances that the manufacturing process can uphold. This unnecessarily
overburdens the manufacturing facilities without ensuring optimality of the
design. The goal of the Tolerance Specification Module is to help in the rational
choice of tolerances based on considerations of cost, sensitivity, and
performance specifications.

A related, and perhaps even more important, set of decisions concern the
setting of design parameters (or dimensions) in order to minimize the effect that
variations in the dimensions have on the performances. That is, while the
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setting of tolerances is done to control the variations in performances, this may
also be accomplished by modification of the design parameters, possibly leaving
the tolerances at relatively high levels.

4.1 Tolerancing Information
The information required by the tolerancing module falls into three categories:

¢ The cost of holding tolerances, or of controlling variations of the
manufacturing dimensions.

* Fault conditions or degradation costs for the performance measures.

¢ Functional  relationships  between non-ideal manufacturing
dimensions and the performance measures.

This information is combined in an optimization framework to yield
estimates of the optimal tolerances.

The tolerance cost information required is very similar to the process control
information that is frequently gathered in manufacturing scenarios. In this
system, what is actually needed is the probability distribution for an individual
manufacturing dimension and the costs of tightening or loosening the variance
of this distribution. For example, in the simple case of a rod and sleeve
assembly, the cost information required is that concerning the control of the
variances of the radii of the sleeve and the rod.

The performance measure information required is the Quality Loss Function
used in the Taguchi Method. This is a set of quadratic functions, each
corresponding to a performance measure. Generally, each individual loss
function is centered over the target or center value for the corresponding
performance measure, and increases with the distance from this target value.
The rate of increase is determined so that at the fault conditions (minimum and
maximum allowable values for the performance measure), the value of the loss
function corresponds to the cost of either repairing or discarding the assembly
(depending on which is more appropriate). One major result of using such a loss
function is that products are not only penalized for being in violation of the
performance specifications (which are usually intervals), but also for not being
at their target values for these measures. For the above rod and sleeve example,
a single performance measure of the play in the assembly, determined by the
difference in the radii, might be appropriate. If the difference is too small, there
will be a problem in inserting the rod into the sleeve, and if the difference is too
large, there will be too much wobbling or play in the assembly. The midpoint
between the maximum and minimum allowable differences can be used as the
target value for this performance measure.

The required functional relationships between the manufacturing dimensions
and performances are the sensitivities of the performances to variations from the
nominal values for the part dimensions. For some problems, these sensitivities
are easy to compute. For the rod and sleeve example, this sensitivity function is



12. Design Systems Integration in CASE 295

simply the difference in variations for the two radii. However, the sensitivities
are usually not so straightforward. For a window regulator design, the
attachment of the sector to the lift arm is of great importance. Any small error
in the placement of holes or the fixturing with rivets can result in a displacement
or twist in the assembly, possibly causing binding or skipping of gears as the
sector passes by the pinion gear, during operation of the window.

We currently assume that the input information mentioned above is provided
in an appropriate form. However, we are investigating the automatic derivation
of some of the inputs from other representations in the CASE system. This is
particularly relevant for the performance sensitivities, which are the most critical
to the tolerancing effort, but are rarely derived by the designer, primarily
because of the tediousness and complexity of the computations. While the
tolerance cost and performance information required is similar to that for the
Taguchi Method, the required sensitivity information differs. In the Taguchi
Method, the sensitivity relationships are estimated by piece-wise linear functions
using statistical methods, such as least squares, on physical prototypes or
simulations. In our system, the sensitivity relationships are obtained analytically
from mathematical models of the system.

4.2 Specification of Tolerances

Once the inputs are gathered, an optimization problem is formulated to compute
estimates for the optimal tolerances. The formulation is very similar to that
implied by the Taguchi Method. Individual dimension variances are chosen to
minimize the sum of the cost of controlling the individual dimension variations
plus the expected value of the quality loss function. The expected loss is
transformed from a function of performances to a simple function of variances
using the sensitivity relationships, the quadratic nature of the loss function, and
assumptions of normality of the distributions of the deviations.

5 Interference and Clearance Analysis Task

Evaluation of interferences and clearances is a key issue in mechanical design.
For proper operation of any mechanism, adequate clearances between moving
subcomponents have to be ensured and interferences have to be eliminated. In a
car door subassembly, for example, a number of conceptually and functionally
distinct subsystems, such as the window regulator, the lock mechanism, the
crash bar, speakers, etc. have to be mounted next to each other. The total volume
available and the mutual interactions and constraints imposed on the various
subsystems have to be taken into account. This section describes the
Interference and Clearance Design Critic, which employs a dual spatial
representation of the manual window regulator mechanism to ensure that a given
design meets the spatial constraints imposed on it by the other Door Subsystem
design projects, such as lock module design.
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5.1 Generation of a Three-Dimensional Model

Once a feature-based model of the design has been generated (as described in
Section 4), it is used to produce a three-dimensional description of the object.
This description is actually a dual representation, whose components are:

o A Functional Model: a frame-based description that stores shape
and functional information, and

o A Spatial Model: a solid model representation that is used for
visualization and certain kinds of geometric and spatial inference.

The flow of inference described in this section is shown in Fig. 9.

Parts/Feature Model

Solid Modelling

3D Solid Model
System

Template Instantiation

Object Template
Library

Figure 9: The Dual Spatial Model. Spatial information is stored
in a frame-based Functional Model and in a 3D Solid Model.
Object templates are instantiated based on design features.

Functional Model

Functional Model. The generation of the Functional Model is accomplished by
employing the features from the previous stage to instantiate templates from a
library of basic object descriptions. The library templates are implemented in a
frame-based representation and contain the information necessary to build a
functional and spatial description of the feature-based design.
The object templates incorporate the following kinds of information:
e A symbolic description of the individual components and sub-
components of the object being described.

e A geometric description of the various components, providing a
certain level of spatial information, but not the full detail contained
in the solid model.

o Information on the attachments between the components of the
assembly, to allow analysis of the static structure and the dynamic
behavior of the mechanism.

e Procedural information corresponding to sequences of calls to the
VEGA solid modeler, which are executed to create an appropriate
3D geometric model of the corresponding component.
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Instantiation of the templates is done by computing and filling in the
appropriate slots based on feature values.
Three-Dimensional Spatial Model. In addition to the Functional Model, a
three-dimensional solid model is generated using the VEGA solid modeler
(8] developed at CMU [4]. VEGA is employs a split-edge boundary
representation, and serves two main purposes in the project:

e Visualization. Using the graphics interface of the VEGA system,
the solid model can be displayed and the created object can be
visually inspected by the human designer.

e Spatial Analysis.  The spatial positioning and the geometric
relationships between the various components of the complete
object assembly can be examined and operated upon. This
facilitates analysis of the design object by various critic modules.
such as the Interference and Clearance Critic.

Fig. 10 consists of the top and side views of a window regulator solid model
constructed from the feature design data partially displayed in Table 3.

(b)

Figure 10: Sample Solid Modeler Output. (a) and (b) depict the top
and side views, respectively, of a solid model of a window
regulator, created from the feature data partially listed
in Table 3, by the design translator.
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5.2 Interference and Clearance Analysis

The Interference and Clearance module employs the hybrid representation
described above. As shown in Fig. 11, it consists of two processes operating
cooperatively:

e The Functional Model is used to recover the spatial structure of the
object from its linkage and attachment information, as well as to
reason about its dynamic behavior (how the object and its various
subsystems move in space relative to each other).

¢ The Solid Model uses the positional information for the various
subsystems provided by the Functional Model to perform a static
interference and clearance analysis using the built-in geometric
reasoning primitives of the VEGA system.

Spatial Interference/Clearance |
Instantiation Analysis

Functional Model Dynamic Analysis é——j\

+——> Evaluation

3D Solid Model Solid Modelling
System é—_—\b

Figure 11: The Interference and Clearance System, which uses the Functional
Model for analysis of the dynamic behavior of the mechanism and
the 3D Solid Model for static interference and clearance analysis.

The Functional Model is used to exercise the system through its various
degrees of freedom; it then spatially instantiates the various components and
queries the solid modeler concerning the effects of each operation.

6 The Finite Element Analysis Task
The Finite Element Analysis Critic provides a high-level analysis of the current
design based on the interpretation of results provided by a finite element
analysis package. The main functions provided by the Critic are:
¢ Translation of design requirements, model geometry and load
requirements into a finite element mesh and appropriate load
specifications.

e Control of the finite element analysis package.

e Selection and interpretation of the relevant results provided by the
finite element analysis package for presentation to the designer.

e Provision of a summary of results and recommendations for
changes in the design.
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The Finite Element Analysis subsystem is comprised of the following major
components:
Translator Module. Generates a finite element mesh for the mechanism being
studied and submits it to a finite element analysis package. This module takes
object descriptions stored in the part/feature representation and creates finite
element meshes that describe the objects at various degrees of accuracy,
depending on the corresponding input specifications. It also accepts loading
conditions on objects and transforms them into a load input for the finite
element analysis package.
Finite Element Analyzer. Operates as an intelligent interface to the finite
element analysis package and provides the designer with expertise on the stress
analysis of objects.

In the generation of the finite element grid, the general layout of the mesh is
determined by the feature geometry and the parameter values. In Figure 12, the
resulting mesh for one set of features and parameters is presented.

Figure 12: Finite Element Mesh, generated by the translator module
from the lift arm feature data partially listed in Table 3.
The mesh can be analyzed to obtain the displacements, stresses,
and buckling loads for the arm.

The Finite Element Analyzer is a Design Critic that will perform static stress
analysis and buckling load analysis using a general purpose finite element
program. The program computes the displacements, stresses, and buckling load
for all the elements in the mesh. The Critic is then called upon to extract the
most meaningful results from the analysis produced by this program. This
interpreted information is then conveyed to the designer in more familiar terms,
such as: "The thickness in region 2 is insufficient” or "Buckling occurs in region
3 at the specified load level”. The high-level analysis may also include plots of
arm stresses or arm displacements. Additionally, the Critic will also suggest
minor changes in the design to get better performance from the stress analysis
point of view, such as "Increase distance between holes | and 2 in order to
reduce stress concentration - 20% increase is suggested” or "Add stiffener to
prevent local buckling in region 3".
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7 Conclusion
We have described the current architecture and software tools that comprise the
CASE system. A preliminary evaluation of CASE by designers from Fisher-
Guide has demonstrated the usefulness of automatic synthesis tools in speeding
up the well-understood parts of design problems. In addition, with the
incorporation of feedback from the design critics it should be possible to
drastically reduce the number of cycles required to produce a satisfactory
design. By operating in conjunction with the system, a designer is able to
explore a wider variety of design alternatives and focus his attention on the
difficult creative decision-making for which humans are best suited.

The main systems integration features of CASE (see also [6]) are:

¢ The use of network models as descriptions for design projects; these
allow the seamless integration of new processes and
representations; also, processes can be configured in parallel so that
new processes can be gradually introduced and tested against
existing ones.

The delineation of levels of representation for the various processes,
especially for representing the aspects of a process that are of
concern to other processes, and the use of translators to
systematically maintain communication among their various
representations, so that the project as a whole remains well
coordinated.

The formulation of design tools as: agents, for synthesis and other
extensions and developments of designs; and critics, for analysis
and evaluation; this enhances the cooperation among modules at
various stages, by focusing the actions of the system as a whole in
certain well-established directions, and by using common message

types.

7.1 Directions for Future Research
Areas of extension of the current system presently under development include:
® The development and integration of other Design Agents to supply

expertise and provide design choice exploration support in other
critical areas, such as tolerancing.

e The development and integration of other Design Critics,
particularly a manufacturing expert and a materials selection expert.

e The expansion of the user-interface to provide the designer with
increased flexibility in interacting with the system.
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7.2 Implementation

The majority of the CASE software is written in Lucid Common Lisp with
Portable Common Loops. The VEGA solid modeler is written in C, and the
finite element software, in FORTRAN.
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