
Expert Systems for
Engineering Design

Edited by

MICHAEL D. RYCHENER
Engineering Design Research Center
Carnegie-Mellon University
Pittsburgh, Pennsylvania

A C A D E M I C P R E S S , I N C .

Harcourt Brace Jovanovich, Publishers

Boston San Diego New York
Berkeley London Sydney
Tokyo Toronto

Copyr ight © 1988 by Academic Press , Inc.
All rights reserved.
N o par t of this publ icat ion may be repor ted or
t ransmit ted in any form or by any means , electronic
or mechanica l , including photocopy, recording, or
any information storage and retrieval system, wi thout
permiss ion in wri t ing from the publisher.

A C A D E M I C P R E S S , I N C .
1250 Sixth Avenue, San Diego, CA 92101

United Kingdom Edition published by
A C A D E M I C P R E S S I N C . (L O N D O N) LTD.
24-28 Oval Road, London NW1 7 D X

Library of Congress Cataloging-in-Publicat ion Data

Exper t systems for engineer ing design
edited by Michae l D. Rychener.
p. c m .
Bibl iography: p .
Includes index.
ISBN 0-12-605110-0
1. Engineer ing des ign—Data processing. 2 . Computer -a ided design.

3. Exper t systems (Compute r science) I . Rychener, Michae l D ,
Da te -
TA174.E96 1988
6 2 0 ' . 0 0 4 2 5 O 0 2 8 5 - d c l 9 88-28306

C I P

Printed in the United States of Amer i ca
88 89 9 0 91 9 8 7 6 5 4 3 2 1

Preface

"The natural sciences are concerned with how things are. ... Design, on the
other hand, is concerned with how things ought to be, with devising artifacts to
attain goals." H. A. Simon, Sciences of the Artificial, 1969, ch. 3.
Later on, he says, "... in large part, the proper study of mankind is the science
of design, not only as the professional component of a technical education but
as a core discipline for every liberally educated man."

Unders tanding the design process has long been a goal of engineers , architects ,
and others . Such an unders tanding could lead to better des igns , more rapid
product ion of new designs , and greater progress towards meet ing real needs and
improving our envi ronment . Exper t sys tems, often referred to as knowledge-
based sys tems, provide a new tool for this, by a l lowing us to express design
knowledge in terms that both humans and computers can do something with.
H u m a n s can read and improve the expert knowledge , whi le computers can aid in
exercis ing and applying it, achieving (at least partially) the results that human
experts do. Often expert sys tems serve as partners on complex design projects .

The main theme of this book is the applicat ion of exper t sys tem techniques to
a variety of engineer ing design prob lems . This is conveyed by present ing a
series of case studies of research done at Carnegie Mel lon Univers i ty , within the
Engineer ing Design Research Center (E D R C) . Thus the book can be of use in
graduate- level courses in engineer ing design or expert sys tems, mos t likely as
supplementary reading. The papers illustrate a variety of approaches in a wide
sampl ing of engineer ing discipl ines. T h e emphas i s is on techniques that have
applicat ion to more than one engineer ing discipl ine, and it is the main goal of
the E D R C to deve lop such interdisciplinary approaches and tools . Whi l e the
papers use techniques of interest to a wider audience , there are technical details
on how the techniques are used to solve specific design p rob lems in Chemica l
Engineer ing , Civil Engineer ing , and several others .

This book covers new techniques in the fol lowing areas:

• synthesis , the creat ion and deve lopment of al ternative designs;

• the nature of design expert ise, and the sorts of compute r tools that
can enhance the exper t ' s dec is ion-making;

• integration of exist ing tools into intelligent, cooperat ive
f rameworks ; and

χ Preface

• the use of graphics interfaces with built-in knowledge about the
designs being configured.

The book represents our progress towards establ ishing a science of design, as
urged by Simon in the above quotes .

The editor gratefully acknowledges assistance from the E D R C staff,
including Nancy Pachavis , Georget te D e m e s , Jacquel ine Wil lson, Carol Strauch,
Kathy Staley, Debbie Sleppy, Judy Udavcak , Kei th Stopen and Drue Miller.
The director of the E D R C , Arthur Weste rberg , has been instrumental in creating
the envi ronment where research such as this can flourish.

The editor has received research support during the per iod of preparat ion of
this book from the Nat ional Science Foundat ion , A V C O Lycoming T E X T R O N ,
A l u m i n u m C o m p a n y of Amer ica , Wes t inghouse Electric Corp. , and ITT
Advanced Technology Center . The E D R C is supported in large part by the
National Science Foundat ion . Format t ing for this book has been done using the
Scribe® document product ion system, by Scribe Sys tems , Inc. M u c h of the
comput ing was done on a compute r granted by Gould , Inc. , Compute r Sys tems
Division. A workstat ion granted by Hewlet t Packard was used throughout .

Contributors

N u m b e r s in parenthesis refer to the pages on which the authors '
cont r ibut ions begin .

O m e r Ak in (173), Department of Architecture, Carnegie-Mellon University, Pitts
burgh, Pennsylvania 15213

René Bafiares-Alcântara (53) , Oriente 53 #359, Col Villa de Cortes, Del Benito
Juarez, Mexico 00350 DE

Will iam R Bi rmingham (113), Department of Electrical and Computer Engineer
ing, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213

Eler i Cardozo (241), CTA-ITA-IEE, Campus Montenegro, 12225 Sao Jose dos
Campos—SP Brazil

James D. Daniel l (221), Department of Electrical and Computer Engineering,
Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213

Allen Dewey (221), Department of Electrical and Computer Engineering,
Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213

Stephen W. Direc tor (221), Department of Electrical and Computer Engineering,
Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213

Richard H . Edahl (279), Engineering Design Research Center, ΗΒΗ 1201,
Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213

M o s h e Eisenberger (279), Department of Civil Engineering, Carnegie-Mellon
University, Pittsburgh, Pennsylvania 15213

Alber to Elfes (279), Engineering Development Research Center, Doherty Hall,
Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213

Mar tha Far inacci (141), Applied Math and Computer Technology, ALCOA Labora
tories, Aluminum Company of America, ALCOA Center, Pennsylvania 15069

Ulr ich F l emming (93) , Department of Architecture, Carnegie-Mellon University,
Pittsburgh, Pennsylvania 15213

xii Contr ibutors

M a r k S. Fox (141), Intelligent Systems Laboratory, Robotics Institute, Carnegie-
Mellon University, Pittsburgh, Pennsylvania 15213

M a x Henr ion (197), Department of Engineering and Public Policy, Carnegie-
Mellon University, Pittsburgh, Pennsylvania 15213

Ingemar Hul thage (141), Intelligent Systems Laboratory, Robotics Institute,
Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213

E d m o n d I. Ko (53) , Department of Chemical Engineering, University of Califor
nia at Berkeley, Berkeley, California 94720-9989

M a r y Lou Mahe r (37) , Department of Civil Engineering, Carnegie-Mellon Uni
versity, Pittsburgh, Pennsylvania 15213

J im Rehg (279), Engineering Development Research Center, Doherty Hall,
Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213

Michael D. Rychener (1), Engineering Design Research Center, ΗΒΗ 1201,
Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213

Gerha rd Schmitt (257) , Department of Architecture, Carnegie-Mellon University,
Pittsburgh, Pennsylvania 15213

Daniel Siewiorek (113), Department of Electrical and Computer Engineering,
Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213

Sarosh Talukdar (241, 279) , Engineering Development Research Center, Doherty
Hall, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213

Arthur W. Westerberg (53) , Engineering Design Research Center, ΗΒΗ 1201,
Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213

Char les Wiecha (197), T.J. Watson Research Center, PO Box 704, Yorktown
Heights, New York 10598

Rob Woodbury (279), Department of Architecture, Carnegie-Mellon University,
Pittsburgh, Pennsylvania 15213

1 Research in
Expert Systems for
Engineering Design
MICHAEL D. RYCHENER

Abstract
Expert sys tems offer a number of advantages as a technology for applicat ions of
Artificial Intel l igence. They are introduced in this chapter from the point of
view of the demands of engineer ing design. The use of expert sys tems in design
domains is the culminat ion of a twenty-year search for the foundat ions of a
science of design. There is a strong potential for bui lding on the works reported
in this book to progress towards such a science. Exper t sys tems are one of the
main research areas of the Carnegie Mel lon Engineer ing Des ign Research
Center , whose history, goals , and organizat ion are presented here . The trends
that are evident as we m o v e into a new generat ion of design tools are enhanced
by the use of expert sys tems in a number of roles. An overview of the book
reveals some of those roles . Included in this chapter is a glossary of terms.

1 Introduction
In the past few years , a new comput ing technology has emerged from research
in Artificial Intel l igence (AI) to be applied to a variety of technical domains .
This technology is expert sys tems. The expert system approach is to take
knowledge from h u m a n experts and represent it as a knowledge base , which can
then be processed to solve difficult p rob lems in the same way the expert would .
A knowledge base is formulated and encoded in such a way that the system can
readily explain why it arrived at its answer. It can also be examined and used in
a tutorial m o d e , a l lowing a novice to learn how an expert works on a problem.
It is rare, of course , that the system has the same performance as the expert on
every problem, given that expert ise usually requires years of exper ience to
acquire. But it is c o m m o n for an expert sys tem to perform well on all routine
problems and many of the more difficult ones . In pract ice, this amounts to more
than 9 0 % of what experts are called upon to do .

Expert Systems for Engineering Design Copyright © 1988 by Academic Press, Inc.
All rights of reproduction in any form reserved.

1 ISBN 0-12-605110-0

2 Michael Rychener

An expert system can free up valuable human expert ise for difficult p rob lems
and for more creative activities such as research. It often expands the scope and
flexibility of applying expert ise . A compute r system is much easier than a
h u m a n to copy and transport to var ious locat ions where it is needed. Many
useful and profitable expert sys tems have been developed in medic ine , compute r
manufactur ing and sales, mineral explorat ion, te lephone sys tems, power plants ,
locomotives , aircraft, and other areas . Wa te rman [65] and Harmon and King
[29] are good introductory texts on this field. Hayes-Roth , et al, [31] , Buchanan

and Shortliffe [8] , and Weiss and Kul ikowski [67] provide good overv iews of
technical details and practical approaches . The field of AI has several good
introductory texts, including Rich [49] and Wins ton [68] .

There are a wide variety of ways that expert system technology can assist the
engineer ing process . T o see this, weTl analyze the componen t s of design, and
then consider what sorts of tools are appropriate . But first, the next section of
this chapter will present an introduction to expert systems and descr ibe a
representat ive set of the available tools . This will provide a basis for
consider ing whether the tool needs of engineers can be met by the current
technology. The research reported in this book illustrates many of the
possibili t ies implied by this analysis . In fact, the set of projects presented here
are being carried out by a g roup of cooperat ing faculty at Carnegie Mel lon,
within the Engineer ing Design Research Center . This center has a wide
diversity of approaches , which reflects the nature of engineer ing at large. The
history that is presented in this chapter will show that this is no accident: the
faculty have been thorough in pursuing applicat ions of computers to engineer ing
problems. Thus , the lessons learned by looking at how engineers in the center
are able to cooperate and coherent ly attack the p rob lems of design will be
important ones . W e will see an overall approach with diverse aspects that has
the potential of cover ing mos t of the f ield 's important p rob lems .

2 Expert Systems
The term "expert system" refers to a compute r p rogram that is largely a
collection of heurist ic rules (rules of thumb) and detailed domain facts that have
proven useful in solving the special p rob lems of some technical field. Exper t
systems to date are an outgrowth of artificial intell igence (AI) , a field that has
for many years been devoted to the study of problem-solv ing using heurist ics, to
the construct ion of symbol ic representat ions of knowledge about the world, to
the process of communica t ing in natural language, and to learning from
exper ience. Expert ise is often defined to be that body of knowledge that is
acquired over many years of exper ience with a certain class of problem. One of
the hal lmarks of an expert system is that it is constructed from the interaction of
two very different people : a domain expert , a pract icing expert in some technical
domain; and a knowledge engineer , an AI specialist skilled in analyzing an

1. Research in Exper t Sys tems for Des ign 3

exper t ' s p roblem-solv ing processes and encoding them in a compute r system.
The best h u m a n expert ise is the result of years , perhaps decades , of practical
exper ience , and the best expert sys tem is one that has profited from close contact
(via the knowledge engineer) with a h u m a n expert .

2 .1 Expertise: Definition, Advantages and Costs
W h a t are the defining characterist ics of an expert sys tem? Foremos t a m o n g
them is excel lent per formance - accuracy, speed, and cost-effectiveness of
information-gathering techniques . But expert sys tems are also typified by a
collection of other propert ies , m a n y of which are taken for granted in h u m a n
experts :

• The ability to explain and justify answers , ei ther on the basis of
theory, or by cit ing relevant heurist ic rules, or by appeal to past case
histories;

• The c loseness of reasoning procedures to those used by h u m a n
experts (the system is not a myster ious black box using obscure
mathemat ica l formulas) ;

• The ability to deal with uncertain or incomple te information about
the current p rob lem situation;

• The ability to summar ize and point out features of the p rob lem
situation that were mos t important in leading to an answer ,
including information about which other factors might still have an
effect, if they were to become known;

• The use of verbal or symbol ic encodings for knowledge , mos t of
which is readily communica t ed in natural language;

• The ability to grow gradual ly by adding new pieces of knowledge ,
usually in the context of solving an unfamiliar p roblem.

These quali t ies m a k e the expert sys tem more effective as a consul tant and in
other expert roles, since there is some way of backing up answers and of
bui lding confidence in the sys t em ' s abili t ies. Also included are the possibil i t ies
of improving the system by conversat ional means , and of using the system as a
tutor or trainer.

W h y would someone go to the t rouble to build an exper t sys tem? Inherent
complexi ty of a p rob lem area and scarcity of good h u m a n experts are pr ime
mot ivat ing factors. Often bui lding an expert system can help to systematize a
body of knowledge , so that it can be widely dispersed. S o m e expert sys tems are
applied in hazardous or uncomfor table surroundings , such as nuclear reactors .
Ret i rement of key personnel can spark interest in industrial sett ings. An expert
system is often a good means for pool ing the expert ise of a number of
specialists, to p roduce a system that is more effective than any of them working
alone. Fully au tomated systems can often use the capabil i t ies of an expert

4 Michael Rychener

system to avoid the need for h u m a n intervention in many of the routine day- to
day failures and emergencies .

Which kinds of p rob lems are mos t amenable to this type of approach? Those
requir ing knowledge- in tens ive problem solving, i.e., where years of
accumula ted exper ience produce good human performance. Such domains have
complex fact structures, with large vo lumes of specific i tems of information,
organized in part icular ways . Often there are no k n o w n algor i thms for
approaching these difficulties, and the domain may be poorly formalized.
Strategies for approaching problems may be diverse and depend on part icular
details of a p rob lem situation. Many aspects of the situation need to be
determined during prob lem solving, usually selected out of a much larger set of
possible data readings - some may be expens ive to de termine , so that an expert
needs to weigh carefully the ser iousness of a part icular need.

The advantages of an expert sys tem are significant enough to justify a major
effort to build them. Decis ions can be obtained more reliably and consistently.
Explanat ion of the final answers is an important side product . A prob lem area
can be s tandardized and formalized through the process of bui lding an expert
system for it. An expert sys tem may be especial ly useful in a consul tat ion m o d e
on difficult cases , where humans m a y over look obscure factors. A n expert
system can often serve as an example of good strategy in approaching a
problem, which might be useful in training si tuations. Exper t systems can be
more easily expandable than convent ional software, so that they can be
gradually improved as their p rob lem domain evolves . Exper t sys tems are often
implemented in an interactive, decentral ized envi ronment , taking advantage of
emerging, cost-effective personal comput ing resources . Ready availabili ty of an
expert consultant p rogram can improve the training envi ronment in industrial
settings.

Currently there are four major areas where expert systems have proven
successful, as shown in Table 1.

To summar ize and re-emphas ize a few points from above, to be considered a
proper expert system, a sys tem mus t encode knowledge from a human expert .
This expert knowledge is much more than jus t the basic facts, but has been
organized and ' compi l ed ' through its intensive use on practical p rob lems over a
period of many years . Often, in fact, a novice cannot follow the reasoning steps
of an expert , because the exper t ' s process of organizat ion and compila t ion has
advanced very far; a psychological presentat ion of this can be found in
Ande r son ' s work [3] and that of Rosenb loom, Newel l , and Laird [36, 35] .

2 . 2 The Components of Expert Systems
The key aspects that dist inguish expert sys tems are summar ized in Figure 1.

The User Interface in the figure is shown as a collection of capabil i t ies:
knowledge acquisi t ion, debugging and exper iment ing with the knowledge base ,
running test cases (perhaps systematical ly, from a l ibrary), generat ing

1. Research in Exper t Sys tems for Design 5

Table 1: Applicat ion areas for expert sys tems.

Area Key Aspects Example

Diagnos is and repair; F ixed set of al ternatives Medica l
complex , da ta-dependent Ques t ion-answer dialog diagnosis
selections and Differential weight ing [8]
interpretat ions.

Event-dr iven or Intricate details Compu te r
data-driven procedures ; Complex , da ta-dependent configurat ion
detai l ing pre-specif ied order ings [37]
plan.

Model l ing and Declara t ive knowledge M a n a g e m e n t
s imulat ion of representat ion sys tems
organizat ions and and inference techniques [24]
mechan i sms .

Des ign and planning; Open-ended space of Molecular
generat ive, goal-directed al ternatives genet ics
problem-solv ing . Coordinat ion of mult iple [61]

experts

summar ies of conclus ions , expla ining the reasoning that led to a conclus ion (or
to a quest ion by the sys tem) , and evaluat ing system performance (including
sensitivity of an answer to part icular data i tems, present or absent) . The main
computa t ion engine is in the center of the d iagram, conta ining search gu idance
and inference componen t s . It searches the knowledge base for appl icable
knowledge , and makes inferences on the basis of current p rob lem data. T h e
search guidance componen t selects which port ion of the knowledge base is most
important to try to apply at any point in the problem-solv ing session. It may use
general knowledge-base considerat ions , or it may m a k e use of user-specified
strategic rules (somet imes called meta -knowledge) . The inference componen t
evaluates individual rules and interconnect ions a m o n g concepts in the
knowledge base , in order to add to the Work ing M e m o r y . The Work ing
M e m o r y is a store of the current p rob lem data, e.g., answers to quest ions about
the problem and results of diagnost ic tests.

The knowledge base is the main reposi tory for domain-specif ic heuris t ics . It
is considered to be in four levels, each one built out of e lements of the next

6 Michael Rychener

Knowledge Base

Strategies
Models

Rules
Concepts

Working Memory

Problem data
Diagnostic test

results

Inference Engine

Search

Inference

User Interface

Acqui re Data &
Knowledge

Debug
Ex peri ment
Test cases
Summarize

Explain
Eval uate

Figure 1: Componen t s of an expert system.

lower level:

Concepts. Declarat ive representat ion of domain objects, with both abstract
classes and concrete instances; complex interrelat ionships can usually be
represented and used in mak ing inferences and in construct ing similarit ies.
Usually this knowledge can be obtained from textbooks , and includes the basic
terms of the p rob lem domain .
Rules. Empir ical associat ions l inking: causes and effects; ev idence and likely
hypotheses to be concluded; si tuations and desirable actions to perform; etc.
This level of knowledge is the main form that is obtained from an expert , and is
based on exper ience . The knowledge is empir ical (difficult to obtain from
textbooks) , and may have associated with it "certainty factors" indicating
degrees of belief in its applicabil i ty. Exper ts may not agree on knowledge at
this level.
Models. Col lect ions of interrelated rules, usually associated with a part icular
problem hypothesis or overall diagnost ic conclusion. Somet imes this represents
a subsystem within a complex mechanica l or natural structure. Rules within
models interact much more strongly with each other than with rules in other
mode ls , in a way similar to S i m o n ' s weakly decomposab le sys tems [53]. This
level of organizat ion is often achieved using contexts as an organizat ional
device [37].
Strategies. Rules and procedures to aid in the use of the rest of the knowledge
base, e.g. guiding search and resolving conflicts when several equally plausible
rules apply to a given situation.

'Some of this terminology follows Reboh's [46].

1. Research in Exper t Sys tems for Des ign 7

These can be illustrated with an example from the domain of automobi le
t rouble -shoot ing .

2

Concepts include such things as brakes (which can be subdivided into disc
and d rum types) , master cyl inder , and brake l ines. T h e concepts migh t include
classification information (as in the case of brake types) and also basic
knowledge about how the parts interrelate and interconnect , both in terms of
physical structure (the brake line is connected to the master cyl inder , etc.) and in
functional te rms (the master cyl inder controls the pressure in the l ines).

Heurist ic rules are diagnost ic connect ions be tween observed symptoms and
probable causes , as in the fol lowing:

IF there is poor gas mileage,
THEN (LS= 1 0 . 0 , L N = 0 . 1) probable cause is

faulty carburetor adjustment.
In this rule, " L S " stands for "l ikelihood sufficiency", a measure of h o w strongly
the " IF" part supports concluding the " T H E N " part. "LN" stands for "l ikelihood
necessi ty", a measure of how strongly the " T H E N " part would cause the "IF"
part, i.e., how discouraging it would be not to have the "IF" part.

Mode l s in this domain are subsys tems of au tomobi les , namely things like:
engine , fuel sys tem, cool ing system, braking system, t ransmission, and electrical
system.

Strategies include meta-rules such as:

IF car performs poorly
and is less than three years old,

THEN check fuel system before engine system.

2 . 3 Building an Expert System
The steps to be taken to build an expert system involve bui lding up the
knowledge base from the simplest e lements to the mos t complex , i.e., bui lding
up the concepts first, then rules, then mode l s and strategies [46]. Dur ing the
beginning phase , a small number of test cases are used, to establish the desired
system behavior on a range of typical p rob lems . The knowledge engineer can
use the test cases to build up an initial (very incomplete) set of rules and to
establish the overall mode l organizat ion. W h e n these prel iminary i tems are
implemented , and the domain expert has approved, the work of filling in more

2
The author is not an expert in this domain, nor has he consulted one in connection with these

examples, but the domain was chosen for its likely familiarity to many readers. The details are
meant only to be illustrative, not correct as a real-world system.

8 Michael Rychener

and more details can begin, pr imari ly with the acquisi t ion of rules. Cont inuing
progress in this second phase results in better system coverage of p rob lems in
the domain , and also can involve filling in other aspects of the knowledge base
that are necessary for advanced kinds of user interaction with the system.

After the rule-building phase is fairly comple te , field evaluat ions can be
carried out, and the task of the knowledge engineer shifts to adding sources of
knowledge in addit ion to the empir ical rules. For instance, in some domains it is
useful to have a historical database , to help dist inguish among various possible
occurrences that are similar when only present diagnost ic tests are used.
Another source of knowledge that may be needed in some domains is
background theory, a ' deepe r ' kind of knowledge of the domain . These and
other sources of knowledge are not a lways required, and it is usually best to
build up a good knowledge base of empir ical rules before deciding to embark on
other aspects of expert ise , given that the rules are often easiest to elicit from a
human expert and implement . M a n y domains have been found to be adequately
model led by a purely empir ical rule base .

Exper ience in bui lding exper t sys tems so far indicates that the first phase of
the activity takes on the order of six staff-months to one staff-year. Usual ly a
l imited working prototype can be constructed and demonst ra ted within a few
months of the start of a project, a l lowing managers or research sponsors to get
an early idea of how the system might look when comple ted . The next phase
can take from two to five staff-years, as the system is gradual ly expanded and
refined to handle more and more domain p rob lems . Dur ing this per iod, it is
critical to sustain the effort to obtain the exper t s ' knowledge , which often
requires a cont inuing (and usually increasing) manager ia l commi tmen t to the
project. There is also an issue of finding the right person to act as expert
informants: they must not feel threatened by the possibil i ty of a system
containing their knowledge ; in fact, they mus t have a strong motivat ion to have
the expert ise preserved and mechanized . This mot ivat ion can c o m e from a
desire to reduce workloads on routine p rob lems , or from a desire to leave
something behind on ret irement. Thus a successful expert system can only
result from a combinat ion of technical , manager ia l and sociological successes .

2 . 4 Languages and Tools
There are several approaches available for bui lding an expert system. One can
take a traditional p rog ramming approach, using one of the p rogramming
languages suitable for AI in general : L ISP [60], O P S 5 [23, 6] , P R O L O G [5],
Small talk [27], or one of a variety of other special ized languages for system-
building. It is often necessary to combine such techniques with a frame-based
system, a language formal ism for represent ing declarat ive facts (concepts ,
t axonomies , and semantic relat ions). The topic of frame-based, rule-based and
logic p rogramming is explored in more detail in a recent journal issue [25].
Object-oriented p rog ramming is introduced in [11], and a recent survey shows

1. Research in Exper t Sys tems for Design 9

how the concepts of object-oriented p rog ramming apply in engineer ing domains
[34]. With in the past three years , a number of tools have been developed that

al low a higher- level approach to bui lding exper t sys tems in general , a l though
most will still require p rog ramming skill. A few provide an integrated
knowledge engineer ing envi ronment combin ing features of all of the above-
ment ioned AI languages (A R T , Knowledge Craft, and K E E are the leaders in
this area) . These are suitable and efficient for use by AI professionals . A
number of others are very special ized to specific problem types, and can be used
without p rog ramming to build up a knowledge base . See [50, 26] for surveys of
some of the mos t powerful ones , including a number of small tools that run on
personal compute rs . A c o m m o n term for these more powerful tools is shell,
referring to their origins as special ized expert sys tems whose knowledge base
has been removed , leaving only a shell that can perform the functions of
inference engine , user interface, and knowledge storage med ium.

For computer -a ided design appl icat ions, however , good exper t -sys tem
bui lding tools are still be ing conceptual ized and exper imented with. S o m e of
the mos t effective design sys tems in AI (discussed in the section be low on
design research) may become the basis for powerful tools. Also , as discussed
immediate ly be low, a number of the componen t s of the design process fall into
the diagnost ic / selection category, and these can be at tacked with exist ing
shells. M a n y sys tems are now being developed a long these l imited lines. But
bui lding a shell that has the basic ingredients for assisting or doing design is still
an open research topic. Some crucial componen t s of the design process are not
covered by the current popula t ion of tools . The area of design me thodo logy for
engineer ing still contains many open quest ions , so bui lding compute r tools to
assist it mus t be difficult.

One of the main prob lems being at tacked currently is* to provide tools for
a l lowing var ious design sys tems to communica t e with each other dynamica l ly
and cooperat ively while working on the same design p rob lem from different
v iewpoints . W h a t this amounts to is having a diverse team of exper ts , as
represented by their expert sys tems, available at all stages of a design. This
leads to a v iew of design in which technical expert ise can be shared freely in the
form of expert sys tems. It a l lows some teams of human designers to work on
parts of a p rob lem independent ly , using expert sys tems for other teams within a
company in order to answer some quest ions at points where the design requires
that the teams coopera te . This would al low, for instance, one team to p roduce a
comple te design and get an evaluat ion of it from the s tandpoint of another team,
without actually involving the people concerned. This results in a m u c h more
rapid considerat ion of major design al ternatives, and can thus improve the
quality of the result. A part icular des igner or team can take into account
technical evaluat ions from areas outside their own special ized domain .

An important class of tool constructed along these lines is b lackboard
systems [18, 30] , which provide a set of computa t ional pr imit ives and data

10 Michael Rychener

managemen t for specifically the purpose of a l lowing programs to cooperate . In
their paper in this book, Ta lukdar and Cardozo discuss ways to general ize and
make this scheme more powerful and flexible, by analogy with more complex
human organizat ional schemes . Finger , Fox, et al., [22] have formulated a
potential approach to solving communica t ion a m o n g different parts of an
organizat ion as involving the express ion and t ransmiss ion of constraints . A
variation on this is to package design knowledge into "critics" [21] that function
to moni tor and mainta in certain key constraints in a design. Howard and Rehak
[48] have developed languages and formats for a l lowing various databases and

expert system programs to share information. Topics such as these are
discussed in a number of the papers in this vo lume.

2 .5 The Components of Engineering Design
It is fruitful to examine design, in order to isolate areas where expert system
techniques are applicable. T h e main approach here is to look first at special ized
areas within design discipl ines, in order to apply current expert system
technology. W h e n a number of areas within a discipline have been explored in
this way, we will be in a better posi t ion to integrate the results into a more
comprehens ive , "automated" design system. W e expect the integration to pose
significant chal lenges in the area of tool-bui lding, and thus there is good reason
to want to look at the entire problem, but it is necessary first to work on the
pieces to be integrated.

In order to describe the subproblems within design that might be appropriate
for exper t sys tems, w e can util ize knowledge that AI research has gained about
broad types of problems that exist in real-world domains . T w o types of p rob lem
are examined: diagnosis and design. A similar analysis , with more examples of
types of p rob lems , appears in [31] .

2.5.1 Diagnos i s
The dominant parad igm of expert sys tems has been a diagnost ic one:

weighing and classifying complex pat terns of ev idence , to evaluate a situation
that is either abnormal (as in diseases or faults) or developable in new ways (as
in mineral prospect ing) . This is very similar, though, to many types of complex
selections that take place in engineer ing problem solving; e.g., selections are
made of what materials to use, what fabrication processes will be most effective,
and what pre-exist ing componen t s will best meet design objectives. Diagnosis
involves applying a s tandard set of tests, whose extensiveness or cost usually
al lows only a small port ion of them to be performed. Thus selectivity an
important aspect of a diagnost ic p rogram. Another constraint is that results may
be unreliable or approximate . Exper t sys tems have demonst ra ted the ability to
infer possible causes of symptoms (evidence) , to gather data efficiently, and to
discr iminate compet ing hypotheses .

The major componen ts of diagnosis can be summar ized as fol lows:

1. Research in Exper t Sys tems for Design 11

• Givens :

• a case of malfunct ioning, unusual " symptoms" ;

• a s tandard set of diagnost ic tests.

• Goals :

• to fit case into k n o w n "disease" categories;

• to find probable causes of symptoms ;

• to r e c o m m e n d t reatment me thods .

• Constra ints :

• the tests may be numerous and difficult to select;

• the tests may be costly (in t ime or money) ;

• the tests may be unrel iable or imprecise .

• Opera t ions :
• infer possible causes of symptoms ;
• gather data about symptoms and characterist ics of the case,

i.e., ask quest ions and do tests;

• classify possible causes into disease hypotheses ;

• d iscr iminate compet ing hypotheses ;

• take account of the interactions of several causes;

• take account of the history of the system;

• reason on the basis of general causal knowledge of the
system, or on the basis of theory.

2.5.2 Des ign
The process of design involves some of the same constraints as diagnost ic

processes , in that tests may be costly, imprecise , and difficult to select. But a
design prob lem involves a different object ive: to construct a sys tem or object
satisfying a given specification. Des ign can be broken down into several phases
(see, e.g., [20]), as shown in Tab le 2.

Usual ly there are analytic tests or s imulat ions that can be performed on a
proposed design, and the componen t s from which the construct ion is to be done
are k n o w n and have k n o w n propert ies and interrelat ionships. Select ion and
connect ion of componen t s are important operat ions in des igning, as are
deducing and testing propert ies of subsys tems of the proposed result. As
proposals are generated, they mus t be checked for consis tency with the
specifications. Des igns undergo evolut ion and updat ing operat ions after being
formed, and a system to aid in design mus t be able to track such changes and

12 Michael Rychener

Table 2: Phases of the design process .

Phase Activit ies

Prel iminary design Selection of overall forms, envi ronment ,
and functional requirements
(somet imes descr ibed as synthesis)

Prel iminary componen t design Selection and elaborat ion of componen t s

Documenta t ion and
detailed project p lanning.

check that new variat ions are correctly des igned and updated. N e w componen ts
are somet imes created, a long with constraints that apply to them. A variety of
guidelines and environmenta l regulat ions have to be followed. A number of
these facets of design can be seen to be appropriate for the applicat ion of expert
system techniques .

The main componen t s of design can be summar ized as follows:

• Givens :

• the specification of the desired object or sys tem, giving its
features, functions, constraints , budget , etc.;

• s tandard analytic tests on systems and componen ts that are
proposed or designed;

• possible componen t s , their propert ies , their interrelations.

• Goal : to produce an object or system that meets the specifications.

• Constraints : (the same ones as for diagnosis)

• the tests may be numerous and difficult to select;

• the tests may be costly (in t ime or money) ;

• the tests may be unreliable or imprecise .

• Opera t ions :
• select overall forms;

Detai led design Further ref inement takes place

Analysis and opt imizat ion Verify and evaluate all aspects of the design

1. Research in Exper t Sys tems for Design 13

• select, and specify details of, componen t s ;

• infer propert ies of the desired system from the given
specification;

• put componen t s together into (sub)systems;

• check specifications (features, constraints , costs);

• perform analytic tests to predict behavior ;

• evolve and update the des igned system, using feedback from
tests , recording reasons for decis ions and inter-dependencies
of detai ls , and mainta in ing constraint satisfaction;

• create , represent and util ize new componen t s and new
constraints ;

• observe design guidel ines for efficient procedure ;

• apply opt imizat ion procedures ;

• consider non-economic criteria (safety, envi ronmenta l
protect ion, esthetics) .

2 . 6 A Projection of Expert Systems Techniques for Design
The above analysis suggests that bui lding knowledge-based sys tems to aid the
design process can be approached by bui lding sys tems to handle p rob lems posed
in the var ious componen t s , and then integrat ing the result ing sys tems so that
results can be communica t ed and the overall process can be repeated as des igns
are refined and improved . There are already tools to aid in bui lding expert
sys tems for the steps involving selection and diagnosis , as d iscussed in the
preceding section. T h e procedure used for exper t sys tems in general would
apply to des ign p rob lems , namely , build up concepts , then rules , then organize
the mode l s and specify strategies for problem-solv ing within such steps. But the
integration of the separate knowledge bases and the managemen t of the overall
des ign process are tasks that require cus tom-bui l t AI sys tems rather than
commerc ia l ly avai lable shells. The section above on languages and tools also
discussed some of the best candidates for tools for integrat ion, and chapters in
this book also cons ider this quest ion.

T h e mos t impor tant potential impact areas of expert sys tems on the design
process can be summar ized as fol lows:

1. rapid checking of pre l iminary design concepts , a l lowing more
al ternatives to be considered in a given t ime period;

2. strategies for i teration over the des ign process to improve on
previous a t tempts ;

3 . assis tance with, and even automat ion of, complex componen t s and

14 Michael Rychener

substeps of the design process where expert ise is specialized and
technical;

4 . strategies for searching in the space of al ternative des igns , and
moni tor ing of progress towards the targets of the design process ;

5. integration of a diverse set of tools, with expert ise applied to the
problem of coordinat ion and efficient use of the various tools; and

6. integration of the various stages of design, manufacture , and use of
a product , by having knowledge bases that can be readily
distr ibuted for wide access .

The three parts of this book correspond to those impact areas as fol lows: in the
part deal ing with synthesis , there are approaches to the first two areas, and to the
fourth; in the part on design expert ise and methodology , there are deve lopments
with respect to the third and fourth areas; and in the part on integrated systems,
the last two areas are considered. T h e overall organizat ion is discussed further
towards the end of this chapter .

2 .7 The Future of Intelligent Design Systems
Starting from current v iews of the design process and of the impact of expert
systems, it is apparent that there can be a rapid evolut ion of the application of
intelligent systems to design, with three generat ions of tools and approaches
visible.

The first generat ion of computer -a ided design is what we currently have: a
variety of tools and a variety of med ia for represent ing des igns and design
information, not integrated and not even well cataloged in some cases . It has the
fol lowing features:

• Information flows consume half the t ime of personnel involved;

• Engineers spend m o r e than half their t ime on manager ia l rather than
technical tasks;

• Constra ints from downs t ream (e.g., manufactur ing) are costly to
consider;

• Typical design cycle t ime for new products is 5 years; and

• Major innovation occurs most ly in small companies .
Five years from now, we expect the adopt ion and wide-spread use of

knowledge-based systems and tools, mark ing a second generat ion. In this,
techniques are available that al low first-generation tools to be gracefully
integrated, ne tworked , and coordinated. A few compan ies are fully ne tworked
and tool-integrated. The fol lowing projections can be m a d e for this second
generat ion:

• Knowledge-based tools are developed to complemen t and replace
first-generation shells; these are targeted for design assis tance,

1. Research in Exper t Sys tems for Design 15

rather than for genera l -purpose use; especial ly, tools for selection
p rob lems can be enhanced and expanded for engineer ing
appl icat ions;

• Var ious design strategies are built into expert system shells, so that
knowledge from a new area can be entered and uti l ized
appropriately;

• A few organizat ions have large-scale applicat ion sys tems avai lable
as demonst ra t ions (but the approach is not pervas ive yet);

• Exper t ise in the form of expert knowledge bases can be packaged
and distr ibuted around an organizat ion; this includes manufactur ing
constraints and other downs t ream concerns ;

• The des ign process can be measured within an organizat ion,
bot t lenecks detected, scope enlarged, and improvements
r ecommended ; developing and deploying tools to aid the process
will still be a mul t i -year endeavor;

• Des ign history has been represented and codified for access and
active use; this requires not jus t blue-prints to be stored, but also
just if icat ions, in ter-dependencies a m o n g decis ions , and other notes;
geometr ic (3D) reasoning will be a key capabil i ty in many domains ;

• Pro to type sys tems exist that can innovate in a few key areas
(depending on which compan ies invest in the research efforts
neeeded) ; deep (theoretical , causal) unders tanding of technical areas
will be key.

Project ing further, the third generat ion will arise as there is widespread
automat ion of the applicat ion of knowledge-based tools. This will require
advances in the applicat ion of mach ine learning and knowledge acquisi t ion
techniques . The third generat ion will also have au tomated the process of
applying the tools to design organizat ions . Other future deve lopments can
include the automat ion of innovat ion and of cus tom design and fabrication
processes .

Wi th each generat ion, the key aspects of the previous generat ions become
more and more widespread as technology moves out of the deve lopment
laboratories and into commerc ia l products and tools. T o summar ize the above
project ions, t rends are expected in these areas:

• Degree of integration and ne twork ing of tools;

• Degree of automat ion of applicat ion of tool technology;

• Sophist icat ion of genera l -purpose tools (shells);

• Degree of use within industrial organizat ions;

• Degree of unders tanding of the design process ;

16 Michael Rychener

• Degree of formal representat ion of designs and concepts ; and

• Degree of unders tanding of innovat ive and creative aspects .

3 Design Research
The field of design research in engineer ing has its roots in S i m o n ' s book, The
Sciences of the Artificial [53] . The main goal of that work was to establish the
basis for s tudying h u m a n endeavors that are concerned mainly with human
products as opposed to natural phenomena . S imon located the tools for such a
study in the fields of Cogni t ive Psychology, Opera t ions Research, and Artifical
Intel l igence, at that t ime a minor branch of the new field of Compute r Science.
At Carnegie Mel lon Univers i ty , an interdisciplinary group of engineers ,
compute r scientists and operat ions research specialists formed to pursue these
ideas. It was known as the Des ign Research Center .

S imon m a d e further contr ibut ions to the available concepts with his paper on
the nature of il l-structured prob lems [54], of which design is a p r ime example .
In studies of designers solving s imple layout p rob lems , S imon found that a
design problem is only well-defined at the end of the problem-solving process ,
since part of the problem appears to be the discovery of constraints that will bear
on the ou tcome. In particular, architects were observed to formulate many i tems
of information of impor tance to their designs only by recognizing their
applicabili ty while working out details of a solution. They could not start out by
first mak ing a list of the criteria that they were seeking to satisfy with the
newly-created layout. Thus the search for a good design is also a search for the
proper information with which to evaluate it. W o r k by Eas tman [17] served to
support and expand these conclus ions , and Pople [45] has commen ted more
recently on a related type of i l l-structured problem.

Meanwhi le , Carnegie M e l l o n ' s engineer ing school had adopted a strategy of
gathering prominent researchers in areas relating to design research and
especially the use of compute r tools in engineer ing design. One of the main
issues soon became , and still remains today, to find a formulat ion of the design
process that a l lows the construct ion of tools that can serve the diverse needs of a
variety of engineer ing discipl ines, thus gett ing at the heart of what design really
is. Past studies of design methodology , pr imari ly by architects such as Cross
[12] and Jones [33] have shed some light on the process of creat ing and

evaluat ing designs , but have not p roduced approaches to compute r tools. More
recently, Akin [2] has synthesized that architectural methodology with the
Newel l and S imon [44] techniques of problem-solv ing analysis to produce new
insights. Several other p rominent researchers have described design
methodologies with their fields in a special issue of the Proceedings of the I E E E
[13]. There we have v iews of design research from the s tandpoints of electrical

engineer ing, civil engineer ing, and chemical engineer ing. But the unification of
efforts was not to occur until new deve lopments from the field of artificial
intell igence became widely known.

1. Research in Exper t Sys tems for Des ign 17

Exper t sys tems have started to revolut ionize many technical fields, as already
discussed above . The same is potential ly true of engineer ing design. A number
of p ioneer ing works have explored some of the possibil i t ies, as surveyed by the
author in [52] and by other authors , for specific engineer ing discipl ines , e.g.,
[47, 58] . As discussed above , engineer ing design can be broken d o w n into a

number of componen t s , many of which can be at tacked separately by exist ing
techniques . The advantages will be the same as for expert sys tems in general , as
discussed above , namely , improved util ization of scarce resources . In addit ion,
if knowledge-based systems b e c o m e more widespread and routinely util ized in
many aspects of design and manufactur ing, there is a possibil i ty for major
quali tat ive changes in the industrial des ign process . Des ign in many major
manufactur ing enterprises takes on the order of five years , and we can hope to
significantly reduce that t ime, whi le at the same t ime improving quali ty of
designs by a l lowing more al ternatives to be explored in detail . W e can also
anticipate more flexibility, a l lowing a wider variety of more effective products
to be des igned and fabricated.

Whi le engineers have started to exploi t and apply expert sys tem techniques ,
interest has g rown from within the field of artificial intel l igence to study the
many chal lenges of engineer ing prob lem solving. An early effort at the more
routine side of design, namely configurat ion of parts into cus tomized compute r
hardware sys tems, was M c D e r m o t t ' s X C O N system [37] . Stef ik 's M O L G E N
was a sys tem to design molecular genet ics exper iments , and to do this task
required a complex , mult i - layered p lanning system. Fol lowing up on that
promis ing beginning, there have been a number of projects reported, e.g.,
Mi tche l l ' s work in circuit design [39] , Far inacci et aFs work on A l u m i n u m alloy
design [19, 51] , and others [55] . A recent workshop , summar ize by M o s t o w

[41], lays out a number of chal lenging issues that can be addressed. A m o n g
them are h o w to represent the knowledge conta ined in a des ign (including its
history and just if icat ion), mak ing the design p rocess ' s goal structures explicit ,
and mak ing design decis ions , assumpt ions , commi tmen t s , and rat ionales
explicit . He also brought out the need to control the process intell igently, to
apply learning techniques , to integrate heurist ic and algor i thmic me thods , and to
work in mult iple p roblem spaces s imul taneously . In order to control the design
process , we ' l l certainly need to deve lop more ideas in the area of p lanning [10] .

A number of universi t ies have set up inter-disciplinary groups and
laboratories to pursue design research. In addit ion to Carnegie Mel lon , which
will be discussed at length be low, some notable examples are Univers i ty of
Massachuset t s , focusing on mechanica l des ign [15, 4 0] , M I T [28, 4 2] , M C C
(Microelectronics and Compu te r Technology Consor t ium) [7], Oh io State
Universi ty [9] , Oregon , with work on mechanica l design [64], Rutgers , working
on compute r chip design [62] , Stanford, which has a Center for Des ign Research
[59], U C Berkeley [1] , and U C L A , with its E D I S O N system for mechanica l

invention [16] . A recent workshop gathered researchers in applying AI to

18 Michael Rychener

engineer ing [63, 55] , an issue of Computer was devoted to expert sys tems in
engineer ing [32], and there is a series of annual international conferences that
started in 1986 [56, 57] .

3 . 1 Goals of Current Research
The Engineer ing Des ign Research Center (E D R C) at Carnegie Mel lon
Universi ty is one of the longest- l ived groups of its type. It is composed of
faculty and researchers from: five engineer ing depar tments (Chemical , Civil ,
Electrical & Computer , Mechanica l , and Metal lurgical & Mater ia ls) , two fine
arts depar tments (Archi tecture and Des ign) , and seven others (Compute r
Science, Engineer ing & Public Pol icy, Industrial Adminis t ra t ion (Operat ions
Research) , Mathemat ics , Robot ics Institute, Software Engineer ing Institute, and
Urban & Public Affairs). The goals of the E D R C include:

• Expand ing the scope of compute r aids for engineer ing design,

• Increasing the speed of design, and

• Unders tanding the design process .

The Center receives support from the National Science Foundat ion and from a
growing number of industrial sponsors , and has commit ted itself to providing
Amer ican industry with tools , concepts and methodologies for improving design
practice [14] . It is a t tacking prob lems that have a major impact on the quality
and compet i t iveness of industrial products .

The E D R C represents a concer ted, coordinated approach to mak ing such
major improvements . After careful analysis of where the critical p roblems are,
and of which prob lems are mos t suitable for academic research, it formulated
three broad areas where research is be ing carried out:

• Synthesis , which encompasses the prel iminary (conceptual) stages
of design, where al ternatives are generated and judged as to their
potential . Past design work (which is largely done by people , with
few ideas as to how to au tomate even its more routine aspects) has
often been hampered by a failure to consider more than one or two
main al ternatives. This certainly excluded mos t truly innovat ive
approaches . It has also meant that the search for al ternatives has
not been systematic and thorough. O n e important factor has been
the difficulty of accessing past des igns , which are often available
only as blueprints , wi thout documenta t ion as to past al ternatives
considered and justif ications for adopted features.

• Des ign envi ronments and tool integration, in which issues of
product ivi ty and effectiveness of hardware and software that
support the design process are studied. For instance, design
organizat ions in which half of a des igner ' s efforts are spent in
t ransforming information that is output from one program so that it
is suitable for input to another can certainly be improved. The

1. Research in Exper t Sys tems for Design 19

design process itself needs to be examined in situ, to deve lop
t axonomies of styles, knowledge about the range of variation that
tools need to account for, and so on. The same is needed for
software and hardware tools that are currently in use and are in need
of integration and coordinat ion with each other.

• Design for manufacturabi l i ty , in which there is an a t tempt to
improve des igns by br inging in considerat ions from areas that have
tradit ionally been separated, namely from manufactur ing and
construct ion. In the past, the separat ion meant that des igns took
longer to deve lop and were of lower quali ty, since p rob lems that
should have been worked out in early design stages were not
d iscovered until much later, at the start of the manufactur ing setup
process . Thus , their resolut ion required a return to a m u c h earlier
s tage, mak ing for an overal l design cycle of inordinate length.

Given its unique degree of inter-disciplinary cooperat ion, the E D R C has the
potential of developing solutions that are general enough to serve a broad
spectrum of the engineer ing communi ty . It is researching fundamental issues
rather than bui lding specific expert sys tems, as in many of the research studies
cited above (valuable though that activity m a y be) . T h e Cen te r ' s current
activities are based on some work that is in the same vein as the ment ioned
studies, namely , projects to solve specific engineer ing p rob lems using
knowledge-based system techniques . Such research is the pre lude to the main
E D R C thrusts listed above; a representat ive sampl ing of papers of this type is
conta ined in this vo lume . Other papers are more forward- looking and in the
nature of general surveys . Projects that are at tacking the main issues more
coherent ly are still in progress and may be reported in future vo lumes .

3 . 2 Organization of the Book
The papers in this book fall into three categories :

• Techn iques for synthesis ,

• Genera l work on design methodo logy and expert ise , and

• Tool integrat ion and software organizat ions for effective computer -
aided design.

Thus the book addresses directly the first and second of the E D R C s main
research thrusts , but has only general methodologica l contr ibut ions to the third.
This is a reflection of current progress in the field, however , since design for
manufacturabi l i ty has only recently emerged as a research area. W e can expect
that area to start out by bui lding on the results reported here .

2 0 Michael Rychener

3.2.1 Overv iew of Part 1, Synthes is of Des igns and Alternat ives
Design begins with a process of synthesis , that is, of assembl ing or

generat ing concepts around which the design will g row. In this stage, the focus
is on creat ing a set of al ternative prel iminary des igns , from which a choice will
be m a d e for more detai led synthesis and evaluat ion. S o m e expert sys tems are
based on rules formulated by experts for generat ing these initial designs . Often
the initial configurat ions of design e lements will arise from an analysis of the
overall requi rements for the end product . This analysis can also be rule-driven,
and thus captured in expert sys tems. Exper t designers can often predict the
ou tcomes of later detail ing steps performed on their initial ideas. They do this
during the prel iminary stage, so one research strategy is to seek this type of
expert ise and encode the knowledge using standard expert system techniques
(usually rules) . All of the knowledge jus t descr ibed mus t fit into a strategy of
hypothes ize and test, where a number of candidates are considered, some are
rejected and some are selected for further detail ing. This strategy, when
implemented in knowledge-based sys tems, can be built using exper ience from
past AI sys tems, many of which used clever search managemen t and planning
techniques to systemat ize the considerat ion of many al ternatives.

A variation on this approach to initial design can also be used in many
prob lems of re-design and des ign improvement , where again there is a need to
m a k e addit ions and changes in order to meet new design requirements . Indeed,
the design of a new product will go through several i terations of synthesis ,
detail ing and evaluat ion, and on each iteration, there will be a repeat of this
hypothesize-and-test search strategy. Rules and other knowledge used to
generate initial concepts for design can also be used in generat ing candidates for
design improvement .

T h e first part of the book conta ins papers descr ibing implementa t ions in five
areas of engineer ing design: structural design of high-r ise bui ldings , selection of
catalysts for chemical processes , design in architecture, design of special-
purpose computers , and design of mater ials . In fact, each of these sys tems goes
beyond the initial synthesis phase and ends up with detai led des igns . Thei r main
contr ibution to engineer ing design, however , will not be in the detail ing but in
their overall approaches to process ing the al ternatives that they generate .

3.2.2 Overv iew of Part 2 , Expert ise and the Nature of Expert Decis ions
The synthesis phase of design is fol lowed by detai led expansion and

evaluat ion of selected design candidates . The process of detail ing will
necessari ly show more diversi ty than is evident in prel iminary design, with less
applicat ion of general search techniques such as those developed in past AI
systems. Tradit ional ly there has been a research focus on methodology within
this detai l ing area, since pract i t ioners are often concerned with detai led, domain-
specific issues. The two papers in this part of the book focus on specific aspects
of how designers think and what k inds of tools can support their p rob lem

1. Research in Expert Sys tems for Design 2 1

solving. The two topics covered are the nature of expert ise in architectural
design and the use of graphics to aid in complex decision making . More
material on these topics is reflected in the compute r sys tem organizat ions
descr ibed in the papers in Part 3 , since they are derived from h u m a n design
processes and are in most cases directed towards support ing human-compu te r
interaction dur ing design.

3.2.3 Overv iew of Part 3 , Integrated Software Organizat ions
In addit ion to gett ing started on a design with effective concepts and

candidates , the engineer is also faced with the task of applying computa t ional
tools to ensure that the details are numerical ly , logically, legally, and
scientifically correct . The third part of the book contains papers that are
concerned with tools and their combina t ion in the service of design goals .
Computer -a ided design tools are difficult to integrate for a number of reasons ,
including their diverse subject mat ter (applying to different componen t s or
subproblems of the process) , their diverse a lgor i thms and data s tructures, and
their applicat ion to different stages of the design process (from synthesis to
manufactur ing to main tenance) .

Several papers in this part are writ ten by Electrical Engineers , due pr imari ly
to the advanced state of computer iza t ion that has been achieved in their field.
This advanced state is in turn due in part to the rapid growth in complexi ty of
the design p rob lems that compute r designers must solve, and also to electrical
eng ineers ' facility with compute r techniques . Thei r work is considered to be
trend-set t ing for other engineer ing fields, which will certainly follow them in
advanced appl icat ions of computers in des ign, and is thus of crucial impor tance
to all the areas touched on by this book. W e can see ev idence of this t rend in the
applicat ion of integration techniques to high-r ise bui lding design and au tomobi le
parts , in this pa r t ' s final two papers .

4 Glossary of Expert System Terms
Here are brief definit ions of technical te rms that appear in this book. A good
reference for more detail and historical information is the Handbook for
Artificial Intel l igence [4].

AI. Artificial Intel l igence, the endeavor to construct compute r sys tems that
perform tasks (especial ly intellectual ones) that are cons idered to require
intel l igence. T h e main areas of pure AI research are p rob lem solving and
search, comm on- sense reasoning and deduct ion, representat ion of knowledge ,
learning, and system architectures for AI . Areas such as robotics , natural
language process ing, image unders tanding (vision), and expert sys tems are
considered appl icat ions of the core AI concepts .
Antecedent reasoning. See Forward chaining.
Backtracking. A systematic search for a solution by exhaust ively consider ing

2 2 Michael Rychener

all the al ternatives. W h e n a dead end or other difficulty is reached in the search,
decis ions are retracted until the mos t recent choice point is reached, and
something else is tried at that point. The straightforward version of this is
referred to as chronological backtracking, since it is based on undoing the most
recent decision rather than using more informative criteria. See dependency-
directed backtracking.
Backward chaining. A problem-solv ing search strategy that starts with the
goals and targets of the problem, and infers data i tems (subgoals) that would be
needed in order to establish those goals . The new subgoals and data i tems are
then used to infer further subgoals and data. This cont inues until contact is
m a d e with data given with the initial s ta tement of the problem. Other terms for
this are goal-directed search and consequent reasoning. The name is based on
using the r ight-hand-side of logical rules as a starting point , and trying to
establish the left-hand-side, thus going backwards in the rule, and so on. The
P R O L O G logic-programming language is based on this type of search.
Blackboard architecture. An approach that a l lows mult iple , diverse p rogram
modules , called knowledge sources, to cooperate in solving a problem. This is
analogous to a commit tee of people s tanding around a blackboard. The
blackboard is a database that is used to hold shared information a m o n g the
part icipants . There is usually a separate modu le responsible for schedul ing and
coordinat ing strategy a m o n g the others .

CAD. Computer -a ided design, software and hardware tools that support the
process of design, especial ly with graphic displays of al ternatives, databases of
componen t s , and analytical rout ines to evaluate al ternatives. This te rm often
refers specifically to the design of compute r circuits .
Causal knowledge. Knowledge at a deep , theoretical level, as opposed to
experiential , superficial knowledge . It is often expressed as mathemat ica l ly
rigorous models , as opposed to heuristic rules.
Certainty factor (CF). A number at tached to a piece of information or to a rule
or procedure that is used to m a k e inferences from uncertain information. It can
be a probabil i ty value be tween 0 and 1, but there are also systems using
certainty factors with other ranges of values and based on other mathemat ica l
theories.
Consequent reasoning. See Backward chaining.
Constraint. A symbol ic or quanti tat ive express ion that puts limits on the
a l lowed variat ion in some property or process . Some constraints can be
stringent, strictly required to be satisfied, whi le others are optional and can be
weakened in order to balance the demands of a number of conflicting ones .
Context. A subset of the information contained in a body of data. Often,
contexts are used to consider hypothet ical configurat ions, a l lowing inferences
made from specific assumpt ions to be kept separate from other, more certain,
data. Another te rm for this is v iewpoin t or perspect ive .
Data-directed search. See Forward chaining.

1. Research in Exper t Sys tems for Design 2 3

Dependency-directed backtracking. A systematic tr ial-and-error search
procedure that improves on a chronological strategy of back ing up and retrying
al ternat ives, by recording specific dependencies a m o n g choices . This a l lows the
source of an error to be pinpointed, and specific choices to be m a d e to avoid that
error.
Demon. A procedure at tached to some data i tem that is t r iggered whenever that
data i tem is accessed or changed. That is, the d e m o n is "watching" or
"guarding" the i tem, and is set up to do someth ing when the i tem is used or
changed. D e m o n s can be used, for instance, to handle automat ic updat ing of
data structures when some i tem within the structure changes .
Design. The construct ion of an object that satisfies a given set of goals or
criteria. T h e goals or criteria are often called constraints . T h e design of a
procedure for doing something is cal led p lanning.
Declarative knowledge. K n o w l e d g e that is represented by static symbol ic
express ions , as opposed to represented by p rograms . Each symbol ic express ion
is a precise descript ion of a concept (as would be found, for instance, in a
dict ionary) . The precis ion derives from fol lowing a specific format , with certain
ingredients . See Frame-based representat ion and Schema.
Deep knowledge. See Causal knowledge .
Domain knowledge. Knowledge in a part icular technical field.
Domain-independent. Genera l -purpose , applying across m a n y domains .
Experiential knowledge. Knowledge ga ined from long pract ice in solving
prob lems in a domain . This is often referred to as empir ical knowledge , in
contrast to theoret ical , textbook knowledge . T h e knowledge is often manifest as
shortcuts , as intuit ive j u m p s , as educated guesses , as heurist ic rules , or as
specific remedies that worked in similar cases in the past .
Forward chaining. A problem-solv ing search strategy that starts with features
of the data and infers their immedia te consequences . Those consequences are
added to the avai lable data and further inferences are d rawn. This cont inues
until the goals or targets of the p rob lem have been reached. Other terms for this
are data-directed search and antecedent reasoning. The n a m e is based on using
the left-hand-side of logical rules as a starting point , and going forward in the
rule to infer the r ight-hand-s ide , and so on. Languages such as O P S 5 are useful
for this style of reasoning (al though they can be used for backward chaining,
too).
Frame-based representation. A format for express ing declarat ive knowledge ,
in which an object is represented by a data structure conta ining a number of slots
(representing attr ibutes or relat ionships of the object) , with each slot filled with
one or more values (represent ing specific values of at tr ibutes or other objects
that the object is related to). The data structure has been te rmed (equivalent ly) a
frame, a schema, a unit, or an object; which one is preferred depends on which
implementa t ion or tool is being used. The object has a name , each slot is named
(and may be descr ibed in more detail by a separate frame), and values can be

2 4 Michael Rychener

symbol ic , numer ic , lists of values , etc. The term frame is based on an analogy
to picture frame in the visual world. F rames in the mind (according to a theory
by Minsky [38]) are called up whenever an external scene is v iewed, and
provide assumpt ions about what is likely to occur, so that the computa t ion of an
unders tanding of the scene is computat ional ly tractable. S o m e aspects of a
frame will remain unchanged when the frame is applied to the world, while
others will change according to perceived data. Mos t frame systems allow for
some slots to be filled in by inheri tance rather than by specifically stored values.
The types of relat ionships a m o n g frames include taxonomic (hierarchical ,
classificatory) relat ions, t ime precedences , and resource dependencies . For
example , the frame,

{{ carbon
is-a: chemical-element
symbol: C
atomic-number : 6
atomic-weight : 1 2 . 0 1
valence : 4
family : IV-A
similar-elements : silicon germanium tin lead
crystalline-form: diamond graphite
sources : coal petroleum asphalt limestone
applications : organic-molecules steel

storage-batteries
}}

describes the e lement carbon and indicates its relat ions to other e lements , its
uses, its structure (implied by a tomic number and weight) , etc. Certain key
relat ionships, such as its family and its be ing a chemical -e lement , will al low
other facts and propert ies that are c o m m o n to all member s of those categories to
be deduced.
Fuzzy reasoning. Logical inference that is based on an expanded set of truth
values, i.e., values other than s imply true and false. Often certainty factors are
called into play, and complex inference procedures are required in order to
maintain consis tency and soundness .
Generate and test. A method of search in which a p rogram called the generator
alternates with one called the tester. The generator constructs potential solutions
to the search problem, and the tester judges whether or not the solutions are
valid or satisfactory according to some measure .
Goal-directed search. See Backward chaining.
Heuristic rule. A rule of t humb , a condensat ion of exper ience that is useful for
solving problems, for mak ing guesses and approximat ions , and for j u m p i n g to
conclusions . See Product ion rule and Rule .
Heuristic search. A me thod of search similar to generate and test, with the
additional mechan i sm of providing detailed feedback or other knowledge

1. Research in Exper t Sys tems for Design 2 5

(termed heurist ic knowledge , or jus t heurist ics) to the generator to al low it to
direct the search more efficiently. Heurist ics can incorporate domain knowledge
that is based on exper ience in solving similar search problems .
Inference engine. A procedure that uses i tems in the knowledge base of an
expert sys tem in order to draw conclus ions and solve p rob lems . The inference
engine is usual ly domain- independent , e.g., based on statistical theory or fuzzy
logic.
Inheritance. The process of finding a value of an attribute in a schema by
searching for values of similar attributes in related objects, and then mapp ing
those values back to the original schema. W h e n the related objects are
taxonomical ly more general than the schema, the mapp ing of values is the
identity mapp ing , since propert ies of a class in general are true of m e m b e r s of
the class (e.g., feathers on birds as a class will a l low a system with inheri tance to
infer that a robin has feathers). Inheri tance al lows a lot of repeti t ion in a
knowledge base to be avoided, thus enhanc ing storage efficiency; but process ing
speed is s lower.
Knowledge. Information organized for efficient p rob lem solving, or for action
according to the pr inciple of rationality (cf. Newel l , [43]).
Knowledge acquisition. For expert sys tems, the process of de termining and
then encoding into a knowledge base what the expert knows that will g ive the
system good per formance in the domain . Techniques for do ing this include
interviews, quest ionnaires , and letting an expert cri t ique a prototype expert
system.
Knowledge source. A modu le in a p rogram (particularly, in a Blackboard
sys tem) that contains knowledge about some problem area a long with a pre
process ing pattern or procedure that can de termine whether the knowledge
source may be able to answer a given quest ion or contr ibute to a g iven goal .
Least-commitment strategy. A strategy in p lanning systems whereby decis ions
are pos tponed until enough information is available to reduce the uncertainty (or
the size of the set of choices) associated with the decision.
LISP. A p rog ramming language whose strongest features revolve around
symbol ic data representat ion, dynamic s torage allocation (especial ly for l inked
list s tructures) , flexible variable b inding, the process ing of p rograms by other
p rograms , and the computa t ion of recursive functions (e.g., as are involved with
trees, graphs , and other complex data structures) .
Logic programming. A p rog ramming language or me thodo logy based on
predicate calculus .
Means-ends analysis. A p roblem-solv ing me thod in which difficulties in a
situation are analyzed according to which of the avai lable operators might be
appropriate to resolving those difficulties and reaching the goals (ends) .
M eta-knowledge. Knowledge for reasoning about , or control l ing the applicat ion
of, other knowledge .
Mixed-initiative strategy. A combinat ion of forward and backward chaining,

2 6 Michael Rychener

i.e., mak ing inferences both from goals and from given data, in order to find a
c o m m o n meet ing ground, thus establ ishing a path from the givens to the goals .
Object-oriented programming. P rog ramming where procedures are organized
as a t tachments to objects . Objects in such a sys tem are usually organized
taxonomical ly , such that the procedures at tached to an object high in the
t axonomy will apply in a general way to all the objects be low it. Procedures are
usually invoked by sending messages to objects , and the procedures executed
will depend on the object itself plus procedures above that object in the
taxonomy. This methodology promotes desirable degrees of modular i ty and
controls how code can interact, s ince p rogram e lements are h idden within
objects and not general ly avai lable globally. The objects are often capable of
representing knowledge similar to that in f rame-based sys tems.
Pattern-directed inference system. A n organizat ion of procedures such that
they are invoked and executed according to whether certain pat terns of data are
present in a global database . This is a general te rm for the type of system
exemplif ied by product ion-rule sys tems.

Pattern matching. The detailed, p iece-by-piece compar i son of a template with
a configuration of data objects . T h e template has structure similar to the objects
being matched, but it m a y have variables and other constructs in it that al low a
compar ison to succeed if one of a number of al ternatives is present , for instance,
or if anything at all is present , for another instance. Thus the template is an
abstraction and can match objects in a n u m b e r of different ways .
Planning. A process of figuring out ahead of t ime a sequence of actions that
need to be executed in order to achieve some effect. The term can also refer to
the formulat ion of a strategy for solving a p rob lem, without going into enough
detail to actually solve it (this process of approximat ion would be m u c h quicker
than actually doing that) . A planner m a y use abstract ions that only approximate
the actual p rob lem data, in order to save t ime.

Problem. A state of affairs in which some desired goal is not satisfied. One
often has a number of given i tems or attributes of the state that can be changed,
and a set of actions that can be performed to m a k e changes , t ransforming one
state into a new state. If the new state is still a p rob lem, further changes will be
needed, and so on.
Problem space. A formal express ion of a p rob lem, conta ining a specific set of
g ivens , a set of legal operators , and a goal . For a given problem, there may be
many problem spaces that are poss ible , s ince, for instance, different p rob lem
spaces m a y represent the state in different ways .
Procedural knowledge. Knowledge in the form of a p rogram, a sequence of
actions to perform (possibly with some act ions done only under certain
condi t ions) , rather than s imply descr ibed declarat ively.
Production rule. A pattern or set of condi t ions fol lowed by a sequence of
actions to be performed if the pattern is de termined to be (by pat tern match ing)
satisfied. See [66] for details .

1. Research in Exper t Sys tems for Des ign 2 7

Production system. A collect ion of product ion rules that is interpreted to
produce behavior according to a specified procedure cal led the product ion
system architecture. Usual ly , there is a Work ing M e m o r y of assert ions in the
architecture, against which the pat terns of the rules are matched . A proper ly
specified archi tecture also has a me thod (termed Conflict Resolut ion) for
deciding which rule(s) to select in case more than one is ma tched to the current
situation (which is a state of the Work ing M e m o r y) . Rule act ions pr imari ly
affect only the contents of the Work ing M e m o r y , but can also perform input and
output. A cont inuous s t ream of behavior is p roduced by repeat ing a cycle of
pattern match ing , conflict resolut ion, and execut ion of act ions.
PROLOG. A language for logic p rog ramming .
Qualitative reasoning. Reasoning based on symbol ic representat ions of a
sys tem rather than on quanti tat ive (numerical) calculat ions or s imulat ions .
Algebra ic equat ions and frames can both be a basis for quali tat ive reasoning, for
instance. Qual i ta t ive reasoning is usual ly less precise but easier to compute than
quanti tat ive.
Recognize-Act Cycle. A n infinite repeti t ion of the basic steps of interpret ing a
product ion sys tem, namely recogni t ion (pattern match ing) , conflict resolut ion,
and action execut ion. The repeti t ion can s top, actually, if the recogni t ion step
fails to find any true matches . S o m e sys tems also contain an explici t act ion for
s topping. This cycle is often used to mode l h u m a n cognit ion.
Representation of knowledge. The formal express ion of knowledge into some
format such as f rame-based or procedural .
Rule. Ei ther a product ion rule (q.v.) or a logic rule (see logic p rog ramming) .
(There are also g r a m m a r rules , first descr ibed by C h o m s k y , which are used to
generate sentences in a language , including natural language; ' r u l e ' in this book
doesn ' t include these, however .) A heurist ic rule (q.v.) is a type of product ion
rule.
Satisficing. Mee t ing a given set of criteria or constraints , wi thout necessari ly
opt imiz ing an object ive function, but at least having a value above some
threshold. Thus a satsificing solution is good enough without be ing the best
(where it migh t be m u c h m o r e expens ive to find the best) .
Schema. Ano the r term for f rame. See f rame-based representat ion.
Search. A systemat ic process of t rying to find someth ing that mee ts given
criteria, e.g., the solution for a p rob lem. Heuris t ic search, generate and test, and
means-ends analysis are search methods . Usual ly operators are given that can
m a k e changes to, or m o v e in a part icular direct ion from, a current si tuation, in
order to create new possibil i t ies for examinat ion .
Semantic network. A set of representat ions of concepts or objects (termed
nodes) that are in terconnected by l inks that have a semant ic mean ing . Examples
of some links are "is a k ind o f , "is a part o f , and "is an analogy for". F rame
systems can be cons idered as semant ic ne tworks that are part i t ioned so that a
group of nodes are cons idered as a unit.

2 8 Michael Rychener

Shell. A tool for bui lding new expert sys tems, consist ing of an inference
engine , a user interface, and a knowledge storage module . A shell originates as
a specialized expert system whose knowledge base has been removed , leaving
only a shell that can perform the main expert system functions. Shells usually
contain a variety of representat ion languages and inference mechan i sms , so that
they can be used in diverse domains . Examples : A R T , Knowledge Craft, K E E ,
and E M Y C I N [50, 26] .
Synthesis. A process of construct ing design al ternatives, subject to a given goal
specification. Its opposi te , analysis , is concerned with evaluat ing the products
of synthesis . A synthesis procedure may produce abstract or partial
specifications, leaving the process of detail ing to other procedures . This would
al low many more al ternatives to be considered before nar rowing the selection
down to the best candidates .
Truth Maintenance. The process of ensur ing that i tems of information in a
database are kept consis tent with each other. Usual ly this is done by storing
explicit ly the dependencies a m o n g the i tems, and then when changes occur,
using the dependencies to m a k e other changes that mus t occur as a consequence .
Uncertainty. See Fuzzy reasoning.
Unit. Another term for frame. See f rame-based representat ion.

Acknowledgments
The author gratefully acknowledges secretarial help from Carol Strauch, Kathy
Staley, Debbie Sleppy, Judy Udavcak , Kei th Stopen and Drue Miller . Nancy
Pachavis , Georget te D e m e s , and Jacquel ine Wil lson, the E D R C adminis trators ,
have made the Center function smoothly on a day- to-day basis . I thank the
authors of the chapters of the book for mak ing substantial technical
contr ibut ions. Support for this project has c o m e from the Nat ional Science
Foundat ion, through its funding of the E D R C . Finally, I am mos t grateful to m y
wife Helena , for everything from proofreading to creative inspiration.

References
1. Agog ino , A. M. "Expert Sys tems Laboratory in Mechanica l Engineer ing:
Research Summary . " Univers i ty of California, Berkeley , Dept . of Mechanica l
Engineer ing , March , 1986.

2. Akin , O. Psychology of Architectural Design. P ion, London , UK, 1986.

3 . Anderson , J. R. The Architecture of Cognition. Harvard Universi ty Press ,
Cambr idge , M A , 1983. See especial ly Ch. 6, Procedural Learning; also a 1982
paper in Psych. Rev iew (89:4) .

1. Research in Exper t Sys tems for Design 2 9

4. Barr , A. and Fe igenbaum, E. A. (Eds.) The Handbook of Artificial
Intelligence, Volume IL W . Kaufmann, Inc. , Los Al tos , C A , 1982.

5. Bra tko , I. PROLOG Programming for Artificial Intelligence. Addison-
Wesley , W o k i n g h a m , UK, 1986.

6. Browns ton , L., Farrell , R., Kant , E., Mart in , N . Programming Expert
Systems in OPS5: An Introduction to Rule-Based Programming. Addison-
Wesley , Read ing , M A , 1985.

7. Bruns , G. R. and Gerhart , S. L. "Theories of Design: An Introduct ion to the
Literature." Microelect ronics and Compu te r Techno logy Corporat ion, Aust in ,
T X , March , 1986.

8. Buchanan , B . G. and Shortliffe, Ε. H. Rule-Based Expert Systems. Addison-
Wes ley , Reading , M A , 1984.

9. Chandrasekaran , B . and Bylander , T. "AI Research at the Ohio State
Universi ty ." AI Magazine 1985, S u m m e r (1985) , 74 -78 .

10. Cohen , P . R. and Fe igenbaum, E. A. (Eds.) The Handbook of Artificial
Intelligence, Volume III. W . Kaufmann, Inc. , Los Altos , C A , 1982.

11. Cox , B . J. Object-Oriented Programming: An Evolutionary Approach.
Addison-Wes ley , Reading , M A , 1986.

12. Cross , N . (Ed.) Developments in Design Methodology. John Wi ley & Sons ,
Chichester , U K , 1984.

13. Director , S. W . "Special Issue on C A D . " Ρ roc. of the IEEE 69, 10 (Oct.
1981).

14. Director , S. W. , Fenves , S. J., Pr inz, F. B . , Talukdar , S. N . and Westerberg ,
A. W. "The Engineer ing Des ign Research Center : A Posi t ion Paper ." Carnegie-
Mel lon Univers i ty , March , 1987.

15. Dixon , J. R. "Artificial Intel l igence Appl ied to Design: A Mechanica l
Engineer ing View." Ρ roc. AAAI-86, Fifth National Conference on Artificial
Intelligence, Amer ican Associa t ion for Artificial Intel l igence, Phi ladelphia , PA,
August , 1986, pp . 872-877 .

16. Dyer , M. G., F lowers , M. and Hodges , J. "Edison: An Engineer ing Design
Invention Sys tem Opera t ing Naively." In Proc. First International Conference
on Applications of Artificial Intelligence in Engineering Problems, Sr iram,
D . and Adey , R., (Ed.) , Computa t iona l Mechan ics , Spr inger-Ver lag , Heidelberg ,
1986, pp . 3 2 7 - 3 4 1 .

17. Eas tman , C. "Cogni t ive Processes and Il l-Defined Prob lems: A Case Study
from Design." Proc. International Joint Conference on Artificial Intelligence,
The Mitre Corp. , Bedford, M A , 1969, pp . 6 6 9 - 6 9 1 .

3 0 Michael Rychener

18. Erman , L. D. , Hayes-Roth , F. , Lesser , V. R., and Reddy , D. R. "The
Hearsay-II Speech-Unders tanding Sys tem: Integrat ing Knowledge to Reso lve
Uncertainty." Computing Surveys 12, 2 (1980) , 213-253 .

19. Farinacci , M. L., Fox, M. S., Hul thage , I. and Rychener , M. D. "The
Deve lopment of A L A D I N , an Exper t Sys tem for A l u m i n u m Alloy Design."
Robotics 2 (1986) , 329-337 . See also Proc . Third Int. Conf. on Advanced
Information Technology , 1985, Got t l ieb Dut twei ler Insti tute, Zur ich,
Switzerland.

20 . Fenves , S . J . "Compute r -Aided Des ign in Civil Engineer ing." Proc. of the
IEEE 69, 10 (Oct. 1981), 1240-1248.

2 1 . Fenves , S. J. "Critics in the Design Process ." Personal communica t ion .

22 . Finger, S., Fox , M . S., Navinchandra , D. , Pr inz, F . B . and Rinder le , J. R.
"The Design Fusion Project: A Product Life-Cycle View for Engineer ing
Designs ." For thcoming technical report .

23 . F o r g y , C . L . "OPS5 U s e r ' s Manua l . " Tech . Rept . C M U - C S - 8 1 - 1 3 5 ,
Carnegie-Mel lon Universi ty , Dept . of Compu te r Science , July, 1981.

24. Fox , M. S. "The Intell igent M a n a g e m e n t System: An Overv iew." Tech .
Rept . C M U - R I - T R - 8 1 - 4 , Carnegie-Mel lon Univers i ty , Robot ics Institute,
Pi t tsburgh, PA, August , 1981 .

25. Friedland, P. (Ed.) . "Special Sect ion on Archi tectures for Knowledge -
Based Systems." Communications of the ACM 28, 9 (1985) , 9 0 2 - 9 4 1 .

26. Gevarter , W . B . "The Nature and Evaluat ion of Commerc ia l Exper t Sys tem
Building Tools ." Computer 20, 5 (1987) , 2 4 - 4 1 .

27. Goldberg , A. and Robson , D . Smalltalk-80: The Language and its
Implementation. Addison-Wes ley , Reading , M A , 1983.

28. Gossard , D . "Research Issues in Compute r -Aided Engineer ing." Lecture at
Carnegie-Mel lon Universi ty , Apri l , 1987.

29. Harmon , P. and King , D . Expert Systems: Artificial Intelligence in
Business. John Wiley & Sons , Inc. , N e w York, N Y , 1985.

30. Hayes-Roth , B . "A Blackboard Archi tecture for Control ." Artificial
Intelligence 26 (1985) , 2 5 1 - 3 2 1 .

3 1 . Hayes-Roth , F. , Wa te rman , D. A. and Lenat , D . B . (Eds.) Building Expert
Systems. Addison-Wes ley , Reading , M A , 1983.

32 . Hong , S. J. (Ed.) . "Special Issue on Exper t Sys tems in Engineer ing."
Computer 19,1 (1986) , 12-122.

1. Research in Exper t Sys tems for Des ign 3 1

3 3 . Jones , J. C. Design Methods: Seeds of Human Futures. John Wiley &
Sons , Chichester , U K , 1980.

34 . Kei rouz , W . T., Rehak, D. R., and Oppenhe im, I. R. "Object-Oriented
P rog ramming for Compute r -Aided Engineer ing ." Tech. Rept . E D R C - 1 2 - 0 9 - 8 7 ,
Engineer ing Des ign Research Center , Carnegie-Mel lon Univers i ty , Pi t tsburgh,
PA, 1987.

35 . Laird, J. E., Newel l , Α. , and Rosenb loom, P . S. "SOAR: A n Archi tecture
for Genera l Intel l igence." Artificial Intelligence 33, 1 (1987) , 1-64.

36 . Laird, J. E., Rosenb loom, P. S., and Newel l , A . Universal Subgoaling and
Chunking: The Automatic Generation and Learning of Goal Hierarchies.
Kluwer Academic Publ ishers , H ingham, M A , 1986.

37. McDermot t , J. " R l : A Rule -Based Configurer of Compute r Sys tems."
Artificial Intelligence 19 (1982) , 39-88 .

38 . Minsky , M . "A F ramework for Represent ing Knowledge . " In The
Psychology of Computer Vision, Wins ton , P . H., (Ed.) , McGraw-Hi l l , N e w
York, 1975.

39. Mitchel l , T. " L E A P : A Learning Apprent ice for V L S I Design." Proc.
Ninth International Joint Conference on Artificial Intelligence, Los Al tos , C A ,
1985, pp . 573-580 .

40 . Mit tal , S., D y m , C. L. and Morjaria, M . "PRIDE: An Exper t System for the
Des ign of Paper Handl ing Sys tems." In Applications of Knowledge-Based
Systems to Engineering Analysis and Design, D y m , C. L., (Ed.) , Amer ican
Society of Mechanica l Engineers , 1985.

4 1 . Mos tow, J. "Towards Bet ter Mode l s of the Des ign Process ." AI Magazine
6, 1 (1985) , 44 -57 .

42 . Nav inchandra , D . and Marks , D .H. "Design Explora t ion through Constra int
Relaxat ion." In Expert Systems in CAD, Gero , J., (Ed.) , Nor th Hol land, 1987.

4 3 . Newel l , A. "The Knowledge Level ." Artificial Intelligence 18 (1982) ,
87-127.

44 . Newel l , A. and S imon, H. A. Human Problem Solving. Prent ice-Hal l ,
Eng lewood Cliffs, NJ , 1972.

45 . Pople , H. E. Jr. "Heurist ic Me thods for Impos ing Structure on Ill-
Structured Prob lems : The Structuring of Medica l Diagnos is ." In Artificial
Intelligence in Medicine, (Ed.) , Amer ican Associat ion for the Advancemen t of
Science, 1981.

46. Reboh , R. "Knowledge Engineer ing Techn iques and Tools in the
PROSPECTOR Envi ronment . " Tech . Rept . 2 4 3 , SRI Internat ional , M e n l o Park,
CA, June, 1981 .

3 2 Michael Rychener

47. Rehak, D. R. and Fenves , S. J. "Expert Sys tems in Civil Engineer ing,
Construct ion and Construct ion Robot ics ." Tech. Rept . DRC-12-18 -84 , Design
Research Center , Carnegie-Mel lon Universi ty, Pi t tsburgh, PA, 1984. Appeared
in Robot ics Inst i tute 's 1984 Annual Research Review.

48. Rehak , D. R. and Howard , H. C. "Interfacing Exper t Sys tems with Design
Databases in Integrated C A D Sys tems." Computer-Aided Design 77, 9 (1985) ,
443-454 .

49. Rich, E. A. Artificial Intelligence. McGraw-Hi l l , N e w York, 1983.

50. Richer, M. H. "An Evaluat ion of Exper t Sys tem Deve lopment Tools . "
Expert Systems 3, 3 (July 1986), 166-183.

5 1 . Rychener , M. D. , Farinacci , M. L., Hul thage , I. and Fox, M. S. "Integration
of Mult iple Knowledge Sources in A L A D I N , an Alloy Des ign System." Proc.
AAAI-86, Fifth National Conference on Artificial Intelligence, Amer ican
Associat ion for Artificial Intel l igence, Phi ladelphia , P A , August , 1986, pp .
878-882. A long version is to appear in Sr i ram, 1988.

52 . Rychener , M. D . "Expert Sys tems for Engineer ing Design." Expert
Systems 2 , 1 (January 1985), 30-44. See also Tech. Rpt. D R C - 0 5 - 0 2 - 8 3 .

53 . S imon, H. A. The Sciences of the Artificial. M I T Press , Cambr idge , M A ,
1969.

54 . S imon, H. A. "The Structure of I l l-Structured Problems ." Artificial
Intelligence 4, 3 & 4 (1973) . Also chapter 5.3 in S i m o n ' s Models of Discovery,
Reidel , 1977.

55. Sr iram D. Computer-Aided Engineering: The Knowledge Frontier. In
preparat ion, 1988. For thcoming .

56. Sriram, D. and Adey , R. (Ed.) Proc. First International Conference on
Applications of Artificial Intelligence in Engineering Problems. Computa t ional
Mechanics , Spr inger-Verlag, Heidelberg , 1986.

57. Sr iram, D. and Adey , R. A. (Ed.) Proc. Second International Conference
on Applications of Artificial Intelligence in Engineering Problems.
Computa t ional Mechan ics Publ icat ions , Unwin Bros . Ltd., Old Work ing ,
Surrey, UK, 1987.

58. Sr iram, D. , Banares-Alcantara , R., Venka tasubramanian , V., Westerberg ,
A. W. and Rychener , M. D. "Knowledge-Based Exper t Sys tems for C A D . "
Chemical Engineering Progress 81, 9 (1985) .

59. Stanford Institute for Manufactur ing and Automat ion . "Center for Design
Research." Stanford Universi ty , Stanford, C A , 1986.

60. Steele, G. L. Common Lisp, the Language. Digital Press , Burl ington, M A ,
1984.

1. Research in Exper t Sys tems for Design 3 3

6 1 . Stefik, M. J. '"Planning with Constraints (M O L G E N : Part 1); P lanning and
Meta-p lanning (M O L G E N : Part 2) ." Artificial Intelligence 16 (1981) , 111-170.

62 . Steinberg, L., Langrana , N. , Mitchel l , T., Mos tow, J. and Tong , C. "A
Domain Independent Mode l of Knowledge-Based Design." Tech . Rept .
ΑΙ /VLSI Project Work ing Paper N o . 3 3 , Rutgers Universi ty , N e w Brunswick ,
NJ, July, 1986.

63 . Tong , C. and Sr i ram, D. (Ed.) AAAI-86 Workshop on Knowledge-Based
Expert Systems for Engineering Design, unpubl ished, Phi ladelphia , PA, 1986.

64 . Ul lman, D. G., Stauffer, L. A. and Diet terich, T. G. "Prel iminary Resul ts of
an Exper imenta l Study of the Mechanica l Des ign Process ." Tech . Rept .
86-30-9 , Oregon State Universi ty , Compu te r Science Dept . , Corval l is , OR,
1986.

65. Wa te rman , D. A. A Guide to Expert Systems. Addison-Wes ley , Reading ,
M A , 1986.

66. Wa te rman , D. A. and Hayes-Roth , F. (Eds.) Pattern-Directed Inference
Systems. Academic , N e w York, N Y , 1978.

67. Weiss , S. M. and Kul ikowski , C. A. A Practical Guide to Designing Expert
Systems. R o w m a n & Allanheld, 1984.

68 . Wins ton , P. H. Artificial Intelligence. Addison-Wes ley , Read ing , M A ,
1984.

Part 1 Synthesis

The Generation of Alternative Designs
Design begins with a process of synthesis , that is, of assembl ing or generat ing
concepts around which the design will g row. In this stage, the focus is on
creat ing a set of al ternative prel iminary des igns , from which a choice will be
made for more detai led configuration and evaluat ion. In this first part of the
book, five sys tems are presented. They approach synthesis with different
concepts and techniques , but the use of exper t knowledge is a c o m m o n theme .
That is, act ions of synthesis are guided and specified by part icular p ieces of
knowledge , whether heurist ic rules or descr ipt ive frames.

HI -RISE, descr ibed in Chapter 2, is an expert sys tem that takes in an
architectural specification of a high-r ise bui lding and synthesizes al ternative
feasible structural sys tems for the bui lding. The p rogram reasons with var ious
levels of design knowledge , using a fixed task decompos i t ion according to
structural function. The sys tem combines rule-based inference with frames and
demons . This work points the way to many new possibil i t ies for improving the
structural engineer ing of bui ldings , and represents a template that can be copied
and applied to the design of other engineered sys tems.

D E C A D E , descr ibed in Chapter 3 , adopts the b lackboard mode l as its main
organizat ion, in at tacking the p rob lem of selecting a catalyst for a chemica l
process . (Though selection is used to descr ibe it, design is also an appropria te
term, since often a new, unique catalyst is formulated.) This a l lows a very
flexible interaction a m o n g several types of independent exper t -sys tem modules ,
ranging from the rmodynamic theory calculat ions to a database of exist ing
catalysts . D E C A D E , like HI -RISE, is a hybrid of several AI and traditional
approaches . It achieved the skill level of a first-year graduate s tudent in the
area, and has p roduced results comparab le to those found in the l i terature. The
approach taken by D E C A D E appears to be a fruitful one for a wide variety of
synthesis p rob lems , especial ly those where a number technical specialt ies must
work cooperat ively.

Exper t sys tems are jus t beginning to be applied in a substant ive way in the
synthesis stages of architectural design (previously, computers were used only
as sophist icated drafting tools) . Chapter 4 descr ibes how two modes of use are
envisaged for rule-based sys tems: as a descr ipt ive and systemat iz ing tool , since
rules can capture precisely the patterns expressed in exist ing bui ldings; and as
encodings of architectural expert ise of the type that crit icizes (construct ively)

Expert Systems for Engineering Design Copyright © 1988 by Academic Press, Inc.
All rights of reproduction in any form reserved.

35 ISBN 0-12-605110-0

3 6 Part 1. Synthesis

design alternatives as they are generated. The former type of rule-based
knowledge is useful for generat ing new variants on previous designs , while
keeping within their overall style and thus mainta ining a family resemblance and
architectural coherence . The latter type of knowledge is difficult for architects
to express outside of the context of actually consider ing design al ternatives.
Thus in this case , an expert sys tem program that systematical ly generates
designs and takes in feedback from an architect is the best knowledge
acquisit ion mode . F l emming descr ibes a rather sophist icated approach to such
generat ion, providing descript ions of layouts at an abstract level in order to
maximize the power and scope of applicabili ty of any knowledge acquired in
that way. Overal l , these two approaches add up to a revolut ion in how architects
can view design.

The M I C O N system, descr ibed in Chapter 5, is the mos t comprehens ive and
effective design system descr ibed here , since it not only does synthesis , but
integrates the designs produced with fabrication tools so that a s ingle-board
compute r can be produced in 24 hours . As in the above system, there is a
rule-based synthesis componen t . Detai ls are worked out at 3 levels of
abstraction. The current advanced prototype is able to reproduce the design of
several distinct commerc ia l ly avai lable and cus tom-made computers . By its
success , the M I C O N project can show the way for a variety of design
disciplines.

The final paper in Part 1, on the A L A D I N system for a luminum alloy design,
describes a design procedure that accommoda tes and coordinates knowledge in
several technical areas, and at several levels of abstraction. The system uses
heuristic rules for reasoning about al loys at a quali tat ive, approximate level, and
various types of calculat ions and mathemat ica l mode ls for more precise
specification and predict ion. The system also makes use of a broad array of
design history, in the form of a database of past al loys, both commercia l ly
successful and exper imenta l ones . The A L A D I N methods for p lanning, for
controll ing search, for using history, and for using mult iple levels of abstraction
promise to be useful in the design of other types of mater ials .

HI-RISE:
An Expert System for
Preliminary Structural
Design
MARY LOU MAHER

Abstract
HI-RISE is an expert system for the prel iminary structural design of high rise
bui ldings . HI -RISE generates feasible feasible al ternatives for two functional
structural sys tems: the lateral load resist ing system and the gravity load resist ing
system. The user takes part in the design process through the selection of a
functional sys tem to be pursued further. The output from H I - R I S E serves as the
starting point for a more detai led analysis of a selected structural sys tem.

H I - R I S E represents the design knowledge in the form of schémas and rules.
The schémas contain the descript ion of the design subsys tems and componen t s ,
and the rules represent design strategy and heurist ic constraints . T h e schémas
are l inked by two kinds of relat ions, an

 M
i s -a l ternat ive

M
 relation and a "part-of"

relation, indicat ing an O R and an A N D connect ion. Both relat ions al low
unrestr icted inheri tance of attributes and attribute values . T h e rules are
expressed in an OPS5- l ike syntax and are executed in a forward chaining style.

1 Introduction
The formal educat ion of a structural engineer typically emphas izes behavior and
analysis of structural componen t s and sys tems, that is, the evaluat ion of the
response of a specified system to its intended envi ronment . T h e structural
componen t s and sys tems studied vary in complexi ty , as do the analysis
techniques . Upon comple t ion of his formal educat ion the structural engineer is
well prepared in the areas of analysis and general p rob lem solving. This is in
noted contrast to his exposure to the design of structural sys tems, that is, the
decisions required to specify a structural system such that the appl icable set of
constraints is satisfied.

This lack of s tudent exposure to the design of structural sys tems may be due
to the pract ice of design, where system synthesis and selection is largely based

Expert Systems for Engineering Design Copyright © 1988 by Academic Press, Inc.
All rights of reproduction in any form reserved.

37 ISBN 0-12-605110-0

3 8 Mary Lou Maher

on des igners ' exper ience . This imbalance provides a motivat ion for the
deve lopment of an expert sys tem for prel iminary structural design: to record a
process that is not o therwise formally recorded. There have been recent books
on the subject of prel iminary structural design. T. Y. Lin and S. D. Stotesbury
[7] discuss the considerat ions in prel iminary bui lding design, stressing that the

problem be approached hierarchically. Other books (Cowan [2], Schodek [12],
Salvador [11], Fraser [4]), though not as comprehens ive as [7] , discuss m a n y of
the aspects of pre l iminary design.

Recording the process of prel iminary structural design in the form of an
expert system raises basic issues concerning the representat ion of the design
information and the decomposi t ion of the design process . This paper descr ibes
HI -RISE [8], an expert sys tem for the task of prel iminary structural design of
high rise bui ldings. HI -RISE serves as a prototype solution to the p rob lems of
representat ion and task decomposi t ion that arise in the deve lopment of an expert
system for prel iminary engineer ing design.

The next section presents an overv iew of the prel iminary structural design
process . Then the scope of HI -RISE is descr ibed in terms of the input to the
system and the output to the user. This is fol lowed by a discussion of the
representat ion of structural sys tem information and the design decomposi t ion
used in HI -RISE. The last section includes a discussion of the conclusions and
directions d rawn from the exper ience of developing HI -RISE towards expert
systems for engineer ing design.

2 Structural Design of Buildings
The structural design process starts with a need to t ransmit loads in space to a
support or foundat ion, subject to constraints on cost, geometry , and other
criteria. In bui lding design, the need to t ransmit loads is specified by
architectural drawings from which functional and spatial requirements are
derived. The final product of the design process is the detailed specification of a
structural configuration capable of t ransmit t ing these loads with the appropriate
levels of safety and serviceabil i ty. The design process may be v iewed as a
sequence of three stages:

1. Preliminary design involves the selection of a potential
configuration satisfying a few key constraints .

2. Analysis is the process of model l ing the selected structural
configuration and determining its response to external effects.

3 . Detailed design is the selection and propor t ioning of structural
componen t s and connect ions such that all applicable constraints
are satisfied.

There may be significant deviat ions be tween the propert ies of componen t s
assumed at the analysis stage and those de termined at the detai l ing stage, which

2. HI -RISE: Prel iminary Structural Design 3 9

would necessi tate a reanalysis . Other major and minor cycles of redesign may
also occur.

The prel iminary structural design of bui ldings involves the selection of a
feasible structural configurat ion satisfying a few constraints . T h e key te rms in
this definition are selection and constraints. The selection of a structural
configurat ion implies that there is a set of potential configurat ions from which to
choose . The set of feasible configurat ions for a part icular bui lding mus t be
defined with that bui lding in mind. Classes of generic structural subsys tems
m a y be used as a basis for the generat ion of the set of feasible sys tems. S o m e
examples of structural subsys tems are rigidly connected frames, cores , t russed
tubes, and braced frames. These subsys tems are not comple te structural
sys tems, because they are not specified to the extent needed for evaluat ion of
al ternatives or input to the next stage of design, namely , analysis . T h e generic
structural subsys tems are used as a start ing point for the specification of the
feasible sys tems and are expanded and combined to fit the needs of a part icular
bui lding.

The constraints appl icable to pre l iminary structural design m a y be grouped
into several categories , ranging from subjective constraints imposed by the
architect to functional constraints imposed by the laws of nature . S o m e
examples of constraint categories are static equi l ibr ium, economy , strength and
serviceabil i ty. The prel iminary structural design of a bui lding requires decis ions
as to which constraints are appl icable and when these constraints are to be
considered.

3 Scope of HI-RISE
HI-RISE addresses the pre l iminary design stage of structural design. T h e major
concern of HI -RISE is to generate feasible configurat ions only to the level of
detail needed for selection a m o n g al ternatives and to provide the initial es t imate
of geometr ic and mechanica l propert ies for a detai led structural analysis . HI -
R I S E has been restricted to a relatively small class of bui ldings to facilitate the
deve lopment of a prototype design system. The class of bui ldings H I - R I S E can
design are commerc ia l or residential , and the structural sys tem can be placed on
a rectangular grid. The scope can be clarified by examin ing the input and output
of HI -RISE.

The input to H I - R I S E is a three d imensional grid. A n example of an input
grid is shown in Figure 1. HI -RISE begins structural des ign upon comple t ion of
space p lanning. This means that HI -RISE does not automatical ly revise the
grid; the grid must be manual ly changed by the user if other design al ternatives
are desired. T h e input grid specifies to H I - R I S E the spatial constraints the
building must satisfy. The topology of the grid is defined by the number of
stories and the number of bays in each direction. The geomet ry is defined by the
d imens ions of the bays and the m i n i m u m required c learance for a typical story.

4 0 Mary Lou Maher

Other spatial constraints , such as the location of vertical service shafts or
internal spaces, are specified on the input grid. Other input information required
by HI -RISE is related to the intended use of the bui lding.

Service
shaft

mm
clear 5ar Τ

ft Τ

y\ 1111 i / i ι ι ι ι ι / ι ι ι ι ι

Mechancial
floor

10 ft

I 25 ft

3 bays
narrow direction

2 bays
wide direction

Figure 1: Input to HI -RISE.

The user specifies the input to HI -RISE through a menu driven graphical
interface by Barnes [1]. The m e n u al lows the user to choose a m o n g geometry ,
topology, and spatial constraints . Upon selection of one of the menu i tems, the
interface p rompts the user for specific information and updates the graphical
display to reflect the user specifications. The grid appears as a three
dimensional wire frame, using color to identify spatial constraints . For example ,
if the user specifies a service core , the core will appear on the grid in red. The
user may also view the grid from different perspect ives , using pop up m e n u s
provided by the interface.

2. HI -RISE: Prel iminary Structural Design 4 1

As HI -RISE generates and checks the feasible combina t ions of structural
subsys tems and material propert ies , a tree-l ike display illustrates the current
state of the design. The nodes in the tree represent design decis ions , or
selections a m o n g discrete al ternatives, and the links represent feasible
combina t ions of decis ions . A path through the tree is a feasible configurat ion.
The representat ion of the design al ternatives as a tree is d iscussed in m o r e detail
in Section 4. The display of the tree provides the user with a v iew of the current
state of the design solut ion.

The output from HI -RISE includes the feasible configurat ions for first, the
lateral load resist ing system, and second, the gravity load resist ing sys tem. The
user selects an al ternative for considerat ion from the tree-like representat ion.
HI -RISE then presents the al ternative to the user graphical ly, using the original
grid and indicat ing the type and location of the structural al ternative in a
different color. More detailed information about the structural sys tem can be
requested by point ing to a componen t of the grid with the mouse . The interface
provides the user with a text descript ion of the componen t as a set of at tr ibute-
value pairs . For example , a beam may be descr ibed by its span, depth, width,
m a x i m u m momen t , etc.

The user is also presented with the results of an evaluat ion of the al ternat ives.
The evaluat ion results include features of the al ternatives and the relative values .
The evaluat ion function is descr ibed in more detail in Sect ion 4. T h e user then
has the opt ion of choos ing a feasible sys tem or letting HI -RISE choose on the
basis of the evaluat ion.

4 Representation of Design Knowledge
The representat ion of design knowledge can be considered in two categories :
design descript ion knowledge and design task decomposi t ion knowledge . The
representat ion of design task decomposi t ion identifies a reasoning process to
produce a design descript ion. The decomposi t ion of the design process provides
a mechan i sm for consider ing the process as a sequence of s impler subprocesses .
This decompos i t ion occurs until a given task can be implemented directly. In
HI -RISE, the design process is decomposed into several tasks, each of which is
considered independent ly . This is appropria te when the tasks are loosely
coupled, i.e. the interaction be tween the tasks can be represented as constraints
on decis ions m a d e in any given task.

The design descript ion representat ion provides a basis for reasoning about
generat ion of feasible al ternatives and evaluat ion and selection a m o n g
alternatives. The design descript ion knowledge compr ises both the
representat ion of the componen t s and subsys tems in their gener ic form and the
representat ion of the artifact currently being designed. In HI -RISE, the latter
serves as templates for the representat ion of the structural sys tem currently
being defined. This sect ion first descr ibes the design task decompos i t ion ,
fol lowed by the design descript ion hierarchy incorporated in HI -RISE .

4 2 Mary Lou Maher

4 .1 Process Task Decomposition
The structural design process is decomposed into two major tasks, each
concerned with the design of one functional subsys tem of the bui lding. The
structural system of a bui lding can be decomposed into the lateral load resisting
system and the gravity load resist ing system. Al though the two functional
subsystems "share" componen t s , in the sense that a single beam may be part of
the lateral and gravity sys tems, they can be designed and analyzed sequential ly.
This is an example of decompos ing the design process into loosely coupled
subprocesses; the interaction is represented by constraints .

In HI -RISE, the design of the lateral load resisting system is comple ted
before the design of the gravity load resisting system. The justification for
fixing the order in which these tasks are considered arises from the assumpt ion
that the design of the lateral load resist ing system usually governs in high rise
bui ldings due to the cant i lever effect of wind load on tall bui ldings. Fixing the
order of the tasks also facilitates the representat ion of constraints and ensures
that information about the lateral sys tem is available when designing the gravity
system.

The design of each functional sys tem is further decomposed into the
fol lowing subtasks: synthesis , analysis , parameter selection, evaluat ion, system
selection. The general goals for each subtask are similar for both functional
system design, however , the details of reaching these goals are dependent on the
system function. These subtasks are descr ibed be low.

4.1.1 Synthes is
The synthesis of feasible al ternatives involves a search for combinat ions of

design componen t s that do not violate any constraints . The design componen ts
are organized into a hierarchy, in which each level in the hierarchy represents a
goal or decis ion at a part icular level of abstraction. There are several discrete
componen ts associated with each hierarchical level. The synthesis process is
mode led as a constraint directed depth-first search through this hierarchy.

An alternative is generated incremental ly by sequential ly consider ing each
level in the hierarchy. As an e lement is added to an al ternative, the alternative is
checked by heurist ic e l iminat ion constraints . If the alternative is e l iminated, the
next e lement in the physical hierarchy is considered. A feasible al ternative is
one that has not been e l iminated at any level. The following are representat ive
el iminat ion rules for the lateral system synthesis:

IF the number of stories > 50
AND 3D system is core

THEN alternative is not feasible.
IF 3D system is tube

AND 2D system is solid shear wall
THEN alternative is not feasible.

2. HI -RISE: Prel iminary Structural Design 4 3

IF 2D system is rigid frame
AND material is concrete
AND number of stories is > 2 0

THEN alternative is not feasible.
The synthesis of a lateral load resist ing system requires the p lacement of the

lateral load resist ing system alternative within the grid. For the case of a core or
tubular bui lding this step is trivial (by definition, the core is p laced around the
service shafts and the tube on the per iphery of the bui lding) , but for a sys tem
composed of 2 D rigid or braced frames in each direction there are several
possibil i t ies. The p lacement decis ion is treated as another level of abstract ion in
the hierarchy, with a discrete set of al ternatives for considerat ion. C o m m o n
p lacement schemes are selected and considered in the same way componen t s or
subsys tems are considered. An example of a c o m m o n p lacement scheme is to
place rigid frames at the ends of the bui lding extending the entire length of the
bui lding. T h e p lacement of the gravity system is a s sumed to be all grid l ines, as
defined by the input, therefore this is not a decis ion m a d e dur ing the synthesis of
the gravity sys tem.

Once the search for a configurat ion has reached the lowest level of
abstraction, a feasible al ternative has been found and HI -RISE m o v e s on to the
next subtask, analysis . The synthesis subtask is responsible for ensur ing that the
configurat ion satisfies heurist ic constraints , the analysis subtask checks
structural feasibility. Structural feasibility is represented as a constraint whose
satisfaction depends on a structural analysis of the configurat ion.

There is a distinct constraint associated with each generic subsys tem HI-
R I S E k n o w s about . For example , if the configurat ion includes a rigid frame the
feasibility constraint is "rigid-frame-ok". The evaluat ion of this constraint
involves the use of an analysis function. In all cases the evaluat ion of this top
level constraint requires the formulat ion and satisfaction of more detai led
constraints , typically associated with componen t s of the configurat ion, i.e.
beams and co lumns . T h e request for evaluat ion of the feasibility constraint
tr iggers the next task, analysis .

4.1.2 Analys is
The design al ternative is analyzed only to the extent required to de termine

system feasibility. The analysis performed at this level of design is
approximate . In some cases this requires that a statically indeterminate system
be simplified and analyzed as a statically de terminate system.

For il lustration, the approximate analysis of rigidly connected frames is
described. The rigidly connected frame is a statically indeterminate structural
system, in which the propert ies of the componen t s mus t be k n o w n in order to
analyze the system. In HI -RISE, the rigidly connected frame is analyzed as a
statically determinate system by mak ing some assumpt ions about its behavior .

The lateral load analysis of the rigidly connected frame is adapted from the

4 4 Mary Lou Maher

portal method of Lin and Stotesbury [7]. The portal method is based on the
assumpt ions that the m o m e n t in each co lumn and girder is 0 at midheight or
midspan and the shear force on the interior co lumns is twice the shear on the
exterior co lumns . HI -RISE analyzes the rigidly connected frame as an
assemblage illustrated in Figure 2. F rom this assemblage the internal forces in
the co lumns and girders can be calculated. The internal forces provide the
required load capacity of the system componen ts .

H/6

9<r

H/3 H/3

9 < r

H/6

~7K

H/6 H/3 H/3 H/6

h /2

h /2

w h e r e Η is t h e s h e a r f o r c e

h is t h e s t o r y h e i g h t

Figure 2: Assemblage for rigidly connected frame analysis .

The results of the analysis task include the required load capacity of the
system componen t s . This consti tutes a subset of the ingredients needed to
evaluate the feasibility constraint . The remaining ingredients concern the
geometr ic and material propert ies of the system and its componen ts ; this
information is generated in the parameter selection task. The final step in the
analysis task is to formulate the strength and serviceabili ty constraints applicable
to the componen t s . The request for evaluat ion of these constraints will tr igger
the next task, parameter selection.

4.1.3 Parameter Select ion
The purpose of the parameter selection task is to define the parameters of the

componen t s . C o m p o n e n t parameters include cross section shape, d imens ions ,
and load capacity. The parameters of the system are approximated using
heurist ics. Some heurist ics for parameter selection are:

2. HI -RISE: Prel iminary Structural Design 4 5

• Steel column design: typically a wide flange section, usually one of
the W 1 4 shapes , is used.

• Reinforced concrete slab design: the depth of the rectangular
section is approximated such that the span/depth ratio is 28 .

• Braced frame diagonal design: typically a double angle section is
used.

The initial parameters are used to evaluate all constraints formulated by the
analysis task. If a constraint is violated, some heurist ic recovery rules are
applied to revise the parameters . Once satisfactory parameters are selected, i.e.,
all appl icable feasibility constraints are satisfied, the al ternative is then
evaluated in the next task.

4.1.4 Evaluat ion
Evaluat ion of a structural design m a y be based on many diverse features of

the design. A n evaluat ion is usually done by des igners in an abstract form.
Some of the features that may be considered are aesthet ics , economics ,
efficiency, and structural integrity. H I - R I S E considers the features of a
structural sys tem in a l inear evaluat ion function:

V = Σ c i Fi
where V is the value of the function

c± is the weighing factor for feature i
F± is the value of feature i.

The features in the context of this evaluat ion function are a subset of sys tem
features that m a y be quantified. The features and weighing factors are part icular
to each functional system. The features are heurist ic characterist ics of the
system that are used to de termine the relat ive value of one al ternative as
compared to another . The fol lowing are lists of features for evaluat ing the two
functional sys tems:

1. Lateral load resisting system: drift (stiffness), size of co lumns ,
n u m b e r of steel m o m e n t connect ions , n u m b e r of interior wal ls
b locked, and approximate cost of mater ia ls

2. Gravity load resisting system: deflection, depth of floor sys tem,
fire-proofing, mechanica l sys tem compat ibi l i ty , and approximate
cost of construct ion

Weigh ing factors are used in the evaluat ion function to cause one or m o r e of the
features to have a larger influence on the evaluat ion than the others . These
weighing factors m a y be de te rmined by H I - R I S E or specified by the user. In
order for the weighing factor to have this influence, the numer ica l values
assigned to the features are normal ized by forcing the value of each feature to be
within a predefined range . Normal iza t ion does not necessari ly imply that all the
features have the same units .

4 6 Mary Lou Maher

4.1.5 Sys tem Select ion
The purpose of the system selection task is to select one of the feasible

alternatives for each functional system. This task is invoked upon complet ion of
the depth first search of the synthesis task, when all feasible al ternatives have
been synthesized, analyzed, and evaluated. HI -RISE presents all structurally
feasible systems to the user indicat ing which system has been de termined to be
the "best", selected as the system with the m i n i m u m value assigned by the
evaluation function.

The user graphical ly v iews the generat ion of the of the context tree showing
the relative cost and evaluat ion of each al ternative. The user may request
information about the al ternatives generated for the functional system under
considerat ion, such as details about componen t s or different graphical v iews of a
part icular al ternative. These requests are handled by the graphical user interface
[1]. The final sys tem selection is control led by the user. The default selection

is the alternative de termined as the "best" according to the evaluat ion. The user
may overr ide this decis ion by selecting one of the other feasible al ternatives.

4 . 2 Design Description Hierarchy
As the design of a bui lding progresses , the amount of information generated
increases rapidly. The efficient representat ion of this information is critical to
the feasibility of the expert system. The representat ion in HI -RISE went
through many revisions until it became clear that the representat ion of design
information fell into three general levels. These levels are the specification,
functional, and physical levels . The three levels and their associated schemata
are shown in Figure 3 .

The specification level contains the input to the prel iminary design process .
In HI -RISE, this information includes attributes of the bui lding, such as
occupancy, and the three d imensional grid topology and geometry . This level of
information serves to specify the design prob lem, whi le the other levels specify
the design solution.

The specification level is compr i sed of two schemata: bui lding and grid as
shown be low. The bui lding frame stores information about the occupancy and
the design loads. The grid frame stores information about the structural grid,
such as the number of stories, the number of bays in each direction, and their
d imensions . There are procedural a t tachments to some of the grid attributes to
automatical ly store information about ratios and total d imens ions when the
appropriate information is provided to infer these values .

{ building
occupancy
wind-load
live-load }

{ grid

2. HI -RISE: Pre l iminary Structural Design 4 7

Spec i f ica t ion Level

b u i l d i n g

g r i d

l a t e r a l

3 D - s y s t e m s

2 D - s y s t e m s

m a t e r i a l

c o m p o n e n t s

Funct ional Level

g r a v i t y

Physical Level

2 D - h o r i z o n t a l

s u p p o r t - e d g e s

s u p p o r t - d i v i d e

c o m p o n e n t s

Figure 3 : Hierarchical levels of design descript ion.

part-of building
stories
story-dim
min-clear
narrow-bays
narrow-dim
wide-bays

4 8 Mary Lou Maher

wide-dim
mech-floor
shaft
shaft-sym ... }

The functional level decomposes the design descript ion according to
structural function. In HI -RISE, the design descript ion is decomposed into two
major functional sys tems: the lateral load resisting system and the gravity load
resisting system. The schemata used to represent this decomposi t ion , as shown
below, include relational information and the results of evaluat ion.

{ lateral
part-of grid
best-lat ... }

{ gravity
part-of grid
uses lateral
best-grav ... }

The frames that represent the physical level are hierarchically defined
according to function. The 3D-lateral , 2D-lateral , and material frames
represent decis ions m a d e for the configuration of the lateral load resisting
system. The 2D-horizontal , support -edges , and support-div frames represent
decis ions m a d e for the configurat ion of the gravity, or floor, system. There are
addit ional frames in the physical level that represent the information associated
with componen t s such as beams , co lumns , and diagonals .

{ 3D-lateral
is-alt lateral
3D-description }

{ 2D-lateral
is-alt 3D-lateral
part-of
uses
direction
2D-description }

{ material
is-alt 2D-lateral
mat-description
dead-load-est 125
story-dim-est 10.0}

2. HI -RISE: Prel iminary Structural Design 4 9

{ 2D-horizontal
is-alt gravity
hor-description }

{ support-edges
is-alt 2D-horizontal
sup-edges }

{ support-div
is-alt support-edges
subdivide-direction ... }

T h e schemata descr ibed above are used as templates for defining the
al ternative feasible structural sys tems. The schemata are l inked by the fol lowing
relat ions: is-alt, part-of, and uses. The is-alt relation is essential ly an O R
connect ion, indicat ing that the descendants of a node form alternative solut ions.
The part-of relation is an A N D connect ion, indicat ing that the descendants of a
node are part of one al ternative solution. T h e uses relation forms a horizontal
inheri tance link to connect functional sys tems.

The instances of the template schémas form a tree of solutions; an example of
a port ion of a solution is shown in Figure 4. As shown on the bo t tom of the
figure, the fol lowing alternatives are feasible lateral load resist ing sys tems:

1. A structure composed of or thogonal two dimensional vertical
subsys tems. The vertical subsys tems in the narrow direction are
steel braced frames (the narrow direction is parallel to the nar row
d imens ion of the rectangular bui lding) . The vertical subsys tems in
the wide direction are steel rigid frames.

2. A core structure composed of concrete shear wal ls .

3 . A core structure composed of steel braced frames.

5 Implementation
HI-RISE is implemented in P S R L , a frame based product ion sys tem language
developed at Carnegie -Mel lon Universi ty by Rychener [10] . The deve lopment
of HI -RISE was facilitated by the fol lowing aspects of P S R L :

• Rule-sets: In P S R L a rule set is defined as a small product ion
system that has its own control strategy. Rule sets are used in
HI -RISE to control the order of tasks, to synthesize structural
sys tems, to group constraints and to evaluate al ternatives.

• Schémas: A schema in P S R L is similar to an object or frame in
other frame representat ion languages . A schema may have any
number of slots and slot values . A slot may s imply be an attribute
or may be a relation. Slot values may be attribute values or other

Mary Lou Maher

B u i l d i n g

— I
part-of

Gr id

part-of

L a t e r a l
uses

G r a v i t y L a t e r a l G r a v i t y

N a r r o w Wide

i
is-alt is-alt

Braced Ric
Frame Frame

i i
is-alt

i
is-alt

S tee l S tee l

Sh
W

ear
all

Braced
Frame

i
is-alt

i i
is-alt

Concre te S tee l

ο © ©
Figure 4: Feasible lateral load resisting sys tems.

schémas . This representat ion a l lows the definition of a tangled
hierarchy with inheri tance most often occurr ing from parent to
descendant . Schémas are used in HI -RISE to represent the design
descript ion.

Demons: A d e m o n is a function to be evaluated when a certain
condi t ion exists . A demon may be associated with any slot in a
schema. D e m o n s are used in HI -RISE to tr igger the execut ion of a

2. HI -RISE: Prel iminary Structural Design 5 1

rule-set or to evaluate a Lisp function. The ability to evaluate Lisp
functions provides a means for represent ing analysis procedures that
may be difficult to represent in pure if-then rule form.

6 Conclusion
HI-RISE serves as a starting point for the deve lopment of exper t sys tems in
engineer ing design. T w o major issues are addressed: the representat ion of the
design descript ion and a design decomposi t ion for pre l iminary design. The
hierarchial representat ion of the design descript ion, using inheri tance for sharing
information a m o n g levels, facilitates the reasoning about al ternative solut ions.
The use of a schema for each prel iminary design decis ion provides a comple te
trace of the prel iminary design process . T h e subtasks of synthesis , analysis ,
componen t selection, evaluat ion, and system selection provide a modu la r
approach to knowledge representat ion.

T h e exper ience of developing H I - R I S E has led to the identification of two
major areas of research for the deve lopment of expert sys tems in design. One
area of research is to deve lop a mode l of des ign that is c o m m o n to a class of
design p rob lems . A mode l that employs the constraint directed depth-first
search for feasible solutions has been developed and implemented in a sys tem
by Maher and Longinos cal led E D E S Y N [9]. E D E S Y N is a domain-
independent synthesis processor that accepts a hierarchial decompos i t ion of the
design descript ion and heurist ic constraints as a knowledge base , and provides
feasible al ternatives for a given specification.

The other major area of research involves the study of domain specific expert
sys tems that address the formalizat ion of a part icular des ign domain . For
example , the deve lopment of an integrated design env i ronment for bui ld ings .
This is be ing pursued in a project by Fenves , et al., that integrates the bui lding
design process from architectural design through construct ion p lanning [3].
Other projects in this area are reasoning about locat ing structural sys tems on a
grid by Smith [13] , generat ing and evaluat ing floor sys tems by Karakatsanis [6] ,
and the use of prototypes to organize a knowledge base for structural design by
Gero , et al. [5].

References
1. Barnes , S. "DICE Design Interface for Civil Engineer ing ." Masters Th. ,
Carnegie-Mel lon Universi ty , Sep tember 1984.

2. Cowan , H. J. and Wilson , F . Structural Systems. Van Nost rand Reinhold
Company , 1981.

5 2 Mary Lou Maher

3 . Fenves , S., F l emming , U., Hendr ickson, C , Maher , M. L. and Schmitt , G.
"An Integrated Software Envi ronment for Bui lding Design and Construct ion."
Proc. Fifth Conference on Computing in Civil Engineering, A S C E , 1988.

4. Fraser, D. J. Conceptual Design And Preliminary Analysis Of Structures.
Pi tman Publ ishing Inc. , 1981.

5. Gero , J., Maher , M. L., and Zhang , W . "Chunking Structural Design
Knowledge as Prototypes ." Applications of Artificial Intelligence in
Engineering, 3rd International Conference, August , 1988.

6. Karakatsanis , A. " F L O D E R : A Floor Des igner Exper t System." Masters
Th. , Depar tment of Civil Engineer ing , Carnegie-Mel lon Universi ty, 1985.

7. Lin, T. Y. and Stotesbury, S. D . Structural Concepts And Systems For
Architects And Engineers. John Wiley and Sons , 1981.

8. Maher , M. L. HI-RISE: A Knowledge-Based Expert System For The
Preliminary Structural Design Of High Rise Buildings. Ph .D . Th. , Depar tment
of Civil Engineer ing, Carnegie-Mel lon Univers i ty , 1984.

9. Maher , M. L. and Longinos , P. "Deve lopment of an Exper t Sys tem Shell for
Engineer ing Design." The International Journal of Applied Engineering
Education, 1987.

10. Rychener , M. D . "PSRL: An SRL-Based Product ion-Rule System."
Reference Manual .

1 1 . Salvadori , M. Why Buildings Stand Up. McGraw-Hi l l Paperbacks , 1980.

12. Schodek, D. L. Structures. Prent ice-Hall Inc. , 1980.

13. Smith, Douglas F. " L O C A T O R , a Knowledge-Based Lateral Sys tem
Locator for High Rise Bui ldings ." Masters Th. , Civil Engineer ing , Carnegie
Mel lon Universi ty , N o v e m b e r 1986.

The DECADE
Catalyst Selection
System
RENÉ BANARES-ALCANTARA
ARTHUR W. WESTERBERG
EDMOND I. KO
MICHAEL D. RYCHENER

Abstract
D E C A D E (Design Exper t for CAta lys t D E v e l o p m e n t) is a prototype expert
system for catalyst selection, which has m a n y attr ibutes in c o m m o n with other
engineer ing design prob lems . F rom a specified react ion it a t tempts to p ropose a
set of mater ia ls with high probabil i ty of being good catalysts for the input
reaction and the condi t ions at which the proposed catalysts should operate . In
some cases , novel combina t ions of mater ia ls are proposed . The class of
react ions for which D E C A D E has specific knowledge is carbon m o n o x i d e
hydrogénat ion . A major object ive of D E C A D E ' s deve lopment has been to
invest igate and evaluate the applicabil i ty of expert sys tems technology to the
solution of chemical engineer ing p rob lems . D E C A D E ' s archi tecture and
implementa t ion illustrate the integrat ion of different software pa rad igms along
several d imens ions of expert sys tems: knowledge representat ion, p rob lem-
solving me thods , and levels of knowledge abstract ion. All these propert ies are
achieved through the use of different languages (FranzLisp , O P S 5 , SRL1.5)
brought together in a b lackboard mode l archi tecture.

There are three levels of responding to a request for catalyst selection: from
publ ished exper imenta l results in the D E C A D E knowledge base; by a mul t i
level classification of the reaction; and by de termining surface steps and
selecting mater ia ls on that basis (s t rengthening and suppress ing steps according
to their desirabil i ty) . The mos t interest ing results are p roduced at the third,
deepest level of abstract ion. Catalysts are proposed at this level us ing a
generate-and-test p rocedure with a priori and dynamica l ly generated constraints .
Explanat ion of the results is avai lable for any material that was taken into
considerat ion. In v iew of the l imited size of the knowledge base , the results and
explanat ions for this level of abstraction are satisfactory.

Expert Systems for Engineering Design Copyright © 1988 by Academic Press, Inc.
All rights of reproduction in any form reserved.

53 ISBN 0-12-605110-0

5 4 Banares , Westerberg , Ko , Rychener

1 Introduction
The mos t important goal of this study in catalyst selection is to evaluate the
feasibility of applying knowledge-based systems to the engineer ing design area.
This goal has two aspects : p ropos ing new computat ional me thods of solution for
tasks that traditionally have been approached "by hand" , and integrating those
solutions with the results of the algori thmic parts of the problem.

By examining the deve lopment of a p rogram for selection of catalytic
material given a specific reaction, a long with its characterist ics and behavior , the
applicabili ty of hybrid knowledge-based systems to engineer ing becomes
evident. Since the p rob lem is not new and solutions do exist, the objective is not
to solve a previously unsolvable p rob lem or to replicate exactly k n o w n
solutions, but to gain insight into the problem and the nature of the solution.
This leads to a compute r aid flexible enough to be expanded further. Therefore,
results should be considered as a testbed and an evaluat ion of the feasibility and
necessary resources for the subsequent deve lopment of commerc ia l ly viable
knowledge-based systems aiding in the design task for chemical engineer ing.

Des igning a comple te catalyst goes one step beyond propos ing a material ,
since a good catalyst may consist of several mater ia ls . In general , there are no
data on the behavior of all the possible combina t ions of different mater ials ; it is
thus necessary to rely on a strategy that accommoda te s a flexible schedule of the
tasks that are required for the selection of a catalyst . This activity - like many
of the activities that const i tute the design procedure - is i l l-structured in nature.
That is, the solution path cannot be specified a priori, and, given that there are
many alternatives at each step, the choice a m o n g them must be guided locally
(McDermot t , [30]). The reason for this is that the catalyst design problem is a
very complex and inexact activity, based to a large extent on exper ience.
Fur thermore , the under lying theory for catalyst selection is not comple te enough
to permit the predict ion of a unique , comple te and certain answer.

In practice the solution of such a problem has been performed by human
experts proposing a set of catalytic mater ials having a high probabil i ty of being
appropriate; the best material is then selected from this set by a series of
exper iments which test catalytic per formance and by an economic evaluat ion.
Clearly, a good solution is one in which a min imal set of catalysts are proposed
without over looking a promis ing mater ial , s ince the problem of testing is a
combinator ia l function of the size of the proposed set.

Knowledge-based systems (somet imes referred to as expert systems) are
p rograms whose performance depends strongly on the use of facts and
heurist ics. S o m e of them have been specifically developed to deal with
uncertain, incomplete , inexact and unformal ized prob lems (i.e. i l l-structured
problems) . General strategies are available that are complemen ted with domain-
specific techniques . Very little translation is involved, and therefore the solution
mechan i sm is (or may be) t ransparent to the user. They are, in contrast to
a lgori thmic p rograms (in which explicit instructions on how to solve the

3. T h e D E C A D E Catalyst Select ion Sys tem 5 5

problem are g iven) , free to search through and reason about the knowledge in
order to reach a goal . This strongly suggests their suitability to the present task.

W e have had previous exper ience applying expert sys tems to chemical
engineer ing p rob lems . After using the f ramework of the Reboh et al.
P R O S P E C T O R [36] expert system in the implementa t ion of C O N P H Y D E [4] (a
prototype expert sys tem for the selection of a physical proper ty me thod for
vapor liquid equil ibria) , we felt the need to invest igate al ternative possibil i t ies
for expert sys tem implementa t ion . T h e reasons for such a decis ion were mainly
two:

• The mos t severe l imitat ion encountered while developing
C O N P H Y D E was the difficulty of implement ing calculat ion
capabil i t ies (see [8]). Several authors have recognized this need for
appl icat ions in chemical engineer ing (see Motard [32] and U m e d a
[42]). The tools descr ibed be low m a k e this capabil i ty possible .

• T h e P R O S P E C T O R framework only a l lows solution of diagnosis or
classification p rob lems , whi le m a n y of the p rob lems encountered in
engineer ing are of a more complex kind - p rob lems of design or
synthesis (as expla ined in [6]).

2 Background on Catalyst Selection
The selection of a catalyst has a major impact on the economics of chemical
processes because the catalyst affects the feasibility and the degree of
convers ion of raw mater ia ls to final products , and general ly raw mater ial and
product costs domina te the total cash flow of a process . F rom the point of v iew
of the design process , it is important to realize that not only the reactor, but the
totality of the plant , are des igned taking into account , in a direct or indirect way,
the characterist ics of the react ion (condit ions of tempera ture and pressure in
which it mus t run, side products , convers ion) .

2 . 1 The Catalyst Selection Problem
Select ing a catalyst is not an easy task since there is little information on:

• which are all the propert ies of a catalytic material that affect the
characterist ics of a reaction,

• how each of these propert ies affect the characteris t ics ,

• the interactions that the componen t s of combined catalysts
(catalysts with more than one componen t) have on each other in
relation to the react ion that they are catalyzing.

In short, the under ly ing theory for catalyst selection is not enough to permi t the
predict ion of a unique , comple te and certain answer .

The selection of a catalyst is a p rob lem that is currently solved only by a
relatively small number of experts interacting in a consul ta t ion env i ronment

5 6 Banares , Westerberg , Ko , Rychener

with the user. It is prone to decomposi t ion into smaller and very different
subproblems, some of them amenab le to algori thmic solution, but the majority
only solvable through the use of heurist ic reasoning given their lack of
formalization. Also , since the order of execut ion of the subproblems is not
fixed, but varies greatly depending on the characterist ics of the individual
problem, a flexible solution strategy is needed. The solution to the overall
p roblem should not only preserve the functionality (proper selection of
catalysts) , but the form (interactive envi ronment with the user) as well .

Some at tempts have been m a d e to formalize the process of catalyst selection,
e.g., the one descr ibed in T r i m m ' s book Design of Industrial Catalysts [41].
The "scientific basis of design of catalysts" descr ibed in the book, and other
methodologies conta ined in some other publ icat ions , a l though different,
coincide in prescr ibing a number of subtasks that are useful to perform when
selecting a catalyst (for the other methodologies see for example the section
"Catalyst Select ion" in Klier [27]). An enumera t ion of the subtasks fol lows.
Stoichiometric analysis. Wri te down all the react ions that c o m e from all
possible combina t ions of the reactants and products of the target reaction,
incorporat ing only chemical ly stable compounds , and without mak ing reference
to the reactions on the surface. This task is akin to the one solved in the Ph .D.
thesis of R .B . Agnihotr i ([1]). A simplification of this step consists of listing
only the target reaction, the react ions producing useful or acceptable side
products , and the react ions that need to be inhibited because they produce
unacceptable side products .

Thermodynamical analysis. Calculate the Gibbs free energy of the listed
reactions in order to identify those which are (thermodynamical ly) feasible.
Calculate the equi l ibr ium convers ions . Calculat ion of the enthalpy of reaction is
also useful in terms of the thermal stability required from the catalytic material ,
and for heat transfer calculat ions.
Literature Search. One step that is consistently stressed is the li terature search.
As a mat ter of method , it is advised to search for all avai lable information about
the target react ion, ana logous react ions, and data like activity pat terns, heats of
adsorpt ion, proposed mechan i sms , observed intermediates , etc. The search for
general data should be done prior to the selection process (this pract ice can
prune the search space considerably) , while search for very specific information
can be done whenever it is needed.
Classification of reactions. It is convenient to group the react ions listed in the
stoichiometric analysis in terms of their class. The list of possible react ions may
be very large, but the list of classes of react ions is considerably smaller. This is
important because many of the heurist ics are given in terms of the classes of
reactions rather than react ions themselves {e.g. the activity patterns).
Identify types of chemical bond rearrangements occurring in each reaction.
Although this step is not explicit ly ment ioned in some of the methodolog ies , it is
consistently used as the basis for the proposal of surface steps whenever there is
no exper imental data avai lable.

3. The D E C A D E Catalyst Selection Sys tem 5 7

Proposal of a surface mechanism. N o n e of the methods have a formalized
strategy for the proposal of the surface steps, all of them either extract them
from the l i terature, or obscurely propose them using a priori knowledge . This
step could m a n y t imes be considered as the basis of the design, in that the
information conveyed from it supplies pointers to many al ternative me thods of
enumera t ing and ranking catalytic mater ia ls .
It is worth ment ion ing that a mathemat ica l me thod for the enumera t ion of all
possible mechan i sms has been proposed (Happel and Sellers [21]). Its inputs
are the possible in termediate species and e lementary surface steps that the user
wants to consider , even though it is often necessary to obtain such data from the
literature. The availabili ty of the surface data is assumed, when many t imes
such data are uncertain and difficult to find.
Reaction path identification and preliminary catalyst material selection. F rom
the data obta ined in the mechan i sm predict ion, those steps that have to be
favored, and those steps that have to be inhibited are identified. This will
p roduce a list of requi rements to d e m a n d from the mater ia ls that will be
catalysts .
Experimental testing. Somet imes , dur ing the process of selection, a set of
exper iments is proposed. Such exper iments have the purpose of ei ther obtaining
miss ing data or s tudying the behavior of a partial solution {e.g. study the
interactions be tween the different componen t s of a catalyst) .

Never theless there are subparts of the p rob lem that not only are far from
being formalized, but also where there is not even a consensus of which
methodo logy to follow. Take for example the specification of the problem.
There is no information on what is considered enough input information for the
predict ion of catalysts . In the me thod proposed by T r i mm, the input information
is the desired product . A combina t ion of other data like the avai lable raw
mater ials or the ranges of operat ing condi t ions can also form part of the input,
but there is no clear idea on what is the m i n i m u m amoun t of data needed. As a
rule of thumb, the more information that is avai lable from the user, the easier it
is to prescr ibe a catalyst; data are not a lways avai lable though.

2 . 2 The Fischer-Tropsch Reaction
The knowledge in D E C A D E has been focused to a single reaction: the Fischer-
Tropsch reaction (for more information about this react ion, consul t the book
written by Anderson , et al. [2] , the monograph by Dry [15] , or the short article
by Haggin [20]). Whi le constra ining the area of knowledge reduces the search
space in size, we think that it mainta ins the important characterist ics of the
domain . The Fischer-Tropsch reaction is thought to be a representat ive react ion
in terms of catalyst selection, given the fact that enough studies have been m a d e
about it, but no one can c la im to unders tand it perfectly well , leaving room for
the applicat ion of knowledge-based sys tems.

The Fischer-Tropsch reaction is named after two German chemis ts : Franz

5 8 Banares , Westerberg , Ko , Rychener

Fischer and Hans Tropsch , who , in 1926, descr ibed it for the first t ime. T h e
Fischer-Tropsch react ion can be considered the main react ion of C{ chemist ry .
It can be descr ibed as the product ion of hydrocarbon and oxygenated organic
molecules via the react ion of carbon monox ide and hydrogen . The mixture of
carbon monox ide and hydrogen is k n o w n as synthesis gas or syngas. T h e
molecules so produced have predominant ly straight carbon chains , at least in the
C 4- C 7 range (Haggin [20]).

The range of subreact ions possible when using carbon monox ide and
hydrogen as reactants falls into three divisions (King [26]):

1. Direct process from syngas (see Figure 1),

2. Indirect process from m e t h a n o l
1
 or methanol mixed with syngas ,

and

3. Indirect process by combin ing a third molecule with syngas or
methanol .

Only the first division is of specific interest to this study.

CO

FUELS

r gasol ine

SNQ

diesel fuel

fuel oi l

a lcohol fuels

J aiconoi rums

CHEMICALS

I ethylene g lycol |

I acetic ac id |

ethanol '

I dimethyl ether |

j polyethylene |

• Hp or C 0 2

Figure 1 : S o m e products der ived from direct processes of synthesis gas .

All the Fischer-Tropsch react ions are exothermic , and produce water as a side
product (at certain condi t ions , a react ion k n o w n as water-gas shift
{CO + H 20 —» H 2 + C 0 2} may change the overall side product from water to
carbon dioxide) . One other side react ion is the decomposi t ion of carbon
monox ide ({2 C O c o 2 + o , a lso k n o w n as the Boudouard reaction).

'Note that in this instance methanol is a derived product of the hydrogénation of carbon
monoxide.

3. The D E C A D E Catalyst Selection Sys tem 5 9

Given a set of starting condi t ions for the Fischer-Tropsch process , the
Schultz-Flory equat ion predicts the propor t ion of C j products to h igher carbon-
number products . T h e product distr ibution depends on such variables as the
catalytic mater ia l , reaction tempera ture and pressure , and feed gas composi t ion .
However , only methane and methanol can be p roduced with a 100% selectivity.

Several mechan i sms have been proposed over the years , but no single
mechan i sm is appl icable to all catalytic surfaces. A very comple te review can
be found in the work of Rofer -DePoor ter [38] . A mechan i sm worth ment ioning
for its simplicity and generali ty is the one proposed by Bell [10] , for the
formation of hydrocarbons over G r o u p VIII meta ls .

3 Background on Hybrid Knowledge-Based Systems
A m o n g the p rob lems that are well suited for hybrid implementa t ions are design
prob lems (in part icular in engineer ing) . The justif ication for the need of hybrid
sys tems is that, since engineer ing knowledge is he te rogeneous (in terms of the
kinds of p rob lems that it encompasses and the methods used to solve them) , then
the use of he te rogeneous representat ions is natural . Ano the r important factor to
take into account is the fact that some p rograms that solve a part of a given
problem m a y already exist , and it would not be feasible or convenient to rewri te
them into another format only to m a k e them compat ib le with the overall sys tem.

A sys tem m a y be hybrid in several ways . At tempts to character ize this
hybridizat ion have resulted in the fol lowing classification of the propert ies that
may be of impor tance when construct ing a knowledge-based system: knowledge
representat ion, problem-solv ing strategy, knowledge abstract ions, and
implementa t ion language. These are considered in turn be low. A broader
discussion of these issues is found in [7],

3 . 1 Knowledge Representation
Knowledge representat ion deals with what is k n o w n in tradit ional numerical
applicat ions as the database, and in knowledge-based sys tems as the knowledge
base. It can be considered as the descript ion of the p rob lem space, its propert ies
and internal laws.

Knowledge has different forms. It can be certain or uncertain, formalized or
unformalized, structured or unrelated, etc. It can be found in formulas , tables ,
s ta tements , tradit ional pract ices or e m b e d d e d in methodolog ies , but , when it has
to be translated in such a way that it can be stored and used by a computer , a
knowledge representat ion mechan i sm has to be chosen . T h e issues that affect
the selection of knowledge representat ion are the naturalness of representat ion,
efficiency of s torage and manipula t ion , and consis tency and compat ibi l i ty with
the rest of the representat ions in the sys tem.

The fol lowing are three representat ions used in D E C A D E :
Production rules. Product ion rules or I F - T H E N sta tements consist of a

6 0 Banares , Westerberg , Ko , Rychener

condit ional part and an action part. The condi t ions of a rule have to be satisfied
in order for the rule to act. The actions of a rule execute a series of operat ions
that will modify the state of the problem. Demons and active values (Kunz, et
al. [28]) are special cases of product ions rules. Product ion rules are prescr ibed
for the representat ion of control mechan i sms , problem-solv ing strategies,
heurist ics, and in general any kind of knowledge that is applicable only when a
given context is present . A reference to the usage and advantages of product ion
systems is Browns ton , et al. [11] , whi le Hayes-Roth [22] is a good introductory
document .
Frames. A frame is a structure that represents a concept . It can have any
number of attributes or properties a t tached to it, some of the propert ies can be
relationships. An attribute may have any number of values (i.e. no value, one
value, several values) . The impor tance of being able to represent relations is
that a given frame can inherit propert ies (attributes and/or values) from the
frames to which it is related. F rames are a convenient and natural way to
represent descript ive information, that is, objects , their propert ies and their
relat ions. They also represent very naturally the information carried in
hierarchically structured domains . For an introduction to frames consul t Fikes
and Kehler [17].
Procedures. Procedures are probably the best k n o w n representat ion structure to
engineers . Tradit ional numer ica l formulas m a p in a straightforward way into
procedures . The concept is more general though, since one can think of
procedures that deal with symbol ic data rather than with numerical data.
Sequential execut ion of s ta tements , iteration and recursion are the three control
schemes available to procedures . A procedure can be used as an action of a
product ion rule, or as the mechan i sm that manipula tes the information contained
in a frame.

3 . 2 Problem-Solving Methods
Problem-solving is the process of developing a sequence of actions to achieve a
goal . It encompasses the set of me thods that can be used when at tacking a
problem. The methods descr ibe h o w to manage the available information and
how to obtain the miss ing information in order to achieve a goal state. In terms
of the problem space, problem-solv ing methods prescr ibe the way in which one
should m o v e from the initial state to the solution state pass ing through the
partial solution states. If the reader is interested in further information about the
subject, we r e c o m m e n d Cohen and Fe igenbaum [14] as a reference. N o w we
present two specific examples of the use of these methods in D E C A D E .

3.2.1 Depth-First Search
D E C A D E uses the depth-first search method during the process of

classifying a reaction. Figure 2 shows the process of classification for the
reaction of producing e thane. Each of the nodes in the tree is a frame. The

Figure 2: Depth-first search to classify reaction produc ing e thane.

nodes in the upper levels represent classes of reaction, those leaf nodes in the
fourth level (i.e. e thane synthesis and p ropane synthesis) are instances of a
reaction. Because of space l imitations some of the nodes are grouped into
rectangular boxes .

In order to classify a react ion, the p rob lem react ion is tested to check if it
satisfies the constraints contained in a node . If it does , the constraint satisfaction
is tested recursively for each of the child nodes . In the part icular case of the
reaction to produce e thane, the evaluated nodes are shown in solid l ines, and the
satisfied nodes in bold l ines. The result of the classification presents the
problem reaction as of class "Fischer-Tropsch", and recognizes that it is
identical with the "ethane synthesis" react ion already stored in the knowledge
base .

3.2.2 M e a n s - E n d s Analys is
The Means -Ends analysis me thod is used in D E C A D E for the proposal of

reaction steps on the surface. Figure 3 contains the means -ends analysis table
with the necessary entries to p ropose steps for a lkane forming Fischer-Tropsch
react ions (a different kind of product requires an addit ional set of entries) . The
horizontal entries represent the differences. There are two kinds of differences:
the phase where the species are present (gas or solid), and the difference in
bonds from one species to another. The input data consists of the set of

6 2 Banares , Westerberg , Ko , Rychener

'adaorb / d i a a o c / R 1 R 2 / R 3 / R 4 / W b ^

spc --> 'ape •
break bonda y

form 0:H bond y
form C:H bond / y
form C.C bond

•spc ·-> ape y
* \ s / s \ s / s χ s / sx s/s \ s / s \ s / s

\ \ \ \ \ \ 2) a p c
1) speciea on gaa phasa

2) species is

Figure 3 : Means -ends table for predict ion of mechan i sm for a lkanes .

reactants and products of the target reaction. Aided with a knowledge base
containing the bonds present in different chemica ls , two lists of bonds are
compi led: one conta ining the bonds present in the reactant side of the reaction,
and the other one containing the equivalent list for the product side. The
objective of the process is to find the necessary steps that t ransform the first list
into the second.

The upper vertical entries stand for the operators , for which the
precondit ions are given in the lower vertical part of the table. There are two
kinds of operators corresponding to the two kinds of differences described
above . The first type represents the physical steps that t ransport a species from
the gas phase to the surface and vice versa. The second type stands for the
surface steps that can break, modify or form a bond. For space reasons , some
entries are represented by large-font symbols , as fol lows:

(x = 0, 1) * Ο Η χ + *H ^ * Ο Η χ +1
* C H + *H -> *CH

* C H x + * C yH z^

x+l

^ y + l

n
x + z

* C xH y + *
H
 - > * C xH y +1

(χ = ο, l)

(x, y > 0; ζ > 2)

(x > 0 ; y > 1)

• R 1 :

• R2:

• R3:

• R4:

• A: species are in the surface

Each one of these operators has precondi t ions , which can be seen as constraints
to be satisfied before the operator can execute its action.

The schemat ic of the action of the means-ends analysis process on the
methanation reaction is presented in Figure 4.

3. The D E C A D E Catalyst Selection Sys tem 6 3

Figure 4: Means -ends analysis appl ied to the methanat ion reaction.

The symbols represent the species that are likely to exist in the react ion process .
Symbols preceded by a are adsorbed species , the others are species in the gas
phase . The lines jo in ing the symbols represent the operators needed to
transform the species , and the overall flow of information goes from left to right.
The list of p roposed steps p roduced by the means-ends analysis cannot be
considered as a series of mechanis t ic events (in the sense that there is no claim
that the steps will occur in the exact order, or that some steps could be concer ted
rather than sequential) . It is never theless useful in that it provides pointers to
some of the necessary surface events that have to take place in order for the
reaction to occur .

3 . 3 Knowledge Abstraction
It is a c o m m o n method of decompos ing the p rob lem into subproblems (in a
more general way it could be considered as one part icular problem-solv ing
strategy). M o r e abstract representat ions hold less information about the p rob lem
but are easier to work with. A solution in an abstract level can be used as a
guide for the search of the solution of a less abstract one .

6 4 Banares , Westerberg , Ko , Rychener

The abstraction of knowledge is a useful technique for the decomposi t ion of
complex problems . It divides the problem space into levels, each level holding a
different representat ion or v iew of the problem. The more abstract a level is, the
s impler it is to find a solution since less information has to be managed .

There are two useful general classifications in terms of abstraction. The first
one was proposed by Michie in [31], and according to it there are two kinds of
knowledge :

1. The "low road" or heurist ic type, represented by
[pattern —> advice] , and

2. The "high road" or causal type, represented as
[situation χ act ions —> situation]

Chandrasekaran and Mittal [13] expanded this concept , propos ing the fol lowing
division: table look-up; partial pat tern-matching; compi led structures; and deep
structures.

For D E C A D E , three levels of knowledge abstraction are used. As ment ioned
earlier, the more abstract the level is, the easier it is to solve a problem, but with
less unders tanding of the causali ty.

1. Reaction Level. The objects managed at this level are react ions.
React ions have pointers to mater ials that can catalyze them. If the
problem reaction is identical to a react ion contained in D E C A D E ' s
knowledge base, then the propert ies at tached to the known reaction
are associated with the problem reaction (in part icular the catalytic
material) .

2. Molecular Level. In this level the objects are molecules .
Molecules are parts of a react ion if they are contained in the
reactant side or the product side of that reaction. It is possible to
deduce propert ies of a reaction by observing the molecules that
form it (in particular, it is possible to classify it). Once a reaction
is recognized as a m e m b e r of a reaction class, something
addit ional may be said about the mater ials that can catalyze the
problem reaction.

3. Species/Metal Surface Level. The objects in this level are species
that can exist on the surface of a metal whi le a reaction is taking
place. Wi th these species (which are deduced from the molecular
level and a set of heurist ics) , and a collect ion of rules, it is possible
to propose a mechan i sm or series of steps that have to take place
on the surface in order for the reaction to take place. These steps
are affected by the react ion condi t ions and the nature of the
surface (i.e. the catalytic material) .

The above classification goes in decreas ing level of abstract ion, increasing
level of difficulty in terms of p rob lem solving, and decreasing level of accuracy
in the predict ion.

3. The D E C A D E Catalyst Selection Sys tem 6 5

3 . 4 Implementation Language
There are many possible implementa t ion procedures avai lable inside the
knowledge-based systems domain . Their choice depends on the basic approach
taken, as descr ibed in detail by Hayes-Roth , et al. [24] . D E C A D E uses mainly
two languages .

3.4.1 O P S 5
O P S 5 is a p rog ramming language used extensively in knowledge-based

system applicat ions and in other Artificial Intel l igence areas. O P S 5 primit ives
are product ion rules that "fire" (i.e. execute its act ions when its precondi t ions are
matched) according to the content of work ing memory , and whose act ions
modify that work ing memory , create other product ion rules, or perform
information input/output . For a better descript ion of the language , consul t
F o r g y ' s manua l [19] , and the Brows ton et al. book on O P S 5 p rog ramming [11] .

3.4.2 S R L
SRL1.5 [43] (or S R L for short) is a language extension of F ranzLISP , which

runs on a V A X compute r using the U N I X operat ing system. It has been
developed by the Intell igent Sys tems Labora tory at Carnegie -Mel lon Universi ty .
It is appropria te for declarat ive knowledge , and it is therefore used for
descript ive purposes in D E C A D E . S R L supports a very sophist icated
representat ion of concepts and their relat ions, and the support is very flexible. It
is possible to inherit values from related s chemata , specify the inheri tance path,
modify the inheri tance mechan i sm, etc.

3 . 5 Conclusions on Hybrid Systems
In summary , it would a lways be important to consider the use of the mos t
appropriate language for the representat ion and solution of a subproblem. This
factor has to be weighed against the advantages of uniformity. One
d isadvantage of using hybrid sys tems is that a diversity of representat ions may
hide some of the sequencing of a task. Another is that since data types are in
general not the same, it is necessary to check for data type consis tency and
compatibi l i ty .

4 DECADE as a Hybrid Knowledge-Based System
As we have seen so far, there are advantages to using different representat ion
and control structures within the same system. T h e b lackboard mode l is a
general and s imple archi tecture that a l lows the integration of diss imilar p rogram
modules (see Hayes-Roth [25] for a good introduction to b lackboards) .
D E C A D E is an example of a hybrid system in which the b lackboard integrates
both representat ions and problem-solv ing methods . M o r e details on b lackboard
issues may be found in [7] , and comple te details are in [9].

6 6 Banares , Westerberg , Ko , Rychener

4 . 1 The Blackboard Model
The blackboard mode l is a parad igm that a l lows for the flexible integration of
modular pieces of code into a single problem-solv ing envi ronment , it is a
general and s imple mode l that a l lows for the representat ion of a variety of
behaviors . Given its nature, it is prescr ibed for problem-solv ing in knowledge
intensive domains that use large amounts of diverse, errorful and incomplete
knowledge , therefore requir ing mult iple cooperat ion of knowledge sources in
the search of a large problem space. In terms of the type of p rob lems that it can
solve there is only one major assumpt ion: that the problem-solv ing activity
generates a set of intermediate results .

It was originally proposed in the deve lopment of Hearsay-II , a speech
unders tanding system that interprets spoken requests for information from a
database Hayes-Roth and Lesser [23]. Since then it has been used in a number
of application p rograms , for example for signal process ing (Nii, et al. [33]),
design of alloys (Farinacci , et al. [16] and Chapter 6 in this vo lume) , V L S I
design (Bushnel l and Director [12]), and several more . The Talukdar and
Cardozo paper in this vo lume discusses related issues.

The blackboard mode l consists of a data structure (the b lackboard) containing
information (the context) that permits a set of modu les (Knowledge Sources or
KSs) to interact (as illustrated in Figure 5) .

In the fol lowing subsect ion the structure of a typical b lackboard model is
descr ibed in more detail .

3. The D E C A D E Catalyst Select ion Sys tem 6 7

4.1.1 T h e B lackboard
T h e b lackboard can be seen as a global da tabase or work ing m e m o r y in

which distinct representat ions of knowledge and intermediate results are
integrated uniformly. It can also be seen as a means of communica t ion a m o n g
knowledge sources , media t ing all of their interact ions. Finally, it can be seen as
a c o m m o n display, debugging , and per formance evaluat ion area.

It may be structured so as to represent different levels of abstract ion and also
distinct and possibly over lapping intervals in the solution. The divis ion of the
b lackboard into levels parallels the process of abstraction of the knowledge ,
a l lowing e lements at each level to be descr ibed approximate ly as abstract ions of
e lements at the next lower level. This parti t ion of the knowledge m a y be not
only natural , but useful, in that a partial solution (i.e. g roup of hypotheses) at
one level can be used to constrain the search at adjacent levels.

4.1.2 T h e K n o w l e d g e Sources
The K n o w l e d g e Sources in D E C A D E are kept separate , independent and

anonymous (i.e. they do not have to k n o w of the exis tence of the rest) . This
separat ion can be interpreted to be a decomposi t ion of the problem space, useful
in that it m a k e s the p rob lem more tractable by reducing the size of the p rob lems
to be solved and on occasion the size of the combinator ia l p roblem. In addit ion
to this, the separat ion eases the modif icat ion and evaluat ion of the system.

Knowledge Sources in D E C A D E are divided into two componen t s :

1. Condition, Precondition or Front End. Moni tors the b lackboard
for e lements match ing its precondi t ion. The precondi t ion has the
double purpose of finding a subset of hypotheses that are
appropria te for an action and of invoking the knowledge source in
that subset. The subset has been cal led the Stimulus Frame of the
knowledge source instantiation (Lesser and Erman [29]). Each
knowledge source is data-directed in that it moni tors the
b lackboard for data match ing its precondi t ion.

2. Action- or Knowledge-Specific Component. W h e n the precon
dition componen t is matched , a copy of the knowledge source is
instantiated (invoked) and finally executed. In the case that more
than one knowledge source fulfilled its precondi t ion part, the
execut ion is subject to the result of a conflict resolut ion process
(more on this in the b lackboard mode l control sect ion).

The knowledge sources may be classified in a number of different ways ,
depending on the characterist ic that is used to discr iminate them.

• Generic vs. Specific. T h e knowledge source m a y be useful in a
whole set of knowledge-based sys tems (e.g. the Focus of At tent ion) ,
or specific to one applicat ion (e.g. the mechan i sm predict ion
knowledge source) .

• Unique vs. Redundant. Several knowledge sources performing the

6 8 Banares , Westerberg , Ko , Rychener

same task but with different capabil i t ies may be present in the same
system. The difference in capabil i t ies can be in terms of accuracy,
consumed resources , certainty of the result, required precondi t ions ,
etc.

• Local vs. Distributed. Knowledge sources m a y reside in the same
processor or in different ones .

• Homogeneous vs. Hybrid. Knowledge sources m a y have the same
structure and/or control , but they may be complete ly different in
either.

Table 1 lists the current componen t s of the b lackboard envi ronment present in
D E C A D E . The headers of the table reflect the d imens ions in which D E C A D E
is a hybrid system.

Table 1 : D E C A D E as an example of a b lackboard model .

N a m e Knowl . rep. PS method Language Levels

Specify
React ion

rules
frames

search
numerical

O P S 5
S R L

2

T h e r m o
Checking

functions
rules

generate & test
numerical

Lisp
O P S 5

1

Classify
React ion

functions
frames

search S R L
O P S 5

2

Select
Catalyst

rules
frames

functions

search S R L
O P S 5

3

Surface
Mechan i sm

rules
frames

means-ends O P S 5
S R L

2

Focus of
Attention

rules agenda O P S 5 -

User
Interface

rules O P S 5 -

3. The D E C A D E Catalyst Select ion Sys tem 69

4.1.3 T h e Context
The context is the set of entries or context e lements conta ined in the

b lackboard that contain the information represent ing the state of the solution
process . Those entries may include percept ions , observat ions , beliefs,
hypotheses , decis ions , goals , interpretat ions, j udgemen t s , or expecta t ions . Also ,
they may have relat ionships to one another . In part icular, one such organizat ion
may combine a set of entries as the representat ion of a single object v iewed from
different levels of abstraction.

In D E C A D E there are objects that represent goals (goal), quest ions and
information messages (messg), knowledge sources (EKS), and other general
concepts in the blackboard. There are also domain-specif ic objects: those which
represent react ions (reaction), catalysts (catalyst), surface steps (ss), etc.

4 . 2 Blackboard Model Control
The blackboard mode l can accommoda t e a range of control mechan i sms and
problem-solv ing strategies. This flexibility in range applies at all levels: from
each of its componen t s (knowledge sources) , to the system as a whole .

In D E C A D E , the overall control is de te rmined by one of the knowledge
sources: the Focus of Attent ion. A simplified descript ion of the behavior of the
Focus of Attent ion is schemat ized in Figure 6. A lower case string can be
interpreted to be a product ion rule that is part of the Focus of Attent ion
knowledge source. The rectangles represent parts of the process where the
control passes to knowledge sources other than the Focus of Attent ion.
Accord ing to the figure, after the user selects the kind of p rob lem he wants to
solve, the rule post goal will post in the b lackboard a descript ion of the goal that
needs to be solved. A n y knowledge source that has access to the b lackboard and
is able to solve such kind of p rob lem can post an es t imate for the solution of the
previously posted goal . Since this last step is performed by modu les other than
the Focus of Attent ion, it is depicted as a rectangle . T h e Focus of Attent ion
waits until all the es t imates have been submit ted, then it evaluates them,
assigning priorit ies to each of the knowledge sources that submit ted an es t imate .
Once each knowledge source is rated, the best one is ass igned the original goal ,
and that modu le will start the solution of it.

There are three possible ou tcomes after a goal has been ass igned to a
knowledge source.

1. The modu le solves the prob lem, it posts its solution in the
b lackboard and returns the control to the user (if the goal was
originally requested by h im) , or to the part of the Focus of
Attent ion that assigns the next goal (when the goal was requested
by another knowledge source as a subgoal - see next i tem)

2. The modu le cannot solve the requested problem because it needs
some other partial results. In this case a subgoal is posted, or,
more accurately, a goal with a pointer to the parent goal is posted

Banares , Westerberg , K o , Rych

post goal

assign priori t ies

assign goal «4-

subgoal KS f inished KS fai lure

ι
Figure 6: Simplified version of overall control in D E C A D E .

in the next level of recursion. The subgoal is to be treated exactly
as any other goal , with the only difference that any ou tcome from
it is not considered a final solution, but is passed to the knowledge
source that requested it. There is no limit to the levels of recursion
that can be used.

, The modu le cannot solve the requested problem; it failed. In this
case the control is handed back to the part of the Focus of
Attention that assigns the execut ion of goals . If more est imates are
present , the goal is ass igned to the next best es t imate; o therwise ,
the control is handed back to the user.

+ USER 4

3. T h e D E C A D E Catalyst Select ion Sys tem 71

5 DECADE's Blackboard Structure
N o w we will descr ibe the structure and function of each of the knowledge
sources that m a k e up the system by examin ing the general purpose knowledge
sources , fol lowed by the domain-specif ic ones . Comple te details are presented
in [9].

5 . 1 General Purpose Knowledge Sources
General purpose knowledge sources are domain- independent modules , and
therefore they deal with general objects such as goals , es t imates , information
messages , quest ion handl ing, etc. Genera l purpose expert knowledge sources
have knowledge about the structure of the p rogram, internal representat ion and
desired interaction with the user, within the experts , and with other p rograms .
D E C A D E contains three such modules : User Interface; Focus of Attent ion; and
Scheduler .

5.1.1 User Interface
This modu le permits the interaction of the user with events inside the

b lackboard and indirectly with the rest of the knowledge sources compr is ing the
system. This interaction may occur in both direct ions:

• by the use r ' s modifying the flow of control of the sys tem by m e a n s
of c o m m a n d s and answers to quest ions , and

• by the sys t em ' s informing the user of important events , p rompt ing
h im or her for answers , or explaining decis ions.

The User Interface manages the quest ion and answer protocols and informs
the user of important events during D E C A D E ' s execut ion. A m o n g its mos t
important capabil i t ies are the fol lowing: it checks if an answer is valid (based
on prespecif ied or dynamic menus or constraints) , advises the user on valid or
desirable answers , manages default values , checks for spell ing mis takes , and
automatical ly comple tes incomplete answers . It is l imited to one-word answers
in D E C A D E . This module is implemented in 12 product ion rules and 16
Franzl isp functions.

5.1.2 Focus of Attent ion
Conflicts be tween the knowledge sources may arise when, after a goal has

been posted on the blackboard, more than one knowledge source submits an
es t imate for the solution of the pending goal . T h e Focus of Attent ion acts as a
manager resolving these conflicts. It also decides what to do in the event of a
failure or in the event that a precondi t ion has not been executed. It uses the
results of the knowledge sources ' evaluat ion functions to decide which
knowledge sources to instantiate.

A different Focus of Attent ion can change the behavior of the whole
knowledge-based system and, in particular, change its "functionality" to tutor or
d iagnose instead of design, while keeping the same Knowledge Base (i.e. the

7 2 Banares , Westerberg , Ko , Rychener

same domain-specif ic knowledge sources) . The size of the Focus of Attent ion
knowledge source is 23 O P S 5 rules and one Franzl isp function.

5.1.3 Scheduler
The scheduler knowledge source performs a census procedure that p rompts

every knowledge source at initialization. For information purposes , it constructs
a dynamic list of accessible knowledge sources, the type of problems they solve,
their status, etc. Information to construct the list is provided by pol l ing the
knowledge sources .

The scheduler can be extended to aid the Focus of Attent ion in the
synchronizat ion of parallel and sequential subgoals . N e w expert knowledge
sources can be added or exist ing ones excised at any t ime. Execut ing the
scheduler after adding or r emoving a knowledge source updates the list of
accessible knowledge sources , a l lowing D E C A D E to cont inue to operate
correctly.

The scheduler consists of 9 product ion rules.

5 . 2 Domain-Specific Knowledge Sources
For coordinat ion and communica t ion purposes every domain-specif ic expert
knowledge source has to have the fol lowing set of rules for each goal that it can
solve (it is possible that one source can solve more than one goal) :

1. M i n i m u m of one rule for issuing est imates .
2. One rule to answer the census .

3 . One rule to receive information of goal ass ignment from the Focus
of Attention.

4. One rule to inform the Focus of Attention of the comple t ion of a
goal , and

5. As many rules as needed for subgoal post ing and information
retrieval.

For general communica t ion and control reasons , the objects they have to manage
are the same general objects with which the Genera l Purpose knowledge sources
deal. In addit ion to them, they deal with domain-specif ic objects (e.g. reaction,
raw mater ial , product mater ial , etc.) .

Every domain-specif ic knowledge source should be able to solve at least a
partial goal in the problem goal space. In principle the goal space mus t be
divided by the p rog rammer (that is, the p rog rammer mus t decide how every goal
can be decomposed into other subgoals) .

A knowledge source may or may not have precondi t ions . A precondi t ion is a
subgoal that must be solved before the knowledge source can at tempt the
solution of a goal . If the precondi t ion is not present , then the knowledge source
posts it as a subgoal and waits for its solution in order to proceed with its
operat ion.

3. The D E C A D E Catalyst Selection System 7 3

Each domain-specif ic knowledge source in D E C A D E is now presented in
more detail .

5.2.1 Specif ication of the React ion
This knowledge source interacts with the user in order to specify the reaction

for which catalysts are going to be selected. It uses extensively the User
Interface knowledge source to query the user for the input react ion. This
modu le is the mos t basic one in D E C A D E ; all the other knowledge sources
require it (directly or indirectly) in order to acquire the descript ion of the
reaction on which they are going to operate . Because it is basic to the others ,
this knowledge source has no precondi t ions that have to be matched in order to
start its execut ion. It has 50 product ion rules and 25 S R L schemes .

The m i n i m u m descript ion of a react ion is given by declar ing two sets: one of
reactants (here called raw mater ials) , and another one of products . In addit ion,
each of the e lements in both sets has to have its cor responding s toichiometr ic
coefficient. This coefficient can be either given by the user or obta ined through
an a tomic ba lance of the reaction.

5.2.2 T h e r m o d y n a m i c Feasibi l i ty
The the rmodynamic feasibility knowledge source has as its explici t

precondi t ion the specification of a reaction. Implici t ly, it requires that all the
chemical c o m p o u n d s that form part of the chemical react ion are conta ined in the
S R L knowledge base with information about their enthalpy, entropy, specific
heat constants , enthalpy of vaporizat ion and boi l ing tempera ture . The propert ies
for the different chemica ls are obta ined from ''Appendix Λ" of Reid , et al. , [37].
The type of knowledge in this knowledge source is most ly a lgor i thmic:
mathemat ica l formulas for the est imat ion of the rmodynamic propert ies as a
function of tempera ture alone (see for example Pitzer and Brewer [35]). The
size of this knowledge source is 25 rules and 4 functions.

5.2.3 React ion Classif ication
The required precondi t ion for the classification of a reaction is that the input

react ion has been specified. After the precondi t ion is cleared, a typical
diagnosis task is executed; given an input react ion (defined as a set of reactants
and products and their s toichiometr ic coefficients), its place in the t axonomy of
react ions is found. This is done using the depth-first search method , and its
operat ion was descr ibed above in connect ion with Figure 2. W e need only give
implementa t ion details here. The task is achieved using S R L frames for the
representat ion of the nodes and links of the tree and FranzLisp functions for the
traversal of the tree and the evaluat ion of the constraints .

The classification task is performed using superficial knowledge about the
react ions rather than deep knowledge on the structure of the chemica ls involved.
This level of knowledge has been sufficient for the present applicat ion, but
deeper and more extensive knowledge would improve the applicat ion of this

7 4 Banares , Westerberg , Ko , Rychener

knowledge source. This modu le is implemented in 14 product ion rules and 15
FranzLisp functions.

5.2.4 Predict ion of Surface Steps for a React ion
As a precondi t ion for the proposal of surface steps, the input react ion should

have been classified, since the only type of objects that this knowledge source
can manage are the ones present in syngas react ions. In section 3 of this paper ,
the means-ends analysis me thod was int roduced as a technique for the
predict ion of surface steps, and a general descript ion of the predict ion process
was given. In order to predict the surface steps that take place dur ing a reaction,
a set of lists is prepared which reflects the breaking and forming of bonds ; these
are the differences that the means -ends analysis method is going to reduce: kept
bonds , b roken bonds , created bonds , and modif ied bonds .

The operators that reduce the differences are individual surface steps. These
operators can be grouped as: adsorpt ion on the surface, desorpt ion from the
surface, modificat ion of bonds , dissociat ion of surface species, addit ion of
surface species , and dehydrogenat ion of surface species . It should be
emphas ized that these steps are not e lementary steps. In fact, the actual
mechan i sm is expected to be different from the proposed steps which are all
treated as sequential and do not necessari ly proceed through the correct
intermediate . The usefulness of this approach, however , lies in its ability to
identify key events (such as the breaking of a part icular bond) which are
necessary for a react ion sequence to occur. The proposal of surface steps in
D E C A D E should thus be v iewed as a bookkeep ing activity.

Once the differences and the operators have been presented, it is important to
unders tand what exact ly is the input to the means-ends analysis and the output
result ing from it. As an input, the p rogram expects the descript ion of a reaction
(" R E A C T A N T S " and " P R O D U C T S ") and data about the bonds present at each
side of the reaction. The output is a path that would link the reactants and the
products of the react ion through a series of intermediate steps connect ing
intermediate species (the steps are then transformation operat ions on the surface
species) .

In the end, a unification rule detects pairs of species with the same n a m e but
with the characterist ic that one species has been created by a surface step but not
t ransformed, and the other has been transformed but not created; these pairs are
recognized as being a single species and unified into one .

The representat ion used for the chemical species is not powerful enough to
make a distinction among isomers . This deficiency was not of consequence for
this work since there are no specific Fischer-Tropsch catalysts in D E C A D E ' s
database that would dist inguish in their selectivity a m o n g isomers . This
knowledge source also calculates the m a x i m u m weight fraction that could be
expected of a given product by using the Schultz-Flory distr ibution function
[18]. W e used 42 O P S 5 rules and 36 FranzLisp functions in its development .

3. The D E C A D E Catalyst Select ion Sys tem 7 5

5.2.5 Catalyst Select ion
The catalyst selection knowledge source is d iv ided internally into three levels

of abstraction: (1) react ion level, (2) molecula r level and (3) catalyst surface
level (or bond level) . As a single knowledge source it has one precondi t ion: the
specification of an a rgument reaction. In addit ion to the c o m m o n precondi t ion,
the second level of abstraction requires the classification of the a rgument
reaction, and the third level requires the predict ion of surface steps. Therefore ,
levels two and three require in effect two precondi t ions each.

In terms of results , the subdivis ion of a knowledge source into several levels
of abstract ion is equivalent to having several knowledge sources , each one
corresponding to one of the levels. In terms of p rog ramming , the former
approach is more difficult to implement than the latter though. The internal
control structure of this knowledge source is descr ibed in Fig. 3c of [7] .

Figure 7 shows one of the catalysts present in the S R L database: " C u O plus
Z n O on A 1 2 0 3 c a t l . " The information should be easy to unders tand without
knowing all about SRL. The n a m e of a catalyst is arbitrary, but it is important to
point out that, since one material may affect different react ions in a different
way, unique names are used (by appending a suffix like ' c a t l ' or ' p c s 0 0 4 5 ' to
the original name) . Note that the catalyst has a set of relat ions l inking it with its
componen t s (pr imary componen t , p romote r and support) , which in turn are
point ing to the original mater ials ("CuO", "ZnO" , and "A1203") . Fur thermore ,
the catalyst is r e c o m m e n d e d for a specific react ion with a certainty at tached, and
it may also contain its operat ing condi t ions and references to the l i terature.

T h e problem-solv ing structures of the first and second level of abstract ion are
quite s imple and similar. The selection of catalytic material at the third level of
abstraction is a l together different from the first two and is presented separately.

In the first level, the catalytic mater ia ls are searched for a specific input
reaction. Figure 8 shows how a hypothet ical react ion "abc" has been prescr ibed
Raney nickel , nickel on a lumina, nickel on kieselguhr, and ru thenium as
possible catalysts . This is accompl ished by retr ieving the value(s) of the
" C A T A L Y Z E D B Y " slot when such a slot exists . If a react ion has no pointers
to catalytic mater ia ls (i.e. no " C A T A L Y Z E D B Y " slot or no values in it), then
the search is done in its identical reaction (i.e. the react ion conta ined in its
" A K A " (also k n o w n as) slot, this react ion has the same set of values for the
" R E A C T A N T S " and " P R O D U C T S " but a different name) . At this point if no
pointers to mater ia ls have been found, the search is considered a failure.

At the second level, mater ia ls are prescr ibed by combin ing the results of two
selection procedures :

1. Search by traversing the t axonomy of react ions. All the catalytic
mater ials that are referenced by the parent nodes of the p rob lem
reaction are retrieved and inherited with a certainty that reflects
how near the reaction is to the parent node; i.e. the nearer the
higher the certainty.

7 6 Banares , Westerberg , Ko , Rychener

{ (C u O plus Z n O on A1203 ca t l
I N S T A N C E : "catalyst"
H A S P R I M A R Y C O M P O N E N T : "CuO pc 1 "
H A S P R O M O T E R : "ZnO p rm 1 "
H A S S U P P O R T : "A1203 sup4"
F U N C T I O N : "methanol synthesis"
T E M P E R A T U R E R A N G E : (500.0 573.0) Κ
P R E S S U R E R A N G E : (50.0 100.0) a tm
H 2 : C O - R A T E R A N G E : (3.0 3.0)
R E F E R E N C E : |[Klier 82] | | [Pearce et aU 81] | | [Thomas 70] |
C E R T A I N T Y : 1.0
} }

{{CuO p e l
I N S T A N C E : "primary componen t "
H A S C O M P O N E N T : " C u O "
IS P R I M A R Y C O M P O N E N T O F :

" C u O plus Z n O on A1203 c a t l "
} }

{{ZnO p r m l
I N S T A N C E : "promoter"
H A S C O M P O N E N T : " Z n O "
IS P R O M O T E R O F : "CuO plus Z n O on A1203 cat 1 "
}}

{{A1203 sup4
I N S T A N C E : "support"
H A S C O M P O N E N T : "A1203"
IS S U P P O R T O F : " C u O plus Z n O on A1203 ca t l "

It

Figure 7: Catalyst representat ion in the S R L database .

2. Ass ignment of the catalyst found in a "similar sibling reaction" A
"similar sibling reaction" is defined as a react ion that has the same
parent node , and has a similar main product . If such a reaction
exists and it has pointers to catalytic mater ia ls , those materials are
copied into the problem reaction.

The first and second levels of catalyst selection have some propert ies in
c o m m o n : First, the catalysts found and their proposed operat ing condi t ions are
obtained from the literature and in general have been used commerc ia l ly .
Second, these levels have the capabil i ty of working with mater ia ls (e.g.
instances of metals , metal oxides , etc.) , and groups of materials (e.g. g roup IVA

3. The D E C A D E Catalyst Selection System 7 7

{{abc
I N S T A N C E : "reaction"
R E A C T A N T S : (C O - l) (H 2 - 3)
P R O D U C T S : (methane 1) (H 2 0 1)
A K A : "methanat ion"
}}

{{methanat ion
I N S T A N C E : "reaction"
R E A C T A N T S : (C O - 1) (H2 - 3)
P R O D U C T S : (methane 1) (H 2 0 1)
C A T A L Y Z E D B Y : "Raney Ni c a t l " "Ni on A1203 c a t l "

"Ni on kieselguhr cat 1 " "Ru cat 1 "

} }

Figure 8: Catalyst selection at the first level of abstract ion.

metals) . W h e n appropr ia te , they can recognize the need of substi tuting a g roup
by its e lements (for example consider the case of a group of metals that is
r e c o m m e n d e d with a high certainty but one of its e lements has been rated with
low certainty; the g roup would be substi tuted by its e lements , and only the
certainty of the conflict ing material a lone would be adjusted).

5.2.6 Catalyst Select ion (Third Level)
Since the selection process is complex , the descr ipt ions of the individual

subtasks have been separated and enumera ted using R o m a n numera ls .
I. The input to this knowledge source consis ts of the surface steps as predicted
by the surface step prediction knowledge source (see Section 3.2.2 above) . For
a given react ion, the needs of occurrence of a set of surface steps are establ ished.
The first and second co lumns of Table 2 show the cor respondence be tween the
surface steps and the needs .
II. Once the needs have been establ ished, they are evaluated. This m e a n s that
a symbol ic qualifier is a t tached to them. The ass ignment of the qualifiers is
made by a set of product ion rules that rate the extent to which a need is required.
It is difficult to assign a physical mean ing to the qualifier, so it should be seen
more as a compute r variable than as a real measure . For some of the needs ,
ass ignment of the qualifiers is a s traightforward task with little or no possible
error. This is the case for the dissociat ion of adsorbed hydrogen and the
reduct ion of adsorbed a tomic oxygen . Both of these needs are a lways qualified
as total, the first one because of the observat ion by Araki and Ponec that
hydrogen mus t be adsorbed and dissociated on the surface before it reacts (Araki
and Ponec [3]) and the second because water is a lways p roduced as a side

7 8

Table 2:

Banares , Westerberg , Ko, Rychener

Cor respondence be tween surface steps and needs .

Surface Steps

adsorpt ion

dissociat ion

C:C addit ion

C:H addit ion

0 : H addit ion

C:H el iminat ion

Needs

adsorpt ion of species

dissociat ion of species

chain formation

hydrogénat ion

* 0 reduct ion

dehydrogenat ion

Al lowed Qualifier Range

[high —» low]

[total —» none]

[high —» none]

[high —> low]

[total or none]

[high —» none]

product (when methanol is p roduced and water is not a side product , the need of
* 0 reduct ion is qualified as none) . In other cases , like the product ion of
methane , total * C O dissociat ion is certain. However , in some cases the
ass ignment of the qualifiers is a somewha t arbitrary task. This is the case of
carbon monox ide dissociat ion in the ethanol synthesis reaction; one of the
carbons has lost its original oxygen , and the other one has kept it. In general ,
the range of qualifiers used in the p rogram are: total, high, med ium, low, and
none. S o m e of the needs have a more restricted range of appl icable qualifiers
(e.g., it does not m a k e sense to talk about the need for total dehydrogenat ion) .
The third co lumn in Table 2 specifies the range of qualifiers for each one of the
needs .

Given the information that is encoded in the system (which reflects the
information found in the l i terature), the only needs that affect the selection of
catalysts in D E C A D E are those that originate from the fol lowing surface steps:
*CO dissociat ion, *H2 dissociat ion, * 0 reduction, hydrogénat ion of carbon, and
C:C addit ion.
III. Once the needs have been evaluated, a set of mater ials are proposed taking
into account those needs and their qualifiers. Current ly only three of the needs
are used for this process : dissociat ion of adsorbed carbon monoxide ,
dissociation of adsorbed hydrogen , and reduct ion of adsorbed oxygen (reliable
information relating mater ia ls with surface steps was found only for these three) .

General ly , * C O dissociat ion is the mos t important factor in the prel iminary
proposal of mater ials . This should not be much of a surprise since the
dissociat ion of carbon monox ide de termines whether hydrocarbons or

3. The D E C A D E Catalyst Select ion Sys tem 7 9

oxygenates are going to be produced (total dissociat ion will yield hydrocarbons ,
partial or no dissociat ion yields oxygenates) and also determines if a chain is
going to be formed (since we are assuming the chain grows by addi t ion of * C H 2
groups - a product of * C O dissociat ion) . T h e fact that this is cons idered the
mos t impor tant step resembles the case of a m m o n i a synthesis , where * N 2
dissociat ion is the mos t important surface step. Data about C O dissociat ion is
accessible through a search in the " D I S S O C I A T I O N D A T A " slot of the " * C O "
scheme (see Figure 9) .

{{*CO
IS-A: "adsorbed chemica l"
W H E N D E S O R B E D : " C O "
D I S S O C I A T I O N D A T A : "group IIB dissoc * C O "

"Fe dissoc * C O "
D I S S O C I A T E S T O : " * C " " * 0 "
})

Figure 9: Access to the dissociat ion data for an adsorbed species .

As an example , Figure 10 presents the general behavior of iron metal towards
the dissociat ion of adsorbed carbon monox ide : "Fe" dissociates " * C O " at a
temperature greater than or equal to 300 Κ with a certainty of -1.0 (a 1.0
certainty would mean that iron does not dissociate carbon monox ide) .

{{Fe dissoc * C O
I N S T A N C E : "reaction"
IS-A: "dissociat ion relat ion"
T O B E D I S S O C I A T E D : " * C O "
S U R F A C E M A T E R I A L : "Fe"
T E M P E R A T U R E R A N G E : (300.0 *)
C E R T A I N T Y : 1.0
R E F E R E N C E : | [Broden et al, 76] |
}}

Figure 10: Representa t ion of dissociat ion data.

Work ing m e m o r y e lements are created for each of the mater ia ls ment ioned in
the dissociat ion data schema. They contain the n a m e of the mater ial that was
examined , the type of need that it can (or cannot) achieve , and a constraint
stating at which condi t ions the material can achieve the need. Figure 11 is an
instance of such a work ing m e m o r y e lement . It represents the specific behavior
of iron towards the total dissociat ion of carbon monox ide .

8 0 Banares , Westerberg , Ko , Rychener

(material
 Λ

 material F E
 Λ

 g roup Igroup VIII AI Λ
r eac t i on methanat ion A
k e y *CO_dissocia t ion

 Λ
qual i f ie r total Λ

 constra ined temperature A
c c o m p a r e greater- than-or-equal

 Λ
cons t r a in t 300 .0 A

p o i n t e r s |Fe dissoc * C O |
)

Figure 11 : Proposed material before cri t icism.

The values assigned to the * constrained, *ccompare, and
 Λ

 constraint
attributes are obtained by applying a function whose results are shown in the
third co lumn of Table 3. The parameters of the function are the ^qualifier of the
need (first co lumn in the table) and the " C E R T A I N T Y " of the dissociat ion data
(second co lumn in the table).

Table 3 : Ass ignment of constraints to proposed mater ia ls .

Qualif. of Need Cert . Test Constr . Imposed (values assigned to:
Λ
constrained

 A
c c o m p a r e

 Λ
constraint)

total (certainty=1.0) <var iable> greater-or-eq. < low bound>

none (certainty<0.0) no constraint
(certainty > 0.0) <var iable> less-or-eq. < low bound>

[high —> low] (certainty>0.0) <var iable> near- to <low bound>

For the dissociat ion of adsorbed hydrogen the only useful data in terms of
proposing an initial set of catalytic mater ials is that the metals of g roup IB and
group IIB will not dissociate hydrogen at low to m e d i u m pressures (Spencer
[40]). The search is similar to the one performed for the dissociat ion of carbon

monoxide , only now data is found through the
 M

* H 2 " schema. Therefore metals
of these two groups must have an operat ing pressure of at least 50 a tmospheres
if the dissociat ion of hydrogen is desired.

For the reduct ion of adsorbed oxygen, the " H Y D R O G E N A T I O N D A T A "
slot of the " * 0 " schema is searched instead. It reflects the fact that groups I V A
through VIIA of the periodic table form stable oxides . They are difficult to
reduce (i.e. react with hydrogen) at the Fischer-Tropsch tempera tures of

3. The D E C A D E Catalyst Selection Sys tem 8 1

operat ion. The meta ls of these groups are assigned a constraint of a tempera ture
of operat ion greater than or equal to 800 Κ when water is p roduced . This
constraint is generated for all react ions except the synthesis of methanol , where
no water is p roduced as a side product .
IV. The mater ia ls that have been initially proposed are cri t icized using overall
constraints. These constraints are independent of the selected mater ia ls and of
the characterist ics of the react ion that is be ing used. As of now only the global
constraints to restrict temperatures to lie be tween 300 Κ to 7 0 0 K. are used.
Low tempera tures result in too low a reaction rate; high ones cause surface
graphit izat ion (Somorjai [39]). T h e p rogram can handle any number of overal l
constraints though, and therefore the user may add new overal l constraints or
modify the exist ing ones .

In order to start rul ing out mater ia ls , a set of rules is used to compare these
overall constraints with the individual constraints of every group or material that
have been proposed . Since more than one work ing m e m o r y e lement m a y have
been created for each mater ial (each one reflecting a link be tween a surface s tep
and a r ecommenda t ion for that part icular catalyst) , it is necessary to propagate
the violat ion found in one mater ial through the rest of working m e m o r y .
V. After the process of prel iminary e l iminat ion of the proposed mater ia ls , a
new set of constraints is created. They are created using the set of needs for the
reaction and a g roup of heurist ic relat ions. They are therefore dependent on the
characterist ics of the p rob lem reaction.

T h e best way to unders tand this generat ion of constraints is by fol lowing a
specific example . Le t ' s a ssume that the product ion of pentane is be ing pursued.
The fol lowing need would be present in work ing m e m o r y :

(need
 A

r e a c t i o n mk-pen tane
 A

k e y *CO-dissocia t ion
 A

qua l i f i e r to ta l) .

There is an inverse relation be tween the pressure of operat ion and the
dissociat ion of carbon monox ide expressed in the relation depicted in Figure 12.
It is easy to see that since the

 A
a c t i o n of the relation in Figure 12 is the same as

the need for the mk-pen tane react ion, something can be said about the A
condition of the relation (in this case the pressure of operat ion) . A need of
' to ta l ' * C O dissociat ion can be achieved only at a ' l o w ' pressure of operat ion; a
new constraint has been introduced to the system. The introduced constraints
are identical to overall constraints except for their name; they have the same set
of at tr ibutes, but, when created, they keep a symbol ic constraint (e.g. low)
instead of a numer ic one . T h e values for the * reference and

 A
 explanation

attributes are taken from the relation that or iginated them.
The rules that generate the constraints deal with generic descr ipt ions of needs

and relat ions, so the number and content of the needs and relat ions ment ioned
are open to modif icat ion, expans ion and removal by the user.

For the same variable more than one constraint can be generated, so it is
necessary to have a mechan i sm for the unification of these constraints . W h e n

8 2 Banares , Westerberg , Ko , Rychener

(relation
 Λ

c o n d i t i o n pressure Λ
a c t i o n *CO_dissocia t ion A
t y p e inverse A
c l a s s causal Λ
 explanat ion

|high pressure factors molecula r a d s o φ t i o n of C O |
R e f e r e n c e | [Pearce & Patterson 81] | | [Huang et al 85] |
)

Figure 12: Relat ion be tween pressure and *CO dissociat ion.

two constraints on the same variable are identical (i.e. have the same symbol ic
qualifier), one of them is deleted. W h e n two constraints on the same variable
have a different symbol ic qualifier, one constraint with a compromise qualifier
is created (e.g. if one prescr ibes a high C O : H 2 ratio and the second constraint a
m e d i u m one, the new constraint will prescr ibe a med ium-h igh ratio). This is
perhaps the weakest point of the selection process because the implicat ion of
this action is that the reasons support ing both constraints are equivalent . The
proper procedure is not clear, s ince an appropriate decis ion should be m a d e on a
case by case basis . In both cases the references of both of the unified constraints
are recorded with the surviving constraint .
VI. The symbol ic constraints are translated to a numerica l equivalent . For this
purpose there are three work ing m e m o r y e lements conta ining the equivalence.
The numbers have been selected so as to reflect the levels found in the literature,
but they are subject to easy change by the user.

The overall constraints are t ransformed into normal constraints in order to
jo in redundant constraints . O n e example of a redundant constraint would be
when the fol lowing two e lements are present:

(constraint
 A

cons t r a ined temperature A
c c o m p a r e greater- than-or-equal

 A
cons t r a in t 500.0

)
(constraint

 A
cons t r a ined tempera ture A
c c o m p a r e greater- than-or-equal

 A
 constraint 600 .0

)

Clearly, the second constraint is redundant . After the constraints are jo ined, step
IV is repeated, augment ing the n u m b e r of mater ials which are rejected.
VII. The selection process is considered finished. A list of constraints that
apply to all the sys tems, and the list of mater ia ls and groups that were not
rejected, are printed for the information of the user. At this point D E C A D E can
explain its choices at the user ' s request .

3. The D E C A D E Catalyst Selection Sys tem 8 3

5.2.7 Explanat ion
N o explanat ion is necessary in the case of the first and second level of

abstraction. The selection is m a d e as a search process in the knowledge base (in
the first case s imple , in the second somewha t more compl ica ted) . Each material
found has a pointer to the li terature.

For the third level, explanat ion is given for several objects:

1. Materials (whether selected or not) are expla ined based on the
need of the presence of a surface step and the constraints that were
passed/violated.

2. Constraints are explained in terms of the needs and relations that
generated them.

3 . Needs are explained using the specific characterist ics of the
react ion being catalyzed.

4. Relations are listed with an at tached explanatory text. Also ,
l i terature references are included.

T h e explanat ion process is interactive (see the example run in [5]). The
"selection of catalyst" knowledge source is the largest one in D E C A D E , its three
levels requir ing 143 product ion rules and 59 Lisp functions.

5 . 3 Overview of Program
While expla ining the function of each knowledge source above , w e have
indicated the number of O P S 5 product ion rules and FranzLisp functions used for
their implementa t ion . Not all the code has been presented though. There are
assorted FranzLisp functions used in the communica t ion of O P S 5 and SRL.
Also , we did not ment ion the frames or schémas const i tut ing mos t of the
database (they were not counted because there is no clear-cut ass ignment of a
given schema to a knowledge source) .

As of the beginning of 1986, D E C A D E consis ted of eight knowledge sources
implemented as:

• 318 O P S 5 product ion rules. Used for the overall control , the
interaction a m o n g the parts , and the inferential steps.

• 328 S R L schémas (or frames). Descr ib ing the domain concepts
(their propert ies and relations) and conta ined in the K n o w l e d g e
Base .

• 203 FranzLisp functions. Used for the numer ica l calculat ion and as
means of communica t ion be tween O P S 5 and SRL.

A comple te descript ion of the modules and suggest ions on their future
deve lopment can be found in [9] .

Also , it is wor th ment ion ing one of the side effects of using a hybrid
implementa t ion . At different t imes in the execut ion of the p rogram, different
pieces of information about a react ion are required. In general it would be

8 4 Banares , Westerberg , Ko , Rychener

desirable to have all the information inside O P S 5 working m e m o r y since it is
there that the pattern match ing mechan i sm of the product ion rules operates .
However , only a m i n i m u m amount of information is kept in O P S 5 working
m e m o r y in order to avoid its saturation and the consequent reduced speed of
operat ion. The S R L knowledge base contains all the information that has been
established about an object. It presents practically no p rob lem in relation to the
size of information that can be stored, and it a lso provides the user with more
representat ional power .

An information flow is establ ished in both direct ions: information is acquired
through the operat ion of O P S 5 rules and recorded in work ing memory , and,
once such a new piece of information is acquired, it is passed to the S R L
knowledge base . W h e n the information is no longer in use it is r emoved from
working m e m o r y , but a pointer is mainta ined indicat ing that the information is
known and kept in the S R L knowledge base . If that p iece of information is
required again, it can be retr ieved from SRL. Changes have to be updated in
both m e m o r y reposi tories . This exemplif ies the typical trade-off be tween
m e m o r y space and comput ing t ime.

An example of an interactive session with D E C A D E is given in [5] , and more
details are in [9].

6 Analysis of Results
Compar i son of the results at the first and second levels of abstraction for
different types of react ions will not yield new or interesting results , since the
materials selected at those levels were found in the li terature. At most , the
analysis would show discordances be tween exper imental results and/or an
incomplete literature search.

It would be more interesting to analyze the fol lowing:

1. Resul ts be tween the third and first level of abstraction for the same
reaction. Differences be tween these groups would indicate either:

• an over looked factor at the third level that caused a faulty
predict ion, or

• the possibil i ty that the third level is r ight and the knowledge
at the first level is faulty (because of an incomplete literature
search, a non-repor ted finding, or an unknown result) .

2. Resul ts be tween different react ions at the third level. This
compar i son can provide an idea on the sensitivity of the system
towards different cases .

First, we will analyze the results for the methanat ion reaction. A summary of
the results for the methanat ion reaction at the first and third level of abstraction
is shown in Table 4 .

The predict ion of tempera ture of operat ion coincides for both levels. The

3. The D E C A D E Catalyst Select ion Sys tem 8 5

Level Temp . (K) Press , (atm) Prescr. Mater ia ls

600-700 10-70 Ru

526-673 10-70 N i / A l 20 3,
Ni /kieselguhr ,

Raney Ni

3 600-700 < 10 Fe ,Ru ,Co ,Rh ,Ni ,Pd

pressure of operat ion ranges do not agree. W h e n asked about the reasons of its
selection of pressure constraint , D E C A D E answered:

The constraint that the pressure should not be greater-than 10.0 atm is
originated from:

(l) T h e N E E D of having a total *CO_dissocia t ion step (because no
oxygena tes are p roduced) , and

(2) T h e fact that there is a R E L A T I O N stating that at low pressure —»
total *CO_dissocia t ion (because high pressure favors molecu la r
adsorpt ion of C O) reference: {Pearce & Pat terson 81 [34]}

(l) T h e N E E D of having a none C:C_addi t ion step (because no
formation of chain is required) , and

(2) The fact that there is a R E L A T I O N stating that at low pressure —>
none C:C_addi t ion (because Le Chatel ier pr inciple applies)

reference: {Anderson & Kolbel & Ralek 84 [2]}

By al locat ing the pressure at the lower range of operat ion, D E C A D E was
a t tempting to min imize the chain growth probabil i ty and avoid the formation of
oxygena te products . Fur thermore , the numer ica l constraint of 10 a tmospheres
was more or less arbitrarily set; there are authors that would consider 25
a tmospheres a low pressure .

In terms of the predict ion of mater ia ls , D E C A D E ' s result co incide with
li terature results to the extent that its da tabase permits (i.e. mater ia ls l ike Raney
Ni are not related to any object of the third level of abstract ion) . Table 5 shows
catalysts and operat ing condi t ions r e c o m m e n d e d by D E C A D E at the third level
for the synthesis of me thane , e thane , methanol and e thanol .

These species include no chain formation (methane , methano l) , chain
formation (ethane, e thanol) , comple te C O dissociat ion (methane , e thane) , partial
dissociat ion (e thanol) , and no dissociat ion (methanol) .

Table 4: Resul ts for methanat ion at different levels of abstract ion.

8 6 Banares , Wes te rberg , Ko , Rychener

Table 5: Resul ts for different reactions at the same level of abstraction.

Product Temp . (K) Press , (a tm) Prescr. Materials

methane 600-700 < 10 Fe ,Ru,Co,Rh,Ni ,Pd

methanol 500-600 > 100 groups IB&IIB,Rh ,
Ir ,Pd,Pt ,Cu

ethane 500-600 - 1 0 Fe ,Ru,Co,Rh.Ni ,Pd

ethanol 500-600 - 1 0 Rh,Ir ,Pd,Pt

C o m p a r e the react ions that yield componen t s with the same carbon number
(i.e. methanat ion vs. methanol synthesis and e thane synthesis vs. e thanol
synthesis) ; the prescr ibed mater ials are very different as is to be expected. Wi th
respect to the operat ing condi t ions , a large difference is p roposed be tween the
C j react ions as D E C A D E recognizes the need of C O dissociat ion in forming
methane but not in forming methanol . The situation is less clear-cut for the C 2
compounds , as the formation of ethanol involves both associat ive and dissociate
C O . In this case no difference in operat ing condi t ions is proposed by D E C A D E .

The same mater ials are prescr ibed for C j and C 2 hydrocarbons as D E C A D E
is not sensit ive enough to differentiate these two products other than to suggest
different operat ing condi t ions . In the case of methanol versus ethanol , groups
IB , I IB , and Cu are not r e c o m m e n d e d in the latter case since these mater ials do
not readily dissociate C O .

Thus , D E C A D E performs satisfactorily in that its act ions and explanat ions
are consistent with the rules in its knowledge base . Even though these rules are
l imited in number and, as often is the case in the catalysis l i terature, their
certainty and general applicabil i ty m a y be debated, the fact remains that
D E C A D E functions well given a specific set of rules and relat ions. W e can
expect a more sophist icated per formance with the ref inement and addit ion of
more rules to D E C A D E ' s knowledge base .

7 Conclusions
All the features descr ibed in this paper have been implemented and tested.
Never theless , D E C A D E is a prototype system in the sense that its breadth of
application is reduced. T h e usefulness of a knowledge based system is
proport ional to the amoun t of knowledge contained in the system, and the mos t

3. The D E C A D E Catalyst Select ion Sys tem 87

important lack in D E C A D E is knowledge . For example , D E C A D E does not
k n o w anyth ing about secondary componen t s and react ions other than syngas .
Al though this lack of knowledge is due in part to the t ime constraints of the
project, a very real l imitation is that, in catalysis , there are not m a n y general ized
formal isms which can be readily coded. Very often the issue has been to find
the proper c o m p r o m i s e be tween the amoun t of knowledge and its reliability for
predict ion purposes (and not only for explanat ion) .

A more concre te set of requi rements can be formulated for the computa t iona l
part of D E C A D E :

• Give the user the capabil i ty to inspect and modify mos t of the
internal structures of the p rogram.

A very consc ious effort was m a d e to separate and leave exposed the var iables
inside the sys tem that in one way or another control the results . T o a very large
degree this was achieved, but only knowledgeab le users can m a k e
modif icat ions. Add ing an interface to these variables would m a k e their change
accessible for any user.

• Crea te compet ing knowledge sources .

Current ly only one knowledge source is present for each of the poss ible tasks
that D E C A D E can tackle (the three levels of abstract ion in the selection of
catalyst knowledge source can be more proper ly seen as complemen ta ry
modules rather than compet ing ones) . The reason for this si tuation is that, at the
state of implementa t ion of D E C A D E , the bot t leneck is knowledge acquisi t ion.
Only the knowledge sources themselves need to be added. The conflict
resolut ion mechan i sm is already in p lace , and has been tested with d u m m y
knowledge sources . If anything, this conflict resolut ion mechan i sm could be
refined.

• Increase the part icipat ion of the b lackboard archi tecture in the
structuring of the knowledge .

As already ment ioned , D E C A D E ' s b lackboard archi tecture is pr imari ly used for
communica t ion purposes (as opposed to using it for s tructuring the context in
several levels of abstract ion) . A t ighter integrat ion of the knowledge sources
through the b lackboard should m a k e D E C A D E ' s behavior more interest ing.

Given the diverse nature of engineer ing knowledge and the large number s of
p rograms already coded , a necessary characteris t ic of a knowledge-based system
applied to engineer ing is flexibility. In terms of flexibility, the fol lowing
propert ies are desirable character is t ics of a knowledge-based sys tem:

1. Hybridi ty

2. Modular i ty

3. Separat ion of knowledge from me taknowledge

4. Several levels of abstract ion. This characteris t ic is implementab le
in two possible fashions:

88 Banares , Wes te rberg , Ko , Rychener

a. duplicat ion of knowledge sources for the same task,

b . knowledge sources with several levels .

All of the above propert ies were achieved in D E C A D E to a large extent .
There have been previous efforts towards formalizing the selection of

catalysts , at least for certain react ion sys tems (e.g. T r i m m [41], Klier [27]).
However , a representat ion that can be au tomated with a compute r is lacking.
D E C A D E is a software system capable of representat ion of diverse p rob lem-
solving strategies, and also of the diverse knowledge present in this and other
representat ive areas of chemical engineer ing. With in the narrow domain of
Fischer-Tropsch synthesis and its l imited knowledge base , D E C A D E is capable
of r ecommend ing mater ia ls that can lead to a specific product , suggest ing
operat ing condi t ions in terms of temperature and pressure , and expla ining its
act ions.

References
1. Agnihotr i , R. B . Computer-Aided Investigation of Reaction Path Synthesis.
Ph.D. Th. , Chemica l Engineer ing Depar tment , Univers i ty of Hous ton , Augus t
1978.

2 . Anderson , R. B . , Kolbel , H. and Ralek, M. The Fischer-Tropsch Synthesis.
Academic Press , Inc. , N e w York, 1984.

3 . Araki , M. and Ponec , V. "Methanat ion of Carbon Monox ide on Nickel and
Nicke l -Copper Al loys ." Journal of Catalysis 44, 3 (September 1976), 439-448 .

4. Banares-Alcântara , R. "Deve lopment of a Consul tant for Physical Property
Predict ions." Masters Th. , Chemica l Engineer ing Depar tment . Carnegie-
Mel lon Univers i ty , May 1982.

5. Banares-Alcântara , R., Ko , Ε. I., Wes te rberg , A. W. , and Rychener , M. D.
" D E C A D E : A Hybr id Exper t Sys tem for Catalyst Select ion. Part II: Final
Archi tecture and Resul ts ." Computers ά Chemical Engineering Forthcoming
(1988) .

6. Banares-Alcântara , R., Sr i ram, D. , Venka tasubramanian , V., Westerberg ,
A. and Rychener , M. "Knowledge-Based Exper t Sys tems for C A D ." Chemical
Engineering Progress 81, 9 (Sep tember 1985), 25-30.

7. Banares-Alcântara , R., Wes te rberg , A. W. , K o , Ε. I., and Rychener , M . D.
" D E C A D E : A Hybr id Exper t Sys tem for Catalyst Select ion. Part I: Exper t
System Considerat ions ." Computers & Chemical Engineering 11,3 (1987) ,
265-277.

8. Banares-Alcântara , R., Wes te rberg , A. W. and Rychener , M. D.
"Deve lopment of an Exper t Sys tem for Physical Property Predict ions."
Computers & Chemical Engineering 9, 2 (1985) , 127-142.

3. The D E C A D E Catalyst Select ion Sys tem 8 9

9. Banares-Alc&ntara, R. DECADE: A Hybrid Knowledge-Based System for
Catalyst Selection. Ph .D . Th. , Chemica l Engineer ing Depar tment , Carnegie -
Mel lon Univers i ty , January 1986.

10. Bel l , T. A. "Catalytic Synthesis of Hydrocarbons over G r o u p VIII Meta ls .
A Discuss ion of the React ion Mechan i sm." Catal. Rev. - Sci. Eng. 23, 1 & 2
(1981) , 203-232 .

11 . Browns ton , L., Farrel , R., Kant , E. and Mart in , N . Programming Expert
Systems in OPS5. An Introduction to Rule-Based Programming. Addison-
Wes ley Publ ishing C o m p a n y , Inc. , Reading , Mass . , 1985.

12. Bushnel l , M. L. and Director , S. W . " U L Y S S E S : A n Exper t -Sys tem Based
VLSI Envi ronment . " Depar tmen t of Electrical and Compute r Engineer ing ,
Carnegie -Mel lon Univers i ty , Pi t tsburgh, P A 15213, 1985.

13. Chandrasekaran , B . and Mittal , C. "Deep versus compi led knowledge
approaches to diagnost ic problem-solv ing ." International Journal of Man-
Machine Studies 19 (1983) , 425 -436 .

14. Cohen , P. R. and Fe igenbaum, E. A. "Chapter X V : P lanning and Prob lem
Solving." In The Handbook of Artificial Intelligence, W . Kaufmann, Inc. , Los
Altos , C A , 1983, pp . 515-522 .

15. Dry , M. E. "The Fischer-Tropsch Synthesis ." In CATALYSIS. Science and
Technology, Anderson , J. R. and Bouda i t , M. , (Eds.) , Spr inger-Ver lag , N e w
York, 1981 , ch. 4 , pp . 160-255.

16. Far inacci , M. L., Fox , M . S., Hul thage , I. and Rychener , M . D . "The
Deve lopmen t of A L A D I N , an Exper t Sys tem for A l u m i n u m Alloy Design."
Robotics 2 (1986) , 329-337 .

17. F ikes , R. and Kehler , T. "The Role of F rame-Based Representa t ion in
Reasoning ." Communications of the ACM 28, 9 (Sep tember 1985), 904-920 .

18. Flory, P. J. Principles of Polymer Chemistry. Cornel l Univers i ty Press ,
I thaca, N e w York , 1953.

19. Forgy , C. L. OPS5 User's Manual. Depar tment of Compu te r Science ,
Carnegie -Mel lon Universi ty . Pi t tsburgh, P A 15213, 1981 . C M U - C S - 8 1 - 1 3 5 .

20. Haggin , J. "Fischer-Tropsch: N e w Life for Old Technology ." Chemical &
Engineering News 59 (October 26 1981), 20-32 .

2 1 . Happel , J. and Sellers , P. H. "Analysis of the Possible Mechan i sms for a
catalystic reaction system." In Advances in Catalysis,
Academic Press Inc. , 1983.

22 . Hayes-Roth , F. "Rule-Based Sys tems ." Communications of the ACM 28, 9
(September 1985), 921-932 .

9 0 Banares , Wes te rberg , Ko , Rychener

2 3 . Hayes-Roth , F . and Lesser , V. R. "Focus of Attent ion in the Hearsay-II
Speech Unders tanding System." Proceedings of the Fifth International Joint
Conference on Artificial Intelligence, I JCAI , Cambr idge , M A , August , 1977, pp .
27-35 .

24 . Hayes-Roth , F. , Wa te rman , D . Α., and Lenat , D . B . , (Eds.) Teknowledge
Series in Knowledge Engineering. V o l u m e \\Building Expert Systems.
Addison-Wes ley Publ ishing C o m p a n y , Reading , Massachuse t t s U S A , 1983.

25. Hayes-Roth , B . "The Blackboard Archi tecture: A Genera l F r amework for
Problem Solving?" Heuris t ic P rog ramming Project Repor t No . HPP-83-30 ,
Compute r Science Depar tment , Stanford Univers i ty , May , 1983.

26. King , D. L., C u s u m a n o , J. A. and Garten, R. L. "A Technologica l
Perspect ive for Catalyt ic Processes Based on Synthesis Gas . " Catal. Rev. - Sci.
Eng. 23, 1 & 2 (1981) , 233 -263 .

27. Klier, K. "Methanol Synthesis ." In Advances in Catalysis,
Academic Press , Inc. , 1982, pp . 243 -313 .

28. Kunz , J. C , Kehler , T. P. and Wi l l i ams , M. D . "Appl icat ions Deve lopment
Us ing a Hybr id AI Deve lopmen t System." AI Magazine 5, 3 (1984) , 41 -54 .

29. Lesser , V. R. and Erman , L. D . "A Retrospect ive View of the Hearsay-II
Archi tecture." Proceedings of the Fifth International Joint Conference on
Artificial Intelligence, I JCAI , Cambr idge , M A , Augus t , 1977, pp . 790-800 .

30. McDermot t , J. "Domain Knowledge and the Des ign Process ." Proceedings
of the 18th Design Automation Conference, A C M / I E E E , Nashvi l le , T N , 1981.

3 1 . Michie , D . "High-Road and L o w - R o a d Programs ." AI Magazine 3, 1
(1982) , 21-22 .

32 . Motard , R. L. "Compute r Techno logy in Process Sys tems Engineer ing."
Computers & Chemical Engineering 7, 4 (1983) , 4 8 3 - 4 9 1 .

3 3 . Nii , H. P. , Fe igenbaum, Ε. Α., Anton , J. J. and R o c k m o r e , A.J. "Signal- to-
Symbol Transformat ion: H A S P / S I A P Case Study." AI Magazine 3, 2 (1982) ,
23-35 .

34 . Pearce , R. and Pat terson, R. W. , (Eds.) Catalysis and Chemical Processes.
John Wiley and Sons , Scot land, 1981.

35 . Pitzer, K. S. and Brewer , L. (revision of Lewis and Randal l)
Thermodynamics. Second Edition. McGraw-Hi l l Book C o m p a n y , Kogakusha
Company , LTD. , Tokyo , Japan, 1961 .

36 . Reboh , R. "Knowledge Engineer ing Techniques and Tools in the
P R O S P E C T O R Envi ronment . " Technical Note 243 SRI Project 5 8 2 1 , 6415 and
8172, Artificial Intel l igence Center . SRI International , June , 1981 .

file:////Building

3. The D E C A D E Catalyst Selection Sys tem 9 1

37. Reid, R. C , Prausni tz , J. M. , and Sherwood , T. K. The Properties of Gases
and Liquids. Third Edition. McGraw-Hi l l Book C o m p a n y , N e w York, 1977.

38. Rofer-DePoor ter , C.K.
 M

A Comprehens ive Mechan i sm for the Fischer-
Tropsch Synthesis ." Chemical Reviews 81 (1981) , 447-474 .

39 . Somorjai , A. Gabor . "The Catalyt ic Hydrogéna t ion of Carbon Monox ide .
The Format ion of C I Hydrocarbons . " Catal. Rev. - Sci. Eng. 23, 1 & 2 (1981) ,
189-202.

40. Spencer , D . N . and Somorjai , A. G. "Catalysis ." Reports on Progress in
Physics 46 (1983) , 1-49.

4 1 . T r i m m , L. D . Chemical Engineering Monographs. V o l u m e 11 '.Design of
Industrial Catalysts. Elsevier Scientific Publ ishing C o m p a n y , Ams te rdam, The
Nether lands , 1980.

42 . U m e d a , T. "Compute r Aided Process Synthesis ." Computers ά Chemical
Engineering 7, 4 (1983) , 279-309 .

4 3 . Wright , J. M . and Fox , M. S. SRL 1.5 User Manual. Intel l igent Sys tems
Laboratory . The Robot ics Institute. , Carneg ie -Mel lon Univers i ty . Pi t tsburgh,
P A 15213, 1983.

Rule-Based Systems in
Computer-Aided
Architectural Design
ULRICH FLEMMING

Abstract
Perhaps the mos t important obstacle prevent ing more substant ive appl icat ions of
computers in architectural design (as opposed to a t tempts a imed solely at raising
product ivi ty) is the lack of a theoretical basis for the field. In this connect ion ,
rule-based sys tems are interest ing for two main reasons:

1. They can lead to formally r igorous specifications of design
operat ions from which general propert ies of the process or its
product can be deduced (e.g. the wel l - formedness of the generated
objects or the exhaus t iveness of the search);

2. They provide a natural and effective means to encode and m a k e
operat ional the "special case reasoning characterist ic of highly
exper ienced professionals" . In fact, they prove excel lent vehicles
to discover this knowledge : rule-based sys tems typically evolve
through iterations in which experts observe the system while
solving realistic p rob lems , crit icize its per formance , inspect the
rules that have been used and suggest addit ions or modif icat ions.
These changes can be carried out with ease owing to the inherent
modular i ty of rule-based sys tems.

The paper demonst ra tes the significance of these points through two recent
projects deal ing with the design of objects in two and three d imens ions . It also
argues that rule-based sys tems might even provide a useful m e d i u m for the core
of architectural des ign, which does not consis t of p rob lem solving.

1 Introduction
During the design of a bui lding, architects typically p roduce sequences of
sketches each of which elaborates or changes an idea or aspect captured in a
preceding sketch. This process is by no means linear. S o m e sequence might
lead to a dead end, and the ideas pursued are subsequent ly abandoned; other

Expert Systems for Engineering Design Copyright © 1988 by Academic Press, Inc.

93
All rights of reproduction in any form reserved.

ISBN 0-12-605110-0

9 4 Ulrich F lemming

sequences might reflect compet ing ideas or al ternative approaches from a m o n g
which a selection has to be m a d e at some point . W h a t is important here is the
fact that each step in the sequence modif ies in some way the state of the design
reached in the previous step. Fur thermore , the modif icat ions themselves are by
and large incremental , and a final design is reached only after a great number of
modif icat ions has been accumula ted .

Cogni t ive scientists use the term computation in a very general sense to refer
to a series of operations performed on a symbolic representation of the types of
objects under consideration. Based on this definition, the design process
outl ined above indeed const i tutes a computa t ion: the sketches produced
represent the evolving design, and the operat ions generate the transit ion from
one sketch to the next sketch, or the t ransformation of one design state into the
next state. I bel ieve that this observat ion has profound implicat ions if one tries
to assess the potential of compute rs for aiding or augment ing design, not only in
architecture, but also in other discipl ines. For it means that design can not only
be conceived of as computa t ion , but also (in principle at least) be realized as
computa t ion , namely through compute r p rograms whose purpose is precisely to
perform operat ions on symbol ic representat ions .

One must realize, however , that the operat ions performed by designers are
i l l-understood, at least at the level of precis ion and explici tness needed if they
are to be expressed through a compute r p rogram. Except for wel l -unders tood,
special cases, no theories exist that would lead easily to p rograms able to
perform interesting design tasks. In this connect ion, rule-based systems are
interesting for three main reasons: (i) They are, first of all, able to mode l the
process of incremental design as outl ined above in a natural and intuitively
appeal ing way for tasks that are wel l -unders tood, (ii) For tasks that are less well
understood, they can serve as an effective vehicle to deepen our unders tanding
and thus can lead to the discovery of regulari t ies , to general izat ions , and to the
formation of theories where these do not exist at the outset, (iii) Conversely ,
they offer opportuni t ies for formalizat ion and for the construct ion of deduct ive
theories in contexts that are wel l -unders tood.

In the fol lowing sec t ions ,
1
 I shall try to support these c la ims through non-

trivial examples taken from m y own work. As a preparat ion for readers not
familiar with rule-based sys tems, I shall provide in the balance of the present
section a brief introduction to key concepts and terms.

The term rule will be used throughout not to denote some form of restriction
(as in "rules and regulat ions") , but in the sense in which it is used in rule-based
p rogramming and Artificial Intel l igence, where it denotes a condition!action

l
This is an extended version of a paper published in the Proceedings of the First International

Symposium on Computer-Aided Design in Architecture and Civil Engineering, Barcelona (Spain):
Institut de Tecnologia de la Construcciôde Catalunya (1987) pp. 69-71

4. Rule-Based Sys tems in Archi tecture 9 5

pair or an I F / T H E N statement. The condi t ion or IF-part specifies a condi t ion or
context in which a certain operat ion can be performed, and the second or T H E N -
part specifies the operat ion itself (or its result) . The fol lowing rule , for example ,
expresses an operat ion frequently used in the deve lopment of a floor plan:

IF a plan contains a rectangle

T H E N divide this rectangle into t w o rectangles by plac ing a line
segment through its interior parallel to one side.

A part icularly important form for express ing a rule is that of a recursive
re-write rule. It consis ts of a left-hand side (LHS) , which represents the
condi t ion part , and a right-hand side (RHS) , which represents the action part.
An arrow is cus tomari ly used to separate the two sides from each other and to
write the entire rule in the form

L H S -> R H S .

The objects or states on which such rules work mus t be represented in a
unified and well-defined form, and both the L H S and R H S have this form (with
the possible inclusion of variables) . By definition, a re-wri te rule can be applied
to a current state, s, if its L H S is part of that state (where the "part" relation is
defined based on the representat ion used) . A n applicat ion of the rule substi tutes
its R H S for its L H S in s. For example , if col lect ions of line segments are used
to represent po lygons such as rectangles , the rule given above in words can be
specified as a re-wri te rule as shown in Figure 1(a). This rule can be used to
successively subdivide a rectangle into smal ler rectangles as shown in Figure
Kb) .

(a)

—>

(b)

Figure 1: (a) A recursive re-write rule; (b) Success ive appl icat ions of the rule.

9 6 Ulrich F lemming

The core of a rule-based system consists of a collect ion of rules. In addit ion,
the system must contain an initial state or starting configuration which is part of
the L H S of at least one rule; that is, the action specified by the rule can be
performed on this state. In architectural design appl icat ions, the initial state
usually depicts the context for a design prob lem, for example , a site and the
structures surrounding it, or the boundar ies of a room in which equ ipment or
furniture has to be laid out; somet imes , it represents not much more than the
empty page. Modif icat ions m a d e to this state through successive rule
applicat ions descr ibe the evolving design. The place where the initial state and
modificat ions m a d e to it are stored is often called working memory.

Finally, the system mus t contain a control strategy which , for any current
state, (a) finds all rules that can be applied (because the current state satisfies the
condi t ions specified in their L H S) ; (b) selects from a m o n g these a rule for
applicat ion; and (c) executes the operat ion specified by the selected rule and
thus generates a new current state.

A system that consists of a collect ion of rules, a work ing m e m o r y and a
control strategy is called a production system.

2 Example: Constructive Analysis of Designs

2 . 1 Background
A collection of recursive re-write rules is called a grammar. G r a m m a r s have
been defined using a broad range of representat ions (see [7] for an introduction
and overview) . A m o n g these, shape grammars are of part icular interest for
architectural design [11] . They work on shapes, which are geometr ic objects
defined in 2 or 3 d imens ions by col lect ions of line segments , with the addit ion
of labelled points that can be used to mark parts of a shape.

Shape g rammars have been used extensively for the "construct ive analysis"
of collections of artefacts that are similar to each other because they share
important propert ies or because they are based on c o m m o n convent ions . In a
construct ive analysis , these propert ies are extracted and encapsulated in rules
that can be used to generate objects with precisely these propert ies . But shape
g rammars can also be used to deve lop and test a collect ion of rules able to give
coherence and character to a new design (or, if one uses a term that is currently
fashionable a m o n g architects , to deve lop an "architectural l anguage" for a
project) .

In each case, the collect ion of rules is tested by inspection of the objects
generated through their applicat ion. In the present section, I intend to
demonst ra te the advantages of this approach through results taken from a
recently comple ted project.

The project concentra ted on the hous ing stock in P i t t sburgh ' s historic
Shadys ide district. It posed the quest ion how new construct ion can be fitted into

4. Rule-Based Sys tems in Archi tecture 9 7

the fabric of the district so that its visual coherence and identity are not
destroyed, but s t rengthened and, possibly, re-establ ished (a full account can be
found in [6]). The study thus fell naturally into two parts: (1) a character izat ion
of the historical pat terns and types found in the district; and (2) the deve lopment
of new pat terns able to achieve the stated object ives. W e used shape g rammars
in each part of the s t udy .

2

2 . 2 Plan Characteristics
The hous ing stock that gives Shadys ide its character was built be tween 1860 and
1910. It conta ins examples of all the major styles domina t ing residential
construct ion dur ing that per iod in the Uni ted States; a m o n g these, Queen A n n e
and Colonia l Revival houses are part icularly well represented. In analyzing
these houses , we found that aspects of plan organization could be separated
from those of exterior articulation or style, and we consequent ly der ived
separate g r ammars to express the convent ions under lying each of these aspects .

All p lans in our sample are "peripheral ly addi t ive" ([10] , page 14). T h e main
organizer is the hall which gives access to all other publ ic spaces and thus forms
the hub of the plan. The rooms surrounding the hall form a relatively compac t
core; that is, they fill more or less tightly a rectangular area (except for the back,
which can be more irregular) . W e tried to capture these pr inciples through the
rules of a shape g r a m m a r able to generate plans that obey those and only those
pr inciples .

Initial shape

Β Β

Η

Sample rule Β

Β
Γ

Η

Χ
Π

R

Η

Χ = F or Χ = Β

Figure 2: Initial shape and a selected rule from our layout g rammar .

T h e initial shape consists of an ent rance hall , g iven by a rectangle whose
center point is labelled H, and of labels F and Β that mark the front and back of
the plan (independent of compass orientat ion; see Figure 2) . A sample rule is

2
I am using the first person plural in the following when describing work done by the entire

project team, which included, apart from the present author, R. Coyne, R. Gindroz and
S. Pithavadian.

9 8 Ulrich F l emming

shown in the same figure. It creates a compac t core with the hall as its hub by
adding a room from the side or back. This rule applies only to shapes in which
the hall reaches the back or side (otherwise the newly added space could not be
adjacent to the hall) . The hall and all other spaces that have been al located
previously remain unchanged . This rule can be applied to the initial shape to
place a first room against the back or side of the hall , and it can be used again to
add further rooms . The derivat ion of cores that are possible using this rule a lone
is shown in Figure 3 . It is important to note that rules can be used in reflected or
rotated vers ions, which increases their power . The present rule could be used to
generate mirror images of the plans shown in Figure 3 or, if the initial shape
were rotated, rotat ions of these plans .

Further rules are needed to generate all types of cores found in our sample , to
add a ki tchen and to select a dining room from a m o n g the rooms allocated
around the hall. Examples of plan types produced by applicat ion of these rules
are shown in Figure 4. Addi t ional rules place a staircase next to the hall. All of
these rules are descr ibed in detail in [3].

2 . 3 Stylistic Articulation
The plans shown in Figure 4 are detai led enough for art iculation in three
d imens ions according to the convent ions of a part icular style. The first rule used
for this purpose is rule (a) shown in Figure 5. It takes a room, extrudes it
vertically and adds a second room with the same horizontal d imens ions on top
of it. If applied sequential ly to all rectangles in a plan, this rule generates a
configuration of spaces on two floors, where the layout of the second floor
mirros that of the first floor, an important characterist ic of the houses under
considerat ion (see the example shown in Figure 6) .

Such configurat ions are ready to be developed and art iculated according to
part icular styles. W e concentra ted on Queen A n n e houses , which dominated
construct ion in Shadys ide dur ing the 1880 ' s and early 1890 ' s , because they are
geometr ical ly the mos t complex . A basic rule used in the derivat ion of a Queen
Anne house is rule (b), which selects a corner room at the front or back and pulls
it out, thus creat ing a break in the facade. This rule, in combina t ion with rules
that generate similar effects at the sides, creates the irregular contours and
"picturesque" si lhouettes characterist ic for the style (see the examples shown in
Figure 7) . W e added rules to generate compl ica ted roof geometr ies on top of the
second floor and to int roduce var ious volumetr ic addit ions and ref inements ,
notably wrap-around porches in var ious forms (Figure 8). Fur ther rules could be
added to elaborate individual e lements and to apply decorat ive details to an
arbitrary level of resolution.

Whi le developing our g rammars in both parts of the study, we were forced to
look at examples with a degree of c loseness that is hardly needed if the analysis
proceeds in the tradit ional, intuitive way. In order to be able to generate realistic
layouts and to develop a house in three d imens ions , we had to study our

4 . Rule-Based Sys tems in Archi tecture

R

H R

Β Β

R

R

H

f F

Β B

R

R R

1J H

F

Figure 3 : Derivat ion of layouts by applicat ion of sample rule.

Β Β Β Β Β Β

κ R Κ Κ

_ C
Η

D Ρ
D R

D

Η
F f Ρ i'

F F F
Plans containing kitchen and dining room

κ

D H R

Β B

K R

H

D R

F F F F
Alternative stair locations

Figure 4: Sample plans genera ted by layout g rammar .

1 0 0 Ulrich F l emming

(a)

(b)

χ ^

Figure 5: Selected rules for the articulation of a plan in 3 d imens ions .

Figure 6: S tepwise extrusion of a plan.

4. Rule -Based Sys tems in Archi tecture 101

Figure 7: Examples of exterior wal ls .

Figure 8: Porch al ternat ives.

102 Ulrich F l emming

precedents in all aspects . W e were forced, in particular, to deal with aspects of
plan organizat ion, mass ing and art iculation that are usually neglected in style
descript ions, or are treated in less precise terms. As a result, we were able to
demonst ra te how the var ious parts and features of a house relate to each other
and to explain its overall geometry .

Dur ing this work , the g r ammars underwent numerous revis ions. Initial
versions did not a lways p roduce the desired effects or were less efficient or
elegant than we wished them to be . It is through these revisions that we
developed a deeper unders tanding of the issues involved, a process that is
greatly helped by the modula r structure of a g rammar , whose rules can be added,
deleted or modified individually. The revisions themselves were suggested by
applying the rules of a current version in the design of houses and by inspect ing
the results , that is, by a process that has c o m e to be k n o w n as knowledge
acquisition in current work on expert sys tems.

Shape g rammars are able to facilitate this process through their flexibility,
modular i ty and construct ive nature: each shape rule captures a part icular
convent ion and shows how it can be geometr ical ly realized. Since shape rules
are well-defined, they can be implemented as compute r p rograms , which are
essential if the process of knowledge acquisi t ion is to proceed effectively and
efficiently. In the present case , we used an implementa t ion in Prolog (details are
given in [6]).

Through their construct ive nature , the g r ammars deve loped in part 1 of the
study also provided a solid basis for the derivat ion of new types that satisfied
our goals . The main emphas i s of part 1 carried over into part 2, where we again
concentrated on issues of scale, mass ing and overall geometry and were thus
able to avoid a mere copying of isolated decorat ive features, which is
characterist ic of many deve lopments with similar goals .

3 Example: Generation and Evaluation of
Design Alternatives

3 . 1 Background
W h e n deal ing with the au tomated generat ion of solutions to design p rob lems , I
find it useful to dist inguish be tween design and performance variables. T h e
former denote the geometr ic and physical propert ies of a solution that designers
de termine directly through their decis ions , for example , the posi t ion of a wall ,
the material of a floor, or the shape of a window. The latter denote those
propert ies that are der ived from combina t ions of design variables , for example ,
the view from a room, the heat loss through a wall , the comfort provided at a
work place, or the image conveyed by a bui lding as a whole .

In general , the relat ions be tween design and performance variables are
complex : a single design variable is likely to influence several per formance

4. Rule-Based Sys tems in Archi tecture 1 0 3

variables, and converse ly , a single per formance variable normal ly depends on
several design variables (see Figure 9 for an i l lustration). As a consequence ,
nei ther design nor per formance variables should be cons idered in isolation.
W h e n e v e r a des ign is evaluated, it should be reasonably comple te (relative to
the part icular level of abstract ion at which it is conce ived) , and it should be
evaluated over the entire spect rum of per formance variables that are relevant for
that level. It is for this reason that des ign, whether done intuitively or by
computer , tends to separate the generat ion of a design from its subsequent
evaluat ion (as opposed to opt imizat ion, where the two processes are more
int imately l inked).

Des ign v a r i a b l e s Per fo rmance v a r i a b l e s

Window d i m e n s i o n s

Window p lacemen t Q ^ O V H t a t 1 o «

Window c o n s t r u c t i o n , , „ ,
D a y l I g h t c o e f f i c i e n t

Wa l l f i n i s h e s ~ ^ » « ^ x x

View

Wa l l c o n s t r u c t i o n

Wa l l d imens ions Çf X Appearance f r o m o u t s i d e

C e l l i n g f i n i s h

Figure 9: Complex relat ions be tween design and per formance var iables .

This dist inction assumes further impor tance because design takes place under
resource l imitat ions. Any al location of resources favors certain per formance
variables over others . Of part icular interest are the trade-offs inherent in a
part icular al locat ion (represented by a part icular combina t ion of design
variables) and a compar i son of the trade-offs connec ted with al ternative
solutions (see [9] for a demonst ra t ion of these effects). M y work on design
automat ion has concentra ted on p rograms that are able (a) to systematical ly
enumera te al ternative solutions with promis ing trade-offs and (b) to take, at the
same t ime, a broad and diverse spect rum of per formance variables into account .
The under lying assumpt ion is that the h u m a n cogni t ive apparatus is not
part icularly well-sui ted to perform either of these tasks and that compute rs
might be of part icular impor tance in this context .

Based on the dist inction introduced above , we are currently work ing on a
prototype sys tem with two central componen t s : a generator able to find

104 Ulrich F lemming

alternatives in a systematic fashion and a tester able to evaluate these solut ions.
W e have concentrated on the generat ion of floor plan alternatives for several
reasons: through work that has been going on for more than twenty years ,
layout design or space planning is better unders tood that other aspects of
bui lding design; it permeates bui lding design at mos t of its stages and thus
provides a rich context for the investigation of p rob lem domains with various
degrees of complexi ty ; and it may establish connect ions with other discipl ines
that also deal with layout design. W e are currently implement ing a second
version that takes the exper ience gained from work with version 1 into account
(see [5] for a descript ion) .

3 . 2 Representation
The systematic enumera t ion of solutions that are m a d e up of geometr ic objects
becomes compl ica ted by the fact that certain design variables (such as the
posit ion or d imens ions of an object) can vary cont inuously (or in very small
increments) . The set of solutions thus appears "messy" at the outset and cannot
be searched efficiently. In layout generat ion, like in other domains , this p rob lem
can be c i rcumvented if the objects can be represented at a level of abstraction
that suppresses the cont inuous variables and turns the set of solutions into a
space that can be systematical ly searched.

T o simplify the problem, we accepted the restriction that we can deal only
with layouts composed of rectangles that are pai rwise non-over lapping and are
placed in parallel to the axes of an or thogonal system of Cartesian coordinates;
we call such layouts loosely-packed arrangements of rectangles. But within this
restriction, the generator is comple te ly general and enables us to investigate the
design of layouts in var ious domains , such as bui ldings on a site, rooms on a
floor, or furniture in a room.

Any rectangle, z, in a layout is complete ly descr ibed by the coordinates of its
lower left corner, (xz,yz), and by the coordinates of its upper right corner,
(Xz, Y) . The spatial relat ions above, below, to the left and to the right can then
be defined on sets of rectangles as fol lows. If c and ζ are two rectangles , then

c Τ ζ (read c is above z) < = > yĉYz (1)

zic (read ζ is below c) <=> c Τ ζ (2)

c <^z (read c is to the left of z) <=> Xc < xz (3)

ζ —> c (read ζ is to the right of c) <=> c <— z. (4)

c and ζ do not overlap if at least one of relat ions (l) - (4) holds be tween them.

;
My collaborators on this project are R. Coyne, T. Glavin and M. Rychener.

4. Rule -Based Sys tems in Archi tecture 105

Crucial propert ies of a loosely-packed a r rangement of rectangles can be
expressed in terms of these relat ions; examples are adjacencies, a l ignments or
zoned groupings that play an important role in the design of layouts . As a
consequence , a broad spect rum of per formance variables can be expressed as
functions of these relat ions, and layouts that are descr ibed in terms of these
relations can be evaluated accordingly. W e therefore used relat ions (1) to (4) as
basic des ign var iables in terms of which differences be tween al ternative layouts
are defined and enumera ted .

Figure 10: An or thogonal structure represent ing a
loosely-packed a r rangement of rectangles .

W e formally represent the relat ions that hold be tween the rectangles in a
layout by an orthogonal structure, a directed graph whose vert ices represent the
rectangles in a layout and whose (colored) arcs represent spatial relat ions
be tween pairs of rectangles . A n example is shown Figure 10, which shows the
structure represent ing a configurat ion of four rectangles forming a p inwhee l (we
add external vertices labelled Ε to represent the four sides of the "external
rectangle") . The condi t ions of wel l - formedness or syntactical correctness are
k n o w n for or thogonal s tructures; (these are the condi t ions that assure that the
relations depicted by such a graph can be simultaneously realized in a layout of
rectangles that are pai r -wise non-over lapping (see [2] for detai ls) .

1 0 6 Ulrich F lemming

3 . 3 Generator
Based on these condi t ions , we formulated rules that a l low us to construct well-
formed structures from well - formed structures. T o set up the system, we used
s imple domains such as the design of ba th rooms and residential k i tchens . For
these domains , the single generat ion rule specified in Figure 11 proved
sufficient. The rule is again a recurs ive re-wri te rule that can be applied to an
or thogonal structure conta ining the L H S of the rule as a sub-graph; the
applicat ion again consists in substi tuting the R H S for the L H S in the structure.
Intuitively, one can view the rule as ' push ing ' rectangles νχ,. . . , v m ' to the
s ide ' , thus creat ing space for the insertion of a new rectangle , n. The rule can
thus be used to build up layouts from a starting configurat ion by successive
insertions of rectangles . In Figure 11 , the rule is specified in a part icular
orientat ion. But it should be noted that it can be applied also in rotated vers ions.

The fol lowing theorems can be proved ([4] , page 33-35) :

(1) The graph resulting from an application of the rule to a
well-formed orthogonal structure, G', is a well-formed
orthogonal structure.

(2) An application of the rule leaves the spatial relations
between the vertices in G' unchanged.

Theorem (1) is important because it guarantees certain formal propert ies for
every object, which facilitates testing. Theo rem (2) is important because it
implies that per formance criteria (which are expressed as functions of spatial
relations) that are not satisfied by a certain layout cannot be satisfied by layouts
generated from that layout. The theorem consequent ly a l lows us to prune the
search tree based on the results obta ined from the tester, which evaluates each
layout immediate ly after it has been generated and directs the generator in its
search for promis ing al ternat ives.

The rule shown, together with a suitably selected starting structure, forms a
min i -g rammar suitable for generat ing s imple layouts . I went to some length in
describing the rule and the representat ion on which it based in order to support
point (iii) m a d e in the introduction, which is frequently neglected when rule-
based sys tems are discussed. These systems are not only effective vehicles for
the incremental construct ion of theories through knowledge acquisi t ion, they can
also serve to form such theories a priori: mathemat ica l induct ion works for
recursive re-wri te rules mak ing , e.g., proofs of theorems (1) and (2) easy.

3 . 4 Tester
The generator is defined in purely "syntact ic" terms and domain- independent .
Domain-specif ic knowledge enters the generat ion process via the tester, which
has to be built individually for each domain . It should be able to deal with the
entire spectrum of concerns that de termine the quali ty of a layout in a part icular
domain , from explicit ly documented requi rements , such as d imensional

Figure 1 1 : Genera t ion rule (top); geometr ic interpretat ion (bot tom) .

constraints and bui lding codes , to those based on the exper ience and convic t ions
of a part icular designer , w h o might not even be aware of them when using them.
But designers are often able to art iculate these requi rements when they are
confronted with a solut ion that obviously violates them. K n o w l e d g e acquisi t ion
a ims at t r iggering precisely this mechan i sm, and I would like to use the present
tester for a demonst ra t ion .

108 Ulrich F lemming

For our s imple domains , we started with a tester able to evaluate d imensional
fits, not only with respect to the physical d imens ions of the objects al located, but
also with respect to the c learance areas needed for their use. For this purpose ,
each rectangle in a structure is identified as an instance of a part icular class
(sink, refrigerator etc.) , and based on the spatial relat ions in the structure and the
d imens ions of the objects in the initial context , the tester de termines upper and
lower bounds for the corner coordinates of each newly al located object (which
might involve updates for the objects that were al located previously) . Based on
this information, rules for the evaluat ion of var ious criteria can be formulated.
The fol lowing rule checks , for example , if an object has m i n i m u m clearance (the
rule is given in a simplified vers ion):

IF χ is an object that needs c learance, and for each of the
spatial relat ions (1) to (4), there exists an object which
over laps the m i n i m u m clearance area of χ in the direction of
the relation,

T H E N record a constraint violat ion for the layout under evaluat ion.

By using rules like this , the tester derives a per formance record for each
layout. That is, the tester bui lds a second descript ion in terms of performance
variables in parallel to the descript ion that is p roduced by the generator and
based on design variables . Only those structures that represent layouts with the
best record are further deve loped until all objects have been allocated.

A handful of rules was needed to generate the mos t s imple layouts in our
domain; an example is given by layout 1 in Figure 12. But these rules registered
constraint violat ions for layout 2, which is perfectly feasible. The reason was
that c learance areas were assumed to have the same width as the object to which
they belong, a restriction that does not hold for bathtubs and similar objects. W e
subsequent ly modif ied the test rules to m a k e the proper dist inct ions. This
improved version passed correctly layout 2 as well as similar layouts , for
example , layout 3 . But it also passed layout 4 , because all objects have minimal
clearance. But in this solution, not all objects are accessible from the door,
which suggests that our collect ion of c learance rules should be subsumed under
a more general criterion of accessibil i ty or spatial continui ty. Figure 13 shows
two al ternative solutions found by the improved system (among other
alternatives) for the remodel l ing of a residential ki tchen.

These examples are intended to illustrate how knowledge acquisi t ion takes
place dur ing the deve lopment of a rule-based sys tem. They are also intended to
suggest that in architectural design, l ike in other discipl ines, rules provide a
natural and efficient device to capture and m a k e operat ional the "effective
special-case reasoning characterist ic of highly exper ienced professionals" [8] .

The two case studies descr ibed here appear quite diverse in terms of the

4 . Rule-Based Sys tems in Archi tecture 109

α

Χ

0

FR 4
0

Figure 12: S o m e test cases used in the construct ion of the tester.

issues addressed; they were mean t to demons t ra te the breadth of concerns that
can be handled by rule-based sys tems. In each case , a part icular representation
was used to descr ibe the objects under considerat ion. A n important cri terion for
selecting a part icular representat ion, aside from its ability to capture all of the
needed proper t ies , is the degree to which it supports the wri t ing and efficient
execut ion of rules. T h e two cases presented here illustrate the two classes of
representat ions that are part icularly important for the design discipl ines: (i)
coordinate-based representat ions (such as shapes) that are the natural choice for
the representat ion of objects with precise shapes and locat ions; and (ii) more
abstract structures that are convenient precisely when exact coordinates are not
needed, not wanted or actually not known .

1 1 0 Ulrich F lemming

4 The Making of an Architectural 'Puzzle'
Rule-based sys tems s t imulate exper imenta t ion . T h e ease with which they can be
modified and expanded makes them ideal tools for the explorat ion of poorly
unders tood prob lems . They can thus lead to the formation of theories where
none existed at the outset . Converse ly , they can also form the basis for a priori
theories in wel l -unders tood contexts . The examples descr ibed in the previous
sections were meant to demonst ra te these points .

But it might appear that the appl icat ions shown do not really touch the core
of architectural design. Archi tects are not a lways solving prob lems , and they
clearly do more than copy historical precedents . Archea has called "what
architects do when no one is looking" puzzle making:

"Instead of specifying what they are trying to accomplish prior to their attempts
to accomplish it as problem solvers do, architects treat design as a search for
the most appropriate effects that can be attained in a unique context. They seek
sets of combinatorial rules that will result in an internally consistent fit between
a kit of parts and the effects that are achieved when those parts are assembled
in a certain way" [1].

I like to call this activity the "game of solitaire architects play with themselves" .
In mak ing the puzzle , architects typically produce sequences of sketches as

descr ibed in the introduction. The "rules" ment ioned in the quote and their
combinat ions are explored in this process until an acceptable fit has been found.
It is important to note in this connect ion that the t ransformations from sketch to
sketch can again be mode led with the help of rules in the sense in which I have
been using the term, specifically as recursive re-wri te rules that delete and add
features in close parallel to the way in which a designer erases (or leaves out)
parts of a sketch and substi tutes other features for them.

These observat ions suggest to m e that rule-based sys tems might be able to
function as an al ternative to pencil and paper in the mak ing of an architectural
puzzle . Rules are a natural device to express the "rules of the game" played by
architects, and rule-based sys tems, through their flexibility and modular i ty , offer
a potential ly very exci t ing m e d i u m for the explorat ions that character ize the core
of architectural design. W e gained a g l impse of these possibil i t ies in the second
part of the study descr ibed in Sect ion 2, where we explored different rules for
the design of new patterns that were developed from, but by no means identical
with, the rules under lying historical precedents .

In order to realize this possibi l i ty, one would have to create a sys tem that

• enables designers to specify contexts and rules in an easy way,
using graphical means as m u c h as possible

• is able to show to designers the various ways in which rules can be
applied

• makes it easy for designers to modify rules and to edit the evolving
design.

4. Rule -Based Sys tems in Archi tecture 111

At the present t ime, the design and implementa t ion of such a sys tem is an open
and, as I bel ieve , very interest ing research prob lem.

5 Conclusions
The general appeal of rule-based sys tems for architectural des ign ul t imately
s tems from the fact that design can indeed be v iewed as computation, if one
accepts the general mean ing in which this term is used in cogni t ive science: as a
series of operat ions performed on a symbol ic representat ion of the artefact be ing
designed. These sys tems are able to mode l design operat ions in a natural and
intuitively appeal ing way for tasks that are wel l -unders tood. For tasks that are
less wel l -unders tood, they can serve as an effective vehicle to deepen our
unders tanding and thus can lead to the discovery of regulari t ies , to
general izat ions , and to the formation of theories where these do not exist at the
outset . Converse ly , they offer opportuni t ies for formalizat ion and for the
construct ion of deduct ive theories in contexts that are wel l -unders tood.

References
1. Archea , J. "Puzz le -Making: W h a t Archi tects D o W h e n N o O n e Is Looking ."
In The Computability of Design, Y. Kalay , (Ed.) , Wi ley , 1987, pp . 37-52 .

2. F l emming , U. "On the Representa t ion and Genera t ion of Loose ly -Packed
Ar rangements of Rectangles ." Environment and Planning B. Planning and
Design 7 5 (1 9 8 6) , 189-205.

3 . F l emming , U. "More Than the S u m of Par ts : T h e G r a m m a r of Q u e e n A n n e
Houses . " Environment and Planning B. Planning and Design 14 (1987) ,
323-350 .

4. F l emming , U. , Coyne , R. F. , Glavin , T. J. and Rychener , M. D. "A
Genera t ive Exper t Sys tem for the Des ign of Bui ld ing Layouts . Vers ion 1."
Technica l Repor t , Center for Art and Technology , Carneg ie -Mel lon Univers i ty ,
Pi t tsburgh, PA, 1986.

5. F l emming , U. , Coyne , R. F. , Glavin , T. J. and Rychener , M. D . "A
Genera t ive Exper t Sys tem for the Des ign of Bui ld ing Layouts . Vers ion 2."
Repor t E D R C - 4 8 - 0 8 - 8 8 , Engineer ing Des ign Research Center , Carneg ie -Mel lon
Univers i ty , Pi t tsburgh, P A , 1988.

6. F l emming , U. (with R. Gindroz , R. C o y n e and S. P i thavadian) . "A Pat tern
Book for Shady side." Depar tmen t of Archi tecture , Carneg ie -Mel lon Univers i ty ,
Pi t tsburgh, PA, 1985.

7. Gips , J. and Stiny. G. "Product ion Sys tems and G r a m m a r s : A Uniform
Character izat ion." Environment and Planning Β 7 (1980) , 399-408 .

112 Ulrich F l emming

8. Hayes-Roth , F. "Rule-Based Sys tems." Communications of the ACM 28
(1985) , 921-932 .

9. Radford, A. D. and Gero , J. S. "Tradeoff Diagrams for the Integrated Design
of the Physical Env i ronment in Bui ld ings ." Building and Environment 15
(1980) , 3-15.

10. Scully, V. J. The Shingle Style and the Stick Style. Yale Universi ty Press ,
New Haven , C T , 1971. [revised edi t ion] .

11. Stiny, G. "Introduction to Shape and Shape Grammars . " Environment and
Planning Β 8 (mi), 3 4 3 - 3 5 1 .

Single Board
Computer Synthesis
WILLIAM P. BIRMINGHAM
DANIEL P. SIEWIOREK

Abstract
M I C O N is an integrated system that des igns , bui lds , and tests single board
compute rs . Central to the M I C O N system is a rule-based p rogram cal led Ml
which synthesizes logic for the compute r system. M i ' s p roblem-solv ing
method is based on a five step design mode l which covers the selection of
var ious componen t s and hardware structures to the integrat ion of these
structures into a design that meets the des igner ' s specifications. M u c h of M i ' s
design ability is at tr ibuted to the use of templates, a knowledge representat ion
technique for ha rdware structures. This chapter covers M i ' s p roblem-so lv ing
architecture and knowledge representat ion techniques .

The M I C O N system is an integrated set of p rograms that design, build, and test
single board compute r sys tems. The sys tem object ive is to accompl ish these
tasks within 24 hours , providing a rapid prototyping capabil i ty. The ability to
rapidly design and build a compute r sys tem is dependent upon efficient use of
avai lable resources and the e l iminat ion of i terations in the design process .
Efficient resource util ization can be achieved by applying proven automat ion
techniques where appl icable and by provid ing an integrated env i ronment within
which a des igner and tools can interact.

Design iterations are more difficult to e l iminate because they are often related
to design errors caused by a variety of sources , ranging from improper
specifications to errors in logic design. The use of automat ic synthesis tools can
provide leverage in e l iminat ing many design errors and can, thereby, accelerate
the design process .

The M I C O N system uses a rule-based synthesis p rogram, cal led M l , to
generate the logic necessary to implement a user-specified design. M 1 exploi ts
an effective problem-so lv ing approach that util izes hardware expert ise about
micro-processor-based sys tems to deve lop correct des igns in the first i teration.

Expert Systems for Engineering Design Copyright © 1988 by Academic Press, Inc.

1 Introduction

All rights of reproduction in any form reserved.
113 ISBN 0-12-605110-0

1 1 4 B i rmingham and Siewiorek

The M I C O N system delivers comple te sys tems on a single board - no
backplane is required for interconnect ing subsys tems. These computers are used
for embedded appl icat ions , such as control lers . M I C O N generates the fol lowing
subsys tems:

• Single Micro-processor

• M e m o r y

• Input /Output (IO)

• Test ing Suppor t Circuitry

• Misce l laneous Suppor t Circuitry (e.g. address decoding logic,
m e m o r y refresh logic)

Limitat ions on size of m e m o r y or number of IO devices are a function of the
available board space and size of the board connectors . The interconnect ion of
subsys tems is based on a general ized internal bus structure. Figure 1 shows a
general single board compute r design and interconnect ion scheme.

6809 PROC 1

6809 MEM 1

6809 ADDR DEC 1

Power-UP
Reset 6809 DMA 1

D_Req

6809 IO 1

Figure 1: Single board compute r subsys tems.
A s tandardized bus , called the M I C O N bus , interconnects them.

This chapter discusses the M I C O N system. After a system overview, we
focus on the M l synthesis p rogram. The fundamental concepts of M l ,
templates and the design mode l , are discussed. The initial implementa t ion of

5. Single Board C o m p u t e r Synthesis 115

these concepts in MO M I C O N , the M I C O N system prototype , are descr ibed.
Finally, the current implementa t ion is presented from the v iewpoint of the
system architecture and knowledge base .

2 MICON System Description
The M I C O N system integrates a variety of tools to support all ma in design
activities in the construct ion of single board computers . F igure 2 il lustrates the
comple te M I C O N system. T h e p rograms and their functions are the fol lowing:
Ml. Genera tes logic for a design from a set of use r ' s specifications.
Physical Design. Takes the logic descript ion from M l and produces a set of
manufactur ing instruct ions by specifying the p lacement of the logic componen t s
on a board and rout ing the ne tworks . Present ly, the P-CAD

1
 sys tem is being

used for this task.
Manufacture. In-house manufactur ing provides wi re -wrapped boards ,
p roduced by a semi-automat ic wi re -wrap mach ine . Printed circuit boards can be
produced by an external manufacturer directly by t ransmit t ing the information
from the physical C A D system over a te lephone m o d e m link.
Test. A cus tom test processor exercises the manufac tured board with a set of
test p rograms deve loped during the synthesis process .

T h e tools are integrated into a single sys tem via two software subsys tems: a
set of translators and a c o m m o n database . Translators are used to conver t data
formats be tween different tools. In addit ion to syntactically translat ing data
be tween M l and the physical design tools , the translator also performs
rudimentary al locat ion of logic to physical packages . The database , Ingres [3],
supplies data about componen t s and boards to the M I C O N tools.

A des igner interacts with M I C O N in several ways . Through the initial
interact ions, the des igner supplies a set of functionally-oriented specifications to
M l . Figure 3 presents an example set of specifications for a s imple M C 6 8 0 9

2

design. Dur ing subsequent interactions with M l , the des igner may be required
to resolve design decis ions which arise in the synthesis process . Dur ing the
physical design process , the P C A D system requires the des igner to assist in
var ious p lacement and rout ing tasks. Finally, the des igner is involved in the
testing process by sett ing up the board in the test j ig and moni tor ing the
execut ion of test and diagnost ic p rograms .

'P-CAD is a trademark of Personal CAD Systems, Inc. 2
MC6809 is a registered trademark of Motorola Corporation.

116 Bi rmingham and Siewiorek

Ml
Test Generation

file
convert Database

Physical Design

file
convert

Wire Wrap

Test

Figure 2 : Comple te M I C O N system diagram.
Tools support ing the range of design activities are shown.

3 Essential Concepts
The M l synthesis tool is a knowledge-based system. The tool uses a large
amount of special ized knowledge , gathered from both designers and the
li terature (for example , integrated circuit applicat ion notes and magaz ine
articles), to p roduce its des igns . A n essential concept in knowledge-based
sys tems is the technique used to represent domain knowledge . Templa tes are a
technique for represent ing micro-processor structures used by M 1 .

Another essential concept in knowledge-based systems is the p rob lem-
solving method , or problem-solv ing architecture, used to accompl ish the tasks

5. Single Board Compu te r Synthesis 117

Processor Specification
Processor name:
Minimum Clock Speed [MHz]
Data Bus Width :
Minimum Address Space desired [Kbytes]
Power dissipated upper bound [mW]
Cost upper bound [$]
Average Instruction Execution Time upper bound [ms]

Sub-system Specification
Do you want a Memory sub-system (y/n) ?:
Do you want a 10 sub-system (y/n) ? :
Do you want a DMA sub-system (y/n) ? :

Memory Specification
Do you want R0M/SRAM/DRAM memory (y/n) ?:
chip name :
Amount of memory required [Kbytes]
Starting address of memory :
Power dissipated upper bound [mW]
Cost upper bound [$]

Parallel 10 Specification
Do you want ΡΙΟ (y/n) ? :
Ρ10 chip name :
How many Ρ10 ports do you want :
Address of Ρ10 device :

Serial 10 Specification
Do you want SI0 (y/n) ? :
S10 chip name :
How many S10 ports do you want :
Address of SI0 device :
Baud rate for SI0 port [bps]
Do you want RS232 compatible port (y/n) ? :

Figure 3 : Part of M l input dialog, consis t ing of functional specifications.
Note : same m e m o r y specifications are repeated for R O M , S R A M ,
and D R A M . N o implementa t ion details are given to the system.

required of the p rogram. Single-board compute r des ign is a compl ica ted process
lacking a well specified a lgor i thm. In order to deve lop a problem-solv ing
technique, a design mode l for the domain was developed. T h e design model is a
systematic f ramework for descr ib ing design tasks and their re la t ionships . A
problem-solv ing architecture can be der ived from a design mode l . T h e M l
design mode l is d iscussed more fully later in this section.

Input the area of the board [sq. inch]

118 Bi rmingham and Siewiorek

3 . 1 Template-Based Design
Templa tes are used extensively in the M l synthesis p rogram. They provide a
s imple and powerful mechan i sm for represent ing knowledge about structures
c o m m o n l y used in the design of single board compute r sys tems. A template is a
port ion of a design which specifies how a set of componen t s should be
interconnected to achieve a set of functions. Character is t ics of templates are the
fol lowing:

• Template component. The major functional componen t whose
support structure is defined by the template .

• Fixed functional boundary. The functionality of external signals
required for its operat ion.

• Support circuitry. Componen t s that are necessary to support the
operat ion of the template componen t .

• Hierarchy. L inks a l lowing reference to other templates , which are
to be expanded in the call ing entity (self-reference is not a l lowed) .

• Invocation conditions. The applicat ion opportuni ty of each
template , which is well-defined and unambiguous with respect to
other templates . It is never the case that two sets of invocation
condi t ions are exact ly the same.

An example template is shown in Figure 4 . This template details how to
connect a U A R T to a processor bus and the external world. The template
component in this example is the M C 6 8 5 0

3
. It is surrounded by three support

componen ts : the baud_ra te_genera tor , the RS232_dr iver , and an R S - 2 3 2 output
port . Des igns are synthesized by selecting the appropria te templates from a
large collection of templates and then interconnect ing them.

The applicat ion of templates for storing structural information about
compute r sys tem design is natural . Studies of compute r architectures show that
within a given compute r class designers take a given structure and m a k e
incremental modif icat ions to generate new designs [6, 7, 8] . This indicates that
designs may be v iewed as being composed of subsys tems and for any given new
set of specifications, only a relatively few number of subsys tems need to be
re-designed. If a wide range of modules can be collected over a period, the entire
range of compute r structures can be captured. However , this range is only
sparsely popula ted with actual computers . It should be possible to interpolate
be tween exist ing designs to create new ones s imply by configuring systems with
different pieces .

Micro-processor families represent an excel lent opportuni ty to exploit these
ideas. Each family comes with a set of functions corresponding to well-defined

3
MC6850 is a registered trademark of Motorola Corporation.

1 1 9

DO Dl D2 D3 D4 D5 D6 D7
RS Tx CLK

6850 Rx CLK
CSO
CS1 Tx DATA
CS2 Rx DATA

R/W CTS
Ci DCD

IRQ RTS IRQ RTS
DO Dl D2 D3 D4 D5 D6 D7

XTAL

\ XTL XTL
RA
RB FR
RC
^ 8116
STR
TA
TB FT
TC
TD
STT

v+ VCC

C1 +
Tlin

Tlout
MAX232

Cl-
T2in

T2out

C2 + Rlin
Rlout

C2-
R2in

R2out
V- GND

RS 232 PORT

Figure 4: U A R T template , with support componen t s . M C 6 8 5 0 ,
baud-rate generator (8116) , RS232-driver (M A X 2 3 2) , and port .

subsys tems. The interfaces be tween parts in a given family are well-defined,
using a s tandard protocol .

Represent ing design knowledge through templates does not reduce design to
a trivial exercise , however . M a n y other design variables and constraints are are
still present when interconnect ing the componen t s . One constraint not covered
complete ly by templa tes is signal t iming. Crit ical signal pa ths in a des ign mus t
be checked for the proper delay marg ins s ince they general ly cross subsys tem

1 2 0 B i rmingham and Siewiorek

boundar ies . It is impossible to de termine when a template is created if it will
meet all t iming constraints with respect to other subsys tems templates .

Figure 1 shows a general ized template for a compute r at a high level of
abstraction, corresponding to an architectural view of the system. This view
presupposes a micro-processor based implementat ion. The input and output
signals are defined for the entire system, and represented in the bus structure.
However , the implementa t ion details of each of the blocks in the schematic ,
such as the P R O C E S S O R , are not yet known .

There is a trade-off be tween the amount of information represented in a
template and the range in which the information is applicable. The range of
applicabili ty should be as wide as possible for greatest utility of the knowledge .
The range of applicabil i ty general ly increases as the template size decreases , but
the number of templates necessary to design adequately increases
correspondingly.

Templa te size and range of applicabili ty are a property of the design domain .
Micro-processor families have a standard bus; thus, all componen ts in the family
share a c o m m o n interconnect ion scheme. This al lows deve lopment of templates
which are c o m m o n to many componen t s in a family. However , in application
domains where a stylized representat ion is not acceptable or possible , the
number of templates for good designs grows rapidly.

For example , if the interconnect ion structure of a micro-processor varied for
each part icular chip to which it is connected, the number of templates necessary
to perform even rudimentary design would be prohibit ively large. Consider a
case where all componen t s have unique interconnect ion schemes . If there are η
devices within a micro-processor family 0 (n

2
) templates would be necessary to

connect ion these devices . If a design program were to work with m micro
processor families the number of templates grow potential ly to 0 (n

m
) . In the

case where a uniform interconnect ion structure is used within a family, the
number of templates necessary is dependent on number the interconnection
styles used in the family, usually one for m e m o r y interconnect ion and one for IO
device interconnection. The number of templates required here is considerably
less than the first case. If this scheme is expanded to m micro-processor
families, the number of templates is reduced approximate ly to O (m) .

Templa tes are static structures. Each t ime a template is invoked it has the
same effect on the design. N e w designs are created by unique combinat ions of
templates . This el iminates a degree of design freedom, since the structures
captured by templates will not change . In fact, the designs produced by pure
template-based design are enumerab le a priori. In pract ice, a very large number
of templates is used, providing for the deve lopment of a broad range of des igns .

5. Single Board Compute r Synthesis 121

3 . 2 Template Representation in Ml
Templa tes are organized hierarchically in M l . The highest level templates
al low M l to concentra te on developing an overall sys tem architecture, with
emphas is on ensur ing correct interconnect ions be tween subsys tems. As the
design progresses , M l moves through the hierarchy to design the subsys tem
interiors. A template at one level of the hierarchy may result in the assert ion of
mult iple templates at the next lower level in the hierarchy.

There are three levels of abstraction in M1 :
Level 0. Represents a canonical descript ion of the subsys tems compris ing a
single board compute r sys tem (see Figure 1). implementa t ion details for any
subsystem are provided. The central feature of Level 1 is the M I C O N bus used
to descr ibe the interconnect ion structure be tween subsys tems.
Level 1. Provides a general representat ion of the single board compute r sys tem
being des igned with respect to a processor family. At this level, the M I C O N bus
inherits characterist ics of the processor chosen for the design. The
characterist ics include t iming information and signal functions; however , t ime-
mul t ip lexed buses are de-mul t ip lexed wherever possible (e.g. t ime-mul t ip lexed
address and data buses are separated into individual buses) . An example Level 1
template is shown in Figure 5.
Level 2. Conta ins all implementa t ion details for individual subsys tem
componen t s . For instance, the P R O C E S S O R subsystem would be implemented
as an M C 6 8 0 9 with all its support circuitry including such componen t s as
resistors and capaci tors .

N o w consider the deve lopment of an IO subsystem. The Level 0 template
specifies the gross functionality of the signals into and out of an IO subsys tem.
After a micro-processor for a given design has been selected, a Level 1 template
for the micro-processor family is chosen. The Level 1 IO subsys tem template
for an M C 6 8 0 9 based design is shown in Figure 6. Next , a U A R T device is
selected and inserted into the design. A Level 2 (Figure 7) templa te for a U A R T
is selected from the template library which al lows the device to be
interconnected to other subsys tems in the design, in this case the processor
subsys tem. Not ice how the Level 2 ' s templa te boundary matches that of Level
1. This process cont inues over the course of the design. Each template is
t ransformed into a set of componen t s until all Level 1 subsys tems are actually
implemented as a set of componen t s . The Level 1 design acts as a guide for the
subsys tem interconnect ion process .

A difficult p rob lem for synthesis tools is deciding how to connect
componen t s . Connec t ions are based on creat ing an electrical ne twork be tween
all signals which have the same function. Ideally, all componen t s should have
the same name for c o m m o n signals and their associated pins . The connect ion
process would then be to interconnect all pins having the same name . For
example , all DO (data bus , bit 0) pins should be connected. However , names do
not follow a s tandard used throughout the industry and, in some design

122 Birmingham and Siewiorek

6 8 0 9 PROC 1

I n i t _ I r r -

I n i t Outr-

BS
BA"

HolcH-

1 h

ÎData_Bus
Addr Bus

Read

-f Write

-f C l o c k

• C l o c k 2

-f-Data Ack

NMI IRQ FRQ

Figure 5: Level l M C 6 8 0 9 processor template . Signal names have taken
M C 6 8 0 9 functionality as compared with Figure l P R O C E S S O R
subsystem.

si tuations, special considerat ions may overr ide the obvious interconnect ion of
similarly named signals. These factors combine to m a k e a s imple
interconnect ion scheme based on n a m e alone useless . This situation is
exacerbated when componen t s in different micro-processor families need to be
interconnected. In this case not only are the signal names different, but the
t iming schemes m a y be incompat ib le even be tween similarly named and
functioning signals.

The combinat ion of a s tandardized bus and a set of templates consis tent with
the bus overcomes this p rob lem by providing a reference frame in which to
define interconnect ions. The reference frames are Level 0 and Level l . Level 0
is the same regardless of the micro-processor family chosen, so the basic
functionality of signals are defined. All M l compat ib le micro-processors mus t
supply these signals in some form. Level l buses are therefore functionally
compat ib le . If a des igner can descr ibe how to conver t from BUS A to BUS Β in
the form of a template , M l can use this template to interconnect componen t s of
different micro-processor families in a general fashion. Figure 8 provides a

5. Single Board C o m p u t e r Synthesis 1 2 3

s imple example of how a Z 8 0
4
 and a M C 6 8 6 8 1

5
, which have different bus and

interrupt s tructures, can be interconnected.

6809 IO 1

I n i t Out+

BS
BA-f

Data_Bus
-"Addr Bus

- fRead

- I 1 1 -

-+IO CS

•Clock
-+Clock 2

-(•Data Ack

NMI IRQ FRQ

Figure 6: Level 1 IO Templa te defined with respect to the M C 6 8 0 9 .

3 . 3 Design Model
M i ' s design mode l is an informal one , intended to provide a me thodo logy for
single board compute r design. T h e mode l is based on the tasks a h u m a n
performs in single board compute r design as illustrated in Figure 9. T h e tasks
are the fol lowing:

1. Specification: A des igner generates a set of specifications for the
compute r sys tem. These are segregated into those that are sys tem-
wide and those that are specific to individual subsys tems.

2. Selection. Given a set of specifications, a des igner chooses the
mos t appropr ia te componen t s and templates for a design. Wi th the

4
Z80 is a registered trademark of the Zilog Corporation. 5
MC68651 is a registered trademark of the Motorola Corporation.

124 Bi rmingham and Siewiorek

Figure 7 : Level 2 template for M C 6 8 5 0 , which maps into Level 1 1 0 template .

large variety of componen t s available and level of specification
provided, this can be a t ime consuming task.

3 . Intra-subsystem Design. Once the set of componen t s is chosen the
designer will then configure them to mee t the requi rements . For
example , after a m e m o r y chip has been chosen, the chips are
organized into an array to provide the correct data word width and
total s torage capacity as specified.

4. Inter-subsystem Design. After an individual subsys tem is
designed, it mus t be integrated with other subsys tems. A template ,
if available, is applied. If a template is unavai lable , the designer
will have to design glue hardware .

5. Evaluation. Evaluat ion consists of compar ing critical features in
the developing design against relevant specifications. A
convenient place for evaluat ing the design is after a subsys tem has
been integrated with other subsys tems.

5. Single Board Compute r Synthesis 125

Z80 10 1

< M 3

Figure 8: Interconnect ion be tween two micro-processor families. Templa tes
used to conver t be tween Level 1 buses provide design flexibility.

The design mode l steps are repeated for each subsys tem in the design. The
order of these steps during M i ' s design process may not coincide exact ly with
that in Figure 9 due to M l implementa t ion issues and due to i terations in the
design process .

Dur ing synthesis i terations through the design steps (not shown explici t ly in
the mode l) are unavoidable . There are three causes for i terations: unrealist ic
specifications, sub-problem dependencies , and lack of appropriate knowledge .
Unrealist ic specifications will cause a design to be either under-const ra ined or
over-constra ined. This results in a failure to synthesize an appropriate design. A
change in the specifications is necessary which, in turn, will repeat at least some
of the previously executed design steps. Often il l-formed specifications can
only be uncovered after a design synthesis a t tempt is made .

Sub-problem dependenc ies , the second cause of i terations, is a property of the
design domain . The design model assumes that intra-subsystem design can be
broken into a set of near ly- independent sub-problems. That is, the synthesis of
the interior of a subsys tem is nearly independent of the synthesis of other
subsystem interiors. Near ly- independent p rob lems are weakly connected, where
a satisfactory solution can be developed for one class of p roblems independent ly
of the solution developed for a related class of p roblems . Within the single
board compute r design domain this property is true for some synthesis problems.

126 B i rmingham and Siewiorek

However , often information from other areas of the design is necessary before a
subsystem may be synthesized.

The M I C O N bus is an example of how information can propagate be tween
different synthesis activit ies. The bus interconnects all subsys tems. As a design
develops , the M I C O N bus inherits propert ies from different subsys tems. For
example , the data and address bus width are inheri ted from the P R O C E S S O R
subsystem. If a des ign ' s processor is changed and the previously defined data
and address bus widths change , other subsys tems which were sensit ive to these
bus widths (e.g. the m e m o r y subsys tem) will have to be re-designed.

Iterations due to coupl ing be tween sub-problems are difficult to reduce . It is
possible that as more knowledge is gained about the design process a better
unders tanding of the sub-problem interactions will be uncovered and a means of
de-coupl ing them will be developed.

The third cause of iteration comes from the lack of comple te knowledge for a
task. Lack of appropr ia te knowledge requires a p rogram to search for a solution.
Search is manifested by synthesizing a port ion of a design, evaluat ing it and
redesigning as often as necessary. For example , the design of a dense m e m o r y
array often requires the synthesis of several arrays using different m e m o r y chips
before the best array can be chosen . As design knowledge is accumula ted the
amount of search will decrease result ing in fewer i terations.

4 The Prototype System
An initial version of the M I C O N system, recently dubbed MO M I C O N [2], was
developed to explore single board compute r synthesis techniques discussed in
the previous section. MO, the MO M I C O N synthesis p rogram, produced designs
for the Z 8 0

6
, the T I 9 9 0 0

7
, and the Î A P X 8 0 1 8 6

8
. A Z 8 0 design was constructed

using a set of handcrafted physical design tools and a semi-automat ic wire-wrap
machine .

The comple te MO M I C O N system, shown in Figure 10, was composed of the
fol lowing p rograms: the MO synthesis p rogram; a set of special-purpose
p lacement and rout ing tools; and an interface to a semi-automat ic wire-wrap
machine . The MO system conta ined prototype versions of the tools contained in
M I C O N , with the except ion of a testing facility and a central database .

6
Z80 is a registered trademark of Zilog, Inc. 7
TI9900 is a registered trademark of Texas Instruments, Inc. 8
iAPX80186 is a registered trademark of Intel Corporation

5. Single Board C o m p u t e r Synthes is 1 2 7

Specification Specification

Part
Selection

Intra-Subsystem
Design

Inter-Subsystem
Design

Evaluation

/ More \ Yes
Subsystems?

DONE

Figure 9: Single board compute r design mode l , with major des ign activit ies.
I terations be tween activities are not shown.

4 . 1 Template Representation in MO
MO exploi ted templa tes for synthesis , but the template representat ion used in MO
is significantly different from that used in M l (as descr ibed in Sect ion 3.2). The
templates in MO are not organized hierarchical ly; instead, a single abstract ion

128 Bi rmingham and Siewiorek

MO

^
Component
Placement

Wire List
Creation

Semi-Automat ic
Wire-wrap

Figure 10: MO system diagram, with tools that were prototypes for M I C O N .
MO designed and built a Z80-based single board computer .

level was used to captured an entire generic design for a given micro-processor .
The template included all componen t s . Since templates were organized around
an entire system design, a clear distinction be tween subsys tems - processor ,
memory , and 1 0 - was absent. Figure 11 shows an MO template . Not ice that
this template represents an entire Z 8 0 design.

The synthesis approach with templates was also significantly different.
Instead of adding different templates to form a comple te design, unneeded
port ions were removed from the MO template . Note , however , that the MO
templates had provis ions for cascadable componen t s , such as memory .

4 . 2 MO Design Model
The design model used by MO is a simplified version of M i ' s design model .
Since subsystems do not exist per se in MO no steps exists for subsystem
synthesis . The MO design mode l contains the fol lowing steps:

1. Specification. The same as M l design model .

2. Selection. The same as M l design model . In addit ion, at this step
the template for the entire design was chosen.

3. Instantiation. The selected componen t s are inserted into the
selected template at the appropriate location. Any modif icat ions to
the template also occur at this point.

Each of these steps was repeated in sequence for each subsystem. The design
model was found to be adequate for MO's design tasks.

5. Single Board Compu te r Synthesis 129

System
Clock

Z-80

INTRQ
~7K

M1
MRËQ

1ÔRQ
~WR

RD
Address

Data

IORQ

I/O El
EO

ADDRESS
DATA

74S244

Control Signals Out

To Misc.
Logic

ADDRESS IN

CONTROL IN

ADDRESS
74s244

8207

ADDRESS OUT
>

PERIPHERALS
AND MEMORY

DATA

^| 8266

τ 51

MEMORY
ARRAY

DATA OUT/IN ^
>

PERIPHERALS DATA OUT/IN
AND MEMORY

CONTROL SIGNAL! 4
MISC.
LOGIC

MISC.
SIGNALS

Figure 1 1 : MO template for a Z80 , represent ing an entire design.
Port ions not needed for the design were deleted from the template .

4 . 3 MO Discussion
The MO system provided an opportuni ty to explore and refine essential concepts
in the M I C O N system and to show the viability of a rapid prototyping sys tem.
Whi le MO successfully comple ted the design of a small compute r sys tem, the
large grain size of its template representat ion caused two significant p rob lems:
the knowledge base was difficult to expand and the degrees of design freedom
were l imited.

The knowledge base of MO needed to grow over t ime in order to capture
design knowledge about new componen t s and design styles. The template
representat ion used in MO hindered further deve lopment of the knowledge base
by not clearly demarca t ing the difference be tween inter-subsystem design and
intra-subsystem design. With MO's template representat ion, it was impossible to
update the design knowledge for one subsys tem without effecting the design
knowledge associated for other subsys tems. In addit ion, design knowledge that

1 3 0 Bi rmingham and Siewiorek

was c o m m o n be tween different subsys tems could not be shared. For example ,
the interface be tween the Z 8 0 family bus and the M C 6 8 0 0 0 family bus
descr ibed earlier would have to be replicated for each componen t in both
families.

The large-grained templates l imited MO's degrees of design freedom. Since
each template was oriented towards a part icular micro-processor and its family
of componen t s , it was difficult to use componen t s outs ide of the mic ro
processor ' s family [1].

5 M l Implementation
The implementa t ion of M l is presented in this section. T h e implementa t ion is
v iewed from two perspect ives: the system architecture and the knowledge base.

5 .1 Ml Architecture
M l mus t have the fol lowing abili t ies: to br ing the appropria te knowledge to bear
on the a p rob lem at the correct t ime; and, to recognize when a design is
comple te or impossible to comple te . Performing these tasks is a problem
solving process which requires knowledge of the design domain (to perform
synthesis) and a design process . The knowledge base supplies the synthesis
knowledge and the architecture supplies the problem-solv ing knowledge . The
wedding of these two distinctly different types of knowledge forms the basis for
the M 1 system.

5.1.1 Architectural Concepts
The archi tec ture ' s task is to sequence the p rogram (apply design synthesis

knowledge) through an ordered series of steps to achieve the goal of designing a
single board computer . The steps used for the architecture are der ived from the
design mode l descr ibed in Sect ion 3.3. The architecture cycles the program
through each step for each subsys tem in the design. The design steps are
considered a set, { d n} , and are labeled:

specification
selection
intra-subsystem design
inter-subsystem design
evaluation

A design may be composed of m subsys tems , each denoted as s
1
 with i = [1 . . m] .

For each s
1
 a set of steps {d} is visited at least once . If there is iteration in the

design process , at least one d n for a given s
1
 will be repeated. There is no limit

on the number of design iterations or steps visited.

5. Single Board C o m p u t e r Synthesis 131

The M l archi tecture was des igned around the concept of operators . T w o
types of operators exist in the p rogram: design step operators and synthesis
operators . Des ign step operators const i tute M i ' s archi tecture and m o v e the
p rogram be tween the design steps. Synthesis operators perform the synthesis
operat ions necessary for the task domain .

Opera tors have pre-condi t ions and post -condi t ions . Pre-condi t ions define
when an operator is appl icable . Post -condi t ions define the state result ing from
the opera to r ' s applicat ion. Rules are a natural representat ion for operators in
M l ' s domain . Each operator is implemented as a set of rules (a set m a y contain
as few as one rule) . The left hand side (LHS) expresses the pre-condi t ions and
the right hand side (RHS) expresses the function of the operator . T h e result of
the operator can be observed from the changes m a d e to the design state.

In Sect ion 3.3 the dependencies be tween sub-problems were discussed.
Dependenc ies in M l are stated explicit ly as sets of constraints and var iables .
Each design step operator has a set of pre-condi t ions defined for its execut ion
relative to the constraint set. So , whenever the pre-condi t ions are satisfied the
operator is appl ied and the design will m o v e into the next design step. Note that
the sequencing of des ign operators is based entirely on the constraint set, no
explici t sequencing is specified in the archi tec ture ' s operators (except as noted
be low) . This approach has the advantage of mak ing the definition of new design
states and new chunks of design knowledge independent of what a lready exists
in the program.

The generat ion of values which can satisfy pre-condi t ions occurs through two
mechan i sms :

• User generated: Values that are design specifications mus t be
specified by the user. Examples are shown in Figure 3 .

• Self generated: Values are generated by M l dur ing the synthesis
process , as the result of the applicat ion of synthesis operators . Mos t
values are self generated.

Recogniz ing the satisfaction of an opera to r ' s pre-condi t ions is done by the
weak me thod match [5] . If match fails, no pre-condi t ions are satisfied and the
design process halts (either in success or in failure). S o m e s imple mechan i sms
of heurist ically relaxing selected constraint values exist and m a y be employed to
al low the system to cont inue if it hal ted in failure. Dur ing the course of a design
M l proceeds a long several non-confl ict ing lines of reasoning s imul taneously .
For example , once all the pre-condi t ions for m e m o r y subsys tem des ign and
processor subsys tem design are met , the design of these system can cont inue in
parallel and without preference. However , M l does not support the
s imultaneous deve lopment of conflicting lines of reasoning. M l will not, for
example , deve lop des igns which s tem from different choices of a design
decision.

132 Bi rmingham and Siewiorek

5.1.2 Implementat ion
The design steps, { d ^ , become more detailed in the actual problem-solv ing

architecture. Each of the detailed steps is an intermediate step in the problem-
solving process specific to M i ' s implementa t ion. Figure 12 shows the process
for gathering the specifications for a subsystem. A port ion of the M l rules
which implement the d iagram in Figure 12 are shown in Figure 13.

The result of a design state operator is a set (usually one) of goals which
specify the current object ive of the design process . There are si tuations where
an operator will assert several goal e lements specifically ordered for some pre
defined set of act ions, this is c o m m o n l y called a plan. Plans are useful in areas
where a given set of steps a lways occur in a fixed sequence. W h e n plans are
used, the goals are resolved in a last in/first out (LIFO) order with respect to the
relative t ime they were asserted.

Goals link the architecture to the synthesis operators . Synthesis operators
have two-part pre-condi t ions . The first part describes the goal under which the
operator is applied. Recal l that operators are implemented as a set of rules, with
each rule describing a different means of providing the opera tor ' s function. The
second part of the pre-condi t ion describes the unique set of constraints and
variables (i.e. the design state) under which each rule (or each method) should
fire. So, for each goal the rules compr is ing the appropriate synthesis operator
may become candidates for execut ion, but the design state will e l iminate all but
one rule to fire (or none if the operator is not defined for the design state).

Control l ing operator execut ion in this fashion requires a comple te descript ion
of the design state and design constraints for accurately chosing the correct rule.
In cases where it appears two rules match the same condi t ions , more detail is
added until the rules are d isambiguated . Not ice that a very strict separation
be tween the design state operators and synthesis operators is preserved. Wi thout
this separation, addit ion of knowledge and design steps would be a difficult task.

5 . 2 Knowledge Base
The knowledge base is a well structured collection of design and problem-
solving knowledge enabl ing M l to design single-board compute r sys tems. The
structure is based on the function of different pieces of knowledge . The
knowledge base has been designed to facilitate the addit ion of new domain
knowledge .

5.2.1 Types of K n o w l e d g e
The knowledge base is composed of different types of knowledge , each type

corresponding to some function or specialized task. The types are the fol lowing:

• Selection. Knowledge of how to resolve a set of specifications to
select an appropriate component .

• Specification. Knowledge of what parameters must be specified for
a part icular subsystem or component .

DONE

F i g u r e 12: Detai led steps for gathering specifications, which, taken together,
realize the larger grain step d j .

• lntra-subsystem construction. Knowledge of how to configure a
subsystem.

1 3 4 B i rmingham and Siewiorek

RULE determine_if_IO_is_required
BEGIN RULE LHS

&a (goal name = io_needed)
END RULE LHS

BEGIN RULE RHS
write("Do you want a 1 0 sub-system (y/n) ?: ")
answer = get_response()
IF answer = yes
THEN make (goal name = assert_IO_l)

make (goal name = query_I0__functions)
END THEN

END RULE RHS

RULE assert_IO_level_l_part
BEGIN RULE LHS
(goal name = assert__IO__l)
&a (part subsystem = processor)
END RULE LHS

BEGIN RULE RHS
assert_part (I 0 _ _ 1 , &a. name)
; assert_part makes a call to the database
; for a part. For Level 1 parts,
; the functionality and processor family are
; necessary. The processor
; family is deduced from the name of the
/processor, given by fia.name.
END RULE RHS

RULE determine__if_PIO_is_required
BEGIN RULE LHS
(goal name = query_I0__functions)
END RULE LHS

BEGIN RULE RHS
write("Do you want PIO (y/n) ?:")
answer = get_response()
IF answer = yes THEN make (goal name = get__IO_specifications)
END RULE RHS

F i g u r e 1 3 : Example rules implement ing port ion of specification design step.
The f ine-grained steps shown in Figure 12 have rule
representat ion similar to that shown. Rules shown query designer
about IO subsys tem and P I O device within that subsystem.
All o ther functions within IO subsys tem have similar rules to P IO .

• Inter-subsystem integration. Knowledge of how to integrate a
subsys tem into an exist ing design.

• Design constraints and variables. Knowledge of the constraints in
the design process and the variables which are affected by them.

5. Single Board C o m p u t e r Synthesis 135

• Problem-solving. Knowledge of how to sequence the p rogram
through a set of states to synthesize a des ign. A discussion of this
knowledge type was given in Sect ion 5 .1 .

• Inference Engine and support. K n o w l e d g e of how to perform the
recognize-act [4] cycle for O P S 8 3 rule execut ion and how to
implement var ious p rogram suppport functions.

The inference engine and support knowledge instructs the under lying
p rog ramming support envi ronment , O P S 8 3 , h o w to perform conflict resolut ion.
It also contains descr ipt ions of the var ious internal data structures and rout ines
to support p rogram execut ion, such as the IO routines. This knowledge is
represented as procedures and functions.

Each subsys tem has a set of specifications which descr ibe the des igner ' s
requi rements for function and per formance . The des igner enters his
specifications through a set of queries directed by M l . A set of rules in M i ' s
knowledge base direct the query process . T h e specification process reacts to the
des igner ' s input, seeking different information from the des igner depending on
the specifications. The dialog in Figure 3 illustrates the specification process .

T h e me thod of de termining the best componen t for a part icular set of
specifications is g iven in the selection procedure . M l uses a s imple object ive
function to compare different feature specifications to features of a class of
candidate componen t s . T h e function has the form:

F s = [| s 0 - f 0| / w Q] + + [| Si - f±\ I w .]

w h e r e :
F s : i s t h e o b j e c t i v e f u n c t i o n
s i : i s a f e a t u r e o f t h e s p e c i f i c a t i o n d e f i n e d

o v e r t h e r a n g e [0 . . i]
f . : i s a f e a t u r e o f t h e c o m p o n e n t d e f i n e d

o v e r t h e r a n g e [0 . . i]
w ± : a u s e r s u p p l i e d v a r i a b l e i n d i c a t i n g t h e

r e l a t i v e i m p o r t a n c e o f t h i s
s p e c i f i c a t i o n f e a t u r e w i t h r e s p e c t t o
o t h e r s p e c i f i c a t i o n f e a t u r e s , a l s o
d e f i n e d i n t h e r a n g e [0 . . i]

Specification features are per formance , physical , or electrical at tr ibutes of the
subsys tem. T h e value for the set of features for all componen t s is entered into a
database and recal led when the componen t becomes a candidate for selection.
This formula is appl ied to all componen t s in the class and the componen t with
the lowest Fs va lue is selected. This formula was deve loped empir ical ly and is
is used for all componen t selection tasks.

136 Bi rmingham and Siewiorek

Design constraints are represented in the system in two ways . The first
scheme is as rules in the architecture descr ibing the dependencies be tween
problem-solving steps (described in Section 5.1). The second scheme is through
explicit rules. The rule expresses the constraint and calculates its value. For
example , if a constraint states that the system cycle t ime should be less than or
equal to the product of the m e m o r y cycle t ime and the number of wait states, a
rule of the fol lowing form would be created:

RULE calculâte__system_cycle_time
BEGIN RULE LHS

&a (Variable name = memory_cycle_time)
&b (Variable name = number_of_wait_states)
&c (Variable name = system_cycle__time)

END RULE LHS

BEGIN RULE RHS
&x = &a * &b
if &c > &x

& c is violated
END RULE RHS

The violation of this constraint may cause the architecture to change its current
line of design synthesis activity.

The intra-subsystem and inter-subsystem construct ion knowledge comprise
the largest share of the knowledge base . These knowledge types represent
techniques for actually synthesizing the design; captur ing a des igner ' s expert ise.

Intra-subsystem construct ion knowledge details how to configure structures
using cascadable chips . Examples of these structures include: arrays (as in
memor ies) ; wired-or buses (as in interrupt l ines); and trees (as in priority
encoding and carry look-ahead) . These fundamental structures are applied
without major changes across large classes of chips . However , there are minor
variations depending on the types of chips used and the signal naming
convent ions . The structure result ing from intra-subsystem knowledge forms the
template component (see Section 3.1) The recognit ion of a difference be tween
intra-subsystem knowledge and inter-subsystem knowledge is important , since it
provides flexibility in updat ing the knowledge base and sharing knowledge .
This capabil i ty was miss ing in the MO M I C O N prototype system.

Inter-subsystem knowledge is the template knowledge discussed in Section
3 .1 . Subsys tem integration knowledge details how to connect a subsys tem to the
exist ing design and also specifies the required support componen ts .

The template in Figure 7 is represented in Figure 14 in its rule form. The
L H S of the rule specifies the condi t ions under which the rule should execute .
Not ice the goal , integrate 6850, under which this template is active. The

5. Single Board Compu te r Synthesis 137

remaining condi t ions uniquely specify when the rule should fire. The R H S of
the rule descr ibes the act ions taken when the rule is fired. This rule asserts a
netlist and performs some control main tenance act ions.

RULE integrate_6850_yersion_l.1
BEGIN RULE LHS

(goal name = integrate_6850)
(variable type = baud__rate; range <= 9600)
(part name = 6809)
(variable type = external__connection;

drive_type = RS-232;)
END RULE LHS

BEGIN RULE RHS
; assert__part_2 makes a call to the database for a part. For
; Level 2, the arguments for assert_part are the part name and
; a unique part identifier.
assert jpart_2 (MAX232, gl)
assert_part_2(8116, g2)
assert_j?art_2 (RS_232_PORT, g3)
assert__part__2 (XTAL, g4)
assert__part_2 (capacitor, g5)
assert__part__2 (capacitor, g6)
assert_j>art_2 (DIP_SWITCH, gl)

; A netlist is given of the connections for
; the template follows. For the
; sake of brevity, an example connection is given.
; A connection is made between the RxCLK and TxCLK lines for the
; 8116. Notice the identifier in the assert_part_2 call is
; substituted for the part name.

connect (to_j?art = g2; to_jpin_name = RxCLK ; from_part = g2;
f rom_pin_name = TxCLK ;);

END RULE RHS

Figure 14: Example template rule, which executes to achieve integrate 6850
goal , when design state variables shown (called variable) are
satisfied.

5.2.2 K n o w l e d g e Base G r o w t h
M i ' s domain is knowledge- in tens ive , mean ing the knowledge base will

cont inue to grow during the useful life of the system. This is pr imari ly due to
the constant improvements in integrated circuit technology, fueling the
deve lopment of new componen t s and new design techniques . M l mus t have the
ability to cont inuously grow to keep pace with technology.

All const i tuents of the knowledge base do not g row uniformly. For example ,
the system architecture will remain constant unless dramatical ly new design
techniques , such as design for reliability and/or testability, are added. If this
were to happen, new design state operators would be added to M l , expanding
the architecture.

138 Bi rmingham and Siewiorek

The port ions of the tool which will g row significantly are specification and
subsys tem integration knowledge . N e w componen t s require a unique set of
specifications causing a set of rules to be developed. Note that selection
knowledge does not have to be updated since it is not dependent on any specific
design or componen t knowledge .

T h e major growth of knowledge will occur via the addit ion of new templates .
As M l matures , the number of rules (templates) will g row for each of the
synthesis operators . For example , the addit ion of a new micro-processor to M l
will generate at least one new rule for each synthesis operator which deals with
micro-processor design. It is possible that new synthesis operators will have to
be included if a new componen t or des ign style contr ibutes a capabil i ty not
known to the system previously. For example , the addit ion of a micro-processor
with an innovat ion such as virtual m e m o r y support would demand new synthesis
operators . A micro-processor which extends an exist ing concept , such as moving
to a 16-bit data bus from an 8-bit data bus , would not require a new synthesis
operator.

The subsys tem construct ion knowledge will not g row as quickly, since there
are a only a fixed number of structures in which a componen t can be configured.
In addit ion, all structures these chips are capable of support ing are known a
priori.

6 Summary
The M l synthesis p rogram is based on two concepts . The first is the use of
templates to represent structural information be tween componen t s in a design.
The second concept is the use of a s imple design mode l to act as a guide for
developing a problem-solv ing approach to synthesis .

The M l architecture uses design state operators to sequence the program
through its problem-solv ing act ions. T h e operators are defined in relation to a
system of constraints and do not explicit ly provide operator sequencing
information.

The synthesis knowledge is organized around operators . The operators are
represented as rules in the system. These rules are defined relative to an
operator and to the set of system constraints . As the expert ise of the system
grows , more rules are added to the synthesis operators . N e w operators may be
added if necessary.

M l is des igned to facilitate expansion of its knowledge base . P rob lem-
solving is kept fully in the design state operators and synthesis expert ise is kept
fully in the synthesis operators . A l inking occurs through the assert ion of a goal .

5. Single Board C o m p u t e r Synthesis 1 3 9

Acknowledgements
The M I C O N project started in May , 1982 result ing in its first success , the MO
M I C O N system in late 1984. Dur ing this t ime, the project grew from jus t the
authors to a g roup of five people . Dur ing the next several years , more s tudents
jo ined and left the g roup , which remained at a level of about five people . The
authors acknowledge the efforts of Dar io Giuse , Veerendra R a o , Nikhi l Ba l ram,
Rober t Tremain , and Sean Brady during this t ime.

T w o new group m e m b e r s have been part icularly helpful dur ing the wri t ing of
this chapter . The authors would like to acknowledge Anurag Gup ta and D r e w
Anderson for their help.

This research was funded by the Semiconduc tor Research Corpora t ion , by
Nat ional Science Foundat ion grant D M C - 8 4 0 5 1 3 6 to the D E M E T E R project ,
and the Engineer ing Des ign Research Center , Carnegie Mel lon Univers i ty , an
N S F engineer ing research center supported by grant C D R - 8 5 2 2 6 1 6 . T h e v iews
represented in this chapter are solely those of the authors .

References
1. Ba l ram, N. , B i rmingham, W . P. , Brady , S., Siewiorek, D . P. , T remain , R.
"The M I C O N Sys tem for Single Board C o m p u t e r Design." 1st Conference on
Application of Artificial Intelligence to Engineering Problems, Apri l , 1986.

2. B i rmingham, W . P . and Siewiorek, D . P. " M I C O N : A K n o w l e d g e Based
Single Board C o m p u t e r Designer ." Proceedings of the 21st Design Automation
Conference, I E E E and A C M - S I G D A , 1984.

3 . Relat ional Techno logy Incorporated. Introduction to Ingres. 1985.

4. Product ion Sys tems Techno logy Incorporated. OP S183 User's Manual and
Report Version 2.2. 1986.

5. Rich, E. Artificial Intelligence. McGraw-Hi l l C o m p a n y , 1983.

6. S iewiorek, D . P. , Bel l , C. G., Newel l , A. Computer Structures: Principles
and Examples. McGraw-Hi l l Inc. , 1982.

7. Snow, E. Automation of Module Set Independent Register-Transfer Level
Design. Ph .D . Th. , Carnegie -Mel lon Universi ty , Depar tment of Electrical and
Compute r Engineer ing , 1985.

8. Tseng , C. J. and Siewiorek, D . P. "Emerald : A Bus Style Designer ."
Proceedings of the 21st Design Automation Conference, I E E E and A C M -
S I G D A , 1984.

6 Kno wledge-B ased
Alloy Design
INGEMAR HULTHAGE
MARTHA L. FARINACCI
MARK S. FOX
MICHAEL D. RYCHENER

Abstract
A L A D I N is a knowledge-based system that aids in des igning A l u m i n u m alloys
for aerospace appl icat ions. Alloy design is character ized by creativity, intuition
and conceptual reasoning. The applicat ion of artificial intel l igence to this
domain poses a number of chal lenges , including: how to focus the search, how
to deal with subprob lem interact ions, h o w to integrate mul t ip le , incomple te
domain mode l s , and how to represent complex metal lurgical knowledge . In this
paper, our approach to deal ing with these p rob lems is descr ibed. W e provide a
technical overv iew of the project and system, cover ing these aspects : project
goals , overv iew of knowledge base and representat ion, p rob lem solving
architecture, the representat ion and use of domain mode l s , snapshots from a run
of the prototype and conclus ions .

1 Introduction
Alloy design is a metal lurgical p rob lem in which a selection of basic e lements
are combined and fabricated result ing in an alloy that displays a set of desired
characterist ics (e.g., fracture toughness , stress corrosion cracking) . T h e quest
for a new alloy is usually dr iven by new product requi rements . Once the
metal lurgical exper t receives a set of requi rements for a n e w a luminum alloy,
he/she begins a search in the li terature for an exist ing alloy that satisfies them.
If such an alloy is not known , the expert may draw upon experient ial , heurist ic ,
and theory-based knowledge in order to suggest a set of new alloys that might
exhibit the desired characteris t ics .

There are several ways in which a special ized compute r sys tem could aid
alloy designers . First, the search for a suitable alloy design may require many
hypothes ize /exper iment cycles , spanning several years . T o reduce the number
of i terations, even by one , or to shorten the average t ime of a cycle would be

Expert Systems for Engineering Design Copyright © 1988 by Academic Press, Inc.
All rights of reproduction in any form reserved.

141 ISBN 0-12-605110-0

142 Hul thage , Farinacci , Fox , and Rychener

significant gains . Second, computa t ional theories exist that link structure,
composi t ion and property. Providing easy access to these would aid the alloy
designer. Third, not all alloy design experts are created equal . Some are more
"expert" than others , and their expert ise covers different areas of knowledge .
Captur ing alloy design knowledge used by a variety of specialists in an
accessible form would facilitate eve ryone ' s design efforts.

The goal of A L A D I N has been to perform research result ing in the design
and construct ion of a proto type , ΑΙ-based, decis ion support sys tem for designing
a luminum alloys. The decis ion support sys tem provides a knowledge base of
alloy knowledge , and a problem-solv ing capabil i ty that utilizes the knowledge
base to suggest and/or verify alloy des igns .

Al loy design is a combinator ia l ly explos ive p rob lem dependent upon the
choice and amounts of e lemental const i tuents of the composi t ion , and upon the
selection, parameter izat ion and sequencing of process ing steps. Theoret ical ly ,
one should be able to de termine the propert ies of an alloy from its
microstructure . Practical ly, the theories are incomple te , requir ing the addit ion
of experiential knowledge to fill the gaps . As a result, there exist multiple
partial models of alloy design that relate:

• composi t ion to alloy propert ies ,

• thermal-mechanica l process ing to alloy proper t ies ,

• micro-s t ructure to alloy proper t ies ,

• composi t ion to micro-s t ructure , and

• thermal-mechanica l process ing to micro-s t ructure .
The simplest mode l s of al loys deal only with the relat ionship be tween

chemical composi t ion and alloy propert ies . F rom the point of v iew of modern
metal lurgy only a few s t ructure- independent propert ies (such as densi ty and
modulus) can be de termined with precis ion from these mode ls . However ,
empir ical (and less precise) knowledge does exist about other propert ies , e.g.,
beryl l ium causes embri t t lement in a luminum. Quant i ta t ive compar i sons can be
made be tween alloys of varying composi t ion , everything else being equal , which
yield some useful quanti tat ive knowledge about propert ies through regression
analysis .

There are also (somewha t more complex) mode ls that descr ibe the
relat ionship be tween thermo-mechanica l processes and propert ies . Since only
composi t ion and process descr ipt ions are needed to manufacture an alloy, it
could be assumed that no other mode l s are needed to design al loys. As a mat ter
of fact, historically, many al loys have been des igned with composi t ion and
process mode ls only. Research progress in meta l lurgy is currently giving new
insights into the relat ionship be tween the microst ructure of al loys and their
physical propert ies . T h e deepest unders tanding of alloy design, therefore,
involves mode l s of microst ructure effects on propert ies a long with mode l s of
composi t ion and process ing effects on microstructure .

6. Knowledge -Based Al loy Des ign 143

Thus , the task per formed by A L A D I N requires expert ise in the areas of alloy
proper t ies , chemica l compos i t ions , metal lurgical micros t ructure , and the rmo-
mechanica l (fabrication) processes . A L A D I N works by taking in a descr ipt ion
of the proper t ies of a desired al loy, and then searching to construct a plausible
candidate alloy to mee t those requi rements . Al loy candidates are specified by
giving their chemica l composi t ion and the sequence of processes (including
tempera tures , t imings , and other parameters) to be per formed dur ing their
fabrication, a long with predict ions of their propert ies . A L A D I N also p roduces a
descript ion of the expected microst ructure of each alloy, which can be of use in
analyzing an al loy, but is not a part of the specification used to p roduce them.

A number of issues arise in the construct ion of a sys tem to aid in the design
of al loys. First, wha t is the appropr ia te archi tecture for the explici t
representat ion and util ization of mult iple , parallel mode l s , and h o w is search in
this space of mul t ip le interact ing mode l s to be focused? O n e part icularly
important p rob lem is the degree to which des ign decis ions are dependent . Each
change in compos i t ion or process alters a n u m b e r of propert ies . Thus there is a
level of interact ion a m o n g sub-problems that exceeds the usual exper ience
descr ibed in the AI p lanning l i terature.

A second issue is concerned with representat ion. K n o w l e d g e of the
relat ionship be tween alloy structure and its resultant propert ies is at best semi-
formal. M u c h of it is composed of images of microst ructure and natural
language descr ipt ions . Quant i ta t ive mode l s rarely exist, and even if they do
exist, they are rarely used.

The rest of this article descr ibes how A L A D I N was des igned to deal with
these issues. W e begin by descr ibing A L A D I N ' s representat ion of knowledge .
Several different representat ions of expert ise are present in A L A D I N :
declarat ive frames (schemata) of pas t al loys and their proper t ies , mathemat ica l
mode ls of proper t ies , statistical me thods for interpolat ion and extrapolat ion, and
empir ical exper t ise in the form of if-then rules . Sect ion 3 then descr ibes the
p rob lem solving archi tecture of A L A D I N . It mus t search in a space where many
al ternative hypotheses (designs) can be formulated, so search m a n a g e m e n t is a
key prob lem. W e wish to keep the search as opportunis t ic [5] and flexible as
possible , in order to exploi t unexpec ted advantages that are d iscovered
accidental ly, e.g., addi t ives that are added for one purpose but are found to have
beneficial effects on other proper t ies as well . In section 4 it is descr ibed how
quali tat ive and quant i ta t ive domain mode l s are represented and h o w they can be
used interactively by the expert . Sect ion 5 provides a detai led example of the
operat ion of A L A D I N , fol lowed by conclus ions . The reader is referred to
previous articles for m o r e detai ls on the A L A D I N sys tem [15, 7, 20 , 14, 6] .

144 Hul thage , Farinacci , Fox, and Rychener

2 The Knowledge Base
Artificial intell igence (AI) has been applied to a number of fields of engineer ing
design. Al though there are some features that the various design areas share,
such as the need to integrate heurist ics with algori thmic numerical procedures ,
there are also some important differences. Each field of engineer ing seems to
recognize the impor tance of represent ing declarat ive concepts , a l though specific
needs vary. In electrical engineer ing, for example , the representat ion of
componen ts with their spatial and functional relat ionships seems to be vital. In
mechanica l engineer ing, the representat ion of solid geometr ic shapes has been
studied and is v iewed as being crucial to the successful evolut ion of C A D / C A M
systems [4, 19]. Materials science identifies the microst ructure as crucial to an
unders tanding of the relat ionship of materials characterist ics to composi t ion and
processing. A powerful representat ion of microstructural features is therefore
vital to the construct ion of a mater ials design support sys tem.

In this section, a representat ion of declarat ive metal lurgical knowledge is
described. The aim is to show how quali tat ive and quanti tat ive knowledge
available to the expert in a variety of forms, e.g. tables, d iagrams, natural
language and pictures , can be given a structured representat ion that a l lows the
knowledge to be utilized through well known AI techniques . Al though many of
the AI concepts and approaches used in the representat ion are rout ine, the
application to the domain of microstructure appears to be novel . In fact, a
review of the literature indicates few at tempts to define a t axonomy for
describing microstructure [11] and no at tempts to use a t axonomy of schemata
for a computer ized knowledge base of microstructure information.

A version of this knowledge base was also used in the deve lopment of a
corrosion diagnost ic sys tem [1]. A L C H E M I S T [18] also uses a schematic
network to represent plans for des igning al loys, tests that defines propert ies and
microstructure causali ty. Whi le the examples in this section deal primari ly with
a luminum, we are convinced that the f ramework of the knowledge
representat ion is useful for other alloy families and to some extent even for other
materials .

It has been proposed [25] that knowledge representat ion approaches be
judged based on two features. One is express ive adequacy, which includes the
ability of the representat ion to m a k e all important dist inctions and to remain
noncomit ta l about details when faced with partial knowledge . The second
feature is notational efficacy and concerns the structure of the representat ion and
its influence on computa t ional efficiency of inferences, conciseness of
representat ion and ease of modif icat ion.

In addit ion, the representat ion was required to meet the fol lowing s tandards:

• the representat ion should seem natural to mater ials scientist, to
support knowledge base deve lopment and main tenance by domain
experts

6. Knowledge -Based Alloy Design 145

• the representat ion should be general enough to support expans ion of
the system to non-a luminum materials

These goals and the goals of express ive adequacy and notat ional efficacy with
respect to the domain of alloy design, were cons idered dur ing the deve lopment
of A L A D I N .

The declarat ive knowledge is structured through the use of hierarchies of
schemata . The representat ion has a hierarchy of abstract ion levels which
contains different degrees of detail . The facilities of Knowledge Craft [3] are
util ized to define relat ionships and inheri tance semant ics be tween metal lurgical
concepts [8]. The most c o m m o n l y used relat ions are IS-A and INSTANCE. The
I S A relation and some other relations define hierarchies of classes or groups
where each higher level subsumes the lower level c lasses . T h e INSTANCE
relation declares a part icular object to be long to a class or a g roup and the
descript ion of the class serves as a pro to type of the instances.

The knowledge base contains information about al loys, products and
applicat ions, composi t ion , physical propert ies , process me thods , microst ructure
and phase d iagrams. The representat ion is very general , the goal has been to
create a representat ion for all knowledge about a luminum alloys and metal lurgy
relevant to the design process .

The representat ion of al loys is representat ive of most of the database and will
therefore be discussed in some detail , fol lowed by a discussion on
microstructure which requires a more complex representat ion. The complexi ty
is largely handled by using the me ta information features of K n o w l e d g e Craft.
This enhances the expressive adequacy of the representat ion by a l lowing
optional finer dist inct ions. For a discussion of the phase d iagram representat ion
see [14] .

2 .1 Alloy Hierarchy - Composition, Properties and Processing
Alloys , when v iewed from the s tandpoint of their design, are interrelated and
grouped together in a number of different ways . W e have defined a number of
formal relat ionships, with different inheri tance semant ics [8] , to enable our
schemata to reflect this domain organizat ion. For example , al loys are grouped
together into series and families by their composi t ion . They are also related by
the processes that go into their fabrication (e.g., heat t reatment , cold roll ing, and
temper ing) , by the type of applicat ion that an alloy is des igned for, and by the
form of product (e.g., sheet, plate, or extrusion) . Relat ions have been defined to
reflect degrees of abstract ion within the hierarchy, e.g., the relat ionship be tween
a family and a prototypical member . These relat ions are utilized at var ious
points in the design search in order to m a k e hypotheses and es t imates . Since
they al low analogies to be d rawn along a number of different d imens ions by
defining classes of similar alloys with which one can look for t rends. Figure 1
depicts some of this knowledge-base structure.

A representat ion for more than twenty physical property measurements has

1 4 6 Hul thage , Far inacci , Fox , and Rychener

Figure 1: Al loy groups .

been developed. At the top level of classification, the propert ies are divided into
mechanica l , chemica l , thermal , electrical , and misce l laneous groups . The
classes of mechanica l proper t ies are shown in Figure 2.

The classification hierarchy of process me thods is used in A L A D I N to m a k e
inferences about the effects of var ious operat ions , on both microst ructure and
properties of al loys, since groups of me thods often have similar effects. Before
and after relations are used to represent t ime sequences of operat ions .

2 . 2 Symbolic Microstructure Representation
Microstructure is the configurat ion in three-dimensional space of all types of
non-equi l ibr ium defects in an ideal phase [11] . Such defects are created by
thermal and mechanica l process ing me thods , e.g. rapid cool ing and cold

6. Knowledge -Based Al loy Design 147

. » O H M H C E - T O L E R A N C E k « F R T I G U E
I » F R A C T U R E - Τ O U G H M E S S

«ECHflMICfiL-PROPERTV<

^ — » C O n P R E S S I U E - Y I E L O - S T R E S S
"""'"--»^^-— * Τ EHSI L E - Y I E L D - S T R E S S

^—- «Ut T T N R T E - T F N S I L E - S T R F H G T H

^ * S T R A I N - H A R D E N I N G
» C O E F F I C I E N T - I N - C O H S I O E R E - E Q U R T I ON
• Y I E L D - S T R E S S - R N I SOT ROPY

F i g u r e 2 : Mechanica l proper ty hierarchy p rogram display.

working . These defects include voids , c racks , part icles and irregularit ies in the
a tomic planes . These features are cal led microstructural e lements and are
visible when the material is magnif ied several hundred t imes with a microscope .
Metal lurgical research has shown that the geometr ic , mechanica l and chemical
propert ies of the microstructural e lements , as well as their spatial distr ibutions
and interrelat ionships, have a major influence on the macroscopic propert ies of
the mater ial . T h e microst ructure is often descr ibed in abstract , conceptual te rms
but is rarely character ized numerical ly . The object ive of the microst ructure
representat ion in A L A D I N is to a l low classification and quantif icat ion of the
microst ructure of al loys in order to facilitate the formulat ion of rules that relate
the microst ructure to the macroscopic propert ies of al loys.

Al though m u c h of the empir ical knowledge about alloy design involves the
micros t ructure , it is difficult to represent in a useful way with s tandard
quant i ta t ive formal isms. Metal lurgis ts have a t tempted to descr ibe
microstructural features systematical ly [11] and quanti tat ively [23] , but in
pract ice , nei ther of these approaches is c o m m o n l y used. Mos t exper t reasoning
about micros t ructure deals with quali tat ive facts. Metal lurgis ts rely on visual
inspect ion of micrographs , which are pictures of metal surfaces taken through a
microscope . Information is communica t ed with these pictures and through a
verbal explanat ion of their essential features.

In response to this observat ion a symbol ic representat ion of alloy
microst ructure was created and is a crucial part of the A L A D I N database [12].
The two main features of an alloy micros t ructure are the grains and the grain
boundar ies , and are descr ibed by an enumera t ion of the types of grains and grain
boundar ies present . Each of these microstructural e lements is in turn descr ibed
by any avai lable information such as size, distr ibution, etc. , and by its relations
to other microstructural e lements such as precipi tates , d is locat ions, etc. This
representat ion a l lows important facts to be expressed even if quanti tat ive data
are unavai lable , such as the presence of precipi tates on the grain boundar ies .The
microst ructure is further character ized by a specification of the microstructural
e lements that are present . The basic e lements of micros t ructure are grains,
part icles, lattice defects and interfaces. Figure 4 shows several types of these

148 Hul thage , Farinacci , Fox, and Rychener

(^ C o a t i n g ^

Ç S T s p e r s i o n ^ ^Hbres

F i g u r e 3 : Classification of microstructure .

e lements .Each of these microstructural e lements can be further descr ibed by its
phase , size, shape, vo lume fraction and distr ibution, as shown in S c h e m a 2.

2 . 3 Example of Microstructure Representation
A typical alloy in the A L A D I N data base contains a microstructure descript ion
that enumera tes all microst ructural -e lements k n o w n to exist within the material .
If some features of an e lements is also known , that information is at tached to the
corresponding i tem of the enumera t ion .

An example of a microstructure [24] , is shown in Figure 5.It shows an alloy
after solution heat t reatment , cold water quenching and peak aging at 4 0 0 ° F for
48 hours . The corresponding A L A D I N representat ion of the alloy is Schema 1
with the microstructure in Schema 2.

Vasudevan et al verbally descr ibe this microst ructure , which he refers to as
figure 1(b), as fol lows:

"Figure 1(b) shows the microstructure in the peak-aged alloy (condition B),
where the strengthening matrix Ô' precipitates are seen together with coarse
grain boundary δ precipitates; these are seen as white regions surrounded by
dislocations ... and a Ô' precipitate-free zone (PFZ) 0.5 μπι wide which has
given up its solute to the grain boundary δ."

6. Knowledge-Based Al loy Design 149

F i g u r e 4 : Types of microstructural e lements .

Character is t ics of the microst ructure , i.e. that it is recrystal l ized, has high
angle grain boundar ies , e longated grains parallel to the roll ing direction and low
dislocation densi ty are also represented. The schema representat ion is not
l imited to characterist ics that are apparent on a micrograph and includes
quanti tat ive information.

It is also important to point out that the recursive nature of the representat ion
(i.e. each microstructural e lement could contain any other microstructural
e lement even one of the same class) makes it possible to represent any
imaginable microst ructure . For example suppose that the solution heat treated
alloy has subgrains inside each grain and that each subgrain consists of several
cells separated by dislocation angles . In A L A D I N , such a structure would be
represented as grains with high angle boundar ies conta ining small grains with
low angle boundar ies , which in turn contains even smaller grains (or cells) with
low or m e d i u m dislocat ion density of the boundar ies . Since grains at each
"level" can have variety of microstructural e lements , all possible microst ructures
can be easily represented using this method .

Many microstructural e lements are associated with a phase and A L A D I N has
a phase d iagram representat ion as well . A L A D I N uses the rmodynamic
equat ions , when avai lable , to descr ibe the boundar ies of each phase . Often,
however , the boundar ies are de termined exper imenta l ly . In this case , each
region of an η d imens ional phase d iagram may be descr ibed as the union of
(n+ l) -po in t lattices in η d imensional space (see [14] for more details) .

1 5 0 Hul thage , Farinacci , Fox, and Rychener

F i g u r e 5: Micrograph of Al -3Li -0 .5Mn in Peak Aged condit ion
(from [24]).

3 Problem Solving Architecture
An alloy design prob lem begins with the specification of the desired physical
propert ies of the material to be created, expressed as constraints on these
propert ies . The objective of the designer is to identify chemical e lements that
can be added to pure meta l , appropriate amount as a percentage and process ing
methods that can be employed to yield an alloy with the desired characterist ics .
The line of reasoning that designers use is similar to the hypothesize-and-tes t

6. Knowledge -Based Alloy Des ign 151

{{ Al -3Li -0 .5Mn-pa
MEMBER-OF: exper imentAl-Li -Mn-ser ies
MICROSTRUCTURE: Al-3Li-0 .5Mn-pa-s t rc
ADDITIVES:

Li
nominal-percent: 3.0
unit: weight-percent

M n
nominal-percent: 0.5
unit: weight-percent

PROCESS-METHODS:
cast

class: direct
solut ion-heat- treat

temperature: 1020
time: 30

stretch
percent-stretch: 2

age
time: 48
temperature: 4 0 0
level: peak
class: artificial }}

S c h e m a 1: Representa t ion of Al -3Li -0 .5Mn in Peak Aged condi t ion.

method . The des igner selects a k n o w n material that has propert ies similar to the
design targets. The designer then alters the propert ies of the k n o w n material by
mak ing changes to the composi t ion and process ing methods . The effects of
these changes on the various physical propert ies are es t imated, and
discrepancies are identified to be corrected in a later i teration.

In order to select a m o n g variables that changes the proper t ies , the des igner
may consider k n o w n cause and effect relat ions, such as:

• IF M g is added THEN the strength will increase

• IF the aging temperature is increased beyond the peak level THEN
the strength will decrease

Micros t ructure mode l s provide a powerful guide for the search process since
they constrain compos i t ion and process ing decis ions . For example , if meta-
stable precipi tates are required, then the percentage of addit ives mus t be
constrained be low the solubili ty limit, certain heat t reatment processes mus t be
applied, and aging t imes and temperatures mus t be constra ined within certain
numerical ranges .

Whi le the h u m a n design approach can general ly be character ized with the

152 Hul thage , Farinacci , Fox, and Rychener

{{ Al -3Li-0 .5Mn-pa-s trc
MICROSTRUCTURE-FOR: Al -3Li -0 .5Mn-pa
STRUCTURE-ELEMENTS :

grain
size:

length: 415
aspect-ratio: 4

alignment: rol l ing-direction
texture:

copper
volume-fraction: 0.02

brass
volume-fraction: 0.02

S
volume-fraction: 0.02

cube
volume-fraction: 0.70

Goss
volume-fraction: 0.24

recrystallization-level: 100
phase: a lpha-Al-Li
structure-elements:

precipitate
phase: A13-Li
size: 0.03

probability-distribution: log-normal
aspect-ratio: 1
distribution: uniform
volume-fraction: 0.23

local-volume-fraction-distribution: log-normal
missfit-strain: 0

dispersoid
phase: A16-Mn
size: 0.2
aspect-ratio: 3

geometry: rod
length: 0.3

volume-fraction: 0.005
missf it-strain: high

dislocation
ry/?£/ mixed
element-density: low

S c h e m a 2: Microstructure of Al -3Li -0 .5Mn in Peak Aged Condi t ion.

6. Knowledge-Based Alloy Design 153

gra in-boundary
phase: a lpha-Al-Li
angle: high
impurity: Na Κ
pfz-zone: 0.25
structure-element:

dislocat ion
type: mixed
element-density: high

precipitate
phase: AlLi
aspect-ratio: 1

geometry:
spheroid

diameter: 1
volume-fraction: 0.04
missfit-strain: high }}

S c h e m a 2, cont inued

hypothesize-and-tes t method , a more detai led study of metal lurgical reasoning
reveals a number of complexi t ies which mus t be taken into account . T o some
extent, knowledge is applied in an opportunis t ic fashion. W h e n relat ionships or
procedures are identified that can m a k e some progress in solving the p rob lem,
then they m a y be applied. O n the other hand, there are also m a n y regulari t ies in
the search process . Fur thermore , the strategies that designers use to select
classes of knowledge to be applied vary a m o n g individuals . For example , in the
selection of the basel ine alloy to begin the search, some designers like to work
with commerc ia l al loys and others prefer exper imenta l alloys produced in a very
control led envi ronment . Still others like to begin with a commerc ia l ly pure
material and design from basic pr inciples . W h e n searching for al ternatives to
meet target propert ies , some designers construct a comple te model of the
microstructure that will mee t all propert ies and then they identify composi t ion
and process ing opt ions . Other designers prefer to think about one property at a
t ime, identifying a partial structure character izat ion and implementa t ion plan
that will mee t one property before mov ing to the next. Still o ther designers
prefer to avoid microst ructure reasoning whenever possible by using direct
relat ionships be tween decision variables and design targets. All des igners
occasional ly check their partial plans by es t imat ing the pr imary and secondary
effects of fabrication decis ions on structure and propert ies . However , the
frequency of this activity and the level of sophist icat ion of the est imation mode l s
varies a m o n g designers .

1 5 4 Hul thage , Farinacci , Fox , and Rychener

Property

Figure 6: Spaces of domain knowledge .

Activity is generated on different p lanes and levels in a way similar to

3 . 1 Planning and the Design Process
The A L A D I N architecture has been des igned to support opportunist ic reasoning,
at different levels of abstract ion, across mult iple design spaces. A multi-spatial
reasoning architecture akin to a b lackboard mode l [5, 10] was therefore chosen
for A L A D I N . There are five spaces:

1. Property Space. The mul t i -d imensional space of all alloy
propert ies.

2. Structure Space. The space of all alloy microstructures

3 . Composition Space. T h e space where each d imens ion represents a
different al loying e lement (e.g., Cu, M g) .

4 . Process Space. The space of all thermo-mechanica l alloy
manufactur ing processes .

5. Meta Space. The focus of at tention planning space that directs all
processing. The meta space holds knowledge about the design
process and control strategies. P lanning takes p lace in this space
in that goals and goal trees are built for subsequent execut ion.

6. Knowledge-Based Alloy Design 155

Stef ik 's M O L G E N system [22] . P lanes contain one or more spaces , and levels
are subdivis ions within the spaces . A L A D I N ' s p lanes are: Meta or strategic
p lane , which plans for the design process itself, es tabl ishing sequencing,
priorit ies, etc.; Structure p lanning plane , which formulates targets at the phase
and microst ructure level, in order to realize the desired macro-proper t ies ; and
Implementation p lane , encompass ing chemical composi t ion and thermal and
mechanica l process ing subplanes .

Each of the partial mode ls for alloy design are represented as a set of rules.
Each rule set can propose and verify hypotheses at mult iple levels of abstraction
and in ei ther direction. For example , the rule set l inking structure and
composi t ion can propose al loying e lements in the composi t ion space which
enable a structure specified in the structure space. In the opposi te direct ion,
rules can predict propert ies of a p roposed mixture of e lements p roposed in the
composi t ion space by checking whether there would be a phase change in the
structure space.

T h e al loy design process typically starts in the structure space with decis ions
on microstructural features that imply desirable propert ies . These decis ions are
thereafter implemented in composi t ion and process space. Overal l , the search is
organized according to three principles that have proven successful in past AI
sys tems:
Meta Planning, the es tabl ishment of plans for the design process itself, with
sequencing and priority decis ions handled by explicit rules based on design
principles and user exper ience;
Least commitment, mean ing that values within hypotheses are expressed as
ranges of values that are kept as broad as possible until more data is present to
force them to be restricted, which a l lows the system to avoid backt racking in
selecting values; (A L A D I N ' s domain lends itself very readily to this technique:
mos t numer ica l variables admit to ranges of values , and in composi t ional
variables , the number of e lement addit ives is kept to a min imum;) and
Multiple levels, under which plans are developed first at an abstract level , and
then gradual ly m a d e more precise, a l lowing global consequences of decis ions to
be evaluated before effort is spent in detai led calculat ions.

These pr inciples and other aspects of the A L A D I N sys tem have been
des igned in large degree to mee t the demands of the domain .

The quali tat ive and quanti tat ive levels of the Structure, Compos i t ion and
Process ing spaces are activated as appropria te , to generate hypotheses that
specify design var iables in their o w n range of expert ise . Hypotheses generated
on other planes and levels constrain and guide the search for new hypotheses .
An exist ing quali tat ive hypothes is obviously suggests the generat ion of a
quanti tat ive hypothes is . Certain microst ructure e lements can be p roduced by
composi t ional addi t ives , whi le others are p roduced by specific processes with
the composi t ion restrict ing the choices avai lable.

Ideally, A L A D I N proceeds to specify des igns by a regular hypothes ize and
test cycle :

156 Hul thage, Farinacci , Fox , and Rychener

1. Evaluate the current hypothesis to see where it falls short of the
target; the result is a set of es t imates and a focus on part icular
propert ies of interest.

2. Generate hypotheses in order to meet a given target (focus) or
combinat ion of target propert ies ; the result is a set of hypotheses
with initial credibili t ies at tached to aid in selection.

3 . Select the best hypothesis to pursue further and go to 1.

In practice, control sequencing a m o n g these steps is more flexible, as
demanded by some features of the design domain . For example , the selection
from among a set of new hypotheses often requires that they be evaluated in
detail . Decis ions about control at this level are m a d e in the me ta space. Within
the steps in the hypothesize-and-tes t cycle , there is a sequencing of reasoning
based on the causal relat ions represented by links in Figure 6. For example , in
order to evaluate the current hypothes is , the effects of composi t ion and process
decisions on the microstructure of the alloy are determined. These
microstructure es t imates are then used to de termine the physical propert ies of
the alloy. Whi le generat ing a new hypothes is , on the other hand, causal
relations are examined in the reverse direction. F rom the target physical
propert ies , microstructure and then composi t ion and process design alternatives
are identified. Control flow can be still more flexible in response to the
demands of the domain . For example , when the necessary microstructure
knowledge is not available, the system may search for weaker , process -
property relat ions, bypass ing the microst ructure plane. Again this strategy
utilizes the exis tence of several mode ls . On the quali tat ive level
mul t id imensional constraints are used to descr ibe the design target, property
est imates and hypotheses . A mul t id imensional constraint is represented as a lisp
expression involving any function or variable, which must evaluate to a non
negat ive result.

In the hypothezise-and-tes t cycle , evaluat ions are now constraints on
propert ies , hypotheses are constraints on design variables and selection of
hypothesis is based on the possibil i ty of finding feasible points that satisfies the
current set of mul t id imensional constraints . The result of the quali tat ive plan is
used to de termine the variables to be constrained. The percentages of the
e lements selected on level 1 in composi t ion space are obvious variables , but
others like quantifiable structure or process ing variables are also important . The
formulas for density and modu lus immedia te ly yield constra ining equat ions , and
constraining equat ions for other propert ies can be obtained by regression in the
alloy database. Another source of constraining equat ions are the phase
d iagrams, several heurist ic rules involving phase boundar ies and solubility
limits. A L A D I N is not restricted to linear constraints since it uses a variant of
the gradient method descr ibed by Hadley [9] to find a feasible point for a sys tem
of inequalit ies.

6. Knowledge -Based Alloy Design 157

Microst ructure decis ions serve as an abstract plan that cuts d o w n the number
of al ternatives in the composi t ion and process spaces . In this way the role of the
microstructure has both similarit ies and differences with abstract p lanning as
descr ibed by Sacerdoti [21] . The main differences are:

• Microst ructure concepts are distinct from composi t ion and process
concepts , not mere ly a less detai led descript ion.

• The microst ructure plan is not a part of the final design, since an
alloy can be manufactured with composi t ion and process
information only.

• The microst ructure domain is predefined by metal lurgical expert ise ,
not defined during implementa t ion or execut ion of the A L A D I N
system.

These differences lead to the fol lowing contrasts with a M O L G E N - l i k e system:

• Instead of one hierarchy of plans there are three (structure,
composi t ion and process) , each of which has abstract ion levels (see
Sect ion 3.1).

• Since structure decis ions d o n ' t necessari ly a lways have the highest
"criticality" (as defined by [21]), opportunist ic search is important .

• The effect of abstract hypotheses is more complex because
decis ions in the structure space cut the search by constra ining the
choice of both composi t ion and process hypotheses . The exis tence
of more than one level in each space also introduces new types of
interact ions.

4 Model-Based Inference
Exper ience from interaction with metal lurgists and insights gained dur ing the
work with the Des ign Exper t suggested that there is a need for an al ternative
m o d e of operat ion. T h e typical user of A L A D I N will , for forseable future,
himself be a metal lurgis ts with considerable expert ise in at least some aspects of
alloy design. Each metal lurgist has a certain style and often firm opinions on
what approach should be taken. A metal lurgist may therefore somet imes be
better served by a system that leaves the top control to the user but assists the
design by mak ing a menu of operat ions avai lable . That is the purpose of the
Design Assis tant mode . In this m o d e the metal lurgis t guides the search in the
direction he wants . The elaborat ion of hypotheses is also put under user control
by mak ing available to the user a set of mode ls which can be used to derive new
information.

The Design Assis tant applies the very general and powerful notion of models .
A schema based representat ion of models and a domain independent inference
engine that invokes mode l s to infer values of attributes in schemata is created
[13]. Domain dependent information, facts, quali tat ive and quanti tat ive mode ls ,

158 Hul thage , Farinacci , Fox, and Rychener

as well as much of the domain independent control knowledge , is uniformly
represented in schema form.

The reasoning process involves inferring values of attributes in exist ing or
newly created schemata . If acceptable values can be obtained through s imple
retrieval, with or without inheri tance, the value is considered known and no
model needs to be invoked. Otherwise a value will be inferred, if possible ,
through a search for the "best" model that yields an acceptable result. The
selection of models is done in three stages. First the domain of validity of the
mode l is determined. T h e domain of validity is a subset of all schemata specified
with the C R L restriction g r a m m a r [3], e.g. the DOMAIN attribute in schema 3
limits the use of that mode l to the temperature of (meta-)schemata that is of
CLASS artificial.

{{ A G E - T E M P E R A T U R E - D E F A U L T - M O D E L
IS-A: model
MODEL-OF: temperature
CREDIBILITY: 0.2
DOMAIN: (type class artificial)
TEMPERATURE: 4 0 0 }}

S c h e m a 3 : S c h e m a representat ion of a model
of typical aging temperature .

Second, the valid mode l s are ranked by determining their credibili ty. Third, the
value generated by the mode l has to satisfy range and cardinali ty restrictions,
e.g. the DOMAIN of schema 4 mus t be one or two of (type class natural) and (type
class artificial).

{{ A G E - T E M P E R A T U R E - M O D E L
ISA: mode l
MODEL-OF: temperature
CREDIBILITY: 0.9
DOMAIN:

range: (or (type class natural) (type class artificial))
cardinality: (1 2)

TEMPERATURE:
demon: age- tempera ture-model -procedure}}

S c h e m a 4: General age temperature model .

The search and ranking of mode ls as well as the determinat ion of domain ,
credibility and range are inferences that can be performed by control mode ls .
The system has a set of domain independent control models that can be
augmented and superseded by domain dependent control mode ls whenever
appropriate .

6. Knowledge-Base d Al lo y Des ig n 1 5 9

The s imples t us e o f a mode l t o infe r th e valu e o f a specifi c slo t i n a s chem a i s
to tak e th e va lu e fro m th e s am e slo t o f anothe r s chem a tha t i s i n s om e sens e
similar. Th i s s chem a the n become s a mode l o r a n analo g o f th e firs t s chema . T o
take a s impl e example , i f on e want s t o de te rmin e th e agin g t empera tur e fo r th e
alloy represente d b y s chem a 1 the n on e coul d us e knowledg e abou t th e typica l
t emperature fo r artificia l ag in g (se e s chem a 3) a s a mode l an d a s sum e tha t th e
t empera ture i s 4 0 0 degree s Fahrenhei t . Th e s chem a A G E - T E M P E R A T U R E -
D E F A U L T - M O D E L i s declare d t o b e a mode l o f t emperatur e throug h th e
relation MODEL-OF .

Algor i thmic an d numer i c mode l s ca n b e in t roduce d throug h procedura l
a t tachment , i.e . b y a t tachin g a p iec e o f code , calle d a d emon , tha t generate s a
va lue. T h e s chem a 4 i s a mode l tha t invoke s a p rocedur e specifie d b y th e
A G E - T E M P E R A T U R E - M O D E L - P R O C E D U R E schema .

E v a l u a t or
I N S T A N C E : A L L 3Y M E M B E R - O F : E X3 E P I M E ï T A L - L l - M H - S E R I E S M I C R O S T R U C T U R E : 3 L - 3 L I - 9 . 5 M N - P A - S T R C A D D I T I V E S : LI MN
P R O C E S S - M E T H O D S : C A ST S O L U T I O N - H E A " - T P E A T S T R E T CH A GE
} }

C o n n a n d C h o i c e s
I n f e r V a l u e
I n f e r S l o t

s A d d n e w s l o t
V A d d n e w v a l u e
U A d d n e w v a l u e w / e d i t o r
i I n s e r t n e w v a l u e
r R e p l a c e c u r r e n t v a l u e
e : E d i t c u r r e n t v a l u e
d : D e l e t e c u r r e n t i t e n

M O U S E - "L - - 2 : E d i t t h e s c h e n a f o r t h e s e l e c t e d i t e n
M O U S E - •H - - 2 : E d i t n e t a - i n f o r n a t i o n f o r t h e s e l e c t e d i t e n
H O U S E - -H - - 3 : R e t u r η to previous schena

Meta-X Extended connand level
I10USE--R-3: menu of global connands

F i g u r e 7: Infer Value and Infer Slot i tems can be selected.

The system descr ibed here can be thought of as an extension of the features
of more convent ional schema representat ions and is implemented as a function
(infer-value) to be used instead of the function provided by the schema
representat ion system (get-value) . This sys tem al lows representat ion of more
than one possible value, or lists of values , for an attribute. The mechan i sms for
searching and selecting mode l s of attributes makes it possible to dist inguish
cases based on complex criteria, e.g. numerica l relat ionships. Convent ional
relational databases only dist inguish classes that are defined by schemata and

160 Hul thage, Farinacci , Fox, and Rychener

referred to by relat ions. The range and cardinali ty checks on inferred values
implement a s imple backtracking feature. Successfully inferred values are
optionally stored in the schema, with meta information on their source. Hence ,
if the same call to the infer-value function is repeated, the value will be obtained
by s imple retrieval. This is also true about input data and intermediate results
obtained by recursive calls to the infer-value function either by the selected
model or the infer-function itself. This is a s imple learning process .

If a convent ion is adopted to store only facts as regular values and represent
default values as mode ls , then this architecture provides a clean cut be tween
defining propert ies and default propert ies , which is a well known problem in
knowledge representat ion [2] .

The design assistant a l lows the user to invoke mode ls and and enter
information in an interactive envi ronment . The envi ronment is similar to the
Knowledge Craft schema editor and includes s imple edit ing c o m m a n d s . Figure
7 shows the menu of top level c o m m a n d s . Select ing the Infer Slot c o m m a n d
generates a menu of slots, i.e. at tr ibutes, that are appropriate in the displayed
schema. In this case the menu would look much like the one in Figure 10.

ACTIVE GOAL INF ORIIflT I ON-

iame Get-Usi conte»' hvOCtt sDace • e .· e 1

i MIL

and Choices FORNRBILITY PLRIN-STRRIN-OOME-HEIGHT ELONGATION MRCHINRBILI Τ V UELORBILIΤ V iDEflSITYl ̂ ELECT RICRL-CONDUCT IUIΤ Y C0EFF-0F-THERI1RL-EXPRNSI0N SPECIFIC-HEAT HEL Τ ING-POIHT THERHRL-COHOUCTIWITY FINISH RNHOOIZE OXIDATION CORROSION CORROSION-FRTIGUE STRESS-CORROSION-CRRCKING RLTERNRTE-IHNERSION-SCC
Τ HRESHOLD-SCC Kl-SCC STRESS-CORROSION-CRflCKINC-UELOCITY| EXFOLIAT ION-CORROSION-RRTINC DRHRGE -T OLERRtlCE FRTICUE CRRCK-GROUT H-RRTE FRTICUE-STRENCTH FRRCT URE-TOUGHNESS KlC-UflLUE KC-URLUE OUCTILITY STRENGTH STRRIN-HRROENING COEFFICIEMT-IN-CONSIOERE-EOURTION | YIELO-STRESS-RNISOTROPY CREEP MODULUS COHPRESSIUE-YI ELD-STRESS ΤENSILE-YI ELD-STRESS ULTINRTE-TENSILE-STRENGTH Control-Q, Quit NOUSE-R-3: nenu of global co««#nds|

~ ™ 7™ ;

F i g u r e 8: M e n u of propert ies for user to constrain quanti tat ively.

6. Knowledge-Based Alloy Design 161

Select ing an attribute introduces it in the displayed schema. The infer Value
c o m m a n d activates the inference engine descr ibed above and inserts the
result ing value. Figure 9 shows the result of inferring the densi ty.

E v a l u a t o r
Ç{AL-3LI-0.5MN-PA :cDnt5>; t ALADIN

INSTANCE : R L U Y
MEMBER-OF: E X P E R I M E N T A L - L I - M H - S E P I E S
MICROSTRUCTUPE: A L - 3 L I - 9 . 5 M N - P A - S T P C
ADDIT IVES: L I MN
PROCESS-METHODS: CPôT SOLUTION-HEA"-TREAT STRETCH AGE
DENSITY : [OOEE

Figure 9: Infer Value i tem gives the result.

The A L A D I N system at tempts to couple symbol ic and numer ic computa t ion
deeply by not treating algori thms as black boxes . A calculat ion is typically
broken down into calculat ions of the various quanti t ies involved, and the exact
course of a computa t ion is de termined dynamica l ly at the t ime of execut ion
through the selection of methods to de termine all the quanti t ies needed to obtain
the final result. These selections are based on heuristic knowledge that
es t imates the relative advantage and accuracy of the choices and by the
availabili ty of data. A L A D I N couples quali tat ive and quanti tat ive reasoning in
several ways . T h e design is m a d e at two levels , first on a quali tat ive and second
on a quanti tat ive level. Examples of design decis ions that are m a d e first are
what al loying e lements to add and whether the alloy should be artificially aged
or not. These decis ions are fol lowed on the quanti tat ive level by a determinat ion
of how m u c h of each al loying e lement should be added and at what tempera ture
aging should take place.

5 The Prototype
A L A D I N runs on a Symbol ics LISP Mach ine under Genera 7.1 within the
Knowledge Craft 3.1 (KC) [3] env i ronment at a speed that is comfortable for
interaction with expert alloy designers . T h e design run outl ined in this section
takes about half an hour, and involves considerable interaction with the user,
whose choices influence the quali ty of the ou tcome . Its deve lopment is at the
mature , advanced-pro to type stage, where it can begin to assist in the design
process , part icularly as a knowledge base and as a design evaluator . These are
two of the main modes of use that we set out to develop , independent design and
discovery being the third mode . W e mus t point out, though, that its knowledge
is presently focused on narrow areas of alloy design, with expert ise on only
three addi t ives , two microstructural aspects , five design proper t ies , and with

162 Hul thage , Farinacci , Fox, and Rychener

Ε 0 0 Β ALADIN

Palm Metwork E d i t o r

iflPPLlSAT IQM-C.POUP^

^ · E L E C T PICRL-CONDUCT OPS
. -iTPMhSPOPTflnc '̂

•—- »COMTfilMEPStPflCf-AGING
^-•PUlv.nftGi.COrtSTPuCTIOM

< -=i._ f o"ioei^E

Con*ti-4in liens ity to be lower then β.β* "
Constrain Klc-Velue «Μ μ«1 to be LOU rtEBÎUtt HÎGH
Constrain Elo«9*tion al >ow«6 to be LOU flCDIUM HIGH
Constrain Tens 11e-YιeTd-6tre»* «Uawe« ta be ftEDXUI* HICK
Constrain DenaUv *J Towed to b* LOW

Context Prob-len-Be^ioi tior> concreted. 1
Content Search-Setup activated.

ooal naoie &ank-Targets
in context Search-Setud
for hypothesis NIL
in soace Prooert^
at level 1
wTth focus MIL

F i g u r e 10: Proper ty priorit ies are largely de termined by application.

ME Θ m h r
1. tor

A L A O / / V

|Vieuport 1 |ich.*, 1 [Content J lOotion, I
ureate

•CflSTIHG-PFODUCT

«PP0DUCT-GP0Uf
•iUP0L'GW-=-P0Du

— - ' SHEET

|«lc-Va>ueii8 h«j ntx-t priority
|ΕΐθΓ*β·Ιίοηβ6·? hae next priority
E*o>TeatiOo8?0 h»e ne*t priority

F i g u r e 11 : User may select product form of interest.

6. Knowledge-Based Alloy Design 163

ALADIN

iroduCt'on true |25t productions '2463 " 6995 nodes: ngs tΙθβ ^hs action»)
ι ccrf ,ict set sue 26

ACTIVE GOAL INFORMATION

goal name Est ι mate-Target-P'-operti es in context Hypothesis-Evaluation for hvpotnesis Basel ιne-Comp

ALADIN PROGRESS

Ε 1 ongat ι onSO? has ne.-.t priority |Elongation8?B has ne*t priority ::: Hypothesis 1&6G-Extru«i Context Search-Setup C Context H.-pothesi s-Gen

itains nagnesiun.

lté» of ΑΙΣΠοϋ because they contain* llthiun and negnesj !nt that is lighter than alumnun
î*t Hypothesis-Evaluation activated.

F i g u r e 12 : Six microstructural hypotheses , for low densi ty.

some heurist ic rules being ad hoc rather than integrated into the strategy-
p lanning- implementa t ion hierarchy. W e are deal ing in depth only with ternary
al loys. But these restrict ions are by our own choice , so that we can go into
depth and train the sys tem on the selective areas of greatest impor t to our expert
informants and sponsors . With in these restrict ions lie a number of commerc ia l ly
important al loys, whose rediscovery by A L A D I N would be a major mi les tone.

The first goal of A L A D I N is to obtain a target for the desired alloy. A design
target is general ly descr ibed in terms of target values on var ious physical
propert ies . The user therefore specifies these proper ty targets ear ly in the design
run as shown in Figure 8. These target acts as constraints on the target alloy.

Since the search for a new alloy usually is dr iven by product requi rements ,
the designer usually have an applicat ion in mind. As shown in figure 10 the user
may select an applicat ion and this information is used by the sys tem to select a
strategy for the design. A L A D I N pursues one target at a t ime and therefore
needs to priori t ize them.

A L A D I N utilizes its da tabase of k n o w n commerc ia l and exper imenta l al loys
for quali tat ive and quanti tat ive compar i sons . Such compar i sons are best m a d e
be tween alloys of s imilar product forms and figure 11 shows how product forms
can be selected.

164 Hul thage , Farinacci , Fox, and Rychener

Once the problem is defined and the search is set up, a cycle of hypothesis
generat ion, selection and evaluat ion is entered. Figure 12 shows a generat ion
phase.

In figure 13, only a quali tat ive evaluat ion is performed. The subsequent
selection phase assigns credibili t ies to the al ternative hypotheses to form a basis
for selection. In this case no quanti tat ive constraints are available that could
have an impact on the selection.

The hypothes ize , select and evaluate cycle adds details of the design
incremental ly and bui lds a tree of hypotheses as shown in figures 1 3 - 1 6 .

6 Conclusions
Alloy design is thought to require a high degree of creativity and intuition.
However , we have found that hypothesize-and-test , abstract p lanning,
decomposi t ion and rule-based heurist ic reasoning can reproduce a significant
port ion of the reasoning used by human designers on prototype cases . The
metal lurgist working with us on the system have concluded that the
representat ion and reasoning are sufficiently powerful to warrant the expansion
of the knowledge base so that it can be used on a routine basis. (The current
A L A D I N system has approximate ly 2400 schemata , 250 C R L - O P S rules, and
200 lisp functions.)

A L A D I N ' s major accompl i shments include:

• represent ing the concepts of a complex domain , the metal lurgy of
A l u m i n u m alloys;

• formulat ing an architecture in which expert ise in the domain can be
readily expressed as product ion rules;

• developing a f ramework and applying a set of techniques that al low
effective coupl ing of symbol ic (qualitative) and numerical
(quantitative) reasoning, within a structure containing various
representat ions of information;

• finding ways to reason quali tat ively with constraints that are
expressed quanti tat ively.

• The system reasons quali tat ively and quanti tat ively about science
and engineer ing prob lems and achieves a deep coupl ing of symbol ic
and numer ic computa t ion [17].

The overall goal of A L A D I N as an industrial applicat ion of AI techniques
has been to m a k e the process of alloy design more product ive [16] . This process
as currently pract iced involves several i terations over the course of five years .
W e are confident that a tool such as A L A D I N can achieve significant
productivi ty improvements and aid in the discovery of better al loys. It can do
this by making the generat ion of al loying exper iments more systematic , by
aiding in the evaluat ion of proposed exper iments , and by a l lowing individual

6. Knowledge-Based Al loy Design 165

Ξ Ξ Ξ Β Ξ
2463 6995 nodes)

!S 1 -RD0-RL3LI1272 (0.4); .
S1-RDD-HLLI12?6 (0.4)

Sl-A00-S0LUTE-nC1280 (β.4)
S1-H00-MG2HL31284 (θ.4)

S1-RDG--S0LUTE-LI«HC1288 (β.4)
S1-RDD-HL2HGLI1292 (θ.4)

Select Hone
nOUSE-R-3: nenu of global connand?!

ACTIVE GOAL INFORMATION

goal name Select-Best
in conte>t Hypothes1s-Se'ec-
for h^octhesis Base'ιne-Zomp m space Structure at levé1 1

ALADIN

ALADIN PROGRESS

jn and'or negnes

snd'or nsgnej
Content Hypothesis-Selection activated.

Sl-fidd-fll2ngl11294 lacks quantitat
.pothesis Sl-Rdd-Solute-Li^ngl29e lacks quan

î hypothesis SI-Rdd-rig2al 31286 lacks quantity
t hypothesis Sl-Rdd-Solute-ngl282 lacks quan'
: hypothesis SI-fidd-fil1 11278 lacks quantitat
• hypothesis SI-fldd-fll31i1274 lacks
! hypothesis Sl-fidd-Solute-Lil2?0 lacks qui

tative constraints
itative constraints

F i g u r e 1 3 : Quali ta t ive density evaluat ion, with user selection.

e y ι 9 Ξ ALADIN

Palm Mftwnr k ί Hi t,

Hrr-HL:ic..:::-9:
mdd-;.OL..-e-_>mg::sî

•«Cl-ftDD-ELEnEriT-n4 •SOLUTIOh-HERT- Τ PERT

F i g u r e 14 : Hypotheses on heat t reatment and composi t ion are added.

166 Hul thage , Farinacci , Fox , and Rychene r

• Ε ALADIN

1

flLA-DIN PROGRESS

::::::: H-.pothesis Si-ftod-fl1 3 1 11 :?2 is -elected ::::::: Conte.-t Mvpothene-E^eluation activated.

Warning: seierted 90a1 Est ι net e-T arget-Proper 11 es has 'ai'ieti · r cor; e-r Mvpofies • ï- E v-a l ue t 10η
Content Hypothesis-Generation activated. Must 00 solution-heat-treat, ouench and age to get precipitates nust add lithiun to get an alpha phase uith 1nhiun nust cV solution-heat-treat in the alpha phase conposition nust be m the selected phase Content Hypothesis-Evaluation activated. natriK contains lithiun and'or nagnesiun -> density lou or nediun Content Hypothesis-Selection activated. The hypothesis PI-Hdd-Heat-Treatl43? lacks quantitative constraints

ACTIVE GOAL INFORMATION

goal name 5elect-6est in context K-DOthesi s-Se1-ect ion *or rivDothesi s S1 -ficJd-P1 Ξ • ι 1Ζ?Ζ m soace Structure at le-e1 1

flLA-DIN PROGRESS

::::::: H-.pothesis Si-ftod-fl1 3 1 11 :?2 is -elected ::::::: Conte.-t Mvpothene-E^eluation activated.

Warning: seierted 90a1 Est ι net e-T arget-Proper 11 es has 'ai'ieti · r cor; e-r Mvpofies • ï- E v-a l ue t 10η
Content Hypothesis-Generation activated. Must 00 solution-heat-treat, ouench and age to get precipitates nust add lithiun to get an alpha phase uith 1nhiun nust cV solution-heat-treat in the alpha phase conposition nust be m the selected phase Content Hypothesis-Evaluation activated. natriK contains lithiun and'or nagnesiun -> density lou or nediun Content Hypothesis-Selection activated. The hypothesis PI-Hdd-Heat-Treatl43? lacks quantitative constraints

flLA-DIN PROGRESS

::::::: H-.pothesis Si-ftod-fl1 3 1 11 :?2 is -elected ::::::: Conte.-t Mvpothene-E^eluation activated.

Warning: seierted 90a1 Est ι net e-T arget-Proper 11 es has 'ai'ieti · r cor; e-r Mvpofies • ï- E v-a l ue t 10η
Content Hypothesis-Generation activated. Must 00 solution-heat-treat, ouench and age to get precipitates nust add lithiun to get an alpha phase uith 1nhiun nust cV solution-heat-treat in the alpha phase conposition nust be m the selected phase Content Hypothesis-Evaluation activated. natriK contains lithiun and'or nagnesiun -> density lou or nediun Content Hypothesis-Selection activated. The hypothesis PI-Hdd-Heat-Treatl43? lacks quantitative constraints

F i g u r e 1 5 : Quanti ta t ive hypotheses are generated.

designers to supplement their own special ized expert ise with that of the
program, which is a pool of expert ise from various sources , helping to fill in
gaps where a specialist may be weak.

Whi le the main objective of this project was to produce an applicat ion system
for our sponsors using developed ideas, the complexi ty of the domain has given
us the opportuni ty to extend the frontiers of artificial intel l igence research. W e
feel that search in the space of abstract mode ls (in our case , microstructure) , has
potential to be applied in other design areas as well , such as the design of other
metall ic or nonmetal l ic materials and other designs that are dominated by non-
geometr ic constraints and require a combinat ion of quali tat ive and quanti tat ive
reasoning. W e also feel that the model of strategic knowledge , with flexible
user control , is a powerful way of combin ing knowledge from mult iple experts
into a single system. W e hope that these ideas will be useful to developers of
future expert sys tems.

A L A D I N ' s present state of comple t ion can be a good starting point for a
variety of engineer ing design prob lems . A l u m i n u m alloy design, as we have
formulated it, is a p rob lem typical of a wide range of alloy / mixture design
problems. These are typified by flexible, opportunist ic applicat ion of
knowledge from several diverse technical areas. The aim in this class of

6. Knowledge -Based Alloy Des ign 167

ALADIN 1

end — no production tru* 256 productions (2463 // 6995 nodes) 76 firings (180 rhs actions)
7 nean conflict set y ne (26 narinvm 117 nean tOKen nenorv s ue 1 S3 n^inuni •

ALADIN PROGRESS
uot: tstinate-iarget-rroperties r a i is ov aerauit. " uofttekt nvpoinësis-uene^atι on 8ctivateo. ' c--" nust do solution-heat-treat, quench and age to get precipitates must add lithiun to get an alpha phase uith lithiun nust do solution-heat-treat in the alpha phase conposition nust be in the selected phase Content Hypothesis-Evaluation activated. natri- contains lithiun and/Or negnesiun -> density 1 ou or neiiyn Content Hypothesis-Selection activated. The hypothesis Pi-Hdd-Heat-Treat1437 lacks quantitative constraints
::::::: Hypothesis PI-Hdd-Heat-Treatl435 is selected ::::::: The hypothesis CI-Hdd-Elenent-11441 lacks quantitative constraints ::::::: Hypothesis Cl-Hdd-E1en*nt-l1439 is selected ::::::: The constraints of hypothesis P2-Solution-Heat-Treatl445 are consist
::::::: Hypothesis P2-So1utlon-Heat-Treatl443 is selected :::::::
The constraints of hypothesis C2-Sc1ute-Constraintsl449 are consiste
::::::: Hypothesis C2-Solute-Constraintsl447 is selected ::::::: Mo hypothesis can be selected on the basis of credibi1ities

ACTIVE GOAL INFORMATION

goal name Displav-Best-Hypothesis in context Hypothesis-Selection for hypothesis Pl-fidd-Heat- T r e a t l 4 35 in space Structure at level 1 with focus Mi 1

ALADIN PROGRESS
uot: tstinate-iarget-rroperties r a i is ov aerauit. " uofttekt nvpoinësis-uene^atι on 8ctivateo. ' c--" nust do solution-heat-treat, quench and age to get precipitates must add lithiun to get an alpha phase uith lithiun nust do solution-heat-treat in the alpha phase conposition nust be in the selected phase Content Hypothesis-Evaluation activated. natri- contains lithiun and/Or negnesiun -> density 1 ou or neiiyn Content Hypothesis-Selection activated. The hypothesis Pi-Hdd-Heat-Treat1437 lacks quantitative constraints
::::::: Hypothesis PI-Hdd-Heat-Treatl435 is selected ::::::: The hypothesis CI-Hdd-Elenent-11441 lacks quantitative constraints ::::::: Hypothesis Cl-Hdd-E1en*nt-l1439 is selected ::::::: The constraints of hypothesis P2-Solution-Heat-Treatl445 are consist
::::::: Hypothesis P2-So1utlon-Heat-Treatl443 is selected :::::::
The constraints of hypothesis C2-Sc1ute-Constraintsl449 are consiste
::::::: Hypothesis C2-Solute-Constraintsl447 is selected ::::::: Mo hypothesis can be selected on the basis of credibi1ities

ALADIN PROGRESS
uot: tstinate-iarget-rroperties r a i is ov aerauit. " uofttekt nvpoinësis-uene^atι on 8ctivateo. ' c--" nust do solution-heat-treat, quench and age to get precipitates must add lithiun to get an alpha phase uith lithiun nust do solution-heat-treat in the alpha phase conposition nust be in the selected phase Content Hypothesis-Evaluation activated. natri- contains lithiun and/Or negnesiun -> density 1 ou or neiiyn Content Hypothesis-Selection activated. The hypothesis Pi-Hdd-Heat-Treat1437 lacks quantitative constraints
::::::: Hypothesis PI-Hdd-Heat-Treatl435 is selected ::::::: The hypothesis CI-Hdd-Elenent-11441 lacks quantitative constraints ::::::: Hypothesis Cl-Hdd-E1en*nt-l1439 is selected ::::::: The constraints of hypothesis P2-Solution-Heat-Treatl445 are consist
::::::: Hypothesis P2-So1utlon-Heat-Treatl443 is selected :::::::
The constraints of hypothesis C2-Sc1ute-Constraintsl449 are consiste
::::::: Hypothesis C2-Solute-Constraintsl447 is selected ::::::: Mo hypothesis can be selected on the basis of credibi1ities

i2'l7'67 14:04:54 aladin HLHDIM:

F i g u r e 16 : Quant i ta t ive constraints are checked for consis tency.

p rob lem is to p roduce a slate of exper iments to perform, some of which may
lead to mater ia ls that meet mos t of the desired propert ies , but at least mos t of
which will lead to new knowledge that can aid further search for better des igns .
K n o w l e d g e in such domains is most ly heurist ic , residing in the exper ience of a
few h u m a n exper ts , whose skills are in high demand in their industrial sett ings.
The best solut ions usually depend on combin ing heurist ic and quanti tat ive
results .

Acknowledgments
W e are grateful to our expert metal lurgis t informants from A L C O A : Marek
Przystupa, Douglas Mar inaro , A. Vasudevan , War ren Hunt , J ames Staley, Phi l ip
Bretz , Ra lph Sawtel l . Thanks also go to Cheryl Begandy and Wal te r Cebulak
for project support and direct ion. Special thanks to Don Kosy for numerous
detai led c o m m e n t s on this manuscr ip t . This research has been supported by the
A l u m i n u m C o m p a n y of Amer ica .

168 Hul thage, Farinacci , Fox, and Rychener

References
1. Boag , W. A. Jr., Reiser , D . B. , Sprowls , D . O., and Rychener , M. D.
" C O R D I A L - A Knowledge-Based Sys tem for the Diagnosis of Stress Corrosion
Behavior in High Strength A l u m i n u m Alloys ." Artificial Intelligence
Applications in Materials Science, Metal lurgical Society of A I M E and A S M ,
Warrenda le , PA, 1986, pp . 123-146. Proceedings of Sympos ium on Oct 8, 1986
in Or lando FL.

2. Brachman , R. J. "T Lied about the T ree s ' Or, Defaults and Definit ions in
Knowledge Representat ion." AI Magazine 6, 3 (1985) , 80.

3 . Knowledge Craft, Version 3.1. Carnegie Group , Inc. , 650 C o m m e r c e Court ,
Station Sq., Pi t tsburgh, P A 15219, 1986. Knowledge Craft is a t rademark of
Carnegie Group Inc.

4. Dixon, J. R. "Artificial Intel l igence and Design: A Mechanica l Engineer ing
View." Proceedings of the fifth national Conference on Artificial Intelligence,
A A A I , Los Altos , C A , August , 1986, pp . 872-877 .

5. Erman , L. D. , Hayes-Roth , F. , Lesser , V. R. and Reddy D. R. "The Hearsay-
II Speech-Unders tanding System: Integrat ing Knowledge to Resolve
Uncertainty." Computing Surveys 12, 2 (June 1980), 214 -253 .

6. Farinacci , M. L., Fox, M. S., Hul thage , I. and Rychener , M. D. "The
Deve lopment of A L A D I N , an Exper t Sys tem for A l u m i n u m Alloy Design."
Third International Conference on Advanced Information Technology, Gott l ieb
Duttwei ler Institute, Zur ich, Switzer land, November , 1986. also Tech. Rpt.
C M U - R I - T R - 8 6 - 5 .

7. Farinacci M.L. , Hul thage I., and Przys tupa M.A. "Acquir ing and
Represent ing Knowledge about Material Design." In Knowledge Based Expert
Systems in Engineering: Planning and Design, Sr iram D. and Adey R.A., (Ed.) ,
Computa t ional Mechanics Publ icat ions , Southampton , UK, 1987, pp . 99-114.
Presented at the 2nd International Conference on Appl icat ions of Artificial
Intel l igence in Engineer ing.

8. Fox, M. S. "On Inheri tance in Knowledge Representat ion." Proc. Sixth
International Joint Conference on Artificial Intelligence, 1979, pp . 282-284 .

9. Hadley, G. Nonlinear and Dynamic Programming. Addison-Wes ley ,
Reading , M A , 1964.

10. Hayes-Roth , B . "A Blackboard Archi tecture for Control ." Artificial
Intelligence 26 (1985) , 2 5 1 - 3 2 1 .

11. Hornbogen , E. "On the Microst ructure of Al loys ." Acta Metall. 32, 5
(1984) , 615 .

6. Knowledge-Based Alloy Design 169

12. Hul thage , I., Przystupa, M. , Farinacci , M. L. and Rychener , M. D. "The
Metal lurgical Database of A L A D I N - An Alloy Design Sys tem." Artificial
Intelligence Applications in Materials Science, Metal lurgical Society of A I M E
and A S M , Warrenda le , PA, 1986, pp . 105-122. Proceedings of S y m p o s i u m on
Oct 8, 1986 in Or lando FL.

13. Hul thage , I. "Quanti ta t ive and Qual i ta t ive Mode l s in Artificial
Intel l igence." Coupling Symbolic and Numerical Computing in Expert Systems,
II, Ams te rdam, T h e Nether lands , 1988, pp . 39-46.

14. Hul thage , I., Rychener , M. D. , Fox, M. S. and Farinacci , M. L. "The Use of
Quant i ta t ive Databases in A L A D I N , an Alloy Des ign System." Coupling
Symbolic and Numerical Computing in Expert Systems, Ams te rdam, The
Nether lands , 1986. Presented at a W o r k s h o p in Bel lvue , W A , Augus t , 1985;
Also Tech . Rpt . C M U - R I - T R - 8 5 - 1 9 .

15. Hul thage , I., Przystupa, M. , Far inacci , M. L. and Rychener , M. D. "The
Representa t ion of Metal lurgical Knowledge for Alloy Design." Artificial
Intelligence for Engineering Design, Analysis and Manufacturing (AI EDAM) I,
3 (1988) .

16. Khe rmouch , G. "Alcoa Vigorous ly Pushes an Array of AI Projects ."
American Metal Market (July 2 1987).

17. Kitzmiller , C. T. and Kowal ik , J. S. "Symbol ic and Numer ica l Comput ing
in Knowledge -Based Sys tems." Coupling Symbolic and Numerical Computing
in Expert Systems, Ams te rdam, The Nether lands , 1986.

18. Mar inaro , D . and Morr is , J. W . Jr. "Research towards an Exper t Sys tem for
Mater ia ls Design." Artificial Intelligence Applications in Materials Science,
Metal lurgical Society of A I M E and A S M , War renda le , PA, 1986, pp . 49 -77 .
Proceedings of S y m p o s i u m on Oct 8, 1986 in Or lando FL.

19. Requicha , A .A.G. "Representat ions for Rigid Solids: Theory , Me thods and
Sys tems." Computing Surveys 12, 4 (December 1980), 437-464 .

20 . Rychener , M. D. , Farinacci , M. L., Hul thage , I. and Fox, M. S. "Integrat ing
Mult iple Knowledge Sources in A L A D I N , an Alloy Design System." Fifth
National Conference on Artificial Intelligence, A A A I , Phi ladelphia , Augus t
11-15, 1986, pp . 878-882 .

2 1 . Sacerdot i , E. D. "Planning in a Hierarchy of Abstract ion Spaces ." Artificial
Intelligence 5 (1974) , 115-135.

22 . Stefik, M. J. "Planning with Constraints (M O L G E N : Part 1); P lanning and
Meta-Planning (M O L G E N : Part 2) ." Artificial Intelligence 16 (1981) , 111-170.

23 . Unde rwood , Ε. E. Quantitative Stereology. Addison-Wes ley , Read ing ,
M A , 1970.

1 7 0 Hul thage , Farinacci , Fox, and Rychener

24 . Vasudevan , A. K., Ludwiczak , Ε. Α., Baumann , R. D. , Doher ty , R. D. and
Kersker , M. M. "Fracture Behavior in Al-Li Al loys : Role of Grain Boundary δ."
Materials Science Engineering 72 (1985) , L 2 5 .

2 5 . W o o d s , W . A. " W h a t ' s Important Abou t Knowledge Representa t ion?"
Computer 16, 10 (October 1983), 22-27.

Part 2 Expertise

The Nature of Expert Decisions
In Chapter 7, Akin presents a study of the archi tec t ' s expert ise . This is done
using the techniques of cogni t ive psychology , part icularly the Newel l and S imon
[1] approach of protocol analysis . Akin descr ibes a series of exper iments in

which architects , s tudents and non-archi tect professionals solve s imple layout
design prob lems . Archi tects are shown to be mos t proficient at s tepping back
and redefining their overall approaches to p rob lems . They use abstract scenarios
that have been built up by years of exper ience , and are able by using these to
s imul taneously resolve mos t of the p rob lems posed by difficult spatial and
organizat ional constraints . Other professionals relied most ly on m e m o r y of
layouts that they were familiar with, whi le s tudents used more formal tr ial-and-
error search techniques without as m u c h higher- level guidance from an overall
plan. A study such as this proves the effectiveness of the approach, and could
be applied to any engineer ing discipline to improve unders tanding of the design
process and of the details of design expert ise .

In Chapter 8, W i e c h a and Henr ion present ev idence for how experts work by
exhibi t ing a user interface approach that has proven effective in support ing
expert dec is ion-making activit ies. In order for computer -a ided design tools to
be effective, we mus t create interfaces that provide the user with enough
information to m a k e decis ions , but not so much as to ove rwhe lm the user. The
information presented mus t also be organized so that the user can have a clear
picture of where he or she is in the overall design search; i.e., the user mus t not
get lost or disoriented. The authors discuss graphical approaches to such
presentat ion issues, and draw on some studies of difficult pol icy decision
problems . T h e results have important implicat ions for all compute r tool
designers , and will be increasingly important as the sys tems we use b e c o m e
more comprehens ive and integrated, and thus complex .

Both of the papers in this Part have a bear ing on the systems presented in Part
3 . The research of Schmit t , Chapter 11 , is especial ly pert inent in this regard,
since it deals with architecture and with an integrated system whose complexi ty
demands a very effective graphical interface approach.

Expert Systems for Engineering Design Copyright © 1988 by Academic Press, Inc.
All rights of reproduction in any form reserved.

171 ISBN 0-12-605110-0

172 Part 2. Expert ise

References
1. Newel l , A. and Simon, H. A. Human Problem Solving. Prent ice-Hall ,
Eng lewood Cliffs, NJ , 1972.

Expertise of the
Architect
ÔMER AKIN

Abstract
As expert sys tems begin to be applied to architectural design, the need arises to
unders tand the nature of archi tec ts ' expert ise . It is also useful to cons ider the
nature of des ign p rob lem solving in general . H o w architects m a k e decis ions is
studied in this chapter by s tudying behavioral protocols of s imple design
sessions, a l lowing compar i son of archi tec ts ' per formance with that of s tudents
and professional non-archi tects . Archi tects are found to rely on scenarios ,
powerful problem-st ructur ing devices , dur ing the process of applying their
knowledge to p roduce better solut ions. A number of implicat ions for compute r
aids are der ived from the study.

1 Expertise and the Professional
Archi tecture , like mos t of the engineer ing fields, entered the age of comput ing
through the use of Compute r -Aided Draft ing tools dur ing the ' 60s [16].
Subsequent ly , as the struggle to realize the levels of efficiency p romised by
automat ion kept intensifying, new research goals for comput ing appl icat ions in
architecture emerged . These included the under taking of m u n d a n e tasks with
greater speed and accuracy, improving communica t ion be tween var ious
bui lding-design professionals , responding to a greater number of design
constraints in a shorter t ime, and reaching greater levels of precis ion and rigor in
the design of bui ld ings . These new avenues lead to the deve lopment of a myr iad
of tools suitable for des ign and product ion of bui lding specifications, such as
integrated databases , solids modele rs , rectangular pack ing rout ines , schedul ing
and other information m a n a g e m e n t tools .

As architects got busy with integrat ing these tools into the daily rout ine of the
office, universi t ies and R & D divisions of corporat ions were busy with the
deve lopment of a new set of tools for design. These , general ly called
knowledge-based expert sys tems, a t tempt to br ing tehniques developed in the
area of Artificial Intel l igence to bear on design prob lems . Today a variety of
au tomated tools exist starting with ones that are for the initial concept ion phase

Expert Systems for Engineering Design Copyright © 1988 by Academic Press, Inc.

173
All rights of reproduction in any form reserved.

ISBN 0-12-605110-0

174 Ô m e r Akin

of des igns through to ones for the product ion of construct ion documents ; tools
which can generate al ternatives based on parameters specified by the architect;
tools which can verify consis tency and desired performance levels in alternative
solutions; tools which bring a body of expert knowledge to bear on these
generat ive and evaluat ive tasks.

Whi le these goals present eno rmous chal lenges for architects and researchers ,
there is an equal ly, if not more , important s imul taneous chal lenge for them.
This is the codification of the archi tec t ' s expert ise . In spite of the very long and
by some measures i l lustrious history of the bui lding activity carr ied out by
architects, there is precious little known about the expert ise of the architect.
There is also constant debate and d isagreement about the correctness or
goodness of design even a m o n g exper t s .

1
 Therefore , before we consider the

expert ise of the architect in empir ical terms and the implicat ions of this for
automated design, it is necessary to consider , albeit briefly, the sources and
definitions of the expert ise of the architect.

Archi tects have consistent ly tried to dist inguish their profession from its
sister professions, or in some instances crafts, since its early beginnings in the
17th and 18th centuries . The pr imary reason for this has been the need to
protect the business of the architect from invaders of a hosti le kind. In the past
these invaders have been the craftsmen and the artisans involved in building
trades. More recently the threats have also been felt with respect to builders and
developers as well . In the mean t ime , the area of expert ise of the architect has
been defined and redefined numerous t imes , somet imes as a result of reactionary
posit ions towards potential invaders and at other t imes in order to identify it
with those of exist ing and more sympathet ic pract ices .

In the 19th Century the architects al igned their goals with that of the artist in
an at tempt to elevate themselves above the craftsman within the building
industry. At the turn of the century, this was fol lowed by a rea l ignment with the
goals of the political elite, then in the '20s and '30s the industrial revolution;
next in the '50s and '60s the medical and legal professions; and finally in the
'70s the manage r and the developer . It is in such a complex cultural mil ieu that
the definition of the area of expert ise of the architect as a professional has
evolved. Thus , the current popular image of the architect as one w h o is
knowledgable about design and aesthetic concerns dates back to the early days
of self- identif ication.

2

'in fact, this is an issue which presents a particular difficulty in evaluating the results of the
empirical data we will discuss in Section 2. 2

The political and professional contributions of two of the leading firms of 19th century America,
by R. M. Hunt and McKim Meade and White provide some of the better known contributions of
architects to the "high-style" image attributed to them even today [24]. In fact it is the efforts of
such firms in the political, economic, and intellectual arenas which has lead to the creation of the
modern professional powerhouses of the free world: ΑΙΑ in the US and RIBA in Great Britain.

7. Expert ise of the Archi tect 175

Today , insti tutions of architecture both in educat ional and professional te rms
are inheri tors of these historical c i rcumstances . T h e salient assumpt ion
under lying the entire process of evolut ion is that architects possess an expert ise
which is ge rmane to their field of pract ice . A n d in a sense every book ever
written on the subject from the first k n o w n source, enti t led Ten Books on
Architecture by Vit ruvius [28] , descr ibes an aspect of this expert ise . In spite of
the abundance of scholarly references of this sort, there is very little k n o w n
about wha t as a professional the architect is mos t qualified and skilled at doing.

Dur ing the last two decades w e have seen the emergence of a n u m b e r of
studies that deal with this subject. S o m e of these works see the archi tec t ' s
expert ise in terms of a skill for representat ion [19, 27] . Others see it in terms of
methodology and at tempt to prescribe the design process [6, 7, 15, 2 1 , 30] . Yet
others see it in terms of codifying and describing the intuitive design process as
a form of information process ing [4, 9, 25 , 26 , 29] .

W o r k in the area of representat ion, the first approach, part icularly in the area
of shape g rammars , has enabled the formal and systematic explorat ion of
bui lding types and m a d e the study of rational dec is ion-making easier . At tempts
at prescr ibing how the design process ought to work, have lead to new insights
for designers and suggested new forms of pract ice . Part icipatory p lanning,
design by pat terns , per formance measures , and specifications are some of the
concrete results of this approach. In spite of these remarkable advances nei ther
of these two approaches explains the expert ise under ly ing the use of the me thod
and the skill the architect general ly br ings to his pract ice .

The third approach , the descript ion of the intuitive design process , in essence
is both an i l lusive and strangely enough a more tradit ional preoccupat ion than
the former two . Vi t ruvius opens the first chapter of his first book [28] with a
definition of the architect that foreshadows even contemporary ones :

"The architect should be equipped with knowledge of many branches of study
and varied kinds of learning, for it is by his judgement that all work done by the
other arts is put to test. This knowledge is the child of practice and theory.
Practice is the continuous and regular exercise of employment where manual
work is done with any necessary material according to the design of a drawing.
Theory, on the other hand, is the ability to demonstrate and explain the
productions of dexterity on the principles of proportion." (p. 5)

To cite a considerably more recent source, Encyclopaedia Britannica [12]
defines architect as:

"one who, skilled in the art of architecture, designs buildings, determining the
disposition of both their interior spaces and exterior masses, together with the
structural embellishments of each, and generally supervises their erection."

The same source goes on to explain the involvement of the architect of the past
with the construct ion process and his d iminishing role, dur ing current t imes , in
this respect .

As both sources suggest , the task for which the architect seems to bear the
greatest responsibi l i ty, and therefore at which is mos t skilled, is design.

176 Ô m e r Akin

Vitruvius attributes both pract ice and theory to skills directly related to
designing, namely , translating from drawings and using principles of proport ion.
Encyclopaedia Britannica refers to determining disposit ion of spaces and
mass ing and structural embel l i shment as aspects of design which const i tute the
archi tect ' s expert ise . These descript ions, while insightful and probably correct,
at best rely on their au thor ' s personal observat ions or, at worst , on second hand
narrat ions of similar observat ions by others .

Systemat ic and explici t studies of the design process is a recent area of study
tr iggered in the ' 60s and '70s after the advent of Sys tems Theory , Operat ions
Research, and computers . In spite of the relative immatur i ty of the area the
results so far are sufficient to show that the archi tec t ' s design process is both
more diverse and he terogenous than what is suggested in the two sources quoted
above , or in other scholarly works in the area, for that mat ter [4]. Design
decis ions, from architectural p r o g r a m m i n g

3
 to construct ion or shop-drawing

phases of the design del ivery process , are made with the part icipation of many
others , such as cl ients, users, engineers , public officials, communi ty
organizat ions , site designers , developers , f inanciers, project managers , and
contractors .

Knowledge brought to bear on the problem and the procedures of decis ion
making also vary with each part icipant . Due to the diversity of the sources of
this knowledge and the power of control which comes with the possession of
knowledge , architects more often than not are mere part icipants rather than
leaders in this process . T h e single phase of this complex process in which the
architect is still the sole decis ion maker is that of preliminary design. It is
generally bel ieved that the essentials of the archi tec ts ' creation are shaped
during this phase . This is where the des igner exercises his creat ive input and
develops the central concept for the entire design which is critical to the
deve lopment of all of the other phases . As a consequence , prel iminary design
among all the other phases of the design process , such as p rogramming , design
development , working drawings , b idding, construct ion, and so on, is the one
which conforms to s tandards and convent ions the least. And also, it is regarded
both as one that is mos t relevant to the archi tec t ' s expert ise and one that is most
difficult, if not impossible , to descr ibe with any degree of precision.

Recent work shows both tangible progress and promise towards accelerat ion
of research results in the future [2, 3 , 5, 11, 13, 17, 29] . In this Chapter we shall
review some of the recent f indings about prel iminary design and try to descr ibe
the expert ise of the architect based on these findings. Obvious ly , in light of the
scope of the entire vo lume , our effort in this chapter will be confined to only a
few of the most salient issues of this broad topic. Section 1 introduces concepts

3
 An architectural program, distinct from a computer program, is the set of functional and

performance specifications which must be adhered to in order to develop an architectural solution.

7. Expert ise of the Archi tect 177

fundamental to this area. Sect ion 2 presents f indings of recent empir ical work
about the expert ise of the architect. And Section 3 reviews the salient f indings
in relation to impl icat ions for Compute r -Aided Des ign applicat ions.

1.1 Architectural Design Problems
S o m e of the mos t important insights about the archi tec t ' s expert ise c o m e from
studies that show, in terms of prel iminary or conceptual design, h o w well
architects do in compar i son to lay people [2, 3 , 5, 13, 14]. Foz [13] reports that
architects , dur ing the developent of a parti,

4
 perform much better than people

not trained as architects because they:

• examine the p rob lem at breadth before selecting a part icular
approach to the solution,

• sketch profusely as they consider ideas,

• debate the full implicat ions of even those ideas which have no a
priori l ikel ihood to succeed before they are discarded,

• avoid adopt ion of any solution until after a number of strong
al ternatives are considered, and

• use solut ions k n o w n from prior exper ience to develop solutions for
the present p roblem.

Henr ion [14] , m o r e so than highl ight ing the differences be tween architects
and non-archi tects , has shown some of the remarkable similarit ies that exist
be tween them. In solving well-defined space p lanning prob lems , both architects
and lay people use similar approaches while work ing towards satisfying
predefined constraints . These results suggest that architects , whi le clearly
different in their approaches to des igning in general , are indist inguishable from
others when it comes to satisfying a set of predefined constraints .

Is this a contradict ion in te rms or is there a way of explaining how it may in
fact be possible? It turns out that the answer to this quest ion points towards a
parad igm which represents one of the critical ingredients of the archi tec t ' s
expert ise . This parad igm is the extra ingredient which is needed for solving
ill-defined p rob lems and thus explains the differences in the findings of Foz and
Henr ion as well as many other researchers w h o have studied the same topic.
This is the central quest ion we will try to address in this chapter .

1.2 Ill-Defined Problems, Weil-Defined Sub-Problems
Let us now consider p rob lem solving in general te rms before reviewing specific

4
A term borrowed from the Ecoles Des Beaux Arts to refer to a diagram, usually in the form of a

floor plan, of the basic concept of a design.

178 Ô m e r Akin

observat ions about design prob lem solving. Many ordinary p rob lems , puzzles ,
and quest ions are solvable because they exist in a context of wel l -unders tood
ground rules. W h e n familiar with the pr inciples of algebra, it is trivial to solve a
set of s imul taneous equat ions that have a match ing number of equat ions and
unknowns . W h e n knowledgeab le about reading road maps and signs, it is an
easy task to travel from Pi t tsburgh to Wash ing ton , D.C. These are typical
examples of well-defined p rob lems .

Other p rob lems , some extraordinary, others quite ordinary, present more
chal lenging c i rcumstances . F inding a new house to buy , especial ly in a new
town; playing the stock market ; starting an au tomobi le which refuses to start;
designing a new kitchen; are all examples of this category. Here , the problem-
solver or the designer also has to use principles and convent ions at least similar
in form to those used in solving well-defined prob lems . The difference lies in
finding ways to bring these principles to bear on the p rob lems at hand which
ordinari ly nei ther beg nor readily accept such appl icat ions.

For example , the au tomobi le which refuses to run may have stalled due to a
failure of the distr ibution system or alternatively due to the failure of the
condenser . One may or may not have all of the necessary tools to make the
diagnosis or the repair that is needed. Fur thermore the problem may be solved
complete ly extraneously by taking a bus , taking a taxi, or towing the automobi le
to a garage. Hence the solution to the problem is a function of the statement of
the problem. Is the p rob lem that one can not go to work or that one can not sell
the auto due to the b reakdown? Is the p rob lem to k n o w what is wrong or is it to
rectify it; and in this context what does "to rectify it" really mean?

In the case of p rob lems resembl ing this latter set, which are usually called
ill-defined, it is necessary to know:

• how to decompose the ill-defined prob lem into well-defined parts ,

• how to resolve these well-defined parts , and

• how to reassemble these partial solutions into a general solution for
the entire p rob lem [25] .

In most recent li terature in the area, this skill has been called problem-
structuring [2] or puzz le -making [8]. P rob lem structuring turns out to be one
activity in which the exper ienced architect , compared to the lay person, displays
a remarkable skill, providing evidence about the true nature of his field of
expert ise [4, 5] .

1.3 Problem Structuring
The first step in solving any design problem involves the descript ion of what
needs to be accompl ished and with what e lements and resources this mus t be
accompl ished. Des igning a house for example can be descr ibed as a need to

7. Exper t ise of the Archi tect 179

organize a part icular set of rooms (i.e., k i tchen, d ining room, l iving room,
bedrooms , ba th room, and so on) in a part icular way on a part icular s i t e .

5
 The

determinat ion of the rooms which will const i tute the house and their attributes
forms the initial structure of the design prob lem. Given this or rather having
descr ibed this in some form the architect can begin to manipula te the e lements
of the house with a clear evaluat ion func t ion

6
 in mind.

As the architect develops solut ions or partial solutions that begin to meet
some of the requirements of the initial p rob lem descript ion, comprehens ive
evaluat ions of these solutions are performed. Next , the architect invariably
alters the structure of the problem in ways which lead h im to m o r e successful
results. A c o m m o n form this restructuring takes is the addit ion or delet ion of
p rob lem constraints or solution parts (rooms , furnishings, etc.) from the initial
p rob lem descript ion.

Restructur ing through constraint modif icat ion means the al teration of both
the data used by the architect and the process to be applied to this data. For
example , adding a set of new constraints or solution parts to the p rob lem during
restructuring implies that, in addit ion to satisfying these new constraints in the
new solution the archi tect ' s focus of attention must also shift to these
componen t s of the design problem almost immedia te ly . Similar ly, delet ing a set
of constraints or solution parts implies that these constraints or solution parts
should not be included in the solution and other parts of the solution affected by
these changes have to be considered first dur ing the next iteration of d e s i g n .

7

Studies of a rchi tec ts ' behaviors [4] show that constraint modif icat ion occurs
as a result of detect ing conflicts in a given partial solution. As the architect
real izes, for example , that t w o functions p laced side by side interfere with each
o ther ' s pr ivacy he will modify the constraints of the problem to induce design
measures which will eradicate the conflict ei ther by relocat ing one of the
functions or by introducing walls to separate them. This example illustrates the
point that conflict detect ion is one of the keys to problem restructuring v iewed
as a process of developing successive approximat ions towards a viable solution.

Des ign , obviously , is not purely a process of successive approximat ions . In
fact more often than not architects shift their orderly strategy of "evolving" a
solution, a lmost wi thout warning. This suggests that p rob lem restructuring takes
place in response to things other than conflict detect ion, for example through the

5
It is obvious that the actual design of a house is a much more complex process with extensive

technical issues involved. For the purposes of this discussion it has been abbreviated to one of its
essential aspects, i.e., spatial organization.

evaluation function, here, refers to an objective measure of success in the sense it is used in
optimization problems. 7

However, some constraints deleted due to the overconstraining of the problem are not totally
discarded but treated as secondary constraints which can be met but do not need to be met.

1 8 0 Ô m e r Akin

examinat ion of alternative solutions which m a y or may not be related to the ones
under considerat ion. Even in cases where successive ref inements of current
solutions are viable, al ternatives may be preferred over them. This is largely
due to the recognit ion of al ternatives as counterpoints to current considerat ions
or as opportuni t ies that open the door for mult iple solutions.

1.4 Categories of Expertise
Before we examine any exper imenta l results in detail let us consider a general
descript ion of the archi tec t ' s expert ise based on the prel iminary notions
reviewed up to this point . As implied above , the architect, in order to resolve
ill-defined design p rob lems , must be skilled both at resolving well-defined ones
and at redefining the ill-defined problem as a sequence of well-defined ones . In
more concrete te rms, a sizable port ion of his training is geared towards
configuring structural e lements , stairs, door swings , and so on. These are well-
defined sub- problems as they exist in complete ly specified contexts , as part of a
design or a site. In addit ion, as the architect gains exper ience in design, he
becomes even more skilled in knowing when and how to perform these sub-
tasks, in other words , how to structure the design problem to match his personal
capabil i t ies.

It has been shown repeatedly in protocol studies of designers that, given a
design problem, the architect first sets out to identify the important requirements
of the problem [4]. Then he selects from these requirements a well-defined
subset of the design problem: for example , configure the roof form, develop a
plan parti, lay out the stairs, locate the dr iveway, and so on. Each subset of
requirements defines a certain sub-problem. As each sub-problem is solved the
architect realizes new requirements that mus t be met and priorities that must
exist be tween these requi rements . As he incorporates these new priorities he in
effect restructures the problem, setting up new sub-problems to solve. Cycl ing
be tween different p rob lem structures leads h im eventual ly to the best set of
requirements and responses which he can develop.

In (re)structuring p rob lems , part icularly ones that deal with compos ing
functional entit ies, such as the ones given in an architectural p rogram, the
architect uses several important strategies. These can be grouped under four
topics: scenarios , al ternatives, evaluat ion, and prototypes .

1.4.1 Scenarios
Architects create scenarios that organize parts of the architectural p rogram

into a plausible operat ional order. A scenario is an organizat ional idea, such as a
hierarchical office, an open c lass room school , a theatre in the round, where a
consistent behavioral idea is in evidence . Such a scenario defines the principal
proximit ies , hierarchical relat ionships, pr ivacy and access patterns which have
to exist be tween parts of the program. It also provides conceptual constructs
which can be consul ted in answer ing quest ions that arise dur ing design: Is the

7. Expert ise of the Archi tect 181

program consis tent with its context? Is the site appropria te? Should there be
other functions ant ic ipated? H o w can change of uses be accommoda ted over
t ime? In summary , the scenario is the proverbial "better" check-l is t of issues
which mus t be cons idered during design.

1.4 .2 Alternat ives
Architects create new prob lem structures, often with the help of al ternative

scenarios , in order to avoid settling for a mediocre solution. In operat ional
te rms, al ternatives al low the architect to select among several satisficing
solutions [25] br inging the final solution closer to a pareto optimal one [22] .
Different scenarios often enable the des igner to study solutions which are of
comple te ly different types . This leads to the considerat ion of diverse
possibil i t ies and a more comprehens ive unders tanding of the ramificat ions of
design choices .

1.4 .3 Evaluat ion
As solut ions or partial solutions are deve loped architects evaluate the degree

to which these satisfy the overal l goals of their des igns . If they find that certain
requi rements are restrict ing the emergence of "good" solution ideas , then these
requirements b e c o m e candidates for be ing discarded. If some desired solutions
suggest requi rements not yet identified in the p rogram, these b e c o m e addenda to
the requi rement list. If new scenarios are suggested by the earl ier p rob lem
structures, then an entirely new set of requi rements are deve loped and a new
agenda of explorat ions is identified. Thus , evaluat ion of earl ier design steps
becomes the key for finding successful future steps for the design process .

1.4.4 Prototypes
Architects use formal and physical ideas to create p rob lem structures. W h a t

if the site were over the waterfall rather than on the opposi te bank? W h a t if the
bui lding had no interior part i t ions? W h a t if the bui lding was a glass box? These
hypothet ical "what-if ' quest ions illustrate historical c i rcumstances surrounding
the design of Fal l ingwater by F. L. Wr igh t or the Farnswor th House by Mies van
der Rohe . These c i rcumstances emerged from physical considerat ions and were
so a l l -encompass ing that the requi rements for the entire p rob lem were developed
from these decis ions . In other words , the p rob lem structure was the clear result
of a physical order rather than an operat ional one , such as the ones cited above .
In the fol lowing section we shall examine each of these strategies in greater
detail , based on empir ical results .

2 Empirical Study of Problem Structuring by
Architects

In a series of publ icat ions by Akin , et al. [2, 3 , 5] the p rob lem structuring
behavior of designers as well as non-des igners has been closely studied. In their

182 Ô m e r Akin

latest publicat ion, entit led "A Parad igm for Prob lem Structuring in Design," the
authors focus on the mechanics of the problem structuring process and draw
specific conclus ions about the expert ise of Archi tects (A) in compar i son to both
Students (S) of architecture and professionals w h o are Non-Archi tec ts (N) .

In this study, protocols of six subjects from each of these categories were
collected. Each subject was given half an hour and asked to solve a space layout
problem. The problem was to al locate four functional areas, a Conference room
(C), a Chief Eng inee r ' s room (CE) , a room for two Staff Engineers (SE) and a
Secretary area (S) in a given site. There were three different sites, square,
rectangular , and L-shaped, each equipped with two exterior entry ways and three
windows , shown in cardboard cutout form. The functional componen t s of the
problem were also represented as two-dimensional cardboard cutouts of the
furniture pieces in 1/4" = Γ - 0 " scale. Exper imenta l design consis ted of two
subjects from each of the three subject categories solving the layout p rob lem for
each of the three sites.

Design behavior of all subjects were recorded on videotape. These protocols
were transcribed as text and d iagrams. The designs developed at the end of each
exper imental session are shown in d iagrammat ic form in Figures 1, 2 , and 3.
Transcr ipt ions of subjects ' verbal izat ions, which we shall refer to throughout
this chapter , were in turn codified as operat ional segments and subsequent ly
analyzed for under lying prob lem solving and p rob lem structuring behaviors .
Be low we shall discuss the results of this work in terms of the four strategies
outl ined above.

2 . 1 Architects vs. Non-Architects
A primary quest ion we asked was how the performance of the Archi tects ,
compared to the Non-Archi tec ts and Students in general terms. Fur thermore , we
asked how these differences expla ined aspects of the problem structuring
process in design. In evaluat ing the subjects ' per formance , a pr imary cr i térium
used was the satisfaction of design constraints in the final solutions proposed. In
all of the protocols examined , these constraints were related to at least one of
five general categories: zoning of functions, efficiency of use , pr ivacy of use,
circulation and control of flow, and use of windows .

Zoning of functions deals with the division of available floor area into parts
which correspond to individual or groups of functions required in the program.
This is not only for the al location of adequate space for each function but also
for insuring proper spatial contiguity a m o n g the parts .

Efficiency of use is concerned with the appropria teness of the floor area
al located to the various functions called out or implicit in the p rogram, such as
circulation areas. C r a m p e d ar rangements as well as ones that are too loose are
equally object ionable p rob lems , because , often, looseness in one part implies
that other parts are depr ived of space which might have been otherwise
available. Pr ivacy of use includes constraints that require privacy needs of each

7. Exper t ise of the Archi tect 183

function and avoidance of pr ivacy violation due to proximity of other functions
or circulat ion areas. A private function too close to the main entrance, for
instance, is problemat ic , jus t as a publ ic function which is isolated from publ ic
access .

Circulat ion and control of flow has to do with establ ishing proper access
l inks be tween functions that require them. Fur thermore , control of publ ic access
through the strategic p lacement of the "reception" function and ease of access
without t respassing through other use spaces are also important issues for proper
circulat ion.

Use of w indows stipulates the al location of natural dayl ight and venti lat ion to
those functions that need it wi thout violat ion of the operat ionali ty of the exist ing
windows . By the same token, proximity of w indows to h u m a n functions is a
generic requi rement which mus t be met in mos t c i rcumstances .

The sites, due to their o w n formal configurat ions, a l lowed or d isa l lowed
certain geometr ic layouts as solutions and influenced the ability of the subjects
in satisfying these constraints . Let us now turn our at tention to the des igns
developed for each of these three sites.

2.1.1 T h e L Site
In the case of Site 1, that is the L-shaped site (Figure 1) a natural , topological

match be tween the site and the required functions (such as the one for Site 2,
which is d iscussed be low) did not exist . Thus , it was necessary to part i t ion the
site into two or three rectangles , each of which cor responded to a topological
part of the L-shape , such as the wings and the corner , in order to a cco mmo d a t e
the major componen t s of the p rogram, namely , Chief Engineer (CE) ,
Conference (C) , Staff Engineers (SE) , and Secretary (S). These p rogrammat ic
componen t s , in turn, had to be organized into two or three logical clusters in
order to match them with the part i t ions of the site.

This was accompl i shed in the case of the two Archi tec t ' s (A l , A4) solut ions
by l inking S with S E and pair ing C with C E . In one case (A l) S and S E occupy
the corner of the L-shaped site leaving the wings of the L to C and C E , and in
the other (A4) the same functions occupy one of the wings of the L leaving the
other wing to C and C E . In each case the access , entry, circulat ion, zoning of
functions, use of w indows , efficient use of floor area, and pr ivacy issues are
virtually problemless .

In the case of the Non-Archi tec ts and the Students there is no indication
support ing a similar interpretat ion of the topology of the site. T h e ou tcome is a
haphazard part i t ioning of the space into rooms and areas result ing in the division
of w indows by part i t ions (N I , S5) , c ramped and inefficient use of floor area
(N l , N 4 , S2) , artificially lit spaces (S2, N4) , and unclear circulat ion paths (N4,
S2) .

F i g u r e 1: Solut ions for the L-shaped site.

2.1.2 T h e " S q u a r e " Si te

In the case of site 2, the "square" site (Figure 2) , the topological structure of the
site and its cor respondence to the p rogram is an obvious clue and was utilized by
all subjects in their solut ions, wi thout except ion. Given the proport ions of the
site and the location and number of w indows and doors the only viable solution
has been to place the three engineers near the window side and C and S on the
door side. In spite of the need to provide natural light and venti lat ion for S none
of the subjects were able to solve this p rob lem and decided that it was not
possible to do so without giving up more important things from their solutions,
namely the zoning of the entire layout.

Having resolved the general solution in at least topological terms the only
improvements the subjects could affect on top of this had to do with the
efficiency of use of the floor area, access be tween rooms , pr ivacy, and
organizat ional needs of the offices. Five of the solutions (two by Students , two
by Non-Archi tec ts , and one by an Architect) enclosed C by walls . Three of
these (N2, N 5 , S I) created ha l lways on all three sides of C causing severe
inefficiencies in floor area usage. The other two (A5 , S4) took advantage of the
second entrance and created a private entrance way into C thereby including
more useful floor area in C. The sixth subject (A2) avoided the problem entirely
by enclosing C E and thus e l iminat ing privacy-related conflicts be tween C and
C E .

Both Archi tects (A2, A5) placed S in close proximity to the main entrance
and paired up the two SE in such a way that they enabled the secretary to
perform the role of "receptionist" with respect to all three engineers . Also S
became a natural circulation h u b and social center for the entire office. In the
case of the two Non-Archi tec ts and the Student (N2, N 5 , S I) w h o enclosed C on

7. Expert ise of the Archi tect 185

F i g u r e 2 : Solut ions for the "square" site.

all three sides this was not possible . The other Student (S4) w h o enclosed C on
two sides placed C E behind C creat ing a very difficult circulat ion path be tween
S and C E which had to pass through SE.

2 .1 .3 T h e R e c t a n g u l a r Si te
In the case of Site 3 , the rectangular site, the problem was one of laying out

four rooms on a l inear relat ionship based on a set of non- l inear functional
requirements and then to fit it into a long rectangular space with three windows .
To resolve the difficulty of three w indows for four functions, a zoning strategy
similar to the one used on Site 1 is needed . T o solve the p rob lem of circulat ion
in a long and nar row site requires the p lacement of the mos t frequently accessed
functions in the center. Finally it is also necessary to min imize the doubl ing up
of functions a long the short, critical d imens ion of the site.

Four of the subjects (A6, N 3 , N 6 , S6) a t tempt to double up two functions or a
function and circulat ion hal lway along the narrow d imens ion of the site. This
created t ightness (N6, S6) and disconnect ion from windows for some functions
(n3 , N 6 , S6) . T h e mos t successful zoning strategy developed for this site
seemed to be the one developed by the two Archi tects and one of the Students
(S3). They placed all functions linearly on the site. The Archi tects also placed
S near the center door and C and S E on ei ther side leaving the other door for
Chief Eng inee r ' s private use. The infrequent yet ceremonia l connect ion
be tween S and C E was served by two paths , either directly from the outs ide or
through the function placed in be tween them. This clearly is a compromise , but
one considered worth mak ing in light of other compromises that would have
been necessary in order to avoid it.

The problem of three w indows versus four functions also did not find a

F i g u r e 3 : Solut ions for the rectangular site.

graceful solution in this case. The strategy which comes closest to an acceptable
solution was the clustering of two functions around a single window (A6, S6,
N3) .

Table 1 provides a checklist of the constraints satisfied by each subjec t .
8
 In

the end, it appears that, with the probable except ion of Site 3 , the solutions
provided by Archi tects resolve more constraints than ei ther of the other subjects.
Archi tects , while general ly more successful, did not perform better than Non-
Architects , however in response to needs of "privacy." Also , they performed
marginal ly better than Non-Archi tec ts in terms of access and Students in terms
of use of windows . Non-Archi tec ts and Students on the other hand did generally
poorer than Archi tects , with the solutions to Site 2 providing a notable
except ion, largely due to difficulties Archi tects encountered in deal ing with this
site.

2 . 2 Design Scenarios
The comprehens iveness displayed in the Archi tec t s ' solutions is partially
accounted for in their explicit use of scenarios. There is ample ev idence in the
protocols support ing this point . Cons ider for example subject A 2 when he says:

"Placed the three higher paid, more skilled people closest to the windows in
deference to the secretarial space, (line 93)"

Clearly what he is consider ing is the hierachical organizat ion one finds in a
traditional office setting in order to organize the physical layout of the functional
components of the p rogram. Later, A 2 ' s explicit remarks about the undesirable
nature of " landscaped" office layouts , an al ternative to the traditional layout,
also reinforces this point:

Although there are many shades of gray in the degree to which any of these solutions satisfy a
given constraint, in the table we provide three ratings: satisfaction, partial satisfaction and no
satisfaction. For our purposes this provides an accurate enough measure to observe some general
patterns.

7. Exper t ise of the Archi tect 187

T a b l e 1 : Rat ing of subjects ' solut ions.

Site S I : L-shaped S2: "square" S 3 : rectangular
Subject Al A4 NI N4 S2S5 A2 A5 N2 N5 SI S4 A3 A6 N3 N6 S3 S6

Zoning • · 0 0 0 0 • çf o çf • 0
Efficiency • · 0 0 0 · • · 0 0 0 · • · • 0 • 0
Privacy • · 0 · • · • · • 0 çf 0 ο çf 0 0
Access • · • çf ο · • · çf çf çf ο çf Cf çf · çf Çf

W i n d o w s • · ο çf çf ο çf Θ

7
çf çf çf çf 0 · ο çf • çf

Key · constraint satisfied
çf constraint partially satisfied
ο constraint not satisfied

"Personally found lacking in offices, being able to carry on certain operations
with the confidence that is required. I've occasionally had to ask the
employees to leave the room. Landscaped office arrangements are [found] to
be inadequate, (lines 141-143)"

Scenar ios are also used, as stated earlier, to develop viable, al ternative
solut ions. For example , Subject A 4 after work ing with a formal ent rance
remarks about his desire to explore al ternative scenarios:

"What that means is this is private and you don't put the public... clients back
in the drafing room. They don't really go back there. They (SE) work here,
this space here than becomes the main work room. Next strategy I would use
in a different version is to sacrifice some of the better qualities, (lines 65-72)"

Subsequent ly , he goes on to reverse the entire layout in order to follow up on his
stated intentions.

Scenar ios provide for the architect topological templates which are adaptable
to different p rogrammat ic requi rements . Scenar ios are topological in the sense
that they define physical re lat ionships wi thout fixed geometr ic at tr ibutes. These
relat ionships link functions in desired ways and still a l low malleabil i ty in
geometr ic te rms . Thus , they can be accommoda ted in sites with specific
geometr ic d imens ions and shapes and fixed w indow and door locat ions. Non-
Archi tects and part icularly Students did not display any ev idence that they were
using scenarios and consequent ly , their solut ions did not seem to benefit from
known , topological pat terns , as did the Arch i tec t s ' .

Non-Archi tec t s and Students , whi le evaluat ing partial solut ions relied
primari ly on specific constraints and pragmat ic conflicts. In doing so, the Non-

188 Orner Akin

Architects were preoccupied with drawing from their personal exper iences of
the office setting. Students , on the other hand, were relying almost solely on
analytical techniques . After having developed his final solution, for example ,
subject Ν1 explains:

"I am trying to fit the pieces in a way that I perceive to be functional
organization. I can put the secretary over here and have people walk in the
front door and find the CE. I feel they ought to see the secretary first, (lines
34)"

N o doubt , the subject is concerned with making an office like the ones he has
seen before, worked in or l ikes, if for no other reason, than for the reason of
familiarity. As a result he can propose solut ions which meet a number of
performance criteria normal ly satisfied by these familiar pat terns. However , the
less than perfect results achieved are due to the difficulty of mapp ing solutions
expressed as geometr ic entities into specific sites. The geometr ic propert ies of
these sites — dimens ions , locations of doors and windows — not being in
agreement with the geometr ical ly fixed physical features of the pattern recalled
from exper ience , result in significant compromises . In all sites, with the
except ion of Site 2 which happens to be propor t ioned to accommoda te jus t about
any kind of small office layout, the solutions by Non- Architects have severe
zoning difficulties (Table 1).

Students , in compar i son to Non-Archi tec ts , operated from the point of view
of a more liberal perspect ive , i.e., generat ing new layouts to fit the given
problem. Yet, they confined their efforts only to analytical considerat ions . For
example , subject S2 evaluated the final design in the fol lowing terms:

"Seems entrance is all right. Because lot of people come in here. But there is
tightness around SE desk.. Although they probably don't do all that much
ciculating. This seems very tight here. And there is a lot of space here. Need
more space in the reception area...(so on)..(line 115)."

The strategy for developing a solution in this case is accompl ished by isolating
all performance issues and meet ing them one by one . Because of such an
analytical approach, Students in general were less comprehens ive in their
responses , ended up a t tempting to re invent each layout from scratch and did not
benefit from prototypical solut ions, ei ther geometr ic or topological . In the end,
this strategy also resulted in solutions with shor tcomings in terms of circulation
and layout (Table 1).

It is not surprising then that in general the most number of constraints were
recognized and met by Archi tects , whi le Non-Archi tec ts satisfied fever
constraints but did it with less effort than Students w h o expended the mos t effort
and satisfied a lmost jus t as few constraints . Archi tects were the only ones who
explicitly and consistent ly used scenarios in structuring their p rob lems as well as
their solut ions.

7. Expert ise of the Archi tect 189

2 . 3 Design Alternatives
As stated earlier one form of p roblem structuring occurs due to a desire to
consider other opt ions or al ternatives to the solution at hand. This represents a
mechan i sm equivalent to searching for a pare to optimal solut ion as opposed to a
satisfying one [25] . Accept ing the first solution which satisfies the number of
constraints necessary for a m i n i m u m level of acceptabil i ty is essentially
equivalent to settling for a satisfying solution. Mos t exper ienced designers ,
including the Archi tects , however , consider al ternative solut ions even if a
satisfying solution is avai lable. This results in the considerat ion of a much
greater port ion of the solution domain and possibly a solution better than the
satisfying one , if not a pareto optimal one .

In the protocols we examined Subjects s imply came right out and stated that
they were about to do jus t that as they started to examine an al ternative solution.
There were a total of e ighteen instances of this in the protocols (Architects 9,
Students 6, Non-Archi tec ts 3 t imes) . In the majority of these cases the
al ternative cons idered was one which reversed a p rob lem parameter . The mos t
c o m m o n example of this was the switching of the main ent rance from one
exterior door of the site to the other.

Even in cases when a viable solution was at hand some subjects (A l , A 4 , A6)
chose to consider al ternatives. S o m e of these al ternative solutions, which
invariably resulted in restructuring the prob lem, lead to global modif icat ions of
the prob lem, such as reversal of main entry location, reorientat ion of the entire
scheme, or swapping the locations of the two major componen t s of the layout.
Both Non-Archi tec t s and Students used similar p rob lem restructuring strategies,
and the operat ions they used were similar to those used by Archi tects . H o w e v e r
nei ther Non-Archi tec ts nor Students c ame up with global conflicts or
restructuring operat ions , whi le the Archi tects did.

2 . 4 Design Evaluation
Problem structuring ul t imately h inged on the evaluat ion of the previous
solutions or a t tempts at solut ions. More often than not this took the form of
detect ing conflicts within a solution or partial solution. In the protocols there
were five conflict categories roughly corresponding to the constraint categories
indicated in Table 1: pr ivacy, access-proximity , space, outs ide- opening match ,
and light and venti lat ion. Out of these the access-proximity category showed
the greatest var iance be tween subjects. Partly for this reason we shall devote
more t ime later to discussing it. In consider ing the other conflict categories that
lead to problem structuring we observe some important differences be tween the
behaviors of the three subject categories .

First of all, Archi tects on the average restructured the p rob lem more than
(3.83 t imes, 4 0 % of all conflicts) both other subjects (3.0 or 3 1 . 2 % , and 2.66 or
2 7 . 9 % , Ν and S, respect ively) . In case of the Pr ivacy issue his pattern is most

1 9 0 Ô m e r Akin

pronounced, 12.2% versus 5 .2% and 3 .5%, respec t ive ly .
9
 In terms of Space

(t ightness and looseness problems) however , all categories were equally
involved, 12.2%, 12 .2% and 10 .5%, respect ively.

In the remaining conflict categories there were too few data points to draw
any significant conclus ions (total of 14 data points or 2 4 . 5 % of all data points in
a five by three space, in other words , on the average, less than one data point per
category) . However , some interest ing pat terns can still be discerned. One is the
absence of light and venti lat ion conflicts in the Archi tec t ' s and the S tudent ' s
protocols . Another one is the oversight of a major p rogrammat ic e lement (i.e.,
the conference room) which took place only in two of the Student protocols .

It was also evident in the data that some conflicts used in the restructuring of
the problem were local (particularly for pr ivacy, access , and space conflicts)
while others were global . It seemed that the restructuring responses of the
subjects treated their domain in a consis tent fashion: global conflicts resulted in
global modif icat ions of the p rob lem and local conflicts in local modif icat ions.
For example , local conflicts such as lack of pr ivacy in a room resulted either in
moving that room to a more private part of the site or b locking the intruding
spaces around it by buffer activit ies, such as recept ion area. O n the other hand,
when these conflicts were of a global nature the entire topological solution was
modified in some way or a series of constraints were added to the problem
definition. These global responses , often result ing from spatial conflicts of
t ightness or looseness , caused modif icat ions of the entire layout and the
ar rangement of functions in the solut ions.

In deal ing with global conflicts or al ternatives the designers treated the
solution space in chunks , groups of design e lements larger than the individual
e lements given in the p rob lem (i.e., chairs , desks , typewri ter desks , file cabinets ,
and so on) . It is obvious that dur ing design some chunking mechan i sm is at
work which organizes the problem into manageab le subparts in a hierarchic
manner [4]. For example , the two SE were a lmost a lways chunked together.
Architects in part icular seemed to have more complex chunks which they
manipula ted with ease, such as the Ent rance-Recept ion-S-CE or the S-CE-C
sequence. This is consis tent with findings l inking expert ise with chunk size in
certain problem solving domains such as Chess [10] , G o [23] and design [1] .

2 .5 Design Prototypes
It is clear from the above discussion that quali tat ive differences be tween the
Archi tec ts ' design process and those of Students and particularly of Non-
Architects can be suggested. Non-Archi tec ts , for w h o m the typical office layout
in a professional settings is a familiar enti ty, seemed to rely on prototypical

9
This is also consistent with Architects' difficulty in meeting the privacy constraint in a large

number of the final solutions.

7. Expert ise of the Archi tect 191

patterns k n o w n to mos t lay people . This is consis tent with the background of
our subjects included in the category of Non-Archi tec ts , w h o were selected from
full-time faculty in the professional col leges of Carnegie Mel lon Universi ty . In
contrast Archi tects , while familiar with similar layouts , spent a great deal more
t ime trying to deve lop new solutions and layout pat terns from scenarios.
Students seemed to behave like the architects except they relied a lot less on
typical solution pat terns and a lot more on performance analysis .

These observat ions are further supported by the number of a t tempts m a d e at
restructuring design prob lems in the protocols . In the access-proximity category
on the average Archi tects explicit ly discussed and satisfied 11.67 constraints in
their protocols . Corresponding numbers for Non-Archi tec ts and Students are
7.17 and 6.67, respect ively. This indicates that Archi tects art iculated and
satisfied more constraints than either of the other two subject categories . Non-
Archi tects c ame next and Students last.

Perhaps a more interesting implicat ion of this can be seen by compar ing these
numbers against the number of t imes each subject g roup recognized conflicts
due to the violat ion of an access-proximity constraint and then subsequent ly
restructured the problem (Table 2) . Here we see that the Students encounter the
mos t number of constraints , on the average , 1.66; Archi tects the next, 0 .83 ; and
Non-Archi tec ts the last, 0 .33 . W h e n corrected against the n u m b e r of constraints
ul t imately satisfied (# of constraints satisfied / # of constraints used in
restructuring) we see that Archi tects satisfy, on the average , 14.06 constraints
for each conflict they recognize in response to access-proximity needs . The
same number for Non-Archi tec ts and Students is 21.72 and 4 .02 , respect ively.

T a b l e 2 : Satisfying the access-proximity constraints by the subjects.

A - P Constraints Archi tects Non-Archi tec ts Students

1. Discussed 11.67 7.17 6.67
2. Used in Res t ruc . 0.83 0.33 1.66
3. Rat io of 1 to 2 14.06 21.72 4.02

These results in one sense are startling. W h e n we consider the number of
conflicts they encounter and the number of constraints they satisfy, Non-
Architects seem to be mos t efficient in terms of access-proximity issues.
Archi tects are next on this scale, satisfying about two-thirds as many constraints
as the Non-Archi tec t s , fol lowed by Students w h o satisfied about one-third as
many constraints as Non-Archi tec ts and one-fourth as Archi tects .

It seems that the order ing be tween Students and Archi tects is as expected and

192 Ô m e r Akin

the deficiency in S tuden t ' s per formance compared to Archi tec ts ' can be
attributed to the relative knowledge and skill each possess of their subject area.
However , the dramatical ly greater efficiency observed in the performance of the
Non-Archi tec ts suggests that they were doing something drastically different
than both Architects and Students . On the surface this suggests that they were
s imply restructuring the problem fewer t imes than both Archi tects and Students .
But why?

One plausible explanat ion is that they were relying on prototypical solutions
familiar to them from their o w n work envi ronments , as was argued earlier,
rather than trying to create or invent new designs . As a consequence they were
able to generate solutions which satisfied a number of constraints with ease and
a small number of restructurings were necessary to develop a satisfying solution.
This is supported by the total number of constraints explicit ly considered and
satisfied in the Archi tec t ' s protocols in compar ison to both Non-Archi tec ts and
Students .

3 Conclusions
While one could say a great deal more about the specifics of p rob lem structuring
and its significance for the archi tect ' s expert ise , we have covered many of the
salient issues here and it is t ime to bring our explorat ion to a close. This will be
done through two vehicles . O n e is summar iz ing a few of the major findings
discussed above. The other is indicating the implicat ions of these for comput ing
applicat ions in architectural design.

3 . 1 Summary of Observations
One of the significant results of the empir ical work descr ibed here is the models
of knowledge brought to bear on the restructuring function. There seems to be
differences be tween the mode ls relevant to each of the three subject categories .
Architects , for example , use scenario-l ike constructs to represent knowledge
about a given functional type, such as hierarchical , landscaped versus
part icipatory office layouts . On the other hand, Non-Archi tec ts use actual
physical templates and Students rely on performance evaluat ion, to bring
appropriate knowledge to bear on the design problem.

Scenarios used by the Archi tects embody topological assembl ies which are
instrumental in satisfying the essential relat ionships required by different
prototypical office layouts . Scenar ios are also representat ions of mal leable ,
geometr ic relat ionships be tween the functional units of the program. As they
are used to create layouts in the context of an exist ing envelope or site, their
topological parameters are kept and their geometr ic parameters adapted to the
particulars of these external constraints . In this way they enabled the meet ing of
a large proport ion, if not all, of the constraints called for in the specific site.
Fur thermore , as scenarios are selected and their parameters modif ied, new

7. Expert ise of the Archi tect 193

alternatives are generated. This is reflected in the design process as
restructuring. Thus , unders tanding of scenarios and their use in design provides
valuable insights about the problem restructuring function.

Physical templates , used by Non-Archi tec ts in lieu of scenarios , are
potential ly as powerful as scenarios. They embody geometric a ssemblages
which satisfy the essential relat ionships required in different office types . A n d
herein lies the reason why the information they contain about the relat ionships
of functional componen t s is less mal leable and the adaptat ion of the template to
a specific site is much more problemat ic . This is borne out by the results of the
protocols of Non-Archi tec ts . Wi th the notable except ion of Si te-2, which
naturally lends itself to both geometr ic and topological templates with ease,
Non-Archi tec ts exper ienced severe difficulties in adopt ing their solutions to the
sites. Consequent ly , while meet ing many of the internal proximi ty and space
requi rements these solutions violated many other constraints , such as entry,
w indow use, and pr ivacy.

Students , w h o employed nei ther scenarios nor templates , approached the
design prob lem in a constructivist manner , assembl ing their solutions from
individual analytical observat ions about the way each partial solution performed
in terms of each prob lem constraint . Whi le theoretically sound, this approach
failed to take advantage of k n o w n solution pat terns and as a result did not
resolve as many constraints as it o therwise would .

The second set of significant findings to be discussed here have to do with
global versus local modif icat ions of solut ions. In restructuring the design
prob lem all subjects relied on conflicts that arose and al ternatives which
suggested themselves during search. S o m e of these conflicts and alternatives
were local. These were s imply remedied by local modif icat ions to the current
design. Such conflicts and their remedies do not normal ly infringe on any
aspects of the p rob lem other than the location to which they are confined.
Deal ing with global conflicts, on the other hand, involved alterations in all or
nearly all parts of the solution. Tightness in one part of the solution, lack of
proximity be tween two or more functions, and unsuitabil i ty of the location of
the main entrance into the office suit, for example , are global conflicts which
normal ly require global modif icat ions.

Archi tects , as evidenced by their behavior in the protocols , dealt with global
conflicts and al ternatives initially before bother ing with local ones . Non-
Architects and Students , on the other hand, consistent ly engaged in resolving
local conflicts, first and foremost . They also tried to resolve the design problem
al together without gett ing involved in global modif icat ions.

3 . 2 Implications for CAD
Study of p rob lem solving behavior at this level of detail is mot iva ted by the
desire to learn more about h u m a n prob lem solving and as a result , to deve lop
models and strategies which can be used in au tomat ing parts of the design

1 9 4 Ô m e r Akin

processes . Thus , before concluding, it is necessary to refer to a number of ideas
about how these results may benefit system designers part icularly in the area of
architecture. It is also necessary to caution the reader about their prel iminary
nature. Natural ly, before effort is spent on bui lding sytems on these ideas,
greater effort is needed to verify and develop them further.

First, it is important to recognize that one of the invariants in all of the
protocols we examined was the distinction be tween local versus global
constraints . Data in any C A D system should be organized to reflect these
dist inctions. Based on the exper ience of the designer , the scope and range of
remedies necessary to resolve design conflicts can be seen at several levels of
hierarchy. It should be possible to organize problem constraints which come,
either implicit ly or explicit ly, with the problem descript ion, into these levels of
hierarchy. In this way, dependencies be tween conflicts caused by these
constraints and design e lements can be calibrated by individual users of the
C A D tool.

Second, special representat ions of design e lements are needed so that the
dependencies be tween hierarchical ly organized constraints and design e lements
can be automatical ly propagated . Such a tool would al low the designer to
predict the consequences of modif icat ions m a d e at one level on e lements and
representat ions, at another. If the secretary is moved , for example , in order to
get it c loser to the chief engineer , the system should alert the designer to other
constraints that are being violated, that might be violated as a consequence or
that might be satisfied easier, for that matter , all due to the initial move .

Third, the mode ls of knowledge brought to bear on the design problem by the
three subject groups suggest drastically different ways of integrating knowledge-
based systems with the design process . Depend ing on the sophist ication of the
user, the C A D system m a y assume different parameters . Professional architects ,
the mos t likely users of C A D systems, would prefer to work with topology-
based schemata in organiz ing their initial design ideas. Subsequent ly , as a
prerequisi te for finalizing these ideas into des igns , architects need ways of
testing geometr ic propert ies of their ideas as well as other performance-based
aspects of the solution.

Fourth, in response to the archi tec t ' s tendency to return to previously
encountered alternatives or al ternatives generated from earlier states of the
solution, some kind of m e m o r y of earlier search states mus t be s imulated in
C A D applicat ions. In its s implest terms this would bea chronological file of
significant interim results , with the capabil i ty to return to these and generate
new alternatives with relatively little effort.

Finally, a myr iad of evaluat ive tools are routinely used by all subjects in
determining the manner in which a design problem mus t be restructured. These
include testing for adjacency, proximity , access , natural light, ventilation,
circulation, pr ivacy, spatial t ightness and so on. Mos t of these are quali tat ive
and context sensit ive measures which are extremely difficult to quantify.

7. Expert ise of the Archi tect 195

However , it is a lmost inconceivable to imagine C A D systems which can be
effective in the pre l iminary stages of architectural des ign, wi thout capabil i t ies
such as these.

References
1. Akin, Ô. (1980) "Percept ion of Structure in Three-Dimens iona l Block
Arrangements , " IBS Repor t # 8 , Depar tment of Archi tecture , Carnegie Mel lon
Universi ty .
2. Akin , O. (1986) "A Formal i sm for P rob lem Restructur ing and Resolut ion in
Design," Planning and Design, 13: 223-232 .
3. Akin , Ô., Chen , C , Dave , B . and Pi thavadian, S. (1986) "A Schemat ic
Representa t ion of the Des igne r ' s Logic ," in Computer Aided Design and
Robotics in Architecture and Construction.
4. Akin , O. (1986) Psychology of Architectural Design, London: Pion Ltd.
5. Akin , Ô., Dave , B . and Pi thavadian, S. (1987) "Problem Structuring in
Architectural Des ign," Repor t # 8 7 - 0 1 , Depar tment of Archi tecture , Carnegie
Mel lon Univers i ty , Pi t tsburgh, Pa.
6. Alexander , C. (1964) Notes on the Synthesis of Form, Cambr idge : Harvard
Universi ty Press .
7. Alexander , C , Ishikawa, S. and Silverstein, M. (1977) A Pattern Language,
N e w York: Oxford Univers i ty Press .
8. Archea , J. (1986) "Puzzle-Making: W h a t Archi tects D o W h e n N o O n e Is
Looking ," in Computational Foundations of Architecture, Y. Kalay (Ed.) .
9. Broadbent , G. (1973) Design in Architecture, N e w York: John Wi ley and
Sons .
10. Chase , W . G. and S imon, H. A. (1973) " M i n d ' s Eye in Chess , " in Visual
Information Processing, W . G. Chase (Ed.) , N e w York: Academic Press .
11 . Eas tman , C. (1970) "On the Analys is of the Intuit ive Des ign Process ," in
Emerging Methods in Environmental Design and Planning, G. T. M o o r e (Ed.) ,
Cambr idge : The M I T Press .
12. Encyclopaedia Britannica (1957) vol 2, pp . 2 7 0 - 2 7 1 .
13. Foz , A. (1973) "Observat ions on Des igner Behavior in the Parti ," in
Proceedings of Design Activity International Conference, London .
14. Henr ion, M. (1974) "Notes on the Synthesis of P rob lems: A n Explora t ion of
Prob lem Formula t ions Used by H u m a n Designers and Automated Sys tems,"
Mas t e r ' s Thesis , Royal Col lege of Art , London .
15. Jones , J. C. (1980) Design Methods, N e w York: John Wi ley and Sons .
16. Kemper , A. M. (1985) Pioneers of CAD in Architecture, Pacifica, C A :
Hur land /Swenson .
17. Krauss , R. and Myer , J. (1970) "Design: A Case History," in Emerging
Methods in Environmental Design and Planning, G. T. M o o r e (Ed.) ,
Cambr idge : T h e M I T Press .
18. March , L. (1976) The Architecture of Form, N e w York: Cambr idge
Universi ty Press .

196 Ô m e r Akin

19. March , L. and Steadman, P. (1971) The Geometry of Environment,
Cambr idge : The M I T Press .
20. Mitchel l , W . (1977) Computer-Aided Architectural Design, N e w York: Van
Nost rand Reinhold C o m p a n y .
2 1 . Moore , G. T. (1970) Emerging Methods in Environmental Design and
Planning, Cambr idge : The M I T Press .
22. Radford, A. D. and Gero , J. S. (1986) Design by Optimization in
Architecture and Building, N e w York: Van Nost rand Reinhold .
23 . Rei tman, W. (1976) "Skill Percept ion in Go : Deduc ing M e m o r y Structures
from Inter-Response T imes , " Cognitive Psychology, 8, 336-356 .
24. Saint, A. (1983) The Image of the Architect, N e w Haven: Yale Universi ty
Press .
25 . S imon, H. A. (1969) The Sciences of the Artificial, Cambr idge : The M I T
Press .
26. Schon, D. (1983) The Reflective Practitioner: How Professionals Think in
Action, N e w York: Basic Books , Inc.
27. S teadman, P. (1983) Architectural Morphology, London: Pion Ltd.
28. Vitruvius (1914) Ten Books on Architecture, N e w York: Dover
Publ icat ions, Inc.
29. W a d e , J. (1977) Architecture, Problems and Purposes, N e w York: John
Wiley and Sons .
30. Zeisel , J. (1981) Inquiry by Design: Tools For Environment-Behavior
Research, Monter rey , Ca: Brooks /Cole Publ ishing Co .

A Graphical Design
Environment for
Quantitative
Decision Models
CHARLES WIECHA
MAX HENRION

Tradit ional decis ion support sys tems, including spreadsheets and other non
procedural p r o g r a m m i n g languages , are effective tools for deve loping mode l s
whose structure, l imitat ions, and appropr ia te appl icat ions are unders tood. M a n y
prob lems , however , involve considerable uncertainty which should be addressed
during mode l design by debate and discussion within in a mode l ing team.
Compute r -based design envi ronments for such prob lems mus t support mode l ing
teams by mak ing mode l structure unders tandable , and by encourag ing an
iterative design methodology . D e m o s and D e m a p s are design tools which
address these goals by integrating documenta t ion with mode l s ta tements , and by
displaying mode l structure graphical ly. This chapter gives an example of the
applicat ion of D e m o s and D e m a p s to an extensive mode l of the effects of acid
rain in Nor th Amer ica .

1 Introduction
D e m o s (the Decis ion Model ing Sys tem) is a non-procedura l language for
designing quant i ta t ive mode l s of decis ion p rob lems [9, 10]. Examples of
D e m o s appl icat ions include a cost/benefit analysis of pass ive restraints in
automobi les [7] , and ADAM, an extensive mode l of the effects of acid deposi t ion
on lakes and forests in North Amer ica [13] .

D e m a p s is a graphical user interface which displays D e m o s mode l s as
influence d iagrams. An influence d iagram shows the structure of mode l s by
jo in ing nodes , s tanding for model variables , using links, represent ing the
algebraic dependenc ies a m o n g the variables. D e m a p s d iagrams can be
decomposed into a tree of subdiagrams, each of which shows the structure of a

Expert Systems for Engineering Design Copyright © 1988 by Academic Press, Inc.
All rights of reproduction in any form reserved.

197 ISBN 0-12-605110-0

8

Abstract

198 Wiecha and Henr ion

single componen t of a complex mode l . The focus of this chapter is to give an
extended example of how D e m a p s has been used in the implementa t ion of one
such complex mode l , ADAM.

1

W e begin by reviewing the advantages of implement ing complex decision
models using D e m o s rather than convent ional p rog ramming languages . Next
we descr ibe D e m a p s , which runs under Carneg ie -Mel lon ' s Andrew [17]
envi ronment , by giving an overv iew of the ADAM mode l . Finally, a sample
session with D e m a p s shows h o w its graphics are a powerful aid in structuring
models during the early stages of design.

2 Using Quantitative Models to Structure
Group Discussion

Documenta t ion should be adequate for others to be able to verify all calculat ions
and results in a model . In many cases decis ion mode l s are formulated as large
compute r p rograms , and a number of surveys of such models have concluded
that it is all too c o m m o n that the p rogram, the assumpt ions , and the data used
are not documented well enough to m a k e such verification practical . For
example Greenberger et al [8] on the basis of case studies of the use of policy
models in the U S government , concluded:

Professional standards for model building are nonexistent. The
documentation of model and source data is in an unbelievably primitive state.
This goes even (and sometimes especially) for models actively consulted by
policy makers. Poor documentation makes it next to impossible for anyone but
the modeler to reproduce the modeling results and to probe the effects of
changes to the model. Sometimes a model is kept proprietary by its builder for
commercial reasons. The customer is allowed to see only the results, not the
assumptions.

In some cases the p rob lem is not the physical lack of documenta t ion , but
rather the vast mass of it, rendered indigestible by poor organisat ion and cross-
referencing (This was a major cri t icism by the Risk Assessment Rev iew
Group [11] of the Reac tor Safety Study [18]).

Almos t by definition, pol icy analysis deals with problem situations that are ill
defined: it is a mat ter of debate which variables are the decision variables and
which the state variables; there is great uncertainty on scientific/technical issues
and about the preferences of people concerned; they are complex mixtures of
in terdependent p rob lems which are hard to disentangle without losing essential
aspects . They have been termed ' m e s s y ' by A c k o f f [l] , and 'w icked ' by
Rittel [19].

The phi losopher of science, Paul Feyerabend, proposes that even in the

'Throughout this chapter, the names of Demos and Demaps models and variables are distingushed
by S M A L L CAPITAL letters.

8. Graphical Design Env i ronment 199

traditional sciences the choice of parad igm and hence the choice of theory is a
mat ter of j udgemen t , and suggests that progress arises mainly from debate
be tween part isans of al ternative theories [4] , Hence he stresses the impor tance
of propos ing counter-theories which offer al ternative explanat ions and provide
max ima l chal lenges to a theory, and so st imulate construct ive debate . In
wrest l ing with these p rob lems in pol icy analysis , Mason [14] and Mitroff [16]
have m a d e similar suggest ions about the impor tance of f inding counter-models
which provide alternative explanat ions of the situation, and offer concrete
references for the assessment of a given mode l . They suggest pol icy analysis as
a dialectical process , in which a mode l is proposed , and one or more counter-
models are offered in response . Deba te ensues about the relat ive meri ts and
failings of the al ternatives, and, with luck, an improved mode l can be
constructed from a synthesis of the initial ones . The process may then be
repeated.

This can take place at two levels: first within a part icular s tudy, the model
deve lopment should involve iterative explorat ion of al ternative formulat ions ,
which are proposed and cri t iqued by m e m b e r s of the project team. Second,
among s tudies on a part icular topic, each project should, of course , start by
examin ing accounts and cri t iques of previous mode l s and hence synthesise the
mos t useful e lements into the new mode l . T h e Energy Mode l ing Fo rum [23]
was set up to foster precisely this kind of process . But as yet it is unusual and in
many areas such review and debate m a y be hampered by the p rob lems out l ined
above , of inadequate documenta t ion and publicat ion, inadequate t reatment of
uncertainty, and the lack of peer review.

3 Computer Aids for Modeling
O n this v iew it is hopeless to expect a mode l to be ' cor rec t ' ; progress comes
from deve loping al ternative mode l s and from informed debate about their
relat ive meri ts and failings. In this case the value of a mode l lies part ly in the
extent to which it s t imulates such informed debate; thus a mode l that is not
exposed to scrutiny and cri t icism can contr ibute little. D e m o s is a high-level
language intended to expose quanti tat ive mode l s to discussion and critical
review. D e m o s employs mathemat ica l and logical forms close to the concepts
familiar to the analyst . In particular, as a non-procedura l language it can al low
the mode le r to specify functional relat ionships be tween variables without
needing to specify sequences of execut ion and other details that can be better
taken care of by the sys tem. Each s ta tement asserts a re la t ionship which is
conceptual ly in parallel with other s ta tements ; the sequence in which they are
entered is immater ia l to the system and can be chosen according to the
conceptual convenience of the model ler . The logical independence of
s ta tements m a k e s a modula r structure that is easy to verify by inspect ion, and
easy to modify. It also is feasible for the analyst to code a mode l personal ly
without an intermediary.

2 0 0 Wiecha and Henrion

D e m o s helps to manage documentary text by integrating it with the
mathemat ica l model . D e m o s encourages the model le r to enter the mathemat ica l
structure and an explanat ion of what it represents and why it was chosen, all at
the same t ime, whi le it is still fresh in his or her mind . W h e n modif icat ions are
made to the model D e m o s prompts immedia te ly for changes to the
documenta t ion and so helps to mainta in consis tency be tween structure and
documenta t ion . It also uses parts of the documenta t ion to annotate output tables
and graphs semi-automatical ly .

Our early exper iences with D e m o s [10] showed that it was only partially
successful in support ing the process of model ing outl ined above . Whi l e D e m o s
models appeared to be better documented and significantly shorter than
equivalent Fortran p rograms , important difficulties in unders tanding models
remained. Users often had difficulty unders tanding even modera te ly complex
models without using hardcopy listings. Wi th the l imited display space
provided by convent ional a lphanumer ic terminals , only a very few variables
could be seen at one t ime. Users became disoriented even though D e m o s has
c o m m a n d s for displaying variables and information about local interactions
a m o n g variables. The disorientat ion we observed seems to be related to
problems in global rather than local unders tanding of model structure. As
Simon [21] has observed

In [complex] systems the whole is more than the sum of the parts, not in an
ultimate, metaphysical sense but in the important pragmatic sense that, given
the properties of the parts and the laws of their interaction, it is not a trivial
matter to infer the properties of the whole.

Disorientat ion is a major impediment to the unders tanding of complex
information systems. In D e m o s it reduces the discussion and debate which are
essential to the model ing process . Disorientat ion also reduces the effectiveness
of other systems as shown by Man te i ' s [12] empir ical studies of Z O G [20, 15].
Furnas [6], Engelbar t [2 , 3] , and W o o d s [25] have suggested methods for
structuring displays to provide sufficient context to reduce disorientat ion.

Our approach to the p rob lem of mode l unders tanding and disorientat ion has
been to develop a graphical interface to D e m o s called D e m a p s (for D e m o s
maps) . D e m a p s d iagrams are abstract ions which highlight those m o d e l ' s
features relevant to unders tanding its structure. Other features, particularly
relevant to model behavior , are shown in nearby textual displays. T o stress the
structure of mode ls we have designed displays which highlight the dependencies
among D e m o s variables while suppressing information about their algebraic
definitions. These displays, called influence diagrams, can be used to
unders tand what variables are present in a mode l , and what the influences are
among them, without reading their algebraic definit ions.

8. Graphical Design Envi ronment 2 0 1

4 An Example Decision Model: ADAM
This section descr ibes the structure of D e m a p s d iagrams by int roducing ADAM,
an extens ive mode l on the effects of acid rain. The structure and mean ing of
D e m a p s d iagrams are expla ined first for the finished mode l . In the subsequent
section we descr ibe how the model was created by present ing the interactions
which occured with D e m a p s dur ing the design of ADAM.

()

t L

(Em<t_base) (v e a r t y _ d e l t a)

î Î

P a r e n t Mode l 1 Sibling Mode l s
! d r c I n d i c e s

Su&M
i l s s i o r E m i s :

T r a n s p o r t
E f f e c t s

V a x :
T i t l e

Y t r i a b l e T i « b l e _ l » k e e
T i t l e J i s h a b l e L a X e s
U n i t s R g n l T r a c
D e s c r i p t i o n F r a c t i o n of l a k e s I n t h e r e g i o n a b l e t o s u p p o r t t h e g i v e n ·

s p e c i e s o f f i s h
D e f i n i t i o n S u » (Vlable_r ish»PDr_AlXal lne,AxXStep, A l k C u t P t a)

V a r i a b l e E m i t b a s e
T i t l e 1980 S02 E m i s I n v e n t o r y
U n i t s K T o n S 0 2 / Y r
D e s c r i p t i o n B a s e T e a r S02 e m i s s i o n s i n s h o i

s o u r c e r e g i o n - X&PaP 1980 E m l s s l o r
D e f i n i t i o n T a b l e (S o u r c e . S e c t o r) (

5 4 4 0 200 0 0 0 17 0 89 0
87 0 14 0 6 6 8 0 9 0 66 0
27 0 27 0 0 0 10 0 25 0

t o n s (2 0 0 0 *) / v r b y i n d l v i d u s d -
I n v e n t o r y

F i g u r e 1: T o p level v iew of the ADAM mode l in D e m a p s . Pol lutant emiss ions ,
a tmospher ic transport , and envi ronmenta l effects mode ls are shown
as boxes . Individual variables are shown as ovals , and links be tween
them indicate the flow of data. Rela ted variables from other mode l
v iews are shown by small square connector nodes .

2 0 2 Wiecha and Henrion

The Acid Deposi t ion Assessment Mode l (ADAM) [13] is a large model on the
effects of acid deposi t ion on the lakes and forests of the U S and Canada . ADAM
is a comprehens ive integrated assessment mode l , developed to aid in systematic
studies of acid deposi t ion and its control . The integrated model links componen t
models of pollutant emiss ions , a tmospher ic transport and deposi t ion, lake
acidification, and damage to fish and forest popula t ions . The cost of reducing
pollutants is also considered for a variety of emiss ion reduct ion strategies. The
major componen t s of the mode l surveyed in this chapter are listed in Table 1 and
shown graphical ly in a D e m a p s d iagram in Figure 1.

Table 1: Major submodels in the ADAM acid rain model .

• Emiss ions , descr ibing the amoun t and composi t ion of pollutants
emit ted dur ing electricity generat ion, industrial activity, and from
transportat ion sources .

• Transport , to relate the emiss ions to deposi t ion of acids in various
remote geographic regions ,

• Effects, relating the concentra t ions of deposi ted acids from the
emiss ions and Transpor t mode ls to the fraction of fish and trees
which will no longer be able to survive, and

• Indices , to select regions of the country of interest for analysis and
display.

The major input to ADAM is the trend in S 0 2 emiss ions from electricity
generat ion, industrial activity, and transportat ion. The base scenario in ADAM
considers the effect of a 5 0 % reduct ion in emiss ions over 30 years and is plotted
in Figure 2. Under this assumpt ion , the fraction of both lake and brook trout
able to survive in the Adi rondack receptor regions increases by nearly 5 % as
shown in Figure 3.

The three major intended uses of ADAM are (1) as a research managemen t
tool to help organize and priori t ize information; (2) as an assessment tool to
identify the consequences of al ternative hypotheses , pol icy scenarios and
judgmen t s , including the effects of uncertainty; and (3) as an educat ional tool to
demonst ra te the various componen t s of the prob lem, and the l inkages among
them, to the research and policy communi t i e s [13]. D e m o s was selected as the
implementa t ion language for ADAM because of its extensive support for model
documenta t ion , its ability to perform monte-car lo s imulat ions in treating
uncertainty, and because of its capabil i t ies for sensitivity analysis .

8. Graphica l Des ign Env i ronment 203

grange
Total Emissions (KTon S02/year)

50 Κ -ρ

40K I

30K

20K 4-

10 Κ
1980 1985 1990 1995 2000 2005 2010 2015 2020 2025

U S c t y
10% 50% 90%

F i g u r e 2 : T rends in S 0 2 emiss ions over t ime. Since future emiss ions are
uncertain, 10% and 9 0 % confidence bands are plot ted a long with the
med ian values .

F i g u r e 3 : Fract ion of lakes able to support brook and lake trout in the
Adi rondack region over t ime.

2 0 4 Wiecha and Henr ion

4 . 1 The Structure of Demaps Diagrams
In this section we explain the structure and mean ing of D e m a p s d iagrams by
explaining the implementa t ion of each componen t of ADAM. The EMISSIONS
submodel takes as input the number of ki lotons of S 0 2 generated in each of five
different sectors (utility and industrial combus t ion , non-ferrous smelters ,
t ransportat ion, and other sources) for the base mode l year of 1980. These data
are input to EMISSIONS from the variable EMIT_BASE shown in Figure 1. The
annual changes in these emiss ions are specified in YEARLY_DELTA and are used
to generate forecasts of emiss ions through the year 2010 .

Individual variables are shown as nodes shaped like ovals in the d iagram.
Each node has two connect ion points , one be low the node for links from
variables it depends on, and the other above the node for links to variables it in
turn influences. Data flows in the direction of the ar rows, from the bo t tom to
the top of the d iagram in Figure 4. Col lect ions of variables called submodels are
shown as boxes in Figure 1. Like variables , submodels have inputs and outputs
which are variables outs ide of the box which influence or are influenced by the
contents of the submodel .

Submodels have both external and internal v iews . An external v iew, for
example of the EMISSIONS submodel in Figure 1, displays the interface be tween
the submodel and its external context . The external view consists of a box
representing the submodel a long with connect ions to variables which are inputs
to, or depend on outputs from, the submodel . The internal v iew of EMISSIONS
shown in Figure 4 displays the submodel implementa t ion by showing the
variables and connect ions relating the submode l ' s inputs to its outputs .
Submodels are a form of abstraction in D e m a p s d iagrams which al low models to
be unders tood by hiding information about componen t s which are not relevant
in a given context .

Influence d iagrams are another abstraction of model structure in that their
links specify what variables are related, but not how they are related. The
detailed way in which each variable depends on others is specified in algebraic
definitions which are shown in at tached text displays, and in pop-up cards
described be low. In addit ion, only the direct influences on each variable are
shown. Indirect influences, i.e. those which act through intermediate variables,
can be inferred by tracing through successive links in the d iagram. This is
relatively easy to do within a given d iagram but could be difficult when
following links to other d iagrams.

T o help trace influences from one submodel to another, small square
connector nodes are used. The connector nodes can link inputs or outputs to a
submodel : in Figure 1 EMIT_BASE and YEARLY_DELTA are inputs to EMISSIONS.
Connectors are also used in internal submodel v iews, as in Figure 4 , to show in
detail how inputs and outputs interact with variables in the submodel . Finally,
connectors can link one model to another directly as in Figure 1, when the
outputs of one submodel are directly input to another. In all cases , connector

8. Graphical Des ign Env i ronment 2 0 5

nodes have pop-up cards listing the names and definit ions of the var iables they

represent .

(Emit_by_$rc)

(uf_emission$) (Uf_basa)

-Sibling MQ<
T r a n s p o r t
E f f e c t s

I S u b M o d e U Ϊ T i t l e

Variable E»it_by_arc
T i t l e An S02 E m i s By S r c
U n i t s K T o n S 0 2 / Y r
D e s c r i p t i o n A n n u a l S02 e m i s s i o n s b y U ? s t a t e o r C a n a d i a n p r o v i n c e .

summed o v e r t o e e m i s s i o n sectcrs
D e f i n i t i o n Sum(E m i t _ b y _ y e a r . S e c t o r ;

V a r i a b l e E m i t b y y e a r
T i t l e A n n u a l 5 0 2 ~ E m l s s i o n s
U n i t s K T o n S 0 2 / Y r
D e s c r i p t i o n A n n u a l S02 e m i s s i o n s b y ϋ :

b r o k e n o u t b y e m i s s i o n s e c t o r
C a n a d i a n p r o v i n c e , -

D e f i n i t i o n (E m l t _ b a a e · U f b m s e) · T e a r l y _ d e l t a · O f _ e m i s s i o n s

F i g u r e 4 : The detai led v iew of the emiss ions submodel . Var iable
EMIT_BY_YEAR gives the pol lutant emiss ions for each source by year
broken down by sector (electric utilities, manufactur ing, etc) .
EMIT_BY_SRC sums over the sectors to give a single emiss ions value
for each source and year.

T h e hierarchical set of submodels is displayed using the control panels at the
center of F igure 1. Each panel contains the names of the displayed m o d e l ' s
parent , sibling, and child submodels . The current mode l v iew can be shifted to

2 0 6 Wiecha and Henr ion

any of these other submodels by cl icking on one of their names . In the future,
mult iple displays will be supported to v iew several mode l d iagrams
s imultaneously.

t L ..PirtntMQflil _ Sibling Mooeis S u b M o d e i s 1 Attribute!

SX
A d a *

E f f e c t s J U l n p o WE xitl*

Variable Select_ph
T i t l e A n n u a l Ave P r e c l p A c i d i t y
U n i t e pH
D e s c r i p t i o n P r e c i p i t a t i o n a c i d i t y p r o j e c t i o n s f o r t h e f o c a l a q u a t i c <

a s s e s s m e n t y e a r s a t t h e s p e c i f i e d a q u a t i c s r e c e p t o r s i t e s
D e f i n l t l o n : R a l n j p H (T e a r > Y e a x A q , R e c e p t o r • R e c e p t o r A q]

V a r i a b l e E m i t b y a r c
T i t l e An S02 E m i s By S r c
O n l t s K T o n S 0 2 A r
D e s c r i p t i o n A n n u a l S02 e m i s s i o n s b y U S s t a t e o r C a n a d i a n p r o v i n c e ,

summed o v e r t h e e m i s s i o n s e c t o r s
D e f i n i t i o n . S u m (E m i t _ b y _ y e a r , S e c t o r)

p â m e t o f i n d select_pm

F i g u r e 5: Contents of the a tmospher ic transport submodel . Submode l s nested
in Transpor t compu te the deposi t ion of S 0 2 and S 0 4 at receptor
sites, and the result ing rain pH. Variable RAIN_PH is the only
value passed into the downs t ream model on aquatic effects.

The internal v iew of the next stage of ADAM, the TRANSPORT submodel
shown in Figure 5, is a good illustration of how connector nodes function.
TRANSPORT contains two addit ional submodels : DEPOSITION which determines

8. Graphical Des ign Env i ronmen t 2 0 7

the fraction of emiss ions from each source which are carried in the a tmosphere
to each receptor site, and RAINPH which de termines the p H of rainfall for a given
level of acid deposi t ion. The links in Figure 5 indicate that DEPOSITION has
some inputs from outs ide TRANSPORT and provides one or m o r e values which
influence variables in the RAINPH mode l . RAINPH in turn has addit ional external
inputs , and computes one or more values passed to other submodels in ADAM.

Each of the connector nodes has a set of cards (which can be d isplayed using
the mouse) which list the name , title, units , and definition of all var iables the
node represents . F igure 6 shows the list of variables which appears over
DEPOSITION'S input connector node . T h e information provided in these pop-up
cards reduces the t ime and effort needed to page be tween different mode l
displays. Similar cards which appear over each var iable reduce the need to shift
at tention away from the d iagram to examine the variable in the a t tached text
display [24] .

In the last s tage, submodel EFFECTS takes as input the p H of rain compu ted by
RAINPH and computes the key mode l output shown in Figure 1 : VIABLE_LAKES,
the fraction of lakes which will be able to support fish. This output is
de termined by the CHEMISTRY submodel in EFFECTS which relates the p H of rain
to fish viabili ty using empir ical observat ions of alkalinity and fish survival in
lakes in the Adi rondack region of N e w York State [22] .

4.2 Sample Interaction with Demaps: Designing ADAM
D e m a p s d iagrams are important in des igning mode l s as well as in unders tanding
exist ing ones . First, the abstract v iew of a mode l given in the d iagram al lows
inferences to be m a d e about the structure of the mode l , and about its scope, i.e.
about which variables do and do not exist in the mode l , wi thout cons ider ing the
definitions directly. Second, the lack of an explici t representat ion for algebraic
operators in the d iagrams al lows mode l s to be read and des igned in s tages,
including

• W h a t are the significant variables that should be , or are, included in
a mode l , and which lie outs ide of its scope?

• W h a t are the quali tat ive dependencies a m o n g the var iables included
in the mode l?

• H o w should variables be grouped to reflect major computa t iona l
units?

• W h a t are the quant i ta t ive algebraic definit ions which implement the
dependenc ies?

D e m a p s does not force a l inear progress ion from stage to s tage. Rather , the
abstraction of mode l structure facilitates each type of considerat ion wi thout
overly const ra ining the later s tages. By focusing at tention on different
considerat ions at each s tage, the d iagrams can be an impor tant aid in structuring
debate about al ternative mode l des igns . Like the idea graphs of Cogno te r [5] ,

2 0 8 Wiecha and Henr ion

Variable Emit_by_src
Variable Source

Variable Receptor
Variable Receptors tP
• a ll A v a i l R e c e p t o r s

D e f i n i t i o n i s | KHVM ' P I T T ' 'PORT' ' C M '
V a l u e i s [NBVM Ρ Π Τ PORT

Lwi D e p o s i t i o n * Variai
T i t l e R a i n p h

Variable Select.pb
T i t l e Jurvnual Ave P r e c i p A c i d i t y
U n i t s pH
D e s c r i p t i o n P r e c i p i t a t i o n a c i d i t y p r o j e c t i o n s f o r t h e f o c a l a q u a t i c ·

a s s e s s m e n t y e a r s a t t h e s p e c i f i e d a q u a t i c s r e c e p t o r s i t e s De f i nl t l on R a i n _ p H (Ye ax - Te ar Aq, Rec ep to r · î- e c ep to r Aq J

V a r i a b l e E m i t b y s r c
T i t l e An S02 E m i s By S r c
U n i t s K T o n S 0 2 / T r
D e s c r i p t i o n A n n u a l S02 e m i s s i o n s b y O S

summed o v e r t h e e m i s s i o n s e c t o r :
D e f i n i t i o n Sum(E m i t b y _ y e a r , S e c t o r)

s t a t e o r C a n a d i a n p r o v i n c e , -

lame t o f i n d select_pb

F i g u r e 6: M e n u s that pop-up over nodes give abbreviated textual descript ions
of each variable. The four inputs to the DEPOSITION submodel of
TRANSPORT are listed over the leftmost connector node in Figure 5.

influence d iagrams in D e m a p s help m a k e model structures t ransparent and invite
others to c o m m e n t on and revise them.

Many decision support sys tems today are oriented toward the quanti tat ive
implementation rather than the quali tat ive structuring s tages listed above .
Implementat ion involves coding model s ta tements once they have been derived,
and exercis ing the model using a variety of me thods for sensitivity analysis .
Lacking, however , is effective support for the initial derivation of the equat ions
which define a model . The structure of a model evolves from very quali tat ive

8. Graphical Des ign Env i ronment 2 0 9

Demaps E f f e c t s g r a n g e r

IE
() ο

t

(Viable fish)

/ (v iab le m t c p) (viabie_$iope)

Ψψ
(Seiect_ph)

t

Parent Model Siblma Models SubModeli 1 Attnbutis Adam E m i s s i o n s
T r a n s p o r t

•w Chemistry M Variable | | T i t l e

Tarlable Viable.flam
T i t l e fish s u r v i v a l
U n i t e s u r v i v i n g F r a c t i o n
D e s c r i p t i o n P i s h s u r v i v a l p r o b a b i l i t y a t -Jie a l X c & l i n l t y c u t p o i n t s
D e f i n i t i o n 1 0 / (1 • E x p (- 1 · (V i a b l e _ I n t c p t • (V i a b l e S l o p e · A l k T o p H (A l) c C u t P t s , P I , P2 , P3)))))

V a r i a b l e S e l e c t j p h
T i t l e A n n u a l Ave P r e c l p A c i d i t y
U n i t s pH
D e s c r i p t i o n P r e c i p i t a t i o n a c i d i t y p r o j e c t i o n s f o r t h e f o c a l a q u a t i c -

a s s e s s m e n t y e a r s at t h e s p e c i f i e d a q u a t i c s r e c e p t o r s i t e s
D e f l n i t i o n R e i n _ p H [Y e a r - T e a r A q , R e c e p t o r - R e c e p t o r A q)

Name t o f i n d •i*ble_flsb

F i g u r e 7: The AQUATICS mode l computes a probabil i ty density function for the
p H of lakes in the receptor region. Submode l CHEMISTRY takes the
data base on current lake alkalinity and p H , and uses selected values
of the rain p H input from the Transpor t model (in variable
SELECT_PH), to compu te the fraction of lakes able to support fish.
This output is shown in variable VIABLE_LAKE in model ADAM.

ideas about the impor tant var iables and their interrelat ionships, to quant i ta t ive
definit ions. D e m a p s can be used both for model implementa t ion and for
structuring early quali tat ive design ideas. In the sample session which follows
we descr ibe how D e m a p s might have been used in structuring ADAM.

D e m a p s can be used to structure a model by creat ing and descr ibing the

2 1 0 Wiecha and Henr ion

relat ionships a m o n g variables without commit t ing to detailed algebraic
definitions, and by grouping variables into related clusters . These decisions can
be m a d e in pract ice as fol lows. As each variable is added to the d iagram by
dragging an oval icon from the co lumn at the left of the d iagram a blank
template of attributes is created in the text display. In Figure 8 the major input
and output variables in ADAM have been created in the d iagram and described in
the scrolling text display.

As links are d rawn to other variables using the mouse , the textual definitions
are automatical ly modif ied to reflect the new dependencies . Since graphical
links are abstract ions of the definit ions, the text cannot automatical ly specify the
actual functional form of the result ing dependencies . D e m a p s creates a
F u n c t i o n O f relation to represent the abstract dependencies in text form. For
example , if l inks were d rawn from variable EMIT_BY_YEAR to variables
EMIT_BASE and YEARLY_DELTA in Figure 9, the definition of EMIT_BY_YEAR in
the text display would be set automatical ly to: Funct ionOf(EMIT_BASE,
YEARLY_DELTA). L inks may be r emoved be tween variables graphically by
using the dagger icon from the left co lumn. As each link is cut, the Funct ionOf
definitions are altered to reflect the new set of dependencies .

Once a number of variables have been created, they can be grouped together
into submodels . In Figure 10 addit ional variables have been added to ADAM for
the a tmospher ic transport and rain p H calculat ions. Us ing the mouse , a box has
been drawn around those variables which will become the EMISSIONS submodel .
Once the mouse but ton is released, the external v iew of the result ing submodel
appears as shown in Figure 11.

Though the mode l is not yet comple te , submodels can be created now and
edited later to add new variables . The strategy of alternately creat ing variables
and grouping them into submode ls is an example of "middle-out" model design.
Middle-out design contrasts with pure top-down design in which a hierarchy of
empty submodels is created then filled with variables and with bo t tom-up model
design where a flat ne twork of variables is built then later part i t ioned into
submodels . Middle-out design is a hybrid pract ice in which parts of the ne twork
are built , and then broken down into submodels , while other submodels are
empty , serving as p laceholders for unspecified variables. Middle-out design can
be helpful when the requi rements for parts of a model are unders tood, but others
are uncertain. Variables in the better unders tood submodels can be created
immediate ly , while the less certain submodels remain empty to be refined later.

In the final stage, a lgebraic definit ions are entered textually for each variable.
In Demaps the links already present in the d iagram are not constraints on what
definitions can be entered. Thus if the definition ment ions variables that do not
yet exist in a mode l , or fails to use all of the variables with current l inks in the
d iagram, the d iagram will be updated automatical ly to reflect the actual
definition. In general the text and d iagram are al ternative v iews on the same
model . Ei ther representat ion can be edited with the system taking care to

8. Graphical Des ign Env i ronment 2 1 1

Demaps T e s t g r a n g e r

Ξ

()

π

(Emi t_by_src)

<Émrt_by_year)

C Emrt_base) (Yearly delta)

Parent Model
ι Siblma Models SubModel i 1 Attributes ^ Ess? V a r i a b l e

WM T i t l e

V a r i a b l e Y e a r l y d e l t a
T i t l e R e l a t i v e 5 0 2 E m i s s i o n s
U n i t s P r a c o f BYr E m i s s i o n s
D e s c r i p t i o n The S02 e m i s s i o n t r a j e c t o r y over t i m e s p e c i f i e d a s a f r a c t i o n of t h e S02 e m i s s i o n s i n
t h e b a s e y e a r
D e f i n i t i o n U n d e f i n e d

V a r i a b l e E m l t _ b a e e
T i t l e 1980 S02 e m i s s i o n s
U n i t s κ T o n S 0 2 / y e a r
D e s c r i p t i o n B a s e y e a r S02 e m i s s i o n s i n s h o r t t o n s (2 0 0 0 #) / y r b y i n d i v i d u a l s o u r c e r e g l o n - 1 9 8 0
KAPÀP e m i s s i o n s i n v e n t o r y
D e f i n i t i o n U n d e f i n e d

MARNE o f V a r i a b l e E m i t _ b y _ s r c

F i g u r e 8: Stage 1 of mode l design: choos ing significant variables . Var iables
are created by dragging a copy of the oval icon from the palet te at
the left into the d iagram. Blank templa tes for the n e w var iab le ' s
attr ibutes are added to the scroll ing text display be low the d iagram.
The title, units , and other at tr ibutes may be comple ted immedia te ly ,
or later once all of the var iables have been created.

propagate changes to other representat ions or to other v iews which m a y include
the modif ied object.

2 1 2 Wiecha and Henr ion

(>1 (Emrt_by_src)

£mrt_by_year)

(Emrt_base) (y e a r t y . d e l t a)

Puent MQutl Sitting Ν S u b M o d a it
T i t le

Variable E m i t_»y_arc D e f i n i t i on J u n e t l o n O f((E m l t _ b y _ y » er])
V a r i a b le E m it by y e ar D e f i n i t i on F u n c t î o n O f([T e a r l y _ d e l t *. E» ' . b a se])
V a r i a b le Y e a r ly d e l ta T i t le R e l a t i ve 502 E m i s s i o ns u n i t e: F r ac of BYr E a l e e i o ne D e s c r i p t i o n: The S02 e m i s s i on t r a j e c t o ry o v er t i me s p e c i f i ed as a f r a c t i on of t he S02 e m i s s i o ns In t he b a se y e ar D e f i n i t i on u n d e f i n ed
V a r i a b le E m it b a se T i t le 1980 S02 e m i s s i o ns U n i ts Κ Ton S O 2 / y e ar

w a r ns of V a r i a b le Imit_by_erc

F i g u r e 9: Stage 2 of mode l design: creat ing quali tat ive links be tween
variables. Variables m a y be related to each other without giving
their algebraic definitions by drawing links using the mouse .
Textual definitions are updated automatical ly to reflect the
dependencies created graphical ly.

4.3 Discussion: Generalizations from ADAM
Most of the anticipated p rob lems in this implementa t ion were related to the large
number of variables , l inks, and submodels in ADAM. There are roughly 600
links among the nearly 200 variables in the full model . Variables are grouped
into 66 submodels in four major areas as descr ibed in Table 1. In addit ion to its

8. Graphica l Des ig n Env i ronmen t 2 1 3

(Seiect_p n)

(Rain_p h)

(Dep_matn x)

A-(Emft_by_src)

£fflrt_toy_year)

(Emrt_bas e) (v e a r l y d e l t a)

(viabie_fls h) (viabteJaXes)

Parent Mode l Siblmo Model s SubModels 1 A M U M
h*1 V a r i a b l e

1 — V a r i a b l e S e l e c t _ p b
Defin i t ion J \ B \ctionûf((RalnjJ h])

Variable Rain_p h
Def in i t ion PunctionOf (| Dep_»atrl x

Variable De p matri x
Def in i t ion PunctionO f ([E m l t b y s r c

Variable Viabl e lake s
T i t l e
Units
Descr ipt ion
Def in i t ion Undefine d

Variable Vlable_fis h
> o f Variabl e fiakla.laJEâ i

F i g u r e 10 : S tag e 3 o f mode l design : g roupin g var iable s t o creat e submodels .
Var iables ma y b e reposi t ione d i n th e d iagra m b y draggin g the m
with th e mouse . Onc e g roupe d together , submode l s ar e c reate d
by enclos in g a c luste r o f variable s i n a box .

large numbe r o f l inks , var iables , an d submodels , ADA M contain s larg e amount s
of mode l text . T h e hardcop y listin g i s 7 5 page s long , wi t h s om e var iable s
having a lgebrai c definit ion s i n exces s o f 35 ,00 0 characters .

W e originall y expecte d tha t th e majo r p rob le m t o emerg e dur in g th e
implementa t ion o f ADA M wou l d b e tha t d isplay s o f larg e mode l s woul d b e c o m e
very c luttered . T o o m a n y cross in g l ink s woul d rende r th e d iagra m les s readabl e
and usefu l a s a m e a n s o f conveyin g mode l s t ructure . Ou r pre l iminar y result s
indicate tw o reason s tha t d iagram s d o no t b e c o m e cluttered .

2 1 4 Wiecha and Henr ion

EUS
(Select_ph)

• v .
α

(Ram_ph)

(Dep_malrtx)

C Emrt_base)

t , ° (vear)y_dei ta)
τ

Parent Model

(viabttjlsh) (viabiejafcts)
t 1

Î
Sibling Moflwii

E m i s s i o n *

Variable Select.pb
D e f i n i t i o n / u n c t l o n O f (! R a l n _ p h])

V a r i a b l e R a l n _ p h
D e f i n i t i o n P u n c t i o n O f (

V a r i a b l e D e p _ m a t r l x
D e f i n i t i o n P u n c t i o n O f {

V a r i a b l e V i a b l e l a k e s
T i t l e
U n i t s
D e s c r i p t i o n
D e f i n i t i o n U n d e f i n e d

V a r i a b l e V l a b l e f l s h

t el Name Emission*

D e p _ m a t r i x J)

E m l t _ b y _ s r c 1)

T i t l e

F i g u r e 1 1 : The d iagram after the EMISSIONS submodel has been created.
The inputs to EMISSIONS include EMIT_BASE and YEARLY_DELTA.
T h e outputs influence DEP_MATRIX.

First, variable relat ionships tend to be clustered so that mos t l inks go to a
l imited number of ne ighbor ing variables rather than to variables in remote parts
of the mode l . T h e abstract ion mechan i sm of submodels is thus effective in
isolating these clusters of related variables so that mos t l inks in a submodel are
to other variables in that submodel . P rog ramming envi ronments for procedural
languages often have displays related to both data and control flow. The
structure of many data flow d iagrams is related to the influence d iagrams used in
D e m a p s , and hence similar cluster ing may be found in such displays .

8. Graphical Des ign Env i ronment 2 1 5

Second, the way in which D e m a p s displays connect ions be tween submodels
is effective in reducing the display space needed for large mode l s . L inkages
be tween variables in different submodels are represented by offpage connectors ,
shown as small squares in the figures above . T h e structure of the d iagram is
thus a form of fish-eye view [6] in that details of a l imited area of the system are
selectively augmented with those objects at a greater "dis tance" from the focus
of at tention which are significant given the current v iew.

Offpage connectors reduce screen clutter by aggregat ing connect ions from a
given var iable to all remote variables into a single link. Pop-up cards give the
name , units , an abbrevia ted descript ion, and the definition of each variable
represented by such a link. In this way offpage nodes give a compac t v iew of
external connect ions . The information in the pop-up cards is often sufficient to
avoid displaying the entire contents of the r emote submodel .

5 Conclusions
W e plan to cont inue exper iment ing with D e m a p s by testing new methods for
b rows ing ne tworks of nodes and l inks. One idea is to a l low users to expand
nodes on demand , rather than displaying all of the nodes in a g iven submodel .
W h e n expanded , each node would add l inks and nodes to the d iagram for
variables it depends on. By showing only those parts of the mode l of act ive
interest, this scheme could use m u c h less screen space than the displays
currently p roduced by D e m a p s .

A second strategy for b rowsing mode l ne tworks would be to expand the
nodes lying be tween two or more "anchor var iables" of interest. D e m a p s would
automatical ly expand the display to indicate those paths of influence which link
the indicated nodes . Such a "spreading act ivat ion" display could be used to
trace the influences be tween specific input and output var iables , or to unders tand
how changes in one part of the mode l might propagate to other parts of the
mode l .

Final ly, the d iagram could be used to descr ibe the behavior of mode l s as well
as their structure. N o d e sizes might be varied depending on the strengths of
interaction a m o n g variables. Nodes could be suppressed entirely if their values
do not change over a set of mode l scenarios or be tween al ternative vers ions .
Links might be coded to indicate if the values they carry are determinis t ic or
probabil is t ic , or if they affect a part icular pol icy opt ion cons idered by the mode l .

Even if D e m a p s ' current and future d iagrams can provide the technical means
to facilitate substantial ly unders tanding and debate about mode l s , it is important
to recognize that there m a y be major social and institutional obstacles to these
goals . In m a n y cases there are powerful dis incent ives for analysts to be explici t
about their uncertainty and to expose their work to detai led scrutiny. Analys ts ,
w h o may be keenly aware of the somet imes unavoidable deficiencies in their
mode ls , may be unders tandably reluctant to m a k e themselves more vulnerable to

2 1 6 Wiecha and Henr ion

cri t icism than absolutely necessary. Obviously no s imple technical fix can by
itself be expected to improve such si tuations, but the availabili ty of tools which
invalidate some of the traditional technical excuses for obscurant ism in policy
model ing could provide strong support to those w h o wish to p romote a more
open and construct ive process .

Acknowledgements
W e gratefully acknowledge the contr ibut ions of m a n y people , including Jill
Larkin, J im Morr is , Granger Morgan , Andrew Appel , and our subjects. This
work was supported by the Information Technology Center at Carnegie-Mel lon ,
and by the National Science Foundat ion under grants IST-8316890 and
IST-8514090 .

References
1. Ackoff, R.L. Redesigning the Future. Wi ley , N e w York. , 1974.

2. Engelbar t , D . and Engl ish , W . "A Research Center for Augment ing H u m a n
Intel lect : ' Fall Joint Computer Conference, 1968, A F I P S , 1968, pp . 395-410 .

3 . Engelbart , D. , Watson , R., and Norton, J. "The Augmen ted Knowledge
Workshop . " National Computer Conference, 1973, A F I P S , 1973, pp . 9 - 2 1 .

4. Feyerabend, P. Against Method: Outline of an Anarchist Theory of
Knowledge. N L B , London , 1975.

5. Foster, G., and Stefik, M . "Cognoter , Theory and Pract ice of a Colab-orat ive
Tool ." Conference on Computer-Supported Cooperative Work, December ,
1986, pp . 7-15.

6. Furnas , G. "General ized Fisheye Views ." Human Factors in Computing
Systems, CHT86 Conference Proceedings, Apri l , 1986, pp . 16-23.

7. Graham, J .G. and Henr ion, M. " The pass ive restraint quest ion: A
probabilist ic analysis ." Risk Analysis 4, 2 (1984) .

8. Greenberger , M, Grensen , M. , and Crissey, B . Models in the Policy Process:
Public Decision-Making in the Computer Era. Russel l Sage Foundat ion , N e w
York. , 1976.

9. Henr ion, M. , and Nair , I. DEMOS User s Manual. Depar tment of
Engineer ing and Public Policy, Carnegie-Mel lon Universi ty, 1982.

10. Henr ion, M. , Morgan , M.G. , Nair , I., and Wiecha , C. "Evaluat ing an
Information Sys tem for Policy Mode l ing and Uncer ta inty Analysis ." American
Journal of Information Science 37, 5 (1986) , 319-330 .

11. Lewis , H, et al. "Report of the Risk Assessment Rev iew Group ." Tech .
Rept . N U R E G / C R - 0 4 0 0 , U .S . Nuclear Regula tory Commiss ion , Washington ,
D.C. , 1978.

8. Graphical Des ign Envi ronment 2 1 7

12. Mante i , Μ. A Study of Disorientation Behavior in ZOG. Ph .D. Th. ,
Universi ty of Southern California, 1982.

13. Marn ic io , R., Rubin , E., Henr ion , M. , Smal l , M. , M c R a e , G., and Lave , L.
"A Comprehens ive Model ing F ramework for Integrated Assessments of Acid
Deposi t ion." Proceedings of the Air Pollution Control Association Annual
Meeting, June , 1985.

14. Mason , R .O. "A dialectical approach to strategic planning." Management
Science 21Pages"403-414" (1969) .

15. McCracken , D. , and Akscyn , R. "Exper ience with the Z O G H u m a n -
Compute r Interface System." Tech . Rept . C M U - C S - 8 4 - 1 1 3 , Compute r Science
Depar tment , Carnegie-Mel lon Universi ty , February , 1984.

16. Mitroff, I.I., and Mason , R .O. "On structuring il l-structured policy issues:
further explorat ions in a methodology for messy problems ." Strategic
Management 1980, 1 (1980) , 331-342 .

17. Morr is . J., S tayanarayanan, M. , Conner , M. , Howard , J., Rosenthal , D . and
Smith , F . "Andrew: A Distr ibuted Personal Comput ing Envi ronment . "
Communications of the ACM 29, 3 (March 1986), 184-201 .

18. Rasmussen , N . et al. "Reactor Safety Study." Tech . Rept . W A S H - 1 4 0 0 ,
U .S . Nuclear Regula tory Commiss ion , Wash ing ton , D.C. , 1975.

19. Rittel , H. and Webber , M. "Di lemmas in a Genera l Theory of Planning."
Policy Science 1973, 4 (1973) , 155-169.

20. Rober t son , G., McCracken , D. , and Newel l , A. "The Z O G Approach to
M a n - M a c h i n e Communica t ion . " Tech . Rept . C M U - C S - 7 9 - 1 4 8 , Compute r
Science Depar tment , Carnegie Mel lon Univers i ty , October , 1979.

2 1 . S imon , H. The Sciences of the Artificial, Second Edition. M I T Press . ,
Cambr idge , Mass . , 1982.

22 . Smal l , M . and Sutton, M. "A Direct Distr ibut ion Mode l for Regional
Aquat ic Acidification." Water Resources Research 22, 13 (December 1986),
1749-1758.

23 . Weyan t , J. "Model ing for Insights Not N u m b e r s : T h e Exper iences of the
Energy Mode l ing Forum." Tech . Rept . E M F O P 5 .1 , Energy Mode l ing Forum,
Stanford Univers i ty , Apri l , 1981 .

24 . Wiecha , C , and Henr ion , M. "Linking Mult ip le Program Views Using a
Visual Cache ." Interact-87 Proceedings, In press , 1987.

25. W o o d s , D. "Visual m o m e n t u m : a concept to improve the cogni t ive
coupl ing of person and computer ." International Journal of Man-Machine
Studies 21 (1984) , 229-244 .

Part 3 Integrated
Software
Organizations

Design Tools and Environments
In addit ion to gett ing started on a design with effective concepts and candidates ,
the engineer is also faced with the task of applying computa t ional tools to ensure
that the details are numerical ly , logically, legally, and scientifically correct .
This pa r t ' s four chapters are concerned with tools and their combina t ion in the
service of design goals . Computer -a ided design tools are difficult to integrate
for a number of reasons , including their diverse subject mat ter (applying to
different componen t s or subproblems of the process) , their diverse a lgor i thms
and data structures, and their applicat ion to different stages of the design process
(from synthesis to manufactur ing to main tenance) . Often they are p rog rammed
by different people in different languages and using different operat ing sys tems
and hardware .

In Chapte r 9, Daniel l , D e w e y and Director present a survey of the
applicat ions of AI to V L S I compute r design. They draw some conclus ions on
its p o w e r and scope, and project how it will he lp in the future. The chapter
considers AI sys tems of three types: synthesis design tools , where the system
solves important subproblems in the overal l design process ; apprent ice sys tems,
where the sys tem at tempts to be more comprehens ive , often assist ing by offering
cri t iques of a use r ' s des igns; and design envi ronments , where a number of other
tools are integrated, using knowledge-based techniques to do it intelligently.
Several sys tems in each category are discussed. They conclude that AI
techniques , when combined with tradit ional approaches , improve the design
process by mak ing it m o r e interactive and m o r e comprehens ive in its coverage
of the design space . Of course , many chal lenges lie ahead, including better
c o m m o n sense reasoning and new approaches to creativity and innovat ion.

In Chapter 10, Ta lukdar and Cardozo discuss the l imitat ions of the
organizat ions of sys tems presented earlier in this book. These b e c o m e evident
as we m o v e towards more comprehens ive integration of des ign sys tems. T h e
authors have cons idered the variety of h u m a n organizat ions and have invented a
kernel software system that would al low a wide variety of t hem to be model led .
At the same t ime, they were also a iming to exploi t the full p o w e r of ne tworked

Expert Systems for Engineering Design Copyright © 1988 by Academic Press, Inc.
All rights of reproduction in any form reserved.

219 ISBN 0-12-605110-0

2 2 0 Part 3 . Software Organizat ions

engineer ing workstat ions by support ing software that would distribute
computat ional tasks and data over the network. The kernel for distributed
problem solving, D P S K , is described, along with its use in several applicat ions.
The applicat ions are diverse enough to demonst ra te D P S K ' s general usefulness
for design tools within many disciplines and methodologies .

In Chapter 11 , Schmit t descr ibes the first version of A R C H P L A N , a system
that provides a flexible, graphics-based user interface to an integrated set of
expert systems that assist in bui lding design. It organizes the overall knowledge
that an architect or engineer br ings to bear in des igning a bui lding into four
major areas, and provides a way to specify aspects of the overall design in each
of those areas. At the same t ime, it integrates them by collect ing their work in a
single "database" that is displayed pictorially and graphical ly. The designer can
m a k e detailed choices in the design and receive immedia te feedback about their
effects. He or she can follow various strategies in specifying the necessary
information, according to personal preference or p rob lem demands . Whi le the
present system contains one independent ly developed expert sys tem, it has
several knowledge bases built in and has the object ive of integrating a number
of exist ing engineer ing systems. A R C H P L A N points the way to a new style of
computer ized design assistant.

In Chapter 12, Rehg , et ai, present another style of integration of design tools
in a computer -a ided mechanica l design system. C A S E , for Compute r -Aided
Simul taneous Engineer ing , was developed to support mechanica l design at the
project level, and to serve as a means of integrating concerns from various
stages of the lifecycle of a product . The system has three types of software tool:
design agents , design critics, and design translators. These form an integrated
testbed for research in representat ion, problem-solving, and systems integration.
A key contr ibut ion of C A S E is its coordinat ion of mul t ip le levels of abstraction
in representat ion, using its three types of software tool. Constraints in different
representat ions are automatical ly translated to different levels as design
decisions are m a d e in part icular levels. Knowledge about different aspects of
the design process is often mos t readily expressed in a variety of different
representat ions, so this organizat ion makes it possible for the first t ime to
capture many aspects of expert ise , and thus improve the automat ion and power
of the system.

Artificial Intelligence
Techniques:
Expanding VLSI Design
Automation Technology
JAMES D. DANIELL
ALLEN M. DEWEY
STEPHEN W. DIRECTOR

Abstract
A s compute r chips have b e c o m e increasingly complex , there has been an ever
increasing need for bet ter computer-aided design (CAD) tools to assist the
designer. This need has brought forth a weal th of compute r p rograms which can
aid in des ign and has also demons t ra ted the need for more powerful
p rog ramming parad igms . Artificial Intelligence (AI) is considered to be one
such parad igm that can help to design a new generat ion of more powerful
compute r tools . This chapter reviews the progress of AI for the design of
integrated circuits and analyzes nine case studies in an effort to de te rmine the
role AI should play in C A D for V L S I chips .

1 Introduction
Recent advances in Very Large Scale Integrat ion (VLSI) technology have
a l lowed the realization of integrated circuits that contain over a mil l ion devices .
This increase in complexi ty has m a d e the computer iza t ion of the V L S I design
process manda tory . As a result , in the last two decades , a number of Compute r -
Aided Des ign (CAD) tools address ing var ious aspects of the design and
fabrication process were developed. Unfortunately, V L S I technology has
cont inued to advance to the point where traditional C A D technology is
approaching its l imits in m a n y si tuations. Recent advances in the area of
Artificial Intel l igence (AI) have led some to exper iment with these techniques to
see if they could ove rcome some of the bot t lenecks that are p laguing traditional
C A D techniques .

Expert Systems for Engineering Design Copyright © 1988 by Academic Press, Inc.
All rights of reproduction in any form reserved.

221 ISBN 0-12-605110-0

222 Daniel l , Dewey , and Director

In this chapter, we review some of this work to examine the degree to which
AI has contr ibuted to V L S I Des ign Automat ion (DA) technology. W e assume
that the reader has some knowledge of AI and V L S I design, a l though we do
review the V L S I design process in the next section. In addit ion to reviewing
several ΑΙ-based C A D tools , in Sect ions 2-4, we discuss the advantages and
disadvantages of AI techniques .

1.1 The VLSI Design Process
W e begin our review with a general discussion of the V L S I design process . The
objective of the V L S I design process is to produce an integrated circuit that
performs a desired function within a set of per formance specifications.

The VLSI design process typically starts with design capture in which the
objective is to extract from the des igner information concerning the desired
functionality, per formance goals , and design constraints . Once the target design
is specified, the next step is design synthesis in which the object is to de termine
what electrical e lements (resistors, transistors, capaci tors , etc.) are to be used,
their specific values , how the e lements will be connected, and where the
e lements will be placed on the integrated circuit. In general , synthesis is
conducted in a top-down, hierarchical fashion that involves a series of synthesis
steps that transform the original , high-level specification into a connect ion of
functional units . The specifications for the functional units are, in turn,
t ransformed into a connect ion of logical gates , which are, in turn, decomposed
into transistors, capaci tors , and resistors. Throughout design synthesis , there is
the need to perform analysis to evaluate the quali ty and correctness of the design
in progress . If analysis reveals that the design is unacceptable , part of the design
may have to be resynthesized. A typical me thod of analysis is s imulation.
There are several different types of s imulators , such as behavioral , logical ,
t iming, and circuit s imulators . Once the design is comple te and bel ieved correct
via simulation, the circuit is ready for fabrication.

After fabrication, the design mus t once again be tested to determine if it
compl ies with all original specifications. Testing involves developing an
appropriate set of test pat terns that when applied to the inputs of the integrated
circuit will verify that the circuit is indeed functional. This task is nontrivial and
computer p rograms have been developed to automatical ly generate a set of test
patterns for a given design as well as a set of likely faults.

1.2 New Challenges For CAD: The Nature of the Problem
As ment ioned in the Introduction, current D A technology has been unable to
keep pace with the increasing demands of VLSI technology which has been the
principle motivat ion in invest igating new approaches to design automat ion. In
this section, we would like to explain in more detail the new chal lenges that
VLSI technology is placing on D A and why traditional D A technology is
proving inadequate .

9. Expand ing V L S I Des ign Automat ion 2 2 3

Advanc ing V L S I technology is present ing basical ly two new chal lenges to
design automat ion: computa t ional ly intractable tasks and ill-defined tasks.
Computa t iona l ly intractable tasks represent p rob lems that have out g rown
previously acceptable wel l-formed algor i thmic solut ions. The shear size of the
task introduces too many details or degrees-of-freedom; thereby, render ing an
exhaust ive , a lgor i thmic solution intractable. An example would be the
convent ional gate-level automat ic test p rogram generat ion a lgor i thms discussed
in Sect ion 3.2. Ill-defined tasks represent p rob lems that have no wel l - formed
mathemat ica l theory and, as such, are ext remely difficult to cast into a
straightforward algori thmic solution. A n example would be the decis ion
making process a designer executes in des igning a low-noise operat ional
amplifier. T h e en tanglement of numerous subproblems throughout the design of
such an amplifier (which may have conflicting goals) makes the generat ion of an
a lgor i thm nearly impossible . These tasks are ill-defined because they at tempt to
capture the creativity and ingenuity of the des igner ' s thought process .

Past design automat ion efforts have been able to rely heavi ly on convent ional
a lgor i thmic p rog ramming methods for implement ing mos t tools . However , as
discussed above , the nature of current and future design automat ion efforts
suggests that substantially more sophist icated and flexible p rog ramming
techniques will be required to efficiently implement the next generat ion of tools .

2 Synthesis Design Tools
In this section we discuss three synthesis D A tools that incorporated AI-based
techniques . V E X E D [16] was one of the early D A tools to deve lop a formal
not ion of the design/synthesis process and to employ constraint propagat ion
methods . D A A [13] was one of the first D A tools to effectively capture
heurist ic synthesis knowledge via a rule-based expert system. W E A V E R [11]
was the first D A tool to invest igate the integration of ΑΙ-based techniques with
convent ional a lgor i thmic techniques via a b lackboard-based expert system.

2 . 1 VEXED: VLSI EXpert EDitor
The V E X E D system, deve loped under the ΑΙ /VLSI Project at Rutgers , was
a imed at the synthesis of datapaths associated with convent ional processors in
terms of electronic componen t s . Compute r s are general ly b roken down into two
componen t s : a datapath and a control path. The control path controls the flow of
data through the operators conta ined in the datapath in order to accompl ish a
specific computa t ion . T w o aspects of V E X E D of part icular note are that it
formalized several aspects of the design process and incorporated constraint
propagation for integrating top-down design with bo t tom-up implementa t ion .

A formalized not ion of design is required to provide a f ramework to capture
and efficiently use an expert des igner ' s des ign/synthesis knowledge within a
compute r p rogram. V E X E D views the design process as a successive

2 2 4 Daniel l , Dewey , and Director

decomposi t ion of an initial functional specification into a hierarchical collection
of "modules" . As modules are decomposed into submodules , more detail about
the structure of the design is revealed. The decomposi t ion process stops when
all modules have been broken down into "primitive modules" . The overall
control of this synthesis process is the responsibil i ty of the designer in that the
designer selects the order in which the modules are to be decomposed .
However , V E X E D saves the decis ions m a d e by the des igner in a plan. This plan
can be used later to answer quest ions about why a part icular synthesis action
occurred or to back up the synthesis process in order to reverse an earlier
designer decision. The synthesis process employs three types of knowledge : 1)
implementa t ion knowledge , 2) control knowledge , and 3) causal knowledge .

Implementa t ion knowledge concerns al ternative ways in which a part icular
function can be implemented . For example , the various ways to design an
adder, such as carry- lookahead, carry propagate , or carry bypass , form the
implementa t ion knowledge for the domain of adders . For a given domain , the
implementat ion knowledge defines the search space which is explored via the
control knowledge which results in a choice of a part icular al ternative for each
module , submodule , etc.

Causal knowledge character izes the behavior of the various modules and
plays an important role in de termining whether a decis ion made about a certain
module implicitly or explicit ly imposes any restrictions or implicat ions on any
other module . V E X E D employs causal knowledge , via constraint propagat ion,
to determine the interactions be tween successive synthesis act ions. It is often
the case that the realization of a module imposes constraints on other modules .
If an affected modu le has not been designed yet, these constraints can be used to
refine its functional specification. However , if the affected module has already
been designed, the constraints must be checked to see if they are satisfied or if a
potential conflict exists. If a conflict exists , a modificat ion must be made to the
design by changing one of the modules in conflict or by possibly adding a new
module . Constraint propagat ion provides the capabil i ty of being able to process
partially incomplete specifications, often referred to as a " leas t -commitment
strategy".

2 . 2 DAA: The Design Automation Assistant
D A A is an automat ic datapath synthesis p rogram. D A A takes as input a
functional description of the target compute r and applies knowledge of data flow
and hardware al location to provide a technology independent hardware
description that realizes the datapath. This synthesis is accompl ished in three
basic steps. First, the functional representat ion, expressed in the language ISPS
(Instruction Set Processor Specification), is t ransformed into a dataflow
representation, known as the Value Trace (VT) . >From the Value Trace
representat ion, D A A begins an initial hardware ass ignment . This second phase
corresponds to a very s imple and unopt imized hardware solution to the design.

9. Expanding VLSI Des ign Automat ion 2 2 5

A third phase , called the Exper t Analysis phase , is then used to improve the
design by employ ing design heurist ics that are used by "design exper ts" . D A A
is constructed as a rule-based expert system.

The advantage in speed of au tomated synthesis is typically gained at the
expense of quali ty of the design as compared to hand-crafted des igns . D A A
tried to ove rcome the deficiencies of au tomated synthesis by employ ing a rich
knowledge-base to character ize the design task. In addit ion, D A A al lowed user
access to var ious levels of the design process in order to provide the user with
greater control over the synthesis process .

As a test of its effectiveness, D A A was used to implement the I B M 370
instruction set. Exper t designers at I B M reviewed the results of D A A and were
able to verify its correctness . Fur thermore , a detailed compar i son be tween the
results of D A A and a version generated by engineers at I B M (termed the μ370)
was performed. The actual μ 3 7 0 was smaller and s lower than the D A A design
since it util ized smaller busses and different cache schemes , whi le the D A A
design used less pipel ining and wider datapaths to achieve a higher throughput .
However , I B M designers apparent ly felt that is was on the level expected from a
"better design engineer ." [13]

There are two principle reasons for D A A ' s success . A great deal of effort
was spent on carefully gather ing, encoding into rules , and verifying the
necessary knowledge needed to perform the "expert" aspects of datapath.
Secondly , D A A general ly m a p p e d from the functional to the structural level. It
was left to the user to m a p from the behavioral to the functional level. By
constraining D A A to the functional/structural synthesis activity, the design
process was greatly simplified. In all, D A A showed that a rule-based expert
sys tem is a viable means of implement ing a V L S I synthesis tool part icularly
when a carefully constructed and comple te rule-based is created.

2 . 3 WEAVER: An Expert Channel Router
W E A V E R [11] was developed to automatical ly route wires (termed nets) on a
chip. Typical ly , such automat ic routers perform either channel rout ing (where
wires enter from two opposi te sides of a rectangular region) or swi tch-box
rout ing (where wires enter from all four sides of a rectangular region) . Mos t
routers use two or more non-over lapping layers for rout ing where each layer has
unidirect ional (i.e. horizontal or vertical) rout ing. The two layers may be
connected through a conduct ion path k n o w n as a via. The m i n i m u m number of
wir ing tracks needed to route a region (if one employs undirect ional rout ing on a
layer) is te rmed density. General ly , it is desirable to min imize the number of
vias because vias impede the progress of signals pass ing through them, thereby,
making the overall chip slower. It is also desirable to route as densely as
possible to min imize chip area.

W E A V E R was the first V L S I C A D tool to employ the "blackboard mode l " as
the architecture of the expert system. The blackboard architecture was

2 2 6 Daniel l , D e w e y , and Director

originally developed for the Hearsay l l speech unders tanding system. [10] The
blackboard architecture supports a p rob lem solving methodology where a
collection of experts are assembled around a blackboard. A problem is posed to
the blackboard and the various experts work in an opportunist ic fashion to solve
the problem. W h e n the solution has progressed to a point that a certain expert
has enough information to m a k e a contr ibution, that expert , or knowledge
source, act ivates, addresses a port ion of the problem, and adds the pert inent
results to the b lackboard for other experts to work on. In W E A V E R , each
expert is responsible for a specific aspect of the rout ing problem and general ly
operates in one of two modes : consultant, planner, or (in some cases) both. As a
consultant , an expert crit icizes the proposed contr ibut ions of another expert ,
while as a p lanner an expert a t tempts to add to the partially comple ted wiring
specification. The various experts were des igned to operate independent ly of
each other. One of the experts focused on the more difficult parts of the
problem, another expert had c o m m o n sense knowledge , and another expert
c leaned up the results of other experts . Some of experts involved heuristic
knowledge , while others involved knowledge that was more algori thmic in
nature. It is this b lend of heurist ics and a lgor i thms that makes W E A V E R
interesting and powerful . In all, e leven experts were used, one of which is the
designer. The ten p r o g r a m m e d experts in W E A V E R consis ted of 700 rules.

W E A V E R performs both channel and swi tchbox rout ing by employ ing
mult iple opt imizat ion metr ics such as wire length, vias, and congest ion as well
as preass igned nets and single layer availabili ty of p ins . It routes using two
layers with the ability to have preass igned nets and fixed availabili ty of pins on a
given layer. In addit ion, W E A V E R exhibi ted the notion of graceful
degradation in that when W E A V E R was run under condi t ions of impaired or
missing experts , it was able to cont inue to route with poorer and poorer
performance until only the min imal experts remained active. These capabili t ies
enabled W E A V E R to route many classical cases with results that were much
better than was previously achieved. W E A V E R efficiently complete ly routed
provably unroutable (for unidirect ional wiring) swi tchboxes .

3 Evaluation Design Tools
The synthesis tools discussed in the previous section play an active role in the
design process in that they actually alter the design. Evaluat ion D A tools on the
other hand are passive in that they evaluate a design in order to determine how
well it performs. In this section we review some evaluat ion- type C A D tools that
incorporated AI techniques .

9. Expand ing VLSI Des ign Automat ion 2 2 7

3 . 1 DIALOG: A Design Critic
D I A L O G is a knowledge-based design aid for cri t iquing M O S V L S I circuits
developed by the V L S I Sys tems Des ign group at I M E C in Belg ium. [6, 7] M o r e
specifically, D I A L O G analyzes a V L S I circuit for design-style dependent design
errors. D I A L O G contains knowledge about good and bad design pract ices for a
certain design style (e.g. a specific gate technology and c locking scheme for a
given fabrication technology) . This knowledge includes information about logic
configurat ions, noise margins , charge sharing, non-stat ic C M O S gates , excess ive
capaci t ive loads, etc . By employ ing a knowledge-based approach, D I A L O G can
more intell igently detect design errors than is possible through the use of
convent ional s imulators . Convent ional s imulators have no global knowledge of
the nature of the part icular design being analyzed and, as a result, often do not
detect errors that represent bad design pract ices or potential ly marginal
performance . In addit ion, some serious design errors m a y cause a s imulator to
fail in an unusual manne r that does not indicate the actual error. Hence , the
need to complemen t the numerica l analysis me thods with high-level , quali tat ive
analysis appears evident .

Knowledge is loaded into D I A L O G via a language called L E X T O C
(Language E x p r e s s i n g TOpo logy Constraints) that provides a means of defining
and construct ing a level of abstract ion, or a way of represent ing the M O S
circuit, and then defining a set of design rules that apply to the user-defined
level of circuit abstraction. T h e concept of a l lowing the user to define design
rules with respect to an arbitrary level of abstract ion, instead of a fixed-level of
abstraction, is referred to as "circuit decompi la t ion" . A user-defined circuit
representat ion provides an important flexibility to define design rules for
different des ign styles. W h e n e v e r D I A L O G ' S quali tat ive knowledge is
insufficient to adequately analyze a circuit, the port ion of the circuit in quest ion
is extracted and presented to the user for detai led inspect ion and simulat ion.

3 . 2 Hitest: An Test Generation System
Hitest is a knowledge-based test generat ion sys tem developed by Cirrus
Compute r s and the U K Depar tment of Industry. [1 , 17] T h e mot ivat ion for
developing Hitest was the observat ion that convent ional Automat ic Test
P rogram Genera t ion (A T P G) techniques are inadequate for large sequential
digital circuits . In part icular, the current A T P G pract ice is to use a lgor i thms to
compute the input pat terns required to cause the effect of a given fault to be
detectable at the output . A T P G algor i thms are computat ional ly intensive and
generate test pat terns that may have little support ing structure or rational in that
the order of the tests m a y or m a y not be grouped according to the functionality
of the design or for the efficient execut ion by a tester. In contrast , an
exper ienced test engineer w h o posses a more detai led unders tanding of the
global structure, behavior , and intended use of the circuit can often quickly
focus on a set of tests that will sufficiently exercise the mos t critical port ions of

2 2 8 Daniel l , Dewey , and Director

the design. Thus , once again, we see the need to meld the advantages of the
human expert knowledge and the convent ional algori thmic procedures to
address a complex task.

Typical A T P G algori thms use a gate-level descript ion of the design. Hitest
employs knowledge of the functionality and intended modes of operat ion of
higher-level modules (e.g. aggregates of gates such as flip-flops, counters ,
R A M s , etc.) to more effectively target the generated tests towards the mos t
important and probably faults. Once the knowledge about the design is
captured, the knowledge mus t be used to generate the tests. Hitest generates the
tests by dynamical ly and incremental ly bui lding a descript ion of the test in a
language called C W L (Cirrus Waveform Language) . The C W L is a f ramework
which provides an inherent degree of structure, organizat ion, and
transportabil i ty for the generated tests.

Hitest uses a "frame-based" knowledge representat ion [14, 18] to store and
process expert knowledge . F rames provide a means of grouping pieces of
knowledge that are related to each other in some manner , where each piece of
knowledge may have a widely differing representat ion. The pieces of
knowledge are referred to as "slots" in the frame. For example , all the
information concerning the testing of a R A M chip can be convenient ly
encapsulated in a frame. The various slots could contain knowledge such as
s imple symbol ic data indicating manufacturer , heurist ic rules indicat ing likely
failure modes , or procedures for test rout ines. F rames themselves can be
grouped to form a hierarchy of contexts .

3 . 3 LEAP: A Learning Apprentice
L E A P [15] is a learning system that is layered on top of the V E X E D system
discussed in Section 2 . 1 . L E A P al lowed V E X E D to learn new rules for
simplifying boolean equat ions and for the generat ion of new boolean ne tworks .
One of the more interesting aspects to L E A P is the way in which it interacts
with V E X E D . Dur ing the course of a V E X E D session, L E A P remains passive
until such t ime as the user of V E X E D over-r ides a V E X E D suggest ion. Without
the user explicitly enter ing a t ra in ing-mode, L E A P activates and begins to build
a rule which would character ize why the user made the change that he did.
W h e n a rule is built, L E A P then at tempts to general ize the rule both in its
context (the left hand side of the rule) and its act ions (the right hand side of the
rule). If L E A P were distr ibuted to 1000 VLSI designers (using V E X E D) , it is
theoretically possible for a large and powerful knowledge-base to be
automatical ly created since L E A P had learned from a large body of designers .

L E A P is an exper t -system which has expert ise in "learning" from interactive
training examples . It is composed of three major modules which are the Right
Hand Side (RHS) generator , a Left Hand Side (LHS) generator , and an
Analytical Simplifier/Vérifier. The L H S and R H S generators are procedural
while the Analyt ical Simplifier/Vérifier is a product ion system. Several features

9. Expand ing V L S I Des ign Automat ion 2 2 9

which al low it to achieve good results are the fol lowing: the interactive nature
of the V E X E D system, the use of a powerful analytical product ion system to
general ize new rules from examples , and the ability to separate knowledge of
correct design information from knowledge which indicates when a
representat ion is preferred.

The interactive nature of the V E X E D design session al lows L E A P to operate
within a context rich envi ronment . This means that m a n y design constra ints ,
preferences, and goals can be combined to help form the context (LHS) of the
rule to be built. Since L E A P is only activated when the des igner overr ides or
supplies a des ign alternative to V E X E D , L E A P is guaranteed to be supplying a
piece of knowledge that V E X E D does not have .

L E A P uses an analytical approach to generat ing rules. This means that it
does not have to a t tempt to learn from a large populat ion of user supplied
examples . Instead, it generates an initial very specific rule (from the R H S and
L H S generators) and then operates on this rule to analytically genera te a more
general rule. This helps to e l iminate cases where L E A P would bui ld rules that
are ei ther wrong or unclear to a person.

Final ly, L E A P addresses a major bot t leneck in knowledge acquisi t ion. L E A P
parti t ions the knowledge-base into rules that indicate which implementa t ion is
correct and rules that indicate which implementa t ion is preferred. This is a
fundamental p rob lem with homogeneous rule-bases . It mus t be m a d e explicit
not only what const i tutes correct design but also opt imal design. O n e of the
major cr i t icisms of compute r genera ted V L S I des igns is that, a l though correct in
construct ion, they lack a clear design strategy which would m a k e them either
smaller , faster, and generally better. By a t tempt ing to acquire knowledge of
both types , L E A P should provide V E X E D with a knowledge-base that is more
powerful and better able to represent the way in which persons design VLSI
chips .

4 Design Environments
A major p roblem associated with employ ing the current set of C A D tools for
complex V L S I system design is that of tool integration. T h e need for a suitable
tool integration methodo logy , as well as an envi ronment that implements this
methodology , s tems from three p rob lems . First, the number and complexi ty of
C A D tools used dur ing the design process cont inues to increase. Secondly , even
though more tools are in use, s tandards for in terconnect ing tools have not
evolved sufficiently to al low easy integration. This means that a large amount
of effort mus t be expended in conver t ing the output of one C A D tool to the input
of another C A D tool. Finally, the sheer n u m b e r of design details is such that the
designer has no choice but to rely on the compute r to mainta in and verify the
design database .

A VLSI C A D tool integration methodology , and the design env i ronment that

2 3 0 Daniel l , Dewey , and Director

implements it, should be capable of manag ing the numerous details that arise
during the course of a design, track design dependencies , efficiently al locate
computer resources , and automatical ly execute C A D tools if appropriate . To
this end, design envi ronments typically contain a design representat ion or design
database through which the design is control led. Much like a software
main tenance package , the design env i ronment provides version control , may
automatical ly use verification tools to assure correctness , and logs the use r ' s
act ions within the system. The design envi ronment will interact with a set of
resident C A D tools and will a t tempt to act as a manage r of the C A D tools by
handl ing input/output requi rements , invocat ion parameters , and possibly
automatical ly sequencing the C A D tools. In short , a design env i ronment
provides a design platform which acts as a rich f ramework which, in effect,
shields the designer from cumber some details and al lows the designer to work at
a high level of abstraction.

The concept of such a design env i ronment is not new; however , the previous
or ongoing efforts in this area have not yielded the expected results to date. This
is due , in part , to the ever changing n u m b e r and type of C A D tools that an expert
designer uses. This , coupled with the fact that representat ion of the design space
is also complex , has lead to the construct ion of des ign envi ronments which are
s low, hard to mainta in , and difficult to extend as C A D tools change . As
research into design envi ronments has progressed, several issues have emerged
to become major impediments on the road to the creat ion of a true design
environment . These issues are as fol lows:

• H o w do we represent the design as well as the design space?

• H o w do we mode l knowledge of design and design activities?

• H o w do we apply C A D tools to assist in the design process?

• H o w do we integrate the results of var ious (and possibly dissimilar)
C A D tools?

Three design envi ronments will be discussed with respect to these issues
listed above . In particular, Pal ladio [2] centered most ly on the issues
surrounding the design representat ion and how the user of the design
envi ronment v iews the design in progress . U L Y S S E S [4, 5] was designed to
address the issue of C A D tool integration as well as the model ing of design
knowledge and design activities. Finally, A D A M [9, 12] focuses on the ability
to automatical ly invoke C A D tools as needed and to provide a flexible design
representat ion. It is important to note that research is ongoing in this area and
creation of a powerful design env i ronment is still considered a major miles tone
needed in the design of the next generat ion of compute r chips.

9. Expanding V L S I Des ign Automat ion 2 3 1

4 . 1 Palladio
Implemented in 1983, Pal ladio [2] was one of the first a t tempts at developing a
VLSI circuit design envi ronment . Its goals were to develop a mechan i sm for
represent ing C A D knowledge , handle the var ious types of knowledge that exist
at different layers in the design hierarchy, and deal with the in terdependencies of
this knowledge . Pal ladio employed the not ion of a perspective, or v iew, of the
design as seen from some point in the design process . The design process itself,
therefore, involves successive ref inement from a global perspect ive with
incomplete specifications to a specific perspect ive with a comple te specification.
The Pal ladio pa rad igm incorporates the fact that not all steps in the design
process are fol lowed in some rigid order. Rather , it a l lowed an exper t des igner
to shift focus (and therefore perspect ives) during the design process . This
a l lowed the des igner to constant ly work on var ious pieces of the design and to
focus attention on what he or she felt was currently important .

A key feature of Pal ladio was its ability to handle a mixed internal
representat ion scheme so that arbitrary objects can be represented. Such objects
could take the form of a user-defined block, an A L U , a register, or even a
discrete gate . This a l lowed for a complex design hierarchy capable of
represent ing the design at different levels of granulari ty. Fur thermore , the
hierarchy provides a data hiding mechan i sm so that details of the design are
only visible at the level that they are needed. Thus , the des igner (or designers)
could all operate on a single representat ion which could be examined at varying
levels of detail . The not ion of perspect ives is based upon this hierarchical
des ign da ta representat ion scheme.

The implementa t ion of this hierarchy was done so that the structure of a
circuit is defined through an object-oriented mechan i sm. This implies that the
design can be represented by a hierarchy of objects with each object
represent ing a piece of the design, with the var ious pieces having inheri tance,
procedural a t tachments , and except ion handl ing . For example , if the design is
based on generic bit-slice objects , we attach a procedure to this generic object to
generate the appropria te η-bit equivalent as needed. This expanded cell (e.g. an
eight bit register) may have inherited an ass ignment of signals to its pins via its
parent object (e.g. a generic state mach ine object) .

Another important aspect to des ign is constraint propagat ion (also discussed
in Sect ion 2.1), for it is through constraint propagat ion that the design goals are
al igned with implementa t ion constraints . T h e Pal ladio project showed that
constraint propagat ion is achievable through data-directed invocation. Data-
directed invocat ion is the mechan i sm that a l lows the design to be incremental ly
built as the goals and needs of the des igner b e c o m e apparent . In this fashion,
the design constraints will change and propagate with each modif icat ion to the
partial design. This is important since the design requi rements typically can not
be de te rmined a priori. By providing this form of constraint propagat ion, the
design in terdependencies are developed dur ing the life-cycle of the design. This

2 3 2 Daniel l , Dewey , and Director

is more natural , t ransparent , and intuitive than a t tempting to provide complex
est imation routines which try to m a p est imated cost of implementa t ion to
original goals and constraints .

Once the Pal ladio representat ion was designed, a set of C A D tools to
manipula te it were developed. Each tool was designed to work with the other
tools in the Pal ladio envi ronment . The Pal ladio designers were wil l ing to
recreate a C A D tool suite since it was bel ieved that this new representat ion
scheme would result in substantial gains . Using the fact that they were starting
from scratch, they explicit ly built the env i ronmen t ' s representat ion scheme into
each C A D tool. Fur thermore , they were able define the C A D tool interaction
requirements and also design these into the new tools. This a l lowed the Pal ladio
designers comple te freedom in the selection and creat ion of C A D tool
interaction criterion. Pictorially, the loose collection of the Pal ladio toolset is
shown in Figure 1.

F i g u r e 1: Pal ladio Sys tem Archi tecture .

Whi le Pal ladio is not a "good" product ion envi ronment , especial ly in terms of
execut ion speed, its deve lopment did result in a basic unders tanding of the
nature of the tool integration problem. The use of mixed modes of
representat ion gave it unprecedented versatil i ty. A major d rawback to
Pa l lad io ' s approach, however , lies in the difficulty of mapp ing its hierarchical
representat ion of a chip to some other intermediate form such as D I F [3] or
V H D L . [8] Thus the Pal ladio design envi ronment can not accommoda te the
large number of exist ing C A D tools. All C A D tools used in Pal ladio must be
specifically written for that purpose . This represents an explicit bot t leneck in
the Palladio envi ronment since it can not accommoda te new or exist ing C A D
tools that were not intended for it.

9. Expanding VLSI Des ign Automat ion 2 3 3

4.2 ULYSSES
U L Y S S E S [4, 5] was a first a t tempt to deve lop a V L S I design env i ronment that
addressed the fundamental issues of integrating arbitrary C A D tools. In addit ion
to being able to integrate arbitrary C A D tools , U L Y S S E S could automatical ly
execute C A D tools , support a design space capture mechan i sm, and handle
complex interaction be tween dissimilar C A D tools . U L Y S S E S employed a
b lackboard archi tecture, discussed in Sect ion 2 .3 , to handle interaction be tween
the necessary C A D tools and distr ibute design information. Des ign activities
were descr ibed via a language called "scripts". These scripts could be
"compiled" to automatical ly execute the C A D tools needed for a given design
activity. Since the use of the b lackboard architecture and scripts are the two
most pert inent aspects to the of U L Y S S E S , we discuss them more fully be low.

U L Y S S E S employed a b lackboard (Figure 2) as a global da tabase through
which coopera t ing processes communica ted . In U L Y S S E S , the var ious goals
and intermediate results were stored on the blackboard, which , in turn, caused
the execut ion of a C A D tool, the generat ion of new internal data, or the
modif icat ion of information that already existed on the b lackboard. Control of
the b lackboard was explicit ly mainta ined by the U L Y S S E S Scheduler . [4] The
Schedu le r ' s j o b was to examine all pending operat ions and decide in which
order they should be executed. The Scheduler used many criterion to arbitrate
be tween C A D tools; including j o b priori ty, whether the task required h u m a n
interaction (in case the designer had left), whether or not the expected compute r
resources are avai lable , and whether the j o b would help satisfy a pend ing goal .
The use of the b lackboard facilitated developing the loosely coupled architecture
depicted in Figure 2.

The U L Y S S E S script was a high level representat ion of a design task that
contained knowledge of the C A D tool execut ion sequence , the reasons for each
step in the sequence , and how the output of one tool could be used as the input
to another tool. In order to develop a script, a des igner had to have a comple te
and detai led knowledge of U L Y S S E S and the C A D tool suite and its operat ion.
However , once a complex C A D tool task was encoded in a script by an expert
designer , a novice designer could then employ the script with little or no
knowledge of h o w it was developed. The script could be compi led by the
Scripts Compi le r [4] which would create a set of L ISP and O P S 5 statements
which would activate or interact with the b lackboard.

U L Y S S E S demonst ra ted that the b lackboard is an effective m e a n s for
automat ic execut ion of appropria te C A D tools to mee t a specified set of
requi rements . Fur thermore , the Scripts Language [4] (and its associated
compiler) p roduced a mechan i sm that "unders tood" C A D tool sequencing and a
format to explicit ly represent C A D tool interaction. Since U L Y S S E S had the
ability to arbitrate be tween compet ing C A D tools, the scripts wri ter could
partially decompose the p rob lem by formulat ing a large design task in terms of a
set of smaller scripts. U L Y S S E S would then properly sequence the runt ime
requests and act ions.

2 3 4 Daniel l , Dewey , and Director

RULE
CHECKERS

RLE
TRANSFORMATION!

OEMONS j

BATCH
CAO TOOLS

F i g u r e 2 : The U L Y S S E S Design Envi ronment Archi tecture .

4.3 ADAM
The Advanced Des ign Automat ion system [9, 12] (A D A M) is another a t tempt at
creat ing a design env i ronment for V L S I chip design. At present , the A D A M
research is still ongoing but several key aspects to the A D A M project are of
note. First, A D A M is inspired by the original research done on Pal ladio and
loosely fol lows the Pal ladio parad igm. In particular, the emphas i s is on a
hierarchical representat ion termed the design representation, a knowledge-base
containing design strategies, and a p lanning engine which applies the design
knowledge to the representat ion space.

In addit ion to the hierarchical descript ion of a design, A D A M also
decomposes the design into unique and independent "subspaces" . These
subspaces represent the design as four classes of information which may be
equated to four Pal ladio meta- level perspect ives . These four subspaces are as
follows:

• Data F low Behavior Subspace - A data flow graph that specifies the
behavior of the device .

• Structural Subspace - The hierarchical representat ion of the design
from the logical level down to (but not inclusive of) the physical
realization.

• Physical Subspace - The physical constraints and propert ies
associated with the actual physical design. Examples of this are the
size and power constraints as well as the physical layout
information.

9. Expanding VLSI Design Automat ion 2 3 5

• T iming and Control Subspace - The constraint hierarchy that
specifies the desired window of operat ion as well as the necessary
control dependencies .

The total design space which consists of the four subspaces is te rmed the
Design Data Structure (DDS) . This is an at tempt to formalize and enumera te
the generic classes of information that are required for the design process . Like
Pal ladio, A D A M has established a unique representat ion on which to base the
C A D tool operat ion. Therefore, it suffers the same general d rawbacks that
Pal ladio did as the designer is not able to select arbitrary C A D tools.

However , A D A M has begun to address how the C A D tools of the future
should operate . Unl ike Pal ladio, A D A M separates design knowledge from the
design mechan i sm. In this case, design knowledge is stored in a design
knowledge-base and the A D A M planning engine [12] uses this information to
manipula te the design subspaces . By at tempting to separate the design task
from the design knowledge , a great deal of flexibility and versatility may be
gained. Whi le it is still difficult to integrate tools into the A D A M envi ronment ,
the A D A M project has begun to explore new ways of automat ing the design
process .

5 Contributions of Artificial Intelligence to DA
Technology

W e have reviewed nine C A D tools that incorporated e lements of artificial
intell igence. It is instructive to examine the effect that AI had, if any, on the
performance of these tools when compared to C A D tools that used more
traditional methods .

5 ,1 Advantages
In general , it is fair to say that AI techniques have provided a more flexible
means of applying heuristic knowledge to address computat ional ly intractable
and ill-defined tasks through new knowledge representat ion schemes , C A D tool
architectures, and approaches to search, p lanning, and nondeterminis t ic
decis ion-making. The result being a set of problem solving skills that can
exploit the knowledge of an expert to codify design activities and pare down
overly complex issues.

The use of powerful design representat ions (Hitest, Pal ladio, U L Y S S E S , and
A D A M) has given rise to a much more natural way to manage and manipula te
the design space. Data abstraction and data hiding facilitated the handl ing and
manipula t ion of complex data and constraints . By al lowing mult iple
perspect ives , the designer could more easily structure the information to more
closely fit the applicat ion. In the case of Hitest , the test pat terns generated were
motivated by an unders tanding of the target design and therefore, were more
closely related to the patterns a person would develop (as well as more

2 3 6 Daniel l , Dewey , and Director

efficiently generated than older A T P G ' s) . The use of mixed m o d e
representat ion (i.e. for structure and behavior) that can share the same design
space is becoming a useful paradigm.

Rule-based and b lackboard-based architectures have improved construct ion
of C A D tools. Those C A D tools that used a b lackboard architecture (such as
W E A V E R and U L Y S S E S) , were able to integrate different cost metr ics and
different p rob lem solving parad igms . A very complex piece of code would be
required in order to create the same flow of control in a normal p rog ramming
regime.

An important considerat ion is the dramat ic explosion in search spaces that
occur in the C A D domain . Since C A D design activities are very "hard", brute
force code becomes prohibi t ive to use for large problems . Through the use of
the focus of attention expert , W E A V E R employed a best-first search strategy in
that it would tend to work on the important part of the problem. The search
space is paired down by the advice of consul tant ing experts . This e l iminates the
many dead-ends and meaningless a t tempts that brute-force code would try.
D A A is another example of best-first search by using the knowledge of an
"expert" to guide the initial synthesis decis ions.

The Scheduler in U L Y S S E S is an example of p lanning. The Scheduler was
able to decide, in a nondeterminis t ic fashion, which C A D should be executed
next in order to mos t effectively comple te the task. In addit ion, the Scheduler
was able to resolve conflicts be tween compet ing C A D tools and initiate the
necessary correct ive act ions when a part icular C A D tool was supposed to be
invoked, but could be invoked due to a miss ing file.

5 .2 Disadvantages
In general , we can not escape the fact that mos t AI related technologies are
considered slow. W E A V E R would typically spend hours , if not days , routing
some problems . Al though this issue is considered moo t in the academic setting,
it is of valid concern to the commerc ia l viability of such projects. In response to
this problem, faster L ISP implementa t ions have been developed, L ISP machines
are fairly c o m m o n , and O P S 5 now has a faster successor (OPS83) writ ten in the
C p rogramming language. Of course , the current generat ion of engineer ing
workstat ions are much more powerful and can more easily support the needs of
both computat ional and m e m o r y intensive applicat ions.

A number of the ΑΙ-based C A D tools employed product ion rules (DAA,
U L Y S S E S , V E X E D , D I A L O G , and W E A V E R) ; however , little attention was
paid to the price for their use. In D A A , a significant port ion of the construct ion
and life cycle costs are directly attr ibutable to the difficultly in generat ing good
rules. Kowalski points out [11] that the rule extract ion process can be painful
and may never be entirely comple te . Upwards of 3 0 % of the rules in D A A were
associated with overhead and c leanup. In U L Y S S E S , Bushnel l was forced to
revamp part of the rule-matching control structure to al low for more capabil i t ies

9. Expanding V L S I Des ign Automat ion 237

in the selection and firing of rules. In W E A V E R , the 7 0 0 rule rule-base proved
difficult to mainta in due to the nondeterminis t ic nature of rule firings. Often the
addit ion or modif icat ion of a single rule has significant impact on the operat ion
of the tool as a whole . Therefore, while rule-based expert sys tems may achieve
a more opportunis t ic reasoning structure and are very quick to prototype , long
term main tenance issues must be carefully considered.

6 Conclusions and Future Directions
It is unfortunate that the g rowing number of unfulfilled p romises and
expecta t ions about the capabil i t ies of artificial intel l igence seems to have
damaged the credibili ty of AI and eroded its true contr ibut ions and benefi ts .
The early advances of expert sys tems, which were based on 20 years of
research, were overextrapolated by m a n y searching for a magica l solution to
their increasely complex prob lems . In a t tempting to find solutions to t oday ' s
p rob lems , short-cuts or easy solutions are rare and omnisc ient solut ions are
temerar ious . Notwi ths tanding the p rob lems of AI , we feel that artificial
intel l igence research has produced a set of techniques that can profitably be
employed in developing improved V L S I C A D tools. However , we are not
suggest ing that AI in and of itself is sufficient, nor that AI is s o m e h o w mutual ly
exclusive with tradit ional D A technology. Rather , we would opt for a more
synergist ic v iew. In order to deve lop a proper perspect ive on the relat ionship
and interplay be tween AI technology and convent ional V L S I D A technology, it
is necessary to have a f ramework that provides a metr ic or a d imens ion by which
AI techniques can be compared and contrasted relative to tradit ional D A
technology. Knowledge engineer ing provides such a f ramework.

Knowledge engineer ing is a p rob lem solving strategy and an approach to
p rog ramming that character izes a p rob lem principally by the type of knowledge
involved. At one end of the spect rum lies convent ional D A technology based on
well-defined, a lgor i thmic knowledge . At the other end of the spec t rum lies
ΑΙ-based D A technology based on ill-defined, heurist ic knowledge . K n o w l e d g e
engineer ing is not solely associated with artificial intel l igence, nor is Al -based
D A technology inherently more powerful or intell igent than convent ional D A
technology. Clearly, a Fast Four ier Transform implemented as a determinist ic
a lgori thm using tradit ional p rog ramming pract ices involves jus t as much
"knowledge" as opt imizat ion techniques for boolean logic using heurist ic rules.
Its jus t that the nature of the knowledge is different, p lacing the tasks at different
points on the knowledge spect rum, and requir ing different p rog ramming
parad igms. However , both solutions can be cons idered examples of knowledge
engineer ing. This synergist ic v iew towards AI and convent ional D A technology
is ev idenced by the evolut ion of AI C A D tool archi tectures. As previously
discussed, the early expert design tools used rules as the basic data structure to
address heurist ic knowledge . F rom the rule-based expert sys tem, we have seen

2 3 8 Daniel l , Dewey , and Director

a shift to a more powerful architecture based on the notion of cooperat ing
experts (termed b lackboard architectures) that al low for the meld ing of
algori thmic approaches with AI techniques .

In closing, artificial intel l igence techniques represent a suite of new methods
and p rog ramming pract ices that can be used to augment current D A technology
to yield a more powerful repertoire of p rob lem solving skills required to develop
the next generat ion of C A D tools. It is the responsibil i ty of the C A D tool
developer to analyze the nature of the task and to judic ious ly decide what mix of
AI techniques and convent ional D A techniques would yield the mos t efficient
implementat ion.

Acknowledgment
This research has been supported in part by the Semiconduc tor Research
Corporat ion.

References

1. Bending , M . "Hitest: A Knowledge-Based Test Genera t ion System." IEEE
Design and Test 7, 2 (May 1984), 83-92.

2. B rown , H., Tong , C , and Foyster , G. "Palladio: A n Exploratory
Envi ronment for Circuit Design." IEEE Computer 16 (December 1983).

3 . Bushnel l , M. , Geiger , D. , K im, J., LaPot in , D. , Nassif, S., Nestor , J., Rajan,
J., Strojwas, A. and Walker , H. "DIF: The C M U - D A Intermediate Form."
S R C - C M U Center for Compute r -Aided Design, July, 1983.

4. Bushnel l , M. ULYSSES - An Expert-System Based VLSI Design
Environment. Ph .D . Th. , Carnegie Mel lon Universi ty , Electrical and Compute r
Engineer ing Depar tment , 1986.

5. Bushnel l , M . and Director , S. W . " U L Y S S E S - A Knowledge Based V L S I
Design Envi ronment . " International Journal on AI in Engineering 2 , 1
(Janurary 1987).

6. De Man , H. , Darcis , L., Bolsens , I., Reynaer t , P. , and Dumlugo l , D . "A
Debugging and Guided Simulat ion Sys tem for M O S V L S I Design." IEEE
Conference on Computer-Aided Design,, 1983, pp . 137-138. Santa Clara, CA.

7. De Man , H. , Bolsens , I., Meersch , E. and Cleynenbreugel , J. " D I A L O G : An
Expert Debugg ing Sys tem for M O S V L S I Design." IEEE Transactions on
Computer-Aided Design CAD-4, 3 (July 1985), 3 0 3 - 3 1 1 .

8. D e w e y , A. and Gadient , A. " V H D L Motivat ion." IEEE Design and Test of
Computers 3, 2 (April 1986).

9. Granacki , J., Knapp , D. , and Parker , A. "The A D A M Advanced Des ign
Automat ion Sys tem: Overv iew, Planner , and Natura l Language Interface."
Proc. 22nd Design Automation Conf, June , 1985.

9. Expand ing V L S I Des ign Automat ion 239

10. Hayes-Roth , F. , M o s t o w , D. J., and Fox, M. S. "Unders tanding Speech in
the H E A R S A Y - I I Sys tem." In Bole , L., (Ed.) , Speech Communication with
Computers, Carl Hansen Ver lag , 1978.

11. Joobbani , R. WEAVER: An Application of Knowledge-Based Expert
Systems to Detailed Routing of VLSI Circuits. Ph .D . Th. , Carnegie Mel lon
Univers i ty , Electrical and Compute r Engineer ing Depar tment , June 1985. Ph .D .
Th. .

12. Knapp , D . and Parker , A. "A Des ign Utility Manager : the A D A M Planning
Engine ." Ρ roc. 23 nd Design Automation Conf, June , 1986.

13. Kowalsk i , T. The VLSI Design Automation Assistant: A Knowledge-Based
Expert System. P h . D . Th. , Carnegie Mel lon Univers i ty , Electrical and Compu te r
Engineer ing Depar tment , Apri l 1984. Ph .D . Th. .

14. Minsky . M . "A F ramework For Represent ing Knowledge . " The
Psychology of Computer Vision, 1975. N e w York.

15. Mitchel l , T. " L E A P : A Learning Apprent ice for V L S I Design." Infl Joint
Conf. on Artificial Intelligence, Augus t , 1985.

16. Mitchel l , T., Steinberg, L., and Shulman , J. "A Knowledge -Based
Approach to Design." IEEE Transactions of Pattern Analysis and Machine
Intelligence PAMI-7, 5 (September 1985), 502-510 .

17. Robinson , G. D . "Hitest - Intell igent Tes t Generat ion." Proceedings IEEE
International Test Conference, October , 1983, pp . 311 -323 .

18. Winograd , T. "Frames Representa t ion and the Declara t ive/Procedural
Controversy ." Representation and Understanding, 1975. N e w York.

Building Large-Scale
Software Organizations
SAROSH TALUKDAR
ELERI CARDOZO

Abstract
This paper descr ibes D P S K , an env i ronment for bui lding organizat ions of
distr ibuted, col laborat ing p rograms . D P S K has evolved from a tradit ional
b lackboard architecture to incorporate a number of col laborat ive mechan i sms ,
called lateral relat ions, bor rowed from h u m a n organizat ional theory. This paper
traces the evolut ion of D P S K , descr ibes its principal features and illustrates its
use with some s imple examples .

1 Introduction
M a n y scientific and engineer ing areas are desperate for ways to integrate large
numbers of people and large number s of compute r tools into smoothly
functioning, efficient sys tems. Engineer ing design is jus t one such area. The
number of compute r aided design (C A D) tools is g rowing rapidly and is well
into the hundreds in some discipl ines. However , mos t of these tools are of the
s tand-alone variety. T o use them requires h u m a n s to serve as go-be tweens and
supervisors . It would be far better if other tools could take over these roles ,
mak ing it possible to integrate the C A D tools into software organizat ions , and
freeing the h u m a n s for more rewarding tasks. In the remainder of this paper we
will discuss some of the issues involved in put t ing together such organizat ions .

1.1 Terminology
Organization. An information process ing sys tem for performing intellectual
tasks like des igning cars .
Complex task. A task that decomposes into difficult subtasks that require
different p rob lem solving skills. For instance, the task of des igning a car which
decomposes into des igning its outer shape , engine , door sys tems, manufactur ing
processes , and so on.
Agents. The act ive componen t s of organizat ions . An agent may be a h u m a n or
a compute r p rogram.

Expert Systems for Engineering Design

241

Copyright © 1988 by Academic Press, Inc.
All rights of reproduction in any form reserved.

ISBN 0-12-605110-0

2 4 2 Talukdar and Cardozo

Uncertainty. The deficit in "up-front knowledge" needed to preplan the
operat ions (activities) of an organizat ion. S o m e c o m m o n componen t s of this
deficit are: incomplete knowledge of the state of the world, inaccurate
predict ions of the future, imperfect agents , and unfamiliar tasks. Uncer ta inty is
dependent on both the task and on the structure of the organizat ion used to
tackle the task.
Contingencies. T h e consequences of uncertainty, namely , the obstacles that
arise to block the successful comple t ion of subtasks . For instance, an important
problem may turn out to be unsolvable , an a lgor i thm may fail to converge or a
vital p iece of data m a y prove to be unobta inable .
Large-Scale Organization. A n organizat ion with many independent agents that
can work in parallel , can col laborate and usually have high computa t ion to
communica t ion rat ios. Later , w e will a rgue that complex tasks and uncertainty
call for large-scale organizat ions .

Collaboration. The exchange of raw and processed data.

1.2 Human Organizations
In seeking ways to build large-scale software organizat ions it is well to look to
h u m a n organizat ions for guidance . The reasons are two-fold. First, h u m a n and
software organizat ions are similar in pr inciple [6], [9]. Second, human
organizat ional theory is m u c h more mature . W e would rather bor row techniques
from it than reinvent them.

H u m a n organizat ions are able to comple te very complex tasks in highly
uncertain c i rcumstances by:

• using large numbers of agents ,
• providing a variety powerful mechan i sms for agents to col laborate ,

and

• employ ing parallel (concurrent) approaches .

H u m a n organizat ions routinely assemble very large teams of intelligent
agents - hundreds , and somet imes even thousands , of engineers , scientists and
managers with widely varying knowledge and skills. A number of mechan i sms
have evolved to p romote col laborat ions a m o n g these agents , mak ing it possible
for them to focus their skills on big tasks. These mechan i sms rely on lateral
channels for information flow that run across the lines of authori ty. M o r e will
be said about these channels later.

Another important aspect of h u m a n organizat ions is the parallel approaches
they take to problem solving. The advantages are more profound than mere
increases in speed. S o m e examples will be used to explain. First, consider a
task that decomposes into a set of invariant , partially ordered steps. (Meaning
that some of the steps can proceed in parallel wi thout changing their ou tcomes .
This is the sort of task that is usual ly thought of for parallel process ing in
computers .) Since the steps are invariant , the only gain from parallel process ing

10. Bui lding Large-Scale Software Organizat ions 2 4 3

is a saving in t ime. N o w consider a quite different sort of task - that faced by
one team in a football game . The t e a m ' s m e m b e r s must work in parallel . The
overall task would be impossible if only one t eam m e m b e r were a l lowed to be
active at a t ime. T h e reason, of course , is that the overall task decomposes into a
much easier set of parallel subtasks than sequential subtasks. There are many
analogous si tuations in engineer ing. Des ign ing the different aspects of a product
is a good example . If the aspects are tackled in parallel , there is the opportuni ty
for negot ia t ions, compromise and coordinat ion. However , if they are tackled in
series, the ups t ream stages invariably m a k e choices that impose difficult or
imposs ib le constraints on the downs t r eam stages.

1.3 Software Organizations
Despi te the theoretical similarit ies be tween h u m a n and software organizat ions ,
there are profound practical differences be tween them, especial ly a long the
fol lowing d imens ions :

• Expandabi l i ty . Whi le h u m a n organizat ions readily grow to
encompass many agents with diverse skills, large-scale software
organizat ions suffer from acute g rowing pains and are relatively
rare.

• Distr ibuted p rob lem solving. Concurrent , distr ibuted activities with
h igh computa t ion to communica t ion ratios and dynamical ly varying
subtasks seem to be the basic m o d e of operat ion of h u m a n
organizat ions . In contrast , compute r sys tems that use concurrent
computa t ions usually concentra te on the finer grains of paral le l ism
and tasks that decompose into invariant subtasks.

• Col laborat ive mechan i sms . H u m a n organizat ions use a m u c h r icher
set of mechan i sms than software organizat ions .

These differences exist because of a lack of good tools with which to bui ld
large-scale software organizat ions . Tradi t ional ly, there is an ove rwhe lming
amount of software effort required to integrate a number of dissimilar software
packages . T o further il lustrate bui lding a problem-solv ing organizat ion with
agents writ ten in p rog ramming languages of significantly different or ientat ions,
consider the idea of bui lding a h u m a n organizat ion with individuals , each of
w h o m is from a very different cultural and educat ional background , and w h o
speak and wri te different languages . Coordinat ion is nearly imposs ib le . Wi th
the varying styles of p rob lem solving to be expected, there are further
difficulties that prevent unders tanding even when interpreters are employed .
(Interpreters are also c u m b e r s o m e and expensive.) A d d to this the p rob lems of
one individual t rying to unders tand the information files of another . T h e
me taphor can be carried qui te far.

2 4 4 Ta lukdar and Cardozo

1.4 Blackboards
In the last few years , b lackboards have emerged as both the principal tool and
conceptual form for bui lding large-scale software organizat ions [13]. In
essence, a b lackboard is a database with a built in set of support facilities that
al low it to be shared by an expandable communi ty of p rograms . The idea is to
make important raw and processed data visible to the communi ty . The
computat ional cycle is mode led after that of a product ion system and has two
steps:

1. Select a p rogram (this step is done by an embedded control
system).

2. Run the program (and as a result, change the contents of the
b lackboard) .

Clearly, this computa t ional cycle is des igned for a single processor but has an
obvious extension for distr ibuted process ing, namely :

1. Select several p rograms .

2. Run the selected programs concurrent ly.

In some cases it might be desirable to ensure that these steps are strictly
separated in t ime, while in others , it might be desirable to al low them to overlap
and proceed in parallel .

1.5 COPS
Having repeatedly been reminded of the impor tance of distr ibuted approaches to
engineer ing tasks (see [5], [12] , [14] , for instance) , we set out some years ago to
produce an envi ronment for implement ing such approaches . The first result was
a set of tools called C O P S (Concurrent Product ion Sys tem) [8]. C O P S is written
in O P S 5 and provides facilities for creat ing mult iple b lackboards distributed
over a network of computers . P rograms communica te with remote blackboards
via "ambassadors" (Fig. 1). Each ambassador is a set of rules that represents the
interests of its parent p rogram. The computa t ional cycle for each processor
remains the same as in the uni-processor case except that the first step may
result in the selection of a p rogram that is an ambassador . W h e n this happens ,
the second step results in an exchange of data be tween processors .

In working with C O P S , certain differences in the control issues for uni- and
distributed process ing have b e c o m e clear to us. In the uni-processor case , the
paramount control issue is deciding which p rogram to run. In the distributed
case, this issue becomes progressively less important with increase in the
relative number of processors , and disappears entirely when each program has
its o w n processor . Instead, the pa ramount control issue becomes the selection of
mechan i sms for col laborat ions a m o n g programs . W h a t is the range of
al ternatives for these mechan i sms? W e will use h u m a n organizat ions as our
models in identifying al ternatives. The reasons are three-fold, first, h u m a n and
software organizat ions are close enough in structure to share al ternatives.

10. Bui lding Large-Scale Software Organizat ions 2 4 5

Blackboard Process
(in processor 1)

w o r k i n g
m e m o r y
(b l a c k b o a r d)

n f e r e n c e
ngine |

p r o d u c t i o n
m e m o r y î

local
p r o g r a m

process -A's|
ambassador

Process - A
(in processor 2)

i n f e r e n c e

1
engine

working
m e m o r y

î p r o d u c t i o n
m e m o r y

local
p r o g r a m

F i g u r e 1 : Ambassador s al low rule-based process to work as b lackboard .

Second, h u m a n organizat ional theory is m u c h more mature ; considerably greater
amounts of thought , effort and exper ience have gone into its deve lopment . And
third, we do not wish to reinvent techniques that can be transferred from other
disciplines.

2 4 6 Talukdar and Cardozo

2 Design Alternatives

2 . 1 Structural Representations
The structures of both human and software organizat ions can be represented by
directed graphs with two types of nodes and three types of arcs (Fig. 2). the
nodes represent agents and databases ; the arcs represent channels for c o m m a n d s ,
signals and data f lows.

Q Agent

I I Database
Commands

Dataflows

Signals

F i g u r e 2 : An organizat ion graph.

10. Bui lding Large-Scale Software Organizat ions 2 4 7

The command-a rc s establish lines of authority and usually flow from the top
down. They provide routes for messages l ike: "do this subtask," "send m e a
progress report ," and "stop." If only the c o m m a n d arcs and agent -nodes are
preserved, the graph degenerates to a traditional organizat ion chart . The signal
arcs usually flow from the bot tom up. they provide routes for feedback,
part icularly, to report unexpected happenings like c o m m a n d s that cannot be
executed.

T h e data flow arcs represent the channels provided for the m o v e m e n t of
information other than c o m m a n d s and signals.

2 . 2 Operations
By operat ions we m e a n the activities of agents over t ime. Cons ider agents A, B ,
and C from Fig. 2. In general , they can work concurrent ly , as in Fig. 3 . Since
they share a database , they can exchange information. These exchanges can
occur at preplanned points in t ime, as happens be tween A and B , or
spontaneously , as happens a little later a m o n g A, B , and C.

M u c h of the cooperat ive activity in h u m a n organizat ions relies on
spontaneous (asynchronous , opportunis t ic) communica t ions . Software
organizat ions can also benefit from such communica t ions . By way of a s imple
example , cons ider the task of solving a set of nonl inear algebraic equat ions .
M a n y numerical me thods are available for this task, but no single me thod can be
relied upon to a lways work well . O n e way to deal with this si tuation is to
arrange for several me thods to search for solut ions in parallel , exchanging clues
and other useful bits of information as they find them (i.e., spontaneously) . As a
result, solutions are found faster than if only preplanned communica t ions are
a l lowed, and also, solutions are found in cases where the methods work ing
independent ly would fail hopelessly [12] .

2 . 3 Contingency Theory and Lateral Relations
Cont ingency theory has been der ived mainly from empir ical studies of large
h u m a n organizat ions and consists of r ecommenda t ions for structures that ei ther
prevent the occurrence of cont ingencies or facilitate their handl ing [7] . The
recommenda t ions can be divided into two categories : adding resources and
improving communica t ions . The latter category can be further divided into:
s t rengthening the vertical information system and creat ing lateral relat ions. T o
explain these te rms , cons ider the essential m o d e of operat ion of an organizat ion
which is to recursively apply a cycle with three steps: decompose a task into
subtasks, perform the subtasks , and integrate the resul ts . T h e natural
organizat ional structures for performing these cycles are hierarchical with charts
that take the forms of trees. T h e natural l ines of information flow in these trees
are vertical. S o m e improvement in per formance of an organizat ion can usually
be obtained by improving these vertical channels . However , by far the biggest
improvements in per formance , especial ly in the handl ing of cont ingencies , is

2 4 8

Agent :

Talukdar and Cardozo

F i g u r e 3 : Preplanned and spontaneous col laborat ions.
Tasks (thick arrows) change as result of the latter.

obtained by establishing lateral relations - mechan i sms that support horizontal
exchanges of information. Five that seem particularly applicable to software are
listed be low and illustrated in Fig. 4 .
Direct contact A horizontal dataflow or signal arc be tween two agents at the
same level. Without a horizontal arc, information to be exchanged be tween
these agents would first have to flow up to a c o m m o n manager and then back
down. Besides taking longer, the information could become distorted along this
vertical path.
Groups. Sets of agents or independent organizat ions that share data. Markets
are a special case of groups . In a market , the shared data include offers to buy
and sell services.

10. Bui ld ing Large-Scale Software Organizat ions 2 4 9

(c) Β serves as A s representative to C.
Usually, A and Β are In different processors.

F i g u r e 4: S o m e types of lateral relat ions.

Representatives. T o make known and protect the interests of remote agents .
Task forces. W h e n several depar tments (sets of agents) have over lapping
concerns , the pair -wise exchange of representat ives can be less convenient and
effective than the information of a task force with m e m b e r s from each
depar tment . As an example , consider the process of s imul taneous engineer ing

2 5 0 Talukdar and Cardozo

for automobi le parts . Decis ions m a d e during the design stage of these parts can,
of course , have profound effects on downs t ream stages like manufactur ing and
testing. For instance, a des igner m a y incorporate a feature that is difficult or
impossible for the avai lable machinery to manufacture . T o prevent such
cont ingencies , a task force is formed with representat ives from tooling,
manufactur ing, testing and other depar tments . The task force oversees the
des igners ' efforts and intervenes when the interests of its parent depar tments are
threatened.
Matrix management. T w o or more c o m m a n d arcs terminate in a single node .
This a r rangement a l lows A and Β to share the services of C (Fig. 4e) . A m o n g
the benefits are increased reliability (C can be reached through Β when A fails)
and quick response (B can intervene even when C is working for A) . A m o n g
the costs is the possibil i ty for C to b e c o m e confused.

3 DPSK (Distributed Problem Solving Kernel)

3 . 1 Overview
D P S K provides the software bui lder with a small set of pr imit ives . These
primit ives have been des igned to be inserted in the instructions of an expandable
set of languages . At present , this set is: C, For t ran-77, O P S 5 and Lisp (Franz
and C o m m o n) . Wi th the pr imit ives , software builders can readily synthesize all
the alternatives from the preceding section and thereby, assemble arbitrary
organizat ions distr ibuted over a ne twork of computers . In theory, the numbers
of p rograms and computers can be arbitrarily large.

D P S K itself is writ ten in C for ne tworks of computers running Unix 4.2 .
Internally, D P S K works with the aid of a shared m e m o r y that is distr ibuted over
the part icipating computers .

W e elected to build D P S K around a shared m e m o r y for two reasons, first,
b lackboards have demonst ra ted that shared m e m o r y is very useful in assembl ing
communi t ies of col laborat ing p rograms in uni-processors . (In fact, we feel that
shared m e m o r y is by far the best feature of the b lackboard idea). Clearly, the
characterist ics that m a k e shared m e m o r y attractive in uni-processors can only
become more attractive in distr ibuted processor envi ronments . Second, the
representat ions that we prefer in thinking about organizat ions rely heavily on
shared m e m o r y (cf. Figs . 2 and 3). It is easier to build a system that closely
parallels o n e ' s favorite representat ions. However , before finalizing the choice
of shared m e m o r y we also considered message based systems and remote
procedure calls . They were rejected because we felt they would be far less
powerful [2].

10. Bui lding Large-Scale Software Organizat ions 2 5 1

3.2 Primitives
D P S K contains 12 pr imit ives that can be divided into four categories -
c o m m a n d s , synchronizers , s ignals , and transact ions. The pr imit ives themselves
are listed in the appendix . Brief descr ipt ions of their categories are given be low.

The c o m m a n d pr imit ives are used to activate and control p rograms . A n agent
can "run," "suspend," " resume," or "kill" other agents in any of the processors in
the network, this a lso a l lows for any number of p rogram c lones to be created
and run in parallel .

The synchronizat ion pr imit ives are used to create and check for the
occurrence of "events" . T h e events enable concurrent processes to be
coordinated, for instance, to ensure that some activity in Agen t A finishes
before Agen t Β is a l lowed to begin, one would insert pr imit ives into A at the
appropriate point to assert an event X, and in the beginning of Β to wait for the
assert ion of X.

The signal pr imit ives are used to signal the occurrence of a cont ingency or to
interrupt the execut ion of preselected groups of processes and cause them to
execute port ions of their code designated to handle such except ions .

Transact ion pr imit ives are used to structure and access the shared m e m o r y .
(A transact ion is a t ime s tamped operat ion des igned to mainta in consis tency and
correctness in distr ibuted databases [4,10].) T h e data to be shared is stored in
Objects , each of which consists of a Class designat ion fol lowed by Slots for
at tr ibute-value pairs , the values can be character str ings, integers or floating
point numbers . For instance:

{line
[name HB]
[sb 2]
[eb 8]
[resistance 0.09854]
[reactance 1.232]}

is an object of class "line" with five attr ibutes. Objects are accessed through
pattern match ing . For instance, the pattern:

{line [eb 8]}
would access the above object and all the others in shared m e m o r y that be long
to class "line" and have "eb" = 8.

3.3 Usage
The transaction and synchronizat ion pr imit ives are used to synthesize operat ing
al ternatives and those structural al ternatives that require shared databases . The
c o m m a n d and signal pr imit ives are used to synthesize the remain ing structural
al ternat ives. This covers all possibil i t ies except "dynamic rewir ing" . As ide
from the creat ion of "children" by c loning p rograms , the present version of
D P S K provides no special facilities for the dynamic reconfigurat ion of an
organizat ion.

2 5 2 Talukdar and Cardozo

4 Examples
4 . 1 A Simple Distributed Team
Consider the problem of searching a tree for a solution, given a number of
computers and a p rogram called S. Suppose that S, can identify the children of a
given node and determine if one of them is the desired solution. One way to
tackle this search problem is by represent ing nodes by objects of the form:

{Node [Number 12] [Parent 5]
[Children (16 17 18)] }

Copies of S are placed in the available computers and set to working in parallel
by a small p rogram whose essential functions are: (1) Identify the unexpanded
nodes by retrieving objects that match the pattern:

{Node [Children nil]};
and (2) Assign a searcher (copy of S) to each unexpanded node by adding a slot
to the node-object with the searcher ' s n a m e in it. Each searcher retrieves nodes
to which it has been assigned, expands them and adds the new nodes so obtained
to the shared memory .

In all, about 30 lines of new code have to be writ ten, and this number is
independent of the number of compute rs used [2] . W e bel ieve that a comparab le
system written without D P S K in Lisp or C would require at least ten t imes as
much code .

4 . 2 A Distributed Diagnostician
Disturbances occur continually in electric power sys tems and their effects are
reported by s treams of a larms. A large s torm can cause hundreds of a larms to
appear in a mat ter of minutes . A process cal led "patchwork synthesis" for
generat ing hypotheses to explain the a larms has been descr ibed in [3]. Each
hypothesis consists of a set of events (dis turbances, equ ipment malfunctions and
other errors) . Pa tchwork synthesis uses two crews of p rograms and a manager
to coordinate their efforts (Fig. 5) . The first crew selects candidate events with
which to expand incomplete hypotheses . The second crew evaluates the
candidates and rejects any that m a k e little or no progress towards explaining the
given a larms. W h e n implemented in D P S K using three Microvaxen , this sys tem
produced diagnoses fast enough to be useful for real t ime applicat ions in power
systems.

5 Conclusions
There are two distinct types of benefits that can be gained from distributed
processing. The first is widely recognized - modular , expandable compute r
ne tworks that al low the amount of comput ing power that is m a d e available to be
easily increased. The second is not well k n o w n in software engineer ing but is

10. Bui lding Large-Scale Software Organizat ions

Manager

2 5 3

S S e l e c t i o n §
§ Crew

S R e j e c t i o n ^ ^
I Crew ^ I

Working Data

Lines of Command
EMS

da tabase

Data Flows

F i g u r e 5: Organizat ion for pa tchwork synthesis .

taken for granted in bui lding human organizat ions - namely that many difficult
tasks have parallel decomposi t ions that yield easier subtasks than serial
decomposi t ions . In particular, decomposi t ions that p romote opportunist ic
col laborat ions a m o n g parallel subtasks seem to provide easier and better ways to
solve p rob lems than serial decomposi t ions .

W h e n a single processor is used to house a number of p rograms , the principal
control issue is deciding which of the p rograms to run. With distr ibuted
processors , however , some or all of the p rograms can run s imul taneously and the
principal control issue becomes how to arrange col laborat ions a m o n g them.

Case studies of human organizat ions indicate that different tasks benefit from
different col laborat ive mechan i sms . This paper lists several mechan i sms ,
adapted from human organizat ional theory, that seem especial ly suitable for
software organizat ions . These mechan i sms , a long with a variety of other design
al ternatives, have been m a d e available to the software bui lder through a tool kit
called D P S K .

W e feel that the best way to deve lop large-scale software organizat ions which
integrate numer ic and symbol ic p rob lem solving agents , and to expand the
capabili t ies of exist ing sys tems to include nonalgor i thmic p rograms will be to
make the software coupl ings through an opt imized version of D P S K , and
opt imized version of D P S K , and ne tworked worksta t ions to provide for effective
concurrent operat ion.

2 5 4 Talukdar and Cardozo

References
1. Buchanan, B . G. and Shortliffe, Ε. H. Rule-Based Expert Systems. Addison-
Wes ley Publ ishing Co. , N e w York, 1984.
2. Cardozo , E. "DPSK: A Distr ibuted Problem Solving Kernel ." P h D thesis,
Dept . of electrical and Compu te r Engineer ing , Carnegie Mel lon Universi ty,
January, 1987.
3. Cardozo , E., and Talukdar , S. N . "A Distr ibuted Exper t Sys tem for Fault
Diagnosis ." in Proceedings of the IEEE Power Industry Computer Application
Conference. Montrea l , Canada , May , 1987.
4. Date , C. J. An Introduction to Database Systems. Addison-Wes ley
Publ ishing co. , Reading , Massachuse t t s , 1983.
5. Elfes, A. "A Distr ibuted Control Archi tecture for an Au tonomous Mobi le
Robot ." International Journal for Artificial Intelligence in Engineering 1(2),
October , 1986.
6. Fox, M. S. "An Organizat ional View of Distr ibuted Sys tems." IEEE
Transaction on systems, Man and Cybernetics SMC-11(1) , January, 1981.
7. Galbrai th, J. Designing Complex Organizations Add i son-Wes ley Publ ish ing
Co. , Reading , Mass , 1975.
8. Leao , L. and Talukdar , S. N . "An Envi ronment for Rule-Based Blackboards
and Distr ibuted Prob lem Solving." International Journal for Artificial
Intelligence in Engineering 1(2), October , 1986.
9. S imon, H. A. "The Design of Large Comput ing Sys tems as an Organizat ional
Problem." Organisatiewetenschap en Prakitijk. H. E. Stenfert Kroese Β . V.,
Leiden, 1976.
10. Smith , R. G., and Davis , R. "Frameworks for Coopera t ion in Distr ibuted
Problem Solving." IEEE Transactions on Systems, Man and Cybernetics
S M C - 1 1 (1), January, 1981 .
11 . Spector, A. Z. , Danie ls , D. , D u c h a m p , D. , Eppinger , J. L., and Pausch,
R. "Distributed Transact ions for Rel iable Sys tems." Technical Repor t C M U -
CS-85-117 , Dept . of Compute r Science, Carnegie Mel lon Universi ty, 1985.
12. Talukdar , S. N. , Elfes, Α., and Pyo , S. "Distr ibuted Process ing for C A D -
Some Algor i thmic Issues." Research Repor t D R C - 1 8 - 6 3 - 8 3 , Design Research
Center , Carnegie Mel lon Univers i ty , 1983.
13. Proceedings of the Boeing Workshop on Blackboard Systems, Seatt le,
Washington , July, 1987.
14. Talukdar , S. N. , Cardozo , E., and Perry, T. "The Opera to r ' s Assistant - An
Intelligent, Expandable Program for Power Sys tem Trouble Analysis) ," IEEE
PAS Transactions, Vol P W R S - 1 , N o . 3 , August , 1985.

10. Bui lding Large-Scale Software Organizat ions 2 5 5

A problem-solv ing Agent has a set of twelve pr imit ives for all interaction
with D P S K . These primit ives are cal lable from C, O P S 5 , C o m m o n Lisp , and
Franz Lisp. A subset is available to F O R T R A N 7 7 programs .

Transaction Primitives
Any Agent may access the shared database .

• Beg in-Transact ion (class, mode) Initiates access to a port ion of the
shared database designated by c lass. The m o d e can be READ or
WRITE. A number of Agents can s imul taneously have
READ-access to a class in the database , but only one Agent may
hold WRITE-access at a t ime, this call returns a Transac t ion-ID
which is used by other pr imit ives to designate this da tabase access
session.

• Op-Transac t ion (Transact ion-ID, type, pattern) Facil i tates all
operat ions on the shared database . Objects can be CREATEd,
READ, UPDATEd, and DELETEd, depending on the type of access
specified. Access is m a d e to all Objects in the class which match a
pattern of <ATTRIBUTE-VALUE> pairs .

• Abort -Transact ion(Transact ion-ID) Abor ts a transaction
currently in progress (not c o m m o n l y used) .

• End-Transac t ion (Transact ion-ID) Termina tes this database
access session.

Command Primitive
An Agent may startup and control other Agents .

• Proc-Contro l (agent, act ion, processor) Facil i tates run control of
agents in any processor . Agents m a y be RUN, SUSPENDed,
RESUMed, and K I L L e d as indicated by act ion.

Synchronization Primitives (events)
An Agent may n a m e many different events for synchronizat ion purposes .

• Aff irm-Event (event) Affirms (or "raises") an event .

• Check-Event (event) Checks to see if the event is affirmed.

• Wal t -Event (event, sec, usee) Wai t s for an event to be affirmed.

Appendix: DPSK Primitives

2 5 6 Talukdar and Cardozo

T o designate the length of t ime to wait , sec and usee, indicate
seconds and microseconds .

• Negate-Event (event) Negates (or "lowers") an event.

Primitives for Interruptions, Exception Handling and
Sending Signals

Any number of groups may be named by any Agent . Signals can be any
integer number .

• Se t -Group (group) Sets the call ing Agent into the indicated group.

• Set -Handler (handler) Designates the routine within this Agent
which will be asynchronously called when this Agent is s ignaled.

• S ig -Group (signal, group) Sends this s ignal to all Agents in the
indicated group.

11 ARCHPLAN: An
Architectural Planning
Front End to
Engineering Design
Expert Systems
GERHARD SCHMITT

Abstract
A R C H P L A N is a knowledge-based ARCHitec tura l P L A N n i n g front end to a set
of vertically integrated engineer ing expert sys tems. A R C H P L A N is part of a
larger project to explore the principles of parallel operat ion of expert sys tems in
an Integrated Bui ld ing Design Envi ronment . It is des igned to operate in
conjunction with HIRISE , a structural design expert system; with C O R E , an
expert sys tem for the spatial layout of bui ldings; and with other knowledge
based systems deal ing with structural componen t design, foundation design, and
construct ion p lanning. A R C H P L A N operates ei ther in connect ion with these
expert sys tems or as a s tand-alone program. It consists of three major parts : the
applicat ion, the user interface, and the graphics package . The applicat ion offers
a knowledge based approach towards the conceptual design of high-r ise office
bui ldings , taking into account quali tat ive and quanti tat ive considerat ions .
Strategies used for design are prototype refinement, evaluat ion, and local
opt imizat ion. T h e four major modules in the A R C H P L A N applicat ion deal with
mass ing , bui lding functions, vertical bui lding circulat ion, and structure. The
user interface provides a graphical env i ronment for the interactive design of
bui ldings and moni tor ing p rogram states. The graphics package al lows the
workstat ion to function as the external representat ion m e d i u m of design
decis ions made by the user and the applicat ion. A part icular emphas i s of
A R C H P L A N is to explore the usefulness of object-oriented p rog ramming
techniques to support the abstract representat ions of the design process and the
result ing bui lding.

Expert Systems for Engineering Design Copyright © 1988 by Academic Press, Inc.
All rights of reproduction in any form reserved.

257 ISBN 0-12-605110-0

2 5 8 Gerhard Schmit t

1 Introduction
Computer -a ided drafting tools are employed to record and manipula te the results
of design decisions. In that sense, the present use of computers differs only
slightly from the traditional recording of design ideas and designstages on an
external med ium, such as paper . Only the geometr ic propert ies and a few other
quantifiable attributes of design are represented by the models or abstractions
used in current computer -a ided design programs . This approach places heavy
emphas is on the syntactic aspects of design and represents a bui lding at a very
low level of abstraction. Due to the lack of appropriate abstraction and
representat ion methods for the process of design, and their consequent ly miss ing
computat ional counterpart , the semant ic and conceptual aspects of design
decisions are not sufficiently covered and mus t be supplied entirely by the user.

As a result, mos t designs created on computers are one-dimensional in their
t reatment of the complex issues involving the design process . Moreover , when
quantifiable propert ies of the design are evaluated, for example the energy
performance of a bui lding, the user is forced to take descr ipt ions and quanti t ies
from the lowest level of representat ion, in this case the geometr ic representat ion.
Abstract ions must be m a d e on the geometr ic mode l , which in itself is an
abstraction, and as a consequence , the results of evaluat ion are unrel iable. W e
therefore propose to start the quanti tat ive and quali tat ive performance
descript ion and evaluat ion of architectural design at a higher level of abstraction.
This approach towards architectural design model ing requires a representat ion
and abstraction concept different from traditional approaches . A hybrid system,
consist ing of traditional and object-oriented programs is explored to mode l the
conceptual design of high-rise bui ldings.

2 Representation of Architectural Design
Over the last few centur ies , design professionals have developed one of the mos t
powerful forms of representat ion: the graphical image whose syntax induces
semantic explanat ions in educated viewers . In other words , we have become so
familiar with the symbols and techniques of graphical representat ion, that we are
able to interpret mean ing where the untrained eye or the compute r would
recognize only lines or surfaces.

Representat ion involves abstraction. Abstract ion is the reduct ion of a real
world object (a bui lding, a tree, an idea) to its mos t important characterist ics,
according to a certain model . Abstract ion and with it representat ion became
necessary with the parad igm change from making bui ldings towards planning
bui ldings [18] . It is crucial that the creator and the v iewer or user of the
abstraction base their work on the same model . Wi th the introduction of
computers in the design process , new forms of representat ion and abstraction
become necessary. Several approaches were explored in the past, three of which
are of part icular interest in this context:

11. Archi tectural P lanning Front End 2 5 9

Geometric models [4] , [5] . Geomet r ic mode l s descr ibe the geometr ic propert ies
of a design. They are based on the assumpt ion that the architectural design
stages are representable with data structures of varying complexi ty [12] . T h e
simplest data structures for two-dimens iona l representat ions are lists of points ,
l ines, and po lygons . Three-d imens iona l representat ions require more comple te
information, especial ly if realistic v iews of the object are a concern . Winged
edge and boundary representat ion data structures are only two of a n u m b e r of
possibil i t ies if solids are represented,and the typical set operat ions of union,
difference, and intersection are to be performed. Whi le the data representat ions
are quite efficient and workable for present compute r p rograms and are
increasingly employed in commerc ia l C A D packages , they are not t ransparent to
the des igner w h o thinks and designs different categories and operat ions .
Relational Databases. Relat ional database managemen t sys tems are important
tools in bus iness . The under lying principle of relat ions or tables is useful in the
representat ionof design as well . The relational mode l is able to express
propert ies (in the rows and co lumns of the table) and relat ions (through pr imary
and foreign keys in the table) in a straightforward manner . The relational mode l
has higher semant ic quali ty than, for example , the hierarchical mode l . Al though
there were approaches to use the relational model for solids model ing ,
widespread appl icat ions of the mode l to represent design in its different stages
are not yet implemented . This approach takes the exist ing relational v iew of
data and extends it, treating shapes as at tr ibutes [13] .

Frames [15] . F rames , also k n o w n as schemata and scripts, are abstract ions of
semantic ne twork knowledge representat ion. A collect ion of nodes and links or
slots together descr ibes a s tereotyped object, idea, or event . F rames may inherit
information from other frames. F rames are similar to forms that have a title
(frame name) and a number of slots (frame slots) that only accept prede termined
data types. F rames are effective in expectat ion driven process ing, a technique
often used in architecture, where the p rogram looks for expected data, based on
the context [17].

None of the above descr ibed representat ion methods alone is ideal for
descr ibing architecture and the design process . Researchers using these me thods
apply exist ing theory from other fields to mode l part icular aspects of design as
closely as possible . Al though it is possible to express part icular design
knowledge in other forms, such as semant ic ne tworks , predicate logic,
product ion sys tems, or decis ion tables , all of these representat ions deve lop
serious shor tcomings if appl ied to non-tr ivial design p rob lems . The reason is
that design and the artifact be ing des igned have various degrees of "softness" in
the process . In the early or conceptual design stage, for example , the applicat ion
of solids model ing would be too "hard" and exact a representat ion, whereas later
in the process it is a we lcome help . On the other hand, product ion sys tems that
are of use in the early stages of design, support ing the user with explanat ions
and rule-of- thumb knowledge , are of little use in a phase of des ign when exact
analysis results are needed.

2 6 0 Gerhard Schmit t

These observat ions lead to the search for a more flexible and less restrictive
abstract representat ion of the architectural design process and the design artifact.
The method we selected is related to the concept of object-oriented
p rogramming (OOP) . O O P has two fundamental propert ies , encapsulat ion and
inheri tance. Encapsula t ion means that a user can request an action from an
object, and the object chooses the correct operator , as opposed to traditional
p rogramming where the user applies operators to operands and must assure that
the two are type compat ib le . The second property, inheri tance, greatly improves
the reusabili ty of code , as opposed to traditional p rog ramming where new
functionality often means extensive re-coding [3]. F rom an architectural
standpoint , object-oriented p rog ramming is interesting for the fol lowing reasons.
Data + Operations. Objects represent data as well as operat ions to be
performed on these data. This important property of objects is a combinat ion of
propert ies from geometr ic mode l ing and semant ic ne tworks . The representat ion
of a bui lding as an object, for example , may al low the rotation of an early
concept only around the vertical z-axis, whereas a roof p lane as part of the
bui lding may be rotated around all three axes .
Breadth of Representation. Objects can represent physical objects , ideas,
bui lding functions, relat ions be tween bui lding functions, and other real world
entit ies. Semant ic ne tworks and frames have a similar capaci ty, whereas
geometr ic model ing is less comple te in this respect . In architecture, the
functional d iagram of a bui lding is very important in the conceptual design
phase . This d iagram, developed normal ly from the bui lding program, with
matr ices expressing relat ions be tween spaces , k inemat ic maps and other forms
of abstract ions, can be implemented as an object. The implementa t ion of the
functional module in A R C H P L A N , descr ibed in detail be low, is an example for
this approach. Such an object has the advantage that it can be related to other
objects, that is, the error prone traditional process to translate the mean ing of
one representat ion (the k inemat ic map , for example) and a second representat ion
(the adjacency matr ix) into a third representat ion (a floor plan) is improved.
Inheritance. Objects can inherit knowledge from other objects. Class
inheri tance, also a property of semant ic ne tworks , a l lows the es tabl ishment of
hierarchical and other forms of order be tween building e lements and functional
relations. This capacity is crucial in architectural design because useful spatial
or functional constructs are defined once and then inherited complete ly or
partially by other constructs on a different level of abstraction. Standard test
cases are the m o v e m e n t of a wall containing doors and windows , and the
rotation of an entire bui lding with all its associated e lements .
Local Decision-Making. Objects can contain some form of "local intel l igence".
Identical messages exchanged be tween different objects can have different
effects, and different messages exchanged be tween different objects can have
the same effect. Through the possibili ty to embed decision mechan i sms into
each object in form of rules or type and range checking procedures , the objects

11. Archi tectural P lanning Front End 2 6 1

can "decide" if they accept part icular operat ions or not. The previous example
of the higher degree of freedom of roof rotat ions versus bui lding rotation applies
here as well : after the bui lding location and orientat ion are fixed, the degrees of
f reedom for the roof rotation may be reduced by a s imple rule in the roof-object
to the x- and y-axis .

For the above reasons , we decided to implement A R C H P L A N based on the
object-oriented p rog ramming approach. The language is Lisp, with the object-
oriented extensions supplied by Hewlet t Packard [9]. Direct access to L I S P
helps to avoid some of the possible shor tcomings of O O P , such as too strong a
rel iance on hierarchical structures in design.

3 The ARCHPLAN Concept
A R C H P L A N is a conceptual tool for the design of high-r ise bui ldings and has
four major purposes :

1. T o provide a graphical feedback and representat ion of decis ion
processes in the conceptual design of high-r ise bui ldings .

2. T o provide a general graphical front end for a set of engineer ing
design expert sys tems.

3 . To descr ibe the desired attributes of a high-rise office bui lding in
different dec is ion-making domains .

4 . T o create a bui lding design according to this descript ion that will
satisfy the requi rements ei ther through interactive design or
partially au tomated or opt imized decis ions .

The first purpose deals with the visualizat ion of analysis and decision
processes and the implementa t ion of an appropriate graphics package . The
second purpose addresses with the deve lopment of a general user friendly
graphical interface. W e selected the StarBase graphics package which provides
C o m m o n Lisp language interfaces [19] . Purposes 3 and 4 deal with the
implementa t ion of a part icular design applicat ion. The design strategy we chose
to s imulate with A R C H P L A N is that of rational decis ion making , which breaks
down into four steps [1]:

• the generat ion of al ternat ives,
• the predict ion of consequences for each al ternative,
• the evaluat ion of each al ternative, and
• the selection of an al ternative for implementa t ion .

This conceptual strategy de termines the A R C H P L A N architecture and the types
of abstract ions needed. For interactive generat ion, analysis , evaluat ion, and
selection of al ternatives a modu la r structuring approach is best suited. These
activities take place in each of the decision mak ing domains , which are at the
m o m e n t

• Site, Cost and Mass ing (SCM) . After a site is chosen, pre l iminary

2 6 2 Gerhard Schmit t

design starts on developing a mass ing model that will fit a given
budget . Cost and mass ing opt ions are inter-dependent variables
based partially on site characteris t ics .

• Funct ion. Examples for bui lding functions are office, retail, and
parking space. Each function has part icular requirements and
affects the layout, appearance , and cost of the bui lding.

• Circulat ion. Vert ical circulat ion in high-r ise bui ldings is part of a
central service core or external ly at tached to the building. As it is a
spatial and structural vertical con t inuum through the entire bui lding,
its size and location are important for design.

• Structure. The structural system of a bui lding is affecting
architectural express ion, functional layout, and cost. In some cases ,
design develops after the structural sys tem has been determined, in
other cases the structural sys tem is the result of design decis ions.

Each of these domains is responsible to a general bui lding database ,
implemented as an object, whose responsibil i ty is to maintain the high level
consis tency of the bui lding abstract ion, to warn the user if the consis tency is
violated, and to direct control to the appropriate decis ion mak ing domain to
correct the problem. The decision mak ing domains are responsible for local
decis ions which will be of no concern to the general da tabase unless they violate
important parameters .

The overall mode l to s imulate the decision processes is best descr ibed as
prototype ref inement on a global level, and of s imulat ion and opt imizat ion on a
local level. Prototype ref inement means that a typical prototype for a part icular
bui lding type is chosen at the beginning of the design process which is
subsequently changed and refined [7]. Simulat ion includes operat ions on an
abstract model of the design to predict consequences of design decis ions [18] .
Opt imizat ion involves finding opt imal solutions for one or more pre-defined
design parameters [16] .

In the context of A R C H P L A N the above descr ibed decision making domains
are implemented as four separate modules . O n c e the user has es tabl ished a
bui lding prototype in the S C M modu le , all other modules can be visited and
consul ted in arbitrary order. Thei r responsibil i ty is to refine the prel iminary
building descript ion. All modules and H I R I S E are accessed by selecting a menu
item from the top left w indow provided by the user interface (see Figure 1).

In the global context of the Integrated Bui lding Design Envi ronment (IBDE) ,
A R C H P L A N ' s main responsibil i ty is to establish a site and architectural
building descript ion, based on c l ient ' s needs . This descript ion is posted by a
system controller on a b lackboard which is accessible by the engineer ing expert
systems H I R I S E [10] , F O O T E R [11], S P E X [10], P L A N E X [8], and by C O R E
[6], the architectural layout generator . As an option, H I R I S E can be accessed

directly from A R C H P L A N by selecting the appropriate m e n u i tem on the top
level user control screen (see Figure 1).

This section must end with a disclaimer: we are aware of the extremely

11. Archi tectural P lanning Front End

I well j I Slab J J Column [| ft—m \ \ Dttyntli | | M U 1 \ footing |

RRCHPLflN

A R C H P L A N

MASSING FUNCTION

CIRCULATION STRUCTURE

F i g u r e 1: Top : I B D E - Integrated Bui ld ing Des ign Envi ronment .
Bot tom: A R C H P L A N modules and top level user interface.
The top left w indow gives access to the four modules and
to HIRISE . The top right w indow is the graphic window.
The bot tom left w indow is reserved for a lpha-numer ic display
and interaction, the bot tom right w indow displays messages .

2 6 4 Gerhard Schmit t

complex interactions in the human design process and do not suggest that
A R C H P L A N will be able in the near future to s imulate or improve all of them.
Therefore , the decis ions supported by A R C H P L A N are a subjectively selected
set .The criteria for selection were the ease of formalizat ion techniques available,
and the expert ise and availabili ty of specialists in the part icular areas of interest.

4 The ARCHPLAN Modules
The four presently implemented decision mak ing modules will be descr ibed in
detail . Each of the modules contains a lgor i thms, rules and weight ing factors to
de termine the impor tance of decis ions and parameters . The c o m m o n abstraction
for all modules is that of objects. The exchange of information is achieved
through the passing of messages . This also applies for the general design
description which is an object with slots for the most important bui lding
characterist ics. There is no prede termined order in which the modules must be
accessed and executed, which a l lows idiosyncrat ic design interaction. T h e
except ion is the S C M module , which must execute first to establish the basic
parameters for the fol lowing session.

4 . 1 The Building Object
The general database is an object which conta ins information about the crucial
parameters of the bui lding and a set of actions to protect this database from
becoming inconsistent through the decis ions of the other modules . The object
resembles a complex frame which provides for the express ion of geometr ic and
numeric data, relat ions, constraints , and rules. Depend ing on the amount of
knowledge available at any given t ime in the design process , the content of the
object is specified and changed . Because A R C H P L A N is also producing output
for the other expert sys tems in the integrated bui lding design envi ronment , the
central bui lding design descript ion contains slots with addit ional information. A
simplified example for the frame-like part of the bui lding object is the
following:

SITE INFORMATION

SLOT VALUE (default)

site_longitude
site_latitude
site_rotation_angle
site_x
site_y
degree_days
max wind load

60 degrees
40 degrees
0 degrees
300 feet
200 feet
6600
120 mph

11. Architectural Planning Front End 2 6 5

SLOT

base__x
base_y
building_rot_angle
structure__grid_x

structure_grid_^y
arch_mod_x
arch_mod_y
ground_floor-height
floor_height
num_of_f1oors
core
occupancy
Structure_system
spaces

VALUE (default)

50 feet
50 feet
0 degrees
(10 20 20 20 20 20
20 20 20 20 20 20
20 20 20 10)
(15 20 30 20 15)
5 feet
5 feet
18 feet
12 feet
(0 15)
(70 130 35 65 0 15)
office
trussed frame
(atrium, mechanical,
retail, office,
parking)

In the execut ion of A R C H P L A N , these default values will change based on
program needs and user requi rements . The bui lding object expresses itself
graphical ly through the interface and acts as a "read only" object. Changes may
occur only through user action in the A R C H P L A N modules . Pe rmanen t output
is p roduced through screen d u m p s and for the b lackboard to be accessed by the
other expert sys tems. Eventual ly , these expert sys tems will have a cri t ique
function and will have authori ty to change slots in the object.

4 . 2 Module One: Site, Cost, And Massing - SCM
At the very beginning of the architectural design process , decis ions mus t be
m a d e concern ing the bui lding site, the bui lding cost, and the basic footprint and
mass ing of the bui lding. Whi le this is not the only approach towards des igning
a bui lding, it is a valid initial assumpt ion . The crucial parameters for the
bui lding site are the d imens ions , the required setbacks from the site boundar ies ,
the setback angle (city zoning laws normal ly require a bui lder to respect sun
angles and dayl ight access to surrounding bui ldings) , and the cl imate (important
for energy budgets and for wind loads for high-r ise bui ldings) .

The second, and often most important , aspect is the bui lding budget . W e
chose a simplified model to s imulate the relat ions be tween the original , given
budget , and parameters influencing the total budget . Given a certain budget , the

BUILDING INFORMATION FRAME

2 6 6 Gerhard Schmit t

p rogram selects a range of possible bui lding areas from the Means cata logue
[14]. The total bui lding cost is of course not only a function of the area, but

also of the number of stories, the height of each story, the functions of the
building, and the length and material of the perimeter . These relations are listed
in the Means tables and are based on empir ical data.

The user is able to set each one of these parameters manual ly (the a l lowable
ranges are checked by the program) . As one opt ion, the user may choose to
opt imize the bui lding for first-cost only. As expected, the results are not very
excit ing, because the p rogram will mere ly min imize all expens ive parameters .
As another option, the user can choose a cost opt imizat ion that takes into
account m o r e than one cri terion. T h e emphas i s in this opt ion is on life-cycle-
cost which is influenced by factors such as user satisfaction and main tenance
costs (up to 9 2 % of an office bu i ld ing ' s cost over its life t ime consists of the
occupan t ' s salaries; therefore absentee rates caused by user dissatisfaction have
a substantial negat ive impact on the financial success of a bui lding) . Due to the
difficulty of quantifying relat ions be tween user satisfaction and the bu i ld ing ' s
physical appearance , this opt ion is highly hypothet ical , but acts as an interesting
testing ground for the integration of quali tat ive and quanti tat ive criteria.

Based on the initial parameters , constraints , relat ions be tween parameters ,
and the al lowed act ions (see be low) , the p rogram then displays the prel iminary
mass ing of the bui lding on the site, together with the parameters that influence
the mass ing (see Figure 2) . The parameters are shown as normal ized bar graphs .

The S C M decision modu le is an object with the fol lowing parameters :

Variables:
Total Building Area (ranging from 5,400 to

1,000,000 sq. ft.).
Ground Floor Area (8,100 to 160,000 sq. ft.).
Total Building Cost ($432,000 to $200,000,000).
Cost Per Sqft ($80 to $200 per sq. ft.).
Total Building Height (9 to 1,000 feet).
Number of Floors (1 to 100 floors).

Constants:
Site X (the east-west length of the site,

ranging from 75 to 400 feet).
Site Y (the north-south length of the site,

75 to 400 feet).
Site Area (22,500 to 160,000 sq. ft.).
North Setback (0 to 100 feet).
East Setback (0 to 100 feet).
South Setback (0 to 100 feet).
West Setback (0 to 100 feet).
Setback Angle (45 to 135 degrees).
Maximum Building Height (13 to 1,000 feet).

11. Archi tectural P lanning Front End 267

RRCHPLflN URSSINC
Select Optiaal

Opti.ne

Hi Rise
E.it

» . . . L I lliiiiil structure
circulation
function
Γ «CODE

Select Optiaal

Opti.ne

Hi Rise
E.it

IMlmla laJlaU! Hi 11 II

ITEM VflLuC WEIGHT totil bu.Id area 433430.0 β.β total bu<ld coat 40351441.2 0.0 coit per tquar* foot 111.4 β.β total build height 133.β β.β floor height 12.β 9.β nuaber of f loort 1 1 β β.β ground floor ι. - ι 19930.β 8.0 ground floor . JJ5.0 00 ground floor y Ι'β.β 0.0 naaiaiuai building height 300.0 tit* < 400.0 tit* y 300 0 north tet Dick distance 20.0 touth tet back distance 20.0 • ast tet back dittance 20 0 wett tet back dittance 20.0 total <*t back angl* 90.0 rang* of floor he ιght 13.0 90 0 range of nuntir ot tloort 1.0 00.0 rang* of building height 10.0 300.0 range of ground floor area 1600.0 93600.0 range of ground floor « 40.0 360.0 range ot ground floor y 40.0 260.0

IMlmla laJlaU! Hi 11 II

ITEM VflLuC WEIGHT totil bu.Id area 433430.0 β.β total bu<ld coat 40351441.2 0.0 coit per tquar* foot 111.4 β.β total build height 133.β β.β floor height 12.β 9.β nuaber of f loort 1 1 β β.β ground floor ι. - ι 19930.β 8.0 ground floor . JJ5.0 00 ground floor y Ι'β.β 0.0 naaiaiuai building height 300.0 tit* < 400.0 tit* y 300 0 north tet Dick distance 20.0 touth tet back distance 20.0 • ast tet back dittance 20 0 wett tet back dittance 20.0 total <*t back angl* 90.0 rang* of floor he ιght 13.0 90 0 range of nuntir ot tloort 1.0 00.0 rang* of building height 10.0 300.0 range of ground floor area 1600.0 93600.0 range of ground floor « 40.0 360.0 range ot ground floor y 40.0 260.0
Pl**t* coatplete before entering other wdulai

F i g u r e 2 : User v iew of the S C M module . T o p : a 525 ,000 sqft bui lding.
The client supplied weight ing factors for cost , bui lding height ,
and the bui lding footprint. Bot tom: a smaller bui lding.
Right: opt imized for m i n i m u m cost, Left: user defined.

2 6 8 Gerhard Schmit t

The differentiation be tween variables and constants is flexible, that is, through
the use of weight ing factors from 1 to 1 0 (1 for least commi tmen t , 10 for highest
commi tmen t) , some variables are de facto t ransformed into constants . The
constants listed are also represented in the database object and are constraints
that are established at the very beginning of the process . They can only be
changed if absolutely necessary. The S C M module al lows the interactive
edit ing of a set of default parameters . The most important bui lding parameters
are organized as objects in an activation ne twork [2]. In an activation network,
each node represents an object and each arc represents a relat ionship be tween
two objects. If the arc is labeled, the label is a number indicating the strength of
the relat ionship. W h e n a node is processed, its activation level may change , and
the effects of the change are propagated along arcs to related nodes , result ing in
changes to their activation level. The S C M modu le can be expressed as an
activation network of the fol lowing form:

ground_floor_x cost_per_sqft
\ \
o- ground_floor_area o- total_cost

/ \ /
ground_floor_y o- total_area

/
no _of_f loors

\
o- total_height

/
f loor__height

The objects in the above activation ne twork communica te with each other by
sending and receiving messages . W h e n an object receives a message , it consults
its data base and the appropriate rules to decide what action to take. The rules
may be stored directly with the object or in a different object. In A R C H P L A N ,
the result of any change is represented numerical ly in the related change of other
variables, and graphical ly in the change of the normal ized bar charts and the
mass ing of the bui lding.

4 . 3 Module Two: Function
The distr ibution of different functions in a bui lding is of crucial impor tance to
the appearance and performance of the structure. It could be argued that the
functional, three-dimensional layout is the first design decision to be made .
However , a close look at the design practice suggests that the functions are less
form-determining in the conceptual design phase in the majority of modern
high-rise bui ldings than the parameters dealt with in the S C M module . This
observat ion also coincides with the global strategy of prototype refinement.

The program is capable of handl ing five different bui lding functions:

• office
• retail
• atr ium

11. Architectural Planning Front End 2 6 9

• parking
• mechanica l

Circulat ion, a bui lding function in c lose relation to all of these, is t reated in a
separate modu le .

The Funct ion modu le assists in the vertical and horizontal distr ibution of the
different bui lding functions within the basic mass ing vo lume (see Figure 3).
Since this modu le relies heavily on built-in heuris t ics , user input is restricted.
The decis ions are m a d e and reflected locally, unless the constants in the global
bui lding descript ion object are violated. In this case , the p rogram backtracks
and control is passed back to the S C M module . In the S C M module , the user
can choose ei ther to automatical ly adjust the design descript ion to the
informationreceived from the Funct ion modu le , or m a k e changes manual ly .

In a typical session, the user selects the Funct ion modu le from the previous
screen and makes the Funct ion window current. The p rogram then presents a
chart with the five avai lable functions and a l lowable percentages . Certain
constraints apply:

• office space (ranging from 8 0 % to 100% of net square footage)
• retail space (ranging from 0 % to 2 0 % of net square footage)
• a tr ium space (ranging from 0 % to 10% of net square footage)

T h e sum of office, retail, and atr ium space is a lways 100% of the net square
footage. T h e mechanica l floor is at least 5 % of this area (typically, one
mechanica l floor every twenty stories, or at the top of the bui lding for less than
20 floors). Park ing is presently placed underneath the bui lding, at the rate of
one parking floor per seven bui lding floors.

The p rogram starts by checking the slots in the central database and ass igning
the percentages for each function by built-in knowledge . The user can also
change the default percentages by graphical ly mov ing the bars that represent
them. Buil t- in knowledge is used because in the S C M modu le n o functional
decis ions are made . Examples of this knowledge , in the form of design advice ,
are:

• Start by dividing the total vo lume into 7 0 % office space, 2 0 % retail
space, and 10% atr ium space.

• Start by placing retail at the ground floor and office above .
• If the bui lding is high, place the a t r ium on the lower level.
• If the bui lding is low, deve lop it from the top level down.
• D o not run a service shaft through the atr ium if the atr ium is at the

top of the bui lding.
• Explore several opt ions of combin ing office and retail three-

dimensional ly : g round floor only office, g round floor only retail ,
g round floor office and retail.

T h e rules are conta ined in "advice-objects" , which give advice to control
objects that modify the Funct ion modu le object. The knowledge in the advice
objects is quite l imited at the present; the intention is to deve lop an interactive

FRQFLflN Detoreme OFFICE <-> RCTPilL <-> ATRIUM
MRSSING

r'.^r"0 -* STRUCTURE
CIRCULRTI ON

Sol Id Or.«.nq Line Dreamg
FUNCTION Clear Owe* m a ux Hi Rtta Exit

1·*· office mart ratai 1

underground parking outdoor parking MChtnictl floor underground MChmlcil

Choose all 'loor

Figure 3 : User v iew of the Funct ion module . Top : wireframe
representat ion of the bui ld ing, office area displayed
as a solid. Bot tom: elevator and service shafts.

11. Architectural P lanning Front End 271

advice object that learns through induction from direct user input and from the
frequency of user choices of part icular functional a r rangements . T h e advice
objects send messages to the Funct ion modu le object which expresses itself
graphical ly. The Funct ion modu le object also checks with the bui lding object
for conflicts in the two databases . If they are discovered, and are substantial , the
user is p rompted to resolve the p rob lem on the Funct ion modu le level . If the
inconsis tency produced by user choice or action in the Funct ion modu le is
substantial and the user refuses to resolve it on this level, the p rog ram returns to
the S C M modu le and corrects the p rob lem there , giving the user feedback how
the previous decis ion influenced height , cost , mass ing , and the other parameters .

The Funct ion modu le produces three-dimensional output and interactively
highlights functions to bet ter unders tand their distr ibution in three-dimensional
space (see F igure 3) . The Funct ion modu le also produces output for C O R E , the
generat ive expert sys tem for the design of core and space layouts [6] . C O R E
accepts the two-dimens iona l plan information from A R C H P L A N and begins the
individual layout of the functional spaces which A R C H P L A N only p roduces as
conceptual bui lding blocks .

4.4 Module Three: Circulation
Circulat ion in high-r ise bui ldings addresses the p rob lem of m o v i n g occupants
and equ ipment from floor to floor and within floors, and to guarantee the safe
evacuat ion of the occupants in emergenc ies . Circulat ion is not only a
t ransportat ion and evacuat ion prob lem, but has a major impact on the internal
functioning and on the architectural express ion of a high-rise bui lding. The two
ext reme cases for the p lacement of vertical circulat ion are the comple te ly
internal (service and elevator core in the center of the bui lding) or the
comple te ly external solution (service and elevator cores at tached to the outside
of the bui ld ings) . Mos t high-r ises have vertical circulat ion sys tems that lie in
be tween those two ex t remes and therefore A R C H P L A N concentra tes on
creat ing vertical circulat ion proposals based on variat ions of these two
prototypes .

T h e Circulat ion modu le is accessible as soon as the S C M modu le has
establ ished a "base case" bui lding. If Circulat ion is started as the second
modu le , then the Circulat ion object inherits the exist ing data of the bui lding
object. Suppl ied with this knowledge , the p rogram starts to present the list of
parameters which influence the location and size of the circulat ion cores . If
Circulat ion is accessed as the third or fourth modu le , then it inherits the
addit ional decis ions that were m a d e in the previous modu les . T h e choice of a
location for the circulat ion core is important , as it affects decis ions about
structural sys tem and function distr ibution. Several issues play a role in the
determinat ion of the location, size, and n u m b e r of the vertical circulat ion.
A R C H P L A N considers the fol lowing factors:

2 7 2 Gerhard Schmit t

HRCHPLflN H R S S I NC
SRNOCTUNC
CIRCULATION
Γ UNCTION
rncnoc

ITER TOR WINDOW SPACE! > *AA< : FR IOR| « I N D O» Ι Ι Κ» « WEST F R L OR WINDOW * * * ** * * ^UL

. ADJACENT B U I I D T NG t « TO 4dd NEW ADJECENT B U I L D I NG > ipLtr O| TDD NOW ADJECENT B U I L D I NG t̂ oVtr

i l

:EN«NT D Ι «T R IBUT Ι ON | ^
W I LL TENANT OCCUPANCY | APORTANCO [OF^GROUND FLOOR LOI
t r ^ c t u r al i i i p l i c i t^

MUSSING LOCAL LLLLCO.TR
STRUCTURC
C IRCULATION
riavrTtDN DUMP FRCRDC HL " ' ·· C U IT

1 E - T E N OR - I N D O. TPAC T m
m m

• VA Ι 1 ab I ·| ·« TAR Ι OR AINTFOA I P A C* t A A IT 1 AVAILABLE T U T I N OR A M D OA APACE · TOUTH
1 A I M A NT TOTAL SURFACE ARE* INTENT TO ADD| NTA ADJACENT B U I L D I NG t tut INTENT TO ADD NTA ADJACENT B U I L D I NG · Mil INTENT TE ADD NEA ADJACENT) B U I L D I NG · SOUTH MTPNT TO ADD NEW ADJACENT B U I L D I NG · NORTH REQUIRE TATERNEL S T A IR CAA* FOR F I RE |ESC ape Ν Ι AUA1 1 INTEREST I A * GE · EEET VISUAL INTEREET 'AAGA • WATT | 1 VISUAL INTEREST LAAGE t SOUTH

m
m m VISUAL INTEREST ιAAGA · NORTH | 1 EQUAL DISTANCE ACCOST to CORES A I β Ν A-T ο R | AC C · A A Ι B ι 1 ity

DEEP OFFICE APACE) - U L T . T E N A NT OCCUPANCY | PAPORTANCE of GROUND FLOOR lobby

m
m m

DECREASE CONSTRUCTION coet

F i g u r e 4: User view of the Circulat ion module . Different
two-dimensional layouts are shown as a result of user
input through sliding bars . Sliding the bar for a parameter
from left to right increases its relative importance .

http://llllco.tr

11. Archi tectural P lanning Front End 2 7 3

available exterior window space — > east
available exterior window space --> west
available exterior window space --> south
available exterior window space --> north
minimize total surface area
intention to add new adjacent building --> east
intention to add new adjacent building --> west
intention to add new adjacent building --> south
intention to add new adjacent building --> north
require external stair case (fire escape security)
visual interest image --> east
visual interest image --> west
visual interest image --> south
visual interest image --> north
equal distance access to cores
increased elevator accessibility
flexible tenant distribution
deep office space
fixed multitenant occupancy
structural simplicity
circulation takes lateral forces

For this modu le , it is part icularly important to m a k e the inference process the
program uses as t ransparent as possible and consequent ly graphical ly present the
above parameters that influence the decision of the circulat ion location (see
Figure 4) . As in the S C M modu le A R C H P L A N uses weight ing factors to
represent the relat ive impor tance of one parameter . In the Funct ion modu le ,
however , parameters are defined by sliding a bar from left (least impor tance) to
right (highest impor tance) . A n example from the Circulat ion modu le :

• A deep , uninterrupted office space is very important (weight ing
factor 10 is ass igned by sliding the bar graphical ly to the r ight) .

• A deep , uninterrupted office space is not necessary (weight ing
factor 0 is ass igned by sliding the bar graphical ly to the left).

An example from the S C M module :

• The total bui lding budget is $25 ,000 ,000 , and it mus t not be
exceeded (the user enters 25 ,000 ,000 and a weight ing factor of ten
numerical ly by typing over the default numbers) .

• The total bui lding budget is $25 ,000 ,000 , but other factors may be
more important (the user enters 25 ,000 ,000 and a weight ing factor
from 0 to 5 numerical ly by typing over the default numbers) .

Besides explor ing the behavioral difference of parameters with absolute
values and weight ing factors and factors with relative impor tance only , we were
also interested in the user reaction to the two different input modes . First results

2 7 4 Gerhard Schmit t

show that offering graphical interaction with sliding bars leads to about three
t imes more exper imenta t ion than the strictly numerical interface.

In a typical session, the user starts by first examin ing the above parameters
which are all set to default values . T w o opt ions are available to see the
p r o g r a m ' s proposal for the location and configurat ion of the circulation:
discover (the equivalent to forward chaining) and determine (the equivalent to
backward chaining) . The opt ions normal ly produce distinct solut ions for size,
configuration, and location of the vertical circulat ion, represented in two-
dimensional floor p lans . The user can also start by changing the value of the
parameters immediate ly and so p roduce a large set of possible circulation
layouts.

In case of conflict with the bui lding database (the Funct ion module may have
assigned the elevator in the center, the Circulat ion modu le on the outs ide) , the
p rogram will try to first solve the discrepancy on the level of the conflicting
module , in this case the Circulat ion module . If the conflict cannot be resolved,
the p rogram backtracks to the S C M modu le where the central bui lding
descript ion can be adjusted manual ly or automatical ly . Changes from this
adjustment are propagated to the other modules .

4.5 Module Four: Structures
All design decis ions in the previously descr ibed modules have an impact on the
type and performance of the bu i ld ing ' s structural system. An architect
interacting with A R C H P L A N will probably not start with the structure modu le ,
whereas an engineer might want to see the impact of the bu i ld ing ' s form on the
structural system and vice versa. Both approaches are possible , as the Structure
module is directly accessible after the S C M module .

This modu le is intended to give the des igner an overv iew over possible
structural types appropriate for the bui lding design (see Figure 5) . T h e synthesis
of a structural system for a design developed with A R C H P L A N is reserved for
the H I R I S E structural design expert sys tem [10]. The Structural module
considers at the m o m e n t the fol lowing structural sys tems:

• Cant i levered slab
• Flat slab
• Suspension
• Rigid frame
• Core & rigid frame
• Trussed frame
• Tube in tube
• Bundled tube

If the bui lding object has been defined through the previous design decis ions,
the opt ions are l imited. If the Structure modu le is executed early in the design
process , the set of selectable structural types is larger. After the user has
accepted the proposed structural type for the given bui lding, or has m a d e an

11. Architectural P lanning Front End 2 7 5

RRCHPLflN
URSSIMG
STRUCTURE
CIRCULATION
FUNCTION
FHCBDC 1. CRNTILEVERED SL«B

SnoM Grid

DUMP MI RISE EXIT EI 2. FL«T SLAB 3. SUSPENSION 4. RIGID FRAME 5. RIGID FRAME a CORE 6. TRUSSED FR«ME 7. TUBE IN TUBE θ. BUNDLED TUBE
adjuet building > 343.8 adjust building γ 238 β > bay 21.0 y bay 25.β
align ,

π 2. FL«T SLAB 3. SUSPENSION 4. RIGID FRAME 5. RIGID FRAME a CORE 6. TRUSSED FR«ME 7. TUBE IN TUBE θ. BUNDLED TUBE
adjuet building > 343.8 adjust building γ 238 β > bay 21.0 y bay 25.β
align ,

closely that the facade haa the appearance of a Mall oith perforated «indoo openinge.

F i g u r e 5: User v iew of the Structure modu le . A m a x i m u m of
eight different structural types is offered, if the
selection has not been restricted by previous constraints .
The opt ions which are blot ted out, in this case 1, 3 , and 5,
should not be chosen.

independent choice , the structure is d isplayed three-dimensional ly for the
current bui lding object. The p rogram solves conflicts that m a y arise out of the
use r ' s choice in the same manne r as in the other modules .

5 Critique and Future Developments
A R C H P L A N is incomple te at this point and serves as a test ing ground for
different des ign methodolog ies and their computa t ional representat ion. W e
expect not one final me thod , but a combina t ion of me thods for different des ign
applicat ions and design stages to emerge as the op t imum. A R C H P L A N uses a
spatial representat ion closely related to that of H I R I S E which restricts it at the
m o m e n t to rectangular structures. The implementa t ion of A R C H P L A N in
C o m m o n Lisp and its object-oriented extensions is advantageous in terms of
p r o g r a m m i n g and exper imenta t ion . T h e product ion of a t ransparent and friendly
user interface is a separate project of impor tance for the practical applicat ion of
A R C H P L A N . Based on these and other critical remarks , the fol lowing
deve lopments are p lanned:

2 7 6 Gerhard Schmit t

• Improvements in the flexibility of the modu le structure.

• Addit ion of opt imizat ion routines where possible (existing presently
only in the S C M module) .

• Addi t ion of explanat ion modules ("Why" and "How" opt ions) .

• Addi t ion of a decis ion history opt ion for future induction purposes .

• Explorat ion of design creativity in the f ramework of A R C H P L A N .

Some of these prob lems , such as explanat ion and decision history, can be
solved without further inves tment of research work, as A R C H P L A N is now
being translated in a commerc ia l expert system shell (ESE) which a l lows access
to external functions and offers extensive interactive user interface support .

6 Conclusion
A R C H P L A N has proven to be a valuable f ramework for the testing of design
ideas and their representat ion in an integrated computa t ional envi ronment .
Simplified representat ions of exist ing high-rise bui ldings , such as the Lloyds of
London bui lding in London , England, the Bank of Hongkong offices in
Hongkong , and the Fifth Avenue office bui lding in Pit tsburgh, Pennsylvania ,
can be generated with A R C H P L A N as test cases . The test cases provided an
invaluable tool to deve lop and test the knowledge base . Knowledge is
represented in several forms, der ived from Artificial Intel l igence research,
namely as algebraic relat ions and as as rules, both embedded in the object-
oriented p rogramming envi ronment .

The project demonst ra tes the impor tance of real t ime graphical feedback for
knowledge based architectural design sys tems. The object-oriented
p rog ramming approach applied to design and graphics p rob lems is powerful and
on a level of abstraction that is closer to the human designer than traditional
p rog ramming approaches . A R C H P L A N shows that hybrid p rograms - be ing
part knowledge based sys tems, part traditional a lgor i thmic p rograms - can be
realistic architectural design tools. O n e of the mos t valuable exper iences in
developing A R C H P L A N is the acquisi t ion of new insights into the design
process through the necessary formalizat ion of design knowledge and decision
mechan i sms in each of the A R C H P L A N modules . This exper ience also
suggests that future design p rograms will have extensive idiosyncratic
characterist ics.

At the momen t , A R C H P L A N is a design assistant to produce meaningful
high-rise bui lding design descr ipt ions that are used by engineer ing expert
systems and to compare manual ly designed bui ldings to those designed with
A R C H P L A N . Future p rogram deve lopment has two main emphases : one is
increasing design automat ion and opt imizat ion on a global level in producing
feasible high-rise design solutions. The other is refining local decision making

11. Architectural P lanning Front End 2 7 7

in part icular design aspects such as bui lding circulat ion and functional
distr ibution. A long with this deve lopment in which the system is now
"learning" from exist ing design test cases , cost tables , and personal design
exper ience , its future role will be that of a design tutor which could teach and
explain design to novice users .

Acknowledgments
The author would like to thank his research assistants and p rog rammers Chia
Ming Chen , Chen Cheng Chen , Shen G u a n Shih, Richard Cobt i , and Jeffrey
Kobernick. Special thanks to Professor Steven Fenves and Michae l Rychene r
for their advice , and to the Engineer ing Design Research Center under the
direction of Art Westerberg for providing the necessary f ramework for
interdisciplinary research.

References
1. Akin , O., F l emming , U., Schmit t , G., and Woodbury , R. "Deve lopment of
Compute r Sys tems for Use in Archi tectural Educat ion." Archi tecture Research
Series, Depar tment of Archi tecture , Carnegie Mel lon Universi ty , March 1987.

2. Browns ton , L., Farrel , R., Kant , E., and Mart in , N . Programming Expert
Systems in OPS5. Addison-Wes ley Publ ishing C o m p a n y , Inc. , Reading ,
Massachuse t t s , 1985.

3 . Cox , B . J. Object-Oriented Programming. Addison-Wes ley Publ ishing
C o m p a n y , Read ing , Massachuse t t s , 1986.

4 . Eas tman , C. "The Use of Compute r s instead of Drawings in Bui ld ing
Design." Journal of the American Institute of Architects 3 (1975) , 46-50 .

5. Eas tman, C. and Henr ion, M. "GLIDE: A Language for Des ign Information
Sys tems." Proceedings of the 1977 SIGGRAPH Conference, S I G G R A P H ,
1977, pp . 24 -33 .

6. F l emming , U. , C o y n e , R. F. , Glavin , T. J. and Rychener , M . D . "A
Genera t ive Exper t Sys tem for the Des ign of Bui lding Layouts . Vers ion 2."
Technical Repor t E D R C - 4 8 - 0 8 - 8 8 , Engineer ing Des ign Research Center ,
Carnegie Mel lon Univers i ty , 1986b.

7. Gero , J. S. and Maher , M . L. "A Future Role of K n o w l e d g e Based Sys tems
in the Des ign Process ." CAAD Futures, E C A A D E , E indhoven Universi ty of
Technology , T h e Nether lands , May , 1987.

8. Hendr ickson , C. T., Zozaya-Goros t iza , C. Α., Rehak , D. , Baracco-Mil ler ,
E. G., and Lim, P. S. "An Exper t Sys tem for Construct ion Planning." ASCE
Journal of Computing 1987 (October 1987).

2 7 8 Gerhard Schmit t

9. HP 9000 Series 300 Computers LISP Application Notes. Hewlet t -Packard
Company , Fort Col l ins , Colorado , 1986.

10. Maher , M. L. HI-RISE. A knowledge-based expert system for preliminary
structural design of high-rise buildings. Ph .D . Th. , Carnegie Mel lon Universi ty ,
1984.

11 . Maher , M . L., and Long inos , P . "Engineer ing Des ign Synthesis : A Doma in
Independent Representat ion." International Journal of Applied Engineering
Education 1987(1987).

12. Mcin tosh , P. G. The Geometric Set of Operations in Computer-Aided
Building Design. Ph .D . Th. , Univers i ty of Mich igan , 1982.

13. Mcin tosh , J. F . The Application of the Relational Data Model to Computer-
Aided Building Design. Ph .D . Th. , Univers i ty of Mich igan , 1984.

14. Thornley , A. Means Systems Costs 1987. Rober t Sturgis Godfrey, 1987.

15. Minsky , M . "A F r a m e w o r k for Represent ing Knowledge . " In The
Psychology of Computer Vision, Wins ton , P. , (Ed.) , McGraw-Hi l l , N e w York,
1975.

16. Radford, A. D. and Gero , J. S. Design by Optimization in Architecture and
Building. Van Nost rand Reinhold C o m p a n y , N e w York , 1986.

17. Rosenman , M . A. and Gero , J. S. "Design Codes as Exper t Sys tems." CAD
Computer Aided Design 17, 9 (November 1985), 399-409 .

18. Schmit t , Gerhard . "Expert Sys tems in Des ign Abstract ion and Evaluat ion."
In The Computability of Design, Kalay, Yehuda , (Ed.) , John Wi ley & Sons , N e w
York, 1987.

19. Hewle t t -Packard C o m p a n y . Starbase Reference Manual. Second edit ion,
Hewlet t -Packard C o m p a n y , Fort Col l ins , Colorado , 1985.

Design Systems
Integration in CASE
JIM REHG
ALBERTO ELFES
SAROSH TALUKDAR
ROB WOODBURY
MOSHE EISENBERGER
RICHARD H. EDAHL

Abstract
This chapter discusses the deve lopment of software tools for automat ic design
synthesis and evaluat ion within the integrated f ramework of a computer -a ided
mechanica l design system k n o w n as C A S E , which stands for Compute r -Aided
Simul taneous Engineer ing . C A S E was deve loped to support mechanica l design
at the project level, and to serve as a means of integrat ing into the design process
concerns from other parts of the lifecycle of a product . C A S E is composed of
three types of software tools, k n o w n as des ign agents , design crit ics, and design
translators, which form an integrated testbed for research in representat ion,
problem-solv ing , and sys tems integrat ion for computer -a ided mechanica l
design. A prototype version of C A S E has been appl ied to the domain of
w indow regulator design, and is capable of automatical ly synthesizing regulators
to mee t a set of specifications and performing tolerance and stress analysis on
developing des igns .

1 Introduction
The quali ty of objects des igned with traditional C A D techniques is adversely
affected by t w o features of the design process : l imited scope in address ing
prob lems that arise in the many stages of the deve lopment of a product , and a
lack of unders tanding of the essential processes involved in engineer ing design.
Both of these are related to sys tems integration issues. In our v iew, the lifecycle
of a product can be descr ibed by a col lect ion of projects, where each project
involves a coherent set of at tr ibutes, such as the design, manufactur ing, or
assembl ing of an artifact [6] . Tradi t ional C A D tools typically address some
narrow aspect of the design project, but fail to provide any sort of integrated

Expert Systems for Engineering Design Copyright © 1988 by Academic Press, Inc.

279
All rights of reproduction in any form reserved.

ISBN 0-12-605110-0

2 8 0 Rehg , Elfes, Talukdar , Woodbury , Eisenberger , and Edahl

support for product development . In addit ion, these tools are typically isolated
from each other and often employ incompat ib le representat ions of the design
process , requir ing manua l data translat ions be tween tools.

This chapter presents a new system for computer -a ided mechanica l design
known as C A S E , for Computer-Aided Simultaneous Engineering. S imul taneous
engineer ing involves the coordinat ion of the various projects involved in the
lifecycle of a product to e l iminate problems due to lack of communica t ion and
compatibi l i ty be tween different areas of concern , such as design and
manufactur ing. It ensures that, in achieving the goals of one project, the goals
of another are not m a d e unreachable . The C A S E system has two main
characterist ics that dis t inguish it from traditional C A D systems:

• The use of mult iple Design Agents and Design Critics that embody
the various different domains of expert ise required in the design of
an industrial device , from the conceptual stage to the manufactur ing
issues.

• The use of mult iple Design Representations that are tailored to each
of the specific design tasks performed by the Design Agents and
Crit ics, and the use of translation mechan i sms to ensure the
compatibi l i ty and integrity of the representat ions.

In the sections that fol low, we explain the phi losophy on which the C A S E
system is based, present its overall architecture, and discuss its major
components . W e conclude with an evaluat ion and an outl ine of issues for future
research.

1.1 Issues in Design Automation
The C A S E system has been des igned to address some of the problems with
traditional C A D systems for mechanica l design. Whi le C A D systems have been
quite successful in domains such as V L S I design, that are character ized by a
clear t axonomy and a layered problem-solv ing structure, they have had a much
smaller impact on the pract ice of mechanica l design. S o m e reasons for the lack
of success of current C A D systems include:

• Design tools address very specific aspects of the design process ,
and provide no support for the design cycle as a whole .

• Different tools have been designed and applied in different contexts ,
without any provis ion for their interaction. As a result, they use
incompat ible representat ions that require manual translation of
information from one tool to another.

• The kinds of abstract ion, reasoning and problem decomposi t ion that
are natural for mechanica l design are usually not supported. This
lack of support s tems in part from a lack of unders tanding as to the
kinds of information and problem-solv ing techniques required for
mechanica l design.

12. Des ign Sys tems Integrat ion in C A S E 2 8 1

• Current design tools are typically c u m b e r s o m e to learn and use,
mak ing their introduct ion in industrial env i ronments difficult.

In response to the difficulties outl ined above , new generat ion C A D systems
should address the fol lowing issues:

• Deve lopmen t of mult iple , integrated representat ions.

• Deve lopmen t of distr ibuted, coopera t ive problem-solv ing approachs
to design, with mul t ip le problem-solv ing mechan i sms .

• Incorporat ion of "down-s t ream" concerns , such as manufactur ing,
material selection and assembly issues, into the design process .

• Deve lopmen t of new sets of tools to support the kinds of p rob lem-
solving activities that are essential to mechanica l des ign, such as
spatial and geometr ic reasoning [9].

• Automat ion of a variety of non-creat ive design decis ions , to rel ieve
the designer from low-level drudgery and free h im to pursue
creat ive design choices and explore design al ternatives.

• Encapsula t ion of expert design knowledge in design agents and
critics.

2 Overview of Implementation
In this section we descr ibe the current implementa t ion of the Computer-Aided
Simultaneous Engineering system, which was des igned to address the C A D
system design objectives discussed earlier and provide a testbed for research and
deve lopment in C A D systems for mechanica l design. It was developed with
three broad object ives in mind:

• At the level of individual p rograms , we are concerned with
developing specific types of software tools to aid in the mechanica l
engineer ing design process . W e address three main classes of tools:
agents, critics, and translators.

• At the level of design representat ions , we are interested in
advancing our unders tanding of the design process through the
deve lopment of a t axonomy of design representat ions with well-
defined propert ies that exist to mee t specific problem-solv ing needs .
W e dist inguish be tween design representat ions for synthesis, and
representat ions for analysis.

• At the system level, we are concerned with the deve lopment of tools
that support s imul taneous engineer ing by facilitating
communica t ion and coordinat ion a m o n g the different projects
involved in the lifecycle of a product .

The C A S E sys tem was deve loped in conjunct ion with F isher -Guide , a
division of Genera l Motors Corporat ion, for the specific p rob lem domain of

2 8 2 Rehg , Elfes, Talukdar , Woodbury , Eisenberger , and Edahl

manua l w indow regulator design. A window regulator is a mechanica l device
for raising and lowering au tomobi le w indows . It is located inside the door of a
vehicle and is composed of three major parts : lift a rm, sector, and backplate .
The lift arm acts as a lever and controls the height of the glass; the sector
t ransforms handle mot ion to lift a rm mot ion; and the backplate fixes the entire
regulator assembly to the inner door panel . An idealized window regulator is
depicted in Figure 1.

F i g u r e 1: An idealized window regulator , with its three major
componen t s : backpla te , lift a rm, and sector.

Al though currently oriented towards window regulator design, the C A S E
system provides a integrated software platform of p rograms and representat ions
that could be easily extended to other forms of mechanica l design. W e are
currently invest igating its extension to addit ional design domains , such as seat
adjusters.

2.1 Program Modules
The program modules that const i tute the C A S E system can be classified into
three main types , as defined be low. This t axonomy character izes the range of
software tools that are useful in mechanica l design.
Design Agent. A design agent is a p rogram modu le that manipula tes one or
more design representat ions to deve lop and extend a design in response to a
group of specifications. Des ign decis ions can be m a d e automatical ly , through
the use of stored domain knowledge and a lgor i thms, or interactively, by a
human designer. W e are currently developing design agents for synthesis and
tolerancing activities.
Design Critic. An analysis tool that evaluates a developing design with respect
to certain criteria is cal led a design critic. A critic modu le is capable of
performing an analysis task, interprett ing the result, and communica t ing the
results to a design agent in an appropriate form (ie, message for a synthesis

12. Design Sys tems Integrat ion in C A S E 283

program, graphical display for a human designer .) In the ideal case , critics
would perform cont inous evaluat ion of the design without p rompt ing from the
designer . T h e two main design critic tasks are:

• Local analysis. S o m e design critics are concerned with the
immedia te results of design decis ions . For example , the finite
element analysis critic de termines if the thickness of the lift arm is
sufficient to mee t the stress requi rements of the design.

• Consequence evaluation. Other design critics address concerns that
lie outs ide the immedia te scope of the current design project. These
critics evaluate the consequences of a design decision with respect
to the other projects , such as assembly or test ing, that m a k e up the
product life cycle , and thereby provide a means of achieving
s imul taneous engineer ing. For example , the interference and
clearance critic will del iver a warn ing when a given lift a rm design
is in danger of col l iding with the lock modu le over the course of its
travel through the door interior.

Design Translator. A design translator is a p rogram that m a p s one design
representat ion into another. T h e two representat ions do not have to be
informationally equivalent , but the translator modu le should not disturb any of
the design decis ions that have been m a d e . For example , a p rogram to generate
finite e lement meshs would use information not present in the design to
de termine the spacing of grid l ines, but the geometr ic structure of the part being
model led would not be altered. Translators are required because the outputs of
design agents are rarely compat ib le with the input requi rements of design crit ics,
or even other des ign agents .

2 . 2 Design Representations
All of the representat ions currently employed for synthesis activities have a
c o m m o n structure: they are composed of primitive design elements a r ranged in a
semant ic ne twork , where each design pr imit ive is descr ibed by a set of
parameters and a set of application rules that expresses the condi t ions under
which it can be instantiated into a developing design. Pr imit ive parameters are
the design var iables; these var iables are imbedded in a constraint network which
expresses the l imitat ions imposed on their values by both the structure of the
design and the per formance requi rements . In contrast to the representat ions for
synthesis , des ign representat ions for analysis are uns t ruc tu red— each analysis
modu le is p rovided with the information it needs in whatever form is mos t
appropria te .

2 . 3 CASE System Organization
The C A S E sys tem is an integrated design env i ronment that currently consis ts of
two design agents , three des ign crit ics, five design translators , and e leven design
representat ions . Figure 2 shows the var ious modu les and representat ions and

2 8 4 Rehg , Elfes, Talukdar , Woodbury , Eisenberger , and Edahl

their interconnect ions. Note that the stick and feature representat ions are
hierarchical in the sense that they can each be divided into three componen t
representat ions. The performance of the system as a whole can currently be
descr ibed in terms of four basic tasks: Design Synthesis, Tolerance Generation,
Interference and Clearance Analysis, and Finite Element Analysis. The modules
and representat ions involved in each of these tasks are shown in Figure 2, and
are explained in detail in the sect ions that follow.

^ Design Specs ^ — ι

Translation
Module

Stick Model Synthesis

(stick Model S t r u ô u ^ ^ - ^ ^ ç ^ ^

1
 ^r^j^k ModelIParamete^)

Parts/Feature Model
Structure

ilV, ^/Parts/FeatureModeP\. >/ p
Constraints

Parts/Feature Model
Parameters

_4L
~^ Feature Model

Synthesis

0

Solid Model " ^ — [^ j

_ I ^ y ^ Functional Model ^ — Γ ^ "

Interference/Clearance
Critic

Finite Element Mesh Finite Element Analysis
Critic

Algebraic Model Tolerance Specification

Evaluation

Evaluation

Tolerances

F i g u r e 2: The C A S E Sys tem Archi tecture . Rectangles are design agents and
critics, lozenge shapes are design representat ions, and tr iangles are
translators.

12. Design Sys tems Integrat ion in C A S E 2 8 5

3 The Design Synthesis Task
One of the goals of the C A S E project is to explore au tomated design synthesis in
the context of mul t ip le design representat ions . W e bel ieve that both p rograms
and h u m a n s involved in design activities need to employ mult ip le design
representat ions. In order to address this concern, two design agents were
developed that could employ three different representat ions of a mechan i sm,
each descr ibed be low, to synthesize a design to mee t a set of specifications.

T h e current applicat ion of C A S E to window regulator des ign involves a
des ign scenario in which exist ing backpla te and sector des igns are chosen from a
parts library to mee t a given set of requi rements , while the lift a rm is des igned
"from scratch", a long with some smaller componen t s , to interface to the exist ing
backplate and sector and mee t the specifications. This scenario is ana logous to
actual design pract ice in many industr ies.

3 . 1 Routine Design
The classification of design prob lems into types with explicit propert ies is an
open research issue in the design communi ty . Al though there is no consensus ,
some classification schemes have been proposed , such as B r o w n ' s three classes
of design prob lems [1]. Mos t a t tempts at classifying design focus on two
characterist ics of a design problem: the nature of the design space and the
characterist ics of the decision sequencing.

The design space is a useful construct for visualizing all possible types of
des igns that a sys tem can produce . Des ign p rob lems can be classified on the
basis of whether the d imens ions of the design space can be specified in advance
and fixed, or must be a l lowed to change in some control led way as the p rogram
operates . In rout ine des igns , the d imens ions of the design space, which
correspond to the total set of design decis ions that mus t be made , are a ssumed to
be k n o w n in advance .

Decis ion sequencing, the other criteria of interest, refers to the order in which
design decis ions are made . For routine synthesis p rob lems , the sys tem
developer can explicit ly account for all possible sequences of design decis ions
in specifying the flow of control . So design problems for which the design
space can be enumera ted and the sequence of design decis ions complete ly
specified in advance are k n o w n as routine design p rob lems , or Class 3 p rob lems
in B r o w n ' s t axonomy.

It is important to realize that even the most routine designs under
considerat ion have a degree of complexi ty that makes it infeasible to store them
in a large database indexed by specifications and perform synthesis through
some type of table look-up. Al though the decis ions involved at each point are
s imple ones , computa t ion is still required to trade-off be tween the design
objectives. Rout ine design assumes that these computa t ions can be specified
explicit ly in advance .

2 8 6 Rehg , Elfes, Talukdar , Woodbury , Eisenberger , and Edahl

3 . 2 Design Representations
In the paradigm descr ibed above , des ign synthesis consists of two activities: the
selection of a g roup of pr imit ives that mee t the design performance
requirements , and the instantiation of a set of parameter values that meet the
design constraints . In rout ine design, the correct pr imit ive g roup is assumed to
be k n o w n in advance and synthesis activity essentially involves constraint
satisfaction in mult iple representat ions. Therefore , within a given
representat ion, the synthesis rout ines need only employ the constraint ne twork
representat ions of the design object. However , to mainta in consis tency be tween
the representat ions and au tomate other aspects of the design task, at least three
other design representat ions are employed , as descr ibed be low.
Stick Representation. The stick representat ion corresponds roughly to the
planar kinematic diagram c o m m o n l y employed in mechan i sm design [2]. It
captures the basic skeleton of the mechan i sm and those key parameters that
de termine its mot ion . With in this representat ion, the synthesis task consists of
choosing the major link d imens ions and gear ratios necessary to mee t the design
specifications. As a result of the choice of stick representat ion pr imit ives ,
essential device parameters can be determined without consider ing the full detail
of a manufacturable part.

Fol lowing the representat ional parad igm descr ibed earlier, the stick
representat ion is composed of two groups of pr imit ives: links and joints. Links
define the skeletal structure of the mechan i sm, whi le the joints define
permissable relative mot ions of l inks. There are four types of link pr imtives and
four types of joint pr imit ives , which are depicted in Fig. 3 along with their
parametr izat ions.

The stick representat ion consists of a ne twork of interconnected link and jo int
pr imit ives , given as a graph in Fig. 4 and a d iagram in Fig. 5. Note that with this
representat ion, it would be possible to define t ransformation matr ices for each
link and joint and then generate design equat ions by traversing the ne twork and
symbolical ly mul t iplying matr ices [7].
Parts Representation. Whi le the stick representat ion captures the essential
k inemat ic information about a design object, the parts representation provides a
description of the object at the level of detail necessary to manufacture it.
Unlike the stick representat ion, the choice of manufactur ing process is important
at the parts level, for it de termines the types of pr imit ives that will be employed .
For example , because the window regulators are manufactured through a
progressive die operat ion, the parts pr imit ives consist mainly of formed sheet
metal objects and r ivet- type connectors .

Al though the parts representat ion is more domain specific than the stick
representat ion, it is identical in form. The two classes of pr imit ives it employs
are parts, which consist of the manufacturable e lements necessary to design the
mechan i sm, and connections, which represent the specific fastening
technologies employed in assembl ing the device . The part and connect ion

12. Design Sys tems Integrat ion in C A S E 2 8 7

2) Unary Link 2) Prismatic Joint

no parameters ,
a = parametric joint distance

3) Gear Link 3) Rolling Joint

no parameters (xy) = fixed transformation

F i g u r e 3 : Stick Representa t ion Pr imit ives . T h e links and jo in ts depicted
above are sufficient to build a stick representat ion for a
w indow regulator . Stick design is accompl ished when the
pr imit ive parameters are instantiated with values that satisfy
the constraint ne twork in which they are imbedded.

pr imit ives necessary to descr ibe a manua l w indow regulator are given in Table
1.

There is not a one- to-one cor respondence be tween connect ions at the parts
level and jo in ts at the stick level, due to differences in the design pr imit ives . In
fact, the task of match ing pr imit ives be tween representat ions is one of the more
difficult p rob lems in employ ing mult iple design representat ions [3] .
Feature Representation. Unl ike the stick representat ion, pr imit ives in the parts
representat ion are not parameter ized at the parts level. Instead, each part has a
feature representation, which describes the part as a combinat ion of more
detailed pr imit ive design e lements . In the current implementa t ion , the

2 8 8 Rehg , Elfes, Talukdar , Woodbury , Eisenberger , and Edahl

-XL-
GEAR
(Pinion
Gear)

^PRISMATIC

.XL

UNARY
(Sash)

« REVOLUTE

\ ^ GROUND
I

 >
(Door)

K PRISMATIC

ROLLING

BINARY
(Back-
Plate)

< — (R E V Q L U T C) >

"7ΪΓ

FIXED

UNARY / /
(Slider)

<
 \

-/RE REVOLUTE

-^L

GEAR
(Sector)

FIXED

JL
BINARY

M (Lift
Arm)

KEY:
= 'connected-to' relation

F i g u r e 4: Stick Representa t ion Network , with stick pr imit ives interconnected
in the stick representat ion data structure network.

deve lopment of feature representat ions has been restricted to the lift a rm. Other
parts , such as the backplate and sector, are character ized at the feature level by a
single parameter list.

The feature representat ion of the lift arm is based on the three classes of
primit ives shown in Fig. 6: slabs, formations, and seams. The body of the arm
is composed of slab pr imit ives , jo ined together by either flat or bend seams. Flat
seams are used when two slabs that lie in the same plane jo ined together, while
bend seams are used where a change in vertical orientat ion occurs . Viewed
from the side, the lift a rm consists of al ternating parallel and slanted sections
connected by flat and bend seams, respectively. Each individual slab can in turn
contain any of the two formation pr imit ives: holes and slots.

In a manner similar to the stick pr imit ives , the feature primit ives are arranged
in a semantic network, as depicted in Fig. 8. There are two possible network
connect ions: connected-to and contains. As before, the primit ives are
characterized by a parameter set. Fig. 7 shows the top view of the ar rangement
of primit ives that form the lift a rm.

Format ion primit ives can be combined into macro-formations, which consist

12. Design Sys tems Integrat ion in C A S E 2 8 9

Slider Sash

F i g u r e 5: Stick representat ion d iagram of the stick model in the graph
of Fig. 4 . Unnecessary design detail has been suppressed.

T a b l e 1 : Parts Pr imit ives . The 11 specific componen t s that m a k e up a
manufacturable window regulator are listed be low, along with the
types of connect ions that jo in them together. Note that many of
the connect ion types are similar to those employed in the stick
representat ion.

Parts Representat ion Pr imit ives

Parts Pinion Mechan i sm
Sector

Lift Arm
Catch

Slider Stud Bear ing
Slider

Pivot Stud Bear ing
Door

Backplate
Spring

Sash

Connec t ions Rivet Mount
Pure Rotat ion

End Moun t
Pure Sliding

Catch Moun t
Gear Contact

of a list of formations whose parameters are constrained to a part icular spatial
orientation. For example , the hole array at the end of the lift a rm in Fig. 7 is a
macro formation, composed of four holes of equal radius located at the corners
of a square. The definition of the macro includes t ransformations that locate
each of the componen t formations, given the macro location. In the case of the
hole array, the t ransformations locate each of the four holes relative to the array
center.

The a r rangement of slabs, formations, and seams is constructed to reflect the

2 9 0 Rehg , Elfes, Talukdar , Woodbury , Eisenberger , and Edahl

fact that, within manufactur ing l imits, sections of sheet metal can be placed at
arbitrary relative heights of elevat ion, with slanted sections connect ing the
layers. Any slab can also be worked to include formations such as punched
holes or slots. Al though the other major regulator parts , like the backplate ,
originate from the same manufactur ing process , it is likely that the current set of
primit ives would have to be expanded to represent these more intricately
detailed parts .

1) Rectangle Slab 1) Hole Formation

/ = length
w = width
h - height change
/ = thickness (xy) = location

r - radius

2) Flange Slab
2) Slot Formation

t C

i w = width
/ j J 2 = length

fi h = height change
t = thickness

/ = length
Wj t H>2 = width
t = thickness

(xy) = location
w - width
/ = length

3) Flat Seam

No parameters

4) Bend Seam

No parameters

F i g u r e 6: Feature representat ion pr imit ives slab, formation, and seam
are necessary in bui lding a feature representat ion of a lift arm.
Slabs are actually parameter ized, three-dimensional e lements .

3 . 3 Operation of the Synthesis Architecture
In the current implementa t ion of C A S E , synthesis occurs in two stages. In the
first stage, the stick model synthesis program solves the stick mode l constraints
to obtain a set of stick mode l parameters that meet the design specifications (see
Fig. 2.) A sample set of design specifications is given in Table 2. The stick
synthesis modu le produces a skeletal w indow regulator design, in which the
major design decis ions have been made . The design, however , lacks the detail
that would m a k e it a manufacturable part.

12. Des ign Sys tems Integrat ion in C A S E 291

Ο ο
Hole

A

li \ Ο ο
Hole

A
F

Ο ο
Hole

A β c D Ε lu /

H o l e o l
Tip

J = Flat Seam || = Bend Seam

F i g u r e 7: Lift a rm feature representat ion d iagram, showing manne r
in which it is composed of feature pr imit ives in Fig. 8.

In the second stage, the remain ing design detail is added by the feature model
synthesis program, which solves the feature mode l constraints to obtain the
feature mode l parameters . After the feature synthesis p rogram has performed its
task, the design is comple te and ready for analysis . Table 3 gives a partial list of
the lift a rm feature parameters generated by the system in response to the
specifications in Table 2.

Note that within each design stage the problem-solv ing process is the same,
but the design representat ions differ in the v iew of the design object they
present . This separat ion permits the design process to occur in a hierarchical
fashion that strongly resembles actual design pract ice. Whi le the current design
process is sequential, we are presently developing a more flexible p rob lem-
solving approach in which the stick and feature synthesis modules can interact in
producing a des ign.

Located be tween the stick and feature representat ions in Fig. 2 is a design
translator modu le that maps the effects of design decisions made in the stick
representation to constraints on design decisions made in the feature
representation. The presence of the translator is necessary to ensure that, for
example , the length of the feature model lift a rm is compat ib le with the length of
the binary link that corresponds to the lift a rm in the stick representat ion. A
descript ion of the operat ion of the translator modu le is given in [5] .

3 . 4 The Synthesis Modules
The problem-solv ing technique employed by the individual synthesis modules is
an adaptat ion of the agent hierarchy approach suggested by Brown and
Chandrasekaran [1]. In C A S E , groups of design parameters are "assigned" to
problem-solv ing agents that contain the domain knowledge necessary to
generate parameter values through the use of heurist ic rules and constraint
propagat ion. These agents are arranged in a hierarchy, and communica t e
through message-pass ing . This synthesis approach facilitates the incremental
deve lopment of the sys tem and provides a wel l -organized structure for the
acquisi t ion of domain knowledge . A more detai led descript ion of the operat ion
of the synthesis modules is given in [5].

2 9 2 Rehg , Elfes, Talukdar , Woodbury , Eisenberger , and Edahl

Flange
I

^ I T -

BEND

Κ < B E N D ^ > - _ j j Rectangle
Ε

BEND

BEND

Rectangle
D

KEY:
SLAB SEAM ^> JK)RMATIO^

= 'contains' relation

= 'connected-to' relation

F i g u r e 8: Feature Representat ion Network , depict ing the combinat ions
of slabs, formations, and seams necessary in descr ibing a lift arm
design. Note the hole array macro-format ion in the upper left.

4 The Tolerance Specification Task
A critical design decision is the setting of tolerances for the parts of an
assembly. It is desired to find a set of tolerances on the manufactur ing
d imensions that are both cost effective and adequate to ensure that certain
performance specifications for the assembly are met . An inappropriate choice of
tolerances can result in low quali ty products , expensive or difficult
manufactur ing steps, or even both.

12. Design Sys tems Integrat ion in C A S E 2 9 3

Table 2: Sample design specifications provided as input to the system
for a window regulator design task.

Glass in full up position, χ coordinate = 250 mm.
Glass in full up position, y coordinate = 450 mm.
Glass in full up position, ζ coordinate = 310 mm.
Glass in full down position, χ coordinate = 300 mm.
Glass in full down position, y coordinate = 50 mm.
Glass in full down position, ζ coordinate = 270 mm.
Glass weight = 15 lb.
Handle location, χ coordinate = 0 mm.
Handle location, y coordinate = 250 mm.
Handle location, ζ coordinate = 290 mm.
Center of gravity rel. to edge of glass = 126 mm.
Maximum allowed number of handle turns = 4.5 rev.
Maximum allowed handle effort = 2 . 0 N-m.
Minimum force req. for spindle abuse test = 18.5 N-m.

Table 3: Sample feature parameter output , with six of the lift a rm
parameter values (in mil l imeters) generated by the synthesis modules
in response to the design specifications in Table 2.

(arm_width_la 45.0)
(arm thickness la 2.2)
(tip_off_hgt_la 15.0)
(scha loc la 130.0)
(rl hole Toc la 280.0)
(r l~hole"~rad~~la 2.6)

Lift arm width
Lift arm thickness
Tip offset height
Sector hole array location
Slider hole location
Slider hole radius

For complex des igns , tolerances are frequently de termined by tradit ion, trial
and error, or intuition. A c o m m o n method employed by des igners is to select
the d imens ions that are considered important , and then specify the tightest
tolerances that the manufactur ing process can uphold. This unnecessar i ly
overburdens the manufactur ing facilities without ensur ing opt imali ty of the
design. The goal of the Tolerance Specification Module is to help in the rational
choice of tolerances based on considerat ions of cost, sensit ivity, and
performance specifications.

A related, and perhaps even more important , set of decis ions concern the
setting of design parameters (or d imens ions) in order to min imize the effect that
variat ions in the d imens ions have on the performances . That is, whi le the

2 9 4 Rehg , Elfes, Talukdar , Woodbury , Eisenberger , and Edahl

setting of tolerances is done to control the variat ions in performances , this may
also be accompl ished by modif icat ion of the design parameters , possibly leaving
the tolerances at relatively high levels.

4 . 1 Tolerancing Information
The information required by the tolerancing modu le falls into three categories:

• The cost of holding tolerances, or of control l ing variat ions of the
manufactur ing d imens ions .

• Fault condi t ions or degradat ion costs for the performance measures.

• Functional relationships be tween non-ideal manufactur ing
d imens ions and the per formance measures .

This information is combined in an opt imizat ion f ramework to yield
es t imates of the opt imal tolerances.

The tolerance cost information required is very similar to the process control
information that is frequently gathered in manufactur ing scenarios. In this
system, what is actually needed is the probabil i ty distr ibution for an individual
manufactur ing d imens ion and the costs of t ightening or loosening the var iance
of this distribution. For example , in the s imple case of a rod and sleeve
assembly, the cost information required is that concerning the control of the
var iances of the radii of the sleeve and the rod.

T h e performance measure information required is the Quality Loss Function
used in the Taguchi Method . This is a set of quadrat ic functions, each
corresponding to a per formance measure . General ly , each individual loss
function is centered over the target or center value for the corresponding
performance measure , and increases with the distance from this target value.
The rate of increase is de termined so that at the fault condi t ions (min imum and
m a x i m u m al lowable values for the performance measure) , the value of the loss
function corresponds to the cost of ei ther repair ing or discarding the assembly
(depending on which is more appropria te) . One major result of using such a loss
function is that products are not only penal ized for be ing in violat ion of the
performance specifications (which are usually intervals) , but also for not being
at their target values for these measures . For the above rod and sleeve example ,
a single performance measure of the play in the assembly, de termined by the
difference in the radii, might be appropriate . If the difference is too small , there
will be a problem in inserting the rod into the sleeve, and if the difference is too
large, there will be too much wobbl ing or play in the assembly. The midpoint
be tween the m a x i m u m and m i n i m u m al lowable differences can be used as the
target value for this per formance measure .

The required functional relationships be tween the manufactur ing d imens ions
and performances are the sensitivities of the performances to variat ions from the
nominal values for the part d imens ions . For some prob lems , these sensitivities
are easy to compute . For the rod and sleeve example , this sensitivity function is

12. Design Sys tems Integrat ion in C A S E 2 9 5

simply the difference in variat ions for the two radii . However , the sensitivities
are usually not so straightforward. For a w indow regulator design, the
a t tachment of the sector to the lift a rm is of great impor tance . Any small error
in the p lacement of holes or the fixturing with rivets can result in a d isp lacement
or twist in the assembly , possibly causing b inding or skipping of gears as the
sector passes by the pinion gear, during operat ion of the window.

W e currently a s sume that the input information ment ioned above is provided
in an appropria te form. However , we are invest igat ing the automat ic derivat ion
of some of the inputs from other representat ions in the C A S E system. This is
part icularly relevant for the performance sensit ivit ies, which are the mos t critical
to the tolerancing effort, but are rarely der ived by the designer , pr imari ly
because of the tediousness and complexi ty of the computa t ions . Whi le the
tolerance cost and performance information required is similar to that for the
Taguchi Method , the required sensitivity information differs. In the Taguchi
Method , the sensitivity relat ionships are es t imated by p iece-wise l inear functions
using statistical me thods , such as least squares , on physical prototypes or
s imulat ions . In our system, the sensitivity relat ionships are obta ined analytically
from mathemat ica l mode l s of the system.

4.2 Specification of Tolerances
Once the inputs are gathered, an opt imizat ion p rob lem is formulated to compu te
estimates for the optimal tolerances. The formulat ion is very similar to that
implied by the Taguchi Method . Individual d imens ion var iances are chosen to
min imize the sum of the cost of control l ing the individual d imens ion variat ions
plus the expected value of the quali ty loss function. The expected loss is
t ransformed from a function of per formances to a s imple function of var iances
using the sensitivity relat ionships, the quadrat ic nature of the loss function, and
assumpt ions of normal i ty of the distr ibutions of the deviat ions .

5 Interference and Clearance Analysis Task
Evaluat ion of interferences and clearances is a key issue in mechanica l design.
For proper operat ion of any mechan i sm, adequate c learances be tween mov ing
subcomponen ts have to be ensured and interferences have to be e l iminated. In a
car door subassembly , for example , a number of conceptual ly and functionally
distinct subsys tems, such as the w indow regulator , the lock mechan i sm, the
crash bar, speakers , etc. have to be moun ted next to each other. The total vo lume
available and the mutual interactions and constraints imposed on the various
subsys tems have to be taken into account . This section descr ibes the
Interference and Clearance Design Critic, which employs a dual spatial
representat ion of the manua l w indow regulator mechan i sm to ensure that a given
design meets the spatial constraints imposed on it by the other D o o r Subsys tem
design projects , such as lock modu le design.

2 9 6 Rehg , Elfes, Talukdar , Woodbury , Eisenberger , and Edahl

5 .1 Generation of a Three-Dimensional Model
Once a feature-based model of the design has been generated (as descr ibed in
Section 4) , it is used to produce a three-dimensional descript ion of the object.
This descript ion is actually a dual representat ion, whose componen ts are:

• A Functional Model: a f rame-based descript ion that stores shape
and functional information, and

• A Spatial Model: a solid model representat ion that is used for
visualization and certain kinds of geometr ic and spatial inference.

The flow of inference descr ibed in this section is shown in Fig. 9.

Parts/Feature Model

Template Instantiation

^
Ψ

3D Solid Model

"7ΙΓ

Solid Modelling
System

Functional Model

Object Template
Library

F i g u r e 9: The Dual Spatial Mode l . Spatial information is stored
in a frame-based Funct ional Mode l and in a 3 D Solid Model .
Object templates are instantiated based on design features.

Functional Model The generat ion of the Funct ional Model is accompl ished by
employ ing the features from the previous stage to instantiate templates from a
library of basic object descript ions. The library templates are implemented in a
frame-based representat ion and contain the information necessary to build a
functional and spatial descript ion of the feature-based design.

The object templates incorporate the fol lowing kinds of information:

• A symbol ic descript ion of the individual componen ts and sub
componen t s of the object be ing descr ibed.

• A geometr ic descript ion of the various componen t s , providing a
certain level of spatial information, but not the full detail contained
in the solid model .

• Information on the a t tachments be tween the componen ts of the
assembly , to a l low analysis of the static structure and the dynamic
behavior of the mechan i sm.

• Procedural information corresponding to sequences of calls to the
V E G A solid modeler , which are executed to create an appropriate
3 D geometr ic model of the corresponding component .

12. Design Sys tems Integration in C A S E 2 9 7

Instantiation of the templates is done by comput ing and filling in the
appropriate slots based on feature values.
Three-Dimensional Spatial Model. In addit ion to the Funct ional Model , a
three-dimensional solid model is generated using the V E G A solid mode le r
[8] developed at C M U [4]. V E G A is employs a spli t-edge boundary

representat ion, and serves two main purposes in the project:

• Visualization. Using the graphics interface of the V E G A system,
the solid model can be displayed and the created object can be
visually inspected by the human designer.

• Spatial Analysis. The spatial posi t ioning and the geometr ic
relat ionships between the various componen t s of the comple te
object assembly can be examined and operated upon. This
facilitates analysis of the design object by various critic modules ,
such as the Interference and Clearance Critic.

Fig. 10 consists of the top and side views of a window regulator solid model
constructed from the feature design data partially displayed in Table 3.

(a)

F i g u r e 10 : Sample Solid Modeler Output , (a) and (b) depict the top
and side v iews, respectively, of a solid model of a w indow
regulator, created from the feature data partially listed
in Table 3, by the design translator.

2 9 8 Rehg , Elfes, Talukdar , Woodbury , Eisenberger , and Edahl

5 . 2 Interference and Clearance Analysis
The Interference and Clearance modu le employs the hybrid representat ion
described above. As shown in Fig. 11 , it consists of two processes operat ing
cooperat ively:

• The Funct ional Mode l is used to recover the spatial structure of the
object from its l inkage and a t tachment information, as well as to
reason about its dynamic behavior (how the object and its various
subsys tems m o v e in space relative to each other) .

• The Solid Mode l uses the posi t ional information for the various
subsys tems provided by the Funct ional Mode l to perform a static
interference and clearance analysis using the built-in geometr ic
reasoning primit ives of the V E G A system.

3D Solid Model

Al

y Solid Modelling
System

Functional Model >
κ -

Spatial
Instantiation

^ \ Dynamic Analysis K-

Interference/C learance
Analysis

- > Evaluation

F i g u r e 1 1 : The Interference and Clearance Sys tem, which uses the Funct ional
Mode l for analysis of the dynamic behavior of the mechan i sm and
the 3 D Solid Mode l for static interference and clearance analysis .

The Funct ional Mode l is used to exercise the system through its var ious
degrees of freedom; it then spatially instantiates the various componen t s and
queries the solid modele r concerning the effects of each operat ion.

6 The Finite Element Analysis Task
The Finite E lement Analysis Critic provides a high-level analysis of the current
design based on the interpretation of results provided by a finite e lement
analysis package . The main functions provided by the Critic are:

• Translat ion of design requi rements , mode l geometry and load
requirements into a finite e lement mesh and appropriate load
specifications.

• Control of the finite e lement analysis package .

• Selection and interpretation of the relevant results provided by the
finite e lement analysis package for presentat ion to the designer.

• Provision of a summary of results and recommenda t ions for
changes in the design.

12. Des ign Sys tems Integrat ion in C A S E 2 9 9

The Finite E lement Analys is subsys tem is compr i sed of the fol lowing major
componen t s :
Translator Module. Genera tes a finite e lement m e s h for the m e c h a n i s m being
studied and submits it to a finite e lement analysis package . This m o d u l e takes
object descr ipt ions stored in the part /feature representat ion and creates finite
e lement meshes that descr ibe the objects at var ious degrees of accuracy,
depending on the corresponding input specifications. It also accepts loading
condi t ions on objects and transforms them into a load input for the finite
e lement analysis package .
Finite Element Analyzer. Opera tes as an intell igent interface to the finite
e lement analysis package and provides the des igner with expert ise on the stress
analysis of objects .

In the generat ion of the finite e lement grid, the general layout of the mesh is
de termined by the feature geomet ry and the paramete r values . In Figure 12, the
result ing mesh for one set of features and parameters is presented.

F i g u r e 12 : Finite E lement Mesh , generated by the translator modu le
from the lift arm feature data partially listed i n Table 3 .
The mesh can be analyzed to obtain the d isp lacements , stresses,
and buckl ing loads for the arm.

The Finite E lement Analyzer is a Design Critic that will perform static stress
analysis and buckl ing load analysis using a general purpose finite e lement
p rogram. The p rogram computes the d isp lacements , stresses, and buckl ing load
for all the e lements in the mesh . T h e Crit ic is then called upon to extract the
mos t meaningful results from the analysis p roduced by this p rogram. This
interpreted information is then conveyed to the des igner in more familiar te rms,
such as: "The thickness in region 2 is insufficient" or "Buckling occurs in region
3 at the specified load level". The high-level analysis m a y also include plots of
arm stresses or arm displacements . Addi t ional ly , the Critic will also suggest
minor changes in the design to get better per formance from the stress analysis
point of v iew, such as "Increase distance between holes I and 2 in order to
reduce stress concentration - 20% increase is suggested" or "Add stiffener to
prevent local buckling in region 3".

3 0 0 Rehg , Elfes, Talukdar , Woodbury , Eisenberger , and Edahl

7 Conclusion
W e have described the current architecture and software tools that compr ise the
C A S E system. A prel iminary evaluat ion of C A S E by designers from Fisher-
Guide has demonst ra ted the usefulness of automat ic synthesis tools in speeding
up the wel l -unders tood parts of design prob lems . In addit ion, with the
incorporat ion of feedback from the design critics it should be possible to
drastically reduce the number of cycles required to produce a satisfactory
design. By operat ing in conjunction with the system, a designer is able to
explore a wider variety of design alternatives and focus his attention on the
difficult creative dec is ion-making for which humans are best suited.

The main systems integration features of C A S E (see also [6]) are:

• The use of ne twork mode ls as descript ions for design projects; these
al low the seamless integration of new processes and
representat ions; also, processes can be configured in parallel so that
new processes can be gradual ly introduced and tested against
exist ing ones .

• The delineation of levels of representat ion for the various processes ,
especial ly for represent ing the aspects of a process that are of
concern to other processes , and the use of translators to
systematical ly mainta in communica t ion a m o n g their var ious
representat ions, so that the project as a whole remains well
coordinated.

• The formulat ion of design tools as: agents , for synthesis and other
extensions and deve lopments of designs; and critics, for analysis
and evaluat ion; this enhances the cooperat ion a m o n g modules at
var ious s tages, by focusing the actions of the system as a whole in
certain well-establ ished direct ions, and by using c o m m o n message
types.

7.1 Directions for Future Research
Areas of extension of the current system presently under deve lopment include:

• The deve lopment and integration of other Design Agents to supply
expert ise and provide design choice explorat ion support in other
critical areas, such as tolerancing.

• The deve lopment and integration of other Design Crit ics,
part icularly a manufactur ing expert and a materials selection expert .

• The expansion of the user-interface to provide the designer with
increased flexibility in interacting with the system.

12. Design Sys tems Integrat ion in C A S E 3 0 1

7 .2 Implementation
The majority of the C A S E software is writ ten in Lucid C o m m o n Lisp with
Portable C o m m o n Loops . The V E G A solid mode le r is writ ten in C, and the
finite e lement software, in F O R T R A N .

Acknowledgments
The authors would like to acknowledge the support provided by Clauss Strauch
in the use of the V E G A system. T h e window regulator design team at Fisher-
Guide , part icularly Mike L a m and Brad Mezz ie , provided crucial insights into
the design process and supplied m u c h of the domain expert ise embod ied in the
Design Agents .

References
1. B rown , D. and Chandrasekaran , B . "Knowledge and Control for a
Mechanica l Des ign Exper t System." Computer 19 (July 1986), 92-100 .

2. E rdman , A. and Sandor , G. Mechanism Design: Analysis and Synthesis.
Prent ice-Hal l , Eng lewood Cliffs, 1984.

3 . Libardi , E., Dixon , J. and S i m m o n s , M. "Compute r Env i ronments for the
Des ign of Mechanica l Assembl ies : A Research Rev iew." Engineering with
Computers 3 (1988) . Accepted for publ icat ion in Vol . 3 .

4 . McKe lvey , R. and Shank, R. " V E G A 2 Progress Report ." Center for Art and
Technology , Carnegie Mel lon Univers i ty , June , 1987.

5 . Rehg , J. M. "Compute r -Aided Synthesis of Rout ine Des igns ." Masters Th. ,
Carnegie Mel lon Univers i ty , M a y 1988.

6. Ta lukdar , S., Rehg , J. and Elfes, A. "Descr ipt ive Mode l s for Des ign
Projects ." Submit ted to Third International Conference on Appl ica t ions of
Artificial Intel l igence in Engineer ing .

7. T i love , R. "Extending Solid Mode l ing Sys tems for Mechan i sm Des ign and
Kinemat ic Simulat ion." IEEE CG&A 1983 (May/June 1983), 9-18.

8. W o o d b u r y , R. " V E G A : A Geomet r ic Model l ing System." Graphics
Interface '83, Canadian M a n - C o m p u t e r Communica t ions Society, M a y , 1983.

9. Woodbury , R. and Oppenhe im, I. "Geometr ic Reason ing : Mot ivat ion and
Demonst ra t ion ." Submit ted to Third International Conference on Appl ica t ions
of Artificial Intel l igence in Engineer ing .

Index

Index
Abstraction 6 4 , 2 0 0 , 2 1 4 , 2 5 8 , 2 8 0
Acid rain model design 201
Activation network 268
AI 21
Alloy design 141
Analysis 38
Antecedent reasoning 21
Architectural design 93 ,177 ,258
Artificial Intelligence 21, 237

Backtracking 22
Backward chaining 22
Blackboard architecture 22
Blackboard model 66, 88, 154, 225, 233, 244
Blackboard system 9
Building design 37,258

CAD 22,221
Catalyst selection 54
Causal knowledge 22, 224
Certainty factor (CF) 22
Computationally intractable problem 223
Concept 6
Concurrent production system 244
Conflict resolution 72
Consequence evaluation 283
Consequent reasoning 22
Constraint 22, 39, 42, 80, 82, 135, 136, 179, 182
Constraint network 283
Constraint propagation 126, 194, 224, 231
Constraints 11
Context 22 ,68
COPS 244

Data-directed invocation 231
Data-directed search 23
Decision model 198
Declarative knowledge 23
Decomposition 38, 41, 64, 234, 253, 280
Deep knowledge 23
Demon 2 3 , 5 1 , 6 0
Dependency-directed backtracking 23
Depth-first search 42, 61
Design 11, 23
Design agent 282
Design critic 227,282
Design environments 18,219, 229
Design knowledge 41
Design problem classes 284
Design process 12, 93, 103, 117, 123, 154, 176, 222, 223, 231, 261, 285
Design project 279
Design representation 283
Design Research Center 16,18

Design tools 219
Design translator 283
Detailed design 38
Diagnosis 10
Directed graph 105, 246
Disorientation 200
Distributed problem solving 243
Domain knowledge 23
Domain-independent 23

EDRC 18
Evaluation 226
Evaluative tool 194
Experiential knowledge 23
Expert system 2, 6, 54
Expert system shell 9, 55
Expertise 2 , 3 , 2 0 , 174
Explanation 83, 85

Feature representation 288
Focus of attention 69, 72, 154
Forward chaining 23
Frame 6 0 , 7 7 , 7 9 , 8 4 , 2 5 9
Frame-based representation 23
Frame-based system 8, 49, 228
Functional level 48
Fuzzy reasoning 24

Generate and test 24, 104
Geometric models 259
Global conflict 193
Glossary 21
Goal-directed search 24
Graphical interface 200, 261

Heuristic rule 24
Heuristic search 24
Hierarchical representation 231, 234, 284
Hierarchy 42
High rise buildings 37
Hybrid systems 59, 84, 88, 258, 276
Hypothesize-and-test 153, 156

Ill-defined problem 178, 223
Ill-structured problem 16
Inference engine 25,135
Influence diagram 197, 200
Inheritance 25, 145, 158
Iterations 125

Knowledge 25
Knowledge acquisition 25, 137, 229
Knowledgebase 132,144
Knowledge representation 59
Knowledge source 25, 66, 87
Knowledge-based system 2, 54

Index 3 0 5

Language for AI 8
Layout generation 104
Learning system 228
Least-commitment strategy 25, 155, 224
Level of abstraction 64, 85, 104, 121, 154, 227, 231, 300
LISP 8 ,25 ,261
Logic programming 25
Loosely-packed rectangles 104

Manufacturability 19
Means-ends analysis 25, 62
Mechanical design 279
Meta-knowledge 25
Meta-rule 7
Mixed-initiative strategy 26
Model 6
Model-based inference 157

Object-oriented programming 8, 26, 260
Opportunistic reasoning 154,237
Opportunistic search 153
OPS5 8 , 6 5 , 2 3 6 , 2 4 4
OPS83 236
Orthogonal structure 105

Parameter selection 44
Parts representation 286
Pattern matching 26
Pattern-directed inference system 26
Physical level 48
Planning 26, 154,235,236
Policy model 198
Preliminary design 38,176
Problem 26
Problem restructuring 179
Problem solving architecture 151
Problem space 26
Problem structuring 208
Problem-solving architecture 117, 130
Problem-solving methods 60
Procedural knowledge 26
Product lifecycle 279
Production rule 26
Production system 27, 49, 96
PROLOG 8,27
Protocol 182
Prototype 191
PSRL 49
Puzzle making 110

Qualitative reasoning 27
Qualitative structuring 208
Quantitative model 198

Rapid prototyping 113
Re-write rule 9 5 , 9 6 , 9 9

Recognize-Act Cycle 27
Relational databases 259
Representation of knowledge 27
Rule 6, 7, 26, 27, 42, 60, 83, 94, 95, 108, 131, 135, 136, 137, 151, 283
Rule-based system 94, 96, 225, 226, 228, 236, 264

Satisficing 27
Scenario 180, 192
Schema 27 ,84
Script 233
Search 27, 126
Selection 39
Semantic network 27
Shape grammar 96
Shell 9 , 2 8 , 5 5
Simultaneous engineering 280
Smalltalk 8
Software organizations 241
Specification level 46
SRL 49 ,65
Stick representation 286
Strategy 7
Structural design 37
Synthesis 18, 20, 28, 35, 116, 222, 252, 284, 291

Team of experts 9
Template 118,187,193
Tool integration 18, 21, 115, 219, 229
Tools for expert systems 9
Truth maintenance 28

Uncertainty 28
Unit 28

VLSI design automation 221
VLSI design process 222

Weighting factor 45
Working memory 79, 80, 82, 96

	Untitled
	Untitled
	Untitled
	Untitled
	Untitled

