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Preface

This text is a product of several years activities from myself. First and foremost, the task
of educating students in my research group from a wide variety of backgrounds over
the past 10 years has been a significant formative experience, and this has allowed
me to develop a large series of problems which we set every 3 weeks and present
answers in seminars. From my experience, this is the best way to learn chemometrics!
In addition, I have had the privilege to organise international quality courses mainly
for industrialists with the participation as tutors of many representatives of the best
organisations and institutes around the world, and I have learnt from them. Different
approaches are normally taken when teaching industrialists who may be encountering
chemometrics for the first time in mid-career and have a limited period of a few days
to attend a condensed course, and university students who have several months or
even years to practice and improve. However, it is hoped that this book represents a
symbiosis of both needs.

In addition, it has been a great inspiration for me to write a regular fortnightly
column for Chemweb (available to all registered users on www.chemweb.com) and
some of the material in this book is based on articles first available in this format.
Chemweb brings a large reader base to chemometrics, and feedback via e-mails or
even travels around the world have helped me formulate my ideas. There is a very
wide interest in this subject but it is somewhat fragmented. For example, there is a
strong group of near-infrared spectroscopists, primarily in the USA, that has led to the
application of advanced ideas in process monitoring, who see chemometrics as a quite
technical industrially oriented subject. There are other groups of mainstream chemists
who see chemometrics as applicable to almost all branches of research, ranging from
kinetics to titrations to synthesis optimisation. Satisfying all these diverse people is
not an easy task.

This book relies heavily on numerical examples: many in the body of the text come
from my favourite research interests, which are primarily in analytical chromatography
and spectroscopy; to have expanded the text more would have produced a huge book
of twice the size, so I ask the indulgence of readers whose area of application may
differ. Certain chapters, such as that on calibration, could be approached from widely
different viewpoints, but the methodological principles are the most important and if
you understand how the ideas can be applied in one area you will be able to translate
to your own favourite application. In the problems at the end of each chapter I cover a
wider range of applications to illustrate the broad basis of these methods. The emphasis
of this book is on understanding ideas, which can then be applied to a wide variety of
problems in chemistry, chemical engineering and allied disciplines.

It was difficult to select what material to include in this book without making it too
long. Every expert to whom I have shown this book has made suggestions for new
material. Some I have taken into account and I am most grateful for every proposal,
others I have mentioned briefly or not at all, mainly for reasons of length and also to
ensure that this text sees the light of day rather than constantly expands without end.
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There are many outstanding specialist books for the enthusiast. It is my experience,
though, that if you understand the main principles (which are quite few in number),
and constantly apply them to a variety of problems, you will soon pick up the more
advanced techniques, so it is the building blocks that are most important.

In a book of this nature it is very difficult to decide on what detail is required for the
various algorithms: some readers will have no real interest in the algorithms, whereas
others will feel the text is incomplete without comprehensive descriptions. The main
algorithms for common chemometric methods are presented in Appendix A.2. Step-
by-step descriptions of methods, rather than algorithms, are presented in the text. A
few approaches that will interest some readers, such as cross-validation in PLS, are
described in the problems at the end of appropriate chapters which supplement the text.
It is expected that readers will approach this book with different levels of knowledge
and expectations, so it is possible to gain a great deal without having an in-depth
appreciation of computational algorithms, but for interested readers the information is
nevertheless available. People rarely read texts in a linear fashion, they often dip in
and out of parts of it according to their background and aspirations, and chemometrics
is a subject which people approach with very different types of previous knowledge
and skills, so it is possible to gain from this book without covering every topic in full.
Many readers will simply use Add-ins or Matlab commands and be able to produce
all the results in this text.

Chemometrics uses a very large variety of software. In this book we recommend
two main environments, Excel and Matlab; the examples have been tried using both
environments, and you should be able to get the same answers in both cases. Users
of this book will vary from people who simply want to plug the data into existing
packages to those that are curious and want to reproduce the methods in their own
favourite language such as Matlab, VBA or even C. In some cases instructors may use
the information available with this book to tailor examples for problem classes. Extra
software supplements are available via the publisher’s www. SpectroscopyNOW.com
Website, together with all the datasets and solutions associated with this book.

The problems at the end of each chapter form an important part of the text, the
examples being a mixture of simulations (which have an important role in chemo-
metrics) and real case studies from a wide variety of sources. For each problem the
relevant sections of the text that provide further information are referenced. However,
a few problems build on the existing material and take the reader further: a good
chemometrician should be able to use the basic building blocks to understand and use
new methods. The problems are of various types, so not every reader will want to
solve all the problems. Also, instructors can use the datasets to construct workshops
or course material that go further than the book.

I am very grateful for the tremendous support I have had from many people when
asking for information and help with datasets, and permission where required. Chemweb
is thanked for agreement to present material modified from articles originally published
in their e-zine, The Alchemist, and the Royal Society of Chemistry for permission
to base the text of Chapter 5 on material originally published in The Analyst [125,
2125-2154 (2000)]. A full list of acknowledgements for the datasets used in this text
is presented after this preface.

Tom Thurston and Les Erskine are thanked for a superb job on the Excel add-in, and
Hailin Shen for outstanding help with Matlab. Numerous people have tested out the
answers to the problems. Special mention should be given to Christian Airiau, Kostas
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xi

Zissis, Tom Thurston, Conrad Bessant and Cevdet Demir for access to a comprehensive
set of answers on disc for a large number of exercises so I can check mine. In addition,
several people have read chapters and made detailed comments, particularly checking
numerical examples. In particular, I thank Hailin Shen for suggestions about improving
Chapter 6 and Mohammed Wasim for careful checking of errors. In some ways the
best critics are the students and postdocs working with me, because they are the people
that have to read and understand a book of this nature, and it gives me great confidence
that my co-workers in Bristol have found this approach useful and have been able to
learn from the examples.

Finally I thank the publishers for taking a germ of an idea and making valuable
suggestions as to how this could be expanded and improved to produce what I hope
is a successful textbook, and having faith and patience over a protracted period.

Bristol, February 2002 Richard Brereton
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Supplementary information is available on the publisher’s spectroscopyNOW website.

To access this information, go to www.spectroscopynow.com and select the ‘Chemo-

metrics’ channel. A website for the book is available — you should be able to access
this either via the “Features” on the opening page or the left-hand side “Education”
menu. If in doubt, use the search facility to find the book, or send an e-mail to
chemometrics @wiley.co.uk.

—

The website contains the following.

. Extensive worked solutions to all problems in the book.
. All the datasets both in the problems and the main text, organised as tables in Word,

available as a single downloadable zip file. These are freely available to all readers
of the book, but you are asked to acknowledge their source in any publication or
report, for example via citations.

. VBA code for PCA and labelling points as described in Section A.4.6.1. These are

freely available.

. Excel macros for MLR, PCA, PCR and PLS as described in Section A.4.6.2, written

by Tom Thurston, based on original material by Les Erskine. These are freely
available for private and academic educational uses, but if used for profit making
activities such as consultancy or industrial research, or profit making courses, you
must contact bris-chemom @bris.ac.uk for terms of agreement.

. Matlab procedures corresponding to the main methods in the book, cross-referenced

to specific sections, written by Hailin Shen. These are freely available for pri-
vate and academic educational uses, but if used for profit making activities such
as consultancy or industrial research, or profit making courses, you must contact
bris-chemom @bris.ac.uk for terms of agreement.

A password is required for the Excel macros and Matlab procedures, as outlined in
the website; this is available to all readers of the book. This corresponds to a specific
word on a given line of a given page of the book. The password may change but
there will always be current details available on-line. If there are problems, contact
chemometrics @wiley.co.uk.
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1 Introduction

1.1 Points of View

There are numerous groups of people interested in chemometrics. One of the problems
over the past two decades is that each group has felt it is dominant or unique in the
world. This is because scientists tend to be rather insular. An analytical chemist will
publish in analytical chemistry journals and work in an analytical chemistry department,
a statistician or chemical engineer or organic chemist will tend to gravitate towards
their own colleagues. There are a few brave souls who try to cross disciplines but on
the whole this is difficult. However, many of the latest advances in theoretical statistics
are often too advanced for routine chemometrics applications, whereas many of the
problems encountered by the practising analytical chemist such as calibrating pipettes
and checking balances are often too mundane to the statistician. Cross-citation analy-
sis of different groups of journals, where one looks at which journal cites which other
journal, provides fascinating insights into the gap between the theoretical statistics and
chemometrics literature and the applied analytical chemistry journals. The potential for
chemometrics is huge, ranging from physical chemistry such as kinetics and equilib-
rium studies, to organic chemistry such as reaction optimisation and QSAR, theoretical
chemistry, most areas of chromatography and spectroscopy on to applications as varied
as environmental monitoring, scientific archaeology, biology, forensic science, indus-
trial process monitoring, geochemistry, etc., but on the whole there is no focus, the ideas
being dissipated in each discipline separately. The specialist chemometrics community
tends to be mainly interested in industrial process control and monitoring plus certain
aspects of analytical chemistry, mainly near-infrared spectroscopy, probably because
these are areas where there is significant funding for pure chemometrics research. A
small number of tutorial papers, reviews and books are known by the wider community,
but on the whole there is quite a gap, especially between computer based statisticians
and practising analytical chemists.

This division between disciplines spills over into industrial research. There are often
quite separate data analysis and experimental sections in many organisations. A mass
spectrometrist interested in principal components analysis is unlikely to be given time
by his or her manager to spend a couple of days a week mastering the various ins
and outs of modern chemometric techniques. If the problem is simple, that is fine; if
more sophisticated, the statistician or specialist data analyst will muscle in, and try
to take over the project. But the statistician may have no feeling for the experimental
difficulties of mass spectrometry, and may not understand when it is most effective to
continue with the interpretation and processing of data, or when to suggest changing
some mass spectrometric parameters.

All these people have some interest in data analysis or chemometrics, but approach
the subject in radically different ways. Writing a text that is supposed to appeal to a
broad church of scientists must take this into account. The average statistician likes
to build on concepts such as significance tests, matrix least squares and so on. A
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statistician is unlikely to be satisfied if he or she cannot understand a method in
algebraic terms. Most texts, even most introductory texts, aimed at statisticians contain
a fair amount of algebra. Chemical engineers, whilst not always so keen to learn
about distributions and significance tests, are often very keen on matrix algebra, and a
chemometrics course taught by a chemical engineer will often start with matrix least
squares and linear algebra.

Practical chemists, on the other hand, often think quite differently. Many laboratory
based chemists are doing what they are doing precisely because at an early phase in
their career they were put off by mathematicians. This is especially so with organic
chemists. They do not like ideas expressed in terms of formal maths, and equations are
‘turn offs’. So a lecture course aimed at organic chemists would contain a minimum of
maths. Yet some of these people recognise later in their career that they do need data
analytical tools, even if these are to design simple experiments or for linear regression,
or in QSAR. They will not, however, be attracted to chemometrics if they are told
they are required first to go on a course on advanced statistical significance testing
and distributions, just to be able to perform a simple optimisation in the laboratory.
I was told once by a very advanced mathematical student that it was necessary to
understand Gallois field theory in order to perform multilevel calibration designs, and
that everyone in chemometrics should know what Krilov space is. Coming from a
discipline close to computing and physics, this may be true. In fact, the theoretical
basis of some of the methods can be best understood by these means. However, tell
this to an experimentalist in the laboratory that this understanding is required prior to
performing these experiments and he or she, even if convinced that chemometrics has
an important role, will shy away. In this book we do not try to introduce the concepts
of Gallois field theory or Krilov space, although I would suspect not many readers
would be disappointed by such omissions.

Analytical chemists are major users of chemometrics, but their approach to the sub-
ject often causes big dilemmas. Many analytical chemists are attracted to the discipline
because they are good at instrumentation and practical laboratory work. The major-
ity spend their days recording spectra or chromatograms. They know what to do if a
chromatographic column needs changing, or if a mass spectrum is not fragmenting as
expected. Few have opted to work in this area specifically because of their mathemati-
cal background, yet many are confronted with huge quantities of data. The majority of
analytical chemists accept the need for statistics and a typical education would involve
some small level of statistics, such as comparison of means and of errors and a lit-
tle on significance tests, but the majority of analytical texts approach these subjects
with a minimum of maths. A number then try to move on to more advanced data
analysis methods, mainly chemometrics, but often do not recognise that a different
knowledge base and skills are required. The majority of practising analytical chemists
are not mathematicians, and find equations difficult; however, it is important to have
some understanding of the background to the methods they use. Quite correctly, it is
not necessary to understand the statistical theory of principal components analysis or
singular value decomposition or even to write a program to perform this (although it
is in fact very easy!). However, it is necessary to have a feel for methods for data
scaling, variable selection and interpretation of the principal components, and if one
has such knowledge it probably is not too difficult to expand one’s understanding to
the algorithms themselves. In fact, the algorithms are a relatively small part of the data
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How chemometrics relates to other disciplines

analysis, and even in a commercial chemometric software package PCA or PLS (two
popular approaches) may involve between 1 and 5 % of the code.

The relationship of chemometrics to different disciplines is indicated in Figure 1.1.
On the left are the enabling sciences, mainly quite mathematical and not laboratory
based. Statistics, of course, plays a major role in chemometrics, and many applied
statisticians will be readers of this book. Statistical approaches are based on mathe-
matical theory, so statistics falls between mathematics and chemometrics. Computing
is important as much of chemometrics relies on software. However, chemometrics is
not really computer science, and this book will not describe approaches such as neural
networks or genetic programming, despite their potential importance in helping solve
many complex problems in chemistry. Engineers, especially chemical and process engi-
neers, have an important need for chemometric methods in many areas of their work,
and have a quite different perspective from the mainstream chemist.

On the right are the main disciplines of chemistry that benefit from chemometrics.
Analytical chemistry is probably the most significant area, although some analytical
chemists make the mistake of claiming chemometrics uniquely as their own. Chemo-
metrics has a major role to play and had many of its origins within analytical chemistry,
but is not exclusively within this domain. Environmental chemists, biologists, food
chemists as well as geochemists, chemical archaeologists, forensic scientists and so
on depend on good analytical chemistry measurements and many routinely use mul-
tivariate approaches especially for pattern recognition, and so need chemometrics to
help interpret their data. These scientists tend to identify with analytical chemists. The
organic chemist has a somewhat different need for chemometrics, primarily in the
areas of experimental design (e.g. optimising reaction conditions) and QSAR (quanti-
tative structure—analysis relationships) for drug design. Finally, physical chemists such
as spectroscopists, kineticists and materials scientists often come across methods for
signal deconvolution and multivariate data analysis.



CHEMOMETRICS

Mathematical sophistication Theoretical

‘ statisticians.

First
applications
to chemical

systems.
I

Applying and modifying
methods, developing software.

Environmental, clinical, food, industrial,
biological, physical, organic chemistry etc.

v

Applications

Figure 1.2
People interested in chemometrics

Different types of people will be interested in chemometrics, as illustrated in Figure 1.2.
The largest numbers are application scientists. Many of these will not have a very
strong mathematical background, and their main interest is to define the need for data
analysis, to design experiments and to interpret results. This group may consist of
some tens of thousands of people worldwide, and is quite large. A smaller number of
people will apply methods in new ways, some of them developing software. These may
well be consultants that interface with the users: many specialist academic research
groups are at this level. They are not doing anything astoundingly novel as far as
theoretical statisticians are concerned, but they will take problems that are too tough
and complex for an applications scientist and produce new solutions, often tinkering
with the existing methods. Industrial data analysis sections and dedicated software
houses usually fit into this category too. There will be a few thousand people in such
categories worldwide, often organised into diverse disciplines. A rather smaller number
of people will be involved in implementing the first applications of computational
and statistical methods to chemometrics. There is a huge theoretical statistical and
computational literature of which only a small portion will eventually be useful to
chemists. In-vogue approaches such as multimode data analysis, Bayesian statistics,
and wavelet transforms are as yet not in common currency in mainstream chemistry,
but fascinate the more theoretical chemometrician and over the years some will make
their way into the chemists’ toolbox. Perhaps in this group there are a few hundred or
so people around the world, often organised into very tightly knit communities. At the
top of the heap are a very small number of theoreticians. Not much of chemical data
analysis is truly original from the point of view of the mathematician — many of the
‘new’ methods might have been reported in the mathematical literature 10, 20 or even
50 years ago; maybe the number of mathematically truly original chemometricians
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is 10 or less. However, mathematical novelty is not the only sign of innovation. In
fact, much of science involves connecting ideas. A good chemometrician may have
the mathematical ability to understand the ideas of the theoretician and then translate
these into potential applications. He or she needs to be a good listener and to be able
to link the various levels of the triangle. Chemical data analysis differs from more
unitary disciplines such as organic chemistry, where most scientists have a similar
training base, and above a certain professional level the difference is mainly in the
knowledge base.

Readers of this book are likely to be of two kinds, as illustrated in Figure 1.3. The
first are those who wish to ascend the triangle, either from outside or from a low level.
Many of these might be analytical chemists, for example an NIR spectroscopist who
has seen the need to process his or her data and may wish some further insight into the
methods being used. Or an organic chemist might wish to have the skills to optimise
a synthesis, or a food chemist may wish to be able to interpret the tools for relating
the results of a taste panel to chemical constituents. Possibly you have read a paper,
attended a conference or a course or seen some software demonstrated. Or perhaps
in the next-door laboratory, someone is already doing some chemometrics, perhaps
you have heard about experimental design or principal components analysis and need
some insight into the methods. Maybe you have some results but have little idea how to
interpret them and perhaps by changing parameters using a commercial package you are
deluged with graphs and not really certain whether they are meaningful. Some readers
might be MSc or PhD students wishing to delve a little deeper into chemometrics.

The second group already has some mathematical background but wishes to enter
the triangle from the side. Some readers of this book will be applied statisticians, often

4— Chemical and

Process engineers

Analytical, organic, environmental, biological, physical, industrial, archaeological etc. chemists

Groups of people with potential interest in this text
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working in industry. Matrix algebra, significance tests and distributions are well known,
but what is needed is to brush up on techniques as applied specifically to chemical
problems. In some organisations there are specific data processing sections and this
book is aimed as a particularly useful reference for professionals working in such an
environment. Because there are not a large number of intensive courses in chemical
data analysis, especially leading to degrees, someone with a general background in
statistical data analysis who has moved job or is taking on extra responsibilities will
find this book a valuable reference. Chemical engineers have a special interest in
chemometrics and many are encountering the ideas when used to monitor processes.

1.2 Software and Calculations

The key to chemometrics is to understand how to perform meaningful calculations
on data. In most cases these calculations are too complex to do by hand or using a
calculator, so it is necessary to use some software.

The approach taken in this text, which differs from many books on chemometrics,
is to understand the methods using numerical examples. Some excellent texts and
reviews are more descriptive, listing the methods available together with literature
references and possibly some examples. Others have a big emphasis on equations and
output from packages. This book, however, is based primarily on how I personally
learn and understand new methods, and how I have found it most effective to help
students working with me. Data analysis is not really a knowledge based subject,
but more a skill based subject. A good organic chemist may have an encyclopaedic
knowledge of reactions in their own area. The best supervisor will be able to list to
his or her students thousands of reactions, or papers or conditions that will aid their
students, and with experience this knowledge base grows. In chemometrics, although
there are quite a number of named methods, the key is not to learn hundreds of
equations by heart, but to understand a few basic principles. These ideas, such as
multiple linear regression, occur again and again but in different contexts. To become
skilled in chemometric data analysis, what is required is practice in manipulating
numbers, not an enormous knowledge base. Although equations are necessary for the
formal description of methods, and cannot easily be avoided, it is easiest to understand
the methods in this book by looking at numbers. So the methods described in this text
are illustrated using numerical examples which are available for the reader to reproduce.
The datasets employed in this book are available on the publisher’s Website. In addition
to the main text there are extensive problems at the end of each main chapter. All
numerical examples are fairly small, designed so that you can check all the numbers
yourselves. Some are reduced versions of larger datasets, such as spectra recorded at
5 nm rather than 1 nm intervals. Many real examples, especially in chromatography
and spectroscopy, simply differ in size to those in this book. Also, the examples are
chosen so that they are feasible to analyse fairly simply.

One of the difficulties is to decide what software to employ in order to analyse
the data. This book is not restrictive and you can use any approach you like. Some
readers like to program their own methods, for example in C or Visual Basic. Others
may like to use a statistical packages such as SAS or SPSS. Some groups use ready
packaged chemometrics software such as Pirouette, Simca, Unscrambler and several
others on the market. One problem with using packages is that they are often very
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focused in their facilities. What they do they do excellently, but if they cannot do
what you want you may be stuck, even for relatively simple calculations. If you have
an excellent multivariate package but want to use a Kalman filter, where do you
turn? Perhaps you have the budget to buy another package, but if you just want to
explore the method, the simplest implementation takes only an hour or less for an
experienced Matlab programmer to implement. In addition, there are no universally
agreed definitions, so a ‘factor’ or ‘eigenvector’ might denote something quite different
according to the software used. Some software has limitations, making it unsuitable
for many applications of chemometrics, a very simple example being the automatic
use of column centring in PCA in most general statistical packages, whereas many
chemometric methods involve using uncentred PCA.

Nevertheless, many of the results from the examples in this book can successfully
be obtained using commercial packages, but be aware of the limitations, and also
understand the output of any software you use. It is important to recognise that the
definitions used in this book may differ from those employed by any specific package.
Because there are a huge number of often incompatible definitions available, even
for fairly common parameters, in order not to confuse the reader we have had to
adopt one single definition for each parameter, so it is important to check carefully
with your favourite package or book or paper if the results appear to differ from those
presented in this book. It is not the aim of this text to replace an international committee
that defines chemometrics terms. Indeed, it is unlikely that such a committee would
be formed because of the very diverse backgrounds of those interested in chemical
data analysis.

However, in this text we recommend that readers use one of two main environments.

The first is Excel. Almost everyone has some familiarity with Excel, and in
Appendix A.4 specific features that might be useful for chemometrics are described.
Most calculations can be performed quite simply using normal spreadsheet functions.
The exception is principal components analysis (PCA), for which a small program must
be written. For instructors and users of VBA (a programming language associated with
Excel), a small macro that can be edited is available, downloadable from the publisher’s
Website. However, some calculations such as cross-validation and partial least squares
(PLS), whilst possible to set up using Excel, can be tedious. It is strongly recommended
that readers do reproduce these methods step by step when first encountered, but after
a few times, one does not learn much from setting up the spreadsheet each time. Hence
we also provide a package that contains Excel add-ins for VBA to perform PCA, PLS,
MLR (multiple linear regression) and PCR (principal components regression), that can
be installed on PCs which have at least Office 97, Windows 98 and 64 Mbyte memory.
The software also contains facilities for validation. Readers of this book should choose
what approach they wish to take.

A second environment, that many chemical engineers and statisticians enjoy, is Mat-
lab, described in Appendix A.5. Historically the first significant libraries of programs
in chemometrics first became available in the late 1980s. Quantum chemistry, originat-
ing in the 1960s, is still very much Fortran based because this was the major scientific
programming environment of the time, and over the years large libraries have been
developed and maintained, so a modern quantum chemist will probably learn For-
tran. The vintage of chemometrics is such that a more recent environment to scientific
programming has been adopted by the majority, and many chemometricians swap soft-
ware using Matlab. The advantage is that Matlab is very matrix oriented and it is most
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convenient to think in terms of matrices, especially since most data are multivariate.
Also, there are special facilities for performing singular value decomposition (or PCA)
and the pseudoinverse used in regression, meaning that it is not necessary to program
these basic functions. The user interface of Matlab is not quite as user-friendly as Excel
and is more suited to the programmer or statistician rather than the laboratory based
chemist. However, there have been a number of recent enhancements, including links
to Excel, that allow easy interchange of data, which enables simple programs to be
written that transfer data to and from Excel. Also, there is no doubt at all that matrix
manipulation, especially for complex algorithms, is quite hard in VBA and Excel.
Matlab is an excellent environment for learning the nuts and bolts of chemometrics.
A slight conceptual problem with Matlab is that it is possible to avoid looking at the
raw numbers, whereas most users of Excel will be forced to look at the raw numerical
data in detail, and I have come across experienced Matlab users who are otherwise
very good at chemometrics but who sometimes miss quite basic information because
they are not constantly examining the numbers — so if you are a dedicated Matlab user,
look at the numerical information from time to time!

An ideal situation would probably involve using both Excel and Matlab simultane-
ously. Excel provides a good interface and allows flexible examination of the data,
whereas Matlab is best for developing matrix based algorithms. The problems in this
book have been tested both in Matlab and Excel and identical answers obtained. Where
there are quirks of either package, the reader is guided. If you are approaching the tri-
angle of Figure 1.3 from the sides you will probably prefer Matlab, whereas if you
approach it from the bottom, it is more likely that Excel will be your choice.

Two final words of caution are needed. The first is that some answers in this book
have been rounded to a few significant figures. Where intermediate results of a calcu-
lation have been presented, putting these intermediate results back may not necessarily
result in exactly the same numerical results as retaining them to higher accuracy and
continuing the calculations. A second issue that often perplexes new users of multivari-
ate methods is that it is impossible to control the sign of a principal component (see
Chapter 4 for a description of PCA). This is because PCs involve calculating square
roots which may give negative as well as positive answers. Therefore, using differ-
ent packages, or even the same package but with different starting points, can result
in reflected graphs, with scores and loadings that are opposite in sign. It is therefore
unlikely to be a mistake if you obtain PCs that are opposite in sign to those in this book.

1.3 Further Reading

1.3.1 General

There have been a large number of texts and review articles covering differing aspects
of chemometrics, often aimed at a variety of audiences. This chapter summarises some
of the most widespread. In most cases these texts will allow the reader to delve further
into the methods introduced within this book. In each category only a few main books
will be mentioned, but most have extensive bibliographies allowing the reader to access
information especially from the primary literature.

The largest text in chemometrics is published by Massart and co-workers, part of
two volumes [1,2]. These volumes provide an in-depth summary of many modern
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chemometric methods, involving a wide range of techniques, and many references to
the literature. The first volume, though, is strongly oriented towards analytical chemists,
but contains an excellent grounding in basic statistics for measurement science. The
books are especially useful as springboards for the primary literature. This text is a
complete rewrite of the original book published in 1988 [3], which is still cited as a
classic in the analytical chemistry literature.

Otto’s book on chemometrics [4] is a welcome recent text, that covers quite a range
of topics but at a fairly introductory level. The book looks at computing in general in
analytical chemistry including databases, and instrumental data acquisition. It does not
deal with the multivariate or experimental design aspects in a great deal of detail but is a
very clearly written introduction for the analytical chemist, by an outstanding educator.

Beebe and co-workers at Dow Chemical have recently produced a book [5] which
is useful for many practitioners, and contains very clear descriptions especially of
multivariate calibration in spectroscopy. However there is a strong ‘American School’
originating in part from the pioneering work of Kowalski in NIR spectroscopy and
process control, and whilst covering the techniques required in this area in an out-
standing way, and is well recommended as a next step for readers of this text working
in this application area, it lacks a little in generality, probably because of the very
close association between NIR and chemometrics in the minds of some. Kramer has
produced a somewhat more elementary book [6]. He is well known for his consultancy
company and highly regarded courses, and his approach is less mathematical. This will
suit some people very well, but may not be presented in a way that suits statisticians
and chemical engineers.

One of the first ever texts in the area of chemometrics was co-authored by Kowal-
ski [7]. The book is somewhat mathematical and condensed, but provided a good
manual for the mathematically minded chemometrician of the mid-1980s, and is a use-
ful reference. Kowalski also edited a number of symposium volumes in the early days
of the subject. An important meeting, the NATO Advanced Study School in Cosenza,
Italy, in 1983, brought together many of the best international workers in this area and
the edited volume from this is a good snapshot of the state-of-the-art of the time [8],
although probably the interest is more for the historians of chemometrics.

The present author published a book on chemometrics about a decade ago [9],
which has an emphasis on signal resolution and minimises matrix algebra, and is
an introductory tutorial book especially for the laboratory based chemist. The jour-
nal Chemometrics and Intelligent Laboratory Systems published regular tutorial review
articles over its first decade or more of existence. Some of the earlier articles are
good introductions to general subjects such as principal components analysis, Fourier
transforms and Matlab. They are collected together as two volumes [10,11]. They also
contain some valuable articles on expert systems.

Meloun and co-workers published a two volume text in the early 1990s [12,13].
These are very thorough texts aimed primarily at the analytical chemist. The first
volume contains detailed descriptions of a large number of graphical methods for
handling analytical data, and a good discussion of error analysis, and the second volume
is a very detailed discussion of linear and polynomial regression.

Martens and Martens produced a recent text which gives quite a detailed discussion
on how multivariate methods can be used in quality control [14], but covers sev-
eral aspects of modern chemometrics, and so should be classed as a general text on
chemometrics.
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1.3.2 Specific Areas

There are a large number of texts and review articles dealing with specific aspects of
chemometrics, interesting as a next step up from this book, and for a comprehensive
chemometrics library.

1.3.2.1 Experimental Design

In the area of experimental design there are innumerable texts, many written by statisti-
cians. Specifically aimed at chemists, Deming and Morgan produced a highly regarded
book [15] which is well recommended as a next step after this text. Bayne and Rubin
have written a clear and thorough text [16]. An introductory book discussing mainly
factorial designs was written by Morgan as part of the Analytical Chemistry by Open
Learning Series [17]. For mixture designs, involving compositional data, the clas-
sical statistical text by Cornell is much cited and recommended [18], but is quite
mathematical.

1.3.2.2 Pattern Recognition

There are several books on pattern recognition and multivariate analysis. An introduc-
tion to several of the main techniques is provided in an edited book [19]. For more
statistical in-depth descriptions of principal components analysis, books by Joliffe [20]
and Mardia and co-authors [21] should be read. An early but still valuable book by
Massart and Kaufmann covers more than just its title theme ‘cluster analysis’ [22] and
provides clear introductory material.

1.3.2.3 Multivariate Curve Resolution

Multivariate curve resolution is the main topic of Malinowski’s book [23]. The author
is a physical chemist and so the book is oriented towards that particular audience, and
especially relates to the spectroscopy of mixtures. It is well known because the first
edition (in 1980) was one of the first major texts in chemometrics to contain formal
descriptions of many common algorithms such as principal components analysis.

1.3.2.4 Multivariate Calibration

Multivariate calibration is a very popular area, and the much reprinted classic by
Martens and Nas [24] is possibly the most cited book in chemometrics. Much of the
text is based around NIR spectroscopy which was one of the major success stories in
applied chemometrics in the 1980s and 1990s, but the clear mathematical descriptions
of algorithms are particularly useful for a wider audience.

1.3.2.5 Statistical Methods

There are numerous books on general statistical methods in chemistry, mainly oriented
towards analytical and physical chemists. Miller and Miller wrote a good introduc-
tion [25] that takes the reader through many of the basic significance tests, distributions,
etc. There is a small amount on chemometrics in the final chapter. The Royal Society



INTRODUCTION

11

of Chemistry publish a nice introductory tutorial text by Gardiner [26]. Caulcutt and
Boddy’s book [27] is also a much reprinted and useful reference. There are several
other competing texts, most of which are very thorough, for example, in describing
applications of the ¢-test, F-test and analysis of variance (ANOVA) but which do
not progress much into modern chemometrics. If you are a physical chemist, Gans’
viewpoint on deconvolution and curve fitting may suit you more [28], covering many
regression methods, but remember that physical chemists like equations more than
analytical chemists and so approach the topic in a different manner.

1.3.2.6 Digital Signal Processing and Time Series

There are numerous books on digital signal processing (DSP) and Fourier transforms.
Unfortunately, many of the chemically based books are fairly technical in nature and
oriented towards specific techniques such as NMR; however, books written primarily
by and for engineers and statisticians are often quite understandable. A recommended
reference to DSP contains many of the main principles [29], but there are several sim-
ilar books available. For nonlinear deconvolution, Jansson’s book is well known [30].
Methods for time series analysis are described in more depth in an outstanding and
much reprinted book written by Chatfield [31].

1.3.2.7 Articles

We will not make very great reference to the primary literature in this text. Many of the
authors of well regarded texts first published material in the form of research, review
and tutorial articles, which then evolved into books. However, it is worth mentioning
a very small number of exceptionally well regarded tutorial papers. A tutorial by Wold
and co-workers on principal components analysis [32] in the 1980s is a citation classic
in the annals of chemometrics. Geladi and Kowalski’s tutorial [33] on partial least
squares is also highly cited and a good introduction. In the area of moving average
filters, Savitsky and Golay’s paper [34] is an important original source.

1.3.3 Internet Resources

Another important source of information is via the Internet. Because the Internet
changes very rapidly, it is not practicable in this text to produce a very comprehensive
list of Websites; however, some of the best resources provide regularly updated links
to other sites, and are likely to be maintained over many years.

A good proportion of the material in this book is based on an expanded version
of articles originally presented in ChemWeb’s e-zine the Alchemist. Registration is
free [35] and past articles are in the chemometrics archive. There are several topics
that are not covered in this book. Interested readers are also referred to an article which
provides a more comprehensive list of Web resources [36].

Wiley’s Chemometrics World is a comprehensive source of information freely avail-
able to registered users via their SpectroscopyNOW Website [37], and the datasets and
software from this book are available via this Website.

There are one or two excellent on-line textbooks, mainly oriented towards statisti-
cians. Statsoft have a very comprehensive textbook [38] that would allow readers to
delve into certain topics introduced in this text in more detail. Hyperstat also produce an
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on-line statistics textbook, mainly dealing with traditional statistical methods, but their
Website also provides references to other electronic tutorial material [39], including
Stockburger’s book on multivariate statistics [40].
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2 Experimental Design

2.1 Introduction

Although all chemists acknowledge the need to be able to design laboratory based
experiments, formal statistical (or chemometric) rules are rarely taught as part of main-
stream chemistry. In contrast, a biologist or psychologist will often spend weeks care-
fully constructing a formal statistical design prior to investing what could be months or
years in time-consuming and often unrepeatable experiments and surveys. The simplest
of experiments in chemistry are relatively quick and can be repeated, if necessary under
slightly different conditions, so not all chemists see the need for formalised experimen-
tal design early in their career. For example, there is little point spending a week con-
structing a set of experiments that take a few hours to perform. This lack of expertise in
formal design permeates all levels from management to professors and students. How-
ever, most real world experiments are expensive; for example, optimising conditions
for a synthesis, testing compounds in a QSAR study, or improving the chromatographic
separation of isomers can take days or months of people’s time, and it is essential under
such circumstances to have a good appreciation of the fundamentals of design.

There are several key reasons why the chemist can be more productive if he or she
understands the basis of design, including the following four main areas.

1. Screening. These types of experiments involve seeing which factors are important
for the success of a process. An example may be the study of a chemical reac-
tion, dependent on proportion of solvent, catalyst concentration, temperature, pH,
stirring rate, etc. Typically 10 or more factors might be relevant. Which can be
eliminated, and which should be studied in detail? Approaches such as factorial or
Plackett—Burman designs (Sections 2.3.1-2.3.3) are useful in this context.

2. Optimisation. This is one of the commonest applications in chemistry. How to
improve a synthetic yield or a chromatographic separation? Systematic methods
can result in a better optimum, found more rapidly. Simplex is a classical method
for optimisation (Section 2.6), although several designs such as mixture designs
(Section 2.5) and central composite designs (Section 2.4) can also be employed to
find optima.

3. Saving time. In industry, this is possibly the major motivation for experimental
design. There are obvious examples in optimisation and screening, but even more
radical cases, such as in the area of quantitative structure—property relationships.
From structural data, of existing molecules, it is possible to predict a small num-
ber of compounds for further testing, representative of a larger set of molecules.
This allows enormous savings in time. Fractional factorial, Taguchi and Plack-
ett—Burman designs (Sections 2.3.2 and 2.3.3) are good examples, although almost
all experimental designs have this aspect in mind.

4. Quantitative modelling. Almost all experiments, ranging from simple linear cali-
bration in analytical chemistry to complex physical processes, where a series of
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Yield

Concentration

Figure 2.1
Yield of a reaction as a function of pH and catalyst concentration

observations are required to obtain a mathematical model of the system, benefit
from good experimental design. Many such designs are based around the cen-
tral composite design (Section 2.4), although calibration designs (Section 2.3.4) are
also useful.

An example of where systematic experimental design is valuable is the optimisation
of the yield of a reaction as a function of reagent concentration. A true representation
is given in Figure 2.1. In reality this contour plot is unknown in advance, but the
experimenter wishes to determine the pH and concentration (in mM) that provides the
best reaction conditions. To within 0.2 of a pH and concentration unit, this optimum
happens to be pH 4.4 and 1.0 mM. Many experimentalists will start by guessing one
of the factors, say concentration, then finding the best pH at that concentration.

Consider an experimenter who chooses to start the experiment at 2 mM and wants
to find the best pH. Figure 2.2 shows the yield at 2.0 mM. The best pH is undoubtedly
a low one, in fact pH 3.4. So the next stage is to perform the experiments at pH 3.4
and improve on the concentration, as shown in Figure 2.3. The best concentration is
1.4 mM. These answers, pH 3.4 and 1.4 mM, are far from the true values.

The reason for this problem is that the influences of pH and temperature are not
independent. In chemometric terms, they ‘interact’. In many cases, interactions are
commonsense. The best pH in one solvent may be different to that in another solvent.
Chemistry is complex, but how to find the true optimum, by a quick and efficient
manner, and be confident in the result? Experimental design provides the chemist with
a series of rules to guide the optimisation process which will be explored later.

A rather different example relates to choosing compounds for biological tests. Con-
sider the case where it is important to determine whether a group of compounds
is harmful, often involving biological experiments. Say there are 50 potential com-
pounds in the group. Running comprehensive and expensive tests on each compound
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Figure 2.3
Cross-section through surface of Figure 2.1 at pH 3.4

is prohibitive. However, it is likely that certain structural features will relate to toxicity.
The trick of experimental design is to choose a selection of the compounds and then
decide to perform tests only this subset.

Chemometrics can be employed to develop a mathematical relationship between
chemical property descriptors (e.g. bond lengths, polarity, steric properties, reactivities,
functionalities) and biological functions, via a computational model such as principal
components analysis. The question asked is whether it is really necessary to test all
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Figure 2.4
Choice of nine molecules based on two properties

50 compounds for this model? The answer is no. Choosing a set of 8 or 16 compounds
may provide adequate information to predict not only the influence of the remaining
compounds (and this can be tested), but any unknown in the group.

Figure 2.4 illustrates a simple example. An experimenter is interested in studying the
influence of hydrophobicity and dipoles on a set of candidate compounds, for example,
in chromatography. He or she finds out these values simply by reading the literature
and plots them in a simple graph. Each circle in the figure represents a compound.
How to narrow down the test compounds? One simple design involves selecting nine
candidates, those at the edges, corners and centre of the square, indicated by arrows in
the diagram. These candidates are then tested experimentally, and represent a typical
range of compounds. In reality there are vastly more chemical descriptors, but similar
approaches can be employed, using, instead of straight properties, statistical functions
of these to reduce the number of axes, often to about three, and then choose a good
and manageable selection of compounds.

The potential uses of rational experimental design throughout chemistry are large,
and some of the most popular designs will be described below. Only certain selec-
tive, and generic, classes of design are discussed in this chapter, but it is important to
recognise that the huge number of methods reported in the literature are based on a
small number of fundamental principles. Most important is to appreciate the motiva-
tions of experimental design rather than any particular named method. The material in
this chapter should permit the generation of a variety of common designs. If very spe-
cialist designs are employed there must be correspondingly specialist reasons for such
choice, so the techniques described in this chapter should be applicable to most common
situations. Applying a design without appreciating the motivation is dangerous.
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For introductory purposes multiple linear regression (MLR) is used to relate the
experimental response to the conditions, as is common to most texts in this area, but
it is important to realise that other regression methods such as partial least squares
(PLS) are applicable in many cases, as discussed in Chapter 5. Certain designs, such
as those of Section 2.3.4, have direct relevance to multivariate calibration. In some
cases multivariate methods such as PLS can be modified by inclusion of squared and
interaction terms as described below for MLR. It is important to remember, however,
that in many areas of chemistry a lot of information is available about a dataset, and
conceptually simple approaches based on MLR are often adequate.

2.2 Basic Principles

2.2.1 Degrees of Freedom

Fundamental to the understanding of experimental designs is the idea of degrees of
freedom. An important outcome of many experiments is the measurement of errors.
This can tell us how confidently a phenomenon can be predicted; for example, are
we really sure that we can estimate the activity of an unknown compound from its
molecular descriptors, or are we happy with the accuracy with which a concentration
can be determined using spectroscopy? In addition, what is the weak link in a series of
experiments? Is it the performance of a spectrometer or the quality of the volumetric
flasks? Each experiment involves making a series of observations, which allow us to
try to answer some of these questions, the number of degrees of freedom relating to
the amount of information available for each answer. Of course, the greater the number
of degrees of freedom, the more certain we can be of our answers, but the more the
effort and work are required. If we have only a limited amount of time available, it is
important to provide some information to allow us to answer all the desired questions.

Most experiments result in some sort of model, which is a mathematical way of
relating an experimental response to the value or state of a number of factors. An
example of a response is the yield of a synthetic reaction; the factors may be the
pH, temperature and catalyst concentration. An experimenter wishes to run a reaction
under a given set of conditions and predict the yield. How many experiments should
be performed in order to provide confident predictions of the yield at any combination
of the three factors? Five, ten, or twenty? Obviously, the more experiments, the better
are the predictions, but the greater the time, effort and expense. So there is a balance,
and experimental design helps to guide the chemist as to how many and what type of
experiments should be performed.

Consider a linear calibration experiment, for example measuring the peak height
in electronic absorption spectroscopy as a function of concentration, at five different
concentrations, illustrated in Figure 2.5. A chemist may wish to fit a straight line model
to the experiment of the form

y =bo+bix

where y is the response (in this case the peak height), x is the value of the factor
(in this case concentration) and by and b, are the coefficients of the model. There are
two coefficients in this equation, but five experiments have been performed. More than
enough experiments have been performed to give an equation for a straight line, and the
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Figure 2.5
Graph of spectroscopic peak height against concentration at five concentrations

remaining experiments help answer the question ‘how well is the linear relationship
obeyed?’ This could be important to the experimenter. For example, there may be
unknown interferents, or the instrument might be very irreproducible, or there may be
nonlinearities at high concentrations. Hence not only must the experiments be used to
determine the equation relating peak height to concentration but also to answer whether
the relationship is truly linear and reproducible.

The ability to determine how well the data fit a linear model depends on the number
of degrees of freedom which is given, in this case, by

D=N-P

where N is the number of experiments and P the number of coefficients in the model.
In this example

e N=5

e P =2 (the number of coefficients in the equation y = by + bx)
so that

e D=3

There are three degrees of freedom allowing us to determine the ability of predict the
model, often referred to as the lack-of-fit.

From this we can obtain a value which relates to how well the experiment obeys
a linear model, often referred to as an error, or by some statisticians as a variance.
However, this error is a simple number, which in the case discussed will probably be
expressed in absorbance units (AU). Physical interpretation is not so easy. Consider an
error that is reported as 100 mAU: this looks large, but then express it as AU and it
becomes 0.1. Is it now a large error? The absolute value of the error must be compared
with something, and here the importance of replication comes into play. It is useful to
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repeat the experiment a few times under identical conditions: this gives an idea of the
reproducibility of the experimental sometimes called the analytical or experimental
error. The larger the error, the harder it is to make good predictions. Figure 2.6 is of a
linear calibration experiment with large errors: these may be due to many reasons, for
example, instrumental performance, quality of volumetric flasks, accuracy of weighings
and so on. It is hard to see visually whether the results can be adequately described by
a linear equation or not. The reading that results in the experiment at the top right hand
corner of the graph might be a ‘rogue’ experiment, often called an outlier. Consider
a similar experiment, but with lower experimental error (Figure 2.7). Now it looks as
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Experiment with high instrumental errors
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Figure 2.7
Experiment with low instrumental errors
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if a linear model is unlikely to be suitable, but only because the experimental error is
small compared with the deviation from linearity. In Figures 2.6 and 2.7, an extra five
degrees of freedom (the five replicates) have been added to provide information on
experimental error. The degrees of freedom available to test for lack-of-fit to a linear
model are now given by

D=N-P—-R

where R equals the number of replicates, so that
D=10-2-5=3

Although this number remains the same as in Figure 2.5, five extra experiments have
been performed to give an idea of the experimental error.

In many designs it is important to balance the number of unique experiments against
the number of replicates. Each replicate provides a degree of freedom towards mea-
suring experimental error. Some investigators use a degree of freedom tree which
represents this information; a simplified version is illustrated in Figure 2.8. A good
rule of thumb is that the number of replicates (R) should be similar to the number
of degrees of freedom for the lack-of-fit (D), unless there is an overriding reason for
studying one aspect of the system in preference to another. Consider three experimental
designs in Table 2.1. The aim is to produce a linear model of the form

y = bo + b1X1 + bz)cz

The response y may represent the absorbance in a spectrum and the two xs the con-
centrations of two compounds. The value of P is equal to 3 in all cases.

Number of experiments

(N)
A 4 A 4
Number of parameters Reﬁ:;rgg% ?Ie(/g_res)s of
(P)
A 4 A 4
. Number of degrees of
Number of replicates freedom to test model
(R) (D=N-P-R)

Figure 2.8
Degree of freedom tree
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Table 2.1 Three experimental designs.

Experiment No. Design 1 Design 2 Design 3

A B A A
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e Design 1. This has a value of R equal to 0 and D = 6. There is no information

about experimental error and all effort has gone into determining the model. If it
is known with certainty, in advance, that the response is linear (or this information
is not of interest) this experiment may be a good one, but otherwise relatively too
little effort is placed in measuring replicates. Although this design may appear to
provide an even distribution over the experimental domain, the lack of replication
information could, in some cases, lose crucial information.

Design 2. This has a value of R equal to 3 and D = 2. There is a reasonable balance
between taking replicates and examining the model. If nothing much is known of
certainty about the system, this is a good design taking into account the need to
economise on experiments.

Design 3. This has a value of R equal to 4 and D = 1. The number of repli-
cates is rather large compared with the number of unique experiments. However, if
the main aim is simply to investigate experimental reproducibility over a range of
concentrations, this approach might be useful.

It is always possible to break down a set of planned experiments in this manner,

and is a recommended first step prior to experimentation.

2.2.2 Analysis of Variance and Comparison of Errors

A key aim of experimentation is to ask how significant a factor is. In Section 2.2.1
we discussed how to design an experiment that allows sufficient degrees of freedom
to determine the significance of a given factor; below we will introduce an important
way of providing numerical information about this significance.

There are many situations in where this information is useful, some examples

being listed.

In an enzyme catalysed extraction, there are many possible factors that could have an
influence over the extraction efficiency, such as incubation temperature, extraction
time, extraction pH, stirring rates and so on. Often 10 or more possible factors can
be identified. Which are significant and should be studied or optimised further?

In linear calibration, is the baseline important? Are there curved terms; is the con-
centration too high so that the Beer—Lambert law is no longer obeyed?
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e In the study of a simple reaction dependent on temperature, pH, reaction time and
catalyst concentration, are the interactions between these factors important? In par-
ticular, are higher order interactions (between more than two factors) significant?

A conventional approach is to set up a mathematical model linking the response to
coefficients of the various factors. Consider the simple linear calibration experiment,
of Section 2.2.1 where the response and concentration are linked by the equation

y=bo+bix

The term b, represents an intercept term, which might be influenced by the baseline of
the spectrometer, the nature of a reference sample (for a double beam instrument) or
the solvent absorption. Is this term significant? Extra terms in an equation will always
improve the fit to a straight line, so simply determining how well a straight line is
fitted to the data does not provide the full picture.

The way to study this is to determine a model of the form

y=bix

and ask how much worse the fit is to the data. If it is not much worse, then the extra
(intercept) term is not very important. The overall lack-of-fit to the model excluding the
intercept term can be compared with the replicate error. Often these errors are called
variances, hence the statistical term analysis of variance, abbreviated to ANOVA. If the
lack-of-fit is much larger than the replicate error, it is significant, hence the intercept
term must be taken into account (and the experimenter may wish to check carefully how
the baseline, solvent background and reference sample influence the measurements).

Above, we discussed how an experiment is divided up into different types of degrees
of freedom, and we need to use this information in order to obtain a measure of
significance.

Two datasets, A and B, are illustrated in Figures 2.9 and 2.10: the question asked is
whether there is a significant intercept term; the numerical data are given in Table 2.2.
These provide an indication as to how serious a baseline error is in a series of instru-
mental measurements. The first step is to determine the number of degrees of freedom.
For each experiment

e N (the total number of experiments) equals 10;
e R (the number of replicates) equals 4, measured at concentrations 1, 3, 4 and 6 mM.

Two models can be determined, the first without an intercept of the form y = bx and
the second with an intercept of the form y = by + b;x. In the former case

D=N-R-1=5

and in the latter case
D=N-R-2=4
The tricky part comes in determining the size of the errors.

e The total replicate error can be obtained by observing the difference between the
responses under identical experimental concentrations. For the data in Table 2.2, the
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Graph of peak height against concentration for ANOVA example, dataset B

replication is performed at 1, 3, 4 and 6 mM. A simple way of determining this

error is as follows.

1. Take the average reading at each replicated level or concentration.
2. Determine the differences between this average and the true reading for each

replicated measurement.
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Table 2.2 Numerical information for data-

sets A and B.

Concentration A B
1 3.803 4.797
1 3.276 3.878
2 5.181 6.342
3 6.948 9.186
3 8.762 10.136
4 10.672 12.257
4 8.266 13.252
5 13.032 14.656
6 15.021 17.681
6 16.426 15.071

3. Then calculate the sum of squares of these differences (note that the straight sum
will always be zero).
This procedure is illustrated in Table 2.3(a) for the dataset A and it can be seen that
the replicate sum of squares equals 5.665 in this case.
Algebraically this sum of squares is defined as

1
Srep = Z (yl - yi)z
i=1

where y; is the mean response at each unique experimental condition: if, for example,
only one experiment is performed at a given concentration it equals the response,
whereas if three replicated experiments are performed under identical conditions, it
is the average of these replicates. There are R degrees of freedom associated with
this parameter.

The total residual error sum of squares is simply the sum of square difference
between the observed readings and those predicted using a best fit model (for
example obtained using standard regression procedures in Excel). How to determine
the best fit model using multiple linear regression will be described in more detail in
Section 2.4. For a model with an intercept, y = by + b, x, the calculation is presented
in Table 2.3(b), where the predicted model is of the form y = 0.6113 4 2.4364x,
giving a residual sum of square error of S5z = 8.370.

Algebraically, this can be defined by

1
Sresid = Z(yl - j}i)z
i=1

and has (N — P) degrees of freedom associated with it.
It is also related to the difference between the total sum of squares for the raw
dataset given by

1
St()lal = Zylz = 1024.587
i=1
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Table 2.3 Calculation of errors for dataset A, model including intercept.

(a) Replicate error

Concentration Replicate Difference Squared
difference
Absorbance Average
1 3.803 0.263 0.069
1 3.276 3.540 —0.263 0.069
2 5.181
3 6.948 —0.907 0.822
3 8.762 7.855 0.907 0.822
4 10.672 1.203 1.448
4 8.266 9.469 —1.203 1.448
5 13.032
6 15.021 —0.702 0.493
6 16.426 15.724 0.702 0.493
Sum of square replicate error 5.665

(b) Overall error (data fitted using univariate calibration)

Concentration Absorbance Fitted data Difference Squared
difference

1 3.803 3.048 0.755 0.570
1 3.276 3.048 0.229 0.052
2 5.181 5.484 —0.304 0.092
3 6.948 7.921 —-0.972 0.945
3 8.762 7.921 0.841 0.708
4 10.672 10.357 0.315 0.100
4 8.266 10.357 —2.091 4.372
5 13.032 12.793 0.238 0.057
6 15.021 15.230 —-0.209 0.044
6 16.426 15.230 1.196 1.431

Total squared error 8.370

and the sum of squares for the predicted data:
1
Sweg = Y _ 97 = 1016.207
i=1

so that
Sresid = Stotal — Sreg = 1024.587 — 1016.207 = 8.370

e The lack-of-fit sum of square error is simply the difference between these two
numbers or 2.705, and may be defined by

Siof = Sresia — Srep = 8.370 — 5.665

or

1
Sl”f = Z (yl - 571')2 = Swmean — Sreg
i=1
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Table 2.4 Error analysis for datasets A and B.
A B
Model without intercept y =2.576x y = 2.948x
Total error sum of squares Sresid 9.115 15.469
Replicate error sum of squares 5.665 (mean = 1.416) 4.776 (mean = 1.194)
d.f.=4) Srep
Difference between sum of 3.450 (mean = 0.690) 10.693 (mean = 2.139)
squares (d.f. = 5): lack-of-fit Siof
Model with intercept y =0.611+ 2.436x y =2.032 + 2.484x
Total error sum of squares Sesid 8.370 7.240
Replicate error sum of squares 5.665 (mean = 1.416) 4.776 (mean = 1.194)
d.f.=4 Srep
Difference between sum of 2.705 (mean = 0.676) 2.464 (mean = 0.616)
squares (d.f. = 4): lack-of-fit Siof
where

1

=2

Smean = E Vi
i=1

and has (N — P — R) degrees of freedom associated with it.

Note that there are several equivalent ways of calculating these errors.

There are, of course, two ways in which a straight line can be fitted, one with and
one without the intercept. Each generates different error sum of squares according to
the model. The values of the coefficients and the errors are given in Table 2.4 for both
datasets. Note that although the size of the term for the intercept for dataset B is larger
than dataset A, this does not in itself indicate significance, unless the replicate error is
taken into account.

Errors are often presented either as mean square or root mean square errors. The
root mean square error is given by

s =/(8/d)

where d is the number of degrees of freedom associated with a particular sum of
squares. Note that the calculation of residual error for the overall dataset differs accord-
ing to the authors. Strictly this sum of squares should be divided by (N — P) or, for
the example with the intercept, 8 (=10 — 2). The reason for this is that if there are no
degrees of freedom for determining the residual error, the apparent error will be equal
to exactly 0, but this does not mean too much. Hence the root mean square residual
error for dataset A using the model with the intercept is strictly equal to /(8.370/8)
or 1.0228. This error can also be converted to a percentage of the mean reading for the
entire dataset (which is 9.139), resulting in a mean residual of 11.19 % by this criterion.
However, it is also possible, provided that the number of parameters is significantly
less than the number of experiments, simply to divide by N for the residual error, giv-
ing a percentage of 10.01 % in this example. In many areas of experimentation, such
as principal components analysis and partial least squares regression (see Chapter 5,
Section 5.5), it is not always easy to analyse the degrees of freedom in a straight-
forward manner, and sometimes acceptable, if, for example, there are 40 objects in a
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dataset, simply to divide by the mean residual error by the number of objects. Many
mathematicians debate the meaning of probabilities and errors: is there an inherent
physical (or natural) significance to an error, in which case the difference between 10
and 11 % could mean something or do errors primarily provide general guidance as
to how good and useful a set of results is? For chemists, it is more important to get
a ballpark figure for an error rather than debate the ultimate meaning of the number
numbers. The degrees of freedom would have to take into account the number of prin-
cipal components in the model, as well as data preprocessing such as normalisation
and standardisation as discussed in Chapter 4. In this book we adopt the convention of
dividing by the total number of degrees of freedom to get a root mean square residual
error, unless there are specific difficulties determining this number.
Several conclusions can be drawn from Table 2.4.

e The replicate sum of squares is obviously the same no matter which model is
employed for a given experiment, but differs for each experiment. The two exper-
iments result in roughly similar replicate errors, suggesting that the experimental
procedure (e.g. dilutions, instrumental method) is similar in both cases. Only four
degrees of freedom are used to measure this error, so it is unlikely that these two
measured replicate errors will be exactly equal. Measurements can be regarded as
samples from a larger population, and it is necessary to have a large sample size
to obtain very close agreement to the overall population variance. Obtaining a high
degree of agreement may involve several hundred repeated measurements, which is
clearly overkill for such a comparatively straightforward series of experiments.

e The total error reduces when an intercept term is added in both cases. This is
inevitable and does not necessarily imply that the intercept is significant.

o The difference between the total error and the replicate error relates to the lack-of-fit.
The bigger this is, the worse is the model.

e The lack-of-fit error is slightly smaller than the replicate error, in all cases except
when the intercept is removed from the model for the dataset B, where it is large,
10.693. This suggests that adding the intercept term to the second dataset makes a
big difference to the quality of the model and so the intercept is significant.

Conventionally these numbers are often compared using ANOVA. In order for this
to be meaningful, the sum of squares should be divided by the number of degrees of
freedom to give the ‘mean’ sum of squares in Table 2.4. The reason for this is that
the larger the number of measurements, the greater the underlying sum of squares will
be. These mean squares can are often called variances, and it is simply necessary to
compare their sizes, by taking ratios. The larger the ratio to the mean replicate error,
the greater is the significance. It can be seen that in all cases apart from the model

Table 2.5 ANOVA table: two parameter model, dataset B.

Source of Sum of Degrees of Mean sum of Variance
variation squares freedom squares ratio
Total 1345.755 10 134.576

Regression 1338.515 2 669.258

Residual 7.240 8 0.905

Replicate 4.776 4 1.194

Lack-of-fit 2.464 4 0.616 0.516
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without the intercept arising from dataset B, the mean lack-of-fit error is considerably
less than the mean replicate error. Often the results are presented in tabular form; a
typical example for the two parameter model of dataset B is given in Table 2.5, the
five sums of squares Siori, Sreg> Sresids Srep and Sj,r, together with the relevant degrees
of freedom, mean square and variance ratio, being presented. The number 0.516 is the
key to assess how well the model describes the data and is often called the F-ratio
between the mean lack-of-fit error and the mean replicate error, which will be discussed
in more detail in Section 2.2.4.4. Suffice it to say that the higher this number, the more
significant is an error. A lack-of-fit that is much less than the replicate error is not
significant, within the constraints of the experiment.

Most statistical packages produce ANOVA tables if required, and it is not always
necessary to determine these errors manually, although it is important to appreciate the
principles behind such calculations. However, for simple examples a manual calculation
is often quite and a good alternative to the interpretation of the output of complex
statistical packages.

The use of ANOVA is widespread and is based on these simple ideas. Normally two
mean errors are compared, for example, one due to replication and the other due to
lack-of-fit, although any two errors or variances may be compared. As an example, if
there are 10 possible factors that might have an influence over the yield in a synthetic
reaction, try modelling the reaction removing one factor at a time, and see how much the
lack-of-fit error increases: if not much relative to the replicates, the factor is probably
not significant. It is important to recognise that reproducibility of the reaction has an
influence over apparent significance also. If there is a large replicate error, then some
significant factors might be missed out.

2.2.3 Design Matrices and Modelling

The design matrix is a key concept. A design may consist of a series of experiments
performed under different conditions, e.g. a reaction at differing pHs, temperatures,
and concentrations. Table 2.6 illustrates a typical experimental set-up, together with
an experimental response, e.g. the rate constant of a reaction. Note the replicates in
the final five experiments: in Section 2.4 we will discuss such an experimental design
commonly called a central composite design.

2.2.3.1 Models

It is normal to describe experimental data by forming a mathematical relationship
between the factors or independent variables such as temperature and a response or
dependent variable such as a synthetic yield, a reaction time or a percentage impurity.
A typical equation for three factors might be of the form

y = (response)
bo+ (an intercept or average)
bix1 + byxo + b3xz+ (linear terms depending on each of the three factors)
bi1x1% + bypxy? 4+ byzx3?>+  (quadratic terms depending on each of the three
factors)

biax1x2 + b13x1x3 + bysxox; (interaction terms between the factors).

Notice the ‘hat’ on top of the y; this is because the equation estimates its value, and
is unlikely to give an exact value that agrees experimentally because of error.
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Table 2.6 Typical experimental design.

pH Temperature (°C) Concentration (mM) Response (y)
6 60 4 34.841
6 60 2 16.567
6 20 4 45.396
6 20 2 27.939
4 60 4 19.825
4 60 2 1.444
4 20 4 37.673
4 20 2 23.131
6 40 3 23.088
4 40 3 12.325
5 60 3 16.461
5 20 3 33.489
5 40 4 26.189
5 40 2 8.337
5 40 3 19.192
5 40 3 16.579
5 40 3 17.794
5 40 3 16.650
5 40 3 16.799
5 40 3 16.635

The justification for these terms is as follows.

e The intercept is an average in certain circumstances. It is an important term because
the average response is not normally achieved when the factors are at their average
values. Only in certain circumstances (e.g. spectroscopy if it is known there are no
baseline problems or interferents) can this term be ignored.

e The linear terms allow for a direct relationship between the response and a given
factor. For some experimental data, there are only linear terms. If the pH increases,
does the yield increase or decrease and, if so, by how much?

e In many situations, quadratic terms are important. This allows curvature, and is
one way of obtaining a maximum or minimum. Most chemical reactions have an
optimum performance at a particular pH, for example. Almost all enzymic reactions
work in this way. Quadratic terms balance out the linear terms.

e Earlier in Section 2.1, we discussed the need for interaction terms. These arise
because the influence of two factors on the response is rarely independent. For
example, the optimum pH at one temperature may differ from that at a different
temperature.

Some of these terms may not be very significant or relevant, but it is up to the experi-
menter to check this using approaches such as ANOVA (Section 2.2.2) and significance
tests (Section 2.2.4). In advance of experimentation it is often hard to predict which
factors are important.

2.2.3.2 Matrices

There are 10 terms or parameters in the equation above. Many chemometricians find
it convenient to work using matrices. Although a significant proportion of traditional
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texts often shy away from matrix based notation, with modern computer packages and
spreadsheets it is easy and rational to employ matrices. The design matrix is simply
one in which

e the rows refer to experiments and
e the columns refer to individual parameters in the mathematical model or equation
linking the response to the values of the individual factors.

In the case described, the design matrix consists of

e 20 rows as there are 20 experiments and
e 10 columns as there are 10 parameters in the model, as is illustrated symbolically
in Figure 2.11.

For the experiment discussed above, the design matrix is given in Table 2.7. Note
the first column, of Is: this corresponds to the intercept term, by, which can be regarded
as multiplied by the number 1 in the equation. The figures in the table can be checked
numerically. For example, the interaction term between pH and temperature for the
first experiment is 360, which equals 6 x 60, and appears in the eighth column of the
first row corresponding the term b;.

There are two considerations required when computing a design matrix, namely

e the number and arrangement of the experiments, including replication and
e the mathematical model to be tested.

It is easy to see that

e the 20 responses form a vector with 20 rows and 1 column, called y;

e the design matrix has 10 columns and 20 rows, as illustrated in Table 2.7, and is
called D; and

o the 10 coefficients of the model form a vector with 10 rows and 1 column, called b.
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Table 2.7 Design matrix for the experiment in Table 2.6.

Intercept Linear terms Quadratic terms Interaction terms
bo b ) by by by b33 b b3 b3
Intercept pH Temp Conc pH? Temp? Conc? pH xtemp pH X conc Temp X conc
1 6 60 4 36 3600 16 360 24 240
1 6 60 2 36 3600 4 360 12 120
1 6 20 4 36 400 16 120 24 80
1 6 20 2 36 400 4 120 12 40
1 4 60 4 16 3600 16 240 16 240
1 4 60 2 16 3600 4 240 8 120
1 4 20 4 16 400 16 80 16 80
1 4 20 2 16 400 4 80 8 40
1 6 40 3 36 1600 9 240 18 120
1 4 40 3 16 1600 9 160 12 120
1 5 60 3 25 3600 9 300 15 180
1 5 20 3 25 400 9 100 15 60
1 5 40 4 25 1600 16 200 20 160
1 5 40 2 25 1600 4 200 10 80
1 5 40 3 25 1600 9 200 15 120
1 5 40 3 25 1600 9 200 15 120
1 5 40 3 25 1600 9 200 15 120
1 5 40 3 25 1600 9 200 15 120
1 5 40 3 25 1600 9 200 15 120
1 5 40 3 25 1600 9 200 15 120

2.2.3.3 Determining the Model

The relationship between the response, the coefficients and the experimental conditions
can be expressed in matrix form by

5=D.b

as illustrated in Figure 2.12. It is simple to show that this is the matrix equivalent to
the equation introduced in Section 2.2.3.1. It is surprisingly easy to calculate b (or the
coefficients in the model) knowing D and y using MLR (multiple linear regression).
This approach will be discussed in greater detail in Chapter 5, together with other
potential ways such as PCR and PLS.

e If D is a square matrix, then there are exactly the same number of experiments as
coefficients in the model and
b=D"ly

e If D is not a square matrix (as in the case in this section), then use the pseudo-
inverse, an easy calculation in Excel, Matlab and almost all matrix based software,
as follows:

b=D'.D)"'.D'y

The idea of the pseudo-inverse is used in several places in this text, for example,
see Chapter 5, Sections 5.2 and 5.3, for a general treatment of regression. A simple
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derivation is as follows:
y~D.bsoD.y~D.D.bor(D.D)"'.D'.y~ (D'.D)"'.(D'.D).b ~b

In fact we obtain estimates of b from regression, so strictly there should be a hat
on top of the b, but in order to simplify the notation we ignore the hat and so the
approximation sign becomes an equals sign.

It is important to recognise that for some designs there are several alternative methods
for calculating these regression coefficients, which will be described in the relevant
sections, but the method of regression described above will always work provided that
the experiments are designed appropriately. A limitation prior to the computer age
was the inability to determine matrix inverses easily, so classical statisticians often got
around this by devising methods often for summing functions of the response, and in
some cases designed experiments specifically to overcome the difficulty of inverses
and for ease of calculation. The dimensions of the square matrix (D'.D) equal the
number of parameters in a model, and so if there are 10 parameters it would not be
easy to compute the relevant inverse manually, although this is a simple operation
using modern computer based packages.

There are a number of important consequences.

e If the matrix D is a square matrix, the estimated values of y are identical with
the observed values y. The model provides an exact fit to the data, and there are no
degrees of freedom remaining to determine the lack-of-fit. Under such circumstances
there will not be any replicate information but, nevertheless, the values of b can pro-
vide valuable information about the size of different effects. Such a situation might
occur, for example, in factorial designs (Section 2.3). The residual error between the
observed and fitted data will be zero. This does not imply that the predicted model
exactly represents the underlying data, simply that the number of degrees of freedom
is insufficient for determination of prediction errors. In all other circumstances there
is likely to be an error as the predicted and observed response will differ.
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e The matrix D — or D’.D (if the number of experiments is more than the number of
parameters) — must have an inverse. If it does not, it is impossible to calculate the
coefficients b. This is a consequence of poor design, and may occur if two terms
or factors are correlated to each other. For well designed experiments this problem
will not occur. Note that a design in which the number of experiments is less than
the number of parameters has no meaning.

2.2.3.4 Predictions

Once b has been determined, it is then possible to predict y and so calculate the
sums of squares and other statistics as outlined in Sections 2.2.2 and 2.2.4. For the
data in Table 2.6, the results are provided in Table 2.8, using the pseudo-inverse to
obtain b and then predict y. Note that the size of the parameters does not necessarily
indicate significance, in this example. It is a common misconception that the larger the
parameter the more important it is. For example, it may appear that the b;, parameter
is small (0.020) relative to the b;; parameter (0.598), but this depends on the physical
measurement units:

e the pH range is between 4 and 6, so the square of pH varies between 16 and 36 or
by 20 units overall;

o the temperature range is between 20 and 60 °C, the squared range varying between
400 and 3600 or by 3200 units overall, which is a 160-fold difference in range
compared with pH;

o therefore, to be of equal importance b,; would need to be 160 times smaller than b;;;

e since the ratio byy: by is 29.95, in fact by, is considerably more significant than by;.

Table 2.8 The vectors b and § for data in

Table 2.6.
Parameter Predicted y
by 58.807 35.106
b —6.092 15.938
by —2.603 45.238
b3 4.808 28.399
by 0.598 19.315
b 0.020 1.552
b33 0.154 38.251
by 0.110 22.816
b3 0.351 23.150
b3 0.029 12.463
17.226
32.924
26.013
8.712
17.208
17.208
17.208
17.208
17.208

17.208
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In Section 2.2.4 we discuss in more detail how to tell whether a given parameter
is significant, but it is very dangerous indeed to rely on visual inspection of tables of
regression parameters and make deductions from these without understanding carefully
how the data are scaled.

If carefully calculated, three types of information can come from the model.

e The size of the coefficients can inform the experimenter how significant the coef-
ficient is. For example, does pH significantly improve the yield of a reaction? Or
is the interaction between pH and temperature significant? In other words, does the
temperature at which the reaction has a maximum yield differ at pH 5 and at pH 7?

e The coefficients can be used to construct a model of the response, for example
the yield of a reaction as a function of pH and temperature, and so establish the
optimum conditions for obtaining the best yield. In this case, the experimenter is
not so interested in the precise equation for the yield but is very interested in the
best pH and temperature.

e Finally, a quantitative model may be interesting. Predicting the concentration of a
compound from the absorption in a spectrum requires an accurate knowledge of the
relationship between the variables. Under such circumstances the precise value of
the coefficients is important. In some cases it is known that there is a certain kind
of model, and the task is mainly to obtain a regression or calibration equation.

Although the emphasis in this chapter is on multiple linear regression techniques,
it is important to recognise that the analysis of design experiments is not restricted to
such approaches, and it is legitimate to employ multivariate methods such as principal
components regression and partial least squares as described in detail in Chapter 5.

2.2.4 Assessment of Significance

In many traditional books on statistics and analytical chemistry, large sections are
devoted to significance testing. Indeed, an entire and very long book could easily
be written about the use of significance tests in chemistry. However, much of the
work on significance testing goes back nearly 100 years, to the work of Student, and
slightly later to R. A. Fisher. Whereas their methods based primarily on the z-test and
F-test have had a huge influence in applied statistics, they were developed prior to
the modern computer age. A typical statistical calculation, using pen and paper and
perhaps a book of logarithm or statistical tables, might take several days, compared with
a few seconds on a modern microcomputer. Ingenious and elaborate approaches were
developed, including special types of graph papers and named methods for calculating
the significance of various effects.

These early methods were developed primarily for use by specialised statisticians,
mainly trained as mathematicians, in an environment where user-friendly graphics and
easy analysis of data were inconceivable. A mathematical statistician will have a good
feeling for the data, and so is unlikely to perform calculations or compute statistics
from a dataset unless satisfied that the quality of data is appropriate. In the modern age
everyone can have access to these tools without a great deal of mathematical expertise
but, correspondingly, it is possible to misuse methods in an inappropriate manner. The
practising chemist needs to have a numerical and graphical feel for the significance of
his or her data, and traditional statistical tests are only one of a battery of approaches
used to determine the significance of a factor or effect in an experiment.
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Table 2.9 Coding of data.

Variable Units —1 +1
pH —Log[H™] 4 6
Temperature °C 20 60
Concentration mM 2 4

This section provides an introduction to a variety of approaches for assessing signif-
icance. For historical reasons, some methods such as cross-validation and independent
testing of models are best described in the chapters on multivariate methods (see
Chapters 4 and 5), although the chemometrician should have a broad appreciation of
all such approaches and not be restricted to any one set of methods.

2.24.1 Coding

In Section 2.2.3, we introduced an example of a three factor design, given in Table 2.6,
described by 10 regression coefficients. Our comment was that the significance of the
coefficients cannot easily be assessed by inspection because the physical scale for each
variable is different. In order to have a better idea of the significance it is useful to
put each variable on a comparable scale. It is common to code experimental data.
Each variable is placed on a common scale, often with the highest coded value of each
variable equal to +1 and the lowest to —1. Table 2.9 represents a possible way to scale
the data, so for factor 1 (pH) a coded value (or level) or —1 corresponds to a true pH
of 4. Note that coding does not need to be linear: in fact pH is actually measured on
a logarithmic scale.

The design matrix simplifies considerably, and together with the corresponding
regression coefficients is presented in Table 2.10. Now the coefficients are approxi-
mately on the same scale, and it appears that there are radical differences between
these new numbers and the coefficients in Table 2.8. Some of the differences and their
interpretation are listed below.

e The coefficient by is very different. In the current calculation it represents the pre-
dicted response in the centre of the design, where the coded levels of the three factors
are (0,0, 0). In the calculation in Section 2.2.3 it represents the predicted response
at 0 pH units, 0°C and 0 mM, conditions that cannot be reached experimentally.
Note also that this approximates to the mean of the entire dataset (21.518) and is
close to the average over the six replicates in the central point (17.275). For a perfect
fit, with no error, it will equal the mean of the entire dataset, as it will for designs
centred on the point (0, 0, 0) in which the number of experiments equals the number
of parameters in the 