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Preface

Computational structural biology aims primarily at establishing
sequence-structure-function relationships for biological molecules
using in silico techniques. This discipline emerged about 40 years ago
(Levitt M. (2001). Nature Struct Biol 8:392–393) and has made
much progress in the past decade. The purpose of this book is to pro-
vide an overview of the progress in the field and to articulate some of
the key challenges for the coming years. By no means could we cover
the field comprehensively in just one book, and we thus focused on
the structure and function of proteins and RNAs. 

The advent of large genome sequencing reinforced the observa-
tion that structural information is needed to understand the detailed
function and mechanism of biological molecules such as enzyme reac-
tions and molecular recognition events. Furthermore, structures are
obviously key to the design of molecules with new or improved func-
tions. In this context, computational structural biology emerged as a
discipline to develop computational tools to analyze and predict
molecular structures and simulate their dynamical behavior. These
theoretical approaches provide valuable insights into the detailed basis
of molecular function and enable the effective design of experimental
approaches to functional genomics. Major research topics include
protein and RNA structure prediction, protein folding, protein and
RNA dynamics with emphasis on large complexes and assemblies,
molecular recognition, drug discovery and protein engineering. 

A key motivation for putting together this book came from our
own experience, as 15 years ago we established the Swiss-Model, the
first Web-based server for protein structure modeling. One major
driver behind our vision was to mask much of the complexity associ-
ated with protein modeling behind a simple interface, thereby pro-
viding the scientific community with the possibility to gain insights
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into the 3D structures of proteins of interest, without the need to
learn and purchase complex and expensive software. There are prob-
ably three major factors contributing to the success of the Swiss-
Model. First, the server is easy to use, as the Web-interface removes
most of the complexity normally associated with protein modeling.
Second, DeepView (also known as the Swiss-PdbViewer), which is
available for most relevant computer platforms, has many powerful
and easy-to-use features developed by modelers for modelers. Third,
the uninterrupted operations for 15 years has allowed us to develop a
robust and stable system. Today, well over 60,000 users build in
excess of 400,000 models every single year and can access over a mil-
lion pre-computed models available in the Swiss-Model Repository.
Our objective is to continuously improve the performance of the
server and the quality of the models it generates.

We are particularly thankful to Nicolas Guex for his many crucial
contributions to the development efforts of the Swiss-Model and the
DeepView and to Gale Rhodes of the University of Southern Maine
for coordinating the active DeepView user community. We also thank
Alexander Diemand, Konstatin Arnold, Jürgen Kopp and Lorenza
Bordoli for their many contributions to the development and opera-
tions for the modeling platform. Furthermore, we are deeply
indebted to Jake V. Maizel Jr, Timothy N.C. Wells, Jonathan C.K.
Knowles, and Allan Baxter who have provided the necessary environ-
ment and resources during the various phases of this project. Finally,
we thank Stanley K. Burt, Robert W. Lebherz III, Karol Miaskiewicz
and Jack R. Collins of the Advanced Biomedical Computing Center
at the National Cancer Institute in Frederick Maryland for their sup-
port in operating the US mirror of the Swiss-Model server. We grate-
fully acknowledge the financial support by GlaxoSmithKline,
Novartis, the Swiss National Science Foundation, the Biozentrum of
the University of Basel and the Swiss Institute of Bioinformatics.

T. Schwede and M.C. Peitsch
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Chapter 1

Protein Structure Modeling

T. Schwede*,†, A. Sali‡, N. Eswar‡

and M. C. Peitsch§

1.1 Introduction

Knowledge of the three-dimensional (3D) structures of proteins pro-
vides invaluable insights into the molecular basis of their functions.
Furthermore, the design of experiments aimed at understanding
molecular mechanisms — such as site-directed mutagenesis, mapping
of disease-related mutations, and the structure-based design of spe-
cific inhibitors — are greatly facilitated by the detailed knowledge of
the spatial arrangement of key amino acid residues within the overall
3D structure. While great progress has been made in structure deter-
mination using experimental methods, such as X-ray crystallography
(Chapter 22), high-resolution electron microscopy (Chapter 23) and

*Corresponding author. 
†Swiss Institute of Bioinformatics, Biozentrum, University of Basel, Klingel-
bergstrasse 50/70, 4056 Basel, Switzerland. E-mail: torsten.schwede@unibas.ch.
‡Department of Bioengineering and Therapeutic Sciences, Department of
Pharmaceutical Chemistry, California Institute for Quantitative Biosciences (QB3),
University of California at San Francisco, Byers Hall at Mission Bay, Suite 503B,
1700 4th Street, San Francisco, CA 94158-2330, USA.
§Novartis Institutes of BioMedical Research, Basel Klybeckstrasse 141, 4057 Basel,
Switzerland.
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nuclear magnetic resonance (NMR) spectroscopy (Chapter 24),
these approaches are generally still expensive, time consuming, and
not always applicable. Currently, less than 50 000 experimental pro-
tein structures have been released by the Protein Data Bank PDB1

(Table 1.1), while another 3500 have been deposited but are still
awaiting release. These structures correspond to approximately
17 000 different proteins (sharing less than 90% sequence identity
among one another). Nevertheless, the number of structurally char-
acterized proteins is small compared to the 300 000 annotated and
curated protein sequences in the Swiss-Prot section of the
UniProtKB2 (http://www.expasy.org/sprot/). This number is even
smaller when compared to the 5.2 million known protein sequences
in the complete UniProtKB (October 2007). Even after removal of
the highly redundant sequences from this database (above), the
remaining 3.3 million sequences exceed the number of known 3D
structures by more than two orders of magnitude. Thus, no experi-
mental structure is available for the vast majority of protein
sequences. This gap has widened over the last decade, despite the
high-throughput X-ray crystallography pipelines developed for struc-
tural genomics.3–5 Therefore, the gap in structural knowledge must
be bridged by computation.

Computational methods for predicting the 3D structures of pro-
teins enjoy a high degree of interest and are the focus of many

4 Computational Structural Biology
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Table 1.1. Current PDB Holdings (October 2007)a

Molecule Type

Proteins Nucleic Protein/NA
Acids Complexes Other Total

Experimental X-ray 36847 991 1709 24 39571
Method NMR 5929 788 134 7 6858

EM 106 11 40 0 157
Other 83 4 4 2 93
Total 42965 1794 1887 33 46679

aThe content of the table was obtained from http://www.pdb.org (1). EM: electron
microscopy.
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research and service development efforts. The prediction of the 3D
structure of a protein from its amino acid sequence remains a funda-
mental scientific problem and it is often considered as one of the
grand challenges in computational biology and chemistry. Broadly,
four different types of approaches are commonly in use. The first and
most accurate approach is “comparative” or “homology” modeling
that uses experimentally elucidated structures of related protein fam-
ily members as templates to model the structure of the protein of
interest (the “target”). These methods can only be employed when a
detectable template of known structure is available. Second, fold
recognition and threading methods are used to model proteins that
have low or statistically insignificant sequence similarity to proteins of
known structure (Chapter 2). Third, de novo (or ab initio) methods
aim to predict the structure of a protein purely from its primary
sequence, using principles of physics that govern protein folding
and/or using information derived from known structures but without
relying on any evolutionary relationship to known folds. Finally, a
fourth group of methods, recently receiving a lot of attention, is the
“integrative” or “hybrid” methods that combine information from a
varied set of computational and experimental sources, including all
those listed above.

1.2 Modeling Methods

1.2.1 Comparative Protein Structure
Modeling Techniques

Template-based protein modeling techniques (aka “homology model-
ing” or “comparative modeling”) exploit the evolutionary relationship
between a target protein and templates with known experimental
structures, based on the observation that evolutionarily related
sequences generally have similar 3D structures. Most comparative
modeling procedures consist of several consecutive steps, which can be
repeated iteratively until a satisfactory model is obtained: 1) identifica-
tion of suitable template structures related to the target protein and
the alignment of the target and template(s) sequences; 2) modeling of

Protein Structure Modeling 5
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the structurally conserved regions and the prediction of structurally
variable regions; 3) refinement of the initial model; and 4) evaluation
of the resulting model(s).

1.2.1.1 Identification of modeling templates
and sequence alignments

Identifying suitable template structures and calculating an accurate
alignment of their sequences with that of the target are the key first
steps of the comparative modeling process. The sequence identity of
the target-template alignment is the most commonly used metric to
quantify the similarity between the target and template(s) and is also
a good predictor of the quality of the resulting model. It is thus cru-
cial to consider the target-template sequence identity level when
selecting template structures (Sections 1.2.2, 1.6 and Chapter 5), as
this will have a critical impact on the quality of the resulting model
and hence, its potential applications. The overall accuracy of models
calculated from alignments with sequence identities of 40% or higher
is almost always good (i.e. deviate by less than 2Å RMSD from the
experimentally determined structure) (Section 1.2.2). As the target–
template sequence identity falls below 30–40%, models that deviate
significantly from the average accuracy are frequent (i.e. deviate by
more than 2Å RMSD from an experimentally-determined structure).
Alignment errors also tend to rapidly increase in this regime and
become the most frequent cause of large errors in comparative mod-
els even when the correct template is chosen. Moreover, models based
on alignments with such low sequence identities may have an entirely
incorrect fold.6

While identifying and aligning sequences with similarities above
40% is relatively straightforward, more sensitive methods are needed
for the lower levels of evolutionary relatedness between sequences.
In recent years, significant progress has been made in the develop-
ment of sensitive methods for sequence homology detection and
alignment based on iterative profile searches, e.g. PSI-Blast,7 Hidden
Markov Models, e.g. SAM,8 HMMER,9 or profile-profile alignment
such as FFAS03,10 profile.scan,11 and HHsearch.12 Furthermore, in
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the absence of a detectable sequence similarity, fold recognition and
threading methods can be used to identify proteins with known
structures, that share a common fold with the target sequence
(Chapter 2).

1.2.1.2 Generating all-atom models

Comparative protein structure modeling yields an all-atom model of
a protein, based on its alignment to one or more related template
structures. Over the years, two commonly used approaches for model
building have emerged and can be described as follows: the first is a
rigid fragment assembly approach, in which an initial model is con-
structed from structurally conserved core regions of the template and
from structural fragments obtained from either aligned or unrelated
structures.13,14 The initial model is then subjected to an optimization
procedure to refine its geometry and stereochemistry (Section 1.2.1.3).
The second approach relies on a single optimization strategy that
attempts to maximize the satisfaction of spatial restraints obtained
from the target-template alignment, known protein structures, and
molecular mechanics force-fields.15 Such an approach may not require
a separate refinement step. However, most model building proce-
dures are usually followed by the application of specialized protocols
to enhance the accuracy of the non-conserved regions of the align-
ment such as loops16,17 and/or side chains.18,19

1.2.1.3 Model refinement

Once an atomic model has been obtained, it can potentially be refined
to idealize bond geometry and to remove unfavorable contacts that
may have been introduced by the initial modeling process. The refine-
ment will generally begin with an energy minimization step using one
of the molecular mechanics force fields.20,21 For further refinement,
techniques such as molecular dynamics as well as Monte Carlo and
genetic algorithm-based sampling methods22–24 can be applied. For
instance, in certain cases molecular dynamics has been reported to
yield some improvement of side chain contacts and rotamer states.25

Protein Structure Modeling 7
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Monte Carlo sampling with focus on regions most likely to contain
errors, while allowing the whole structure to relax in a physically real-
istic all-atom force field, can significantly improve the accuracy of
models in terms of both the backbone conformations and the place-
ment of core side chains.26 Nevertheless, limitations still exist in sam-
pling as well as force field accuracy.

1.2.1.4 Model evaluation

Model evaluation aims to recognize the various problems that might
have occurred during the modeling process. Furthermore, estimating
the overall geometrical accuracy of the individual regions of the
model is an essential task of model evaluation. There are two kinds of
evaluation schemes that are commonly employed. The first is “fold-
assessment” that seeks to ensure the calculated models possess the
correct fold and helps in detecting errors in template selection, fold
recognition, and target-template alignment.6,27–29 The second class of
methods seeks to identify the model that is closest to the native struc-
ture out of a number of alternative models.30–37 A combination of
such assessments is usually employed to select the most accurate
model from amongst a set of alternative models, generated based on
different templates and/or alignments. In general, addressing these
different types of assessment requires specialized scoring systems and
classifiers (Chapters 3 and 4).

1.2.2 Accuracy and Limitations of Comparative
Protein Structure Modeling

Comparative protein structure modeling relies on the evolutionary
relationship between the target and template proteins. Consequently,
the application of this approach is limited by 1) the availability of
suitable template structures; 2) the ability of alignment methods to
calculate an accurate alignment between the target and template
sequences, even when the relationship between them is remote;
and 3) the structural and functional divergence between the target
and the template.38

8 Computational Structural Biology
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The percentage of sequence identity between target and template
correlates with model accuracy and often allows for a good first esti-
mate of the model quality. As a rule of thumb, comparative models
based on more than 50% sequence identity to their templates can be
considered as “high accuracy models” and tend to have about 1 Å
root mean square deviation (RMSD)38 for the main-chain atoms,
which is comparable to the accuracy of a medium-resolution NMR-
derived structure or a low-resolution X-ray structure.5,39 Inaccuracies
are mainly found in the packing of side chains and loop regions.
Comparative models based on 30 to 50% sequence identity can be
considered “medium accuracy models”, where the most frequent
errors include side-chain packing errors, slight distortions of the pro-
tein core, inaccurate loop modeling, and sporadic alignment mistakes.
Since alignment errors increase rapidly below 30% sequence identity
and become the most substantial origin of errors in comparative mod-
els, comparative models based on less than 30% sequence identity are
considered “low accuracy models”.

1.2.2.1 Template availability and structural diversity

It has been observed that a very small number of different folds
account for the majority of known structures,40 and a recent study
has argued that most sequences could already be modeled using
known folds (or fragments of known folds) as templates.41 Thus, for
the majority of target protein domains, a structure with a similar fold
would be available within the Protein Data Bank (PDB). However,
models based on alignments with low sequence identity often pro-
vide accurate information only about the fold of the protein. As
stated above, the accuracy of homology models decreases rapidly
when the sequence identity between the target and template drops
below 30%, mainly due to alignment errors and our inability to
model structural differences between the target and the template.
While the overall fold of proteins is often well conserved even at
undetectable levels of sequence similarity, protein function — such as
enzyme function and specificity — shows much higher variability,42,43

even at high levels of sequence identity (above 50%). New methods
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beyond simple homology-based assignments are therefore required
for functional annotation of new genomic sequences, taking into
account specific local structural features.

1.2.2.2 Natively unstructured proteins

Intrinsic disorder in proteins, i.e. the presence of unstructured
regions, has been a focus of much attention recently, as it has been
shown to be implicated in important biological roles, such as transla-
tion and transcriptional regulation, cell signaling, and molecular
recognition in general. Several studies report examples of disordered
proteins implicated in important cellular processes, undergoing tran-
sitions to more structured states upon binding to their target ligand,
DNA, or other proteins.44–46 New biological functions linked to native
disorder are emerging, such as self-assembly of multi-protein com-
plexes or involvement in RNA and protein chaperones.47,48 Natively
unstructured proteins pose a challenge for experimental structural
determination as they can hinder the crystallization of proteins or
interfere with NMR spectroscopy. Consequently, such proteins are
also not amenable to modeling techniques, as it is unclear to what
extent the “correct” conformation can be inferred by comparative
modeling, as these protein regions depend on the context of a folded
scaffold to assume a defined structure. However, computational
approaches for detecting regions in protein sequences with a high
propensity for intrinsic disorder have been successfully developed,
based on the observation that such protein segments possess charac-
teristic sequence properties.49–52

1.2.2.3 Membrane proteins

Membrane proteins are involved in a broad range of central cellular
processes, including signaling and intercellular communication, vesi-
cle trafficking, ion transport, and protein translocation. It is not sur-
prising that the targets for ~40% of all therapeutic drugs in use today
are human membrane proteins. These include targets such as ion
channels, reuptake pumps as targets for anti-depressants, and the
important group of 7-transmembrane G-protein coupled receptors

10 Computational Structural Biology
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(GPCRs). However, membrane proteins pose formidable challenges
to experimental structure determination by X-ray crystallography and
NMR spectroscopy. Furthermore, human proteins often have no
closely related homologs in prokaryotes or archaea, which would
facilitate expression and crystallization. As a consequence, structures
of membrane proteins are significantly underrepresented in the PDB.
The 3D structures of only ~135 different membrane proteins are
currently publicly available (1 January 2008). Consequently, predic-
tion of membrane protein structures based on physical models that
describe intra-protein and protein–solvent interactions in the mem-
brane environment without relying on homologous template struc-
tures has been attempted by several groups.53,54 An important
challenge in the modeling of membrane protein structures is the pre-
sumed difference relative to the globular proteins. For example, it is
believed that membrane proteins are “inside-out” globular proteins,
with hydrophobic residues on the outside in contact with the lipid
bilayer and polar residues on the inside in the protein core. This
design may render the standard scoring functions used for the mod-
eling of globular proteins less suitable for use with membrane pro-
teins. Most recently, a new scoring function was developed in
Rosetta to account for such differences.55

1.2.3 De novo Modeling Techniques

Comparative protein structure modeling methods are only able to
produce highly accurate models for protein sequences for which suf-
ficient template information is available on the structures of homolo-
gous proteins. However, these methods are not suited to predict parts
of sequences that are not aligned with the template sequences, e.g.
long variable loop regions, or completely novel folds that have not
been observed before. In contrast, de novo modeling methods do not
explicitly rely on whole known structures as templates. Thus, the
structure of any protein can be predicted by these de novo methods.

The term ab initio prediction often refers to the subset of de novo
methods that rely on energy functions based solely on physicochemi-
cal interactions, not on the PDB. Such approaches, using full-atom
simulations with empirical force fields as well as explicit and implicit

Protein Structure Modeling 11
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solvent models, have been successful in predicting the folding of short
peptides56,57 and in discriminating between the native state and a static
set of decoys.58 However, from a practical protein structure prediction
perspective, there are still limitations with regards to protein size and
accuracy of the predictions.

Most of the successful de novo prediction methods that are appli-
cable to larger protein segments (up to ~150 residues) use informa-
tion from known protein structures.59 De novo methods assume that
the native state of a protein is at the global free energy minimum and
carry out a large-scale search of conformational space for protein ter-
tiary structures that are particularly low in free energy for the given
amino acid sequence. The working hypothesis of this approach is that
local amino acid sequence propensities bias each local segment of a
polypeptide chain towards a small number of alternative local struc-
tures and that non-local interactions preferentially stabilize native-like
arrangements of these otherwise transitory local structures. For exam-
ple, the Rosetta method developed by Baker and coworkers uses an
ensemble of short structural fragments extracted from the PDB.60

These fragments are then assembled in a Monte Carlo search strategy
using a scoring function that favors non-local properties of native pro-
tein structures such as hydrophobic burial, compactness, and pairing
of β-strands.22,60,61 Using fragments of known structures ensures that
the local interactions are close to optimal, thereby reducing the
demand on the free energy function. The Rosetta fragment assembly
strategy has been successfully applied to de novo structure prediction,
as well as to modeling of structurally variable regions (loops, inser-
tions) in comparative protein structure models.

The TASSER (Threading/ASSEmbly/Refinement) method
developed by Skolnick, Zhang and coworkers uses tertiary restraints
derived from threading results to restrict the conformational search
space. The query sequence is first threaded through the structures
representative of the PDB to identify appropriate local fragments
for further structural reassembly. For a given alignment, an initial
full-length model is built by connecting the continuous secondary
structure fragments through a random walk, followed by parallel-
exchange Monte Carlo sampling for refinement.62,63

12 Computational Structural Biology

FA1
b587_Chapter-01.qxd  1/21/2008  2:44 PM  Page 12



De novo modeling techniques have made tremendous progress
over the last decade, and several individual examples of highly accu-
rate predictions have been reported. However, there are still signifi-
cant limitations that restrict their application for routine use: the
computational demand is immense and therefore limits these meth-
ods to relatively small systems. In parallel, the overall quality of the
resulting models decreases with the increasing size of the protein. As
a result, the accuracy of de novo predictions is in general still poor,
despite a number of positive examples. In CASP7 (Section 1.5), it
was generally not possible to correctly predict the overall fold for a
majority of the de novo modeling targets.64

1.3 Protein Modeling and Structural Genomics

Comparative protein structure modeling and experimental protein
structure determination complement each other, with the long-term
goal of making three-dimensional atomic-level information of most
proteins obtainable from their corresponding amino acid sequences.
To achieve structural coverage of a majority of sequenced genes, sys-
tematic sampling of major protein families with experimental protein
structures is essential (unless the de novo methods become perfect).
Structural genomics is a worldwide initiative aimed at rapidly deter-
mining a large number of protein structures using X-ray crystallog-
raphy and NMR spectroscopy in a high-throughput mode.65,66 As a
result of concerted efforts in technology and methodology develop-
ment in recent years, each step of experimental structure determina-
tion has become more efficient, less expensive, and more likely to
succeed.67 Structural genomics initiatives are making significant con-
tribution to both the scope and depth of our structural knowledge
about protein families. Although worldwide structural genomics ini-
tiatives only account for ~20% of the new structures, these contribute
approximately to three quarters of the new structurally characterized
families and over five times as many novel folds as classical structural
biology.68–73

Most structural genomics consortia follow specific objectives
that include focusing on certain protein classes, such as membrane
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proteins, protein families with special biomedical relevance, enlarg-
ing the coverage of sequence space on the domain level, and deter-
mining all the proteins in a model genome. They are applying
sophisticated bioinformatics strategies for target selection to maxi-
mize the gain in novel insights into protein function from a struc-
tural perspective.68,70,71,74–76

In the light of the ever-growing amount of genome sequencing
data, the structure of most of the proteins, even with structural
genomics, will be modeled and not elucidated experimentally. From a
modeling-centric perspective, the selection of structural genomics tar-
gets should thus be such that most of the remaining sequences can be
modeled with useful accuracy by comparative modeling. As discussed
before, the accuracy of the comparative models currently declines
sharply below the 30% sequence identity. Thus, target selection
strategies should aim at systematic sampling of protein structures to
ensure that most of the remaining sequences are related to at least one
experimentally elucidated structure at more than the 30% sequence
identity.5 Using this cutoff, it has been estimated that a minimum of
16 000 targets must be determined to cover 90% of all the protein
domain families, including those of membrane proteins.77 Such esti-
mates show large variations, depending on the level of sequence iden-
tity that is assumed to ensure sufficiently accurate model building,
and how this coverage is calculated. Recently, it has been proposed to
reduce this number to a manageable size by prioritizing structurally
uncharacterized protein families from PFAM according to the num-
ber of family-members.78 However, it has been argued that such
coarse-grained target selection is suboptimal in terms of reliable struc-
tural and functional annotation, and a selection of “fine-grain” targets
from within larger coarse-grained families of distantly related proteins
would be required to provide a more thorough coverage of functional
space as it relates to protein structure.68

Until recently, sequence databases were highly biased towards
proteins of known function from a relatively small set of model organ-
isms, a result of targeted protein sequencing. However, in the last
decade, whole-genome sequencing efforts have presumably reduced
or eliminated this bias. We are, however, on the threshold of a new
dimension in sequence diversity. The recent meta-genomics projects
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(which are based on shotgun sequencing of populations of micro-
organisms) have yielded new insights into the distribution of (mainly
microbial) protein families. As there is an approximately linear rela-
tionship between the number of sequence clusters and the number of
protein sequences, this indicates that there remain many more protein
families to be discovered. This, in turn, has direct implications on the
selection of targets for structural genomics.79

1.4 Integrative (Hybrid) Modeling Techniques

Biological function is seldom effected by a single protein molecule in
isolation. It is most often the result of transient or stable interactions
among individual proteins in the cell. Most of these interactions
remain uncharacterized by traditional structural biology techniques
such as X-ray crystallography (Chapter 22) and NMR spectroscopy
(Chapter 24). This gap is being bridged by several emerging experi-
mental approaches that vary in terms of the information they
provide.80 For example, the stoichiometry and composition of protein
components in an assembly can be determined by methods such as
quantitative immunoblotting and mass spectrometry. The shape of
the assembly can be revealed by electron microscopy and small angle
X-ray scattering. The positions of the components can be elucidated
by cryoelectron microscopy and labeling techniques. Whether or not
components interact with each other can be measured by mass spec-
trometry, yeast two-hybrid and affinity purification. The relative ori-
entations of the components and information about interacting
residues can be inferred from cryoelectron microscopy, hydrogen/
deuterium exchange, hydroxyl radical footprinting, and chemical-
crosslinking.

When the approaches dominated by a single source of infor-
mation fail, simultaneous consideration of all the available infor-
mation about the composition and structure of a given assembly,
irrespective of its source, can sometimes be sufficient to calculate
a useful structural model. Thus, integrative modeling methods
convert the experimental data derived from the methods listed above
into a structural model of a macromolecular assembly through
computation80 (Fig. 1.1). Such an approach can be used to uncover
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Fig. 1.1 Integrative structure determination. The four steps of determining a
structure by integration of varied data are illustrated with the example of the nuclear
pore complex.80,84,132 First, structural data are generated by experiments, such as elec-
tron microscopy (left panel), immunoelectron microscopy (middle panel), and affin-
ity purification of subcomplexes (right panel); many other types of information can
also be added. Second, the data and theoretical considerations are expressed as spa-
tial restraints ensuring the observed symmetry and shape of the assembly (electron
microscopy, left panel), positions of constituent gold-labeled proteins (immunoelec-
tron microscopy, middle panel), and proximity among the constituent proteins (affin-
ity co-purification, right panel). Third, an ensemble of structural solutions that satisfy
the data is obtained by minimizing the violations of the spatial restraints (from left to
right). Fourth, the ensemble is clustered into sets of distinct solutions (left panel) as
well as analyzed in different representations, such as protein positions (middle panel)
and protein-protein contacts (right panel). The integrative approach to structure
determination has several advantages: (i) it benefits from the synergy among the
input data, minimizing the drawback of incomplete, inaccurate, and/or imprecise
data sets (although each individual restraint may contain little structural information,
the concurrent satisfaction of all restraints derived from independent experiments
may drastically reduce the degeneracy of structural solutions); (ii) it can potentially
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the molecular architecture of macromolecular assemblies and even
atomic models of protein complexes. Even when this model is of
relatively low resolution and accuracy, it can still be helpful for
studying the function and evolution of the corresponding assem-
bly; it also provides the necessary starting point for a higher reso-
lution study.

An example of a simple hybrid approach is building a pseudo-
atomic model of a large assembly by fitting atomic structures of sub-
units into its cryoelectron microscopy map.81 Unassigned or partially
assigned NMR spectroscopy data and fragment-based modeling
approaches have been combined to improve structure refinement in
terms of its accuracy, efficiency, and success rate.82,83 A variety of dif-
ferent types of information, such as symmetry and protein proximity,
have been used to characterize large symmetrical assemblies, includ-
ing the nuclear pore complex,84,85 EscJ from the type III secretion
system,86 and the AAA+ ring complexes.87

1.5 Assessment and Evaluation
of Prediction Accuracy

Protein structure modeling is maturing and therefore widely used as
a scientific research tool today. Consequently, it is increasingly
important to evaluate to what extent the current prediction methods
meet the accuracy and requirements of different scientific applica-
tions (Chapter 5). A good way to assess the reliability of different
protein structure modeling methods a posteriori is by evaluating the
results of blind predictions after the corresponding protein structures
have been determined experimentally. One such effort is the bian-
nual “Community Wide Experiment on the Critical Assessment of
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produce all structures that are consistent with the data, not just one; (iii) the varia-
tion among the structures consistent with the data allows us to assess the sufficiency
of the data and the precision of the representative structure; (iv) it can make the
process of structure determination more efficient by indicating what measurements
would be the most informative. (This figure was reproduced from Fig. 5 in Ref. 80).
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Techniques for Protein Structure Prediction” (CASP).88,89 During a
CASP trial, research groups apply their prediction methods to
sequences for which the experimental structure is about to be deter-
mined. The accuracy of these blind predictions is then assessed inde-
pendently once the structures are made available. There are also
web servers, LIVEBENCH90 and EVA,91 that assess protein structure
prediction servers on an automated and continuous basis using
sequences from the PDB, before their structures are released, as
modeling targets.

1.5.1 Critical Assessment of Techniques
for Protein Structure Prediction (CASP)

The biannual CASP experiments aim to assess the progress of protein
structure prediction methods.88,92 Besides using classical measures for
assessing the accuracy of the Cα positions of the models, several addi-
tional criteria were introduced in CASP7 to ensure that the assess-
ment appraises the overall quality of the models, as well as those
features of the predictions that are relevant to their usefulness in spe-
cific scientific applications, such as the fraction of correctly modeled
hydrogen bond interactions (HBscore), the suitability of models for
phasing X-ray diffraction data, assessment of the accuracy of predicted
cofactor binding sites, and accuracy of the model error estimates pro-
vided by the predictors.

In the latest edition of CASP (round 7 in 2006),39,64,89,93 the gen-
eral trends observed in the previous years continued: comparative
modeling remained by far the most accurate technique for protein
structure modeling. However, the majority of predictions submitted
in the category of template-based modeling (TBM) were again closer
to the template than to the real structure, and only in a few cases,
some improvement over a model based on a single best template
structure was observed. The fact that no group would outperform a
virtual predictor submitting models based on the single best template
for each target indicates that template identification and alignment are
by no means solved problems and constitute a major bottleneck,
besides the challenging question of model refinement. Impressively,
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successful refinement of model coordinates to a value closer to the
experimental structure has been observed, at least in a small number
of cases.22,94

One of the most remarkable results of CASP7 was that automated
prediction servers have matured significantly in the recent years: six of
the top 25 groups in the assessment of template-based models were
predictors using automated prediction servers, which produce their
models without manual intervention. In 29% of a total of 108 cases,
the best model for an individual prediction target was submitted by a
server. The best prediction server63 was ranked third over all, i.e. it
outperformed all but two of the participating groups.93,94

1.5.2 EVA-CM —– Continuous Automated
Assessment of Prediction Servers

The goal of EVA91 is to evaluate the sustained performance of protein
structure prediction servers through objective measures for prediction
accuracy in a fully automated manner. Every week, test sequences are
automatically submitted to prediction servers and the results are eval-
uated and posted on the EVA web sites, thereby providing a contin-
uous, fully automatic and statistically significant analysis of structure
prediction servers. Besides comparative modeling, EVA assesses the
prediction of secondary structure, inter-residue distances and con-
tacts, and threading.

1.5.3 Model Quality Evaluation

Retrospective assessment of the average accuracy of individual mod-
eling methods via projects such as CASP or EVA is invaluable for the
development of modeling techniques, but unfortunately does not
allow drawing of any conclusions about the accuracy of a specific
model, as the correct answer is unknown in a real-life situation. Since
the usefulness of predictions crucially depends on their accuracy, a
means of reliably predicting the likely accuracy of a protein structure
model in the absence of its known 3D structure is an important
problem in protein structure prediction (Section 1.2.1.4). Accurate
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estimates of the errors in a model are an essential component of any
predictive method — protein structure prediction not being an
exception.

Different scoring schemes have been developed to determine
whether or not a model has the correct fold, to differentiate between
the native and near-native states, to select the most near-native model
in a set of decoys, and to provide quantitative estimates for the coordi-
nate error of the predicted amino acids (Section 1.2.1.4). A variety of
methods have been applied to address these tasks, such as physics-
based energies, knowledge-based potentials (Chapter 3), combined
scoring functions, and clustering approaches. Combined scoring
functions integrate several different scores, aiming to extract the
most informative features from each of the individual input scores
(Chapter 4). Clustering approaches use consensus information from an
ensemble of protein structure models provided by different methods.

1.6 Application of Protein Models

1.6.1 Typical Applications of Protein Models

The suitability of protein models for specific applications crucially
depends on their accuracy. There is a wide range of applications for
comparative models, such as designing experiments for site-directed
mutagenesis or protein engineering, predicting ligand binding sites
and docking small molecules in structure-based drug discovery,95,96

studying the effect of mutations and SNPs,97,98 phasing X-ray diffrac-
tion data in molecular replacement,26,99 as well as protein engineering
and design.100 See Chapter 5 for a more detailed discussion about
applications of models.

Although the target-template sequence identity generally corre-
lates well with the overall model accuracy, it is often not suitable for
making decisions about the usability of models for specific applica-
tions. There is a need for new measures to come up with more reli-
able estimates of model quality. For instance, applications in drug
design require a very high accuracy of the local sidechain positions in
the binding site, much more so that the overall global accuracy of the
backbone.94,101 Local estimates of the expected model accuracy on a
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per residue or per atom level would be crucial for many applications,
e.g. phasing of crystallographic diffraction data.39

1.6.2 Modeling GPCRs

Modeling G-protein-coupled receptors has drawn much attention
due to their relevance as drug targets. Constraints-based and homol-
ogy modeling102–104 has been used as a tool to obtain structural models
for GPCRs, at first based on the structures of bacteriorhodopsin,105,106

and since 2000 using the high resolution X-ray structure of bovine
rhodopsin107 as a template for modeling.108,109 Only recently the first
structure of a GPCR bound to a diffusible ligand, the human β2-
adrenergic G-protein coupled receptor,110,111 has become available
and may now serve as a more suitable template for modeling other
members of the class A GPCRs. However, the level of sequence iden-
tity within the members of the class A GPCRs is often very low, seri-
ously limiting the accuracy of the local alignment. Especially the
conformations of non-conserved inter-helical loops are difficult to
model using comparative techniques. Retrospectively, we can analyze
the accuracy of the “historic” comparative models built for the human
β2-adrenergic receptor based on the rhodopsin structure as templates.
While the overall arrangement of the 7 trans-membrane helix seg-
ments is generally correctly represented, significant differences are
observed in the relative orientation and shifts of the helices with
regard to the center of the receptor (Fig. 1.2).

The ligand-binding pocket is, with regard to rhodopsin, formed by
both the structurally conserved and divergent segments. Most devia-
tions are observed for helices III, V, and the extracellular loop ECL2,
which connects helices IV and V (Fig. 1.2). While ECL2 is forming a
β-sheet structure in rhodopsin, in β2-adrenergic receptor it contains an
unexpected additional α-helical segment and a second disulfide bridge
that might stabilize the more solvent exposed conformation.
Consequently, specific interactions between the ligand molecule and
side chains forming the binding pocket are only partially reproduced
by a comparative model based on rhodopsin (Fig. 1.3). See Refs. 110,
111 for a detailed discussion of the individual structural differences, as
well as discussion of the activation mechanism.
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Fig. 1.2 Ribbon representation of the human β2-adrenergic G-protein coupled
receptor with bound ligand carazolol (green, PDB: 2rh1110) and the bovine rhodopsin
(blue, PDB: 1u19107). Bovine rhodopsin has been the only available high resolution
template for modeling class A GPCRs until the structure of β2-adrenergic receptor has
been solved in 2007. (Superposition, stereo view).

1.7 Major Protein Modeling Resources

1.7.1 Protein Modeling Servers and Software Tools

The huge and constantly growing number of structurally uncharac-
terized protein sequences, together with the increasing number of
available template structures requires the development of automated,
stable and reliable modeling methods. Modeling of protein struc-
tures usually requires expertise in structural biology and the use of
highly specialized computer programs for each of the individual steps
of the modeling process. Therefore, automated modeling pipelines
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with integrated expert knowledge such as SWISS-MODEL14,112–114

and MODPIPE15,115 were established 15 years ago and have been
successfully applied to large data sets.3,116–120

Today, there is a plethora of modeling services available on the
Internet. Therefore, the question is what is the most appropriate
method for a specific target? Meta-servers — methods that use the
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Fig. 1.3 The ligand binding site of the β2-adrenergic G-protein coupled recep-
tor. The experimentally elucidated structure in panel (a) (PDB: 2rh1110) as com-
pared to the comparative model based on bovine rhodopsin as template in planel
(b) (PDB: 1u19107).
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results of other servers as input to generate their predictions — are
aiming to address this question.90,121 The general opinion in the
community has been that the models generated using a combination
of automated predictions and human expertise are superior to those
generated using purely automated servers.90 However, it appears that
this view might have to be revised in the near future as the gap
between human predictors and servers is closing. Table 1.2 provides
examples of the major available resources; see Refs. 93, 122 for a
more comprehensive list.

1.7.2 Protein Model Databases

Depositions to the PDB are restricted to atomic coordinates that are
substantially determined by experimental measurements on specimens
containing biological macromolecules.123

Currently, the PDB holds approximately 50000 entries repre-
senting 17 000 different proteins. Using these experimentally eluci-
dated structures as templates, several millions of comparative protein
models have been generated for the protein sequences contained
in the UniProtKB database.3,4,124,125 Databases of annotated compar-
ative models increase the efficiency for expert users, allow cross-
referencing with other (non-structure-centric) resources, and make
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Table 1.2. List of Protein Modeling Servers and Software. For a more
exhaustive list, see Refs. 93 and 122

Modeling Server

SwissModel112–114,124 http://swissmodel.expasy.org
ModWeb115 http://salilab.org/modweb/
I-Tasser63 http://zhang.bioinformatics.ku.edu/I-TASSER/
Robetta133 http://robetta.bakerlab.org

Software Tools
HHPred134 http://toolkit.tuebingen.mpg.de/hhpred
Modeller15,115 http://salilab.org/modeller/
SCWRL319 http://dunbrack.fccc.edu/SCWRL3.php
WhatIf 135 http://swift.cmbi.ru.nl/whatif/
Rosetta60 http://www.rosettacommons.org
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comparative models accessible to non-experts. Many specialized
efforts exist for specific protein families, or specific organisms. These
resources are often manually curated, which poses challenges in
terms of maintaining a reasonable update frequency when new tem-
plate structures and new or updated sequence information become
available. Generic model databases such as MODBASE125,126 and the
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Table 1.3. Databases of Automated Comparative Protein Models

Model Database Resources Refs.

MODBASE http://www.salilab.org/modbase/ 125, 126
SWISS-MODEL http://swissmodel.expasy.org/ 117, 120, 124

Repository repository/
Protein Model http://www.proteinmodelportal.org

Portal

Table 1.4 Protease Models for Entries referenced in the MEROPS Database
available in the Protein Model Portal

Group Number of Number of Average 
UniProtKB Models Sequence 

Entries Identity
with Best
Template

Grand Total 6869 28701 39.0%
SWISS-MODEL Repository 3362 5440 69.9%
MODBASE 5001 21471 33.2%
CSMP (Center for Structures 7 17 19.9%

of Membrane Proteins)
MCSG (Midwest Center 48 48 28.2%

for Structural Genomics)
NESG (Northeast Center 199 244 17.7%

for Structural Genomics)
NYSGXRC (New York SGX 748 1481 16.9%

Center for Structural Genomics)
PDBa 400 2338 N.A.
Protease sequences without 1342 0 N.A.

structure or model

aExperimentally elucidated protease structures. N.A., not applicable.
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SWISS-MODEL Repository120,124 apply entirely automated tech-
niques for large-scale comparative protein structure modeling.

The Protein Model Portal (http://www.proteinmodelportal.org)
has recently been developed as part of the PSI Structural Genomics
Knowledge Base to provide an integrated access to the various data-
bases containing structural information and thereby implementing
the first step of the community workshop recommendation123 on
archiving structural models of biological macromolecules. Currently,
automatically-derived models from six structural genomics centers,
MODBASE and SWISS-MODEL Repository are accessible through
a single search interface. As an example, we have analyzed all the
protease families referenced in the MEROPS database127 for the
number of protein models — and their average sequence identity to
the best modeling template — currently available from the Protein
Model Portal. It is interesting to note that even in this highly stud-
ied class of proteins, there is no structural information available,
experimental or modeled, for approximately 20% of the sequences
in UniProtKB.

1.8 Future Outlook

1.8.1 Model Refinement

Comparative protein structure modeling has matured over the last
decade and is now routinely used in many practical applications.
There has been a continuous increase in the overall accuracy of pro-
tein structure models due to progress in the quality of the sequence-
structure alignments as well as the increased availability of high quality
template structures. However, comparatively little progress has been
made in refining the initial models away from the template closer to
the target structure. Model refinement is particularly relevant for
models based on alignments with a sequence identity below 30%,
which is the typical situation in comparative modeling. Many bio-
medical applications (Section 1.6) are critically dependent on model
accuracy, and the accuracy achieved by comparative modeling based
on low sequence identity templates is often insufficient. Improving
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the accuracy of comparative models beyond the information derived
from the template therefore continues to be one of the key questions
in the future. Although examples of successful model refinement
using molecular dynamics methods have been described occasionally,
these methods do not seem to be generally successful.25,128 The chal-
lenges with refinement seem to reside in the limitations of the cur-
rently available force fields (which do not accurately represent the
energetic interactions of the native state of the protein structure), as
well as in the computational effort required for sampling a highly
dimensional and rugged energy landscape, which is necessary to iden-
tify the global minimum.22,23,26,129

1.8.2 Integrative (Hybrid) Modeling

Cryoelectron microscopy is emerging as a key technique for studying
3D structures of multi-component macromolecular complexes with
masses >250 kDa, such as membrane proteins, cytoskeletal complexes,
ribosomes, quasi spherical viruses, molecular chaperones, flagella, ion
channels, and oligomeric enzymes. Electron cryotomography even
enables the observation of macromolecules inside a living cell in its
native state.130 Various modeling approaches are being developed that
utilize cryoelectron microscopy density maps as a constraint in deriv-
ing a pseudo-atomic model of the molecular components within a
larger complex. Because of the significant likelihood of conforma-
tional differences between isolated domains and biological assemblies,
additional research leading to the development of reliable hybrid
modeling methods, which are able to correctly include structural
information from various experimental sources of different resolution
and reliability, is essential. The important structural information from
hybrid models, generating a synoptic image of the heterogeneous
information available for a given macromolecular system, is expected
to increase sharply in the coming years. Naturally, this raises the ques-
tion of whether it will be feasible at one point to combine all these
data, together with other data related to the overall cellular structure,
to construct a quantitative spatial and temporal model of the cell.131
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Chapter 2

Protein Fold Recognition and Threading

L. J. McGuffin*

2.1 Introduction

Fold recognition and threading methods can be used to assign terti-
ary structures to protein sequences, even in the absence of clear
homology. The ongoing development of such methods has had a sig-
nificant impact on structural biology, providing us with an increasing
ability to accurately model 3D protein structures using very evolu-
tionary distant fold templates.

Although fold recognition and threading techniques will not
yield equivalent results as those from X-ray crystallography, they are
a comparatively fast and inexpensive way to a build a close approxi-
mation of a structure from a sequence, without the time and costs
of experimental procedures. Using fold recognition we are able to
identify proteins with known structures that share common folds
with the target sequences. The identified structures can then be
used as templates from which the folds of the target sequences are
modeled.

For the vast majority of new protein sequences, there will be a
structure with a similar fold within the Protein Data Bank (PDB)1 (see
Table 2.1 for a list of relevant Internet resources) from which a suit-
able model could be constructed.2 Indeed, in the mid-1990s it was
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Table 2.1 A List of URLs to Some of the Currently Available Web Servers, Databases and Software Resources

Name of Resource Description URL

RCSB Protein Data Information portal to biological http://www.rcsb.org/
Bank (PDB) macromolecular structures (1).

NCBI toolkit Software development toolkit containing ftp://ftp.ncbi.nih.gov/toolbox/
programs such as the sequence-profile
PSIBLAST (18) method from National
Center for Biotechnology Information.

UCSC HMM The SAM (19) profile-HMM servers. http://www.soe.ucsc.edu/compbio/HMM-apps/
Applications

FFAS The Fold & Function Assignment http://ffas.ljcrf.edu/
System (21) profile-profile server.

HHpred Server for homology detection and http://toolkit.tuebingen.mpg.de/hhpred
structure prediction by HMM-HMM
comparison (23)

THREADER Links to download THREADER (5) http://bioinf.cs.ucl.ac.uk/threader/
Info Page software and fold library.

PSIPRED Hybrid methods such as http://bioinf.cs.ucl.ac.uk/psipred/
GenTHREADER (33) and
mGenTHREADER (40, 57).

Inub The INBGU (35) hybrid method. http://inub.cse.buffalo.edu/
FUGUE The FUGUE (39) hybrid method. http://tardis.nibio.go.jp/fugue/
I-TASSER The iterative version of the TASSER (42) http://zhang.bioinformatics.ku.edu/I-TASSER/

hybrid method.
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Table 2.1 (Continued )

Name of Resource Description URL

nFOLD2 The nFOLD (41) hybrid method. http://www.biocentre.rdg.ac.uk/bioinformatics/nFOLD/
Pcons meta-server The Pcons (43) meta-server for consensus http://www.bioinfo.se/pcons/

fold recognition predictions.
BioInfobank The 3D-Jury (44) meta-server http://meta.bioinfo.pl/

meta-server
Robetta meta-server The Robetta (47) meta-server for full-chain http://www.robetta.org/

protein structure prediction.
Protein Structure Information regarding the series of CASP http://predictioncenter.org/

Prediction Centre assessments.
LiveBench, Information regarding the series of http://meta.bioinfo.pl/livebench.pl

Continuous LiveBench assessments.
Benchmarking of
Structure
Prediction Servers

e-Protein e-Protein project home page: links to http://www.e-protein.org/
structural annotation databases such as
3D-GENOMICS (53), Gene3D (54)
and the Genomic Threading
Database (56).
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discovered by Orengo et al., that just nine different folds accounted
for up to 30% of the known structures.3 More recently, a study by
Zhang and Skolnick has argued that most sequences can now be
modeled using known folds (or fragments of known folds) as
templates.4 However, it is often the case that for many target
sequences templates cannot be found using simple sequence search-
ing alone, due to the low sequence identity to any known structure.

Fold recognition and threading methods aim to assign folds to
target sequences that have very low sequence identity to known struc-
tures. The original concept of early threading methods was to turn
the problem of comparative modeling upside down. In other words,
the aim was to calculate how well each potential structure would fit a
sequence, rather than how well each sequence fits a structure. In sim-
ple terms, fold recognition methods work by comparing each target
sequence against a library of potential fold templates using energy
potentials and/or other similarity scoring methods. The template
with the lowest energy score (or highest similarity score) is then
assumed to best fit the fold of the target protein.

So what is the difference between fold recognition and threading?
The term “threading” was a neologism coined in the early 1990s by
Jones, Taylor and Thornton in order to describe a novel approach to
protein fold recognition.5 Jones et al. developed the first true thread-
ing method, THREADER, which used the technique of double
dynamic programming similar to that of Taylor & Orengo,6 in order
to optimally fit (or “thread”) a sequence on to the backbone coordi-
nates of known protein structures. The best fitting models were deter-
mined using energy potentials derived from the statistical analysis of
known structures. Threading became one of the most successful
approaches to fold recognition during the 1990s.

The popularity of the method meant that “threading” became a
generic term to describe carrying out protein fold recognition (such
as “googling” has become the generic term used to describe web
searching) and was often used to differentiate structure-based meth-
ods for tertiary structure prediction from sequence-based methods.
Technically speaking, “threading” is a specialized sub-class of fold
recognition and it is now beginning to fall out of common usage.
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Historically, tertiary structure prediction methods were divided
into three categories. The first category included simple sequence-
based methods for selecting templates prior to Comparative
Modeling (CM). In cases where no sequence homologs could be
found, then structure-based methods were used for protein fold
recognition (FR). Finally, ab initio or “new fold” (NF) methods were
used where there were no structural templates available. However, in
recent years the traditional boundaries have become blurred and the
distinction between individual methods has become less clear.
Sequence searching has become more powerful and arguably the tra-
ditional threading techniques which are based on physical energy
potentials are becoming less popular. The term “fold recognition” is
now often used to encompass all methods able to carry out template-
based modeling beyond the so-called “twilight zone” of sequence
identity.

2.2 Sequence-based Fold Recognition
Beyond the Twilight Zone

Traditionally, the term comparative modeling (CM) has been used to
describe those methods which rely on finding a sequence alignment
with relatively high sequence identity (typically >30%) between a tar-
get sequence and a template structure. Additionally, the term Fold
Recognition (FR) was reserved for methods which did not rely on
sequence searching, where the sequence identity between target and
template was below the so-called “twilight zone” of between
25–30%.7 However, ongoing developments in sequence-based meth-
ods have allowed accurate fold recognition beyond the traditional
sequence identity thresholds.

In 1970, Needleman and Wunsch described one of the first com-
putationally efficient methods for carrying out the optimal global
alignment of pairs of biological sequences using dynamic program-
ming.8 The accuracy of pairwise sequence alignments was further
improved by Smith and Waterman in 1981, who modified the
dynamic programming scoring matrix in order to calculate the opti-
mal local alignments.9 While the dynamic programming approaches
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were far more computationally efficient than exhaustively searching
for the best alignment, as the sequence databases began to increase
rapidly in size, it became clear that an even more efficient approach
was required.

The FASTA method10 and BLAST (Basic Local Alignment Search
Tool) method11 were developed in order to perform rapid pairwise
searches for homologous sequences within the vast sequence databases.
Rather than carrying out optimal alignments on whole sequences,
these methods worked by quickly finding matching sub-sequences or
“tuples” shared between the target protein sequences and the
sequences within the databases.

Sequence searching using pairwise methods was also greatly
improved through the use of amino acid comparison matrices. These
matrices were developed in order to score the alignment of different
pairs of amino acids with different weightings. Different weightings
were used to account for the different physical, chemical or structural
properties shared by each pair of amino acids, e.g. a leucine-isoleucine
match would be scored higher than a leucine-tryptophan. Many sets
of matrices have been derived over the years such as the PAM,12

GCB13 and JTT14 matrices, but perhaps the most commonly used set
is the BLOSUM set.15

A benchmarking study by Brenner et al.16 concluded that for
sequences with identities >30%, rapid sequence searching methods
such as FASTA and WU-BLAST17 were found to be comparable in
accuracy to the Smith-Waterman9 based method, SSEARCH.10

However, when the sequence identity was found to falls below 30%,
then conventional pairwise sequence comparison methods were
unable to detect relationships.16

A major step forward in the ability of sequence searching methods
to rapidly detect more distant homologs was made possible through the
development of sequence-profile methods such as PSI-BLAST18 and
SAM-T98.19 Comparisons of sequences against profiles, derived from
multiple aligned sequences, allow for the detection of more distant
evolutionary relationships than can be achieved using pairwise methods.

The popularity of the PSI-BLAST (Position Specific Iterative —
BLAST18) method has meant that it has become the universal
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benchmark against which newly developed sequence searching meth-
ods are often compared. The method works by carrying out iterative
searches for a target protein on a dataset of sequences using position
specific score matrices derived from BLAST profiles. A benchmarking
study carried out by Müller et al.20 found that the PSI-BLAST
method was able to accurately recognize homologues for 40% of the
domains with <20% identity within a model proteome. In addition, a
study by Park et al.19 revealed that up to three times as many remote
homologues could be detected using profile methods such as PSI-
BLAST and their profile hidden Markov model (profile-HMM)
based-method, SAM-T98, than could be found using the pairwise
methods.

The next landmark in sequence-based fold recognition was the
development of profile-profile based methods. In 2000, Rychlewski
et al. developed the FFAS (Fold and Function Assignment System)
method.21 The FFAS method differed fundamentally from sequence-
profile methods such as PSI-BLAST in that it used profiles for both
the target and template sequences. In other words, a profile was gen-
erated for the target sequence which was then aligned to the template
profiles of proteins with known structures. Profile-profile alignment
methods have proved to be another major step forward in sequence-
based fold recognition and many of the current top performing auto-
mated methods now adopt the approach. Ohlson et al. have carried
out a benchmarking study of some of the best early profile-profile
methods.22 More recently, a new approach using profile-HMM–
profile-HMM comparison (HHpred) has been developed which
further extends the accuracy of sequence-based fold recognition.23

Using profile-based methods allows for the detection of templates
beyond the twilight zone threshold of 25–30% sequence identity.
Purely sequence-based methods can be used for recognizing the folds
of target sequences with very remote but common ancestry, i.e. dis-
tant homologues with similar function. Such targets were designated
as Fold Recognition Homologous (FR/H) in the CASP6 experiment
(see Section 2.6). However, these methods often did not perform
adequately at recognizing the relationship between non-homologous
protein targets which have similar folds.21 Such targets were designated
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as Fold Recognition Analogous (FR/A) in the CASP6 experiment
(see Section 2.6). For detecting the analogous proteins which have
similar folds but no sequence detectable common ancestry, using a
method which made use of additional structural information was
often the only clear option.

2.3 Structure-based Fold Recognition and
Optimal Sequence Threading

The first real attempt at developing a method which could recognize
the fold of a protein in the absence of sequence homology was carried
out by Bowie et al., in 1991.24 The method built upon the ideas from
previous studies by Ponder and Richards25 and Bowie et al.,26 which
attempted to relate sequences to folds at low levels of sequence iden-
tity by examining the structural environments of the residues within
the sequence. The premise of the method was that the structural envi-
ronment of the residue was more conserved than the actual type of
residue; therefore, in the absence of homology, a fold could be pre-
dicted by measuring the compatibility of a sequence with template
folds in terms of amino acid preferences for certain structural envi-
ronments. The amino acid preferences for three main types of struc-
tural environment were considered: the solvent accessibility, the
contact with polar atoms and the secondary structure. These struc-
tural environments were reduced to a 1D string which was then
aligned using dynamic programming. Following the development of
the method, several wrongly traced X-ray structures were identified in
the PDB and were subsequently removed from the following release
of the database.27

The success of the approach of Bowie et al. in 1991, highlighted
by the study by Luthy et al.,27 sparked an enthusiasm for the further
development of fold recognition methods throughout the following
decade. Arguably, the most successful fold recognition method
during the 1990s was known as optimal sequence threading, or
threading for short, which was pioneered by Jones et al. in 1992.5

The threading method differed fundamentally from the approach
taken by Bowie et al., in that it considered the detailed network of
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interactions between residues rather than just consigning them to an
individual structural environment. The success of the threading
method was built upon two key factors: the development of energy
potentials derived from the statistical analysis of known structures28

and the double dynamic programming algorithm developed by Taylor
and Orengo.6 The method developed by Jones et al. worked by opti-
mally fitting (or “threading”) target sequences directly onto the back-
bone coordinates of fold templates using double dynamic
programming and then evaluating the fit of each resulting fold using
energy and solvation potentials — the premise being that the struc-
ture which resulted in the lowest energy was the best fit for the target
sequence. In the very first CASP experiment (see Section 2.6), Jones’
threading program THREADER was used to successfully identify the
folds of 8 out of 11 target sequences which had no discernable
sequence homology to known structures.29

Throughout the 1990s, the most accurate methods for protein
fold recognition were arguably those which built upon the original
threading protocol of Jones et al. A number of techniques were devel-
oped which mostly used iterative dynamic programming to build pro-
posed models, followed by an analysis of structurally adjacent residues
to evaluate each model.30–32

Whilst threading was an efficient method for assigning folds to
sequences with little homology to known structures, there were a
number of drawbacks to this technique. Firstly, the double dynamic
programming algorithms underlying threading methods were com-
putationally intensive. This became increasingly problematic due to
the growth in both the number of targets and the number of struc-
tures which could be used as templates. Secondly, the methods often
produced multiple output scores for each target and template which
required human expertise for accurate interpretation. Thirdly, the meth-
ods often produced poor sequence to structure alignments and were
limited to predicting structures with single domain folds. In the early
CASP competitions, it was sufficient to predict the fold class of a target
protein; however, it soon became clear that the accuracy of sequence
to structure alignments must also be evaluated to encourage predic-
tors to provide useful 3D models of proteins to the wider community.
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All of these factors limited the usefulness of pure threading methods
for large scale fully automated structure prediction.

2.4 Hybrid Methods and Fully
Automated Servers

The strengths and limitations of using sequence-based or structure-
based fold recognition methods individually led to the development
of the so-called hybrid fully automated fold recognition servers.
Purely sequence-based methods produced accurate sequence to struc-
ture alignments, but were poor at recognizing folds of protein targets
with very distant homologues. Conversely, the traditional threading
methods were useful for recognizing both distant homologous and
analogous folds; however, they were difficult to automate and pro-
duced poor models due to inaccurate sequence-structure alignments.

The GenTHREADER method developed by Jones33 was one
of the first methods to combine sequence profile-based searches with
energy potentials derived from threading. This hybrid technique was
designed in order to perform rapid, fully automated fold recognition on
a proteome wide scale. The GenTHREADER protocol initially con-
sisted of sequence-profile based searches against a non-redundant fold
library. The resulting sequence-to-structure alignments were then eval-
uated using the energy potentials from the original THREADER
method. The output alignment scores, pairwise energy scores, solvation
energy scores and length information were evaluated using an artificial
neural network, which was trained to recognize targets and templates
with matching folds. The use of a neural network to interpret scores and
a computationally efficient protocol allowed GenTHREADER to be
incorporated as one of the fully automated methods available via the
PSIPRED protein structure prediction server.34

In the following years, a number of alternative fully automated fold
recognition servers became available, which also employed a hybrid
approach. In 2000, Fischer et al. developed the INBGU method,35

which used a combination of sequence profiles and comparisons of the
PHD36 predicted secondary structure of each target with the observed
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secondary structure of each template. The incorporation of secondary
structure scoring allowed for the detection of distant homologues as
the secondary structures are better conserved throughout evolution
than sequences. In addition Kelley et al. developed the 3D-PSSM
method,37 which also incorporated the predicted secondary structure
of target proteins using the more accurate PSIPRED method38 and
used PSI-BLAST for sequence-profile alignments. The target profiles
were aligned against 3D position-specific scoring matrices (PSSMs),
which were generated for templates within the fold library. For each
template, PSI-BLAST was used to generate an initial 1D sequence-
based PSSM, which was then further enhanced using solvation poten-
tials, secondary structures and structural alignments, resulting in a
3D-PSSM. The FUGUE method, developed by Shi et al.,39 similarly
made use of structural alignments, solvent accessibility and secondary
structure information in order to produce environment-specific scor-
ing matrices. The method also made use of structure-dependent gap
penalties in addition to the score matrices in order to align target
sequence profiles against template structural profiles.

Hybrid methods have undergone a number of iterative improve-
ments over the past few years in order to incorporate new innovations
in sequence searching and model evaluation. For example,
GenTHREADER has been updated to include additional structural
information which has resulted in the detection of more remote
homologues40 and the current mGenTHREADER variation of the
method also incorporates profile-profile alignments.41 In addition,
the nFOLD method41 makes use of model quality assessment pro-
grams in an attempt to improve the rankings of models built from
mGenTHREADER alignments. Other successful autonomous fold
recognition servers such as TASSER,42 also combine the best
sequence searching and threading methods along with improvements
in the selection of the highest quality models.

Several autonomous fully automated fold recognition web servers
have arisen in the recent years through which users are able submit a
protein sequence and receive their predicted structures via email.
Figure 2.1 shows a screen shot of the nFOLD2 server submission
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form which is freely available for academic users. The top five pre-
dicted models are returned via email in PDB format (Fig. 2.2). Figure
2.3 shows an example of the top model submitted by the nFOLD2
server for CASP7 target T0339 superposed onto the backbone of the
native structure. Although this individual server often produces good
models, a number of alternative sources of predicted folds are avail-
able and often the best strategy is to obtain information from many
different servers to form a consensus prediction.
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Fig. 2.1 The nFOLD2 protein fold recognition server submission form can be
found at: http://www.biocentre.rdg.ac.uk/bioinformatics/nFOLD/.
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2.5 Meta-Servers

The success of protein fold recognition can be greatly enhanced by
combining the results from many different individual structure predic-
tion servers. During the CASP5 experiment (see Section 2.6), it was
clear that the best server methods were the meta-servers, which
worked by automatically submitting target sequences to many differ-
ent autonomous servers and then collating and interpreting the results
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Fig. 2.2 Results returned via e-mail from the nFOLD2 protein fold recognition
server. The atom records for the top five predicted models are returned to users in
PDB format. The email also conforms to the CASP TS format.
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to come up with a consensus prediction. Some meta predictors such as
the original Pcons method43 and the 3D-Jury44 method were purely
focused on the selection of the highest quality model built from align-
ments obtained from many different servers. The Pcons method and
the 3D-Jury method both worked by using structure superposition of
all the predicted models for each given target. The models with the
highest similarity to all other models were given the highest scores. In
addition, the Pcons method also attempted to directly predict the
quality of individual models and then rank them based on the com-
bined model quality and structure comparison score.

Other meta-server methods such as 3D-SHOTGUN,45

Pmodeller46 and ROBETTA47 were designed to not just simply select
the best model but also to refine or improve upon the initial stock of
models. For example, the 3D-SHOTGUN method attempted to
build hybrid models by splicing together the best fragments from
multiple models. In general, the meta-servers which attempt further
improvements upon initial models have been shown to outperform
those which only carry out model selection.46

Despite the major successes of using the meta-servers for protein
fold recognition the approach has been criticized for hindering the
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Fig. 2.3 The top predicted nFOLD2 model for CASP7 target 70339 (white) is
superposed with the backbone of native structure (dark grey).
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innovation of new autonomous prediction servers. The success of the
meta-servers inherently depends on the underlying methods and
there is a danger that the field could stagnate if novel autonomous
servers are no longer developed.

2.6 Critical Assessment of Methods:
CASP, CAFASP, Livebench and EVA

In 1994, the first meeting was held on the Critical Assessment of
techniques for protein Structure Prediction (CASP1).48 The overall
aim of the CASP experiments was to carry out regular blind assess-
ments of our ability to predict protein structures. The experiments
can be broken down into three main stages: firstly, the collection of
prediction targets from the experimental community; secondly, the
collection of predicted models from the predictors; and lastly, the
assessment of the predicted models and meeting to discuss the results.
For each target, the structural information is known only by the asses-
sors and the experimentalists and the data is not publicly released, so
each CASP is truly a blind experiment from the predictors’ point of
view. The CASP experiments have been held every two years and the
latest experiment at the time of writing was CASP7, held in 2006.

During CASP3, a parallel experiment was initiated, called CAFASP1
(the first Critical Assessment of Fully Automated Structure Prediction),49

which focused purely on the assessment of automated structure predic-
tion servers. The advantage the CAFASP experiments was that they
focused on how well each individual method performed, without any
added expert human intervention. In running the CASP and CAFASP
experiments in parallel, there was also the advantage of directly compar-
ing how well the servers were performing against expert human predic-
tors. As of 2006, the assessment of fully automated prediction methods
was officially fully integrated into the main CASP experiment.

The disadvantage of CASP and CAFASP was that they were only
held every two years and that, for practical reasons, a limited number
of targets (typically ≤ 100) were assessed during each experiment.
The LiveBench50 and EVA51 experiments were initiated in order to
provide continuous benchmarking of structure prediction methods.
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Although both LiveBench and EVA have provided benchmarks on
most categories of structure prediction, it can be said that LiveBench
focuses on benchmarking comparative modeling and fold recognition
servers, while EVA focuses more on providing a benchmark of a wide
cross section of secondary structure prediction methods and contact
order prediction methods. In fact, EVA remains the only official
benchmark of secondary structure prediction methods since the deci-
sion was made to drop the category during CASP5.

In general, the variety of categories of structure prediction have
widened over the years as new methods have been developed to tackle
new problems. For example, while the first CASP competition
focused on secondary and tertiary structure prediction, the most
recent CASP also provided benchmarks for disorder prediction,
model quality assessment, model refinement, domain prediction, con-
tact order prediction and even function prediction. Whilst the variety
of categories has widened beyond predicting 3D structures, the tradi-
tional sub-categories of tertiary structure prediction have become less
distinct.

During the first CASP experiment, there were three main cate-
gories for tertiary structure prediction, depending on the information
available about the target sequence. The first category — Comparative
Modeling (CM) — was assigned to targets where there was a high
sequence identity to a homologous template within the PDB. The
second category was Fold Recognition (FR), which was reserved for
targets with templates of known structure but for which little or no
sequence homology could be detected. Finally, the term ab initio was
reserved for targets which could not be modeled using any available
structures as templates and so predictors would have to start “from
first principles.”

The boundaries between these categories have become increas-
ingly blurred as CASP has evolved over the years. The ab initio cat-
egory became the New Fold (NF) category as innovative methods
were developed, which meant that proteins with novel folds could
be modeled by assembling fragments of structures based on known
folds.52 Due to the improvement in sequence-based searching, the
FR category became further subdivided into FR/H and FR/A and
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improved to distinguish targets with weak homologues from targets
with analogous fold templates. In the most recent experiment
(CASP7), the traditional boundaries have now been dropped
altogether and each target is now more simply categorized as either a
Template-Based Modeling (TBM) target or as Template-Free
Modeling (FM) target. Of course there is still a distinction between
easy and hard TBM targets; some multi-domain targets fall into both
TBM and FM categories and there is still often contention, despite
the simplification.

2.7 Proteome Scale Fold Recognition

The improvement of the accuracy in protein fold recognition strate-
gies and the development of fully automated methods has meant that
it is now possible to carry out tertiary structure predictions for entire
proteomes. A number of databases have been developed which serve
as models built from sequence-to-structure alignments for all the pro-
teins encoded within key genomes. Over the years, several databases
have become available such as 3D-GENOMICS,53 Gene3D54 and
SUPERFAMILY,55 most of which have used a sequence-profile based
method in order to structurally annotate whole proteomes. However,
the Genomic Threading Database (GTD)56 differed from most other
databases in that the GenTHREADER method was used in order to
detect more remote evolutionary relationships between proteome
sequences and structures.

Despite the efficiency of fully automated fold recognition meth-
ods, carrying out predictions for whole proteomes is nevertheless very
computationally intensive. However, the task is parallelizable and pre-
diction jobs can be easily distributed across clusters of processors
using Grid technology in order to speed up the computation. Indeed,
recently McGuffin et al. developed a meta-scheduling software called
JYDE which was used to distribute the load of proteome scale inten-
sive fold recognition.57 Using their JYDE software, McGuffin et al.
were able to structurally annotate the entire human proteome in
about 24 hours using the very latest profile-profile version of
mGenTHREADER (Fig. 2.4).
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The development of the JYDE Grid middleware and the Genomic
Threading Database was in conjunction with the e-Protein project.
The e-Protein project was part of the UK e-Science initiative and was
set up in order to bring together the software and hardware resources
of Imperial, UCL and the European Bioinformatics Institute in order
to provide a fully automated pipeline for structural and functional
annotation of key proteomes.

2.8 Future Outlook

The traditional categories of tertiary structure prediction are becom-
ing less useful for classifying methods. Sequence-based methods are
able detect homology between targets and templates beyond the twi-
light zone and the most successful fold recognition methods now
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Fig. 2.4 The Genomic Threading Database web interface.56 Results show an exam-
ple of a confident model built for human protein domain, which could not be struc-
turally annotated prior to the high throughput fold recognition carried out by
McGuffin et al.57
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incorporate profile-profile based searches in order to produce accu-
rate sequence to structure alignments. In addition, fragment assembly
methods are increasingly being used to model the folds of larger pro-
teins and the traditional threading methods are falling out of common
usage. It is conceivable that in the near future, template-based mod-
eling will be the only technique required to model the folds of almost
all new protein sequences as our knowledge of “fold space” becomes
complete. Indeed, a study by Zhang et al.,4 speculates that we may
already be reaching that point. Template-free modeling methods will,
therefore, be required less often for the modeling of complete folds.
It is likely that template-free modeling techniques will become more
widely used for model refinement i.e. for modeling loops and unstruc-
tured regions where the sequence-to-structure alignments are poor.

As more targets become available at CASP experiments and the
ongoing benchmarking experiments such as LiveBench continue to
drive the development of methods, it will be increasingly impractical
for humans to keep up with fully automated prediction servers. The
accuracy of fully automated methods has greatly increased to the
extent that the meta-servers are now becoming more successful pre-
dictors than humans.58 Conceivably, in the near future all of the top
prediction methods will be server methods and there will be less to be
gained in the modeling process from human intervention. Despite the
usefulness and success of the meta-server methods, developers should
continue to carry out incremental improvements in the underlying
autonomous methods. The recent success of the iterative version of
the TASSER42 method developed by Zhang in CASP7, has high-
lighted the fact that autonomous methods can still show significant
improvements. With further efforts, new autonomous methods will
continue to improve upon model quality and outperform the meta-
servers which rely on predictions from older methods. Increasingly
sophisticated algorithms which can run in hours on a single server
should continue to become more competitive against the intensive
“brute force” approaches which require thousands of CPU days to
provide a single model. Despite this, Grid technology will continue to
play a necessary role in high throughput proteome-wide template-
based modeling.57
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One area of structure prediction which should also grow in pop-
ularity is the development of model quality assessment programs
(MQAPs). As the number of methods and available templates con-
tinue to increase, predictors will be left with a choice of potentially
hundreds of models per target. Increasingly, the problem will be how
to select the best alignments which produce the most accurate mod-
els, rather than one of identifying an appropriate template or getting
a reasonably good alignment.

It is conceivable that the MQAPs and meta-servers, which purely
carry out model selection, will be categorized differently from methods
which further refine models. Indeed, in CASP7 there are now separate
categories for quality assessment (QA) methods and model refine-
ment methods (CASPR). The CASPR experiment focuses on a few
targets and encourages predictors to build models closer to native
structures rather than constructing them from the best available tem-
plate. However, it is clear that both model selection and model refine-
ment techniques will be essential for the development of the most
accurate structure prediction pipelines.

The long-term future outlook for template-based modeling will
be to continue taking the next logical step from tertiary structure
modeling towards quaternary structure modeling. This will continue
to bring computational structural biology closer to the realm of sys-
tems biology. It will become increasingly important to verify and
improve the quality of high throughput protein interaction data being
produced by a number of experimental and predictive methods. The
detailed 3D modeling of protein interactions will enable us to under-
stand how novel interactions may be occurring between proteins at
the atomic level rather than simply inferring which proteins interact.
Preliminary steps towards template-based modeling of interactions
have already been made and it is likely that we will continue to see fur-
ther progress in this area.59
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Chapter 3

Scoring Functions for Protein Structure
Prediction

Francisco Melo* and Ernest Feytmans†

3.1 Introduction

A potential energy function is an essential tool to predict the three-
dimensional structure of a protein. Two fundamentally different
approaches exist to obtain a potential energy function. In the first
one, which is of an inductive nature, a mathematical model that
describes the system is assumed without previous knowledge about
the system’s properties. In this approach, spectroscopic and thermo-
dynamic experimental data and results from quantum mechanical
calculations in simple molecules are used to fit the mathematical
model adopted. The resulting potential is directly extrapolated to
more complex molecules by assuming that a common behavior will
exist in both cases. The potentials obtained by an inductive approach
are called semi-empirical potentials or classical force fields. The sec-
ond approach is deductive or knowledge-based, and assumes the
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opposite scenario: the potential energy function of a large macro-
molecular-solvent system is complex and thus cannot be modeled by
a simple and pre-conceived mathematical model. In order to obtain
an accurate description of the potential energy function, experimen-
tal data from large macro-molecular-solvent systems should be used.
Given their deductive nature, potentials obtained by a deductive
approach are also called empirical potentials, knowledge-based
potentials, statistical potentials or scoring functions, and constitute
the main subject of this chapter. Here, we will refer to those as scor-
ing functions.

In this chapter, we attempt to give a simple and general overview
of scoring functions and their typical applications to protein structure
prediction. There are some excellent reviews on the literature that
provide more details about most of the topics covered here.1–5 By no
means does this chapter attempt to be an extensive revision of the
state-of-the-art on the field.

Scoring functions are widely used in protein structure prediction
because of their relative simplicity, accuracy, and computational effi-
ciency. Among their applications we found the assessment of experi-
mentally determined and computationally predicted protein
structures,1 ab initio protein structure prediction,2 fold recognition or
threading,3 detection of native-like protein conformations4 and pre-
diction of protein stability.5

Scoring functions do not classify forces, but instead, based on
geometrical descriptors (e.g. distance, angles, etc.) extract informa-
tion from experimental data of known protein structures, by deriving
the propensities for the interaction of two or more bodies (Fig. 3.1).
Using principles of statistical mechanics, these scoring functions
describe microstates of atomic interactions within protein structures
as probabilities of discrete events normalized in reference to the
whole system (i.e. all possible microstates). Based on the holistic
nature of scoring functions, which accounts for atom-atom interac-
tions as well as solvation effects, they are also commonly referred to
as effective energy functions. Furthermore, their strong foundations
in statistical mechanics allow us to recognize a physical basis in a phe-
nomena otherwise purely statistical.6
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Scoring functions are informatic functions.7 Their capacity to
properly describe the atomic interactions that are recurrent in native
protein conformations depends on many parameters and on how the
data is compressed and classified. In addition, it is also important to
emphasize that the performance of a scoring function does not only
depend on how the information is extracted, compressed and classi-
fied, but also, on how the information is used.
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Fig. 3.1 Overall scheme for the derivation of scoring functions. From a non-
redundant set of experimental native protein structures that represent the known
folded state, the probability of occurrence of a particular interaction between bod-
ies defined by a restrained geometrical variable s, described in the equation as P(s),
is first calculated. Then, the probability of occurrence of a reference state r
(described as P(r) in the equation), which represents an average state of all interac-
tions by assuming a null-interaction model (i.e. an ideal gas mixture of bodies), is
also calculated from the same experimental data. Finally, the inverse Boltzmann law
is used to infer a scoring function that contains the difference of pseudo-energies or
scores between the folded and unfolded states in proteins upon a given set of geo-
metrical restraints. In this illustration, the score difference obtained for main chain
hydrogen bonds is given in the Z-axis, as a function of sequence separation between
the interacting atoms (Y-axis) and the Euclidean distance that separates them in
three-dimensional space (X-axis), as described by the left-hand rule.
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3.2 Structure and Components
of Scoring Functions

Scoring functions are multi-dimensional matrices that hold a com-
pressed and simplified representation of the existing experimental
data. Irrespectively of the application, all scoring functions have four
main components that define their structure and capabilities: a body
definition, a geometrical descriptor, a reference system, and a set of
restraints. Most of these components can be constituted by a single
type or multiple types and can be designed to provide a rough or
detailed description of the data.

The body definition consists of selecting the type of objects that
will be treated differently from the experimental data. For example, a
body definition can consist of single atoms or centroids of groups of
atoms. Additionally, different atoms or centroids can be further
grouped into a single body type if they share some common features,
such as their physicochemical properties.8 The definition of body
types is adopted to reduce the size of the matrix because the experi-
mental data available is always limited. Additionally, a proper repre-
sentation of body types helps to reduce the dependency between
bodies, which in theory is a condition that should be fulfilled. In prac-
tice this is very difficult to achieve because many dependencies
between bodies arise, mostly as a consequence of atom-atom connec-
tivity issues.

The geometrical descriptors typically adopted to describe the
interactions between the defined bodies are pair-wise distances, sim-
ple angles, dihedral or torsion angles, radial or angular densities, or
any combination thereof.9

The ideal reference system should consist of a weighted average
representation of all possible subsystems.6 It is used as a reference
frame to calculate a meaningful score for a particular state. Because
of the lack of experimental data, a null interaction model is nor-
mally adopted as a reference system, which should approximate
to the weighted average state of all possible states of a system.
In Section 3.3.2, we describe in more detail this important com-
ponent of the scoring functions and its current limitations.
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The set of restraints are used to define the limits or the scope of
the scoring function, to split it into different portions that require
specific treatment, to avoid the emergence of some artifacts and to
improve its performance in particular applications. Typical restraints
of scoring functions include a minimum and a maximal distance
range, the splitting of local and non-local interactions, varying reso-
lutions to store the data, symmetry or asymmetry, distinct derivation
and utilization of the scoring function, and different criteria to select
the source experimental data that is used to derive them.

With these main ingredients, simple or complex scoring functions
can be derived from experimental data, and used for different appli-
cations with a varying degree of success. In the following subsections
we describe some of the most typical scoring functions used for pro-
tein structure prediction.

3.2.1 Contact Scoring Functions

A contact scoring function constitutes the simplest and the more
coarse-grained representation of pair-wise interactions between bod-
ies in native protein structures.10 These scoring functions were the
first to be developed because they consist of a minimum size matrix
that can be properly filled with few experimental data. Typically, a
contact potential is represented by a squared bi-dimensional matrix
[A][A], where A specifies the total number of different bodies defined
(Fig. 3.2). For example, a contact potential relying on a body defini-
tion that consists of the alpha carbons of the 20 standard amino acids
will have a value of A equals to 20. If derived asymmetrically, this
potential will represent the propensities of interaction of 400 body
pairs at a given distance threshold in 3D space.

Contact scoring functions are typically derived symmetrically for
the beta carbons or side chain centroids of standard amino acids.
Therefore, they contain a total of 210 different pseudo-energy, score
or propensity terms (i.e. N × (N + 1)/2, where N is the total num-
ber of bodies). A relevant parameter in these scoring functions,
which is fixed at different values depending on the particular appli-
cation, is constituted by the maximum distance threshold used to
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define a contact. Pair-wise interactions occurring at larger distances
are not considered. Additionally, a contact between two bodies in
the structure could be further restrained by other geometrical
parameters such as angles and/or orientations that are defined on a
given reference frame in the same structure. These additional
restraints are often included in an effort to capture only the effec-
tive interactions between bodies.

3.2.2 Distance-dependent Scoring Functions

Distance-dependent scoring functions capture the propensities of
pair-wise interactions between defined bodies up to a maximum dis-
tance threshold in a binned fashion.11 Each bin contains the score
for a particular distance range defined by a pair of minimum and
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Fig. 3.2 A contact scoring function. Amino acid-based contact scoring function
symmetrically calculated for pairs of non-local interacting beta carbons under 10.0 Å.
In the case of glycine, a virtual beta carbon with the correct chirality and assum-
ing standard stereochemistry was built and used to calculate the contacts. The
approximated energy score of each pair-wise interaction can be obtained from the
spectrum bar.
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maximum values. Typically, the scoring functions of this type have
repulsive values at short distances, one or more minima at intermedi-
ate distances, and values near zero for large distances (Fig. 3.3).

Distance-dependent scoring functions currently are the most
widely used for protein structure prediction because of their favorable
tradeoff between geometric simplicity and amount of information
content they are capable of encoding. Such scoring functions have
been successfully used in many different applications of protein struc-
ture prediction, which include: protein fold assessment or detection
of miss-folded proteins, the ranking of protein conformations, the
selection of native-like conformations, the detailed detection of local
errors in protein models, and the assessment of the stability of single
mutant proteins. These scoring functions often constitute an impor-
tant component of different protein structure prediction methods
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Fig. 3.3 Examples of distance-dependent scoring functions. Atomic non-local dis-
tance-dependent scoring functions in the range 0.0–7.0 Å for (a) the sulfur-sulfur
interaction between two non-local cysteine side chains; (b) salt bridge interaction
between lysine Nε and carboxylic side chain oxygens of aspartic and glutamic acids,
respectively; (c) hydrogen bond interaction between N and O main chain atoms; and
(d) the interaction between methyl-methyl side chain groups.
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(i.e. ab initio protein structure prediction, fold recognition, and com-
parative modeling).

A distance-dependent scoring function is typically represented by
a matrix of four dimensions: [A][A][K][D], where A specifies the
total number of different bodies defined, K provides a distinction
between local and non-local interactions, and D describes the differ-
ent distance ranges or bins to represent the interactions.

Many variants of distance-dependent scoring functions have been
described. These can be calculated at the atomic or at the amino acid
level. They can also describe only the local, only the non-local, or
both types of interactions. The bins, used to convert a continuous
space into a discrete representation of the pair-wise interactions, can
be homogeneous or heterogeneous. Any combination of these vari-
ants can be adopted to calculate a distance-dependent scoring func-
tion depending on the particular application intended.

These scoring functions are normally derived asymmetrically,
because the shape of distance-dependent pair-wise scoring functions
for a common body pair are different (i.e. [i][j] and [j][i]). This
means that these scoring functions are sensitive to the order along the
protein chain of the interacting bodies, which makes them more suit-
able than contact scoring functions to capture some detailed struc-
tural aspects, such as those that occur both at the core and at the
boundaries of regular secondary structures in proteins.

3.2.3 Accessible Surface Scoring Functions

Accessible surface scoring functions attempt to capture the propensity
of interaction of the defined bodies with the solvent (Fig. 3.4). They
typically include a residue-based solvent accessibility3 or an atomic
solvent accessibility description.12 In both cases, these scoring func-
tions offer a simplified representation of solvent exposure by an
implicit model (i.e. solvent is not explicitly included when the scoring
function is calculated nor when it is used). Often, the accessible sur-
face of a body is represented by the total number of other bodies that
are found surrounding it at a given and fixed distance threshold (i.e.
within a fixed radius sphere that is centered on a body).
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3.2.4 Combined Scoring Functions

Because accessible surface scoring functions complement the infor-
mation of contact and distance-dependent scoring functions, they are
sometimes used in a combined fashion.1 In this scenario, accessible
surface terms capture the interactions between the protein and the
solvent, and the contact and distance-dependent terms capture the
intramolecular protein interactions.

To properly combine these two independent scoring functions, a
normalization scheme is required.6 This is because accessible surface
scoring functions only calculate a single term for each body, while the
contact and distance-dependent scoring functions often consider many.
Therefore, if directly combined (i.e. simply added), the total weight of
the accessible surface score in the resulting combined scoring function
is quite low.

3.3 How is a Scoring Function Derived?

The derivation of scoring functions for protein structure prediction is
carried out by using the inverse Boltzmann law, which in its general
form states:
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Fig. 3.4 Examples of accessible surface scoring functions. Atomic-based accessible
surface scoring functions for (a) carboxylic side chain oxygens of aspartic and glutamic
acids; and (b) aromatic carbons. The total number of surrounding atoms are counted
within a 10.0 Å sphere radius centered on the atom.
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where ΔE (s) represents the change of energy associated with the
transition between the unfolded and the folded states defined by the
variable s; pF(s) represents the probability of occurrence of the sub-
system defined by s in the folded state F; pU(s) represents the proba-
bility of occurrence of the subsystem defined by s in the unfolded
state U; R is the gas constant and T the absolute temperature meas-
ured in Kelvin. Unfortunately, the term pU(s), which describes the
reference state, cannot be directly calculated because a homogeneous
and unbiased experimental sample of the unfolded state of proteins
is not available. As an attempt to circumvent this problem, the
observed interactions among any pair of atoms by assuming a null
interaction model are often used as a reference system to derive the
scoring function.11

More specifically, and using as an example the derivation pro-
posed by Sippl,11 the distance-dependent scoring function can be
calculated using the following expression:

(3.2)

where Mijk is the number of occurrences for the interaction of
atom types i and j at sequence separation k and is calculated as
follows:

(3.3)

where r is the number of classes of distance. σ is the weight given
to each observation. σ = 0.02 is generally used, so that with 50 obser-
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separation k in the class of distance d, and is calculated by the follow-
ing expression:

(3.4)

where f xx
k (d) is the relative frequency of occurrence for all the inter-

actions of any two atom types at sequence separation k in the class of
distance d and is calculated as follows:

(3.5)

where n is the number of different atom types and r is the number of
distance classes. The temperature T was set to 293 K, so that RT is
equivalent to 0.582 kcal/mole.

The distance-dependent scoring functions are typically derived for a
maximal distance range and divided into a fixed number of homoge-
neous or heterogeneous bins or distance classes; both parameters being
arbitrarily defined. Finally, different atom types for all non-hydrogen
atoms in the 20 standard amino acids are defined in various ways. These
definitions are typically performed in order to minimize the size of the
matrix that stores a finite number of observations from experimental
data, by collapsing different atoms or amino acids that are similar from a
physicochemical point of view into a same type.8,13 An example showing
the key steps in the derivation of a distance-dependent scoring function
for the non-local interactions is given in Fig. 3.5.12 This example uses the
uniform density reference system (see below) described by Sippl.11

3.3.1 Selection of Source Experimental Data

To avoid any possible bias in the statistical representation of data and
their subsequent utilization, the scoring functions should be derived
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Fig. 3.5 Derivation of a scoring function. The critical quantities required to derive
a scoring function are shown. In this example, a non-local distance-dependent scoring
function for the hydrogen bond between main chain atoms N and O is calculated. A
total of 138 native proteins were used to calculate this scoring function. The term Mij
in this particular example corresponds to a total of 73 855 interactions and σ is 0.02.
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from a non-redundant set of experimental protein structures. The
most typical approach to achieve this consists of using a set of unre-
lated proteins, which is defined upon a fixed sequence similarity
threshold after an all-against-all pair-wise sequence comparison.14

A sequence similarity threshold is adopted based on the known
sequence to structure relationship first observed and described by
Chothia and Lesk.15

Since the source data contains proteins of known experimental
structure, another option that is more valid, but also more expensive
in terms of calculations, is to define the non-redundant set based on
the structural comparison of the structures.16 Currently, there is no
need to calculate these sets, since several non-redundant data sets
obtained at different structural similarity thresholds are easily available
and frequently updated.17

However, all the existing sets of non-redundant protein structures
have been calculated through automated procedures, which are unable
to detect all possible sources of errors. For that reason, it is still impor-
tant to filter them by checking some important features of the protein
structures, therein defined such as the resolution, duplicated or missing
atoms, structural gaps, atom clashes, and size. This issue is extremely
important, because the incorporation of protein with errors in the data
set used to derive a scoring function can have a significant impact on its
final performance. As the size of the PDB database increases, this issue
becomes more relevant, since a semi-automated method for the selec-
tion of the non-redundant data set is more difficult. Therefore, special
attention should be paid to this issue in the future.

3.3.2 Reference Systems

The calculation of scoring functions requires the definition of a
reference state that represents an average interaction of the system.
Typically, a null interaction model is assumed to calculate such an
average. Two main reference states have been proposed and used:
the uniform density11,18,19 and the distance-scaled finite ideal-gas.5

In the uniform density model, the total number of pairs in any given
distance shell for a reference state will be the same as that for folded
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proteins. Therefore, this reference state model could not necessarily
constitute a truly non-interacting ideal-gas system. In the distance-
scaled finite ideal-gas model, the protein atoms are treated as non-
interacting and uniformly distributed points in finite spheres.

Irrespectively from the reference system used to calculate a scor-
ing function, it is important to mention that it constitutes a critical
feature that will largely determine its successful application.

The best solution to the problem of the reference system definition
would be to have a representative and unbiased experimental sample
of the unfolded state of proteins (see the discussion in Section 3.7).

3.4 How is a Scoring Function Used?

Scoring functions can be either used to calculate a single overall score
of a protein conformation or a detailed score per residue. When a pro-
tein conformation is evaluated with a scoring function, the list of rel-
evant geometries between bodies must be built first. Then, each
observed geometry will have a score term associated with it. For
example, in the case of the distance-dependent scoring functions, all
body-body distances are calculated and their corresponding scores
obtained based on the specific body pair and the distance that sepa-
rates them in three-dimensional space. These individual scores can be
added to obtain a total sum for the complete protein or added for
each amino acid independently. The utilization of overall or detailed
scores depends on the particular application of the scoring function
and is described in more detail next.

3.4.1 Classical Overall Score Calculation

The overall score calculation consists of adding up all observed terms
corresponding to specific geometries in a protein that fulfill the
restraints of the scoring function. In the case of scoring functions
at the atomic level, the resulting score can be normalized by the
total number of contributing terms or simply kept as a raw score.
For scoring functions at the amino acid level, more sophisticated
normalization schemes such as the calculation of a z-score can be
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adopted, which is useful to compare scores between proteins that are
different in size, structure, and amino acid composition.6

The overall z-score of a protein is calculated based on the total
score of the particular protein conformation and also in a distribution
of scores obtained for a set of different proteins of the same size and
composition as the protein being evaluated. The general mathemati-
cal expression of the z-score is:

(3.6)

where Z is the z-score, S the total score of the protein, μ the average
score, and σ the standard deviation of the scores obtained for a set of
different proteins.

Two different approaches can be used to calculate the overall
z-score of a protein with scoring functions at the amino acid level.
The first uses as a reference frame the sequence space of proteins. The
second is based on using distinct known native protein structures as a
reference frame.

3.4.1.1 Sequence space reference frame

The overall z-score of a protein is here calculated using the total score
of the particular protein conformation and a distribution of scores
obtained from a set of random proteins of the same size and composi-
tion as the protein being evaluated (Fig. 3.6). The sequence of the pro-
tein is randomized hundred or thousand times and threaded into the
same conformation, thus generating many random proteins with the
same structure. By using this normalization model, the z-score gives a
reference value in relation to the score expected by chance for a protein
of this size and amino acid composition that adopts this conformation.9

3.4.1.2 Structure space reference frame

Instead of using a single conformation and many different sequences
of the same size and amino acid composition, the z-score could also

Z
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Fig. 3.6 Reference frames for the calculation of z-scores. In the top panel, several
random (Rn) protein models with the same conformation are built, their scores cal-
culated and used as a reference distribution for the calculation of the z-score. In the
bottom panel, many alternative native conformations (Cn) are tested for a single pro-
tein sequence.
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be calculated based on a single sequence that adopts many different
conformations (Fig. 3.6). This approach requires an artificial polypro-
tein that consists of a set of distinct or non-redundant known native
structures connected together.1 The sequence of the protein being
evaluated is threaded at different starting positions through the
polyprotein, thus generating many alternative native conformations
for the same protein sequence. By using this normalization model, the
z-score gives a reference value in relation to the score expected for a
given protein when adopting known native conformations.

3.4.2 Classical Detailed Score Calculation

In addition to the overall score, there are some applications that require
a more detailed score calculation such as the total score value for each
amino acid. These include the detection of errors in particular regions
of a protein structure or the prediction of mutation effects in protein
stability. For example, the detection of particular residues or local
regions with structural errors is typically carried out by means of
smoothed and normalized score profiles. The normalized total score
per residue (SR) is defined as follows:

(3.7)

where N is the total number of i atoms belonging to a given residue,
and M is the total number of atoms j that interact with atom i at
sequence separation k and below the distance range defined in the
scoring function. ΔSij

k (d) corresponds to the score assigned by the
scoring function to the interaction between atoms i and j, at
sequence separation k and at distance d. T R is the total sum of
i,j interactions recorded for residue R and lies in the range 0 ≤ T R ≤
N × M. The normalized score profiles can also be further smoothed
by a sliding window with a fixed length of residues (typically in
the range 5–15 residues). These normalized and smoothed score
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profiles can be finally used to locally assess the structural errors in a
protein structure.

3.4.3 Variations on Score Calculations

Though most of the existing scoring functions are used with the same
set of parameters that were adopted to derive them, in some particu-
lar cases it would be more convenient to modify this scheme.20–22 The
scoring function is derived with some parameters and used with a dif-
ferent set of parameters due to some limitations about the existing
experimental data and the methodologies used to derive them. These
limitations mostly arise because there is a lack of unbiased experi-
mental data representing the unfolded state of proteins and also
because of atom-atom connectivity issues, which result in some
assumptions clearly not being valid (i.e. different atom-atom interac-
tions being independent among them).

An example of this hybrid approach consists of the derivation of a
scoring function based only on the non-local interactions and its
subsequent utilization to calculate the scores of the non-bonded
interactions.20,21 Another example is to derive a scoring function for all
interactions occurring up to a given distance range, and then using it to
calculate only the effective interactions that are not shielded by other
atoms.22 These new approaches exhibit an improved performance at
discriminating between native and near-native protein conformations.

It has been proposed, but not yet demonstrated, that these hybrid
derivation/utilization approaches lead to a minimization of the exist-
ing mutual information among atom pair interactions, thus leading to
scores that relate more closely to the true energies of a protein-solvent
system.21,22

3.5 Typical Applications of Scoring Functions
in Protein Structure Prediction

Many different applications of scoring functions in protein structure pre-
diction have been described. These include evaluating whether or not a
given protein model has the correct fold (i.e. fold assessment), picking
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the most accurate model out of many alternative models (i.e. detection
of native-like protein conformations), estimating the overall geometrical
accuracy of a model (i.e. model ranking), estimating the geometrical
accuracy of the individual regions of the model (i.e. error detection), and
prediction of protein stability (i.e. mutant screening). Next, we refer to
these in more detail and provide examples for some of them.

3.5.1 Fold Assessment

Fold assessment consists of assessing whether or not a given protein
model has the correct fold and constitutes the first step in protein
structure assessment. For example, a protein model that has been
built by comparative modeling will have the correct fold if the correct
template was picked and if the template was aligned at least approxi-
mately correctly with the target sequence.23

Residue-based combined accessible surface and distance-dependent
scoring functions have shown the best performance for this particular
task.9 Therefore, a combined z-score is typically calculated for a protein
structure model, and if the z-score is below a fixed and optimized
threshold, the correct fold is predicted. Otherwise, the protein model
is rebuilt after modifying several input parameters of the protein struc-
ture prediction software, and the fold assessment process is carried out
again. Accurate fold assessment is particularly useful in large-scale pro-
tein structure prediction and also in predicting the structure of proteins
that do not exhibit a clear sequence similarity to known protein struc-
tures (i.e. fold recognition and ab initio protein structure prediction).

3.5.2 Model Ranking

The model ranking problem consists of sorting many different protein
conformations according to their expected accuracy or deviation from a
native structure. This is often necessary when many models for the same
target protein are built, which is typically the case in comparative mod-
eling. Several models can be generated by subtle changes on the input
sequence-structure alignment, by selecting a different template structure
or by different runs of molecular dynamics and energy minimization
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applied to some hypervariable regions in a protein (i.e. typically the loop
regions that result from insertions or deletions in the template structure).

Though the ranking of models constitutes a difficult challenge,
atom-based distance-dependent scoring functions have proved to be
useful for this particular task in some cases.18,24 However, the correla-
tion between scores and structural deviation can still be significantly
improved. It seems that more complex multi-variate scoring functions
will be required in order to improve the results in this particular appli-
cation (see Sec. 3.7.6 below).

3.5.3 Error Detection

The detection of localized protein structure errors is an important problem
in protein structure prediction. The ability of a scoring function to detect
wrongly modeled regions constitutes the first requirement to be fulfilled
in order to improve the prediction of these regions. In accurate com-
parative models, localized errors are typically found at the loop regions.
Unfortunately, these regions often determine some key aspects such as
the substrate selectivity of enzymes or the specificity of antigen binding
in antibodies. Detection of small and localized errors can also be impor-
tant to assess the quality of experimentally solved protein structures.

The most successful scoring functions for tackling this problem
are atom-based distance-dependent functions. The detection of local
errors is typically carried out by the calculation of score profiles and
the subsequent selection of local clusters of amino acids that are
found above a certain score threshold.1,12 The major difficulty to
improve the correct detection of wrongly modeled regions arises
because these zones are normally interconnected in three-dimensional
space (i.e. they interact with each other). Scoring functions with a
shorter distance range and a stronger local component are less sensi-
tive to this problem and thus perform better.20

3.5.4 Folding and Molecular Simulations

Scoring functions can also be used for molecular dynamics and energy
minimization simulations. Though they are discrete functions,
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through direct interpolation from the data a first derivative can be
easily obtained. Despite of this possibility, scoring functions have not
been extensively used for energy minimization and molecular
dynamics simulations. One successful application of scoring func-
tions on this subject has been carried out for the modeling of loop
conformations.25 In this work, a non-local scoring function12 was
combined with CHARMM-22 molecular mechanics force field26,27 by
replacing Lennard-Jones and Coulomb non-bonded terms from
CHARMM by the complete set of terms from the scoring function.
Therefore, the 1–2 bond, 1–3 angle, and 1–4 dihedral and improper
dihedral energies were obtained from CHARMM; and the 1–5 and
above non-bonded pseudo-energies were obtained by cubic spline
interpolation from the discrete scoring functions. Thus, all 1–5 or
higher non-bonded interactions were obtained from a single pseudo-
energy function that was derived non-locally for each atomic pair.
Contributions from both potentials, as well as residue side chain
dihedral angle pseudo-energies derived from the observed statistical
preferences in experimental data,28 were equally weighted and com-
bined to get the total pseudo-energy of the system. It turned out
that this approach resulted in the most accurate predictions of loop
conformations.25 These results suggest that more effort at incorpo-
rating scoring functions not only to assess some fixed or static con-
formations of proteins, but also to generate or to predict them
through molecular dynamics simulations, should be attempted.

3.6 Other Applications of Scoring Functions

The scoring functions described in this chapter are not necessarily
restricted to the particular application of protein structure prediction.
Just to name some, we have recently been successfully applying this
kind of scoring functions to other relevant problems that include:
(1) Sequence-based fold assignment of proteins in absence of
sequence similarity to known protein structures, (2) sequence-based
gene prediction, (3) sequence-based prediction of structure in RNA
molecules (i.e. stable secondary structure formation and internal ribo-
some entry sites existence), (4) structure-based ligand binding site
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prediction, and (5) text-based assignment of authorship of anony-
mous or disputed documents.

3.7 Future Outlook

There are many aspects in the derivation and use of scoring functions
that could be improved. In this section, we proceed to briefly describe
those, which, in our opinion, are the most relevant.

3.7.1 Reference Systems and Atom Type Definitions

Scoring functions rely on a reference system or reference state to
calculate the difference of score between two states (i.e. the folded
and unfolded state). Unfortunately, the reference state is also calcu-
lated from the same dataset of native protein structures solved by
experiment and do not necessarily correspond to the real probabilities
that exist in the unfolded state. The reason for doing this is that an
unbiased and representative experimental data source for the
unfolded state of proteins is not yet available. Both the uniform den-
sity or the distance-scaled finite ideal-gas reference states cannot
explicitly deal with some relevant issues such as atom-atom connec-
tivity side effects and the independence of pair-wise interactions,
which become extremely important for non-bonded interactions of a
short-distance range.20,21

As it has been recently proposed, one possibility to minimize this
problem is to derive scoring functions only for the effective atom-
atom interactions.22 The effective scoring functions show a significant
improvement in the difficult challenge of discriminating between
native and near-native conformations. Another option would be to
improve the atom type definitions, in order to minimize the mutual
information between different atom pairs.7 Scoring functions are
informatic functions built under the assumption that all interactions
are independent, which is clearly not true in some cases such as in the
close non-bonded interactions and the long-distance range interac-
tions. Most of the problems arise due to atom-atom connectivity
issues. The use of effective interactions could be a solution for the
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derivation of long-distance range scoring functions and a proper def-
inition of atom types could aid in overcoming the observed depend-
ency effects among different atom pairs.

3.7.2 Solvation Models

Most of the described solvation models obtained by knowledge-based
approaches are very coarse-grained. They only provide a general
description of the burial propensity by a single term. More strictly,
solvation effects should be better described by a scoring function con-
taining pair-wise terms between solvent and protein atoms. However,
the modeling of water atoms in this hypothetical explicit solvent model
would be a difficult task. We propose that a combined explicit-implicit
solvent model should be developed. A possible strategy for doing this
will be the following: first, an effective solvation propensity needs to
be derived for each protein atom from experimental data of native
proteins. This would be possible based on the fact that known protein
structures contain many solvent molecules. Second, an estimation of
the total number of expected interactions between a protein atom and
the solvent could be derived based on the exposure of a protein atom.
Though this would be more difficult to calculate directly and accu-
rately for all atom types, the problem could be initially addressed for
polar atoms and then extrapolated to the non-polar ones. With these
two ingredients, the solvation score of a particular protein conforma-
tion could be calculated in a pair-wise fashion without explicitly con-
sidering the solvent molecules (i.e. just by multiplying the expected
number of water molecules surrounding a protein atom based on its
exposure by the solvation propensity score of that protein atom). This
strategy would allow many solvation terms to be obtained for each
protein atom found at the surface, thus eliminating the need for nor-
malization of accessible surface terms and pair-wise terms in the com-
bined scoring functions. In this scenario, the amount of information
obtained from both scoring functions would be properly balanced:
(1) Buried atoms would be assessed based on the pair-wise protein
terms, (2) exposed atoms would be assessed based on their interaction
propensity with solvent molecules, and (3) intermediate buried atoms
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would be assessed by a balanced sum of the terms from the two scor-
ing functions.

3.7.3 Evolutionary Information

Scoring functions are currently derived from structural data alone,
totally neglecting experimental data about protein sequences.
However, the total number of available sequences constitutes a rich
source of information about homologue proteins to known experi-
mental structures that are able to fold. Based on the findings of
Chothia and Lesk in 1986, we know that structure is more conserved
than sequence, and thus more or less accurate structural models could
be built for many of the available sequences by comparative modeling.
These models could be then used to derive residue-based scoring
functions for each specific structural space, thus capturing not only
the thermodynamic contributions of the protein folding, but also
some kinetics constraints of the process that are present in a particular
fold space.29 The proper knowledge and usage of this kind of “evolu-
tionary scoring functions” could be very useful for protein structure
prediction, and particularly for fold recognition and protein design. It
can also have a positive impact in the structural genomics project by
aiding the selection of new protein folds.30

3.7.4 Multivariate Scoring Functions

There are many problems that cannot be properly tackled with single
scoring functions. Among these we found the fold assessment of short
and incomplete protein models.9,31 Most large-scale protein structure
efforts produce many short and incomplete protein models.32 The
major problem of assessing this kind of protein models with current
scoring functions resides in the fact that they are artificial and thus not
found in nature in that way (i.e. an accessible surface scoring function
will poorly assess them). However, on the other hand, these types
of protein models still contain some useful information for func-
tional inference (i.e. structural matching of functional template sites)
and/or for the rational design of experiments. Therefore, in this case,
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a multivariate scoring function is needed, which should be capable of
selecting or weighting properly the individual terms to give an accu-
rate assessment. Some multivariate scoring functions have already
been described for this particular problem, which have proved to be
significantly more accurate in the assessment of the difficult cases
described above.31,33,34
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Chapter 4

Assessment of Protein
Structure Predictions

E. Capriotti and M. A. Marti-Renom*

4.1 Introduction

Since the beginning of the 1980s, protein structure prediction and
simulation have been one of the most challenging tasks for computa-
tional structure biology. Although progress has been made, one can
openly say that reliably predicting the fold of all known protein
sequences is still far from reach. Current approaches can predict a
three-dimensional (3D) protein structure for parts of ~60% of the
sequences of an average genome.1–3 Recently, automatic large-scale
predictions of 3D structure models are being made available on the
web. For example, the ModBase database2 currently stores more than
4.2 million models, the SwissModel repository1 stores ~1.3 million
models, and the PMDB database3 stores ~75 000 models. Therefore,
comparative protein structure modeling is filling the gap between the
known sequence and structure spaces.

In the post-genomic era, a more difficult task lies ahead in anno-
tating, understanding, and modifying the function of proteins. This
task is greatly aided by the knowledge of the protein structures, as the
biochemical function of a protein is determined by its structure and
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dynamics. In the absence of an experimentally determined structure,
3D models are often valuable for rationalizing existing evidence and
guiding new experiments.4 However, the accuracy of a model deter-
mines its utility (Chapter 5), making a means of reliably determining
the accuracy of a model an important problem in protein structure
prediction.4,5 Model assessment aims to predict the likely accuracy of
a protein structure model in the absence of its known 3D structure.

Model assessment has been previously applied to: (i) determine
whether or not a model has the correct fold,6–9 (ii) discriminate
between the native and near-native states,10–19 and (iii) select the most
near-native model in a set of decoys that does not contain the native
structure.16–18,20–23 Several scoring schemes have been developed for
these tasks, including physics-based energies, knowledge-based
potentials, combined scoring functions, and clustering approaches.
Physics-based energy functions are true energy functions describing
the interactions acting upon all atoms in a protein structure and are
typically developed for and used in molecular dynamic simulations.
Statistical or knowledge-based potentials are derived from known
protein structures by applying the inverse of the Boltzmann’s equa-
tion and comparing a system in the thermodynamic equilibrium with
the database of folded protein structures. Combined scoring func-
tions usually integrate several different scores with the aim of extract-
ing the most informative features from each of the individual input
scores. Finally, the so-called clustering approaches use consensus
information from an ensemble of protein structure models provided
by one or more methods.

We begin this chapter by introducing the problem of protein
structure prediction (Chapter 1). Next, we describe the four main
approaches to model assessment. Details describing some of the most
widely used scoring function are also provided together with a table
of Internet resources for model assessment (Table 4.1). Finally,
some of the results from the recent evaluation of model assessment
methods carried out at the seventh Critical Assessment of Techniques
for Protein Structure Prediction (CASP) experiment are introduced
before a final outlook of the future of model assessment.
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4.2 Protein Structure Prediction

The aim of protein structure prediction is to build a 3D model
for a protein of unknown structure (target) either using ab initio
methods (i.e. template-free approaches) or on the basis of sequence
similarity to proteins of known structure (i.e. template-based
approaches such as comparative modeling or threading). Chapter 1
in this book provides a comprehensive introduction to protein
structure prediction.
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Table 4.1 A List of URLs to Some Relevant Internet Resources

Title Refs. URL

DECOY SETS

Decoys “R” Us 72 http://dd.compbio.washington.edu
RAPPER 73 http://mordred.bioc.cam.ac.uk/~rapper/decoys.php 
Skolnick lab 17 http://cssb.biology.gatech.edu/skolnick/files/all-atom/
ROSETTA N/A http://www.bakerlab.org
Sali lab N/A http://www.salilab.org

PHYSICS-BASED ENERGIES

CHARMM 26 http://www.charmm.org 
AMBER 25 http://amber.scripps.edu 
GROMOS 74 http://www.igc.ethz.ch/gromos/ 

KNOWLEDGE-BASED POTENTIALS

VERIFY3D 75 http://nihserver.mbi.ucla.edu/Verify_3D/ 
TAP 58 http://protein.cribi.unipd.it/tap/  
FRST 76 http://protein.cribi.unipd.it/frst/  
ANOLEA 77 http://protein.bio.puc.cl/cardex/servers/anolea/ 
DFIRE 41 http://sparks.informatics.iupui.edu/hzhou/dfire.html 
PROSA-Web 78 https://prosa.services.came.sbg.ac.at/prosa.php 
PROQ 21 http://www.sbc.su.se/~bjornw/ProQ/ProQ.cgi 
SIFT 79 http://sift.cchmc.org 
HOPPscore 80 http://hoppscore.lbl.gov/run.html 
HARMONY 81 http://caps.ncbs.res.in/harmony/
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Since the accuracy of a protein structure model determines its
usability,4 two basic conditions must be met to build a useful 3D
model. First, an accurate model needs to be built based on the correct
template and approximate correct alignment. Second, a reliable score
for the model has to be computed to assess its accuracy. Thus, the aim
of the second step is to predict errors in models produced in the first
step. Next, we outline some of the typical errors in protein structure
models. The first two types or errors are specific of template-based
approaches while the rest also apply to template-free approaches:

Template selection. The initial step in template-based protein structure
prediction is the selection of a template structure. Although selecting
the incorrect template is a major error affecting models based on very
low sequence identity to their templates (i.e. under ~25% sequence
identity), current model assessment methods are usually able to reli-
ably detect it.

Misalignments. One of the largest sources of errors in models from
template-based approaches is the incorrect alignment between the target
and the template sequences. Such errors affect models based on ~40%
or less sequence identity to the closest template(s). The use of multiple
sequence alignments, multiple templates and iterative model-building
and target-template alignment modification may alleviate such errors.

Template-free modeling. Segments of the target sequence that have no
equivalent region in the template structure (i.e. whole protein for
template-free modeling or insertions in template-based modeling) are
the most difficult regions to model.

Rigid body shifts. As a consequence of sequence divergence there is a
natural diversity between two homologous sequences. One type of
structural diversity is the rigid distortion of parts of the models. The
use of multiple templates may reduce such error.

Side chain packing. The correct packing of side-chain atoms is essen-
tial for high-resolution modeling where the resulting models may be
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used for docking of small molecules. Therefore, methods for predict-
ing the detailed accuracy of a model are becoming even more impor-
tant in the advent of a large number of determined structures and the
use of models for the docking of small molecules.24

Fortunately, during the last decade, the development of more
accurate fold assignment and target-template alignment methods
together with the use of multiple sources or structural information are
mitigating the errors in protein structure models.

4.3 Model Assessment

Protein structure model assessment addresses the general question of
how accurate a model is. More specialized questions include: (i) eval-
uating whether or not the model has the correct fold, (ii) selecting the
most accurate model from a set of decoys or alternative solutions,
(iii) estimating the overall accuracy of a model (i.e. defining a score that
correlates with the RMSD after superimposing a model and its native
structure), and (iv) estimating the accuracy of different regions in a
model. In the next sections we introduce the four types of available
approaches for model assessment, which are used to address some or all
of the problems mentioned above: physics-based energies, knowledge-
based potentials, combined scoring functions, and clustering approaches.
Table 4.1 provides a list of relevant accessible Internet resources.

4.3.1 Physics-based Energies

Molecular mechanics energy functions with solvation models are the
usual components of physics-based energies. Generally speaking,
chemical force fields are functional forms encoding a set of param-
eters for describing the energy of a system of particles. The function
and the parameters describing a force field are usually derived both
from experimental observations and quantum mechanical calcula-
tions. A basic representation of a force field energy function depends
on two main contributions: a term describing the energy from chem-
ical bonds between the atoms in the system and a term describing the
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interactions between non-bonded atoms in the system. The first term
depends on the distances, angles, and dihedral angles between
bonded atoms in the molecule. The second term depends on the elec-
trostatic and van der Waals interactions between non-bonded atoms
in the molecule. Such energy scores have been classically developed as
part of molecular mechanics simulation packages such as AMBER,25

CHARMM,26 MM-PBSA,27 or GROMOS.28 However, some physics-
based approaches, which are outlined next, have also been used for
ranking structural decoys.10,17,19,29–32

Lazaridis and Karplus applied an effective energy function (EEF1)
combining the CHARMM 19 force field with a Gaussian model for
solvation free energy to discriminate native structure on a dataset of
650 decoys for six proteins.10 The results showed that the native state
was always more stable than any of the misfolded structures and
molecular dynamics simulation reduced the free energy gap between
near-native and misfolded structures.

The all-atom version of the Optimized Potential for Liquid
Simulations (OLPS),33 combined with the Surface Generalized Born
(SGB) method, was used to discriminate near-native conformations in
a set of 49 000 minimized decoy structures for 32 proteins.18 This
energy function was able to correctly identify the native structure
within the decoy set in 70% of the tested proteins. The analysis also
highlighted the contribution of the solvation free energy in the detec-
tion of the native-like structure.

A Molecular Mechanics-Poisson Boltzmann Solvent Accessible
Surface Area (MM-PBSA) model was recently used to calculate the
free energy of a protein loop structure as a surrogate of the similarity
of the decoy to its native structure.27 The results from such simula-
tions indicated that the MM-PBSA free energy estimator was able
to detect native-like structures for 81% of the decoy sets. Moreover
the use of the colony energy approach34 reduced the MM/energy
dependency on minor conformational changes. Thus, the authors
were able to correlate free energy scores with the root mean square
deviation (RMSD) of a decoy set with respect to the native structure.

Recently, Maupetit and colleagues22 proposed a coarse-grained
optimized potential for efficient structure prediction (OPEP). Their
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method was able to detect native conformations in 83% of the 29 test
proteins with more than 28 000 decoy structures.

Finally, an updated version of the AMBER force field17 with terms
representing the solvation contribution was tested for its ability in
identifying near-native structures for 150 target proteins within a set
of 14 000 decoy structures. The authors concluded that the ability of
the method for identifying near-native structures in the decoy set
decreased with the time of molecular simulation of the decoys. This
version of AMBER was able to detect 100% of near-native structures
after only minimizing the structural decoys (i.e. with no molecular
mechanics simulation). However, the accuracy decreased to ~70%
after a small simulation of 200 picoseconds and to ~30% for 2 nano-
seconds simulations. Therefore, such results indicate that molecular
mechanics force fields are able to identify near native structures but
cannot drive the simulation towards the native conformation of the
protein. The authors of the study also concluded that the native struc-
ture often does not appear to be in the lowest free energy state.17 As
of today, the refinement problem (i.e. the ability to move the coordi-
nates of a protein structure prediction towards its native conforma-
tion) has no generally applicable solution.

In summary, physics-based scoring functions provide good means
for selecting near-native structure models in a set of predicted decoys.
The introduction of solvation terms clearly improved the ability of
such force fields to discriminate between near-native and no-native
conformations. However, a universal energy function for model
refinement is still far from reach and the relative weight for each
energy term contribution may need to be optimized for each decoy
set under consideration.

4.3.2 Knowledge-based Potentials

Statistical potentials, also called potentials of mean force, constitute
the main implementation of the knowledge-based potentials for
model assessment. In general terms, such potentials encode the sta-
tistical preferences of different residues or atom types to be exposed
to the solvent, or to interact with each other in a pair-wise or higher
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order fashion. Such preferences are normally extracted from a set of
selected structures, which represent the known structural space for
globular proteins. The basic hypothesis is that protein crystal struc-
tures contain a large amount of information describing the stabilizing
forces of protein folding, which can be extracted by using the follow-
ing three assumptions of statistical mechanics: (i) protein folding can
be described by a free energy function, (ii) the conformation of a
system can be approximated by two-body interactions, and (iii) high
frequency conformations should correspond to low free energy struc-
tures. If such assumptions are true, it is then possible to derive an
atomic energy function for which the global minimum corresponds to
the observed native crystal structure.

Since the end of the 1970s, several authors have used such approx-
imations to derive statistical rules from known protein structures.8,35–45

The main characteristic shared by most knowledge-based potentials
is the use of the inverse Boltzmann distribution to derive pseudo-
energies from a non-redundant set of protein structures, which states
that the probability (p(x)) of state x with energy ε (x) is:

(1.1)

where k is the Boltzmann’s constant and T is the absolute tempera-
ture. The partition function Z, which can be considered the ground
state energy, is defined as:

(1.2)

Thus, a general representation of the energy function is:

(1.3)

where p(x)obs and p(x)exp are the observed and expected occurrences of
the state x respectively. The inverse of the Equation (1.3) is then the
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pseudo-energy score of the knowledge-based potential, which calcu-
lates the energy relative to state x (ε (x)) using the distribution func-
tion p(x):

(1.4)

Although there has been debate about the physics basis of statis-
tical potentials,46–48 it is assumed that the database of protein struc-
tures represents the conformational space of globular proteins in
thermodynamic equilibrium.

Several types of statistical potentials have been derived which
assess different structural features of models. Such potentials include
contact,8,23,37 distance,16,40,41,45,49 solvent accessibility,8,42,50 and a com-
bination of solvent accessibility and pair-wise interaction.16,41,44,45,49,51

Next, we summarize a few particular implementations and applica-
tions of knowledge-based potentials for model assessment. Our list is
not exhaustive nor complete, but it highlights different approaches
for model assessment using knowledge-based potentials. For a recent
evaluation and reviews of such methods, see Section 4.5 within this
chapter and references.52,53

Although significant work was done beforehand, knowledge-
based potentials became more widely used after the work of Sippl in
the beginning of the 1990s.42,54 Sippl’s PROSA, a Cα/Cβ distance-
dependence potential that used a poly-protein of 230 different folds
for calculating the final Z-score of a model, was originally bench-
marked using a set of 163 protein structures. The author concluded
that such potentials were accurate for detecting the native structure
for most available globular proteins. A new atomic-level statistical
potential based on atom-type definitions was later developed by Melo
and Feytmans.49 Using such an approach, it was possible to obtain
average frequencies of pair-wise contacts about 15 times higher than
the ones obtained using reduced representations for each amino acid.
Similarly, Samudrala and Moult45 developed a residue specific all-atom
probability discriminatory ratio (RAPDF), which resulted in a better
discrimination of native models compared to other simplified protein
representations and illustrated the importance of using a detailed

e( ) log ( ) logx kT p x kT Z= - -
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atomic description of the system. Similar conclusions were obtained
by Lu and Skolnick16 using their heavy-atom potential for discrimi-
nating native from near-native structures in a set of decoys. The
authors pointed out that their atomic potential tended to pick lower
RMSD structures being able to discriminate the native structure in
87% of 119 protein decoy sets. A significant improvement of such
atomic-based potentials was later obtained by using a mathematical
programming approach.55 Qiu and Elber compared the performances
of their potential with other existing methods, concluding that their
potential reached similar accuracy using a much smaller number of
parameters.

More recently, the development of alternative reference states (i.e.
p(x)exp in Equation (1.6) for assessing random interactions has lead to
significant improvements in the final accuracy for assessing a protein
structure model. For example, a distance-scaled finite ideal-gas refer-
ence state was used to derive the DFIRE potential.41 On average,
DFIRE all-atom potential identified the native structure for 84% of the
32 decoys sets used in its benchmark. In a subsequent work, Zhou and
co-workers showed that a reduced description of the original DFIRE
potential resulted in a similar success rate as its all-atom potential for
ranking native structures in a benchmark of 96 decoy sets.56 Similarly,
the DOPE potential,44 which uses a reference state based on non-
interacting atoms in a homogeneous sphere with the radius dependent
on a sample native structures, resulted in a higher accuracy than
DFIRE, recognizing 87% of the native structures in the 32 decoy sets.

Finally, a new kind of knowledge-based potentials considering
the relative orientation of different residue atoms has recently
flourished.57–60 Although the orientation-dependence potentials have
not yet been extensively tested, their large-scale application together
with coarse-grained protein representations could be very promising.

In summary, knowledge-based potentials, which use empirical
observations of proteins of known structures, have proved useful for
assessing the accuracy of protein structure models. The use of differ-
ent reference states together with multi-body representations of pro-
tein structures may finally meet the needed accuracy for large-scale
protein structure assessment.
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4.3.3 Combined Scoring Functions

To improve the accuracy of methods for assessing the accuracy of pro-
tein structure models, several scoring functions have been developed
using a weighted combination of individual scores from physics
and/or knowledge-based approaches.21,55,60–64 Such scores have been
shown to increase the ability to discriminate incorrect models from
correct models compared to their individual input scores.64,65

However, combined scoring functions require the optimization of
weights and parameters for each individual input score. As a result,
the optimized scoring functions are very dependent on the training
set of models used for their derivation. Next, we outline some such
approaches developed in the last few years.

The ProQ program implements a neural-network that combines
several structural features calculated from the assessed model.21 Such
features include: atom- and residue-based contact potentials, pre-
dicted and model secondary structure agreement, solvent accessible
surface, fraction of modeled protein, Cα-Cα distance discrepancy
between the model and the used template, and protein shape. ProQ
was able to detect the correct protein structure model for 62% to 77%
of several LiveBench decoy sets.66

A Support Vector Machine learning approach was implemented
in the SVMod score.64 SVMod was trained in regression mode tak-
ing into account different individual input scores including: three
MODPIPE scores, two secondary structure agreement scores, and
the DOPE all heavy atom score. The optimal SVMod score was able
to select protein structure models on average ~0.45Å apart from the
closest model to the native structure in a set of 300 protein structure
decoys from 20 target proteins.

Similar to the work by Eramian and co-workers, Benkert and co-
workers recently developed a linear combination of individual scores in
the QMEAN program.60 QMEAN combined a coarse-grained torsion
angle potential, a secondary structure specific distance-dependent pair-
wise potential, a solvation potential and two terms accounting for the
agreement between the model and predicted solvent accessibility and
secondary structure from sequence. The QMEAN score was tested on
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a large set of 22 420 models of 95 target proteins from CASP.67

QMEAN was favorably compared with other existing methods show-
ing a statistically significant improvement in the detection of the native
structure and in discriminating between correct and incorrect protein
structure models.

In summary, combined scoring functions are able to capture par-
ticular structural features from models that may have been detected
by each individual score. Therefore, such approaches leverage the
input information towards the final goal of detecting the most accu-
rate model in a pool of possible solutions.

4.3.4 Clustering Approaches

One of the most challenging tasks in protein structure model assess-
ment is to devise a score that correlates with the actual accuracy of
the model. One would hope that a perfect scoring function would
assign favorable scores to models that are structurally similar to their
native structure. Unfortunately, this is not usually the case, and cur-
rent scoring functions, either physics-based, knowledge-based, or a
combination of both, do not always favorably score models close to
the native structure. However, when some correlation between the
score and the model accuracy exists, structurally comparing all mod-
els from independent structure predictions of the same sequence may
help in selecting the most accurate model in a set of possible solu-
tions. In other words, an accurate scoring function should more
often produce a structural conformation near the native structure
than a misfolded structure. This hypothesis has recently been
exploited in different implementations of the so-called clustering
approaches.20,68–70

Shortle and co-workers first applied a clustering approach for pre-
dicting the accuracy of models from 10 small proteins in sets of 500
to 1000 ensemble models of low-energy.20 The authors demonstrated
that the conformation with the largest number of models within 4Å
RMSD was closer to the native structure than were the majority of
models from other clusters in the ensemble. The same approach was
later efficiently used in the 4th CASP experiment.69
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More recently, a new cluster-density method, which weighted the
final score of a model using the mean RMSD of its conformation
respect to the other ones in the decoy set, was implemented in the
self-RAPDF method.68 The results demonstrated that the use of the
density scoring function increased the number of selected near-native
conformations from 75% to 92% with respect to the RAPDF method.

A large-scale benchmarking of a clustering-based approach was
recently carried out using the SPICKER strategy70 over a 1489 decoy
sets of up to 280 000 models generated by the TASSER program.62

The results indicated that the top five identified conformations had
RMSD values in the top 1.4% of all decoys. The results also indicated
that for 78% of the 1489 target proteins, the difference in RMSD
from their native conformation to the selected model and RMSD
from native to the absolutely best individual model in the decoy was
below 1Å.

In summary, the information from an ensemble of decoy confor-
mations can be used to derive statistical probabilities, which facilitate
the identification of near-native structures in a set of possible solu-
tions. However, as it is evident from the conceptual implementation
of clustering approaches, their final accuracy depends on the quality
of the scoring functions used to generate the ensemble of conforma-
tions. In other words, an inaccurate scoring function will result in an
inaccurate conformation selection by clustering. Another limitation of
clustering approaches is their inability to assess the quality of a model
on its own.

4.4 Evaluation of Model Quality
Assessment Methods

In the seventh edition of the CASP experiment, a new category was
introduced with the aim to blindly evaluate methods for model assess-
ment.52 The new category, named Model Quality Assessment, intro-
duced two measures, evaluating assessment methods at the whole
model and the reside levels.

A total of 23 864 models from 95 different target sequences were
assessed by 28 different model assessment methods. The model quality
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assessors concluded that the Pcons program (65 and CASP7 special
issue), which uses the ProQ method for model assessment, was able
to constantly select models with near-native conformation. Although
not with statistical significance, due to the limited number of groups
participating in the residue-by-residue assessment category, the same
method seemed able to identify reliable regions of models in a rea-
sonable number of cases. However, as mentioned above, consensus-
based methods, such as Pcons, rely in an ensemble of solutions to
score individual models. Lee and co-workers (see CASP7 special
issue) were able to identify good quality models based only on a non-
relative score. Their strategy consisted of blindly relying on their own
protein structure predictions. All assessed models were structurally
compared with the model of the same target produced by their own
method. The final assessment score corresponded to the structural
distance of the assessed model to their model.

The strategy by Lee and co-workers resulted in good assessments
because their models were consistently accurate for most of the tar-
gets in CASP7. Current methods can effectively select accurate mod-
els from a set of decoys or ensemble conformations. However, a
substantial improvement of methods for evaluating regions of a
model as well as assessing the absolute quality of a model on its own
is still needed.

4.5 Future Outlook

Despite the large amount of sequence and structure information avail-
able and the ever increasing interest of the protein structure community
in a reliable 3D structure assessment method, the quest for a perfect
scoring function is still open.53 Currently, the most reliable methods can
reasonably select near-native conformations from a decoy set of possible
conformations. However, three unsolved tasks lie ahead, to: (i) refine a
protein structure model towards its native structure, (ii) reliably predict
the absolute accuracy of a model, and (iii) identify regions or residues in
a model most likely to contain errors.

During the past years, the most successful approaches for
model assessment have relied on either combining individual scores
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(Section 4.3.3) and/or clustering by structure similarity the resulting
ensemble of predicted models (Section 4.3.4). However, such
approaches do not add to our basic knowledge of the molecular
mechanisms by which proteins adopt their native conformations. One
can expect that imperfect individual score functions will hamper both,
combined and clustering-based scoring functions. Therefore, a more
reliable scoring function based on physics (Section 4.3.1) and/or
empirical observations (Section 4.3.2) is clearly needed. Such a scor-
ing function will have to address outstanding open problems such as:

Solvation. One of the major forces towards the folding of a protein is
the initial hydrophobic collapse. However, none of the existing meth-
ods for protein structure simulation (including those for model assess-
ment) are able to accurately model the effect of water on the protein
structure.

Topological determinants. Characterizing the properties of short-to-
medium range interactions is needed for elucidating the topological
determinants of a protein fold.

Side-chain packing. Although successful methods for protein struc-
ture prediction may use a reduced representation of protein struc-
tures, which usually simplifies side-chains as single pseudo-atoms,
the correct modeling of interaction in the core of proteins will be
required for high-resolution protein structure prediction. Such level
of details will also be needed for assessing the accuracy of models for
protein-protein and/or protein-ligand interactions.

Protein structure flexibility and disorder. Current methods for model
assessment do not include data about unstructured parts of proteins.
Therefore, the use of such information will likely result in more accu-
rate scoring functions for model assessment.

Small, multi-domain, and non-globular proteins. Most of the methods
introduced here were developed to assess single domain globular
protein models. Therefore, the average accuracy of such methods
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significantly drops when they are applied to very small or multi-domain
proteins and to disordered or transmembrane proteins.

Detailed knowledge-based potentials. The rapid increase of structures
deposited in the Protein Data Bank,71 due in part to the Structural
Genomics initiatives, allows the inclusion of multi-body terms in sta-
tistical potentials. Such detailed knowledge-based potentials are likely
to result in more accurate methods for model assessment.

The increasing interest of the computational structural biologist in
addressing such problems and the opportunity to blindly test their
methods in an automatic, large-scale, and (hopefully) continuous
manner will push the fields of model assessment and protein structure
prediction towards very interesting and challenging times.
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Chapter 5

The Biological Applications
of Protein Models

A. Tramontano*

5.1 Introduction

One key question about protein structure modeling is whether it is
useful in real life applications. The answer to this question is undoubt-
edly positive: the cases where protein structure modeling has pro-
vided precious information to biologists are so many that it is
impossible to give even a short description of a significant fraction of
them.1 Therefore, we will rather focus on the biological problems that
they can help solve and give references to some of the specific exam-
ples with the caveat that they are just some of the many possible ones
that could be listed.

There is, however, one issue that we need to address first: we have
to discuss how we can estimate the quality of a model a priori and
evaluate whether it is sufficient for a given application. While this is
not a trivial task, it is an exceptionally important one. If we want pro-
tein structure modeling to move out from the computers of the
experts and make its way to the labs, we cannot just provide users with
a model without a quality estimate attached to it. This is indispensable
before the three-dimensional modeling techniques can be effectively

*Department of Biochemical Sciences, University “La Sapienza”, P.le A. Moro, 5,
Rome, 00187, Italy. Email: anna.tramontano@uniroma1.it.
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added to the many tools available and used for designing, interpret-
ing, and evaluating wet experiments in the life sciences.

We will first review the methodologies that can be used to assess
the quality of a three-dimensional model of a protein, and next, how
this can be exploited to decide whether the expected use of a model
is within the realm of reality.

5.2 The Expected Quality of a Model

The different methods that can be used to build a model of a
protein have been discussed in previous chapters. For the purpose of
this discussion, we can distinguish them into two broad categories:
template-based, which include comparative modeling and fold recog-
nition techniques, and template-free methods. The latter can be real
ab initio techniques where virtually no information is taken from
experimentally determined protein structures (although of course
many stereo-chemical parameters are estimated from the analysis of
known structures), or methods that take advantage of known protein
structures more directly, for example, by selecting their fragments to
build the model. As in all theoretical distinctions, the boundaries
between the two categories are rather blurred. However, for the pur-
pose of what we are going to discuss here, all we need to know is
whether or not a model can be associated to one, or very few, protein
structures deemed to have a similar structure as the target protein.

The importance of this distinction lies in the observation that in
the first case we can use some measure of the expected structural dif-
ference between target and template as an estimate of the expected
quality of an average model of the target, while in the second case we
can only analyze the coordinates of the produced model and try to
infer the quality from them.

The simplest case is homology modeling. In a seminal work, Lesk
and Chothia2 analyzed 32 pairs of homologous proteins of known
structure and asked the question of how much the core of the struc-
tures diverged as a function of the sequence identity (a rough meas-
ure of the evolutionary distance). There are several definitions of the
core of a protein structure. In their work, Chothia and Lesk used an
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almost tautological definition of core as the part of the protein struc-
tures that is most conserved between the two homologous proteins
under study. Regardless the specific definition, we can intuitively
understand what the core of a protein is: the part of the structure that
is not peripheral to the folded nucleus of the protein, i.e. the protein
without external “decorations” such as loops and small domains that
are usually not very well conserved in evolution. In the same paper,
Chothia and Lesk also analyzed the extent to which the core is con-
served as a function of sequence identity.

This historical piece of work can be discussed from many per-
spectives. For example, it might be interpreted as a tool to predict the
average coordinate error in the core of the model of a protein built by
homology.

One could make the following reasoning: since proteins with an
average sequence identity of 50% have about 1.0 Å RMSD between
corresponding atoms of the main chain of their core, if we build a
model by just copying the coordinates of the core of a protein shar-
ing 50% sequence identity with the target protein, the expected error
of the main chain of the core of the model is about 1.0 Å. This holds
if the correct correspondence between the atoms of the proteins has
been used, i.e. if the sequence alignment correctly reflects the optimal
structural superposition between the two proteins (note that this does
not necessarily correspond to the alignment correctly reflecting the
evolutionary relationship).

The next step is to estimate the expected quality of the alignment
and whether or not some refinement can be applied to the initial
model to move it away from the template and make it more similar to
the real target structure, thereby reducing the coordinate error.

We will not discuss refinement here, and will instead say a few
words about the problem of estimating the correctness of an align-
ment a priori.

In principle, one expects that the closer two sequences, i.e. the
higher the sequence identity or similarity between them, the higher
the likelihood of obtaining a correct alignment. This effect, if one
could quantify it, should be combined with the results of the Chothia
and Lesk2 analysis to obtain the expected accuracy of a model.
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The results of the CASP experiments3 could help us in estimat-
ing this error by computing the average alignment errors of the
models submitted for proteins as a function of their pair-wise
sequence identity with the template. However, in the last decade,
pair-wise alignment has been very rarely used as the basis of a mod-
eling experiment because of the advent of multiple sequence align-
ment methods and the availability of many more related sequences.
In the large majority of the cases, the alignment used for building
a comparative model is obtained by extracting the pair-wise align-
ment from a multiple sequence alignment. We need to address the
problem of the quality of the alignment taking into account the
number and distribution of the sequences used in the multiple
sequence alignment.

One possible method is to consider which is the most difficult
pair-wise alignment (i.e. the one involving the two sequences with the
lowest sequence identity) in the multiple sequence alignment and use
this parameter as an estimator of the difficulty of the alignment.4 This
procedure is based on the hypothesis that the multiple sequence
alignment is built iteratively by subsequent pair-wise alignments (the
technique used, for example, by ClustalW 5) but methods based on
different rationales do exist6 and it is unclear whether this measure is
appropriate in all cases and whether alternative and more appropriate
methods can be devised.

The take-home message of this short digression is that, even in
comparative modeling where we can analyze the underlying sequence
alignment and know the relationship between sequence identity and
structural similarity, predicting the expected quality of models is far
from trivial.

Even more complex is the case when the model building method
is not based on a template. In this case, we should analyze the coor-
dinates and assess the quality of the model itself. Most methods are
based on some energetic evaluation of the model, often based on an
estimate of the likelihood of the interactions observed in the model.
A blind assessment of the ability of different methods to give a qual-
ity estimate to models and to their residues was included in CASP in
2006.7
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Models produced by servers participating in CASP were made avail-
able to all predictors. Predictors were asked to submit estimates for the
quality of these models before the corresponding experimental structure
was available. They were given the opportunity of submitting quality
predictions for the model structure as a whole and/or on a residue-by-
residue basis. At the end of the experiment, the observed quality of the
server models (according to the results of the CASP automatic evalua-
tion) was compared with the values submitted by the quality predictors.8

Unfortunately, the results were not very exciting. Some methods,
for example, Pcons,9 were able to rank a set of models for the same
structure according to their relative quality moderately well, but no
method was reasonably good in assigning a value to a single model.
In fact, a naïve predictor assigning the distance between the structure
of the model and that of the template as a quality estimate performed
better than, or as well as, essentially all methods of this kind.8

The take-home message, therefore, is that we are not yet able to
look at a model and compute its expected accuracy with sufficient reli-
ability, and consequently, we cannot equip the end user of a model
with a value that can tell him or her whether the model is good
enough for a given application.

There are nevertheless rules of thumb that can be applied and that we
will try to discuss in the next section. Although they cannot provide a def-
inite answer to the question, most of the time they can be very useful.

5.2.1 Some Useful Definitions

In the following, we will use two parameters to describe how close a
model is to the corresponding experimental structure, the Root Mean
Squared Deviation (RMSD) and the GDT-TS.

Given two sets of n atom coordinates of two proteins a and b, the
RMSD is defined as:

(5.1)

and is expressed in Ångstrom (Å).

rmsd a b
n

a b a b a bix ix iy iy iz izi
n

( , ) ( ) ( ) ( )= - + - + -=Â1 2 2 2
1
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The RMSD might not be the best parameter for comparing a
model and a structure because of its quadratic form; if a part of the
protein is incorrectly predicted, it is often sufficient to know that it is
farther than some threshold from the correct conformation, and this
is why a different measure, the GDT-TS, is often used:

(5.2)

where GDT-1, GDT-2, GDT-4, and GDT-8 are the percentage of Cα
atoms of the model that are distant less than 1, 2, 4, and 8 Å from the
corresponding atoms of the structure, respectively.

Experimentally determined structures can be obtained, by and
large, by NMR and X-ray crystallography. In the first case, the exper-
iment produces an ensemble of structures whose dispersion,
expressed, for example, as the average RMSD among the structures,
can be considered an indication of the accuracy of the structure. In
the second, parameters such as resolution, R- and R-free factors play
this role. To orient the reader, in very low resolution structures (let’s
say around 6 Å), the location of alpha helices (but not beta sheets) can
usually be determined, and in low resolution structures (around 3 Å),
the backbone and (if the data set is good) the side chains can be seen.
At the other end, in very high resolution structure (around 1 Å), even
hydrogen atoms can be located. For an accurate structure, one needs
a resolution of at least 2–2.5 Å.

For the sake of conciseness, we will not dwell on the relationship
between NMR and X-ray crystallography accuracy and the relation-
ship between them. At risk of offending both NMR spectroscopists
and X-ray crystallographers, we can assume that an NMR structure
corresponds to a low resolution X-ray structure.

5.3 Biological Applications

Let us now explore some of the many biological applications that can
be envisaged for a model, namely the possibility of using a model for
solving an experimental structure, for understanding the function of

GDT-TS
GDT-1 GDT-2 GDT-4 GDT-8= + + +( )

4
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the protein, for predicting the domain boundaries in multi-domain
proteins, for designing site specific mutants and chimeric proteins, for
modifying the stability or solubility, and finally, for docking and/or
designing an inhibitor.

Obviously, it would be completely unreasonable to ask that a
model provide more information than an experimental structure,
therefore we will discuss which information we can expect to derive
from a model compared to what we could infer if we had the experi-
mental structure.

5.3.1 Solving the Phase Problem in Crystallography
by Molecular Replacement

In a crystallography experiment (see Chapter 22), a crystal is irradi-
ated with X-rays whose diffracted waves are collected and measured.
The reconstruction of the structure of the molecule in the crystal
requires knowledge of the phase of the diffracted waves, which can-
not be directly measured. The information is lost in the passage
from the three-dimensional structure of the molecule to its two-
dimensional diffraction pattern. It can be recovered using experi-
mental methods such as heavy-atom isomorphous replacement and
anomalous scattering or by molecular replacement, which relies on
the availability of an atomic model of the target structure. This
involves taking the model and rotating and translating it into the
new crystal system until there is a good match with the experimen-
tal data. If this is successful, the amplitudes and phases from this
solution can be computed and combined with the data to produce
an electron density map. This is obtained using a Fourier transform
and is equivalent to focusing the diffraction pattern in other forms
of microscopy.

It has been shown10 that models of reasonable accuracy (GDT-TS
above 80–85) can be used for molecular replacement, also in cases
where the homologous protein used to build the model fails. Notice
that in this case the RMSD between the model and the structure is
not a good indicator of whether a model will work in a molecular
replacement experiment. Interestingly, the procedure can easily be

The Biological Applications of Protein Models 117

FA
b587_Chapter-05.qxd  1/18/2008  4:44 PM  Page 117



automated,11 and therefore, the solution of protein structures by crys-
tallography in structural genomics projects can be sped up.

5.3.2 Prediction of Biological Function

Probably the most important aim of the genomics projects, and of
most of modern biology, is the elucidation of the function of the
many proteins whose sequence is becoming available.

Function can be defined at very different levels of detail,12 and
clearly, a structure can help, if at all, in elucidating the molecular func-
tion of a protein, while its biological function and localization are
much more difficult to relate to a structure. As an example, even if we
know or are able to predict that a given protein is an enzyme of the
hydrolase class, this by itself is not sufficient to decide whether it is
involved in digestion, blood coagulation, or apoptosis, etc.

Unfortunately, in general, not even the molecular function can be
predicted on the basis of the three-dimensional structure. If the pro-
tein contains an active site that we have already seen,13–15 or if it has
been co-crystallized with a mimic of its substrate, we can make edu-
cated guesses at some level of detail although rarely can we go as far
as inferring its specificity.16–18 Predicting the function of a protein
when its structure does not resemble anything we have already seen,
is a very challenging task, whatever the resolution of the structure.

Not surprisingly, the detection of a known active or binding site
can only be attempted for models of good quality since we need to
search for a subset of residues with similar coordinate sets in proteins
of known function.19–21 Most likely this can only be achieved for
homology-derived models. The relationship between sequence iden-
tity and structural conservation that we discussed above is computed
on average, i.e. over the whole protein core, but a comparative or
homology model has the advantage of performing better for regions
of the proteins that are evolutionarily conserved. These include the
active site, and therefore, we can often use models built using a tem-
plate sharing a level of identity above, say, 30% with the template.

There is added value in a model built by homology with respect
to the simple detection of the homology.17 Even if we only consider
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the simpler case of enzymes, only proteins sharing more than 85%
sequence identity have strictly conserved function (up to the fourth
digit of the Enzyme Classification scheme, EC). The third digit is
shared by proteins having at least 55% sequence identity. At 25%
sequence identity, not more than 60% protein pairs have the same EC
code, an additional 20% only share the first three digits of the classi-
fication, and a few percent of pairs have no common EC digit at all.
If we compare SwissProt keywords, and therefore can include also
non-enzymes, matters become even less hopeful: not even 95%
sequence identity guarantees strict conservation of annotation, and at
a level of sequence identity of 25%, no more than 45% of the pairs
have the same keywords. Clearly, the numbers listed here are bound
to change as methods and databases change, but they are useful as ref-
erence points.

The possibility of mapping known facts about a protein onto its
three-dimensional structural model can be of greater help for unrav-
eling its functional attributes.22 Clustering of residues conserved in
the protein family in the same region of space23 or the presence of
exposed cavities can give important hints and help prioritize experi-
ments in an effective way.

5.3.3 Redesigning Proteins

In many cases, the experimental study of multi-domain proteins is dif-
ficult and it might be useful, or essential, to sub-clone its functional
domains to perform well controlled experiments.24–27

The three-dimensional structure of a protein is usually enough to
define the boundaries of its domains, and any model of reasonable
accuracy — almost certainly any comparative model — can be used
for the same purpose. A word of caution is needed here: the correct
identification of the structural boundaries of a domain does not nec-
essarily imply that trimming the sequence according to this informa-
tion will give rise to a protein that can fold correctly or crystallize,
because other factors can affect the outcome.

A different, but related, problem is the design of chimeric pro-
teins that can be useful, for example, to study their localization or for
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biotechnological or medical purposes,28 and the question arises of
whether it is more likely that the protein will accept the insertion at
its N- or C-terminus. A related problem is the identification of posi-
tions that can be more safely mutated for introducing different or
modified amino acids.29

The accessibility of the N- and C-terminus as well as of the side
chains of its amino acids can usually be reliably evaluated using any
comparative or fold recognition model that does not contain gross
errors. Since our understanding of the folding process is, to be opti-
mistic, incomplete, predicting whether the latter will be affected by
the mutation is not equally straightforward.

A special case is represented by antibodies30,31 as discussed in Chapter
16 of this book. The relationship between the sequence and structure of
the functional site of this class of molecules is rather well understood,
and this has led to the development of accurate knowledge-based pro-
cedures for antibody modeling. Information gained from the analysis of
antibody structures has been successfully exploited to engineer antibody-
like molecules endowed with prescribed properties, such as increased sta-
bility or different specificity, many of which have a broad spectrum of
applications both in therapy and in research.32–36

Antibodies or immunoglobulins are multi-chain proteins, consist-
ing of two pairs of light chains (either κ or λ isotype) and two pairs of
heavy chains. Both chains are composed of multiple variants of a basic
domain of about 100 residues in length. One domain in each chain is
variable in sequence and corresponds to the antigen binding region.
Their modular nature makes antibody molecules particularly suitable
candidates for protein engineering.

The antigen-binding sites of most antibodies are formed primarily
by six loops, three from the VL domain (L1, L2, L3) and three from
the VH domain (H1, H2, H3). The regions of the variable domains
outside these loops are called the framework. In known immunoglob-
ulins, the framework regions are highly conserved in both sequence
and main-chain conformation, and they can be accurately predicted
using standard homology modeling techniques.

The six loops of the antigen-binding site are even more variable
in sequence than the rest of the variable domains. In spite of their
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high sequence variability, five of the six loops of the antigen-binding
site can assume just a small repertoire of main-chain conformations,
called “canonical structures”.37–40 These conformations are deter-
mined by the length of the loops and by the presence of key residues
at specific positions in the antibody sequence (either within the
loops or in the framework regions) that determine the conformation
of the loops through their packing, hydrogen bonding, or the abil-
ity to assume unusual main-chain conformations. The other loop
residues are free to vary to modify the topography and physico-
chemical properties of the antigen-binding site. The identification
of the structural determinants of the antigen-binding loops is a nec-
essary requirement for the successful engineering of antibodies with
prescribed specificity. In any design involving modifications and/or
transplant of the antigen-binding site loops (aimed, for example, at
varying the antibody affinity or specificity toward the antigen, at
introducing metal-binding sites, or at generating large repertoires of
antibody molecules through the use of libraries), it is indeed neces-
sary to keep into account that mutations of residues at most posi-
tions of the hypervariable loops will determine only local variations
of the antigen binding site, without affecting its main-chain confor-
mation. On the other hand, mutations at key sites will, in most
cases, also affect the main-chain conformation of the antigen-binding
site loops and are likely to have a larger impact on the affinity toward
the antigen.36

5.3.4 Modifying the Biochemical Properties of Proteins

Biotechnology often requires redesigning proteins having higher
stability or solubility than their wild type counterpart.41 There are
several examples of successful cases of such designs in the literature.
It is probably reasonable to say that a good comparative model,
built using a template with 60–70% sequence identity is as effective
as an experimentally determined structure. The computation of the
stability of a protein is a difficult task, therefore the previous sen-
tence has to be interpreted in the following way: if we have a
hypothesis about which features of a given protein might increase its
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stability, we can design mutants for testing the hypothesis also on
the basis of a good model.

5.3.5 Docking and Inhibitor Design

Can we design an inhibitor for an enzyme of known or modeled
structure? Undoubtedly, the most desirable use of a protein structure
is for the docking of small molecules and designing of inhibitors (see
Chapter 18). Can we design an inhibitor for an enzyme of known or
modeled structure? Can we identify the mode of binding of a known
ligand?

There are many hurdles in designing an inhibitor. Ligands and
inhibitors bind to exposed regions of proteins that can be flexible, and
therefore, the apo structure, even experimentally determined, cannot
necessarily be effectively used as the target of the inhibitor in all
cases.42,43 Next, the conformation of the inhibitor can change upon
binding, and again, this is difficult to compute.44,45 These factors, and
a few others, make the design of inhibitors a very challenging task
even when a high resolution structure is available. Nevertheless, a
very accurate model of a protein can be useful to the docking of small
molecules and the design of new ones.46–48

In order to be useful, models need to be rather accurate as shown
by an experiment performed by Moult and co-workers:49 they took all
protein targets in CASP for which a bound molecule was present in
the experimentally determined structure and tried to verify whether
the ligands would fit into any of the models submitted to the experi-
ment. The conclusion was that in most cases the side chains of the
binding site were not predicted sufficiently correctly to allow the lig-
and to be positioned. Sequence alignment errors between models and
templates were shown to be the most deleterious.49

5.4 Future Outlook

We now stand at a point where we can produce models of
proteins with respectable accuracy, and not only when homology is
exploited.50 Most modeling methods can be automated and run
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in high-throughput mode, providing an impressive amount of
information.51 The obvious next step is to transform information into
biological knowledge.

There are many hurdles in the path, but the protein structure
modeling community is devoting a large effort in overcoming them.
Solving them will have a direct impact on the reliability of the bio-
logical conclusions that we can derive, on the exploration of new
applications, and on an increased usage of the tools within the bio-
logical community.

First of all, it is becoming apparent that we need effective meth-
ods to evaluate a model and its reliability.8 Only once this issue has
been solved can we attempt to precisely define the fields of applica-
tion as a function of the expected quality of the model. The recent
experience with the CASP quality assessment experiment has high-
lighted a rather embarrassing situation, and there is no doubt that this
will prompt scientists to tackle the issue with more energy. It is rea-
sonable to expect that, in the near future, every model will come with
some estimate of its reliability. This will imply that the existing pro-
tein model databases52–54 will be more and more useful to the biolog-
ical community.

CASP has highlighted another area where more effort should be
focused: refinement of models. We only briefly mentioned it here
because there are no methods at present that can consistently improve
upon an initial model. This is a very crucial issue especially in com-
parative modeling. Unless we can tell more about a protein than what
is implied by its homology with the template, there is no chance that
we can use the models to address the issue of specificity of both sub-
strates and interactions. Indeed, blind predictions of protein function
as assessed by the CASP experiment are not producing very exciting
results.55–57 Although this is partially due to the difficulty of assessing
the quality of the predictions, the results of the experiment have made
clear that this is still an open issue that needs much more attention
than it has received so far.

The pace at which new sequence data are produced58 requires
effective tools to understand their biological meaning. There is no
way we can experimentally analyze all the proteins of known sequence
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in a reasonable time frame, therefore, we need fast, reliable, and effec-
tive computational tools to exploit them, and since function is by and
large determined by structure, three-dimensional modeling is called
upon to fulfill a crucial role in the process by providing the framework
for understanding the biological function of the gene products. We
are not there yet, but the speed at which methods are progressing
makes it likely that this problem will be at least partially solved in a
matter of a few years.
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Chapter 6

Evolution of Protein Folds

A. N. Lupas* and K. K. Koretke†

6.1 Introduction

Given an estimated 100 million species on earth and several thou-
sand protein-coding genes per species, the total complement of the
world’s proteome is approximately a trillion. This represents an
insignificant proportion of all proteins that are possible. Even at a
defined chain length of 100 residues, the number of possible
polypeptide chains (20100) vastly exceeds the number of particles in
the known universe. Moreover, this trillion is not a random sample
of the polypeptide space; instead, many proteins share recognizable
similarity in sequence and structure, since they evolved from a basic
complement of autonomously folding units, referred to as domains.
How did this limited set emerge from among the nearly endless pos-
sibilities? In this chapter, we will discuss scenarios for the origin of
folded proteins and mechanisms for their differentiation into the
families observed today.
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†Computational Chemistry Group, GlaxoSmithKline Pharmaceuticals Collegeville,
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6.2 Protein Folding

Proteins need to fold to exert their activity. This process does not
simply entail an approximate spatial arrangement, a state generally
referred to as a molten globule, but actually requires the polypeptide
chain to assume a specific structure to within fractions of an Angstrom
in a reproducible fashion. While molten globules do represent folding
intermediates, they usually lack biological activity. Natively unstruc-
tured proteins only apparently contradict the folding requirement, as
they are dependent on folded scaffolds for their activity, in the con-
text of which they also assume a defined, reproducible structure.

Given the importance of folding for the biological activity of
proteins, it is surprising to find that this is a complicated, easily
derailed process. For example, in healthy humans, only about one
third of synthesized cystic fibrosis transmembrane conductance reg-
ulators reach the membrane in a folded state; the rest is degraded
due to misfolding.1 Thus even under normal conditions, cells allo-
cate substantial resources to systems ensuring the folding, quality
control, and turnover of proteins. Under stress conditions, these
systems may come to dominate the cell, such as in the archaeon
Pyrodictium occultum, where the major folding factor rises over ten-
fold to 73% of the total soluble protein content when the cells are
shifted from their normal growth temperature of 90°C to 108°C.2

How problematic protein folding can be is illustrated by the fact
that in humans, many degenerative diseases are protein misfolding
diseases (see Chapter 17), such as cystic fibrosis, Alzheimer’s,
Parkinson’s, and Huntington’s diseases.3

Despite the frequently encountered problems with folding, natu-
ral proteins nevertheless represent a best-case group, as most random
polypeptide chains do not fold at all. Estimating the actual proportion
of folding polypeptides is practically impossible at our current state of
knowledge, but one may arrive at upper boundaries based on a few
observations: (i) Although many point mutations appear neutral,
combining several such mutations usually results in substantially
impaired folding. Thus, even though naturally observed proteins can
fold, most of their closely related variants can not. (ii) Despite our best
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efforts, protein design projects frequently do not yield more than
molten globules or amyloid-like aggregates. (iii) Attempts to isolate
folded proteins from random sequence libraries have produced only a
handful of successes to date,4 even when the libraries are biased for
hydrophobic patterns typical of secondary structures.5,6 This suggests
a success rate of no more than 1:1010. (iv) An attempt to rescue half
of a folded protein by fusion to random sequences from the
Escherichia coli genome yielded only a small number of folded exem-
plars, possibly just one.7 Thus, even in a situation far from random,
the success rate was only about 1 :109.

At less than one in a billion — and possibly much less — it is fair
to say that to an exceedingly good first approximation, polypeptide
chains do not fold. It is amazing that life would be built on such a dif-
ficult property. The question of how folded proteins evolved is there-
fore entirely non-trivial.

6.3 Homology and the Reconstruction
of Evolutionary Events

Before setting out on evolutionary arguments, we need to address a
few fundamental points about homology, analogy, and the recon-
struction of evolutionary events: evolution happened once; its path
can therefore not be proven by the standards of experimental science.
As an added difficulty, proteins do not fossilize, so any direct obser-
vation of intermediate forms is impossible. In retracing the path of
molecular evolution, we must thus study its mechanism, i.e. the pos-
sibility and likelihood of certain types of events, and use it to extrap-
olate from traits observed today, guided by the principles of
parsimony (“Occam’s razor”) and likelihood. In the process, we face
several problems: (i) Similar traits in different proteins may be of
homologous or analogous origin, and we cannot prove rigorously by
scientific standards, which of the two possibilities is true. Instead, our
criteria for what constitutes evidence of homology keep evolving as
we find that extrapolation from more and more distant connections
allows for useful structural and functional predictions. (ii) The difficulty
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in obtaining data (as well as the pressures of publication) often leads
us to propose general principles from a few observed cases — some-
times as little as one. (iii) Because of the large and unknowable body
of missing data (extinct intermediate forms), we streamline evolu-
tionary scenarios under the twin constraints of parsimony and likeli-
hood, even though the path actually taken by nature will almost
certainly have been more tortuous. This is a connect-the-dots prob-
lem; when most dots are missing, the picture traced will only be a sim-
plified and sometimes erroneous sketch of the underlying figure.
(iv) Finally, probabilistic approaches fail us when single events trigger
further developments by contingency, since the likelihood of the
event itself becomes irrelevant.

Contrasting with this long list of problems is the extraordinary
usefulness of extrapolation by homology in modern biology. As the
number of structural solutions available to proteins for many tasks is
limited — witness the convergent emergence of Ser-His-Asp catalytic
triads in many hydrolytic enzymes,8 but there are nearly endless pos-
sibilities for reaching these solutions in the linear space of sequence —
sequence similarity is considered the primary marker of homology.9

Such sequence “homology”, deduced from sequence comparisons
with programs like BLAST, has developed into one of the most pow-
erful tools in molecular biology. Although ultimately not provable, its
results have turned out to be very robust, and the use of protein
sequences as documents of evolutionary events has yielded a detailed
and coherent picture of molecular evolution reaching back more than
3.5 billion years ago to the time before the last universal common
ancestor.

6.4 Stability of Folds Across Time

The main reason for our ability to extrapolate so far back in time is
the high evolutionary permanence of protein domains. These are
autonomously folding elements that act as the units of structure in
modern proteins. Although of considerable diversity, most domains
show similarities in sequence and structure, which reflect their origin
from a basic complement of ancestral forms and allow us to group
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them into a hierarchy of families, superfamilies, and folds, as described
in Chapter 9. Multiple efforts have been made to evaluate the size and
age of this basic complement:10–12 it would seem that there were only
about 103 ancestral folds and that these were largely established at the
time of the last universal common ancestor, with a few successful
domains probably arising later in bacteria, archaea, or eukaryotes, and
spreading into the other kingdoms by lateral transfer and endosym-
biosis. We note, though, that estimating the age of domains is fraught
with problems and probably not reliable at present. Current esti-
mates, which are based on phylogenetic spectrum, depend on our
ability to recognize the presence of domains in individual organisms
from sequence data and are not robust against lateral transfer (which
would make domains seem older) and gene loss (which would make
them seem younger). Gene loss may be the greatest source of prob-
lems, since even major lineages arose from comparatively small
founder populations and the accidental loss of individual genes in
these populations would have represented the kind of singularities
with large contingent effects mentioned in the previous section.

The stability of domains across evolutionary time is sufficient to
allow the assignment of more than a third of all residues encoded in
present-day genomes to one of 2500 domain families of known struc-
ture; this number rises to two thirds, if only soluble proteins with
homologs in other organisms are considered.13 Occasionally, this evo-
lutionary stability can take impressive forms. Thus, the core comple-
ment of ribosomal proteins, which was definitely present at the time
of the last common ancestor, is still more than 40% identical in
sequence between all organisms on earth. In the face of such persist-
ence, it is probably fair to call the ribosome a living fossil, a molecule
so central to cellular processes that its modification has become nearly
impossible. Other molecules frozen in time include ubiquitin, which
we have chosen to illustrate a basic point on the preservation of
sequence and structure in domains (Fig. 6.1). Human and yeast ubiq-
uitin are 96% identical in sequence, despite having diverged more than
2 billion years ago; this level of conservation reflects ubiquitin’s role as
the pivotal molecule in eukaryotic protein degradation. Unsurprisingly,
the structure of the two proteins is also nearly identical. If we now
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Fig. 6.1 Evolutionary permanence of the ubiquitin fold. (a) Sequence alignment
of human ubiquitin, yeast ubiquitin and yeast SUMO; identical positions are marked
by vertical bars. (b) Superposition of ubiquitin from yeast (light) and human (dark).
(c) Superposition of yeast ubiquitin (light) and yeast SUMO (dark).

(a)

(b) (c)

turn to a comparison between ubiquitin and a paralog, SUMO, we
find that despite only a remnant of 13% sequence identity in yeast
(about the level expected by chance between two unrelated proteins),
their folds are preserved to an astonishing degree, being closely super-
imposable. It is noteworthy that this structural conservation is accom-
panied by the preservation of key sequence properties, since
profile-based search methods, such as PSI-Blast, readily identify the
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homologous relationship between the two proteins despite their
apparent sequence dissimilarity.

Why are protein structures so highly preserved, even after con-
siderable divergence of their sequences? We attribute this to a dis-
crete nature of fold space.14–16 To use an analogy, we view folded
proteins as located on islands of stability (folds), which are scattered
in a vast ocean of unfolded states. On their respective islands, pro-
teins can pace about by mutation, gradually diverging through adap-
tive changes and neutral drift. They can, however, not leave the
island, as it is separated from other islands by large expanses of unfa-
vorable conformations, which cannot be bridged by point mutation.
Occasionally, large and rare events, which will be discussed in the
next section, allow proteins to cross to another island of stability, but
mostly, proteins will be forced to maintain their folds over billions of
years of evolution, even as their sequences diverge. Divergence will
not occur randomly, as proteins have to maintain compatibility with
their respective folds. This means that they will retain common fea-
tures, which can be abstracted into characteristic sequence profiles
and used to identify the correct fold for newly sequenced proteins.
In agreement with this view, methods designed to exploit ever more
distant sequence similarities based on profiles and profile Hidden
Markov Models are among our most powerful tools for structure
prediction.17–19

A competing view maintains that fold space is in fact continuous.20

In this view, protein folds are connected seamlessly by intermediate
states that specify structural ensembles, providing for a smooth evo-
lutionary transition between forms. This view is supported by the
observation that fold change is possible by point mutation in proteins
such as coiled coils,21 helical bundles,22 cysteine knots,23 and the Arc
repressor.24 We find that these observations are unlikely to be inform-
ative for the general shape of the folding landscape for the following
reasons: (i) All the proteins for which such fold changes have been
described are around 50 residues long, a length quite untypical for
most domains, which on average have 185 residues (as determined
for fold classes a-d of SCOP 1.71); short proteins have dispropor-
tionately fewer fold determining residues. (ii) Most of the domains
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are unusual, as they are known to have multiple, closely spaced energy
minima due to the interchangeability of their fold-determining inter-
actions (knobs-into-holes packing in coiled coils and helical bundles,
disulfide bonds in cysteine knots). (iii) The extent to which fold
change has occurred is debatable; in the Arc repressor it merely
involves a strand-to-310-helix transition in a terminal secondary struc-
ture element, and in coiled coils it is unclear whether the changes
reflect structural diversity within one fold or true fold diversity. The
most impressive instance of fold change by point mutation is the recent
report of a 56-residue polypeptide, in which seven point mutations are
sufficient to switch the structure from a three-helix bundle to an open-
faced β-sandwich.25 However, the authors do not draw evolutionary
conclusions, and it is indeed unclear whether the sequence of this
polypeptide could emerge under natural (i.e. functional) selection and
whether the final seven required mutations would include any inter-
mediate forms stable enough to allow for the change to happen.

We think that the continuous view of fold space is an instance of
a general principle deduced from a small number of examples. In our
opinion, the proteins described above are better understood as cases
where islands of stability are close together, forming archipelagos in
which transitions from one island to the next can occur through
minor changes. If such archipelagos were frequent, sequence search
programs would routinely connect proteins of different folds. They
do not, as can already be gathered from the fact that examples to the
contrary are worth publishing,26 and the extent to which they do not
is quite amazing. In fact, even extended chains of consecutive profile
searches from low-significance sequence matches rarely connect pro-
teins of different folds, as long as a loose consistency measure is
applied.17 Correspondingly, the growth of sequence databases and the
improvement of sequence comparison methods have provided most
of the progress in protein structure prediction over the last decade.27

We would contend that, since sequence searches are among the most
extensively used tools in molecular biology and cover the entire
known complement of proteins, their output provides a much more
robust view of fold space than a few individual examples of proteins
with closely spaced energy minima of different folds.
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6.5 Fold Change in Evolution

The high evolutionary permanence of folds emphasized above should
not detract from the fact that changes can occur over time by a vari-
ety of genetic events. Before engaging in a discussion of these events,
we would like to briefly touch on what constitutes a fold and how one
might judge when two folds are different, issues that will be presented
in detail in Chapter 9. In essence, we consider a fold a conserved,
topologically distinct arrangement of secondary structures in a
domain; extensions and insertions not present in homologs are con-
sidered decorations. A fold change occurs when one or more second-
ary structure elements within the fold alter their nature and/or their
topology. The difficulties associated with defining domains and deter-
mining when topological differences are sufficiently pronounced to
warrant separating two folds are the main reasons for the substantial
differences between structure classification systems.28 Discrepancies
also arise because of the uneasy coexistence of homologous and anal-
ogous traits used to generate the classifications. Nevertheless, it is
possible to arrive at consensus representations for most folds, which
have been termed metafolds.29

As outlined in the previous section, the accumulation of point
mutations may be sufficient to trigger a change in fold in some pro-
teins [Fig. 6.2(a)]; similarly, insertions and deletions (indels) may
have this effect [Fig. 6.2(b)]. The main causes of fold change, how-
ever, are rare occurrences involving topological substitutions, circular
permutations, strand swaps, strand and hairpin invasions, and 3D
domain swaps. Most have been described in detail in a review article
by Grishin, which we warmly recommend to our readers.14 We have
listed examples for such events, as deduced from the comparison of
present-day homologous proteins, in Fig. 6.2. In analyzing these
examples, it becomes clear that most rely on preceding point muta-
tions and indel events. Thus, the 3D domain swap that led to the
emergence of the histone fold from the C-domains of AAA+ ATPases
was most likely preceded by a deletion of the loop connecting helices
2 and 3;30 this prevented the helices from folding back onto each
other and required the antiparallel association of two monomers in
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Fig. 6.2 Mechanisms of fold change. Helices are in yellow and strands in green,
unless otherwise noted; in homo-dimers, one monomer is shown in grey. (a) Transition
in the handedness of a four-helix bundle between the DHp domains of EnvZ (1JOY)
and Thermotoga TM0853 (2C2A) by the cumulated effect of point mutations.
(b) Transition from an eight-stranded, all-parallel TIM barrel (bacterial luciferase,
1LUC) to a seven-stranded barrel containing one antiparallel strand (nonfluorescent
flavoprotein, 1NFP) by deletion and helix-to-strand transition; the affected
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order to cover the exposed hydrophobic core [Fig. 6.2(c)]. Similarly,
the topological substitution in the C-terminal domain of Pseudomonas
G4-amylase relative to other amylases was most likely preceded by the
deletion of an adjacent hairpin, which required a broader secondary
structure element to cover at least part of the exposed hydrophobic
core [Fig. 6.2(d)]. Conversely, the hairpin invasion that led to the
origin of retinoic acid binding protein from the basic lipocalin fold
was probably preceded by a large insertion between strands 4 and 5,
which folded back to expand the barrel [Fig. 6.2(e)]. Compared to
these events, circular permutation [Fig. 6.2(f )] seems to be consid-
erably more complex, as the simplest mechanism proposed for it
requires gene duplication, fusion, and at least two deletions.31 In light
of this, it seems surprising that circular permutations are so frequent,
being detectable in about half of all known folds.32

As an aside, the extent to which fold change is open to debate is
illustrated by the fact that, even though we would consider all cases
in Fig. 6.2 examples of fold change, both the SCOP and CATH clas-
sifications only agree with this estimate for the 3D domain swap in
Fig. 6.2(c). They consider all other examples to still have the same
fold, except for Fig. 6.2(g), which they do not classify. We interpret
this as a symptom of the tensions arising from the use of both homol-
ogous and analogous similarities for structural classification. All exam-
ples in Fig. 6.2 involve homologous proteins; analogous proteins with
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region is colored red. (c) Dimerization induced by 3D domain swapping between the
C-domain of a AAA+ ATPase (RuvB, 1INs) and an archaeal histone (1B67); the
swapped helical hairpin is shown in red. (d) β-Hairpin deletion (blue) and strand-
to-helix transition (red) between the C-terminal domains of a canonical amylase
(1BPL) and of a variant form (2AMG). (e) Variations on the lipocalin fold: β-hairpin
invasion between retinol binding protein (1HBQ, center) and retinoic acid binding
protein (1CBS, left), and strand swapping between retinol binding protein and
thrombin inhibitor (1AVG, right); the invading hairpin is shown in red and the
swapped strands in cyan and blue. (f) Circular permutation between the C2 domains
of synaptogamin I (1RSY) and phospholipase C (1QAS); the permuted strand is
colored red. (g) Fragment fusion of two β-meanders from different OB folds (cold
shock protein, 2MEF, right, blue; and S1 RNA binding domain, 1SRO, center, cyan)
yields a domain-swapped dimer (2BH8).

b587_Chapter-06.qxd  4/18/2008  10:58 AM  Page 141



the same topological differences would in most cases be classified into
separate folds.

All panels in Fig. 6.2 show transitions between two forms, typi-
cally a highly populated core fold and a variant, but this may be a sim-
plified account of the actual evolutionary process. As we mentioned
before, in cases where most dots are missing, simplification is
unavoidable. A case we have been investigating involves a group of
homologous β-barrels with at least three distinct topologies, which
we have grouped together into the cradle-loop metafold, based on
the peculiar shape of their ligand binding sites (Fig. 6.3). Originally,
we surmised that two of the folds, whose homologous relationship
we could recognize, were related by circular permutation.33 As we
explored these proteins further, we found that they were related by a
strand swap and a strand invasion via an intermediate third fold.34

Each of the three folds has produced further topological variants by
deletion, circular permutation, and/or strand invasion, generating a
network of related folds. Given the dearth of similar studies on other
proteins, it is impossible to judge how prevalent such fold networks
are in nature.

A noteworthy member of the cradle-loop network is the B3
domain, which may have arisen by a mechanism we have not
addressed yet, namely the fusion of two different half-barrels.
Although the homologous relationship of this domain to other cra-
dle-loop proteins is still unclear and we are not aware of any other
good example from naturally occurring proteins, it seems entirely
plausible that new folds may arise through the fusion of fragments
from existing folds, for example, by illegitimate recombination. In an
experiment we alluded to earlier, Riechmann and Winter tried to res-
cue the N-terminal half of the OB-fold protein CspA by fusion to ran-
dom segments of the E. coli genome.7 Several fusions were sufficiently
protease-resistant to survive the phage-display selection process, and
one, which involved fusion to the N-terminal half of another OB-fold
protein gave a clearly folded chimera, whose structure could be solved
by crystallography.35 Since the two halves of the chimera were homol-
ogous β-meanders, one might well have anticipated a pseudo-
symmetrical structure, but in fact the structure showed a homodimeric
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OB-fold extended to one side by a β-hairpin; the β-hairpin and the
C-terminal strand originated by 3D domain swapping from another
monomer [Fig. 6.2(g)]. The extent to which this chimera represents
a new fold will certainly be a matter of debate, since several domain-
swapped OB-folds, albeit lacking the β-hairpin extension, are cur-
rently classified into the same fold as monomeric OB-folds.

A striking aspect of the chimera is the fact that, despite the
homology of the two meanders, it was not a “marriage of equals”. The
N-terminal, CspA-derived meander proved completely dominant in
bringing about a fold close to that of its parent; it maintained its struc-
ture to within less than 2.5 Å root-mean-square deviation and forced
the C-terminal meander to change its topology and the secondary
structure state of more than half of its residues. It seems reasonable to
assume that such fragments with a strong folding propensity could be
complemented not only by other protein fragments, but also by out-
of-frame or antisense fragments, which have not been selected for their
folding propensity, but are clearly non-random.36 At the frequency of
frame shifts, no part of a genome is permanently out-of-frame.

With so many mechanisms capable of yielding fold changes, how
can folds be so stable in evolution? Given the small number of genes
per cell, the huge populations and short generation times, illegitimate
recombination alone must allow a bacterial species such as E. coli to
produce hundreds of new folded proteins per year. Where are they?
We would like to offer several thoughts on this apparent contradic-
tion. (i) Folding does not imply function; it is just a prerequisite for
it. The large majority of the “hopeful monsters” resulting from such
events would probably be out-competed rapidly by their established
siblings, who have been optimized for all the main biological func-
tions over eons of evolution. (ii) A very small number would survive
to contribute to species- or genus-specific, niche functions and die
out when their hosts become extinct. Some of the singletons that we
encounter every time we sequence a new genome may fall into this
category. These proteins would account for the bulk of the so-called
unifolds, which are folds that occur in only one protein. Whereas 80%
of proteins fall into one of only about 400 common folds, the remain-
ing 20% are estimated to form more than 104 unifolds.37 (iii) Most
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Fig. 6.3. (See caption on next page.)
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survivors, however, would either recapitulate a previously successful
fold change or resolve back to their original fold, making it difficult
in either case to recognize that anything had happened. For example,
half of all chains of events required for circular permutation would
resolve back to the status quo ante. The OB-fold chimera discussed
above might well also resolve back to a canonical OB-fold under evo-
lutionary pressure, as this would entail a single deletion event remov-
ing the domain-swapped β-hairpin. We conclude that the dearth in
starting material is not the primary limitation in establishing new
folds; it is the lack of opportunity against entrenched and highly opti-
mized competitors.

6.6 Origin of Folds

In modern proteins, domains act as the unit of protein structure. New
proteins arise by the combinatorial shuffling of existing domain types,
which adapt to new functional requirements by point mutations and
indels, while preserving their basic fold. The origin of folded domains,
however, remains substantially unknown.

One possibility is an origin de novo, by random concatenation of
amino acids, followed by selection. Domains would seem to have too
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Fig. 6.3 Evolution of the cradle-loop barrel metafold. An ancestral homo-dimeric
RIFT barrel (bottom row, center; modeled) gave rise to swapped-hairpin barrels (e.g.
AbrB, 1YFB) by strand swapping. Both folds yielded single-chain barrels by duplica-
tion and fusion. For RIFT barrels, this is now the dominant form (e.g. PhS018,
2GLW); for swapped-hairpin barrels, the homo-dimeric form remained dominant,
giving rise to single-chain versions by independent events in several lineages
(e.g. MraZ, 1N0G). The double-psi barrels originated from a RIFT barrel by strand
swapping (e.g. VAT-Nn, 1CZ4). Since all known double-psi barrels are single-chain,
we assume that they originated from a single-chain version of the RIFT barrel; we
have however made a homo-dimeric double-psi barrel in the laboratory, showing that
a pathway in which the strand swapping event preceeded the duplication and fusion
cannot be excluded (dotted arrows). Finally, the B3 barrel (e.g. RAV1, 1WID) may
have arisen through the fusion of a homo-dimeric RIFT barrel with a swapped-hair-
pin barrel, although the homology is not clear in this case (dotted arrows). Coloring
is as in Fig. 6.2; the invading strand is shown in red and the swapped strands in blue
and cyan.
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high a sequence complexity and too low a folding yield for random
assembly, but we are aware of one example, where a novel, folded pro-
tein of 80 residues capable of binding ATP was selected from a ran-
dom peptide library by in vitro evolution.4,38 This demonstrates, we
think, that structure and function can evolve, given time and suffi-
cient starting material. It is, however, entirely unclear how this start-
ing material would have come about. No abiotic processes are known
that can produce chains of more than five to 10 amino acids, and
these processes are very inefficient. There is also the fundamental
question of how the sequence information contained in the evolving
proteins could be passed on, since this is an absolute prerequisite for
any evolution, biotic or abiotic.

Proteins may have originated by the repetition of short peptides,
a process that efficiently yields fibrous proteins such as coiled coils and
β-helices.39,40 Repetitive sequences appear to have a higher chance
of folding and also more favorable structural properties than non-
repetitive sequences.41,42 The problem of passing on the sequence
information, however, remains unsolved. Also, domains seen today do
not have fibrous elements at their core; there is a discontinuity in fold
complexity between fibers and all other folded domains and fibers are
structural, not catalytic elements, whereas the primary role of proteins
is catalysis.

We favor a scenario for the origin of proteins by fusion and
recombination from an ancestral set of peptides, which emerged in
the context of RNA-dependent replication and catalysis (the “RNA
world”).15 These peptides, originally short chains of abiotic origin,
would have been selected as co-factors of ribozymes, broadening their
catalytic spectrum and improving their stability and folding efficiency.
As the abiotic pool became depleted, ribozyme-based organisms
developed an evolutionary incentive to ligate peptides catalytically,
and later also to establish a primitive code so as to increase the yield
of useful peptides. The need for improved specificity provided the
evolutionary pressure for the emergence of peptides capable of assum-
ing secondary structure on an RNA scaffold. The assembly of longer
polypeptide chains from these pre-optimized peptides led to folding
as an emergent property, when peptides found that they could now
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exclude water between themselves (“hydrophobic collapse”) in the
absence of an RNA scaffold. The dominant role of recurrent super-
secondary structures in the architecture of modern folds43 may be the
result of this process.

Whatever the mechanism, it appears to have ceased a long time
ago, since the basic complement of proteins in living beings has not
been enriched by new folds for hundreds of millions of years and has
probably been essentially stable since the time of the last common
ancestor. Why is that? Did nature find most islands of stability avail-
able to the 20 natural alpha-amino acids in one burst around 3.8–3.5
billion years ago? Or is it that, once a set of folded and functional pro-
teins was in place, no new exemplars could emerge across the com-
plexity boundary imposed by the twin constraints of structure and
function, without being eliminated immediately by established com-
petitors? The issues resemble the questions surrounding animal body-
plans. These also emerged in a comparatively short time (the “Cambrian
explosion”) and only a very limited number became established. Even
though new opportunities arose periodically through large-scale extinc-
tion events, none led to the emergence of new body-plans; rather, the
openings were filled by survivors with the same or similar body plans
as the extinct species.

6.7 Future Outlook

Clearly, an important challenge in the coming years will be to estab-
lish why the basic complement of protein domains is so stable. Has
nature identified and populated all the main islands of fold stability,
or are there new islands that remain to be discovered? So far, efforts
to generate new folds by design44 have stayed very close to already
observed topologies and there is little expectation that these folds will
indeed turn out to be absent from nature. We therefore consider this
question to be essentially unaddressed at present.

A second major challenge will be to explore the hypothesis that
folded proteins arose from an ancestral pool of peptides, the
antecedent domain segments.45 If true, one would expect to observe
similar fragments in proteins with dissimilar folds as vestigial traces of
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this process. We note that the success of fold predictors based on frag-
ment libraries, such as Rosetta,46 may be due to their ability to track
this ancient peptide set. Systematic studies should allow its description
in the same way in which ancient vocabularies have been recon-
structed from the comparative study of modern languages. Peptides
from this set should also be of great interest for protein engineering,
as we anticipate that they will turn out to be structurally dominant in
the sense discussed above for the CspA β-meander. Assembly of new
proteins around such stable peptides may be more feasible than the
current whole-chain optimization approach.

We see a further challenge at the junction between the two chal-
lenges named above: if folded proteins evolved from a set of peptides
selected on an RNA scaffold, might a different scaffold have led to a dif-
ferent set of peptides with different secondary structures opening onto
a different fold space? Is there a fold space out there accessible with the
natural 20 amino acids, which is not built of α-helices and β-sheets? We
note that in his seminal paper on the structure of the α-helix, Pauling
in fact proposed two helical structures for the polypeptide chain,47 one
of which has never been observed. Is this because it does not represent
a stable solution, or is it because its dimensions do not fit the grooves
of nucleic acids? While these questions may seem to cross the threshold
into science-fiction, the only thing one can expect with any degree of
certainty in science is surprise.
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Chapter 7

Classification of Protein Structures

A. Cuff, O. Redfern* and C. Orengo

7.1 Introduction

Since the determination of the first protein structure (of Myoglobin) in
the early 1970s and the establishment of the Protein structure Data
Bank (PDB) shortly afterwards in the United States,1 the number of
solved protein structures has continued to rise at an exponential rate,
with more than 47 000 entries in the PDB as of July 2007. In order to
conveniently organize these data for analysis, resources for classifying
the structures into evolutionary families (e.g. CATH2 and SCOP3)
arose in the 1990s. To facilitate classification, the majority of resources
employed a new generation of sensitive structure comparison methods
(see Ref. 4 for review). As domains are thought to be the primary unit
of evolution, CATH and SCOP generally first split whole protein chains
into their component domains prior to classifying them into families.

In this chapter, we review the computational approaches that have
been developed for identifying domains and evolutionary relation-
ships between protein structures. We summarize the most popular
methods for detecting whether two protein domains share structural
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similarities (a common fold) and what additional evidence needs to be
considered to infer homology.

In addition, we present the most regular and/or common struc-
tural architectures observed in nature and assess the extent to which
different fold groups and architectures are predicted to recur in com-
pleted genomes. Finally, we consider how the current repertoire of
structural data influences our understanding of how new functions
emerge in the genomes and discuss how the classification resources
should be developed to capture information on structural and func-
tional divergence in superfamilies more effectively.

7.2 Recognizing Domain Boundaries
in Multi-domain Structures

At the beginning of 2007, nearly 40% of structures classified in the
CATH domain resource were multi-domain proteins. The majority
comprise just two domains, although other large multi-domain struc-
tures were also observed (see Fig. 7.1). Indeed, calculations on

154 Computational Structural Biology

FA

Fig. 7.1 Plot showing the number of multi-chain structures in CATH (version 3.1).
The number of chains is on the Y-axis and the corresponding number of domains on
the X-axis. The inset gives a close-up view of the number of chains with five or more
domains in the CATH database.
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predicted domains in sequences from completed genomes have sug-
gested that at least 60% (prokaryotes) and 80% (eukaryotes) of pro-
teins are likely to be multi-domain.5 Hence, the proportion of
multi-domain structures deposited in the PDB is expected to grow
with advances in technologies for structure determination resulting
from the structure genomics initiatives (SGIs).

To classify whole protein structures from the PDB, one of the first
steps is the recognition of individual domains. However, this often
poses a challenge due to the lack of a clear definition of what consti-
tutes a domain. Although various heuristic definitions have arisen
over the years (see, for example, in Ref. 6 — principally that domains
are compact globular units, that secondary structures are rarely shared
between domains, and that there are generally more residue contacts
within domains than between domains — none of these concepts has
successfully been encoded in an algorithm to recognize domain
boundaries with higher than ~70% accuracy.7 Moreover, even the
most successful computational approaches only agree on their domain
boundary prediction around 20% of the time,7 which means that the
results of all methods are often manually checked to ensure accuracy.
For example, in the CATH classification, three independent algo-
rithms — PUU,8 DOMAK, DETECTIVE9 — are combined to
inform the manual curation process.

To address the variation in the structural properties of domains,
many classification resources [e.g. SCOP,3 CATH,2 DALI Domain
Database (DDD)] instead exploit the principle of “fold recurrence”
to look within a library of previously classified domains for similar
domains in the query structure. In fact, this approach is becoming
increasingly practical as fewer than 2% of newly-solved domains are
found to have new folds, although this percentage is higher for struc-
tures solved by structural genomics initiatives.10,11 As a consequence,
recurrence methods can often predict reliable boundaries more fre-
quently than those that apply a more generic domain definition.

For instance, a new method developed for classifying structures in
CATH (CATHEDRAL — CATH’s Existing Domain Recognition
Algorithm12) combines two established structure comparison algo-
rithms to recognize existing CATH domain folds in new structures
and is able to predict the correct domain boundaries ~80% of the time.

Classification of Protein Structures 155

FA
b587_Chapter-07.qxd  1/18/2008  4:54 PM  Page 155



7.3 Recognizing Structural Similarities

Whether structure classification is effected at the domain or whole
protein chain level, the primary aim is to group together similar
structures. To keep pace with the exponential growth of the PDB,
the majority of protein classification resources make use of compu-
tational structure comparison methods. For the purposes of identi-
fying evolutionary relationships, there are two main difficulties
facing these algorithms. First, distantly related domains are likely to
have undergone a significant number of residue substitutions, inser-
tions, and deletions (indels) over evolutionary time. Second, the
extent to which these occur varies considerably across different pro-
tein families.

7.3.1 Structural Variation between related
Protein Structures

Recent analysis of structural families in CATH has shown that as few
as 40% of residues, usually in the hydrophobic core of the domain,
are structurally conserved in most families.13 In these remote homo-
logues (<30% sequence identity), which are more likely to be par-
alogues arising from domain duplication events, the structures can
change considerably, and frequently, this is accompanied by some
change in the function too. However, orthologous domains arising
from speciation events are much more likely to have similar struc-
tures and functions.

Building on early analyses of the PDB,14 Reeves et al.13 recently
confirmed that quite extensive insertions (frequently >10 residues)
can occur between distant relatives in a superfamily. These residue
insertions often occur in the loops between secondary structures.
Moreover, mutations in the core can produce substantial shifts in the
orientations of equivalent secondary structures, although, on average,
most pair-wise orientations vary by less than 20°.

Below, we review some of the most widely used methods that are
either routinely used for classifying structures into fold groups and
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evolutionary families (e.g. in CATH or SCOP), or are available
through public servers (e.g. attached to the PDB web sites at the EBI
or RCSB1). Further details on all these methods and a more com-
prehensive review of structure comparison methods can be found in
several reviews published recently.4,15

7.3.2 Rigid Body Superposition and Quantifying
Structural Similarity

One of the earliest methods of structural comparison was developed
by Rossmann and Argos using a “rigid body superposition” approach,
which minimized the distance between the two proteins by superim-
posing the equivalent Cα atoms of one protein structure on top of the
other. This is achieved by translating both protein structures to a
common position in the co-ordinate frame of reference, and then
rotating one structure relative to the other until the distances between
the superimposed atoms are minimized.

The distances between the equivalent atoms in the two structures
are measured using a function referred to as the Root Mean Squared
Deviation (RMSD) (see Equation 7.1 below), with a low RMSD
value indicating a closer structural similarity. An RMSD of less than
3.5Å is indicative of significant fold similarity and possible structural
homology. However, if the aim is to assess global structural similarity
between two proteins it is also important to consider the number of
residues over which the RMSD has been calculated. Small highly
recurrent super-secondary motifs, e.g. recurring αβ motifs, can result
in low RMSD values between two proteins arising from these small
common motifs, and these can obscure large differences between the
structures, which only become apparent when the whole structures
are considered.

Kolodny and co-workers16 have suggested normalizing the
RMSD on the basis of the number of residues aligned using the for-
mula shown in Equation 7.2 below. However, for the purpose of
detecting significant fold similarities between domains, it is still
important to calculate the number of aligned residues with respect to
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the larger structure. This may achieved by normalizing the RMSD on
the basis of the larger domain (see Equation 7.3), as is done for clas-
sifying structures in CATH.

(7.1)

Expression for RMSD, where d is the distance between two equiva-
lent residues after superposition and N is the number of aligned residues.

(7.2)

Expression for SAS, where N is the number of aligned residues

(7.3)

Expression for SiMax, where N is the number of aligned residues
and l1 and l2 are the lengths of the two superposed structures.

At this point, it is important to note that rigid body superposition
requires prior knowledge of equivalent residues and is often applied
after two structures have been aligned from their sequences, or by
using one of the methods described below.

7.3.3 Approaches for Comparing Secondary
Structures between Proteins

Since most residue insertion/deletions (indels) occur in the random
coil regions connecting secondary structures, a number of structure
comparison methods have evolved that disregard these loops, con-
centrating solely on the secondary structure elements. Many of
these approaches rely on graph theory due to its performance and
accuracy.

SiMax
RMSD= max( , )l l

N
1 2

SAS
RMSD= 100

N

RMSD = =
Âd

N

i
i

N
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1

158 Computational Structural Biology

FA
b587_Chapter-07.qxd  1/18/2008  4:54 PM  Page 158



The use of graph theory to compare secondary structures between
protein structures was pioneered in 1993 by Artymiuk, Willett, and
co-workers.17 A protein structure can be represented as a simplified
two-dimensional map or “graph”. Each secondary structure element
in the graph is represented by a point or node in the graph and
labeled according to whether it is an α-helix or β-strand. Geometric
relationships between the secondary structures, for example, distances
or angles, are represented by the lines (or edges) that connect the
nodes in the graph.

A recent implementation was developed for classifying domains in
CATH (GRATH18). Graph edges connecting nodes are labeled with
mid-point distances and both the tilt and the rotation between sec-
ondary structures. The algorithm detects common secondary struc-
ture “cliques” to identify equivalent secondary structures in a given
pair of proteins. The size of this clique is converted to a statistical
score (E-value) to quantify structural similarity.

SSM is another recent graph theory method developed by
Krissinel and colleagues19 and available through the SSM server at the
EBI. SSM labels edges between nodes with distances and angles in
much the same way as GRATH but places greater emphasis on how
similar the secondary structure elements are in terms of size (i.e. num-
ber of residues).

The VAST algorithm20 also focuses on secondary structure rela-
tionships. Two proteins are aligned by identifying equivalent “units”
of secondary structure elements having similar orientations and
sequential connections. An optimal superposition score is calculated
across all pairs of equivalent secondary structure elements (SSEs) and
the program assesses the probability of this score being observed by
chance by superposing random pairs of SSE combinations for the two
structures being compared.

One of the major advantages of using a comparison method based
on secondary structure matching is the speed of performance, as there
are typically an order of magnitude fewer secondary structures than
residues within a protein. Secondary structure based approaches are
often used for rapidly identifying putative fold matches, which can
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then be realigned using slower, but generally more accurate, residue-
based approaches.

7.3.4 Residue-based Approaches for Comparing
Secondary Structures

There are a number of widely used residue-based methods for com-
paring protein structures. Some of the most popular methods used
by the classification resources (e.g. SCOP, CATH) and structural
biology community (e.g. PDB) will be reviewed here. DALI21 and
CE22 overcome the problems of indels between remote homologues
by first splitting the structures into fragments and then concatenating
equivalent fragments into a global alignment. While in the SSAP,23

STRUCTAL,16 and CATHEDRAL12 algorithms, dynamic program-
ming is exploited to cope with indels. All these algorithms are pub-
licly available.

The DALI algorithm21 splits the structures of the two proteins
being compared into fragments of six residues (hexapeptides) and
then compares the contact maps of these fragments. The contact
maps capture information on residues in contact with each other
within a threshold distance, e.g. 8 Å. Equivalent fragments are iden-
tified by looking for similar patterns of distances between residues
within a given threshold. These matching pairs are then extended to
increase the alignment length by concatenating other equivalent frag-
ment pairs between the two proteins using a Monte Carlo optimiza-
tion. The RMSD between the two concatenated structures is
measured after each concatenation to assess the quality of the align-
ment as it grows.

The Combinational Extension (CE) algorithm22 works in a simi-
lar manner to DALI by splitting each protein into fragments, identi-
fying equivalent protein fragments, and then combining them to
calculate a global alignment. As with DALI, variable loop regions are
omitted to improve the quality of the alignment. However, CE splits
proteins into octapeptides rather than hexapeptides, and aligns equiv-
alent residues according to local geometry characteristics. Matching
fragments are referred to as Aligned Fragment Pairs (AFPs) and are
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concatenated using a heuristic method with gaps inserted where
required. The concatenated AFPs with low RMSD values are then
accurately aligned using dynamic programming.

In contrast to DALI and CE, SSAP23 captures the residue rela-
tionships by measuring the vectors between them. Vectors are deter-
mined within a common co-ordinate frame based on the local
geometry of the Cα atoms, which can help in accommodating shifts
in the orientation of equivalent secondary structure elements.
Proteins are aligned by performing dynamic programming at two
levels, first, to discover putatively equivalent residues by comparing
sets of vectors for selected pairs of residues between the two proteins.
Alignments from high-scoring residue pairs are then accumulated in
a summary score matrix, which is re-analyzed by dynamic program-
ming to obtain the optimal alignment (see Refs. 12 and 23 for more
details). As two levels of dynamic programming are used, the algo-
rithm has been coined “double dynamic programming” and has been
exploited for other applications (e.g. threading, see Chapter 2).
SSAP generates a score between 0 and 100 (for identical protein
structures), which is normalized by the size of the largest structure
being compared.

Another residue based approach, STRUCTAL,16 identifies an ini-
tial alignment between the structures and uses this to superimpose the
structures by rigid body transformation to obtain a minimal RMSD.
Subsequently, an optimal alignment is obtained by dynamic program-
ming. Initial alignments are obtained in various ways, for example, by
considering the sequence similarity of the proteins or torsional angle
similarity. An iterative approach is employed whereby alignments are
refined by dynamic programming, and this is followed by further
superposition until a local optimum is converged upon. STRUCTAL
provides a statistical measure of significance of the final alignment
produced in the form of a p-value.

Recent benchmarks of several structure comparison algorithms
(DALI, SSAP, STRUCTAL, CE, LSQMAN,16 O. Redfern personal
communication) has shown that DALI and SSAP are highly efficient
at searching libraries of domain folds to classify a newly determined
structure, frequently ranking the correct fold at the top of the list
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of matches. These algorithms have been specially tuned to perform
well in the classification of structures into fold groups and superfam-
ilies, and therefore, it is not surprising that they outperform other
methods. Although other methods do not perform as well, they are
less computationally expensive, and hence, often better suited to data-
base searching.

7.4 Identifying Evolutionary Relationships

Structural similarity is not always a sufficient criterion for recognizing
homologous domain structures. As there are constraints on the man-
ner in which α-helices and β-strands can pack together in 3D, there
will clearly be limits on the number of possible folds, and therefore,
the recognition of structural similarity between two domain struc-
tures could simply denote convergence to energetically favorable
arrangements of secondary structures. Therefore, most structural
classifications seek additional evidence of homology. This may consti-
tute an unusual sequence pattern (e.g. detectable using Hidden
Markov Models (HMMs) or sequence profiles) or via evidence of
functional similarity (see Section 7.9).

7.4.1 Classifying Homologues Using Sequence
Profile Methods

Both of the major structural classifications (SCOP, CATH) perform
considerable manual validation to recognize homologues. In CATH,
close homologues are validated using pair-wise sequence comparison
and detection of 35% or more sequence identity between domains, in
addition to significant structural similarity. For remote homologues,
HMM-based methods are used, namely HMMer24 and SAM-T.25

The more powerful Profile-Profile based approaches of PRC26 and
COMPASS27 can further aid homologue detection. Indeed, recent
benchmarking using a manually validated dataset of CATH
homologues28 has shown that COMPASS recognizes ~20 times more
remote homologues in the midnight zone (<20% sequence identity)
than BLAST.29 Further, in some superfamilies, COMPASS and PRC
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can recognize homologues that are missed by structure comparison as
the relatives have diverged significantly so that the folds can no longer
be considered similar.28

Since structural divergence varies considerably between families
(see Ref. 13), individual family-based thresholds on structure sim-
ilarity are more appropriate for classifying relatives. However, the
relative scarcity of structural data in most families makes it hard
to do this reliably at present. For classification in CATH, the prob-
lem is resolved to some extent by using neural networks to com-
bine information on structural similarity and sequence similarity
for detecting homologues, an approach that succeeds ~95% of
the time.30

7.5 Review of the Major Domain Structure
Classifications and Structural
Neighborhood Resources

Due to the large amount of expert curation required, there are cur-
rently only two manually-validated protein structure classification
databases that aim to cover the entire PDB: SCOP and CATH.
However, there are a number of other resources that automatically
cluster structurally similar structures, to create structural neighbor-
hoods (see Table 7.1).

7.5.1 The CATH Database

CATH2 is an acronym for Class, Architecture, Homologous
Superfamily, and Topological motif, the four major levels in the clas-
sification hierarchy (Fig. 7.2). Domain structures are classified in this
resource according to sequence, structural, and functional similarity
using both automated and manual approaches.

Domains are initially assigned to one of four (C)lasses according
to their secondary structure content (i.e. containing: mainly α-helical
structures, mainly β-sheet structures, mixed αβ structures, or very little
secondary structure content). They are then further classified accord-
ing to their (A)rchitecture, which refers to the gross arrangement of
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Table 7.1 Table of Protein Structure Classification Resources and Neighborhood Resources

Structure
Database Coverage (July 2007) Comparison Method Type

CATH 93 885 domains in SSAP, GRATH, Automatic structural and
CATH is a hierarchical classification of protein 2091 superfamilies. CATHEDRAL sequence comparison

domain structures, clustered by Class, methods are combined
Architecture, Topology and Homologous with manual validation
Superfamily. of superfamily alignments

and domain boundaries.

CE All chains in the CE Fully automatic, nearest
A database of structural alignments and PDB. neighbors.

similarities between all structures in the PDB.

MMDB All chains in the PDB. VAST Fully automatic, nearest
Contains pre-calculated pairwise structural neighbors.

comparisons and alignments between
all structures in the PDB.

HOMSTRAD 3454 structures in MNYFIT, STAMP Manual classification of
HOMologous STRuctures Alignment over 1000 and COMPARER close homologues.

Database. Database of annotated superfamilies.
structural alignments for homologous
protein families, utilizing SCOP, Pfam
and SMART to identify relatives.

SCOP 75 930 domains in None. Manual classification.
Structural Classification of Proteins. 1589 superfamilies.

Hierarchical classification by Class, Fold,
Superfamily, Family.
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Fig. 7.2 Schematic representation of the class, architecture, topology/fold, and
homologous superfamily levels in the CATH database.
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secondary structures in 3D space, independent of their connectivity.
Next, the (T)opological motif or fold group is determined by both
the arrangement of the secondary structures and their connectivity.
Finally, domains are clustered into the same (H)omologous super-
family provided there is clear indication of an evolutionary relation-
ship. Domains should share significant structure, sequence and/or
functional similarity.

Lower levels in the CATH hierarchy comprise subfamilies of
domains clustered according to significant levels of sequence similar-
ity measured by the pair-wise Needleman and Wunsch algorithm.31

The SOL and I levels refer to groups of domains clustered together
because they have at least 35%, 60%, 95%, or 100% sequence identity
respectively. A final level, D, can be seen as a “counter” within the I
level and is added to ensure that each domain entry in the CATH
database has a unique “CATHsolid” identification code. Sub-clustering
is performed at the different levels to provide increasing confidence
for inheriting structural and functional properties.

As mentioned above, CATH is updated using both automated
algorithms and manual curation. For newly determined structures
found to be closely related (≥ 80% sequence identity) to structures
already in the database, domain boundaries are assigned com-
pletely automatically using a sequence-based in-house algorithm
(ChopClose30). For those without a close relative in CATH, several
independent programs are run (see Section 7.2) and manual validation
of the boundaries is performed. Information on the results of these
programs and the final manual refinement of the boundaries can be
viewed via the CATH update web pages(http://www.cathdb.info).

Domains are subsequently classified into fold groups in CATH by
assessing their structural similarity to classified domains using the
CATHEDRAL and SSAP algorithms. To recognize homologous rela-
tionships at least two out of the three following criteria must be met:
(i) significant sequence similarity (by Needleman-Wunsch pair-wise
method or by SAM-T or PRC HMM based approaches); (ii) signifi-
cant similarity in structure (by CATHEDRAL or SSAP); and (iii) sim-
ilarity in function — functional information is extracted from publicly
available databases such a GO, EC, COGs, Pfam, and KEGG, and
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also from the relevant literature and by running function prediction
algorithms (see Section 7.9).

For example, programs are run that automatically compare func-
tional annotations between domains (SAWTED32,33) and a machine
learning approach has been developed for combining information on
sequence similarity, structural similarity, and functional similarity to
gauge whether domains are likely to be evolutionary related. In cases
where automatic homology assignment is not possible manual, cura-
tion is employed. The results from all the programs run on each
domain can be viewed on the following CATH update pages (http://
www.cathdb.info).

7.5.2 The Structural Classification of Proteins
(SCOP) Database

The Structural Classification of Proteins (SCOP) was developed by
Murzin and collaborators3 in 1994, and like CATH, each protein is
divided into one or more domain structures. However, unlike CATH,
domain boundary assignment and classification is almost entirely
achieved by manual inspection.

As with CATH classification, SCOP follows a hierarchical organ-
ization with the following major levels. In the highest level (Class),
protein structures are grouped into different classes according to
their secondary structure content. The five major classes in SCOP
are: (i) all alpha (for structures almost entirely composed of alpha
helices), (ii) all beta (for structures almost entirely composed of beta
sheets), (iii) alpha/beta (structures composed of interspersed alpha-
helices and beta-strands), (iv) alpha+beta (structures composed of
segregated alpha-helices and beta-strands), and (v) multi-domain
(structures that are composed of two or more domains that belong
to different classes).

Unlike CATH, there is no architecture level in SCOP. The next
major level below Class is the Fold. As with CATH, Fold Group
describes how secondary structure elements are arranged, and their
connectivity (i.e. topology) and the Superfamily level groups domain
structures are thought to be evolutionary related. The family level
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groups’ closely related domains are likely to have similar structures
and functions.

7.5.3 Other Structural Classification Resources

In addition to hierarchical classifications, there are several online
resources (e.g. FSSP,34 MMDB35) that provide lists of structural
neighbors for a given query. FSSP provides a search tool that exploits
the DALI algorithm to find structural relatives. Although a high
structural similarity suggests homology, it is up to the user to assess
the likelihood of this based on the data provided. The MMDB
exploits the vector-based VAST algorithm to automatically find simi-
lar structures within the PDB. It provides alignments annotated with
automatic domain assignments and graphical structural superposition.
The PDB resource itself makes use of the CE35 program to search for
structural neighbors automatically. Again, it is up to the user to fur-
ther group these into individual protein families. Conversely, the
HOMSTRAD database provides manually verified structural align-
ments for over 1000 families, often where function has been con-
served (see Table 7.1).

7.6 Predicting Sequence Relatives in the
Genomes and Sequence Databases

Over the last two decades, powerful new profile based sequence com-
parison methods (e.g. Refs. 26, 27 and 36) have been developed, some
of which are capable of recognizing very remote homologues (<20%
sequence identity). As described in Section 7.4.1, recent benchmark-
ing of several of these has established safe thresholds for applying
them to predict structural domains in the genomes. The most sensi-
tive HMM-HMM-based approaches are currently too slow to use for
large-scale structure prediction of genome sequences and most pro-
tocols exploit single HMM searches.

For example, structural annotations of all CATH superfamilies
(Version 3.1, January 2007) have been predicted for sequences from
527 completed genomes and from Refseq and UniProt37 (>5 million
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sequences) using the SAM-T HMM36 method with conservative
thresholds giving less than 1% error rate. The percentage of genome
sequences (or residues) that can be assigned to a CATH structural
family is shown in Table 7.2 for a selection of organisms from each
kingdom. An average coverage of 49% of domain sequences in a
genome is currently achieved, with higher levels of annotation in bac-
terial organisms as sequences from these organisms dominate the
databases from which the HMMs are built.

CATH domain structure predictions are presented in a sister
resource, Gene3D,38 which can be accessed on the Web (URL: http://
cathwww.biochem.ucl.ac.uk:8080/Gene3D/). In this resource, com-
plete protein sequences have first been clustered into families com-
prising relatives with similar multi-domain architectures using a
powerful new clustering protocol (TRIBE-MCL) developed by
Enright and co-workers.39 Subsequently, CATH structural domain
annotations are mapped onto these sequences using HMM technolo-
gies. In addition, Pfam40 annotations are also predicted for any struc-
turally uncharacterized sequences or partial sequences, again using
HMMs. This is applied to increase domain coverage and generate
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Table 7.2 Table of Gene3D-CATH Coverage for Some Selected Model
Organisms

% Proteins
% Proteins % Proteins with CATH

Number of with CATH with PFAM or PFAM
Taxon Proteins Domain Domain Domain

Escherichia coli 4179 49.17 13.11 88.18
Neurospora crassa 9969 31.4 45.78 54.1
Mycoplasma genitalium 809 53.03 50.56 72.56
Dictyostelium discoideum 13 014 36.58 48.61 57.97
Saccharomyces cerevisiae 5586 42.32 62.37 75.58
Arabidopsis thaliana 33 097 40.77 48.9 74.45
Homo sapiens 34 888 44.26 25.49 67.56
Rattus norvegicus 11 872 53.93 35.97 84.65
Drosophilia melanogaster 16 058 42.4 41.14 70.53
Danio rerio 16 289 57.29 54.48 83.9
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more comprehensive information on the multi-domain architecture
and domain context for each domain.

In addition to the approximately 50% of domain sequences from
UniProt that can be assigned to CATH structural families, a further
25% of domain sequences within a genome (on average) can be
assigned to structurally uncharacterized Pfam families. The largest of
these families are currently being targeted for structure determination
in the Protein Structure Initiative (PSI) structural genomics projects
in the US.

Recent analyses of the first 255 structures solved for these fami-
lies suggests that targeting these families is considerably expanding
our knowledge of the fold repertoire. Nearly 40% of them are very
remote structural homologues of existing CATH superfamilies, hav-
ing no close structural relative that can be superimposed within
RMSD <5A, and ~4% of them are completely novel domains repre-
senting new fold groups. This contrasts with a much lower propor-
tion (on average <1%) of novel folds currently being solved by
traditional structural biology (Fig. 7.3).

Other structural genome annotation resources include SUPER-
FAMILY41 based on SCOP, which also uses HMMs to assign domain
superfamilies to genomes. The 3Dgenomics resource42 uses PSI-
BLAST29 and HMMer to assign SCOP superfamilies, with PSI-BLAST
optimized for genome annotation.43 Whilst the Genomic Threading
Database44 uses PSI-BLAST and a threading related method to vali-
date matches (see Chapter 2 and Ref. 28 for a review of these
approaches).

7.7 Population Statistics from Domain
Structure Classifications

As of August 2007, there were 47 251 entries in the protein data-
bank comprising a total of 113 978 chains. The proportion of these
chains classified in the CATH and SCOP databases are shown in
Table 7.3. It can be seen that both SCOP and CATH now recognize
approximately 1000 different fold groups comprising over 1500 evo-
lutionary superfamilies. Recent comparisons of SCOP and CATH45
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have revealed that there is agreement on about 70% of the homolo-
gous superfamilies. This was determined by identifying common
CATH/SCOP superfamilies in which 75% or more of relatives matched
between the two resources where matching implies that at least
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Fig. 7.3 Plot showing the percentage of structures solved each year found to be
novel folds. Percentages were calculated for structures solved by either structural
biology (blue bars) or structural genomics initiatives (maroon bar) by the total num-
ber of classified structures solved by that method released in a particular year.

Table 7.3 Table Showing the Population of the First Four Levels in the
CATH and SCOP Hierarchical Protein Structure Databases

Number of Number of
CATH CATH Domain SCOP Domain SCOP
Hierarchy Representatives Representatives Hierarchy

Class 4 7 Class
Architecture 1084 971 Fold
Topology 2091 1589 Superfamily

Homologous 7794 3004 Family
Superfamily
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80% of the domain residues (normalized by the larger domain) were
identical.

There is less agreement at the level of fold group, which is a more
subjective measure of similarity. For example, SCOP uses largely man-
ual identification of the fold group and tends to break the large
Rossmann fold group classified in CATH into several smaller fold
groups although these all comprise relatives exhibiting the character-
istic topological crossover of the classic Rossmann fold and a core
structural motif of four β-strands and two α-helices. For some pur-
poses, though, it might actually be more practical to sub-divide this
fold group on the basis of the size of the domain as there is significant
structural variation across the group.

The skewed population of fold groups, which is evident in
both resources, is illustrated for CATH in Fig. 7.4. It can be seen
that whilst the majority of fold groups in CATH contain only one
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Fig. 7.4 Plots showing the population of each fold group within CATH (version 3.1).
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homologous superfamily, a small percentage of fold groups include
three or more different homologous superfamilies.

Although, there is no clear correlation of fold group with
function,46 some fold groups are predominantly associated with a par-
ticular molecular functional class in the COGs functional database.
For example, the arc repressor fold domains are largely involved in
binding to DNA and in regulation, whilst the TIM barrels operate
mainly as enzymes. However, some fold groups, most notably the
Rossmann and αβ-plait folds, are members of multiple functional
classes. Indeed, relatives in the Rossmann fold group exhibit more
than 200 different GO terms. Frequently, this change in function is
acquired through a change in the multi-domain context.13,47–49 The
Rossmann domain is also often present to provide redox equivalents
or energy for complexes on diverse biological pathways and processes.

The populations of domain structure superfamilies are similarly
skewed with the largest 50 superfamilies accounting for nearly 50% of
sequence diverse structures in CATH (i.e. relatives clustered at 35%
sequence identity) and 47% of sequence diverse relatives in Gene3D.
The 20 largest CATH superfamilies account for 40% of the predicted
domain structures in the genomes found in Gene3D.

In addition to the power law bias prevalent in the population of
fold groups and superfamilies in CATH, there are also biases in the
populations of particular architectures in CATH. Figure 7.5 shows the
27 most well-defined architectures in CATH and gives their popula-
tions in the genomes, measured according to the total number of
sequences in 527 completed genomes in Gene3D. Four regular layered
architectures dominate the genome annotations, namely the two and
three layer αβ-sandwiches, the αβ-barrels and the 2-layer β-sandwiches.

7.8 Structural Variation in Domain
Superfamilies and Correlation
with Functional Modifications

The impact of mutations and indels on the protein fold or function vary
according to their position in the structure. Mutations that occur in the
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Fig. 7.5 Molscript representations of the major architectures in the CATH hierar-
chy. The population of each architecture in the genomes is calculated as a percentage
and is displayed in brackets beneath each one.

core of the protein may cause shifts in orientation of secondary struc-
ture elements to maintain the optimal packing required for stability.
Early analyses by Lesk and Chothia49 revealed that secondary structure
shifts of up to 30° occurred between relatives in α-globin and
β-immunoglobulin superfamilies. More recent analyses of 294 well-
populated CATH superfamilies13 revealed that 61% of superfamilies
exhibit a mean deviation in pair-wise secondary structure orientations of
8–16°, 15% of families have mean deviations less than 8°, and 14% are
much more variable tolerating a mean deviation of between 16–25°.
Only 5% of families exhibit mean deviations greater than 25°, although
in these families some relatives show deviations as high as 80° in their
secondary structure orientations.

Structural changes that arise from indels tend to occur within
the loop regions of a protein’s structure and thereby minimize any
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Fig. 7.5 (Continued )
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Fig. 7.5 (Continued )
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deleterious effects on the overall structure and stability of the fold. As
initially reported by Pascarella and Argos,14 and more recently revis-
ited by Reeves et al.,13 relatives with a high average sequence identity
(from 40% to 95%) tend to have indels of no more than two residues,
whilst at lower levels of sequence identity (0–10%), indels as large as
12 residues are frequently observed.

The three-layer sandwich architectures (ββα − 3.50 and αβα −
3.40) are more tolerant to larger indels at all sequence identities. In
these folds, insertions are often tolerated because they occur as extra
strands at the edges of the β-sheets or as additional α-helices between
strands, which do not disturb the overall layered architecture of the
protein. In the α-horseshoe folds (1.25) up to 30% of indels are
greater than 10 residues long. These often comprise a series of adja-
cent helices, forming super-secondary motifs, rather than single sec-
ondary structures.

The αβ-barrel architecture (3.20) also shows tolerance to larger
insertions and these often occur as additional helices in the loops con-
necting β-strands in the barrel. It is possible that in both the
αβ-sandwiches and αβ-barrels, extensive hydrogen bonding between
β-strands in the β-sheets gives rise to a stable central framework, which is
able to support greater structural variation in the remainder of the fold.

In many sequence diverse superfamilies, residue insertions give
rise to additional secondary structures, which decorate or “embellish”
the conserved structural core found in all relatives. Recent analysis
of CATH found that for 56% of highly populated superfamilies
(>9 sequence diverse relatives), there are two-fold or more increases
in the numbers of secondary structures in some relatives. In some
families, five-fold increases occur, sometimes modifying the fold of
the domain.

Manual inspection of secondary structure insertions or embellish-
ments in 48 particularly variable CATH superfamilies revealed that
although these insertions were usually discontiguous in the sequence
they were often co-located in 3D resulting in a larger structural motif
that often modified the geometry of the active site or the surface
conformation, thereby promoting diverse domain partnerships and
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protein interactions. These observations, supported by automatic
analysis of all well-populated CATH superfamilies and shown to be
statistically significant using random models, suggest that accretion of
small secondary structure insertions during evolution may provide a
simple mechanism for evolving new functions in diverse relatives.

Again, layered domain architectures (e.g. mainly-β and αβ-sand-
wiches), as adopted by the Rossmann fold and αβ-plait superfamilies,
which recur highly in the genomes, more frequently exploit these types
of embellishments to modify function. Because secondary structure
insertions often occur at the edges, top, or bottom of the β-sheets, this
gives just a few sites on the protein surface where insertions can aggre-
gate to give much larger structural motif, impacting on functional sites
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Fig. 7.6 Structurally diverse relatives from the ATP grasp superfamily in the CATH
database. In red, the large domain, in blue, the small domain, and in light blue, the
B domain. Residues shown in yellow are involved in ATP binding, and residues in
green are involved in substrate binding.
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(e.g. active sites or protein interaction surfaces). Information on struc-
tural variability across domain superfamilies has been made available
through the CATH Dictionary of Homologous Structures (DHS)
(URL: http://www.biochem.ucl.ac.uk/bsm/dhs/). For each super-
family and structural subfamily within it, multiple structural alignments
are provided, as well as plots showing the alignment of equivalent sec-
ondary structures (Fig. 7.7). These can be used to assess the extent of
structural divergence between remote homologues and structural
embellishments to the domain core.

There are some superfamilies that, despite having a significant
number of sequence diverse relatives (<35% sequence identity), have
a high degree of structural conservation. Relatives in these super-
families generally have highly similar functions,13 and it is likely that
the structural conservation is largely due to functional constraints.

7.9 Identifying Functional Relationships
in Homologous Superfamilies

As discussed above, structural changes between homologous pro-
teins often correlate with a divergence of function. However, in
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Fig. 7.7 2DSEC plot showing the embellishments present in the oligomerization
domain in the NADP oxidoreductase superfamily. Alpha-helices are represented by
circles and beta sheets are represented by squares.
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highly variable superfamilies, function can still be conserved between
relatives where global structural similarity is relatively low.

Figure 7.8 shows the relationship between sequence and struc-
tural similarity with respect to the conservation of function in enzyme
domain superfamilies. It can be seen that once structural similarity
dips below a SSAP score of 85, the majority of domains are involved
in different functions. However, it is also important to note that even
at structural similarities above 90, there are examples of functional
divergence.

Given the complex relationship between sequence, structure, and
function, further classification of structural domains into functional
sub-families can prove problematic. However, there are a large num-
ber of automated methods that aim to identify domains with similar
functions. We will summarize some popular approaches, focusing on
current work being undertaken in the CATH group to construct
functional families within homologous superfamilies.
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Fig. 7.8 Scatter plot showing the relationship between sequence, structure, and
function of all homologues in enzyme superfamilies. Relatives having the same EC
classification number are shown in blue. Those with different EC numbers are shown
in pink.
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Although in practice functional information from the literature
is often available to assess the similarity of two protein functions,
structured functional annotation data provides a means to compu-
tationally assess the similarity between the functions of two proteins,
and hence, operate on larger data sets. For example, the Gene
Ontology (GO)50 provides annotation in three categories: molecular
function, biological process, and cellular localization. Annotation
terms are organized in a directed graph, which facilitates automatic
comparison by methods such as GOSim.33 The Enzyme Classification
(EC) database51 provides a similar resource for classifying enzymatic
functions. Where two protein structures have GO or EC annota-
tions, these can be compared to generate a measure of functional
similarity.

Where global structure comparison fails to identify significant
similarity between two proteins, detection of local motifs can prove
useful. To retain a specific function through evolution, the local envi-
ronment of a functional site(s) must be preserved, even if other por-
tions of the fold have become altered, producing a relatively low
global structural similarity. Indeed, enzymatic catalysis is performed
by a limited set of residues that comprise the active site and the speci-
ficity of DNA-binding proteins is often conferred by relatively small
regions of positive charge on the surface of the protein structure.
Consequently, there are a number of methods that focus on compar-
ing smaller structural motifs associated with a specific function.

The Catalytic Site Atlas52 held at the European Bioinformatics
Institute (EBI) is a database of protein structures whose catalytic
residues (up to six per protein) have been manually annotated from
the literature. Structural templates constructed from the catalytic
residues of the proteins in the database and a fast search algorithm53

can be used to identify similar enzymatic activity. Similarly,
PDBSiteScan54 is able to compare functional (SITE) records con-
tained in the PDB structure files. Again, similarities detected
between known functional sites can be indicative of a common evo-
lutionary origin. However, it is important to bear in mind that some
catalytic triads (e.g. the serine proteases) are known to exist in unre-
lated folds.55
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As curated functional templates are not available for the majority
of proteins, many groups have developed methods to automatically
detect local structural motifs associated with function. The Reverse
Template Method (RTM)56 splits two structures into tri-peptide frag-
ments and looks for equivalent fragments. In contrast to methods
such as DALI, SSAP, and CE, RTM does not seek a global alignment
but instead looks for fragments that exist in sequence-similar struc-
tural environments. This exploits the principle that residues in the
functional site are often well-conserved with respect to their sequence
compared to the rest of the structure.57

By utilizing EC and GO annotation data, a novel method
(FLORA) has been developed for CATH to capture structural motifs
associated with specific enzymatic functions. FLORA constructs mul-
tiple structure alignments of structurally similar domains with the
same EC/GO annotations to determine regions of the structures that
are significantly conserved. These motifs can then be compared to
other domains within the superfamily to merge groups of domains
with similar functions into families.

As no method of function prediction is able to detect similarities
with greater than 90% accurate over all superfamilies, the CATH
database aims to combine several lines of evidence to group domains
into functional families.

7.10 The End of the Fold? Is There Evidence
for a Structural Continuum?

There has been considerable speculation in the literature58 on the
existence of a structural continuum that links domains in different
fold groups and challenges the value of hierarchical fold-based clas-
sifications. As discussed above, CATH analyses of well populated
superfamilies have clearly revealed the phenomenon of significant
structural drift in some highly divergent superfamilies. Although the
number of superfamilies exhibiting structural drift is relatively few,
these tend to be the most highly populated structural families in the
genomes containing paralogous structures that have diverged con-
siderably in both structure and function. For these superfamilies it is

182 Computational Structural Biology

FA
b587_Chapter-07.qxd  1/18/2008  4:54 PM  Page 182



perhaps not meaningful to adopt a single fold characterization for
relatives.

However, as Chothia and Lesk59 first pointed out over two
decades ago, there is still considerable structural conservation in the
domain core (~40% of residues).13 Furthermore, this topological core
motif is structurally distinct from core motifs found in other super-
families. In this sense, the hierarchical classifications of resources such
as SCOP and CATH, are still valuable as the fold group (SCOP) or
(T)opology level (CATH) can be thought of as grouping domains
sharing conserved core topologies.

Furthermore, recent exploration of structural overlaps between
fold groups and structural families based on pair-wise structure
comparisons between all sequence diverse CATH domains (<35%
sequence identity) has revealed very little structural overlap between
superfamilies and fold groups when meaningful global similarity is
sought (i.e. at least 60% of residues in the larger domain aligned
against the smaller domain).

When this criteria is relaxed allowing a smaller proportion of
residues to align between domains, frequent overlap is observed
between superfamilies in some architectures (e.g. αβ-sandwiches,
β-sandwiches) largely due to small structural motifs common to many
different folds in nature. For example, the β-hairpin, αβ-motif, split
αβ-motif. This has been characterized by Harrison et al.60 who iden-
tified “gregarious” folds comprising a high proportion of these com-
mon motifs. Superfamilies with no overlap at all have very distinctive
folds comprising rather unusual motifs or unusual combinations of
common motifs.

7.11 Future Outlook

The structural genomics initiatives have been successful in revolu-
tionizing structural biology, giving more sophisticated technologies
that allow a higher throughput approach to structure determination.
This is leading to significant increases in the number of structures
solved annually (2631 in 2000, 4931 as of September 2007) By care-
fully targeting sequence space and protein families to reduce the
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redundancy in structures solved and increase the repertoire of struc-
turally diverse representatives of fold space, the proportion of hard-
to-classify structures has increased significantly over the last few years.

Fortunately, new and much more powerful methods of sequence
comparison (e.g. HMM-HMM28) have been introduced at the same
time, as well as rapid methods for recognizing domain boundaries in
solved structures (e.g. CATHEDRAL12). These new approaches and
machine learning systems that integrate results from several compli-
mentary algorithms will help in managing the data. As the genome
initiatives progress, improved integration of the sequence data from
completed genomes into structural classifications will lead to further
insights into protein family evolution and help us to understand how
differences in protein distributions and evolution of new functions
influence phenotypic variations between organisms.

The prediction of protein functions from sequence and structure
remains a considerable challenge. The ambitions of structural
genomics to deliberately target sequence families, which are likely to
have novel structures and functions, will enrich the databases with
information, which can illuminate mechanisms by which functions
diverge and enhance the prediction methods. We also clearly need to
improve the integration of data on protein interactions, associations
and functional networks. As the structure databases expand, it will
become possible to extend characterizations within structural fami-
lies and to cluster relatives more reliably according to functional
properties.
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Chapter 8

Methods to Characterize the Structure
of Enzyme Binding Sites

A. Kahraman* and J. M. Thornton

8.1 Introduction

Enzyme binding sites are regions on the surface of an enzyme spe-
cially designed to interact with other molecules. An enzyme can have
different sorts of binding sites that differ in their functions and the
molecules they bind. Amongst these, the most important is the active
site, which consists of two or three parts. The first part is the catalytic
site, which contains the catalytic machinery of the enzyme in the form
of usually two to six amino acids that perform the catalytic reaction.
The second part is the substrate binding site, which has the task of
specifically recognizing the molecule upon which the enzyme acts.
Besides the specificity, the substrate binding site also provides binding
energy to keep the substrate bound on the active site for the time the
catalytic reaction progresses. Enzymes can act on a huge variety of
substrates, from small molecules, like hormones and sugar, and mod-
erate sized molecules, like polypeptides and oligosaccharides, to
macromolecules, like DNA and other proteins. Figure 8.1 shows an
exemplary substrate binding site for an asparagine in the structure of
the Escherichia coli asparagine synthetase [see also Fig. 8.2(a)].

*Corresponding author.
European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, CB4
1BY, UK. Email: abdullah@ebi.ac.uk.
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As enzymes are proteins they usually consist of 20 amino acids
with either a hydrophobic or polar, charged or uncharged side chain.
For some catalytic reactions the chemical properties of these amino
acids may be sufficient, but for the majority of reactions such as redox
reactions or chemical group transfers, enzymes require the assistance
of additional molecules that bind on the third part of an active site.
These molecules are defined as either cofactors, which are tightly
bound to the enzyme throughout the catalytic reaction or coenzymes,
which are released during the reaction. Cofactors distinguish themselves
from coenzymes by being not consumed in the catalytic reaction.
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Fig. 8.1 Structure of the Escherichia coli Asparagine Synthetase (PDB Id: 12as)
with a zoom-in into the binding site of the substrate asparagines. Binding site
residues as determined by HBPLUS (see Section 8.2.9) are colored in green; catalytic
active residues extracted from CSA (see Section 8.3.1) are coloured in red, and the
substrate is varicolored. Hydrogen bonds between binding site residues and substrate
are indicated by yellow dashed lines. The binding site shape is shown as a grey mash
as approximated with spherical harmonic functions (see Section 8.2.3).
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Though they get altered while the catalysis takes place, they are recov-
ered again in the same catalytic process. In contrast, coenzymes
support the enzyme reaction by providing chemical groups to the
substrate, and subsequently, detaching from the enzyme to start
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Fig. 8.2 Characteristics of enzyme binding sites. (a) The active site is a specific
binding site in an enzyme that contains catalytic residues to perform the enzymatic
reaction on a substrate. (b) The activity of an enzyme can be regulated, for example,
by allosteric regulator molecules that bind to a remote binding site. (c) In most
enzymes the active site is found in the largest or deepest cleft of the enzyme, (d) and
encloses at least partially the ligand with amino acids, resulting in similar geometrical
shapes for the binding site and ligand. (e) Binding sites can undergo major confor-
mational changes upon subtrate binding, especially when some parts of the site are
located in flexible loops. (f) As binding sites are essential for the function of a pro-
tein, their residues are often amongst the most highly conserved residues. (g) The
binding affinity of a ligand is influenced by the physicochemical properties on the
binding site surface like complementary electrostatic potentials or perturbed pKa val-
ues (h), which can be exploited to calculate estimated binding energies between lig-
and and binding sites.
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a recovery process outside the enzyme. Typical cofactors are the
inorganic metals and sulphate ions or the organic flavin and heme
groups. Examples of coenzymes are vitamins or the cellular energy
carrier, ATP.

Some enzymes, especially ones assembled by several domains or
several chains, can have allosteric sites in addition to the substrate and
cofactor/coenzyme binding sites [see Fig. 8.2(b)]. These allosteric
sites play an important role in the regulation of enzymes as they
induce, upon binding a regulator molecule, conformational changes
on the whole enzyme structure, which can affect also the atomic con-
stellation of the active sites. Depending on whether the regulator
molecule is an effector or an inhibitor, the changes on the active site
can either enhance or hamper the enzymatic catalysis.

The underlying principles of allosteric regulation, as well as the
atomic interactions of any binding process between an enzyme and a
molecule, have only been elucidated since high-resolution data of the
three-dimensional (3D) coordinates of enzyme-molecule complexes
were determined. Two main approaches are used for the determina-
tion of such high-resolution data for biomolecules, namely “X-ray
crystallography” and “Nuclear Magnetic Resonance (NMR) spec-
troscopy” (see Chapters 22 and 24 for an in-depth description of
these methods). The first enzyme structure discovered in 1965 was
the X-ray structure of lysozyme, an enzyme found in tears or egg
white that digest bacterial cell walls. Since then, many enzyme struc-
tures have been determined and their functions analyzed, and the
resulting information has been stored in databases. See Table 8.1 for
the number of enzymes in some structure-based databases.

The most important among them is the Protein Data Bank
(PDB)1 (http://www.pdb.org) and the Enzyme Commission (EC)
number for enzyme reaction.2 The first is important as it is the world-
wide depository for 3D coordinates of enzymes and any other
macromolecules like other proteins, nucleic acids, or carbohydrates
(see Chapter 26 for further information on the PDB). Structures in
the PDB are assigned a unique four alphanumeric PDB Identifier
(Id). The importance of the EC number is that it provides a classifi-
cation scheme for all enzyme reactions and allows their comparison.
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The EC number consists of four digits separated by full stops. The
first number (class) indicates the reaction type, the second number
(sub-class) together with the third number (sub-subclass) represents
the occurring chemistry, and the last number gives the substrate
specificity.

From the three-dimensional structures of enzymes, it became
evident that substrates and secondary molecules like cofactors and
coenzymes do not bind randomly on the enzyme surface. The same
molecule always binds at the same site within the same enzyme struc-
ture. This has led to the assumption that binding sites must have
unique features that distinguish them from other areas on the enzyme
surface, and in addition, allow the binding site to recognize its
associated molecule from the thousands that exist in a living cell. Two
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Table 8.1 The Extent of Enzyme Data in Some Structural Databases as on
21 July 2007

Number of Quantity

Known enzyme reactions (unique EC numbers) ~4040
Enzymes in UniProt/Swiss-Prot (56) ~107 400
Enzymes in PDB ~19 600
EC Reactions in PDB ~1390
Enzymes with catalytic residues in CSA 880
Enzymes with catalytic mechanisms in MACiE (57) 202

Enzymes as specified by EC number in PDB with the largest
number of structures

1. Lysozyme, EC 3.2.1.17 ~930
2. Non-specific serine/threonine protein kinases, EC 2.7.1.37 ~580
3. Trypsin, EC 3.4.21.4 ~430

Most enzymes in PDB originate from

1. Human ~10 700
2. Escherichia coli ~4200
3. House mouse ~2100
4. Cow ~1550
5. Baker’s yeast ~1300
No of organisms that have one or more enzyme structures in PDB ~1128
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models were suggested to explain in particular the specificity of active
sites. First, the Lock and Key model by Fischer,3 and second, the
Induced Fit model by Koshland.4 The Lock and Key model assumed
that a ligand is geometrically complementary to its active site and
that both shapes fit exactly into one another. The more recent model
of Induced Fit was a modification to the Lock and Key model and
incorporated the flexibility of enzymes and substrates. The model
suggests an “open” state for an enzyme when the substrate binds, fol-
lowed by a “closed” state where the enzyme encloses the bound sub-
strate and performs its catalysis. In the process of converting from the
open state to the closed state, the active site adjusts its shape to the
transition state that is the conformation of the ligand at the highest
reaction energy (see Chapter 10), and allows the catalytic reaction to
take place.

This chapter addresses different aspects or features of protein
binding sites (see Fig. 8.2). It will give some background information
to each feature and describe one exemplary methodology to calculate
it. A more comprehensive list of computational methods can be found
at the end of the next section. All tools and programs introduced in
this chapter are not just important to visualize the features in an
enzyme but also to try to predict the function for an enzyme. The lat-
ter becomes more and more important as more and more enzyme
structures are deposited in the PDB without any functional annota-
tion. Many of these structures were targets of global structural
genomics initiatives, which aim to develop high-throughput methods
for the rapid determination of protein structures. One goal of these
initiatives is to determine the structures of all existing protein folds in
nature.5 The high-throughput principle is advantageous for deter-
mining many structures in a short time but does not address the func-
tional annotation of proteins, which usually involves many different
wet lab experiments and thus is a time-consuming procedure. In
order to obtain hints about the function of these unannotated struc-
tures, one can extract the features described in this chapter and search
for similar features in annotated enzymes. For this purpose, the third
part of this chapter will be devoted to algorithms for the comparison
of binding site features.
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Before we start with the binding site characteristics we would like
to note that in this chapter we will refer to any small molecule that is
bound by an enzyme as a ligand whether it is a substrate, product, or
allosteric effector.

8.2 Enzyme Binding Sites and Their Unique
Features

8.2.1 Active Sites are in Largest Cleft

Enzyme active sites tend to be within sizeable depressions on the
protein’s surface, which are known as clefts or pockets. In 70–85% of
enzymes, the largest of these clefts is where the substrate and rele-
vant cofactors or coenzymes bind.6,7 The average volume of a bind-
ing site depends on the ligand it binds, and ranges mostly from 400
to 2000 Å3.8

SURFNET9 is an elegant approach to identify and visualize clefts
in proteins. It detects gap regions within the protein by fitting spheres
of certain range of sizes between protein atoms. The spheres are not
allowed to clash with any neighboring protein atoms. Overlapping
SURFNET spheres are clustered and regarded as protein clefts [see
Fig. 8.3 and Fig. 8.2(c)]. Placing a grid on the cleft and determining
the number of grid cells occupied by a sphere enables the calculation
of the volume for each cleft.

8.2.2 Active Sites are in Deepest Cleft

The enclosure of a ligand within large and deep clefts helps the
enzyme to maximize the number of interactions with its ligand.10 In
particular, active sites are often found in the deepest cleft of an
enzyme. The average depth of a cleft that contains a binding site
depends on the protein size and can be up to 30 Å.11

The algorithm of travel depth11 is an elegant way to visualize and
measure the depth of clefts relative to the convex hull of the enzyme’s
molecular surface [see Fig. 8.2(c)]. The convex hull is defined for a
simplified two-dimensional molecule as the region that is enclosed by
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Fig. 8.3 (a) Spherical section of the protein structure of ribosyl-transferase (PDB
Id: 1og3) colored in black, with bound coenzyme NAD in the active site. (b) Largest
cleft, as determined by SURFNET, contains the active site. SURFNET spheres are
represented by light grey spheres.

a rubber band that is stretched around the whole molecule. The travel
depth algorithm finds for a probe sphere on the protein surface the
minimum distance to reach the convex hull. It works by placing the
protein into a grid and assigning to all grid cells outside the convex
hull a depth of zero. For grid cells inside the convex hull, the algo-
rithm scans recursively through the grid and adds to the size of each
grid cell the minimum depth of its neighboring cells.

8.2.3 Binding Site Shapes are Complementary
to Ligand Shapes

It is a common assumption that the shapes of protein binding pock-
ets are complementary to the shapes of the ligands they bind. This
assumption became manifest in the Lock and Key model and Induced
Fit model for molecular binding (see Section 8.1). A recent study how-
ever showed that exact shape complementarity between a binding site
and its bound ligand is rarely achieved, and that more often, some
free space can be found between the binding site and its ligand8 (see
Figs. 8.2(d) and 8.4).
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Fig. 8.4 Binding site shapes are not truly complementary to the ligand shape and
often show some empty space between the ligand and the binding site like a “buffer
zone.” The PDB identifier of each associated protein structure is given below each
binding site.

For the analysis and visualization of binding sites and ligand
shapes, one can apply an elegant approach, which utilizes mathemat-
ical functions called spherical harmonics. The computational descrip-
tion of shapes can be simplified by a radius function, which returns for
any point on the shape surface its distance to the center of the shape.
The common way of obtaining the function is by selecting a number
of points on the shape surface and exploiting their radii to approxi-
mate the radius function. The approximation can be done by sum-
ming up spherical harmonic functions in an equivalent way to the
Fourier series, where sine or cosine functions are summed up to
obtain a periodic one-dimensional function. While the summation
progresses, each spherical harmonic function contributes, with a dif-
ferent weight, to the radius function. The contribution weights are
usually referred to as coefficients. Once the approximation finishes, a
vector of all coefficients is retrieved and used to reconstruct the shape
of the binding site (see Fig. 8.5).
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Fig. 8.5 Various approximations of the molecular surface of an ATP (PDB ID:
1e8x) with increasing number n of spherical harmonic functions.

8.2.4 Binding of the Ligand Induces Conformational
Changes in the Binding Site

The Induced Fit model for molecular binding states that enzymes
undergo conformational changes upon substrate binding. For a small
fraction of enzymes these changes are large, in particular, if they
include a flexible loop region that closes/opens the entrance to the
active site, preventing/allowing the binding of a ligand [see Fig. 8.2(e)].
However, for the majority of enzymes, the changes are small. The
average RMSD (see below) upon ligand binding between Ca atoms of
binding sites and catalytic residues is less than 1 Å.12 Similar values are
observed for the side chain atoms. It is interesting to note that
residues in active sites are on average more flexible than other residues
in the protein structure. This can be traced back to the geometrical
adjustments of the active site to generate the transition state of the lig-
and (see Section 8.1). But there are also enzymes, like prothymosin-α,
that are intrinsically disordered in their native state.13 Neither the
Lock and Key nor the Induced Fit model can describe their function-
ality. A third model, the “New View” model, has recently been intro-
duced, and it states that a protein exists in an ensemble of pre-existing
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conformations with discrete and similar free energies. Among them is
also the structure of the bound conformation. The actual binding of
the ligand induces a shift in the equilibrium of existing conformations
towards the bound conformation and causes the protein to appear
well structured in an X-ray crystal.14

The standard method for measuring the flexibility of enzymes
binding sites is to calculate the Root Mean Square Deviation (RMSD)
between different conformations of the binding site. The RMSD is
calculated between the Cartesian coordinates of all atom pairs
between both proteins using the following formula:

(8.1)

where x, y, z are the Cartesian coordinates of the protein atoms and
N is the number of compared atoms. Depending on the scientific
question or on the available data, one can calculate the RMSD of all
atoms, of all residue side chain atoms, or of only the backbone/Ca

atoms between two structures. For the qualitative analysis of flexibil-
ity, one can use the web server of STRuster.15 STRuster analyzes an
ensemble of different conformations of a protein by first calculating
the Euclidean distances between all residues within a conformation,
and next, comparing the distances to the distances in the second con-
formation. The compared distances are summed up and plotted in an
“all-conformation versus all-conformation” distance matrix. The dis-
tance matrix is utilized to cluster each conformation according to its
level of flexibility and group similar conformations.

8.2.5 Binding Site Residues are Highly Conserved

Another characteristic of enzyme binding sites is that the residues
forming the sites tend to be strongly conserved within the protein
family. That is, all members of a protein family tend to have the same
residues in the same position in both their sequences and their 3D
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structures. The reason for this is that they all have evolved from a
common ancestor and have the same function but are found in dif-
ferent organisms. Each family member is however subject to natural
variation and selection with mutation and duplication events
throughout their protein sequences. However, mutations are not tol-
erated at all positions in the protein sequence. While those residues
that had no functional role in the protein could mutate freely, substi-
tutions of functionally important residues (i.e. residues that are
involved in ligand binding or in keeping the structural integrity) are
restricted, as these mutations could have led to the loss of protein
function. Residues found in binding sites and especially catalytic
residues in active sites are amongst the most important residues in an
enzyme structure, and consequently, particularly highly conserved.
Most often, these residues are either polar or charged (up to 70% of
residues are Arg, Asp, Cys, Glu, His, and Lys).16

ConSurf 17 calculates the conservation of each amino acid in a
protein sequence using the evolutionary trace method.18 This method
first runs a multiple sequence alignment on a set of homologous
sequences, i.e. sequences that have a common ancestor. In the second
step, the method uses the alignment to compute a phylogenetic tree,
which represents the evolutionary relationship of the homologous
sequences. In the third step, the homologous sequences are divided
into groups and subgroups based on the branches of the tree. In the
fourth step, the residue positions in all sequences in each group and
subgroups are analyzed for the frequency of residue changes. If at a
particular subgroup a residue is invariant throughout all sequences in
the subgroup, it becomes assigned a rank, which states how many
times the tree was required to be divided to yield the ranked residue.
The same procedure is applied to all residues until every residue gets
assigned an evolutionary rank. According to the ranks, ConSurf
groups the residues of the query sequence into nine classes, with “1”
being the least conserved and “9” being the most conserved residues,
and the conservation scores are mapped onto the protein structure
[see Fig. 8.6 and Fig. 8.2(f )]. A visual inspection of the protein struc-
ture can identify clusters of highly conserved residues on the protein
surface.
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8.2.6 Complementary Electrostatic Potentials Between
Binding Sites and Ligands

Electrostatic potentials are long-range potential energies and one of
nature’s strongest forces at the atomic scale. All energies between
atoms and molecules are electrostatic in origin, whether they are tran-
sient dipole-dipole interactions as in the case of van der Waals inter-
actions, charge-charge interactions, or hydrogen bond interactions.
They differ in the rate of decreasing interaction energy with increas-
ing atomic distance.19

One theory about electrostatic complementarity between binding
sites and ligands suggests that electrostatic potentials are strong enough
to attract the ligand from the solvent into the active site. This assump-
tion has been derived from enzymes that have catalysis rates approach-
ing the diffusion limit, like the copper-zinc-superoxide-dismutase
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Fig. 8.6 ConSurf conservation scores mapped on PDB structure 1p4m. Note the
higher conservation in and around the binding sites.
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protein family. This protein family exerts a positive electric field over
the active site, which attracts negatively charged oxygen radicals
towards the active site copper ion.20 The visualization of the electro-
static potentials mapped on the structure surface, also referred to as
potential surfaces, is particular useful for identifying DNA binding
sites. Many DNA binding proteins possess a large patch of positively
charged amino acids on their surface to electrostatically attract their
negatively charged binding partner21 [see Fig. 8.2(g)]. Figure 8.7
visualizes the electrostatic potentials by showing the potentials of
three proteins on the molecular surface of their ligands.

The eF-site22 database contains pre-calculated potential surfaces
for all PDB structures. Auxiliary servers to the eF-site database allow
the calculation of the electrostatic potential for any user-provided
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Fig. 8.7 Electrostatic potential of three proteins mapped on the molecular surface
of their ligands as represented by spherical harmonics (see Section 8.2.3): AMP,
heme, and Estradiol. Negative potentials are colored red, neutral potentials are col-
ored white, and positive potentials are colored blue.
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structure and the search for similar surface potentials in the eF-site
database. The electrostatic potentials in eF-site are calculated by a
standard procedure applied by many electrostatic methodologies,
among them APBS and Delphi (see Table 8.2).

The methodology simplifies the representation of the protein and
the solvent by ignoring the molecular details of the solvent molecules
and treating all solvent molecules as a single continuum. The simpli-
fication is necessary as the explicit calculation of all interactions
between water molecules to each other and to the protein is compu-
tational demanding and most often not feasible. In combination with
the simplification, the electrostatic potential of a protein is calculated
by solving the Linear Poisson-Boltzmann differential Equation
(LPBE).23 As every protein has an arbitrary shape, the LPBE is solved
numerically by discretizing the space occupied by the protein with a
grid and calculating iteratively the electrostatic potential for each grid
cell using the finite difference technique.24

8.2.7 Catalytic Residues Destabilize the Enzyme
Structure and Have Perturbed pKa-values

The ability to calculate the electrostatic potential for a protein struc-
ture facilitated the computational analysis of two further phenomena
in active sites. Both phenomena are unique properties of ionizable
catalytic residues (all Lys, Arg, Asp, Glu, His, Tyr, Cys, N-terminus,
C-terminus) and distinguish them from the remaining residues in the
enzyme structure. One of these properties is their capacity to destabi-
lize the integrity of enzyme structures, especially when they are found
in active sites that exert repulsive electrostatic forces towards the ion-
izable catalytic residues. Experiments have shown that the replace-
ment of the affected residues with neutral or oppositely charged
residues tended to stabilize the protein structure.25

Another of these properties is a perturbed pKa-value for ionizable
catalytic residues. The pKa is defined as the pH for which the average
protonation state of an ionizable molecular group is 0.5. It can be meas-
ured by titration curves that plot the solvent’s pH against the net charge
of the ionizable group. For non-catalytic residues, in general, these
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Table 8.2 Programs and Web Servers to Analyze Different Aspects of Enzyme Binding Sites

Method Program/Server URL Notes

Size SURFNET http://www.biochem.ucl.ac.uk/~roman/surfnet/ Active sites are most likely in the
surfnet.html largest protein cleft.

CASTp http://sts.bioengr.uic.edu/castp/
VOIDOO http://xray.bmc.uu.se/usf/voidoo.html

Depth TravelDepth http://crystal.med.upenn.edu/travel_depth.tar.gz Binding sites are often found in
PocketPicker http://gecco.org.chemie.uni-frankfurt.de/ deep protein clefts.

pocketpicker/index.html

Flexibility STRuster http://struster.bioinf.mpi-inf.mpg.de/ Protein structures can undergo
MolMovDB http://www.molmovdb.org/ conformational changes upon

ligand binding.

Conservation ConSurf http://consurf.tau.ac.il/index.html Binding sites are among the
Evolutionary http://www-cryst.bioc.cam.ac.uk/~jiye/ most conserved regions on

Trace evoltrace/evoltrace.html the protein.
JevTrace http://www.cmpharm.ucsf.edu/~marcinj/

JEvTrace/

3D templates CSA http://www.ebi.ac.uk/thornton-srv/databases/ Catalytic residues are often
CSA/ found to be highly conserved

PINTS http://www.russell.embl-heidelberg.de/pints/ in their spatial disposition.
Rigor http://xray.bmc.uu.se/usf/rigor_man.html
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Table 8.2 (Continued )

Method Program/Server URL Notes

Electrostatic APBS http://apbs.sourceforge.net/ DNA binding proteins have
potential DELPHI http://wiki.c2b2.columbia.edu/honiglab_public/ often large, positively charged

index.php/Software:DelPhi binding sites.
PCE-Pot http://bioserv.rpbs.jussieu.fr/cgi-bin/PCE-Pot
eF-site http://ef-site.hgc.jp/eF-site/

pKa-values PROPKA http://propka.ki.ku.dk/ Catalytic residues have often
WHAT IF pKa http://enzyme.ucd.ie/Science/pKa/Software perturbed titration curves.
PCE-pKa http://bioserv.rpbs.jussieu.fr/cgi-bin/PCE-pKa

Hydrophobicity GRASP http://wiki.c2b2.columbia.edu/honiglab_public/ Hydrophobic binding sites
index.php/Software:GRASP often bind hydrophobic

ligands.

Hydrogen bond HBPLUS http://www.biochem.ucl.ac.uk/bsm/hbplus/ Hydrogen bonds provide
home.html specificity for ligand binding.

LIGPLOT http://www.biochem.ucl.ac.uk/bsm/ligplot/
ligplot.html

(Continued )

b
5
8
7
_
C
h
a
p
t
e
r
-
0
8
.
q
x
d
 
 
1
/
2
9
/
2
0
0
8
 
 
2
:
2
4
 
P
M
 
 
P
a
g
e
 
2
0
5



206
C

om
putational Structural B

iology

FA
1

Table 8.2 (Continued )

Method Program/Server URL Notes

Potential function Q-SiteFinder http://www.bioinformatics.leeds.ac.uk/ Binding sites can often develop
qsitefinder/ high interaction energies that

Grid http://www.moldiscovery.com/soft_grid.php can be assessed by potential
MCSS http://www.accelrys.com/insight/mcss.html functions.

Biological Unit PQS http://pqs.ebi.ac.uk/pqs-quick.html PDB structures often represent
Pita http://www.ebi.ac.uk/thornton-srv/databases/ not the biological active

pita/ conformation of the protein.
PISA http://www.ebi.ac.uk/msd-srv/prot_int/pistart.

html

Cognate Ligand PROCOGNATE http://www.ebi.ac.uk/thornton-srv/databases/ Not all bound ligands to a
procognate/ protein structure are

functionally related.

Enzyme MACiE http://www.ebi.ac.uk/thornton-srv/databases/ Enzyme reactions consist of
mechanism MACiE/ various catalytic steps.
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curves adopt a specific shape in which the net charge decreases with
increasing pH and with a sharp decline around the pKa-value. For cat-
alytic residues, however, these curves can be perturbed, generating
regions of constant protonation state or shifts in the pKa-value.26

Theoretical microscopic titration curves (THEMATICS)26 can be
computed for every ionizable residue in a protein using electrostatic
potential calculations. The superposition of titration curves obtained
for all residues of the same type within the protein identifies per-
turbed curves and may indicate ionizable catalytic residues.

8.2.8 Hydrophobic Interactions are Essential
for Binding

In a study where organic solvent molecules were computationally
mapped on the protein surface to predict potential binding sites of lig-
ands, it was found that hydrophobic patches are also important within
binding sites, inducing organic solvents to cluster therein.27 The results
are in agreement with earlier experiments that showed that binding
affinities of ligands can increase by promoting hydrophobic interac-
tions between binding sites and ligands.28 Our own calculations con-
firmed that hydrophobic ligands like heme and steroids are often
bound by binding sites that expose mainly hydrophobic residues.

Computationally, the hydrophobicity of amino acids can be calcu-
lated by exploiting the fact that hydrophobic amino acids are usually
surrounded by other amino acids in the protein’s core and not acces-
sible to solvent molecules. Calculating the mean fractional area loss
upon protein folding of a residue provides an estimate on the residue’s
hydrophobicity. The area loss is obtained by relating the solvent acces-
sible surface area (SASA) of an amino acid in a fully extended confor-
mation to the mean SASA of the amino acid in the protein structure.
The SASA can be calculated by rolling a probe sphere over the atomic
van der Walls surfaces and placing a fixed number of dots per unit area
on the roll track of the probe sphere. The number of dots multiplied
by the area that a dot occupies gives the accessible surface area. The
ASA of the extended conformation is usually given as the surface area
of the residue within the extended tripeptide Gly-X-Gly.29
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8.2.9 Hydrogen Bonds Provide Binding Specificity

Unlike other chemical interactions, hydrogen bonds require direc-
tionality between the hydrogen-bond acceptor and donor. This
directionality provides the enzyme’s specificity for its ligand. Only
ligand atoms that have a specific orientation towards a particular
binding site can form hydrogen bonds. Ligands that do not have the
right atoms at the right place cannot form hydrogen bonds and must
rely on other forms of interaction to achieve binding.30 Most hydro-
gen bonds in binding sites are formed among the atoms of the bind-
ing site in order to stabilize the positions of the catalytic residues.
Only a small portion (10–20%) are formed with ligand atoms.16 In
protein-ligand complexes there are on average 10 bonds, of which
two-thirds are hydrogen bond acceptors and a third hydrogen bond
donors.31

The program LIGPLOT32 uses the application HBPLUS33 to
extract and plot hydrogen bonds between the binding site and ligand
atoms. The algorithm of HBPLUS begins with placing hydrogen
atoms in the protein structure. This is necessary, as most X-ray crystal
structures do not include hydrogen atoms except for NMR or very
high-resolution X-ray structures. Once the hydrogen atoms are gen-
erated, the hydrogen bonds are determined by applying purely
geometrical criteria32 to the protein-ligand complex. In addition to
hydrogen bonds, HBPLUS also calculates non-covalent bond inter-
actions by applying a simple cut-off of 3.9 Å to atomic distances
between the binding site and ligand. Finally, LIGPLOT draws a
schematic two-dimensional diagram of the binding site ligand com-
plex and highlights the calculated hydrogen bonds and non-covalent
bond interactions (see Fig. 8.8).

8.2.10 Potential Functions for Estimating
Binding Energy

The process of molecular binding requires in the first instance shape
complementarity to allow ligand atoms to approach the binding site
atoms. The proximity between both binding partners is important as
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Fig. 8.8 Schematic diagram of the non-covalent interactions between NAD and its
binding site in PDB structure 1p4m. Thick lines belong to the ligand and thin lines
to the hydrogen-bonded residues in the binding site. Hydrogen bonds are indicated
with dashed lines. Non-covalent bond interactions are shown as spoked arcs pointing
towards the ligand.
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their binding energy depends very much on the distances between
their atoms. Since ligand molecules do not bind at random sites on a
protein structure, their binding sites should feature particular high
binding energies towards the ligand.

Q-SiteFinder34 calculates the potential binding energies on a
protein surface and detects energetically favorable surface patches
that may present ligand binding sites. The favorable patches are
found by placing the protein in a grid and rolling a probe sphere
along the grid points over the molecular surface. At each grid point
an energy function, which incorporates van der Waals potential,
electrostatic potential, and hydrogen bond potential, is applied to
the probe sphere [see Equation in Fig. 8.2(h)]. Grid points that
exceed a predefined energy threshold are clustered if they are
below a certain separation. For each cluster, the single interaction
energies of the grid points are summed up and ranked according to
their total interaction energy. The cluster with the most favorable
interaction energy is identified and is considered as a potential
binding site.

8.2.11 Unusual Amino Acids

There are 20 standard amino acids used by nature to build up pro-
teins, however, under certain circumstances some amino acids can be
catalytically altered, giving rise to a 21st amino acid. One such change
occurs in active sides of copper amine oxidases (PDB Id: 1pu4),
which increases the catalytic activity of the enzyme. The change
occurs at the catalytic active tyrosine, which becomes autocatalytically
oxidized to tri-hydoxy-phenyalalanine (Topa) in the presence of a
copper ion.35 Another example is the phosphomannose isomerase,
which when expressed in E. coli has a di-hydoxy-phenylalanine (Dopa)
substituting for a tyrosine.36

8.2.12 Precautions with PDB Structures

Structures deposited as single chains in the PDB are often actually
dimers or tetramers or sometimes vice versa. When analyzing binding
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sites, one has to bear in mind this obstacle, especially as many binding
sites in dimers are found at the interface of the two monomers (see
Fig. 8.9). The PQS (Protein Quaternary Structure)37 file server is a
depository of estimated quaternary structures of all PDB structures.
We would encourage the reader to use in any of their protein studies
these assembles for their proteins from the PQS database, since
although not perfect, they are much more reliable than using the sin-
gle chain.

Ligands that are found attached to an enzyme in a crystal struc-
ture may not always be the native substrate or cofactor, etc., of an
enzyme. Many such ligands found in the active site are substrate ana-
logues or enzyme inhibitors that compete with the substrate for bind-
ing into the active site. In addition, some ligands can be artifacts of
the crystallization buffer, which is a mixture of different solvents to
promote the crystallization process of a protein. In general, all ligands
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Fig. 8.9 The PDB structure of the decarboxylase 1mvl shows only a monomer with
the FMN being exposed to the solvent. However, the biological relevant conforma-
tion is a trimer as calculated by PQS, with a FMN binding site shared between two
subunits.
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that are not required for the enzyme function are called non-cognate,
whereas ligands that are functionally related to an enzyme are designated
as cognate. The PROCOGNATE38 database has been established to
address this problem and contains information about cognate ligands
in enzymes and provides similarity scores for non-cognate ligands that
allow their structural comparison to the cognate ones.

8.3 Methods and Tools for Comparing Enyzme
Binding Sites

Tools to assess the similarity between binding sites compare either
atomic coordinates or surface properties. In the field of computer
vision, many methods exists for comparing three-dimensional
coordinates, features, or surfaces. See Ref. 39 for a review on the
existing methods. However, only a few of them have been realized in
structural biology. Among these, the most important ones are the
kd-tree search, graph matching, geometrical hashing, and coefficient
comparison of spherical harmonic functions. A detailed description
of each follows.

8.3.1 Comparing Catalytic Templates

As mentioned in the introduction, two to six catalytic residues within
an active site perform the catalytic reaction of an enzyme (see red
colored residues in Fig. 8.1). Usually, the spatial conformation of
these residues is highly conserved for the same enzymatic reaction
and can be recovered in evolutionary unrelated enzymes, as in the
case of serine proteases and their Ser-His-Asp catalytic triad. The
Catalytic Site Atlas (CSA)40 stores a catalogue of catalytic residues as
templates and provides the motif finder JESS41 to search for the exis-
tence of the templates in a query protein structure. The JESS algo-
rithm works by extracting constraint conditions from the template,
which include the type of residues that are allowed to participate in
a catalytic site and the allowed separations between these residues.
The aim of JESS is to find residues in the protein structure that ful-
fill these constraints.
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8.3.2 Comparing Atomic Coordinates

According to graph theory, a binding site can be regarded as a graph,
with atoms being the nodes and the distance vectors between the
atoms being the edges. A new association graph can be inferred using
all atoms in both binding sites that are similar with respect to their
physicochemical property and spatial location. Given such an associa-
tion graph, the task is to find the maximum clique, i.e. the largest sub-
set of nodes that are all connected with each other in a pair-wise
manner. This problem is computationally demanding since every
additional node increases the computation time with N2. To reduce
the complexity, the program IsoCleft42 uses exclusively C-alpha atoms
as a pre-filtering step, and only in a second stage, runs a more
demanding all atom comparison. Another method, CavBase43 (http://
www.ccdc.cam.ac.uk/products/life_sciences/relibase/) uses a small
set of pseudospheres to represent the location and physicochemical
property of a binding site residue. In any case, once the maximum
clique is found, the similarity between two binding site is assessed by
relating the size of the maximum clique to the smaller binding sites.

The second approach to structural atomic comparisons is geo-
metric hashing, which consists firstly of a preliminary preprocessing
stage that runs offline only once and is followed by a recognition
stage. In the preliminary stage, a database is created with a hash table
for each binding site following four steps:

1. Three atoms being non-collinear to each other are picked out from
a binding site. The triplet represents a plane in space from which an
orthonormal reference frame can be built. The reference frame will
help to describe the geometrical positions of the remaining binding
site atoms independent from their original Cartesian coordinates.

2. Each remaining atom in the binding site is located within the
triplet reference frame.

3. Representative information on the triangle together with location
information of the fourth atom (quadruplet) is stored in a hash.
If required, any other properties of the atoms can be added.

4. Repeat steps 1–3 for all other triplet combinations in the binding site.
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Once the database of hash tables is built, the recognition stage can
begin by applying the same approach as above to a query binding site.
However, instead of storing the quadruplets in a hash table, they are
checked for their existence in the database. Hash tables that exceed a
user-defined minimum match value are considered as similar and are
further analyzed for atom clusters.

8.3.3 Comparing Binding Surfaces

The molecular surface is crucial in intermolecular interactions as it is
the interface through which the molecules interact. Different surface
models exist for molecules with the two most important ones being
the molecular surface and the solvent accessible surface. Both sur-
faces can be obtained by rolling a probe sphere over the van der
Waals atom shells of a molecule. Whilst the inward-facing surface of
the probe sphere produces the molecular surface, the solvent acces-
sible surface is built by tracing the centre of the probe sphere. The
radius of the probe sphere influences the appearance of both sur-
faces. A smaller probe sphere will show the surfaces in greater detail,
whereas a larger probe sphere will reveal only major surface charac-
teristics. Usually, the radius of a water molecule with 1.4 Å is used as
the probe sphere radius.

Different representations exist for molecular surface models. The
piecewise-quartic representation splits up the molecular surface into
concave spherical triangles, saddle shape rectangles, and convex
spherical regions. The Connolly dot representation spreads over the
surface dots that allow a transparent view of the molecular surface.
Another transparent representation is gained by tessellating the sur-
face into linked empty triangles.

Although the visualization of molecular surfaces is well estab-
lished, their comparison is just the opposite. Only a few attempts have
been made to compare molecular surfaces. Their methodology is
based mainly on the comparison techniques mentioned above, in
which points on the molecular surface are compared using geometric
hashing44 or, as in the case of the publicly accessible eF-seek web-
server (http://ef-site.hgc.jp/eF-seek/), using graph matching.
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An elegant approach for surface comparison is to compare the
coefficient vectors of binding site shapes that are approximated with
spherical harmonics functions (see Section 8.2.3). The comparison
between two shapes reduces to a Euclidean distance calculation
between two coefficient vectors, with smaller distances for similar
shapes.8 Note that this approach is not fully comparable to the graph
matching and geometric hashing methods mentioned above, as it
compares the shape and not the molecular surface of the binding site.
The volumetric shape represents not directly the molecular surface
but the negative imprint of a binding site that is occupied by the lig-
and in the binding process.

8.3.4 Other Comparison Methodologies

Instead of describing the binding site properties specifically, FFF45

(Fuzzy Functional Forms) explore to what extend properties can be
relaxed and still allow a recognition of a binding site in a database scan.

pvSoar46 (http://pvsoar.bioengr.uic.edu/) compares local sequence
and geometric similarities of binding sites. It extracts the residues
building up the wall of clefts from the CASTp47 database and runs
a sequence alignment to detect any highly conserved sequence
patterns. In a second step, the geometric positions of the conserved
residues are compared using a simple RMSD (see Equation 8.1)
calculation.

8.4 Future Outlook

Even with the wide variety of identified binding site features and the
methods described above, it remains difficult to correctly predict
potential interactions between proteins and ligands. Drug discovery
programs report some promising results on the prediction of interac-
tion energies with in silico docking programs. However, in general,
the prediction successes of docking and mapping applications remain
rather moderate. The reasons are mainly the oversimplification of the
physical conditions in the interaction process as well as persisting
problems in recognizing the fundamental processes of molecular
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recognition48,49 (see Chapter 17 for an in-depth discussion on in silico
docking).

The current concept of molecular recognition states that molecu-
lar binding occurs primarily due to complementary physicochemical
properties between a binding site and its ligand. This hypothesis
might require amendments, as more and more examples arise that
show binding despite non-complementarity. The most striking exam-
ples occur in phosphate receptors (PDB Id: 1pbp), sulphate binding
proteins (PDB Id: 1sbp), flavodoxin structures (PDB Id: 2fox), and
DNase I structures (PDB Id: 2dnj).50 All binding sites in these struc-
tures exert a negative electrostatic field over their binding sites despite
binding a highly negative substrate. The question remains open
whether in their evolutionary past these enzymes were binding lig-
ands with complementary electrostatic potentials. Enzyme promiscu-
ity might play a decisive role to answer this question. The current
view on proteins, which is mainly governed by their specificity
towards their functionality, is likely to change towards functional
promiscuity, which states that a protein can exert different functions
with the same active site. More and more enzymes are discovered
that, despite their specificity, promiscuously catalyze other sometimes
very different and unrelated reactions.51 The increasing amount of
data coming from growing 3D structure databases, annotations of
catalytic mechanisms and in-depth binding site analyses will provide
useful information to reveal the fundamental process in molecular
recognition.

Structural information about enzymes have been derived mainly
from X-ray crystal structures, which provide atom coordinates of
unparallel high resolution. X-ray crystallography has one major draw-
back, which is that it provides only a static picture of an otherwise
flexible protein. Protein dynamics and motions in crystals are usually
only visible as a lack of “clarity” caused by the averaging process over
many molecules. Molecular dynamics simulations attempted to over-
come this obstacle by simulating motions in proteins using the X-ray
structure as the starting point for their calculation. The steadily grow-
ing computer power, new developments of faster algorithms and bet-
ter physicochemical parameterizations in recent years have improved
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dynamic simulations. Soon, larger molecular dynamic simulations will
be possible and hopefully allow a deeper investigation of the impor-
tance of protein dynamics in molecular binding.52

But most likely the explicit simulation of water molecules in and
around proteins will have the biggest impact on our comprehension
about molecular binding. Molecules are solvated in water and their
interaction occurs in water. For many years, water was necessarily
omitted in molecular docking and mapping applications as their
in silico simulation was computational expensive. It was hoped that,
in general, shape and physicochemical complementarity would be suf-
ficient to drive molecular interactions. But many crystal structures of
proteins show conserved water molecules at binding interfaces or next
to binding sites and suggest an active role of water molecules in the
protein-ligand complex.53 Especially for molecular parts that interact
via hydrophobic interactions by decreasing the entropy of the water
molecule network, water acts as a “molecular glue” and induces the
approach of protein and ligand molecules. The first methodologies
that simulated hydration effects on protein structures considered
water as a continuum, but had, in general, limited success. A second
generation of simulation software treated water molecules explicitly
but did not reached the expected accuracy especially due to the
immense computational cost that dynamic simulations require. The
growing computer power will eventually also help in this field to pro-
vide simulations of hydration effects under physical conditions.53

Once we achieve a comprehensive understanding of the funda-
mental processes in molecular binding, the de novo design of
enzymes, i.e. the alternation of the enzymatic function, will be
within reach. Other than inorganic catalysts, enzymes catalyze their
reactions under mild conditions with high specificity and rate
enhancements. This unique property makes enzymes attractive for
many industrial processes although often they do not catalyze the
required chemical reactions. Methods like rational-design and
directed evolution in protein engineering have shown to be very use-
ful in producing desired functionality in enzymes. As the factors for
protein integrity namely, hydrogen bonds and hydrophobic effects,
are well understood, many enzymes have been successfully altered to
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stabilize the structural integrity against harmful chemicals, or
extreme temperature and pH conditions. Comparable results could
not be obtained for altering the catalytic machinery of enzymes.54

Only few enzymes so far have been successfully altered, like the mod-
ification of an inert ribose-binding protein into a highly active triose-
phosphate-isomerase.55 As long as the general mechanisms of
molecular binding and catalysis are little understood, such successful
examples will remain rare. Improved understanding of the mecha-
nisms for molecular binding will have an impact not only to function
prediction in structural biology, but will also have effects within the
fields of medicine and biotechnology.
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Chapter 9

Atomistic Simulations of Reactions
and Transition States

M. Meuwly*

9.1 Introduction

Much of the exciting progress in and insights from atomistic simula-
tions is intimately related to the concept of a simplified representation
of the intermolecular interactions in complex systems. This dates back
to the late 1960s when such models — called force fields — were first
constructed and used in the refinement of crystal structures.1 The first
molecular dynamics (MD) simulation of the bovine pancreatic trypsin
inhibitor (BPTI) in 1977, together with the realization that B-factors
can be related to the thermal motion of the protein atoms, were
instrumental in replacing the view of rigid proteins.2,3 Since then, the
role of flexibility in structural biology is undisputed.4–6 Much of this
progress is strongly influenced and driven by atomistic simulations
and continued experimental developments.

Over the past decade, the application of force field-based methods
has demonstrated that they are useful in understanding and describing
various processes including protein folding, protein-ligand interactions
and protein dynamics, at least at a qualitative level. Recent develop-
ments in capturing finer details of the intermolecular interactions,
which should pave the way for more quantitative studies, are broadly
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Switzerland. Email: m.meuwly@unibas.ch.
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summarized here. One of the most challenging problems in structural
biology and biophysics is to follow a system in executing its function.
This is often accompanied by switching between a reactant and a prod-
uct state connected by transition states and metastable states.

Atomistic simulations are unique in that they provide details about
the motion of every atom for the property of interest. One example is
the diffusion of small molecules in protein cavities, such as in
Myoglobin. It is, however, essential that results from such simulations
are critically validated in view of experimental data. This has become
possible through dramatically increased computer power, which allows
simulations to be carried out on time scales relevant to experiment.
Conversely, the development of new experimental techniques such as
ultra fast spectroscopy7 or two-dimensional infrared spectroscopy8 also
provides valuable benchmarks for a critical assessment of the numeri-
cal results. With continuous improvement of existing and the devel-
opment of new numerical methods, it is also possible to compare
calculations with more traditionally available experimental data, such
as equilibrium rate constants. For this, however, it is necessary to
investigate the paths by which the system under investigation evolves
from the reactant to the product state. This is a challenging problem
due to the high dimensionality of the phase space involved.

In the following, the concept of atomistic potential energy func-
tions and recent developments in this area are briefly summarized.
Several excellent and recent reviews exist on this topic, and the reader
is encouraged to consult these for more in-depth information.9,10 In a
subsequent chapter, computational strategies to identify and sample
transition states in high-dimensional systems are presented. This is
followed by examples from different fields relevant to structural biol-
ogy and biophysics. Finally, the outlook discusses future directions
and applications of atomistic simulations.

9.2 Potential Energy Functions
for Biomolecular Simulations

Every simulation of a macromolecular system requires prescriptions (or
models) according to which the total energy for a given configuration
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can be calculated. The shorter the length scale that should be resolved
(e.g. atomistic vs. coarse grained), the more detailed the represen-
tation of the interaction potential needs to be. For atomistic simu-
lations, the configurations of interest are given by the coordinates
x of all atoms.

Given the 3N coordinates x of a macromolecular system, a
potential energy function provides the total interaction potential
V(x ). For systems containing many atoms (typically N > 103), mod-
els have to be developed that allow V(x ) to be evaluated. One such
class of models are empirical force fields. They decompose the total
energy into internal (or bonded) and external (or nonbonded) con-
tributions: Vbonded and Vnb, respectively.1,11,12 The bonded terms are
related to the covalent interactions and are further separated into
contributions from the chemical bonds (distance r), the valence
angles (θ), and dihedral angles (φ ) described by the following
equations:

(9.1)

Here, K represents the force constants associated with the partic-
ular type of interaction; re and θe are equilibrium values, n the perio-
dicity of the dihedral, and δ the phase that determines the location
of the maximum. The summations are carried out over all respective
terms.

Non-bonded interactions include electrostatic and van der Waals
terms, which are:
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where the summations include all non-bonded atom pairs. qi and qj

are the partial charges of the atoms i and j involved in the electrostatic
interaction, and k is the Coulomb force constant, which depends on
the units used. In textbooks, k = 1/4πε0, where ε0 is the vacuum
dielectric constant. If qi and qj are measured in units of elementary
charge e and distances in Angstroms (which is customary in most
force fields), k ≈ 331.843 Åe 2 kcal/mol gives the energy in kcal/mol.
For the van der Waals terms, the potential energy is expressed as
a Lennard-Jones potential with well depth εij = √εiεj and range
Rmin,ij = (Rmin,i + Rmin,j)/2 at the Lennard-Jones minimum. This inter-
action captures long-range dispersion (∝r −6) and exchange repulsion
(∝r −12), where the power of the latter is chosen for convenience. The
combination of Eqs. 9.1 and 9.2 constitute a minimal model for a
force field that might be extended by using explicit terms for hydro-
gen bonds or for metal-containing systems.

The merits and shortcomings of a particular force field are
encoded in the actual parameter values (Kb, Kθ , Kφ, qi, etc). The step
from a specific mathematical representation of the inter- and
intramolecular interactions to a force field consists of determining a
set of parameter values, which are achieved by fitting the parameters
to particular target data.11–13 In this context, it is important to men-
tion that parallel to the mathematical form of a force field, specific
properties of the atoms are captured by the atom types. For example,
C–C single bonds are reflected in a larger value for r e and a smaller
force constant Kb compared to a C=C double bond. As another
example, hydrogen atoms bonded to an oxygen generally have a
larger partial charge than those bonded to carbon atoms. A typical
force field has of the order of 100 different atom types (with associ-
ated qi, εi, Rmin,i), which leads to several hundred parameters to be
determined.

For biomolecular simulations, widely used force fields include
CHARMM (Chemistry at HARvard Molecular Mechanics), AMBER
(Assisted Model Building with Energy Refinement), OPLS
(Optimized Potentials for Liquid Simulations), and GROMOS
(GROningen MOlecular Simulation). This list is by no means exhaus-
tive and a more comprehensive compilation can be found in Ref. 9.
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As briefly mentioned above, the parameters of particular force fields
differ largely through the target data they are fitted to. For example,
partial charges in the early CHARMM (Param 19)14 and AMBER12

parametrizations were determined by using a distance-dependent
dielectric constant to represent the solvent, whereas OPLS13 uses an
explicit representation of the aqueous environment. This also high-
lights that it is an important decision by the user which force field to
employ for a particular application. Finally, it must be emphasized
that parameters between different empirical force fields are in general
not transferable. This already follows from the above remark that
force field parameters are determined vis-a-vis particular training data.
Thus, if a molecule is not available in the force field chosen, the miss-
ing parameters should be determined along similar lines as used for
the existing parameters. Often, a large number of parameters can be
determined by analogy with existing fragments. However, additional
ab initio calculations may be required to maintain the balance in the
energy evaluations. Further details on parameter determination can
be found in Ref. 10.

The empirical force fields discussed so far are also known as “class
I force fields”, which contain harmonic terms for bonds and valence
angles and do not include explicit coupling between different degrees
of freedom (such as stretch-stretch or stretch-bend interactions).
A further development represent “class II force fields” where anhar-
monic terms and couplings between bond, angle, dihedral, and
out-of-plane internal coordinates are included.15

Recently, particular attention in force field development has been
paid to go beyond fixed atomic point charge electrostatics. Fixed
point charges centered on the atoms do not allow the correct
description of: i) the particular features of the molecular charge dis-
tribution, and ii) the response of the charge distribution to changes in
the environment. An early example where higher multipoles were
used to better describe the electrostatic field around a molecule is car-
bon monoxide (CO) in Myoglobin (Mb). Straub and Karplus
included an additional charge site at the CO-center of mass to capture
the quadrupole moment of CO. More recently, this model has been
refined by allowing the partial charges to fluctuate as a function of the
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CO bond length r.16 This describes the reversal of the direction of the
dipole moment µ(r) along r and accurately reproduces the quadru-
pole moment Θ(r). With this model, it was possible to correctly
describe the docking site (B state), the infrared spectrum of CO in
this state, and the energetics between the two metastable states
Fe⋅⋅⋅CO and Fe⋅⋅⋅OC.16,17

Atom- or bond-centered multipole expansions truncated after the
quadrupole have been shown to reproduce the electrostatic potential
calculated directly from the wavefunction to within 0.1%.18 An efficient
formulation of higher multipole moments is provided by the distributed
multipole analysis (DMA)19 or the effective fragment method.20

However, coherent implementations of such ideas into existing force
fields are part of current research efforts.21

Including the response of the charge distribution to changes in the
environment requires the explicit inclusion of polarization effects, which
represents a next significant step in force field development. This can be
done in a variety of ways.22,23 The different methods to incorporate
polarization are fluctuating charges, the Drude model, and a method
based on induced dipole moments. The polarization energy is given as

(9.3)

where µi is the dipole moment of atom i, and Ei is the electric field at
the position of atom i originating from all surrounding point charges.
Here,

(9.4)

where Ei
0 is the electrostatic field due to the N static charges, 1 is the

unit matrix, and rij is the distance between two charges qi and qj .
Usually, the above coupled equations (the second term depends on µj)
are solved iteratively,24 although noniterative procedures are also
available.25
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A considerable amount of work on polarizable force fields has
been concerned with improved water models.26 Other applications
considered the solvation of ions and condensed phase properties of
small molecules.27 Also, the simulation of several small proteins
including solvent for times in the nanosecond range have been
reported.28 Further progress in developing and parametrizing polariz-
able force fields can be expected. Once consistent polarizable force
fields for biomolecular simulations are available, the merits of the
increased computational effort can be truly assessed.

9.3 Atomistic Simulations of Reactions
in Proteins

9.3.1 Potential Energy Functions

The mathematical form of the empirical force fields discussed in the
previous section is not suitable to describe chemical reactions where
chemical bonds are broken and formed. An important step to inves-
tigate reactions by simulation methods has been the introduction
of mixed quantum mechanical/classical mechanics methods
(QM/MM).29–31 In QM/MM, the total system is divided into a
(small) reaction region, for which the energy is calculated quantum
mechanically, and an (large) environment, which is treated with a con-
ventional force field. The majority of applications of QM/MM meth-
ods to date use semi-empirical (such as AM1, PM3,32 SCC-DFTB33,34)
or density functional theory methods35 on isolated structures. Studies
including the nuclear dynamics (QM/MM MD) are still the excep-
tion.36–43 Typically, the QM part contains of the order of several tens
of atoms. It should also be noted that studies of reactive processes in
the condensed phase often employ energy evaluations along pre-
defined progression coordinates,32,38 i.e. the system is forced to move
along a set of more or less well suited coordinates. Thus, molecular
orbital (i.e. DFT or ab initio) QM/MM calculations cannot yet be
used in fully quantitative studies. One of the main reasons why
molecular orbital QM/MM calculations are not yet used routinely in
fully quantitative studies is related to the fact that the evaluation of
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the intermolecular interactions in the QM region is computationally
too expensive to allow proper configurational averaging, which is
required for reliably estimating essential quantities such as free
energy changes. Alternatives to QM/MM calculations have been
developed over the past two decades. They include EVB (Empirical
Valence Bond),44 AVB (Approximate Valence Bond),45 MCMM
(multi-configuration molecular mechanics)46 and RMD (Reactive
Molecular Dynamics).47–50

9.3.2 Rate Constants and Transition States

One of the primary observables from a biophysical or biochemical
experiment is the rate of a particular process as a function of external
driving coordinates. The “process” of interest may be as diverse as the
folding of a protein (configurational reorganization), proton transfer
in enzymatic catalysis or rebinding of a ligand after photodissociation.
External driving forces include, but are not limited to, temperature T,
pressure p, pH of the solvent, or the amino acid composition of the
polypeptide chain. All these scenarios are related by the fact that the
experiment observes the transition from an initial stable state (reac-
tant R) to a final stable state (product P) — possibly via metastable
intermediate states — separated by an energetic barrier, which is large
compared to the thermal fluctuations in the system. Crossing this
energy barrier is only possible if the system concentrates sufficient
energy (>>kBT ) in one or a few degrees of freedom, which promote
the transition. This energy flows into the relevant degrees of freedom
through thermal fluctuations.

9.3.2.1 Transition state theory

In its original formulation, transition state (TST or activated-
complex theory) is based on two essential assumptions. First, there
is a separation of time scales between the dynamics within states
R and P respectively, and the dynamics between states R and P.
Second, every trajectory that reaches the transition state coming
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from R relaxes to P (no recrossing). Based on these assumptions,
the temperature-dependent rate for crossing the transition state
between R and P is

(9.5)

where ∆G0 is the Gibbs free energy of activation, h is Planck’s con-
stant, kB is the Boltzmann constant, and R is the gas constant. A dif-
ferent formulation makes this expression more amenable to dynamical
simulations. The overall TST rate constant can also be written as the
product of the rate at which the system moves across the dividing sur-
face, which separates P from R, and the probability to find the system
at the transition state x ‡:

(9.6)

where ν is the velocity of the system at the transition state (i.e. x.‡),
and the factor of 1/2 takes into account that the system moves from
R to P only half the time. The average has to be carried out over the
reactant configurations. If the barrier region is approximated as a har-
monic oscillator, the expression yields

(9.7)

which can be interpreted as the attempt frequency ω of oscillations in
the reactant minimum multiplied by the probability exp(−β∆E) of
reaching the transition state. For atomistic simulations, often a form
derived from statistical thermodynamics is used:51
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Here, κ is the transmission coefficient, ρ(x) is the probability density
of the configurational (progression) coordinate x, and 

〈
x.

〉
is the aver-

age absolute value of the velocity at the transition state x. ‡ = dx/dt|x = x‡

9.3.2.2 Progression coordinates for locating transition states

Structural rearrangements or reactions typically involve more than
one coordinate along which the process of interest (P → R) occurs.
Only in the simplest of systems (e.g. some proton transfer reactions)
can the dominant reaction pathway be “guessed”, and only one or a
small number of coordinates are involved. In more complex systems,
the relevant progression coordinates are less obvious and different
choices can lead to different results, such as demonstrated for Na+

transport through the gramicidin ion channel.52,53 Another example,
where the correct progression coordinate appears to be simple, is the
isomerization of a tyrosine residue in the bovine pancreatic trypsin
inhibitor (BPTI).54 If the process is described by using the “obvious”
torsion angle of Tyr35, the energy barrier is underestimated by about
5 kcal/mol. To arrive at a more realistic estimate it is important to
include additional protein atoms whose non-bonded interactions con-
tribute to the barrier in the definition of the progression coordinate.54

This situation is similar to simple “coordinate driving” in ab initio
electronic structure calculations where the system is forced along a
predefined progression coordinate. Finally, it is also possible that not
only one but a number of pathways contribute to the reaction kinet-
ics. Some paths may be dominant in one temperature or pressure
regime, whereas others contribute significantly at different T or p.
The aim then is to determine the dominant pathways under the given
external conditions, i.e. the respective thermodynamic variables.
Methods that include temperature are MaxFlux Reaction Paths,55,56

Noisy dynamics (such as diffusional paths57 and Transition Path
Sampling58), or Reactive Molecular Dynamics.47,50

In MaxFlux, the aim is to determine paths r between P and R,
which minimize the functional C(r ) = exp[βU(r )], where β = 1/kBT
is the Boltzmann factor. This method contains temperature explicitly,
which may show up by the fact that r avoids the saddle point.55,56�
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This method has been applied to the coil-to-helix transition in
polyalanine.59

In noisy dynamics, the reaction is understood as a diffusion
process between reactant and product described by coordinates rR and
rP.57 The diffusion is then decomposed into a finite number of inter-
mediate structures rq (a Markov chain of states) and the probability
for the reaction p(rP | rR) is the integral over all joint probabilities.

(9.9)

Transition pathways are then determined from maximizing
p(rP | rR). This formulation is similar in spirit to a path integral for-
mulation to solve the Schrödinger equation.60 Temperature enters
through a suitable choice of the transition probabilities

(9.10)

where D is the diffusion constant. Based on this approach, Chandler
and coworkers developed a method, coined transition path sampling
(TPS), for calculating rate constants.58 The approach finds reaction
paths by sampling the path ensemble and does not require pre-
defined progression coordinates. TPS is a computationally intensive,
iterative simulation method for which at least one pathway of the
event of interest is required as a prerequisite. The majority of applica-
tions involving TPS has been concerned with finding pathways
between different conformational substates.61 Very recently, the
method has also been applied to chemical reactions in conjunction
with QM/MM calculations.62,63

Reactive Molecular Dynamics (RMD) originally was proposed for
and applied to ligand binding in Myoglobin-Ligand systems.47,49,64

RMD compares the energies of the R and P states V(R) and V(P)
along the trajectory. Whenever V(R)-V(P) changes sign, a possible
transition state has been found. Recently, RMD has been formulated
such that the bond-breaking/bond-forming process is followed
in time.50 Thus, recrossing of the reactive seam is possible and no
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predefined progression coordinate is required. The essence of RMD
is that it uses validated empirical force fields for the R and P states
together with one empirical parameter ∆, which describes the asymp-
totic energetic separation between V(R) and V(P). This procedure
has been applied to the rebinding of NO to Myoglobin. The value of
∆ can be chosen to reproduce either ab initio calculations or experi-
mental data. Given this, conventional MD trajectories are run in time
and crossings of the reactive seam are recorded and analysed. Because
the process is followed in time, this approach bears the potential to
determine and investigate largely unbiased progression coordinates
a posteriori.50 The problem of determining progression coordinates
has received much recent attention.58,65–68

In the following, illustrative examples for the use of conventional
and modified force fields as well as mixed QM/MM simulations,
which involve barrier-crossing phenomena, are discussed. The topics
discussed cover both, work from our laboratory and from other
groups.

9.4 Illustrative Examples

9.4.1 Transition Path Sampling for Protein Folding

In a series of publications, transition path sampling (TPS) has been
applied to the investigation of β-hairpin folding of protein G and
the folding of the Trp-cage in explicit solvent.61,69 As mentioned
above, the advantage of TPS is that no pre-defined reaction (or pro-
gression) coordinate is required to follow the transition between
two states. On the other hand, TPS is computationally very
demanding and at least one pathway from educt to product (folded
to unfolded) is required. Using TPS for protein folding in explicit
solvent, a number of interesting results were found.61 Most notably,
the role of explicit water molecules as a lubricant for the folding
process has been suggested. This hypothesis has already been put
forward before,70,71 but was difficult to demonstrate directly from
simulations. Furthermore, in protein folding/unfolding simulations,
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often an extensive MD simulation is carried out from which the free
energy profile is then calculated by defining “suitable” progression
coordinates. The TPS simulations have convincingly demonstrated
that depending upon the choice of the progression coordinate
(common choices are the radius of gyration ρ or the number of
native hydrogen bonds), the calculated free energy barriers separat-
ing the folded, partially folded, and unfolded states can drastically
vary.61 As an example, the free energy barrier between the frayed (F)
and the hydrophobic (H) state of the β-hairpin folding of protein G
is found to be > 7 kcal/mol from transition interface sampling
(which is based on TPS). This compares with a barrier of 2 to
3 kcal/mol from replica exchange calculations, depending on the
progression coordinates used.61 Transition path sampling also pro-
vides structural information about transition state configurations.
For the hydrophobic to unfolded transition one member of the
transition state ensemble is shown in Fig. 9.1.
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Fig. 9.1 Structures of a metastable (hydrophobic) and the final (unfolded) state
together with one representative transition state structure between the two for the
16-residue C-terminal fragment of protein G (Images adapted from Ref. 99). The
transition from the H to the U state is accompanied by the disruption of the water
network and subsequent water penetration. Residues Trp43, Tyr45, and Phe52 form
the hydrophobic core and are represented as a stick model. The backbone is shown
in ribbon representation.
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9.4.2 Ligand Rebinding in Myoglobin-CO/NO

Another area in biomolecular simulations where the transition
between products and reactants is of central importance are ligand-
binding reactions. The paradigm system for such processes is the
recombination of small ligands after photodissociation from the heme
group in myoglobin (Mb). Myoglobin is one of the primary model
systems for studying protein structure and dynamics in general, and
ligand binding and dynamics in particular.72 The study of the binding
of a number of neutral diatomic molecules, such as O2, CO, or NO
has greatly helped in understanding protein function and its relation
to structure.73 The small size and stability of this protein together
with the wealth of experimental data has also made it an attractive and
meaningful system for computational studies.16,49,74–78

9.4.2.1 Ligand rebinding in MbCO

Depending on the process under study, different approaches can be
used to investigate the rebinding reaction. For MbCO, a model based
on the diffusion equation and a simplified representation of the
potential energy surface (including two progression coordinates) has
been employed by Agmon and Hopfield.79 Although simple in its for-
mulation, the model captures a number of essential properties of the
reaction.

An alternative procedure employed by Wolynes et al. uses a
Hamiltonian which interpolates between the bound and the unbound
system.48 Structures from a long MD simulation are quenched to
the transition state, which are further relaxed, and either end in the
product or the reactant well. From several hundred simulations the
distribution of barrier heights at different temperatures were deter-
mined. Both the width of the distribution at 10 K and the peak posi-
tion at 300 K qualitatively agree with the experimental data. Because
the approach is primarily based on relaxing the transition state struc-
tures it is difficult to calculate dynamical properties from it.
Furthermore, the effect of the surrounding solvent was not included
in this study and is in general difficult to be accounted for with this
approach.
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With advances in computational methods it was subsequently
possible to include all intermolecular interactions in the bound
(MbCO, the A state) and the unbound (Mb⋅⋅⋅CO, including the B
state and the ligand in various Xenon pockets) state and to use
umbrella sampling of the free energy surface along a meaningful
progression coordinate.17 In this case, the validity of the Fe–CO
(center of mass) coordinate q as a progression coordinate was estab-
lished through extensive MD simulations.16 This model was also
shown to provide quantitative information about the most likely
position of the CO molecule in the docking site (B state), the
infrared spectrum associated with this state, and the free energy bar-
rier for CO rotation in the B state. Thus, the only unknown quan-
tity is the energetic separation ∆ between the bound and the
unbound potential energy surface. Based on these observations, the
one-dimensional free energy profile for the bound and the unbound
state along q can be calculated and used in the Smoluchowski equa-
tion to investigate the rebinding kinetics as a function of ∆. For this,
the free energy surfaces are diabatized around the crossing point
(see Fig. 9.2) to yield a lower and an upper diabat, G1(q) and Gu(q),
respectively. Starting from an initial population (which is pro-
duced by a laser pulse in the experiment), the rebinding time is
measured by following the relaxation of the initial distribution
p (t = 0) to its equilibrium. The experimentally measured rebind-
ing time is τ ≈ 100 ns, which corresponds to ∆ = 4 kcal/mol. From
the kinetic constants, an effective barrier for the B → A transition
(see Figs. (B) and (C)) of 4.5 kcal/mol has been calculated,80 which
favorably compares with 4.3 kcal/mol from the simulations.17 It
should be noted that the only free parameter in these simulations is
the asymptotic energy separation ∆ between the bound and the
unbound potential energy surface in the protein, which is difficult
to determine from experiment, simulations, or calculations.

More recently, this rebinding reaction has been studied in higher
dimensions by directly analysing unbiased MD simulations. This was
deemed necessary because umbrella sampling can introduce addi-
tional stabilization of the ligand through relaxation of the protein.
Thus, several nanoseconds of free MD simulation for the migration of
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CO between the A state and the Xe4 pocket via the B state were ana-
lyzed.81 The probability density functions P(u,v) — where u and v
span a two-dimensional projection of the migration pathway — were
used to approximate the free energy surface G(u,v) ∝− kBT logP(u,v)
Here, kB is the Boltzmann constant and T is the temperature. This
G(u,v) is a rough potential energy surface (see Fig. 9.2), which poses
severe problems for solving the Smoluchowski equation. Using a
hierarchical approach, following the relaxation of the initial proba-
bility distribution in time becomes tractable.82 Figure 9.3 shows snap-
shots of the distribution function p(u, v, t) at different times t after
photodissociation, from which the rebinding time can be calculated.
For different initial populations p(u, v, t = 0), a rebinding time of
τ ≈100 ns yields free energy barriers of 6 kcal/mol between the Xe4
pocket and the B state. For this barrier, no experimental data is avail-
able. Other simulations found a barrier of ≈2.5 kcal/mol and 4.5
kcal/mol for this transition.83,84 The one-dimensional simulations dis-
cussed above give a value of 6.8 kcal/mol, which may somewhat
overestimate the barrier and reflects the potential bias introduced
through umbrella sampling.17

9.4.2.2 Rebinding in MbNO

For NO, the rebinding processes occur on much faster time scales.
Thus, approaches based on the diffusion equation are less likely to be
appropriate. Elber and coworkers have considered a model where the
rebinding reaction progresses along the Fe-NNO separation RFe-N.47 To
describe the transition between the bound and the unbound state, a
switching function depending on RFe-N was employed. This approach
was used to investigate the differences in the picosecond recombina-
tion rates for mutants at position 29. With this model the correct
experimental trends for the picosecond recombination in the different
mutants was reproduced. A disadvantage of this approach is that it
relies on a geometrical progression coordinate.
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Fig. 9.2 (A) The heme pocket and its surrounding in myoglobin (Mb) with CO as
a photodissociated ligand. Important residues are drawn in ball-and-stick representa-
tion. (B) Upper and lower diabats from umbrella sampling along the Fe-CO (center
of mass) coordinate. (C) The two-dimensional free energy surface from unbiased
MD simulations. Coordinates u and v describe the projection of the center of mass
of CO onto the heme plane.
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Fig. 9.3 Snapshots of the distribution function (A to E) at various times after
photodissociation (t = 0) from solving the Smoluchowski equation using the rough
free energy surface G(u, v) [see Fig. 9.2 (c)] for T = 300 K. The initial condition is
p(u, v, t = 0) = δ (u = −9.0, v = 4.0) which corresponds to CO in the Xe4 pocket. The
last frame (F) shows the equilibrium distribution, which is P eq = exp [− βG(u, v)].
The rebinding time in this case is τ ≈100 ns.
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Recently, a method has been proposed, which follows the reaction
in time, allows for crossing and recrossing the reactive seam, and
includes the effect of a solvent.50 It is based on an accurate represen-
tation of the asymptotic states in the product and the reactant well
(here: Mb⋅⋅⋅NO and MbNO). Starting on the lower of the two states,
the algorithm locates crossings between the two states using an
energy criterion. Once a crossing is located, the transition is carried
out with probability one over a finite window in time, which depends
on the process in question. During the transition, the two potential
energy surfaces are mixed according to

(9.11)

where f (t) is a sigmoid function which changes from 1 to 0 over
the time window. Figure 9.4 displays an example of a reactive
trajectory, which starts on the unbound state, relaxes into the
metastable FeON state, recrosses to the unbound state, and finally
relaxes into the global FeNO minimum. Starting in the unbound
state, several thousand trajectories were followed for the rebinding
of NO to Mb. Analysis of the rebinding times revealed two time
scales that differ by one order of magnitude. The calculated time
constants from a double exponential fit are of the correct order of
magnitude but somewhat too small (3.8 and 18.0 ps compared
with 28 and 280 ps,85 5.3 and 133 ps86), in particular for the slower
component. However, the ratio between the fast and slower time
constants is of similar order as found in experimental data. Given
the large differences between the reported experimental data,85–87

the calculated results can be considered to qualitatively agree with
experimental data.

9.4.3 Enzymatic Reactions

Transition states are also of central importance in understanding
enzymatic reactions. With increasing computer power, the application
of mixed quantum mechanical/molecular mechanics methods has
become possible. However, it should be mentioned that most studies
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still employ energy minimization techniques and not true dynamical
studies. Also, the majority of applications use semi-empirical methods
(such as AM1 or SCC-DFTB) for the quantum part, which may or
may not be appropriate.

Two studies have recently used TPS together with semi-empirical
QM/MM to investigate the enzymes lactate dehydrogenase and cho-
rismate mutase.62,63 Studying the catalytic step, and including the
dynamics in the active site, the first study showed that both concerted
and stepwise hydride/proton transfers are possible. Furthermore,
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Fig. 9.4 Reactive trajectory from simulations of NO rebinding to Myoglobin.
The trajectory starts in the unbound state (A) blue trace, encounters a crossing, and
switches to the bound state (red trace). After sampling the secondary Fe–ON mini-
mum a further crossing is located (B) after which the trajectory samples the unbound
state extensively and finally crosses at C to relax into the global minimum, which is
the Fe–NO configuration. The trajectory is projected onto the bound state potential
energy surface V(R, θ), where R is the Fe–NO (center of mass) distance and θ is the
Fe–NO angle. The surface is calculated at the B3LYP//VDZ(Fe,N,O)/3-21G(C,H)
level50 and energy contours are given in kcal/mol.
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from analyzing the trajectories it was also found that a cooperative
mechanism contributes to catalysis.62 The second study analyzed
around 1000 independent transition paths for the Claisen rearrange-
ment reaction. This provided detailed information about the progres-
sion coordinates typically used in previous studies.32 It was found that
no single geometrical coordinate is suitable to represent the commit-
tor probabilities for the transition path structures. The commonly
used reaction coordinate (a difference of two distances) showed some
correlation with the committor probability whereas other coordinates
(including dihedral angles) were not correlated.63 However, even by
analyzing the transition state structures it was not possible to deter-
mine a more suitable progression coordinate. Further analysis showed
that the near attack conformations, which were proposed to be
involved in the catalytic step,88 did not appear in the transition state
ensemble. As with lactate dehydrogenase, a cooperative compression
is involved during the reaction.

9.5 Outlook and New Challenges

The concept of a classical force field together with suitable extensions
to incorporate more details in the intermolecular interactions has
proven to be a meaningful model for the investigation of complex sys-
tems. As briefly discussed here, it is essential that force fields are, how-
ever, applied with care due to the assumptions implicit to their
parametrization. With this knowledge in mind, it will be possible to
devise refined force fields including effects such as polarization or
higher multipole moments, which make the model even more power-
ful for applications in structural biology and biophysics.

For transition states, their localization and significance in different
fields of macromolecular simulations, the above examples have illus-
trated that they are rarely single, well-defined structures or states.
Rather, for most applications in structural biology and biophysics, it
is more appropriate to consider an ensemble of structures that divide
the product from the reactant well. This is due to the large dimen-
sionality of the problems, whereby many paths lead from the product
to the reactant.
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In the following, a number of potential future directions in the
development and use of force fields for simulations relevant to struc-
tural biology are briefly described. This collection of thoughts is not
intended to be an “Augur’s view” of the future developments in
atomistic simulations, but rather reflect what the author considers to
be interesting topics to work on.

9.5.1 Combined Coarse-Grained/Atomistic Simulations

Multi-resolution techniques, where part of the system is represented
by an atomistic force field and the rest by a more coarse-grained
potential, will provide a significant step forward. Some progress has
been made whereby the resolution of a group of atoms can be modi-
fied on-the-fly.89 This means that, depending on the region in phase
space, the atoms are treated with the atomistic force field or by
coarse-grained potentials. The obvious advantage of such a procedure
is the gain in computer time that can be achieved. However, care has
to be taken that the resulting force field represents the true energet-
ics and dynamics of the system as if it was simulated at full atomistic
detail. This has been carried out for a combined atomistic/coarse-
grained study of HIV-1 protease and human β-secretase.90

9.5.2 Separation of Energetics and Nuclear Dynamics

With free energy methods becoming computationally more and more
feasible,91 the determination of multidimensional free energy surfaces
for protein folding, ligand binding, and other processes relevant to
structural biology have become possible. This makes it possible to
separate the problem of determining a realistic energy landscape on
which the system evolves and to solve the problem for the nuclear
dynamics, which often can be captured as a diffusion problem. Such
procedures are required if the barriers between the different
(meta)stable states are considerably larger than kBT and has been
applied to ligand migration in myoglobin17,81 or to protein folding,92

which provides rates for barrier crossings from computing mean first
passage times. Such studies, ideally carried out in full dimensionality
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and without bias such as umbrella sampling, provide the most direct
contact between computing and actual experiment. Femtosecond
time-resolved X-ray spectroscopy was instrumental to bridge the time
gap between the computational work and experiment.7,93 Exploring
the ultra-fast time scales provides an ideal point of contact between
simulation and experiment, and will allow computational strategies to
be further refined.

9.5.3 Application-Specific Force Fields
and Predictive Simulations

Most force fields for biomolecular simulations have been developed
with the purpose to be as universal as possible for particular applica-
tions such as the simulation of proteins or DNA. As such, these force
fields have proven to be reliable and robust under most circum-
stances. However, it is rare that quantitatively correct results can be
gained from them without modifying particular parameters or even
extending the mathematical form of the model. One example is the
interaction of ligands with the protein. Relative binding free energies
can be calculated from atomistic simulations including the surround-
ing solvent. However, at best such calculations give satisfactory cor-
relation with experimental data and are not predictive.94 There are
two main reasons for this. First, the intermolecular interactions (e.g.
point charges) used in the simulations are most likely not sufficiently
accurate. For example, it has been found that the use of accurate
charges, such as ones derived from quantum mechanical calculations,
and environmental polarization effects can lead to improvements in
docking studies.95 Second, entropic contributions are not included in
conventional ligand binding studies, although their effect is assessed
in some cases and significant progress has been made recently.96 It is
also possible that mixed QM/MM methods can improve the predic-
tive power of ligand-binding simulations.97 However, whether the
additional computational effort is justified in view of improved results
is still a matter of debate.98

Other areas for which more detailed force field parametrizations
should be considered is the investigation of nuclear magnetic resonance
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and the role of (electronically) excited states in biomolecular sim-
ulations. The latter in particular will be a challenge because the
primary source of information — electronic structure calculations — is
far less well developed for excited states than for electronic ground
states.

One of the ultimate goals for computational structural biology in
general and atomistic simulations in particular should be to provide a
computational framework that allows predictive simulations. An
important step towards this is the development of methods that give
“the right answer for the right reason”. Probably the best way to
achieve this is through close collaboration between computational
and experimental groups and by constructively challenging the oth-
ers’ findings and interpretations.
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Chapter 10

Functional Motions in Biomolecules:
Insights from Computational Studies

at Multiple Scales

A. W. van Wynsberghe†, L. Ma†, X. Chen‡ and Q. Cui*,†

10.1 Introduction

Motions at both the domain and local scales are important to the
function of biomolecules. In this chapter, we discuss computational
techniques for probing these functional motions. These include atom-
istic simulations that characterize the energetics of local motions, var-
ious normal-mode based methods that capture the directionality of
domain scale motions, as well as effective coarse-grained methods
necessary for probing motions at very large length and time scales.
The values and limitations of these techniques are illustrated by
selected applications used to analyze the role of local motions in
enzyme catalysis, mechanochemical coupling in signaling proteins and
biomolecular motors, and gating of the mechanosensitive channel. A
number of outstanding and emerging questions regarding functional
motions in biomolecular systems are briefly discussed.
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‡Department of Civil Engineering and Engineering Mechanics, Columbia University,
New York City, NY 10027.

b587_Chapter-10.qxd  1/18/2008  4:50 PM  Page 253



Mounting evidence from numerous experimental1,2 and computa-
tional studies3 has demonstrated that biomolecules have motions that
span a wide range of time and spatial scales. Some of those motions
reflect the importance of maintaining a “minimal” level of flexibility
for function. For example, a recent insightful analysis3 examined the
magnitude of atomic fluctuations in proteins using data from both
molecular dynamics simulations and crystallographic Debye-Waller
factors. Based on the Lindemann criterion, atomic fluctuations indi-
cate that the surface of proteins is liquid-like while the core is solid-
like. This result makes intuitive sense in that the solid core is
important for stability while the fluidic surface is essential for the
structural changes required by basic functions such as ligand binding.
As the temperature approaches the so-called “glass-transition” tem-
perature (∼180 K for many proteins), the Lindemann criterion sug-
gests that the entire protein becomes solid-like; at the same
temperature, most proteins lose their ability to function.

In addition to such “generic” thermal fluctuations, it is generally
agreed that there are also “functional motions”, which have specific
characters (in direction, magnitude, and time-scale) that make these
motions essential to the unique function of a particular biomolecule.
These range from structural transitions at the domain scale, which
are implicated in the function of many “biomolecular machines”5

and multi-subunit enzymes,6 to relatively localized vibrations that
have been proposed to facilitate chemical reactions.7 In this regard,
we note that a rather broad notion of “motion” is adopted here,
which includes both equilibrium fluctuations in a single state and
structural transitions between two (or more) distinct functional
states of a system.

Despite their biological importance, functional motions are
difficult to identify and characterize at a quantitative level. The
multiple length and time scales spanned by these motions pose
tremendous challenges to experimental measurements and their
interpretation. A significant body of studies has demonstrated that
careful computational studies can nicely complement experimental
work for better characterizing and understanding the working
mechanism of functional motions. In the following, we first briefly
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review several computational methods that are particularly useful for
studying motions in biomolecules at multiple scales; then, we dis-
cuss a few examples from our labs to illustrate the value and limita-
tion of these techniques as well as the mechanistic insights derived
from computational analyses regarding the nature and functional
implication of specific motions in the corresponding systems.
Finally, a number of outstanding and emerging questions regarding
functional motions in biomolecular systems are briefly discussed.

10.2 Computational Methods

In principle, the most robust computational approach for studying
motions in biomolecules is atomistic molecular dynamics (MD).8 Ever
since the first molecular dynamics simulations of proteins 30 years
ago,9 striking progresses have been made in both theoretical/compu-
tational algorithms and computational hardware. As a result, sophis-
ticated molecular dynamics simulations have become an indispensable
tool in the analysis of structural, energetic, and dynamical properties
of biomolecules.3,8 Nevertheless, for many processes, such as domain
motions, atomistic molecular simulations are still too expensive for
obtaining statistically meaningful results. Even for relatively local
structural transitions, it is challenging to quantify the underlying ther-
modynamics and kinetics using straightforward molecular dynamics
simulations. In those cases, alternative computational approaches
have to be used. In the following, we briefly summarize a few com-
putational approaches that are useful for characterizing motions at
different scales and evaluating the functional significance of these
motions.

10.2.1 Local Motions: Advanced Atomistic
Molecular Dynamics

Local motions such as side-chain flips, loop displacements and break-
formation of salt-bridge interactions play important roles in many
systems. For example, isomerization of a histidine from a buried con-
figuration to a solvent exposed orientation is implicated in its proton
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shuttling function in carbonic anhydrase;10 the closure of a “lid” com-
posed of an 11-residue loop sets up the active site of triosephosphate
isomerase to avoid side reactions;11 the formation of a critical salt-
bridge between two loop motifs in myosin helps to align water mole-
cules properly in the nucleotide binding sites for the subsequent
hydrolysis of ATP.12,13 Due to the presence of free energy barriers
higher than kBT, characterizing the corresponding thermodynamics
and kinetics (barriers) for local structural changes is not always
straightforward. In principle, these quantities can be estimated from
the relevant potential of mean force (PMF, W(ξ ))14 profile
[Fig. 10.1(a)] using umbrella samplings15 to obtain

(10.1)

where ξ is the chosen reaction coordinate, P(ξ ) is the probability dis-
tribution along ξ, and C is a normalization constant.

In practice, however, even localized structural changes may
implicate variations in a handful geometrical parameters and it can
be difficult to identify the most important one(s) as the principal
“reaction coordinate(s)”; computing PMF along an inappropriate
reaction coordinate may lead to significant error in the computed
energetics, especially barriers.16 The situation can be even more
complex if there is significant involvement of the solvent degrees of
freedom; this might be more prevalent than one may naively assume,
and even the isomerization of an alanine dipeptide, for example,
has been shown to implicate significant solvent participation.17

Another example along this line is the dimeric hemoglobin in scal-
lop, where a change in the number of interfacial water molecules is
coupled to the rotation of a phenylalanine residue at the dimer
interface and is key to the allosteric communication between the
two subunits.18

In other words, a major challenge for quantifying local motions
(including chemical reactions) is the identification of variables whose
changes best describe the kinetic bottleneck of the process. In
some applications, experience and intuition can be very instructive

W k T P CB( ) ln ( )x x= - +
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(see the following discussion on CheY). Nonetheless, a less ad hoc
approach is highly desirable. In this context, the transition path
sampling (TPS) technique proposed by Chandler and co-workers19

provides a theoretically sound framework for studying reactive
processes (either chemical or structural) in complex systems like
biomolecules. Unlike the minimum energy path analysis, which is
powerful for gas-phase processes but significantly less appropriate
for processes in the condensed phase, TPS collects real-time “reac-
tive trajectories,” and therefore, samples the true kinetic bottleneck
and includes entropic effects [Fig. 10.1(b)]. As described in details
in Ref. 20, TPS employs a Monte Carlo procedure to sample the
trajectory space with emphasis on reactive trajectories that lead to
the structural transitions of interest. This is possible because most
local structural transitions are thermally activated, meaning that the
rate is low due to significant (free) energy barriers, but the barrier
crossing process itself, once activated, is fast (often in the picosec-
ond regime).21

Briefly, a TPS simulation starts with a single reactive trajectory,
which can be obtained in a number of ways such as by forcing the rel-
evant structural transition to occur via artificial restraints and then
gradually reducing the strength of the restraints in a series of “anneal-
ing” simulations.22 Then, new trajectories derived by slightly perturb-
ing the existing trajectory (e.g. by modifying the velocity of certain
atoms in a frame) will be generated and accepted based on a
Metropolis criterion to ensure detailed balance (i.e. the proper canon-
ical weights of trajectories). This is carried out iteratively until a sig-
nificant number of uncorrelated reactive trajectories have been
collected; the precise number depends on the system and the goal of
an application.

Clearly, the TPS approach is computationally intense and typi-
cally involves at least collecting thousands of short trajectories on
the order of 10–100 ps. Therefore, TPS is ideally suited for study-
ing relatively local structural transitions in biomolecules where the
process can be too complex to characterize with a few “obvious”
choices of variables, but the intrinsic transition time-scale is still well
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Fig. 10.1. (See caption on next page.)
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in the sub-nanosecond regime. It is important to recognize, how-
ever, that the standard TPS protocol is still a local sampling tech-
nique, and therefore, the results are likely dependent on the initial
“reactive trajectory” (see example below).23 Other challenges asso-
ciated with TPS include analyzing the results,24 dealing with
processes of diffusive nature25 and/or involving intermediate(s);
given the limited space here, we refer readers to recent discussions
in the literature.

10.2.2 Domain Motions: Normal Mode Analysis

Large-scale structural transitions at the domain scale are involved in
many “biomolecular machines” such as molecular motors5 and
allosteric multi-subunit enzymes.2 They are difficult to study using
regular atomistic simulations because they occur at time scales typi-
cally at or longer than ms. Various “unconventional” molecular
dynamics techniques have been proposed accordingly, which either
applies specific biasing potentials to artificially speed up the structural
transitions26,27 or aims at identifying the approximate transition
path(s) between two functional states.28

One interesting alternative that has found great popularity in
recent years is the normal mode analysis (NMA).29 In NMA, one
approximates the motion of the system as harmonic vibrations around
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Fig. 10.1 Illustration of the computational methods discussed in this chapter.
(a) Potential of mean force (PMF) simulations along chosen reaction coordinates
(ξ1, ξ2), from which the kinetics (kR →P) and thermodynamics (keq

R →P) of the rele-
vant transitions can be estimated, are most useful for probing local motions;
(b) Transition Path Sampling (TPS), which probes reactive (either chemical or
conformational) trajectories between different states with proper weights, does
not require the pre-selection of reaction coordinates and is suitable for studying
complex local structural transitions in systems with rough energy landscape;
(c) Normal Mode Analysis (NMA) is an approximate method well-suited for describ-
ing collective motions at the domain scale; (d) Further coarse-grained methods such
as those based on continuum mechanics can, if parameterized carefully, probe func-
tional motions at very large length and time scales. All structural figures are made
using VMD.133
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a local minimum on the potential energy surface. Following the
diagonalization of the force constant (second-order derivative, or the
hessian, H) matrix in mass-weighted coordinates,

(10.2)

the equations of motion can then be simplified as a set of uncoupled
harmonic oscillators of frequencies {ωi}; here N is the total number of
atoms. Through the eigenvectors, Li, the time evolution of the
Cartesian coordinates (Li(t)) can be expressed analytically at all time,

(10.3)

where Ai, φi are the amplitude and phase factor for the i th mode; this
allows the calculation of many thermally averaged results such as
atomic fluctuations at a given temperature T.14

Although clearly approximate, a significant body of research has
demonstrated that NMA is uniquely useful for characterizing collec-
tive motions in biomolecules [Fig. 10.1(c)].30–33 In particular, large-
scale structural transitions between different functional states have
been found to correlate very well with the low-frequency normal
modes; in fact, in many cases, a large fraction of the structural transi-
tions can be expressed as the linear combination of a very small num-
ber of low-frequency normal modes. This leads to the idea that the
flexibility required for the functional transitions is an inherent feature
of the system encoded by the structure.

The fact that low-frequency modes are most relevant for charac-
terizing domain-scale motions suggests that further numerical136 as
well as physical approximations can be made to NMA such that the
efficiency of the computation can be improved. One idea is to divide
the system into a set of “blocks” (e.g. one amino acid per block), and
then ignore the internal motion of the blocks when solving the
NMA problem;34 this significantly reduces the size of the eigenvalue
problem.35 Such a “block normal mode” approach has been shown to
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give very reliable results for low-frequency eigenvalues/eigenvectors,
and therefore, can be used to explore structural flexibilities of very
large biomolecular complexes (such as protein-DNA complexes and
the ribosome) with atomistic interactions.36,37

A further approximation is to simplify the interaction potential
into that of a set of elastic springs, which leads to the “elastic network
model (ENM)”.38

(10.4)

where Θ is a Heaviside step function, rcut a parameter that deter-
mines the range of interactions, and γ a scaling factor; rij

0 is the dis-
tance between atoms i and j in the current structure. In addition to
its computational efficiency, a nice feature of ENM is that the
potential ensures that the current structure is the energy minimum,
and therefore, no energy minimization is needed. A large body of
studies have shown that despite its simplicity, ENM produces
reliable results for the low-frequency eigenvectors for compact
structures32–33,39 although the results tend to deteriorate as the fre-
quency increases.40 In a recent analysis,41 for example, results from
several variations of ENM and the block normal mode (BNM) using
an atomistic potential were compared to the anisotropic displace-
ment parameters (ADPs) from high-resolution X-ray structures. It
was found that most methods produce favorable agreement with the
experiment ADPs, although there are notable differences between
the eigenvectors from ENM and BNM calculations, except for the
first few modes. For very large systems, reliable ENM results can be
obtained with a significantly smaller number of interaction sites than
the number of atoms. This leads to the impressive application of
ENM to systems with low-resolution structural information (such as
electron microscopy maps).42,43

It is important to emphasize that by “characterizing” domain
motions with normal modes, we mean that the directions of large-
scale flexibility correlate well with a small number of low-frequency
normal modes. The time-scale, magnitude, and energetics of motions

U r r r relastic
ij cut ij ij

i j
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π
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along these directions, are however, beyond the capability of the
NMA approaches discussed above (see Section 4). Moreover, care has
to be exercised when interpreting “correlated motions” in biomole-
cules using only a small number of modes.44

10.2.3 Coarse-Grained Models Beyond
the Harmonic Limit

Another active area of research involves developing effective coarse-
grained models such that anharmonic motions (thus beyond normal
modes) at long-time scale and large spatial scale can be effectively sim-
ulated and analyzed. The most popular approach is to reduce the res-
olution of the representation by grouping several atoms into a single
bead and then parameterize effective interactions between the
beads.45–47 Different approaches have been proposed for parameteriz-
ing effective interactions based on atomistic simulations, and it
remains a challenging task to develop potentials that are accurate,
flexible, and transferable at the coarse-grained level.48 Nevertheless,
impressive results have been obtained for a number of systems, per-
haps most notably for lipid systems by Marrink and co-workers.49

An alternative direction that we have been exploring recently is to
adopt a continuum mechanics framework with the finite element
(FEM) representation. Although continuum mechanics have been used
in the past to model the mechanical behavior of biomolecules,50,51

they are usually based on highly idealized geometries and materials
properties. The FEM analysis,52 on the other hand, is widely used in
the engineering field for solving mechanical and transport problems
and can be applied to systems with complex geometries and bound-
ary conditions.

In our recent study, we have established a proof-of-concept con-
tinuum mechanics model for the mechanosensitive channel of the
large conductance (MscL).53 Inspired by its crystal structure,54 this
model treats transmembrane helices of MscL as elastic rods and the
lipid membrane as an elastic sheet of finite thickness; in the more
recent model,55 periplasmic loops are also included as elastic springs.
In the FEM framework, these continuum components (indicated as
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domain Ω), are represented by a set of “elements” in the shape of, for
example, tetrahedra [Fig. 10.1(d)]. The size of the elements can be
determined adaptively, small for regions of interest and large for far-
away areas, which makes the simulation framework ideal for very large
systems such as a protein complex embedded in a large sheet of mem-
brane. Similar to atoms in particle-based simulations, each element is
associated with the materials’ properties (e.g. Young’s moduli) and
parameters that describe inter-element interactions. These important
parameters can be derived from calculations using all-atom force
fields. The interaction between the continuum components and the
surrounding solvent can be treated at the Poisson-Boltzmann level.56

Currently, we are developing, in a systematic manner, a semi-quanti-
tative framework that treats irregular shapes of continuum compo-
nents and employs more sophisticated description of materials
properties. The solution of an unknown variable (function), φ, is then
approximated by a series of shape functions, si, and a set of unknown 

parameters, ai (e.g. nodal displacements), as . The values

of ai are then determined from equations established from, for exam-
ple, a variational principle

(10.5)

where Γ is the domain boundary and g, G are the relevant energy/
work functionals.

Since most interactions in a FEM model are local in nature, the
cost of the simulation is modest. Therefore, once parameterized, the
continuum mechanics model is ideally suited for studying the struc-
tural response of the biomolecule to various external mechanical
perturbations of different form and scale. In the simplest application,
this involves applying mechanical loads as the boundary condition
and evolves the structure of the continuum components (i.e. posi-
tions of the FEM nodes) in a quasi-static fashion. Even at this level,
interesting insights can be obtained. For example, qualitatively dif-
ferent responses of MscL were observed when the membrane was
subject to in-plane tension versus out-of-plane bending (see below);53
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this is very difficult to achieve with any other widely available simu-
lation techniques. At a more sophisticated level, the real-time
dynamics of the continuum system at the finite temperature can be
monitored by propagating Langevin dynamics; the potential of such
studies on biomolecular systems, however, remains to be fully devel-
oped and explored.

10.3 Applications

In this section, we discuss a few applications from our own studies to
illustrate how the techniques outlined above are used in providing
useful insights into functional motions in biomolecules at multiple
scales.

10.3.1 Functional “Dynamics” of Ribonuclease A

Whether there are specific motions (or loosely referred to as “dynam-
ics” in the relevant literature) in enzymes that facilitate the catalytic
step has been a topic of intense interest. An intriguing recent exam-
ple is ribonuclease A, for which the motion-catalysis relationship has
been analyzed in details by Loria and co-workers using NMR relax-
ation measurements.57,58 The most interesting finding concerns the
effect of mutating Asp121 near the active site [Fig. 10.2(a)] to an ala-
nine. More than 95% of the activity is lost upon mutation, although
neither substrate affinity nor the electrostatic properties of the active
site (e.g. as reflected by the catalytic His residues) was significantly
perturbed.58–60 There was, however, interesting changes in the μs-ms
motions upon mutation. In the wild type (WT) enzyme, the motions of
different motifs (e.g. loop 1, 4, and His119) are very close in time-scale
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Fig. 10.2 Study of functional motions in RNase A. (a) The basic catalytic cycle;
(b) The active site of RNase A with both the His119 A and B site rotamers present;
the hydrogen bonding in both the A site (Asp121) and the B site (Ala109 main
chain and Glu111) is indicated. (c)–(d) Potential of mean forces from different cal-
culations along the His119 χ1 angle that characterizes the transition between the A
and B sites.
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to each other and to the observed catalytic rate; in the D121A
mutant, by contrast, the time-scale for the motions of different struc-
tural motifs becomes substantially different, and product release (the
rate limiting step in the wild type) actually became faster. These obser-
vations led Loria and coworkers to suggest that the synchronicity of
global protein motions plays an important role in determining the
rates of catalytically important steps, and the loss of catalysis in the
D121A mutant is from the disruption of these global dynamics.58

10.3.1.1 Atomic scale hypothesis for D121A effects

Although the hypothesis that the global millisecond dynamics of
RNase A are “coordinated” and “timed” to help catalysis occur is
intriguing, it is nonetheless difficult to imagine a detailed atomic level
mechanism. We present an alternative hypothesis for the decrease in
catalytic rate that involves changes in the free energy landscape of the
apo enzyme and then attempt to verify this hypothesis using PMF
simulations.

The catalytically active His119’s side-chain has been observed
to exist in two configurations in both crystallographic and NMR
experiments.58,59,62 These two configurations are defined by the trans
(∼180°) or gauche+ (∼−60°) rotamers of the side-chain χ1 dihedral
angle and are known as the “A” and “B” sites respectively
[Fig. 10.2(b)]. The enzyme is only active when His119 is in the A site
and A/B site conformational exchange is very unlikely if the substrate
is bound. If one assumes that the substrate can bind to RNase A when
it is in the B conformation, this complex would be unreactive. The
kinetic scheme for such a situation, where the enzyme can transition
between an active and inactive form with both having the ability to
bind the substrate is given by

(10.6)

Analyzing this scheme with the steady state approximation and
the assumption that the inactive and active forms bind the substrate
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with similar affinities results in a modified Michaelis-Menten equation
where the apparent catalytic rate, k2, is multiplied by the fraction of
active enzyme, fA,

(10.7)

If the assumptions of the above analysis are correct, one can
observe a change in the apparent catalytic rate, fAk2, simply by chang-
ing the relative populations of the A and B sites. Therefore, our
hypothesis for the decrease in catalytic activity upon the D121A
mutation is that the A site His119 conformer is destabilized relative
to the B site conformer, which leads to a smaller fraction of the apo
enzyme being in a catalytically active state at any one time.

10.3.1.2 Simulation studies

To test our hypothesis, umbrella sampling is used to calculate potentials
of mean force (PMFs) along the His119 χ1 dihedral, which defines the
A or B site position, for both the D121A mutant and the wild type
enzyme. As a check of convergence, two independent sets of PMF sim-
ulations are carried out for each system, starting from either a trans
(A site) or a gauche+ (B site) His119 χ1 dihedral. Both PMF simulations
consist of approximately 2–3 ns of production sampling and the results
are referred to as the A → B PMF and the B → A PMF respectively.

As shown by the B → A PMF in Fig. 10.2(c), the A site is desta-
bilized by approximately 1 kcal/mol more with respect to the B site
in the mutant than in the wild type. This suggests that the B site is
more populated in the mutant enzyme than in the wild type. The
A → B simulations show this same trend, although they produce dif-
ferent relative stabilities of the two sites. For the WT enzyme, for
example, whereas the B → A PMF predicts that the B site is more sta-
ble, the A → B PMF predicts that the A site is more stable. In both
cases, however, the ΔΔGB-A corresponding to ΔGB–A

D121A − ΔGB–A
WT is neg-

ative, suggesting that the D121A mutation destabilizes the A site with
respect to the B site, supporting our hypothesis.
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Careful analysis of the simulation trajectories suggests that this
hysteresis arises because different His119 χ2 angles are sampled in the
B → A and A → B PMF simulations, especially in regions near site B.
To test this, a “hybrid” A/B PMF calculation is set up, which uses the
A site and transition barrier windows from the A → B simulations; for
windows near the B site, the starting configurations are generated
from an A site equilibrium snapshot, which are then constrained dur-
ing equilibration to give consistent χ2’s. As shown in Fig. 10.2(d), the
A site (−210 ≤ χ1 ≤ −165) and transition barrier (−150 ≤ χ1 ≤ −105)
regions of this hybrid PMF are exactly (within a small constant) the
same as in the A → B PMF, but with the new B site windows (−90 ≤ χ1

≤ −45), the resulting PMF shows a stabilization of the B site, much
like the B → A simulations. In fact, the shape of the hybrid PMF in
the A site region matches nearly perfectly with the B → A PMF.

In short, although there remain important hysteresis problems for
the computed χ1 PMFs due to the lack of sufficient sampling in χ2

(which illustrates the subtlety of such simulations for even a local
event!), the hypothesis that the D121A mutant’s loss of activity came
from a shift in population of the His119 from the A site to the B site
is feasible. In both the A → B and B → A simulations, a destabilization
of the A site relative to the B site upon mutation was observed. That
is, although ΔGB–A

D121A and ΔGB–A
WT change signs between the A → B and

B → A simulations, the ΔΔGB-A stays negative for both cases. The more
rigorous way to characterize the relevant energetics associated with
the His119 isomerization is to compute a two-dimensional PMF
along both the χ2 and χ1 coordinates; this is underway.

10.3.2 Activation of a Signaling Protein: CheY

Signaling proteins are activated to perform their biological function
through a localized event such as phosphorylation or ligand (ion)
binding.63 Understanding how such local modifications lead to strik-
ing transitions in the structure, and therefore, activity of signaling
proteins is evidently of great value from both fundamental and bio-
medical perspectives. Recent NMR studies64 of small signaling pro-
teins in two-component systems suggested that the structural motifs
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to be activated have a small but non-negligible population in the
active conformation prior to phosphorylation; the role of phosphory-
lation is to shift this population to become the dominant one rather
than inducing new conformations. Such a “population shift” frame-
work,65 which has features of the Monod-Wyman-Changeux (MWC)
model66 for allostery,66–69 emphasizes the dynamical nature of signal-
ing proteins (and allosteric systems in general) and provides a rather
different picture from the “push and pull” type of description as char-
acterized by the stereochemical model for hemoglobin.70 To fully
understand the activation mechanism, however, it is important to
characterize the energetics of the relevant motion and reveal how the
energetics are modulated by the activation event (i.e. how “population
shift” is induced).

10.3.2.1 “Y-T” Coupling versus population shift

CheY is a 129-residue prototypical response regulator in a two-
component signal transduction system.71 It is activated through
phosphorylation, and the most important conformational change in
CheY upon activation is the rotation of the Tyr106 side-chain from
a solvent exposed orientation to a fully buried state [Fig. 10.3(a)].
The distance between Tyr106 and the phosphorylation site (Asp57)
is more than 9.5 Å, which makes CheY a prototypical single-domain
protein that exhibits allosteric behavior. The highly conserved
Thr87 spatially separates Asp57 and Tyr106, thus the conventional
description for CheY activation is the “Y-T coupling” model:72

phosphorylation of Asp57 displaces Thr87 due to a hydrogen-
bonding interaction, which in turn allows the rotation of Tyr106.
Since partial activity has been observed for the wild type CheY73 and
the T87A mutant74 in the absence and presence of phosphorylation,
respectively, the “Y-T coupling” model has been questioned. In par-
ticular, since the β4–α4 loop (Ala88 to Lys91) also undergoes a
major displacement upon activation (root-mean-square-deviation
for the backbone and all non-hydrogen atoms is 1.9 and 3.6 Å
respectively),75,76 it has been speculated75,77 that this loop in fact
gates the rotation of Tyr106 and the role of phosphorylation, and
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Fig. 10.3. (See caption on next page.)
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Thr87 is to select specific loop configuration, which is reminiscent
of the “population shift” model.

10.3.2.2 Simulation studies

To gain further mechanistic insights into the activation of CheY as
an example of monomeric protein allostery, extensive molecular
dynamics77,78 and PMF simulations78 were used to explore the cou-
pling between various conformational transitions (e.g. the β4–α4
loop transition, Tyr106 rotation, Thr87 displacement) and phospho-
rylation in both the wild type CheY and the Thr87Ala mutant. In par-
ticular, using transition path sampling (TPS), it was shown through
∼ –160 natural reactive trajectories [Fig. 10.3(b)] that the isomeriza-
tion of Tyr106 does not require the displacement of Thr87, and that
the hydrogen bond between Thr87 and Asp57 phosphate, an essential
element of the “Y-T” scheme, is not formed. Recognizing the local
nature of TPS simulations, extensive two-dimensional PMF simula-
tions were also carried out to explore the energetic coupling between
key degrees of freedom; each two-dimensional projection in Fig. 10.3(c)
is generated using between 100–200 ns of simulations. The results
showed that the isomerization of Tyr106 and formation of the
Thr87-phosphate hydrogen bond have similar barriers and are
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Fig. 10.3 Study of functional motions in CheY.78 (a) Comparison of the inactive75

and active76 structures of CheY. Overlay of key residues between the phosphorylation
(Asp57) and response sites (Tyr106). Residues in the active structure are colored
according to atom types, while those in the inactive structure are colored ice-blue.
The inactive and active configurations of the β4–α4 loop are colored dark-blue and
yellow respectively. (b) Four configurations along an exemplary activation trajectory
harvested using TPS; note that the intrinsic time scale of barrier crossing, which is
different from the reaction time, is short and on the picosecond scale. Several impor-
tant residues, including Tyr106, Ala90, Ile95 and Val108, are shown in the van der
Waals scheme; the phosphorylated Asp57 is shown in the licorice form; the β4–α4
loop is shown as the blue ribbon. (c) A three-dimensional scheme that illustrates the
energetics and possible pathways for CheY activation based on the computed two-
dimensional PMFs along the key degrees of freedom. The expected fully active state,
AF

I, is not a local free-energy minima in the simulations, presumably due to the
absence of the FliM peptide in the model.
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thermodynamically coupled; i.e. kinetically, either event can occur
first and facilitate the other. The PMF results also showed that the
β4–α4 loop transition has substantially higher barriers, and therefore,
is unlikely to gate the Tyr106 rotation; rather, the rotation of Tyr106
stabilizes the active configuration of this loop, which is consistent
with a statistical analysis of all CheY structures in the PDB.79,80 Thus,
the CheY simulations show that a structural transition at the response
site (Tyr106 isomerization) can occur prior to the so-called activation
event (Thr87-phosphate hydrogen-bond formation). This suggests
that the Tyr orientations are in equilibrium and that the active con-
formation is stabilized by Thr87-phosphate hydrogen bond forma-
tions; kinetically, either event can occur first. In the NMR study of the
closely related NtrC,64 motion associated with the equivalent Tyr was
observed to persist in both the unphosphorylated and phosphorylated
forms, which led the interpretation that Tyr rotation is “uncoupled”
from phosphorylation. Combined TPS/PMF analyses of CheY sup-
port that the rotation of Tyr may occur in the absence of phosphory-
lation, but it is coupled thermodynamically with phosphorylation.

10.3.3 Functional Motions in Molecular Motors
at Multiple Scales

Molecular motors are fascinating systems that convert the chemical
free energy in the form of ATP binding/hydrolysis into mechanical work
with high efficiency.81,82 These systems are rich in motions/reactions
that span multiple scales ranging from Angstrom-level changes in
ATP⋅HO during hydrolysis, through local structural rearrangements in
the nucleotide binding site, to domain-scale conformational transitions
associated with displacement of the motor. Understanding the
“mechanochemical” coupling in motors clearly requires characterizing
these motions individually and revealing how they are coupled.5,83

10.3.3.1 Mechanochemical coupling in myosin

The specific system we focus on is the conventional myosin (referred
to as myosin below), which is involved in muscle contraction.84 It is
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one of the few motor systems for which high-resolution X-ray struc-
tures (for the motor domain) have been solved for multiple functional
states.85 The two X-ray structures of interest here86,87 are believed to
correspond to the post-rigor and pre-powerstroke states in the kinetic
scheme,84 and the transition from the former to the latter is referred
to as the “recovery stroke.” In these two states, the motor domain is
detached from the actin and ATP hydrolysis is believed to occur only
in the pre-powerstroke state. Comparison of the two X-ray structures
reveals structural transitions at different scales, and the most notable
ones are [Fig. 10.4(a)]: (i) the C-terminal converter sub-domain
undergoes a ∼60 degrees rotation, which corresponds to a RMSD of
more than 20 Å; (ii) the active-site undergoes an open/close transi-
tion with a small RMSD of 3 Å; (iii) the relay helix, which connects
the active site and the converter, undergoes a significant kink. The
fundamental challenge is to understand how these motions are cou-
pled and their relationships to the nucleotide state (ATP⋅H2O versus
ADP⋅Pi) in the active site.

10.3.3.2 Simulation studies

To meet this challenge, a multitude of computational methods have
been combined synergistically in our study.13,88–91 The general strat-
egy is to characterize the energetics of local events such as ATP
hydrolysis13 and open/close transition of the active site89 in different
X-ray structures; the results provide important information about
how these local motions/reactions are coupled to structural changes
elsewhere in the motor domain. In addition, approximate transition
path calculations, normal mode analyses, and a bioinformatics-based
approach are combined to identify residues/interactions that play an
important role in the recovery stroke.90 Due to the limited space, we
restrict ourselves to discussions on the structural transitions.
Regarding ATP hydrolysis, it suffices to say that QM/MM calcula-
tions of the hydrolysis energetics with different active-site struc-
tures13,91 clearly showed that the activity relies on the complete closure
of the active site, which in turn is coupled to the converter rotation
through the relay helix (see below); as a result, the hydrolysis of ATP
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Fig. 10.4. (See caption on next page.)
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in the active site is tightly coupled to the converter rotation, despite
the separation of more than 40 Å.

First, normal mode calculations found that with either of the two
X-ray structures, a small number of low-frequency normal modes
sums up to a large fraction of the Cartesian displacements correspon-
ding to the recovery stroke. This is shown more quantitatively with
two commonly used descriptors, the involvement coefficients (Ik) and
the cumulative involvement coefficients (CIn),

(10.8)

(10.9)

where X1−X2 is the displacement vector between two conformations
(X1, X2) and Lk is the kth eigenvector. As shown in Fig. 10.4(b), using
less than 20 lowest-frequency modes, more than 50% of the displace-
ment can be accounted for, indicating that the motor domain has
inherent flexibility in the specific direction of the recovery stroke.
Comparatively, with the same number of modes, the CIn for the pre-
powerstroke state is notably higher than that for the post-rigor state
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Fig. 10.4 Study of mechanochemical coupling in myosin.89,90 (a) The difference
between the post-rigor (1FMW,86 in blue) and pre-powerstroke (1VOM,87 in light
green) states; the structures are aligned based on backbone atoms in the first 650
residues. Also shown is the superposition of the active site, where Mg⋅ATP is in the
van der Waals form, and key loops (P-loop, Switch I/II) as ribbons; the active site
is “closed” with the salt-bridge between Arg238 and Glu459, and “open” when the
salt-bridge is broken; (b) Involvement coefficient (Ik) and cumulative involvement
coefficient (CIk) from normal mode calculations (Equations 10.8 and 10.9) for the
structural transitions between the two X-ray structures using the modes of either
structure; (c) PMF for the open/close transition of the active site with different
X-ray structures; (d) Mapping of the 52 strongly coupled core residues (in van der
Waals form) to the structure of Dictyostelium myosin motor domain. The coupled
residues are colored based on residue type; blue: basic, orange: acidic, ice-blue:
polar, white: non-polar.
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[Fig. 10.4(b)], which can be interpreted to suggest that the former is
more flexible in the direction of the functional transition. This in fact
is consistent with the FRET study of Spudich et al.92 who found that
the orientation of the converter (lever arm) is relatively rigid in the
post-rigor state but spans a broader range of angles in the pre-power-
stroke state.

To characterize the open/close transition of the active site, PMF
calculations were carried out with both X-ray structures. The differ-
ential RMSD with respect to the open and closed configurations of
the Switch I and II motifs is used as the reaction coordinate. As
shown in Fig. 10.4(c), the results are strikingly different in the two
X-ray structures. In the post-rigor state, the PMF profile is very flat,
suggesting that the open and closed configurations have similar ener-
getics and the transition between them is a low barrier process. In the
pre-powerstroke structure, by contrast, the PMF is strongly titled
toward the closed configuration, while the open configuration is at
least 8 kcal/mol higher in free energy. Therefore, the PMFs quanti-
tatively showed that rotation of the converter causes structural
changes that propagate to the neighborhood of the active site such
that the relative stability of the open/close configurations is strongly
perturbed. In fact, data from the PMF simulations can also be used to
construct the (φ, ψ )-free energy profile of residues near the active
site. The results (not shown here)89 clearly indicate that the motion of
these residues becomes substantially restricted in the post-rigor state.
As mentioned above, since the ATP hydrolysis activity is very sensitive
to the active site configuration (including the position of water mol-
ecules), this tight coordination between converter orientation and
active site stability ensures that the later is also tightly coupled to ATP
hydrolysis (i.e. “mechanochemical coupling”).

Finally, to further explore residues/interactions that dictate the
coupling between converter rotation and active site closure, the
approximate transition path for the recovery stroke was studied using
targeted molecular dynamics simulations,26 as an alternative to mini-
mum energy path analysis.93 The main goal is to observe the formation
of transient interactions that are not present in either end-states, and
therefore, difficult to identify using the static X-ray structures. Analysis
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of the results90 indicates that different types of interactions (polar
versus hydrophobic) along the relay helix play an important role during
the recovery stroke. Around halfway in the relay helix, the hydropho-
bic cluster provides stabilization to the kink of the relay helix, while at
the joint between the relay helix and the relay loop region, strong
polar interactions facilitate co-operative changes in the relay helix, the
SH1 helix, and the converter domain. In addition to those local inter-
actions, hinge residues in the low-frequency modes with large Ik values
were also analyzed; the idea is that disruption of these hinges may per-
turb the flexibility of the system in important directions, thus the hinge
residues should be of functional significance.88 Among all the hinges
identified, a small but significant fraction is highly conserved (>80%
across all species), which supports their functional importance. More
interestingly, among the 52 residues identified as “strongly coupled
(co-evolved)” by the Statistical Coupling Analysis (SCA),94 most are
either a hinge residue or involved in an important interaction in the
TMD simulations. This is a significant finding because the SCA algo-
rithm works with sequence information only, thus the identified
residues are not guaranteed to be involved in allostery and might
instead play a role in, for example, co-operative folding. This observa-
tion highlights the value of combining a bioinformatics-based
approach with physically motivated analyses for identifying key
residues that dictate functional motions.

10.3.4 Mechanical Response of a Mechanosensitive
Channel

As the last example, we illustrate how continuum mechanics models,
even with a simple parameterization at this stage, can offer unique
insights regarding functional motions triggered by external mechani-
cal perturbations.

10.3.4.1 Gating transition of MscL

The specific system is the mechanosensitive channel of the large con-
ductance (MscL) in E. coli, which acts as the “safety valve” for the
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bacterium by opening up when osmotic pressure is above a certain
threshold.95,96 MscL is one of the first examples that illustrated that
mechanical sensing can occur without the involvement of the
cytoskeleton.97 It is now commonly accepted that the sensing process
occurs through the mechanical deformation of the lipid membrane
and its interaction with the embedded protein, although a complete
understanding of the gating mechanism is not yet available.98 For
example, although protein-lipid mismatch has been shown to be
important in the gating process,99 additional force is required to fully
open the channel. Moreover, the cytoplasmic S3 helix-bundle was
thought to play an important role in the gating process in the first
version of structural models.100 More recently, however, it was argued
that the structural changes in the S3 bundle should be substantially
smaller.101 Since the gating process occurs on the millisecond time
scale, it is difficult to simulate the transition using atomistic molecu-
lar dynamics. For example, even with a steered molecular dynamics
approach27,102 the pore radius reached only 9.4 Å after more than
10 ns, which is significantly smaller than the experimentally estimated
radius (∼19 Å) for the fully opened state. Approximate open-close
transition trajectory can be obtained with targeted molecular dynam-
ics simulations,103 which, however, requires the detailed knowledge of
both the closed and open states. In addition, in these biased all-atom
simulations, the “pulling force” on the protein is large in magnitude
and artificial since the simulations were short and the lipid bilayer
membrane was completely ignored in the TMD simulations.103

10.3.4.2 Simulation studies

Motivated by the X-ray structures of MscL from Tb.54 and the homol-
ogy model of the E. coli system, we established a simple continuum
model for the E. coli MscL.55 As shown in Fig. 10.5, the model con-
tains all the essential structural motifs including the transmembrane
(TM1,TM2)/cytoplasmic (S1–S3) helices and periplasmic loops; in an
earlier “minimalist” model,53 only the TM1 and TM2 were included
since it was speculated that due to their extensive interactions with the
lipid, the transmembrane helices are the most important components
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in MscL; the performances of the minimalist and full models of pro-
tein are compared below. The helices are treated as homogeneous
(i.e. no sequence dependence has been included here) and isotropic
rods, with the loops as elastic springs. The Young’s moduli of the rods
are taken from the estimate based on all-atom simulations of Sun
et al.104 using the CHARMM force field, and those for the springs are
established by fitting the lowest three normal modes of the isolated
springs from the continuum model and from an all-atom CHARMM
calculation.105 The material properties of the elastic membrane are
approximated by values in the literature for DPPC.106,107 Non-bonded
interactions between different continuum components were estimated
based on CHARMM force field energy calculations and fitted into
simple functional forms similar to the Lennard-Jones interactions. The
membrane sheet-helix rod interaction was estimated by rotating the
corresponding helix in an implicit membrane using the Generalized
Born model.108 The fitted parameters can be applied to several struc-
tural configurations or different relative orientations of the channel in
the close, open, and intermediate states.100

Once the model is parameterized, different mechanical stress can
be applied to the membrane and quasi-static structural response of the
channel can be solved using the finite element framework. In the pub-
lished studies so far,53,55 further simplifications were made in which
the deformation of the lipid hole that contains the channel and struc-
tural response of the channel were calculated separately. This simplifi-
cation is based on the assumption that the deformation of lipid
dominates that of the protein, which reduces computational cost and
can be easily removed by considering the full coupling between lipid
and protein; in fact, such a comparison may yield important insights
regarding the dominance of lipid mechanics during gating (Tang
et al., work in progress). Due to limited space, we do not discuss the
quantitative aspects (e.g. estimate of proper tension, pore evolution
profile) of the simulations, which can be found in Refs. 53 and 55.
We restrict ourselves to two examples that illustrate the unique value
of the FEM framework.

With the “minimalist” model, the structural response of MscL to
in-plane biaxial stretching and out-of-plane bending was studied.53
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Fig. 10.5. (See caption on next page.)
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With the proper magnitude (∼35 MPa) of in-plane stretching consis-
tent with the experimental value, the channel was indeed observed to
make a transition from the closed to the open configuration. The
structural evolution from the FEM simulations compare very favor-
ably to the structural model of Guy and co-workers;100 this is signifi-
cant because the continuum mechanics model was established largely
based on the closed state only! With the out-of-plane bending,
although the tilting angle of the transmembrane helices changed sig-
nificantly, due to the lack of in-plane membrane deformation, the
structural response of the protein model is minimal. This drastic dif-
ference clearly illustrates that the structural response of MscL depends
sensitively on the form of the mechanical perturbation and the gating
transition relies critically on the in-plane tension in the membrane
rather than the curvature of the membrane.

As the second example, we turn to recent results with the more
complete structural model55 at the continuum level and focus on the
effect of in-plane stretching of the membrane. Similar to the results
for the “minimalist” model, the channel fully opens under the proper
magnitude of in-plane tension. At the same membrane strain level,
the pore radius of the final state is, however, about 20% smaller than
that in the “minimalist” model, which indicates that the presence of
additional structural motifs other than the transmembrane helices
(most likely the periplasmic loops, see below) tend to reduce pore
opening. Nevertheless, the relatively small difference between results
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Fig. 10.5 Study of structural response of MscL from E. coli based on a contin-
uum mechanics model. (a) The basic philosophy of the coarse-graining procedure
(replacing transmembrane helices by homogeneous and isotropic elastic rods, bilayer
by elastic sheet) and set-up of the finite element simulation;53 (b) Comparison of
the transmembrane helices in terms of their packing and tilting angles during the
gating transition from the structural model of Guy et al.100 and from the finite
element simulations;53 (c) The side view of the structure at the end of the simu-
lated gating transition using a more complete continuum model at the continuum
level,55 along with the corresponding structure when the periplasmic loops, the S3
helical bundle, and the cytoplasmic loops, respectively, are removed from the
model. The dotted lines in (b)–(c) approximately indicate the location of the mem-
brane-water interface.
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from the complete and the “minimalist” model indicates that the gat-
ing process is dominated by the iris-like expansion of transmembrane
helix bundles. Interestingly, the structural variation of the S3 helical
bundle during the gating transition is very small, which supports the
recent modification of the structural model.101 The cytoplasmic S1
helical bundle, on the other hand, moves into the transmembrane
region and opens up; the periplasmic loops also closely follow the tra-
jectory of the transmembrane helices.

Another type of interesting study is to remove a specific structural
component and observe the effect on the gating transition; this is a
unique aspect of computational analysis since the corresponding exer-
cise with experiments will be complicated by factors such as major
structural distortions prior to channel activation. Here, we have tested
the role of three structural motifs: the S3 helical bundle, the periplas-
mic loops, and the cytoplasmic loops that connect S1 and TM1
helices. As expected, based on the above discussion, removing S3
helices did not cause much change in the gating behavior, once again
confirming the insignificant role of S3 for the opening of MscL.
Removing the periplasmic loops causes major variations in the con-
figurations (e.g. tilting angle) of the transmembrane helices, and
therefore, the final pore size; in addition, removing the cytoplasmic
loops makes the S1 bundle distorted, thus also affecting the pore
radius. Both observations regarding the importance of these loops are
consistent with the recent experimental observation of Sukharev and
co-workers.101,98

10.4 Concluding Discussions
and Future Outlook

There is little doubt that biomolecules are flexible objects and rich in
motions of different temporal and spatial scales. Characterizing the
nature of these motions and how they are perturbed by changes in the
environment (e.g. osmotic stress) or ligation state is a fundamental
challenge in structural biology and biophysics. It is even more chal-
lenging, however, to identify functional motions that in fact play a
major role in facilitating the function of biomolecules, which can be
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striking domain-scale rearrangements that “propel” a molecular
motor forward or subtle local changes that set up the proper active
site or interface for the subsequent catalysis or binding.

Through the examples in this chapter, we hope to illustrate that
modern computational approaches are making rapid advances so that
processes at multiple scales can be investigated. As a result, computa-
tional analysis can play a major role in the study of functional motions,
in terms of both helping better interpret experimental data and stim-
ulating new hypotheses regarding the nature of such motions and
mechanisms by which they are regulated. For example, our study of
RNase A helped establish a concrete hypothesis regarding how the
perturbation of a catalytic residue’s motion may lead to a significant
decrease in the observed catalytic rate for the D121A mutant. This
hypothesis, which is more molecular in nature than the original
proposal58 that underlines the importance of “coordinated” and
“time” global dynamics (however, see discussions below regarding
current challenges), should be tested by further mutation studies.

In most cases, the functional motion implicates multiple struc-
tural changes, and therefore, an important issue is to understand how
these structural changes are coupled and whether there is distinct
“causality” (or sequence of event) between them. In CheY, for exam-
ple, a key question is whether the Tyr rotation is dependent on the
hydrogen-bond formation between Thr87-phosphate. In the molec-
ular motor myosin, a fundamental question regards whether ATP
hydrolysis in the active site triggers structural transitions that eventu-
ally propagate to the converter or the converter rotation occurs
first,109 which then leads to changes in the nucleotide binding site that
activate the ATP hydrolysis. Since it remains difficult to directly
observe those events in real-time, either computationally or experi-
mentally, the best approach is to characterize the energetic coupling
between different processes, which can be achieved with careful
potential of mean force (PMF) computations.

In CheY, extensive multi-dimensional PMF simulations78 revealed
the energetics of different motions, and therefore, how they are cou-
pled. The results support the idea that the isomerization of a key Tyr
residue can occur prior to the activation event (hydrogen-bonding
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formation between Thr87-phosphate) with a modest barrier; unlike
the original experimental interpretation of the similar NtrC,64 how-
ever, the calculations clearly indicate that the Tyr rotation and the
activation event are coupled. In myosin, PMF calculations89 for the
active-site open/close transition with different X-ray structures also
convincingly showed how converter rotation propagates to structural
changes near the active site, such that the open/close energetics get
affected significantly. As a result, the ATP hydrolysis activity is tightly
coupled to the converter rotation, despite the large separation of
more than 40 Å.

Due to the complex nature of functional motions, it is produc-
tive to combine multiple computational techniques, similar to the
use of multiple approaches in an experimental investigation. In the
study of CheY activation,78 the collection of hundreds of reactive tra-
jectories from TPS simulations are instructive but not conclusive due
to the local nature of the employed TPS algorithm. However, these
natural reactive trajectories played a major role in identifying the
proper coordinates for the subsequent multi-dimensional PMF sim-
ulations. In the study of myosin,90 the recovery stroke is a highly
complex process that involves both domain-scale motions and exten-
sive rearrangements at the loop or side-chain levels. To identify
residues that play a key role in the process, combining normal mode-
based hinge analysis, targeted molecular dynamics, and the statistical
coupling analysis was productive, because these techniques are based
on different fundamental assumptions, and therefore, complement
each other well.

Another form of combining different methods is propagating
information from all-atom simulations to an effective coarse-grained
model, which is illustrated here with the continuum mechanics model
of MscL.53,55 Even with rather simple proof-of-concept type of mod-
els, new insights have been obtained regarding the impact of different
forms of mechanical perturbation on the gating transition of MscL
and the role of various structural motifs in the process. Although still
in its infancy, if done carefully and properly, this type of strategy can
be very powerful for analyzing the functional motions of very large
biomolecular complexes at very large length (even cellular) scales.
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10.4.1 Outstanding and Emerging Challenges

Although it is always presumptuous to speculate too much into the
future, we briefly ponder several subjects for which we would like to
see further studies. Instead of discussing these from the perspective of
technical developments, which clearly will continue on multiple fronts
and at multiple scales, we point out a number of questions regarding
“functional motions” that the authors believe are particularly inter-
esting to explore.

10.4.1.1 What are the roles of “slow (μs-ms) motions”
in enzyme catalysis?

A significant body of computational studies has been focused on ana-
lyzing the impact of motion on enzyme catalysis. However, essentially
all calculations focused on relatively fast motions on the order of pico-
to nanoseconds, due to either limits in the computational resources or
the fact that the goal was to study the impact of enzyme motions on
the barrier crossing process, which does occur at the picosecond time
scale for most chemical reactions. Therefore, an important issue that
has not been extensively analyzed at the molecular level concerns the
possibility that slow (μs -ms) motions may significantly modulate the
enzyme (active-site) structure so that a significant number of chemical
turnovers, in fact, occur in “excited state” conformation(s). In this
regard, we note that we do not consider “simple” cases where a confor-
mational change (e.g. closure of the active-site upon substrate binding)
is a kinetically distinct step prior to catalysis;110 rather, we focus on
systems where the most catalytically active conformation is rarely pop-
ulated and distinct from the most stable Michaels-complex as observed
by, for example, crystallography. Another way of stating the issue is
that the most populated conformation observed under a specific exper-
imental condition may not be the most functionally active one. Single
molecule experiments demonstrated that the “rate-constant” (or
apparent barrier) of an enzyme (e.g. cholesterol oxidase) catalyzed
reaction is in fact time-dependent,111 presumably due to structural
transitions between different conformational sub-states; the molecular
nature of such transition has not been illustrated and the magnitude of
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the apparent barrier fluctuation is usually small. The existence of
important “global” μs -ms motion has been suggested in several
enzyme systems based on NMR relaxation measurements,112,1 includ-
ing the RNase system discussed earlier.57,58 Although alternative expla-
nations may exist, a conclusive analysis of the nature of “functional
motions” is not complete unless motions on the μs -ms time-scale are
accessed and their impact on the catalysis analyzed at the atomic level.
This is clearly a challenging task for computations because a meaning-
ful description of such long-time motions requires both extensive sam-
pling and reliable force fields. Before tour de force analyses can be done,
it is likely that combining QM/MM analysis and enhanced sampling
techniques, such as “conformational flooding”,113 may produce
instructive insights.

10.4.1.2 What are the bottlenecks for large-scale functional
motions?

To completely understand functional motion, it is important to iden-
tify the kinetic bottleneck of the process among all the implicated
structural transitions. The above discussion of myosin made it clear
that functional motions likely involve both domain-scale changes and
important local structural transitions. Domain motions are more
striking in scale while the local transitions more subtle, but the spatial
magnitude of changes does not necessarily correlate with kinetic
significance. As noted above, many studies found that large-scale
structural transitions are correlated with low-frequency modes, which
implies that biomolecules tend to have intrinsic structural flexibilities
that ensure domain-scale motions are largely diffusive in nature;
therefore, the kinetic bottleneck of a functional transition may, in fact,
consist of key local structural changes that are thermally activated.
Such considerations highlight the importance of revealing the free
energy landscape of functional motions, for which detailed computa-
tional analysis beyond a simple harmonic picture is indispensable.

The realization that local structural changes may constitute the
kinetic bottleneck of complex structural transitions has important impli-
cations regarding strategies for constructing meaningful coarse-grained
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models in the context of studying functional motions. For instance,
although it seems sensible to coarse-grain biomolecules into rigid
domains, the predictive power of such models might be significantly
compromised if important local features (e.g. repacking of hydropho-
bic side-chains in the rely loop/helix in myosin) are ignored. In this
regard, an important emerging challenge is to make quantitative con-
nections, at multiple resolutions and scales, between computational
models and experiments that report on the time and spatial scales
of biomolecular motions; most notable examples include small-
angle X-ray scattering,114,115 diffuse X-ray scattering,116 fluorescence
resonance transfer (FRET),117 electron spin resonance,118 and two-
dimensional infrared spectroscopy,119 which span a broad range of
time resolutions and spatial scales. Φ analysis, which is commonly
used in protein folding analysis120 and recently applied to study
motions in the acetylcholine receptor,121 also provides extremely valu-
able data regarding whether specific residues are involved in the tran-
sition state ensemble of the transition. Making explicit comparison to
experiments provides not only important validations for the compu-
tational model but also the opportunity of gleaning additional infor-
mation from experimental data. Recent applications of elastic network
models in the refinement of X-ray structures, EM structures, electron
tomography, and FRET data are good examples.32,33,122,134,135

10.4.1.3 Can functional motions be modulated
in a predictive manner?

Although significant motions are implicated in the functional cycle of
biomolecules, protein engineering studies have largely been guided by
static structural considerations, which reflects our lack of thorough
understanding of factors that dictate the features of functional
motions. Although the situation will improve steadily, the most pro-
ductive avenue for incorporating molecular motions into protein
design in the near future likely involves combining clever genetic
approaches, molecular simulations, and informatics motivated models.

In an impressive recent study,123 for example, a novel gene syn-
thesis approach was used to construct chimeras between the

Functional Motions in Biomolecules 287

FA
b587_Chapter-10.qxd  1/18/2008  4:50 PM  Page 287



mesophilic and thermophilic adenylate kinases, in which different
domains from the two enzymes are combined randomly (eight were
considered). Measurement of thermostability and enzyme activity
(which is limited by a structural transition that implicate the active site
closure) revealed that it is possible to enhance the flexibility of key
domains without affecting the thermostability. Further studies of this
sort, supplemented by simulation and bioinformatics analysis,124 may
lead to new avenues of manipulating protein functions through
rationally modulating essential motions. In addition to enzymes,
interesting targets are molecular motors and other allosteric systems,
in which specific mutations are known to disrupt functional motions
such that communication between different sites is abolished.125–127

Since these mutations often lead to serious diseases, devising effective
methods for restoring key functional motions has great biomedical
implications.

10.4.1.4 Are there major differences between “functional
motions” in vitro and those in vivo?

Finally, a recent trend in biophysical studies is to contrast molecular
behaviors under in vitro and in vivo conditions. It has been recog-
nized for some time that the cellular environment is far from the
dilute solution condition in in vitro experiments; molecular crowding,
non-specific binding and other features associated with non-ideality
may significantly affect the structure, stability, and association of bio-
molecules in cells.128–130 Functional motions of biomolecules, espe-
cially those large-scale motions that strongly implicate nearby
water/solute molecules, might be substantially different in vivo com-
pared to in vitro. To what extent this is true and what are the corre-
sponding functional implications are clearly very interesting
questions that deserve careful analysis. Along this line, recent studies
of both the protein131 and solvent132 dynamics in reverse micelles
provided interesting clues. Clearly, more studies are needed from
both the theoretical/computational and experimental perspectives to
fully understand biomolecular motions that are most important under
the physiological condition.
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Chapter 11

Protein-Protein Interactions and
Aggregation Processes

R. I. Dima*

11.1 Introduction

It is generally believed that any protein, under certain conditions (low
pH, high temperature, high concentration), can form ordered aggre-
gates composed of amyloid-like fibrils.1,2 Still, only a limited set of about
25 proteins3 can form, under near-native conditions, highly toxic
oligomeric species and amyloid fibrils associated with a number of pro-
tein deposition diseases such as Alzheimer’s disease,4 transmissible
spongiform encephalopathies (TSE),5 and Huntington’s disease.6 The
existence of this special class of proteins is surely puzzling because these
soluble proteins often play essential biological functions under normal
cellular conditions. However, in the disease-related state, provoked by a
change in environment or genetic predisposition, parts of the native
structure are lost, thus exposing a template for the growth of aggregates.
Amyloid fibrils are typically composed of a varying number of protofila-
ments, each with a central spine of β-strands running perpendicular to
the fibril axis (termed a cross-β spine conformational architecture).3

The ability of virtually any protein to assemble into ordered aggre-
gates would suggest that the propensity to aggregate is a general

*Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221.
Email: dimari@ucmail.uc.edu.
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property of the polypeptide backbone. Nevertheless, a number of
studies7,8 revealed that the tendency towards amyloid formation goes
beyond the backbone being dependent on the amino acid composi-
tion (patterns) and on interactions between side-chains. For example,
the propensity towards amyloidogenicity is correlated with high lev-
els of hydrophobicity and reduced concentration of charged residues.
To fully probe aggregation, one would have to have access to high-
resolution structures of amyloid-fibrils formed by both proteins with
a tendency to aggregate and by normal, non-amyloidogenic, proteins.
Unfortunately, despite their ordered arrangement, amyloid fibrils are
at best para-crystalline, so X-ray crystallography cannot be used to
determine their structures. In addition, liquid state NMR cannot be
applied either, because the fibrils are non-soluble. As a result, only
one amyloid cross-β spine structure of a small seven-residue peptide
from Sup35 has been determined to atomic detail.9 Thus, approaches
such as solid state NMR, site-directed spin labeling, cryo-electron
microscopy, and proline-scanning mutagenesis have been used to
determine the structures of amyloids formed by a set of small pep-
tides. Moreover, determination of the amyloid-ready conformation(s)
of a protein or a peptide is also highly non-trivial. In general, such
structural species are at best metastable in monomeric form so tech-
niques developed to measure the equilibrium (stable) structures of
polypeptide chains are not useful here. Techniques such as high pres-
sure NMR,10,11 single-molecule approaches, such as force AFM, and
H/D exchange are used instead to provide glimpses into the charac-
teristics of the monomeric non-native conformations. Because of the
difficulties in probing amyloid fibrils using experimental techniques,
carefully planned computational approaches,7,12–17 sometimes com-
bined with experimental methods, have become the norm in this field
as such approaches have increased our understanding of the intricate
picture of the protein aggregation process. The scarcity of detailed
structural information about (i) the amyloid-ready monomeric states,
(ii) the soluble oligomeric ensembles that are believed to be precur-
sors of the full amyloid fibrils, and (iii) the fibrils themselves, is a major
drawback in simulation approaches too. In the absence of reliable
starting conformations, two main avenues are opened to computational
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studies. The first is to perform long all-atom and explicit solvent MD
simulations starting from pre-formed structures. These are usually
produced with docking techniques that rely on presumed high-quality
structures of the monomer and low-resolution (e.g. cryoEM) infor-
mation of the oligomeric ensemble structure. This class of studies
then probes the stability of each selected docking conformation and
the contribution of environmental factors (such as water, tempera-
ture, and pH) to oligomer stability and propagation. The second
avenue is to perform all-atom and implicit-solvent MD simulations or
coarse-grained simulations of the oligomerization process starting
from collections of fluctuating monomers. In addition, bioinformat-
ics approaches that employ searches through large databases of
sequences and structures can be applied by themselves or in conjunc-
tion with the simulation methods described above to probe the
propensity towards aggregation of a proposed sequence.

11.2 Pathways to the Formation of Aggregation
Prone Conformations and Mechanisms
of Oligomerization

11.2.1 Formation of Aggregation Prone Conformations

Gaining an understanding of the molecular details of the series of
events that lead to the formation of species that can nucleate and
grow into full amyloid fibrils is of the utmost importance for the
development of efficient methodologies to prevent disease-related
aggregation. Such efforts are somewhat impeded by the large degree
of fluctuations and the metastability of the species found along the
aggregation pathways. Still, a number of conformational conversion
mechanisms have been identified and described at various levels of
detail by both experimental and computational investigations. The
best-studied mechanism of formation of “amyloid-ready” states was
done by the partial unfolding of the native protein structure or by
partial folding of the unfolded state of the protein18 (see Scenario I in
Fig. 11.1). This pathway, typical, for example, in transthyretin (TTR),
therefore refers to the formation of either folding or unfolding
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intermediates that are assembly-competent structures (N*), and
depends on the propensity of the given protein to populate, under
normal folding conditions, beside the native basin of attraction of
other low-lying basins of attraction. In the case of TTR, extensive
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Fig. 11.1 Schematic diagram of the two plausible scenarios of fibril formation
based on free energy landscape perspective. According to scenario I, the assembly
competent state N* is metastable with respect to the monomeric native state N and
is formed due to partial unfolding. In scenario II, N* is formed upon structural con-
version either of the native state N (as in prions) or directly from the unfolded state
U (as in Aβ-amyloid peptides). In both cases, proteins (or peptides) in N* states must
coalescence into larger oligomers capable of growth into fibrils. This figure is repro-
duced with permission from Fig. 4 in Ref. 73.
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experiments19 have shown that the N* state, which has a higher free
energy than the native state N, is formed upon unraveling of the
β-strands C and D at the edge of the structure. Using the energy
landscape approach to protein folding, a second mechanism for the
formation of the amyloid state can also be rationalized. This Scenario
II depicted in Fig. 11.1 corresponds to instances where N* has a lower
free energy than N, thus making the folded (functional state) state
metastable. This pathway is likely to be found in proteins that require
almost complete conformational changes upon the formation of the
amyloid-ready state such as the prion protein associated with various
TSEs and the Aβ peptides associated with Alzheimer’s disease. The
Aβ peptides populate mostly loop/coil conformations under infinite
dilution conditions. These peptides acquire definite secondary and
tertiary structures only upon complex formation with other copies of
themselves. If the newly formed oligomeric species are assembly com-
petent, they continue to grow, and the typical cross-β structure of
amyloid fibrils is thus formed. The causative agent in TSE diseases is
believed to be the aggregated form (PrPSC = scrapie) of the prion
protein.20 The transition to the scrapie form, which is believed to be
mostly β-sheet, involves a large conformational change from the
native, functional structure, PrPC, which is predominantly α-helical.
According to the “protein-only” hypothesis,5 PrPSc serves as a tem-
plate to induce conformational transitions in PrPC that can subse-
quently be added to PrPSc. It is believed that the PrPC state is only a
kinetic trap, with the disease-related scrapie form, PrPSc, being the
true free-energy minimum state.21 The transition between the two
forms is likely to occur by populating an intermediate state, PrPC*,
which is a species able to undergo transition to the assembly-competent
structure and having a lower energy than PrPC. Because of the
large degree of structural variation between the PrPC and the PrPSc

conformations, the PrPC → PrPC* transition is also likely to involve
the crossing of a high energy barrier. Therefore, in both scenarios the
growth kinetics must be initially determined by the “unfolding” bar-
riers separating N* from either N or U (unfolded state). Based on the
energy-landscape perspective for aggregation (Fig. 11.1), this sug-
gests that the free energy of stability may not be a good indicator of
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fibril growth kinetics. Rather, growth kinetics should correlate with
unfolding barriers.

11.2.2 Mechanisms of Oligomerization

One of the proposed mechanisms of fibril formation, the nucleated
conformational conversion (NCC) model,22 reproduces many experi-
mental findings. This model, proposed from the study of the assem-
bly kinetics of Sup35 into [PSI

+
] in Saccharomyces cerevisiae combines

parts of the templated assembly and nucleation-growth mechanisms.
The hallmark of the NCC model22 is the formation of a critically sized
mobile oligomer, in which Sup35 adopts a conformation that may be
distinct from its monomeric random coil or the one it adopts in the
aggregated state. The formation of a critical nucleus to which other
Sup35 can assemble involves a conformational change to states that it
adopts in the self-propagating [PSI

+
].

Fibrillogenesis was proposed to depend mainly on the relative sta-
bility of “amyloid-competent states” of the monomer.23 In other
words, peptides that populate predominantly such states form fibrils
readily and without passing through any intermediates. A corollary of
this proposal is that for peptides found in the amyloid-protected state,
the kinetics of protein aggregation must be slow. The main energetic
contributions to aggregation are believed to be the van der Waals
interactions between side-chains and backbone hydrogen bonds.24 In
addition, shape complementarity between neighboring molecules
plays a key role as well.25 In accord with the NCC mechanism of fib-
ril formation, which requires the existence of a nucleus, a combina-
tion of experimental9 and computational24 studies indicate that the
minimal nucleus seed for fibril formation consists of only a few pep-
tides because larger oligomers do not disassociate quickly due to
slow diffusion coefficients. The presence of the aggregation nucleus
both facilitates the transition into the cross-β conformation and sub-
stantially lowers the free energy barrier of the transition.26 This sug-
gests an autocatalyzed, nucleation-like mechanism for the formation of
β-amyloid. Also, in accord with the NCC model,22 a number of com-
putational studies studying the formation of fibril by the GNNQQNY
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peptide.26,27 revealed that, in the formation of amyloid fibrils, the
nucleation step is rate-limiting, while the growth step is fast. In par-
ticular, electrostatic interactions of peptide backbone dipoles are
found to contribute significantly to the stability of the β-amyloid state
and water exclusion and interactions of polar side-chains are driving
forces of amyloid formation: the cross-β conformation is stabilized by
burial of polar side-chains and inter-residue hydrogen bonds in the
presence of an amyloid-like seed.

The NCC model has received a large degree of support from the
time it was first proposed. Still, this is not the only conceivable aggre-
gation mechanism. It is plausible that fibril formation is nucleation-
dependent when it occurs only after a lag time that decreases with
increasing peptide concentration and increases with temperature. At
the same time, fibril formation can appear to be a conformational
conversion process consisting of the steps: small amorphous aggre-
gates → β-sheets → ordered nucleus → subsequent rapid growth of
a small stable fibril or protofilament. Unlike the NCC model, in
which fibril growth occurs through the addition of globular multi-
mers to fibril ends, the formation of fibrils can then involve both
β-sheet elongation, in which the fibril grows by adding individual
peptides to the end of each β-sheet, and lateral addition, in which the
fibril grows by adding already formed β-sheets to its side. The initial
rate of fibril formation can thus increase with increasing concentra-
tion and decrease with increasing temperature. Such a mechanism
shares elements with all three proposed standard mechanisms of fib-
ril formation, i.e. templated assembly, nucleated polymerization, and
nucleated conformational conversion. However, none of them gives
a completely satisfactory description. It has been found, for example,
during the investigation of the kinetics of fibril formation of systems
containing 48–96 model polyalanine (Ac-KA14K-NH2) peptides.28

11.2.3 Applications to the Kinetics of Fibril Formation
of Aββ Peptides

The kinetic model, by which the Aβ peptides associated with Alzheimer’s
disease aggregate into amyloid fibrils, is believed to follow the NCC
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model, with a lag-phase of several days. In general, to understand
the kinetics of fibril formation, it is necessary to characterize the
early events and pathways that lead to the formation of the critical
nucleus. In terms of the energy landscape, the structures of N*, the
ensemble of transition state structures, and the conformations of
the critical nuclei must be known to fully describe the assembly
kinetics. Teplow and coworkers have followed the growth of fibrils
for 18 peptides, including Aβ1–40 and Aβ1–42.29 They showed that the
formation of amyloids is preceded by the transient population of
the intermediate oligomeric state with high α-helical content. This
is remarkable given that both the monomers and fibrils have little
or no α-helical content. An obligatory α-helical intermediate for
the formation of fibrillar conformations was found also in simula-
tions of the oligomerization of a collection of three Aβ16–22 peptides
by Klimov and Thirumalai.13 Therefore, the formation of oligomers
rich in α-helical structure may be a universal mechanism for Aβ
peptides, and this α-helical intermediate may well correspond to
the mobile oligomer from the NCC aggregation mechanism that
has the “wrong” conformation to induce further assembly. Klimov
and Thirumalai rationalized the formation of this on-pathway
α-helical intermediate using arguments based on confinement and
the “minimization of frustration” principle: the initial steps in
oligomerization were driven by hydrophobic interactions leading
to a reduction of the effective available volume to each Aβ peptide.
In the confined space, peptides adopt a α-helical structure similar
to the behavior of newly synthesized chains in the ribosomal chan-
nel. Because further structural evolution is determined by the
requirement to maximize the number of favorable hydrophobic
and electrostatic interactions, i.e. that the oligomeric structure
must obey the “minimum frustration” principle, this can be
achieved only when the Aβ peptides adopt extended β-strand-like
conformations.13

For the Alzheimer’s Aβ10–35 peptide, computational studies30,31

showed that it populates a number of collapsed globular states that
are in rapid dynamic equilibrium with each other. This conforma-
tional ensemble is dominated by random coil and bend structures
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with insignificant presence of an α-helical or β-sheet structure.
Still, both the structure of the peptide as well as that of the result-
ing fibril are characterized by a salt bridge formed between the
side-chains of K28 and D23, as illustrated in Fig. 11.2. This
salt bridge was subsequently observed experimentally.32 The iden-
tification of the structure of this fibril using MD simulations, which
was later confirmed experimentally, is one of the important con-
tributions of computational approaches to the field of protein
aggregation.
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Fig. 11.2 Fibrillar structures of the Aβ10–35 peptide. (a) The Ma-Nussinov-2002
model is based on extensive MD simulations.30 The key feature is the salt bridge
between D23 and K28. (b) The Tycko-2002 model has been proposed on the basis
of solid state NMR-derived backbone torsion angles of Aβ1–40.

32 (c) The structure
of Aβ1–42 derived from hydrogen-bonding constraints from quenched hydrogen/
deuterium-exchange NMR, and side-chain packing constraints from pair-wise muta-
genesis studies (PDB entry 2BEG). (d) Experimental support49 for this model is from
solid-state NMR measurements on Aβ1–40 fibrils providing critical residue contacts,
confirming the Ma-Nussinov-2002 key features. This figure was reproduced with
permission from Fig. 2 in Ref. 25.
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11.2.4 Application to the Early Steps of Prion
Proteins Fibril Formation

In prion proteins, the mechanism of conversion and oligomeriza-
tion into the amyloid-fibril form has been proposed to follow a
templated assembly route.5 This proposal, which stems from the
“protein-only” hypothesis, states that the conformational transition
from PrPC to PrPSc is facilitated by the presence of a pre-formed
template consisting of PrPSc structures. Since the protein-only
hypothesis has been proven only in non-mammalian prions,33 the
details of the conformational change in prion proteins are still
much investigated by researchers. A study to probe such details for
a prion-like peptide was recently performed by Dokholyan and
coworkers.35 They found that at low temperatures these peptides
favor α-helical structures, while an increase in temperature drives
them to convert into a mainly β-sheet conformation. Most strik-
ingly, during the course of simulations with hexamers, several pep-
tides form a β-sheet that acts as a template to convert an α-helix
into a β-strand. This occurred in the absence of any artificial con-
straints, in perfect agreement with the template-based aggregation
scheme for prion proteins.5 Because the stability of PrPC is due to
the C-terminal end (which forms its structural core), the transition
to PrPC* requires global unfolding of PrPC.36 This explains the ori-
gin of the high free energy barrier of 20 kcal/mole21,37 separating
PrPC and PrPC*.7 More importantly, conformational fluctuations
that originate in the C-terminal part of H2 are essential in the for-
mation of PrPC*.10,11 The requirement for the conformational fluc-
tuations of PrPC, needed to populate PrPC*, suggests that the
earliest event involves extensive unfolding of the monomeric PrPC.
MD simulations designed to study the degree of conformational
fluctuations in the various helical segments of mPrPC 15 revealed
that H1 remains helical for the duration of the simulation (≈0.09 μs),
in agreement with experimental observations.38–40 In contrast,
simulations of peptides encompassing H2 and H3 (together with
their connecting loop), including the intact disulfide bond
(Cys179-Cys214), showed that residues in the second half of H2,
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clustered around positions 187–188, have a large conformational flex-
ibility and a non-zero preference for β-strand or coil-like structures.15

Based on these results, we mapped the plausible structures of the
aggregation prone PrPC* (depicted in Fig. 11.3).

11.2.5 Applications to the Study of Fibril Formation
in Polyglutamine Disease-Related Peptides

Nine human neurodegenerative diseases, including Huntington’s dis-
ease, are collectively known as “polyglutamine diseases.” The time of
disease onset and the severity of the symptoms are linked to the
increasing number of glutamine repeats when that number exceeds
the threshold value of 35–40. Therefore, abnormally long glutamine
repeats render their host protein toxic to nerve cells, and all polyglu-
tamine diseases are believed to progress via common molecular mech-
anisms. A possible mechanism of cell death is that the long sequence
of glutamines acquires a shape that prevents the host protein from
folding into its functional conformation. A 37-mer polyQ (Q37) pep-
tide populates random coil conformations both at low and at high
temperatures, while at intermediate temperatures it adopts a β-strand
conformation.41 The existence of the β-strand conformation is
directly correlated with the presence of specific side-chain to back-
bone hydrogen bonding interactions. In the absence of such interac-
tions, the peptide only populates α-helices in the ground state, and at
higher temperatures, the helices melt to form a random coil but no
β-strands appear. The authors41 propose that side-chain to backbone
interactions lead to the formation of β-strands by a single polyQ pep-
tide, which is the nucleating structural transition observed in polyQ-
peptide aggregation. This is similar to the β-helix nanotube model
proposed experimentally.42 The β-helix acts as the aggregation
nucleus because its long-time stability is expected to be sufficient for
further propagation of the aggregate. Moreover, this particular sec-
ondary structure is acquired only in polyQ segments longer than the
critical value found in disease, and as expected, the longer the gluta-
mine tract, the higher is the propensity to form β-helices. The for-
mation of a β-helix from a random coil is accompanied by entropy
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Fig. 11.3 Schematic representation of PrPC ◊ PrPC* transition, where the
conformation for PrPC is taken from the PDB file 1ag2. The conformations
for PrPC* contain H1 from 1ag2, while the residues encompassing H2+H3 are
shown in a conformation (red) reached towards the end of our MD simulations
using the NAMD package [3(b)] or the simulations using the MOIL package
[3(c)]. The schematic PrPC* structures are representatives from ensembles of fluc-
tuating conformations. In the representative PrPC* structure obtained using
NAMD simulations, the H1 region, together with the adjacent loops and the
β-strands, and residues (205–212) from H3 retain their original conformations
and are therefore depicted with the same color as for PrPC. In the MOIL repre-
sentative PrPC* structure, the H1 region, together with the adjacent loops and the
β-strands, and residues (175–179), (184–188), (193, 194) from H2, and residues
(203–218) from H3, retain their original conformations and are therefore
depicted with same color as for PrPC. The figures are rotated such that the orien-
tation of H1 is the same in all of them. The figure was reproduced with permis-
sion from Fig. 4 in Ref. 15.
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loss, leading to a free energy barrier that can account for the lag
times observed in experiments of polyQ peptide aggregation. The
energy barrier is increased for longer peptides because the enthalpy
gain upon β-helix formation compensates for the entropy loss in the
transition.41,43,44

11.3 Self-Association Processes Under
Various Cellular Conditions

Self-association routes depend not only on the protein, but also on the
specific cellular conditions. For example, the transition of the recombi-
nant prion protein to the scrapie-form is strongly promoted under low
concentrations of urea, i.e. under conditions that are conducive to the
formation of intermediates. On the other hand, there is no conforma-
tional conversion under conditions that favor either the native structure
(absence of denaturing agents) or the completely unfolded state (high
concentration of denaturing agents). Also PrPSc accumulates in endo-
somes of scrapie-infected cells, which have mostly acidic pH values
(between 4.0 and 6.0). This finding led to the proposal that the for-
mation of the scrapie form from the normal cellular form of prion pro-
teins, PrPC, is favored under low pH conditions.19,45 The fact that the
conformational conversion in prion proteins is pH-dependent indicates
that electrostatic interactions are likely to be involved in the transition.
To further probe the effect of strongly acidic conditions (Glu, Asp,
Lys, Arg, and protonated His) on prion conformation, molecular
dynamics simulations have been employed. In the study by Daggett and
coworkers46 of a number of mammalian prion proteins with known
native structure at low pH, it was revealed that the protein exhibits a
higher conformational mobility and the sheet-like structure increases
both by lengthening of the native β-sheet and by addition of a portion
of the N-terminus to widen the sheet by two additional strands. The
role of more moderate acidic pH conditions, which are more akin to
physiological conditions, on the dynamics of the human prion conver-
sion to the scrapie form have been probed using MD simulations.47 By
focusing on the effect of histidine protonation on the conformational
behavior of human PrPC globular domain, they found a significant loss
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of α-helix content under mildly acidic conditions (pH = 4.5, all His
positively charged, and Glu and Asp remaining unprotonated), due to
the loss of ordered secondary structure in the C-terminal part of the
second α-helix and a transient lengthening of the native β-sheet. This
study supports the central role played by the C-terminal end of H2 in
the conformational transition between the cellular and scrapie forms of
the prion protein highlighted in Refs. 7 and 15.

11.3.1 The Effect of pH on Aggregation Processes

To probe the influence of the solvent and pH on the formation and
stability of different Alzheimer Aβ16–22 fragment oligomers, Parinello
and coworkers used atomic-detail molecular dynamics simulations with
explicit solvent.48 They found that only large oligomers form a stable
β-sheet aggregate, with the minimum nucleus being of the order of
eight to 16 peptides. This is due to better hydrophobic contacts and a
better shielding of backbone-backbone hydrogen bonds from the sol-
vent in bigger assemblies. This argues in favor of the crucial role played
by the solvent (water in this case) in amyloid-fibril formation.
Additionally, depending on the stacking interface between the sheets,
the simulations reveal straight or twisted structures. Under neutral pH,
APLFA, which displays a twisted structure, is more likely to form than
PARKVFE, which displays a flat structure, because of the better solva-
tion of the charged Lys and Glu side-chains.48 By contrast, under
acidic or basic pH, where one of the side-chains would be neutralized,
this effect must be smaller so that the formation of PARKVFE
becomes more likely. The authors propose that the stacking of differ-
ent interfaces could be related to different fibril morphologies found
in vitro at different pH, which is in agreement with the suggestion
made for the Aβ1–40 peptide by Tycko and collaborators.49

11.3.2 The Role of Water in the Oligomerization
of Proteins

Fernandez and coworkers have recently found50 that some proteins
that readily form amyloids have a significant number of backbone
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hydrogen bonds that are exposed to the solvent, suggesting that these
regions have a propensity toward protein interaction and aggregation.
This is, for example, the case in the sheep and human C-terminal
prion proteins PrP(90–231). The experimentally elucidated 3D struc-
tures revealed a large number of under-dehydrated hydrogen bonds
(UDHBs) and partially buried water molecules. De Simone and
collaborators51 discovered that regions with a high concentration of
UDHBs are structurally more labile. This is due to the fact that
UDHBs are backbone hydrogen bonds, which are not protected
against water interaction by flanking hydrophobic residue, leading to
a less stable packing of hydrogen bonds. Therefore, the loci of these
defects on the protein surface are correlated with local destabilization
and the favoring of partially unfolded structures with a consequent
potential for aggregation.

The fundamental role played by water molecules in the early steps
of oligomerization in Aβ-proteins has been probed using all-atom
MD simulations in explicit water. Thirumalai and collaborators52

studied the formation of the intramolecular salt bridge between D23
and K28 in the isolated Aβ10–35 monomer. It is known that this loop
is formed in the structure of the monomer from the amyloid fibrils
formed from long fragments of the amyloid β-protein and ensures
that unpaired charges are not buried in the low-dielectric interior.
The computed free energy disconnectvity graph shows that the
ensemble of compact random coil conformations can be clustered
into four basins that are separated by free energy barriers ranging
from 0.3 to 2.7 kcal/mol. The extent of solvation of the peptides in
the four basins varies greatly, which underscores the dynamical fluc-
tuations in the monomer. These results suggest that the early event
in the oligomerization process must be the expulsion of discrete
water molecules that facilitates the formation of stable structures
driven by interpeptide interactions with an intramolecular D23-K28
salt bridge and an intact VGSN turn. A major conclusion of this work
is that discrete water molecules, which solvate charges and facilitate
hydrogen bond formation, play a key role in preventing the forma-
tion of the D23-K28 salt bridge in the monomer. Therefore, the
authors propose that a molecular description of the early events in
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the oligomerization of Aβ-proteins requires explicit inclusion of
water molecules.52

11.4 Formation of Soluble Oligomers
in the Early Steps of Fibril Formation

Due to the long time scales (minutes to days) involved in protein
aggregation, a computational study of complexation processes using
a full atomistic description of the chains as well as of the solvent mol-
ecules is currently beyond the timescale of nanoseconds for classical
all-atom MD simulations. Still, experimental studies revealed that sol-
uble oligomers formed in the early stages of fibril formation are even
more pathogenic than the full fibrillar associations.53 The cytotoxicity
of prefibrillar aggregates is, among other factors, dependent on the
size of these misfolded oligomers, and occurs according to a univer-
sal mechanism. The mechanism of toxicity of protein aggregates
remains unclear, but accumulating evidence suggests that it is related
to the interaction of protein aggregates and the cell membrane
through formation of channels in the membrane.8 Therefore, the
study of the pathways of formation and energy landscapes of these
early steps in aggregation is of the utmost importance to the efforts
to block it. The advantage is that the formation of structures in such
early stages can occur on far shorter timescales (hundreds of nanosec-
onds up to milliseconds), which are closer to the computationally
accessible intervals.

In general, during the initial steps in oligomerization, an increase
in the concentration of the chains reduces the melting temperature.
This decrease can be attributed to the fact that oligomeric structures
are less structured/stable than the native structure of the monomer.
Indeed, in multichain systems, free-energy landscapes for folding
show an increased preference for misfolded states. As expected, mis-
folding is accompanied by an increase in inter-protein interactions
even if, near the folding temperature, the transition from folded to
misfolded chains is entropically driven. The majority of the most
probable inter-protein contacts are also native contacts, suggesting
that native topology plays a role in early stages of aggregation. Such
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behavior has been found in a number of lattice model investigations
into the origin of the driving force behind the initial steps in
oligomerization.12,54 It has also been suggested23 that an increase in
the relative stability of the β-prone state of the polypeptide changes
the aggregation type from disordered into fibril formation with the
presence of oligomeric on-pathway intermediates. Further increase
in the stability of the β-prone state of the polypeptide leads to fibril
formation without intermediates, i.e. according to a downhill path-
way. In conclusion, the main difference between functional and
pathological fibril formation is in the degree of stability of the β-
prone state of the monomer, with very stable monomeric states
favoring the formation of functional amyloids according to a down-
hill pathway scenario.55 Another characteristic of the early steps of
aggregation is that they are dominated by side-chain to side-chain
interactions, which allow partial assembly of distinct disordered β-
sheets in nonnative registries. As stated above, folding proceeds by
concomitant optimization of hydrogen bonding and hydrophobic
interactions through amorphous aggregates leading to the forma-
tion of multiple early aggregates. These early aggregates with amor-
phous structure act as building blocks for the nucleus from which
rapid growth of fibril can occur and convert either directly (higher
probability) or indirectly (lower probability through the second
type of topology) to cross-β-sheet-like structures (the first type of
topology).56

A number of pathways to the formation of fibrils from an
ensemble of fluctuating peptide conformations could exist. One
such pathway can consist, for example, in direct aggregation to an
amyloid fibrillar-like structure, with no evidence of intermediate
amorphous states. Along another pathway, the peptides can form
amorphous metastable aggregates, which would evolve to amyloid
fibril-like structures in agreement with the NCC model.22 Such a
variety of pathways is found indeed in simulations of the process of
aggregation in NFGAIL (residues 22–27 of the human islet amy-
loid polypeptide).57,58 The authors provide an explanation for the
occurrence of fast and slow routes starting from the finding that a
slow variation in the density of the peptides is necessary, but not
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sufficient to avoid amorphous aggregates. A more critical para-
meter is found in the fact that the initial collapse must not go above
a threshold of interchain contacts, i.e. each chain must not be
involved in too many connections with the other chains, so that the
energy costs for rearrangement and elongation of the chains are
low enough. This implies that the acquisition of a β-sheet
oligomeric structure must, as stated elsewhere (see, for example,
Ref. 52), obey the principle of minimal energetic and topological
frustration. In addition, for longer chains, which populate mostly
random coil conformations in solution, the free energy barrier
between amorphous aggregates and amyloid fibrillar-like structures
should increase.58

Formation of non-fibrillar soluble oligomers in Aβ has been recently
investigated by Thirumalai and collaborators.59 They monitored the
early events that direct the assembly of the amyloidogenic peptide
Aβ16–22. Using multiple all-atom MD simulations in water totaling
6.9 μs to probe the dynamics of formation of (Aβ16–22)n by adding a
monomer to a preformed (Aβ16–22)n–1 (n = 4–6) oligomer in which the
peptides are arranged in an antiparallel β-sheet conformation, they
discovered that the oligomer grows by a two-stage dock-lock mecha-
nism. The first dock stage is rapid (50 ns) and involves a substantial
increase in the β-strand content of the monomer from a low starting
value. The second phase, the lock stage, is slow and corresponds to
rearrangements in the monomeric structure to form in register
antiparallel structures. Surprisingly, the simulations reveal also that
the mobile structured oligomers undergo large conformational
changes in order to accommodate the added monomer. This finding,
together with possible arrangements of the hexameric ensemble, are
illustrated in Fig. 11.4. Based on the speed of oligomer growth, the
authors suggest that the critical nucleus size must exceed six. In addi-
tion, stable antiparallel structure formation is found to exceed hun-
dreds of nanoseconds even though frequent inter-peptide collisions
occur at the elevated monomer concentrations used in these simula-
tions. In conclusion, the authors propose that the dock-lock mecha-
nism should be a generic mechanism for growth of oligomers of
amyloidogenic peptides.59
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Fig. 11.4 Snapshots of hexameric conformations for Aβ16–22 and evidence
for the structural re-arrangements of the template to accommodate newly
attached peptides.59 (a) Free-energy diagram projected onto the first two principal
components, V1 and V2 of the Principal Component Analysis (PCA) for the
hexamer. The free-energy scale is given on the right. The structure in the basin
labeled 1 shows that the monomers are arranged in antiparallel fashion. The
energy-minimized structures from the second basin would also correspond
to an ordered hexamer. The presence of other minima could potentially act
as kinetic traps that delay oligomerization. (b) Time dependence of the changes
in the order parameter for the template upon monomer addition. The initial value
of P2 for the pentamer exceeds 0.8, which implies shortly (1 ns) the added
monomer induces fluctuations in the structured oligomer. (c) Dynamics of P2
for the structured pentamer that roughly mirrors (a). The large fluctuations show
that the initially ordered pentamer orientationally melts (disorders) to accom-
modate the added monomer. This figure was reproduced with permission from
Fig. 3 in Ref. 59.
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11.5 Future Outlook

From a biophysical perspective, there are a number of open problems
in the study of amyloid-fibrils formation. Are there common pathways
involved in the self-assembly of fibrils? Because of the paucity of the
structural description of the intermediates involved in an aggregation
process, a definitive answer cannot be currently provided. One avenue
that is just starting to be explored for structural studies of amyloid fib-
rils is to perform single-molecule experiments. These include
approaches such as AFM or Laser Optical Tweezers (LOT) pulling
experiments or FRET, which have been successful in probing various
aspects of the structure and free-energy landscape in a variety of pro-
teins and nucleic acids.60–63

Recently, Karsai and coworkers64 used mechanical manipulation
through AFM pulling experiments to probe the structure of Aβ1–42

fibrils. They showed that Aβ1–42 sheets can be mechanically unzipped
from the fibril surface with constant forces in a reversible transition.
The measured unzipping force was 23 pN, which is significantly lower
than the critical force of unfolding units in a protein tandem of
<(100–200) pN. This finding suggests that the inter-sheet contacts in
a fibril are significantly weaker than the nonbonded contacts respon-
sible for the folding of a protein chain. In addition, this force value is
found to be significantly lower even than that observed earlier for fib-
rils formed from the Aβ1–40 peptide (33 pN).65 Based on this result,
the authors propose that the presence of the two extra residues at the
C-terminus end of the Aβ1–42 peptide leads to a mechanical destabi-
lization of the fibril.

Despite their importance, single-molecule experiments often can-
not easily assign structural information to the observed force peaks
due to the intrinsic set-up, which only allows for the measurement of
elongation distances versus force or versus time. As a result, it is easy
to conceive that, at least in proteins with complicated architectures
as is the case in amyloid fibrils, the same elongation of the chain can
correspond to the unraveling of a variety of structural elements. To
assist with this problem, as well as to provide an in-depth picture of
the response of the protein to force, computational approaches are
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crucial.66,67 Therefore, further progress in probing details of the amy-
loid fibrils structure and energy landscape using mechanical manipu-
lation techniques, requires development and application of
computational approaches in conjunction with experiments.

The energy landscape perspective, summarized briefly in Fig. 11.1,
suggests that multiple scenarios for fibril assembly must exist. Although
the generic nucleation and growth governs fibril formation, the
details can vary considerably. The microscopic basis for the formation
of distinct strains in mammalian prions and in yeast prions remains a
mystery. Are these merely associated with the heterogeneous seeds or
are there unidentified mechanisms that lead to their growth? What
factors may determine the variations in the kinetics of fibril formation
for the wild type and the mutants? A tentative proposal is that the
kinetics of polymerization is determined by the rate of production of
N* (Fig. 11.1),68 which in turn is controlled by barriers that separate
N and N*.7,69 In this scenario, the stability of N plays a secondary role.
The generality of this observation has not yet been established. As
noted above by the findings in proteins that form functional amyloids,
one mechanism used by nature to block toxic aggregation is for pro-
teins to undergo very fast amyloid formation, i.e. without the pres-
ence of intermediates. This route is plausible especially in short
peptides that have reduced energetic and topological frustration com-
pared to full proteins. But the majority of proteins that undergo toxic
aggregation in vivo are long polypeptide sequences that are likely to
present well-populated intermediates on the pathway to aggregation.
The work of Nussinov and collaborators70 would then suggest that
making such intermediates either unstable or highly stable would
reduce the amyloid formation propensity of the protein. Their results
are interesting, but have been checked only in a peptide, the Aβ25–35

fragment.
With the exception of the above-mentioned simulations for prion

proteins and a study of the initial stages in the aggregation of TTR,71

simulations on full proteins are still rare. Therefore, to shed light on
the routes to block aggregation in proteins in general, computational
approaches performed on longer sequences are critical. Finally, how can
one design better therapeutic agents based on enhanced knowledge
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of the assembly mechanism? This is highly non-trivial, as, for example,
in the case of sickle cell disease, viable therapies began to emerge only
long after the biophysical aspects of gelation were understood.72
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Chapter 12

Modeling and Simulation
of Ion Channels

S. Bernèche*,† and B. Roux‡

12.1 Introduction

Ion channels are intrinsic membrane proteins that have the ability to
enable and control the passage of ions across the cell membrane. Of
particular interest are the molecular features that are responsible for
the three principal functional aspects of ion channels, which are per-
meation, selectivity, and gating. The availability of high-resolution
crystallographic structures, together with the development of
detailed atomic models and molecular dynamics (MD) simulations
methodologies, provide a unique opportunity to refine our under-
standing of these systems. Although the complexity of these channels
does present a formidable challenge to theoretical studies, even with
modern computational resources, it is particularly encouraging to
note that many of the recent results from simulations have been con-
sistent with the information emerging from higher resolution struc-
tural data (for a recent review, see Ref. 1). This relative success relies
for a large part on computational strategies involving free energy
simulations.

*Corresponding author.
†Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland.
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‡Center for Integrative Science, University of Chicago, Chicago, IL 60637.
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The aim of the present chapter is to present an overview of the
approaches used to study the microscopic mechanisms underlying the
function of ion channels (permeation, selectivity, and gating).

12.2 Structures of Ion Channels

For more than 50 years, ion channels have been studied using a wide
range of biophysical approaches, providing an invaluable amount of
functional data.2 But it is only in 1998, less than 10 years ago, that
the first structure of a physiological selective ion channel — the KcsA
K+ channel — was determined at atomic resolution.3 Until then, the
development and application of all-atom simulation techniques to
examine fundamental principles governing ion transport relied largely
on model systems, such as the small channel-forming peptides gram-
icidin and alamethicin.4,5 Proteins such as OmpF porin have also
served as useful models to study ion permeation through wide aque-
ous pores.1 A few other structures of ion channels or selective trans-
porters have since been solved. However, because the number of
available experimental structures remains limited, it is often necessary
to construct models using the structural information from homolo-
gous proteins or using various constraints deduced indirectly from
experiments.

12.2.1 Available High Resolution Structures

Determining the three-dimensional structure of membrane proteins
to atomic resolution has been, and remains, a great challenge.
Though our ability to control the crystallization of membrane pro-
teins remains incomplete, obvious progress has been made during the
last decade as testified by the structures listed in Table 12.1. Including
ion channels and transporters, about 20 structures are available from
12 different families. The K+ channel family is particularly well
characterized with eight crystallized proteins. As X-ray crystallogra-
phy becomes a standard technique, it is increasingly used to go
beyond the initial elucidation of a protein structure. Thus, many vari-
ant structures crystallized under different conditions (e.g. mutants,
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Table 12.1 Available High-Resolution Structures of Ion Channels and
Transporters

Description PDB Codes References

Channels:

KcsA potassium channel: H+ gated, 1BL8 Doyle et al. (1998)3

Streptomyces lividans, 3.2 Å.
KcsA potassium channel: H+ gated, 1K4C Zhou et al. (2001)6

Streptomyces lividans, Fab 1K4D
complex, 2.0 Å.a

NaK channel: Bacillus cereus, Na+ 2AHY Shi et al. (2006)7

complex, 2.4 Å; K+ complex, 2AHZ
2.8 Å.

MthK potassium channel: Ca2+ gated, 1LNQ Jiang et al. (2002)8

Methanobacterium
thermoautotrophicum, 3.3 Å.

KvAP voltage-gated potassium channel: 1ORQ Jiang et al. (2003)9

Aeropyrum pernix, full-length channel, 1ORS
3.2 Å; voltage sensor domain, 1.9 Å.

KirBac1.1 inward-rectifier potassium 1P7B Kuo et al. (2003)10

channel: Burkholderia pseudomallei,
closed state, 3.65 Å.

KirBac3.1 inward-rectifier potassium 1XL4 Gulbis et al. (2004)
channel: Magnetospirillum 1XL6 To be published.
magnetotacticum, intermediate
state 1, 2.60 Å; intermediate
state 2, 2.85 Å.

Kir3.1 inward-rectifier potassium channel: 2QKS Nishida et al. (2007)11

prokaryotic chimera expressed in
Escherichia coli, 2.2 Å

Kv1.2 voltage-gated potassium channel: 2A79 Long et al. (2005)12

Rattus norvegicus (expressed in
Pichia pastoris), 2.9 Å.

Kv1.2/Kv2.1 voltage-gated potassium 2R9R Long et al. (2007)12a

channel chimera: Rattus norvegicus
(expressed in Pichia pastoris), 2.4 Å
(with resolved lipids)

ASIC1 acid-sensing ion channel: Gallus 2QTS Jasti et al. (2007)12b

gallus, 1.9 Å

(Continued )
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ionic concentration, blockers …) are now available for a given chan-
nel. Combined with the tremendous amount of available electrophys-
iological data, this offers a fertile ground for theoretical studies aimed
at bridging structural and functional experiments.
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Table 12.1 (Continued )

Description PDB Codes References

Nicotinic Acetylcholine Receptor Pore: 1OED Miyazawa et al. (2003)13

Torpedo marmorata, electron 2BG9 Unwin (2005)14

diffraction, 4.0 Å.
MscL mechanosensitive channel: 2OAR Chang et al. (1998)15

Mycobacterium tuberculosis, 3.5 Å.
MscS voltage-modulated 2OAU Bass et al. (2003)16

mechanosensitive channel:
Escherichia coli, 3.7 Å.

Transporters:

CorA Mg2+ Transporter: Thermotoga 2BBJ Lunin et al. (2006)16a

maritima, 3.9 Å 2IUB Eshaghi et al. (2006)16b

MgtE Mg2+ Transporter: Thermus 2YVX Hattori et al. (2007)16c

thermophilus, 3.5 Å
ClC Cl−/H+ exchanger (formerly ClC 1KPL Dutzler et al. (2002)17

chloride channel): Salmonella 1KPK Dutzler et al. (2003)18

typhimurium, 3.0 Å; Eschericia coli, 1OTS
3.5 Å, 2.51 Å.a

CLC-ec1 Cl−/H+ exchanger: 2FEE Accardi et al. (2005)19

Escherichia coli, 3.2 Å.a

NhaA Na+/H+ exchanger: 1ZCD Hunte et al. (2005)20

Escherichia coli, 3.45 Å.
Calcium ATPase: Rabbit sarcoplasmic 1SU4 Toyoshima et al. (2000)20a

reticulum E1 state with bound 
calcium, 2.4 Åa

Na,K-ATPase: Pig Kidney, 3.5 Å 3B8E Morth et al. (2007)20b

Plasma Membrane H+-ATPase: 3B8C Pedersen et al. (2007)20c

Arabidopsis thaliana, 3.6 Å

All proteins were solved by X-ray crystallography, unless otherwise specified.
See the following websites for a complete list of available structures of membrane
proteins: http://blanco.biomol.uci.edu/Membrane_Proteins_xtal.html, http://www.
mpdb.ul.ie/, or http://pdbtm.enzim.hu.
a Different variants are available for these proteins.

b587_Chapter-12.qxd  1/23/2008  9:26 AM  Page 328



12.2.2 Homology and Knowledge-based Modeling

Considering the limited number of ion channels of known structure
and the challenge that it represents to determine the structure of new
ones, computer modeling based on sequence similarity (“homology
modeling”) is often an obligatory route. Of course, the general limita-
tions of homology modeling apply to ion channels as well (see Chapter 1
and Ref. 21). However, the abundance of functional and biophysical
experimental data offers the opportunity to improve the accuracy of
the models (see below). Modeling of ion channels can also benefit
from the spatial and topological constraints imposed by the mem-
brane environment. For example, recent progress in the development
of hydrophobicity scales helps to better define the secondary structure
of ion channels in reference to the cellular membrane’s hydrophobic
core22 (see the following web page from Prof. Stephen White’s labo-
ratory for useful tools: http://blanco.biomol.uci.edu).

Whether it is possible to transfer information between channels
from different families or between bacterial and eukaryotic counter-
parts remains an unresolved question. For example, it is likely that ion
channels from the large and important voltage-gated family, which
includes K+, Na+, as well as Ca2+ channels, share common structural
elements. On the other hand, while the pore region of K+ channels is
highly conserved, it is most probable that sequence variations affect
their function more specifically. Assessing the accuracy of an ion chan-
nel model is difficult.

Whenever possible, it remains preferable to perform all-atom sim-
ulations based on high-resolution experimental structures. Homology
models are nonetheless well-suited for some type of simplified calcu-
lations (e.g. based on continuum electrostatic approximations) and
useful for designing structural or functional experiments.

12.2.3 Modeling the Voltage-sensor of a Kv Channel

In view of the paucity of structural information about ion channels, it
is highly desirable to make full use of all available experimental infor-
mation from homologous channels. A critical examination of models
of the Shaker K+ channel constructed prior to the X-ray structure of
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Kv1.2 shows that this can be done with some confidence. The various
models are compared with X-ray structures in Fig. 12.1. Such models
are generated by combining a broad range of experimental data from
biochemistry, electrophysiology, and X-ray crystallography. For exam-
ple, the pore domain of an early model of Shaker by Laine et al.,23

generated prior to the X-ray structure of the KvAP channel,9 was
based on the X-ray structure of the MthK channel.8 Proximity of
residues in helices S2 and S3 were imposed on the basis of a Mg2+

binding site engineered in the eag Kv channel.24 Proximity of residues
in helices S4 and S5 in the pore domain were imposed on the basis of
a histidine-Zn2+-histidine bridge engineered in the Shaker Kv channel.23

In addition, the amino acid positions along helices S1 and S2 identi-
fied as functionally tolerant to tryptophan substitutions were con-
strained to be lipid-exposed.25,26

A subsequent model of Shaker by Chanda et al.27 incorporated
additional structural elements from the X-ray structure of the KvAP
channel (i.e. the pore domain and the voltage sensor module).9

Though there are clearly some structural differences, the main struc-
tural features of the model from Chanda et al.27 are in excellent agree-
ment with the X-ray structure of the Kv1.2 channel. As predicted, the
voltage sensor is formed by a bundle of four anti-parallel transmem-
brane helices, S1-S4, each with their N- and C-terminal ends exposed
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Fig. 12.1 Comparison of models of the Shaker channel with the X-ray structures
of the KvAP and Kv1.2 channels.
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alternatively to the intra and extracellular solution. The transmem-
brane helices forming the voltage sensor are packed counterclockwise,
and the voltage sensor makes contact with the adjacent subunit in the
clockwise direction.23 The approximate models captured the main
topological features of the Kv1.2 structure. This structure shows that
about 75 to 80% of the total molecular surface area of S4 is covered
by S1-S3 and by the contact with the S5 helix in the pore domain.
Only the remaining 20 to 25% is exposed to lipids. In comparison, the
fraction of the surface of S4 exposed to lipids was ~12% in the Shaker
models by Laine et al.23 and ~22% in the model by Chanda
et al.27 The Z-position of the Cα of the first arginine in S4 (R294 in
Kv1.2 and R362 in Shaker) is at 12.7 Å from the center of the bilayer
in Kv1.2,28 and is at 11.1 Å and 12.5 Å in the Shaker models by Laine
et al.23 and Chanda et al.27 respectively. The excellent agreement
between the X-ray structure and results from numerous functional and
biophysical experiments considerably strengthens the growing con-
sensus about voltage-gated K+ channels. It also increases confidence
in the modeling of membrane proteins based on a wide range of bio-
physical data.

12.3 Explicit Membrane System

To take advantage of all the information that the high-resolution
structure of an ion channel can provide, it is essential to model its
environment with all atomic details. With the currently available com-
putational power, one can routinely work with systems containing up
to about 100 000 atoms, usually enough to contain the alpha-subunit
of a channel and surrounding lipids and bulk solvent. A system of that
size would allow for reasonably long simulations, as well as for
demanding free energy calculations, and eventually for some com-
puter experiments with different setups or mutants. While expensive
in terms of computer time, such systems can be simulated without
being at the limit of usual computational resources. Larger systems
would most probably be used for straight MD simulation purpose
only. As the accuracy of free energy calculations rely on the sampling
of relevant conformations of the molecular system, truncated systems
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requiring restraints to maintain the integrity of the system should be
avoided whenever possible.

12.3.1 Assembling an Ion Channel
and Membrane System

The setup of an integral membrane protein atomic system for simula-
tions can follow one of two commonly used approaches. One is to
start with a pre-equilibrated pure lipid bilayer from which a number
of lipids are removed to make space for the protein to be inserted.29

Alternatively, one can build the lipid bilayer around the membrane
protein.30 In this approach, Lennard-Jones (LJ) spheres are first equil-
ibrated on two planes to simulate the effective packing of the lipid
head-groups around the channel protein (see Fig. 12.2). These planes
are positioned in reference to the protein’s aromatic residues, which
are usually found at the lipid-water interface. The acyl chain length of
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Fig. 12.2 Explicit membrane system of the KcsA K+ channel: Side (a) and top view
(b) of the initial setup phase with Lennard-Jones spheres mimicking the polar head
of lipids. In (a), aromatic residues used as reference to setup the membrane bilayer
are represented in green. (c) Complete system with the KcsA channel, 112 DPPC
lipid molecules, and water bulk containing 12 K+ and 23 Cl− (these ions neutralize
the system and represent a salt concentration of ~150 mM).
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the lipids is chosen so that it matches the distance between the two
planes, effectively corresponding to the hydrophobic portion of the
membrane. After equilibration, the LJ spheres are replaced by
explicit lipid-molecules randomly taken from a library of pre-equili-
brated and pre-hydrated lipids. The initial configurations are then
refined by rigid body rotation and translation, followed by energy
minimization.

For both approaches, the number of lipids on each leaflet has to
be adequately calculated to complement the surface area of the pro-
tein, which might be different on each side of the bilayer. The area per
lipid ratio is unfortunately not well-defined. It varies significantly with
lipid type, and seems to be highly dependent on experimental condi-
tions. For example, values from 56 to 72 Å2 per molecule have been
reported for fluid phase DPPC bilayers at 50°C.31 For the setup of
microscopic molecular systems, an area between 59 and 64 Å2 per
molecule is usually assumed for phosphatidylcholine lipids.32,33 In
some simulation work, octane molecules replace lipids, effectively
mimicking the hydrophobic core of the membrane but not its densely
packed polar-head region. While it does not represent an experimen-
tally stable system, the approach has yielded coherent results for stud-
ies focusing on the channel’s pore.34 Membrane proteins have also
been successfully simulated in detergent micelles, allowing for com-
parison with experimental measurements performed under these con-
ditions (for example, see Ref. 35).

In all cases, the system should be equilibrated with respect to the
channel protein, i.e. the structure of the protein being the given
experimental data, it is important to preserve its integrity. In that
order, the membrane system can be equilibrated with slowly decreas-
ing restraints maintaining the different components in their relative
positions, using slightly stronger restraints on the backbone of the ion
channel than other parts of the membrane system. At the end of this
equilibration period, the system is freed of all restraints to perform the
actual simulation. (Detailed computational protocols for membrane
system setup, including scripts based on the CHARMM biomolecu-
lar simulation program,36 can be found on the following web page:
http://thallium.bsd.uchicago.edu/RouxLab, http://www.charmm-
gui.org, and in the CHARMM distribution documentation.)
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12.3.2 Periodic Boundary Condition:
Advantages and Caveats

For simulations of membrane proteins, it is common to use periodic
boundary conditions (PBC). It has the advantages of mimicking the
extent of a cellular lipid membrane with no edges. It also allows for
the use of Particle Mesh Ewald (PME) summation to take in account
all electrostatic interactions,37 which obviously play a fundamental
role in ion permeation and have effects over long distances.38 However,
PBC/PME may induce artificial ordering that enhances the systems
stability.39 Modeling a finite concentration of ions in the bulk solu-
tion, and adjusting the number of added charges so that the system is
neutral, can help reduce such undesirable artifacts arising from long-
range dipole-dipole interactions. By the same occasion, the system is
made closer to the physiological conditions by incorporating some
salt concentration.

An important theoretical issue concerns the lateral pressure that
should be maintained on a membrane system.40 Because membrane
properties are usually better reproduced in these conditions (see
below), it is common to keep the area of the membrane constant, and
allow the perpendicular dimension to fluctuate in response to an
isobaric-isothermal thermodynamic ensemble. However, considering
that many ion channels are sensitive to membrane pressure, it is highly
desirable to have better control over the applied lateral tension.
Further studies will be necessary to have a better understanding of the
impact of lipid bilayer surface tension on membrane protein simula-
tions. Constant development of the lipid force field should also help
improve the situation.41,42

12.3.3 Force Field Limitations

Significant progress is being made in the development of atomic force
fields for describing membrane bilayer systems empirically. Parameters
for lipid molecules are optimized to reproduce structural data of
hydrated phospholipid bilayers as obtained from neutron and X-ray
diffraction experiments.41 Lipid force field parameters remain per-
fectible, and simulations of a pure membrane system usually show
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better agreement with experimentally measured properties when per-
formed in the NPTA (constant number of atoms, pressure, tempera-
ture, area/lipid) than in the more standard NPT ensemble.42 As
always, when defining a set of empirical parameters, compromises
need to be found. For example, the accuracy of the CHARMM27
force field varies for ethane, propane, butane, and hexadecane, illus-
trating that parameters for extended-chain n-alkanes cannot be directly
transferred from the short-chain n-alkanes. It could then be appropri-
ate to optimize alkane parameters for lipid simulations based on long-
chain n-alkanes. Such an approach, however, makes it difficult to
maintain compatibility with hydrocarbons on other molecules when
performing simulations of heterogeneous systems (e.g. protein-lipid
systems). While more studies are needed to rigorously address this com-
patibility issue, the CHARMM27 force field sacrifices the long-chain
n-alkane pure-solvent properties in order to maintain the overall con-
sistency of the force field.41 As only a few simulations have been per-
formed with mixtures of different kinds of lipids,43–45 further studies will
be necessary to assess the force field compatibility in this case as well.

To study the function of an ion channel, it is important to pay spe-
cial attention to the parameters describing the interactions involving
ions. The selectivity and conductance of an ion channel results from
a delicate balance of very strong microsopic interactions, the large
energetic loss of dehydration at the entry of the pore being roughly
compensated by coordination with pore lining residues. Gas phase
experiments on model systems provide the most direct information
concerning these individual microscopic interactions.46 High-level
quantum-mechanical ab initio calculations can also be used to supple-
ment the (often scarce) information available from experiments.47

Since selectivity and conductance are primarily governed by relative
free energies, it is essential to also consider thermodynamics properties
in the parametrization of the potential function (i.e. the force field).

For simulations of K+ channels, the most relevant microscopic
interactions are between ions, water molecules, and the carbonyl moi-
eties of the protein backbone. Solvation free energy of ions in liquid
water and liquid N-methylacetamide (NMA), a model of the back-
bone of proteins, are thus particularly important for calibrating a
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proper potential function. In the case of ions solvated in water, it is
possible to reproduce both the microsopic interactions and the solva-
tion free energy of ions with the current biomolecular potential
functions.48,49 In contrast, MD free energy calculations indicate that it
is very difficult to reproduce both the cation-NMA microscopic energy
and the solvation free energy in liquid NMA (see Table 12.2).50 In
MD simulations of K+ channels, the solvation free energy of the ions
in liquid NMA (∆GFF) impacts directly on the stability of ions in the
selectivity filter of the channel: if ∆GFF is higher than the experimen-
tal value, ions are artificially trapped in the selectivity filter; if it is
smaller, ions are expelled. In general, it ought to be possible to cali-
brate potential function to reproduce solvation free energies by
adjusting the parameters. For example, modifying the Lennard-Jones
interaction distance of the K+-carbonyl oxygen pairs, such as to reduce
or increase the microscopic K+-NMA interaction energy can be used
to modulate the resulting solvation free energy of K+ in liquid NMA.

Clearly, if the potential function were an exact representation of
the Born-Oppenheimer energy surface, success in reproducing
the microscopic interactions would automatically lead to accurate
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Table 12.2 Interaction Energy and Solvation Free Energy (absolute values)
for K++ in Water and N-methylacetamide (NMA) as Represented by Different
Force Fields.a

Interaction Energy Solvation Free Energy
(kcal/mol) (kcal/mol)

NMA
Force field Water NMA Water (Charging Only)b

Experimental 17.9 28.3-32.3 79.3 ~80-82c

AMBER94/TIP3 18.2 23.7 80.9 81.8
CHARMM27/TIP3 18.9 24.2 81.5 89.2
CHARMM27/TIP3 18.9 21.6 81.5 82.0

(modified)
GROMOS87/SPC 17.6 16.6 77.2 71.6

aAll values taken from Ref. 51.
bA non-polar contribution of about 2 kcal/mol should be subtracted to obtain the
total solvation free energy.
cApproximation based on data from other liquid amides.52
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thermodynamic properties. But current biomolecular potential func-
tions try to account for many-body polarization effects in an average
way using an effective parametrization of the atomic partial charges.
Because of this approximation, the optimal parametrization is the result
of a compromise between an accurate representation of the microscopic
energies and bulk solvation properties. (This is true for both the
CHARMM and AMBER force fields reported in Table 12.2.)
Nevertheless it may be hoped that such potential functions can yield
meaningful results of semi-quantitative accuracy (see also Section 12.8).

12.4 Permeation and Conductance

The subtleties of an ion channel function are found in how its con-
ductance varies in response to the transmembrane electro-chemical
potential. The conductance of the channel is governed by intrinsic
properties of the permeation pore and by gating events, which will be
discussed in a following section. Ultimately, for a complete descrip-
tion of ion permeation, it is of fundamental importance to establish a
direct link between electrophysiological data and the crystallographic
protein structure by reproducing the I(V) relation of a given channel.
At the present time, this cannot be done using simple “brute force”
MD simulations, as the time-scale to observe the translocation of a
single ion is on the order of a typical MD trajectory. Despite the
steady increase in computer power, the direct simulation of ionic
fluxes across a selective biological channel with all-atom MD remains
computationally prohibitive; it might, however, be feasible in a not
too distant future.53 Designing a theoretical framework able to rigor-
ously extend the simulation time-scale to calculate ion fluxes is one of
the most important goals in computational studies of ion channels.54

12.4.1 Transmembrane Voltage as an Analytical
Function

At the microscopic level, the transmembrane electrostatic potential
arises from a small charge imbalance distributed in the neighborhood
of the membrane/solution interface. The net charge per area for a
transmembrane potential of 100 mV corresponds roughly to only one
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atomic unit charge per surface of 130•130 Å2. Controlling the trans-
membrane potential through explicit ionic concentrations would thus
require molecular systems much larger then those usually seen. A
potential created from an explicit ion concentration asymmetry was
simulated by Woolf and co-workers33 using a double bilayer mem-
brane system. While this approach provides the most realistic realiza-
tion of a transmembrane potential, from a practical point of view, it is
more advantageous to rely on an analytical function describing the
electrostatic potential. Simulations have been performed with a linear
function extending across the whole simulation cell along the axis
perpendicular to the membrane plane.53,55

The actual transmembrane potential along the pore of a channel
can be modeled quite effectively by using continuum electrostatic
approximations. Specifically, it can be calculated by using a modified
Poisson-Boltzmann (PB) theory, in which the intra- and extracellular
bulk regions are kept in equilibrium with electrodes at a potential dif-
ference of Vmp, yielding the PB-Voltage equation:56

(12.1)

where ε(r) and k(r) are the space-dependent dielectric constant and
Debye-Hückel screening factor. It should be noted that the protein
and ion charges must be formally turned off in this calculation, as the
transmembrane potential is not intended to include the electrostatic
field produced by the fixed charges of the protein.a Figure 12.3(a)
illustrates the transmembrane potential through the KcsA channel
calculated using Equation 12.1. Note the difference between the
open and close conformation of the main gate, which modifies the
dielectric environment in the inner vestibule. Because of the irregular
geometry of the channel with its high dielectric wide aqueous region
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aThe formalism of Equation 12.1 is implemented in the PBEQ module57 of the
CHARMM program.36
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and its narrow selectivity filter, the calculated membrane potential dif-
fers markedly from the naive linear potential, which would arise across
a planar membrane slab.

12.4.2 Potential of Mean Force

As mentioned above, studying ion permeation using brute force MD
remains prohibitive. To circumvent those difficulties and characterize
the ion conduction mechanism quantitatively, one can compute the
free energy profile, or potential of mean force (PMF), governing the
elementary microscopic steps of ion translocation in the pore. When
the reaction coordinate is a simple Cartesian coordinate, e.g. the posi-
tion z of an ion along the channel axis, the PMF may be calculated by
integrating the reversible work done by the mean force 〈F(z) 〉 acting
on the ion in the z-direction:

(12.2)

One advantage of this formulation is that the mean force can be
decomposed linearly into a sum of contributions.4,58 A related approach
is the adaptive biasing force (ABF) method, which estimates the PMF
along the reaction coordinate z by averaging the instantaneous force
along z and canceling it by an adaptive biasing force (that will eventu-
ally correspond to the PMF). For a biasing force that corresponds
exactly to the PMF, coordinate z has a purely diffusive motion.59,60,b

Another approach to compute the PMF is the “umbrella sam-
pling” technique.62 In this method, the microscopic system of interest
is simulated in the presence of an artificial biasing window potential,
ui(z), introduced to enhance the sampling in the vicinity of a chosen
value zi. Typically, the biasing potential serves to confine the variations
of the coordinate z within a small interval around some prescribed
value zi, helping to achieve a more efficient configurational sampling
in this region (this is the reason why the biasing potential is called a

W z W z dz F z
z

z
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0

b The ABF method is implemented in the NAMD software package.60,61
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Fig. 12.3 Hierarchical PMF/BD simulation framework (a) Transmembrane poten-
tial profile along the pore of the KcsA channel (b) Equilibrium PMF describing 
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window potential). For example, a reasonable choice to produce the
biased ensembles, though not the unique one, is to use harmonic
functions of the form, ui(z) = ½k(z – zi)

2, centered on successive
values of zi. The piece of unbiased PMF from the i th window is,

(12.3)

where 〈 ρ(z)〉(i)
(biased ) is the biased histogram from the i-th simulation,

and Fi is an undetermined free energy constant. To obtain the com-
plete PMF, the data from several windows have to be combined
together and the bias introduced by the constraining potentials has to
be removed (i.e. the different Fi have to be determined). The most
efficient procedure to do this is the Weighted Histogram Analysis
Method (WHAM).63 One of the main advantages of WHAM is that
it can be easily extended to treat the case of a PMF depending on
more than one variable.62

The PMF governing ion permeation in the selectivity filter of
the KcsA K+ channel was calculated using an umbrella sampling
simulation composed of 312 windows; a projection of the three-
dimensional PMF (one dimension for each ion involved) is presented
in Fig. 12.3(b). It shows that ion conduction involves transitions
between two main states with, respectively, two and three K+ ions
occupying the selectivity filter, according to a process reminiscent of
the “knock-on” mechanism proposed by Hodgkin and Keynes. The
largest free energy barrier is on the order of 2 to 3 kcal/mol, imply-
ing that the ion conduction process is diffusion limited.38

W z F k T z u zi i i
biased

i( ) ln ( ) ( )( )
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˘
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ion permeation in the selectivity filter of KcsA. (c) The total multi-ion free-energy
profile Wtot(Z1, Z2, Z3), including the equilibrium PMF calculated from MD and a
transmembrane voltage of 150 mV. (d) Principal ion occupancy states identified on
the different PMFs by the letters A, B, C, or D. (e) BD trajectory generated with an
applied membrane potential +50 mV and under symmetric conditions of K+ concen-
tration. The Z(t) of ions in the system is alternatively plotted in blue, red, and green
for the sake of clarity. The relative ion density along the pore is shown in relation to
the different binding sites. (f) I–V relation calculated from BD simulations under
symmetric conditions and K+ concentration of 400 mM. (g) Conductance of the
KcsA at 50 mV as a function of permeant ion concentration.
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12.4.3 Hierarchal PMF/BD Framework

A very attractive computational approach for simulating ion perme-
ation over long timescales, without having to treat a system in all
atomic details explicitly, is Brownian dynamics (BD).54 In its simplest
one-dimensional form, the random BD trajectory of the permeating
ions along the pore axis is generated by integrating the stochastic
equations of motion:64

(12.4)

where zi and zi
. are the position and velocity of the i th ion along the

channel axis, D(zi) is the space dependent diffusion constant, ζi(t) is
a random Gaussian noise, and Wtot is an effective potential energy
function. As embodied by Equation 12.4, the construction of a BD
model requires very specific input quantities such as the ion diffusion
constant D(z) and the total PMF Wtot, which serve as the fundamen-
tal “microscopic ingredients” of the theory.

If the input quantities are treated as free adjustable parameters to
fit experimental data, then BD can be utilized as a phenomenological
framework to extract information about fundamental microscopic
quantities from experimental data. Alternatively, the theory may be
anchored tightly to the molecular reality of ion channels if all the fun-
damental input quantities are rigorously extracted from calculations
based on detailed atomic models.c

In the case of the KcsA channel containing no more than three
ions in its selectivity filter at a given time, the total PMF, Wtot, is
expressed as:56
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cSuch a strategy finds its roots in statistical mechanical theories of nonequilibrium
transport phenomena in which dissipative equations of motion are derived for a
reduced set of degrees of freedom while rigorously projecting out the dynamics of
the rest of the system (see Ref. 65 and references therein).
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where Weq is the equilibrium PMF and φmp(z) is the transmembrane
potential profile along the z-axis, as presented in the two previous
sections [see Fig. 12.3(c)]. Additionally, the diffusion constant profile
D(z) can be extracted from the velocity autocorrelation function of
the ions.66,67

The stochastic Brownian motion of the multi-ion system is effi-
ciently implemented as a continuous time Markov chain, in which dis-
crete states correspond to the ion positions and the state-to-state
random walk depends on exponentially distributed random survival
times.d The forward and backward transition rates are given by (e.g.
for ion 1):

(12.6)

where δz is the grid spacing. Similarly, an ion can attempt to enter a
two-ion occupied channel at any time with a rate of (e.g. on the intra-
cellular side):

(12.7)

where [Cint] is the ion concentration on the intracellular side and S is
the cross-sectional area of the entrance vestibule. The equilibrium
PMF of the two-ion occupied channel, W(z1, z2), corresponds to the
three-ion PMF with the third ion as far as possible from the selectiv-
ity filter, i.e. W(z1, z2) ≈ W(zmax, z1, z2).
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d Such a Markov random walk satisfies the condition of detailed balance under equi-
librium conditions in the absence of net flux, and the stochastic evolution of the sys-
tem obeys a multi-dimensional Smulochowsky (Nernst-Planck) diffusion equation as
δz becomes increasingly small.68
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Following this scheme, ions in the channel undergo a random
walk on the total free energy surface with the space-dependent diffu-
sion constant D(z), hopping from state to state [see Fig. 12.3(e)]. In
the case of KcsA, the calculated diffusion constant varies weakly
throughout the entire permeation pathway, decreasing to roughly
70% of its bulk value in the selectivity filter region.54 Further analysis
shows that dynamical memory and inertial effects are negligible and
that using a non-inertial Markovian dynamics approximation (i.e. BD)
is physically justified. For these reasons, the average structural charac-
ter of the random ion movements governing the conduction mecha-
nism (i.e. single-file diffusion of the ions with water in between) is
largely determined by the multi-ion free energy surface Wtot rather
than the dissipative and frictional forces.

The PMF/BD framework presented here enables one to simulate
ion fluxes for various conditions of ion concentration and trans-
membrane potential. The calculated current-voltage and conduc-
tance-concentration relations for the KcsA K+ channel are shown in
Fig. 12.3(f–g). The experimental I–V is well reproduced at small and
moderate voltages, but non-linearity becomes too pronounced at
large voltages because access resistance is not included in the model.
The values of Gmax, the maximum conductance of the channel at sat-
urating concentration, estimated from Fig. 12.3(g) is on the order of
550 pS and 360 pS for outward and inward ions flux, respectively.
These values are in remarkable agreement with the experimental
measurements.69

Although no parameters were specifically adjusted to reproduce
the value of the maximum conductance of KcsA, the results are in
excellent agreement with available observations. In view of the
extreme sensitivity of calculations based on atomic models (a small
increase of approximately kBT in the central energy barrier in the ion-
conduction mechanism is sufficient to decrease the ion flux by a fac-
tor of three), even a semi-quantitative agreement with experimental
results is very satisfying. The present effort demonstrates that the cal-
culation of the conductance characteristics of a selective ion channel
from first principles is possible. A similar approach could be generally
useful in studies of slow biomolecular processes whenever there is a
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need to extend the information extracted from all-atom MD trajecto-
ries to long time scales, e.g. in the case of gating events.

12.5 Ion Selectivity

Questions about ion selectivity have fascinated researchers for
decades. Many investigators, with many different ideas, have con-
tributed to frame the current view of ion selectivity.2 The availability
of computations based on atomic models1,34,38,70–73 now offers a
“virtual route” for testing various ideas about the molecular mecha-
nism of ion selectivity.

12.5.1 Selectivity Concepts

In its simplest terms, selectivity reflects the fact that the “wrong”
ion encounters more difficulty in permeation than the “correct”
ion, i.e. it experiences microscopic forces that makes its progress
through the channel more difficult (barriers along its permeation
PMF are higher). In this sense, ion selectivity is first and foremost
about energetics. But selectivity may manifest itself in different
ways, depending on whether it is experimentally probed using equi-
librium binding measurements or non-equilibrium flux and ionic
current measurements.2 Some types of measurements are more sensi-
tive to the free energy at the bottom of a binding site, whereas other
types of experiments are more sensitive to the height of free energy
barriers. Electrophysiological measurements with blockade relief are
most convenient to quantitatively characterize the selectivity of K+

channels, because the experimental conditions approach those of
thermodynamic equilibrium (which is intrinsically easier to interpret
than kinetic measurements). Historically, Ba2+ blockade experiments
were used by Miller and Neyton,74 and later by Latorre and co-work-
ers,75 to detect and characterize the ion binding sites in the pore of
the large conductance BK channels. These results indicated that there
is a binding site between the extracellular solution and the position of
the Ba2+ blocker, called the “external lock-in site,” which is highly
selective for K+ over Na+ by 4–6 kcal/mol. The X-ray structure of
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KcsA in the presence of Ba2+ shows that it binds near the site S4 [see
Fig. 12.3(d)], at the intracellular end of the selectivity filter,76 which
suggests that the external lock-in site is either the site S1 or S2 (it is
unlikely that sites S4 and S3 are simultaneously occupied under those
conditions). As pointed out by Neyton and Miller,74 these results
present a purely thermodynamic view of selectivity (rather than
kinetic), as it is governed by the relative free energy of the ions at the
bottom of the binding site that plays the dominant role (rather than
at the top of the energy barrier). Fundamentally, selectivity for K+ over
Na+ implies that the relative free energy ∆∆G of K+ and Na+ in the
pore and in the bulk solution,

(12.8)

is larger than zero. According to electrophysiological measurements,
∆∆G is on the order of 4–6 kcal/mol for the highly selective BK
channels.74,75 The key question about the selectivity of K+ channels is
thus to identify the physical origin of the unfavorable free energy
∆∆G. Because of its smaller radius, the hydration free energy of Na+

is ~18 kcal/mol more negative than that of K+, i.e. Gbulk(Na+) ≈
Gbulk(K

+) –18 kcal/mol. This larger difference in the hydration free
energies of Na+ and K+ ions, corresponding to ∆Gbulk, sets the funda-
mental “baseline” for the Na/K selectivity according to which all
biological ion channels are carrying its function (whether it is specific
for Na+ or for K+). One may also note that Gpore(Na+) ≈ Gpore(K

+) –
12 kcal/mol, which implies that — in absolute terms — Na+ inter-
acts more strongly with the pore than K+ (it is the difference in
hydration free energy that shifts the balance).

The most intuitively appealing explanation of K+ selectivity is the
concept of the “snug-fit” proposed in the early 1970s.77 The snug-fit
mechanism postulates that the binding site is, for structural reasons,
rigidly constrained in an optimal geometry so that a dehydrated K+ fits
with proper coordination, but that Na+ is too small and is thus poorly
coordinated by the host. Selectivity is then due to the difference in

DDG G G( ) ( ) ( )K Na Na Na

                     

pore bulk
+ + + +Æ = -ÈÎ ˘̊

        K Kpore bulk- -ÈÎ ˘̊+ +G G( ) ( )
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the interaction of the ions with the coordinating ligands (i.e. carbonyl
oxygen atoms lining the pore) compared to the hydration free energy.
Structurally, the snug-fit mechanism implies a significant structural
inability to deform and adapt: the energetic cost upon collapsing to
cradle a Na+ (a structural distortion of about 0.38 Å) must give rise
to a significant energy penalty (much larger than kBT ). This is obvi-
ously an idealization. In reality, molecules are flexible and may be able
to structurally deform and adapt (to some extent) to a bound ion. To
go beyond “verbal arguments” about selectivity, it is necessary to use
computational approaches based on atomic models.

12.5.2 Selectivity Calculations by Free Energy
Perturbation

Free energy perturbation (FEP) based on all-atom MD
simulations78,79 represents the most fundamental approach to eluci-
date the microscopic origin of “hidden” thermodynamic factors
governing the function of biological systems. By carrying FEP simu-
lations, it is possible to incorporate the effect of thermal fluctuations
and the contributions from all the atomic coordinates into a com-
puted free energy difference of interest. The difference in solvation
free energy between K+ and Na+ can be expressed as:80

(12.9)

where E(Na+) and E(K+) are, respectively, the potential energy with a
Na+ or a K+ ion in the dynamical system (keeping all atomic coordi-
nates unchanged). In the FEP expression, the bracket formally repre-
sents an average over configurations generated with a K+ ion in the
system. Using the FEP method, the free energy difference between
Na+ and K+ in the bulk solution48,49 as well as inside the channel38,70,72

can be calculated from all-atom MD simulations.
Such FEP/MD simulations were performed for each of the five

cation binding sites in the selectivity filter of the KcsA channel38,70,72

e e
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and for the binding sites of the non-selective (but structurally similar)
NaK channel.81 The calculations indicate the most selective site in
KcsA is located in the middle of the pore (site S2). In contrast, none
of the binding sites in the NaK channel is selective. Analysis showed
that the variations in the free energy of selectivity in the various sites
were associated with the differences in hydration of the cation.81 A
cation in the site S2 of KcsA is almost dehydrated and coordinated by
eight backbone carbonyl oxygens, while a cation in the corresponding
site of NaK is well hydrated.

The calculations show that selectivity of the binding sites of KcsA
and NaK is largely controlled by the dynamical interplay of local ion-
ligand and ligand-ligand interactions. Ion-ligand interactions are
obviously attractive, while ligand-ligand repulsion acts as a hidden
“through-space” electrostatic strain energy. Strain energy (here
extended to ligand repulsion) is a classic host-guest chemistry concept
to describe processes involving an induced-fit of the receptor upon
the binding of a subtrate. The key variables are the number of coor-
dinating ligands, as well as their particular properties. The resulting
dynamical interplay of ion-ligand and ligand-ligand interactions in a
binding site is complex. For example, for an ion coordinated by N lig-
ands, the magnitude of ion-ligand interactions and of the ligand-lig-
and strain grow like ~N and ~N2, respectively. Most importantly,
coordinating oxygen atoms donated by a carbonyl or a water mole-
cule are not equivalent. For this reason, the coordination number
alone cannot predetermine ion selectivity because both ion-ligand
and ligand-ligand interactions depend also on the electrostatic nature
of the ligands. Different combinations of water and carbonyls can give
rise to different K+/Na+ selectivity. A dynamical site with eight car-
bonyl groups is robustly selective for K+ over Na+, but the selectivity
is lost as the carbonyl groups progressively are replaced by water mol-
ecules, or as the coordination number is decreased. A tightly con-
trolled dehydration of permeating cations, as enforced by the long
and narrow KcsA pore, is an essential aspect that enables the robust
selectivity for K+ over Na+. Because of the widening at the level cor-
responding to the S2 site, the NaK pore allows a minor increase in ion
hydration and is permissive to Na+.
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12.6 Gating

Little is known about the structural features of ion channel gating.
Even in the rare occasions for which both conductive and non-
conductive structures are available, many uncertainties remain as to
how they might relate to functional data. Elucidating the microscopic
mechanisms underlying gating events remains a challenge that will
require the combination of many different experimental and theoret-
ical approaches. Molecular mechanics simulations can be useful at dif-
ferent stages of that process: they can potentially reveal small
conformation changes that might be associated with gating, or serve
as a theoretical framework to model larger conformational changes.

Any conformational change in the vicinity of the pore can
potentially affect the conductance of a channel. The time-scale of
the transition and the extent at which the current is hampered
define whether the conformational change should be considered as
part of a gating mechanism or not. A really fast transition on the
nano- to micro-second time-scale would most probably affect the
conductance of the channel and would not be resolved by usual
electrophysiological measurements. A transition on the micro- to
milli-second time-scale could be associated with flickering in single-
channel recording and other physiologically fast gating events.
Macroscopic gating events, as usually conceived, would obviously
require slower transitions. Information on the time-scale of the con-
formational change can be evaluated by calculating the potential of
mean force governing the transition from the open to the closed
state. In the case of gating mechanisms involving only one or two
residues, the reaction-coordinates of the PMF can usually be defined
in terms of the internal coordinates of the backbone and side-chains
of the residues. For more complex conformational changes involv-
ing less than 10 residues, the root mean squared deviation (RMSD)
between the initial and final conformations represents an effective
and useful order parameter to monitor the progress of the trans-
formation.82 The PMF provides information on the relative stability
of the end states, as well as on the free energy barrier separating
them. The PMF can be further interpreted in terms of transition
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rates by either using rate constant theory, or the BD/PMF framework
described in the previous section.

To insure that a given conformational change corresponds to a
gating process, one should also evaluate the conductance of the
channel in the conducting and putative non-conducting states.
Depending on the width of the pore at the level of the gate, one
could either use the BD/PMF framework as described above, or
alternative techniques based on continuum mean-field theories
(see Section 12.7).

Using this approach, it was demonstrated that the simple reorien-
tation of the amide plane of two residues in the selectivity filter of the
KcsA K+ channel could potentially act as a gate by reducing the ionic
current by at least 100 fold.83 By calculating the PMF governing the
gating transition for different ion occupancy states, it was shown that
this gate is most probably related to a physiologically important gat-
ing mechanism known as slow or C-type inactivation.84

12.7 Overview of Alternative Approaches

Approaches that are simpler and computationally less expensive than
all-atom MD are very important tools in studies of ion channels. In
particular, macroscopic continuum electrostatic calculations, in
which the polar solvent is represented as a structureless dielectric
medium can help reveal the dominant energetic factors related to
ion permeation, and thus, serve to illustrate fundamental principles
in a particularly clear fashion.85 In this approach, the protein is
typically kept in a fixed conformation. This implies that factors
concerning the structural flexibility and thermal fluctuations of
the protein are not taken directly into consideration. The calcula-
tion of the transmembrane potential profile through the pore of the
KcsA channel as described in Section 12.4.1 is such an example.
Continuum electrostatic calculations, either based on the Poisson-
Boltzmann equation or the Generalized Born approximation, can
be combined with molecular dynamics or stochastic algorithms to
study the evolution of a system.86,87

350 Computational Structural Biology

FA1
b587_Chapter-12.qxd  1/23/2008  9:26 AM  Page 350



12.7.1 Grand Canonical Brownian Dynamics

Brownian dynamics (BD), which consists of integrating stochastic
equation of motions describing the displacement of the ions with
some effective potential function, is an attractive computational
approach for simulating the permeation process over long time-scales.
As presented in Section 12.4, the effective potential function can be
rigorously calculated from all-atom potential-of-mean-force simula-
tions. Alternatively, a less computationally demanding approach con-
sists of calculating the ion-protein and ion-ion interactions at each BD
time-step on the basis of continuum electrostatic approximation, i.e.
without treating all the solvent molecules explicitly.88,89 The approach
is particularly well-suited for the study of wide aqueous pores.90,91

To simulate ion fluxes on a long time-scale, the total number of
ions in the system must be allowed to fluctuate under the influence of
specific non-equilibrium boundary conditions. This can be accom-
plished by combining the BD stochastic dynamics with the Grand
Canonical Monte Carlo (GCMC) algorithm.92 The GCMC proce-
dure has the effect of enforcing boundary conditions corresponding
to constant electro-chemical potential in two buffer regions repre-
senting the bulk solution on either side of a membrane. Since the
buffer regions cannot run out of particles or be filled by particles, they
essentially act as infinite thermodynamic reservoirs and sinks for the
particles with respect to the central inner region. The procedure can
be used to simulate equilibrium as well as non-equilibrium conditions
of ion diffusion and permeation.92 One cycle of GCMC/BD corre-
sponds to one step of BD followed by a few steps of GCMC (typically
one to 10) to maintain the buffer regions in equilibrium. No ion cre-
ation or destruction is taking place in the inner region, and the time-
course of the ions in the inner system evolves dynamically according
to BD. When the system is at the equilibrium, the electro-chemical
potential of any ion is the same in all the regions of the system and
there is no net flow. However, when non-equilibrium conditions are
imposed at the boundaries, a stationary state is simulated as particles
flow from the regions with a high value of electro-chemical potential
to the regions with lower values.
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12.7.2 Poisson-Nernst-Planck

It is also possible to simplify the details of a system even further
by treating the average ion fluxes in terms of concentration gradi-
ent and average electric field. This is the goal of the Poisson-
Nernst-Planck (PNP) continuum electrodiffusion theory.93,94

Rather than an actual simulation of atomic movements, PNP
requires a numerical solution to a set of differential equations. PNP
is often described as a “mean-field theory” because the average
electrostatic potential and average concentration gradients determine
the average fluxes. In the absence of any net flux PNP becomes
equivalent to the equilibrium non-linear Poisson-Boltzmann equa-
tion. As highlighted by several authors,95,96 the underlying approx-
imations can lead to serious problems and the theory must be used
with caution.

12.8 Future Outlook

The recent progress and achievement are encouraging and illustrate
that, although computer simulations can be improved, they are able
to provide results of semi-quantitative accuracy. If one is allowed to
dream a little, it shall one day be possible to use sophisticated com-
puter algorithms, exploiting all the available information in structural
and genomic databases, to construct a reliable atomic model of any
channel, and then characterize fully and accurately its functional phe-
notype (conductance, selectivity, gating, inactivation, etc …) in silico
with computations. Such a virtual model could also serve to help
rationally design novel drugs and molecules specifically to alter the
function of the channel in a desired way for the ultimate purpose of
curing a given pathological physiological condition. This may sound
almost like science fiction, and to a certain extent, one must admit
that we are very far from having such incredible abilities at the pres-
ent time. Nonetheless, as a long-term goal this makes perfect sense.
Developing the required skills and techniques to progress toward
such a goal, of course, will require tremendous progress on several
fronts. With this long-term perspective in mind, it is useful to elaborate

352 Computational Structural Biology

FA1
b587_Chapter-12.qxd  1/23/2008  9:26 AM  Page 352



more specifically on the directions that are likely to be very active in
the near future.

12.8.1 Force Field Development

Most simulations of ion channels to date have been based on additive
force fields that treat the influence of induced polarization in an effec-
tive average way. For this reason, the result of most simulations is only
of semi-quantitative accuracy. This is, of course, a severe limitation,
and at the present time, computational chemists and theoreticians are
actively pursuing the development of a new generation of force fields
that will include induced polarization for computational studies of
biological systems.97,98 However, more work is needed before such
potential functions are ready to be used reliably in simulations of bio-
logical ion channels. Meanwhile, there are reasons to believe that MD
studies of ion channels can still yield meaningful results, as long as
they are based on effective potential functions that have been cali-
brated to correctly reproduce solvation free energies. A recent simu-
lation study of K+ permeation through the gA channel illustrates this
point clearly.51

12.8.2 Studying Macroscopic Conformational Changes
Involved in Transduction Events

Traditionally, it has been possible to monitor important microscopic
processes by mapping the free energy landscape along some pre-
chosen reaction coordinates. As described above, ion permeation
through the KcsA channel can be monitored by computing the free
energy profile as a function of the position of the ions along the pore.
However, the large conformational changes that underlie the funda-
mental transduction events in membrane proteins (voltage or ligand
gating, activity of transporters or pumps …) are expected to occur via
concerted motions involving a large number of atoms. Attempts at
describing those complex transitions using a simple reaction coordi-
nate are clearly going to fail. It is therefore necessary to develop com-
putational methodologies able to determine a plausible reaction
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coordinate for conformational changes of macromolecules. To make
progress on this issue, it is useful to imagine that the macromolecule
is undergoing random Brownian diffusive motions in the multi-
dimensional space of all its degrees of freedom during a large confor-
mational change. The issue is thus to refine a “path,” defined as a
sequence of states, linking the end-points of a conformational change.
Several methods have been developed to seek a solution to this prob-
lem, see, for example, Elber et al.99 Interestingly, the transition path
that has the highest likelihood, among all the possible paths, corre-
sponds to systems evolving along the so-called minimum free energy
path (MFEP). Determining the MFEP is the goal of the “string
method” of Maragliano et al.100 The knowledge of the MFEP reveals
explicitly the mechanism of the conformational change, and enables
one to compute the transition rates between the two conformations
at the end-points. This area of research is expected to become
extremely active in the next years, with the rising need to describe
increasingly complex conformational changes.

12.8.3 Bridging the Gap between Atomic
Simulations and Physiology

This chapter presented an overview of the computational methods
used for modeling ion channels at the atomic level. While there is no
doubt that the behavior of macromolecules such as ion channels can
be understood from the fundamental laws of physics, there is obvi-
ously a long, long way from the atoms to the physiology of entire
organisms. Given the level of complexity of these systems, we do not
think that a straight brute-force “bottom-up” approach is viable, nor
desirable. A more realistic strategy is to adopt a progressive multi-
level representation of these complex systems, whereby the details of
a finer level are absorbed into the effective parameters of the next,
coarser level, and so on and so forth. Although this has not been
achieved yet, some elements are already in place. For example, the
work of Voth and collaborators provides good clues as to how a
detailed atomic representation can be optimally reduced to a smaller
number of degrees of freedom.101 Such reduced coarse-grained
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models can then be utilized to explore the mechanistic and functional
consequences, as done beautifully by Oster and collaborators in the
case of F1-ATPase, for example.102 The statistical behavior of large
population of different channels, can then be understood with
approaches similar to those developed by Rudy to model the cardiac
tissue.103 What is important is to have rigorous computational algo-
rithms enabling us to trace a phenomenon, all the way from the
molecular level to the physiological level. Bridging this gap rigorously
will allow the possibility to understand pathological mutations and
the action of specific drugs.
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Chapter 13

Milestones in Molecular Dynamics
Simulations of RNA Systems

Y. Hashem†, E. Westhof†, and P. Auffinger*,†

13.1 Introduction

The first MD simulation of a complete protein (Bovine Pancreatic
Trypsin Inhibitor or BPTI; 58 residues; 9.2 ps of simulation time) was
published in 19761–3 and provided significant insight on the shortest
biomolecular motions.4 Hence, in 2007, the history of molecular
dynamics (MD) simulations of biomolecular systems covers a time-
span of 31 years. Nowadays, MD simulations of aqueous protein
systems have become quite popular, and numerous methods have
been developed to address a large variety of issues of interest to struc-
tural biochemists5 on time scales reaching the microsecond or 106 ps.6

The first MD simulations of DNA duplexes were published
seven years later, in 1983.4,7,8 At the same time, the first MD sim-
ulations of an RNA system were reported.4,9 The tRNAPhe molecule
that was chosen for these initial theoretical investigations com-
prised 76 nucleotides, and was, consequently, much larger than
most biomolecular systems studied by then. Given the very limited

*Corresponding author: Email: p.auffinger@ibmc.u-strasbg.fr.
†Architecture et Réactivité de l’ARN, Université Louis Pasteur de Strasbourg, CNRS,
IBMC, 15 rue René Descartes, 67084 Strasbourg Cedex, France.
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computational means available during these pioneering days, dras-
tic approximations had to be made in order to achieve 12 ps of sim-
ulated time. For instance, no solvent particles could be taken into
consideration. Rather unfortunately, in such in vacuo conditions,
nucleic acid systems revealed a strong propensity towards structural
degradation. In order to improve structural stability, several strate-
gies were developed, such as: setting all electrostatic charges to
zero; scaling the electrostatic charges and/or the dielectric constant
in order to mimic the effects of the solvent and of counterion con-
densation; including explicit hydrogen bonds; and even using peri-
odic longitudinal boundary conditions that make a DNA oligomer
effectively a segment of an infinite double helix (see Ref. 4).
Evidently, these methods were of a transient kind, and it became
soon obvious that real stability improvements were only possible
through the inclusion of explicit solvent particles, especially if one
aims to investigate molecular motions on longer time scales.
Indeed, explicit solvent techniques were applied with some success
to protein and DNA systems.10,11 Unfortunately, for RNA mole-
cules, no real improvement could be achieved since this class of
nucleic acids was shown to be much more sensitive than DNA sys-
tems to the accuracy with which their environment was modeled.
This observation resulted in an almost complete absence of RNA
simulations between 1983 and 1995. It was only in 1995, with the
development of cost-efficient methods for the treatment of long-
range electrostatic interactions based on the Ewald summation
techniques, that the field came “back to life.”

In the following, we will evoke the pre- and contemporary Ewald
“era” by describing some salient results gathered during this 24-year-
long journey of MD simulations of RNA systems. This report
includes also a table that regroups all MD simulations of RNA systems
reported so far that use state-of-the-art Ewald summation techniques
and explicit solvent models (Table 13.1).

We will not address issues related to the use of implicit solvation
methods that are described in other publications.5,12–14 The inter-
ested reader will find in the following reviews more information on
general5,15,16 and RNA3,4,17–21 MD simulations.
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Table 13.1 List of MD Simulations of RNA Systems (up to September 2007) Using an Explicit Representation of the
Solvent and Ewald Summation Methods for the Treatment of the Long-Range Electrostatic Interactions (Simulations
Using Truncation37–42 or Density Functional Methods86 are not Listed in the Table). This Table is an Update of Data
Published Elsewhere.18,19

Modified Water
Starting Structures Typea nt.b Length (ns)c Ions Nucleotides Force-fieldd Modele References Year

Single strands

r(A3), r(U3), r(A6), r(U6) m 6 65.0 K+ AMBER TIP3P 77 2004
r(GA4C) m 6 1.5 Na+ AMBER TIP3P 87 2004
r(CGCU4GCG) m 10 100.0 Na+ CHARMM TIP3P 88 2007
9 ≠ single strands m 13 2.1 Na+ Am; Cm; Um AMBER TIP3P 89 2003

Hybrids

DNA.RNA m 20 2.0 Na+ AMBER TIP3P 90 1997
m/x 24 11.0 Na+ AMBER TIP3P 91 2005
m 20 2.0 Na+ AMBER TIP3P 92 2003
x 20 10.0 Na+ AMBERnew TIP3P 46 2007

HNA.RNA m 16 1.1 Na+ HNA AMBER TIP3P 93 1998
MOE.RNA m 20 1.3 Na+ MOE AMBER TIP3P 94 1998
PNA.RNA m 12 2.5 Na+ PNA AMBER TIP3P 95 2000
Amide-3 DNA.RNA m 12 10.0 NH4

+ Amide-3 linkage; CHARMM TIP3P 96 2005
Am; Gm

5-propynyl DNA.RNA m 20 2.0 Na+ 5-propynyl AMBER TIP3P 92 2003
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Table 13.1 (Continued )

Modified Water
Starting Structures Typea nt.b Length (ns)c Ions Nucleotides Force-fieldd Modele References Year

Duplexes

ApU and GpC steps x 8 2.0 Na+ AMBER TIP3P 97 1995
(in crystal)

r{(ApU)12}2 m 48 2.4 0.2M KCl AMBERion SPC/E 98 2001
r{(CpG)12}2 m 48 2.4 0.2M KCl AMBERion SPC/E 99,98–101 2000/1/2
r{(CmpGm)12}2 m 48 4.4 0.2M KCl Cm; Gm AMBERion SPC/E 100 2001
r{(CmpGm)3}2 x 12 0.7 Na+ Cm; Gm CHARMM SPCf 102 2000
r{(CpG)3}2 m
r(CCAACGUUGG)2 m 20 2.0 Na+ AMBER TIP3P 90 1997
r(CGCGAAUUCGCG)2 m 24 11.0 Na+ AMBER TIP3P 103 2004
r(CGCGGAUUCGCG)2 m 24 30.0 0.1M NaCl AMBER TIP3P 104 2004
r(GGACUUCGGUCC)2 x 24 4.0 0.1M NaCl AMBER TIP3P 105 2001
r(UAAGGAGGUGUA) 2 m 24 2.0 Na+ CHARMM TIP3Pm 47,48 2000

(in crystal)
r(GCCAGUUCGCU- x 28 3.0 Na+, 0.1M Br5C AMBER TIP3P 106 2002

GGC)2 NaCl
r(CGCUGCG)2 m 16 5.0 NaCl F (fluorinated); AMBER TIP3P 107 2004

P (phenyl)
r(CGUUACG)2

r(GAGUACUC)2 m 16
r(GCGAGUACUCGC)2 m 24 5.0 0.3, 1.0M CHARMM TIP3Pm 108 2003

NaCl
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Table 13.1 (Continued )

Modified Water
Starting Structures Typea nt.b Length (ns)c Ions Nucleotides Force-fieldd Modele References Year

r(CGCGAUCGCG)2 m 20
r(CCUUUCGAAAGG)2 m 24
r(UAAGGAGGUGAU)2 x 24
r(GGCUGGCC)2

r(GGCGUGCC)2

r(GACUGGUC)2

r(GACGUGUC)2

r(GGAUGUCC)2 m 16 5.0 0.3, 1.0M CHARMM TIP3Pm 109 2005
r(GGAGUUCC)2 NaCl
r(GGCUAGCC)2

r(GGCAUGCC)2

r(CGCU4GCG)2 m 20 5.0 Na+ CHARMM TIP3P 88 2007
6 RNA duplexes m 32 50.0 Na+ I2A/I5C/I5U- AMBER TIP3P 110 2007

phosphor-
amidite

G = C rich duplex m 74 40.0 Na+ AMBER TIP3P 111 2006
r(GGCGAGCC)2 n 16 0.3 Na+ AMBER TIP3P 112 2006
r(GCGGACGC)2

r(CGCGAAUUCGCG)2 m 24 10.0 Na+ AMBERnew TIP3P 46 2007
r(GCGAGAGUAGG)/ x 22 10.0 Na+ AMBERnew TIP3P 46 2007

r(CCGAUGGUAGU)
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Table 13.1 (Continued )

Modified Water
Starting Structures Typea nt.b Length (ns)c Ions Nucleotides Force-fieldd Modele References Year

Bulges

r(CGCGACGCG/ m 17 4.0 Na+ AMBER TIP3P 113 2006
CGCGCGCG)

r(CGCGUCGCG/
CGCGCGCG)

Hairpins

r(GGGC[GCAA]GCCU) n 12 0.2 Na+ OPLS SPC/E 43 1995
tetraloop

r[GCAA] tetraloops m 26 3.0 0.1M AMBER TIP3P 114 2000
NaCl

r[GCAA] tetraloop m 12 NC Na+, Mg2+ AMBER TIP3P 115 2005
(folding) TIP4P

r(GC[GAAG]GC) m 8 2.0 0.3, 0.5M AMBER TIP3P 116 2001
tetraloop (folding) NaCl

r(GGC[NCAA]GCC) m 10 1.4 Na+ I CHARMM TIP3P 117 2003
tetraloop

r(GGAC[UUCG]GUCC) n 12 2.0 Na+ AMBER TIP3P 33,118 1995/7
tetraloop

r(GGCAC[UUCG] m 14 50.0 Na+ AMBER TIP3P 119 2006
GUGCC) tetraloop
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Table 13.1 (Continued )

Modified Water
Starting Structures Typea nt.b Length (ns)c Ions Nucleotides Force-fieldd Modele References Year

r(CGC[U4]GCG) n 10 12.0 Na+ AMBER TIP3P 120 2005
tetraloop m 10 70.0 Na+ CHARMM TIP3P 88 2007

r(GAGGUC[O6] m 18 23.0 Na+ O = abasic AMBER TIP3P 121 2006
GAUCUC) hexaloop

Ribozymes and ribozyme
fragments

Hammerhead ribozyme x 41 0.8 0.1M AMBER SPC/E 122,123 1997/8
NaCl,
Mg2+

x 41 1.1 Na+, Mg2+ AMBER TIP3P 124,125 1998;
2000

x NC 13.0 Na+, Mg2+ AMBER TIP3P 126 2005
x NC 12.0 0.1M CHARMM TIP3P 127 2007

NaCl,
Mg2+

HDV ribozyme x 78 17.0 Na+, Mg2+ C+ AMBER TIP3P 61,128 2005
x 61 20.0 Na+ C+ AMBER TIP3P 129 2007
x 62 17.0 Na+, Mg2+ C+ AMBER TIP3P 130 2007

HCV IRES IIId domain n 28 2.6 Na+, Mg2+ AMBER TIP3P 131 2004
Hairpin ribozyme x NC 30.0 Na+, Mg2+ d(A), d(G) AMBER TIP3P 132 2006
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Table 13.1 (Continued )

Modified Water
Starting Structures Typea nt.b Length (ns)c Ions Nucleotides Force-fieldd Modele References Year

snRNA and snRNA
protein complexes

U1A heptaloop n 21 5.0 Na+, Cl− AMBER TIP3P 133 2002
n 30 1.0 Na+ AMBER TIP3P 134 1999

U4 Kink-turn x NC 10.0 Na+ AMBER NC 135 2005
U4 Human snRNA x 43 10.0 Na+ AMBER TIP3P 136 2005

x 47 74.0 Na+ AMBER TIP3P 137,138 2005/6
U1A RNA/protein x 21 1.0 Na+ AMBER TIP3P 134 1999

complex x 21 1.8 0.1, 1.0M AMBER SPC/E 139 1999
NaCl

x 20 5.0 NC AMBER TIP3P 140 2005
U1A/SL2 RNA/protein x 21 10.0 Na+, 0.3M AMBER TIP3P 141 2007

complex NaCl
U1A/U1hpII RNA/ x 28 2.0 Na+ AMBER NC 142 2006

protein complex
U2/hairpin IV RNA/ x 23 2.2 K+ AMBER TIP3P 143 2001

protein complex
U4 Human snRNA/ m 62 3.0 K+ AMBER TIP3P 144 2000

sm binding site
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Table 13.1 (Continued )

Modified Water
Starting Structures Typea nt.b Length (ns)c Ions Nucleotides Force-fieldd Modele References Year

Telomerase fragments

RNA hairpin n 30 20.0 0.1M KCl AMBER TIP3P 145 2005
Pseudoknot m 48 4.0 Na+, 0.1M AMBER NC 146 2006

NaCl

tRNA, tRNA fragments
and tRNA protein
complexes

tRNAGln & var-AGGU- m 76 6.5 NH4
+ AMBER TIP3P 147 2007

tRNAGln

tRNAAsp x 76 0.5 NH4
+ D; Ψ; m1G; AMBERion SPC/E 53,54 1996/9

m5C; m5U
tRNAAsp anticodon x 17 0.5 NH4

+ Ψ; m1G AMBERion SPC/E 44,55,148 1996/7
hairpin

tRNAlys,3 anticodon x 17 6.0 Na+ mcm5s2U, AMBER TIP3P 149 2006
hairpin ms2t6A, ψ

tRNAAla acceptor stem m 22 2.5 NH4
+ CHARMM TIP3Pm 150 2002

hairpin m 22 2.0 Na+ I; 2AA; 2AP; AMBER TIP3P 151–153 1999;
IsoC; dU; Z; 154 2000/2
M; 7DAA

tRNAGln/synthetase x 76 6.5 NH4
+ AMBER TIP3P 147 2007
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Table 13.1 (Continued )

Modified Water
Starting Structures Typea nt.b Length (ns)c Ions Nucleotides Force-fieldd Modele References Year

Ribosome and ribosomal
fragments

30S Thermus x 1.5k 10.0 0.1M KCl, AMBER TIP3P 155 2006
thermophilus

70S Thermus m 4.5k 4.0 7 mM MgCl2
thermophilus

16S rRNA core x 81 5.5 0.1M NaCl AMBER TIP3P 156 2003
Helix 44 of 16S rRNA x NC 30.0 Na+, Mg2+ AMBER TIP3P 111 2006
SRD 23S rRNA E.coli x 27 25.0 Na+ AMBER TIP3P 157 2006
SRD 28S rRNA rat 29 35.0 Na+ AMBER TIP3P
8 duplexes with G•U x 48 10.0 Na+ AMBER TIP3P 158 2006

mismatches
Kink-turns 38, 42, 58 x 38 43.0 Na+ AMBER TIP3P 137,159 2004/5
Kink-turns 38, 42, x 84 79.0 Na+, K+, AMBER TIP3P 138 2006

42+FBS, 58 Mg2+

5S rRNA loop E x 24 10.0 Na+, Mg2+ AMBER TIP3P 160 2003
x 24 11.5 0.2, 1.0M AMBER SPC/E 64,161, 2003/4

KCl, 162
Mg2+
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Table 13.1 (Continued )

Modified Water
Starting Structures Typea nt.b Length (ns)c Ions Nucleotides Force-fieldd Modele References Year

rRNA/protein

5S rRNA loopE/L25 x 32 24.0 Na+ & AMBER TIP3P 163 2004
Mg2+

S15/16S binding site x 57 15.0 Na+, & AMBER TIP3P 164 2007
Mg2+

L11/rRNA Thermotoga x 58 16.0 Na+, 0.1M AMBER TIP3P 165 2006
maritima NaCl

rRNA/ligand

A site/neomycin B x 21 10.0 Na+ AMBER TIP3P 166 2002
A site/neamin, x 46 1.8 Na+ AMBER TIP3P 167,168 2006/7

paromomycin &
synthetic antibiotic

A site/paromomycin x 42 25.0 0.2M KCl AMBERion SPC/E 67 2006

Viral particles and
fragments

Satellite tobacco mosaic m 949 13.0 Cl-, Mg2+ CHARMM TIP3P 70 2006
virus (STMV)

Beet western yellow virus x 26 5.0 Na+ C+ AMBER TIP3P 60 2001
pseudoknot x 26 10.0 Na+ AMBERnew TIP3P 46 2007
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Table 13.1 (Continued )

Modified Water
Starting Structures Typea nt.b Length (ns)c Ions Nucleotides Force-fieldd Modele References Year

H3 kissing loop (murine n 28 16.0 Na+ AMBERion TIP3P 169 2003
leukemia virus)

BIV tat-TAR complex n 28 1.2 Na+ AMBER TIP3P 170 2001

HIV fragments

LAI SL1 hairpin n 23 10.0 Na+ AMBER TIP3P 171,172 2002/3
LAI SL1 extended x/n 46 NC Na+ AMBER TIP3P 173 2005

dimer
LAI SL1 kissing loop m 70 31.0 NC AMBER NC 174 2007
LAI & MAL kissing m 46 0.4 Na+ AMBER TIP3P 175 2002

loops x/n 46 20.0 Na+, Mg2+ AMBER TIP3P 176 2004
x 46 7.5 Na+, Mg2+ AMBERion TIP3P 169 2003

TAR RNA hairpin n 14 1.6 Na+ CHARMM TIP3P 177 2003
n 29 20.0 Na+ CHARMM TIP3P 178 2006
n 30 2.0 Mg2+ AMBER TIP3P 179 2004

TAR RNA/KkN ligand m 29 20.0 Na+ AMBER TIP3P 180 2006
TAR aptamer complex n 29 3.0 Na+ CHARMM TIP3Pm 181 2003

(Continued )

b
5
8
7
_
C
h
a
p
t
e
r
-
1
3
.
q
x
d
 
 
1
/
2
4
/
2
0
0
8
 
 
1
2
:
2
7
 
P
M
 
 
P
a
g
e
 
3
7
4



M
ilestones in M

olecular D
ynam

ics Sim
ulations of R

N
A

 System
s

375

FA

Table 13.1 (Continued )

Modified Water
Starting Structures Typea nt.b Length (ns)c Ions Nucleotides Force-fieldd Modele References Year

Others

FMN aptamer n 35 1.7 Na+ AMBER TIP3P 182 1999
RNA nanotube m 21 13.0 0.1M AMBER TIP3P 183 2007

NaCl
dsRBD/dsRNA RNA/ n 30 2.0 Na+, Cl− AMBER TIP3P 184 2002

protein complex

a Indicates the starting structure type: “m” for model, “n” for NMR and “x” for X-ray. Note that sometimes it is difficult to dis-
tinguish model from NMR or X-ray structures since models might sometimes include experimentally solved structural fragments.
b Indicative size (in nucleotides) of the largest simulated RNA fragment.
c Indicative length (in ns) of the longest described simulation.
dAMBERion indicates that different ion parameters were used; AMBERnew indicates that the most recent AMBER force field
was used.49

e TIP3Pm corresponds to a modified TIP3P model; SPCf to a flexible SPC water model.
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13.2 Pre-Ewald Times

Despite its large size, the tRNAPhe molecule became the first target for
RNA molecular dynamics simulations, since in 1983,4 it was the only
RNA molecule of significant size for which crystallographic coordi-
nates were available. These pioneering simulations never exceeded the
24 ps time scale under in vacuo conditions. They were followed by a
few studies using MD techniques to help solve NMR structures,22–24

and by a remarkable work describing the dynamics of a model of the
domain II of the HIV Rev responsive element (RRE) containing
GG and GA non-Watson-Crick base pairs25 under both in vacuo and
in aquo conditions. In 1989, an in vacuo study trying to elucidate the
catalytic mechanism of the hammerhead ribozyme based on a model-
built structure was also published.26 Note that the first hammerhead
crystal structure was published in 1994.27 Similarly, a model-based
MD simulation of a bacteriophage intron fragment of 112 nucleo-
tides was published in 1990.28 Unfortunately, these simulations failed
to provide useful insight into the dynamics of the “real” systems since
the starting model structures were by far too imprecise.19

Moreover, in order to limit the computational involvement of
such simulations, long-range electrostatic interactions were usually
truncated around 8Å. With this approximation, some attempts made
in 1995 to simulate the dynamics of the tRNAAsp anticodon hairpin
failed despite the inclusion in the model of water molecules and
a neutralizing atmosphere of NH4

+ cations. The hallmarks of this fail-
ure were related to a rapid degradation, on the 100 ps time scale, of
the important tertiary interactions of the anticodon loop present in
the crystallographic structure.29 A subsequent study that used a 16 Å
truncation value, revealed an increased stability of the anticodon hair-
pin on the 100 ps time frame associated with attenuated structural
degradations. Despite remaining structural instabilities, these simula-
tions illustrated the unexpected contribution of solvent molecules
located at long distances from the solute to the stability of biomolec-
ular structural motifs, and pointed to the importance of long-range
solvation forces.30,31 Further simulations using Ewald techniques (see
next section) led to very stable simulations demonstrating that, for
generating stable trajectories of folded RNA molecules, both the
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solvent and the long-range electrostatic interactions had to be taken
into account in the calculations.30,32 These findings stigmatized the
limitations of some of the major approximations used at that time.

13.3 Ewald Summation Methods

As noted in the introduction, Ewald summation methods revolution-
ized the MD field at numerous levels.14 Specifically, these methods
were important for simulations of RNA systems that were shown to
be especially sensitive to the treatment of the long-range electrostatic
forces.32,33 Although Ewald methods were marginally used in simula-
tions of DNA systems,34 the development and implementation, in
1995, of the cost-efficient particle mesh Ewald (PME) summation
method35 in the widely used AMBER molecular dynamics simulation
package36 boosted the field and led to the generation of stable trajec-
tories of RNA systems on the nanosecond time-scale.30,32,33

Despite the popularity of Ewald summation methods, some alter-
native techniques for the treatment of long-range electrostatic inter-
actions such as shifted truncation methods37–42 are still in use. Other
promising methods for the efficient treatment of long-range electro-
static interactions are currently being developed14 but have not yet
been used in MD simulations of RNA systems.

13.4 The Ewald Era

Nowadays, the largest number of MD simulations of RNA systems
makes use of Ewald summation techniques. Yet, it is almost impossible
to detail each of the about 110 publications referenced in Table 13.1.
Since the first MD simulations, which had as their main purpose to
establish the applicability of the Ewald methods for simulating RNA
molecules,33,43,44 some records have been established both in terms of
system size (from dinucleotides to ribosome’s) and time scales (from
0.1 to over 100 ns). The diversity of the investigated systems is impor-
tant and comprises single stranded RNA particles, synthetic hybrids,
duplexes, hairpins, kissing loops, kink-turns, ribozymes, pseudoknots,
complete tRNAs and tRNA fragments, ribosomes and ribosomal
motifs, RNA/antibiotic and RNA/protein complexes, and a complete
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viral particle. Most of the starting structures used by these studies are
derived from crystallographic or NMR investigations in their original
or mutated form. Other starting structures are models. Some of these
simulations include synthetic or naturally modified nucleotides and
are conducted either in a cationic neutralizing aqueous atmosphere
(minimal salt) or in an aqueous environment mimicking various ionic
conditions.3 The largest part (≈80%) of these trajectories has been
generated by using the AMBER simulation package. Since 1995, the
number of publications related to this field is increasing steadily
(Fig. 13.1). This raise in production is determined by the combina-
tion of three facts: the implementation of the fast Ewald methods for

378 Computational Structural Biology

FA

Fig. 13.1 Number of MD studies using an explicit representation of the solvent
and Ewald summation methods from 1995 (origin) to September 2007 (see
Table 13.1). The light histogram is a cumulative view of the yearly number of
published MD studies of RNA systems (darker histogram).
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the treatment of the long-range electrostatic interactions; the increase
of available crystal structures (in 2007, more than 800 biomolecular
structures including RNA nucleotides were deposited in the Nucleic
acid DataBase or NDB); and the growing interest of the scientific
community for this class of nucleic acids. Some successes and failures
of these techniques will be described next.

13.4.1 Structural Stability and Force Fields

The history of MD simulations is marked by the requirement to con-
stantly improve existing methodologies and force fields in order to
generate dynamically stable biomolecular trajectories on the longer
time scales. If, in 1995, the 1 ns time limit could be reached for RNA
systems, the field is now facing other limitations associated with back-
bone parameters. For DNA trajectories generated by using the
AMBER parm99 force-field45 and the particle-mesh-Ewald summa-
tion method, it has been shown that the investigated duplexes started
to lose their structure in a stepwise manner after 10 ns of simulated
time. These structural alterations were characterized by an important
increase in α/γ transitions, most of them being irreversible.46 A new
version of the AMBER force field has been developed in order to
address this issue, and preliminary data seem to indicate that this new
force field behaves well for RNA systems. Other force fields for
nucleic acids are currently being developed and will have to be thor-
oughly tested on these longer time scales.47–49 These studies remind
us that great caution must be exerted in the interpretation of sponta-
neous structural transitions occurring on the longer time scales in MD
trajectories.

13.4.2 Solvent and Ion Parameters

One of the greatest achievements of MD studies resides in the assess-
ment that the solvent, composed of water molecules, mono- and
di-valent cations, as well as anions, plays a determining role in the
structure of RNA systems.3 All the studies referenced in Table 13.1
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use at least a minimal ionic atmosphere composed of Na+, K+, or
NH4

+ cations in order to neutralize the charges carried by the anionic
RNA backbone, while others include in their system divalent cations
(Mg2+) and/or an excess of salt (NaCl or KCl) at concentrations
ranging from 0.1 to 1.0 M.

Hence, it is of great importance to have reliable parameter sets
available for the solvent particles surrounding nucleic acids.
Numerous water models have been developed (TIP3P, TIP4P,
SPC/E, etc.) and some of the most popular ones have been repeatedly
tested.50 Similarly, various parameter sets for ions have been developed
and used in MD simulations. Parameters developed by Åqvist51 have
been integrated in the AMBER force field. Unfortunately, recent
investigations demonstrated that, when the solute was surrounded by
an excess of (> 0.2M) salt, KCl or NaCl aggregates formed sponta-
neously, pointing to an imbalance of the parameters solvent (water
and ion) implemented in the AMBER force field. Simulations con-
ducted with parameters developed by Dang52 did not exhibit such
unphysical behavior and were therefore considered better candidates
for realistically simulating the ionic environment around nucleic acids.
Simulations using the AMBER force field and the latter, or different
ion parameters, are rare and are noted AMBERion in Table 13.1.
Again, one has to be aware of the limitations of current force fields in
order not to over interpret data.

13.4.3 tRNA and Modified Nucleotides

tRNA molecules and molecular fragments have been historically very
important in the development of MD simulations of RNA systems.
The first in vacuo MD simulations were associated with tRNAPhe

molecules while some of the first MD simulations using Ewald sum-
mation methods were devoted to the entire tRNAAsp molecule53,54 and
its anticodon hairpin.30,55 Recently, the binding affinity of E. coli
tRNAGln to glutaminyl-tRNA synthetase was investigated. Other studies
focused on the tRNAAla acceptor stem. Most of these simulations took
into consideration the modified nucleotides that are part of the matu-
rated tRNAs. Among those, the most commonly occurring modification

380 Computational Structural Biology

FA
b587_Chapter-13.qxd  1/24/2008  12:27 PM  Page 380



is pseudouridine56 followed by 2′-O-Me or Nm nucleotides.57 MD
simulations were able to provide some clues confirming experimental
findings stating that these modified residues are stabilizing RNA
structures through encaging water molecules with long-residency
times.55,56

Since the interest for tRNA molecules is still vivid, and since mod-
ified nucleotides play a role in numerous other RNA structures
including the largest ones (ribosomes), a study devoted to the para-
meterization of the 107 currently known naturally modified nucleotides
has been published58; see also.59 In addition, one has to be aware of a
very specific type of “modification” that is associated with protonated
residues, often not detected in crystallographic structures and for
which parameters have rarely been developed.60,61 Other studies deal-
ing with modified backbones resulted in the parameterization of these
unusual residues that are of importance in the development of anti-
sense strategies (Table 13.1).

13.4.4 Ribozymes

The first crystallographic structures of a ribozyme (catalytic RNA),
a minimal hammerhead construct, led to the generation of several
MD simulations having the aim to elucidate its catalytic mechanism
without, however, much success for two main reasons. First, these
crystallized structures were different from the active form of the
hammerhead ribozyme that was solved recently.62 Second, and not
least importantly, the crystal structure on which most studies were
based63 suffered from a wrong solvent density interpretation.
Indeed, some Mg2+ cations were assigned to electropositive loca-
tions close to nucleic acid bases that were shown to correspond
to SO4

2− binding sites.64 Note that these hammerheads were crystal-
lized in 1.8M Li2SO4 salt conditions. Hence, it is most probable
that the participation of Mg2+ cations (if any) is much smaller than
initially thought based on the above-mentioned interpretations of
the crystal structures. Consequently, great caution should be taken
in choosing the starting structures on which subsequent MD stud-
ies will be based.19
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Other ribozymes or ribozyme fragments (Table 13.1), like those
of the hepatitis delta virus (HDV), hepatitis C virus (HCV), and hair-
pin ribozymes, are currently being investigated, and some clues
related to their internal dynamics and possible catalytic implications
are being presented.

13.4.5 Ribosomes and Ribosomal Fragments

Ribosome systems are currently the biggest and most complex
systems that have been simulated today, and this represents a consider-
able achievement for simulation techniques.65 The published
simulations are based on crystallographic structures of the small riboso-
mal subunit or on model structures of the 70S particle. This last system
comprises approximately 2.64 million atoms if one counts its RNA,
protein, and solvent parts, and it gave birth, to the best of our knowl-
edge, to the largest all-atom biomolecular simulation published to date.

Of course, in order to better understand the whole ribosomal pic-
ture, the dynamics of important fragments such as kink-turns, bulges,
helices, and proteins have also to be better understood. In this
respect, besides classical MD studies,21 the energy landscape of the
ribosomal decoding center has been investigated by using replica
MD methods65,66 and the role of water molecules in aminoglycoside
binding has been described.67 Besides, the reaction mechanism of
the peptide bond formation,68 as well as the energetics of the codon-
anticodon recognition,69 have been studied, though without using
Ewald techniques.

13.4.6 Viral Particles

Another main achievement of the use of theoretical methods, which
goes far beyond the somewhat “narrow” but expanding field of RNA
simulations, is related to the first all-atom simulation of a complete viral
particle.70 This satellite tobacco mosaic virus (STMV) consists
of an icosahedral capsid composed of 60 identical copies of a single
protein and a 1.058 kb RNA genome coding for that protein and
a second protein of unknown function (note that the simulated
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nucleotide sequence is artificial). This system was solvated by ∼300.000
water molecules and 773 ions that represent about 84% of the
1.06 million simulated atoms (Fig. 13.2). Among other details, the sim-
ulation revealed that although the virus looks symmetrical, it pulses in
and out asymmetrically in breathing-like motion. This simulation rep-
resents, to the best of our knowledge, the first all-atom simulation of a
“complete” life form. Besides, significant efforts are made to investigate
the dynamical behavior of some important HIV motifs (Table 13.1).

13.5 Dynamic Models

Next to classical MD simulations, a large number of MD simula-
tions make use of “targeting” strategies in order to induce specific
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Fig. 13.2 Schematic representation of the STMV system. The protein capsid
(green) is enveloping the RNA (red and orange). The ions are drawn in yellow (mag-
nesium) and purple (chloride). Reproduced with permission from Freddolino PL,
Arkhipov AS, Larson SB, McPherson A, Schulten K. (2006) Structure 14: 437–449.
© Cell Press.
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conformational changes71 or local enhanced sampling (LES)72 tech-
niques and replica methods (REMD)72 to increase conformational
sampling.73 Such simulations were not integrated in Table 13.1 since
they do not, in our opinion, correspond to the definition of an MD
simulation. In MD simulations, one defines specific conditions com-
prising, among other things, a starting structure (model, X-ray, NMR
or mixed); a representation of the solvent, and a representation of the
interatomic forces at play in biomolecular systems.19 On the opposite,
targeting strategies voluntarily impose artificial forces that have the
aim to drive the system from one state to another. During such a
process, it is difficult to observe spontaneous conformational changes.
Moreover, the time-scales of the simulated processes are certainly far
from the “real” ones. Hence, they should rather be called “dynamic
models.” It is indeed important to establish such a distinction in order
to avoid bringing additional confusion to this already complex field.74

13.6 Future Outlook

If one looks back at the brief history of MD simulations, it appears
that evolution occurred mostly stepwise through the development of
new techniques that helped in eliminating approximations thanks to
the steady increase of available computational power. Indeed, the main
purpose of approximations in computational science is to be able to
artificially “overcome” size and time scale limits. Yet, approximations
often considerably degrade the reliability of the data that are gathered
through the simulation techniques. Nevertheless, approximations are
currently needed to reach the longer time scales that are currently in
the 100 ns range, and to create dynamic models for systems of the size
of a ribosome.75

In the future, the field will have to deal with “complex” issues,
but at the same time, also with less “impressive” or less obviously
“complex” ones. Among the most impressive ones, we will probably
create more models on RNA folding, simulations of large size parti-
cles,65 and gain better insight into molecular recognition issues related
to RNA/drug interactions.67,76 For example, the electrophoretic
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transport of single-stranded RNA molecules through 1.5 nm-wide
pores of carbon nanotube membranes has been investigated by using
MD techniques.77 Such studies are mainly driven by experimentalist’s
demands.21

“Less” spectacular issues are associated with uncovering some of
the basic principles associated with molecular recognition phenomena.
Besides hydrogen-bonds and the less-well defined stacking interac-
tions, numerous other intermolecular interactions remain to be
uncovered in the biomolecular field and integrated in current force
fields. For instance, the unfrequent halogen bonds involving an inter-
action between an electron acceptor C–X (X = Cl, Br, I) group and an
electron donor O = C partner were only recently described in bio-
molecular systems.78 Although rare, one has to take these interactions
into account if he or she wants to understand recognition phenomena
involving halogenated drugs or substrates.

In that perspective, polarizable force fields will certainly become
more and more popular since they allow for improved adaptation
towards “environmental changes.” Promising results on DNA sys-
tems have been published recently.79 However, new and probably
tedious parameterization studies will have to be undertaken.

At a more “elaborate” level, density function theory (DFT)-based
Car-Parrinello MD techniques or other hybrid quantum mechanical/
molecular mechanical (QM/MM) methods will allow us to describe
the time evolution of molecular systems without resorting to a pre-
defined potential energy surface80 and also allow the addressing of
more subtle issues such as those related to a better understanding of
ribozyme catalytic mechanisms.81–84

Last, but not least importantly, it is essential to develop tools for
comparing MD simulation results with experimental data. The SwS or
“Solvation web Service for nucleic acids”85,3 has been designed to pro-
vide an exhaustive overview of the solvation of nucleic acid structural
elements through the generation of 3D solvent density maps. It is
only through such confrontations (Fig. 13.3) and through the detec-
tion of possible “discrepancies” that available force fields and method-
ologies will be able to evolve towards new levels of “realisms”. For
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achieving such a purpose, a good choice of the MD starting structures
and conditions is crucial.19
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Fig. 13.3 Comparison of water-binding sites derived from (a) MD simulations of
a solvated r(GC)12 duplex and (b) a statistical analysis of r(G = C) pairs extracted from
all NDB nucleic acid structures with resolutions equal to or below 3.0 Å using the
SwS web service, available at http://www-ibmc.u-strasbg.fr/arn/sws.html.
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Chapter 14

Computational Protein Design

J. G. Saven*

14.1 Introduction

Proteins have been evolutionarily engineered to perform a variety of
functions that involve biomolecular structure, catalysis, and recogni-
tion. Hence, obtaining a quantitative, predictive molecular under-
standing of the structure and function of proteins is central to
understanding the molecular basis of many life processes. Because the
function of a protein is often closely tied to its structure, protein
structure determination is critical for understanding the interplay
between protein sequence, structure, and function. While determin-
ing the sequence of a protein is straightforward, accurately predicting
the three-dimensional structure of a protein based on its sequence
alone remains a challenging task. Although great advances are being
made in this field of structure prediction, limitations with regard to
the ability to reliably predict the three-dimensional structure of a pro-
tein suggest other types of studies involving sequence and structure
may be used to further investigate (and engineer) proteins.

While structure prediction attempts to determine a three-
dimensional structure from a protein’s sequence of amino acids, pro-
tein design involves the identification of sequences having a target
folded structure and desired molecular properties. Efforts addressing

*University of Pennsylvania, Department of Chemistry, 231 South 34th Street,
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this “inverse protein folding” problem1 can test our understanding of
the key features of well-folded proteins. Predictions from protein
design are best verified experimentally, by synthesizing the proposed
sequences and examining their structural and biophysical properties.
De novo designed proteins have potential applications as novel ther-
apeutics, catalysts, biomaterials, and molecular scaffolds. Moreover,
protein design tests our understanding of the determinants of well-
folded structures and provides insight on structure-function rela-
tionships, since the biological functions of proteins are usually
contingent on their forming unique, well-defined three-dimensional
structures.

Proteins are complex, however, and designing sequences can be
nontrivial. These polymeric macromolecules have large numbers of
backbone and side-chain degrees-of-freedom. The stabilizing interac-
tions that guide a protein to its native state are largely noncovalent,
and such interactions can be difficult to quantify accurately. Although
proteins may be imperfect or partially “frustrated” with regard to
interactions between residues,2 the interiors of proteins are typically
well-packed with a large degree of shape and chemical complemen-
tarity among the residues. Moreover, in protein design, the identities
of the amino acids can vary, leading to exponentially large numbers of
possible sequences: if 20 amino acids are available at each variable site
in a protein comprising 100 amino acids, more than 10130 sequences
are possible. To surmount some of these difficulties, computational
methods are being developed that open new frontiers in the design
and study of proteins and other molecular systems. Most design
efforts select or create a target backbone structure and then use ener-
getic criteria to identify individual sequences or the properties of an
ensemble of sequences consistent with the target. 

Despite the complexities involved in identifying sequences, pro-
tein design is somewhat simpler than protein structure prediction. In
part, this is due to the fact that there are often multiple solutions, and
only one need be found in a successful design effort. In nature, there
are many examples of two or more proteins with essentially the same
structure and function having very different sequences. The presence of
multiple sequences consistent with a particular structure can complicate
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the use of protein design to understand sequence variability, since
sequences folding to very similar structures may be broadly distrib-
uted in sequence space. Characterizing the ensemble of viable solu-
tions may require extensive sampling or the development of methods
for characterizing such ensembles statistically. In addition, protein
structure prediction is difficult due to the covalent connectivity of the
peptide backbone, which maintains a specific amino acid sequence. As
the protein folds, distant residues in the sequence may have stabiliz-
ing interactions when they are nearby in space, e.g. due to the for-
mation of hydrogen bonds or hydrophobic contacts. Since the
sequence is fixed, residues close in sequence are also close in space,
leading to possible situations where not all noncovalent interac-
tions may be simultaneously satisfied  an effect referred to as
“frustration”.3 In protein design, however, such “frustration” may
be alleviated by changing the sequence of the amino acids, while in
protein structure prediction, alternate conformations of the backbone
must be sampled in the search for lower energy structures.

While this chapter focuses on computational approaches to pro-
tein design, such methods are not always necessary. From the proper-
ties observed in experimentally determined protein structures,
structural motifs have been identified that are common to many pro-
teins. Such motifs may be assembled to form whole proteins or pro-
tein complexes. This hierarchical protein design4,5 has been successful
in designing proteins such as helix-bundles and coiled-coils.6,7 On the
other hand, partially random protein libraries with diversities greater
than 105 may be generated, from which variants with desired charac-
teristics may be selected.8,9 Catalytic antibodies and phage display
demonstrate the power and versatility of combinatorial approaches to
protein engineering,10–12 which are appropriate for cases where we
have incomplete knowledge about the determinants of structure
and/or function. Despite their notable successes, such “non-compu-
tational” approaches to protein design can become problematic as
protein structures become complex and asymmetric, and as the num-
ber of variable positions increases. In addition, such methods often
yield proteins that do not have the well-defined tertiary structures of
natural proteins.4
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Herein, common elements of computational protein design are
discussed. Computational techniques for identifying and characteriz-
ing the properties of sequences compatible with a particular structure
are presented, as are examples of the application of such methods to
the design of particular proteins that have been subsequently studied
experimentally. 

14.2 Methodology of Computational
Protein Design

Computational protein design involves several fundamental elements.13

These elements include information necessary prior to quantitative
design, such as how structural features and inter-residue interactions
are parameterized.

Target structure. Many design efforts start with a high-resolution
structure obtained through X-ray crystallography or solution NMR,
resulting in the redesign of a known protein structure. The reuse of an
existing structure need not limit functional diversity, since different
functionalities may be obtained using the same protein fold.14 Tertiary
structures may also be computationally modeled so as to obtain novel
structures and topologies.15,16 The target structure need not be rigid
and can fluctuate about a desired overall fold topology.17,18

Degrees of freedom. In protein design, degrees of freedom associated
with the residues are varied in the search for sequences consistent with
a particular target structure. Two types of degrees of freedom are
often simultaneously varied: the amino acid identities, which specify
the sequence, and their side-chain conformations. Not all amino acids
are required to create functional proteins,19 and the use of prepat-
terning or a reduced alphabet can vastly simplify design by reducing
the number of such degrees of freedom. Statistical analyses of high
resolution structures have yielded discrete sets of side-chain confor-
mations, rotamers, that are preferentially occupied.20 Such rotamer
approximations reduce the side-chain degrees of freedom available to
each amino acid, and thus, facilitate design calculations.
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Energy function. The compatibility between sequence and structure is
evaluated using effective energy functions, which represent the
physico-chemical interactions present in the folded structure. Often,
atomistic potentials are used that are also applied to molecular simu-
lations of proteins (e.g. Amber,21 CHARMM,22 Gromos23). Most
potentials have terms involving bond lengths, bond angle, and dihe-
dral angles, as well as terms accounting for the van der Waals, elec-
trostatic, and hydrogen bonding interactions. Often, only the
noncovalent terms are explicitly evaluated, since bond lengths, bond
angles, and dihedral angles do not vary appreciably and are determined
by the backbone structure and allowed rotamers. Simplified (coarse-
grain) database-derived potentials that address structural propensities
and do not include atomistic detail may also be implemented in
sequence design.24 The quantity that specifies consistency between
structure and sequence is often the energy of a particular sequence-
rotamer configuration for the template structure. For models and sys-
tems where alternate structures may have energies comparable to that
of the template, these criteria may be extended to include explicitly
the energetic separation of the template structure from other com-
peting structures.24–26

Solvation and patterning. Hydrophobic effects help stabilize the com-
pact structures of folded proteins,27 and it is important to include
terms that account for these effects and quantify the solvation propen-
sities of the amino acids. Such solvation effects are often modeled
with an effective free energy term that quantifies the hydrophobicity
of the side-chain.28 The “microphase separation” typically observed in
proteins may also be realized via hydrophobic patterning8 to ensure
that nonpolar residues are buried in the interior while polar residues
are exposed to the solvent. The patterning of the sequence may also
be used to preferentially place amino acids that are consistent with
secondary structures present in the template structure, i.e. amino
acids having preferences for α-helix29–31 and β-sheet structures.32–34

Search methods. Once a template structure and degree of sequence
and structure variability have been specified, it remains necessary to
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search or characterize the space of possible sequences that fulfill ener-
getic “foldability” criteria. Sequence search methods based on Monte
Carlo algorithms have been widely used.35–37 These algorithms may be
made more efficient through the use of appropriate biasing in the
variation of sequence and side-chain conformation.38–40 Simulated
annealing, a variant of Monte Carlo methods, may be used to identify
low energy states,41 though in some cases these may not be global
optima.42 Other stochastic methods, such as genetic algorithms, may
also be useful for identifying low energy configurations on a rugged
fitness landscape, such as that encountered during protein
design.17,18,43,44 Pruning and elimination methods such as dead end
elimination (DEE) identify the global minimum energy sequence for
pair-wise potentials.45 The algorithm systematically discards local
sequence-rotamer states that cannot be part of the global minimum.
This leads to a narrowing of the search space during the computation.
While significant challenges remain with regard to computation time
as protein size and diversity increases, the method has been instru-
mental in many design projects.

Rather than identify particular sequences, statistical methods
directly estimate the site-specific amino acid probabilities for
sequences folding to a target structure.25,46 Modeled on the concept
of entropy maximization in statistical mechanics, the algorithm
defines an effective entropy as a function of the individual amino acid
probabilities. Maximization subject to desired energetic and func-
tional constraints yields the site-specific probabilities of the amino
acids. The sequence space can be characterized using this method,
and the probabilistic approach to protein design can easily address sys-
tems that may be too large for direct sequence sampling.
Furthermore, the method is versatile enough to identify optimal and
sub-optimal sequences, and provides information that may be readily
used to guide the construction of combinatorial experiments.25,46 For
sufficiently small degrees of sequence diversity, the sequence space
may be sampled using efficient Monte Carlo methods to yield similar
information concerning the likelihood of the amino acids at variable
residue positions.40
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14.3 Computationally Designed Proteins

Predictive tools for protein design have a variety of applications,
which include the development of new biotechnological therapeutics,
materials, and nanoscale systems as well as studies of protein struc-
ture, function, and stability. As proteins are complex and many factors
contribute to their stability and folding, sequence design efforts often
face tough challenges. Computational protein design methods have
been created to tackle some of these challenges, including the large
numbers of degrees of freedom and simultaneous consideration of a
large number of inter-residue interactions. Broadly, design efforts
have emphasized: (i) the redesign of existing proteins so as to impart
novel properties or explore the effects of sequence variation, and (ii)
the design of well-structured folded states using large-scale sequence
variability (de novo design). 

14.3.1 Protein Re-engineering

Many natural proteins have been redesigned so as to modulate func-
tion and stability and to introduce new catalytic activity. Such studies
often make use of high-resolution structures and knowledge of
the mechanisms of a protein’s particular activity. Computationally-
guided mutation has been used to stabilize yeast cytosine deaminase.47

Three out of five computationally-designed mutants of chorismate
mutase were found to have enzymatic activity comparable to wild
type, with one exhibiting greater activity and efficiency.48 Designed
mutants of procarboxypeptidase have been characterized in terms of
both their structures and their thermostabilities.49 The homing
endonuclease I-MsoI has been redesigned so as to bind and cleave at
a novel DNA recognition site, and high-resolution structures confirm
binding via the targeted protein-DNA interface.50 The constellation
of residues designed to confer triose phosphate isomerase activity to a
bacterial ribose binding protein51 may be transferred to homologous
proteins with little loss in activity, illustrating the robustness and
transferability of such centers.52 Such ribose binding proteins have
also been computationally designed to yield sensitive biosensors.53
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Computational methods for the design of enzymes continue to be
refined.54,55

Protein-protein interfaces have also recently been subjects of
computational protein design. A novel hydrogen bond network has
been engineered into the interface between DNase and an immunity
protein to yield specific recognition between the cognate partners of
the complex.56 An important adhesion protein interaction involved in
inflammatory response has been stabilized, which involves the inter-
face between integrin lymphocyte function-associated antigen-1
(LFA-1) and its ligand intercellular adhesion molecule-1 (ICAM-1).57

A calcium-binding site has been designed into the cell adhesion pro-
tein CD2, while retaining the ability to bind CD48. Such systems can
be useful for studying the engineering of Ca2+ responsive sensors,
switches, and signaling mechanisms.58 Structure-based computational
design has identified tetrapeptides that efficiently depolymerize
serine-protease inhibitor (serpin) aggregates often associated with cir-
rhosis and emphysema.59

Miniproteins provide useful model systems for investigating pro-
tein folding and design. Their small size and ultrafast folding kinetics
also facilitate their study in the context of folding theory and molecu-
lar dynamics simulations. Thus, these small molecules are excellent sys-
tems for both experimental and theoretical studies. The “speed limit”
for folding has be estimated to be on the order of one microsecond.60

Computationally-designed mutants of the 47-residue GA module of
an albumin binding domain and the 20-residue Trp-cage miniprotein,
Trp2-cage, fold on this time scale.61,62 These studies illustrate how
design may be used to explore the relationships between structure,
sequence, stability, kinetics, and folding.

Complex quaternary structures have also been subjects of design.
The DNA protection protein, Dps, is a ferritin-like dodecamer. This
high symmetry protein complex has been redesigned by designing up
to 120 mutations per protein so as to present a large hydrophobic
interior surface (Fig. 14.1). The resulting proteins fold and the iron
mineralization rates are comparable to that of the wild type. These
studies illustrate the versatility of some ferritin scaffolds for engineer-
ing proteins containing large cavities (4.5 nm or more in diameter),
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Fig. 14.1 Redesign of Dps to obtain hydrophobic interior nano-cavity.63 (a) Wild
type Dps dodecamer. (b) Wild type Dps, with two subunits deleted to expose interior
cavity. Hydrophobic residues (A, V, I, L, F, M, W) are rendered in lighter shade of
gray. (c) Model of protein with 120 computationally redesigned interior hydrophobic
surface.

(a)

(b)
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proteins which have potential applications as nanoscale containers,
and “reaction vessels” for hydrophobic solutes.63

Water-soluble analogues of the membrane-bound potassium
channel KcsA have been computationally designed.64 A version of
the tetrameric membrane-bound protein with an engineered toxin-
binding site was subjected to computational analysis (Fig. 14.2).
Exposed, transmembrane hydrophobic residues on the exterior of the
protein were targeted for mutation. In addition to considering inter-
atomic interactions, the value of a database-derived solvation energy
(“environmental energy”)46 was constrained to be that of a soluble
protein with the same number of residues as KcsA. For the tetrameric
KcsA complex, 140 exposed residues were initially targeted for varia-
tion. A computationally redesigned variant, WSK-3, expresses in high
yield and shares structural and functional signature properties with its
membrane soluble counterpart: it is predominantly tetrameric in solu-
tion; it binds the toxin specifically with the same affinity and stoi-
chiometry as wild type KcsA; and the toxin binding may be inhibited
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Fig. 14.2 Computationally designed water soluble variant of the integral mem-
brane protein KcsA.66 (a) Structure of wild type KcsA. (b) Computationally designed
water soluble KcsA variant, WSK-3. Hydrophobic and aliphatic residues (A, G, L, I,
V, W, M, F) are colored in lighter shade of gray.

with a small molecule blocker, tetraethyl ammonium. Simulations of
the solubilized bacterial potassium ion channel65 are consistent with
experimental studies suggesting that the designed variant maintains
its membrane-bound structure and binding properties in aqueous
solution.66 This study reveals how protein design may be used to facil-
itate characterization of the structure and functional properties of
membrane proteins, which are notoriously difficult to work with due
to their low expression levels and poor solubilities. In related work,
sequence search algorithms have been used to identify solubilized
variants of the integral membrane protein phospholamban.67

14.3.2 De novo Designed Proteins

De novo design often refers to the complete design of a novel
sequence and can also include the design of new structures. One of
the first examples of a computationally de novo designed protein was
a βαβ-motif resembling a zinc finger DNA binding module. The
designed protein folded stably without the Zn2+ metal ion of the

b587_Chapter-14.qxd  1/21/2008  4:51 PM  Page 411



parent structure.68 A 73-residue three-helix bundle protein has also
been designed with the aid of computational methods to identify core
residues.69

Structure may also be included as part of the design process.
A 97-residue α/β protein was designed to have a nonnatural fold
and its structure determined.16 Other designed nonnatural protein
structures include a right-handed helical coiled-coil.70 The struc-
tures of helix bundle motifs may be parameterized using a few
global variables that describe the global structure and superhelical
coiling of the protein.71,72 Such methods have been used to arrive at
model di-iron and di-manganese proteins, which provide useful plat-
forms for engineering and investigating the versatile range of bind-
ing and catalytic properties exhibited by this metalloprotein
motif.73–76 A protein has been designed that can switch from a zinc
finger-like fold to a trimeric coiled-coil in response to changes in pH
or transition metal ion concentration.77 Heterotetrameric structures
have been designed that have mixed alpha-beta secondary struc-
tures, where the individual subunits are 21-residue miniproteins.
High resolution crystal structures are consistent with the target
structures, and these small proteins may be useful for exploring
protein-protein interactions.78

A 114-residue four-helix bundle (DFsc) with a dinuclear metal
center15 has been computationally designed (Fig. 14.3). Two di-iron
proteins, a heterotetrameric protein,79 and a helix-loop-helix DF1
protein,80 had been previously designed and characterized.81 The tar-
get template for the monomeric variant DFsc was generated by design-
ing a single chain that properly positioned the four helices. After
constraining the identities of residues that confer metal binding and
substrate accessibility to the active site, computational methods were
used to determine the identities of the remaining 88 residues. Despite
the presence of six ionizable residues within the interior, the designed
apo protein folds in the absence of metal ions. The protein stoichio-
metrically binds two equivalents of Fe(III), Co(II), Mn(II), and
Zn(II), and has increased thermal stability upon metal binding. 

While metal binding sites have been engineered into proteins,82,83

the design of functional metalloproteins containing beta structure
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is less well-developed than that of helical proteins, but such beta
conformations occur frequently in natural metal-binding proteins.
A structure and sequence has been designed for a beta protein whose
metal binding site mimics that of rubredoxin and recovers the bind-
ing of Fe(II/III). The resulting 40-residue protein folds into a beta-
structure, in the presence and absence of metal ions and binds
Fe(II/III) to form a redox-active site that is stable to more than
16 cycles of oxidation and reduction, even in an aerobic environment.84

In addition to the study of natural proteins, computational
de novo design facilitates the construction of novel biomaterials and
electrochemical devices, which may not have analogs seen in nature.
The use of non-biological cofactors may potentially be used to create
proteins with new properties not accessible with naturally occurring
amino acids or biological cofactors. Computational design has been
applied to arrive at a protein framework that encapsulates synthetic
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Fig. 14.3 Computational design of 114-residue dinuclear metalloprotein,
DFsc.15 (a) Computationally designed four-helix bundle suitable for dinuclear
metal coordination. (b) Keystone residues (explicit side-chains) comprise primary
and secondary ligands for the metal ions, a helix initiation sequence, a suitable turn
sequence, and small side-chain alanine residues that confer accessibility to the active
site. (c) Computational design is used to determine the identities of the remaining
88 amino acids.
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porphyrin cofactors. Selective cofactor recognition is a hallmark of
natural systems and a significant challenge. Previously redesigned
heme proteins have bound synthetic metalloporphyrins with relatively
low specificity. A native-like protein has been computationally
designed that selectively binds a non-biological cofactor, diphenyl
porphyrin (DPP-Fe) (Fig. 14.4). The protein encapsulates a pair of
the DPP-Fe units through biaxial histidine coordination to Fe, result-
ing in a 34-residue peptide assembled to form a tetrahelical bundle.
Binding of the cofactor in a bis-His fashion was observed for DPP but
not for other Fe-containing porphyrins.85 More recently, this
approach has been extended to the design of a 108-residue protein
that binds the same cofactor but in a lower symmetry environment.86

The folding of a protein to a unique, stable structure requires a
sufficiently large free energy difference between native and nonnative
states. In order for the folded state to be unique and thermodynami-
cally stable for a particular sequence, the structure must be separated
energetically from competing structures. Designing against such com-
peting structures explicitly in the design process is referred to as neg-
ative design. Similar concepts form the basis of the free energy
landscape theory of protein folding, which postulates that naturally
occurring proteins have a smooth funnel-like energy landscape to
guide the folding of a protein to a well-defined minimum energy
conformation.2 In arriving at a completely redesigned helical protein,
energy landscape theory has been applied to the design of a three-
helix bundle.24 Using simplified representation of the side-chains, an
ensemble of denatured decoy states was generated from folding sim-
ulations. Optimization of weighted Z-scores of candidate sequences
were used to guide sequence design, where the Z-score is an energy
difference between the target and denatured states relative to the size
of the energy fluctuations among denatured states. NMR and circular
dichroism studies of one of the designed sequences were consistent
with both the expected α-helix content and a well-defined three-
dimensional structure. More commonly, atomistic energy functions
are used to optimize the energy of a sequence in a target structure
relative to its energies in competing misfolded conformations.
Incorporating negative design is important when degnerate structures
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Fig. 14.4 Computational de novo design of four-helix bundle containing the non-
biological cofactor, iron diphenyl porphyrin (DPP-Fe).85 (a) Computationally
designed structure containing two DPP-Fe cofactors. (b) Computationally designed
sequence and structure of complex.

(a)

(b)
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for a given sequence are likely, e.g. in designing protein-protein inter-
faces, where the subtlety of specific interactions and the presence of
multiple low energy configurations present a significant challenge, or
when simplified representations of the amino acids are used. In
designing an A2B2 helical heterotetrameric protein with a dinuclear
metal center, negative design was used successfully to select for
sequences with charge patterned exterior positions such that the pep-
tides do not form non-target homotetramers or heterotetramers.79

Havranek and Harbury describe an algorithm that uses explicit nega-
tive design to engineer coiled-coil interfaces that favor the formation
of either homodimers or heterodimers.26

Membrane proteins are vital to a variety of cellular processes and
also are the targets of a large number of drugs and therapeutics. Only
recently, however, have they been examined in the context structure-
based design and engineering. Studies of a model helical protein having
both transmembrane and aqueous domains have highlighted the roles
of Asn-mediated interactions in both domains to conferring a particu-
lar fold and oligomerization state.87 The role of cooperative, interhelix
interactions in a serine-zipper transmembrane helix motif has been
examined in computationally designed systems. The designed protein
exhibits parallel dimerization of the helices, but mutation of the central
serine residues to alanine yields dimers of comparable stability, suggest-
ing that complementrary packing interactions rather than hydrogen
bonding play a dominant role in stabilizing the dimmer.88 Building
upon these findings, peptides have been computationally designed that
target transmembrane helices in a sequence specific manner. The
designed peptides are able to discriminate transmembrane helices of
two closely related integrins, where the specificity is determined largely
through complementary peptide-helix steric interactions.89

14.4 Future Outlook

Recent achievements of computational protein design are striking.
The structures and sequences of proteins having more than 100 vari-
able residues are now consistently being realized. The experimentally
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determined structures of many designed proteins agree well with
those that are targeted. Increasingly, desired properties and function-
alities are being introduced into proteins with the aid of computa-
tional methods. Genetic methods and mutagenesis are widely used
techniques for probing protein structure and function, and computa-
tional protein design can make such methods more informative and
efficient. The design of proteins that mimic the efficiency, selectivity,
and regulation of natural proteins is likely to be difficult. A synthesis
of computational design and library-based methods is likely to yield
important advances in both the identification of novel proteins and in
furthering our understanding of proteins and their biological func-
tions. Lastly, incorporating abiotic components, e.g. non-biological
amino acids, cofactors, and monomers, will yield protein systems
poised to present new functions that have not previously been
accessible  functions that go beyond those observed in natural
systems.
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Chapter 15

Prediction and Identification of B Cell
Epitopes Using Protein Sequence and

Structure Information

P. Andersen*,† D. Mkhailov‡ and O. Lund†

15.1 Introduction

Recognition of antigens by antibodies is an essential mechanism in the
immune system. A general challenge in immunological research is to
identify the molecular entities recognized by antibodies (B cell epi-
topes). This identification can lead to a better understanding of the
mechanisms involved in host-pathogen interactions, and can facilitate
the development of novel vaccines and antibody therapeutics. In this
chapter, we give an introduction to B cell epitopes and describe meth-
ods for prediction of B cell epitopes.

The immune system is the body’s defense against foreign agents,
such as infectious organisms, toxins, and other molecules that are not
part of the body. The defense can be divided into the innate and adap-
tive response.1 The innate immune response is rapid and nonspecific;
it is mediated by the recognition of conserved structural patterns
found primarily in microorganisms. The adaptive immune response is

*Corresponding author.
†Center for Biological Sequence Analysis, BioCentrum, Technical University of
Denmark, building 208, DK-2800 Lyngby Denmark. Email: pan@cbs.dtu.dk.
‡Center for Proteomic Chemistry, Novartis Institutes for Biomedical Research, Inc.,
250 Massachusetts Ave, Cambridge, MA 02139, USA.
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directed specifically to target individual infectious agents and is devel-
oped over time. After the infection is resolved, memory cells persist in
the body and can induce a rapid and effective response if the harmful
agent or infectious organism is encountered again.

The adaptive immune system has two major branches: the cellular
immune response mediated by the T lymphocytes (T cells) and the
humoral immune response mediated by antibody-secreting B lym-
phocytes (B cells). The responses of both systems are based on recep-
tors that specifically bind minor parts of the foreign agent, called
epitopes. The molecules containing the epitopes are called antigens,
and the receptors of the humoral response are called antibodies.

B cell epitopes are recognized by antibodies, and are in general
exposed on the surface of infectious organisms. Antibodies contribute
to the immunity against pathogens in three main ways. The first is by
neutralization, a process in which antibodies bind functional sites of
antigens, thereby hindering the binding of antigens to receptors on
target cells. Neutralization is important for immunity against
microorganisms, which infect host cells by adhesion, and subse-
quently, enter the target cell to multiply. Neutralization can addition-
ally prevent bacterial toxins from entering cells. Opsonization is the
second way of antibody-mediated immunity; in this process, antibod-
ies cover the surface of pathogens and mediate the destruction of the
pathogen by phagocytosis. Finally, binding of antibodies can activate
the complement system, which leads to binding of complement pro-
teins to the pathogen. Complement proteins facilitate opsonization of
the pathogen, and can form pores in the membrane of pathogens,
thus leading to lysis of the cells.

15.2 B Cell Epitopes: Classification
and Structural Characteristics

Antibodies can bind a variety of different types of molecules, includ-
ing proteins, peptides, haptens, and polysaccharides. Often, a B cell
epitope is characterized by the type of antigen it is derived from, and
this can be misleading. An antibody recognizes an entity composed of
atoms with specific chemical features and spatial arrangement. The

426 Computational Structural Biology

FA1
b587_Chapter-15.qxd  1/21/2008  4:22 PM  Page 426



entity may be formed by antigens of different nature. For instance, a
peptide may be able to cross-react with an antibody raised against a
carbohydrate epitope.2 Such peptides, which can mimic natural epi-
topes, are called mimotopes. However, because the main focus of this
chapter is the identification of epitopes in protein antigens, the term
epitope will refer to residues in proteinaceous B cell epitopes.

B cell epitopes are classified into two different groups.3 The first
group consists of linear or continuous epitopes. A continuous epitope
comprises a single, consecutive stretch of amino acids in the protein
sequence, which is specifically recognized by an antibody raised
against the intact protein.

The second group is formed by conformational or discontinuous
epitopes. These are epitopes composed of residues separated in the
protein sequence, but in spatial proximity because of the protein fold.

There is often no clear distinction between the two groups of B
cell epitopes. A discontinuous epitope may consist of several linear
epitopes, which together form the antibody interaction site. In addi-
tion, continuous epitopes may contain residues that are not interact-
ing with the antibody.3 Since the majority of antibodies that are raised
against complete proteins do not cross-react with peptide fragments,
which are derived from the same protein, it is thought that the most
epitopes are discontinuous. It has been estimated that approximately
90% of B cell epitopes in globular proteins are discontinuous in
nature.4,5

Andersen et al. studied statistics of discontinuous epitopes in a data
set of epitopes derived from the Protein Data Bank.6 Figure 15.1
shows the distributions for the number of residues per epitope, the
number of residues per sequential stretch in epitopes, and the longest
sequential stretch per epitope. The total number of residues per epi-
tope was ranging from 9–22 and more than 60% of the epitopes con-
sisted of 14–19 residues [Fig. 15.1(a)]. Segments with a single epitope
residue represented more than 45% of the segments [Fig. 15.1(b)].
The longest sequential stretch of identified residues per epitope was
ranging between 3–12 residues, and more than 75% of epitopes
comprised a sequential stretch of a maximum length of 4–7 residues
[Fig. 15.1(c)]. This confirms that most epitopes in the data set are
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indeed discontinuous and composed by small parts of the antigen
sequence forming a binding region for the antibody.

Figure 15.2 shows the surface exposure for epitopes and non-
epitopes as measured by determining the number of intramolecular
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Fig. 15.1 Analysis of a dataset of discontinuous B cell epitopes. (a) Distribution of
the number of residues per epitope. (b) Distribution of the number of residues per
sequential stretch of epitopes. (c) Distribution of the maximum length of a sequen-
tial stretch per epitope. Adapted from Ref. 6, courtesy of Protein Science.

Fig. 15.2 Contact numbers of epitope residues in the dataset compared to non-
epitope residues. The curves show the distribution of contact numbers for epitope
residues (red curve) compared to non-epitope residues (black curve). The vertical
lines represent the mean value of contact numbers for the epitope residues (red line)
and for the non-epitope residues (black line) Adapted from Ref. 6, courtesy of
Protein Science.
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Cα atom contacts for each residue. A low contact number correlates
with localization close to the surface or in protruding regions of anti-
gen structures. It can be seen that epitopes are in exposed or pro-
truding regions, and this is in agreement with the previous analysis of
B cell epitopes.5,7

15.3 B Cell Epitope Prediction Methods

Antibodies have been studied for many decades, and much effort has
been put into the delineation of interactions between antibodies and
epitopes. Even though “immunological bioinformatics” is a rather
new term,8 computational analysis and prediction of B cell epitopes
have been major areas of research for more than 20 years.4,5,9 As the
entire field of biotechnology has expanded tremendously within the
last two decades, developments of new methods have led to more
insight into the antibody-antigen interactions as well as larger
amounts of data. This, in turn, allows for the development of new
bioinformatics tools and databases.10

In this section, we review B cell epitope predictions based on pro-
tein primary sequence and structural information.

15.3.1 Sequence-based Prediction of B Cell Epitopes

Sequence-based epitope prediction methods typically use propensity
scales for the calculation of a prediction score. Propensity scales are
composed by values that describe intrinsic features for each of the 20
amino acids. No single physico-chemical feature definitively distin-
guishes between epitopes and non-epitopes, but atoms that interact
with the paratope have to be surface exposed. In B cell epitope pre-
diction, some of the most successful features have been hydrophilic-
ity, accessibility, flexibility, or loop/turn structures. In general, the
predictions of these classical propensity scales correlate with features
of surface exposure. Table 15.1 lists a number of the different propen-
sity scales that have been used for epitope prediction.

In prediction methods for protein sequences, log-odds ratios are
often used to reflect the probability that a given amino acid has the
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predicted property. For example, log-odds ratios can be calculated for
each amino acid to reflect likelihood for it to be part of a B cell epi-
tope. The probability of finding a given type of amino acid in an
epitope of a data set can be described as:

(15.1)

where paa is the probability for an amino acid, naa is the number
of times the amino acid is observed in epitopes of a data set, and
n is the total number of amino acids in the data set. Because
amino acids have different background frequencies, qaa, the proba-
bilities are often divided by the background frequencies observed
in a large database such as SwissProt.21 The log-odds ratio is calcu-
lated as:

(15.2)

A high log-odds ratio L indicates that the amino acid is more
frequently observed in B cell epitopes than in the Swiss-Prot database.

L
p
q

aa
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ˆ
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Table 15.1 A Variety of Propensity Scales Used for B Cell Epitope Prediction

Feature Year Reference 

Hydrophilicity 1981 9
Hydrophilicity 1986 11
Hydrophobicity 1982 12
Antigenicity 1985 13
Accessibility 1976 14
Surface probability 1978 15
Surface accessibility 1985 16
Backbone flexibility 1985 17
Secondary structure 1978 18
Secondary structure 1978 19
Turn prediction 1993 20
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The log-odds ratios may be calculated for both epitope residues
and non-epitope residues and then subtracted to get the final epitope
log-odds ratios:

(15.3)

where Le is the log-odds ratio of a given amino acid type derived from
epitope residues, Lne is the log-odds ratio of a given amino acid type
derived from non-epitope residues and Le–ne is the final epitope log-
odds ratio for the given amino acid type.

If a data set contains many similar examples for training, the log-
odds ratios can easily be biased toward the redundant examples. To
avoid this problem, several refinement techniques can be applied.8 For
instance, sequence weighting can be used; first the similar sequences
are clustered, then weights are assigned for each sequence to down-
regulate the influence of highly similar sequences.

Propensity scales are often used in combination with smoothing
procedures. The simplest type of smoothing is based on the sliding of
a window through the protein sequence and averaging the propensi-
ties of the residues within the window. The mean value of the window
is then assigned to the residue in the middle of the window. This sim-
ple type of smoothing has been used frequently for B cell epitope pre-
diction, but more sophisticated methods using a weighted average, or
a Gaussian smoothing curve have also been applied.22 The smoothing
results in a scoring profile, where the high-scoring regions are pre-
dicted to be antigenic.

Several tools for antigenicity prediction using combinations of
propensity scales have been developed.23–27 However, the most exten-
sive sequence-based study, involving 484 different propensity scale
methods on a new data set of 50 proteins, concluded that most
propensity scales perform close to random, and the use of more
sophisticated machine-learning methods such as artificial neural net-
works (ANNs) was proposed.28

Recently, different approaches using advanced machine learning
methods were published. Saha et al. proposed a prediction method
based on recurrent ANNs trained on a data set of 700 continuous

L L Le ne e ne- = -
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epitopes from the Bcipep database.29,30 Larsen et al. presented the
Bepipred method31 based on predictions of a Hidden Markov
Model (HMM) in combination with the Parker hydrophilicity scale.11

The method was trained on continuous epitopes of 127 proteins
from the AntiJen database.32 Söllner et al. developed a classification
algorithm based on the combinations of propensities with sequen-
tial residue neighborhood parameters.33 The classification algorithm
was based on decision trees and nearest neighbor approaches, and
was trained on publicly available data sets from Bcipep and
FIMM29,34 and a large amount of proprietary data. In total, 1211
epitopes and non-epitope sequences were used for training, and the
performance was shown to be greatly increased compared to single
propensity scale methods.33 Although the performance of these new
methods is improved compared to propensity scale methods, accu-
rate prediction of continuous epitopes remains a challenge in the
field of immunological bioinformatics.

15.3.2 Prediction of B Cell Epitopes Based
on Protein Structure

Protein 3D structures have also been used in the prediction of B cell epi-
topes. Particularly, the prediction of discontinuous epitopes is thought
to require this information. The growing number of experimental pro-
tein structures in the PDB further expands possibilities to predict dis-
continuous epitopes for novel targets based on 3D homology models.35

The first prediction methods on the basis of protein structure
were published in 1986, and were based on epitopes being on the sur-
face of proteins. The method proposed by Novotny et al.7 was based
on the contacts of a large sphere (called a probe) on the Van der Waals
surface of the protein. A similar method is used for calculating solvent
accessible areas.36 Novotny et al. found that the contacts of a probe
with 10 Å radius correlate well with antigenic epitopes in hen egg
white lysozyme, sperm whale myoglobin, cytochrome C, and myohe-
merythrin. It was additionally observed that the contacting residues
of the large probe also had high solvent accessibility scores, as deter-
mined by using a probe size of 1.4 Å.
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Thornton et al.5 used ellipsoids with the same inertia moment as
the protein structure in order to model the overall shape of the pro-
tein. The sizes of the ellipsoids were varied and chosen so that for pro-
trusion index 9 (PI 9), 90% of the atoms in the structure were inside
the ellipsoid. The rest of the atoms (10%) were protruding from
(sticking out of) the structure. In general, it was found that antigenic
peptides tend to protrude from structures of the proteins lysozyme,
myoglobin, and myohemerythrin. In addition, it was found that pro-
truding residues had a tendency to be more flexible and accessible.

After the publication of studies by Novotny et al. and Thornton
et al., little was reported about epitope prediction based on protein
structure. However, the numbers of available structures of both anti-
gens and antibody-antigen complexes have increased, and new
approaches have recently been used for this type of epitope prediction.

The server for Conformational Epitope Prediction (CEP)37 is
based on the calculation of the relative surface accessibility (RSA).
Sequence fragments of surface-exposed residues are identified and
condensed with other proximal exposed fragments in the structure;
this defines regions on the 3D surface that are exposed, and which
possibly act as antigenic regions.

DiscoTope is another structure-based method that predicts
residues which are part of epitopes.6 DiscoTope combines surface
localization and the spatial properties of a protein structure with a
novel epitope propensity scale. The combination is defined in terms
of a simple weighted sum of the contact number and a sum of sequen-
tially averaged epitope log-odds ratios of spatially proximate residues.

To evaluate predictions of B cell epitope residues, which are
mapped using other types of methods than X-ray crystallography, the
predictions of DiscoTope were tested on the structure of the ecto-
domain from the Plasmodium falciparum apical membrane antigen-1
(AMA1).38,39 No AMA1 epitopes were included in the training set
for the method. However, two separate epitopes recognized by
monoclonal antibodies Mab1F9 and Mab4G2 have been experimen-
tally mapped on the AMA1 ectodomain. The Mab1F9 epitope was
mapped using phage display of peptides and point mutations of
E197.40 The discontinuous Mab4G2 epitope was mapped in detail by
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point mutation of nine residues.39 In addition, five residues (including
E197 and other residues in the same region of the structure) were
classified as highly polymorphic in AMA1 sequences.38 It has been
suggested that the polymorphism is caused by selection pressure on
the antigen to avoid the host immune system. The DiscoTope thresh-
old of −4.7, corresponding to a specificity of 90%, and 24% sensitivity
was used in epitope prediction.6 In AMA1, 43 of 311 residues were
predicted as epitope residues. Most of the predicted epitope residues
cluster in three separate regions of the AMA1 structure (Fig. 15.3).
DiscoTope successfully identified two of the eight residues in the 1F9
epitope, which were mapped using phage display (D196 and E197).
In the discontinuous 4G2 epitope, all nine residues except D348 were
predicted to be part of epitopes. All of the five highly polymorphic
residues were predicted to be located in epitopes. Thus, DiscoTope

434 Computational Structural Biology

FA1

Fig. 15.3 Predicted epitope residues of the AMA1 ectodomain. Backbone atoms
of residues predicted by DiscoTope as parts of epitopes are highlighted in green.
Side-chains of the residues mapped to the monoclonal antibodies 1F9 and 4G2 are
shown in black. Adapted from Ref. 6, courtesy of Protein Science.
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successfully predicted epitope residues of AMA1 that had been mapped
by using diverse methods.

The Epitope Mapping Tool (EMT)41 is based on a sequence
library of epitopes in different proteins identified by phage display. In
the prediction method, the antigen structure is searched to find
surface-exposed regions containing motifs of the library.

Rapberger et al. recently published a study of antigen-antibody
interaction site prediction.42 Their method uses surface accessibility
measured with a probe radius of 3 Å. Additionally, the shape comple-
mentarity to paratopes and interaction energies are included to iden-
tify residues with high probability of being part of discontinuous
epitopes. Similarly to the DiscoTope method, the work was based on
discontinuous epitopes derived from PDB structures of antibody-
antigen complexes. The method was tested using structures of free
antigens in unbound conformations. It was shown to have a moder-
ate performance and captured three of eight residues in the 1F9 epi-
tope of the AMA1 protein, which were identified by using phage
display.40

A number of tools have been developed to facilitate the mapping
of epitopes on protein structures by using mimotopes. The methods
analyze the protein 3D structure to find regions that can be mimicked
by peptides.43

15.4 Future Outlook

One of the main goals of B cell epitopes research is to develop
vaccines or diagnostic tools. Historically, vaccines have been based
on responses to the entire pathogen. Killed or attenuated organ-
isms have been used for the vaccines to raise the immunity while
avoiding hazardous effects. These strategies have been effective
in diminishing the occurrence of major diseases, such as smallpox
and polio. However, there are several drawbacks of these types
of vaccines. In general, the practical use of killed or attenuated
pathogens can be affected by problems caused by producing
pathogen in sufficient amounts, safety, and the genetic evolution
of pathogens.44

Prediction of B Cell Epitopes 435

FA1
b587_Chapter-15.qxd  1/21/2008  4:22 PM  Page 435



Today, the field is moving more toward “rational vaccine design.”
The basic idea of this approach is to use knowledge about the
pathogen, the immune responses against the pathogen, and general
host-pathogen interactions in order to design more efficient vaccines.
However, even the rational approach to vaccine design is still heavily
dependent on experimental trials, since it is hard to predict the
response of a new vaccine in complex systems such as the human
body.45 Some of the challenges in rational vaccine design are discussed
below.

One general approach of modern vaccine design is the use of
more simple vaccine formulations containing non-infecting subunits
of the pathogen.46 Subunit vaccines have shown to be useful for vac-
cination. For instance, virus-like particles (VLPs) are assembled of the
human papilloma virus (HPV) proteins L1 and L2, and the VLPs are
used for HPV vaccines preventing viral infection and lowering the risk
of genital cancer.47 One of the advantages of this approach is that
these new vaccines should be safer and not lead to infections.

Another example of a recombinant subunit vaccine, which has
been approved for human use, is the hepatitis B virus (HBV) DNA
vaccine.48 This vaccine is based on the HBV surface antigen (HBsAg)
and produced in genetically modified yeast.

Recently, one of the major research topics in rational vaccine
design has been human immunodeficiency virus (HIV) vaccines. A
vaccine, which elicits neutralizing antibodies and effectively protects
against HIV infection, has shown to be extremely difficult to
develop, and multiple approaches using modern vaccine design tech-
nologies are still used in the pursuit of an HIV vaccine.49 Other
examples of major research projects are B cell-based vaccines against
infection of malaria parasites. The RTS,S subunit vaccine has been an
outcome of these malaria research projects. This vaccine is based on
a fusion protein of a polypeptide from Plasmodium falciparum cir-
cumsporozoite protein and HbsAg,50 and clinical trials of the vaccine
have been promising.51 However, even though the number of tech-
nologies for vaccine design is growing, developing a vaccine is a com-
plex task that is still mostly based on labor-intensive experimental
studies.
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B cell epitope-based diagnostic tools also constitute a major
research topic. In the diagnosis of infectious diseases, B cell epitope
binding assays can be used to detect humoral responses against
pathogen-specific epitopes.52,53 In addition, B cell epitopes have a
potential for the diagnosis of autoimmune diseases,54,55 allergy,56 and
cancer.57 The development of effective B cell epitope-based diagnos-
tic tools can be challenging because non-specific antibody cross-
reactivity and reactivity resulting from exposure, but not infection,
can affect the rate of false positives.

15.4.1 Vaccines Based on Linear Epitopes or Peptides

Peptides containing linear epitopes are considered to have a high
potential for vaccines. In addition to the advantages of the subunit
vaccines mentioned above, peptides are easily synthesized, purified,
stored, and handled. However, it has become clear that efficient
peptide-based vaccines, in general, are complex to develop.

Peptides in vaccines must be immunogenic, have the ability to
elicit antibodies that cross-react with the native protein, and that pro-
tect against infection or pathogenesis. Studies testing peptide epitopes
are based on cross-reactivity: the ability for a peptide to be recognized
by an antibody raised against a native protein. However, these cross-
reactive peptides are usually not very immunogenic and there can be
several reasons for this lack of immunogenicity: Most peptide-based
vaccines would rely on CD4+ T helper cell-initiated immune
responses, and the B cell epitope itself may not contain an MHC class
II epitope. In future vaccine design, this can be solved by fusing the
peptide with residues containing an efficient MHC class II epitope.58

Another major problem is that the binding of antibodies to con-
tinuous epitopes is conformation-dependent. A peptide in solution
may have a broad variety of structural conformations, and the con-
formations to which antibodies are developed may not be similar to
the conformation in the native protein. To solve this problem, con-
formationally restricted peptides have been tested; for instance, disul-
phide bridges or other covalent links have been introduced in peptides
to stabilize loop conformations.59,60 Conformational restriction of
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peptides can also help to circumvent another problem of short pep-
tides, which is fast degradation by peptidases in the human body.61 We
consider computational protein design to be useful in the future
development of stable peptides that are more conformationally
restricted, and therefore, able to present epitopes more efficiently.

Another problem in peptide-based vaccines is that the humoral
immune response is more efficiently initiated when the epitopes are
repeatedly presented on larger antigens. To circumvent this problem,
a number of different adjuvant and carrier systems have been studied.
For instance, VLPs are used in development of a foot-and-mouth dis-
ease virus vaccine to present continuous epitopes in a manner that
facilitates an immune response.62

15.4.2 Vaccines Based on Discontinuous Epitopes

Discontinuous epitopes are in general more difficult to use than lin-
ear ones for vaccine design. Because the epitope is composed of dif-
ferent parts of the protein sequence, it is more complex to conserve
the native conformation of the epitope in a recombinant protein or a
peptide. As mentioned earlier in this chapter, the majority of natural
epitopes are thought to be discontinuous. Therefore, much effort is
put into the development of vaccines based on discontinuous epitopes.
Mimotopes are considered to have a high potential in vaccines by
mimicking discontinuous epitopes,63,64 and future prediction algorithms
for mimotopes on the basis of protein structure have a potential in
vaccine design. Recombinant proteins are also considered useful for
the presentation of discontinuous epitopes in vaccines. Koide et al.
successfully applied a structure-based design for a Lyme disease vac-
cine candidate.65 The authors removed approximately 45% of the
residues from the OspA and stabilized the engineered protein by pro-
moting hydrophobic interactions. The engineered protein presented
discontinuous epitopes and had an affinity to monoclonal antibodies
similar to the full-length OspA protein. A recent study investigated
the binding of the neutralizing antibody b12 to stabilized protein
constructs derived from the HIV protein gp120,66 and suggested
such constructs have a high potential for HIV vaccine design.49
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However, the use of engineered proteins also has disadvantages.
Recombinant proteins for vaccines must be stable and easily produced
in sufficient amounts; for some proteins, this is a limiting factor.
In addition, the engineered proteins may contain new epitopes on
the surface that could be immunodominant and lead to unwanted
immune responses.

Computational protein design has a great potential to influence
future vaccine development. Using protein structure prediction, a
suitable scaffold protein could be chosen to present an epitope.
Scoring functions could help to predict mutations that stabilize new
recombinant proteins used for vaccines. However, the predicted con-
structs would need to be tested intensively in experimental studies to
identify which of them present relevant epitopes that elicit protecting
antibodies, and at the same time do not lead to unwanted side-effects.

In general, the increased number of publicly available methods
for B cell epitope prediction shows that even though the perform-
ances are still quite low, when compared to MHC class I epitope
prediction, there is much optimism among researchers in the field.
Many research groups are continuously working on improving meth-
ods, building databases, and evaluating different methods.67 Thus,
the field of B cell epitope prediction is expected to lead to further
improved methods, which can aid in experimental epitope mapping
and vaccine design.
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Chapter 16

Computational Antibody Engineering

T. K. Nevanen*,†, N. Munck† and U. Lamminmäki‡

16.1 Introduction

Antibodies (immunoglobulins) are binding proteins produced by
B lymphocytes to defend an organism against invading pathogens and
foreign macromolecules. They are widely used as a research tool, in
diagnostics, and recently also as therapeutic agents. The unique fea-
tures of antibodies are their enormous diversity and specificity of
recognition, which are, together with their high affinity, the most
essential attributes for their applications. The specificity and affinity of
the binding originates from the unique structural elements of the
antibody proteins, as reviewed in Section 16.1.1. The generation of
antibodies in vivo is induced mainly by infection or by immunizing
with an immunogen. The development of phage-displayed antibody
gene libraries as in vitro sources of various binding specificities has
enabled the selection of antibodies to almost any antigen, as recently
reviewed by Hoogenboom.1

However, occasionally the properties of primary antibodies need
to be optimized for their application. Antibody structures, when avail-
able, are very useful in antibody engineering. Sequence data and
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homology modeling provide an alternative way for knowledge-based
design of engineering when the crystal structure is not available.
Computational antibody engineering, which includes the use of both
structure- and homology-based modeling, depending of the data avail-
able for the antibody of interest, has been utilized to obtain structural
information on the antigen-combining site, antibody-antigen com-
plex, and to design mutants for improved performance as reviewed in
Section 16.4. Here, the focus is on homology modeling using existing
databases of antibody structures as a starting point (Section 16.2).

16.1.1 Structural Elements of Antibodies

Four polypeptides, two identical heavy chains, and two identical light
chains, form the basic structure of a Y-shaped antibody as drawn
schematically in Fig. 16.1(a). Heavy and light chain polypeptides fold
into four and two barrel-like globular domains (“immunoglobulin
domains”), respectively having about 110 amino acids in each
domain. Domains have two antiparallel β-sheets, which form the
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Fig. 16.1 (a) Domain structure of an IgG antibody. (b) The barrel-like framework
structure of variable domains. Both domains have three hypervariable loops respon-
sible for antigen binding.
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framework structure [Fig. 16.1(b)] and are stabilized by a disulfide
bond. Domains pack against each others by interactions between
β-sheets, except the CH2-CH2 interaction, which is mediated by car-
bohydrate moieties. Constant domains (CL or CH1, CH2, CH3) have
conserved sequences and structures among each sub-class (isotypes
are κ or λ for the light chain and γ, μ, ε, δ or α for the heavy chain).
The carboxyl-terminal domains of the heavy chain have various
effector functions, which are important for the cellular immune
response.

The amino terminal domains of both heavy and light chains,
called variable domains (VH and VL), are responsible of the diversity
of the specific antigen binding. Each variable domain has four con-
served framework sequences forming the barrel-like structure of two
antiparallel β-sheets.2 The three hypervariable loops in each chain are
H1, H2, and H3 for the heavy chain and L1, L2, and L3 for the light
chains.3 Hypervariable loops are located between the framework
sequences in each chain [Fig. 16.1(b)]. An antigen binding site is a
combination of these six loops (complementarity determining
regions, CDRs) of the variable domains of heavy and light chains. The
most variable residues at CDRs are mostly in contact with the antigen
and they are called the specificity determining residues.4 Framework
regions have mainly a structural role in variable domains and the con-
tribution of the framework residues to the affinity is usually indirect.
They support the structure of the CDRs5–7 or affect the correct fold-
ing.8 However a framework residue may also be in direct contact with
the antigen.9,10 The hypervariable loops, especially the CDR3 of the
heavy chain, vary in length and have high sequence diversity. The
length of the loop and certain conserved key residues in CDRs and in
the framework region determine the main-chain conformation of the
hypervariable loop. The critical amino acids are important in packing
and hydrogen bonding, or have suitable torsion angles. Thus the
hypervariable loops have canonical structures,11–16 which facilitate the
computational modeling of the structure.

The conformations of uncomplexed and complexed antibodies
vary in many cases in the crystal structures, suggesting a structural
adaptation of the antibody conformation in the binding event (more
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detailed in Section 16.3). Changes in conformation upon binding
bring challenges to the modeling.

16.2 Antibody Modeling

The computational modeling of antibodies, the history of which goes
back over three decades,17,18 plays a pivotal role in antibody research
and engineering today. Antibodies are favorable targets to be studied
by molecular modeling because of several reasons. First of all, despite
their capacity to provide enormous functional diversity, the members
of this protein class are highly conserved in large parts of their struc-
ture. Modeling of the strictly conserved constant regions, forming the
majority of the antibody structure, is straightforward with standard
homology modeling techniques, and major efforts can be focused to
the prediction of the structure of a fairly limited region — the anti-
gen combining site. In fact, the term antibody modeling is primarily
understood to refer to the prediction of the structure of the variable
domain, and in particular, the structure of the antigen-combining site
within it. Secondly, the intensive studies on the structure/function of
antibodies have yielded a block of useful data concerning the struc-
ture and properties of antibody variable domains. Yet another aspect
facilitating the modeling is the large and constantly increasing num-
ber of experimentally determined structures of antibody molecules
available in the Protein Data Bank (PDB)19 to be used as templates for
homology modeling. Generally, at least one high-resolution template
structure with sequence identity ranging from 45% to over 90% can
be identified for an antibody sequence of interest.

16.2.1 Modeling of the Framework Regions

The first step in building a model for an antibody variable region is
the modeling of the framework. The PDB is searched for templates
with high sequence identity. The templates of the light and heavy
chain do not need to be derived from the same structure, and conse-
quently, the searches are performed separately for the variable
domains of the two chains. As most of the variable domain is encoded
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by the V-gene, it can be worth running the searches using only the
V-gene encoded part of the light and heavy chain as a query in order
to avoid biased ranking of the search results by highly variable CDR3
(especially in the case of heavy chain) region and J-gene encoded
region. Most commonly, one light and one heavy chain variable
domain structure showing the highest sequence identity with the tar-
get sequences are used as templates. However, if several template can-
didates with similar level of identity are available, it is useful to select
a non-redundant (each template originates from different antibody)
set of templates for modeling. The comparison of the multiple tem-
plates can allow the identification of regions where the structure is
locally distorted, e.g. by a mutation or crystal packing effects. In
the presence of multiple templates, the distorted regions as well as the
segments having high B-factors can easily be grafted from one of the
templates with a proper structure. High resolution structures should
be favored over low resolution ones, and if several templates are avail-
able, the low resolution ones can be dropped. Morea et al. (2000)20

suggested that, when using a single template, the structure having
significantly higher resolution should be used as a template if the dif-
ference in sequence identity between the high and low resolution
structures is 5% or less. An alternative way to generate a template for
modeling is to calculate average coordinates of several overlaid anti-
body variable domains.21 Generation of the sequence alignment for
the modeling is facilitated by the facts that well-conserved templates
are generally available, and that there are arrays of other antibody
sequences that can be used for the construction of multiple sequence
alignments. The structures of template molecules (light and heavy
chain templates separately) are superimposed by using the Cα-atoms
of the residues in the conserved B-sheets of the framework.22 The
coordinates for the framework residues can be assigned automati-
cally by various homology modeling programs. A potential source of
confusion in antibody modeling lies in the fact that there are several
different numbering schemes for variable domains, the most well-
known of which are the Kabat,23 Chothia,11 IMTG,24 and AHo22

numbering schemes. For example, the residue numbering in the
known structures can be either based on some of these schemes or the
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standard PDB numbering. Helpful information for understanding the
differences of the schemes can be found in the article by Honegger
and Plückthun (2001)22 as well as on well-maintained internet sites
(http://www.bioinf.org.uk/abs/ and http://www.bioc.uzh.ch/
antibody/).

16.2.2 Modeling of the Hypervariable Regions

In the next phase, the CDR loops are built on the framework model.
The methods used for the modeling of CDRs involve both
knowledge-based as well as ab initio modeling techniques. The most
widely used approach takes advantage of the fact that most of the
CDRs, especially CDR1 and CDR2 of the light and heavy chain
as well as CDR3 of the light chain, tend to adapt a limited number
of backbone conformations, which have been termed canonical
structures.11 Strict sequence based rules have been defined to allow
the prediction of the canonical type of the CDRs on the basis of the
loop length and on the presence of certain key-residues within the
CDRs or at neighboring framework positions.11–13,16 Helpful rules for
the identification of CDRs in the sequence can be found on the
internet page of Andrew Martin (Table 16.1). Those CDRs of the
template that have the correct canonical structure can be retained in
the model and the other canonical CDRs are grafted from other anti-
body structures. The grafted CDRs are fitted to the model by over-
laying the main chain atoms of a few residues preceding and
following the CDR region.20

Sometimes, part of the CDR1 and CDR2 loops of both chains or
the CDR3 loop of the light chain fall out of the canonical classifica-
tion. One approach to predict the structures of these loops is to pro-
duce a large number of different loop structures to saturate the
conformational space, and then to use a scoring algorithm for rank-
ing the loop candidates. The sampling of the conformational space
can be obtained by using database searches and/or ab initio confor-
mational sampling programs such as CONGEN.25 These two tech-
niques are combined in the program CAMAL Combined Antibody
Modeling Algorithm,13 which was designed for antibody loop
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Table 16.1 A Collection of Internet Resources Providing Useful Information
and Tools for Antibody Engineering and Modeling

Name of Resource Short Description of Content URL Address

WAM Web antibody Modelling server http://antibody.bath.ac.uk/
by Anthony Rees’s group
for automated modelling
of antibodies.

IMTG A large database of nucleic acid http://imgt.cines.fr/
sequence information on
immunoglobulins and other
molecules of immunological
interest.

V-base A comprehensive directory of http://vbase.mrc-cpe.cam.
human germline variable ac.uk/
region sequences.

V-base2 Database of human and mouse http://www.vbase2.org/
immunoglobulin sequences
extracted from the
EMBL-bank.

Kabat DB A large database of sequences http://www.kabatdatabase.
of immunoglobulins. com/
Currently shut down!
Content of the database
available for compensation.

AAAAA Annemarie Honegger’s http://www.bioc.uzh.ch/
antibody page with a plenty antibody/
of useful information on
antibody sequence and
structure data as well as on
antibody modelling.

Andrew Martin’s Useful information and tools http://www.bioinf.org.uk/
homepage for antibody research. abs/

Mike Clarck’s Information on antibody http://www.path.cam.
homepage structure, function and ac.uk/~mrc7/

humanization.
Homepage of Directories of immunoglobulin http://www.ibt.unam.mx/

Juan Carlos variable region sequences of vir/index.html
Almagro’s mouse and large farm animals.
research group Directory of antibody

structures determined
experimentally until year 2000.

(Continued )

b587_Chapter-16.qxd  1/18/2008  4:56 PM  Page 451



modeling applications. Alternatively, the loops having insertions or
deletions are derived from a known loop with most similar sequence
by adding or deleting, respectively, residues in the existing loop.26 In
this case, the torsion angles of the residues preceding and following
the added or deleted residues are adjusted to adopt the insertion and
deletion, and the structure of the loop is refined by molecular
mechanics and dynamics tools such as simulated annealing and
energy minimization.

Before the modeling of CDR-H3, the models of the heavy and
light chain variable domains are combined in order to provide the
more authentic structural environment for the modeling of CDR-H3,
which generally is cradled by the interface of the domains. For com-
bining the light and heavy chain models, they are superimposed on the
structure of an existing Fv fragment by a least-square fit of the Cα-
atoms of the conserved residues in the domain interface27 or in the
whole variable domain.20 The reference structure is most commonly
one of the templates used for the modeling of either the heavy or light
chain variable domain, however, other structures showing high overall
sequence similarity (over both VL and VH) can also be considered to
orientate the domains. Alternatively, an average β-barrel generated
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Table 16.1 (Continued )

Name of Resource Short Description of Content URL Address

Stefan Dubel’s Information about recombinant http://rzv054.rz.tu-bs.de/
recombinant antibodies and lot’s of links. Biotech/SD/SDscFVSite.
antibody page html

Humanization by José Saldanha’s page providing http://rzv054.rz.tu-bs.de/
Design introduction into antibody Biotech/SD/SDscFVSite.

humanization and a directory html
with descriptions of
humanized antibodies.

The antibody Recently established forum for http://www.antibody
society the field of recombinant society.org/

antibodies, antibody
engineering and related
areas.
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from the variable domains of the known antibody structures can be
used as a reference.16 The relative orientation of VH and VL differ
among the known antibodies, and significant changes in the orienta-
tion can sometimes occur upon antigen binding.28 The orientation of
the domain influences on the combining site structure by determining
the relative positions of the light and heavy chain CDRs, and evalua-
tion of several alternative orientations can be useful if high accuracy is
required. Apart from plausible stereochemistry, there is, unfortunately,
not an unambiguous way to evaluate the tenability of the orientation.

The major challenge in antibody modeling is the building of the
CDR-H3 loop. This loop is characterized by extensive variability, and
it has not been possible to define canonical classification for this loop.
Modeling of CDR-H3 is, however, facilitated by a set of sequence-
based rules described for the conformation of the stem of the loop, in
particular its C-terminal part. Shirai et al.29 first reported that the con-
formation of the C-terminal part of CDR-H3 can be divided in two
subclasses, “kinked” and “extended,” and the results of this study
have later been verified and complemented in several other studies.30–34

Whenever possible, the stem region of the CDR-H3 is grafted from
the antibody structure having the stem of same subclass, and prefer-
ably, of similar sequence. The stem residues are fitted to the model in
the same way as other grafted CDRs. The modeling of apex CDR-
H3, or the whole loop if the stems do not fit within the known rules,
is based on the same techniques as the modeling of any other non-
canonical loop, i.e. on database searches, use of conformation search
algorithms or combinations of these two. In practice, the modeling
can be considered to be feasible in the case of short and mid-sized
loops (up to about 13 residues). There are also data concerning pref-
erential conformations of the apices among such loops.30,34 The mod-
eling of the apex of CDR-H3 becomes increasingly difficult and
highly unreliable when the loop length further increases.

16.2.3 Side Chain Modeling and Refining of the Model

Modeling of side-chains can be either based on knowledge-based meth-
ods, on the use of computational algorithms, or on a combination of
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these two approaches. The knowledge-based approach is commonly
used in the case of framework residues (side-chains built simultane-
ously with the main chain) as well as many side-chains in CDRs with
known canonical structure. In the procedure described by Morea et al.,20

the conformation of the side-chain in the model is retained if the same
residue is present in the corresponding position of the template. If the
residue type does not match in the model and the template, the side-
chain is built in the conformation existing in the most similar anti-
body having the same residue in the corresponding position. The
backbone conformation affects the rotamer preferences of side-
chains, and consequently, the conformations of the CDR residues
should be taken from CDRs with the same canonical structure. Side-
chains of other residues can be built by selecting the sterically and/or
energetically most plausible conformation from a rotamer library or
by retaining the relative length of the side-chain as far as permitted.
The recent data showing that the side-chain chi-1 angles of certain
residues in canonical CDRs, as well as in the stem of CDR-H3
belonging to a kinked subclass, are conserved34 can be utilized in
modeling these residues. Computational search methods, based either
on iterative searches, e.g. by CONGEN25 or simultaneous global
optimization35 of side-chain conformations, can be used to build the
side-chains of the residues in non-canonical CDR loops, and these
methods can also be used to model side-chains of residues in canoni-
cal CDRs, especially in cases of unusual residues. If the main chain of
the loop is generated by the conformational sampling algorithm, the
side-chains are often produced simultaneously. Once all the side-
chains are introduced, the model should be analyzed for stereo-
chemistry, and severe sterical clashes, if any, should be removed by
rebuilding the relevant side-chains. Alternatively, global optimization
of all the side-chains can be performed after model building and ini-
tial energy refinement.36

Energy minimization can be used to refine the model by remov-
ing non-allowed torsion angels and sterical clashes between atoms
that are introduced during the model building process. In order to avoid
the introduction of additional distortions, it is useful to perform the
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minimization by using a stepwise procedure. After initial minimization
of the hydrogen atoms, the splice sites between the segments origi-
nating from different structures are minimized (only the atoms of
the two residues forming a splice site are allowed to move). In the
next phase, only the side-chains are free to move, then also the back-
bone atoms of CDRs, and finally, all the atom in the model are
released.

Considering the current level of interest in antibody research as
well as the fact that there are a virtually innumerable number of
potential target structures to be determined, it is not surprising that
fully automated tools for building antibody modeling have been
developed. These tools including program ABGEN37 and WAM —
Web antibody modeling server16 provide rapid access to the 3D-
structure of the antibody of interest. The benefit of the construction
of the model “manually,” in turn, is that good insight to the charac-
teristics of the model is obtained in the course of the modeling
process. Internet resources for antibody engineering and modeling
are collected in Table 16.1.

16.3 Modeling of the Antibody-Antigen
Complexes

16.3.1 Classifying the Antibody Binding Sites

Based on the contact analysis and structural studies of antibody bind-
ing sites,38–40 it has been suggested that the shape of the antigen-
antibody combining site is correlated with the nature of an antigen.
By comparing the overall shape of the binding site of an antibody, it
has been possible to categorize the antibodies into the classes, such as
concave, ridged, and planar. Comparisons of the free and bound
forms of antibody-antigen complexes determined experimentally41

have revealed changes in the antibody binding sites upon ligand
binding. The changes in structure may vary from small side-chain
rearrangements42 to substantial displacements, especially the confor-
mation and localization of the CDR-H3.43,44 Rearrangements of the
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hypervariable loop conformations contribute to complex stabiliza-
tion. The complementarity may be further enhanced by additional
structural water molecules at the interface of the complex as in anti-
gen-bound Fab of HyHEL-63.45

16.3.2 Construction of Models

In the absence of the crystal structure of the antibody-antigen com-
plex, modeling provides a rapid alternative to explore molecular inter-
actions. The modeling of the structures of molecular complexes by
using a homology model as a starting point is, however, severely com-
plicated by the limited accuracy of homology models. One possible
way to compensate for this is to generate several models, which differ
in particular in the regions where structural inaccuracies are most
likely to occur, i.e. the non-canonical CDRs and the CDR-H3 or in
the relative orientation of the VH and VL domains. 

By using a known antibody with high sequence identity as a tem-
plate, it is possible to construct models of reasonable level of quality,
following which complex modeling becomes meaningful. Soft dock-
ing algorithms/procedures46–48 or long trajectory molecular dynamics
simulations49 can be used to map the conformational space of the lig-
and or both the ligand and the binding site of the antibody. The like-
lihood of the complex structure is then evaluated by different scoring
functions, either physics-based potentials (force field type) or statisti-
cal potentials based on structural databases derived from protein
structures in the PDB.20 In general, the modeling of antibody-antigen
interactions becomes increasingly difficult in the case of large and
complex antigens such as proteins or in the case of very flexible mol-
ecules. In addition, potential conformational changes of the antibody
occurring upon binding of the antigen make the modeling of anti-
body complexes very challenging. The prediction of binding or bind-
ing modes of antigen(s) by docking are often used for hapten or
peptide antigen-antibody complexes, as, for instance, described by
Stigler et al.50 However, studies for larger protein antigens have also
been published51 where rigid body docking by ZDOCK52,53 is first
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performed to create the starting structure, which in turn is refined by
molecular dynamics simulations using GROMACS54 in explicit sol-
vent. Through ligand docking or using long trajectory molecular
dynamics simulations, it has been possible to obtain specific knowledge
about interacting residues of the protein ligand complex to engineer
the specificity of an antibody7,49,55 or interpret the experimental results.

16.4 Utilization of Antibody Modeling

The ideal starting point for antibody engineering is a crystal
structure.56 However, the amount of crystal structures of antibodies
lags far behind the extensive sequence data that can be used to
build homology models. Antibody modeling can provide useful
information about the binding site and the interactions with the
antigen49,51,57–60 and also with related, possibly cross-reacting
molecules.61–62 Antibody models have been applied in adjusting the
binding properties, affinity,55,63–67 and specificity61,63,64,68,69 of the
recombinant antibody fragments, as well as in interpreting the effects
of mutations obtained by random approaches.70 Model-based
design of mutations ranges from targeting single residues to the
areas to be randomized.

Stability is an important requirement for all antibody fragments.
It varies among different antibodies and the variable domains are
mostly responsible for the stability differences between antibodies
from the same subclass.71,72 Targeted mutations, structure-based
framework engineering, and CDR-grafting to more stable frame-
works have been used to improve the stability of antibodies.73–77

Sequence analyses and homology modeling have been applied to
identify destabilizing residues78 or to confirm how exposed they are in
antibody structures.79 Different aspects of stability engineering of sin-
gle chain antibody fragments (scFv) have been reviewed by Wörn and
Plückthun,80 and approaches for stability engineering of variable
domains have been collected by Monsellier and Bedoulle.81

Human antibodies have proven to have potential in therapy but
are difficult to produce. On the other hand, the more easily available
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monoclonal antibodies of rodent origin have limited use in human
therapy due to their immunogenicity and non-optimal effector func-
tions. In addition, the binding properties, stability, internalization effi-
ciency, solubility, or folding kinetics may need to be tailored.
Model-based humanization of mouse antibodies has been used to over-
come these problems.82–84 In tandem with the modeling of the variable
regions of the mouse antibody, the human frameworks are selected.
The design of humanized variable regions includes the identification of
those framework residues that may contribute to the binding properties
and cause immunogenicity. For recent reviews of the design and engi-
neering of therapeutic antibodies, see Presta85 and Carter.86

In addition to the above-mentioned major efforts to improve
antibodies, some of their other properties have been modified by the
application of computational antibody engineering methods.
Targeted and knowledge-based engineering have been applied to
study and improve the crystallization properties of antibody
fragments.87,88 Structural information from a model has been used to
design mutations to a catalytic antibody and improve the catalysis89 as
well as to identify important residues in metal-chelate recognition of
antibodies for radiotherapy and imaging.90

Design of synthetic antibody libraries on single or several
frameworks has been based on the crystal structure or homology
models.91–94 In the construction of fully synthetic human combinato-
rial antibody library (HuCAL), an example of unfocussed library, the
structural alignment of approximately 100 antibodies was performed.
Homology models were used to obtain insight to framework proper-
ties, packing, and the conformations of CDRs. Unfavorable torsion
angles, unusually exposed hydrophobic regions, sets of hydrogen
bonds, and canonical structures were checked as described in more
detail by Knappik et al.93 As an example of focused library, homology
modeling was applied to design an antigen-specific library with biased
specificity to haptens.94 According to the model, the residues lining
the binding cavity as well as the residues potentially binding the car-
rier protein were identified prior to targeted mutagenesis. Parallel
screenings with a conventional antibody library showed that antibod-
ies obtained from this cavity optimized library bound soluble hapten
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whereas the antibodies from the conventional antibody library
showed carrier protein dependence.

16.5 Future Outlook

In the future, recombinant antibody libraries will take an increasingly
prominent role as a source of new antibody molecules. As the recom-
binant antibodies provide direct access to primary structure, there will
most likely be increasing interest to use molecular modeling tools to
systematically characterize the antibodies at the level of their tertiary
structure. The development of synthetic antibody libraries based on
only one or a few defined framework genes will further facilitate the
modeling; once the crystal structure of the framework(s) used in the
library is(are) determined, a template with very high sequence iden-
tity will always be available.

The primary challenge in antibody modeling is the prediction of
the conformations of the CDR loops, future improvements in the
loop modeling techniques will therefore be of great value to antibody
modeling. The constantly increasing number of experimentally deter-
mined antibody structures will most likely allow the identification of
new, more rarely, occurring canonical structures for CDRs. With a
large enough dataset, improvements in knowledge-based modeling of
CDR-H3 can be expected, at least in the case of short and midsized
loops. There will always be outliers among CDR structures that can-
not be predicted by rules, and improvements in the conformational
search methods are needed. Current, ab initio loop generation algo-
rithms as well as advanced loop databases95 seem to allow efficient
sampling of the conformational space in most cases, but the bottleneck
seems to be unreliable ranking of search results. Improved algorithms
for the evaluation of the quality of loop candidates would be very
valuable for antibody modeling.
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Chapter 17

Small Molecule Docking

R. A. Friesner*,†, M. Repasky‡ and R. Farid‡

17.1 Introduction

In this chapter, we shall discuss computational methods for modeling
the interaction of small molecule ligands with protein receptors in
aqueous solution. Such interactions form the basis of the mechanism
of the great majority of pharmaceutically active compounds. The abil-
ity to determine the structures and free energy of binding of protein-
ligand complexes is, therefore, the key objective of computational
structure-based drug design.

In principle, this problem can be solved by simulation (e.g.
molecular dynamics) of the protein and ligand in solution. In practice,
there are formidable problems associated with a straightforward,
physical chemistry-based approach, including the large amount of
CPU time required, and limitations in force field accuracy. These con-
siderations have led to the development of approximate methods that,
while still based on physical chemistry principles, endeavor to embody
such principles in empirically optimized models (“scoring functions”)
and determine structures via specially designed conformational search
algorithms (“docking algorithms”). The combination of a docking
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algorithm and a scoring function, implemented in a self-contained
software system, constitutes a “docking program.” A number of such
programs are now widely used in both academia and industry.

The first docking program, DOCK, was developed in the labora-
tory of Tack Kuntz at the University of California, San Francisco,
beginning in the early 1980s.1 Over the next decade, DOCK incor-
porated the basic principles common to most reasonably efficient
docking programs:

Ligand dihedral angles are varied, while keeping bond lengths and
angles fixed. The protein is assumed to be rigid. The rigid protein
representation greatly reduces the number of degrees of freedom
sampled, enabling development of algorithms for rapid docking of
large numbers of ligands. The problem with this approximation,
which remains a central challenge of docking methods today, is that it
ignores induced fit effects. Induced fit effects arise from changes in
the protein structure induced by ligand binding and can be substan-
tial, to the point where known active compounds may completely fail
to dock in a rigid receptor of incompatible shape.

Keeping the protein rigid enables the protein structure and inter-
actions to be represented on a grid, thus avoiding the need to explic-
itly calculate interactions between all protein atoms and ligand atoms
at each step of the conformational search. The development of a suit-
ably accurate, grid-based representation of the intermolecular interac-
tions is a nontrivial task that has been addressed in DOCK and other
programs, reducing CPU times required for docking by as much as
one to two orders of magnitude.

DOCK begins with a set of ligand conformations and uses a vari-
ety of conformational sampling algorithms to determine reasonable
initial locations for these conformations. Minimization of the ligand
in the field of the protein is then employed to assess which starting
conformations yield the lowest energy after optimization. Subsequent
docking programs have used a wide range of sampling approaches and
methods for “pose selection,” that is, choosing the optimal structural
prediction for the protein-ligand complex. Here, pose refers to the
complete specification of the ligand, including position and orienta-
tion relative to the receptor of a single conformation of the ligand.
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Given a predicted protein-ligand complex geometry (in principle,
corresponding to the results of an X-ray crystallographic experiment),
DOCK uses an empirically optimized scoring function to predict
protein-ligand binding affinity. While the details of subsequent empir-
ical scoring functions differ, all docking programs attempt to infer
binding affinity from the geometrical relationship between the protein
and ligand in the docked pose selected by the program (as described
in the above paragraph), incorporating elements such as hydrogen
bonding between protein and ligand, hydrophobic interactions, for-
mation of salt bridges, and restriction of the dihedral angle freedom
in the ligand by the protein. Parameters of the scoring function are
typically fit to experimental structural and binding affinity data, the
quantity of which has increased exponentially over the past 15 years.

The vast increase in the number of publicly available protein-
ligand complexes in the Protein Data Bank (PDB)2 has made it pos-
sible to extensively test and optimize docking programs in a fashion
that was simply not possible 15 years ago, when there were only
about 900 crystal structures in the PDB, many of which had no co-
crystallized ligands. In contrast, there are, as of July 2007, over
44 000 crystal structures in the PDB of which about 36 000 are X-ray
structures of proteins, and of those, nearly 28 000 contain a ligand.
The development of curated datasets, including experimental binding
affinities, such as PDBBind3 and MOAD,4 further simplifies the devel-
opment of training and test sets.

Currently available scoring functions, docking algorithms, and
their accuracy in lead discovery will be discussed in Section 17.2.
Before doing so, however, a fundamental examination of the validity
of assumptions underlying docking algorithms and scoring functions,
summarized above, is useful to provide a context in which docking
and scoring as a basic research enterprise can be understood. A brief
outline of the key issues is presented in the paragraphs that follow.

The first and most obvious issue is the validity of the rigid recep-
tor hypothesis. Empirical data, accumulated over the past decade of
docking efforts with many programs in many laboratories, suggests
that roughly 30–50% of a diverse set of known active compounds will
fail to dock in anything resembling the correct binding mode, due to
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steric clashes, in a typical receptor. The percentage may be much
lower if one insists on a truly accurate binding mode, in which all
experimentally observed hydrogen bonds and hydrophobic interac-
tions are formed as is likely necessary (but not sufficient) for reliably
rank-ordering compounds by binding affinity. Hence, it is clear that
overcoming limitations of the rigid receptor hypothesis is a crucial
objective in turning docking methodology into a true platform for
drug discovery.

Assuming a “good enough” receptor conformation into which
one can dock, achievable either via induced fit algorithms or by using
an ensemble of initial structures, the next question is what types of
computational methods and models are necessary and sufficient to
predict the binding mode of the ligand-receptor complex with preci-
sion and reliability. Studies of “self-docking,” i.e. redocking a ligand
into its native cognate conformation of the receptor, as determined by
crystallography, provide an initial assessment of the effectiveness of
various algorithms and model assumptions.

The problem of estimating the binding free energy of a protein-
ligand complex is extraordinarily complex. Compared to a fully-rigorous,
statistical mechanical treatment, the use of an empirical scoring function
and a single conformation of the protein-ligand complex requires sig-
nificant approximations. These approximations may place a funda-
mental limit on the accuracy of binding free energy predictions by
empirical scoring functions. Theoretical arguments can be made for
inferring the binding affinity of the complex from the single, domi-
nant structure observed in a crystallographic experiment, which is pre-
sumably the target in a docking experiment. If a wide range of ligand
conformations is sampled in the bound state, presumably the resulting
crystallographic data would not be resolved to a suitable degree of pre-
cision. Generally, poorly resolved substructures of a ligand lie in solu-
tion, exhibiting little interaction with the receptor; these substructures
are unlikely to make a significant contribution to the binding affinity.
The crystallographic conformation is generally obtained at tempera-
tures lower than room temperature, and indeed a criticism of empirical
scoring functions could be based on the premise that they are in effect
a low temperature theory. However, excitations of the complex from
low temperature (at least as judged by molecular dynamics simulations)

472 Computational Structural Biology

FA
b587_Chapter-17.qxd  1/21/2008  4:53 PM  Page 472



are generally small enough such that development of generic approxi-
mations for such excitations does not seem unreasonable.

However, even if this argument is correct, it remains the case that
a scoring function that does not embody the physics of binding,
regardless of the volume of data used in the parameterization, is
unlikely to be successful when applied to ligands or targets that differ
from those in the training set. The driving force for protein-ligand
binding is dominated by displacement of water molecules in the pro-
tein cavity by a ligand that is complementary to the protein groups
surrounding it. This is the case because water molecules in the active
site typically have unfavorable free energies relative to bulk water mol-
ecules. Other important factors such as entropy loss of the protein
and ligand upon binding and burial of protein or ligand charges must
also be considered. For many years, relatively simplistic functional
forms in the scoring function have implicitly represented the free
energy contribution of displacement of water molecules, as well as the
other factors enumerated above. A key question, which will be con-
sidered in greater detail below, is whether these simplistic functional
forms embody realistic physics, and whether improved models can be
designed that lead to better agreement with experimental data.

A final issue of central importance in empirical scoring function
development and analysis is that of ligand and protein strain energy,
also referred to as the energy required for conformer focusing.5 The
thermodynamic cycle in Fig. 17.1 illustrates the contributions of pro-
tein and ligand strain energies to the free energy of binding. One
great advantage of an empirical scoring function is that rather than
computing a binding affinity (typically a small number) by subtract-
ing two large numbers, as in MM/MD-PBSA6 or MM/MD-GBSA7

calculations, the binding affinity (i.e. the small number) is calculated
directly. This advantage can compensate for many of the approxima-
tions inherent in the methodology; the noise in brute force binding
calculations of protein-ligand complexes can be quite large, even if the
basic description of the interactions is reasonable. This noise leads to
the non-intuitive finding that MM-GBSA/PBSA methods that utilize
a single, relaxed complex structure tend to perform better than MD-
GBSA/PBSA methods that utilize a more rigorous ensemble of com-
plex structures.8 However, it is important to realize that such a scoring
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function only evaluates the interaction energy and does not include the
conformational changes in ligand and receptor required to form the
complex. Unfortunately, scoring functions typically only account for
the interaction energy, ignoring the protein/ligand strain energies.

In principle, both protein and ligand strain energy can be calcu-
lated using physical chemistry-based approaches such as thermody-
namic integration/free energy perturbation theory, continuum solvent
modeling, etc. In practice, there is virtually no data in the literature cal-
ibrating the accuracy of such first principles calculations for proteins.
Ligand strain energies from force field-based calculations have been
shown to manifest significant errors in many cases.5 An alternative is to
rely on experimental data and on analogies between conformational
changes of related receptors. Even a crude approximation is better
than none at all from the standpoint of putting experimental binding
affinities for different ligands and different receptors on an equal foot-
ing. Both approaches will be discussed in greater detail below.

17.2 Rigid Receptor Docking

17.2.1 Docking Programs

The DOCK program was the first of its kind, and continues to be
used in both academia and industry. However, over the past decade,
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Fig. 17.1 Thermodynamic cycle illustrating the effect of ligand and protein strain
energy on the free energy of binding. Here, ∆G(P) and ∆G(L) are the energies
required to take the protein and ligand, respectively, from their solution conforma-
tion distributions (P and L) into a distribution of generally more strained conforma-
tions (P′ and L′) suitable for binding.
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a number of new programs have been developed, incorporating
efforts to improve sampling algorithms, pose selection functions, and
the scoring function for binding affinity. By our estimation, the
FlexX,9,10 GOLD,11,12 and Glide13–15 programs account for greater
than 90% of the docking carried out in ongoing drug discovery proj-
ects in pharmaceutical and biotechnology companies, and hence, rep-
resent a good snapshot of current state of the art practice. Quite a
few other programs are in use, including Surflex,16,17 MolDock,18

LigandFit,19 eHiTS,20 ICM,21 AutoDock,22 and FRED (Open Eye
Scientific Software; Santa Fe, NM); however, due to space limitations,
we will not discuss these programs. Benchmarking of new methodolo-
gies is essential to continued progress and many such studies have been
performed.23 While each method has its strengths and weaknesses, to
our knowledge, none of the alternatives listed above has demonstrated
significant superiority across a wide range of test cases in pose predic-
tion or binding affinity prediction to the current versions of GOLD,
FlexX, and Glide. We focus in the present section on the docking
algorithms and their prediction of protein-ligand complex geometry.
A discussion of binding affinity prediction is presented in Section 17.4.

The FlexX program, developed in the early to middle 1990s by
Lenguaer, Klebe, and coworkers, performs flexible docking via an
incremental construction algorithm. The program first searches for
locations where small molecular fragments can be favorably posi-
tioned. Starting from these “base” fragments, the remainder of the
molecule is grown incrementally, taking torsional flexibility into
account. As the molecule is grown, only the highest scoring structures
are retained, and then clustering is used to eliminate redundant struc-
tures. An empirically derived pose selection function is then used to
rank order the surviving solutions generated from the ensemble of
base fragments via the growing algorithm.

The GOLD program was developed in a similar time frame
through collaboration between the University of Sheffield, Glaxo-
SmithKline, and the Cambridge Crystallographic Data Center. In
contrast to FlexX, GOLD uses a genetic algorithm to locate dock-
ing solutions, propagating multiple copies of a flexible model of
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the ligand in the active site of the receptor, and recombining seg-
ments of these copies randomly until a converged ensemble of
structures is generated. Pose selection is accomplished using a
molecular mechanics-based function, incorporating hydrogen
bonding energy, steric interactions between protein and ligand via
a modified 4–8 van der Waals term, which is significantly softened
compared to the usual 6–12 Lennard-Jones model, and ligand
internal energy is modeled using a molecular mechanics potential
function.

The Glide program, developed in collaboration between the
Friesner laboratory and Schrödinger, Inc., was created in a somewhat
later time period (beginning in the late 1990s). Glide SP (standard
precision) employs yet a third strategy for sampling the ligand posi-
tion and conformation, namely a hierarchical search methodology
that in principle is exhaustive. This algorithm is probably the closest
to the original strategy employed in DOCK, although it is very dif-
ferent in its details. An ensemble of ligand conformations is pre-
generated using a filter designed to favor the more open structures
typically found when ligands are bound to protein cavities. These con-
formations are then screened by a series of increasingly demanding fil-
ters to locate initial guesses for ligand poses. Finally, the initial poses
are refined via minimization and torsional sampling to yield a final
ensemble of poses. A high-accuracy version of the algorithm, Glide
XP (extra precision), has been developed that contains extensive mod-
ifications to SP in both the sampling algorithm and scoring function.
The XP sampling algorithm begins with SP docking, but then refines
the poses by extracting base fragments and executing a high resolu-
tion growing algorithm, similar in some ways to FlexX. As with GOLD
and FlexX, a specialized pose selection function has been developed
for Glide SP and XP, in this case, principally based on the OPLS-AA24

molecular mechanics force field combined with relatively small admix-
tures of other terms. There is a mechanism for softening the van der
Waals interaction by scaling the parameters, so as to accommodate
minor steric clashes due to inaccuracies in the crystal structures and
small induced fit effects.
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17.2.2 Docking Accuracy: Self-Docking

The accuracy of a docking program can be assessed by comparing the
predicted structures of protein-ligand complexes with crystallo-
graphic data. For rigid docking, the simplest comparisons are made by
docking each ligand into its own cognate receptor conformation; this
is referred to as self-docking.

Average ligand RMSDs to the crystal structure of the best scoring
prediction from self-docking experiments with FlexX, GOLD, and
Glide are summarized in Ref. 13. The FlexX scoring function is rela-
tively “soft,” and hence, has some difficulty in recovering the native
structure even in self-docking. The developers of FlexX instead
emphasize examining a larger set of docked poses and employing such
things as protein-ligand constraints and visual inspection to select the
correct pose. This sort of human intervention, while on occasion
essential, is quite labor intensive and would be difficult to apply to a
large number of molecules. Both GOLD and Glide perform reason-
ably well on the indicated test sets.

It should be noted that these results are dependent on a few fac-
tors, including the experience of the individual performing the exper-
iments, preparation of the protein and ligand structures prior to
docking, and the fact that the average RMSD, used as a measure of
docking accuracy, can be adversely affected by a few ligands with very
poor placements. Perhaps more interesting than the RMSD compar-
isons is the question of why docking programs have consistently dis-
played a residual fraction of complexes, typically 20–30% of the data
set, for which self-docking RMSDs are greater than 2.0 Å. We have
been investigating such cases in detail over the past several years and
have identified a few factors that appear to be significant:

In roughly 10–15% of the cases, the use of polarized charges on the
ligand, derived from mixed quantum mechanics/molecular mechan-
ics (QM/MM) calculations in which the ligand charges respond to
the protein environment, have been shown to yield a selection of
low RMSD pose in preference to an incorrect pose with the wrong
hydrogen-bonding pattern. Specific examples can be found in Ref. 25.
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In a smaller fraction of cases (~3–5%), lack of flexibility in satu-
rated ring structures has been identified as a barrier to achieving accu-
rate structural prediction. In these cases, the saturated ring typically
has large, bulky groups attached to a number of points on the ring.
Docking programs in many cases sample grossly different ring con-
formations (chair, boat), but not perturbations of the angles in the
ring. Such perturbations, which have relatively low energetic costs,
are necessary in a small fraction of cases to properly position large
attached groups in available pockets. Similar phenomena can also be
observed in bond angles outside rings, which can occasionally display
significant lever arm effects due to long/bulky attachments. The
introduction of a limited degree of flexibility in angle bending is
therefore able to drastically improve RMSDs in a small, but notice-
able, number of self-docking cases, particularly when “unbiased”
input ligand geometries are used that differ in detail from the native
co-crystallized geometry.

Metal-containing systems can pose particular challenges to dock-
ing algorithms and pose selection functions. The description of
ligand-metal interactions via classical force fields is of questionable
accuracy, and errors in such descriptions can lead to structural ambi-
guity. This issue requires significant further exploration.

When the ligand has a large number of rotatable bonds, the
sampling problem becomes more difficult, and sampling errors, as
opposed to energetic errors in the pose selection function, are
observed more frequently. This issue can in principle be addressed by
applying additional computational effort when the ligand size exceeds
a given threshold, which seems to occur at about ~15–20 rotatable
bonds.

Some cases of “misdocking” are undoubtedly due to problems
external to the docking methodology, for example, errors in the pro-
tein structure or misassignment of ionization/tautomeric states.
Others are attributable to ligand groups that extend into solution in
the complex and do not make significant contact with the receptor.
For such groups, B-factors in the X-ray structure may be high or the
energetic effects may be too subtle for current empirical energy mod-
els to discriminate.
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Our most recent results, using development versions of Glide
with polarized QM/MM charges on the ligand, produce poses with
RMSD < 2.0 Å in about 90–95% of self-docking experiments cases by
addressing the above factors with a reasonable level of effort. At this
point, we believe issues due to cross-docking errors (presumably aris-
ing from induced fit effects) and errors in binding free energy predic-
tions are greater contributors to docking/scoring failures in practical
application than self-docking errors.

17.2.3 Docking accuracy: Cross-docking

A more complex and demanding test than self-docking involves dock-
ing a ligand into a conformation of the receptor that is not its cognate,
but rather either the apo structure of the receptor or one from co-
crystallization with a different ligand. In many such cases, only
approaches utilizing receptor flexibility to treat induced fit, discussed
below in Section 17.3, can lead to high-quality pose prediction. When
two protein conformations are sufficiently similar, cross docking can
generate reasonable ligand poses, albeit, usually not quite as accurate
in details as obtained from self-docking. Cross-docking can also
introduce noise into the calculations with the effect of creating
smaller energy gaps between experimentally observed and incorrect
docking solutions, introducing an energetic preference for an incor-
rect solution, and/or making barriers in sampling more difficult to
overcome, typically because the ligand is a “tighter fit” into the cross-
docked structure than into the self-docked structure.

It is relatively straightforward to set up cross-docking tests for
rigid receptor docking. Given a set of superimposed co-crystallized
complexes of a given receptor, one simply takes all of the ligands and
attempts to dock them into all or some fraction of the receptor con-
formations, and records the ligand RMSDs in a cross-docking
“matrix.” In practice, it is more common to dock a database of lig-
ands into multiple receptor conformations, a closely related method-
ology referred to as ensemble docking. A number of publications
performing ensemble or cross-docking studies are available in the
literature.26–31
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There is some difference in cross-docking performance among
programs, although this difference is typically smaller than what is
seen in self-docking. Such a result is not surprising; ligands that fit
poorly into a given receptor conformation (i.e. exhibit significant
steric clashes) cannot be docked by any rigid docking program, no
matter how sophisticated the docking algorithm. The degree of
“hardness” of the pose selection function is also a highly relevant fac-
tor in this type of calculation; softer potentials may enable a higher
fraction of cross-docking calculations to succeed, although they may
also prove detrimental in enrichment studies by enabling false posi-
tives to achieve good scores.

However, the principal conclusion to be drawn from the cross-
docking results is that docking failures due to cross-docking effects are
a substantial cause of poor performance of rigid docking programs in
enrichment, rank ordering, and other key tasks. If one believes accurate
structures are required for high-quality binding free energy prediction,
and if 30–50% of actives are scored incorrectly due to poor binding
mode prediction, the impact on any reasonable performance metric is
going to be severe. Hence, if docking is to become a true platform for
driving structure-based drug design, it is imperative that receptor flexi-
bility be addressed in an accurate, yet cost effective fashion.

The simplest approach to receptor flexibility is ensemble docking,
where ligands are docked into multiple receptor conformations. In the
naïve implementation of this strategy, the computational cost of dock-
ing into N conformations is simply N-times the cost of docking into
one conformation. More sophisticated approaches can reduce the CPU
time per conformation.32–36 However, the most critical question is how
much improvement such an approach can provide in terms of docking
accuracy and corresponding binding free energy prediction. This ques-
tion is just beginning to be explored in the literature. There are some
major technical issues that must be addressed before performance can
be rigorously evaluated. One of the most important is how one selects
the correct binding mode, and binding affinity prediction, from among
the ensemble. For example, a simple approach would be to choose the
binding mode with the best predicted binding affinity. However, such
an approach will often favor more “open” forms of the receptor, which
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can result in significant over-prediction if the ligand in fact should fit
into a tighter pocket. Opening the receptor generally costs reorganiza-
tion energy; if the ligand is large, and otherwise could not fit, this reor-
ganization energy is a requisite penalty for achieving any sort of
reasonable docked pose. Unless an estimate of this reorganization
energy is included in the pose selection and scoring functions, however,
an over-prediction of the binding affinity will result. We refer readers to
Refs. 37 and 38 for other perspectives on ensemble docking.

An issue with ensemble docking is that one cannot proliferate
receptor conformations indefinitely. If the conformations are
obtained from crystallography, there will typically be a limited num-
ber of alternatives available, particularly in the early stages of a dis-
covery project when accurate docking and scoring results would be
most valuable. Generation of conformations from high-resolution
protein structure prediction methods (such as Schrödinger’s Prime
program) is possible in principle, but studies have not yet been done
to validate the conformations that would be so obtained. If a relatively
small number of conformations3–5 are used for ensemble docking, a
significant number of misdockings are still observed, and the problem
of obtaining accurate scores from the ensemble remains. Hence, while
ensemble docking will almost certainly be a part of any long-term
solution, particularly when large loop motions of the receptor are
involved, for example, in studying ligands that bind to the DFG-in
and DFG-out forms of p38 MAP kinase,39 it is unlikely to solve the
cross-docking problem completely. This is particularly true if the goal
is to rank order compounds as opposed to approximately separate
active and inactive compounds. To achieve greater robustness and
higher accuracy, introduction of protein motion explicitly into the cal-
culation is required. Such methods, which we shall refer to as induced
fit approaches, are the subject of the next section.

17.3 Flexible Receptor Docking: Treatment
of Induced Fit Effects

In principle, flexible treatment of both ligand and receptor to produce
an accurate prediction of the structure of a ligand-receptor complex

Small Molecule Docking 481

FA
b587_Chapter-17.qxd  1/21/2008  4:53 PM  Page 481



is a straightforward problem in biomolecular simulation. One could,
for example, use molecular dynamics (MD) methods with explicit sol-
vation, starting with the ligand in solution, and under appropriate
conditions with regard to effective ligand concentration, a sufficiently
long MD simulation should converge to the bound state as thermo-
dynamic equilibrium is reached. In practice, such an approach would
require far too much computation time to be practical.

A more efficient approach is to use rigid receptor docking meth-
ods to generate many initial poses, for which at least one is close to
the correct structure, and then apply simulation methods that account
for both ligand and receptor flexibility to generate a final ensemble of
structures, selecting the correct answer via a scoring function, typi-
cally based on the molecular mechanics energy of the complex. A
number of methodologies of this type have been reported in the
literature.32,40 A faster, but arguably less powerful alternative is to
enable a small number of protein groups, typically protein side-chains,
to move within the docking procedure itself.41–44 The effectiveness of
any of these approaches depends critically upon details of the sam-
pling technology and energy model. Below, we briefly outline the key
issues and summarize the current state-of-the-art of our induced fit
methodology,40 which combines the Glide and Prime programs.

The induced fit docking approach involves docking followed by a
limited protein conformation search. A key requirement in this
approach is the generation of an initial pose close to the experimental
pose by the docking algorithm. If structural incompatibility between
ligand and receptor conformation is relatively minor, standard docking
protocols may be sufficient to generate a ligand pose within 2–3 Å
RMSD, although it may not be the top ranked pose in the initial
docking run. As the incompatibility increases, larger steric clashes
would be required to position the ligand in the receptor consistent
with crystal structures, and softening of the potential in some fashion
is required to generate a reasonable initial guess. The simplest
approach is to scale the protein-ligand van der Waals potential so that
it is more forgiving of overlaps. Various techniques for doing this are
available.45,46 A second approach is to remove side-chain atoms of
residues responsible for a major blockage of the ligand, for instance,
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through mutation to an alanine residue. Both techniques are most
effective if focused on a small subset of residues; too much softening
leads to promiscuous ligand binding in a wide range of positions, ori-
entations, and conformations. Mobile residues can be identified via
several approaches, including X-ray B-factors, family-based structural
analysis, examination of multiple crystal structures of the receptor
complexed with different ligands, and conformational energy analysis.
Automated construction of a suitably softened model is an area of
current research. Currently, human intervention based on target
expertise, enabling integration of all the above factors, is often help-
ful in obtaining accurate results.

It is assumed that the ensemble of poses from the initial docking
will include at least one pose that is “close enough” to the experi-
mental structure. Of course, the question of what is “close enough”
and whether it is possible to recover at least one suitable pose in all
cases are basic research topics requiring further study. The next step
is to refine the ensemble of initial poses and use an energy and/or
scoring model to select the pose closest to that observed experimen-
tally. A variety or even combination of Monte Carlo, molecular
dynamics, and conformational search algorithms can be used for this
refinement; the pose selection function in general contains some
molecular mechanics component, possibly an implicit solvation
model, as well as empirical terms. Only a small number of attempts
have been made to evaluate a complete protocol (sampling plus scor-
ing) for a significant number of challenging test cases.47 Our work,
described in Ref. 40, provides grounds for encouragement. Twenty-
one systems were examined, of which 17 failed (often rather drasti-
cally) in rigid-receptor cross-docking, presumably due to induced fit
effects. Substantial improvement was obtained for all of these cases via
the induced fit protocol, and an average RMSD of 1.3 Å, as compared
to 5.5 Å for standard cross-docking using Glide, was reported.
Reference 47 also reported some successes, although data sets were
much smaller than those examined in Ref. 40.

Induced fit methods have already had a significant impact on a
number of drug discovery projects, despite the relatively steep compu-
tational requirements (2 CPU hours/ligand or 15 minutes/ligand
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distributed over 20 CPUs). An obvious application is in the discovery
of the binding mode of a novel lead compound prior to obtaining the
crystal structure. A significant number of users of the Glide/Prime
induced fit methodology of Ref. 40 have reported successful efforts
along these lines. However, it is not yet clear whether the present
methods are sufficiently robust to enable deployment in larger scale
virtual screening exercises, or to improve accurate prediction of rela-
tive binding affinities in lead optimization. To answer these questions,
a substantially larger data set should be examined and the speed of the
algorithms should be enhanced for higher throughput application.

17.4 Binding Affinity Prediction

17.4.1 Standard Empirical Scoring Functions

A wide range of computational methods are available for predicting
the binding affinity of protein-ligand complexes. These include highly
computationally-intensive simulation-based approaches, such as ther-
modynamic integration/free energy perturbation theory (Chapter 19),
more approximate, faster methods based on end-point simulations
(linear interaction energy approaches,48 MD/MM-PBSA, MD/MM-
GBSA), and empirical or knowledge-based scoring functions that
attempt to predict binding affinity given a protein-ligand complex
geometry. There are also approaches based on fitting to structure-
activity data of closely related ligands binding to the same receptor;
such QSAR-based methods are often applied in the absence of any
structural information. In the present section, we shall focus primarily
on empirical scoring functions, as these are what are ordinarily uti-
lized in currently available docking programs.

It is widely believed that the principal contributor to protein-
ligand binding affinity is the free energy gained by displacing water
molecules from the receptor active site. The largest free energy gains
arise from displacing waters in hydrophobic regions of the receptor.
In most empirical scoring functions, this free energy contribution is
approximated as being proportional to either the hydrophobic surface
area of the ligand in contact with hydrophobic groups of the protein,
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or as an atom-atom pair term summed over lipophilic ligand and pro-
tein atoms. The van der Waals interaction between ligand and protein
can also be used.

Hydrogen bonds between the ligand and protein can also be a
source of free energy gain upon ligand binding. The gain again
comes from displacement of waters bound to the protein hydrogen-
bonding partner by the ligand. Since no net hydrogen bonds are
generally made or broken, the gain is smaller than the typical gas
phase hydrogen bonding strength (~3–5 kcal/mol for two neutral
groups, 10–15 kcal/mol for two charged groups), but can be as
large as ~1–2 kcal/mol, principally arising from improved entropy of
the water molecules upon transfer from their hydrogen bonded loca-
tions in the protein active site to bulk. Some scoring functions treat
all hydrogen bonds identically, while others differentiate depending
upon whether each partner atom is charged or neutral. The score is
also typically modulated by a geometrical factor, reducing the pre-
dicted free energy gain as the geometry deviates from ideal.

A third commonly used term is aimed at representing the loss of
ligand entropy upon binding, due to restriction of ligand torsional
flexibility. This term is typically small, and not treated particularly
well, given the approximations made and the neglect of other, similar
terms such as ligand vibrational, rotational, and translational entropy.
Nevertheless, various functional forms have been tried, and param-
eters optimized along with the remainder of the scoring function.

Finally, specialized terms are often introduced to represent metal-
ligand binding.13 Because there can be a covalent component to this
binding, its contribution to overall binding affinity is particularly dif-
ficult to model. The contribution is difficult to obtain accurately as it
requires estimation of the contribution to binding affinity (a small
energy) from the difference in interaction energies of the metal ion
with solvent and the ligand (both large energies).

Given a functional form implicitly or explicitly including the four
terms described above, and automated or manual fitting using exper-
imental binding affinity data to determine optimal parameter values,
a standard empirical scoring function is defined. There are many such
scoring functions in the literature,22,49–56 one widely used version is the
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ChemScore function developed by Eldridge and coworkers.57 Other
scoring functions, such as PLP,56 use a significantly larger number of
parameters by defining more atom-types and hence more atom-atom
pair interaction terms, although the functional form is not very dif-
ferent from ChemScore. However, it is unclear whether the increased
complexity of using more adjustable parameters yields higher accuracy
when applied to systems beyond the training set.

It is, of course, possible to define local empirical scoring functions.
These functions are trained on a single receptor or a small set of
related receptors. A general-purpose docking program, however,
employs a global scoring function that is intended to apply to all
protein-ligand complexes with equal accuracy. The standard proce-
dure is to fit the parameters of the scoring function to a “diverse” set
of complexes, taken from the Protein Data Bank. Despite many
attempts, it has proven difficult to achieve accuracy and robustness
with the functional form and fitting protocol described above. When
large and diverse data sets are examined, average errors of ~3 kcal/
mol in binding affinity prediction are observed, and exceptionally
large outliers with errors of 5–10 kcal/mol are not uncommon. An
example of such an outlier is binding of biotin to streptavidin (PDB
complex 1STP). Despite the small size of biotin, which has only 16
non-hydrogen atoms, it is the most tightly bound complex found in
the PDB with a binding affinity of −18.3 kcal/mol. Most empirical
scoring functions with the form outlined above yield results for this
complex in error by ~5–10 kcal/mol, an extremely large error in both
absolute and percentage terms.58 Furthermore, until quite recently,
no physical explanation for this discrepancy was offered.

17.4.2 Improved Representation of the
Hydrophobic Effect

Description of the hydrophobic effect based on hydrophobic surface
area contacts as in standard scoring functions can be shown to work
reasonably well in describing small hydrophobic solutes in water.
However, a body of evidence from the physical chemistry literature sug-
gests that as the system becomes larger and more complex, significantly
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different behaviors can arise as the geometry of the hydrophobic moi-
ety is altered. In particular, a region displaying hydrophobic enclosure
of water molecules, i.e. enclosed on two sides at a 180-degree angle
by lipophilic protein atoms, can create a situation where a surface area
model underestimates the gain in free energy from displacing these
waters. Clear examples of such enclosure include water in a carbon
nanotube59 and water between two hydrophobic plates.60,61 If the
nanotube diameter, or distance between plates, is comparable in size
to the diameter of a water molecule, the water molecules in these
regions can lose hydrogen bonds. In an extreme situation, this can
cause dewetting of the cavity. This situation can be contrasted with
simulations of water at a hydrophobic wall, as studied by Rossky and
McCammon more than 20 years ago.62 Water molecules at a
hydrophobic interface do not on average lose hydrogen bonds 
rather, they exhibit loss of entropy due to an inability to hydrogen-
bond with the hydrophobic surface. Thus, one would expect that the
free energy gain for displacing enclosed water molecules is signifi-
cantly larger than that available from displacing water molecules
in contact with a single hydrophobic surface. Yet, standard scoring
functions treat both situations with the same functional form and
parameterization.

Algorithms can be developed to recognize regions of hydropho-
bic enclosure in protein active sites, as is done in Glide v4.5 SP and
XP. When groups of lipophilic ligand atoms occupy such sites, the
predicted free energy is adjusted to reflect the additional free energy
gained beyond the standard scoring function representation of the
hydrophobic effect. Hydrophobically enclosed sites are common in
pharmaceutical targets and represent regions targeted by medicinal
chemistry, as these are regions where a small number of atoms can
yield large gains in potency. The hydrophobic enclosure model in
Glide provides, for the first time, a rapid, reasonably accurate way to
recognize such sites and evaluate how well various ligands capture the
free energy gains available due to the restrictive water environment.
Figure 17.2 shows the napthyl moiety of the ligand in 1kv2, a p38 MAP
kinase inhibitor that binds to the DFG-out mode of p38. The enclo-
sure by hydrophobic protein residues is indicated by the green spheres
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surrounding the group. SAR data indicates that this group con-
tributes a substantial amount of binding affinity.

A particularly important type of hydrophobically enclosed site is
one in which the ligand also makes hydrogen bonds to the protein.
The combination of hydrophobic enclosure and hydrogen bonding
imposes severe constraints on water molecules occupying such a site
(in the absence of ligand), leading to extremely unfavorable entropies
of the water molecules. A characteristic motif is the presence of mul-
tiple hydrogen bonds in such sites (that we refer to as correlated
hydrogen bonds), which, for example, are made to backbone NH and
CO groups of the protein. The hinge region in kinases is an impor-
tant example of this type of binding; Fig. 17.3 shows staurosporine
bound to the kinase CDK2, in which a double correlated hydrogen
bond is formed in a region with strong hydrophobic enclosure. A final
example of this motif is the binding of biotin to streptavidin (Fig. 17.4),
as discussed above, where a triply-correlated hydrogen bond is found
in a region of extensive hydrophobic enclosure. Recent work employing
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Fig. 17.2 Doramapimod (BIRB-796 from Boehringer Ingelheim) bound to
human p38 map kinase (PDB entry 1kv2). Protein residues forming a region of
hydrophobic enclosure about the naphthyl group are represented as green spheres.
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molecular dynamics simulations63 confirms the unusual behavior of
water molecules in such environments and is consistent with the
enhanced free energy gains implemented in the Glide XP scoring
function when such waters are displaced by suitable ligands.

17.4.3 Enrichment Studies

Over the past five years a considerable number of enrichment studies
have been performed using a variety of scoring functions and rigid
receptor docking method.23 Enrichment studies utilizing flexible recep-
tor docking have yet to be performed to any serious extent. In enrich-
ment studies, ligands with sub-micromolar binding affinity (actives)
to the receptor are seeded into a database of random, drug-like mole-
cules (decoys) that are assumed to have larger-than-micromolar bind-
ing affinities. Not surprisingly, the character of the decoys can affect
results significantly.64 Various metrics for measuring enrichment have
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Fig. 17.3 Staurosporine bound to human cyclin dependent kinase. Key hydrogen
bonds are shown with residues forming a region of hydrophobic enclosure repre-
sented as green spheres.
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been proposed, where the basic idea, given the ranked list of binding
affinities predicted by the scoring function, is to examine the fraction of
actives recovered as the percentage of the decoys recovered increases.65

Typical enrichment studies with state-of-the-art methods display
a burst of “early” enrichment (in the top 1–2 % of the database, fol-
lowed by a steady increase that often levels off, recovering 60–90% of
the known actives. From our discussion above, we can interpret these
results as follows. Early enrichment is due to compounds that fit par-
ticularly well into the receptor configuration. Weakness in recovering
the bottom 30–40% of actives is most likely attributable to misdock-
ing due to steric clashes. As discussed above, misdocking is then not
really reflective of problems with the scoring function, but rather of
the failure to treat induced fit effects. Until the induced fit effect is
addressed more effectively, significant fractions of actives will con-
tinue to be misdocked, and hence, will be incorrectly scored.
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Fig. 17.4 Biotin bound to streptavidin. The identification of a triplet of correlated
hydrogen bonds in the ring in a hydrophobically enclosed region, and the three
hydrogen bonds to the ligand carbonyl within that ring results in very strong bind-
ing for this relatively small ligand.
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This analysis suggests that a useful approach to calibrating the
performance of scoring functions in enrichment is to work with data
sets of actives that fit reasonably well into the target receptor confor-
mation. A recent study indicates that Glide XP substantially outper-
forms alternatives when only well-docked actives are considered.66

This is an encouraging result, as it shows that improvement of the
physics of the scoring function leads to corresponding improvement
in enrichment. However, until more progress is made in handling
induced fit effects, misdocking will set fundamental limitations on the
performance of Glide XP or any other scoring function in virtual
screening.

In contrast to enrichment, empirical scoring functions have gen-
erally had difficulty in rank ordering compounds by binding affinities,
an essential function if lead optimization problems are to be fully
addressed by docking methods. Reasonable results are sometimes
obtained, but for the most part this remains a very challenging prob-
lem, and a major focus of current research.

17.4.4 Applications

Initial application of docking and scoring in the early 1990s yielded
anecdotal successes in facilitating the identification of lead com-
pounds, particularly in the case of HIV protease inhibitors.67,68 Over
the next decade, enhancements in the cost/performance of computa-
tional platforms (culminating in the use of commodity personal com-
puters, either via Linux clusters or grid computing) combined with
improvements in docking software, algorithms, and scoring models,
enabled virtual screening for lead discovery to be profitably per-
formed on a wide range of targets in both academia and industry.67–70

While complete separation of active from inactive compounds is not
yet possible (for the reasons outlined above), even a relatively modest
enrichment factor of 3–5 can enhance the efficiency of the lead dis-
covery process. Higher enrichments, in the 10–30 range, can enable
a small number of compounds to be evaluated with the expectation of
obtaining some low micromolar hits with modest financial expendi-
ture. Furthermore, the hits obtained from virtual screening are often
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complementary to those found in experimental HTS, facilitating the
discovery of novel classes of compounds that might otherwise have
been missed entirely. An interesting recent result is the use of virtual
screening methods to identify an inhibitor of a protein-protein inter-
action, a particularly difficult class of target to access.71

The application of docking and scoring methods to lead opti-
mization requires greater accuracy and reliability to make a significant
impact. Nevertheless, over the last several years, use of these methods
in practical drug discovery projects has expanded with a number of
successful efforts reported in the literature.72–77 Docking algorithms
can be used to generate structures of new compounds in a lead series,
providing powerful insight into the origin of structure-activity rela-
tionships and suggesting further directions for compound refinement.
A particularly interesting study is that of Ref. 76 where the induced
fit methodology of Ref. 39 was used to elaborate structures for a
medicinal chemistry series. Interesting and important differences
were found in the induced fit structures of closely related compounds,
illustrating the need to consider protein flexibility even when investi-
gating congeneric series.

In summary, computational approaches with docking and scor-
ing as their core technologies are increasingly being integrated into
the drug discovery processes at large pharmaceutical companies,
biotechnology companies, and academic laboratories. For each type
of organization, there are specific issues that will dictate the optimal
deployment of computational tools. For example, large pharmaceu-
tical companies have made a major investment in HTS facilities; they
will benefit most from the complementary integration of virtual and
HTS screening methods in lead discovery. At the opposite end of
the spectrum, academic groups rarely have access to the million-
compound HTS experiments that are routinely run in a large phar-
maceutical company environment. For them, virtual screening, if
it works, is highly attractive as the primary means of discovering lead
compounds due to the low capital requirements and minimal ongo-
ing expenses. Biotechnology companies fall somewhere in the mid-
dle of this spectrum; they can enhance HTS efforts with a much
larger virtual compound collection by computationally screening a
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library of purchasable compounds. In the lead optimization phase,
there is not yet sufficient data to confidently assess the potential
impact of computation on improving the efficiency of a project, but
this is an exciting direction that can be pursued by all the entities dis-
cussed above.

17.5 Future Outlook

The application of docking methods to lead discovery requires screen-
ing large numbers of compounds and the ability to handle active com-
pounds complementary with many different receptor conformations.
To achieve the large enrichment factors that would make virtual
screening an essential lead discovery technology, receptor flexibility
will have to be combined with a reasonably accurate scoring function
at an acceptable computational cost for each ligand screened. We
believe the current direction of scoring function improvements, as
described above, will be sufficient to yield the requisite accuracy
within a five-year period. The necessary speed can be achieved
through a combination of the use of ensemble docking, acceleration
of induced fit methods, and expanded computing capacity including
grid computing. Because docking approaches are embarrassingly par-
allelizable, once accuracy of the methodology has been established,
investments will be made in deploying thousands or tens of thousands
of processors for virtual screening calculations. In five years, Moore’s
law predicts that the cost/performance per processor will improve
from current benchmarks by roughly a factor of 10. Assuming the use
of 5000 processors, if one wanted a virtual screen of one million com-
pounds to complete in one day, one could afford to spend approxi-
mately seven minutes per ligand, which translates into 70 minutes per
ligand using existing technology.

The more computationally expensive docking calculations cur-
rently require approximately five minutes per ligand with current
processors. In contrast, current successful induced fit methods require
hours of CPU time on a single processor. However, this typically
involves rebuilding a large number of residues around the ligand for
a set of top ligand poses. By intelligently reducing the number of
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side-chains that are treated flexibly (valid for the great majority of
induced fit cases) and the number of initial poses to be retained (fewer
poses will be required if very large perturbations of the active site are
not being considered), major reductions in the CPU time required
for induced-fit calculations can be achieved. These estimates suggest
that computational power is not the real issue in deploying virtual
screening on a large-scale basis, at least in large pharmaceutical com-
panies. The key is to achieve a high level of accuracy for a wide range
of targets  robustness is at least as important as accuracy. Generating
poses with small RMSDs relative to experimental structures and high-
quality predicted binding affinities by treating induced fit effects are
some of the additional challenges that will need to be met as the tech-
nology matures.

Application of docking methods in lead optimization requires the
ability to accurately treat induced fit effects and to rank order com-
pounds by predicted binding affinities. The precision required is
higher than for lead discovery; on the other hand, it is acceptable to
require more CPU time per compound, since fewer compounds are
typically considered.

The question of whether a high-accuracy, global empirical scor-
ing function can be developed is an interesting one. There may be
fundamental limits to such an approach. However, as more experi-
mental data is obtained for a project, it should be possible to build
and improve local empirical scoring functions, using what could be
thought of as a structure-based QSAR approach. A few attempts in
this direction have been published,78 and this is an area we expect
will develop rapidly in the next five years. Development is expected
to be based on the use of improved functional forms and the wide-
spread public availability of large quantities of experimental struc-
tural and binding data. An alternative is to follow docking
calculations with other computational approaches, such as
MD/MM-GBSA or MD/MM-PBSA, linear response calculations,
or thermodynamic integration/free energy perturbation (FEP) cal-
culations. All of these methods are undergoing continual improve-
ment, and increases in computational power will enable more
widespread application of simulation-based methods such as FEP,
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which has for many years been considered too computationally
expensive for production use in a pharmaceutical environment. It is
difficult to predict which approach or combination of approaches
will be the most successful. What does seem clear is that, as docking
methods are able to produce increasingly accurate initial poses,
other downstream calculations will benefit as well from having an
improved starting structure. Improvements in force fields, including
the use of quantum chemical calculations directly in docking and
simulations, will also be of increasing importance in ensuring robust
treatment of a wide variety of chemical moieties.

In a wide range of science and engineering disciplines, includ-
ing, for example, aerospace, petroleum exploration, and semicon-
ductor chip design, computational modeling has become the
central means by which new products are designed or discovered.
Drug discovery requires atomistic modeling in contrast to the
larger length scales relevant to the fields cited above, and must con-
front the fact that binding affinity is but a single property among
many, such as pharmacokinetics, metabolism, and toxicity, to be
optimized in a successful drug. Nevertheless, as computational
power increases, and models and algorithms improve, we believe a
technology transition in which computation forms a true platform
for drug discovery projects will occur. The prospects for this tran-
sition taking place over the next five to 10 years are, in our view,
substantial, and there is some possibility that it will occur even
more rapidly. The computing power is there; the key is achieving
accuracy and robustness in pose prediction and binding free energy
prediction. While an optimized methodology along these lines will
not directly address all of the properties cited above (although
structure-based ADMET calculations are increasingly becoming
feasible), the ability to explore huge chemical spaces rapidly, locate
the tiny fraction of ligands with suitable binding affinities reliably,
and remain in the tight binding region of chemical space as opti-
mization of the other properties is carried out during the late
stages of lead optimization (thus avoiding synthesis of dead com-
pounds), can in principle provide a compelling advantage as com-
pared to alternatives.
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Chapter 18

Structure-based Pharmacophores
and Screening

R. Lewis*,† and R. G. Karki†

18.1 Introduction

The concept of a pharmacophore is one of the oldest and most robust
concepts in medicinal chemistry, and has been used to underpin
many successful hit-finding campaigns before and after the advent
of routine access to protein structural information. The combina-
tion of pharmacophores with knowledge derived from the struc-
tures of protein-ligand complexes has opened up new possibilities:
the use of steric constraints and the more precise specification of the
geometry of a pharmacophore are just two examples. In this chap-
ter, the theory behind pharmacophore modeling will be briefly
reviewed, with an emphasis on the fields of current investigation,
such as scoring and feature definition. Then the influence of struc-
tural knowledge on pharmacophore modeling will be discussed,
especially the derivation or refinement of pharmacophores from the
binding sites. Some examples of structure-based pharmacophoric
screening will be presented. Finally, a future vision for the field will
be put forward.

*Corresponding author.
†Novartis Institutes of BioMedical Research. Postfach, 4002 Basel, Switzerland.
Email: richard.lewis@novartis.com.
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18.2 Overview

Obtaining experimental structures of some of the therapeutically
interesting biological targets, especially the membrane bound pro-
teins such as the GPCR’s have posed great challenges in structural
biology. In such cases, the structure of a known ligand for the target
guides the drug design process. Determining the fundamental char-
acteristics of the ligand required for biological activity, in terms of the
nature and disposition of chemical groups is the basis of pharma-
cophore modeling.

A pharmacophore was first defined by Paul Ehrlich in 1909 as “a
molecular framework that carries (phoros) the essential features
responsible for a drug’s (= pharmacon’s) biological activity.”1 In
1977, this definition was updated by Peter Gund to “a set of struc-
tural features in a molecule that is recognized at a receptor site and is
responsible for that molecule’s biological activity.”2 The International
Union of Pure and Applied Chemistry (IUPAC’s) definition of a
pharmacophore is “an ensemble of steric and electronic features that
is necessary to ensure the optimal supramolecular interactions with a
specific biological target and to trigger (or block) its biological
response.” Notice that a presence of a pharmacophore is not sufficient
to endow a structure with the desired activity.

In drug design, the term pharmacophore refers to a set of features
that is common to a series of active molecules. Hydrogen bond
donors, acceptors, hydrophobes, positively and negatively charged
groups are the typical features. A 3D pharmacophore specifies the
spatial relationships between the groups. These relationships are often
expressed as distances or distance ranges but may also include geo-
metric measures such as angles and planes. Perceiving a pharma-
cophore is one of the critical step towards understanding the
interaction between a ligand and its biological target. Pharmacophore
models maybe used as virtual screening tools wherein the pharma-
cophoric queries are used to search three-dimensional (3D) databases
of small molecules to find new leads. Alternatively, they maybe used
to obtain feature-based alignments for other inhibitors of the target.
These alignments can be used to explain structure activity relationship
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(SAR) of the compounds. Since 3D searches of databases using phar-
macophoric queries can be run faster than docking, pharmacophore
models can be used to filter compounds from a large database, fol-
lowed by docking only the hits into the biological target of interest.
This can speed up virtual screening of large databases.

18.3 Ligand-based Pharmacophore
Model Generation

Pharmacophores can be identified and models generated from a
series of molecules that are active against the biological target of
interest. This is also referred to as a ligand-based approach and the
major requirement is a set of molecules spanning a broad range of
activity against the biological target of interest (1000-fold is ideal,
50-fold is minimal). In this approach, one makes the assumption that
all the molecules bind to the same active site region of the receptor
in a similar way and have a common mechanism of action. This
assumption can often be incorrect, but it is the most parsimonious.
There are several steps that are key for generating a good and reliable
pharmacophore model via the ligand-based approach. Since this has
been covered in detail elsewhere,3 it will only be briefly discussed
here. The important steps in a ligand-based pharmacophore model
generation are:

1. Dataset selection and preparation
2. Conformational analysis
3. Pharmacophore enumeration
4. Ranking and selection of the representative models
5. Validation.

The quality of the pharmacophore model is dependent on the
dataset that is used for the model building, so one has to be very
careful in selecting it and representing it correctly. The molecules
used for the pharmacophore model building are referred to as the
“training set.” The rule of thumb is to start with a set of compounds
that have been tested in the same bioassay procedure, preferably in
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the same laboratory. Structural diversity is the second consideration.
In real life, one should use a chemically diverse set of molecules
spanning a broad activity range, although one can also get a phar-
macophore model with good statistical parameters with a set of
compounds belonging to the same chemical series. This could be
attributed to differences in binding modes across different chemical
series which will be hard to detect in the absence of any experimen-
tal structural data. The data preparation step involves checking for
correctness in the chemical representation of the molecule, espe-
cially atom types, bond orders, stereochemistry, tautomers and
charged state.

The next step is exploring the conformational space of each mol-
ecule. It is a known fact that the bioactive conformation may not nec-
essarily be the lowest energy conformer, so it becomes necessary to do
an exhaustive conformational search so that the bioactive conforma-
tion is also enumerated. Based on an analysis of a number of different
X-ray co-complexes, Nicklaus et al.4 have found a range of values (0.0
to 18 kcal/mol) between the protein bound conformation and the
calculated global energy minima. Bostrom et al.5 determined that 70%
of ligands bind with strain energy of less than or equal to 3 kcal/mol
(this should be interpreted in the context that 1.4 kcal/mol corresponds
to a 10-fold change in affinity). Perola and Charifson6 re-analyzed
X-ray co-complexes and obtained results similar to that reported
by Bostrom et al. The starting geometry of the molecule and the
energy threshold used for the conformational analysis both influence
the quality of the conformations generated: this in turn affects the
quality of the pharmacophore model. In a recent study on a D2
antagonist dataset,7 we generated conformations at four different
energy threshold values 2, 5, 10 and 20 kcal/mol, starting from a
local minima conformation, and the correct pharmacophore emerged
at an energy threshold of 4 kcal/mol.8 From our experience, we feel
that one should study the quality of the conformations for a subset of
highly flexible molecules by exploring the conformational space at dif-
ferent energy threshold values and finally use the threshold value that
gives good coverage for generating conformations for the molecules
in the entire dataset.
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Once the dataset is prepared, the next step is to enumerate the
different possible pharmacophore models. The same dataset may be
compatible with multiple pharmacophores, so identifying them and
ranking them are the subsequent steps. Some pharmacophores are
degenerate or underdetermined, having the same features but differ-
ent geometries. This may reflect that the training set does not contain
molecules with the necessary conformational restraints. Pharmacophores
with different features may also be equally correct, if there are multi-
ple binding modes, or reflect the inherent limitations of the approach.
Ranking is normally based on fitness and/or mapping of the training
set molecules on the pharmacophore model. HypoGen9 ranks the
hypotheses on their cost value; this consists of three components,
namely, the weight cost, error cost and configuration cost. The
weight component increases in a Gaussian form as the feature weight
deviates from the idealized value of 2.0. The error cost increases as
the RMS distance between the estimated and the measured activities
for the training set increases. The configuration cost represents the
complexity or the entropy of the hypothesis space being optimized
and is constant for a given data set.

Catalyst first calculates the costs of two theoretical hypotheses,
namely, the ideal hypothesis (fixed cost) and the null hypothesis. The
ideal hypothesis has a minimal error cost and the slope of the activity
correlation is one. The null hypothesis has a maximal error cost and
the slope of the activity correlation is zero. Together they represent
the upper and lower bounds on cost for the hypotheses that are gen-
erated. The greater the difference between them, the greater is the
likelihood that a meaningful hypothesis can be found. The closer the
cost of the generated hypothesis is to that of the ideal hypothesis,
the higher the probability that the generated hypothesis represents a
true correlation in the data. The hypothesis with the least cost ideally
would map to all the features of the most active compounds in the
training set. The cost is reported in bits and a difference of about
50–60 bits between the generated hypotheses and the null hypothe-
sis suggests that the correlation may be significant, which in turn
requires a difference of about 60–70 bits between the costs of the
ideal and null hypotheses.
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Some of the commercially available programs for automatic
pharmacophore model generation are: Catalyst,9 DISCO (DIStance
COmparisons),10 DISCOtech™ (A faster version of DISCO),11

GASP (Genetic Algorithm Superposition program),12 PHASE,13 etc.
Although each of the programs is meant for ligand-based pharma-
cophore model generation, apart from differences in the algorithm
used for the pharmacophore model generation, there are also dif-
ferences in the definition of the pharmacophoric features and scor-
ing of the models. The common pharmacophoric features are
hydrophobes, hydrogen bond donor and acceptor, and positive and
negative ionizable group. Features are defined by substructural frag-
ments. This approach to feature definition is both a strength and a
weakness. The unified definition of a feature can encompass
bioisosteres; however, the simple classification into features does
not reflect the continuum of feature strength, e.g. the oxygen of a
carbonyl has very different h-bonding acceptor characteristics com-
pared to that of a furyl ether. It is very difficult to break the defini-
tions into finer divisions without encountering issues of granularity
and training set coverage. Attempts to invent categories based on
charge14 or h-bonding strength (e.g. Abraham descriptors15) have
not led to crisper models. The default is to stick with the broad cat-
egories, making small, tailored adjustments based on the particular
needs of the training set. Some programs have separate feature
definition for aromatic rings and so they are not considered as
hydrophobes. In spite of the fact that the concept of pharma-
cophore and programs for generating them have been around for a
long time, we still do not have a separate definition for metal chelat-
ing groups. Most programs have these groups defined as acceptors.
Several times the same chemical group could be mapped under dif-
ferent feature definition. For example: a carboxylic acid group
(COOH). It would fit the definition of negative ionizable feature,
an acceptor feature for the C=O group and a donor feature for the
OH group. However, most ligand-based pharmacophore genera-
tion program will not assign both the donor and acceptor feature at
the same time because of the distance constraints imposed between
two feature mapping in a pharmacophore model. This limit is an

506 Computational Structural Biology

FA
b587_Chapter-18.qxd  1/18/2008  4:57 PM  Page 506



adjustable parameter. A good rule-of-thumb is to consider if a car-
boxamide should contain one or two features. Naturally, having a
short inter-feature distance will favor, even overweight, feature-rich
groups such as carboxylate, whose function in the molecule may be
more about solubilization than binding affinity. Also, it is difficult
sometimes to guess the physiological state of the ligand in the active
site as this would depend upon the nature of the amino acids in the
ligand-binding site. All indirect experimental information, e.g. from
NMR, pKa measurements should be considered at this stage. In
such cases, a structure-based approach to generating pharma-
cophore models maybe more beneficial.16

18.4 Structure-based Pharmacophore
Perception

Receptor-based pharmacophore models can be generated only if the
structure of the active site of the receptor is known or if a ligand-
receptor complexed structure is available. The receptor structure
could be from an experimental structure, either X-ray or NMR, or in
the absence of such a structure, a homology model may also be used
as a starting point. If a ligand-receptor complexed structure is avail-
able, the pharmacophore model can be generated via translation of
the ligand-receptor interactions into feature definitions either from a
single structure or multiple complexed structures. Docking poses of a
subset of ligands in a protein target of interest may alternatively be
used as a starting point to derive structure-based pharmacophore
models. Inherent protein flexibility can be incorporated in the process
of pharmacophore model generation by using conformational ensem-
bles of the protein that is either sampled from a molecular dynamics
simulation17 or obtained from multiple experimental structures of the
protein. In either case pharmacophore models can be identified from
conserved regions after overlaying the active sites from each protein
conformation.

As in the ligand-based approach, there are some points that need
to be considered for pharmacophore model generation using the
structure-based approach.

Structure-based Pharmacophores and Screening 507

FA
b587_Chapter-18.qxd  1/18/2008  4:57 PM  Page 507



18.4.1 Data Preparation

Check for missing residues and add them using a modeling program
if they are part of the active site. The next step is the protonation of
the amino acids. This will have to be done after consideration of the
charged state of the amino acids. Since in most cases the assays are
designed to mimic the physiological state of the protein in its natural
environment, in our opinion protonating the amino acids considering
the pH of the bioassay used for testing the compounds would be a
good approach. When docking poses are used as starting points for
the structure-based identification of pharmacophore models, it is
important that even the ligands should be protonated after consider-
ing the ionization state. In experimental structures in protein data-
bank (PDB) format, the bond orders for the ligands and the atom
types are not defined. So one has to assign bond types and hybridiza-
tion states from the geometrical information. Minimization of the
ligand-receptor complex or just the receptor would be helpful to
relieve the steric clashes but this is not essential.

18.4.2 Identifying and Ranking the Pharmacophore
Models

From a ligand-receptor complexed structure a pharmacophore model
can be perceived based on the interactions made by the ligand with
the receptor. These interactions can be translated into features such as
hydrogen bond donor, hydrogen bond acceptor, hydrophobic
groups, and positive and negative ionizable features, similar to the
ligand-based approach. Regions in the receptor that are not accessible
by the ligand are defined as excluded volumes. One of the ways of
scoring the pharmacophore models is by correlating the score with
the dissociation constant for the ligand-receptor complex as imple-
mented in structure-based Focusing in Cerius2.18,19 Commercially
available programs for structure-based pharmacophore model gener-
ation are Structure-based Focusing (SBF)18 (Accelrys Inc); Sprout
(SimBioSys Inc.); LigandScout (Inte:Ligand), and GRID. Each pro-
gram follows a separate set of rules to generate a set of interaction
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sites for each atom or functional group of the protein that is capable
of participating in a non-bonded contact. The rules are largely based
on statistical analysis of experimental structures from the protein data
bank and take into account the chemical nature of the atoms as well
as energetically favorable orientations of chemical features such as
hydrogen bond donors/acceptors and hydrophobic groups. For
example, the hydrogen bond interaction distance in LigandScout has
been extended from 2.5 (H_BOND_MIN_DISTANCE) to 3.8
(H_BOND_MAX_DISTANCE) Å in order to include all plausible
interactions in low resolution PDB structures with additional geo-
metric constraints for sp2 and sp3 donor atoms.20 Although SPROUT
is a de novo ligand design system, one of the modules called HIPPO
(Hydrogen Bonding Interaction Site Prediction as Positions with
Orientations) is meant to select interaction sites within a receptor site.
These interaction sites are known as target sites in SPROUT and they
are used as starting points for structure generation, while in
LigandScout and SBF, the interaction sites are used to generate phar-
macophore queries to search 3D databases. HIPPO can identify metal
ions and residue motifs that tend to form covalent bonds to ligands
(e.g. Ser-His-Asp triad) and generate the appropriate target sites for
them. It can identify metal ions (Zn, Mg, Cu, Ca, Co, Fe, Ni, Mn) in
the receptor PDB file, calculate the most likely direction of the free
valency according to the existing connections (to protein or solvent
atoms) and generate the appropriate target site. One may consider
using the HIPPO identified target sites to define pharmacophoric
queries outside of SPROUT to either align ligands and explain the
SAR for other inhibitors of the target, or for searching 3D databases
to find new leads.

Questions around the quality of our methods for generating
pharmacophores are being raised, especially as there have been no
major advances since GASP and DISCOtech. Researchers are actively
revisiting some of the fundamental issues surrounding sampling of
conformational space, the generation of ensembles of solutions, and
the scoring of those solutions. The Sheffield group21 have developed
a multi-objective genetic algorithm (MOGA), based on their experi-
ences with GASP. The conflicting objectives are conformational
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energy and the degree of overlap/similarity of the structures when
overlaid according to the pharmacophore hypothesis. One inherent
difficulty is that the “correct” answer is often not known. Most
methods can produce several plausible solutions but this may reflect
the difficulty the programs have in sampling the search space. The
MOGA does find a wider range of solutions than other stochastic
approaches. Another advantage is that conformational space is sam-
pled on the fly, rather than relying on a pre-computed set of con-
formers, which will bias the search space. The disadvantage is that
the MOGA does not allow for partial matches, so the pharma-
cophore needs to be built from compounds that all have (similar)
high affinity.

18.5 Future Outlook

To enunciate a future vision, we must first understand the funda-
mental questions: typically, multiple pharmacophore possibilities are
consistent with the SAR. So the problem lies in sifting through them
to find the “real” one, and realizing that you have found it. The use
of external indirect data would be especially valuable, if it could be
incorporated into the methodology. How could one, for example,
add in distance constraints derived from NMR either intraligand, or
between residues in the protein and the ligand? A pharmacophore
may not exist for an SAR. This may be because different ligands may
have multiple binding modes. Can we derive statistical approaches
that can work with multiple binding modes, and then discard those
that do not explain sufficient information in the dataset, much as one
discards variables.2 However, using powerful statistical analysis tools,
it is easy to find patterns in the data that are not physically real, and
therefore have zero prospective utility (“Data when tortured long
enough will confess to anything” – P. Hein). How does one estimate
the robustness of the pharmacophore model? Possibly this could be
done through a sensitivity analysis, and looking for strong changes
for a few critical parameters, for example, energy cutoff. HTS tech-
niques offer the possibility of much larger datasets, but with smaller
dynamic range. Can this data be used in any way, even only to pull
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out the crudest of models? Despite the inherent simplicity of the
pharmacophore concept, it is clear there is much enjoyable research
still to be done.
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Chapter 19

Molecular Dynamics-based Free
Energy Simulations

M. A. Cuendet†, V. Zoete† and O. Michielin*,†,‡

19.1 Introduction

Free energy represents the most important quantity to describe the
behavior of a molecular system. The probabilities of the different
states of a system are indeed directly related to the value of their free
energy. In the case of proteins, for example, the conformational
change between two states, the folding process, the association
between two monomers, or the affinity of a small molecule for its
receptor are all described by the free energy. For this reason, much
effort has been devoted to the development of computational meth-
ods that allow reliable estimates of this quantity for a given molecular
system and a given process under investigation.

The theoretical foundations for free energy simulations can, to a
large extend, be attributed to Kirkwood for his 1930s pioneering
developments1 on the computation of free energy differences using
thermodynamic integration (TI) and to Zwanzig for the free energy
perturbation (FEP) method.2 The first applications of this formalism
to biological problems came in the early 1980s with the work of

*Corresponding author: E-Mail: olivier.michielin@unil.ch
†Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland.
‡Ludwig Institute for Cancer Research and Multidisciplinary Cancer Center, Ch. des
Boveresses 155, 1066 Epalinges, Switzerland.
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Tembe and McCammon on protein-ligand binding,3 followed by
Peter Kollman and coworkers with the first alchemical simulations
(see Section 19.2) to estimate the binding free energy difference
between a wild type and a point-mutated protein.4 Since these early
days, free energy simulation techniques have been the subject of
intense research efforts. Only recently have these methods become
reliable, due on the one hand to the better sampling provided by the
more powerful computers available today, but more importantly, to
improved theoretical approaches with better convergence properties.
In this chapter, we will review the basic methods used in the field as
well as the most recent theoretical developments.

The statistical mechanics definition of the free energy of a system
in a given state A is

where kB is the Boltzmann constant, T is the temperature, and ZA is
the partition function. In complex systems, such absolute free ener-
gies are intrinsically impossible to compute, because the partition
function is essentially a measure of the full configuration space acces-
sible to the system. In experiments as well as in simulation, free ener-
gies are always computed relatively to a reference state. Such a free
energy difference between two states A and B is given by a ratio of
partition functions,

(19.1)

The main idea behind methods presented below is to avoid direct
computation of the individual partition functions ZA and ZB by using
the fact that the variations between states A and B of interest are often
localized in relevant regions of the configuration space. Elsewhere,
the corresponding partition functions ZA and ZB have a high degree
of similarity. Most approaches correspond, therefore, to reformulat-
ing Equation (19.1) such that common parts of ZA and ZB not directly
relevant to the process under investigation cancel out. A fundamental
aspect of these approaches is that they express, as we will see, the free

DG k T
Z
ZAB

B

A
= - B ln .

G k T ZA A= - B ln ,
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energy difference in terms of an ensemble average, which can be
directly measured or calculated in a simulation, unlike an absolute free
energy.

In the first section, we present methods derived from first prin-
ciples that are exact at the statistical mechanics level. For these
methods, the quality of the results (for a given model or force field)
depends mainly on the quality of the sampling and on convergence
properties. In the second section, approximate methods will be
described. These methods are not exact at the statistical mechanics
level but do show interesting convergence properties that make
them very useful in some applications. The last section is a summary
and outlook on the present and future potential of free energy
methods.

19.2 Exact Methods

When addressing specific biological questions, various free energy dif-
ferences can be of interest. For example, in the case of ligand binding
to a receptor, one might want to compute:

(i) the relative binding free energy between different ligands
(ii) the absolute binding free energy of a ligand

(iii) the full binding free energy profile or potential of mean force
(PMF).

The transformation under study can be of two types:

(1) The first may involve a change in the nature of the system. It can
be a modification of certain interactions or the exchange of an
entire group of atoms with another. Indeed, unlike in experi-
ments, any parameter in the potential energy function describing
the system can be varied in a simulation. In this case, the reaction
coordinate is an external parameter, which connects the two
physical states of interest with unphysical hybrid intermediate
states. We call this an alchemical transformation.

(2) Alternatively, the transformation may involve a conformational
change in the system, such as the binding of the ligand, originally
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in solution, to a receptor. In this case, the reaction coordinate
λ is a function of the atomic coordinates of the system. Then, all
intermediate states are physical, and the full PMF along λ is of
interest.

In the following, we first present the two most used exact sta-
tistical mechanical approaches to calculate free energy differences.
Both approaches can be applied to either alchemical or conforma-
tional transformations. We then review alchemical methods for the
calculation of relative free energy differences using thermodynamic
cycles and of absolute binding free energy differences. We finally
cover the most used methods to calculate PMFs. Excellent review
articles5–11 as well as a fine book12 on free energy calculation are
available. Other studies provide efficiency comparisons of various
methods.13–16

19.2.1 Exact Statistical Mechanics Methods
for Free Energy Differences

Here, we briefly derive FEP and TI expressions, which can be applied
in molecular dynamics (MD) as well as Monte-Carlo simulation to cal-
culate free energy differences.17 At this level, both alchemical and
conformational types of reaction coordinates can be treated in the
same general way under the common notation λ. We however keep
in mind that in the alchemical case λ is an external parameter chang-
ing the functional form of the system’s Hamiltonian. In the case of
conformational changes, λ = λ(r) is a function of the coordinates r
and the Hamiltonian remains unchanged, except for the addition of
a biasing term.

19.2.1.1 Free energy perturbation

Consider a well-defined state A described by the Hamiltonian

,H r p
p
m

U rA
i

ii
A( , ) ( )= +Â

2
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with pi the momentum of particle i, and UA(r) the potential energy
function. For a given number N of particles at constant volume and
temperature, state A is described by the partition function

,

where β = kBT. The normalization constant contains Plank’s con-
stant h, which is a measure of the elementary volume in phase space,
and the factor N!, which should be present only when the particles
are undistinguishable. Similarly, let state B be described by HB and
characterized by ZB. By definition, the free energy difference
between A and B is

. (19.2)

By inserting a unity factor in the form e+βHA(r,p)e−βHA(r,p) into the
numerator, we get

.

This can be seen as a phase space average of the quantity e−β [HB − HA]

in state A,

. (19.3)

This approach is generally attributed to Zwanzig.2 In practice, a
single simulation in the reference state A is performed, during which
the above phase space average is converged. The accuracy of the free
energy evaluation can be improved if one can perform a simulation in
state B as well. In such a case, FEP from A to B and from B to A can
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be optimally combined in a single expression using the so-called
Bennett acceptance ratio,18

.

The FEP method can give meaningful results only if the two
states A and B overlap in phase space, meaning that configurations
are sampled in which the difference HB − HA is smaller than kBT.
Often, for transformations of practical interest, this is not the case.
The solution is to introduce n intermediate states between A and B,
such that the overlap between successive states is good. The
Hamiltonian H(r,p,λ) is made a function of a parameter λ, which
characterizes the intermediate states, such that H(r,p,λΑ) = HA(r,p)
and H(r,p,λΒ) = HB(r,p). One is free to introduce as many interme-
diate λ-steps as necessary, since their free energy differences simply
cumulate to give

.

The total free energy difference is then recovered by applying the FEP
method between each successive intermediate states and summing all
contributions,

.

Note that the intermediate states, in other words, the unphysi-
cal path linking states A and B, are completely arbitrary since ∆GAB

is a thermodynamic state function. Thus, the intermediate states can
be chosen such as to optimize the simulation convergence. For
example, the functional form of the λ-dependence in different terms
of H(r,p,λ) can be adapted,19 or smaller λ intervals can be chosen in
regions where dH/dλ is large. In particular, special care has to be
taken to avoid numerical singularities when making Lennard-Jones
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particles appear, for example, by using the soft core scaling
method.20

19.2.1.2 Thermodynamic integration

Assuming that the two states A and B are linked by a coupling param-
eter λ as defined above, and that the free energy G is a continuous
function of λ, we have the identity

.

Using the definition of the free energy, Equation (19.2), we have

.

This leads to

, (19.4)

which is the TI formula.1,21 Note that the FEP formula,
Equation (19.3) can be recovered from Equation (19.4) by consider-
ing a first-order numerical approximation of the Hamiltonian deriva-
tive.10 In practice, simulations are performed at a number of fixed
λ-values between and including λA and λB, during which the analyti-
cal derivative of H(λ) is calculated and the phase space average in
Equation (19.4) is estimated. In the end, the integration over λ is per-
formed numerically. Note that the same care has to be taken as for
FEP in choosing the λ-dependence of H(λ), in order to avoid numer-
ical singularities and optimize convergence.

The recent adaptive integration method22 seeks to estimate the
same integral as TI, Equation (19.4). In addition to fixed-λ sampling,
it uses a Metropolis Monte Carlo procedure to generate moves that
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change the value of λ during the simulation. This method seems to be
one of the most efficient up-to-date.14

19.2.2 Relative Free Energy Differences from
Thermodynamic Cycles

A common application of MD free energy calculation is to compute
the relative binding free energy of two ligands L1 and L 2 to a recep-
tor R. In this case, one can avoid the computationally difficult task
of computing directly the binding free energy of each ligand, ∆G1

and ∆G2, by using the thermodynamic cycle depicted in Fig. 19.1.
Since free energy is a state function, the difference of the horizon-
tal legs is equal to the difference of the vertical legs

.

Therefore, ∆∆G12 can be obtained by calculating the solvation
free energy difference ∆Gsolv and the receptor interaction free energy
difference (in solution) ∆Gbind between L1 and L2. In both cases, this
is done by mutating one ligand into the other, and using one of FEP,
TI, or even a nonequilibrium method (see below) to determine ∆Gsolv

and ∆Gbind. The method was devised in 198423 and first applied to a
protein-ligand system in 1987.4 The same approach can be used for

DD D D D DG G G G Gbind solv12 2 1= - = -
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Fig. 19.1 Thermodynamic cycle for the binding of two ligands L1 and L2 to a
receptor R .
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various applications, such as relative solvation free energies or sequence
dependence of protein-protein interactions.24 Note that thermody-
namic cycles can be extended to multiple ligands. A related approach
based on FEP is the single-step perturbation method,25 in which rel-
ative free energies for not too different compounds are estimated
by perturbation from a single simulation of an unphysical reference
state that encompasses the characteristic molecular features of the
compounds.

19.2.3 Absolute Binding Free Energy Differences
Using the Double Decoupling Method

Full description of the mechanism of a ligand L binding to a receptor
R requires knowing the absolute binding free energy of the process

(19.5)

instead of the free energy (double) difference between two ligands L1

and L2. Comparison with experimental results requires calculating
∆G 0

bind with respect to a given standard condition. The direct calcula-
tion of ∆G 0

bind according to Equation (19.5) would require a simula-
tion that starts with P and L bound and then follows the (un)binding
process to the completely separated ligands. This amounts to calcu-
lating a full PMF, a computationally intensive process described in
Section 19.2.4. The Double Decoupling Method26,27 overcomes this
problem using the following thermodynamic cycle:

In the first line, the ligand is transferred from the solution to the
gas phase by decoupling its interactions with the solvent. The corre-
sponding ∆GI can be computed using TI or FEP methods. Similarly,
in the second line, the ligand is first decoupled from both the
receptor and the solvent. The intermediate state (R)sol…(L)gas is a
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hypothetical state in which all interactions of L with R as well as with
the solvent have been turned off, but L is maintained by an artificial
restraint in a position and orientation close to the bound state. The
full binding free energy is recovered through

.

Including the (R)sol…(L)gas state in the calculation has two bene-
fits (not present in the prior Double Annihilation Method28). First,
the restraint simplifies the calculation of ∆GII using TI or FEP,
because it alleviates the requirement of sampling all positions and
orientations of L with respect to R. Second, it appears that all the
standard state dependence of ∆G 0

bind is included in the term ∆G 0
r .

Essentially, ∆G 0
r expresses the ratio of the phase space volume available

to the ligand in the restrained and free states, and depends on the
standard concentration C 0. Analytical expressions of ∆G 0

r were given
for positional restraints with respect to a fixed point in space,29 or for
general positional and angular restraints with respect to the receptor.27

Recently, a similar method based on RMSD restraints of a flexible lig-
and was proposed30 and successfully applied together with FEP for the
determination of protein-ligand binding free energies.31

19.2.4 Potentials of Mean Force from Configurational
Transformations

To this point, we have considered transformations in which the reac-
tion coordinate λ was an external parameter changing the nature of
atoms or the strength of interactions between them. Albeit very use-
ful in simulations, these transformations are unphysical, and only end-
point free energy differences are meaningful. Conversely, in PMF
calculations, the reaction coordinate is associated with the position of
atoms and describes the binding pathway of a ligand to a receptor or
a conformational change in a protein. Thus, all intermediate states
are physically relevant. In this case, λ = λ(r), with r = (r1,r2,…,rN)

D D D DG G G Gbind I II r
0 0= - -
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representing the coordinates of the N particles in the system. The
PMF is then defined as

, (19.6)

where C is a constant and ρ(λ) is the probability of finding the system
at λ on the reaction path,

,

with δ(.) representing the Dirac function.
If the reaction coordinate is nonlinear in the Cartesian coordi-

nates r, an additional term appears in the equations above, corre-
sponding to the determinant of the Jacobian of the coordinate
transformation.13 For example, if λ(r) is the Euclidean distance
between two particles, the Jacobian corresponding to the polar coor-
dinates (λ,θ,φ) of the second particle with respect to the first particle
is λ2sinθ. This leads to

The additional term accounts for the increasing phase space volume
corresponding to a given λ for increasing λ. For conciseness, we will
leave this term out of the following developments, but we insist on its
importance.

As the system evolves, λ(r) changes spontaneously, responding to
the forces at play. After enough time, the system would sample the
whole available reaction path (unlike in the alchemical transforma-
tions discussed above). In this case, the most immediate way to get
the PMF is to build a histogram of occurrences of system configura-
tions around λ, which gives directly ρ(λ). In most useful applications
however, the PMF has barriers much higher than kBT, and the cor-
responding regions will be poorly sampled in the limited duration of

DG k T k T C( ) ln ( ) ln .l r l l= - + +B B2

r l d l lb( ) ( ( ))( , )= --Ú
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Z

e r drdpH r p
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a simulation. In the following, we describe two kinds of methods to
improve the sampling of specific regions of the λ coordinate13:

(i) The system can be restrained in the vicinity of a given reaction
coordinate λ0 by adding to the Hamiltonian a potential energy
term u(λ(r),λ0), which is usually chosen to be harmonic. This
method is called umbrella sampling.32

(ii) The system can be constrained to move on a hypersurface λ(r) =
λ0. This effectively reduces the dimensionality of the phase space,
and additional terms arise in the PMF, due to the fact that the
momentum conjugate to the λ coordinate is zero.

19.2.4.1 The umbrella sampling method

Since its first application in MD in 1982,33 the umbrella sampling
method is probably the most popular approach to calculate PMFs.
The method involves several simulations restrained around separate
λ values noted {λi}, using bias potentials ui(λ) = u(λ,λi). In windows
around each λi, a regional biased PMF is computed by constructing
the biased λ-coordinate probability ρ~i(λ). Local PMFs are finally
unbiased and recombined as follows: the unbiased probability
ρi(λ)can be expressed10,34 in terms of the biased probability as

,

where the undetermined constant Gi defined from e−βGi = 〈e−βui〉 rep-
resents the free energy associated with the introduction of the bias
potential ui. The unbiased PMF around λi is then

. (19.7)

In early applications, the constants Gi were obtained by manually
adjusting the various PMFs of adjacent windows such that they
match in the regions in which they overlap. There is, however, an
efficient method for unbiasing, optimally determining the Gi, and

DG k T u G Ci i i i( ) ln ( ) ( )l r l l= - - + +B �

r l r lb l b
i

u
i

Ge ei i( ) ( )( )= + -
�

524 Computational Structural Biology

FA1
b587_Chapter-19.qxd  1/22/2008  9:24 AM  Page 524



combining each local PMF into a smooth free energy profile in one
go. The weighted histogram analysis method (WHAM) was originally
derived for Monte-Carlo data,35 and was later applied to umbrella
sampling.34,36,37 The idea is that, at a given λ, the total probability
ρ(λ) is an average of the ρi(λ), weighted according to the Boltzmann
factor of ui at λ and to the number ni of data points collected in win-
dow i. The resulting expression to determine ρ(λ) from the biased
ρ~i(λ)is

.

The constants Gi are determined using the optimal estimate for the
distribution function ρ(λ),

.

Because ρ(λ) itself depends on the constants {Gi}, the WHAM
equation must be solved self-consistently. In practice, this is achieved
through an iteration procedure starting with an initial guess for the {Gi}
and repeated until both equations are satisfied up to a fixed tolerance.

The umbrella sampling method together with the corresponding
WHAM analysis can be straightforwardly extended to multidimen-
sional reaction coordinates.36,38 For an application to the ion conduc-
tion through the potassium channel, see Ref. 39. As another extension
of the method, the use of adaptive bias potentials has been proposed.40

These bias potentials are taken as the negative of the local PMF, and
are iteratively adapted as the PMF estimate is refined.

The usual umbrella sampling method is based on the determina-
tion of the free energy by counting occurrences, via Equation (19.7).
Simulations with restraining potentials can as well be combined with
the two other free energy methods described previously: FEP and TI.
The central idea of the FEP-based umbrella sampling method41 is to
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calculate the free energy difference ∆Gi,i+1 = Gi+1 − Gi between win-
dows ui and ui+1 from an average performed in window i,

.

If the windows are sufficiently close, the PMF can simply be
approximated by the points Gi = G1 + ∆G1,2+…+∆Gi−1,i, which carry
most of the PMF features. The more elaborate methods41,42 use the Gi

as offsets for local detailed PMFs, which are then combined to find
the complete PMF.

The long unexplored combination of TI with umbrella sampling
provides a substantial benefit over the regular umbrella sampling: no
offsets between windows need to be estimated.43 This comes from the
fact that the derivative of the free energy dG/dλ is extracted in each
window, and not its absolute value. One way to estimate dG/dλ from
a biased simulation is based on the fact that the average of the
restraining force equals the opposite of the average of the physical
(unbiased) force along the reaction coordinate.13 Thus, the contribu-
tion of window i for a given λ is

.

Alternatively,43 dG/dλ can be estimated using the biased proba-
bility of occurrence ρ~ i(λ) estimated from window i,

.

In order to avoid numerical noise in taking the derivative of ρ~i(λ), it
is approximated by a simple Gaussian. The contributions of all win-
dows are averaged (without having to determine unknown offsets),
and the resulting dG/dλ profile is numerically integrated to find the
PMF ∆G(λ).

dG
d

k T
u

B
i i

l
∂ r

∂l
∂
∂l

= - -
ln �

dG
d

ui

il
∂
∂l

=

DG k T ei i
u u

i
i i

,
[ ( ) ( )]ln+

- -= - +
1

1
B

b l l

526 Computational Structural Biology

FA1
b587_Chapter-19.qxd  1/22/2008  9:24 AM  Page 526



19.2.4.2 Constraint-based methods

Instead of adding restraint potentials to the Hamiltonian in order
to enhance the sampling of certain regions, constraints can be used.
A constrained system is forced to evolve on a hypersurface of fixed
λ(r) = λ0, which raises two difficulties. First, the momentum conjugate
to the generalized coordinate λ is zero. Second, if λ(r) is an internal
degree of freedom, different regions of configuration space may get
different weight factors depending on the Jacobian, or more precisely,
the mass-metric tensor of the transformation from Cartesian to inter-
nal coordinates. It took many years for accurate formulations of this
problem to be found, one of the first being the Blue Moon Method.44

Formulas are available for general reaction coordinates,45,46 but as
they become mathematically rather involved, we restrict ourselves
here to constraints of the type

.

Essentially, the terms that emerge in the expression of ∆G(λ)
contain the determinant of the (Nc × Nc)-matrix g containing the
derivatives of the Nc constraints Q c with respect to the Cartesian
coordinates r,

,

with M the (3N × 3N) diagonal matrix containing the particle masses.
With only one distance constraint, the determinant becomes |g| =
1/m1 + 1/m2. Since it does not depend on λ, this factor is absorbed
in the constant C.

A first possible expression13 for the PMF around λ0 has the form
of FEP, Equation 19.3,
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Here, the Boltzmann factor includes the potential energy V(λ) in
internal coordinates. The constrained ensemble average is weighted
by the factor λ2/λ2

0, which is in fact the ratio of the determinants of
the Jacobians at λ and λ0, characterizing the transformation from
Cartesian to internal coordinates. The results from several simulations
constrained at successive points {λi} along the reaction coordinate can
be combined with the WHAM to get the full PMF.

A second approach to obtain a PMF from a series of constrained
simulations is based on TI. The average of the constraint force f c(λ)
equals the opposite of the average (physical) force along the λ coor-
dinate. Thus, f c(λ) can be used in the TI formula Equation 19.4,

.

The second term is due to the non-Cartesian nature of the
reaction coordinate λ(r) = |r1−r2|. If the constraint is enforced
by using a Lagrange multiplier technique such as the SHAKE
procedure,47 the constraint force f c(λ) is obtained from the value of
the Lagrange multipliers. Alternatively, the projection along λ
of the unconstrained forces due to V(r) can be used in the above
formula.

19.2.4.3 Advanced methods

The two main limitations to free energy calculations are the accuracy
of the model (force field or level of theory in quantum calculations),
and conformational space sampling. Many methods have been devised
to address the sampling problem,48 and we restrict ourselves here to a
few examples of advanced sampling methods directly related to the
calculation of free energy differences.

Force bias methods49–51 rely on replacing the force acting along λ
with a force of zero mean or with an adaptive bias force. This leads to
nearly uniform sampling of λ. The PMF can rigorously be recovered
from the force along λ, in a similar way as in constrained simulations.
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In the adiabatic free energy dynamics method,52 an artificial adia-
batic separation is created between the reaction coordinate and the rest
of the system. Fictitious masses ensure that λ evolves slowly, while
maintained at a temperature high enough to freely overcome free
energy barriers. In a related and more elaborate method called metady-
namics,53 a set of collective variables is selected as a multi-dimensional
reaction coordinate λ. The collective variables have their own dynam-
ics, which drives the physical system while being adiabatically decou-
pled from it. Based on the Local elevation method,54 small Gaussian
potentials are accumulated in regions visited by the collective variable,
which ensures a complete sampling of the reaction coordinate. The
PMF is recovered from the sum of all small Gaussian potentials.

19.2.5 Nonequilibrium Methods

Nonequilibrium statistical mechanics have long remained an
abstract theoretical field, even after Evans derived the fundamental
fluctuation theorem in 1993.55,56 The field has gained considerable
interest57 since 1997, when a nonequilibrium relation with direct
practical perspectives, the Jarzynski identity (JI), was published.58

The second law of thermodynamics states that the average work of
a process cannot be smaller than the difference of free energies
between the initial and the final states, 〈W〉 ≥ ∆G. Conversely, the JI
is a relation between the same quantities that holds regardless of the
speed of the process,

. (19.8)

Here, the nonequilibrium work WAB is path-dependent, and
the average 〈.〉Α is over different trajectories with independent canon-
ically distributed initial conditions in state A. Substantial theoretical
work has been devoted to the JI, which was proved to apply to a vari-
ety of dynamics,59–63 including the specific thermostated or barostated
equations of motion used in MD.64,65 The JI opens the possibility
of calculating equilibrium free energy differences from nonequilib-
rium processes, as verified experimentally.66 A strong requirement,
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however, is to have a sufficiently large collection of trajectories for an
accurate estimation of the exponential average in Ref. 8, which is a
major concern for practical applications.

The JI is extremely relevant to molecular simulation, where the
system can be perturbed at will. In steered molecular dynamics,37,67 a
time dependent external steering potential of the form

is added to the Hamiltonian, in order to actuate a conformational
change of the system. In the case of a ligand dissociation from
a receptor, d(r) is the instantaneous distance between the ligand and
the receptor. λ(t) is the reference reaction coordinate, which
is monotonously increased during the simulation (k is an harmonic
constant). During this operation, the work W(t) as a function
of time can be integrated. If this protocol is repeated with canonically
distributed initial conditions (in practice, these are frames taken from
a long equilibrium simulation in the bound state), the JI can be
applied to reconstruct the unbinding PMF. This requires special
care,63,68 as three operations need to be performed:

(i) correction of the bias introduced by the steering potential
(ii) transformation of the fluctuating W(t) into a smooth function of λ

(iii) evaluation of the exponential average.

The first two operations are addressed by the stiff spring
approximation,67 or an adapted WHAM analysis.69 In far-from-equilib-
rium cases, where the dissipative part of the work is large, a strong bias
can appear in the estimation of the exponential average in Equation
19.8. Several methods have been proposed to overcome this problem,
such as the cumulant expansion method,58,67 block averaging,70 weighted
sampling of the work values,71 or a combination of the Jarzynski identity
with transition path sampling.70 However, the convergence of Equation
19.8 inherently relies on rare events,72 which hampers the practical effi-
ciency of the method, as shown in several studies.15,73,74

In 1999, Crooks60 derived a result slightly more general than
the JI for cases where work measurements are available in both

u r t k d r t, ( ( ) ( ))( )= -1
2

l
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directions, A → B and B → A. The Crooks theorem60 (CT) holds for
Langevin or Hamiltonian dynamics, as well as for thermo-barostated
MD,75,76

.

Here, PAB(W) is the probability of observing a given work value W in
the forward process and PBA(W) in the reverse process. Table 19.1
places the CT in a general perspective among other free energy rela-
tions. The CT can be applied directly by identifying ∆GAB with the
work value where the forward and reverse work distributions intersect,
PAB(W) = PBA(−W). This was done in an experimental corroboration77

of the CT.
A maximum likelihood approach based on a slightly more general

expression of the CT78 leads to the Bennett acceptance ratio
method.15,79 It provides an optimal estimate of ∆GAB given a set of Nf

nonequilibrium work values in the forward direction, and Nr in the
reverse direction, as the solution of

,
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Table 19.1 Synthetic View of Free Energy Relations

Equilibrium Non equilibrium

One way

Zwanzig2 (1954) Jarzynski58 (1997)

Two ways
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19.3 End-Point Methods

End-point methods, which sample only the free and bound states and
compute ∆Gbind by taking a difference, have been widely used recently
to study macromolecular structural stability or association, as well as
protein-ligand binding in relation with drug design (DD) applica-
tions. These methods are attractive because of their simplicity, their
low computational cost compared to more exact methods such as
FEP or TI, and the fact that they can be applied to structurally diverse
compounds, since they do not need the simulation of an unphysical
transformation between molecules. However, their theoretical foun-
dation still needs to be strengthened, although efforts are being made
in this direction.80 Here, we will review two examples, the Linear
Interaction Energy81 (LIE) and the molecular mechanics Poisson-
Boltzmann surface area82,83 (MM-PBSA) models.

19.3.1 LIE

In the LIE81,84,85 approach, two MD simulations are performed: one
for the ligand alone in solution, and the other for the solvated com-
plex. The MD simulations are generally performed in explicit solvent
using ligand-centered stochastic boundary conditions. Frames are
then extracted from the MD simulations and are used to compute the
averaged van der Waals and electrostatic interaction energies between
the ligand and its environment in the bound (VvdW,bound and Velec,bound)
and free states (VvdW,free and Velec,free). The binding free energy, ∆Gbind, is
then estimated using

.

The first term in the above equation holds for the nonpolar contri-
butions to ∆Gbind. Its linear relationship with the surrounding van der
Waals energies is based on the observation that solvation energies of
nonpolar compounds are linearly correlated with the surrounding
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van der Waals energies.84,86 The second term describes the electro-
static contribution to ∆Gbind according to the linear response approx-
imation (LRA) theory.81,87,88 γ is a constant that can be added to get
the correct absolute binding free energies. In the initial implementa-
tion, β was fixed to ½ following the LRA approximation, while α was
fitted empirically to a value of 0.16 to reproduce the experimental activ-
ity of four structurally related endothiapepsin inhibitors.81 γ was kept to
0 to limit the over-parameterization. Although these parameters gave
satisfying results for protein-ligand systems, it was found using FEP cal-
culations that β could be considered has a function of the ligand nature.
Values of 0.5, 0.43, 0.37, and 0.33 were suggested for ionic molecules,
and neutral compounds with one, two, or more hydroxyl groups,
respectively.84 A 0.18 value was found to be optimal for α. Non-zero
values of γ can be necessary to reproduce ∆Gbind for some systems.89

More recently, it was suggested that γ could be expressed as a function
of the buried solvent accessible surface area (SASA) of the ligand that is
buried upon complexation,90 leading to the modified equation

However, this has been questioned since the buried SASA is corre-
lated to the change in VvdW , making the new term equivalent to
adding a constant.85,91 The current general view is that α, β and γ
depend on the system that is studied and should be fitted to repro-
duce a set of experimental activities of known ligands.92 The fitted
parameters can in turn be used to estimate the activities of new or vir-
tual compounds. However, this parameters variability has been ques-
tioned by Åqvist and coworkers, who found that α and β are both
force field and system independent,93 while γ remains the only free
parameter. The latter depends on the hydrophobicity of the binding
site and is a function of the fraction of hydrophobic surface area.93

Several important contributions to molecular recognition are neg-
lected in LIE, such as the conformational rearrangement upon com-
plexation of the ligand and the receptor, the receptor desolvation
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energy, and the entropies. However, it has been argued that these
terms are implicitly taken into account by the LRA approximation and
the adjustable parameters of the model.90,91 This method is generally
applied to structurally related molecules, and the cancellation of
errors expected from that limitation contributes to explain the success
of the method in estimating ∆Gbind .

Recently, efforts were made to replace the explicit solvent model
in LIE by an implicit solvent model: the generalized Born model
(GB)90 or Poisson-Boltzmann (PB).94 In this implementation, the
electrostatic term is replaced by a function of the coulomb interaction
energy between the ligand and the protein, and of the solvation reac-
tion field energy. This variant is attractive due to the reduced CPU
cost. The MD simulation can then be performed using explicit94 or
implicit solvent models.90

LIE has been intensively studied in the context of DD applica-
tions. A recent and detailed review can be found elsewhere.90 The
average root mean squared errors between experimental and LIE-
determined energy is typically around 0.5 to 1.5 kcal/mol, thus sim-
ilar to FEP or TI but at a much cheaper computational cost. The
method has also been used successfully to study the effect of muta-
tions on protein-protein association.95,96

19.3.2 MM-PBSA

In MM-PBSA, ∆Gbind is written as the sum of the gas phase contri-
bution, ∆H gas

bind, the energy difference due to translational and rota-
tional degrees of freedom, ∆Htrans/rot, the desolvation free energy of
the system upon binding, ∆Gdesolv, and an entropic contribution,
−T∆S 82,83:

.

The term ∆Hgas
bind contains the van der Waals and electrostatic inter-

action energies between the two partners in the complex, and the
internal energy variation (including bond, angle, and torsional angle
energies) between the complex and the isolated molecules, ∆Hintra.

D D D D DG H H G T Sbind bind
gas

trans rot desolv= + + -
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In the classical limit, ∆Htrans/rot is equal to 3RT. This constant term is
generally omitted in MM-PBSA calculations. ∆Gdeslov is the difference
between the solvation free energy, ∆Gsolv, of the complex and that of
the isolated parts. ∆Gsolv is divided into the electrostatic, ∆Gelec,solv, and
the nonpolar, ∆Gnp,solv, contributions, such that

.

In MM-PBSA, ∆Gelec,solv is calculated by solving the Poisson or
the Poisson-Boltzmann equation,97,98 depending whether the salt
concentration is zero or nonzero. Recently, an approach related to
MM-PBSA, where ∆Gelec,solv is determined using a GB99 model, has
been introduced under the name molecular mechanics-generalized
Born surface area82,100 (MM-GBSA). Despite its approximations, the
GB model makes this variant attractive because it is much faster than
PB. Recent advances of GB models101,102 in reproducing the PB sol-
vation energies of macromolecules as well as desolvation energies
upon binding further support the use of GB in this context.103 The
term ∆Gnp,solv, which can be considered as the sum of a cavity term
and a solute–solvent van der Waals term, is assumed to be propor-
tional to the SASA,

.

This well-known and often used approximation comes from the fact
that the ∆Gsolv of saturated nonpolar hydrocarbons is linearly related
to the SASA.104,105 Several linear models exist. The surface tension γ
and the constant b can be set to 0.00542 kcal mol−1 Å−2 and 0.92 kcal
mol−1, respectively, if ∆Gelec,solv is calculated from PB.106 Values of
0.0072 kcal mol−1 Å−2 and 0 kcal mol−1,107 or 0.005 kcal mol−1 Å−2 and
0 kcal mol−1 can be used together with GB models.108 Recently, an
alternative model for ∆Gnp,solv using a cavity solvation free energy term
plus an explicit solute–solvent van der Waals interactions energy term
has been tested.108 This model led to better results in estimating
∆Gbind for the Ras-Raf association, although the transferability of the
results was questioned.108

DG SASA bnp solv, = +g
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The entropy term, due to the loss of degrees of freedom upon
association, is decomposed into translational, Strans, rotational, Srot, and
vibrational, Svib, contributions. These terms are calculated using stan-
dard equations of statistical mechanics.109,110 Srot is a function of the
moments of inertia of the molecule, whereas Strans is a function of the
mass and the solute concentration. Strans is the only term in the free
energy of an ideal solution that depends on solute concentration,
leading to the concentration-dependence of the binding reactions.
The vibrational entropy term is calculated with the quantum formula
from a normal mode analysis (NMA).110 A quasiharmonic analysis of
the MD simulations is also possible. However, it has been found that
it does not always yield convergent values, even using very long MD
simulation trajectories, and also led to large deviations from the
results obtained with NMA, giving an overall unreasonable entropic
contribution.108

In the standard MM-PB(GB)SA protocol, the energy terms are
averaged over 200 to 500 frames extracted from MD simulation tra-
jectories, typically performed in explicit solvent. Both periodic and
stochastic boundary conditions have been used. Explicit water mole-
cules are removed prior to energy calculations, since the solvent effect
is described according to a PBSA or GBSA implicit solvent model.
More recently, some studies also performed the MD simulations
using implicit solvent models.111,112 The normal modes are usually cal-
culated on a smaller number of frames, due to the CPU requirement
of such calculations. Short 0.5 to 1 ns trajectories are generally per-
formed and yield to converged energy terms. Longer simulations have
been tested, up to 10 ns in length.108 However, they were not found
to provide better results, most probably because long simulations
emphasize force field errors and limitations. Indeed, it has been found
that MM-PBSA yields better results with MD simulations restrained
around the X-ray structure, compared to unrestrained simulations.113

Two possibilities are arising concerning the number of MD simula-
tions to perform. In principle, one should make three trajectories, one
for the complex and each of the isolated partners, and calculate the
energy terms using the adequate simulation. However, a popular
alternative consists in performing only one MD simulation for the
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complex. In this variant, the terms relative to one isolated partner are
calculated after removing the atoms of the other partner in the frames
extracted from the MD simulation of the complex. As a consequence,
the reorganization energy of the molecules upon association is neg-
lected (∆Hintra = 0). However, this variant is less CPU demanding
and leads to increased convergence due to cancellation of errors,
reduction of noise arising from flexible remote regions relative to the
binding site, and conformational restraints imposed by the complex
geometry. Thus, this one-simulation variant is attracting when ∆Hintra

may be reasonably neglected. Comparisons between one- and three-
trajectories results can be found in the literature.51,103,113

MM-PB(GB)SA is expected to estimate absolute ∆Gbind without
adjustable parameters. Although several studies were able to repro-
duce experimental ∆Gbind for protein-protein association with an error
lower than 2 kcal mol−1,103,108 these results are open to discussion.
Indeed, the approach contains several “hidden” parameters, like the
force field used, the choice of PB or GB and that of the nonpolar sol-
vation model, the use of one or three trajectories, and the different
terms that can be included or neglected. As a consequence, it is some-
times possible to find a combination of such hidden parameters
apparently allowing a fine estimation of ∆Gbind for a given system.
However, the transferability of such results to other systems is ques-
tionable. Nevertheless, MM-PB(GB)SA has proven to be useful for
several applications less sensitive to the choice of hidden parameters,
such as the comparison of relative stabilities of macromolecular con-
formations, determination of relative affinities for different small lig-
ands in DD applications, and estimation of the effect of mutations on
association processes and fold stability.

Although some studies aimed at determining absolute ∆Gbind for
ligand-protein association, MM-PB(GB)SA is usually used to esti-
mate relative affinities for different ligands targeting the same pro-
tein. This allows additional approximations, like the neglect of the
entropy terms for ligands of similar masses binding to the same site.
Also, despite the fact that this approach is expected to tackle chem-
ically diverse ligands, it is often applied to a series of chemically
related ligands. This obviously simplifies the problem thanks to
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additional cancellation of errors, but it also reflects the usual DD
processes that generally focus on families of similar ligands. A recent
and detailed review of the numerous studies using MM-PB(GB)SA
in the context of DD can be found elsewhere.92 MM-PB(GB)SA has
given variable results, ranging from poor correlations between
experimental and calculated ∆Gbind, to very good ones, with correla-
tion coefficients up to 0.96.92 The performance seems to be a func-
tion of the nature of the targeted protein and of the range of
activities encompassed by the ligands. Not surprisingly, the ranking
is better for a broader range of affinities.114

MM-PB(GB)SA has been found to perform well at determining
the effect of mutations on association processes, and identifying the
hot-spots of protein-protein complexes.100,103,108,115–118 Two main
approaches exist. First, it is possible to perform a so-called computa-
tional alanine scanning115,116 (CAS) in which the absolute ∆Gbind is cal-
culated for the wild type system, as well as for several mutants in
which one residue has been replaced by an alanine. The alanine muta-
tion is introduced by modifying the frames extracted from the MD
simulation of the wild-type system. The difference in ∆Gbind between
the wild type system and the mutants may be compared directly to the
results of an experimental alanine scanning115,116 (AS). The second
possibility is to perform a binding free energy decomposition100

(BFED) for the wild type system. This process aims at calculating the
contributions to ∆Gbind arising from each atom or groups of atoms
(typically side-chains). Like CAS, the BFED also identifies the nature
of the energy change in terms of interaction and solvation energies, or
entropic contributions. The detailed description of the BFED process
can be found elsewhere.100,117 The MM-GBSA variant is attractive for
BFED, not only because it is much faster than MM-PBSA, but also
because the pair-wise nature of the GB equation allows the decom-
position of ∆Gelc,solv into atomic contributions in a straightforward
manner.100 It is however interesting to note that the decomposition of
a PB calculated ∆Gelec,solv can also be performed,118 though it is more
computationally demanding. Although its results cannot be compared
directly to an experimental AS, the BFED offers a faster alternative to
the CAS, since it only requires one binding free energy calculation.
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Also, it allows studying the contributions from non-mutable groups
of atoms, such as backbone atoms. In addition, contrary to CAS, the
BFED is a non-perturbing approach that does not require introducing
a mutation in the system. A comparison between CAS and BFED
results can be found in Ref. 117. Obviously, these methods cannot be
expected to provide results exactly comparable to values obtained from
an experimental AS, since they both neglect the effect of the mutations
on the protein conformation. However, fair agreements between the
experimental and theoretical results have been found in several studies
and open the way to rational protein engineering.100,116,118,119 It has
been found that the side-chain contributions to Svib play an important
role, and increase the quality of the correlation between experimental
and calculated energy changes.100 A theoretically exact way to calcu-
late the contribution of a given group of atoms to Svib is to zero their
mass and recalculate the normal modes and the corresponding total
entropy.100 The difference between the wild type system Svib and that
of the system with some zeroed masses gives the contribution of the
corresponding atoms. This approach is very time consuming since it
requires a NMA for each group of atoms. Consequently, the entropic
contribution is often neglected in such studies or calculated for the
most important residues. However, a new vibrational entropy decom-
position scheme has been introduced recently to circumvent this
problem: the linear decomposition of the vibrational entropy117

(LDVE) approach, which necessitates only one NMA for the wild
type system, and is thus much faster. It is based on the idea that the
most important contributions to Svib originate from side-chains that
contribute most to the vibrational amplitude.

Recently, the CMEPS119 approach (computational mutations to
estimate protein stability) has been introduced. It uses MM-GBSA
calculations to study the impact of mutations on protein structural
stability and determine the most important residues for the protein
fold. It is based on the notion that the ∆Gbind corresponding to the
alchemical complexation of a given side-chain (considered as a
“pseudo-ligand”) into the rest of the protein (considered as a
“pseudo-receptor”) reflects the importance of this side-chain to the
thermodynamic stability of the protein. This method has been applied
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successfully to the study of insulin,119 p53,120 and PPAR121 structural
stability.

19.4 Future Outlook

Free energy simulations have gained a lot of maturity and robustness
over the last one or two decades. They now provide an invaluable set
of tools to assess the effect of a mutation in a protein receptor, a mod-
ification of a lead compound, the relative probability of two confor-
mations in a protein, the folded state of a peptide, and many
important biological questions.

Some of the new methods mentioned in this chapter are just
starting to be used in biological applications. Seeing the impact that
the standard approaches have had over the last years in various fields
like protein design or drug design, it is very likely that these new
developments are going to change the way we use molecular
dynamics to understand molecular behavior. The continuous
increase in computer power, though not sufficient per se to lead this
evolution, will be useful in allowing the more rigorous methods to
be tested in conditions where microstate sampling is no longer the
limiting factor.
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Chapter 20

Structure-based Computational
Pharmacology and Toxicology

Angelo Vedani*,†,‡ and Martin Smiesko†,‡

20.1 Introduction

Structure-based design — the tailoring of a small-molecule ligand
to the three-dimensional topology of the binding pocket of a target
protein — is doubtless a powerful concept in drug discovery. The pre-
requisite is the availability of the 3D structure of the macromolecular
target at atomic resolution, preferably with a bound ligand molecule.
Although a wealth of computational approaches exist to perform the
individual steps of the task (e.g. see Refs. 1, 2 and selected chapters of
this book), two obstacles would still seem to jeopardize the otherwise
sound approach. First, the difficulty in quantifying the binding affin-
ity of a ligand-protein complex from its 3D structure, particularly
when metal ions are involved in the binding process or when solvent
stripping contributes significantly. Second, induced-fit — the ligand-
induced conformational adaptation of the protein to the topology
of the ligand molecule — is still far from being accessible to simula-
tions, particularly when the phenomenon exceeds local dimensions

*Corresponding author.
†Biographics Laboratory 3R, Friedensgasse 35, 4056 Basel, Switzerland. Email:
angelo@biograf.ch.
‡Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50,
4056 Basel, Switzerland.
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and involves larger domains or affects the quaternary structure. The
“insolvable problem” underlying both aspects is the need to extract
small differences from large numbers (energies), the calculation of
which is afflicted with errors. Those are particularly associated with
solvation phenomena (ligand desolvation, solvent stripping, change in
protonation status), binding to metal centers, and most important,
the quantification of induced fit. Unfortunately, these errors are in the
range of 5–10 kcal/mol; for induced-fit exceeding local dimensions,
most likely significantly higher. In drug discovery, however, struc-
turally similar molecules must be energetically discriminable, i.e. the
accuracy in the calculated binding affinity should be within 0.9–1.4
kcal/mol, corresponding to a factor of 5–10 in the Ki or IC50 value.

The quantification of binding affinities has been approached from
several ends. Free-energy perturbation techniques allow for precise
estimates of the quantity, but are limited to small structural changes
of two molecules.1 Scoring functions are very effective for a fast (but
at best qualitative) classification of a larger series of potential lead can-
didates.3 Quantitative structure-activity relationships (QSAR) are the
most frequently used approach as it allows for a fast and quantitative
determination of the binding affinity based on linear or multiple-
regression techniques.4–6

QSAR is an area of computational research that builds atomistic
or virtual models to predict quantities such as the binding affinity or
the toxic potential of existing or hypothetical molecules. In drug dis-
covery, quantitative structure-activity relationships are widely used to
identify affine ligands for a given macromolecular target. QSAR con-
cepts are ubiquitously applied in pharmaceutical R&D worldwide —
particularly for lead identification and optimization. More recently,
the technology has been extended to predict ADMET properties
(adsorption, distribution, metabolism, elimination, toxicity)7 or the
oral bioavailability.8 In the context of the REACH legislation
(Registration, Evaluation and Authorization of Chemicals) of the
European Union, the prediction of the toxic potential of a drug or
environmental chemical in silico has spawned much interest.9–10

Half a decade after its introduction, QSAR has matured into a
computational tool, substantially contributing to the drug-discovery
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process. Originally based on the philosophy that compounds with
similar physico-chemical properties trigger comparable biological
effects, QSARs are nowadays frequently employed to establish a cor-
relation between structural properties of potential drug candidates
and their binding affinity (Ki, IC 50) towards a common macromolec-
ular target. With the large number of 3D structures of proteins avail-
able from X-ray diffraction studies,10 structure-based design has
become a powerful tool. With an appropriately parameterized force
field, it became possible to identify the binding mode of any given
existing or hypothetical molecule to a macromolecular bioregulator of
interest. Unfortunately, this classic approach is limited by the afore-
mentioned problems. In addition, ligand desolvation (solvent strip-
ping) can turn out to be a dominant factor — as a small molecule
typically binds from an aqueous environment (blood and body fluid)
to a target protein, which is at least partially hydrophobic in nature —
particularly if the dielectric properties of the binding pocket trigger a
change in the ligand’s protonation state. Apart from the cost of
induced-fit and internal strain (a ligand, frequently binds in a confor-
mation different from its low-energy state in aqueous solution),
entropic contributions to the binding energy are difficult to estimate.11

The introduction of Comparative Molecular Field Analysis
(CoMFA) in 1988 represents a milestone in QSAR, as for the first time,
structure-activity relationships were based on the three-dimensional
structure of the ligand molecules (3D-QSAR). In CoMFA, steric
and electrostatic properties of the target protein were mapped onto
a surface or grid, surrounding a series of compounds superimposed
in their bioactive conformation.12 This surface or grid represents
a surrogate of the binding site of the true biological receptor; in a
pharmacological context frequently referred to as pharmacophore.
Apart from the diversity of the employed data set, the quality of the
map depends on the correct superposition of the ligands, the identi-
fication of which is almost impossible in the absence of structural
information for the target protein. While this problem has long been
recognized, only the more recently developed 4D-QSAR technologies
would seem to provide decent solutions.13–15 The calculation of binding
energies in QSAR studies is by no means simple, as the determining
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quantities can hardly be calculated in the absence of the 3D structure
of the target protein. Of course, sufficient variables given, any quan-
tity can be “reproduced,” but what would the predictive power of
such a model be?

20.2 Multi-Dimensional QSAR

In 3D-QSAR, bioactive conformation and relative orientations of the
ligand molecules must be unambiguously identified in order to gen-
erate a predictive model. Particularly, in the absence of structural
information on the target protein, the identification of both bioactive
conformation and orientation of the ligand molecule is all but simple.
If the 3D structure of the macromolecular target is known, it can be
used for this very purpose. Ligand docking is preferably achieved
using automated, flexible fitting, as this allows for local induced fit,
the rearrangement of the protein side-chains lining the binding pocket.
More recent approaches allow for dynamic solvation, i.e. the protein-
ligand complex is subjected to a solvation algorithm — explicitly, by
placing water molecules in geometrically feasible positions, and hence,
allowing for solvent-mediated protein-ligand hydrogen bonds16 or
implicitly, by calculating the solvation effect based on the solvent-
accessible surface area.17

In 4D-QSAR, energetically feasible binding modes are composed
into a 4D data set, including different ligand conformations, poses,
and protonation states.13–15 The true binding mode (or the bioactive
conformation) is then identified by the algorithm underlying the
QSAR concept (genetic, neural networks or combinations thereof).
Particularly in the absence of structural information on the macro-
molecular target, a 4D representation of the ligand molecules reduces
the bias associated with their alignment. But even with the 3D struc-
ture of the target protein at hand, the identification of the binding
mode is not trivial. First, the electron density at modest resolution
(2.0 Å or higher) is not sharp enough to reveal all the details. Here,
the deposited coordinates represent a mixture of experiment and
modeling.18 Second, when docking compounds not too anisotropic in
shape, different poses with comparable energies will always be identified.

552 Computational Structural Biology

FA
b587_Chapter-20.qxd  1/18/2008  4:58 PM  Page 552



Figure 20.1 shows four possible arrangements of coumestrol at the
estrogen receptor α as identified by flexible docking: all arrangements
are within 0.8 kcal/mol of the lowest-energy pose.16

Even if the structure of the ERα-coumestrol complex (Fig. 20.1)
is determined by X-ray diffraction techniques, it is unlikely that the
true pose(s) could be identified, as the root-mean-square (rms) devi-
ation for two poses is smaller than 1.0 Å and smaller than 2.0 Å for
the others. In addition, coumestrol could well bind in different ways.
Such systems indicate a serious limitation of 3D-QSAR approaches,
where a ligand molecule can only be represented by a single entity.
This conceptual flaw was only corrected by the more recently devel-
oped 4D-QSAR technologies,13–15 where each ligand molecule may
be represented by an ensemble of conformations, poses (different ori-
entations), tautomeric forms, protonation states, and stereoisomers.

4D-QSAR can be interpreted as a feasible extension of 3D-QSAR
to address the uncertainties during the alignment process. It has,
however, fundamental biological relevance, when dealing with multi-
mode binding targets. Cytochrome P450 enzymes, for example, are
known to accommodate a ligand in various binding poses, yielding
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Fig. 20.1 Multiple binding modes of coumestrol to the ERα (PDB code 3ERD),
as identified by automated, flexible docking.16 The ligands are shown in white, the
protein in gray; hydrogen bonds are indicated as dashed lines. Key interactions
include the hydrogen bonds to His524 (on the left) and Glu353 (on the right).
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different metabolic products of a given compound. 4D-QSAR tech-
nologies can explicitly account for different ligand configurations in a
single simulation. Recently, this has been successfully applied to sim-
ulate binding of structurally diverse compounds to cytochrome P450
3A4, representing each small molecule with, on average, four differ-
ent binding poses identified by an automated docking procedure
(10 and Chapter 21).

Induced fit — the ligand-induced adaptation of the protein
structure — may not only alter the topology of the binding pocket, but
also its character: hydrophobic or hydrophilic, dielectric properties, sol-
vent accessibility (Fig. 20.2). While a local manifestation of the phe-
nomenon may be simulated by means of MD, the rearrangement of
larger domains, or changes in the quaternary structure are not yet com-
putationally accessible. Moreover, induced-fit energies estimated from
MM/MD simulations are not suited for quantitative aspects, as they are
associated with errors larger than the objective (see above). Here, the
combination of protein modeling (identification of the binding mode
and simulation of the induced fit) and mQSAR (multi-dimensional
QSAR; quantification) would seem to offer an appropriate solution.
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Fig. 20.2 Manifestation of induced fit: the steroid dihydrotestostosterone binding
to the androgen receptor (left; PDB code 1I37). In order for the bulkier benzoate
derivative to bind (right), the binding pocket undergoes a major rearrangement.
Asn705 (previously accepting a hydrogen bond from the dihydrotestostosterone’s
OH group) flips by 180° and now acts as a H-bond donor towards the benzoate’s
carbonyl O atom; Phe891 and Leu873 both change from a trans to gauche confor-
mation, thereby generating a small hydrophobic pocket, accommodating the aro-
matic portion of the benzoate.20
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Particularly in the absence of structural information on the target
protein (e.g. for GPCRs), the most realistic induced-fit scenario can-
not be unambiguously identified. Consequently, a fifth dimension has
been introduced (5D-QSAR), allowing for the simultaneous consid-
eration of different manifestations thereof. Such models may not only
accurately mimic the 3D topology of the binding pocket but also
identify realistic induced-fit protocols, e.g. based on the steric, elec-
trostatic, hydrogen-bonding, or lipophilic potential.21 As the induced-
fit scenario may well change throughout a simulation (Fig. 20.3),
5D-QSAR allows for a less biased approach. The employment of such
protocols in receptor-surface modeling21–23 yields surrogates of high
predictive power for several proteins of biomedical interest (see below
and in Refs. 24–28).

To simulate compounds that bind to different sub-pockets
of the binding site as a consequence of induced fit and, hence, expe-
rience different fields, a dual-shell representation — able to
anisotropically simulate induced fit (see Fig. 20.7) — has been
devised.23 Variations in the distribution of properties between the
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Fig. 20.3 Induced-fit crossover as observed in the simulation of dopamine
β-hydroxylase. At 2000 crossovers (corresponding to 10 generations in a 200-model
population), the prevailing induced-fit changes from a scenario based on a minimiza-
tion protocol (loose fit) to one based on the steric potential of the compounds (tight fit).29
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inner and outer shell are allowed. The adaptation of both field and
topology of the receptor surrogate to each ligand is achieved by
combining a steric adjustment to the 3D structure of the ligand and
a component due to the attraction or repulsion between ligand and
receptor model. The latter is obtained by correlating their physico-
chemical properties (hydrophobicity and hydrogen-bond propen-
sity) in 3D space.23,29

Apart from the interaction with the target protein (including
induced fit), the binding of a small-molecule ligand to a macro-
molecular target is strongly affected by solvation phenomena: ligand
desolvation, solvent stripping, and proton transfer (Fig. 20.4). Here,
6D-QSAR — where different solvation models are considered simul-
taneously — allows for an even more realistic simulation of the bind-
ing process.16 This can either be achieved explicitly where parts of the
surface area are mapped with solvent properties, whereby position and
size are optimized by the genetic algorithm, or implicitly. Here, the
solvation terms (ligand desolvation and solvent stripping) are inde-
pendently scaled for each different model within the surrogate family,
reflecting varying solvent accessibility of the binding pocket.16,29 A
classification of QSAR concepts based on their dimensionality is given
in Table 20.1.
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Fig. 20.4 Schematic view of the solvation phenomena associated with ligand
binding.
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Quasar, a receptor-modeling concept developed at the Biographics
Laboratory, is based on 6D-QSAR and explicitly allows for the sim-
ulation of induced fit.16,22 It generates a family of quasi-atomistic
receptor surrogates that are optimized by means of a genetic algo-
rithm. The hypothetical receptor site is characterized by a 3D sur-
face that surrounds the ligand molecules at van der Waals distance,
and which is characterized by atomistic properties mapped onto it.
The topology of this surface mimics the three-dimensional shape of
the binding site and the mapped features represent other properties
of interest, such as hydrophobicity, electrostatic potential and
hydrogen-bonding propensity.28 The fourth dimension in Quasar
offers the possibility to represent each ligand molecule as an ensem-
ble of conformations, orientations, tautomeric forms and protona-
tion states.15 Within this ensemble, the contribution of an individual
entity to the total energy is determined by a normalized Boltzmann
weight. As manifestation and magnitude of induced fit may vary for
different ligands, the fifth dimension in Quasar allows for the simul-
taneous evaluation of up to six induced-fit protocols.22 The most
recent extension of the Quasar concept to six dimensions16 allows
for the simultaneous consideration of different solvation scenarios.
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Table 20.1 Classification of QSAR Concepts Based on their Dimensionality

Dimension Method Protein References

1D-QSAR Affinity is correlated with bulk properties no 5
of ligands (pKa, log P, etc.)

2D-QSAR Affinity is correlated with structural no 5
patterns (connectivity, 2D structure)

3D-QSAR Affinity is correlated with the three- possible 4–6, 12
dimensional structure of the ligands

4D-QSAR Ligands are represented as an ensemble possible 13–15
of configurations

5D-QSAR as 4D-QSAR + representation of different yes 22
induced-fit models or dual-shell
representation of the receptor model

6D-QSAR as 5D-QSAR + representation of different yes 16
solvation scenarios
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This can be achieved explicitly when parts of the surface area are
mapped with solvent properties whereby position and size are opti-
mized by the genetic algorithm. Alternatively, the solvation terms
(ligand desolvation and solvent stripping) can be independently
scaled for each different model within the surrogate family, reflect-
ing varying solvent accessibility of the binding pocket (implicit
approach). In Quasar, the binding energy is calculated according to
Equation 20.1:

Ebinding = Eligand–receptor − Eligand desolvation −Eligand strain −TΔS − Einduced fit (20.1)

where Eligand–receptor = Eelectrostatic + Evan der Waals + Ehydrogen bonding + E polarization.

Raptor, an alternative receptor-modeling technology more
recently developed at the Biographics Laboratory, is based on a fun-
damentally different scoring function and features a dual-shell rep-
resentation of the receptor surrogate, which allows for an
anisotropic simulation of induced fit.23 During model generation,
each shell is independently mapped with physicochemical properties
(hydrophobic character and hydrogen-bonding propensity), a con-
cept that permits changing the character of the binding pocket, e.g.
upon binding of agonists or antagonists.29 Induced fit is not limited
to steric aspects but includes the variation of the fields — spawned
by the physico-chemical properties mapped onto the two surfaces —
along with it. The underlying scoring function for evaluating
ligand-receptor interactions includes directional terms for hydrogen
bonding, hydrophobicity, and thereby treats solvation effects
implicitly. This makes the approach independent from a partial-
charge model, and as a consequence, allows to model ligand mole-
cules binding to the receptor with different net charges in a
straightforward fashion. In Raptor, the binding energy is deter-
mined according to Equation 20.2:

Ebinding = Eligand–receptor − TΔS − Einduced fit (20.2)

where Eligand–receptor = Ehydrogen bonding (shell 1) + E hydrophobic (shell 1) +
Ehydrogen bonding (shell 2) + E hydrophobic (shell 2)
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20.3 Computational Pharmacology: Modeling
GPCRs (Neurokinin-1, CCR-3, Bradykinin
B2 receptor)

The modeling of enzymes and receptors with known 3D structure
(structure-based design), modeling by homology, and ligand-based
concepts to computational pharmacology are covered in various chap-
ters of this book. In this section, we present an approach for model-
ing G-protein coupled receptors (GPCRs) for which no experimental
structures are presently available. Here, a technique, referred to as
receptor modeling (formerly: receptor mapping) allows for the gen-
eration and validation of a three-dimensional receptor surrogate,21–23

subsequently to be used in a structure-based design context.
Using the mQSAR technologies Quasar 16,22,28 and Raptor,23,29

models for a series of G-protein coupled receptors have been validated
at the 4D-level (Neurokinin-1 receptor, Ref. 15), 5D-level
(Chemokine receptor-3, Ref. 30), and 6D-level (Bradykinin B2 recep-
tor, Ref. 31). As the 3D structure of these GPCRs is not available at
atomic resolution, the ligand alignment was based on scaffold map-
ping for the NK-1 and CCR3 receptor, respectively, and using
3D/4D pharmacophore generation for the BB2 receptor (software
Symposar, Ref. 32).

The three-dimensional structures of all ligand molecules were gen-
erated using MacroModel 17 and optimized in aqueous solution by means
of the AMBER* force field.32 Atomic partial charges (MNDO/ESP)
were calculated using the MOPAC package.33 Next, the compounds
were split into n training (NK1: n = 50, CCR3: n = 106, BB2: n = 147)
and m test ligands (NK1: m = 15, CCR3: m = 35, BB2: m = 139) with
the aim to obtain maximal structural diversity in the training set com-
bined with a wide range in Ki or IC50. First, the compounds were sorted
according to their Ki value and the most active and the weakest-binding
ligand defined as training compounds. Then — in descending order —
test ligands were identified as those having each of their functional
groups represented in the already defined subset of training ligands.

The Quasar simulations were based on a family of i receptor mod-
els (NK-1: i = 500, CCR3: i = 250, BB2: i = 250) and evolved over j
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crossover cycles (NK-1: j = 40 000, CCR3: j = 18 000, BB2:
j = 50 000), corresponding to k generations (NK-1: k = 80, CCR3:
k = 72, BB2: k = 200). Predicted and experimental Ki values are com-
pared in Fig. 20.5; key parameters are given in Table 20.2. Subsequently,
a series of five to 10 scramble tests demonstrated the robustness of the
models; details are given in Refs. 15, 30 and 31.
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Fig. 20.5 Comparison of predicted and experimental IC50 values for the
Neurokinin-1 receptor (left), the Chemokinne receptor-3 (center) and the Bradykinin
B2 receptor (right). The ligands of the training set are shown as open circles, while
those of the test set are depicted as full circles. Dashed lines indicate the false-
positive (upper) and false-negative threshold (lower), respectively.
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20.4 Computational Toxicology: Modeling
Nuclear Receptors (Aryl Hydrocarbon,
Estrogen αα/ββ, Androgen, Thyroid αα/ββ,
PPARγγ, Glucocorticoid Receptor)

Toxic agents, particularly those that exert their actions with a great deal
of specificity, sometimes act via receptors to which they bind with high
affinity. This phenomenon is referred to as receptor-mediated toxicity.
Examples of soluble intracellular receptors, which are important in
mediating toxic responses, include the glucocorticoid receptor, which is
also involved in mediating toxicity associated effects such as apoptosis
of lymphocytes as well as neuronal degeneration as a response to stress,
the peroxisome proliferator-activated receptor, which is associated with
hepatocarcinogenesis in rodents, and the aryl hydrocarbon receptor,
which is involved in a whole range of toxic effects.34 Harmful effects of
drugs and chemicals can often be associated with their binding to other
than their primary target — macromolecules involved in biosynthesis,
signal transduction, transport, storage, and metabolism.35–41

Nuclear receptors comprise a family of ligand-dependent transcrip-
tion factors that transform extra- and intra-cellular signals into cellular
responses by triggering the transcription of target genes. In particular,
they mediate the effects of hormones and other endogenous ligands to
regulate the expression of specific genes. Among other members, this
family includes receptors for the various steroid hormones, e.g. the estro-
gen, androgen, progesterone, and glucocorticoid receptor. Unbalanced
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Table 20.2 Summary of the Quasar and Raptor Simulations for the GPCRs.
q2 == Cross-Validated r2, p2 == Predictive r2; the rms and Maximal Deviation from
the Experimental Binding Affinity is Given as a Factor in Ki.

Number of rms max. rms max.
System Compounds q2 Training Training p2 Test Test Reference

NK-1: Quasar 65 0.887 1.9 7.1 0.834 2.4 7.2 15
CCR3: Quasar 141 0.907 1.0 7.1 0.899 0.8 3.5 30
BB2: Quasar 186 0.752 2.6 14.1 0.784 2.8 9.6 31

Raptor 0.815 2.4 11.7 0.853 2.1 14.9 31
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production or cell insensitivity to specific hormones may result in dis-
eases associated with human endocrine dysfunction.42 The presence of
hormonally active compounds — endocrine disruptors — in the bios-
phere has become a worldwide environmental concern. It has been con-
cluded that such compounds elicit a variety of adverse effects in both
humans and wildlife, including the promotion of hormone-dependent
cancers, reproductive tract disorders, and a reduction in reproductive fit-
ness. A number of receptor-mediated hormonal responses to toxicity are
known, including xenobiotic effects on the thyroid hormone receptor,
the epidermal growth factor receptor, the aryl hydrocarbon receptor as
well as effects mediated by the androgen and the estrogen receptor,
respectively. A variety of compounds in the environment have been
shown to display agonistic or antagonistic activity towards the ER,
including both natural products and synthetic compounds.43–49 The con-
cern over xenobiotics binding to the ER has created a need to both
screen and monitor compounds that can modulate endocrine effects.50–52

Using the mQSAR technologies Quasar 16,22,28 and Raptor,23,29 models
for a series of eight nuclear receptors have been validated at the 6D-level.
Except for the aryl hydrocarbon receptor, where the 3D structure of the
protein is not available, the alignment was obtained using automated, flex-
ible docking (software Yeti, see Refs. 50, 51). Again, the three-dimensional
structures of all ligand molecules were generated using MacroModel 17

and optimized in aqueous solution by means of the AMBER* force
field.32 Atomic partial charges (MNDO/ESP) were calculated using the
MOPAC package.33 Next, the compounds were split into n training (Ah:
n = 105, AR: n = 86, ERαβ: n = 80, TRαβ: n = 66, PPARγ : n = 75, GR:
n = 82) and m test ligands (Ah: m = 35, AR: n = 26, ERαβ : n = 26/23,
TRαβ : n = 16, PPARγ : n = 20, GR: n = 28). The splitting of the train-
ing and test set was performed as described above for the GPCRs.

The Quasar simulations were based on a family of i receptor mod-
els (Ah: i = 250, AR: i = 200, ERαβ : i = 200, TRαβ : i = 200, PPARγ :
i = 200, GR: i = 200) and evolved over j crossover cycles (Ah: j = 50 000,
AR: j = 10 000, ERαβ: j = 32 000, TRαβ: j = 20 000, PPARγ : j = 20 000,
GR: j = 40 000), corresponding to k generations (Ah: k = 200, AR:
k = 50, ERαβ : k = 160, TRαβ : k = 100, PPARγ : k = 100, GR: k = 100).
Predicted and experimental Ki values are compared in Fig. 20.6, and
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Fig. 20.6 Comparison of experimental and predicted binding affinities for the
aryl hydrocarbon, estrogen α, estrogen β, androgen, thyroid α, thyroid β, peroxisome
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representative models are shown in Fig. 20.7; key parameters are
compiled in Table 20.3. Subsequently, a series of five to 10 scramble
tests demonstrated the robustness of the models (details are given in
Refs. 16, 20, 24–27).

Other valuable modeling studies on nuclear receptors include
those of Lukacova and Balaz52 for the aryl hydrocarbon receptor; of
van Lipzig et al., Akahori et al., da Cunha et al., Kurunczi et al., Sippl
and Asikainen et al.52–58 for the estrogen receptor, and of Hong et al.59

for the androgen receptor.

20.5 Modeling Toxicity — The VirtualToxLab
Concept

The receptor models for the eight nuclear receptors — along with the
surrogate for the enzyme CYP450 3A4 (see (19) or Chapter 21) —
represent the “virtual test kits” of the VirtualToxLab currently under
compilation at the Biographics Laboratory 3R.24 A pilot project using
these models and a representative selection of 798 compounds
(thereof, 188 substances were used to test the models) suggested that

Fig. 20.6 (Continued ) proliferator-activated γ, glucocorticoid receptor (top to
bottom and left to right). Ligands of the training set are shown as open circles, and
those of the test set as filled circles. Dashed lines indicate the false-positive (upper)
and false-negative threshold (lower), respectively.
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Fig. 20.7 Quasar model (6D-QSAR, left) and Raptor surrogate (dual-shell 5D-
QSAR, right). The bound ligand is shown as a stick representation (atom coloring:
gray = carbon, white = hydrogen, red = oxygen, blue = nitrogen). The quasi-atom-
istic properties of the receptor are mapped onto the surface(s): blue = positively
charged salt bridge, red = negatively charged salt bridge; brownish colors =
hydrophobic properties, pink = hydrogen-bond flip flop. The Quasar model repre-
sents the Aryl hydrocarbon receptor;27 the Raptor model depicts the thyroid β
receptor.26

(a)

(b)
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our approach is suited for the in silico identification of adverse effects
triggered by drugs and chemicals: only six of the test compounds are
predicted by more than a factor of 10 off the experimental binding
affinity, with the maximal individual deviation not exceeding a factor
of 15.24,26 The flowchart of the database is depicted in Fig. 20.8; its
validation status is continuously updated on our website.60

Up to date, our concept has not produced any truly false-positive
results. At the current level, however, false-negative predictions are
still obtained, as a compound of interest cannot be tested against all
potential receptors it may bind to in vivo (some macromolecular tar-
gets will remain unknown, while for others no experimental structure
exists, or too few affinity data are available to establish a QSAR). It is
planned to extend the current concept by implementing a set of vir-
tual filters, which can recognize benign compounds. Among others,
criteria include the molecular weight, drug-like properties, and the
presence or absence of characteristic structural motifs.

20.6 Future Outlook

The recent decade has experienced a subtle change in the focus of
molecular-modeling approaches to both drug discovery and environ-
mental issues, as poor pharmacokinetics and toxicity are not only
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Table 20.3 Summary of the Quasar and Raptor Simulations for the Nuclear
Receptors. q2 == Cross-Validated r2, p2 == Predictive r2; the rms and Maximal
Deviation from the Experimental Binding Affinity is Given as a Factor in Ki.

Number of rms max. rms max.
System Compounds q2 Training Training p2 Test Test Reference

AhR: Quasar 140 0.824 1.8 10.2 0.769 2.3 13.5 27
AR: Raptor 114 0.858 1.7 7.8 0.792 1.6 13.9 20
ERα : Quasar 106 0.895 2.0 8.6 0.892 2.9 9.5 16
ERβ : Quasar 103 0.785 1.1 4.8 0.827 0.8 2.4 24
TRα : Raptor 82 0.919 1.8 4.3 0.814 2.5 10.0 26
TRβ : Raptor 82 0.909 2.0 7.7 0.796 2.7 8.8 26
PPARγ : Quasar 95 0.832 1.4 6.2 0.723 1.4 3.9 25
GR: Quasar 110 0.745 1.2 5.9 0.650 2.2 5.5 24
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frequent causes of late-stage failures in drug development but also a
source for unnecessary animal tests. It has been recognized in phar-
maceutical R&D that ADMET (Adsorption, Delivery, Metabolism,
Elimination, Toxicity) plays a key role in identifying safe drugs. The
REACH initiative of the EU, which calls for the re-testing of some
30 000 chemicals with respect to their toxic potential, requires the
scientific community to develop in silico concepts, allowing for fast
and reliable screening of larger batches of drugs and environmental
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Fig. 20.8 Flowchart of the VirtualToxLab: pictorial (top) and schematic (bottom).
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chemicals. While computational models for a dozen of proteins trig-
gering or mediating adverse effects may be considered validated
today, a marketable in silico approach must include more bioregula-
tors, e.g. CYP2A13 and other representatives of this enzyme class, the
pregnan-X, liver-X, mineralocorticoid, and the constituive androstane
receptor. Metabolic products should also routinely be included in
simulations addressing ADMET properties — a most difficult task as
the formation of the various metabolic products depends on the phys-
iological conditions. Aiming for a better prediction of the binding
affinity of small-molecule ligands to macromolecular targets calls for
a more rigorous treatment of effects frequently neglected in compu-
tational studies: induced fit, solvation, and entropy. Efforts should be
undertaken to agree on good modeling practices, i.e. what criteria
should be fulfilled to consider the model validated, and reaching far-
ther, to have it accepted by the regulatory bodies (e.g. within
REACH). Finally, the developed models should be shared — at least,
if emerging from the academic community. The Biographics
Laboratory 3R is prepared to provide free access to its VirtualToxLab
for academic institutions and NPOs. Currently, the technology is under
peer testing in selected laboratories; free access is planned for 2008.
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Chapter 21

Structure-based Computational
Approaches to Drug Metabolism

M. A. Lill*

21.1 Introduction

Drug metabolism plays a huge role in disposition and the adverse
reactions of drug candidates, and can critically affect the drug dis-
covery process. Consideration of pharmacokinetic properties in the
early phase of drug design has become increasingly mandatory for
the efficient development of new drugs. Since the publication of the
first X-ray structure of a mammalian cytochrome P450 enzyme
(CYP) in the year 2000, structure-based computational approaches
have become an important tool to help in understanding and pre-
dicting drug metabolism, focusing predominantly on phase I metab-
olism by CYPs. This chapter will cover the application of a diverse set
of computational approaches to metabolism, including the induction
of drug-metabolizing enzymes by nuclear receptors. It includes the
discussion of methods for docking, predicting binding affinities,
modeling of entry and exit paths to the binding site, as well as sim-
ulating protein flexibility, water molecules, and entropic effects upon
ligand binding.

*Department of Medicinal Chemistry and Molecular Pharmacology, School of
Pharmacy and Pharmaceutical Sciences, Purdue University, Heine Pharmacy
Building, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA. Email: mlill@
purdue.edu.
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Metabolism of drugs and other xenobiotics (e.g. environmental
pollutants or industrial chemicals), also called biotransformation, is
an essential detoxification mechanism in animal organisms, including
humans. Typically, a compound is chemically transformed into a
more hydrophilic compound, increasing its solubility, and conse-
quently, its rate of elimination from the body. Metabolism is a major
factor determining the systemic exposure of a drug, and represents
the major clearance mechanism for about 73% of the top 200 selling
drugs.1

Furthermore, xenobiotics can interact with the metabolic system
by inhibiting metabolizing enzymes, or by activating or deactivating
receptors transcribing the corresponding genes. Co-administration of
two or more drugs can yield to increased plasma concentrations of
one of these drugs, hence causing serious adverse drug-drug interac-
tions complicating drug therapy. Moreover, metabolizing enzymes
are also able to activate compounds to reactive intermediates that can
form covalent adducts with macromolecules, e.g. DNA, leading to
toxic reactions.

Biotransformation is typically divided into two main phases, phases I
and II metabolism, although a clear temporal separation does not
always exist.2 Phase I reactions are mainly oxidative (although reduc-
tive biotransformation also occurs), and typically involve a member of
the cytochrome P450 (CYP) enzyme family. In phase II reactions,
molecules are enzymatically conjugated with polar functionalities
(e.g. with glucuronic acid, glutathione, or sulfate) resulting in soluble
entities, which are then easily excreted from the body. Although
approximately a quarter of all compounds are biotransformed by
enzymes involved in phase II drug metabolism, and crystal structures
for these human enzymes have been resolved, e.g. glutathione S-
transferases or UDP-glucuronosyltransferase, only anecdotal compu-
tational studies have been published that focus on understanding their
enzyme mechanism, for example, in Ref. 3. Rarely have structure-
based methods been applied towards predicting phase II metabolism
for a series of compounds, e.g. docking to glutathione S-transferase.4

This chapter will focus on CYPs, since a diverse set of computational
approaches has deepened our understanding of how these enzymes

574 Computational Structural Biology

FA
b587_Chapter-21.qxd  1/18/2008  4:58 PM  Page 574



work, and will also address the problems that still exist to reliably pre-
dict metabolism of compounds in silico.

21.2 Metabolism by Cytochrome P450 Enzymes

CYPs comprise a large superfamily of proteins, which is classified into
families (minimum 40% sequence similarity), subfamilies (55%) and
individual members that vary by at least 3% in their sequence. This
classification is enumerated by an Arabic number for the family, a
roman letter for subfamily, and a second number for the member. In
humans, the family of P450 enzymes has 57 members, but only six
(3A4/5, 2C9, 2C19, 2D6, and 1A2) are responsible for more than
90% of all phase I metabolic events of drug molecules.1 CYPs are fur-
ther involved in the formation of endogenous molecules, including
hormones.

A variety of ligand-based computational approaches5,6 have been
applied to predict metabolism by P450 enzymes, including pharma-
cophore and QSAR models. Here, we will focus on the application of
structure-based techniques to CYPs, which have gained importance
since the publication of the first X-ray structure of a mammalian CYP
in the year 2000.

Predicting drug metabolism by CYPs is a difficult task, as the
metabolic feasibility is dependent on a variety of factors: the observed
metabolic reaction and rate of biotransformation for a substrate is
determined by its affinity towards the enzyme, its orientation towards
the reactive center and the intrinsic reactivity of the chemical group
in close proximity to the catalytic center. In addition to these mecha-
nistic factors, abundance of the various enzymes involved in biotrans-
formation and their genetic polymorphism can lead to a pronounced
variability in metabolizing capacity, and account for individual differ-
ences in drug response.

21.2.1 Structural Data for P450 Enzymes

CYPs are mainly α-helical in their fold [Fig. 21.1(a)] with some
β-sheet elements. Mammalian CYPs are membrane-anchored by an
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Fig. 21.1 (a) Crystal structure of the apo-form of CYP3A4.43 (b) Superposition of
crystal structures of apo-(light gray) and erythromycin (dark gray) bound CYP3A4.40

CYP3A4 performs a significant induced fit in the F to G portion of the protein (apo:
lime, erythromycin bound: green) to accommodate erythromycin; part of the F-F′
loop becomes disordered. The solvent accessible volume of the binding site is
increased by a factor of approximately two. Figure was created with PyMol.44

(a)

(b)
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N-terminal helix, which is removed in all X-ray crystallographic stud-
ies in order to increase solubility. CYPs comprise of 12 helices plus
additional helical elements in some of the CYPs (e.g. B′, F′, and G′
helices as part of the flexible structure locking the binding site). CYPs
enclose a common iron-containing heme b cofactor coordinated to a
proximal cysteine residue and a loosely bound water molecule on the
distal site of the heme, which is replaced by a ligand upon binding to
the active site. Currently (by June 2007), there are 25 X-ray struc-
tures of 10 mammalian (20 human structures of 1A2, 2A6, 2A13,
2C8, 2C9, 2D6, 3A4, 2R1) CYPs available.

X-ray structures with several different compounds complexed
with the same CYP member have often identified different conforma-
tions of the protein. This demonstrates the importance of protein
flexibility for binding and metabolizing structurally different mole-
cules [Fig. 21.1(b)]. As ligand diversity can be profound for specific
CYPs (Fig. 21.2), induced protein fit is a fundamental factor under-
lying its biological function. Thus, it seems to be important to include
protein flexibility in all computational studies on P450 enzymes, at
least when dealing with non-congeneric data sets.

Prior to the publication of the first mammalian X-ray structures,
homology models for all-important human CYPs (e.g. 3A4, 2D6,
2C) were derived based on the experimental structures of bacterial
CYPs.7 Validation strategies include NMR-derived ligand-heme dis-
tance restraints, mutagenesis data, and the comparison between pre-
dicted ligand orientation towards the catalytic center with the
experimentally determined site of metabolism, suggesting which
chemical group of a ligand binds in close proximity to the catalytic
center. At least for the less promiscuous enzymes like CYP2D6,
acceptable agreement between experiment and computationally pre-
dicted binding modes was observed.8 It should, however, be noted
that predicting the correct binding modes of structurally diverse lig-
ands in promiscuous binding pockets of CYPs is still not fully
resolved, even when an experimentally resolved X-ray structure is
available (see Section 21.2.2).

Since the first X-ray structures for mammalian CYPs were resolved,
templates with higher sequence similarity are available, providing
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a basis for better homology models for human CYPs. Furthermore,
microbial and mammalian CYPs differ in important structural
details, e.g. positions of the F-G structural unit9 or in the substrate-
recognition site,10 which can have a significant influence on xenobi-
otics binding.
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Fig. 21.2 A selection of structurally diverse xenobiotics binding to CYP3A4.
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21.2.2 Prediction of Binding Modes

Both crystallographic protein structures and homology models have
been utilized for studying protein-ligand interactions using computa-
tional methods. The dominant factors determining if and at which
position a substrate is metabolized by a specific CYP are the structural
elements of the substrate that binds close to the catalytic heme center,
and the intrinsic reactivity of this chemical group. Automated docking
has been used to virtually screen compound libraries aimed at identi-
fying energetically feasible docking poses, and especially to predict the
chemical portion of a possible substrate that lies close to the reaction
center. This allows the prediction of the regioselective component of
drug metabolism, a prerequisite for catalytic site prediction. However,
the promiscuity of most CYPs allows for the metabolism of structurally
diverse sets of xenobiotics, making the prediction a difficult task.

A further consequence of the structural variability of the binding
compounds is that one needs to take into account the effect of water
molecules that often bind in the active site in addition to the ligand.
These waters may directly mediate hydrogen-bonds between the lig-
and and protein, or might be considered as part of the ligand’s solva-
tion shell, which is not completely stripped during binding.11

De Graaf et al. have demonstrated that the explicit inclusion of pre-
equilibrated water molecules in docking yields better agreement with
experimental binding poses.12 Depending on the docking software
and protocol, they have reached an improvement by about 10–30% in
catalytic site prediction for CYP2D6 when water was explicitly taken
into account. Through docking with four different docking programs
(AutoDock, FlexX, GOLD-Goldscore, and GOLD-Chemscore) and
rescoring the best docking poses with the scoring function SCORE,
they have achieved a successful prediction of the experimentally
observed site of metabolism in 80% of all substrates.

In several X-ray structures, large non-reactive substrate-heme dis-
tances have been observed, e.g. (S)-warfarin-heme distance ~10 Å in
CYP2C913 or progesterone-heme distance ~17 Å in CYP3A4.14 Until
recently, two possible explanations have been discussed that address
this data: electron transfer triggers a conformational change necessary
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for the ligand to move towards the heme group. Alternatively,
homotropic or heterotropic cooperativity of a molecule located at the
observed distant site might trigger conformational changes of the
protein, allowing a second compound to bind to the same binding
site, but in closer proximity with the heme.

Recently, an alternative scheme was postulated pointing out the
importance of entropy upon ligand binding to CYPs. Levy and co-
workers15 performed replica-exchange molecular dynamics simulations
on N-palmitoylglycine binding to P450 BM3. 24 MD simulations
(called replicas) were preformed in parallel, each at a different temper-
ature, ranging from 260 K to 463 K. At regular intervals, replicas can
exchange temperatures when fulfilling the Metropolis transition criteria
with respect to their actual potential-energy difference. This allows
alternative configurations, sampled at high temperatures, to be trapped.
Using a temperature-weighted histogram analysis method, it is further
possible to estimate the relative population and free energies of these
states. This study identified two distinct stable states: one in agreement
with the X-ray structure, in which the substrate carbon atom, which is
hydroxylated, is ~8 Å away from the heme iron atom; and another con-
figuration where the distance is reduced to ~4.5 Å. The former is mostly
populated by the low temperature replicas, which perfectly agrees with
the experimental setup for the X-ray studies performed at 110 K. The
later protein-substrate configuration was populated 70% of the simula-
tion time at 302 K. The reason is that the former configuration has the
lowest enthalpy value, whereas the latter complex is entropically
favored, thus not observed at the low temperature conditions of the
X-ray studies; this complex, however, allows the ligand to temporarily
approach the catalytic center close enough to be metabolized. The
study clearly demonstrated the significance of ligand and protein
entropy in predicting the correct binding mode of a CYP substrate, a
factor that is typically neglected in automated docking.

21.2.3 Prediction of Binding Affinities

Quantifying protein-ligand interactions is a further prerequisite for
in silico prediction of drug metabolism and adverse drug-drug
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interactions. Standard scoring functions employed so far have not
shown significant correlation with experimental binding affinities for
mammalian CYPs.16,17

Molecular-dynamics (MD) based free-energy methods (see
Chapter 19), on the other hand, show good agreement between pre-
dicted binding affinities and their corresponding experimental values.
Helms and Wade18 were able to predict the absolute binding free
energy of camphor to P450 cam with 0.8 kcal/mol deviation from
the experiment using a multi-configuration variant of thermodynamic
integration. Linear-interaction analysis (LIE)19 was applied on 11
compounds binding to P450 cam20 and three substrates to CYP1A1,21

reproducing the experimental binding affinity within a mean error of
0.55 and 0.8 kcal/mol, respectively. In LIE, the electrostatic and van
der Waals interaction energies between the ligand and surrounding
water is averaged over a MD simulation of the compound in solvent
alone. The sum of these mean energies is subtracted from the inter-
action energies between the ligand and protein in a corresponding
MD simulation of the complex:

(21.1)

Molecular-mechanics Poisson-Boltzmann surface area (MM/
PBSA) method22 typically uses snapshots of a single MD simulation
of the complex to estimate the free energy of binding by subtract-
ing the free energy of free ligand and protein from that of the
complex:

(21.2)

Each free energy is determined from the average electrostatic
〈E elst〉 and van der Waals 〈E vdw〉 energy of each entity plus terms for
the solvation energy. These terms are computed in continuum
solvent, using a finite difference Poisson-Boltzmann model 〈G PB〉,
and a non-polar solvation term, represented by the solvent-accessible
surface area 〈G SA〉. Finally, configurational entropy 〈ΤΔS config 〉 is

D D D DG G G GP L L Pbinding = - -+

DG E E E EL P
elst

L P
vdW

L S
elst

L S
vdW= + - -- - - -
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estimated from normal-mode analysis and subtracted from the other
contributions:

(21.3)

This method was applied to a set of compounds binding to
CYP2B4 and predicted all binding affinities within 2 kcal/mol of
their experimental values.

While these examples seem to suggest that these methods are able
to reliably quantify protein-ligand interactions, it must be noted that
the data sets in these studies were rather small and did not cover the
experimentally known chemical space of ligands binding to CYPs. In
addition to the structural promiscuity of CYP ligands, a further chal-
lenge arises from the fact that compounds with different net charges
are able to bind to the same CYP. This leads to large differences in
electrostatic interaction energies, presenting a hurdle to these meth-
ods. Further studies on large and structurally diverse sets of com-
pounds binding to promiscuous human CYP enzymes, like CYP3A4
or 2C9, must demonstrate the potential of these methods as standard
tools for accurate prediction of binding affinities in drug-discovery
settings.

Lill et al.23 combined structure-based and ligand-based design
concepts, developing a computational model that predicts the
inhibitory potential of structurally diverse molecules binding to
CYP3A4. Possible binding modes were first sampled using docking
that incorporated induced protein fit at the level of flexible side-
chains, as well as on-the-fly solvation of the protein-ligand complexes.
The predicted binding modes for most compounds were consistent
with experimental data. CYP3A4 is known to accommodate a ligand
in various binding poses, yielding different metabolic products of the
compound. 4D-QSAR techniques (see Chapter 20) can explicitly
handle different ligand configurations in a single simulation. On aver-
age, the four energetically most favorable docking orientations are
used as input for the multidimensional QSAR concept24 to quantify
protein-ligand interaction. This approach has produced predictions of

D DG E E G G T Selst vdW PB SA config= + + + -
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the binding affinity of training and test ligands, on average, within a
factor of 2.7 and 3.8 from the experimental values, respectively.

21.2.4 Modeling of Access/Exit Channels

The active site of CYPs is located deep inside the protein, and the
channels through which ligands access and egress the binding site can
have a strong impact on substrate specificity and enzyme kinetics.
Wade and coworkers applied a variety of different computational
methods, based on X-ray structures, to identify and analyze possible
paths between protein surface and binding site of CYPs. They devel-
oped a systematic survey of ligand paths covering all currently avail-
able CYP crystal structures, applying the CAVER program.25 CAVER
projects the protein structure on a grid, where a penalty is assigned to
each grid point depending on the distance to a protein atom (smaller
distance corresponding to higher penalty). CAVER identifies channels
upon traversing from the binding site cavity to the surface by opti-
mizing a cost function that is based on the assigned penalty values.
However, entry and exit channels may exist in a closed state in the
crystal structures, as opening and closing of channels is often a
dynamic process. Thus, substrate specificity may need to be deter-
mined both by structural and dynamic properties of the entry and
egress channels. Along this line, Wade and coworkers also used ther-
mal motion pathway (TMP) analysis to identify chains of atoms with
above-average temperature factors connecting the active site and pro-
tein surface.26

Random expulsion molecular dynamics (REMD) simulations
have been performed to identify exit routes of specific ligands, includ-
ing protein dynamics explicitly.27 As the time scale for ligand access or
exit is several log-units above that accessible to standard MD simula-
tions, spontaneous ligand access to or exit from the active site cannot
be observed by this type of simulations. In order to enhance the prob-
ability of ligand exit, an artificial force is imposed on the ligand with
a randomly chosen direction. The magnitude and direction of this
force are kept constant for a given time period, Δt. If the compound
encounters relatively rigid parts of the binding site along the direction
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of expulsion force, the average velocity over Δt of the ligand projected
in this direction will become smaller than a predefined threshold
value. In this case, a new direction of the expulsion force is randomly
chosen. This process is repeated until the molecule is expelled along
an exit channel, yielding average velocities above the given threshold
value.

Although more time consuming compared to CAVER or TMP,
REMD explicitly allows for the inclusion of protein dynamics and
provides mechanistic insight into the process of channel opening.
Standard MD simulation in conjunction with essential dynamics
analysis (see Chapter 11) further allows the identification of dominant
modes along the opening route. REMD yields a semi-quantitative
estimate of the energetic profile and kinetic rates for ligand exit from
the active site. The energetic profile was studied in more detail using
adiabatic mapping based on steered MD simulations.28 Herein, a con-
stantly increasing external force directed along the identified paths
was added to accelerate the ligand repulsion from the active site.

These studies have identified the location of several channels that
share common structural elements in CYPs, but which, however,
deviate significantly among CYPs in their specific structural topology
(Fig. 21.3). Variations in sequence, and observation of different
side-chain and backbone configurations along the channels makes
homology-modeling without extensive simulations questionable.
Important structural elements include the F-G structural block (includ-
ing the F-G helix, connecting loop, and F′-,G′-helices when present),
and the B-C loop, both of which border most of the identified chan-
nels. Significant, and often correlated motions of these structural ele-
ments are observed in MD simulations. Exit and access channels are
all oriented in the distal direction opposite to those elements of the pro-
tein to which P450 reductase or cytochrome b5 binds. Consequently,
these electron donating proteins cannot block the channels, however,
they might regulate their dynamic behavior.

In membrane-bound mammalian CYPs the channels can be
classified into those ending in the membrane and those parallel to it.
The paths of the former group are suggested to represent the entry
route of hydrophobic compounds, which can easily penetrate into the
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membrane. The latter group is thought to play an important role in
substrate channeling. It is postulated that the channels are ideally ori-
ented towards the dimerization interface with other biotransforma-
tion enzymes, including CYPs, allowing subsequent metabolic events
in different enzymes without intermediate release to the solvent.
Solvent accessible channels were also identified in most CYPs, which
might be important for the release of more hydrophilic products from
the metabolic machinery.

Typically, results from simulations have identified several distinct
but spatially close channels, which might merge into wide-open chan-
nels or even funnels. This topology might be responsible for combin-
ing ligand specificity with the observed large variety in the size of
compounds binding to a specific CYP. It should also be noted that the
natural environment, where CYPs are partially embedded in the
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Fig. 21.3 Possible entry and exit channels as predicted using CAVER45 for
CYP3A4 (pbd-code: 1TQN). Membrane position and orientation as predicted by
Lomize et al.46 Figure was created with PyMol.44
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membrane, which was neglected in all X-ray structures, might have a
significant effect on the structural and dynamic properties of the
channels ending in or close to the membrane. Future computational
studies might be predestinated to study these effects.

21.2.5 Reaction Mechanism

Computational studies have contributed strongly to our current
understanding of the complex mechanism involved in the catalytic
reactions of CYPs. Most detailed investigations have focused on the
bacterial P450 cam enzyme, which is the first sequenced and crystal-
lographic resolved CYP, but the overall mechanism is believed to be
shared by different CYPs. The consensus mechanism of CYPs’
monooxygenase function (not including alternative pathways, e.g.
uncoupling reactions) is depicted in Fig. 21.4.

Structures for each trappable intermediate state have been
obtained for P450 cam using time-resolved crystallographic studies,
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which show conformational changes along the pathway.29 Based on
these structures, Friesner, Thiel, and coworkers30–32 have used mixed
quantum mechanics/molecular mechanics (QM/MM) approaches
including the full protein structure, and compared the results with
parallel calculations only on active site models. This has allowed them
to study the influences of the heme environment on different states in
the reaction pathway.

In its ligand-free resting state (1), CYPs heme iron is in its ferric
state (FeIII), typically in low spin state (although some CYPs are in
high spin state). The surrounding protein residues can strongly influ-
ence the spin state: in P450 cam the low spin state is significantly
favored by protein stabilization of the antibonding interaction among
Fe and the axial cysteine and water ligand. After substrate binding, the
axial water ligand is replaced, typically leading to a high spin state
(quartet or sextet) (2). The surrounding amino acids appear to have
less effect on the spin state of (2). The change in spin state for
P450 cam, accompanied by a significant increase in reduction poten-
tial, results in an electron transfer to the heme group typically from
NADPH via NADPH-P450 reductase. The resulting ferrous CYP
then binds O2 (3). After a second electron transfer from NADPH-
P450 reductase or cytochrome b5, a proton is transferred (in
P450 cam from Thr252, see Fig. 21.5) to the dioxygen producing a
ferric hydroperoxide species (4). Using a simulated annealing proto-
col coupled to QM/MM to equilibrate the resulting structures,
Guallar et al.32 have shown that in P450 cam, a water channel from
Glu366 to Thr252 provides the missing proton to Thr252, and after
a reorientation of the hydrogen-bond network, an additional proton
is transferred from Thr252 to the hydroperoxide group. Lastly, the
O-O bond is cleaved, generating a water molecule and an oxyferryl
group (compound I) (5). Generally, compound I is viewed as FeIV and
has a one-electron deficiency in the porphyrin ring. In a hydroxylation
reaction, this reactive species abstracts a hydrogen atom from the sub-
strate, forming a radical intermediate, which rapidly collapses
(rebound mechanism) forming the hydroxylated product (6). This
product is released from the binding site, yielding the resting state (1)
again. The energetic influence of the heme surrounding amino acids

Structure-based Computational Approaches to Drug Metabolism 587

FA
b587_Chapter-21.qxd  1/18/2008  4:58 PM  Page 587



on the hydrogen-atom abstraction reaction is still controversial. In
P450 cam, a water molecule seems to reduce the energy barrier
involved.30 Further stabilization of the intermediate state due to elec-
trostatic interaction between the heme carboxylate substituents and
nearby positive residues is also proposed.32

Quantum mechanical calculations are also used to predict the
intrinsic reactivity of xenobiotics, a necessary component to predict
CYP metabolism. Semiempirical AM1 calculations, for example, are
used to compute the hydrogen abstraction energy for compounds,
which are then correlated with descriptors such as hybridization,
atomic element, aromatic character, number of non-hydrogen neigh-
bors, etc.33 Park and Harris combined docking and MD simulations
to sample reasonable heme-ligand configurations, with hydrogen
abstraction energies calculated by density functional theory.34 However,
only recently, an integrative high-throughput approach, combining
electronic properties of a molecule with structural properties of the
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protein, was developed by Cruciani and coworkers.35 In their tech-
nique, MetaSite, the GRID approach is utilized to screen the interac-
tion fields of selected chemical probes with the protein atoms in the
binding site. Amino-acid side-chains are allowed to rearrange in
response to attractive or repulsive interactions with the probe atom.
The interaction map is then transformed into histograms representing
the distances between the reactive center and the different physico-
chemical moieties in the binding pocket. For the substrate, the dis-
tances between different atom types (represented by the chemical
probes in GRID) are binned. The protein and ligand descriptors are
then correlated to predict which position in the molecular skeleton of
the ligand is accessible to the catalytic center, defining an accessibility
parameter for each ligand atom.

A library of fragments was designed, representing a large portion
of the chemical space accessible for drugs. Molecular orbital calcula-
tions on these fragments are performed to calculate the reactivity of
each fragment atom in a specific reaction type, e.g. hydroxylation,
dealkylations, and deamination. The combination between reactivity
and accessibility parameters provides an estimate of the relative reac-
tion probability of each fragment atom for a specific metabolic reac-
tion. Validation studies on over 900 substrates for CYP1A2, 2C9,
2C19, 2D6, and 3A4 showed on average a rate of over 80% for suc-
cessful prediction of metabolic sites.

21.3 Induction of Drug Metabolism

In addition to drugs directly binding to CYPs, adverse drug-drug
interactions may occur when a drug binds to a transcription factor
that regulates the P450 gene transcription. Inhibition of CYP-gene
transcription may increase the concentration in the body of a co-
administered drug due to slower metabolism, and can result in signif-
icant adverse effects. Induction of P450 genes can alter the metabolic
profile of a drug by increasing metabolic rates or by creating an alter-
native pathway of metabolism with profound effects on the drug’s
toxicity profile. Drugs such as cisapride, terfenadine, and mibefradil
are examples of compounds that have been withdrawn from the
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market because of adverse drug-drug interactions associated with
CYP induction or inhibition.

The mechanism of regulating the induction process is primarily
due to agonizing or antagonizing ligand-activated transcription fac-
tors such as the aryl-hydrocarbon receptor (AhR) for the CYP1A fam-
ily, constitutive-androstan receptor (CAR) for the CYP2B family, and
pregnane xenobiotics receptor (PXR), glucocorticoid receptor (GR)
and vitamin D receptor (VDR) for the CYP3A family. Since there
is some considerable degree of cross-talk among these receptors and
to other proteins, the process of induction is not a single receptor-
protein relationship. Among those transcription factors, PXR plays a
key role as it binds structurally diverse xenobiotics and endogenous
compounds and regulates, in addition to CYP3A4, the genes for
CYP2B6, CYP2C8, CYP2C9, CYP2C19, phase II enzymes like UDP-
glucoronosyltransferase, and efflux pumps like multidrug-resistance
proteins (MDR) 1 and 2.

3D structures of PXR36 obtained by X-ray crystallography display
a large hydrophobic ligand-binding domain with few polar residues.
The structures further reveal that significant flexibility and disorder of
the topological elements lining the binding site enable the binding of
structurally diverse ligands [Fig. 21.6(a)].

Before the first crystal structures became available, pharma-
cophore models were derived to attempt to understand the key fea-
tures for ligand binding to PXR.37 In addition to several ligand-based
pharmacophore models using the software Catalyst, Schuster and
Langer38 manually annotated an additional hypothesis for PXR acti-
vation based on the X-ray structure of PXR with the ligand SR12813.
The results suggested that hydrogen bonding to Gln285 is critical for
PXR activation, while a second hydrogen bond to His407 could be
identified for most ligands [Fig. 21.6(b)]. Further hydrophobic
interactions contribute to ligand affinity, where highly active com-
pounds share up to five hydrophobic features, allowing the ligand to
occupy the predominantly hydrophobic binding pocket.

Gao et al.39 used docking with the support of induction experi-
ments to identify important interactions for PXR activation. Based on
their studies, they were able to hypothesize that hydrogen-bonding
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Fig. 21.6 (a) Superposition of crystal structures of PXR with bound hyperforin
(protein and ligand’s carbon atoms: green) and rifampicin (purple). In the hyper-
forin-PXR structure a large region (L178 to A197) is disordered: a possible repre-
sentative of the expected ensemble of loop structures was modeled with the program
loopy47 (colored in yellow). When the larger rifampicin binds, additional helical por-
tions become unwinded (Ia, IIIa) or disordered (Ib, II, IIIb); (b) X-ray structure of
PXR with bound hyperforin. Figure was created with PyMol.44

(a)

(b)
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with H407 in helix 11 and hydrophobic groups occupying at least
two of the three hydrophobic areas [Fig. 21.6(b), purple carbon
atoms: region 1 containing F288, W299, Y306, M246; yellow carbon
atoms: region 2 containing F429, F251, F281; brown carbon atoms:
region 3 containing I414, L240, L206, L209, M243 L324, L308,
V211) are essential for activation. Interaction with H407 (helix 11)
and with F429 (helix 12) might be involved in stabilizing the agonist
state, as helices 11 and 12 form the activation function 2 (AF2) moi-
ety responsible for co-activator binding.

In general, it is not obvious how future docking studies can han-
dle the structural promiscuity of compounds binding to PXR.
Furthermore, the profound flexibility and partial disorder of the bind-
ing site, which seems to be size dependent on the bound ligand, pro-
vides a real challenge for computational studies on this protein.

21.4 Future Outlook

Drug metabolism, by cytochrome P450 enzymes in particular, is an
extensively studied subject. An interesting mixture of different com-
putational applications has brought insight to many facets of xenobi-
otic metabolism, but various questions still remain. Due to the
structural variability of substrates and inhibitors, and the observed
flexibility of the protein, identifying the naturally existing binding
modes is still challenging, especially for the very promiscuous isoen-
zymes such as CYP3A4 and CYP2C9. Various crystal structures and
computational studies on protein-ligand complexes have recently sug-
gested that induced protein fit, water molecules mediating interac-
tions between ligand and protein, as well as entropic contributions,
both of the ligand and the protein, might play significant roles in lig-
and binding to CYPs. While these factors might influence ligand
binding to many protein targets, they seem to be particularly impor-
tant for CYP-ligand interactions. For example, no current computa-
tional approach for docking or quantifying binding affinities seems to
be capable of dealing with the observed size of induced fit in CYPs:
the volume of the binding site varies by at least a factor of two in
CYP3A4.40
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All structure-based computational studies on mammalian CYPs
are based on crystal structures of a solubilized form of the protein, i.e.
the natural membrane environment is neglected. Part of the F-G hel-
ical region, however, is known to be embedded in the membrane.
This portion of the protein is directly involved in ligand binding, and
is a constituting part of the entry and exit channels. Future computa-
tional studies might investigate on an atomistic scale how the inclu-
sion of the membrane in the simulation might change current
detailed models for CYP metabolism. Atomistic simulation tech-
niques also seem to be predestinated to investigate whether the bind-
ing of P450 reductase or cytochrome b5 will have a structural and/or
dynamic influence on CYP-substrate interaction, beyond their role as
an electron donor.

Experimental studies have exhibited atypical steady-state kinetics,
i.e. a sigmoidal relationship between reaction velocity versus substrate
concentration. Possible interpretations of the data are a sequential
binding step model41 as well as homotropic or heterotropic coopera-
tivity between substrates, i.e. the simultaneous binding of an addi-
tional effector molecule to the binding site favors the substrate’s
configurations in nearby distance to the catalytic center. Recent crys-
tal structures with two molecules binding to the active site,40 and the
first MD simulation42 of two diazepam molecules binding to CYP3A4
have suggested a possible mechanism for homotropic cooperativity. If
cooperativity will prove to be a common phenomena for binding to
CYPs like 3A4 or 2C9, current docking methods may need to be
modified as the binding of one molecule might influence the ener-
getic profile of the poses of the other compound and vice versa.

As a further complication, the majority of enzymes in phases I
and II metabolism are polymorphic. This can cause quantitatively
decreased or enhanced drug metabolism, or yield alternative meta-
bolic products. Many examples exist where individuals or whole pop-
ulations carrying certain alleles do not benefit from drug therapy due
to ultra rapid metabolism, or suffer from adverse effects due to
reduced metabolism causing toxic drug plasma concentrations.
Computational methods, e.g. a combination of in silico mutations,
homology modeling, MD simulations, and docking, might strongly
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contribute to a better understanding of polymorphic aspects of drug
metabolism. Predicting these pharmacokinetic properties of com-
pounds will be a cornerstone on the way towards the dream for indi-
vidualized medicine.
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Chapter 22

New Frontiers in X-ray Crystallography

C. U. Stirnimann† and M. G. Grütter*,‡

22.1 Introduction

Since the first recording of a diffraction pattern of the protein pepsin
in 1934 by Bernal and Crowfoot,1 progress in macromolecular crys-
tallography has occurred in distinct intervals. With the solution of the
phase problem for macromolecular diffraction data and the subse-
quent structure determination in 1959 of the first proteins myoglo-
bin and hemoglobin by Kendrew and Perutz, respectively,2,3

macromolecular crystallography has entered the field of modern
molecular biology as an essential methodology. Until about the mid-
1970s macromolecular crystallography was primarily practiced in rel-
atively few specialized research laboratories around the world by
physicists and chemists. Determining the three-dimensional structure
of a macromolecule by X-ray structure analysis then represented a
major effort and typically took several years to be completed. X-ray
sources were weak, the data collection on films and data processing
involved a lot of manual interventions, and the amount of data to be
handled were at the limit of the storage and processing capacity of
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computers. Refinement was only being developed and applied to rel-
atively small proteins. Model building was a manual task and typically
took several months. The achievements of that period can, for instance,
be read in a review by Matthews.4 The macromolecules analyzed then
were those that were naturally occurring in large quantities and could
easily be purified from natural sources.

Nevertheless, macromolecular crystallography did contribute
enormously to modern molecular biology in helping to better under-
stand the structure/function relationship of macromolecules. In the
early 1980s, the recombinant DNA technology had completely
changed the situation regarding macromolecular targets that could
structurally be investigated. Now, essentially every protein independent
of its natural occurrence can be overproduced in other host cells,
preferably in bacteria. In parallel, over several decades, the computer
technology has advanced, with the result that today almost all crystal-
lographic computing can be performed on a personal computer.
Another critical factor in the maturation of the field was the availability
of synchrotron radiation that allowed the acquisition of data of smaller
crystals at a much faster rate than with conventional X-ray sources.

This was the point when large pharmaceutical industries had
started to establish macromolecular X-ray crystallography for struc-
ture-based drug design. Today, structure-based drug design is gener-
ally seen as an integral part in the drug development process.

During the last decade, X-ray crystallography has undergone fur-
ther significant technological advances mainly as a consequence of the
many structural genomics research programs that were started prima-
rily in the United States of America and in Japan, but also to a lesser
extent in Europe.5–7 The latest developments, the way macromolecu-
lar crystallography is carried out today, and the future potential direc-
tions will be the scope of this review.

22.2 The Methods

The prerequisites for a successful macromolecular crystal structure
determination are (i) the availability of sufficiently large amounts of
highly purified material, (ii) crystals of sufficient diffraction quality for
a high resolution structure determination, and (iii) phase information
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complementing the experimentally determined diffraction data for
structure calculation. Today, well-diffracting crystal data collection
using synchrotron radiation and structure determination is auto-
mated. Phase determination methods using synchrotron sources have
been improved markedly (see below). The biggest challenge now
towards a structure of a macromolecule is its expression, purification,
and crystallization (Fig. 22.1).

22.2.1 Protein Production

An important prerequisite to be able to perform structural studies by
X-ray crystallography or by other methods, such as NMR spec-
troscopy and electron diffraction, is the availability of sufficiently
large amounts of highly purified macromolecular sample. Routine
procedures in structural biology include cloning, expression in
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bacteria, yeast, insect or mammalian cells, or today, even in cell-free
systems, as well as purification, biochemical and biophysical charac-
terization of proteins before submitting them to crystallization
experiments. For a current review, see Ref. 8.

22.2.2 Crystallization

When decreasing the solubility of a macromolecule by adding a pre-
cipitating agent, crystallization can be triggered. Crystallization was
first done in batch mode: solutions of the purified protein and a pre-
cipitant such as ammonium sulfate were mixed in small vials and
stored for days and weeks. Many alternative ways to crystallize pro-
teins have been proposed, as reviewed in Refs. 9–11, with the most
frequently used method being the vapor diffusion method in hanging
or sitting drops. Other methods are the counterdiffusion methods in
capillaries,12 microdialysis,13 or microbatch under oil.14 The experi-
ments were visually inspected using a stereo light microscope to ana-
lyze whether crystals appeared.

The process of crystal formation — nucleation, crystal growth,
and growth cessation — is not understood in sufficient detail but
depends on many physical and chemical parameters, such as tempera-
ture, pH, type and concentration of the precipitating agent, buffer
and ion concentration, in addition to the properties of the macro-
molecule itself. Therefore, the crystallization conditions for a partic-
ular macromolecule can only be determined by screening many
conditions. Most often, the precipitating agents used are inorganic
salts, such as ammonium sulfate, and organic polyols, such as poly-
ethylene glycols of various sizes. Crystallization screening conditions
selected by sparse matrix sampling15 have been proposed and are avail-
able commercially for the initial screening of crystallization condi-
tions. Crystallization in the presence of detergents is necessary to
crystallize membrane proteins. Here, the choice of the detergent that
keeps the protein in its native conformation and does not disturb the
regular assembly in a crystal lattice is critical.16,17

Crystallization experiments today are routinely carried out using
the vapor diffusion method. To increase the throughput and to
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reduce consumption of purified protein, crystallization at the nano-
liter scale is performed. This is possible with the availability of pipet-
ting robots that can reproducibly dispense nl amounts of solution.
With the enormous increase in the number of experiments set up,
examination of the crystallization experiments is also automated.
Individual crystallization experiments are photographed following a
given protocol, and evaluation can be done either by the human eye
or by software designed to recognize crystalline features, precipi-
tates, or clear solution. The ultimate test to evaluate the quality of
crystals is their diffraction in an X-ray beam. For this, crystals are
either mounted in thin quartz or glass capillaries with enough
mother liquor to prevent crystals from drying out. With the intro-
duction of cryo-crystallography, the crystals are removed from the
crystallization droplet by a small fiber loop and subsequently
plunged into liquid nitrogen. The crystalline lattice is preserved and
the liquid in the solvent channels of the macromolecular crystal is
solidified in the form of amorphous glass. The crystals at the tem-
perature of liquid nitrogen (100 K) are much more resistant to radi-
ation damage by the X-ray beam than crystals exposed to X-rays at
ambient temperatures.18,19

22.2.3 Data Collection and Data Processing

22.2.3.1 Diffraction data collection

The final experimental part in a structure determination is the collec-
tion of diffraction data from the crystals. Significant technological
advances have helped to transform the data collection from an
extremely tedious process to an almost automated one. Development
of electronic detectors instead of X-ray films, synchrotron X-ray
sources instead of sealed X-ray tubes or rotating anode X-ray instru-
ments, as well as the development of software to automatically find
the orientation of the crystal in the X-ray beam, and subsequent inte-
gration of the intensities of each diffraction spot, have made this part
of the macromolecular structure determination extremely fast and
automatic.
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22.2.3.2 X-ray sources

Conventional X-ray sources used in the past and still used today are
sealed tubes or rotating anode generators with a copper anode that
provides a sufficient flux and monochromatic radiation from the CuKα
transition at a wavelength of 1.54 Å after passing a Ni filter, graphite
monochromator, or mirrors that remove unwanted polychromatic
white radiation. Recently, the improved properties of the optical ele-
ments used with laboratory X-ray sources have dramatically increased
the X-ray flux. The devices are double-reflecting mirrors and multilay-
ered devices that provide a highly focused and intense X-ray beam with
the intensity of a second generation bending magnet synchrotron
beamline.20,21 The radiation sources with the highest intensities are
synchrotron sources. They are today the standard installations for col-
lecting diffraction data from macromolecular crystals. Home sources
are mostly used to perform preliminary characterization of the crystals
before collecting data at a synchrotron. At present, the most favored
beamlines are tunable wavelength lines with radiation from insertion
devices such as wigglers or undulators that provide a highly parallel
beam of excellent brightness and with a small size. Using such instal-
lations, collection of a full dataset of a well-diffracting macromolecular
crystal typically takes less than 30 minutes, and structures can be solved
in a few hours.22 Currently, fourth generation X-ray sources are being
designed and built at SLAC, Stanford, CA, USA (http://www.ssrl.
slac.stanford.edu/lcls/) and DESY, Hamburg, Germany (http://
www.hasylab.desy.de/facility/fel) based on the concept of the free
electron laser (FEL). These installations will provide coherent X-ray
beams of an intensity that is several orders of magnitude higher than
available today. The use of such extremely powerful radiation sources
for macromolecular structural biology is a new challenge but has the
potential to revolutionize structural biology. Extracting diffraction
data from extremely small crystalline samples or even from non-
crystalline samples is theoretically possible.23–25 One fundamental ques-
tion exists here that can only be answered experimentally, which is
the following: can diffraction data be acquired before the sample is
destroyed due to the enormously strong radiation?
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22.2.3.3 Detectors

Protein diffraction data was first recorded on conventional X-ray film
using various geometric arrangements, and with diffractometers col-
lecting data from individual diffraction spots in a sequential way. With
the availability of automatic computer-controlled two-dimensional
detectors such as multiwire proportional counters, TV cameras, image
plates, and finally charge-coupled devices diffraction images are
directly stored on computer storage devices for subsequent data
reduction. The currently used CCD detectors are large to capture a
wide diffraction angle, have fast readout times to keep pace with the
short second exposure times per image collected, and provide diffrac-
tion data of much higher quality. Recently, very fast data transfer solid
state pixel detectors allow the recording of diffraction images from
constantly rotating crystals with exposures controlled by the precisely
synchronized shutter.26 This opens the possibility again to more accu-
rately evaluate the profile and intensity of each diffraction spot.

22.2.3.4 Data Processing Software

The initial interpretation of the recorded diffraction patterns involves
the calculation of the crystal orientation and the prediction of the loca-
tion of the diffraction spots, the indexing of the spots, and the integra-
tion of the individual reflection profiles, the application of the necessary
corrections, and the merging and scaling of the data. The result is a list
of data points with the three indices (h, k, l ), the intensity, and the stan-
dard deviation for each data point. The entire procedure of data pro-
cessing can be performed by one of the available highly sophisticated
software systems and is not further discussed here. For details, the
descriptions of these software packages have to be consulted. The most
widely used systems are Mosfilm,27 HKL2000,28 and XDS.29

22.2.4 Phase Determination

22.2.4.1 Single and multiple anomalous sispersion methods

Since the early days of crystallography, new crystal structures have
been solved by incorporating heavy atoms (mainly heavy metals) into
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protein crystals. The first method ever used to solve a protein struc-
ture was in fact a heavy atom method, multiple isomorphous replace-
ment (MIR).30,31 Since then, MIR became the technique of choice to
solve the phase problem for novel structures. The bottleneck of MIR
is the need of at least two, but mostly more, isomorphous crystals
(native and heavy atom-derivatized crystals), for obtaining unam-
biguous phases, and thus, an interpretable electron density map.32,33

Experimental difficulties in measuring precise amplitude values
prevented for a long time the productive use of the anomalous dis-
persion effect of scattering heavy atoms. This effect is often in the
range of 2 to 5% of the real scattering component, and thus, smaller
than or comparable to the measured error.34 The above difficulties
became less severe during the 1980s and 1990s. Those two decades
witnessed advances in the accuracy of diffraction data measurement
and the appearance of dedicated synchrotrons sources, allowing for
very accurate tuning of the X-ray beam wavelength. Those technical
advances paved the way to the development and widespread use of the
multiple anomalous dispersion (MAD) method. MAD typically
involves the collection of three datasets from the same single crystal,
thus obliterating the thorny issue of isomorphism between different
crystals, which affects the MIR approach. In MAD, the first dataset is
collected at the absorption edge of the heavy atom, a second one at
its inflection point, and a third dataset at high- or low-energy remote
wavelength. The MAD method requires that a K- or L-absorption
edge of the heavy atom is located within the wavelength range of a
synchrotron source that lies usually between 0.7 Å and 2.0 Å.35,36 A
much simpler approach to phase determination that gained recent
popularity is the single anomalous dispersion (SAD) method, where a
single, highly redundant dataset is measured from a single wave-
length. SAD does not require the availability of synchrotron sources
since it is not necessarily coupled to the absorption edges of heavy
atoms.37 Thus, iodide (copper anode (λ = 1.54 Å)38) or sulphur phas-
ing (copper or chromium anode (λ = 2.23 Å)37,39,40) became viable
phasing approaches at home X-ray sources.

Besides crystal soaking in heavy atom solutions, which often
decreases or ruins the diffraction of crystals,33 other techniques for
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incorporating heavy atom scatterers into proteins are now available:
among these, the most popular is the replacement of methionines
by selenomethionines by molecular biological means.41 Another very
elegant and fast approach is a quick crystal-soak (30–60s) in a cryo-
solution that contains either bromide or iodide in concentrations
between 0.3 and 1 M.38 Also gaseous elements such as Xe or Kr can
be incorporated into protein crystals, where they bind to hydropho-
bic cores, and were successfully used for phasing.42,43

Phasing using SAD or MAD data is typically carried out in a three-
step procedure followed by automatic model building if the resolution
and phases are sufficient. First, the position of the anomalous scatter-
ing heavy atoms has to be determined, by Patterson or by direct
methods.44–47 Once heavy atom positions are identified, initial phases
are calculated, refined, and evaluated. In a final step, phases are
improved by density modification. Several powerful programs are avail-
able for performing the above steps and are summarized in Table 22.1.

The programs mentioned in Table 22.1 are mostly part of phas-
ing pipelines. In the earlier versions of the autoSHARP,48 the phasing
pipeline performed the heavy atom search using the direct methods
program RANTAN.44 With the integration of SHELXD45 for heavy
atom search, autoSHARP gained further effectiveness in structure
solution. SHARP49 refines the initial heavy atom positions found
by SHELXD and calculates phases, which are then improved by
solvent flattening using DM,50 or solvent flattening and flipping using
SOLOMON.51 If the resolution is below 2.8 Å, automatic model
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Density Automatic
HA Search Phasing Modification Model Building

SOLVE RESOLVE
SHELXD SHELXE ARP/wARP

SHARP DMa

SOLOMONa,b

ACORN

asolvent flattening; bsolvent flipping.
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building in ARP/wARP (see Section 22.2.5 and Refs. 52, 53) is
started. Other powerful pipelines to solve structures by experimental
phasing are the SOLVE/RESOLVE47 and HKL2MAP54 packages,
where the latter combines SHELXD with SHELXE.55

22.2.4.2 Molecular replacement

In molecular replacement, the phase problem is solved by correctly
positioning one or several search models that are structurally related to
the target structure in the asymmetric unit. Hence, a six-dimensional
search is required. A first group of traditional molecular replacement
programs is based on the suggestion by Rossmann and Blow56 to sub-
divide the six-dimensional search in two steps: a first three-dimensional
search is applied to find the correct model rotation, which is then fol-
lowed by a three-dimensional translational search. This method is
implemented in programs such as AmoRe,57 CNS58 or MOLREP.59

This very successful strategy can nonetheless be problematic in the
presence of tightly packed crystals, non-globular proteins, or when
several molecules have to be placed in the asymmetric unit, as the rota-
tional and translational variables are not optimized simultaneously.60 A
full six-dimensional search can be employed in those cases, with the
drawback of very time-consuming calculations. However, with the
steady increase of computer performance over the last decades, full six-
dimensional searches are becoming more and more affordable and
they are implemented in several molecular replacement programs,
namely EPMR,61 Queen of Spades,62 and SoMoRe.60

The newest and currently most popular molecular replacement
program is Phaser.63,64 It addresses the molecular replacement prob-
lem in the traditional bi-three-dimensional way, but takes advantage
of the implementation of maximum-likelihood methods. Phaser
exhibits a higher success rate compared to the other molecular
replacement programs, especially when only distantly related search
models are available.

A trend towards automation is well-visible in the molecular
replacement field. Several molecular replacement pipeline programs
have been developed, among which BALBES65 and MrBump66 were
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recently released. BALBES requires only the target amino acid
sequence and the reflection data file as an input. It searches for possi-
ble molecular replacement models in an aptly modified PDB database
and performs molecular replacement trials. MrBump allows more user
intervention. It first performs a FASTA search of target amino acid
sequence against the PDB to find homologue structures. From those
homologues, trial models are generated and optimized using various
helper programs from the CCP4 suite.67 The models are iteratively
used in Phaser or Molrep for molecular replacement trials until a solu-
tion is found. The possible solution is finally used in a Refmac
restrained refinement to check for its correctness.66

22.2.5 Model Building and Refinement

22.2.5.1 Model building

The first molecular graphics program conceived for model building
purposes was INTER,68 which was later followed by O.69 Additional
molecular graphics programs that are widely used in the community
are XtalView70 and MAIN.71 Since 2004, when Coot 72 was introduced,
a very powerful tool for model rebuilding, refinement and structure
validation became available. Thanks to an intuitive user interface, the
program is fast and easy to learn. Coot allows the use of real space
refinement, followed by geometric regularization. In addition, refine-
ment programs, such as Refmac v573 and SHELXL74 can be directly
launched from the Coot interface and the refined model with the cor-
responding electron density maps is automatically updated in the
graphics window. These features dramatically accelerate the whole
rebuilding and refinement procedure. Coot also includes additional
structure validation tools, further improving the efficiency and relia-
bility of model building and refinement.

22.2.5.2 Refinement

The structure factors observed from the diffraction experiment and
those calculated from an unrefined macromolecular model largely
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diverge. To minimize the difference between observed and calculated
structure factors, the coordinates and B-factors of the model are
refined against the structure factors, with geometrical and stereo-
chemical restraints being included in the refinement process. Thus,
refinement is a process in which the structure factors calculated from
the model are adjusted to those measured in an X-ray diffraction
experiment.32

Nowadays, three refinement programs are most commonly pres-
ent in the crystallographer’s toolbox. Refinement with the first,
CNS,58 typically involves first rigid body refinement, followed by posi-
tional refinement and/or simulated annealing, and finally, B-factor
refinement. To do so, CNS uses geometrical information from param-
eters derived by Engh and Huber in 1996,75 CNS is not suitable at
atomic resolution since it implements the fast Fourier transform
method, whose error increases with resolution.76 SHELXL74 is
designed for medium and high-resolution refinement (better than
2.5 Å) and uses a least-squares target. SHELXL is very powerful if non-
crystallographic symmetries are present in the structure, as it allows
deformation in the NCS-related structures, which is not the case in the
other programs.77 Additionally, it allows the refinement of anisotropic
thermal parameters at high resolutions and includes refinement of
twinned data. The third program, Refmac v573 implements a maxi-
mum likelihood target and allows the refinement of anisotropic ther-
mal parameters. Refmac allows also for TLS-based (translation,
libration, screw) B-factor refinement. This refines anisotropic atomic
displacement parameters for pseudo rigid bodies, for which transla-
tion, libration, and screw-rotation displacements are refined. This can
be described using only three matrix tensors per TLS group, which
diminishes the number of parameters used in the B-factor refinement
drastically.77,78 The integration of Refmac within the Coot interface72

makes the program very easy to use in structure refinement.
A new suite, successor to CNS, is PHENIX. Its refinement tools

were recently developed with an emphasis on refinement automa-
tion. In a first step, the best refinement strategy is chosen and param-
eters are tuned. The refinement cycle starts with the optimization of
the bulk-solvent model, followed by anisotropic scaling and error
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model estimation for the maximum likelihood target function. The
ordered water model is then built automatically, followed by an
optional simulated annealing step. The refinement cycle is completed
by coordinate and B-factor refinement. If no convergence is reached,
the program automatically re-launches the refinement steps described
above.79

22.2.5.3 Automation of model building and refinement

The ARP/wARP software package52,53 allows auto-building of atomic
models either from experimental phases or from molecular replace-
ment solutions. An auto-building step is based on an unrestrained
dummy atom model that is generated for phase improvement.80 In an
iterative process, each auto-building step is followed by a number of
refinement cycles. If the phases and resolution allow for it, the pro-
gram can dock and fit the protein sequence to the electron density
after having built the main chain. ARP/wARP is highly dependent on
the diffraction data resolution. Earlier versions of the program had a
minimal resolution limited to 2.3 Å, while in the newest release (v6),
a resolution higher than 2.6 Å is required for model building.

A program complementary to ARP/wARP is Buccaneer.81 Unlike
ARP/wARP, it shows only marginally resolution-dependent behavior
when auto-tracing main chains (lowest resolution tested: 3.2 Å).
Success depends, however, on the quality of the initial phases. To
improve those, the maximum likelihood-based program Pirate82 is
used for density modification. Buccaneer is still under development
and does not yet implement refinement cycles, proofreading, and
side-chain docking.

Besides automatic model building programs, it would be advan-
tageous for many users to have a program that is able to build and
refine protein structures in a completely user intervention-free fash-
ion. A first step in this direction is the program LAFIRE.83 The pro-
gram performs user intervention-free model building and refinement
using either CNS58 or Refmac.73 The program monitors the Rfree value
as a control criterion for model building and refinement. According
to its authors, the program performs best in a resolution range
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between 1.65 Å and 3 Å and was able to produce a fully refined
model without user intervention in 11 out of 14 test cases.83

22.3 Recent Achievements and Future
Challenges

As a result of the enormous technological progress, spectacular
achievements in the structure determination of supramolecular com-
plexes and membrane proteins were possible. Moreover, due to
automation of the methodology primarily facilitated through the
structural genomics initiatives, X-ray crystallography of biological
macromolecules has also become an integral part in the development
of drugs against disease-related target proteins.

22.3.1 Structure-based Drug Design

Apart from membrane-bound receptors such as G-protein coupled
receptors, any disease-relevant target protein can be subjected to
structure determination, and the active site of enzymes can be
exploited by experimental structure determination of ligands bound
to the active site of the enzyme or by docking compounds in the
active site by various computational methods. The main protein
classes currently investigated in the pharmaceutical industry are
kinases and proteases because enzymes of both classes are involved in
numerous different signaling pathways and biological processes that
are affected in diseases such as cancer, cardiovascular diseases, cell
death deregulated diseases, or diseases of the nervous system.
Successful structure-based drug design resulting in drugs actually on
the market are human immunodeficiency virus protease inhibitors and
the renin inhibitor, aliskiren,84 with many other examples in the late
stages of clinical trials. Similarly, the structural work on kinases and
kinase-inhibitor complexes has contributed to the development of
potent inhibitors with compounds in clinical trials and on the market.
Clearly, in the future, the application of experimental structure deter-
mination in the drug design process can be expected to increase due
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to the continuous technological improvements in the experimental
techniques.

22.3.2 Supramolecular Complexes

This area has seen a tremendous development over the last years with
complexes of ever increasing complexity being analyzed at atomic res-
olution by X-ray crystallography. The most spectacular contributions
with enormous impact on the understanding of biological processes
are: (i) the RNA polymerase II, which provides the foundation for
understanding transcription,85 (ii) the structure of the ribosome,
which shows the complexity of this particle and its function in the
translation process,86 (iii) the structure of an intact nucleosome,
which shows how DNA is compacted and protected from harm by the
histone octamer protein complex,87 (iv) the 20S proteasome struc-
ture, which is a multienzyme complex of 28 protein subunits involved
in the degradation of ubiquitinylated proteins,88 and (v) the structure
of viruses such as the foot-and-mouse disease virus-oligosaccharide
receptor complex89 with crystal cell dimensions close to 1000 Å. All
these examples illustrate the future potential of X-ray crystallography
that allows the tackling of molecular systems or molecular machines
that will help us understand the interplay of individual proteins in liv-
ing organisms.

22.3.3 Membrane Proteins

This class of proteins is still considered a major challenge to the field.
The prime reason is that, before purification, membrane proteins have
to be extracted from their bilayer and solubilized using detergents.
Most experience has to date been accumulated with bacterial mem-
brane proteins due to their higher stability compared to eukaryotic
membrane proteins. The accumulating know-how in expressing suffi-
cient amounts of membrane proteins in various host systems and in
the solubilization and purification of functionally intact membrane
proteins over the past years has resulted in an increasing number of
membrane protein structures entering the protein structure databank.
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Highlights in this area are the structures of various K+ channels,90 of
complexes of the respiratory chain,91 of the photosystem,92 of the lac-
permease,93 and of ABC-transporters.94

22.4 Future Outlook

As described in the above sections, X-ray crystallography has under-
gone major developments over the last 70 years of its existence and is
established as a key method in biology to describe the architecture of
proteins and protein assemblies. This structural information often is
the basis for a detailed understanding of the function of these mole-
cules. With the advances already achieved and additional develop-
ments in the future, we will see an increase in complexity of the
molecules studied (as long as the complexes are stable). For mem-
brane proteins, the biochemical methods still lag about 40 years
behind the one for soluble proteins, but it can be expected that fur-
ther breakthrough developments will come in the near future due to
the enormous support the field of structure determination of mem-
brane proteins is experiencing at the moment. On the technology
side, the most exciting is the development of the FEL, which has the
potential of revolutionizing the field again, allowing maybe even
snapshots of different states of macromolecules (fsec scale), which
opens a new dimension to understanding their function.
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Chapter 23

New Frontiers in High-Resolution
Electron Microscopy

A. Engel*

23.1 Introduction

The sentence, “seeing is believing,” reflects the importance of elec-
tron microscopy in basic and applied research. Modern biology text-
books document this even better: micrographs are key for deriving
pictorial representations to foster our understanding of tissues, cells,
organelles, and biological nanomachines. Without such pictures, it
would not be possible to bring all the biochemical and atomic scale
structural information from crystallography and NMR into a cellular
context.

This chapter concentrates on the progress in high-resolution elec-
tron microscopy techniques achieved in the past decade. Main
advances came through novel sample preparation methods preserving
specimens in their most native state, by the development of auto-
mated data acquisition, and through important refinements of the
instruments. To prevent dehydration of samples that must reside in
the vacuum of an electron optical system, macromolecular complexes
are now vitrified in a solution layer by rapid freezing,1 while cells and
tissue samples are high-pressure frozen and cryo-sectioned.2 Such
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frozen specimens required the development of ultra-stable cold
stages, maintaining a temperature below the phase transition temper-
ature of vitrified water to hexagonal ice (138 K) — a goal reached by
liquid Nitrogen cooling. The ultimate stage, however, will keep the
sample at a few Kelvin through cooling with liquid helium, not mainly
to prevent crystallization of vitrified water, but rather to minimize the
beam-induced damage of the sample.3 Along with cold stages came a
significant improvement of the vacuum systems to inhibit the trap-
ping of water or hydrocarbons by the cold sample. Moreover, obser-
vation of native, frozen specimens fostered the development of
elegant low-dose data acquisition systems for single micrographs and
also entire tilt-series as required for electron tomography.4 To achieve
optimum information transfer to atomic scale resolution, field emis-
sion electron guns combined with acceleration voltages of 200–300 kV
are becoming popular, which is a great improvement for high-resolution
electron microscopy. Such progress emerging from leading laborato-
ries and from microscope manufacturers enables researchers to study
the proteome of a cell by electron tomography5 and resolve the struc-
ture of a membrane protein at a resolution of better than 2 Å by elec-
tron crystallography.6

Altogether, such progress makes high-resolution electron micro-
scopes essential tools for the structural biologist who has an open
mind and attempts to use all the available techniques to obtain a
deeper understanding of the structures of life.

23.2 Sample Preparation Methods

For electron microscopy, samples need to be either dehydrated or
quick-frozen and kept at temperatures close to liquid nitrogen for
transfer to the vacuum of an electron optical system. Dehydration not
only changes the native environment of biological samples, but also
exposes them to surface tension forces. Embedding aqueous suspen-
sions of macromolecular complexes or membrane fragments in a
heavy metal salt solution provides support against surface tension
induced compression of the biological structure during dehydration,
and it produces a high contrast due to the strong scattering of the
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heavy atoms. Heavy metal salt solutions create unphysiological ion
strength, and for uranyl salt, a pH of around 4. Embedding the bio-
logical macromolecules in a sugar solution provides similar support
and maintains some hydration, yet the contrast produced by such
samples is low, since sugar and protein have a rather similar electron
scattering power. Therefore, this preparation method is mainly used
for electron crystallography,3 because only ordered structure con-
tributes to the crystallographic signal but not randomly arranged
sugar molecules.

Quick freezing, and hence, vitrification of thin solution layers
containing biological macromolecules was developed by Dubochet
and colleagues,1,7 who demonstrated the strength of this approach
by numerous examples, convincing others to apply it to their
samples. Vitrification is now a routine method that is widely
used. However, its limitation concerns the maximal dimensions of
the sample to be vitrified: only small or flat cells can be vitrified
in this way. For tissues and large cells, high pressure freezing is
the method of choice. It has been developed in several laboratories
and is mainly applied when combined with substitution of water
with organic solvents for plastic embedding at low temperature.
The ultimate approach, again developed by Dubochet and co-workers,
is the preparation of thin sections from vitrified blocks.2,8,9

Combining cryo-sectioning with electron tomography promises
to give an insight into the native contents of a cell at nm-scale
resolution.10

23.3 Information Transfer

23.3.1 Image Formation

Modern electron optical systems comprise field emission electron
guns operated at 100–300 kV, which provide a highly coherent illu-
mination and a wavelength λ of 0.04-0.02 Å. Magnetic lenses with
spherical aberrations around 2–4 mm shape the illuminating beam
and collect the electron scattered by the object to form an image at
typically 50–100 000 fold magnification. Owing to the short wave-
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Fig. 23.1. Comparison of samples prepared by negative staining and vitrifica-
tion. The latter warrants the preservation of the native structure, whereas the for-
mer allows structural details to be identified on single complexes. Negatively
stained samples were recorded by an annular detector dark-field scanning trans-
mission electron microscope operated at 100 kV and vitrified samples by a 200 kV
transmission electron microscope equipped with a field-emission gun. Negatively
stained samples are on the left, vitrified samples with an average shown in the inset
on the right. (A) The bacterial outer membrane secretin PulD, a protein translo-
cation apparatus. Flexible radial extensions are distinct after negative staining,
while they are only visible in the projections of vitrified samples after averaging.17

(B) The bacterial toxin ClyA is a cylindrical complex built of 13 subunits. Stripes
running parallel to the cylinder axis visible in negatively stained complexes suggest
elongated rod-shaped ClyA proteins. Significant flattening is indicated by the
larger width/length ratio of cylinder side-views compared to that of vitrified sam-
ples. A 12 Å 3D map of the ClyA pore-forming complex has been calculated from
projections of the vitrified preparation.18 (C) Bovine V-ATPase comprises the
membrane resident V0 part and the soluble V1 part, the latter often exhibiting a
crown shape.66 The scale bars in the micrographs correspond to 25 nm, whereas
those in the insets represent 5 nm.
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lengths, atomic scale resolution can be reached at a small collection
angle, θ ≈ 0.61 λ/d, hence, electron optical systems exhibit a large
depth of focus, as indicated by Equation 23.1:

(23.1)

Here, D is the depth of focus and d the resolution to be achieved.
In addition, it is assumed that diffraction limited resolution can be
reached after CTF correction (see below).

Electrons interact strongly with matter, making it possible to
depict thin objects such as 2D protein crystals, viruses, or small cells.
Electrons are elastically scattered by the nuclei of the atoms, which are
orders of magnitude heavier than that of moving electrons. Electrons
are inelastically scattered by the inner- and outer shell electrons, to
which they transmit a fraction of their kinetic energy. While elastic
electrons contribute to the coherent axial bright-field image that car-
ries the high-resolution information on the 3D arrangement of the
sample atoms, inelastic electrons carry interesting chemical informa-
tion. However, inelastic scattering is directly related to the beam-
induced specimen damage.

Since only the elastically scattered electrons contribute to a high-
resolution image, the coherent phase contrast image formation is con-
sidered, also called an axial bright-field image. A thin object that
comprises only light elements, and whose thickness is within the lim-
its described in Fig. 23.2, is approximately described as a weak phase
object:

(23.2)

The function t(x,y) represents the two-dimensional (2D) pro-
jection of the 3D object. The amplitude distribution in the image
plane is the coherent superposition of the unscattered wave and the

t x y i x y x y( , ) ( , ), ( , )= + <1 4f f p   

D
d£

2

0 61. l
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Fig. 23.2. Depth of focus and resolution. (A) The diffraction limit dictates the ulti-
mate resolution of an optical system: d = 0.61 λ/Θ. The depth of focus D corresponds
to the distance between locations where the diffraction disc and the geometric discs
are equal. Scattering centers within the resolution volume indicated in red cannot be
resolved. An optical system that collects waves emanating from scattering centers of
a tilted 3D object whose projected thickness T/cos α is smaller than D will produce
the true 2D projection of the 3D object in the image plane. (B) Log-log plot of esti-
mated resolution limit against the depth of focus D, as given by Eq. 23.1. The ordi-
nate displays the maximal thickness T of the sample, which would be within the depth
of focus D for a given resolution and a given tilt angle. For example, at a tilt of 60°,
a resolution of 5 Å is achievable at 300 kV acceleration voltage with a sample thinner
than 200 nm. If a resolution of 20 Å is to be reached, the sample slab can be even
2 μm thick (indicated by the dotted lines).

elastically scattered waves. For an optical system whose point spread
function h(x,y) = hr(x,y) + i hi(x,y) is space-invariant, this superposi-
tion is described as the convolution of t(x,y) with h(x,y):

(23.3)a x y h x y ih x y i x yr i( , ) ( ( , ) ( , )) ( ( , ))= + ƒ +1 f
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The intensity |a(x,y)|2 is recorded on the film. Neglecting quad-
ratic terms, the image can thus be approximated as:

(23.4)

The imaginary part, hi(x,y), is described by the inverse Fourier
transform, FT −1, of the phase contrast transfer function (CTF):

(23.5)

where A(p) describes the envelope of the CTF, Cs is the spherical
aberration constant, Δf the defocus, λ the electron wavelength
(about 0.02 Å for 300 kV electrons), and p the distance from the
origin in the reciprocal space. The CTF for weak phase objects is
displayed in Fig. 23.3. Since the electron optical system introduces
a phase difference between the scattered and unscattered electrons
of π/2, the axial bright-field mode corresponds to the Zernike
phase contrast mode of light microscopy. The contrast is weak
when the microscope is operated close to focus because the promi-
nent low-resolution features of the specimen are transferred with
small amplitude (Fig. 23.3, CTF labeled Scherzer, 56 nm).
However, the contrast can be enhanced by moving out of focus,
since frequency bands exhibiting a transfer coefficient >0.5 move
towards lower resolution (Fig. 23.3, CTF labeled 1000 nm).
Alternatively, electron optical phase plates akin to the Zernike
phase plate have been explored a long time ago, but their value has
been recognized only recently.11 In any case, the phase shift intro-
duced by the electron optical system has to be corrected to facili-
tate the image interpretation (see below). The phase shift of
electrons scattered elastically by an atom is proportional to the
coulomb-potential of this atom. Therefore, the ensemble of all
electrons singly scattered by a specimen produce a projection of its

h x y FT A p C p f pi S( , ) ( )sin ( ){ }= +ÈÎ ˘̊-1 3 4 22p l lD
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coulomb potential, which is dominated by the atom’s nuclei rather
than the electron shells as in X-ray crystallography. It should be
noted that this simplification is related to the large depth of focus
provided by high-voltage transmission electron microscopes, as
indicated by Equation 23.1.

Figure 23.4 shows the power spectrum of a 2D crystal image.
This spectrum reveals (i) discrete spots representing the crystal
information (see below), (ii) concentric rings (Thon-rings) with gaps
in-between (the zero-crossings of the CTF, see Fig. 3), where no
structural information is available, and (iii) the envelope modulation
decreasing the signal intensity at higher resolutions. Thon rings and
envelope function reflect the specific nature of the CTF. The decrease
of contrast towards high resolution (envelope function) results from
the partial incoherence of the electron beam. Modern electron
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Fig. 23.3. The contrast transfer function of a 300 kV field emission transmission
electron microscope. At an underfocus of 56 nm, the information is transferred with-
out phase reversal, but low spatial frequencies exhibit a low contrast. At 1000 nm
underfocus, information is transferred from about 30 Å up to a resolution of 3 Å,
albeit with much reduced contrast above 5 Å compared to that at 30 Å. The phase
reversal at such an underfocus is corrected computationally a posteriori.
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microscopes are equipped with field emission guns exhibiting a high
degree of coherence so that the contrast decrease is acceptable even
at high resolution. The Thon-rings with alternating positive and
negative contrast are the result of the phase shift introduced by the
objective lens.

The great advantage of a modern field-emission electron micro-
scope to directly acquire the phase information out to atomic scale
resolution is watered down by several experimental difficulties.
First, the instrument has to be stable and installed in a field- and
vibration-free environment, prerequisites that are routinely reached.
Second, beam-induced damage not only changes the specimen
structure, but also leads to specimen charging. Since these charges
act like an electrostatic lens, the focus changes during image record-
ing. If the sample plane is perpendicular to the optical axis, the over-
all effect is quite small: the focus change occurring during image
acquisition may have an influence only at very high resolution. In
this case, it is possible to measure the zero-crossings of the CTF
accurately [see Fig. 23.4(B)] and to correct the defects in the
Fourier transform of the micrograph to retrieve both the phase and

New Frontiers in High-Resolution Electron Microscopy 631

FA

Fig. 23.4. The electron micrograph of a large 2D crystal does not reveal its crys-
tallinity, but its homogeneity (A). The scalebar represents 0.5 µm. The optical trans-
form of such a micrograph (B) shows sharp diffraction maxima and the effect of the
CTF. The reflection indicated is at 9.1 Å resolution. The electron diffraction pattern
of a similar 2D crystal (C) exhibits diffraction maxima with a distinct four-fold sym-
metry. The reflection indicated is at 2 Å resolution.
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amplitude information. After this CTF-correction, the electron
microscope performs close to a diffraction limited optical system.
However, when the sample is tilted for collecting the 3D informa-
tion (see below), the electrostatic lens building up during irradia-
tion introduces an image shift, a problem that cannot always be
solved satisfactorily.12 Third, a further optical defect is related to the
changing focus for tilted specimens: the point-spread function is not
space invariant, and the commonly used CTF correction is only an
approximate measure to eliminate the phase distortions of the elec-
tron optical system.13

23.3.2 Electron Diffraction

When a crystal is irradiated by a parallel beam and the diffracted
beams are brought to focus in the diffraction plane by the optical sys-
tem, the resulting pattern can be recorded by a CCD camera, for
which the dynamic range is far better than that of photographic film.
Electron diffraction is neither affected by the CTF, the envelope func-
tion, nor specimen charging. Moreover, the depth of focus is even
larger than in the case of imaging, since a small spread of diffraction
spots can be tolerated. Therefore, electron diffraction is much more
effective for the collection of high-resolution information than imag-
ing, although the phase information is not retrieved [Fig. 23.4(C)].
The directly measured amplitudes can be combined with the phases
from the images during image processing. Electron diffraction is not
an absolute requirement for determining a structure, but it allows a
fast judgment of the crystal quality, helps in correcting the CTF, and
provides suitable high-resolution information for molecular replace-
ment methods.6

23.3.3 Scanning Transmission Electron Microscopy

The scanning transmission electron microscope (STEM) collects
almost all scattered electrons, hence, making use of all the informa-
tion transferred by electron scattering most efficiently.14 As illustrated
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in Fig. 23.5, several signals can be collected in parallel, yielding an
elastic dark-field, an inelastic dark-field, and an axial bright field
image. Taking the same nomenclature as above, the elastic dark-field
image intensity distribution is written as:

(23.6)

Both dark-field images are of use in biological applications, as
both provide a quantitative measure of the mass of the protein com-
plex being imaged. Such measurements are attractive, as the STEM
can determine the molecular weights of single complexes over a range
of 50 kDa to 100 MDa, and this, even with rather heterogeneous

| ( , ) | | ( , ) | | ( , ) |a x y h x y x yi
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Fig. 23.5. The STEM is the ideal instrument to perform electron scattering experi-
ments. (A) In the STEM, the majority of elastically scattered electrons are collected via
an annular detector, and the inelastically scattered electrons via a spectrometer, gener-
ating an elastic and an inelastic dark-field image. Unscattered and forward scattered
elastic electrons produce the same phase contrast image as the axial bright-field trans-
mission electron microscope. (B) The superb contrast and lack of interference fringes
make elastic dark-field images attractive, as they are easy to interpret. Negatively stained
needles of the Yersinia injectosomes exhibit a particular tip complex. (C) Using anti-
bodies, the protein assembling the tip complex was identified as LcrV, the V-antigen
known to produce resistance against Yersinia pestis since seven decades.20
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preparations. Moreover, as the mass is derived from the dark-field
image of a complex simply by integration over an area that includes
the complex and subtraction of the background resulting from the
carbon film, the STEM allows a link between the mass and shape of a
protein complex. It is of particular interest to combine STEM and
modern mass spectroscopy approaches for single-cell visual pro-
teomics.14 Since STEM mass analyses can be used for very large and
heterogeneous assemblies, it has been the tool of choice to help in
merging a large set of different measurements of synaptic vesicles
towards producing an accurate description of this dynamic machin-
ery.15 To know the mass of a protein complex is also a great help to
interpret their 3D maps16 or to bootstrap the 3D reconstruction of
homo-oligomers from the knowledge of the stoichiometry.17–19

The STEM is also producing images of exceptional contrast and
clarity of negatively stained samples. This is often key to straight-
forward identification of proteins within a complex using antibody
labeling.20

23.4 Electron Crystallography

To exploit the capacity of the electron microscope to acquire ampli-
tude and phase information for crystallographic measurements, the
primordial prerequisite is the availability of highly ordered thin crys-
tals. They should exhibit lateral dimensions of several microns over
which the crystallinity should be perfect. Electron crystallography is
of special interest for membrane proteins that are crystallized in the
presence of lipids, which reconstitutes the proteins in their native
environment, the lipid bilayer. Provided that the protein of interest is
available in mg quantities, it can be crystallized in a functional state,
as demonstrated for the water channel AQP1.21

23.4.1 Different Methods for 2D Crystallization

Two-dimensional crystals consisting of membrane proteins and lipids
can be produced in three different ways.22 The first method involves
the induction of regular packing of a highly abundant protein in its
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native membrane. This is achieved by eliminating interspersed lipids
using lipases23 or by extracting lipids with specific detergents.24

Although this is the most gentle 2DX method, because it does not
require the solubilization of the membrane protein, it is not generally
applicable.

The second method reconstitutes the purified membrane protein
into a lipid bilayer at high protein density.25 The detergent solubilized
protein is mixed with solubilized lipids to form a homogenous solu-
tion of mixed protein-detergent and lipid-detergent micelles.
Detergent removal then results in the formation of protein aggregates
in the worst case, and in the progressive formation of proteolipo-
somes with large 2D crystalline regions in the best case.
Reconstitution begins once the detergent concentration reaches the
critical micellar concentration (CMC).26 The respective affinities
between the components of the ternary mixture dictate the progress
of the reconstitution process. Ideally, a starting condition should be
established where mixed detergent-protein and mixed detergent-lipid
micelles have exchanged their constituents to the extent that the mix-
ture consists mainly of ternary detergent-protein-lipid micelles.
Assuming the protein remains in its native, properly folded state dur-
ing the solubilization and isolation steps, this ideal situation is likely
to foster perfect reconstitution and possibly 2DX of a functional
membrane protein.

The third method concerns the reconstitution of the membrane
proteins at the water-air interface by attaching the solubilized mem-
brane protein to an active lipid monolayer prior to detergent
removal.27 In this process, membrane proteins are concentrated at the
monolayer, brought into a planar configuration, and finally squeezed
together during detergent removal. This approach is useful for mem-
brane proteins that are present in small amounts and are stably solu-
bilized only in low CMC detergents.

What all the methods summarized in Fig. 23.6 have in common is
that the detergent is brought below its CMC to foster the assembly of
a bilayer, into which the membrane protein should integrate. Generally
used methods to bring the detergent concentration below the CMC
include dialysis,25,26 adsorption of the detergent to Bio-Beads,28 and
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Fig. 23.6. 2D crystallization methods. All methods are based on the principle to
bring the detergent concentration in the aqueous phase below the critical micelle con-
centration (CMC), forcing the detergent in the mixed micelles to partition in the
aqueous phase. As a result, mixed micelles merge to form larger structures, and ulti-
mately, 2D crystals. (A) Dialysis can be used to remove the detergent provided its CMC
is >1 mM. (B) Bio-Beads adsorb detergent molecules and can be used for all detergents.
Bio-Beads driven 2D crystallization is particularly successful with low CMC detergents.
(C) Dilution is a well-known method for functional reconstitution of membrane pro-
teins. In spite of dilution, it is also suitable for 2D crystallization, because the protein is
highly concentrated after integration in the bilayer. (D) The monolayer technique com-
bines the Bio-Beads method with crystallization at the air-water interface. This method
works only with low CMC detergents because of the necessity to preserve the lipid
monolayer. The latter incorporates special lipids having a high affinity for the solubi-
lized protein, e.g. by recognition of a specific tag. (By courtesy of Thomas Braun.)
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the dilution of the ternary mixture.29 Moreover, in all the methods,
the amount of interspersed lipid must be minimized to ensure regu-
lar interactions between the membrane proteins. The pertinent inter-
actions depend on the shape and surface charges of the components.
For a given protein, the lipid-detergent mixture, pH, counter ions,
and temperature must all be optimized. In addition, the concentra-
tion, the ratio of the respective components, and the detergent
removal rate are critical. This gives a multidimensional parameter
space that needs to be experimentally sampled, a similar task to that
carried out in 3D crystallization screens. The difficulty of such exper-
iments is the management of the screens and the assessment of results.
With 2DX, the latter is particularly cumbersome because 2D crystals
cannot be detected by light microscopy and screening by electron
microscopy is time consuming.

23.4.2 Data Acquisition

Beam damage induced by inelastic interactions of impinging elec-
trons with sample atoms dictates the maximum electron dose a 2D
crystal may take before discernable structural changes occur. This
dose depends on the sample temperature: typically recording doses
of 20 electron/Å2 can be applied if the sample is kept below 10 K.3

Hence, not only the best possible electron optical system is required,
but ideally the sample should be cooled to the temperature of liquid
helium.

2D crystals are adsorbed to flat thin carbon films and dried in the
presence of sugar solutions. To prevent charging, the crystals can
also be sandwiched between two thin films.12 Such samples are
loaded to the cold-stage, and images are acquired after the low tem-
perature is reached and the stage is equilibrated. To minimize beam
damage, crystals of potential high quality are identified at low
magnification by their uniform thickness and characteristic shape
[Fig. 23.4(A)]. Often, the entire grid is rapidly scanned in this mode
and positions of interest are stored. The microscope is then adjusted
for recording the high-resolution data. Either diffraction patterns or
images are recorded, the former with a high resolution CCD camera,
the latter preferably with a photographic film. In special cases, it is
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advantageous to record both, a diffraction pattern, and thereafter, an
image. This allows the respective diffraction pattern to be properly
classified based on the phases retrieved from the image.30

23.4.3 Data Processing

Each image represents a projection of the crystal, or after Fourier
transformation, a central section through the 3D Fourier transform
(3DFT) of the crystal (see Fig. 23.7). Since 2D crystals are periodic
in (x, y), but have a single unit cell thickness in (z), the molecular
transform is a smooth function, which is sampled along z* on lattice
lines (h, k). Each diffraction pattern represents the central section
through the intensity |3DFT|2. Therefore, data processing proceeds
along the following general scheme:

(i) Foremost is the CTF correction of the image, which is
achieved after the image has been Fourier transformed. As
documented by Fig. 23.3, this is a critical step for retrieving
the phase information out to high resolution, since a small
error in the determination of the CTF will lead to a wrong
correction since the CTF oscillates rapidly. A complication
arises with images of tilted samples, such as that required for
extracting the 3D information. Since the point spread function
h(x,y) is not space independent, the linear systems theory
yielding Equation 23.3 cannot be applied. Methods to correct
the optical defects in this case are being developed, but they
are computationally costly.13 An interesting correction algo-
rithm has been developed early,31 while a CTF correction
scheme working on stripes of the image that are parallel to the
tilt axis is a robust practical approach.

(ii) The lattice parameters are measured from the Fourier transform
of an image (2DFT), in fact from its intensity |2DFT|2, or
directly from the electron diffraction pattern. The lattice is fitted
by a least square distance minimization to the diffraction peaks
identified. This information is required to calculate the z* for
each reflection measured.
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Fig. 23.7. 3D reconstruction of membrane proteins by 2D crystallography. (A) To
obtain a 3D reconstruction from 2D crystals, projections are recorded at different tilt
angles (step 1). The images are Fourier filtered and processed as described in Fig. 23.8
(step 2), and the Fourier transforms are combined in the 3D Fourier space according to
the central section theorem (step 3). The discrete orders in the Fourier transform from the
crystal are aligned in continuous lattice lines along z* since the sample is not periodic in the 
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z-direction. The lattice lines are regularly interpolated to sample the 3D Fourier space
on a cubic raster. Back-transformation of the combined data finally leads to the rep-
resentation of the 3D unit cell (step 4). (B) Azimuthal projection of the sampling
in z* direction. The different tilt angles can be distinguished. In this case, a maximal
nominal tilt angle of 60° was applied, indicated with a black line revealing the
missing cone. The lattice lines are visible, and an example is given in the panel.
(C) Amplitude and phase of lattice line 1,12 revealing a z* resolution of (7 Å)−1. The
plotted curve indicates the interpolation of the lattice line. (D) Power spectra of an
untitled and 60°-tilted 2D crystal. The inset shows the Fourier-filtered projection
map from an unbent image. Perpendicular to the tilt axis (line in the 60° panel), the
resolution is reduced as a result of support non-flatness and charging.

(iii) To extract the phase and amplitude information from the 2DFT,
sharp diffraction peaks are required. Hence, all the parts of a 2D
crystal that are disordered and would contribute to the back-
ground must be masked away or corrected by unbending. The
latter is achieved by determining the position of all unit cells
from the cross-correlation function with a first average unit cell
projection obtained from the uncorrected 2D crystal. The dis-
placement vector field between the fitted lattice and the actual
unit cell positions is an ideal indicator of crystal quality (Fig. 23.8).
The possibility of such corrections is the great advantage of
recording an image of a 2D crystal rather than a diffraction pat-
tern. Ultimately, it is possible to extract atomic scale resolution
from small or fragmented crystals that do not exhibit sufficiently
large highly ordered areas for electron diffraction. This proce-
dure provides the averaged unit cell, or the projection map of the
particular 2D crystal. On the other hand, electron diffraction of
large highly ordered crystals deliver information to a resolution
of 2 Å or beyond (see Fig. 23.4(C) and Ref. 6). The intensity of
all peaks is measured by integration over the extent of the peak
and subtraction of the local background. The signal-to-noise
ratio obtained in this way is used to weight the contribution of
the respective peak.

(iv) The data collected from many images or diffraction patterns
needs to be merged to populate the 3DFT as shown in Fig. 23.7.
To this end, the projection maps obtained in step (iii) need to be
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correctly centered. Errors in this step introduces errors in the
phase Ψ(z*), which are usually identified during lattice line fit-
ting (Fig. 23.7(C) and refinement. To obtain the amplitude
A(z*), correct scaling of the data sets from single images or dif-
fraction patterns is important. Scaling is optimized during refine-
ment and lattice line fitting. Once the merging is achieved, lattice
line data are fitted by a continuous function, and sampled on a
raster to calculate the 3D potential map by inverse Fourier trans-
formation. From this first 3D map that comprises the total data
set, projection maps can be calculated along any projection direc-
tion for subsequent refinement runs (Fig. 23.8).

Such data processing is critical to extract all the information initially
transferred by the electron microscope to film or to a CCD camera. It
is a laborious process that contributes to the slowness of electron crys-
tallography. Efforts are currently invested to improve the automation of
data processing as well as the accuracy of critical algorithms involved.32

Automation in data acquisition and processing will contribute to mak-
ing electron crystallography a more widely used method.

23.5 3D Electron Microscopy of Protein
Complexes

The 3D structure of large protein complexes that cannot be crystal-
lized is assessed by recording 2D projections, and calculating the 3D
structure by “weighted back-projection” methods.33 Sample prepara-
tion, electron microscope performance and data acquisition, accuracy
of projection angle determination, and the data refinement cycles dic-
tate the resolution. All the steps should exhibit the same perfection as
for electron crystallography. To eliminate the statistical noise, projec-
tions are selected, aligned, classified, and averaged. From averaged
projections, the 3D map is calculated once the projection angles have
been determined. A key prerequisite for this procedure is the sample
homogeneity: complexes need to be all in the same specific confor-
mational state; if this is not the case, the information from the differ-
ent states will be merged by the back-projection step into a blurred
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Fig. 23.8. Fourier peak-filtering and unbending of 2D crystals. The raw image
(A) is Fourier transformed (step 1) and the crystal lattice is indexed in the power
spectrum |2DFT|2 of the raw image (B). Note that in this case, two crystalline lay-
ers of the flattened crystalline vesicle have to be separated. For the Fourier peak-
filtering, the diffraction peaks containing all the crystal information are
transmitted with weight 1, while the signal outside the mask-area (containing the
other crystal layer and noise) is set to 0 (step 2). (C) The image of the inverse
Fourier transformation (D) reveals already the packing of the crystal (step 3). To
unbend the 2D crystal, a reference (E) is selected from d (step 4) and a cross-cor-
relation (step 5) with the raw image is calculated. The cross-correlation (F) reveals
the positions of the unit cells. These can be compared to the fitted lattice (step 6)
and difference vectors can be generated (G). This information can be used to inter-
polate the raw image to unbend the crystal and to eliminate badly distorted regions
(step 7). As a result, the spots of the power spectrum are focused. (H) In inset
(h1), peak 5,3 (indicated with a circle) is depicted before unbending, and in (h2) after
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3D map. Noise elimination requires processing of a large number of
projections: it has recently been shown that typically some 104 pro-
jections will suffice to resolve a complex of about 106 Daltons to bet-
ter than 10 Å.34 Further, the orientation of the complexes should be
random, i.e. all possible projection angles should be present.
Structural preservation and random orientation are achieved best
when the protein complexes are suspended in a thin solution layer
that is vitrified by shock-freezing in liquid ethane.7

An experienced operator can efficiently select projections manually,
even from an inhomogeneous preparation. However, such selection
may induce a bias, and projections may be too noisy to allow discrim-
ination by eye. In any case, manual selection is a labor-intensive bot-
tleneck when datasets of a 10 to 100 000 projections need to be
selected. Therefore, algorithm development of fully automated parti-
cle selection has been an important objective in the field. Approaches
explored can broadly be classified into (i) template-matching, (ii) edge
detection, (iii) intensity comparison, (iv) texture comparison, and
(v) neural network-based methods. Template-matching uses the cross-
correlation signal of a particle field with a reference set, which is cal-
culated from an initial 3D model.35 Feature-based algorithms exploit
local features of a projection set that are not calculated from a model,
but are derived by machine learning. A self-learning algorithm used for
face recognition has been applied to particle selection,36 and a self-
learning neural network approach has been presented.37,38 A recent
evaluation of different approaches based on a common data set reveals
that automated selection of asymmetric particle projections from cryo-
EM images is an unresolved challenging problem.39 The major prob-
lem is the balance between missing many true projections and picking
many false positives from the background noise. If the false projections
are not eliminated early in the calculation, they can severely degrade
the result of the 3D map finally obtained.
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unbending. Of such unbent crystal images, amplitudes and phases of the spots are read
out and combined with the data of other crystals (step 8). The 3.7 Å map of
GlpF (I) revealing the typical tetrameric structures of aquaporins demonstrates what is
achievable. The map is used as a new reference for refining the data extraction (step 9).
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Once the random projections are selected, they need to be aligned
for classification. Since both translational and angular alignment is
required, the problem arises that an angularly misaligned particle can-
not be aligned translationally and vice versa. This dilemma is solved in
various ways. Depending on the particle selection step, projections
might already be well-centered, hence allowing the rotational align-
ment to be achieved directly. Another approach takes advantage of the
autocorrelation function (ACF), which allows the angular alignment
of particles even if they are not centered. Because the ACF often has
weak features at large radii, the angular alignment can be improved on
the unprocessed but centered projections in a second step. Further
rotation-, translation-, and mirror-invariant functions can be derived
from the input images for alignment or classification.40 All alignment
steps rely on the cross-correlation signal with a suitable reference,
which in turn may introduce a bias. Reference-free alignment algo-
rithms have thus been developed to overcome the propensity of ref-
erence-based algorithms to reinforce the reference motif in very noisy
situations.40,41

Projections of randomly oriented particles in a thin vitrified ice
layer need to be sorted into classes representing similar projection
angles [Fig. 23.9(B)]. This is efficiently achieved by multivariate sta-
tistical analysis, where an image comprised of n × n (e.g. 4096) pix-
els, each having a value between 0 and 255, represents a vector in an
n × n-dimensional space, with axes extending from 0 to 255. Similar
images will correspond to vectors that almost coincide, and clusters of
image vectors will represent the members of a certain class. The
ensemble of all images (comprising all clusters) will be distributed in
a restricted volume of a particular shape in the n × n dimensional
space. Multivariate statistics approaches determine the Eigenvectors
and respective Eigenvalues describing this volume, which allow the
dimensions of the image space to be drastically reduced.42,43 An effi-
cient search for delineating images clusters within the space of the
most significant Eigenvectors is then provided, and class averages are
calculated from projections belonging to specific clusters. Ideally,
such class averages represent the averaged projection of a complex
along a given projection direction.
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Conceptually, the determination of the 3D potential map ρ(x,y,z)
of a biological molecule from a large number of 2-D electron
microscopy projections of isolated (single) particles with random and
unknown orientations may be considered as a nonlinear optimization
problem, which seeks to determine the minimum of

(23.7)

where P(φi, θi, ψi) is a line integral operator that projects ρ(x,y,z)
onto a 2-D plane after ρ(x,y,z) is rotated by a set of unknown Euler
angles φi, θi, and ψi. T(xi, yi) is a translational operator, and bi(x,y)
is the experimental projection map. To boot-strap the determination
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Fig. 23.9. Single-particle 3D reconstruction from random projections. (A) Images
of negatively stained or vitrified complexes are projections from all possible direc-
tions, provided the complexes are oriented randomly. Vitrified layers of particle sus-
pension often fulfill this prerequisite. Projections are classified by multivariate
statistical methods and averaged. (B) To boot-strap the 3D reconstruction, a trained
operator can identify the tilt axis and estimate the tilt angle from class averages.
Alternatively, image pairs are taken at 0° and 45° to estimate the Euler angles from
the projection pairs. A first, a 3D map is calculated by weighted back-projection.
(C) From this map, a set of projections covering the entire range of Euler angles is
calculated for use as references. Multi-reference refinement cycles then indicate the
best match of calculated and measured projections, thereby improving the accuracy
of the angular and translational alignment of the projections, as well as the Euler
angle determination. (D) Refinement cycles are repeated until the class averages (top
row) match the calculated projections (bottom row). Modified from Ref. 67.
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of the first 3D map, the random conical tilt approach can be most
useful.44 Here, projections of a particle field are acquired at 0° tilt
and at 45° tilt. The Euler angles φi, θi, and ψi are determined from
the projection pair of each particle, and the back-projection opera-
tion can be executed. Alternatively, projection angles may be esti-
mated roughly by visual inspection of class averages [Fig. 23.9(B)],
or quantitatively by the sinogram correlation function.33,45 The
resulting first map ρ0(x,y,z) provides the platform to refine the
structure, because it allows multiple references to be calculated
and projections of randomly oriented particles to be better aligned.
To this end, all projections are cross-correlated with all references
to determine the best match33,46 [Fig. 23.9(C)]. Correlation coef-
ficients allow the Euler angles of the respective projections to be
refined, the projections to be centered more accurately, and atypi-
cal projections to be eliminated. Back-projection with refined
parameters produces a new map, ρ1(x,y,z), whose resolution is
assessed by the Fourier Shell Correlation (FSC) technique,47 to
appropriately low-pass filter the map for the next refinement cycle.
The quality of both, the first 3D map, and the experimental data
dictates the convergence of the refinement. Multi-reference align-
ment procedures are computationally intensive and key in refining
the structure.33,46

One aspect to be addressed concerns sample heterogeneity. First,
it is often not easy to produce a chemically pure sample, and the
recognition and subsequent elimination of atypical projections is
therefore important. More important is the possibility to study con-
formational heterogeneity, which is a great advantage compared to
crystallographic methods, where proteins are necessarily in a single
conformation. However, the problem to solve is to properly sort out
all the projections into sets belonging to specific conformations.
Considering the low signal-to-noise ratio of projections from shock-
frozen preparations recorded at low dose, and the large number of
projections to be processed, this task is enormous and still not com-
pletely tackled. Nevertheless, studies of ribosomal conformations have
paved ways to approach this problem,48–50 and new image processing
methods have now emerged.51
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23.6 Electron Tomography

Since electron micrographs represent two-dimension (2D) projections
of the object’s 3D potential distribution, features from different levels
within the object are superimposed and cannot be separated. Therefore,
tomographic techniques acquire projections of the object viewed from
different directions and then merge them computationally to obtain a
3D reconstruction of the object volume. In the electron microscope,
the specimen holder is rotated incrementally around an axis perpendi-
cular to the electron beam, and images are taken at each position, to use
them for calculating the 3D map by back-projection. About 100 pro-
jections need to be acquired, and the critical dose dictated by the beam
damage is 1000–2000 electrons/nm2. Therefore, the dose per projec-
tion is typically 10–20 electrons/nm2. As projections of a single object
are recorded by rotating it in small angular increments, the alignment
of individual projections would ideally not be necessary. However, this
would necessitate a perfect eucentric goniometer stage that does not
displace the sample from the center to warrant alignment of projections
and keep the object in focus. Since such accuracy is technically not pos-
sible, procedures have been developed to measure the displacement of
the sample on an adjacent area and to correct its effects automatically
before recording the next projection. Nevertheless, a final centering of
all projections by cross-correlation is required before the weighted
back-projection can be executed such as for single-particle reconstruc-
tion (Fig. 23.9). The number n of projections taken dictates the reso-
lution d according to Equation 23.8:

(23.8)

Accordingly, the resolution to be achieved from a slab of thickness
T = 200 nm given a series of 100 projections, is 6 nm. Several exam-
ples document that 3 nm can be reached, mainly by recording more
projections. At this resolution, it is possible to identify large com-
plexes by pattern recognition, and thus, to perform visual proteomics
of single cells.5,52

d
T

n
ª

p
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As the apparent specimen thickness increases at higher tilt angles
and the tilt range of cold stages is limited, the practical accessible tilt
range is restricted to 70°. Therefore, data are missing from a wedge-
shaped region of the 3DFT, resulting in a non-isotropic resolution in
the reconstructed volume. Dual axis tilting provides a partial solution
of this problem.53 Multiple inelastic scattering, which degrades the
image quality as result of chromatic aberration is another limiting fac-
tor for specimens that are significantly thicker than the mean free path
for inelastic scattering (Λinel ≈ 350 nm for 300 kV electrons). Energy
filters operated in a zero-loss mode remove the blurring contributions
of the inelastically scattered electrons and the sharpness of the image
is improved. Since multiple elastically scattered electrons are scattered
beyond the objective aperture and inelastic electrons are eliminated
by energy filtering, the useful signal decreases according to the total
mean free path Λtot, which is about 200 nm at 300 kV. As a rule of
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Fig. 23.10. Tomogram of a nucleus from Dictyostelium discoideum and 3D map of
the native nuclear pore complex. (A) A single projection of a nucleus does not exhibit
much detail. From many projections (about 100) taken at different angles, a tomo-
gram is calculated. (B) A section through the tomogram reveals significant structural
features; nuclear pore complexes can be discerned. (C) The resulting 3D map after
denoising and surface rendering shows six complexes in different orientations.
(D) Collecting the 3D maps of a 267 complexes, aligning and averaging them
emphasizes the non-variable features of the native nuclear pore complex.54 (By cour-
tesy of Wolfgang Baumeister.)
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thumb, good quality tomograms can be obtained with samples that
have a thickness smaller than 3 Λtot, but in practice, tomograms of
amazing quality have been obtained with samples up to 1 μm.54

Larger structures, however, must be sectioned for the tomographic
analysis, preferably using cryo-sectioning.10

23.7 Future Outlook

Modern electron microscopy tools are now available to visualize the
proteome of a single cell in its entirety. Although eukaryotic cells may
be too large to be imaged as a whole, methods are being developed
that allow large cells or even tissues to be vitrified by high-pressure
freezing and sectioned at low temperature,9 producing samples that
are suitable for electron tomography.10 The resolution of the latter
technique has now reached a level, where protein complexes can be
recognized by pattern-recognition algorithms,55 opening an avenue
for visual proteomics.52 Recent results indicate that cells are crowded
with protein complexes, many of which are likely to disassemble, and
hence, are not accessible to standard biochemical analyses.5 3D elec-
tron microscopy appears to have become the tool of choice to visual-
ize the complexity of cells in the context of future developments in
systems biology.

More stable complexes, however, can be inspected by single-par-
ticle methods at far better resolution, allowing the structure and
dynamics of molecular machines to be studied at a resolution that
allows atomic structures to be fitted.18,33,56–58 While this is certainly
attractive for large complexes that resist all attempts to force them
into highly ordered 3D crystals, the possibility to visualize the func-
tion-related conformational changes are even more important.59–61

Current efforts to tackle the formidable task to sort out projections
of conformational heterogeneity foster the hope that electron
microscopy will soon be used routinely to visualize the dynamics of
biological molecular machines.51 The prospect to image such dynamic
complexes at a resolution of around 10 Å in various conformations
suggests that the fitting of atomic models to such 3D maps will allow
the chemistry behind these conformational changes to be unraveled.
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Tremendous progress in the study of membrane protein structure
by electron crystallography demonstrates another direction of interest.
First, membrane proteins crystallized by reconstitution in the presence
of lipids are embedded in their native environment, and are directly
accessible to functional assays.21 Second, the surfaces of proteins in
such crystals are available to ligands, making the analysis of correspon-
ding complexes possible, likely without the need for co-crystallization.
Third, 2D crystallization methods have improved, with resolutions
beyond 2 Å demonstrated.6 Although only a few groups have pushed
the related methods of sample preparation methods, data acquisition,
and image processing,3 impressive recent results6,30,62–65 promise that
electron crystallography will become more routinely used in mem-
brane protein structure research. Combining this progress with that in
single-cell imaging and single-particle analyses, the goal of modeling
and understanding a cell at the atomic scale seems to be getting closer.
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Chapter 24

New Frontiers in Characterizing
Structure and Dynamics by NMR

M. Nilges*,†, P. Markwick†, T. Malliavin†, W. Rieping‡

and M. Habeck§

24.1 Introduction

Nuclear Magnetic Resonance (NMR) spectroscopy has emerged as
the method of choice for studying both the structure and dynamics of
biological macromolecules in solution. Despite the maturity of the
NMR method for structure determination, its application faces a
number of challenges. The method is limited to systems of relatively
small molecular mass, data collection times are long, data analysis
remains a lengthy procedure, and it is difficult to evaluate the quality
of the final structures. The last years have seen significant advances in
experimental and analysis techniques to overcome or reduce some
limitations.

The function of bio-macromolecules is determined by both
their 3D structure and conformational dynamics. The molecules are
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inherently flexible systems displaying a broad range of dynamics on
timescales from picoseconds to seconds. NMR is unique in its ability
to obtain dynamic information on an atomic scale. The experimental
information on structure and dynamics is intricately mixed. It is, how-
ever, difficult to unite both structural and dynamical information into
one consistent model, and protocols for the determination of struc-
ture and dynamics are performed independently.

This chapter deals with the challenges posed by the interpretation
of NMR data on structure and dynamics. We will first relate the stan-
dard structure calculation methods to Bayesian probability theory. We
will then briefly describe the advantages of a fully Bayesian treatment
of structure calculation. Then, we will illustrate the advantages of
using Bayesian reasoning at least partly in standard structure calcula-
tions. The final part will be devoted to the interpretation of experi-
mental data on dynamics.

24.2 Determination of Structure

The principal experimental information for structure elucidation by
NMR comes from short inter-atomic distances obtained from
nuclear Overhauser effects (NOEs) between proton spins.1 Long-
range distance information can be acquired from paramagnetic
relaxation.2 These distances are supplemented by information on
torsion angles from through-bond scalar couplings and chemical
shifts. Residual Dipolar Couplings (RDCs) provide powerful addi-
tional orientational restraints,3,4 which, in contrast to the other
experimental information, do not characterize local relative posi-
tions, but the orientation of inter-atomic vectors with respect to a
reference frame. The chemical shift depends on the local structure,5

and, together with data base searches, it can be sufficient to deter-
mine the 3D structure.6 Whereas structure determination from
NMR in general relies on data from liquid samples, the feasibility of
protein structure determination by solid state NMR has recently
been demonstrated.7 This has potential applications for molecules
that are neither soluble nor form three-dimensional crystals easily,
such as membrane proteins.
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24.2.1 The Hybrid Energy Function and Bayes’s Rule

Experimental data are rarely sufficient to determine the three-
dimensional structure of a macro-molecule by themselves, but need
to be complemented with prior physical information. Therefore,
structure calculation is typically a search for conformations that
simultaneously have a low physical energy Ephys(X ) and minimize a
cost function, Edata(X ), quantifying the disagreement between a
structural model X and the data. This approach was first imple-
mented for X-ray crystal structure determination as the minimiza-
tion of hybrid energy8,9

(24.1)

The weight Edata controls the contribution of the data relative to
the physical energy (for example, a molecular dynamics force field
adapted to the structure determination task). Jack and Levitt
remarked in their paper that correct weighting of the data “is some-
thing of a problem.”8 Its value can be critical: If it is too large, the
contribution of the force field might be too small (over fitting of the
data); if the weight is too small, the data may contribute too little to
define the structure (under fitting of the data).

Calculation methods to minimize the hybrid energy function have
been amply reviewed9,10 and will not be our concern here. Structure
calculation is an example of the fitting of parameters (principally, the
atomic coordinates) to experimental data. “To be genuinely useful, a
fitting procedure should provide (i) parameters, (ii) error estimates of the
parameters, and (iii) a statistical measure of a goodness of fit.”11

Whereas the standard procedures applied to NMR structure calcula-
tion provide the “parameters,” they do not supply meaningful error
estimates, and due to the usual procedure to convert the experimen-
tal data into loose bounds,1 they do not provide a statistically mean-
ingful measure of goodness of fit.

Minimizing the hybrid energy function is motivated by maximiz-
ing the posterior probability of a structure when prior information
and experimental data are available. If we restrict the analysis to the

E X E X w E Xhybrid phys data data( ) ( ) ( )= +  
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molecular co-ordinates X, Bayes’s theorem12 provides the posterior
probability distribution for the unknown coordinates:

(24.2)

The posterior p(X |D, I ) factorizes into two natural components
(Fig. 24.1):

1. The prior π(X |I) describes knowledge about general properties of
biomolecular structures. At temperature T, the Boltzmann distri-
bution π(X ) ∝ exp(−βEphys(X )) is the least biasing prior distribu-
tion.12 β is (kBT )−1, with the Boltzmann constant kB.

p X D I X I L D X I( | , ) ( | ) ( | , )µ p
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Fig. 24.1. Prior knowledge is incorporated in a natural way using the laws of prob-
ability theory. In the illustrated case, the prior knowledge (dotted line) is the proba-
bility to observe a particular torsion angle before any data is measured (for example,
we know that the protein backbone torsion angle, φ, is in most cases negative). The
likelihood (dashed line) adds the knowledge obtained from the data: In our case,
there are two peaks in the likelihood. The posterior probability (solid line) is obtained
by multiplication of the prior probability and the likelihood, and represents the total
knowledge we have about the conformation.
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2. In the second term on the right-hand side, L(D |X, I ), the likeli-
hood is the probability of the data D, given the molecular struc-
ture X. For its evaluation, we need a theory allowing us to
calculate the data from a structure, and an error model account-
ing for deviations between calculated and measured data.

Bayes’s rule combines the two components (the prior and the
likelihood; quantities we can calculate) to derive the probability of a
particular structure X (the quantity we are interested in).

For the error model, one usually assumes that the experimental
data are distributed around the average value in the same way they are
distributed around the value predicted from the theory, i.e. that the
model does not introduce a systematic bias. This does not imply that
the average experimental value and the predicted value are identical,
only that the distributions are similar.

For example, the data may follow the distribution:

(24.3)

where the function χ2(X ) quantitates the average discrepancy between
the experimental measurements yi and the data predicted from the
structure X by the theory, yi(X ). For a Gaussian distribution, this is:

(24.4)

σ is the mean deviation of the measurements from the theoretical
value. This is an important parameter we generally cannot measure
but need to introduce for the modeling.

If we take the negative logarithm of both sides of Equation (24.2),
we obtain an equation of the form of Equation (24.1):

(24.5)- = - - +log[ ( | , )] log[ ( | )] log[ ( | , )]p X D I X I L D X I constp
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We can identify the hybrid energy function Ehybrid(X ) with
−β log[p(X |D, I )] −const, and the pseudo energy Edata(X) with the neg-
ative logarithm of the likelihood, −log[L(D |X, I )]. If we assume a
known and constant σ, we obtain with the likelihood in Equation 24.3:

(24.6)

where the factor β defines the energy scale; it is 1 if we measure the
energies in units of kBT.

As an additional conclusion, we gain from this analysis that, if we
know σ, it determines the weight wdata. It should ideally be set to
reflect the quality (consistency) of the data: the larger σ is, the lower
the weight. For now, we assumed that we know σ (and all parameters
necessary to formulate the likelihood L(D |X, I )). However, this is
not necessary in a truly probabilistic analysis. The assumption of the
prior knowledge of σ is unrealistic, since σ varies from experiment to
experiment, and is, for NMR, dominated by discrepancies between
theory and experiment and not by experimental noise.

24.2.2 Obtaining Coordinates and Their Precision

In structure determination by NMR, one usually tries to obtain a
measure of coordinate uncertainty by repeated, independent mini-
mizations of Equation (24.1). Estimating uncertainties in coordinates
in this way has been a pre-occupation in NMR structure determina-
tion since its beginning.1,13 The results differ from calculation to cal-
culation with identical data, since all usually employed minimization
approaches contain a random element, and since they are unable to
locate “the” global minimum of the rugged energy surface but get
invariably trapped in a local minimum. The resulting structure ensem-
ble can be characterized by its average structure and its distribution
around the average  in the simplest case, the RMS deviation.

This distribution of structures is influenced by the data quality.
Most structure calculations employ lower and upper bounds with
error tolerances that should be set according to σ : the wider the

E X E X Xhybrid phys( ) ( ) ( )= +b
s

c1
2 2

2
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bounds, the larger the difference between individual structures.13 If
the weight, wdata, depends on the standard deviation σ of the data, the
influence of the data is reduced for low quality data, and the results
of repeated structure calculations show a larger variation.

There are two fundamental problems with this approach. First,
optimization algorithms are neither guaranteed to find all important
regions of the distribution nor to reproduce the correct populations
of the different regions. The “sampling” provided by optimization
methods, starting from randomly varying initial points, will mostly
depend on algorithmic properties. Second, many of the parameters
that are necessary for calculating structures (such as the weight wdata

in Equation (24.1) need to be fixed before the calculation, and the
influence of their value and variation on the co-ordinate precision
cannot be assessed.

In order to rigorously address the problem of obtaining unbiased
co-ordinate precision with full dependency on all unknowns, we
developed the Inferential Structure Determination approach (ISD).14

This abandons the idea of minimizing a hybrid energy or maximizing
the probability. Rather, it aims at evaluating a probability Pi for “all”
possible structures Xi. Generally, a continuum of Pi values is distrib-
uted over conformational space (Cartesian coordinates, dihedral
angles), and Pi is a density p(X |D, I ); the integral ∫RdXp(X |D, I ) eval-
uates the probability that region R of conformational space contains
the true structure.

Once the model to describe the data (i.e. the likelihood function)
has been chosen, the rules of probability theory, Equation (24.2) or
(24.7), uniquely determine the posterior distribution. The appropri-
ate statistics for modeling distances and NOEs are discussed further
below. No additional assumptions need to be made.

24.2.3 Treatment of Additional Parameters

The full power of the Bayesian treatment of the problem becomes
apparent if there are additional unknown, auxiliary parameters (called
“nuisance parameters”). It is basically always necessary to introduce
such auxiliary parameters in order to describe the problem adequately.
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For example, the parameters A, B, C of the Karplus relationship are
unknown for the particular protein that one is investigating. Also, the
data quality σ is an unknown parameter, as is the calibration factor γ
for NOE volumes.

In Bayesian theory, these additional parameters are called “nui-
sance parameters.” In ISD, all additional unknown parameters of the
error model and the theory are estimated along with the structure.
They are treated in the same way as the co-ordinates. For the
unknown σ, for example, we replace X with (X, σ) in Equation (24.2),
and the full posterior becomes

(24.7)

Here, we assume a priori independence of X and the nuisance
parameters — the prior for the coordinates does not depend on the
values of the σ and vice versa — and we introduce the additional prior
π(σ |I ) (Jeffreys prior15), expressing our ignorance on this parameter.
Other nuisance parameters (the calibration factor γ, Karplus parame-
ters, tensor parameters, etc.) are treated in exactly the same way and
simply lead to additional terms in the equation.

The posterior density for the coordinates by themselves is for-
mally obtained by integration over nuisance parameters (also called
marginalization12). In fact, in order to account for our ignorance
regarding the nuisance parameter σ, we have to replace L (D |X, I )
in Equation (24.2) with a weighted average over the likelihood con-
ditioned on all possible values of σ. This is in marked difference to
standard structure determination by minimization, where the value of
any unknown parameter needs to be fixed before the structure calcu-
lation, and therefore, only one single value is used. In contrast, the
result of a structure calculation by inference directly contains the
influence of the uncertainty in the additional parameters.

24.2.4 Sampling the Posterior Probability Distribution

For a single — or very few — unknowns (co-ordinates and other
parameters), one could calculate the probability of every conformation

p X D I X I I L D X I( , | , ) ( | ) ( | ) ( | , , ).s p p s sµ
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for example by a grid search. For the large number of unknowns typ-
ical for the structure determination of a macromolecule, this is unfea-
sible and the space of possible conformations has to be explored by a
suitable sampling algorithm. ISD14 is therefore based on Monte-Carlo
sampling to explore the probability distribution over conformational
space. Monte Carlo sampling is not used as a means to find the max-
imum of a probability but to evaluate the integrals over parameters
that appear in the use of Bayes’s rule, Equation (24.2) or (24.7).

A good sampling algorithm will produce samples with the correct
probability. That is, the probability can be directly calculated from the
number of times a particular region is visited. The replica-exchange
Monte Carlo scheme for simulating the posterior densities14,16 satisfies
this criterion. In contrast to an optimization algorithm, it is designed
to visit all regions of high probability, and not to locate efficiently
one of the maxima.

The result of a Bayesian structure calculation is a large ensemble
of structures sampled at many different values of the nuisance param-
eters, allowing for statistically meaningful, objective error bars for
atom positions and nuisance parameters (Fig. 24.2). The variance of
the structures automatically contains the influence of the nuisance
parameters on the structures. Only a Bayesian treatment provides esti-
mates for all unknown parameters, error estimates of the parameters,
and a statistical measure of a goodness of fit.

Since the method has no free parameters that need to be fixed
before the calculation, user intervention is not necessary, and struc-
ture determination becomes more objective.

24.2.5 Data Statistics and Restraint Potentials

The likelihood function L (D |X, I ) (or the related potential Edata(X ))
needs to be known for any structure calculation. It has an important
influence on the resulting distribution of structures. The role of
L (D |X, I ) or Edata(X ) is to introduce our knowledge about expected
deviations between measured and calculated data, and to evaluate the
importance of these deviations. For certain data types, a Gaussian dis-
tribution is a good approximation, e.g. for scalar or residual dipolar
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couplings. In contrast, NOEs and derived distances have too many
large deviations to be well-represented by a Gaussian.

The distribution of errors of NOE-derived distances is a priori
unknown. If we knew the error distribution g(d, d0) in the distances
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Fig. 24.2. Result of a structure calculation with ISD for two test cases, ubiquitin
and an SH3 domain. The data set for ubiquitin consisted of 1444 non-redundant dis-
tances taken from the restraint file, PDB code 1d3z; the data set for SH3 was for a
perdeuterated sample and contained 150 distances between exchangeable protons.
Top: Ensembles of most probable structures for SH3 (left) and ubiquitin (right). The
width of the “sausage” is proportional to the RMSD around the average structure.
The distribution of structures contains the uncertainty due to the unknown auxiliary
parameters. Bottom: Distribution for the nuisance parameter σ (error of the log-
normal model) obtained from Monte Carlo samples for ubiquitin (dashed line) and
SH3 (solid line). The reason for the difference in the width of the distributions is the
large difference in the number of data points.
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d around the “true” distance d0, we could construct a restraint poten-
tial by taking the negative logarithm of the distribution. Assuming
that the individual distance measurements are statistically independ-
ent, we obtain as potential ENOE

i for a single restraint i:

(24.8)

where di(X ) is the distance calculated in the structure X, and di
exp is

the measured distance.
An appropriate error distribution can be derived from fundamen-

tal properties of NOEs and derived distances, by analyzing the
expected deviation of a measurement from the ideal value. NOE
intensities and derived distances are inherently positive. The simplest
theory to convert NOE intensities into distances, the isolated spin pair
approximation (ISPA), introduces a calibration factor γ : Icalc = γd−6.
Changing the units does not affect the information content of the
data. Hence, the distribution g(Iobs , Icalc) of the deviations between
observed and calculated intensities must be invariant under scaling,
i.e. g(Iobs , Icalc) = αg(αIobs , αIcalc), which follows from the transforma-
tion rule of probability densities. A distribution that shows this scale
invariance is the lognormal distribution17:

(24.9)

This distribution is restricted to the positive axis and is asymmetric
around its median Icalc. Measurements are incorporated without bias in
the sense that the probability of over- or underestimating the true inten-
sity is both half. This is not the case for error distributions defined on
the entire axis, such as a Gaussian, which assign a non-vanishing
probability to unobservable negative intensities. The parameter σ
quantifies the relative deviation of the observed from the calculated
intensity, provided that their difference is sufficiently small. Experimental
NOE data follow this distribution quite well,17 indicating that the
validity of the assumption that the shapes of the distributions around
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the mean and around the value calculated by the theory are indeed
similar, even for the simple ISPA approximation.

Figure 24.3 shows an example of the log-normal distribution and
the derived potential for a target distance of 3 Å and σ of 0.5. The
distribution is asymmetric and long-tailed; both properties are much
better accounted for by the lognormal distribution than by a Gaussian
distribution, which would significantly underestimate the probability
of large deviations. The lognormal model has other favorable proper-
ties. Unlike a probability distribution corresponding to a flat-bottom
potential, it has a unique maximum. Hence, measurements are not
weighted equally between bounds but are always penalized depend-
ing on the degree of disagreement with the structure. Furthermore,
the lognormal distribution is invariant under power law transforma-
tions. If we raise the intensity to a power, the transformed intensity
still follows a lognormal law with transformed median and error
parameters.

The negative logarithm of the distribution in Equation (24.9) is
the corresponding restraint potential:
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Fig. 24.3. Left: example of a log-normal distribution, with σ = 0.2 and an average
value of 3.0 Å. Right, solid line: potential derived from the lognormal distribution,
with a weight factor corresponding to Equation (24.12); dashed line, standard poten-
tial with lower and upper bounds at ±1 Å of the target value of 3.0 Å, and a weight
factor typically used in structure calculations.
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which is harmonic in the difference of the logarithm of calculated and
experimental intensities. Note that this “log-harmonic” potential has
only one single parameter, the weight depending on σ.

24.2.6 Data Quality and the Weight on Edata(X)

As already mentioned above, the weight plays a fundamental role in
calculating structures from experimental data. Within ISD, the weight
is estimated along with all other unknown parameters (see above). In
a standard structure calculation by minimization, the experimental
data are weighted empirically:wdata is set ad hoc and held constant dur-
ing structure calculation.

An unbiased empirical method to determine the optimal weight in
NMR is complete cross-validation, see Ref. 18 for a recent application.
Probability theory gives us another possibility to weight experimental
data in an objective way, as in the ISD approach14 described above.

Probabilistic analysis can also be used to derive an optimal weight
for a minimization approach19: By taking the negative logarithm of
Equation (24.7), the full posterior probability, including the nuisance
parameter σ, becomes:

(24.11)

where, for the lognormal model, .

The last term on the right-hand side of the joint hybrid energy,
Equation (24.11), is not included in the standard target function
Ehybrid, Equation (24.1). Both Z(σ), which originates in the normal-
ization of L (D |X, σ, I ), and π (σ ) are absent in usual optimization-
based approaches. It is the ratio of these two terms that allows us to
determine the error.

Naively, one might think that including the weight directly into
a restraint energy would favor large values for σ with the correspon-
ding weight approaching 0, since this would automatically minimize
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the restraint energy. However, in the joint target function Ejoint

Equation (24.11), two contributions counterbalance each other:19

χ2/σ 2 decreases when σ increases, thus preferring large values for the
error when Ehybrid is minimized with respect to the error. In contrast,
the term log[Z(σ)/π (σ )] is monotonically increasing with σ.19 The
ratio of the two terms shows a finite minimum, which can be used to
calculate the error, and correspondingly, the optimal weight.

Minimization of the resulting joint hybrid energy Ejoint(X,σ)
yields the most probable structure Xmax and the most probable error σmax.
In case of the log-normal model, Equation (24.9), we obtain σmax =

√χ2(Xmax)/(n + 1). Further analysis yields for the average weight

(24.12)

as an estimate. The average weight quantifies, in good approximation,
how well the structure fits the data, independent of the size of the
data set. The precision of the estimate, i.e. the width of the weight
distribution, in contrast, decreases with the square root of the num-
ber of data points,19 see Fig. 24.2.

To apply this estimate in the context of structure determination
by minimization, we can iteratively update the current weight. The
obtained weight is a conservative estimate since it is always smaller
than χ2(Xmax)/(n + 1), the most probable weight derived from the
most probable structure.

24.3 Probing Structural Dynamics by NMR

NMR is an ideal tool for probing dynamics occurring across a broad
hierarchy of time-scales (Fig. 24.4).

Difficulties arise in the specific interpretation and quantification
of the dynamic processes being observed. Raw experimental NMR
data allows the identification of the dynamically active regions in the
system over a given time-scale. However, this information is encoded
in a complex manner and does not directly provide specific informa-
tion about the molecular motions. To this end, experimental NMR

w
n
Xdata =
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data is complemented by geometric models, and increasingly, by
molecular dynamics (MD) simulation to characterize at an atomistic
level local dynamic processes and complex structural transitions.

The close connection between NMR experiment and computer
simulation has a long history, in particular between molecular dynam-
ics simulations and NMR experiments. Simulations are necessary to
interpret the data, and NMR experiments serve to improve force
fields.

New Frontiers in Characterizing Structure and Dynamics by NMR 669

FA

Fig. 24.4. Structural dynamics by NMR: Upper panel: type of dynamic process
occurring in the bio-molecular system. Central Panel: Type of NMR experiments to
probe dynamics across a particular time-scale. Lower Panel: Associated NMR observ-
ables that are probed. The time-scale is given at the top of the figure. For example:
Enzymatic kinetics and ligand binding generally occur on the micro- to milli-second
timescale, and can be probed using relaxation dispersion measurements and RDCs.
The NMR parameter probed in the relaxation dispersion experiment is either T2 (for
CPMG experiments) or T1ρ (for spin lock experiments).
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24.3.1 Experimental Approaches

Spin relaxation measurements provide precise information about
local dynamics on pico- to nano-second time-scales. The study of fast
time-scale dynamics in proteins remains a rapidly developing and
exciting field employing an increasing variety of experimental and
theoretical methods. The importance of fast time-scale dynamics
is often under-estimated: fast time-scale motions act to stabilize the
protein in its folded state, and their presence is a necessary pre-
requisite for slower time-scale dynamics involving large-scale collec-
tive motions.

Historically, fast peptide plane motions have regularly been char-
acterized using 15N spin relaxation. In order to provide a more com-
plete description of fast time-scale dynamics, numerous experiments
have been developed to characterize dynamics for vectors other than the
N–H vector in both the backbone and side-chains.20 Cross-correlated
relaxation (CCR), which arises from the interference of two relaxation
mechanisms such as the chemical shift anisotropy (CSA), and dipole-
dipole interaction has emerged as a powerful tool to study local
anisotropic dynamics.

Many biologically important processes, such as enzyme catalysis,
signal transduction, ligand binding, and allosteric regulation occur on
the micro- to milli-second time-scale. Despite their obvious impor-
tance, the study of these slow motions remains a challenge to both
experimentalists and theoreticians alike. The study of dynamics at
these longer time-scales are centered mostly on relaxation dispersion
and RDC measurements.

The characterization of motion by relaxation dispersion involves
measuring the excess transverse relaxation rate caused by the
exchange of nuclei between different conformations or sites with dif-
ferent characteristic chemical shifts. Recent methodological advances
in experimental techniques have extended both the time-scale of
observable dynamic processes21 and the sensitivity22 of the experi-
ments to exchange processes23,24 and ligand binding.25 Relaxation
dispersion measurements provide information concerning the loca-
tion of dynamically active sites in the molecule, the exchange rates
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between the different conformational states, and their relative free
energies (and thus their populations). However, unfortunately these
experiments do not provide any direct structural information about
the different conformational states, and a structural model of the
observed dynamic processes is difficult to extract, making it necessary
to combine this information with other experimental data26 or MD
simulations.

In the presence of a suitable alignment medium, RDCs report an
average over all orientations of the magnetic dipolar interaction ten-
sor up to a time-scale defined by the inverse of the alignment-induced
coupling, making them sensitive to dynamic processes up to several
milli-seconds. The ability of RDCs to probe dynamics on extended
time-scales was recognized early.3 In comparison to relaxation disper-
sion data, RDCs provide a detailed quantitative view of the time- and
ensemble averaged protein structure and the amplitude and direction
of slow time-scale motions.

24.3.2 Interpreting Experimental Measures
of Dynamics

In analogy to structural determination, the interpretation of dynam-
ics from NMR data needs complementary information from theory
such as motional models or MD simulations. Interpretation of spin
relaxation data probing pico- to nano-second dynamics traditionally
employs the “model-free”27 approach, in which the local internal
motions are characterized using two parameters (an order parameter
defining the spatial restriction of the motion, and a relaxation time)
without making reference to a specific motional model. On the other
hand, numerous explicit analytical models have been developed to
describe fast time-scale local dynamic fluctuations.28–30 One of the
most popular anisotropic models is the 3D-Gaussian Axial
Fluctuation (GAF) model31 based on the observation of peptide plane
motions extracted from a MD trajectory. Alternative approaches to
interpreting spin relaxation make use of the strong relationship
between structure and local dynamics32,33 to rapidly predict 15N order
parameters from a known structure.
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The study of fast local dynamic fluctuations using MD simulation
is now routine. Experimentally determined auto-relaxation order
parameters are regularly used to gauge the accuracy of MD simula-
tions,34 and more recently, MD simulations have been employed to
study cross-correlated relaxation rates.35 Continued research in the
area of force-field development36 has resulted in a marked improve-
ment in the prediction of order parameters.37 The inclusion of polar-
ization and quantum effects of the atomic nuclei in the next
generation of force fields will no doubt lead to further improvement.
However, discrepancies between experimental and simulated order
parameters may not be solely due to inadequacies in the force fields,
but to incomplete conformational sampling.38

Despite considerable advances in our interpretation of spin relax-
ation data, many issues remain unresolved in the analysis of local
dynamics: e.g. different models of molecular motion are equally capa-
ble of reproducing the experimental results. Many long-held assump-
tions concerning the local molecular geometry of the peptide plane,
and in particular, the position of the amino-proton are being revis-
ited. Also, the generally accepted idea that fast internal motion and
molecular tumbling can be treated independently has been brought
into question.39

The situation is even more complicated for slow time-scale
motions deduced from RDC measurements. Even today, there are
conflicting views concerning the sensitivity of RDCs to slow time-
scale motions and the ability to separate the contributions to RDCs
arising from structural and dynamic properties of the system. Thus,
several studies on proto-typical systems40,41 have concluded that a sin-
gle copy representation of the molecule is in general sufficient to
explain the data, and only a small subset of residues exhibit large
amplitude fluctuations on slower time-scales.

In contrast to this, simultaneous structure-dynamics determina-
tion approaches have suggested the presence of significant slow time-
scale molecular motions. Independent studies performed on Ubiquitin
using model-free approaches42–44 showed an effective homogeneous
distribution of long time-scale dynamics across the molecule. A 3D-GAF
based RDC analysis of the protein GB3 suggested a heterogeneous
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distribution of highly anisotropic long time-scale dynamics.45,46 In
part, the discrepancy between different analyses can be ascribed to the
very small number of systems studied in detail to date, and no general
trends can be expected as yet. However, considering the fact that the
two proteins studied in most detail (GB3 and ubiquitin) show a sim-
ilar fold, it is surprising that the observed distribution of slow motions
appear to be so different.

Despite the continual increase in both available computational
power and the efficiency of contemporary algorithms, the simula-
tion of slow motions in proteins involving stochastic transitions
over large energy barriers on the rugged and highly structured
potential energy surface remains a challenging and active field of
research. Considerable progress has been made in the development
of new methods to sample the conformational space of proteins
more efficiently, such as in conformational flooding,47 accelerated
MD,48 and others reviewed recently.49 “Biased potential” MD sim-
ulations have successfully identified large-scale slow collective
motions in proteins.50,51 A 0.2µ s “brute-force” MD simulation of
ubiquitin showed considerable dynamics occurring on time-scales
beyond those probed by spin-relaxation measurements,52 and very
recently, accelerated MD simulations of the GB3 domain reliably
reproduced RDC-based order parameters.38 In light of these early
successes, the study of long time-scale dynamics using a combina-
tion of MD simulation and experimental NMR holds great prom-
ise for the future.

24.3.3 Simultaneous Calculation of
Structure and Dynamics

The most severe approximation to structure determination is the gen-
eral assumption that the experimental data can be represented by a
single structure, neglecting effects of internal dynamics. The ISD
approach deals with statistical uncertainties in a rigorous manner,
maintaining, however, the single copy model. Any ensembles gener-
ated by ISD or repeated minimization cannot represent true dynam-
ics, but only the lack of information. It is therefore not meaningful to
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try to optimize the precision of the ensemble to some expected (or
measured) dynamical property.

Several attempts to go beyond the single-structure approximation
have been reported, using both molecular modeling approaches and
MD simulation. The “Flexible Meccano” approach provides a simul-
taneous structure-dynamic model for RDC data: the model exploits
the dependence of the measured RDCs on the orientation of the pep-
tide plane and includes a single parameter describing the anisotropic
motion about each of the 3D-GAF axes.46

MD simulations have been employed to refine ensembles of struc-
tures,53 trajectories,54 or ensembles of trajectories against the available
experimental data. The latter variant55 includes both structural and
dynamic data in the fitting process, by using a potential derived from
observed order parameters in the ensemble calculation. In these
approaches, not only the MD force field is used to complement the
absence of information on structural features, but also the motion
generated by the simulation is used as a model to explain dynamical
features. Several difficulties are associated with these approaches:
Merely generating an ensemble of structures does not include the rel-
ative free energy weighting of each member of the ensemble; also,
adding a pseudo-potential for the experimental data in a MD simula-
tion perturbs the dynamics in a non-predictable manner, making a
detailed analysis of the resulting trajectories difficult; and finally, the
force fields are themselves subject to continual improvement and are
capable of reproducing the NMR data to varying degrees of accuracy.

A serious consideration with these approaches is the danger of
over-fitting the data, by introducing more degrees of freedom than
necessary. Cross-validation can be used to try to determine the ideal
number of conformers in an ensemble refinement.56 However, recent
experiences in x-ray crystal refinement57 make it doubtful that cross-
validation is sufficient as a criterion.

24.4 Future Outlook

The fundamental challenge to NMR remains to combine and recon-
cile all the available information, both structural and dynamic, into a
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complete, and therefore, intrinsically more accurate representation of the
conformational space sampled by bio-molecular systems, with the aim of
resolving the relationship between structure, dynamics, and function.

One of the most appealing aspects of NMR is that it is not lim-
ited to states that are well-structured, and an exciting new application
of NMR-based experiments has emerged in the field of natively
unstructured proteins. Fully or partially natively unstructured pro-
teins make up a substantial part of protein sequences coded in eukary-
otic genomes58 and they play a key role in some of the most important
biological processes and degenerative pathology. It is possible to
measure small but finite RDCs from natively unstructured or
unfolded proteins.59 The interpretation of these RDCs is rather com-
plex, since a single structure is certainly no longer appropriate, rather
a large ensemble of interchanging structures are required to fully
describe the conformational behavior of such systems. Such ensem-
bles can be generated by empirical database random sampling60,61 or
alternatively by extended free energy sampling MD approaches.62

The application of NMR methods can be extended to the charac-
terization of molecular interactions and dynamics in very large molec-
ular assemblies63 such as the proteasome.64 Importantly, NMR allows
the study of transient interactions and of low-affinity complexes.65,66

Even weakly populated “excited” states of proteins can be detected.25

With the increased speed and reliability of X-ray crystal structure
determination, the true power of NMR will thus lie in its applicabil-
ity to a wide range of problems in structural biology, and its comple-
mentarity to other experimental techniques. Thus, the dynamics and
interactions of a structure solved by X-ray crystallography can be char-
acterized by NMR spectroscopy, making use of the best of the two
worlds: the speed and the accuracy of X-ray crystallography, and the
detailed study of dynamics and interaction that NMR can offer.
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Chapter 25

Docking for Neglected Diseases
as Community Efforts

M. Podvinec*,†, T. Schwede† and M. C. Peitsch‡

25.1 Introduction

In the previous chapters, the importance of structure-based compu-
tational approaches to the development of drugs, from the selection
of first hits to the prediction of pharmacological and ADME/Tox
properties of candidate compounds, was discussed. Here, we shall dis-
cuss how the current state of the art in computational simulation can
be combined with the recent large increase in available computational
power driven by new resources, such as grid computing or commu-
nity computing. Moreover, we shall discuss whether this combination
can serve as a viable model for the development of drug candidates
against diseases of special public interest, for instance, neglected trop-
ical diseases.

Early in the drug discovery process, and once a suitable drug tar-
get has been identified for a given disease, a crucial step will be to
identify small molecule ligands that bind to this target (so-called hits)
and alter its activity (i.e. inhibition or activation). This is performed
by screening large collections of compounds in dedicated assays. The
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resulting hits can, if confirmed by one or more other relevant biolog-
ical assays, become the starting point of a compound optimization
process which aims at identifying analogues with a maximized thera-
peutic window, i.e. high efficacy for low toxicity. While compound
screening is predominantly an experimental approach, structure-based
computational approaches (so-called virtual screening) provide an
alternative and complementary way to identify such hits. If the three-
dimensional structure of the protein target is not available, computa-
tional approaches can exploit knowledge about the structure of
known active compounds. With a reasonable number of pharmaco-
logically characterized compounds, the study of the relationship
between their structure and the respective activities can help divulge
structural features shared by the active compounds. Understanding
the ensemble of steric and electronic features necessary to ensure opti-
mal interaction with the biological target, allows pharmacophore
searches to be performed (see Chapter 18). These searches evaluate
how individual compounds match the ensemble of relevant features
and thereby allow scientists to sift through large collections of small
molecular structures to pick and choose potential hits pending valida-
tion in further laboratory assays.

In cases where high-quality experimental three-dimensional struc-
tures or models of the target protein alone or in complex with a lig-
and are available, molecular docking approaches (see Chapter 17) can
be used to simulate the non-bonded chemical interactions between
the target protein and individual compounds stored in large libraries.
Notably, this approach is of particular interest when none or only very
few active compounds are available for a protein target. In principle,
the intra- and intermolecular interactions of a protein-ligand complex
can be simulated using molecular dynamics of the molecules in solu-
tion. In practice, however, the processes and molecular rearrange-
ments observed in small molecule binding occur on time scales which
currently preclude their accurate simulation as the available comput-
ing power is too low. Therefore, several docking algorithms have been
designed that implement a number of simplifying assumptions and
optimization strategies to enable docking with an acceptable amount
of computational effort. 
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A commonly voiced skepticism regarding the validity of docking
in drug discovery considers that the simplification of the physics of
ligand binding, often embodied in empirical scoring functions, and
the truncations of the conformational search space are problematic
and limit the accuracy of binding predictions obtained by this
approach. This criticism is fundamentally correct; however, the extent
of the introduced errors is debatable. Recent publications from both
the academia and industry convincingly demonstrate that careful
application of structure-based virtual screening in combination with
follow-up experimental verification can indeed lead to the discovery
of new compounds active against diverse clinically relevant drug tar-
gets, e.g. NF-κB,1 the nuclear receptor PPARγ,2 or the CK2 protein
kinase,3 and are able to complement assay-based high-throughput
screening approaches.4 Further examples of successful structure-based
virtual screening have recently been summarized in Ref. 5.

The computational intensity of published docking algorithms varies
significantly. At one end of the spectrum, fast, rigid docking algo-
rithms such as FRED can process dozens of compounds per second
on a single modern CPU.6 More typical, however, are processing times
of one to several minutes per compound, e.g. using the AutoDock or
Glide XP algorithms.7,8 On the far end of the spectrum are techniques
that estimate binding free energies based on molecular dynamics that
require several CPU days to complete, rendering them currently still
too complex to be used on large compound sets.9,10

25.2 Grid Computing

Traditionally, high-performance computing is done on large, mono-
lithic multiprocessor machines with shared memory. These computers
allow for fine-grained parallelization of tasks, as large sets of data can
be exchanged efficiently between processes and processors. The draw-
backs are the high initial and maintenance cost of such specialized sys-
tems, and the fact that these resources quickly become coveted assets.
Over the last decade, cluster systems built from inexpensive com-
modity hardware have become popular for scientific and engineering
applications wherever parallelization can be realized on a coarser level.
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Inter-node process communication is commonly achieved through
the message-passing interface (MPI) standard.11 Compute clusters
managed by a batch-queue local resource management system
(LRMS) are the standard infrastructure for most computational prob-
lems in drug development today.

In recent years, grid computing has emerged as a new trend in
high-performance computing,12,13 a form of parallel computing well
suited to tackle embarrassingly parallel problems. Here, a big problem
can simply be subdivided into a large number of smaller problems that
are data-independent of each other. At its core, grid computing pro-
motes the unification of geographically and organizationally diverse
computing resources, storage elements and even experimental instru-
mentation into a single-sign-on, decentralized entity that provides com-
puting power on demand. In such an environment, compute elements
can be anything from massively multiparallel computers to desktop PCs
that process data during idle times of their CPU. While compute
clusters are built as homogeneously as possible, grids are inherently
heterogeneous in terms of hard- and software, and interfaces have to be
defined to allow these disparate resources to communicate. Practically,
this requires a software infrastructure (often referred to as grid middle-
ware) that creates the necessary framework for authenticated, secure
exchange of data, resource brokering to match job requirements and
site availabilities, and monitoring and accounting of resource and job
states, to allow computation on heterogeneous computational
resources without the end user needing to know the precise details of
the system configuration where his job is being executed.

A number of feature-rich middleware frameworks are currently
in use and constantly being enhanced, such as NorduGrid ARC/
KnowARC,14 gLite,15 Condor,16 Globus,17 UNICORE,18 Univa UD
Cluster Express/MetaProcessor,19 or the Berkeley Open Infrastructure
for Network Computing (BOINC),20 to name just a few examples.
Interestingly, while unification of resource access is at the heart of grid
computing, the development of unified interfaces between the mid-
dlewares themselves has only recently begun, e.g. by scheduling grid
jobs from gLite or Globus and Condor, and by making ARC and
gLite interoperable.
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On the global scene, there are a number of public PC grids that
attract the attention of volunteers to contribute their computing
capacity to worthy causes. The first volunteer grid to gain mainstream
media attention was SETI@home from UC Berkeley,21,22 where par-
ticipating computers analyze radio astronomy data in an ongoing
search for signals of extraterrestrial intelligent origin. The same group
later developed the open-source BOINC infrastructure for volunteer
computation, which currently supports more than 20 large-scale
computing projects.20,23 Distributed computing projects have shown
their ability to deal with a range of computationally complex prob-
lems in mathematics, cryptography, epidemiology, climate prediction
or accelerator design.24–27 PC Grids have also been used on a number
of biomedical research problems, and one of these projects, the
folding@home project run by the group of V. Pande28 has recently
announced its “virtual supercomputer” to constitute the largest
known computer to date, having reached a performance peak of 1.2
petaflops.29 From these numbers, it becomes clear that computation-
ally intense projects that have the scientific and moral appeal to cap-
ture the imagination of the public can tap into very significant
distributed computing resources, as long as the problem can be
adapted to a grid computing model. On a more modest scale, desk-
top PC grids have been successfully deployed in a number of academic
institutions and companies, ours including, to better utilize already
existing compute infrastructure. 

25.3 Grid Computing in Biomedical Research

Modern biology has become a science of information, analysis and
prediction, and computing is firmly established as an essential com-
ponent of biological research. It is therefore no surprise that compu-
tational biology is, after high-energy physics, among the most avid
adopters of grid-based approaches for data management and process-
ing.30 Consequently, projects interested in answering chemical or bio-
medical questions using grid computing have emerged as virtual
organizations within many grid projects, such as the Biomed virtual
organization in EGEE or the NDGF BioGrid project, or as independent
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trans-institutional organizations, such as BIRN, the NIH biomedical
informatics research network, the caBIG initiative of the US National
Cancer Institute, the myGRID project in the UK, or the HealthGrid
initiative.31 Along with a handful of other life sciences applications,
virtual compound screening (high-throughput docking) is a prime
example of an application well-adapted to grid computing. Indeed,
docking a molecule into a binding site is a discrete operation that can
be executed for all molecules in a library in parallel.

The advantages of using grid computing in molecular docking
campaigns are evident. Grid-based computations promise to provide
ample computational resources, allowing the execution of even
more elaborate screening campaigns where increasingly large com-
pound libraries are, e.g. docked into receptor structure ensembles,
or where more rigorous but time-consuming procedures for the
sampling of the conformational space and for the scoring of result-
ing poses can be used, leading to a comprehensive and more accu-
rate sampling and evaluation of the conformational, enantiomeric
and tautomeric states of each ligand, including the consideration of
multiple protonation states. Moreover, a number of protocols for
ligand docking have been published that are able to take induced fit
of the receptor or ligand polarization in the environment of the
receptor into account. Both phenomena are known to be crucial in
some cases of ligand binding, but their treatment is prohibitive in
time, unless computational resources are considerably increased.
This barrier can be lifted by accessing the power of distributed com-
puters through grid computing.

To efficiently perform large-scale docking on a grid infrastructure,
a number of non-trivial challenges specific to the grid computing
domain need to be met. In contrast to computation on Linux clus-
ters, which are common today in academic and industrial molecular
modeling groups, the virtual cluster formed through grid computing
is dynamic and heterogeneous. Remote compute centers may occa-
sionally only provide backfill capacity, and may only make their
resources available as long as there are no queued computations with
higher priority (e.g. from in-house research groups or time-critical).
In our experience, alongside high-performance clusters, individual
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desktop PCs can provide significant resources to a mixed grid com-
puting approach able to federate the two types of computers.

In most cases, grid computing environments are therefore
heterogeneous in terms of the type of CPU, operating system, local
resource management system, and network access policies. This het-
erogeneity is a major challenge to successful grid computation. Most
importantly, software in the field of computational biology and
chemoinformatics has often been developed on a single computa-
tional platform without much investment to achieve portability. We
and others experienced that many software packages are not numeri-
cally stable when executed on different hardware or software plat-
forms,32 (F. Grey, cited in Ref. 33). Such differences may lead to
contradictory scientific conclusions depending on the platform where
a calculation was performed. There is, therefore, a clear need for val-
idation of numerical stability of algorithms used on grid architectures
and, in some cases, additional porting effort. 

Efficient distribution, updating, collection and management of
the large data sets generated by large-scale docking campaigns is in
itself a daunting task, and one that many standard applications and
grid middleware stacks are not currently fully equipped to deal with.
Moreover, in contrast to traditional batch queues, a docking pipeline
needs to be able to flexibly deal with the large number of failed and
erroneous work units caused by the dynamic and heterogeneous
nature of the resource. For the time being, an end user is often left to
create his own work around these problems.

One of the aims of the SwissBioGrid initiative was to further
explore the requirements for a grid middleware to support computa-
tional life sciences. Some of the issues mentioned previously were
identified in the course of this project, as well as partially addressed.32

One outcome was the development of ProtoGRID, a simple frame-
work for the execution of grid jobs on the SwissBioGrid computing
resources. This middleware allows the submission of computational
jobs to compute clusters managed by a diverse set of LRMS (SGE,
PBSpro, Torque, Platform LSF), as well as to PC-Grids managed by
GridMP. Three features were central to the design of ProtoGRID.
1) Users must be able to use pre-deployed software, but not deploy
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their own binaries for security and cross-platform stability issues;
2) The grid middleware must handle input and output data for grid
jobs using a data proxy that intelligently caches reusable data; 3) The
system must be flexible in accommodating local site policies and con-
figuration settings. The software consists of two Linux daemons run-
ning centrally, the Grid Node Manager and Grid Data Manager, that
deal with resource lookup and brokering, as well as data distribution.
For each local resource, a QueueWrapper daemon is responsible for
publishing current status information to the resource broker, as well
as polling the scheduler and data manager for jobs and data sets. This
system was successfully used to distribute docking tasks among four
geographically and institutionally compute resources. Some perform-
ance metrics can be found in Ref. 32. 

25.4 Grid-based Computation to Discover
Drug Candidates Against Targets
of Public Interest

As mentioned above, grid computing is an attractive platform and
well suited to process high-throughput docking of chemical com-
pounds into protein 3D-structures. More importantly, docking
efforts against targets of public interest have excellent chances of gain-
ing not only access to large transnational compute grids, but also of
recruiting many altruistic volunteers donating their workstations idle
time to PC-grids. Some volunteers, voices can be found in Ref. 34.

Not surprisingly, a number of drug discovery projects have started
to make use of such grid resources and public volunteers, aiming at
three types of disease targets: 

(1) Targets with a peak in public awareness: In the wake of the ter-
rorist attacks in the US in 2001, projects targeting smallpox and
anthrax were launched.35 Other targets belonging to this class are
SARS36 or the avian flu neuraminidase.37 These targets, receiving
intense media attention, can muster large computing resources in
a short time. The narrow time window and therefore the rush in
setting up such campaigns, however, often lead to a constellation
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where large amounts of data are crunched in a short time with an
unclear plan of how these results will be transferred to subse-
quent in vitro and in vivo assays.

(2) Diseases that affect large parts of the population and/or present
unmet clinical needs. Examples for this class are cancer or AIDS.38,39

Efforts targeting unmet clinical needs have good chances of
obtaining support from funding agencies and resource providers,
and can rely on a large number of sympathetic volunteers.

(3) Targets belonging to the class of neglected diseases: These are
afflictions that mainly affect the developing countries, and there-
fore hold little commercial interest. Hence, they rarely attract
large investments in drug discovery and development. In recent
years, however, this class of diseases has attracted increasing
attention from NGOs, academic and industrial players, and has
led to the formation of private-public partnerships.40 As a con-
sequence, a number of drug discovery efforts against this class of
targets have been launched. They rely on grid-based virtual
screening of public compound libraries to provide a starting
point of a medicine development program against diseases, such
as malaria or dengue.32,41

We believe that a strong case can be made in favor of the last of
these classes and in particular for infectious diseases where private-
public partnerships are an essential strategy to fill the drug discov-
ery pipelines.42 While the second class of projects, targeting large
unmet clinical needs, certainly constitutes a valid and worthy cause,
these targets are at the same time of high commercial interest and
thus are being actively pursued by pharmaceutical companies. In
stark contrast, neglected diseases clearly are not primary discovery
targets in commercial research. The public-private partnership
model, however, can provide a novel approach to drug discovery,
alleviating at least some of the high costs of drug discovery and
development through collaboration with academia and non-govern-
mental organizations.

We foresee a strong emphasis on computational structure-based
methods in such projects, which provides a dual opportunity: firstly,
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computational approaches to drug discovery can be used to save sub-
stantial parts of the high costs spent in a small-molecule screening and
optimization campaigns. Secondly, by combining the current best
thinking in computational drug discovery and virtually unlimited
computing resources, we can explore the extent to which computa-
tional methods can speed up and facilitate the selection of lead com-
pounds. Such a private-public partnership would have access to large
computational resources that allow the docking of large publicly
available libraries of (purchasable) chemical compounds, e.g. from the
ZINC database.43 Results from these docking studies could then be
refined by more time-consuming molecular dynamics-based methods
like the MM-GBSA (Molecular Mechanics-Generalized Born Surface
Area) or LIECE (Linear Interaction Energy with Continuum
Electrostatics) approaches.44,45 The hits identified by these approaches
would then be transferred to academic or industrial laboratories for
experimental validation. Such a setup can generate the momentum
needed to jump-start a drug discovery program by a pharmaceutical
industry partner with the required know-how in drug discovery and
development. 

25.5 Public-Private Partnerships: A Model
for Drug Discovery Against Neglected
Diseases

In the following, we outline a project that probes the feasibility of
public-private partnerships in finding and developing drug candidates
against neglected diseases. For the private partners, such an arrange-
ment is of interest, as they can build on academic expertise in target
identification and validation, while jumpstarting the drug discovery
process with a list of selected compound hits. Conversely, collaborat-
ing with an industry partner is of benefit to academic drug discovery
efforts, which lack the necessary drug development know-how. As
compounds progress beyond the initial hit stage, academia needs to
rely on the rich drug development experience of the industrial setting. 

The project described below targets dengue fever as an exemplary
neglected disease, and was conceived in 2004 to demonstrate the
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validity of the public-private partnership concept. We started the proj-
ect by seeking a strong partnership for the computational and exper-
imental parts of the project: The Swiss Institute of Bioinformatics and
the University of Basel act as academic partners and provide structural
bioinformatics expertise. The Novartis Institute for Tropical Diseases
(NITD) in Singapore is a drug discovery research institute dedicated
to finding new drugs for the treatment of tropical diseases, and con-
tributes the experimental follow-up. On the computational side,
Schrödinger, Llc provides essential computational chemistry tools and
specific scientific expertise. As the project as described here has
extraordinary demands in terms of computing and data storage, we
co-founded the SwissBioGrid initiative to establish grid computing
resources to the Swiss biomedical research community.32

The target disease, dengue fever, is a viral disease that is transmit-
ted by mosquitoes, predominantly by Aedes aegyptii. Fifty to 100 mil-
lion cases of dengue fever are estimated to occur annually, with the
numbers on the rise, due to increasing urbanization (the Aedes mos-
quito thrives well in urban areas) and the failure to effectively control
the spread of the mosquito vector. For 40% of the human population,
dengue is a daily fact of life, as they live in areas where the virus is
endemic. Initial disease symptoms are flu-like, comprising fever,
headache and severe myalgia (break-bone fever). More severe cases
can progress into dengue hemorrhagic fever and dengue shock syn-
drome with considerable lethality. The current treatment is non-spe-
cific and symptomatic with a regimen of analgesics and fluid
replacement. 

The dengue virus belongs to the flaviviridae genus of enveloped
viruses and exists in four distinct serotypes. It possesses a single-
stranded positive RNA genome, which is translated into a single
polyprotein during the viral life cycle. Subsequently, the polyprotein
is cleaved by cellular and viral proteases into 10 mature proteins.
Three of the proteins have a structural role (C, prM, and E). In addi-
tion, seven non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A,
NS4B and NS5) are formed. Of many of these non-structural pro-
teins, the exact role or roles in the viral life cycle are not yet fully
understood. Due to the compact viral genome and repertoire of
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proteins, there is a conspicuous accumulation of multifunctional
proteins.46,47

Among the 10 proteins processed from the viral polyprotein,
three can be considered of special interest as targets for drug
development:

1. Glycoprotein E, along with the viral M protein, composes the viral
surface. Glycoprotein E plays an important role in opening the
viral envelope upon entry into the cell. The structure of the E
protein has been determined in several oligomerization states.48,49

2. Non-structural protein 3 (NS3), a multifunctional protein which
exhibits protease, helicase, nucleoside 5′-triphosphatase and
5′-terminal RNA triphosphatase activities. Of these, at least two
functions have been demonstrated to be essential for the virus.
The proteolytic activity of NS3 maps to the N-terminal region of
this protein. It is involved in cleaving the viral polyprotein into the
mature protein forms. At the C-terminal part of NS3, the RNA
helicase domain is located. In the flaviviridae family, this function
is essential: viruses with impaired helicase activity have been
shown to be unable to replicate. This enzyme is capable of
unwinding duplex RNA structures by disrupting the inter-strand
hydrogen bonds. This activity is associated with NTP hydrolysis.
Recently, the structure of the whole NS3 protein in complex with
18 residues of the NS2B cofactor has been determined.50

3. The non-structural protein 5 (NS5), likewise, demonstrates sev-
eral activities: at its N-terminus, a S-adenosyl L-methionine-
dependent RNA methyltransferase is found. At the C-terminus,
motifs characteristic of RNA-dependent RNA-polymerases are
found. The methyltransferase is involved in the posttranscriptional
capping process of RNA. This enzyme catalyzes the methylation
of the cap-guanoside at either the 2′-oxygen of the sugar moiety
or the 7-nitrogen of the guanine. For host RNA, these reactions
occur in the nucleus. Since viral RNA is produced in the cyto-
plasm of the infected cells, many viruses provide their own cap-
ping machinery while relying on the host for subsequent
translation of mature mRNAs. As the cellular and viral capping
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apparatus differs significantly in fungi, metazoans, and humans,51

the viral methyltransferase is an enzyme that can potentially be
specifically targeted. The structure of the dengue NS5 methyl-
transferase has been solved alone or in complex with nucleoside
analogues and S-adenosyl L-homocysteine (AdoHcy).52,53

To select the most promising target to focus our initial efforts on,
we have analyzed the prevalence of mutations by considering the pub-
lished sequences of clinical dengue isolates of all the serotypes. In this
study, unsurprisingly, the amino acid sequences of NS3 and NS5
appeared to be more conserved than that of the envelope protein.
After further structural examinations, we chose the NS5 methyltrans-
ferase as our target of first choice. Here, competitive inhibition is fea-
sible at two binding sites: the RNA-cap binding site, and the site of
the cofactor, S-adenosyl L-methionine.

We next composed a library of commercially available compounds,
predominantly from the ZINC database,43 totaling close to 6 million
individual compounds. We considered purchasable compounds only,
as these stand a reasonable chance of being available in sufficient
amounts for subsequent in vitro validation. Next, all the compounds
were docked into each of the methyltransferase binding sites. No prior
selection according to drug-likeness or similarity criteria was per-
formed. This is in contrast to the widespread practice of selecting a
“focused library” before docking. We opted for this approach for two
reasons: only a few inhibitors of the dengue methyltransferase have
been described, and focusing a library on similarity to these may erro-
neously restrict our search space. Moreover, using a grid computing
approach, we can consider computational resources as non-limiting.

Docking calculations were performed using the Glide 4.5 algo-
rithm, following a three-stage protocol, ranging from a fast initial
“high-throughput” screen to the final calculation using the extra-
precision Glide XP protocol. Figure 25.1 compares the best docked
pose of the cognate ligands AdoHcy (a) and ribavirin triphosphate
(RTP) (b) as compared to the experimentally determined structure.

After each screening round, compounds ranked poorly were dis-
carded, resulting in a progressively reduced selection of compounds.
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The majority of the docking calculations were performed on a PC
grid, underlining the usefulness of such a resource for parallel dock-
ing approaches. In total, more than 7.5 years of CPU time were spent
in the docking calculations, which were completed within 72 days,
including filtering and analysis steps between screening runs, which
were not fully automated. For each binding site, 4000 top-scoring
compounds were then subjected to post-processing, where a more
rigorous XP docking protocol, starting from a set of alternative con-
formers, was executed. Finally, three scoring function variants were
examined: the original Glide XP score (GScore), a variant of GScore
accounting for ligand strain54 and binding energy as estimated by the
MM-GBSA approach.44 By adding up individual ranks, compounds
were given a consensus rank. Finally, molecules top-ranked in the
consensus score or in each of the constituent scores were collected
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Fig. 25.1. Experimentally determined binding mode (green sticks) from PDB:1R6A
and re-docked conformation (orange sticks) for NS5 ligands. (a) AdoHcy is bound
in an elongated binding pocket. Reproduction of the adenine moiety pose is near-
perfect, and hydrogen bonds to the amino acid group of the molecule are consistent
between experimental and docked structure. (b) For docking, the position of Lys22
was changed to another rotamer to slightly open the site near the imidazole group of
RTP. We expect that this caused the slightly altered placement of the ligand above
Phe25. Notably, RTP was found among the top compounds selected for testing in
our docking campaign.
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into a list for visual inspection. A “tasting panel” of five experts then
visually inspected these short lists. From their recommendations,
200 molecules were finally selected for in vitro validation.

In less than three months, we were thus able to reduce an initial
compound list of 6 million molecules to 200 plausible hits that are
commercially available. Currently, these compounds are being assayed
for their ability to inhibit the function of the viral methyltransferase.
In these assays, the transfer of a labeled methyl group from the
cofactor SAM to an RNA cap substrate is measured in the presence of
potential inhibitor compounds.53 These measurements will lead to
IC50 (concentration at half-maximal inhibition) values. Viral replica-
tion assays, where the increase of viral RNA or protein in suitable
mammalian cells is followed in the presence of suspected inhibitor
compounds, lead to the determination of EC50 (concentration at half-
maximal effect) values. While this work is currently ongoing, we
expect to find low-micromolar inhibitors of the methyltransferase. We
recently performed a smaller study, starting with 127 000 compounds
of the National Cancer Institute Developmental Therapeutics Library.
Here, two active compounds with low-micromolar IC50 were identi-
fied among 36 tested high-ranking compounds.

25.6 Discussion

We believe that the scientific focus of community-based public-private
partnerships is slightly different from virtual screening campaigns car-
ried out in academic or industrial lead finding programs. In a first
approximation, the available computer power can be considered non-
limiting, as evidenced by some of the larger international volunteer
computing efforts mentioned above. While porting applications to
support a grid approach is not a trivial and short-time undertaking,
the rewards in terms of accessible, relatively cheap computing power
are substantial. Therefore, such a scenario can become a fertile
ground on which to explore how much computational chemistry and
biology can achieve in drug discovery, the aim being to use exhaus-
tive screening and further refinement protocols to reduce costly lab-
oratory assays to the necessary minimum. 
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In our opinion, the most crucial element in an endeavor as pre-
sented here is the inclusion of an experimentalist group as collabora-
tors even before the start of the large-scale docking. While many
docking campaigns report impressive enrichment, simple virtual
screening does not go far enough. There is a number of high-profile,
extremely large screening projects that have not produced any results
beyond the lists of scored compounds that may or may not be made
publicly available. Evidently, the plan of waiting for an experimental
group to pick up these results and continue work is failing. One rea-
son may be the unwillingness of a laboratory to invest substantial
amounts of time and material costs into an abstract artifact, such as
a list of compound identifiers. With close scientific interactions and
involvement already established between the computational team
and the experimentalists prior to the screening phase, we have been
able to foster interdisciplinary trust and collaboration necessary for
such a project. In the final analysis, finding compounds active in a
laboratory assay is the touchstone by which to measure the success
of such a campaign.

If scientifically sound, a public-private collaborative project has
the potential to rapidly generate a shortlist of interesting compounds
and thus kick start the drug discovery program. We must appreciate
this work in the appropriate context. Developing a drug is a lengthy
and expensive endeavor. In the year 2000, an average of US$802 mil-
lion were spent per successfully developed drug, and the process took
12 years on the average.55 Knowing that significant compound attri-
tion occurs even at the late-stage drug development, and comparing this
large cost to the savings generated by a successful high-throughput
docking campaign, which may amount to US$5–10 million, one may
wonder whether this effort is at all enough to make a difference. We
firmly believe the contribution to be much more significant than its
direct monetary value may suggest. Indeed, beyond monetary sav-
ings, public-private partnerships are interesting in terms of bidirec-
tional technology and knowledge transfer, and if well done and
managed, harness the enthusiasm of the public sector to drive proj-
ects which may not otherwise be resourced. Moreover, the successful
selection of hits from a virtual screen can make the crucial difference
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in getting a drug development program underway. Another impor-
tant factor may be the concept of “piggy-backing,”42 where a drug
may be developed for two indications, one of which having the poten-
tial to recover at least some of the development costs. 

Clearly, there are various ways of starting a drug discovery pro-
gram, including high-throughput docking, high-throughput experi-
mental screening, selection of focused libraries, concentrating on
natural compound libraries, and many of these have been suggested
as the starting point to generate new leads against neglected diseases.
We and others have decided to place a strong emphasis on computa-
tional approaches, as these can be carried out with more easily acces-
sible resources than the facilities and budget necessary to perform
high-throughput screening. 

The general consensus is that computational structural biology
approaches should be measured by how well they reproduce experi-
mental evidence, and in the case of docking, how well they reproduce
the hit list obtained from a high-throughput screening campaign.
Interestingly, though, the most potent inhibitor of CK2 kinase was
discovered by docking and not experimental means.3 The cumulative
experience of many subsequent docking and screening campaign
shows that by and large these approaches are complementary and
yield hit lists which do not completely overlap. The combined hit lists
are, therefore, a better starting point for lead selection and often pro-
vide scaffolds coming from both docking and screening campaigns.
Given the recent successes in hit and lead identification in the indus-
try, docking has become a routine process3 which is applied whenever
enough structural information about the protein target is available.

25.7 Future Outlook

As a consequence of the case study described above, we believe that
there is great potential in establishing an in silico drug discovery plat-
form focused on neglected diseases. The core role of this platform
would be to manage all the computational aspects of such projects,
through the creation of an in silico pipeline implementing standardized
ways to move targets and compounds through the docking process,
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to manage and to analyze the data. Everything else would be kept
modular — target disease, participating institutions and companies,
and computational approaches (e.g. selection of docking algorithms
and their parameters, compound libraries, compound selection flow
chart, etc.). The platform would be governed by a body ensuring the
scientific soundness of the proposals and controlling the quality of the
produced data.

While this chapter focused on the automated docking of large
compound libraries into a viral target enzyme, the computational
pipeline used in this context could be extended to include further ele-
ments of drug discovery amenable to in silico approaches. Indeed the
in silico drug discovery pipeline56,57 could start with the homology-
based 3D-structure modeling of the protein targets,58 continue with
the virtual screening of compounds for hit finding, employ targeted
docking to support lead optimization, and producing ADME and
toxicology predictions and alerts. Many of the individual elements of
this pipeline already exist, but need to be integrated into a coherent
pipeline that flexibly provides this computational toolbox to drug dis-
covery projects.

Neglected diseases are an ideal topic for such ventures — on the
one hand, this is a just cause for which many companies and individ-
uals are willing to donate some of their efforts, resources or time; on
the other, there is a dire need for new leads and new treatment modal-
ities to tackle this class of diseases.42 Beyond the altruistic motivation,
many of the neglected diseases are caused by pathogens that increas-
ingly threaten to invade the industrialized world (some have already
begun to do so). The Asian tiger mosquito (Aedes albopictus) has in
recent years become endemic in the southern US, in eastern Canada,
and in 12 European countries, where it caused an outbreak of
Chikungunya fever in Italy in 2007.59 Aedes albopictus is equally
able to transmit the dengue virus. At the same time, international air
travel and tourism lead to imported cases of dengue fever every year
(93 cases of confirmed or probable dengue fever were reported in the
Vienna central hospital between 1990 and 200560), creating a situa-
tion where the occurrence of local cases of dengue fever becomes
a simple matter of probabilities. It would be deceptive to rely on
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perceived advances in civilization and technology to ward off this dan-
ger. Highly developed cities, such as Singapore and Madrid, have not
been able to contain mosquito populations despite significant efforts.
While these ongoing developments will most likely change our level
of interest in these diseases, it might be prudent to start developing
drugs now.
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Chapter 26

Protein Structure Databases

D. Dimitropoulos, M. John*,† E. Krissinel, R. Newman
and G. J. Swaminathan

26.1 Introduction

This chapter provides a description of protein structure databases with
particular reference to the one constructed and maintained by the
Molecular Structure Database (MSD) group at the European
Bioinfomatics Institute (EBI). An in-depth understanding of data-
bases and database terminology is not assumed on behalf of the
reader. After a brief introduction, the chapter covers the curation
process for newly submitted structures, the loading of data into a rela-
tional database, and the physical and logical architectures of the data-
base. An account is provided of the problems, advantages, and
disadvantages of storing protein structure data in a relational data-
base. A brief description of current online services is given to demon-
strate the uses to which protein structure data are being put.

The EBI (Table 26.1) was established in 1995 as a portal for bio-
logical databases covering a broad range of topics from nucleotide
sequence to protein function. Since its inception it has hosted the
EMBL nucleotide sequence database1 and the trEMBL protein
sequence database, now a part of the UniProtKB composed of
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†European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton,
Cambridge CB10 1SD, United Kingdom. E-Mail: melford@ebi.ac.uk.
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SWISS-PROT, trEMBL and PIR.2 The MSD group3,4 (Table 26.1)
was set up in 1996 as a European initiative for the collection, organ-
ization, and distribution of macromolecular structure data. The
MSD, Research Collaboratory for Structural Biology (RCSB), and
PDB Japan (PDBj) came together in 2003 to form the worldwide
Protein Data Bank (wwPDB) (Table 26.1)5,6 in order to maintain and
manage a single repository for macromolecular structures called the
Protein Data Bank (PDB). In 2006, the wwPDB was further joined
by the Biological Magnetic Resonance Data Bank (BMRB). Together,
these four organizations serve as deposition, data processing, and dis-
tribution sites of the PDB archive. Furthermore, each wwPDB site
provides its own view of the primary data, thus providing a variety of
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Table 26.1 URLs of Protein Structure Databank Services

No URL Description

1 www.ebi.ac.uk European Bioinformatics
Institute

2 www.ebi.ac.uk/msd MSD group
3 www.wwpdb.org worldwide Protein Data Bank
4 www.ebi.ac.uk/msd-srv/autodep4 AutoDep4 deposition system
5 www.ebi.ac.uk/msd-srv/emdep EMDep protein structure

depositions
6 www.ebi.ac.uk/msd-srv/emsearch EMDB search tool
7 www.ebi.ac.uk/msd-srv/docs/dbdoc MSDSD logical model
8 www.ebi.ac.uk/msd-srv/msdsite MSDsite service
9 www.ebi.ac.uk/msd-srv/docs/sifts SIFTS initiative

10 www.ebi.ac.uk/msd-srv/msdlite MSDlite service
11 www.ebi.ac.uk/msd-srv/msdpro MSDpro service
12 www.ebi.ac.uk/msd-srv/msdchem MSDchem service
13 www.ebi.ac.uk/msd-srv/ssm MSDfold service
14 www.jmol.org Jmol open-source viewer
15 www.ebi.ac.uk/msd-srv/prot_int/ MSDPISA service

pistart.html
16 www.ebi.ac.uk/msd-as/MSDvalidate MSDanalysis service
17 www.ebi.ac.uk/msd-srv/MSDtemplate MSDtemplate service
18 www.ebi.ac.uk/msd-srv/msdmine MSDmine service
19 www.ebi.ac.uk/msd-srv/msdmotif MSDMotif service
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tools and resources to the global community. The four main areas that
the MSD group has focused on are:

• Accepting and processing depositions to the Protein Data Bank
(PDB).7

• Accepting and processing depositions to the Electron Microscopy
Data Bank (EMDB).8

• Transforming the PDB flat file archive to a relational database
system.3

• Developing services to search the data in the MSD database.3,4

The challenge of presenting the available information in an intu-
itive way to users from various backgrounds and expertise demands
that the data are processed and structured in a meaningful and flexi-
ble way. Relational database technology offers both the flexibility and
framework to achieve this goal. The MSD has applied these database
technologies to the extremely complex processes of importing legacy
data from the Protein Data Bank (PDB),7 the creation of a submis-
sion system for new depositions to the PDB with automated annota-
tion procedures, in addition to achieving data conformity and the
integration of relevant information from other biological databases.
Different query systems have been developed to allow access to the
MSD structural database (MSDSD). The overall system has been
designed from the outset to cope with the expected exponential
growth in structure data through the structural genomics initiatives.9

This chapter addresses the challenges faced in designing a robust rela-
tional database system for structural data, and introduces various dep-
osition, search, analysis, and retrieval tools developed by the MSD.

26.2 PDB Data Deposition and Processing

Macromolecular structures are being determined at an ever-increasing
rate, with improvements in protein expression, data collection, struc-
ture refinement, and computer technologies. Additionally, many
worldwide structural genomics initiatives have now begun to produce
a large number of structures for deposition with the PDB. The number

Protein Structure Databases 707

FA1
b587_Chapter-26.qxd  1/21/2008  2:37 PM  Page 707



of entries in the PDB has almost doubled from about 23 000 entries
in 2003 to nearly 45 000 in 2007 (Fig. 26.1). This exponential trend
is expected to continue for quite some time.

Macromolecular structures are deposited with the MSD using a
deposition system called AutoDep410 (Table 26.1). Structures can
also be deposited with the RCSB and PDBj using the ADIT system.11

The MSD deposition tool AutoDep4 is designed to implement a con-
sistent approach to the handling and curation of deposition data. The
AutoDep system also allows value-added information (quaternary
structure assessments, structure quality, etc.) to be returned in a safe
and secure manner into the password-protected deposition session
only accessible to the depositor, following annotation by the curation
staff. Depositors may also choose to install a local copy of AutoDep4
in order to complete the deposition and validation in-house before
uploading the deposition session to the public site, thereby reducing
time and effort.

The annotation of the deposited PDB entry involves the use of a
large set of in-house programs and third-party software, which help
to automate many tasks in the post-deposition pipeline. Issues relating

708 Computational Structural Biology

FA1

Fig. 26.1 Growth of the PDB from 1976 to June 2007.
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to the annotation of depositions are beyond the scope of this chapter
and have been described elsewhere.12,13

The PDB operates a weekly release schedule and new entries are
constantly released to the public archive every Wednesday from a cen-
tral staging site. Once these structures are released, they are loaded
into the MSDSD and made accessible via various MSD services as
described below. At the depositor’s request, macromolecular struc-
tures deposited with the PDB can, however, remain “on hold” for a
maximum of one year from the date of deposition.

26.3 The Electron Microscopy
Databank (EMDB)

Cryo-electron microscopy (cryoEM) is a high-resolution imaging
technique that is particularly appropriate for the structural determi-
nation of large macromolecular assemblies, which are difficult to
study by X-ray crystallography or NMR spectroscopy. For some bio-
logical molecules that form two-dimensional crystals, the application
of cryoEM and image reconstruction can help elucidate structures at
atomic resolution. In instances where crystals cannot be formed,
atomic-resolution information can be obtained by combining high-
resolution structures of individual components determined by X-ray
crystallography or NMR with image-derived reconstructions at mod-
erate resolution. This can provide unique and crucial information on
the mechanisms of these complexes. Image reconstructions may be
used to augment X-ray studies by providing initial models that facili-
tate phasing crystals of large macromolecular machines such as ribo-
somes and viruses.

CryoEM methods are rapidly improving, and with the adoption
of standards, the results of these studies need to be made accessible to
a much larger community. To this end, the EMDB14 has been estab-
lished in the MSD Group at the EBI and has been accepting deposi-
tions since June 2002. The requirement to deposit protein structures
in the form of maps determined by Electron Microscopy led to the
implementation of a web-based deposition system, EMDep,8 a search
tool, EMSearch, and Atlas pages for each entry.
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26.3.1 Data Deposition

We have designed a tool (EMDep) that provides a direct means of
entering and validating the data while also facilitating the release of
the submitted data in order to meet public demands. The system is
simple to use and takes advantage of previously submitted informa-
tion wherever possible. EMDep is a flexible and portable system
(Table 26.1) that allows for the acceptance and validation of data by
an interactive depositor-driven operation.

26.3.2 Annotation

Depositors complete the submission process only after the structure
data has passed validation and they have reviewed the completed
EMD entry and its companion report file, and accepted the EMDB
release policy. EMDep returns an acknowledgment letter with the
assigned EMD ID code by e-mail. The final version of the structural
description is supplied to the depositors for review and approval. In
this way, EMDep maximizes the usefulness and timeliness of the
structure data produced by research scientists independent of any
work by the EBI staff, thereby enabling deposition centers to keep up
with an ever-increasing flow of data.

26.3.3 EMSearch

An EMDB search tool, EMSearch (Table 26.1), gives access to brief
details of each entry, including sample name, author names, resolu-
tion of map, map submission, release dates, and a link to the atlas
pages for each entry.

26.4 The MSD Relational Database

This section provides a brief introduction to databases, outlining their
advantages over file-based systems, and includes an account of MSDSD,
a relational database. The primary advantages of storing protein struc-
tures in a database are flexibility and speed, which provide a platform
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upon which different services can be readily built and ad hoc queries
executed.

26.4.1 Storing Data in Files

Where data is stored in files, its management and manipulation is par
force programmed into the application that accesses it. The amount of
programming required for multi-user systems as opposed to single-
user systems is much greater, as some form of record locking needs to
be developed to prevent different users from updating the same data
at the same time. Applications that use files to store data generally lack
flexibility, as code has to be written by programmers (as opposed to
end users) if new reports are required from the system. Therefore,
whilst the use of files to store data may be workable for small, single-
user systems with a specific well-defined purpose, any variation from
this towards greater complexity, flexibility, or data volume makes the
use of a ready-made database engine a better option.

26.4.2 Storing Data in Databases

The use of databases to store data offers critical advantages over the
use of files as they generally have simple reporting languages such as
Structured Query Language (SQL) and come with built-in capability
to handle multiple users and data integrity. Unlike file systems, data-
bases include features that can be used to enhance performance, such
as indexes, partitioning, and parallel processing, all of which provide
scope for data growth. With advancements in storage and CPU tech-
nology, databases consisting of tens of terabytes of data, possessing
tables with hundreds of millions of rows, provide acceptable per-
formance on low to mid-range servers. However, commercial data-
base software is expensive and requires specialist skills to build, tune,
and maintain. Free database software is an option, but these are gen-
erally not as scalable and are not supported as well as commercial
packages.

The initial databases of the 1960s organized data in hierarchical
upside-down tree structures, which meant they were fast but lacked
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flexibility when it came to reporting. In 1970, Codd15 introduced a
new concept, the relational model, in which data was stored in rela-
tions (tables without order). In his model, Codd provided rules for
integrity constraints and operators for the manipulation of data.
These relational operators form the basis of SQL, which is standard
across different database platforms. Today, the vast majority of data-
bases are relational. A workable database system must provide data
integrity, data security, availability, and performance.

26.4.2.1 Data integrity

In databases with high data integrity, the data is accurate, up-to-date,
and structured in a manner that they can be routinely retrieved,
updated, and manipulated using a standard data manipulation lan-
guage (DML). Without data integrity, a database is not usable. The
structuring of data is carried out via a normalization process where
they are taken from a raw, unstructured form to a normalized (struc-
tured) form. There are five stages of normalization: first normal form
to fifth normal form. Data in fifth normal is highly structured. In
practice, third normal form is usually good enough for effective data-
base design and development. Normalization aims to produce a logi-
cal data model in which data is organized in an efficient manner and
duplication is minimized. The model consists of entities, primary
keys, foreign keys, and links depicting the relationship between enti-
ties, which may be one-to-one, one-to-many or many-to-many. An
entity is anything about which data can be stored, whilst a primary key
is a unique value used to identify a specific occurrence of an entity (a
record). Primary keys of one entity used in other entities (where they
are not unique) are foreign keys. When building a database, the logi-
cal model is used as a base to produce a physical model in which enti-
ties become tables and some carefully selected data redundancies
(duplication of data) may be introduced to enhance the database’s
performance.

Primary keys, foreign keys, and triggers are used to enforce data
integrity. An attribute (column) of a table defined as a primary key can
only contain unique values. An attribute defined as a foreign key links
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values in a child table to a single primary key of a parent table. The
aim of this is that no value can be assigned to a child table that does
not already exist in a parent table. Triggers are small programs associ-
ated with individual tables that can be set to execute automatically
when data in the table is inserted, modified, or deleted. In this way,
checks can be made at the time of change to enforce business rules.

26.4.2.2 Data security

Data security concerns the prevention of unauthorized access to data.
At the highest level, passwords control the login access. At lower lev-
els, control is exercised by granting specific privileges to select, insert,
update, or delete data from tables. However, despite these controls,
damage to data may still be caused by human error. One way to pro-
tect against this eventuality is by the routine use of backup and recov-
ery schemes. A damaged table or whole database can be retrieved to
a point in time before the damage took place if a database is run in
archive log mode.

26.4.2.3 Availability

Databases must be online and available. To test for their availability,
scripts can be executed at regular intervals that report via email when
a particular database becomes unavailable. There are two ways to
address such a situation. First, a standby database running on a dif-
ferent server can be brought online when the primary database fails.
Second, one can operate two copies of a database online and set up a
fail-over mechanism redirecting the traffic to the available copy.

26.4.3 The MSDSD Production Line

Structures are updated in the PDB once a week and are loaded into a
deposition database. The loading procedure also checks data quality,
syntax, and enforces strict constraints upon the data being loaded by
comparison with reference data. At regular weekly intervals, data for
new depositions is copied to a transformation database where it is
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transformed from a structure suitable for accepting primary data (i.e.
many small tables with a large number of integrity constraints) to one
suitable for searching (i.e. a small number of large tables with a lim-
ited number of integrity constraints).

After transformation, the new data is loaded into a test database
against which online services are tested. If the test database passes rig-
orous quality assurance tests, it is put into production. Experience
shows that the quickest and safest way to do this is to delete the pro-
duction database and replace it with the test database. To avoid loss
of service during updates and to provide greater availability during
normal use, two copies of the production databases (located on dif-
ferent servers) are used. During updates, connections to the database
fail-over to the copy that is still on line.

Approximately once a year, a full release is produced by loading
and transforming the protein structures from archived text files.
Currently, the whole process, which loads approximately 44 000
entries, is completed within 20 days. Such releases are produced to
implement major changes in the data warehouse and add new services
or new features to existing services. It also gives sites, which have aca-
demic licenses to use MSDSD in-house, the capability to carry out a
fresh installation with up-to-date data without having to carry out a
high number of incremental updates. Multiple concurrent sessions are
utilized to minimize loading time, but loading performance tails off if
more that two sessions per CPU are executed. This requires a server
that has a high number of virtual or real CPUs (upwards of 16).

26.4.4 Characteristics of MSDSD

The MSDSD contains approximately 150 tables and 600 indexes
occupying 300 GB of space. The advantage of using a high number of
indexes is that they speed up the retrieval of data from tables. The dis-
advantage is that they slow down the loading of data as they are
updated during this process. The largest table in MSDSD occupies
80 GB and contains 425 million rows. The indexes in the warehouse
take up the same amount of space as tables. Very large tables and their
indexes are partitioned. This results in a greater retrieval speed as only
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the relevant partition of a table or index is searched. Tables and
indexes above 1 GB are stored in their own space to help reduce frag-
mentation, which if left unchecked has a dramatic impact on per-
formance. Indexes and tables that are accessed at the same time are
stored on different disks to reduce contention and improve speed.

26.4.5 MSDSD Data Architecture

In this section, a simplified account of the architecture and general
structure of data in MSDSD is presented.

Data on the 3D structure of proteins is hierarchical in nature.
Assemblies of biological molecules are made up of many chains, which
are made up of many residues, which in turn are composed of many
atoms. In the logical model of a relational database, one to many rela-
tionships are used to set up hierarchical links. Thus, the primary key
of an assembly table at a high level is linked to an attribute in a chain
table on the next level down via a foreign key so that a one-assembly
to many-chain relationship is enforced.

In MSDSD, the topmost level is represented by assemblies, each
of which is the complete collection of associated chains (macromole-
cules and associated small molecules, including solvent). This repre-
sents a level higher than tertiary structure. Data on assemblies is
stored in a table named assembly that contains attributes such as
assembly_type (monomeric, dimeric, etc.), num_chains (number of
chains in assembly), and num_xchain_ss (inter-chain disulphides). A
full account of this and other tables that make up the logical model of
MSDSD is available online (Table 26.1). The assembly table currently
contains information on 83 000 assemblies.

At the level below assemblies, we have chains that are of three
types: polymer, non-polymer, and water. The water category includes
only water and methanol, while ordered small molecules such as sul-
phate ions or acetone are categorized as individual non-polymer enti-
ties. Data on chains in MSDSD is stored in a table named chain that
contains information such as chain_type (polymer C, non-polymer B,
water W), num_residues (number of residues), and pdb_code (origi-
nal code of the chain in the PDB file). The chain table currently contains
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information on 662 000 chains, giving an average of eight chains per
assembly.

At the level below chains, we have residues, there being many
residues per chain. Data is stored in a table named residue that con-
tains information such as chain_pdb_code (code for chain to which
residue belongs), chem_comp_code (standard extended molecular
code of the amino acid or ligand), and residue_type (R:residue,
B:bound molecule, W:water). The residue table currently contains
information on 52 000 000 residues, giving an average of 79 residues
per chain.

Information on the 3D coordinates of atoms is stored on the
lowest level in a table named atom_data that currently contains
425 000 000 rows.

In order to provide users from different scientific disciplines
access to data in the MSDSD relevant to their interests, the MSDSD
is organized into sections referred to as data marts. Some of these
have a central role in the database, whilst others are decoupled and
may be used in a specialist manner. A few of these data marts are
described below.

26.4.5.1 Ligands

Ligands are defined as small molecular entities that associate with
proteins and either occur naturally (such as ATP) or not (such as
drugs and inhibitors). The MSD group at EBI has built and
actively maintains a catalogue of ligands that is used as reference
data by other marts within MSDSD. The online service MSDchem
provides access to this information that includes data on every
small molecule in the PDB in the form of: atoms elements, stan-
dard nomenclature, connectivity, bond orders, aromaticity, and
stereochemistry.

26.4.5.2 Structure

This is the core of the PDB data extended to provide coordinates of
quaternary structures derived from deposited data. This section is
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organized in three different interrelated hierarchies that facilitate dif-
ferent points-of-view:

(i) The sequence point-of-view. The information in this hierarchy
concerns the sequence and chemistry of the protein. Every macro-
molecule corresponds to a protein sequence, but it is possible to
have more than one instance of this molecule in the PDB as an
asymmetric unit (with slightly different overall conformations as
these that were observed in the experiment). On the atomic level,
constituent atoms model the abstract notion of a chemical atom
that ignores alternative configurations or different NMR models.

(ii) The asymmetric unit point-of-view. The observed structure, as
available in the PDB entry, describes only the asymmetric unit of
a crystal. The contents of the asymmetric unit are also reused to
create quaternary structures but are marked with a special non-
symmetric-valid flag.

(iii) The assembly point-of-view. This corresponds to the actual qua-
ternary assembly as derived from the deposited structure. This is
usually the closest available model of the actual structure of the
protein in solution and provides a complete understanding of
inter-chain and ligand interactions often not represented in the
PDB files. Some features of protein structures are apparent only in
the quaternary assembly and could be easily missed by researchers
examining the PDB file. All solvent and bound molecules are
defined in separate chains and are associated with the protein
chains they are closest to. During the process of assembly forma-
tion, bound molecules and waters may be replicated several times,
as long as they have some form of interaction with the assembly.

26.4.5.3 Secondary structure

This section of the database stores detailed information about the sec-
ondary structure, including sheets and helices as well as more extended
formations like bulges, hairpins, and motifs. Since secondary structure
is not always available in PDB entries and/or its source or accuracy
may be questionable, this information has been re-derived for all PDB
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entries with coordinates of the predicted quaternary structure using
DOSS, a secondary structure prediction program based on DSSP16

and ProMotif.17

This provides a consistent platform for comparisons and analysis
of secondary structure. By using the predicted quaternary structure
(the assembly) it is possible to identify secondary structure elements
related to more than one chain in the assembly.

26.4.5.4 Active sites

This section of the database stores details of the binding sites of all
small molecules found in complexes with macromolecules. Since this
information is not always reliably represented in PDB files, site infor-
mation has been calculated internally and forms the basis for the
MSDsite service18 (Table 26.1).

The binding sites of a macromolecule are determined based on
the contacts it makes with a ligand. Contacts are defined based on the
different types of bonds and interactions that take into account the
distance and angles of the atoms, as well as other characteristics of
the ligands and residues such as planes, etc.

26.4.5.5 External cross-references/taxonomy

Much effort has been devoted to providing complete and consistent
cross-references with external databases like UniProtKB, SCOP, CATH,
EC Enzyme, Gene ontology, Medline, and NCBI taxonomy databases.
The cross-references are established not only on a residue level with
UniProtKB, but also aggregated to facilitate data analysis on a higher
level, and is described under the SIFTS initiative19 (Table 26.1).

26.4.6 MSDSD Distribution

Apart from serving as the cornerstone for the MSD search systems
and services, the MSDSD is also available for distribution in a num-
ber of different ways.

(i) Oracle replication: This is the only type of distribution for which we
offer frequent (weekly) increments for users that wish to follow
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closely the PDB release cycle. This option requires an Oracle
server license, database administration support, and adequate
hardware infrastructure. Typically, a user of this replication will
download and install the latest full release (full transformation) of
MSDSD using the full installation instructions available from the
MSD FTP site. Such full releases take place on a yearly basis, and
this is the time of MSDSD reconciliation, since all PDB entries
are refreshed and creeping inconsistencies are resolved.

Between full releases, the user may run the automatic syn-
chronization script that will allow the download and inclusion of
increments for the new PDB entries, released every week. Any
corrections in reference data will not propagate back to the
affected old entries in order to keep the increments manageable,
so the only time that the full set of MSDSD relational constraints
is guaranteed, is only immediately after a full release.

The MSDSD and the incremental updates are organized in
sections (marts) so users are free to install and increment just the
marts that they are interested in. There is also the option to spec-
ify which tables of a mart a user wishes to have installed, so users
may in general replicate just a few individual tables.

(ii) Replication on MySQL: This distribution requires basic Linux
administration support and is adequate for researchers and stu-
dents with limited resources and technical support. Users down-
load and install directly the MySQL data-files of the tables they
are interested in from our FTP server following the MySQL
installation instructions available from the MSD FTP site. The
tables are available in compressed myIsam format without any
pre-built indexes.

26.5 MSD Search and Analysis Services

The MSD group has worked to create many search and analysis serv-
ices to cater to different categories of end-users. By definition, a
search system that provides access to all aspects of biological data
(structure, sequence, active site, published abstracts) must be accessi-
ble and understood by the novice scientist since biological data is
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highly diverse and complex. All search and analysis services offered by
the MSD are either based on the data available inside the MSD rela-
tional database (MSDSD) or that are used to derive and populate
information inside the database. Multiple search interfaces have been
generated to try and provide access both for the expert user and
novice scientist without making the data too complex to understand
or require the user to be an expert database programmer. A few MSD
search and analysis tools are described below.

26.5.1 MSDlite

MSDlite (Table 26.1) allows users to query MSDSD using a list of
fields that include commonly used terms such as title, author, key-
words, and general text searches. The capability to cross-reference
with other data sources such as the NCBI taxonomy, Gene Ontology,
Interpro, UniProtKB, and the Enzyme database through their respec-
tive IDs and accession numbers is also provided, as well the facility to
select fields of output.

26.5.2 MSDpro

MSDpro (Table 26.1) is a more powerful search interface than
MSDlite designed for experienced structural biologists. It includes a
drag-and-drop query builder and the ability to save queries.

26.5.3 MSDchem

The wwPDB maintains a separate data resource: the ligand dictionary,
which is the chemical reference database of all chemical entities in the
Protein Data Bank. The MSD group has extended this ligand dic-
tionary by utilizing chemoinformatics packages and incorporating
additional annotation. This information has been loaded into a rela-
tional database, which is publicly available on the web through the
MSDchem (Table 26.1) search system. The MSDchem search web
service offers various options for searching the MSD ligand database
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and exporting data in order to serve different user requirements.
Search options include:

• Searching for ligands using their unique PDB three-letter code,
name, or formula range.

• Searching for ligands using outline or chemical sketches (using
sub-graph searches) to identify molecule variants.

• Searching by fingerprint similarity to find ligands that have similar
localized chemistry.

Users also have the option to use any combination of the above
types of searches. On the result pages, they can examine, visualize,
and export ligands or refer back to the relevant PDB entries that con-
tain the ligand searched. Additionally, the MSDchem database is avail-
able for export in various formats, from a ready-to-use relational
database, for ad hoc querying, to collections of commonly used chem-
ical data files or chemical names and descriptor lists.

26.5.4 MSDfold

MSDfold (Table 26.1)20 is a service for the rapid and accurate com-
parison/alignment of protein structures. The primary use of
MSDfold is to be able to identify common structural motifs in a fam-
ily of structures, often a starting point for most modeling and struc-
ture-based studies. MSDfold allows for the alignment of protein
structures (identified by PDB/SCOP codes or uploaded as
PDB/mmCIF files from a user’s desktop), as well as for structural
searches in the PDB and SCOP data sets. A user-defined data set may
be uploaded as a tar archive with additional files specifying pairs of
structures to be aligned. The calculations are distributed on automat-
ically chosen number of parallel CPUs for faster performance.

On output, MSDfold returns a list of structural hits, ranged by
one of available scores: Q-score, P-value, RMSD, alignment length,
sequence identity, and size of common Secondary Structural Element
(SSE) motifs. Each entry in the list of results allows for in-depth
investigation on a residue level, where detail alignment of SSEs and
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residues are presented, together with matrices of best structure super-
position, visualization, and download facilities. For visualization,
either a client-installed Rasmol software21 or server-supported Jmol
applet (Table 26.1) may be used. MSDfold is also run on all entries
inside the MSDSD in order to perform an all-against-all comparison
of all structures inside the database. These results are in turn stored in
the database and are accessible to MSD services.

26.5.5 MSDPISA

Physiological function of most proteins is closely associated with their
ability to aggregate and is not independent from the context of macro-
molecular assembly. However, the final result of a crystallographic
experiment provides coordinates for the crystallographic asymmetric
unit (ASU), rather than the macromolecular assembly. Given the
nature of the experiment, no link between the ASU and biological unit
(macromolecular assembly) in PDB can be postulated. Assemblies may
be formed by the contents of a few ASUs of the crystal, or a few com-
plexes can be found in a single ASU, or a complex may be made by
several parts of neighboring ASUs. As a result, one can infer on macro-
molecular complexes only if additional biological, structural, or func-
tional information is provided. As a matter of fact, few PDB entries
come with an experimentally verified oligomeric state.

MSD offers a tool, called MSDPISA (Protein Interfaces, Surfaces,
and Assemblies) (Table 26.1)22 that permit the reconstruction of
macromolecular complexes from crystal data and analyses their prop-
erties. MSDPISA is implemented as a web-server, which includes a
searchable database of pre-calculated results for all PDB structures
determined by X-ray crystallography. It also allows for the upload of
PDB and mmCIF23 coordinate files for interactive processing. The
calculations are distributed over a variable number of CPU nodes
(1.2 GHz Pentium-4), depending on the estimated task complexity.
Typically, the calculation results are returned in less than 30 seconds,
while the most difficult cases may take up to 20 minutes. The server also
provides a detail description of interfaces, structures and their assem-
blies, visualization and database search tools. For macromolecular
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interfaces, PISA22 calculates the buried surface area, solvation energy
effect, hydrogen, covalent and disulfide bonds, salt bridges, and sta-
tistical significance of interfaces.

MSDPISA also offers a number of database search options. For
example, one may request a list of all macromolecular interfaces in
PDB that are structurally equivalent to a selected interface in analyzed
structure. Other options include querying PDB on particular assem-
bly size, symmetry number, space group, range of surface/buried
areas and dissociation energies, particular keywords, presence of spec-
ified ligands (small molecules), assembly type (homo-/hetero-), pres-
ence of salt bridges and disulfide bonds or any arbitrary combination
of these factors.

26.5.6 MSDanalysis

MSDanalysis (Table 26.1) is an interface that allows statistical analy-
sis of the data contained in the MSDSD. It allows users to perform
statistical analysis of molecule and residue-based information and to
select subsets of data based on correlations and multiple filters. Users
can then download data selected by these filters and correlations.
Using this service, a user can get answers to questions on a database-
wide scale. For example, MSDanalysis could be used to correlate qua-
ternary structure predictions with crystallographic symmetry; analyze
the effect of data resolution on data quality, etc. Finally, there is a
database browser interface (via SQL) that is part of MSDanalysis,
where a user can issue their own SQL queries directly to the MSDSD.
MSDanalysis also includes a structure validation tool that can be used
to analyze structure quality within the MSDSD based on geometric
criteria. The user may also choose to upload a structure in PDB for-
mat for similar validation analysis. This service is expected to be of pri-
mary interest to structural biologists.

26.5.7 MSDtemplate

MSDtemplate (Table 26.1) is a service based on residue groups,
such as active sites, ligand environment, or any set of amino acids in
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particular spatial juxtaposition. The MSD has a library of templates
generated by mining the PDB and looking for statistically significant
collections of residues. These templates include all the known active
sites and metal binding sites. The service is based on the matching of
atoms in a template with those of a protein using weighted fuzzy
superposition. A number of controls are available to adjust the super-
position process and to fine-tune the analysis. MSDtemplate also
includes search engines to identify templates in protein structures
and the necessary tools to visualize these. Further analysis tools and
a new and more extensive library of mined motifs are planned to be
released soon.

26.5.8 MSDmine

MSDmine (Table 26.1) is a comprehensive mart-based data mining
system that allows users to perform complex searches using any of the
90 tables available in MSDSD organized into eight different marts.

26.5.9 MSDmotif

MSDmotif (Table 26.1)18 is a tool to provide insight into the PDB
with respect to motifs in protein 3D structures, protein sequences,
small bound molecules, ligand 3D environment, protein-protein and
nucleic-acid interactions. It provides sequence and 3D structure
annotations with PROSITE motifs,24 secondary structure elements,
3D small motifs, binding and catalytic sites available in ePDB XML,
eFamily XML, and DAS formats.25

26.6 The Future Outlook

The MSD group has worked towards the development of a fully inte-
grated system for macromolecular structure data by the design, imple-
mentation, and use of a relational database. The MSD group
continues to work closely with its partners, to further enhance the
quality and consistency of the data in the database. MSD services
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designed on top of this database provide various access points to the
data contained within, thereby catering to the scientific community
consisting not only of experienced structural biologists, but also to
chemists, molecular biologists, and other occasional users interested
in macromolecular structures. In many ways, the MSDSD project
defines a database standard for storing, managing, and distributing
macromolecular structure data.

With the predicted explosion of structures determined by experi-
mental methods such as X-ray diffraction and cryoEM, it has become
even more imperative to have robust technologies in place that are
not reliant on flat-file archives for data storage and analysis. The
MSDSD has proved itself to be robust, fast, and capable of handling
large amounts of data. The planned merger of data from the EMDB
into the MSDSD in the near future is a step in the direction of creat-
ing a single resource for all experimentally determined structures in a
relational database format. The MSDSD has been successfully distrib-
uted to external sites, and as part of the distribution package, a com-
prehensive application programming interface (API) has been
developed, which allows users to extract data from the database using
custom programs.

The MSD search systems and the underlying relational database
continue to improve, with new features and capabilities being added
to many services, moving us ever closer to our ultimate goal of becom-
ing a comprehensive, integrated resource for the research community.

References
1. Hamm GH, Cameron GN. (1986) The EMBL data library. Nucl Acids Res 14:

5–9.
2. Apweiler R, Bairoch A, Wu CH, et al. (2004) UniProt: the Universal Protein

knowledgebase. Nucl Acids Res 32: D115–119.
3. Boutselakis H, Dimitropoulos D, Fillon J, et al. (2003) E-MSD: the European

Bioinformatics Institute Macromolecular Structure Database. Nucl Acids Res
31: 458–462.

4. Golovin A, Oldfield TJ, Tate JG, et al. (2004) E-MSD: an integrated data
resource for bioinformatics. Nucl Acids Res 32: 211–216.

Protein Structure Databases 725

FA1
b587_Chapter-26.qxd  1/21/2008  2:37 PM  Page 725



5. Berman HM, Henrick K, Nakamura H. (2003) Announcing the worldwide
Protein Data Bank. Nat Struct Biol 10: 980.

6. Berman HM, Henrick K, Nakamura H, Markley JL. (2007) The worldwide
Protein Data Bank (wwPDB): ensuring a single, uniform archive of PDB data.
Nucl Acids Res 35: D301–303.

7. Berman HM, Battistuz T, Bhat TN, et al. (2002) The Protein Data Bank. Acta
Crystallogr D 58: 899–907.

8. Henrick, K, Newman R, Tagari M, Chagoyen M. (2003) EMDep: a web-based
system for the deposition and validation of high-resolution electron microscopy
macromolecular structural information. J Struct Biol 144: 228–237.

9. Service RF. (2000) Structural genomics offers high-speed look at proteins.
Science 287: 1954–1956.

10. Tagari M, Tate J, Swaminathan GJ, et al. (2006) E-MSD: improving data depo-
sition and structure quality. Nucl Acids Res 34: D287–290.

11. Westbrook J, Feng Z, Burkhardt K, Berman HM. (2003) Meth Enzymol 374:
370–385.

12. Swaminathan GJ, Tate J, Newman R, et al. (2004) Issues in the annotation of pro-
tein structures. In AM Lesk (ed.), Database Annotation in Molecular Biology,
John Wiley & Sons, New York.

13. Dutta S, Burkhardt K, Swaminathan GJ, et al. (2007) Data deposition and anno-
tation at the worldwide Protein Data Bank. In press.

14. Tagari M, Newman R, Chagoyen M, Carazo JM, Henrick K. (2002) New elec-
tron microscopy database and deposition system. Trends Biochem Sci 27: 589.

15. Codd EF. (1970) A Relational Model of Data for Large Shared Data Banks.
Commun ACM 13: 377–387.

16. Kabsch W, Sander C. (1983) Dictionary of protein secondary structure: pattern
recognition of hydrogen-bonded and geometrical features. Biopolymers 22:
2577–2637.

17. Hutchinson EG, Thornton JM. (1996) PROMOTIF — a program to identify
and analyze structural motifs in proteins. Protein Sci 5: 212–220.

18. Golovin A, Dimitropoulos D, Oldfield T, Rachedi A, Henrick K. (2005)
MSDsite: a database search and retrieval system for the analysis and viewing of
bound ligands and active sites. Proteins 58: 190–199.

19. Velankar S, McNeil P, Mittard-Runte V, et al. (2005) E-MSD: an integrated data
resource for bioinformatics. Nucl Acids Res 33: D262–265.

20. Krissinel E, Henrick K. (2004) Secondary-structure matching (SSM), a new tool
for fast protein structure alignment in three-dimensions. Acta Crystallogr D 60:
2256–2268.

21. Sayle RA, Milner-White EJ. (1995) RASMOL: biomolecular graphics for all.
Trends Biochem Sci 20: 374.

22. Krissinel E, Henrick K. (2007) Inference of macromolecular assemblies from
crystalline state. J Mol Biol, in Press.

726 Computational Structural Biology

FA1
b587_Chapter-26.qxd  1/21/2008  2:37 PM  Page 726



23. Bourne PE, Berman HM, McMahon B, Watenpaugh J, Westbrook, Fitzgerald
PMD. (1997) The Macromolecular Crystallographic Information File
(mmCIF). Meth Enzymol 277: 571–590.

24. Hoffmann K, Bucher P, Falquet L, Bairoch A. (1999) The PROSITE database,
its status in 1999. Nucl Acids Res 27: 215–219.

25. Dowell RD, Jokerst RM, Day A, Eddy SR, Stein L. (2001). The distributed
annotation system. BMC Bioinform 2: 7.

Protein Structure Databases 727

FA1
b587_Chapter-26.qxd  1/21/2008  2:37 PM  Page 727



FA1
b587_Chapter-26.qxd  1/21/2008  2:37 PM  Page 728

This page intentionally left blankThis page intentionally left blank



729

FA1

Chapter 27

Molecular Graphics in Structural
Biology

A. M. Lesk*,†, H. J. Bernstein‡ and F. C. Bernstein§

27.1 Introduction

We can observe macroscopic biological systems directly with our senses.
We can take photographs, draw sketches, and preserve the actual
objects. A microscope with stains and fixatives gives us similar capabili-
ties in dealing with smaller objects on the scale of cells and nuclei.
Electron micrographs allow direct observation, almost, but not quite,
to atomic resolution. For the final step into molecular biology at atomic
resolution in the realm of structural biology, we need to create physical
molecular models and hand- or computer-drawn renderings of ideal-
ized and abstracted molecular models. Biological macromolecules are
inaccessible to our direct sensory observation because they are small.
They are challenging to represent because they are complex.

Over the last half century, starting with the seminal work of
Levinthal and Katz,1 computer-based interactive molecular graphics
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§Bernstein + Sons. Bellport, NY 11713, USA.
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has become as essential a component of the toolkit of contemporary
molecular biology as the centrifuge. It is our gateway to the data,
most obviously of three-dimensional structures of nucleic acids, pro-
teins, and other biological molecules, but also all other types of data
that need to, and can, be presented pictorially.

Molecular graphics provides a notation for the understanding
of chemistry. The development of that notation predates the devel-
opment of the hardware we now use for the purpose. With the
growth in number and variety of structures, and the need for com-
parative analysis of homologs — including the essential tool of
superposition — physical models are inadequate. Nevertheless, like
nostalgia buffs, we simulate wireframe, wooden, and plastic model-
building kits on computer screens. But computers lend speed and
accuracy absolutely essential to the progress of structural biology.
Tasks that took months of patient effort by hand half a century ago
now take seconds on a computer.

Computer graphics is now a mature science. Several decades of
experience have produced effective and easy-to-use software. Driven
by the entertainment industry, hardware has become readily available
and inexpensive. The rendering of molecules has moved from special-
ized graphics systems to ordinary personal computers.

Traditional molecular models focused either on the skeletal pat-
tern of bonds or on atoms. That is, they focus either on the con-
nectivity of the structure or on the overall shape and packing. One
of the most famous scientific photographs of the last century,
showing Watson and Crick and their model of the double helix
of DNA (http://www.chemheritage.org/classroom/chemach/
pharmaceuticals/watson-crick.html), shows the skeletal represen-
tation, emphasizing bonds. The making and breaking of bonds,
especially hydrogen bonds, are essential to life. Emphasizing the
atoms, Corey, Pauling and Koltun designed space-filling models
with atoms represented as segments of spheres, with connectors
serving as chemical bonds.2 Simulations of such bond-oriented
wireframe models and atom-electron-density-oriented space-filling
models are very much the norm in modern computer-based molec-
ular graphics.
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To help in understanding the role of computer-based molecular
graphics in modern structural biology, we first review the evolution
of graphical notations used in chemistry and biology, working on
ever finer scales from gross morphology down to atomic resolution
models.

27.2 History

Structural biology has its roots in both biology and chemistry, two
sciences that have long depended on visual comprehension.

27.2.1 Biology: Taxonomy by Morphology
to Molecular Biology

In general, different species of flora and fauna display significant dif-
ferences in size, shape, and other structural features. Until the rise of
molecular biology, the best available way to classify organisms into
species was to invert this observation and create a taxonomy based on
morphology, distinguishing species on the basis of morphological fea-
tures and inferring relationships from similarities. The concept was
brought to full flowering by Linnaeus for plants3 building on the ear-
lier work of Ray on both plants and animals.4 This visual morpholog-
ical perspective enabled the seminal works of Darwin5 and Mendel6

and the beginnings of modern evolutionary biology and genetics,
which found a rigorous foundation in molecular structural biology
from the work of Franklin and Gosling,7 Watson and Crick,8 and
Kendrew and Perutz.9 This visual approach to biology persists to this
day in efforts to infer macromolecular function from structure and to
design drugs by a visual structural understanding of active sites based
on lock-and-key models.

It is now well known that species differ not only in the structure
of the body, but also at the level of the structures of homologous pro-
teins. What is not so widely known is that the first clues to the evolu-
tionary divergence of protein structure are a century old.

In what is arguably the most premature scientific result of all
time, in 1909 Reichert and Brown10 published a study of crystals of
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hemoglobin isolated from different species of animals. Hemoglobin
crystallography, three years before the discovery of X-ray diffraction,
was limited to measuring the angles between crystal faces. Stenö’s law
(1669)11 states that the interfacial angles of all crystals of a substance
are the same, independent of the size and macroscopic shape of the
crystal. Therefore, these angles characterize the substance. Reichert
and Brown found that the patterns of divergence of these angles cor-
related with the evolutionary tree of the species. They even found dif-
ferences between crystals of deoxy- and oxy-hemoglobin.

We can now interpret and appreciate these observations. The for-
mation of crystals implies that the molecules can take up a definite
structure, with the ability to pack themselves into regular arrays. The
differences in interfacial angles imply that crystals of hemoglobins
from different species have different structures. The correlation of
the divergence patterns of the crystals and the species implies that
evolution is shaping molecules as well as bodies, in parallel processes.
The differences between crystals of deoxy- and oxy-hemoglobin
imply that the protein undergoes a conformational change upon
binding oxygen.

Fifty years later, Perutz announced the solution of the X-ray crys-
tal structure of hemoglobin.

27.2.2 Chemistry: Atoms to Bonds to Quantum
Mechanics

During the course of the nineteenth century, chemistry made a tran-
sition from the one dimension of formulas that indicated only a com-
pound’s atomic composition to two-dimensional bonding diagrams,
and then to three-dimensional structures such as the tetrahedral car-
bon atom introduced by Paternò,12 van’t Hoff,13 and Le Bel.14 van’t
Hoff distributed molecular models with his original publication, as
“supplementary material.”

The impetus towards three dimensions had three main sources:
crystallography, the relation of structure to optical activity, and the
rationalization of isomers. Why does propyl alcohol have only two
isomers? Why do monosubstituted benzenes have only one?
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This transition in chemistry to three dimensions began with the
late-eighteenth century observation by Haüy15 that crystals could
be regarded as formed from repeating identical microscopic units.
Pasteur’s separation, in 1847, of racemic tartaric acid by manual
selection of crystals of different shape, and his demonstration that
the mirror-image crystals had opposite optical activity, linked crys-
tallography with spectroscopy.16 In 1860, Pasteur published the
observation that the mold Penicillium glaucum preferentially
metabolizes one enantiomorph of tartaric acid.17 This brought the
idea of three-dimensional molecular structure into biology, to be
developed strongly by Fischer in his studies of sugar structures and
of enzyme-substrate interactions and specificities. Fischer’s impor-
tant, intrinsically three-dimensional “lock-and-key” hypothesis
of 189418 remains an essential conceptual basis of modern drug
design.

At the turn of the twentieth century, although chemists had
good insight into the three-dimensional architecture of molecules,
the structure of the atom itself remained a mystery. Indeed, even
the idea that matter consisted of particles was not universally
accepted until Perrin’s work on Brownian motion.19 The discovery
of quantum mechanics and explicit formulas for atomic orbitals
implied the importance of portraying their symmetry properties
to rationalize the data of atomic spectroscopy and of chemical
bonding. Pictures of atomic orbitals appear in an early article by
White in 1931.20

The theory of atomic structure had immense impact on chemistry
as well as on physics. Pauling’s theory of hybridization rationalized
the relationship between the symmetries of the molecular framework
and the distribution of the electrons. In general, the picture of molec-
ular orbitals as Linear Combination of Atomic Orbitals (LCAO),
although an approximation, has been extremely valuable for chemists,
as has the Hartree-Fock approximation, the most precise possible
description of the electronic structure of atoms and molecules that
retains the orbital picture. Several albums of atomic and molecular
orbitals have been published on paper; many programs now have
facilities for generating them.
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27.2.3 Choice of Representations

The provision, by X-ray diffraction and NMR spectroscopy, of exper-
imental structure determinations of proteins and nucleic acids in
atomic detail creates the challenge of representing the results in an
intelligible way. The problem is not that computers are not powerful
enough to draw complete and detailed representations of large pro-
teins, it is that we are swamped by the complexity thereby revealed.

Should we focus on the bonds as in Watson and Crick’s DNA
model or on a molecular surface created as in the Corey, Pauling,
Kolton space-filling models? Computers are able to draw both types
of representations.

For macromolecular structures, however, concentrating on the
bonds and drawing the entire molecule atom-by-atom as a wireframe
model provides an overwhelming amount of detail. Space-filling models
are slightly less complex, because the interior structure is obscured by the
van der Waals surface, but they are still too complex. Feldmann at NIH
developed a computer system for drawing shaded spheres in color. He
and Bing published a set of slides, “Teaching Aids for Macromolecular
Structure (TAMS),”21 which contained a set of stereo pairs on 35mm
slides and a simple viewer. These showed both the strengths and weak-
nesses of the technique. Richards presented “cheese-wire” slices through
proteins, showing atoms contoured at their van der Waals radii.22 These
showed the dense packing of protein interiors. It became clear that an
arsenal of different representations for different purposes was needed to
illustrate and analyze protein structures.

27.2.4 Molecular Graphics by Artists

Intelligible representations were required, and these first appeared in
the works of artists and illustrators.

27.2.4.1 Scientific renderings: Irving Geis

Irving Geis was an artist creating illustrations for Scientific
American when the structure of myoglobin was determined. His
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hand-drawn illustration of the myoglobin structure was the first of
many that he drew. These illustrations set a standard of graphical
notation for the field. His book with Dickerson23 was a classic,
introducing a generation of scientists to protein structure. Geis’ pic-
tures show molecules in their entirety: all bonds, including, in a
myoglobin picture,24 hydrogen atoms and α-helical hydrogen
bonds, using strong depth cueing to help the eye sort out the struc-
tural relationships.

27.2.4.2 Museum artists: Salvador Dali, Ben Shahn

Two “museum artists” whose work includes pictures with molecular
themes are Salvador Dali and Ben Shahn. Dali called one of his peri-
ods “The Molecular Dali.” Shahn’s work includes the Lute and
Molecule series (an example of which includes a Patterson function),
and a fairly representational drawing of an α-helix.

27.2.4.3 Simplified representations or cartoons

Traditional representations are not adequate for illustrating and
analyzing complex structures. What is necessary is a simplified rep-
resentation that still retains important features of the molecule: a
schematic diagram or cartoon. This representation was developed by
Rossmann25 and by Furugren.26 Helices can be depicted as cylinders,
and strands of β-sheet by thick arrows. Alternatively, McLachlan’s
wide ribbon tracing the backbone can be drawn with different
widths emphasizing the regions of secondary structure and de-
emphasizing the loops (e.g. the illustrations in Ref. 27). Following
the lead of these innovators, many other people have drawn such
pictures by hand, with those of Richardson being the most widely
known.28

Drawings by illustrators have certain disadvantages, including
the difficulties of making stereo diagrams, and more generally, in
changing the orientation. For these reasons, Lesk and Hardman
wrote a computer program to generate schematic diagrams of pro-
teins,29 and Lesk and Lesk extended this program to nucleic acids and
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protein-nucleic acid complexes.30 It produced two alternative formats
of output: line drawings and shaded-surface drawings. When the pro-
gram was first written, interactive real-time computer displays could
display only vector graphics. Shaded-surface drawings, or raster
graphics, were limited to static presentations. At that time, one of us
[AML] gave a talk entitled, “The line will decline when the raster gets
faster,” and that has in fact happened.

Since that work, a large number of programs have been developed
and distributed. Improvements in the power of hardware and systems
software have made it quite easy to write them. Now, computer-
generated pictures of large biological molecular structures are part
of the scientist’s everyday toolkit. Figure 27.1 shows an example of a

736 Computational Structural Biology

FA1

Fig. 27.1 Cross-eyed stereo view of schematic diagram of 5nll Clostridium beijer-
inckii flavodoxin.79 Use of a general-purpose renderer allows the versatile representa-
tion of main-chain trace, schematic representation of helices as cylinders, and more
detailed CPK representation of the ligand, flavin mononucleotide. Chevrons show the
direction of the chain.
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molecule rendered using shapes and surface textures to distinguish and
highlight important features for publication. Many molecular graph-
ics systems can support interactive real-time rotation of such images.

27.2.5 History of Computer-based Tools

The first interactive computer graphics system was created at MIT
approximately 50 years ago. The pioneer in application to chemistry
and molecular biology was Levinthal, who created the first interac-
tive molecular graphics software at MIT and then established a group
at Columbia University to pursue the development and applications
of molecular modeling software. The technique rapidly proved its
value and spread widely throughout the protein modeling commu-
nity. First Adage, then Evans & Sutherland, and, later, Silicon
Graphics, provided the most common hardware. With the develop-
ment of inexpensive hardware, high-performance graphics is stan-
dard equipment in contemporary PCs.

27.2.6 Contours and Surfaces

Molecular graphics can produce pictures to represent different
degrees of detail, using different abstractions and models. Individual
semi-classical atoms and quantum-mechanical orbitals can be repre-
sented as textured surfaces, as if the viewer were looking at a topo-
graphic map, or as contour lines, as if the viewer were looking at level
lines in such a map. Such plots help us in understanding essential
characteristics of molecules: symmetry, size, shape, and orientation.

Fundamentally, every chemical structure — from the hydrogen
atom to the ribosome and beyond — is an assembly of nuclei and
electrons. Naturally, the larger the system, the more difficult for both
the determination and the presentation of the finer details.

For large molecules such as proteins, it is neither possible nor in
most cases desirable to work with a description more detailed than the
overall layout of the structure in terms of the positions of the atoms,
and some indication of their individual excursions. In addition, the pri-
mary experimental data in X-ray crystallography are not the result of
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an instantaneous snapshot of the true electron density, but an inte-
grated average over time and over many uncorrelated samples of what
may not be a homogeneous sample. The effective scattering from elec-
tron density is very different from both a quantum-mechanical model
and from the hard-sphere atom model. To an approximation, one may
think of the image of an atom, as reflected in X-ray diffraction data, as
the internal electron distribution in the atom convoluted with the vari-
ation in atomic position, from thermal motion and/or disorder.

We treat the integrated diffraction intensities as if the X-rays were
scattered from an averaged electron density. Whether in the form of a
Patterson function, from unphased data (peaks in the Patterson func-
tion correspond to interatomic vectors), or a Fourier map of phased
data, estimates of values of electron density are very helpful and usu-
ally critical in solving structures by X-ray crystallography.31

The averaged electron density is a function, ρ, of three spatial
dimensions within a unit cell. If that density were sharply bounded, the
boundary of its volume could be thought of as the hard-sphere model
molecular surface. The density is not confined to a finite volume of
space, but we can approximate a surface by looking at the boundary of
a volume containing some substantial fraction of the integrated den-
sity, estimated by finding the boundary of the volume within which
values of ρ are greater than some pre-determined value. Fortunately,
when working with an ensemble average of densities at the normal res-
olutions for macromolecular work, electron densities can be well-
approximated as smoothly varying sums of Gaussian distributions,
centered at or near the atoms. Visualizing that information is a prob-
lem similar to that of understanding pressure, temperature, and
humidity in the atmosphere, or the elevations of mountains. In the late
eighteenth century, the problem of finding level lines was called “lev-
eling.”32 Now, we speak of “contouring” and finding “isosurfaces.”

27.2.6.1 Applying the techniques of topographic mapping
and weather mapping

When we draw information on paper or on a screen we only have two
spatial dimensions (the height and width of the paper or screen) on
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which to present data about electron densities, charges, and other
properties of a molecule. The information we need to convey is
indexed in three spatial dimensions, and perhaps, the fourth dimen-
sion of time. We can either cut slices (sections) through the density to
get down to two dimensions and then find level lines of density to
contour, or we can find a single isosurface on which the density is
constant and do a two-dimensional rendering of that three-dimen-
sional object. The case of dealing with a slice of density is much the
same as for dealing with terrain elevation maps and surface pressure
maps. For such maps, points on the surface of the earth that have the
same elevation or the same barometric pressure are connected to form
level lines. The case of dealing with an isosurface is much the same as
finding the surface of a given constant pressure altitude along which
to fly an airplane.

Two-dimensional slices give us more detail about the density,
such as internal voids and cavities. Isosurfaces give us a more com-
plete sense of the three-dimensional structure of the molecule.

Let’s consider the case of a slice of density. We could just list the
array of numbers giving the density, but adding contour lines con-
necting points of the same values is a more effective presentation, as
shown in Fig. 27.2.

An isosurface can be presented as an opaque surface, but for
model-fitting it can be more useful to use a transparent surface. Until
computers became capable of representing a very wide range of col-
ors and intensities, the most effective technique was to present the
surface as a mesh of lines (an isomesh, see Fig. 27.3), or as a sparse
set of dots, through which a fitted skeletal model is visible. An
isomesh can be created by computing contours in sets of planes with
normals in three independent directions (parallel to cell edges or to x,
y, and z),33 or by breaking up the surface into triangles or other poly-
gons (a tessellation). A usable dot surface is harder to create on a
computer. An artist can use dots to create an impression of a three-
dimensional surface. Raphael, in his 1504 painting, “Madonna and
Child Enthroned with Saints” (now in the Metropolitan Museum
of Art, New York), presented the 3D shape of the Virgin’s gown by
the dot-surface technique: yellow dots on an opaque black surface.

Molecular Graphics in Structural Biology 739

FA1
b587_Chapter-27.qxd  1/28/2008  10:01 AM  Page 739



Sparse dots by themselves create an impression of a transparent sur-
face, but it is surprisingly difficult to use a computer to create a true
three-dimensional dot surface that does not contain distracting surface
pattern artifacts and textures in at least some orientations. Andrews
created one of the first successful pattern-free dot surface algorithms
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Fig. 27.2 (a) Gaussians for densities in a two-dimensional slice through a six-
membered ring with level lines only down to the lowest atomic core densities (blue),
but not down to the density in the bonds. (b) Contours for the same Gaussians.
(c) Isomesh at the lowest level of the contours (blue).
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for spherical atoms surfaces in the mid 1970s. Connolly developed a
workable program to represent more general molecular surfaces by
distributing dots on them in the early 1980s.34 Many molecular
graphics programs now have the capability to render three-dimen-
sional dot surfaces.

27.2.6.2 Patterson maps

In X-ray crystallography, the electron density is not available until
structure factors are phased. Unphased structure factors, however,
can be used to compute the Patterson function,35 producing the aver-
aged electron density convolved with its enantiomorph, a function
that can be plotted, with peaks at the vector difference between peaks
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Fig. 27.3 CCP4mg display of portions of a 2Fo–Fc map as an isomesh and
1w2i.pdb.80
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in the actual averaged electron density. (In some space groups, certain
sections of the Patterson map show the actual image of the molecule
in projection.)

27.2.6.3 Gaussian atoms and Kendrew models

Classical small-molecule crystallography is based on the time-
averaged electron density of individual atoms modeled as normally-
distributed clouds of electrons. In the isotropic case, that allows the
density contributed to each atom to be modeled as a Gaussian.

While unphysical, such approximations simplify the problem
for small molecules sufficiently to allow the available data to over-
determine this limited set of parameters. If enough is known of the
chemistry to set Ne, the number of electrons associated with the atom,
this model needs only four additional parameters for each atom, the
coordinates x, y, z of the center and the spatial standard deviation, σ,
of the Gaussian, ideally a combined measure of the distribution of the
intrinsic electron density of the atom and thermal vibrations. The
anisotropic case introduces more parameters. If enough data are avail-
able, Gaussian atom models are physically plausible and good enough
approximations for the interpretation of experimental measurements.
Properly rendered isosurfaces of such models can be used to gain an
understanding of some properties of a molecule such as ligand affini-
ties, but other models can help to gain further understanding of these
and other properties, such as evolutionary relationships. CPK models,
wire models, and Lee-Richards surface models can help, especially
when dealing with the interactions among multiple molecules.
Experimental work with macromolecules usually does not provide
sufficient data to determine even this limited set parameters for a
macromolecule. In such cases, coarser models, such as Kendrew mod-
els that model groups of atoms as rigid bodies, are needed.
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27.2.6.4 CPK models

A simple isosurface of density lacks information about the chemistry of
a molecule. It is difficult to distinguish element types and to understand
bonding patterns. Especially for small molecules, it can help to model a
molecular surface emphasizing the distinct identities of individual atoms
by representing each one as a hard sphere and coloring by element type.
This was done with space-filling Corey-Pauling-Koltun (CPK) models,
creating an implicit surface from the visible exterior of intersecting van
der Waals spheres, coloring carbon atoms as grey, oxygen as red, nitro-
gen as blue, etc. Bonds are inferred from the overlap of the spheres.
Figure 27.4 shows an example of a CPK model rendering of a portion
of Protein Data Bank (PDB)36,37 entry 4ins.38

27.2.6.5 Wireframe models

A CPK model emphasizes the atoms of a molecule. In a wireframe
model, the bonds are emphasized by treating each atom as a point
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Fig. 27.4 RasMol cross-eyed stereo rendering of a CPK colored space-filling
model of a portion of 4ins.
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and modeling the bonds as wires between them. The two approaches
can be combined by representing the atoms as small balls and the
bonds as sticks connecting those balls, creating a ball-and-stick
model.39 Johns Glass “Student Molecular Models” were used in the
1950s to build ball-and-stick models from colored wooden ball atoms
with pre-drilled holes for coiled spring bonds. Kennard and Doré
patented a way to construct complex wireframe models without the
need for small balls to join the wires in 1966.40 Figure 27.5 shows an
example of a wireframe rendering of a portion of PDB entry 4ins.

27.2.6.6 Model building and fitting to density

X-ray crystallographers measure structure factors, the Fourier coeffi-
cients of the electron density in the unit cell. For noncentrosymmet-
ric unit cells, the structure factors are complex numbers, with a
magnitude (or absolute value) and a phase. The “phase problem”
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Fig. 27.5 RasMol cross-eyed stereo rendering of a wireframe model of a portion
of 4ins.
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arises whenever it is possible to measure only the magnitudes of the
Fourier coefficients. Solutions of the phase problem — experimental
or theoretical — permit calculation of at least an approximate electron
density. Solution of the structure requires interpretation of the elec-
tron density in terms of a molecular structure. Traditionally, this has
required the expertise of a chemist, and the application of this expert-
ise required a way to display the electron density and build a molecu-
lar model from it.

For small molecules, for which atomic resolution data are avail-
able, the calculated electron density contains well-defined peaks. In
the first half of the twentieth century, this permitted the classic “nee-
dle and thread” approach: Crystallographers would lay out x and y
coordinates on a sheet of graph paper pasted onto a styrofoam base.
They would then insert knitting needles into the styrofoam: for each
peak at coordinates (x, y, z) they would insert a needle into the
styrofoam at (x, y) to a depth of L − z where L is the length of the
needle. Then, the crystallographer would tie threads between peaks
nearby in space and thereby create a model of the molecular structure.

In the early days of protein crystallography, (and even now,
depending on the disorder within the crystal) individual atoms and
often even individual residues were not resolvable. This was the result
in part of imprecision in measurement of structure factor magnitudes,
but mostly of the relatively primitive power of phasing methods. It
was not feasible for a computer program to interpret such electron
density maps at atomic resolution. Instead, protein crystallographers
became experts in pattern recognition and spent many hours building
and rebuilding their models of the structures, trying to fit those mod-
els to their data.

27.2.6.7 Kendrew models

To build the structure of myoglobin, the first protein structure solved
by X-ray crystallography, a set of vertical rods traversed molecular
space, at a scale of 5 cm/Å. The electron density was represented by
colored clips and the molecule built out of custom-built brass wire
components.41 Because of that pioneering work, standard, rigid body
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models of amino acids used to assemble protein models are called
Kendrew models.

27.2.6.8 Stacks of contour maps, isosurfaces

Model building can be done as a theoretical exercise, but if one has
crystallographic data, the model needs to be fit to the electron den-
sity inferred from the data. In the absence of phase information, one
might think that the fitting would have to be done to a Patterson
map, rather than to the density. However, a number of methods that
yield approximate phases — isomorphous replacement, molecular
replacement, multiwavelength anomalous dispersion, and direct
methods — allow direct interactive fitting of a molecular model to the
computed electron density.

Until the early 1960s, contour maps were generally computed by
hand or by analogue computers.42 During the 1950s, digital computer-
driven plotters were developed,43 e.g. Calcomp digital plotters that drew
very precise, drafting quality images on paper, or most importantly, on
clear plastic. In 1963, Dayhoff developed a program to contour electron
density maps on clear plastic sheets that could then be stacked to pro-
duce a three-dimensional image of isosurfaces of density.44

Starting with Dayhoff, this approach involved contouring the
electron density in successive planar slices of the unit cell, printing the
contours on transparencies, and stacking the transparencies in a
frame. The crystallographer would build a wire model to match the
pattern in the electron density.

Richards contributed the ingenious idea of using a half-silvered
mirror to allow optical superposition of a physical model and the elec-
tron density.22 All protein crystallography laboratories had a
“Richards box.”

27.2.6.9 Interactive graphics  Diamond,
Katz/Levinthal, Jones

The Richards box used computers to generate the contour and to
provide the calculations upon which to base the building of the
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model, but the fitting itself was a manual process. Now, we interact
with models and contours inside a computer, both manually and with
software. Achieving that capability started with vector-based real-time
renderings of molecular models on specialized computer hardware.

Katz and Levinthal pioneered the use of interactive graphics for
structural biology in the 1960s.45 By the mid 1970s, it was clear that
interactive graphics would be more widely available for analysis.46,47

By the late 1970s, interactive computer graphics was widely accepted
and several groups created programs for the “electronic Richards
box.” Perhaps the first was Diamond’s Bilder;48 others were imple-
mented at Washington University, St. Louis, and the University of
North Carolina. Jones, working then in the laboratory of R. Huber
in Munich, wrote a program FRODO49 that became very widely
used, going through several stages of development and implemented
for various hardware configurations. Jones’s program “O”50 has
superseded FRODO. The Richards boxes were put aside and the
crystallographers spent long hours in dark rooms rebuilding their
structures at computer graphics devices. This went on until the dis-
covery that molecular dynamics refinement methods could shortcut
the process.

27.2.6.10 Surface models, rolling ball models, potentials

Having the coordinates of protein structures in computers allowed
more complex calculations to be applied to their analysis. Richards
emphasized the importance of surface area and packing for under-
standing protein folding. However, a simple van der Waals surface of
a protein is not sufficient to understand the problem. Atoms from the
solvent need to be considered.

With Lee, Richards devised methods for measuring and displaying
solvent-accessible surface area, and through Voronoi decomposition of
the atomic distribution, the packing density inside proteins. Chothia
began his work on proteins in that lab, showing that protein interiors
were as densely packed as typical molecular crystals — despite the con-
straints of the chain connectivity. Chothia measured the burial of
hydrophobic surfaces and derived the energy equivalent: 25 cal/Å2.51
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Lee and Richards defined the solvent-accessible surface as the
locus of the center of a 1.4 Å-radius probe sphere (representing a
water molecule) rolling around the protein structure, the surface of
the sphere remaining in contact with the van der Waals surface (the
surface of a CPK model) of the protein. The solvent-accessible surface
is equivalent to a CPK model in which the van der Waals radius of
each atom has been increased by the radius of the probe sphere.

A related concept is that of the solvent-excluded surface, which is
the envelope of the macromolecule as touched by the rolling probe.
This surface is identical to the van der Waals surface for portions of
surface atoms of the macromolecule on which the probe can roll
freely, but moves out into the solvent when the probe touches more
than one atom, thereby creating an impression of a smoothed or
blurred CPK model. Figure 27.6 shows an example of the solvent-
excluded surface (otherwise known as the molecular surface) of a por-
tion of PDB entry 4ins.

Lee-Richards surfaces were independently rediscovered by
Connolly in 1983.

27.2.7 Higher Order Structure — Schematic Diagrams

When the structures of myoglobin and hemoglobin appeared almost
50 years ago, it was clear that there were profound similarities in their
three-dimensional structures. Moreover, the most interesting similar-
ities were in the global aspects of the structure, the shared overall
folding pattern. To appreciate this, the large amount of detail in the
full atomic structure of the individual residues is a distraction and a
source of confusion.

It was clear that something was needed to extract and display the
overall topology of the structure. An early laboratory approach to this
was to thread tygon tubing along the main chain of a molecular
model, and to pump an aliquot of fluorescent dye through the tube,
visually “tracing the chain.” In 1970, Rubin invented a device
(“Byron’s Bender”) that would bend a wire into the form of the
backbone of a protein structure. These were simple, convenient, and
popular.
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Perhaps the first computer program designed specifically to
present a simplified representation of protein structures created
the “ribbon” diagram of McLachlan. This represented each residue
by a trapezoid in the plane of the peptide and made a complicated
three-dimensional structure intelligible by use of hidden-line
removal.

Rossmann in the US and Furugren in Sweden developed the “car-
toon” representation in which cylinders represented α-helices, and
large arrows represented strands of β-sheet. Intervening loops
appeared, relatively inconspicuously — as in most cases, they deserved
to — as narrow tubes. Richardson took up this idea and executed
such drawings for many structures. Her collection, in “Advances in
Protein Chemistry,” remains an influential source.

Aside from being labor-intensive and requiring manual skill, hand-
drawn diagrams are ultimately limited by the difficulty of reorienting
the viewpoint, of drawing stereo pairs, and especially, of superposition.
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Fig. 27.6 RasMol cross-eyed stereo rendering of a Lee-Richards molecular surface
model of a portion of 4ins.
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This has led to the writing of many computer programs for represen-
tations of proteins.

27.2.8 Superposition

Physical molecular models are fine, especially if one is interested pri-
marily in one or a few structures. For many years, the “model room”
of the Laboratory of Molecular Biology in Cambridge, England, con-
tained wireframe structures of oxy- and deoxy-hemoglobin. Each
occupied a cube of edge about four feet, mounted on a table. One
problem was that if one wanted to compare details of the two struc-
tures all one could do would be to take a yardstick, determine an
interatomic distance on one model, then go to the other model and
measure the corresponding distance. The essential tool, superposi-
tion, was impossible. Over the years, the models were also subject to
partial degradation.

27.3 Computational Techniques

The problems that molecular graphics can help us solve arise from the
size, complexity, and variety of the systems we want to examine.
Recalling that a typical protein structure contains thousands of residues
and tens of thousands of atoms arranged with a well-defined spatial
organization, the first requirement is to be able to look at such an
object in an intelligible way. The two classical types of molecular mod-
els: the representation of every atom by a sphere and the representation
of every chemical bond by a line segment, are entirely inadequate for
structures so large. If what one wants to do is to be able to follow the
course of the chain in three dimensions, a representation of a space
curve following the backbone is something that does make sense to a
molecular biologist, particularly if additional aids to three-dimensional
perception are available, such as stereo and real-time rotation.

But simplification is too simple an answer. First of all, to show such
a space-curve representation, a lot of information has been lost.
Secondly, we not only want to be able to look at a structure, we want to
be able to address a variety of architectural questions. We want to be able
to tinker with a molecule — to ask, for example, what will be the effect
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on the structure of the replacement of one or more of the side-chains,
which can occur either through natural mutation or laboratory syn-
thesis. We may want to design grafts of part of one protein structure
into a different, unrelated protein structure, e.g. the transfer of the
combining site from a rat antibody to a human antibody for thera-
peutic purposes. These would be typical computer exercises in the
field of biotechnology.

In practice, user interfaces provide facilities for interacting with a
picture and with the underlying model that it represents. Many pro-
grams make it possible to design and alter pictures, to select and label
atoms, to choose different colors for different regions or atom types,
to “clip” portions of three-dimensional space (for example, to display
only the portion of a structure within a sphere around an atom in
order to show the neighbors with which it interacts), or to translate
and reorient the current viewpoint. Enhancements of perception of
spatial relationships within a large molecule are achieved by perspec-
tive, stereo, depth cueing, interactive real-time shifts in clipping planes,
and the kinetic depth effect upon viewing an object in a simulated state
of rotation. Many of these are standard elementary operations pro-
vided for in hardware or systems software in modern workstations.

An essential feature of the user interface is the ability to control
and record the orientation of an object or set of objects being dis-
played. The two principal problems are: 1) how to specify numerically
the orientation displayed, and 2) how to communicate to the com-
puter the orientation desired. (A rigid three-dimensional object has
three rotational degrees of freedom, and a mouse appears to have one
component too few.)

27.3.1 Interactive Control of What is Displayed
and How it is Displayed

Interactive graphics involves real-time user control of several aspects
of a picture:

• What material is being shown
• How the material is represented
• The apparent orientation of the representation
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Many modern graphics programs allow control over the choice of
material through menus. Users can select which structures or sub-
structures to include in the picture. For proteins, the user can select
whether to display a trace (polygonal or smoothed) of successive Cα

atoms only, or all backbone atoms, or all atoms, or a simplified repre-
sentation or “cartoon.” If more than one protein structure, or sub-
structure, is displayed, it is possible to control the way the structures
are superposed. Interactive search for well-fitting regions is an impor-
tant tool for exploring relationships between structures. This involves
separate choices of regions to superpose and regions to display. In
some cases, automatic structural superposition programs can select
the atoms for superposition.

For proteins or nucleic acids, choices of representation include:
all-atom representations, skeletal representations showing bonding
frameworks, ball-and-stick representations combining representations
of atoms and bonds, chain traces, or schematic representations.
Experience has shown that it is important to be able to combine dif-
ferent representations for different parts of a structure. A standard
example is a picture that shows an active site in full detail, but the
overall context of the entire structure in reduced detail. Subsidiary
drawings in which a selected region is blown up are sometimes useful
in this context (see Fig. 27.7).

Control over orientation is an essential component of inter-
active graphics. Various analog input devices have been used in
computer graphics for specification of orientation, as well as for
control of other aspects of a display. These include buttons, dials,
slidebars, trackballs, and three-dimensional mice. A fairly obvious
assignment was to allow three dials to control rotations around
x-, y-, and z-axes. Perhaps the most complex was the SpaceBall,
which combined three rotational and three translational degrees of
freedom plus buttons.

It is possible to do an adequate simulation of a trackball using a
mouse. Because mouse and keyboard are standard, and the other
devices are not, most contemporary programs use the mouse and key-
board exclusively for interactive control of the display. Video gamers,
generally better equipped than molecular biologists, use joysticks.
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27.3.2 Techniques

An essential goal of a molecular picture is to produce something intel-
ligible to a scientist. All possible techniques of computer graphics —
whether realistic or imaginary — have been enlisted in this effort.

27.3.2.1 Color and pseudocolor

Some proteins have natural color, such as oxy- and deoxy-hemoglo-
bin. This accounts for the difference in appearance of arterial and
venous blood. However, most of the color in computer-generated
diagrams is artificial. Corey, Pauling, and Koltun assigned black to
carbon, blue to nitrogen, and red to oxygen. (Note that this is not
consistent with the colors of litmus paper in the presence of basic and
acidic groups.) Many graphics programs use different colors to dis-
tinguish different atom types and provide some variation on the
Corey, Pauling, and Koltun (CPK) color assignments. The major change
from the original CPK colors is that carbon is now more commonly
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   Plastocyanin: Cu binding site    Plastocyanin: Cu binding site

Fig. 27.7 Poplar leaf plastocyanin, line drawing. This picture shows the utility of
showing in great detail the binding site for copper, and also in depicting the overall
structural context of the binding site.
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presented as grey, rather than black, to avoid problems with black
backgrounds.

Many programs permit selection of color as part of the selection
of material and representation. For instance, it may be deemed help-
ful to color helices red, strands blue, and loops yellow. [Readers are
urged not to use red and green for important structural distinctions,
as the pictures thereby produced lose their point for a significant
portion of the audience that has the most common form of color-
blindness. Microarray pictures that conventionally show upregu-
lated genes in green and downregulated genes in red are common
offenders.]

Another common use of pseudocolor is the rainbow effect, in
which the color in a chain trace varies from red at the N-terminus,
through the colors of the spectrum, to violet at the C-terminus. This
is a useful way to show the direction of the chain. An alternative is to
draw chevrons on the chain (see Fig. 27.1).

27.3.2.2 Light sources, shadows, shading and depth cueing,
texture, transparency

An atom is not a ball with a crisp glossy surface. A bond is not a metal
wire nor is it a plastic rod. However, the most commonly used phys-
ical models of atoms are plastic balls, and of bonds, metal wires or
plastic rods.

Therefore, many graphics programs produce pictures that appear
as realistic pictures of macroscopic plastic models of chemical struc-
tures. Modern rendering software allows the choice of positions and
other characteristics of multiple light sources, with different beam dis-
persion characteristics, e.g. simulating diffuse lights or spotlights. In
addition to assigning color to elements of the picture, more complex
textures are possible, including mosaic patterns and simulations of
natural materials such as stone and wood. It is now easy to make
extremely fancy pictures. Different colors and textures can provide a
means to represent atom and residue types, charge, temperature fac-
tors and other important parameters, but care is needed to avoid over-
whelming the chemistry with decoration.
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It is important to give the viewer a sense of three dimensions, of
relations between the depths of different parts of the picture.
Shadows within the picture do this, as does hidden-surface removal
(the simulation of opacity). Translucency can be simulated also but is
not easily effective. (In line drawings, simulation of translucency can
be achieved by not removing hidden lines but converting them to
broken lines.)

Depth cueing is the reduction of intensity of objects according to
their distance from the viewpoint. It is a simulation of viewing the
model through fog.

27.3.2.3 Stereo

Stereoscopic vision is an important component of our depth per-
ception in everyday life. Because our eyes are (typically) 2.5 inches
(63 mm) apart, they receive slightly different views of the scene we
are looking at. Our brains integrate the information and interpret the
differences in terms of depth: the larger the difference, the closer the
element of the scene.

To simulate this effect in a drawing, it is necessary to: (1) create
two different views appropriate for the left and right eyes, and
(2) deliver the two views separately to the left and right eyes.
Typical simulated geometries place an object in a box 12 inches
(305 mm) wide, 9 inches (229 mm) high, and 6 inches (252 mm)
deep, viewed from a distance of 30 inches (762 mm), with an eye-
separation of 2.56 inches (65 mm).52 Often the two images are cre-
ated simply by rotating the object slightly for each eye, say by
±2.95°. Especially when done without a perspective correction, this
simple rotation creates an impression of a distant image. Thomas53

argues for accurate geometry in reproduction. Done properly, such
accurate geometry can create the impression of a real object coming
out from the display screen. Such images can be so real that viewers
try to grasp them.

Even approximately, it is difficult but not impossible to draw
stereo pictures without computer automation. An early example in
our field was a set of crystal structure illustrations by von Laue,
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Menzer, von Simson, Verständig, and von Mises.54 Modern computer
graphics makes it easy to generate the two views. An early program used
by several generations of crystallographers was Johnson’s Oak Ridge-
Thermal Ellipsoid Program (ORTEP). PLUTO, by Motherwell,55

followed five years later. These programs calculated the appropriate
line segments and produced output on a pen plotter. A particular algo-
rithmic challenge was “hidden-line removal,” the simulation of opac-
ity. Later, interactive computer graphic devices did the geometrical
calculations, but not the hidden line removal, in hardware. (See
Fig. 27.8 for a typical ORTEP drawing.)

Delivery of separate views to separate eyes is achievable by phys-
ical separation (side-by-side), temporal separation (time-sliced),
filters (e.g. red-green overlays), or with a lenticular screen (“naked-
eye” stereo displays). Side-by-side pictures can be viewed by standard
lens systems, or with a little practice, without aids. Side-by-side
figures place the left-eye image either to the left of the right-eye
image (requiring divergence of the eyes — “wall-eyed stereo”) or to
the right (“cross-eyed stereo”), or both (allowing the viewer to
choose whichever action is easier). Time-sliced stereo requires some
kind of goggles that coordinate the display of left and right images
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Fig. 27.8 ORTEP (Oak Ridge Thermal Ellipsoid Program) picture of the amino
acid histidine. (Courtesy of Dr. J. Madden.)
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with the change from opacity to transparency of filters in front of the
two eyes. In the worst case, these goggles are bulky, heavy, fragile,
and expensive. Projecting polarized images onto a suitable screen
requires only simple polaroid filters. Many installations now have
viewing “caves,” immersing the viewer within the scene. Coupling
these with motion or force sensors gives a tactile (colloquially, a
“touchie-feelie”) illusion.

27.3.2.4 Kinetic depth effect

It is much more difficult to sense the depth in a static scene than in a
moving one. Our brains infer positions for objects from their relative
motion, seeing three dimensions in a sequence of two-dimensional
images that show realistic projections of what we would expect to see
from a moving scene. Stopping the motion usually causes a loss of this
kinetic depth perception.

The combination of the kinetic depth effect with depth cueing
and/or with perspective projection helps to avoid confusion between
the intended scene and one in which the front and back of the scene
are exchanged, producing the enantiomorph.

27.3.2.5 Computing surfaces, contours, isosurfaces,
and tesselations

Johnson’s ORTEP could produce atom-by-atom surfaces, either as
distinct atom-by-atom thermal ellipsoids, or with the 1971 version, as
van der Waals surfaces by representing atoms as overlapping spheres.
At that time, the plots were in black and white, making it difficult to
produce a full rendering of a CPK model in this manner.

Raster-based interactive graphics systems had color and could do
full renderings of CPK models, but, in the early 1970s, such systems
were expensive, and therefore, rare. In general, renderings of isosur-
faces as meshes of contour lines were used for interactive presentation
of surfaces.

Over the next two decades, performance improved and prices
dropped. Raster-based graphics became the norm, displacing most
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uses of vector-based graphics for interactive work. For raster-based
graphics, hidden line-removal is a much simpler problem than for vec-
tor-based graphics. Commercial firms such as Evans and Sutherland
and Silicon Graphics made moderate-cost systems that were capable
of doing high quality surface renderings in real-time, using hardware
to allow software to manage surfaces in terms of triangular decompo-
sitions (tesselations). In 1991, the program GRASP56 made the ren-
dering of property-colored solvent-excluded surfaces in an interactive
graphics environment accessible to those with Silicon Graphics work-
stations. In 1992, Sayle’s program RasMol57–58 made rendering of full
CPK models accessible to anyone with almost any raster-based graph-
ics workstation even while doing pixel-by-pixel (as opposed to trian-
gle-by-triangle) renderings of van der Waals surfaces.

27.4 Recent History and Current Practice
of Molecular Graphics

The following is an imperfect effort to provide some of the major
highlights in the history of molecular graphics since the late 1980s,
with apologies to the authors of the many important efforts not men-
tioned. Our focus is on examples of work in the past two decades that
has had a significant impact on current practice. The threads we will
explore start with ORTEP, MIDAS, Molscript, Kinemage, RasMol.

27.4.1 ORTEP

One of the first molecular graphics programs, ORTEP, is still used. It
is the gold standard for the renderings of small molecules and ligands
for macromolecules, providing deep scientific insight into thermal
librations of such molecules. The current version, ORTEP III,59

retains all the features and functionality of the original ORTEP and
has added “semi-interactive” capabilities, accepting some input from
the user in response to prompts and optionally displaying output on
the screen instead of only as a paper plot. The authors have done a
remarkable job of keeping the program compatible with data sets
from 40 years ago while providing an essential tool for current
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studies that produces molecular drawings of remarkable scientific
accuracy, clarity and beauty.

27.4.2 MIDAS and Chimera

In the late 1980s, UCSF Computer Graphics Laboratory’s MIDAS60

provided graphics tools for drug design by visualization and docking
of molecules. This package was widely used throughout structural
biology and helped to make high quality graphical representations of
molecules an essential element of scientific research in structural biol-
ogy. The successor to MIDAS is Chimera,61 which is one of the most
mature and feature-rich of the currently used interactive molecular
graphics programs with startlingly realistic images, especially when
viewed in stereo.

27.4.3 Insight and VMD, SWISS-MODEL and DeepView

Insight,62 developed at UCSF and by Biosym Technologies, and,
later, as Insight II at Accelrys, is an important example of a molec-
ular graphics and molecular modeling program. The distinction
between molecular graphics programs and molecular modeling pro-
grams is fuzzy, but important. A graphics program focuses on the
ability to visualize a model of a molecule. A modeling program
focuses on the ability to assemble and change a model of a mole-
cule. There are many modeling programs drawing tools from
physics and chemistry to synthesize small molecules (and increas-
ingly macromolecules) from scratch or to combine experimental
results with semi-classical and quantum-mechanical models. Some
of the modeling tools are coupled with high quality rendering capa-
bilities, as in Insight, and in other cases, rely on external molecular
graphics packages for the visualization of results. The molecular
graphics program VMD63 is very well designed to serve as an inter-
active visualization front end to molecular dynamics modeling
programs. The molecular graphics program DeepView (Swiss-
PDBViewer) serves as the visualization front end for the homology
modeling server SWISS-MODEL.64
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27.4.4 Molscript, Bobscript, Raster3D, and POV-Ray

In 1991, Kraulis released Molscript.65 Molscript is a rendering system
both for visualization and export to other rendering programs. When
“photorealistic” renderings of models are required, Molscript or an
extended form by Esnouf, Bobscript,66 are typically used with Merritt’s
program Raster3D.67 This is the standard for high-quality renderings
of macromolecules as static images. Raster3D provides a powerful set
of rendering tools for quality images of ribbons, space-filling atoms,
etc., but most importantly it does a careful ray-tracing from light sources
to the molecular model and onto the viewer. In recent years, the ray-
tracing engine started by Buck in 1986 for a game computer (the
Amiga) and which became a full-fledged multi-platform ray-tracing
engine in the early 1990s, has, in the form of POV-Ray, also started
to be used as a ray-tracing alternative to Raster3D (see http://www.
povray.org/) for photorealistic images. Lesk rewrote the Lesk-Hardman
program to make use of general rendering software. Many pictures
produced by this software appear in Ref. 68.

27.4.5 Kinemage, Movie-Making

In 1992, Richardson and Richardson released a Macintosh-based
visualization package for kinemages (kinetic images) of macromole-
cules.69 The package consists of several programs that are now avail-
able on a wide range of platforms (see http://kinemage.biochem.
duke.edu/kinemage/magepage.php#defined):

“A ‘kinemage’ (kinetic image) is a scientific illustration presented
as an interactive computer display. […] A kinemage is prepared in
order to better communicate ideas that depend on three-dimensional
(or more) information. The kinemages are distributed as plain text
files of commented display lists and accompanying explanations. […]
They are viewed and explored in an open-ended way by the reader
using either the Mage or KiNG graphics program. A kinemage file
can be generated either by a program or hand-cobbled. A utility
called Prekin makes a starting kinemage from a PDB-format coordi-
nate file. […]”.
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A kinemage is not a movie, but it validated the use of movies as a
routine mechanism for communication about molecules. It is now
routine to make short movies and to embed them in presentations.
Almost any molecular graphics program is capable of exporting a
sequence of images, each one showing a small incremental change in
position from the previous one, so that they can be assembled into a
flip-book movie.

In the 1970s, movie-making was a slow and daunting process,
involving hours to days of work for even a short movie, as frames were
transferred one at a time to film. This changed gradually as computer
processing speeds and disk capacity increased, so that movies could
be stored and viewed in real time, at first locally on a computer in the
late 1980s and early 1990s using the mpeg format, and then in the
1990s, as the world-wide-web developed, on the Internet. By 1996,
Netscape had introduced a web-page image format called “animated
GIF” that allowed short movies to be introduced into web pages.

Using a package from the early 1990s, called ImageMagick (see
http://www.imagemagick.org/script/history.php), any user could
use almost any molecular graphics program to produce the images for
a flipbook that ImageMagick would assemble into a short movie.
While making such movies is now commonplace, the process can be
daunting to non-experts and can demand resources that may not be
available on local computers. Both problems have been solved by a
variety of servers on the Internet that accept PDB ID codes or accept
uploads of PDB files. One of the first of these was the “PDB to
MultiGIF” web site by Bohne70 at http://www.glycosciences.de/
modeling/pdb2mgif/ that offers the user a simple web form to gen-
erate an animated GIF using RasMol. Short movies are of particular
value for “morphing” (a concept dating back to the imagery in71 mol-
ecules, i.e. for showing changes in molecular conformation during
various biological interactions. The Yale Morph Server at http://
www.molmovdb.org/morph/ generates the necessary intermediate
images from two end-point configurations. There are various movie-
making servers with differing capabilities. The “World Index of
Molecular Visualization Resources” at http://molvis.sdsc.edu/visres/
established by Martz and Kramer is a visitor-maintained site that
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includes a list of such “Molecular 3D Visualization Servers.” Another
useful compendium appears at http://www.hhmi.swmed.edu/external/
crystallography/gr1.html.

27.4.6 RasMol, Chime, Jmol, PyMol, and ccp4mg

In 1992, Sayle described the program RasMol, which uses a highly
efficient rendering algorithm to allow high quality interactive render-
ing of macromolecules on a wide variety of platforms. The program
was released in 1993 and is still heavily used. Sayle’s maintenance and
development of RasMol was supported by Glaxo for several years.
RasMol is still actively maintained.72 RasMol is a particularly easy-to-
use program oriented towards rapid and simple display of PDB entries
and coordinate sets from a variety of packages. It provides simple
menus and a highly intuitive command language. It is used both for
high-end research and for education down to the kindergarten level.
RasMol was first released just as the world-wide-web was becoming
popular, and was adopted as a helper application for browsers. Helper
applications get their own windows on the screen, competing for
screen “real estate” with the original browser window and creating
some confusion in the handling of the mouse and keyboard.

MDL Systems, Inc. recognized the need for a version of RasMol
that was better integrated with web browsers and created Chemscape
Chime (see http://www.mdl.com/chemscape/chime), a derivative of
RasMol that works as a web browser “plug-in.” The virtue of tight
coupling with browsers created compatibility issues as browsers
changed. This problem was solved when the developers of an existing,
open source, java-based molecular graphics program, Jmol by Gezelter,73

adopted the RasMol command language and turned Jmol into a full
replacement for Chime that was able to work with a wide range of
web browsers (see http://jmol.sourceforge.net/history/).

It is important to understand the role of non-interactive scripting
in modern interactive molecular graphics. A script can be generated as
a record of the mouse manipulations and menu selections used to
create a desired image and then read back in at a later date to recover
the state of the program in preparation for further manipulations.
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Then, often with appropriate hand editing, such scripts can become
tutorials on the interesting features of the same molecules or initial-
ization scripts to select appropriate color schemes and renderings for
other molecules. In the decade and a half that RasMol has been avail-
able, many tutorial scripts have been written for both RasMol and for
Chime. Many originally written for Chime are now being converted
to Jmol versions, and because both RasMol and Jmol are open source,
it is expected that fairly complete compatibility will be achieved
between RasMol and Jmol scripts.

Because RasMol is written in C, a fully compiled language, it
achieves higher performance than Jmol, which is written in java, a
compiled and then interpreted language with performance issues.
Python, itself a powerful scripting language, achieves much higher
performance in graphics applications than java with good platform
independence. PyMol by DeLano74 and ccp4mg by Potterton
et al.75 are two full-featured molecular graphics programs written in
Python. Both produce very well-rendered images. As of this writing,
ccp4mg is one of the most comprehensive of the currently available
packages.

27.5 Current Choices in Hardware and Software

The improvement in performance of commodity personal computers
with high performance graphics capabilities has resulted in wider
access to suitable platforms for molecular graphics. This has resulted
in a certain degree of standardization for both hardware and soft-
ware, and has significantly reduced the use and availability of special-
ized molecular graphics systems. Most currently supported molecular
graphics systems now assume one of three major hardware/operating-
system platforms: an x86 CPU running some variant of Linux, an
x86 CPU running some version of Microsoft Windows, or an x86 or
PowerPC running some version of Mac OS X. There is still a need
for applications that run on Silicon Graphics, Sun, Hewlett Packard,
and IBM graphics workstations, but the approach to control and dis-
play is now determined by the demands and capabilities of Linux,
Windows, and Mac OS in relatively inexpensive mass-marketed personal
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computers. Such personal computers are called “commodity” per-
sonal computers.

Until the second half of the first decade of the twenty-first cen-
tury there was some advantage to doing molecular graphics on large
high-resolution cathode ray tubes using specialized (and expensive)
graphics cards to drive them. Inexpensive personal computer moni-
tors and graphics hardware now have similar capabilities, except in the
rendering of flicker-free high-resolution stereo, an application for
which high-resolution cathode ray tubes remain better suited than flat
panel displays.

The common use of commodity personal computers has resulted
in a simplification and standardization of approaches to control and
display molecular graphics, to make use of the type of keyboard,
mouse, and display found on such computers, using the approach that
originated as the Xerox Palo Alto Research Center Windows-Icons-
Mouse-Pointer (Xerox PARC WIMP) paradigm.76 That approach is
now common to personal computers, so much so that some newer
applications are weak in their support for other approaches to control,
such as scripting with command files, and lack capabilities for high
quality rendering in media other than on commodity displays.

The remaining major exception to the near universal use of com-
modity personal computers for molecular graphics is when high per-
formance interactive stereo display is needed. In order for polarized
shutter glasses to present 60 complete images per second without sig-
nificant flicker, the display must be capable of 120 images per second
(60 per second for the left eye and 60 per second for the right eye in
alternation). Modern LCD displays are still too slow to change images
that quickly.

27.5.1 Current Applications

There are numerous currently used molecular graphics programs,
many of which are available for download on the Internet. Some are
used for experimental research, some for theoretical work, some for
education, and some for all three. Space does not permit a discussion
of all the programs and packages currently available. Fortunately,
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there are many useful resources on the Internet to assist in locating and
comparing relevant packages, e.g. http://www.liv.ac.uk/Chemistry/
Links/refmodl.html, http://molvis.sdsc.edu/visres/index.html and
http://www.rcsb.org/pdb/static.do?p=software/software_links/
molecular_graphics.html.

As noted above, ORTEP, Chimera, Raster3D, Molscript,
Bobscript, RasMol, jmol, PyMol, and ccp4mg cover a large portion
of the current types of molecular graphics applications, but there are
many other applications and servers. Both open source and propri-
etary packages now provide capabilities that allow scientists through-
out the structural biology community to communicate their results
with almost the same clarity, precision, artistry, and scientific precision
that Dickerson and Geis achieved four decades ago.

27.6 The Future

It is likely that personal computers will continue to become more
capable and more cost-effective with higher performance graphics.
This will allow molecular graphics programs to assume the availabil-
ity of more of the resources needed to draw high quality, complex
molecular images in real time. Network bandwidths will continue to
increase. The combination of these trends should allow three-
dimensional, dynamic photo-realistic images to become the norm in
the communication of results in structural biology. A less obvious
trend, but arguably more important trend is towards greater com-
monality and increasing cross-communication among graphics
programs. The PDB format from the 1970s for macromolecular
structures and the Crystallographic Information File (CIF) from the
1990s77 for small molecules have allowed easy interchange of data
among molecular graphics programs. The scripting language from
RasMol has shown promise as a mechanism to allow rendering com-
mands to be shared. It seems likely that a language combining the
clarity and simplicity of the RasMol command set with the power
and extensibility of the Python-based language used by PyMol will
be developed and will allow users to move freely among a wide
range of graphics packages.78
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