Computer Network
Architectures and
Protocols

Applications of Communications Theory
Series Editor: R. W. Lucky, Beil Laboratories

INTRODUCTION TO COMMUNICATION SCIENCE AND SYSTEMS
John R. Pierce and Edward C. Posner

OPTICAL FIBER TRANSMISSION SYSTEMS
Stewart D. Personick -

TELECOMMUNICATIONS SWITCHING
J. Gordon Pearce

ERROR CORRECTION CODING FOR DIGITAL COMMUNICATIONS
George C. Clark, Jr., and J. Bibb Cain

COMPUTER NETWORK ARCHITECTURES AND PROTOCOLS
Edited by Paul E. Green, Jr.

A Continuation Order Plan is available for this series. A continuation order will bring
delivery of each new volume immediately upon publication. Volumes are billed only upon
actual shipment. For futher information please contact the publisher.

Computer Network
Architectures and
Protocols

Edited by |
Paul E. Green, Jr.

IBM Corporation
Yorktown Heights, New York

PLENUM PRESS ¢ NEW YORK AND LONDON

Library of Congress Cataloging in Publication Data
Main entry under title:
Computer network architectures and protocols.

(Applications of communications theory)
Bibliography: p.
Includes index.

1. Computer networks. I. Green, Paul Eliot, date . I1. Series.
TK5105.5.C638 001.64/404 82-5227
ISBN 978-1-4615-6700-4 ISBN 978-1-4615-6698-4 (¢Book) AACR2

DOI 10.1007/978-1-4615-6698-4

First Printing —May 1982
Second Printing —May 1983

©1982 Plenum Press, New York
Softcover reprint of the hardcover 1st edition 1982

A Division of Plenum Publishing Corporation
233 Spring Street, New York, N.Y. 10013

All rights reserved

No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, electronic, mechanical, photocoyping, microfilming,
recording, or otherwise, without written permission from the Publisher

To Doogie

Contributors

James D. Atkins
IBM Corporation, Research Triangle Park, North Carolina

H. V. Bertine
Bell Laboratories, Holmdel, New Jersey

Gregor V. Bochmann
University of Montreal, Montreal, Quebec, Canada

David R. Boggs
Xerox Corporation, Palo Alto Research Center, Palo Alto, California

Daniel Brand
IBM Zurich Research Laboratory, Riischlikon, Switzerland

David E. Carlson
Bell Laboratories, Holmdel, New Jersey

James W. Conard
Control Data Corporation, Anaheim, California

D. D. Cowan
IBM Zurich Research Laboratory, Riischlikon, Switzerland

André A. S. Danthine
University of Liége, Liége, Belgium

John D. Day
Cullinane Database Systems, Inc., Westwood, Massachusetts

vii

viii Contributors

Harold C. Folts
Omnicom, Inc., Vienna, Virginia

Mario Gerla
University of California, Los Angeles, California

James P. Gray
IBM Corporation, Research Triangle Park, North Carolina

Paul E. Green, Jr.
IBM Research Center, Yorktown Heights, New York

Brent T. Hailpern
IBM Research Center, Yorktown Heights, New York

Verlin L. Hoberecht
IBM Corporation, Kingston, New York

Leonard Kleinrock
University of California, Los Angeles, California

Robert M. Metcalfe
3Com Corporation, Menlo Park, California

Jonathan B. Postel

Information Sciences Institute, University of Southern California, Marina
del Rey, California

David B. Rose
IBM Corporation, Research Triangle Park, North Carolina

Harry Rudin
IBM Zurich Research Laboratory, Riischlikon, Switzerland

Antony Rybczynski
Bell Canada, Ottawa, Ontario, Canada

Gary D. Schultz
IBM Corporation, Research Triangle Park, North Carolina

Mischa Schwartz
Columbia University, New York, New York

Contributors ix

John F. Shoch
Xerox Corporation, Palo Alto Research Center, Palo Alto, California

Thomas E. Stern
Columbia University, New York, New York

Carl A. Sunshine
Information Sciences Institute, University of Southern California, Marina
del Rey, California

Edward A. Taft
Xerox Corporation,{ Palo Alto Research Center, Palo Alto, California

Fouad A. Tobagi
Stanford University, Stanford, California

Iwao Toda
Yokosuka ECL NTT, Yokosuka, Japan

Stuart Wecker
Technology Concepts, Inc., Sudbury, Massachusetts

Colin H. West
IBM Zurich Research Laboratory, Riischlikon, Switzerland

Pitro Zafiropulo
IBM Zurich Research Laboratory, Riischlikon, Switzerland

Hubert Zimmerman
IRIA /Laboria, Rocquencourt, France

Preface

This is a book about the bricks and mortar out of which are built those
edifices that so well characterize late twentieth century industrial society—
networks of computers and terminals. Such computer networks are playing
an increasing role in our daily lives, somewhat indirectly up to now as the
hidden servants of banks, retail credit bureaus, airline reservation offices,
and so forth, but soon they will become more visible as they enter our
offices and homes and directly become part of our work, entertainment, and
daily living.

The study of how computer networks work is a combined study of
communication theory and computer science, two disciplines appearing to
have very little in common. The modern communication scientist wishing to
work in this area finds himself in suddenly unfamiliar territory. It is no
longer sufficient for him to think of transmission, modulation, noise immun-
ity, error bounds, and other abstractions of a single communication link; he
is dealing now with a topologically complex interconnection of such links.
And what is more striking, solving the problems of getting the signal from
one point to another is just the beginning of the communication process.
The communication must be in the right form to be routed properly, to be
handled without congestion, and to be understood at the right points in the
network. The communication scientist suddenly finds himself charged with
responsibility for such things as code and format conversions, addressing,
flow control, and other abstractions of a new and challenging kind.

As for the computer scientist, he finds that his discipline has changed
too. The fraction of computers that belong to a network involving terminals
and computers is increasing all the time. And for a typical single computer,
the fraction of its execution load, storage occupancy, and system manage-

xi

xii Preface

ment problems that are involved with being part of a network is also
growing.

It is the objective of this book to provide a comprehensive text and
reference volume that can be used in education, research and development
in this combined field of computer networks. The aim is to be instructive
and, within the limits imposed by space, encyclopedic.

The present status of the computer network art can be traced to three
main sources: research networks built by universities, often operating under
government support; private networks provided by the computer manufac-
turers; and public network offerings provided by common carriers. In this
volume all three sources of expertise have been tapped. Cooperation be-
tween these communities has led to the establishment of a high level of
world wide standardization on certain special aspects of network architec-
tures and protocols, and these are described.

When I was asked by the Editor of this series to prepare a volume in
this area, it was clear that two approaches were possible. The emphasis
could either be on abstract and generic descriptions of network structure
(the architecture) or on specific implementations and the functions they
provide. The latter approach, in which one might describe how a given
packet-switched common carrier network functions or how a piece of
software offered by a computer manufacturer works, would provide a
treatment of immediate help to the user of just that service or product.
However, it seemed obvious that a more generally useful and less perishable
volume would result if one took the first approach and dealt with structural
concepts at the most basic and generally applicable level; this was the
procedure adopted in preparing this volume.

There already exist several perfectly adequate treatises that cover parts
of the area or cover all the areas fairly lightly or from the special point of
view of the university, computer manufacturer, or common carrier. How-
ever, writing the really complete treatise that was wanted seemed not to be
within the ability of any one author (at any rate not this author). A volume
composed of invited contributions by experts was clearly called for. At the
same time, a need emerged in the Institute of Electrical and Electronics
Engineers (IEEE) to have a special journal issue on this very topic, so the
two processes of book and journal issue were merged. The volume you are
now reading is really a second iteration, the first being a Special Issue on
Computer Networks Architecture and Protocols, the April 1980 issue of the
IEEE Communications Transactions. This volume consists of revised ver-
sions of those papers, plus several new chapters, all organized into seven
parts, each of which has a tutorial introduction. A comprehensive subject
index and index of acronyms has been supplied.

The book is organized along the lines of the “layered” view which is
always used today in dissecting network function and which will be intro-

Preface xiii

duced in Part I. According to this scheme, the structure within any network
“node” or “machine” may be broken into layers with the raw transmission
facilities of classical communications (for example, wires or satellite links)
below the lowest layer and the using source and destination persons or
programs above the highest one. Part II discusses the lowest layer, the
Physical Layer, by which transmission connections are set up between
nodes. Part III presents the Link Control Level, which operates to produce
error-free sequential delivery of data messages or “packets” from a particu-
lar node to one of its neighboring nodes. In Part IV we see how packets
make their way from the originating node to the destination node, a process
which can be a complex one when there are intermediate nodes in between
and when there are many simultaneous users of the network resources.
When we get to Part V, the fact that the path of the messages has been a
sequence of nodes and links is no longer visible because we are discussing
high level functions by which the path provided by this sequence is
exploited by just the two end users at the source and destination nodes,
respectively.

Any treatment of computer network structure that aspires to complete-
ness and timeliness cannot stop with just the internals of the layers. At least
two other areas of great concern today were identified and are discussed
here. Just in the last several years the difficult step of connecting together
networks that were previously functioning separately has become most
important as the number of networks proliferates and the breadth of
interconnection freedom desired by end users becomes more ambitious. This
problem is the subject of Part VI.

And finally, Part VII caps off our treatment of how the details of
network function should work with a series of reports on the extent to which
we are now able by formal methods to make sure in advance that they will
work.

I have tried to get the best people available to write chapters on the
different subtopics. This has inevitably meant a heavy drain on the sched-
ules of very busy individuals, but the request has been met with a com-
mendable responsiveness and generosity for which I am most grateful. I
would also like to record my indebtedness to the referees of these chapters
and especially to the three individuals who helped plan the volume: Alex
A. McKenzie, Carl Sunshine, and Stuart Wecker. Dr. Sunshine made a
particularly heavy contribution, since he managed the review and editing
process for all the chapters in Part VII.

Mt. Kisco, New York Paul E. Green, Jr.

Contents

PART I: INTRODUCTION

IntroductiontoPartI

1. The Structure of Computer Networks

Paul E. Green, Jr.

2. A Standard Layer Model

Hubert Zimmermann

PART II: PHYSICAL LAYER

IntroductiontoPartIX

3. Physical Interfaces and Protocols

H. V. Bertine

PART III: LINK CONTROL LAYER

IntroductiontoPart TIL
4. Character-Oriented Link Control

James W. Conard

5. Bit-Oriented Data Link Control

David E. Carlson

6. MultiaccessLink Control

Fouad A. Tobagi

XV

Xvi Contents

PART IV: NETWORK LAYER

Introductionto PartIV 191
7. Circuit-Switched Network Layer 195
Harold C. Folts
8. Packet-Switched Network Layer 213
Antony Rybczynski
9. Packet-Switched Network Layer for Short Messages 239
Harold C. Folts
10. DNA—The Digital Network Architecture 249

Stuart Wecker
11. Path Control—The Network Layer of System Network

Architectureo i ittt e e e 297
James D. Atkins .

12. Routing Protocols 327
Mischa Schwartz and Thomas E. Stern

13. Flow Control Protocols 361

Mario Gerla and Leonard Kleinrock

PART V: HIGHER-LAYER PROTOCOLS

IntroductiontoPartV, 413

14. DCNA Higher-Layer Protocols 415
Iwao Toda

15. Terminal Support Protocols, 437
John D. Day

16. SNA Higher Layer Protocols 459
Verlin L. Hoberecht

17. Videotex Terminal Protocols 483

Paul E. Green, Jr.
PART VI: NETWORK INTERCONNECTION

Introductionto Part VI 509

18. Internetwork Protocol Approaches 511
Jonathan B. Postel

Contents xvii

19. A Specific Internetwork Architecture (Pup). 527

David R. Boggs, John F. Shoch, Edward A. Taft,
and Robert M. Metcalfe

PART VII: FORMAL SPECIFICATIONS AND THEIR
MANIPULATION

Introductionto Part VII 557

20. A Survey of Formal Methods 561
Gregor V. Bochmann and Carl A. Sunshine

21. Protocol Representation with Finite State Models 579
André A. S. Danthine

22. Specifying and Verifying Protocols Represented as
Abstract Programs 607
Brent T. Hailpern

23. A Hybrid Model and the Representation of Communication
SeIVICES . o it e 625
Gregor V. Bochmann

24. Protocol Analysis and Synthesis Using a State Transition Model . . .645
Pitro Zafiropulo, Colin H. West, Harry Rudin, D. D. Cowan, and
Daniel Brand

25. Executable Representation and Validationof SNA 671
Gary D. Schultz, David B. Rose, James P. Gray and Colin H. West

INDEX OF ACRONYMS - - « c v v e v ettt et e ettt e e 707

SUBJECTINDEX + -« ¢t ot v ettt et ettt ettt ettt e e e e et e 711

PART I

Introduction

The introductory part of this volume consists of two chapters. In Chapter 1
the concept of layered computer network architectures is motivated and
explained in a tutorial way. The way in which Parts II through V of the
book relate to the various layers is also indicated.

A network architecture is a complete definition of all the layers neces-
sary to build the network. The definition itself is expressed as a set of
protocols that act within the same layer or between layers. A protocol, in
turn, is a set of agreements for interaction of two or more parties and is
expressed by three components, syntax (e.g., a set of headers, a set of
commands /responses), semantics (the actions and reactions that take place,
including the exchange of messages), and timing, the sequencing and con-
currency aspects of the protocol.

While the book is intended to present the generic architectural view of
networks, it was nonetheless felt important to include in Chapter 1 a bit of
the history of some of the implementations, if only to show how the earlier
ones suffered from an absence of the systematic layered approach. This
discussion of implementations also gives some feel for the world of software
and hardware products in which the architecture ceases to be a paper design
and becomes an operational reality.

Chapter 2 serves to complete the introductory portion of this book by
detailing the new proposed international reference model for layered net-
work architecture, the Open System Interconnection, promulgated by the
International Standards Organization, and known more succinctly as
“ISO /OSI.” This model is being widely adopted as a definitive framework
for talking about layered network architectures.

OSI, as formally approved, takes the summary form presented in
Chapter 2; details on syntax, semantics, and timing of protocol layers above
level 3 (equivalent roughly to the X.25 packet standard) have not been
agreed upon yet. Therefore, even though the reader will have to be content
with OSI as a useful pedagogical model, it is to be expected that eventually
the ISO model will be transformed into a full-fledged architecture in the
sense defined above.

The Structure of Computer Networks

Paul E. Green, Jr.

I. Introduction

A computer network is a structure that makes available to a data
processing user at one place some data processing function or service
performed at another place. Such a computer network is exemplified
superficially in Fig. 1. In this case one of the end users is a person sitting at
a terminal. The other end user is a specific application program running on
a computer. The network consists of a number of boxes or nodes, among
them the terminal (A) and the computer (B), and includes also the interven-
ing transmission lines connecting the nodes.

Ever since computer users began accessing central processor resources
from remote terminals over 25 years ago, such computer networks have
become more versatile, more powerful, and inevitably, more complex.
Today’s computer networks [1-6] range all the way from a single small
processor that supports one or two terminals to complicated interconnec-
tions in which hundreds of processing units of various sizes are intercon-
nected to one another and to tens of thousands of terminals, often with
various forms of special multiplexors and controllers in between.

As this evolution has proceeded, so have attempts to replace ad hoc
methods of network design with systematic ways of organizing, understand-
ing, and teaching about computer network details. Today there is an orderly
way of looking at networks in terms of layered architectures, which makes it
possible to dissect the many interlocking functions of the network and then
explain them one at a time. This book is organized in just this way, the
various sections and chapters being devoted to the different layers. As we
shall see, each layer in a layered architecture is a collection of defined
interactions called peer protocols, and the boundaries between layers is
another set of interactions called interface protocols.

3

4 Part 1 ® Introduction

(B)

(A)

al

TERMINAL

COMPUTER

Fig. 1. A computer network.

It is appropriate to state at this point the difference between a protocol,
an architecture, and an implementation. A protocol is a set of rules of
procedure stating just how two or more parties are supposed to interact, for
example, by sending messages to each other. A network architecture is a
precise definition of the aggregated set of functions that the network and its
components should perform. The architecture consists of a number of
individual protocols. An implementation is a running version of which the
architecture is the blueprint. Thus the architecture exists on paper and the
implementation exists as actual hardware or software that runs. The empha-
sis in this book is on architectures and their component protocols, not on
implementations.

This initial chapter has the objective of introducing the layering con-
cept in a simple and plausible way and, by going into an intermediate level
of detail, to set the stage for the various chapters to follow which will
discuss individual layers in much greater depth. We shall do this by first
briefly tracing the historical evolution of network implementations, and
then by summarizing some of today’s layered architectures.

In Section II, we analyze a list of the basic functions that the network
provides in putting the parties that the network serves into communication
with one another. This allows us to identify the layers and state what each
of them is supposed to accomplish. Then, to prepare the ground for relating
these structural abstractions to real life we review the history of network
implementations. This is done in two pieces; Section III discusses commer-
cially provided networks (and the influence of research networks on them)
and Section IV treats the standards of the common carriers and related
bodies. Finally, in Section V we review how three different implementation

Chap. 1 ® Structure of Computer Networks 5

groups have filled in the details of certain of the layers of Section II in their
own particular way to provide the services that were covered in Sections III
and IV.

II. A Framework for Discussing Networks: The Total Access Path
between End Users

A. Characterizing the Network

The basic function to be performed by any computer network is the
provision of an access path by which an end user at one geographical loca-
tion can access some other end user at another geographical location. De-
pending on the particular circumstances, the pair of end users might be a ter-
minal user and a remote application program he or she is invoking (as with
Fig. 1), two application programs interacting with one another remotely, one
application program querying or updating a remote file, and so forth. It is
important to understand that by access path we mean the sequence of
functions that makes it possible for one end user not only to be physically
connected to the other, but to actually communicate with the other in spite
not only of errors of various types but also large differences in the choices
of speed, format, patterns of intermittency, etc., that are natural to each end
user individually. The distinction is important because it captures one of the
key differences between classical communications (transmission and error
control) and computer communications.

There are many ways of characterizing networks, for example, the
following: (1) according to the particular application (banking, time sharing,
etc.), (2) according to geography (in-plant, out-plant), and (3) according to
ownership (public, private), and so forth. Another way of characterizing
different network types is to examine the topological character of the web of
transmission lines that connect together the nodes at which the different end
users are located and/or which perform some connection and message
forwarding function. (A node is a physical box such as a computer, con-
troller, multiplexor, or terminal;, an end node is one where an end user
resides.) Topologically, we may distinguish various network types in the
manner shown in Fig. 2.

None of these four approaches really reveals what the network is
actually doing. A much better scheme is to examine the total repertoire of
functions that the network must provide in making up an effective access
path between two end users (Table T). By doing this in an ordered way, one
is in a good position to characterize the important features of both common

6 Part 1 ® Introduction

j Fig. 2. Six network topologies. (A) Star,
(B) Multidrop, (C) Loop, (D) Tree, (E)

Mesh, (F) Mesh of trees.

carrier networks (of the leased, dial, fast circuit-switched, and packet-
switched types that we shall define later in this chapter) and the network
designs of computer manufacturers.

B. Access Path Requirements

First, someone must make sure that a set of physical transmission
resources (lines) exists that run from the origin node to the destination

Chap. 1 * Structure of Computer Networks 7

Table I. Access Path Requirements®

To give one end user access to another end user, someone must:

Make sure a transmission path ex- USING Common carrier-provided lines
1sts

See that it talks in bits USING Modems

Provide electrical connection and USING Physical interfaces (II)
control of modem

Provide economies during intermit- USING Physical dialup; line sharing by
tent use multidropping or other multi-

access schemes (III)

Move individual messages without USING Data link control; Error detection

error and retransmission (IIT)

Send messages to correct node and USING Addressing, routing (III, IV)
correct subsidiary address within
node. Bypass failed or congested
line or node.

Accommodate buffer size. Avoid USING Packetizing /depacketizing (IV)
need to resend long messages

Resolve mismatches between feasi- USING Buffering, flow control (IV)
ble rate of message flow across
network and that desired by end
user

Accommodate request - response USING Set up, take down, and manage
patterns peculiar to the end user datagram, transaction, or session
pair dialogue (V)

Make it possible for one end user USING Protocol conversions (V)

to interpret and use the code,
format, command convention,
etc., used by the others

“Roman numerals indicate parts of the book in which each function is described in detail.

node, often by way of intermediate nodes. In out-plant situations (beyond
one contiguous set of customer premises), this is done by common-carrier-
provided links, either terrestrial or satellite.

Today it is still true that most common-carrier lines are analog lines
that were originally designed to handle voice waveforms. Therefore, the next
step is to see to it that the two ends of each line talk in bits by substituting
for the bits certain waveforms whose energy lies in a frequency range
accommodated by the lines. Modems (modulator—demodulator units) pro-
vide this function and some others. One modem at the sending end of the
line converts bits to analog waveforms, and a second modem at the
receiving end converts analog waveforms back to bits. Modems will not be
discussed further in this volume. The interested reader should consult Ref.
7. The state of the modem must be controlled at all times by the remainder
of the node to which it is attached. An electrical or physical interface must

8 Part 1 ® Introduction

be provided to perform this function. Part II of this volume deals with this
interface.

The next problem to be faced is to exploit the intermittent (“bursty”)
nature of most end user traffic in such a way as to economize on line costs.
If each sending end user were always to generate a bit stream at a constant
rate, networks made entirely of simple point-to-point leased lines of just the
right capacity would be the appropriate solution. But since this is, in
practice, hardly ever the case, one must either use an intermittently available
dial up point-to-point line, or hang a number of end nodes along the same
line and use multidropping or another of the wide variety of multiple access
techniques that have been invented to interleave the bursty traffic. Espe-
cially attractive are the new packet-switching or fast circuit-switching (very
fast dialup) services, which we shall return to presently. (Multidropping,
multiple access, packet-switching and fast circuit-switching are all forms of
time-division multiplexing.) In any of these functions there is a calling
function at the end that initiates the connection and a called function at the
other. The physical level calling and called function that make up the dialup
function are not presented in this volume in Part II but are deferred until
Part IV since they may be closely compared to other functions discussed
there.

Next, a capability must be provided for making sure that the bit stream
received is an accurate replica of the bit stream transmitted. This is done by
adding redundancy bits for error detection every so often in the transmitted
bit stream. If, upon checking the arriving redundancy bits against the string
of immediately preceding arriving data bits (a “frame”), the receiver detects
an error, the transmitter is asked by the receiver to resend the frame.

In most computer networks the multidropping function (if used) and
the error detection /retransmission function are handled by data link control
(DLC) elements, one at each point of connection of a node to a line. With
multidropping of many nodes on the same leased line comes the need to add
into the exchanges between DLC elements certain link address and control
fields or characters to be used to avoid conflicting attempts to use the line
and have the correct node absorb the message.

The three chapters of Part 11T discuss how classical data link controls,
such as BISYNC and HDLC as well as some more recently introduced
multiaccess protocols, accomplish the functions of line sharing and error-free
node-to node message delivery.

The action taken in response to the addressing information is, of course,
the routing operation, detailed in Chapter 12. We have just encountered a
simple addressing/routing requirement on a single link connecting several
stations. When the nodes at which the end users are located are separated
not just by one line but by one or more intervening nodes and lines,
messages must be forwarded from node to node, and addressing and routing

Chap. 1 ® Structure of Computer Networks 9

then become quite elaborate, particularly if there is a multiplicity of possible
routes between the two end nodes. In such a topologically complex network,
upon failure of a node or link, alternate path rerouting provides a powerful
tool for recovery.

Before leaving the subject of addressing and routing, it should be noted
that a line connected to a node often carries traffic to or from more than
one location within that node. To resolve the ambiguity, an intranode
addressing and routing function is required in such cases.

The next function that must be provided is to accommodate the
buffering of incoming messages from the line until they can be serviced, and
the buffering of outgoing messages until they can be carried away by the
transmission line. Limitations on available buffer size and the desire for fast
response time, together with the aforementioned need to do error checking
on a frame-by-frame basis (while seeing to it that the inevitable retransmis-
sions do not take too long), lead to the need to segment (packetize)
outgoing bit streams into frames of reasonable size and similarly to reassem-
ble (depacketize) incoming bit streams.

Next, the rate of flow of outgoing packets has to be regulated so as
neither to overflow the buffers at the receiving station nor to leave the
receiving end user waiting for more traffic. This can be accomplished by
feeding back along part or all of the access path from the receiving node to
transmitting node special pacing or flow control signals. There are many
options here, and these are discussed in Chapter 13. One may need to
control rate of flow on an individual internode link to protect a buffer
dedicated to that link at the same time that a completely different mecha-
nism is controlling end-to-end flow to protect a buffer dedicated to an end
user. The flow control signals sent from receiver to sender may simply turn
off and on the emission of packets, they may tell the latter how many more
packets can for the moment be safely sent, or there may be other strategies.

The next function needed is a way for the end user to use all the
functions just listed to conduct a dialogue with the end user at the other end
of the access path. The access path must be managed so that the dialogue
between end users has the request-response pattern that the end users
require. For example, the pair of users might be such that a single packet
should flow in just one direction. This simplest case has been termed the
datagram type of dialogue (actually a monologue). Or there might be a
tightly structured transaction form of dialogue in which, for example, a
single packet in one direction elicits a fixed number of reply packets in the
other direction. A third possibility is a session between end users in which
the flow of packets back and forth is part of a related series of transactions.
By analogy with a telephone conversation, it would be as though an access
path exists for each word, each sentence and its response, or for an entire
telephone call, respectively. In managing the dialogue, there is the need not

10 Part 1 e Introduction

only to set up and take down the dialogue, but, while it is in progress, to
associate related packets with one another, and to decide when an end user
should listen and when it should talk.

The last function required is to make sure, for each end user at a node,
that the access path accommodates its pecularities with respect to such
things as format, character code, device control, and database access con-
ventions. This is done by a protocol conversion to provide the right form of
presentation. The four chapters of Part V discuss the dialogue management
and protocol conversion processes.

Once all the elements just listed are provided, the access path can be
considered complete. This is shown in Fig. 3 where the actions just dis-
cussed are listed in order. Character streams typed in by the terminal user
undergo a protocol conversion, then have various control bits set and
sequence numbers added for managing the dialogue, are arranged in packets

% TERMINAL USER

PROTOCOL CONVERSION
DIALOGUE MANAGEMENT

ADDRESSING, ROUTING, PACKETIZING

DATA LINK CONTROL =& —————
\
r————- > MODEM \
\ 17 \
\ IN-PLANT /SWITCHING/

MULTIPLEXING

\
\ CARRIER TRANSMISSION /SWITCHING/
MULTIPLEXING

\
VIN-PLANT TRANSMISSION/SWITCHING/ \

\ MULTIPLEXING |
L — ——-> MODEM \
\
DATA LINK CONTROL ~— ——— —-

ADDRESSING, ROUTING, PACKETIZING
DIALOGUE MANAGEMENT

PROTOCOL CONVERSION

Fig. 3. Access path elements with
Ty

APPLICATION PROGRAM 111111111 dashed lines showing two examples of

AT peer interaction.

Chap. 1 * Structure of Computer Networks 11

and are then provided with addresses, and so forth. Two interesting things
are immediately obvious: the elements occur in pairs, and the two members
of each pair talk essentially only to each other. For example, one modem
talks to the other, ignoring both details of the transmission link and the
meaning of bits it is forwarding. As another example, a DLC element
ignores what its modem is doing about modulation and demodulation and
also what the information field within a frame contains. A DLC element
interacts only with the DLC element at the other end to convey the frame
successfully from one sending node to the proper receiving node on the
same line. This isolation of interaction into pairs is almost always true for
all the functions we have been discussing.

C. Peer Interaction and Interfaces
This pairwise interaction, or peer interaction, is summarized in the layer

diagram of Fig. 4, which is derived directly from Fig. 3. Another way of

9\10‘ ocOoL CONVERSION

APPLICATION PROGRAM

TERMINAL USER %

TERMINAL PROCESSOR

e =

TERMINAL CLUSTER COMMUNICATION PROCESSOR
CONTROLLER CONTROLLER

Fig. 4. Peer pairs of access path elements. (The modem may be absent in local in-plant
connections.)

12 Part 1 e Introduction

thinking of Fig. 4 is that it is the inverse of one end user’s view of a
network; instead of showing one end user at the center of his or her
network, we show the transmission facilities at the center and the two end
users at the periphery. The access path across the network is depicted at the
bottom for illustrative cases of zero and two intermediate nodes. Note that
when the access path goes through intermediate nodes, in each intermediate
node it goes no higher in the layered structure than the routing operation.

The various members of a given layer communicate with each other by
a header owned by that layer, as we shall see when we get to Figs. 9-11.

It is instructive to note that we can categorize these layers in terms of
the role they play topologically. The modem, physical dialup, and DLC
functions are two-party structures. They deal with successful conveyance of
packets (frames) between adjacent nodes; the existence of nodes farther
along the access path is invisible. The functions of dialogue management,
protocol conversion and packetizing /depacketizing are also two-party struc-
tures, but here the two parties involved are at the end nodes; the existence
of nodes in between is invisible. Addressing and routing are multinode
functions; all nodes along the access path are involved as the message
threads its way across the network from line to node to line to node, etc.

Layers up through (roughly) addressing-routing-packetizing provide a
portion of the access path that hides from the end user much of the network
detail. Functions outside this layer in Fig. 4 are often referred to as
higher-layer functions. (These are discussed in detail in this book in Part V,
while Parts II through IV discuss the lower layers and the physical interface.)

Several caveats are in order about this seemingly tidy picture. For
example, some generic functions can occur in more than one layer. Con-
sider, for example, multiplexing, the interleaving of several traffic streams as
they flow through the same path. We have already met this function in data
link control. It also occurs (invisibly to the nodes) buried within the
common carrier’s transmission system. Moreover, several end users can be
multiplexed on one transmission path, and as one proceeds from a set of
end users at a sending node inward in the concentric circles of Fig. 4, there
is a choice of options as to the layer within which this merging might take
place.

Another complication is that there is some interlayer communication of
control information within the same node. This weakens the prior state-
ments to the effect that the two peer-related members of a given layer at the
two ends of the access path ignore the contents of the bit stream handed
down by the next higher layer and are also not involved in the service
provided to them by the next lower layer. For example, in an intermediate
node, the routing function must supply to the DLC function an address it
can use in forwarding a message to the proper choice of several stations on
the same link. It is also appropriate to point out that some layers may be

Chap. 1 * Structure of Computer Networks 13

very simple or even null. For example, the routing function in a small end
node such as a terminal is likely to be nonexistent. The physical (dialup)
level will be completely absent for leased lines.

The term interface has been widely used to describe the interactions
between adjacent layers of Fig. 4, and we shall adopt that convention here.
Only two of these have been standardized. That lying between the modem
and the DLC level is the electrical (or physical) interface as we have said,
and this has been internationally standardized in the many flavors discussed
in Chapter 3. The other interface that has enjoyed some standardization is
that between the outer layer of Fig. 4 and the end user. In some product
lines a reasonably stable application program interface has been defined on
the CPU side; terminal user interfaces have fared more successfully, as
discussed in Chapter 15. In the case of all other interfaces between the
concentric layers of Fig. 4, essentially no uniformity exists; each imple-
mentation handles any one of these interfaces differently.

Not shown in Figs. 2 and 3 is network control, the set of functions that
do the activation and deactivation of the various portions of the access path
shown, provide some of the control parameters required in their operation,
and manage recovery. Network control can to various degrees be centralized
(in one node) or decentralized (no single node dominant). The many
network control functions that are required in forming the access path can
be classified into several phases. One such rough classification is the
following.

(1) Establishing the electrical transmission path between nodes. This
may involve dialup, which requires that appropriate telephone
numbers be supplied to a participating node.

(2) Assigning data link addresses of stations, designating who is primary
or secondary, and activating the DLC-level function.

(3) Establishing and updating routing tables that tell each node where
to forward a message. If the message must proceed onward to
another node, the table must say which outgoing link to use.

(4) Establishing and updating directories of all end users in the net-
work, and providing name-to-address conversion.

(5) Establishing and later disestablishing the datagram, transaction, or
session connection out to the end users. Parameters must be
supplied at each end to set up the specific dialogue convention
required by the end user. Queues of requests and responses within a
session must be managed.

(6) Providing an interface to the human network manager. This in-
cludes coordinating upgrades, and problem determination func-
tions, such as error reporting, testing, sending traces, making mea-
surements.

14 Part 1 » Introduction

In this section, we have introduced the notion of layers of function as
they occur in peer-related pairs to form an access path through the network.
We have also mentioned the control of these functions. Before discussing
how these ideas are manifested in specific network protocols of the com-
puter manufacturers and the public common carriers, let us return to a
topological view of things and examine in a little more detail what computer
networks look like from that standpoint.

III. Networks of Commercially Provided Access Paths

A. Early Systems.

In order to discuss the rationale of access path implementations that
have been of most interest, it is instructive to sketch the historical evolution
of private networks since the 1960s. Let us look first at what has happened
with large computers, then minicomputers, and then common carrier com-
puter network services.

The earliest systems were single-processor batch systems that later
evolved to support a few local terminals. True teleprocessing (remote access
of a terminal end user to an application program in a processor) came with
systems such as that shown in Fig. 5, of which a well-known example was
the IBM System /360 running the Basic Telecommunications Access Method
(BTAM). Essentially all the processing was concentrated in the central host
processor, as befitted the technology available at that time. Of the various
access path functions we have enumerated in Table I, only elementary
DLC-level functions were performed outboard of the host, specifically in a
transmission control unit, which was often hard-wired and not programma-
ble. The other functions were never cleanly layered, as in Fig. 4, but were so
spread out among the different software systems (as shown in Fig. 6) that a
change in the configuration of a line or its attached terminal required
reprogramming in all these software systems. Terminal cluster controllers
performed the device control functions, but essentially none of the com-
munication access path functions. What proved to be a particularly incon-
venient restriction was the lack of line sharing or terminal sharing. By this is
meant that, since a given line and all the terminals on it were part of the
access path to only one and the same application program, if one user
wanted to access two different applications (e.g., savings accounts and credit
checking), he required two terminals and two lines (dotted circles in Fig. 5).

The next step in commercially provided networks came around 1974,
with systems such as that of Fig. 7, of which a typical example was the
System /370 with software and hardware releases referred to as Systems
Network Architecture (SNA) generations 1 and 2 [5], [8]. The transmission

Chap. 1 * Structure of Computer Networks 15

STORAGE
access —{—0ATA,
METHOD

1
APPLICA-
os| TION
PROGRAMS
A 1

COMMUNI-

CATION
ACCESS PROCESSOR

METHOD

TRANSMISSION
CONTROL
UNIT

TERMINAL
CONTROLLER

Fig. 5. Typical teleprocessing system of the
1960s such as System/360; dotted and
dashed lines are access paths. T

control unit gave way to a programmable communication controller that
handled all data link control and a great deal more. In the communication
controller code, the host communication access method code, and the
cluster controller code, a significant attempt was made to delineate function
into layers, as in Fig. 4. Thanks to the availability of microcomputers and
the lowered cost of main and secondary storage, it began to be possible to
execute limited application code, including that involving significant data-
bases, in the cluster controllers, and (for some non-IBM realizations) in the
communication controller. Most significantly, this design allowed terminals
to share a line to separate applications located in the same host and to do
the same thing with applications in the cluster controller. Moreover, it
allowed access paths between host application programs and cluster con-
troller application programs.

B. Computer Networking

It was soon clear that functions of commercially provided networks did
not go far enough. The ARPAnet [9], developed under U.S. Defense
Department sponsorship, had shown how a number of resource-sharing

16 Part 1 e Introduction

APPLICATION APPLICATION APPLICATION
PROGRAM A PROGRAM B PROGRAM C

KEYBOARD/PTR, KEYBOARD/PTR DlSPLAY // DB/DC
CODE / SUBSYSTEM

COMPUTER TP
KEYBOARD/PTR KEYBOARD/PTR DISPLAY SUBSYSTEM) ACCESS
DE coos CODE METHODS
!
COMPUTER
KEYBOARD KEYBOARD PTR) DISPLAY SUBSYSTEM 1/0
CODE SUPERVISOR
\
T A' T
n | comuumcmonm 1
| " CONTROLLER ! !
1 1 | 1
KEYBOARD CLUSTER COMPUTER
PRINTER CONTROLLER SUBSYSTEM

KEYBQARD CARD I/0
PRINTER

PRINTER

PRINTER

Fig. 6. Distribution of terminal-specific code in an early teleprocessing system.

functions could be provided, and it was soon found that such functions were
needed by customers of the computer manufacturers. Specifically, many
commercial network users had multiple processors individually serving tree
networks such as the one in Fig. 7. These networks could not intercom-
municate. A given terminal user frequently wanted an access path to an
application in a different host from the one that normally served him, and it
was either uneconomical or infeasible to run a second copy of that applica-
tion in his own host just to provide this service. Moreover, it became
desirable for one application to talk to a remote other application. These
capabilities were needed for sharing processor resources among locations
and for improving system availability through remote backup. These re-
quirements led to the computer networking solution shown in Fig. 8(C),
realized, for example, in IBM Systems Network Architecture with Advanced
Communication Function (SNA /ACF), also known as SNA-3 [10] and the

Chap. 1 * Structure of Computer Networks 17

STORAGE
g O
METHOD

| 1
APPLICA-

os| TION
PROGRAMS
Vi

COMMUNI-
CATION R
CALERS | PROCESSO

ME:I'HOD

COMMUNICATION
CONTROLLER

PROGRAM

APPLICA-
J CLUSTER
JCONTROLLER \ - TION
: /

Fig. 7. Typical teleprocessing systems of the
1970s such as System/370 with SNA; dotted
and dashed lines are access paths.

x A

later SNA 4.2 [11]. In this arrangement, any terminal can gain an access
path to any of the applications in any of the hosts. Application-to-applica-
tion access paths are also supported. Figure 8(C) shows several of the tree
structures of Fig. 7 [schematized in Fig. 8(B), just as Fig. 8(A) abbreviates
Fig. 5] connected together into a mesh of trees [as in Fig. 2(F)] by physical
paths between communication controllers. Thus, an SNA tree network can
be characterized as a hierarchical network with network control centralized
in the processor [actually in a module called the System Services Control
Point (SSCP) located in the communications access method]. SNA /ACF is
a hybrid peer-hierarchical structure, that is, hierarchical within each tree or
domain (with its own SSCP), but with peer interconnection between trees at
the level of the host-attached communication controllers. Not shown in the
diagram is the multitail capability of communication controllers, in which
one such controller can support more than one processor. (Also, one
processor can support several controllers.)

In the world of minicomputers, networks have evolved somewhat
differently. Originally, minicomputers were used individually for stand-
alone, real-time, or batch processing or for supporting a few simple termi-
nals. When the need developed for connecting these together, it was found

18 Part 1 ® Introduction

A | A | a | erocessor
\ !' v | Teu
i
\

PROCESSOR

PROCESSOR
PROCESSOR ce
A l A | A // /l A | A PROCESSOR
N s \
e ———— == Jeging S S — = L
,// | ,I
(VA I N O o N Y e O A [T 7] cecs
il Il Il I i
T TT L 17T TT TT
T T T
©
PROCESSOR | 117771
LARGE-SCALE COMPUTER }--———J- ———t --Jl
cc
..._/_;_.___.____J

MINICOMPUTER

MINICOMPUTER

()]

Fig. 8. Schematization of access paths. (A) abbreviates Fig. 5. (B) abbreviates Fig. 7. (C)
Top-down network of trees. (D) Bottom-up approach of DECnet.

Chap. 1 * Structure of Computer Networks 19

desirable to do this in a strictly peer style of interconnection rather than the
peer-plus-hierarchical pattern just discussed. Peer connection had been used
in the ARPAnet, and the flexibility of this mode of operation undoubtedly
had a strong influence on minicomputer networking. In the peer mode of
interconnection, no one computer does network control for the other; there
is no master/slave distinction and there need be no identifiable central
control point. Network control steps are managed in each node more or less
symmetrically. In principle, this allows a wide range of topologies to be
implemented, but requires special procedures for managing routing tables,
flow control, directory functions, and recovery operations, especially when
the network consists of a large number of nodes.

One of the better known of the peer computer network designs is the
set of DECnet offerings of the Digital Equipment Corporation based on
Digital Network Architecture (DNA) [21]. The DECnet design has been
implemented not only for the minicomputers of the DEC product line (e.g.,
PDP-11), but also for the high end (e.g., DECSYSTEM-20). The ultimate
objective is to connect the machines together in a mesh [as in Fig. 2(E)] or in
a hierarchy [as in Fig. 8(D)], or other arrangements. In fact, a natural
evolution for minicomputer users has been for independent users to start
with stand-alone minicomputers of roughly equal power, later to connect
them together, and still later to connect this set to a single large host. This
bortom-up evolutionary pattern may be contrasted with the top-down pattern
of network growth experienced by many users of large machines, as just
described.

The ARPAnet [12], which had a great influence on all succeeding
computer networks, whether commercially or carrier provided, embodied a
mesh-connected backbone network of many small Interface Message
Processors (IMP’s), connected together by a packet switching (Section IV B)
IMP-to-IMP protocol. Most computers were connected into the network by
means of the Host-to-IMP protocol, very roughly equivalent to the later
X.25 Interface, which we shall describe in the next section. (A third
protocol, the ARPAnet Host-to-Host protocol is roughly equivalent to a
virtual circuit) Specially augmented IMPs, called Terminal Interface
Processors (TIPs) provided the additional terminal handling software to
allow terminal connection into the backbone network. Special higher-level
software was provided in the hosts, for example, to support interactive
terminals (TELNET) or to effect bulk file transfers (FTP).

IV. Networks of Access Paths Provided by Carriers

In commercially provided networks, such as the IBM and DEC offer-
ings just described, the physical transmission-level function between nodes

20 Part 1 » Introduction

in the network is, of course, provided by the common carriers. The carriers
have been investigating whether there is any technical reason why other
functions of Fig. 4 at a higher level than the transmission level might not
also be provided by them—for example, protocol conversion. Several refer-
ences, e.g., [13], detail the recent status of common carrier offerings and
data network interfaces.

A. Fast Circuit Switching

The common carriers are, in fact, taking steps not only to improve
service at the transmission level, but to provide higher-level services. At the
transmission level, an urgent need of the data processing community has
been to have dialup service with much faster connect times and much
shorter minimum billing increments than ordinary voice grade dialup service
provides. There has also been the need to improve the space-division
physical interface, such as V.24 (known in the United States as RS-232C),
by providing a combined space- and time-division interface of wider gener-
ality. These needs have been met partially by the X.21 Recommendation of
the international standards body, Comité Consultatif Internationale de
Télégraphique et Telephonique (ccitT). The 21 (or fewer) wires of V.24,
each performing one and only one function, are replaced in X.21 by up to
eight wires, of which one is used in each direction to send bit patterns for
specific control functions. By this means, the repertoire of control functions
is flexible and expandable. But the real significance of X.21 is not as an
electrical interface, but as a peer protocol below the DLC level, to be used
for dialing and disconnecting at data processing bit stream speeds, thus
serving as the basis of fast circuit-switching common carrier networks. In this
volume, Chapter 7 describes X.21. In particular, it describes the properties
of that portion of the total access path that “X.21 Circuit-Switched Service”
can provide, and then compares these capabilities with those of X.25
packet-switching service.

B. Packet Switching

Packet switching [14] seems to have been inspired by the idea of
sharing communication channel capacity across a number of users by
implementing the same time-slicing philosophy that had earlier proved so
successful in sharing the execution power of a single processor across many
user processes. Every user node that connects to a packet-switched common
carrier makes a contract with the carrier (i.e., follows standard protocols) to
hand him bit streams already segmented (packetized) as we have described
earlier, with each packet supplemented with a header saying, among other
things, to which other user node he wishes the packet delivered. Widespread
interest in packet switching on the part of the carriers has led them to
standardize this contract in the form of the ccrrr Recommendation X.25

Chap. 1 ® Structure of Computer Networks 21

[15], which is discussed further in the next section and in considerable detail
in Chapters 8 and 9.

The contract includes an agreement on the physical level (not only
from the interface point of view but the dialup point of view), the data link
control, how the remote user is to be addressed, packet size, how the flow of
packets toward and out of the carrier’s network is to be regulated, and how
certain recovery actions are to be effected. The contract also includes some
network control functions such as protocols for establishing and disestab-
lishing the access path. Thus, two user nodes (say 4 and B) each agree to
exchange packets with the carrier network using the X.25 standard, and the
carrier agrees to deliver to B properly addressed packets from 4 and vice
versa. The combined actions of (1) the X.25 interface of 4 to the network,
(2) the X.25 interface of B to the network, and (3) the network, provide a
full duplex path, termed a virtual circuit, between the higher-level function
at the two nodes.

Actually, if one adopts the definition of an inferface we have been using
(Section IIC), then X.25 is not, strictly speaking, an interface (although
often called one), but a set of layered peer interaction protocols, by which a
machine talks to a packet network (as we shall see in Section V D).

There is currently some debate over whether a degenerate form of
virtual circuit, called the datagram mode of operation and referred to earlier
in this chapter, should be supported under X.25. There, the duration of the
contract is essentially only one packet long. The datagram option of X.25 is
described in Chapter 9.

Fast circuit switching and packet switching both offer the user the
economies of paying for the transmission service only to the extent that it is
used. Fast circuit switching has the particular advantage over packet switch-
ing that once the transmission path has been set up, it is totally transparent.
That is, except for uncontrollable random errors, the bit stream out is the
same as the bit stream in for a period of time whose duration is up to the
user. Packet switching, although highly nontransparent (since the user is
required to adhere to what the contract says about packet length, rate of
flow, header structure, etc.) does allow the carrier to offer the user more of
the access path function discussed earlier in this chapter than does fast
circuit switching, and it allows him many freedoms in buffering, delayed
delivery, etc.

V. Network Architectures and Protocols

A. Architecture Versus Implementation

The precise definition of the functions that a computer network and its
components should perform is its architecture. Exactly by what software

22 Part 1 ¢ Introduction

code or hardware these functions are actually performed is the implementa-
tion, which is supposed to adhere to the architecture. Both the data
processing and carrier communities have expressed their network ideas in
layered peer architectures that in one way or another resemble Fig. 4.
Communication architecture is different from processor architecture or
storage subsystem architecture in that it usually involves a pairwise interac-
tion of rwo parties (although there are a few exceptions, such as routing or
distributed directory protocols [16], in which more than two parties are
involved). For example, as we have said earlier in this paper, a DLC element
in one node interacts with a DLC element in another; the flow control
functions in two nodes interact specifically with each other, and so forth.
The set of agreements for each of these pairwise interactions may be termed
a protocol, and thus we find network architecture specified in terms of
protocols for communication between pairs of peer-level layers. A network
protocol consists of the following three elements: (1) syntax—the structure
of commands and responses in either field-formatted (header bits) or
character-string form; (2) semantics—the set of requests to be issued, actions
to be performed, and responses returned by either party; and (3) timing—
specification of ordering of events.

We shall now briefly discuss SNA, DNA, X.25, and the new Open
System Interconnection from this point of view, saying something about
semantics and syntax, but nothing about timing. All four of these structures
make strict definitions of protocols between the two members of a pair of
functions at the same level (although in different nodes), but usually leave
details of interaction of adjacent layers in the same node (interfaces) to be
decided by the implementer. They are all slightly different in the way they
assign functions to the different layers, in spite of the fact that these
assignments may at first glance appear to be equivalent. The SNA and
DECnet architectures and the OSI Reference Model are different in kind
from X.25. The former two manage the access path from end to end. On the
other hand, as originally conceived, X.25 is not an end-to-end protocol, but
a node-to-packet network protocol; it manages the access path from a user
node to the immediately adjacent node internal to the packet network. End
user to end user functions are built up by a concatenation of the two X.25
paths between each user and the network, plus the internal network paths,
as noted in Section IV B. Recent work has strengthened the end-to-end
message accountability provisions of common carrier networks that use
X.25 into and out of the network, as discussed in Chapter 8.

B. SNA

Figure 9 shows the layers of two SNA nodes. No intermediate nodes
are shown, but in practice one or more of these could exist along the access

Chap. 1 e Structure of Computer Networks 23

END USER EU
REQUEST-RESPONSE
PRESENTATION SERVICES UNIT (RU) PS
DATA FLOW CONTROL DFC
TRANSMISSION CONTROL ' RH TCc
PATH CONTROL TH PC
\
\\
“<__ SERIAL BIT STREAM
== OBSERVED ON THE LINK
[[7]
DATA LINK CONTROL DLC

PHYSICAL > PHYSICAL
LINK

NODE 1 NODE 2

Fig. 9. SNA architectural layers. Compare with Fig. 4. The request-response unit (RU). is
usually converted user information.

path. Furthermore, the layers at one end could be in more than one physical
box. For example, at the host end, all functions could be in the host (as in
the small System/370s, or functions roughly corresponding to Data Link
Control and Path Control could be in the software of a separate communi-
cation controller and the rest in the host, the more usual situation. Or it
might be possible to move almost all the access path functions out to a
front-end communications processor, leaving the host processor freer to
concentrate its resources on application processing. At the terminal end, all
the functions shown might be in the same box in the case of an “intelligent
terminal,” or almost all except the upper layer might be in the cluster
controller that supports a number of “dumb” terminals.

The functions of the SNA protocol layers are as follows [5], [11], [17].

1. Data Link Control (DLC) transfers packets intact across the noisy
transmission facility. For every line attached, there is one instance of DLC

24 Part 1 Introduction

or DLC Element (DLCE). This protocol layer can be implemented either as
SDLC or the 370 1/0 channel.

2. Path Control (PC) routes incoming packets to the appropriate outgo-
ing DLCE or to the correct point within its own node. It allows alternate
path routing between nodes and the use of several sets of parallel DLC
facilities (“transmission groups™) between a node pair for better reliability
and throughput. It also does packetizing of outgoing and depacketizing of
incoming messages. There is one instance of PC per node. The pair of PCs
at the two end nodes provide to the higher protocol layers a set of eight
virtual routes upon which sessions may be built, with flow control within
each virtual route. Chapter 11 describes all these functions.

3. Transmission Control (TC) manages pacing (flow control for an
individual session), helps manage session establishment /disestablishment,
and performs a number of other functions on behalf of one of the end users.
There is one instance of TC, namely, a Transmission Control Element
(TCE), per session per end user.

4. Data Flow Control (DFC) has the function of accommodating the
idiosyncrasies of message direction and intermittency demanded by the end
user. Such idiosyncrasies include, for example, whether a user wants to
communicate duplex or half-duplex or whether the separate messages (RUs)
are parts of larger units of work as seen by the end user. For example,
different RUs flowing in one direction might represent different lines of text
that make up a single display screen of text. A screen full of lines of text
would be handled by SNA as a chain. A structured set of related screens,
including messages flowing in both directions, would be handled by SNA as
a bracket, i.e., a set of chains. There is one instance of DFC per end user
session.

5. Presentation Services (PS) define the end user’s port into the net-
work in terms of code, format, and other attributes. The pair of PS
realizations in the pair of nodes has the job of accommodating, for example,
the totally different interfaces seen by a terminal end user (and his support-
ing device control hardware or code) and the application that is being
accessed. The PS layer (and other layers as well) are designed for flexibility
as to the fraction of the complexity that lives at each member of the peer
pair. It is thus possible to have a small or even null PS function in a simple
terminal while doing most of it in the processor. As has been mentioned, it
is possible optionally to have not just one, but a number of concurrently
operating “sub-end-users” for each end user (as we have employed the term
end user), so that a form of multiplexing (using so-called FM headers) takes
place at the PS level that is roughly analogous to that at the DLC level. Both
Data Flow Control and Presentation Services are described in Chapter 16.

There are a number of other SNA functions that have to do with
network control [18], but which are too detailed for a discussion here. These

Chap. 1 ® Structure of Computer Networks 25

network control functions involve a separate family of access paths that
emanate from the System Services Control Point, which might be in some
other node not shown, and terminate in modules (also not shown) that
control the various functions shown in Fig. 9.

The function of the various headers is shown in Fig. 9. The zig-zag strip
shows the bit stream that would be observed on the line. On an outbound
message, TC adds to the user data Request/Response Unit (RU) a
Request /Response Header (RH) on behalf of itself and DFC, PC adds a
Transmission Header (TH), and DLC adds a Link Header (LH) and Link
Trailer (LT). Inbound, each layer strips off its appropriate header (and
trailer) and forwards what is left. (If there is multiplexing within PS, there is
still another header within the RU, namely, the Function Management
(FM) header, not shown.) All of this illustrates the following important
property of peer protocols: it is by means of the header that belongs to a
given layer of the protocol that the interaction of the peer pair constituting
that layer takes place.

C. DNA and DECnet

The architecture on which the DECnet implementations are based is
DNA (Digital Network Architecture). Both DNA and the DECnet imple-
mentation are described in Chapter 10. In the DNA set of protocols,
illustrated in Fig. 10, there are four basic layers, of which the bottom four
are vendor-provided, and the top one is a user implementation, or (in the
case of file access) vendor-supplied. The bottom three layers of DNA
correspond roughly to the bottom three layers of SNA, as shown in Fig. 9,
but with some interesting differences. The Data Link Level is exactly the
DLC level of Figs. 4 and 9, the preferred realization being the DEC line
control, Digital Data Communications Message Protocol (DDCMP). DDCMP
is character-oriented (like BISYNC), but has many of the characteristics of
bit-oriented DLCs. As in HDLC, for example, control and data characters
are distinguished positionally.

The Transport Layer uses the Transport Packet Header (TPH) for its
peer communication. Each packet, with its associated TPH, is handled as a
datagram, i.e., each packet is handled by the Transport Protocol (TP) as a
stand-alone unit, and TP guarantees only a “best effort” to deliver the
packet. It will, however, guarantee that if the packet has not arrived by a
certain time, then it will never arrive. Successive packets may follow
different routes as the TP routing algorithm in each node responds to
changing connectivity conditions in the network, so that packets may arrive
out of order. Packet loss can occur due to temporary line outages, due to
action of TP flow control (which allows for the relief of congestion by

26 Part 1 » Introduction

discarding packets), or because the packet had exceeded the age limit
without being delivered and had to be subjected to euthanasia. The seeming
disadvantages of uncertainty of delivery and ordering buys considerable
simplicity in Transport Protocol, compared, for example, to SNA Path
Control, where tight control is maintained over connectivity, sequentiality,
and guaranteed arrival. .

In DNA, sequentiality and guaranteed arrival are restored (if required
by the user) in the Network Service Layer, using sequence numbers,
acknowledgments, and timeouts, much as with Data Link Controls. That is,
if a packet having a given sequence number arrives successfully, this is
acknowledged to the sending Network Services Protocol (NSP), and trans-
mission proceeds -to the next packet; but if the sender has to wait longer
than a certain delay before hearing from the receiver, it retransmits the
missing packet. Other NSP functions include end-to-end flow control and
packetizing /depacketizing.

The basic access path provided by the two NSPs at two end nodes
(using a TP protocol pair per hop, in turn supported by a DDCMP protocol
pair per hop) is called a logical link. The Application Layer of DNA
provides a means for a number of concurrent user processes to communi-
cate with partners across the network, each using a separate logical link.
Usually this layer is user-implemented, but a number of file access and
distributed file management options can be built using the vendor provided
Data Access Protocol (DAP), as illustrated in Fig. 10.

The Network Control functions mentioned in Section II D are almost
completely decentralized in DNA. For example, logical links are activated
and deactivated by commands to the NSP from the Application level
process. In SNA, a session between end users at separate nodes is set up and
taken down by a third party, the System Services Control Point, which
might be in one of the two nodes or might be in a third node.

D. X.25

The X.25 protocol is illustrated in Fig. 11. The X.21 protocol, men-
tioned earlier in this paper as an interface, is used as a peer protocol for
providing the electrical connection between the user node and the nearest
Data Circuit Terminating Equipment (DCE) node owned by the carrier.
The X.25 specification allows for use of X.21 bis (in which the interface
appears to each user as a V.24-interface) as an interim solution. In Fig. 11,
stations 1 and 2 are the Data Terminal Equipments (DTEs), i.e., the user’s
end nodes. Packets P1 and P3 are intended for station (DTE) 2 and packet
P2 is intended for some other station. The Link Control Level protocol,
which manages error-free transfers of strings of packets to and from the
packet network, is equivalent to the DLC layer of SNA and the Physical

Chap. 1 e Structure of Computer Networks 27

FILE

DAPH USER DATA
USER- DATA
SUPPLIED ACCESS
PROGRAM PROTOCOL
NETWORK
SERVICES NSPH NSP
PROTOCOL
TRANSPORT P
PROTOCOL TSPH
SERIAL
BIT STREAM
OBSERVED
ON THE LINK
DIGITAL DATA
COMMUNICATIONS | LH T I DDCMP
MESSAGE PROTOCOL
LINK
PHYSICAL PHYSICAL
NODE 1 NODE 2

Fig. 10. DNA architectural layers. Compare with Fig. 4.

Link layer of DNA. The Link Control Level protocol uses the full-duplex
Asynchronous Balanced mode of HDLC. Here each of the two DLC
stations is neither solely a primary station nor a secondary station, but a
“combined” station that is able to take responsibility unilaterally for
transmission and recovery.

The Packet Level protocol produces the Virtual Circuits (VCs) referred
to earlier. There may be one or many (as in Fig. 11) VCs multiplexed onto
one access line. These may be permanent (assigned upon initial subscription
to the service and always in place) or switched (invoked as needed). (A
switched VC is also known as a virtual call.) These virtual circuits have
end-to-end aspects during setup or takedown of the VC and end-to-network
aspects otherwise. For example, flow control usually operates only to
regulate traffic between the user node and the network. After a VC is
initially set up, the addressing is between each node and the network, not
between end users. These are clearly end-to-network functions. But in
initially establishing the VC, the end-user node must know how to address
the other end-user node. This is clearly an end-to-end function.

Part 1 e Introduction

31a
¢ NOILY1S

*¢7°X Ul SYINOID [eNIIA PUB SI9ART ‘1] ‘81

YIIYYYO 13NV

] \,
.
_: /I.__

NOILV1S ¥Y3HLONV 40
SNOILONNS TIAIT-43IHOIH O1

MNIT SS300V

(€1T0)]
LIN3IWJINO3 TYNIWY3L
VLI9Ia T NOILYLS

12X

(300
LIN3WdINO3
ONILYN
-iNy3L
'NNWIWOD
viva

300

S1INJYI0 WVNLYIA

s1g1ex

(01aH)
TOYLNOD
MNITYLYA
T3AITHOIMH

M3IN

SNOILONNA
13A3T-YIHOIH

73A37 TVOISAHd

RELEREACE]

RELERNENI L]

Chap. 1 * Structure of Computer Networks 29

As Fig. 11 shows, there are two X.25 protocols between each of the two
customer-owned end nodes and the network. The packet carrier appears in
this diagram in roughly the position where a single intermediate node would
appear in Figs. 9 and 10. If an SNA or DECnet system operates across an
X.25 packet carrier facility, there are some divided responsibilities. For
example, the SNA and DECnet implementations have specific rules about
packet size, addressing /routing, flow control, internal multiplexing of flows,
and recovery from error and lost- or duplicated-message conditions. When
X.25 services are used, these responsibilities may overlap with those that the
carrier is willing to undertake. There is a growing literature (e.g., [19])
discussing how these overlaps may be resolved.

E. Open System Interconnection

Before ending this brief review of network protocols, architectures, and
implementations, it should be mentioned that there is considerable interest
and activity in the standards bodies that have defined HDLC, X.21, X.25,
etc., in standardizing even higher-level functions than those represented by
the Packet Level of X.25. The object is to allow any-to-any (i.e., open)
interconnection capability for communication products. This is being at-
tempted by adding four more layers above the X.25 Packet Level, making
seven in all. The next chapter summarizes the available details. The lowest
two layers correspond to the usual peer physical level and DLC, just as with
SNA and DNA, Figs. 9 and 10. These are discussed in Parts I and II of this
volume. The third Network level is equivalent to the Packet level of X.25.
The fourth Transport layer exists only at the end nodes and provides the
necessary high level of end-node to end-node integrity control to support
sessions that require it. Part IV treats questions that appear in OSI Layers 3
and 4. The fifth Session layer corresponds roughly to TC and DFC of SNA;
that is, it acts to bind the end users together in a session and then
administers the rules of the dialogue. The sixth Presentation layer provides
protocol conversion as in Figs. 4 and 9, and the end user’s Application layer
completes the structure. Part V corresponds to Layers 5 and 6. In OSI,
network control, as defined earlier in Section II D, runs as an Application
level function.

Since it is being built up carefully using a wide variety of inputs from
many sources of earlier experience, the Reference Model should provide a
fairly clear and comprehensive framework for discussion, analysis, and
comparison.

30 Part 1 ® Introduction

V1. Concluding Remarks

Even though networks have been growing more complicated, they
should be getting easier to dissect and understand as systematic formaliza-
tion and layering become more pervasive in the implementations. One
reason for persistence of complexity is that, until now, the architects have
carried a heavier burden than is commonly realized of maintaining
compatibility with individual software and hardware product offerings that
antedated the evolution of systematic, clearly layered sets of network
protocols. These earlier offerings are gradually disappearing or in later
releases are adhering more and more to the strict terms of the architecture.
The modularization means that new ideas ought to be more easily incorpo-
rated without producing system-wide disruptions. Continuing research will
provide such new ideas.

References

[1]1 A. S. Tanenbaum, Computer Networks, Englewood Cliff, N. J.: Prentice-Hall, 1981.
2] P. E. Green Jr,, and R. W. Lucky, Eds., Computer Communications, New York: IEEE
Press, 1975.
[3]1 L. Kleinrock, Queuing Systems, Vol. I, New York: Wiley, 1976.
[4] M. Schwartz, Computer Communication Network Design and Analysis, Englewood Cliffs,
NIJ: Prentice-Hall, 1977.
[51 R. 1. Cypser, Communications Architecture for Distributed Systems. Reading, MA: Ad-
dison-Wesley, 1978.
[6] D.W. Davies, D. L. A. Barber, W. L. Price, and C. M. Solomonides, Computer Networks
and their Protocols, New York: Wiley, 1979.
[71 1. R. Davey, “Modems,” Proc. IEEE, vol. 60, pp. 1284-1292, Nov. 1972. Reprinted in
[2].
[8] J. H. McFadyen, “Systems network architecture: An overview,” IBM Syst. J., vol. 15, no.
1, pp. 4-23. See also three companion papers in the same issue.
[9] L. G. Roberts and B. D. Wessler, “Computer network development to achieve resource
sharing,” in 1970 AFIPS Conf. Proc (SJCC), vol. 36, pp. 543-549.
[10] Introduction to Advanced Communication Function, Order No. GC30-3033, IBM Data
Processing Div., White Plains, NY, 10504.
[11] J. P. Gray and T. B. McNeil, “SNA multiple-system networking,” IBM Syst. J., vol. 18,
no. 2, pp. 263-297, 1979.
[12] See, for example, the papers on ARPAnet reprinted in [2].
[13] J. Halsey, L. Hardy, and L. Powning, “Public data networks: Their evolution, interface,
and status,” IBM Syst. J., vol. 18, no. 2, pp. 223~243, 1979.
[14] R. E. Kahn, Ed., Special Issue on Packet Communication Networks, Proc. IEEE, vol. 66,
Nov. 1978.
[15] A.Rybczynski, B. Wessler, R. Despres, and J. Wedlake, “A new communication protocol
for accessing data networks— The international packet mode interface,” in 4 FIPS Conf.
Proc. (NCC), vol. 45, June 1971, pp. 477-482.

Chap. 1 Structure of Computer Networks 31

[16]

(17]
(18]

(19

J. Bremer and O. Drobnik, “Specification and validation of a protocol for decentralized
directory management,” IBM Research Ctr., Yorktown Hits., NY, Tech. Rep. RC-7800,
Sept. 25, 1979.

SNA Format and Protocol Reference Manual, Order No. SC30-3112.

J. P. Gray, “Network services in systems network architecture,” IEEE Trans. Commun.,
vol. COM-25, pp. 104-116, Jan. 1977.

F. P. Corr and D. H. Neal, “SNA and emerging international standards,” IBM Syst. J.,
vol. 18, no. 2, pp. 244-262, 1979.

A Standard Layer Model

Hubert Zimmermann

I. Introduction

In 1977, the International Organization for Standardization (ISO)
recognized the special and urgent need for standards for heterogeneous
informatic networks and decided to create a new subcommittee (SC16) for
“Open Systems Interconnection.”

The initial development of computer networks had been fostered by
experimental networks such as ARPAnet [1] and CYCLADES [2], immediately
followed by commercial networks [3], [4]. While experimental networks were
conceived as heterogeneous from the very beginning, each manufacturer
developed its own set of conventions for interconnecting its own equipment,
referring to these as its “network architecture.”

The universal need for interconnecting systems from different manu-
facturers rapidly became apparent [5], leading ISO to decide upon the
creation of SC16 with the objective being to come up with standards
required for “Open Systems Interconnection.” The term “open” was chosen
to emphasize the fact that by conforming to those international standards, a
system will be capable of interacting with all other systems obeying the
same standards throughout the world.

The first meeting of SC16 was held in March 1978, and initial discus-
sions revealed [6] that a consensus could be reached rapidly on a layered
architecture which would satisfy most requirements of Open Systems Inter-
connection with the potential of being expanded later to meet new require-
ments. SC16 decided to give the highest priority to the development of a
standard Model of Architecture which would constitute the framework for
the development of standard protocols. After less than 18 months of
discussion, this task was completed, and the ISO Model of Architecture

33

34 Part I * Introduction

called the Reference Model of Open Systems Interconnection [7] was
transmitted by SC16 to its parent Technical Committee on “Data Process-
ing” (TC97) along with recommendations to start officially a number of
projects for developing on this basis an initial set of standard protocols for
Open Systems Interconnection. These recommendations were adopted by
TC97 at the end of 1979 as the basis for the ensuing development of
standard protocols for Open Systems Interconnection within ISO. The OSI
Reference Model was also recognized by CCITT Rapporteur’s Group on
Public Data Network Services.

The present chapter describes the OSI Architecture Model as it was
transmitted to TC97. Sections 11-V introduce concepts of a layered archi-
tecture, along with the associated vocabulary defined by SC16. Specific use
of those concepts in the OSI seven-layer architecture are then presented in
Section VI. Finally, some indications on the likely development of OSI
standard protocols are given in Section VII.

Note on an “Interconnection Architecture”

The basic objective of SC16 is to standardize the rules of interaction
between interconnected systems. Thus, only the external behavior of Open
Systems must conform to OSI Architecture, while the internal organization
and functioning of each individual Open System are beyond the scope of
OSI standards since these are not visible from other systems with which it is
interconnected [8].

It should be noted that the same principle of restricted visibility is used
in any manufacturer’s network architecture in order to permit interconnec-
tion within the same network of systems with different structure.

II. General Principles of Layering

Layering is a structuring technique which permits the network of Open
Systems to be viewed as logically composed of a succession of layers, each
wrapping the lower layers and isolating them from the higher layers, as
exemplified in Fig. 1. Each layer performs a specific set of functions which
add to or enhance those performed by the lower layers. For instance, the
transport layer (see Section VI) performs end-to-end transport control
functions on top of packet switching functions performed by the lower
layers.

An alternative but equivalent illustration of layering, used in particular
by SC16, is given in Fig. 2 where successive layers are represented in a
vertical sequence, with the physical media for Open Systems Interconnec-
tion at the bottom.

Chap. 2 ¢ Standard Layer Model 35

S <

-
S ————-

~ LILTTTTTTT -

Fig. 1. Network layering.

Each individual system itself is viewed as being logically composed of a
succession of subsystems, each corresponding to the intersection of the
system with a layer. In other words, a layer is viewed as being logically
composed of subsystems of the same rank of all interconnected systems. For
instance, each system will logically comprise a physical circuit control
subsystem; a data link control subsystem; a packet-switching subsystem; a

Physical media for OSI

Fig. 2. An example of OSI representation of layering,

36 Part I e Introduction

transport control subsystem; i.e., a transport station, etc. Conversely, all
transport stations form collectively the Transport Layer.

Each subsystem is, in turn, viewed as being made up of one or several
entities. In other words, each layer is made of entities, each of which belongs
to one system. Entities in the same layer are termed peer entities. Entities in
a layer represent the distributed processing capability of the layer in
performance of its functions. On the other hand, entities of all layers within
one single Open System represent the protocol processing capability of this
system; i.e., its processing capability seen by the other Open Systems.

For simplicity of notation, any layer is referred to as the (N) layer,
while its next lower and next higher layers are referred to as the (N — 1)
layer and the (N + 1) layer, respectively. The same notation is used to
designate all concepts relating to layers; e.g., entities in the (N) layer are
termed (V) entities, as illustrated in Figs. 3 and 4.

The basic idea of layering is that each layer adds value to services
provided by the set of lower layers in such a way that the highest layer is
offered the set of services needed to run distributed applications. Layering
thus divides the total problem into smaller pieces. Another major objective
of layering is to ensure independence between layers. This is achieved by
defining services provided by a layer to the next higher layer, independent
of how these services are performed. This permits changes to be made in the
way a layer or a set of layers operate, provided they still offer the same
service to the next higher layer. (A more comprehensive list of criteria for
layering is given in Section VI1.) This technique is similar to the one used in
structured programming where only the functions performed by a module
(and not its internal functioning) are known by its users.

SystemA SystemB . SystemD

Highest layer

- (N+1)-services
(N+1)-layer

- (N)-services
(N)-layer ’

- (N—1)-services
(N—1)-layer

Lowest layer #

Physical media for OSI

Fig. 3. Systems, layers, and services.

Chap. 2 e Standard Layer Model 37

(N+1)-layer <— (N+1)-entities
(N)-services —» «— (N)-SAPs
(N)-layer (N)-entities
(N—1)-services — ~— (N—1)-SAPs

(N—1)-layer

Fig. 4. Entities, service access points (SAPs), and protocols.

Except for the highest layer, which operates for its own purpose, (N)
entities distributed in the (N) layer among the interconnected Open Sys-
tems work collectively to provide the (N) service to (N + 1) entities as
illustrated in Fig. 4. In other words, the (N) entities add value to the
(N — 1) service they get from the (N — 1) layer and offer this value-added
service, i.e., the (N) service, to the (N + 1) entities. For instance, the
Network Layer adds a relaying capability on top of point to point com-
munication service provided by the Data link Layer. Similarly, the Trans-
port Layer adds end-to-end control on top of the control cascade of the
Network Layer.

Communication between the (N) entities makes exclusive use of -the
(N — 1) services. In particular, direct communication between the (N + 1)
entities in the same system, e.g., for sharing local resources, is not visible
from outside of the system and thus is not covered by the OSI Architecture.
Entities in the lowest layer communicate through the Physical Media for
OSI, which could be considered as forming the (0) layer of the OSI
Architecture. Cooperation between the (N) entities is ruled by the (N)
protocols, which precisely define how the (N) entities work together using
the (N — 1) services to perform the (N) functions which add value to the
(N — 1) service in order to offer the (N) service to the (N + 1) entities. For
instance, the transport protocol defines how transport stations cooperate to
provide the transport service to session entities, making use of the network
service.

The (N) services are offered to the (N + 1) entities at the (N) service
access points, or (N) SAPs for short, which represent the logical interfaces
between the (N) entities and the (N + 1) entities. An (N) SAP can be
served by only one (N) entity and used by only one (N + 1) entity, but one
(N) entity can serve several (N) SAPs and one (N + 1) entity can use

38 Part I ® Introduction

(N+1)-layer Q O ~<—— (N+1)-entity
(N)-SAP
(N)-services v

'--.....-' . K (N)-CEP

teeesssase’®

(N)-layer
(N)-connection

Fig. 5. Connections and connection end points (CEPs).

several (N) SAPs. (N) SAPs represent the means by which (V) entities and
(N + 1) entities carry out their server /user relationship. In other words,
SAPs are used to model relations between processing elements (entities) in
each open system.

A common service offered by all layers consists of providing associa-
tions between peer SAPs (and thus between peer entities using these SAPs)
which can be used in particular to transfer data. More precisely (see Fig. 5),
the (N) layer offers (N) connections between (N) SAPs as part of the (N)
services. The most usual type of connection is the point-to-point connection,
but there are also multi-end-point connections which correspond to multiple
associations between entities (e.g., broadcast communication). The end of
an (N) connection at an (N) SAP is called an (N) connection end point or
(N) CEP for short. Several connections may coexist between the same pair
(or n-tuple) of SAPs. In. the following, for the sake of simplicity, we will
consider only point-to-point connections.

Connectionless communications (e.g., datagrams in the network scrwce)
which are important for transaction-oriented applications will be included
later in the OSI Reference Model.

II1. Identifiers

Objects within a layer or at the boundary between adjacent layers need
to be uniquely identifiable, i.e., in order to establish a connection between
two SAPs, one must be able to identify them uniquely. The OSI Architec-
ture defines identifiers for entities, SAPs, and connections as well as
relations between these identifiers, as briefly outlined below.

Each (N) entity is identified with a global title* which is unique and
identifies the same (N) entity from anywhere in the network of Open

*The term “title” has been preferred to the term “name,” which is viewed as bearing a more
general meaning. A title is equivalent to an entity name.

Chap. 2 * Standard Layer Model 39

J— (N+1)-title
(N+1)-layer {

_- (N)-address

(N)-services —»

"~ (N)-CEP-identifier
(N)-layer { < (N)-title

Fig. 6. Titles, addresses, and CEP identifiers.

Systems. Within more limited domains, an (N) entity can be identified with
a local title which uniquely identifies the (N) entity only in the domain. For
instance, within the domain corresponding to the (N) layer, (N) entities are
identified with (N') global titles which are unique within the (N) layer.

Each (N) SAP is identified with an (N) address which uniquely
identifies the (N) SAP at the boundary between the (N) layer and the
(N + 1) layer.

The concepts of titles and addresses are illustrated in Fig. 6.

Bindings between (N) entities and the (N — 1) SAPs they use (i.e.,
SAPs through which they can access each other and communicate) are
translated into the concept of (N) directory which indicates correspondence
between global titles of (N) entities and (N — 1) addresses through which
they can be reached, as illustrated in Fig. 7. For instance, an information
retrieval service on a network can be known by the global title of the
corresponding application entity. A directory will permit one to deduce the
corresponding address (presentation address), i.e., the address towards
which the connection to the information retrieval ‘service has to be estab-
lished.

Correspondence between (N) addresses served by an (N) entity and
the (N — 1) addresses used for this purpose is performed by an (N)
mapping function. In addition to the simplest case of one-to-one mapping,
mapping may, in particular, be hierarchical, with the (N) address being
made of an (N — 1) address and an (N) suffix. Mapping may also be
performed “by table.” These three types of mapping are illustrated in Fig.
8. For instance, a one-to-one mapping is used by the Presentation Layer

Part I e Introduction

(N)-title (N—1)-address

A 352
B 237
B 015
C 015

Fig. 7. Example of an (N) directory.

which arranges for presentation of data but does not perform any specific
addressing function on top of the session service, and thus simply maps,
one-to-one, presentation addresses onto session addresses. Hierarchical
mapping offers the advantage of simplicity and will normally be used by the
Transport Layer to offer subaddressing capability within a host (usually
identified with one network address). The price paid for simplicity of
hierarchical mapping is that these subaddresses are tied forever with the
address and thus cannot be moved. Mapping by table offers more flexibility
since a change in configuration will be “easily” reflected in a change of

A Ba Bb Bc K L M
N NN NN
’] [}] ! F 1 1
' Y ! H / \ H 1
: Vo r v v
; Voo K[k|jL]|m _
i Vo Mapping table
(N)-layer ¢ ; VoL c|o|DJE
E Vol oy
| " i \‘ H 1
] v b ' v 1 !
1 v o] \ 1
] vV] \ 7 1
[l] i \ g 1
A Wy \ Xy \
P N NN
)\ ——y < O SO
A B c D E
One-to-one Hierarchical By table

Fig. 8. Mapping between addresses.

Chap. 2 * Standard Layer Model 41

mapping tables. Mapping by table might be used for instance in the
Network Layer, where flexibility of reconfiguration is important.

Finally, each (N) CEP is uniquely identified within its (N) SAP by an
(N) CEP identifier which is used by the (N) entity and the (N + 1) entity
on both sides of the (N) SAP to identify the (N) connection as illustrated
in Fig. 6. This is necessary since several (N) connections may end at the
same (N) SAP.

IV. Operation of Connections

A. Establishment and Release

When an (N + 1) entity requests the establishment of an (N) connec-
tion from one of the (N) SAPs it uses to another (N) SAP, it must provide
at the local (N) SAP the (N) address of the distant (N) SAP. When the
(N) connection is established, both the (N + 1) entity and the (N) entity
will use the (N) CEP identifier to designate locally the (N) connection. For
instance, a session entity 4 which wishes to get a connection with a session
entity B needs to know the transport address TA(B) (of the transport SAP)
at which B can be reached. In order to have this connection established,
session entity 4 requests the transport layer to establish a transport connec-
tion between the local SAP with address TA(A) and the distant SAP with
address TA(B). When the connection has been established, each session
entity 4 and B will simply refer to this connection at their respective end by
the corresponding transport CEP.

(N) connections may be established and released dynamically on top
of (N — 1) connections. Establishment of an (N) connection implies the
availability of an (N — 1) connection between the two entities. If not
available, the (N — 1) connection must be established. This requires the
availability of an (N — 2) connection. The same consideration applies
downwards until an available connection is encountered.

In some cases, the (N) connection may be established simultaneously
with its supporting (N — 1) connection provided the (N — 1) connection
establishment service permits (N) entities to exchange information neces-
sary to establish the (N) connection. For instance, establishment of a
transport connection requires the availability of a network connection (e.g.,
an X.25 virtual circuit). If it is not available, the network connection must
be established prior to establishment of the transport connection or simulta-
neously, provided the establishment of the network connection permits one
to transmit the transport control information necessary for establishing the
transport connection (e.g., user data in call request and call indication
packets in X.25).

42 PartI e Introduction

B. Multiplexing and Splitting

Three particular types of construction of (N) connections on top of
(N — 1) connections may be distinguished:

(1) One-to-one correspondence, where each (N) connection is built on
one (N — 1) connection.

(2) Multiplexing (referred to as “upward multiplexing” in [7]), where
several (V) connections are multiplexed on one single (N — 1) connection.

(3) Splitting (referred to as “downward multiplexing” in [7]), where
one single (N) connection is built on top of several (N — 1) connections,
the traffic on the (N) connection being divided between the various
(N — 1) connections.

These three types of correspondence between connections in adjacent
layers are illustrated in Fig. 9. In the Transport Layer, for instance, a
one-to-one correspondence will be used when the Open System is a single
terminal connected to an X.25 Public Data Network, thus implementing
only one transport connection on a network connection (virtual circuit). In
the case of a cluster of terminals, multiplexing of several transport connec-
tions on a single network connection may be used to reduce the cost of
usage of the Public Data Network (this depends of course on its tariff
structure). Finally, splitting one transport connection onto two (or more)
network connections may permit one to have a higher throughput or a
better reliability than that given by a single network connection.

C. Data Transfer

Information is transferred in various types of data units between peer
entities and between entities attached to a specific service access point. The

/(N)‘CEP

N

(N)-layer ¢

/(N-1)-CEP

One-to-one Multiplexing Splitting

Fig. 9. Correspondenoe between connections.

Chap. 2 ¢ Standard Layer Model 43

Control Data Combined
(N)-(N) (N)-Protocol (N)-User Data (N)-Protocol Data
Peer Entities Control Information Units
(N)-(N—1) (N—1)-Interface (N—1)-Interface (N—1)-Interface
Adjacent layers " Control Data Data Unit
Information

Fig. 10. Interrelationship between data units.

data units are defined below, with an example of what these data units
would be for the Data Link Layer using HDLC as its Data Link protocol
(see Section VII B). The interrelationship among these data units is shown
in Fig. 10.

(N) protocol control information is information exchanged between two
(N) entities, using an (N — 1) connection, to coordinate their joint opera-
tion; e.g., HDLC header and trailer.

(N) user data is the data transferred between two (N) entities on
behalf of the (N + 1) entities for whom the (N) entities are providing
services, e.g., data passed by network entities and transferred transparently
in the information field of HDLC information frames by data link entities.

An (N) protocol data unit is a unit of data which contains (N') Protocol
Control Information and possibly (N) User Data, e.g., HDLC frames.

(N) interface control information is information exchanged between an
(N — 1) entity and an (N) entity to coordinate their joint operation, e.g.,
system-specific control information passed between network entities and
data link entities running HDLC, such as buffer address and length,
maximum waiting time, etc.

(N) interface data is information transferred from an (N + 1) entity to
an (N) entity for transmission to a correspondent (N + 1) entity over an
(N) connection, or conversely, information transferred from an (N) entity

44 Part I e Introduction

to an (N -+ 1) entity which has been received over an (N) connection from
a correspondent (N + 1) entity, e.g., text to be transmitted transparently by
data link entities.

(N) interface data unit is the unit of information transferred across the
service access point between an (N + 1) entity and an (N) entity in a single
interaction. The size of (N) interface data units is not necessarily the same
at each end of the connection, e.g., one block (or a piece of block or a chain
of blocks) of data to be transmitted by the data link entity serving a
network entity.

(N — 1) service data unit is the amount of (N — 1) interface data whose
identity is preserved from one end of an (N — 1) connection to the other.
Data may be held within a connection until a complete service data unit is
put into the connection, e.g., a block of data transferred as such from one
network entity to its correspondent network entity by their servicing data
link entities (as the information field of an HDLC frame).

Expedited (N — 1) service data unit is a small (N — 1) service data unit
whose transfer is expedited. The (N — 1) layer ensures that an expedited
data unit will not be delivered after any subsequent service data unit or
expedited data unit sent on that connection. An expedited (N — 1) service
data unit may also be referred to as an (N — 1) expedited data unit. There

i

|

[|

|

u

|

(N)-layer {’
(N)-PDU
((N—1)-SDU

l l(N—1)-PCI

(N=1)-layer ¢

(N—1)-PDU

PCI = Protocol control information
PDU = Protocol data unit
SDU == Service data unit

Fig. 11. Logical relationship between data units in adjacent layers.

Chap. 2 » Standard Layer Model 45

is no equivalent of data link expedited data units offered by HDLC, but
proposals have been made for such an enhancement.

Note: An (N) protocol data unit may be mapped one-to-one onto an
(N — 1) service data unit (see Fig. 11).

V. Management Aspects
Even though a number of resources are managed locally, i.e., without

involving cooperation between distinct systems, some management func-
tions require communication between systems.

Application management application entities

User application entities System management application entities

Highest layer O O O Oi@_ O O O O
| ;____j NN
7t i

(N+1)-layer %Q----“--_---j ; 5 E é
| ERE

(N)-layer V//Q _______________ ' i i i
(N—1)-layer .V//IQ _________________ .x: é E
By /|

Lowest layer ‘ V /< _______________________ E

-—— interface between adjacent layers
- --- special interface for management

v .
layer management functions
%

Fig. 12. A representation of management functions.

46 Part I e Introduction
Examples of such management functions are:

configuration information,
cold start /termination,
monitoring,

diagnostics,
reconfiguration, etc.

The OSI Architecture considers management functions as applications of a
specific type. Management entities located in the highest layer of the
architecture may use the complete set of services offered to all applications
in order to perform management functions. This organization of manage-
ment functions within the OSI Architecture is illustrated in Fig. 12. For
instance, updating routing tables (used by entities in the network layer to
forward packets towards their destination) is a management function.
Management entities in charge of this function must communicate to
determine the proper contents of routing tables (e.g., destination unreach-
able through a given node). In order to communicate, these route manage-
ment entities, located in the Application Layer (i.e., the highest layer) use
the set of services provided by the lower layers (e.g., data formatted by the
Presentation Layer, reliable transport of data ensured by the Transport
layer, etc.). The updating of routing tables is itself a local function by which
each route management entity in the Application Layer interacts with its
local network entity (through the dotted arrow in Fig. 12).

V1. The Seven Layers of the OSI Architecture

A. Justification of the Seven Layers

ISO agreed on a number of principles to be considered for defining the
specific set of layers in the OSI architecture, and applied these principles to
come up with the seven layers of the OSI Architecture.

Principles to be considered are as follows:

1. Do not create so many layers as to make difficult the system
engineering task of describing and integrating these layers.

2. Create a boundary at a point where the services description can be
small and the number of interactions across the boundary is
minimized.

3. Create separate layers to handle functions which are manifestly
different in the process performed or the technology involved.

4. Collect similar functions into the same layer.

Chap. 2 * Standard Layer Model 47

5. Select boundaries at a point which past experience has demon-
strated to be successful.

6. Create a layer of easily localized functions so that the layer could
be totally redesigned and its protocols changed in a major way to
take advantage of new advances in architectural, hardware, or
software technology without changing the services and interfaces
with the adjacent layers.

7. Create a boundary where it may be useful at some point in time to
have the corresponding interface standardized.

8. Create a layer when there is a need for a different level of
abstraction in the handling of data, e.g., morphology, syntax,
semantics.

9. Create for each layer interfaces with its upper and lower layer only.

10. Create further subgrouping and organization of functions to form
sublayers within a layer in cases where distinct communication
services need it.

11. Create, where needed, two or more sublayers with a common, and
therefore minimum, functionality to allow interface operation with
adjacent layers.

12. Allow bypassing of sublayers.

B. Specific Layers

The following is a brief explanation of how the layers were chosen:

(1) Tt is essential that the architecture permits usage of a realistic
variety of physical media for interconnection with different control proce-
dures (e.g., V.24, V.35, X.21, etc.). Application of principles 3, 5, and 8 leads
to identification of a Physical Layer as the lowest layer in the architecture.

(2) Some physical communications media (e.g., telephone lines) require
specific techniques to be used in order to transmit data between systems
despite a relatively high error rate (i.e., an error rate not acceptable for the
great majority of applications). These specific techniques are used in data
link control procedures which have been studied and standardized for a
number of years. It must also be recognized that new physical communica-
tions media (e.g., fiber optics) will require different data-link control proce-
dures. Application of principles 3, 5, and 8 leads to identification of a Data
Link Layer on top of the physical layer in the architecture.

(3) In the Open Systems Interconnection, some systems will act as final
destinations of data. Some systems may act only as intermediate nodes
(forwarding data to other systems). Application of principles 3, 5, and 7
leads to identification of a Network Layer on top of the Data Link Layer.
Network-oriented protocols, such as routing, for example, will be grouped

48 ’ Part 1 e Introduction

in this layer. Thus, the Network Layer will provide a connection path
(network connection) between a pair of transport entities (see Fig. 13).

(4) Control of data transportation from source end system to destina-
tion end system (which need not be performed in intermediate nodes) is the
last function to be performed in order to provide the totality of transport
service. Thus, the upper layer in the transport-service part of the architec-
ture is the Transport Layer, sitting on top of the Network Layer. This
Transport Layer relieves higher-layer entities from any concern with the
transportation of data between them.

(5) In order to bind /unbind distributed activities into a logical rela-
tionship that controls the data exchange with respect to synchronization and
structure, the need for a dedicated layer has been identified. So the
application of principles 3 and 4 leads to the establishment of the Session
Layer, which is on top of the Transport Layer.

(6) The remaining set of general interest functions are those related to
representation and manipulation of structured data for the benefit of
application programs. Application of principles 3 and 4 leads to identifica-
tion of a Presentation Layer on top of the Session Layer.

(7) Finally, there are applications consisting of application processes
which perform information processing. A portion of these application
processes and the protocols by which they communicate comprise the
Application Layer as the highest layer of the architecture.

The resulting architecture with seven layers, illustrated in Fig. 13, obeys
principles 1 and 2. A more detailed definition of each of the seven layers
identified above is given in the following sections, starting from the top with

Layer

Application e e -
Presentation e e] >
Session e ——— -
Transport B e T TR, >
Network -» - -»
Data-link - il - e
Physical - - -

Physical media for interconnection

Fig. 13. The seven-layers OSI architecture.

Chap. 2 ¢ Standard Layer Model 49

the Application Layer described in Section VI C 1) down to the Physical
Layer (described in Sectio<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>