
Computer Network
Architectures and
Protocols

Applications of Communications Theory
Series Editor: R. W. Lucky, Bell Laboratories

INTRODUCTION TO COMMUNICATION SCIENCE AND SYSTEMS
John R. Pierce and Edward C. Posner

OPTICAL FIBER TRANSMISSION SYSTEMS
Stewart D. Personick .

TELECOMMUNICATIONS SWITCHING
J. Gordon Pearce

ERROR CORRECTION CODING FOR DIGITAL COMMUNICATIONS
George C. Clark, Jr., and J. Bibb Cain

COMPUTER NETWORK ARCHITECTURES AND PROTOCOLS
Edited by Paul E. Green, Jr.

A Continuation Order Plan is available for this series. A continuation order will bring
delivery of each new volume immediately upon publication. Volumes are billed only upon
actual shipment. For futher information please contact the publisher.

Computer Network
Architectures and
Protocols

Edited by

Paul E. Green, Jr.
IBM Corporation
Yorktown Heights, New York

PLENUM PRESS • NEW YORK AND LONDON

Library of Congress Cataloging in Publication Data

Main entry under title:

Computer network architectures and protocols.

(Applications of communications theory)
Bibliography: p.
Includes index.
1. Computer networks. 1. Green, Paul Eliot, date . II. Series.

TK5105.5.C638 001.64'404

ISBN 978-1-4615-6700-4 ISBN 978-1-4615-6698-4 (eBook)
DOl 10.1007/978-1-4615-6698-4

First Printing-May 1982
Second Printing-May 1983

© 1982 Plenum Press, New York
Softcover reprint of the hardcover 1st edition 1982
A Division of Plenum Publishing Corporation
233 Spring Street, New York, N.Y. 10013

All rights reserved

82-5227
AACR2

No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, electronic, mechanical, photocoyping, microfilming,
recording, or otherwise, without written permission from the Publisher

To Doogie

Contributors

James D. Atkins
IBM Corporation, Research Triangle Park, North Carolina

H. V. Bertine
Bell Laboratories, Holmdel, New Jersey

Gregor V. Bochmann
University of Montreal, Montreal, Quebec, Canada

David R. Boggs
Xerox Corporation, Palo Alto Research Center, Palo Alto, California

Daniel Brand
IBM Zurich Research Laboratory, Ruschlikon, Switzerland

David E. Carlson
Bell Laboratories, Holmdel, New Jersey

James W. Conard
Control Data Corporation, Anaheim, California

D. D. Cowan
IBM Zurich Research Laboratory, Ruschlikon, Switzerland

Andre A. S. Danthine
University of Liege, Liege, Belgium

John D. Day
Cullinane Database Systems, Inc., Westwood, Massachusetts

vii

viii Contributors

Harold C. Folts
Omnicom, Inc., Vienna, Virginia

Mario Gerla
University of California, Los Angeles, California

James P. Gray
IBM Corporation, Research Triangle Park, North Carolina

Paul E. Green, Jr.
IBM Research Center, Yorktown Heights, New York

Brent T. Hailpem
IBM Research Center, Yorktown Heights, New York

Verlin L. Hoberecht
IBM Corporation, Kingston, New York

Leonard Kleinrock
University of California, Los Angeles, California

Robert M. Metcalfe
3Com Corporation, Menlo Park, California

Jonathan B. Postel
Information Sciences Institute, University of Southern California" Marina
del Rey, California

David B. Rose
IBM Corporation, Research Triangle Park, North Carolina

Harry Rudin
IBM Zurich Research Laboratory, Ruschlikon, Switzerland

Antony Rybczynski
Bell Canada, Ottawa, Ontario, Canada

Gary D. Schultz
IBM Corporation, Research Triangle Park, North Carolina

Mischa Schwartz
Columbia University, New York, New York

Contributors ix

John F. Shoch
Xerox Corporation, Palo Alto Research Center, Palo Alto, California

Thomas E. Stern
Columbia University, New York, New York

Carl A. Sunshine
Information Sciences Institute, University of Southern California, Marina
del Rey, California

Edward A. Taft
Xerox Corporation" Palo Alto Research Center, Palo Alto, California

Fouad A. Tobagi
Stanford University, Stanford, California

Iwao Toda
Yokosuka ECL NTT, Yokosuka, Japan

Stuart Wecker
Technology Concepts, Inc., Sudbury, Massachusetts

Colin H. West
IBM Zurich Research Laboratory, Ruschlikon, Switzerland

Pitro Zafiropulo
IBM Zurich Research Laboratory, Rilschlikon, Switzerland

Hubert Zimmerman
IRIA/Laboria, Rocquencourt, France

Preface

This is a book about the bricks and mortar out of which are built those
edifices that so well characterize late twentieth century industrial society­
networks of computers and terminals. Such computer networks are playing
an increasing role in our daily lives, somewhat indirectly up to now as the
hidden servants of banks, retail credit bureaus, airline reservation offices,
and so forth, but soon they will become more visible as they enter our
offices and homes and directly become part of our work, entertainment, and
daily living.

The study of how computer networks work is a combined study of
communication theory and computer science, two disciplines appearing to
have very little in common. The modern communication scientist wishing to
work in this area finds himself in suddenly unfamiliar territory. It is no
longer sufficient for him to think of transmission, modulation, noise immun­
ity, error bounds, and other abstractions of a single communication link; he
is dealing now with a topologically complex interconnection of such links.
And what is more striking, solving the problems of getting the signal from
one point to another is just the beginning of the communication process.
The communication must be in the right form to be routed properly, to be
handled without congestion, and to be understood at the right points in the
network. The communication scientist suddenly finds himself charged with
responsibility for such things as code and format conversions, addressing,
flow control, and other abstractions of a new and challenging kind.

As for the computer scientist, he finds that his discipline has changed
too. The fraction of computers that belong to a network involving terminals
and computers is increasing all the time. And for a typical single computer,
the fraction of its execution load, storage occupancy, and system manage-

xi

xii Preface

ment problems that are involved with being part of a network is also
growing.

It is the objective of this book to provide a comprehensive text and
reference volume that can be used in education, research and development
in this combined field of computer networks. The aim is to be instructive
and, within the limits imposed by space, encyclopedic.

The present status of the computer network art can be traced to three
main sources: research rietworks built by universities, often operating under
government support; private networks provided by the computer manufac­
turers; and public network offerings provided by common carriers. In this
volume all three sources of expertise have been tapped. Cooperation be­
tween these communities has kd to the establishment of a high level of
world wide standardization on certain special aspects of network architec­
tures and protocols, and these are described.

When I was asked by the Editor of this series to prepare a volume in
this area, it was clear that two approaches were possible. The emphasis
could either be on abstract and generic descriptions of network structure
(the architecture) or on specific implementations and the functions they
provide. The latter approach, in which one might describe how a given
packet-switched common carrier network functions or how a piece of
software offered by a computer manufacturer works, would provide a
treatment of immediate help to the user of just that service or product.
However, it seemed obvious that a more generally useful and less perishable
volume would result if one took the first approach and dealt with structural
concepts at the most basic and generally applicable level; this was the
procedure adopted in preparing this volume.

There already exist several perfectly adequate treatises that cover parts
of the area or cover all the areas fairly lightly or from the special point of
view of the university, computer manufacturer, or common carrier. How­
ever, writing the really complete treatise that was wanted seemed not to be
within the ability of anyone author (at any rate not this author). A volume
composed of invited contributions by experts was clearly called for. At the
same time, a need emerged in the Institute of Electrical and Electronics
Engineers (IEEE) to have a special journal issue on this very topic, so the
two processes of book and journal issue were merged. The volume you are
now reading is really a second iteration, the first being a Special Issue on
Computer Networks Architecture and Protocols, the April 1980 issue of the
IEEE Communications Transactions. This volume consists of revised ver­
sions of those papers, plus several new chapters, all organized into seven
parts, each of which has a tutorial introduction. A comprehensive subject
index and index of acronyms has been supplied.

The book is organized along the lines of the "layered" view which is
always used today in dissecting network function and which will be intro-

Preface xiii

duced in Part 1. According to this scheme, the structure within any network
"node" or "machine" may be broken into layers with the raw transmission
facilities of classical communications (for example, wires or satellite links)
below the lowest layer and the using source and destination persons or
programs above the highest one. Part II discusses the lowest layer, the
Physical Layer, by which transmission connections are set up between
nodes. Part III presents the Link Control Level, which operates to produce
error-free sequential delivery of data messages or "packets" from a particu­
lar node to one of its neighboring nodes. In Part IV we see how packets
make their way from the originating node to the destination node, a process
which can be a complex one when there are intermediate nodes in between
and when there are many simultaneous users of the network resources.
When we get to Part V, the fact that the path of the messages has been a
sequence of nodes and links is no longer visible because we are discussing
high level functions by which the path provided by this sequence is
exploited by just the two end users at the source and destination nodes,
respectively.

Any treatment of computer network structure that aspires to complete­
ness and timeliness cannot stop with just the internals of the layers. At least
two other areas of great concern today were identified and are discussed
here. Just in the last several years the difficult step of connecting together
networks that were previously functioning separately has become most
important as the number of networks proliferates and the breadth of
interconnection freedom desired by end users becomes more ambitious. This
problem is the subject of Part VI.

And finally, Part VII caps off our treatment of how the details of
network function should work with a series of reports on the extent to which
we are now able by formal methods to make sure in advance that they will
work.

I have tried to get the best people available to write chapters on the
different subtopics. This has inevitably meant a heavy drain on the sched­
ules of very busy individuals, but the request has been met with a com­
mendable responsiveness and generosity for which I am most grateful. I
would also like to record my indebtedness to the referees of these chapters
and especially to the three individuals who helped plan the volume: Alex
A. McKenzie, Carl Sunshine, and Stuart Wecker. Dr. Sunshine made a
particularly heavy contribution, since he managed the review and editing
process for all the chapters in Part VII.

MI. Kisco, New York Paul E. Green, Jr.

Contents

PART I: INTRODUCTION

Introduction to Part I . 1

1. The Structure of Computer Networks 3

Paul E. Green, Jr.

2. A Standard Layer Model 33

Hubert Zimmermann

PARTII: PHYSICAL LAYER

Introduction to Part II 55

3. PhysicalInterfaces and Protocols 57

H. V. Bertine

PART III: LINK CONTROL LAYER

Introduction to Part III 85

4. Character-Oriented Link Control 87

James W. Conard

5. Bit-Oriented Data Link Control 111

David E. Carlson

6. Multiaccess Link Control 145

Fouad A. Tobagi

xv

xvi Contents

PARTIV: NETWORKLAYER

Introduction to Part IV . 191

7. Circuit-Switched Network Layer 195
Harold C. Folts

8. Packet-Switched Network Layer 213
Antony Rybczynski

9. Packet-Switched Network Layer for Short Messages 239
Harold C. Folts

10. DNA-The Digital Network Architecture 249
Stuart Wecker

11. Path Control-The Network Layer of System Network
Architecture 297
James D. Atkins

12. Routing Protocols 327
Mischa Schwartz and Thomas E. Stern

13. Flow Control Protocols 361
Mario Gerla and Leonard Kleinrock

PART V: HIGHER-LAYER PROTOCOLS

Introduction to Part V 413

14. DCNA Higher-Layer Protocols415

Iwao Toda

15. Terminal Support Protocols437
John D. Day

16. SNA Higher Layer Protocols459
Verlin L. Hoberecht

17. VideGtex Terminal Protocols483
Paul E. Green, Jr.

PART VI: NETWORK INTERCONNECTION

Introduction to Part VI 509

18. Internetwork Protocol Approaches 511

Jonathan B. Postel

Contents xvii

19. A SpecificIntemetwork Architecture (Pup) 527
David R. Boggs, John F. Shoch, Edward A. Taft,
and Robert M. Metcalfe

PART VII: FORMAL SPECIFICATIONS AND THEIR
MANIPULATION

Introduction to Part VII 557

20. A Survey of Formal Methods 561
Gregor V. Bochmann and Carl A. Sunshine

21. Protocol Represent:;ttion with Finite State Models 579
Andre A. S. Danthine

22. Specifying and Verifying Protocols Represented as
Abstract Programs 607
Brent T. Hailpern

23. A Hybrid Model and the Representation of Communication
Services 625
Gregor V. Bochmann

24. Protocol Analysis and Synthesis Using a State Transition Model ... 645
Pitro Zafiropulo, Colin H. West, Harry Rudin, D. D. Cowan, and
Daniel Brand

25. Executable Representation and Validation of SNA 671
Gary D. Schultz, David B. Rose, James P. Gray and Colin H. West

INDEX OF ACRONYMS 707

SUBJECT INDEX .. 711

PART I

Introduction

The introductory part of this volume consists of two chapters. In Chapter I
the. concept of layered computer network architectures is motivated and
explained in a tutorial way. The way in which Parts II through V of the
book relate to the various layers is also indicated.

A network architecture is a complete definition of all the layers neces­
sary to build the network. The definition itself is expressed as a set of
protocols that act within the same layer or between layers. A protocol, in
tum, is a set of agreements for interaction of two or more parties and is
expressed by three components, syntax (e.g., a set of headers, a set of
commands/responses), semantics (the actions and reactions that take place,
including the exchange of messages), and timing, the sequencing and con­
currency aspects of the protocol.

While the book is intended to present the generic architectural view of
networks, it was nonetheless felt important to include in Chapter I a bit of
the history of some of the implementations, if only to show how the earlier
ones suffered from an absence of the systematic layered approach. This
discussion of implementations also gives some feel for the world of software
and hardware products in which the architecture ceases to be a paper design
and becomes an operational reality.

Chapter 2 serves to complete the introductory portion of this book by
detailing the new proposed international reference model for layered net­
work architecture, the Open System Interconnection, promulgated by the
International Standards Organization, and known more succinctly as
"ISO /OSI." This model is being widely adopted as a definitive framework
for talking about layered network architectures.

OSI, as formally approved, takes the summary form presented in
Chapter 2; details on syntax, semantics, and timing of protocol layers above
level 3 (equivalent roughly to the X.25 packet standard) have not been
agreed upon yet. Therefore, even though the reader will have to be content
with OSI as a useful pedagogical model, it is to be expected that eventually
the ISO model will be transformed into a full-fledged architecture in the
sense defined above.

1

1

The Structure of Computer Networks

Paul E. Green, Jr.

I. Introduction

A computer network is a structure that makes available to a data
processing user at one place some data processing function or service
performed at another place. Such a computer network is exemplified
superficially in Fig. 1. In this case one of the end users is a person sitting at
a terminal. The other end user is a specific application program running on
a computer. The network consists of a number of boxes or nodes, among
them the terminal (A) and the computer (B), and includes also the interven­
ing transmission lines connecting the nodes.

Ever since computer users began accessing central processor resources
from remote terminals over 25 years ago, such computer networks have
become more versatile, more powerful, and inevitably, more complex.
Today's computer networks [1-6] range all the way from a single small
processor that supports one or two terminals to complicated interconnec­
tions in which hundreds of processing units of various sizes are intercon­
nected to one another and to tens of thousands of terminals, often with
various forms of special multiplexors and controllers in between.

As this evolution has proceeded, so have attempts to replace ad hoc
methods of network design with systematic ways of organizing, understand­
ing, and teaching about computer network details. Today there is an orderly
way of looking at networks in terms of layered architectures, which makes it
possible to dissect the many interlocking functions of the network and then
explain them one at a time. This book is organized in just this way, the
various sections and chapters being devoted to the different layers. As we
shall see, each layer in a layered architecture is a collection of defined
interactions called peer protocols, and the boundaries between layers is
another set of interactions called interface protocols.

3

4 Part 1 • Introduction

(8)

COMPUTER

Fig. 1. A computer network.

It is appropriate to state at this point the difference between a protocol,
an architecture, and an implementation. A protocol is a set of rules of
procedure stating just how two or more parties are supposed to interact, for
example, by sending messages to each other. A network architecture is a
precise definition of the aggregated set of functions that the network and its
components should perform. The architecture consists of a number of
individual protocols. An implementation is a running version of which the
architecture is the blueprint. Thus the architecture exists on paper and the
implementation exists as actual hardware or software that runs. The empha­
sis in this book is on architectures and their component protocols, not on
implementations.

This initial chapter has the objective of introducing the layering con­
cept in a simple and plausible way and, by going into an intermediate level
of detail, to set the stage for the various chapters to follow which will
discuss individual layers in much greater depth. We shall do this by first
briefly tracing the historical evolution of network implementations, and
then by summarizing some of today's layered architectures.

In Section II, we analyze a list of the basic functions that the network
provides in putting the parties that the network serves into communication
with one another. This allows us to identify the layers and state what each
of them is supposed to accomplish. Then, to prepare the ground for relating
these structural abstractions to real life we review the history of network
implementations. This is done in two pieces; Section III discusses commer­
cially provided networks (and the influence of research networks on them)
and Section IV treats the standards of the common carriers and related
bodies. Finally, in Section V we review how three different implementation

Chap. 1 • Structure of Computer Networks 5

groups have filled in the details of certain of the layers of Section II in their
own particular way to provide the services that were covered in Sections III
and IV.

II. A Framework for Discussing Networks: The Total Access Path
between End Users

A. Characterizing the Network

The basic function to be performed by any computer network is the
provision of an access path by which an end user at one geographicalloca­
tion can access some other end user at another geographical location. De­
pending on the particular circumstances, the pair of end users might be a ter­
minal user and a remote application program he or she is invoking (as with
Fig. 1), two application programs interacting with one another remotely, one
application program querying or updating a remote file, and so forth. It is
important to understand that by access path we mean the sequence of
functions that makes it possible for one end user not only to be physically
connected to the other, but to actually communicate with the other in spite
not only of errors of various types but also large differences in the choices
of speed, format, patterns of intermittency, etc., that are natural to each end
user individually. The distinction is important because it captures one of the
key differences between classical communications (transmission and error
control) and computer communications.

There are many ways of characterizing networks, for example, the
following: (1) according to the particular application (banking, time sharing,
etc.), (2) according to geography (in-plant, out-plant), and (3) according to
ownership (public, private), and so forth. Another way of characterizing
different network types is to examine the topological character of the web of
transmission lines that connect together the nodes at which the different end
users are located and/or which perform some connection and message
forwarding function. (A node is a physical box such as a computer, con­
troller, multiplexor, or terminal; an end node is one where an end user
resides.) Topologically, we may distinguish various network types in the
manner shown in Fig. 2.

None of these four approaches really reveals what the network is
actually doing. A much better scheme is to examine the total repertoire of
functions that the network must provide in making up an effective access
path between two end users (Table 1). By doing this in an ordered way, one
is in a good position to characterize the important features of both common

6

(A)

(C)

(E)

(F)

(8)

(D)

Part 1 • Introduction

Fig. 2. Six network topologies. (A) Star,
(B) Multidrop, (C) Loop, (D) Tree, (E)
Mesh, (F) Mesh of trees.

carrier networks (of the leased, dial, fast circuit-switched, and packet­
switched types that we shall define later in this chapter) and the network
designs of computer manufacturers.

B. Access Path Requirements

First, someone must make sure that a set of physical tranStnlSSlOn
resources (lines) exists that run from the origin node to the destination

Chap. 1 • Structure of Computer Networks

Table I. Access Path Requirementsa

To give one end user access to another end user, someone must:

Make sure a transmission path ex­
ists

See that it talks in bits
Provide electrical connection and

control of modem
Provide economies during intermit­

tent use

Move individual messages without
error

Send messages to correct nbde and
correct subsidiary address within
node. Bypass failed or congested
line or node.

Accommodate buffer size. Avoid
need to resend long messages

Resolve mismatches between feasi­
ble rate of message flow across
network and that desired by end
user

Accommodate request - response
patterns peculiar to the end user
pair

Make it possible for one end user
to interpret and use the code,
format, command convention,
etc., used by the others

USING

USING
USING

USING

USING

USING

USING

USING

USING

USING

Common carrier-provided lines

Modems
Physical interfaces (II)

Physical dialup; line sharing by
multidropping or other multi­
access schemes (III)

Data link control; Error detection
and retransmission (III)

Addressing, routing (III, IV)

Packetizing/ depacketizing (IV)

Buffering, flow control (IV)

Set up, take down, and manage
datagram, transaction, or session
dialogue (V)

Protocol conversions (V)

a Roman numerals indicate parts of the book in which each function is described in detail.

7

node, often by way of intermediate nodes. In out-plant situations (beyond
one contiguous set of customer premises), this is done by common-carrier­
provided links, either terrestrial or satellite.

Today it is still true that most common-carrier lines are analog lines
that were originally designed to handle voice waveforms. Therefore, the next
step is to see to it that the two ends of each line talk in bits by substituting
for the bits certain waveforms whose energy lies in a frequency range
accommodated by the lines. Modems (modulator-demodulator units) pro­
vide this function and some others. One modem at the sending end of the
line converts bits to analog waveforms, and a second modem at the
receiving end converts analog waveforms back to bits. Modems will not be
discussed further in this volume. The interested reader should consult Ref.
7. The state of the modem must be controlled at all times by the remainder
of the node to which it is attached. An electrical or physical interface must

8 Part 1 • Introduction

be provided to perform this function. Part II of this volume deals with this
interface.

The next problem to be faced is to exploit the intermittent ("bursty")
nature of most end user traffic in such a way as to economize on line costs.
If each sending end user were always to generate a bit stream at a constant
rate, networks made entirely of simple point-to-point leased lines of just the
right capacity would be the appropriate solution. But since this is, in
practice, hardly ever the case, one must either use an intermittently available
dial up point-to-point line, or hang a number of end nodes along the same
line and use multidropping or another of the wide variety of multiple access
techniques that have been invented to interleave the bursty traffic. Espe­
cially attractive are the new packet-switching or fast circuit-switching (very
fast dialup) services, which we shall return to presently. (Multidropping,
multiple access, packet-switching and fast circuit-switching are all forms of
time-division multiplexing.) In any of these functions there is a calling
function at the end that initiates the connection and a called function at the
other. The physical level calling and called function that make up the dialup
function are not presented in this volume in Part II but are deferred until
Part IV since they may be closely compared to other functions discussed
there.

Next, a capability must be provided for making sure that the bit stream
received is an accurate replica of the bit stream transmitted. This is done by
adding redundancy bits for error detection every so often in the transmitted
bit stream. If, upon checking the arriving redundancy bits against the string
of immediately preceding arriving data bits (a "frame"), the receiver detects
an error, the transmitter is asked by the receiver to resend the frame.

In most computer networks the multidropping function (if used) and
the error detection/retransmission function are handled by data link control
(DLC) elements, one at each point of connection of a node to a line. With
multidropping of many nodes on the same leased line comes the need to add
into the exchanges between DLC elements certain link address and control
fields or characters to be used to avoid conflicting attempts to use the line
and have the correct node absorb the message.

The three chapters of Part III discuss how classical data link controls,
such as BISYNC and HDLC as well as some more recently introduced
multiaccess protocols, accomplish the functions of line sharing and error-free
node-to node message delivery.

The action taken in response to the addressing information is, of course,
the routing operation, detailed in Chapter 12. We have just encountered a
simple addressing/routing requirement on a single link connecting several
stations. When the nodes at which the end users are located are separated
not just by one line but by one or more intervening nodes and lines,
messages must be forwarded from node to node, and addressing and routing

Chap. 1 • Structure of Computer Networks 9

then become quite elaborate, particularly if there is a multiplicity of possible
routes between the two end nodes. In such a topologically complex network,
upon failure of a node or link, alternate path rerouting provides a powerful
tool for recovery.

Before leaving the subject of addressing and routing, it should be noted
that a line connected to a node often carries traffic to or from more than
one location within that node. To resolve the ambiguity, an intranode
addressing and routing function is required in such cases.

The next function that must be provided is to accommodate the
buffering of incoming messages from the line until they can be serviced, and
the buffering of outgoing messages until they can be carried away by the
transmission line. Limitations on available buffer size and the desire for fast
response time, together' with the aforementioned need to do error checking
on a frame-by-frame basis (while seeing to it that the inevitable retransmis­
sions do not take too long), lead to the need to segment (packetize)
outgoing bit streams into frames of reasonable size and similarly to reassem­
ble (depacketize) incoming bit streams.

Next, the rate of flow of outgoing packets has to be regulated so as
neither to overflow the buffers at the receiving station nor to leave the
receiving end user waiting for more traffic. This can be accomplished by
feeding back along part or all of the access path from the receiving node to
transmitting node special pacing or flow control signals. There are many
options here, and these are discussed in Chapter 13. One may need to
control rate of flow on an individual internode link to protect a buffer
dedicated to that link at the same time that a completely different mecha­
nism is controlling end-to-end flow to protect a buffer dedicated to an end
user. The flow control signals sent from receiver to sender may simply turn
off and on the emission of packets, they may tell the latter how many more
packets can for the moment be safely sent, or there may be other strategies.

The next function needed is a way for the end user to use all the
functions just listed to conduct a dialogue with the end user at the other end
of the access path. The access path must be managed so that the dialogue
between end users has the request-response pattern that the end users
require. For example, the pair of users might be such that a single packet
should flow in just one direction. This simplest case has been termed the
datagram type of dialogue (actually a monologue). Or there might be a
tightly structured transaction form of dialogue in which, for example, a
single packet in one direction elicits a fixed number of reply packets in the
other direction. A third possibility is a session between end users in which
the flow of packets back and forth is part of a related series of transactions.
By analogy with a telephone conversation, it would be as though an access
path exists for each word, each sentence and its response, or for an entire
telephone call, respectively. In managing the dialogue, there is the need not

10 Part 1 • Introduction

only to set up and take down the dialogue, but, while it is in progress, to
associate related packets with one another, and to decide when an end user
should listen and when it should talk.

The last function required is to make sure, for each end user at a node,
that the access path accommodates its pecularities with respect to such
things as format, character code, device control, and database access con­
ventions. This is done by a protocol conversion to provide the right form of
presentation. The four chapters of Part V discuss the dialogue management
and protocol conversion processes.

Once all the elements just listed are provided, the access path can be
considered complete. This is shown in Fig. 3 where the actions just dis­
cussed are listed in order. Character streams typed in by the terminal user
undergo a protocol conversion, then have various control bits set and
sequence numbers added for managing the dialogue, are arranged in packets

~ TERMINAL USER

11
PROTOCOL CONVERSION

~
DIALOGUE MANAGEMENT

g
ADDRESSING, ROUTING, PACKETIZING

~
DATA LINK CONTROL -+----,

ta \
r------ MODEM \

\ ta '.
\ IN-PLANT ISWITCHINGI
\ ~ MULTIPLEXING

\ CARRIER TRANSMISSION ISWITCHI~GI \ t:a MULTIPLEXI~G

\ IN-PLANT TRANSMISSION/SWllCljlNGI \
\ ~ MULTIPLEXING \

L ____ _+_ MODEM \

~ \
DATA LINK CONTROL ____ ...1

B1
ADDRESSING, ROUTING, PACKETIZING

t:a
DIALOGUE MANAGEMENT

~
PROTOCOL CONVERSION

~
II11111I I I

APPLICATION PROGRAM I III II I I I I
1111111111

Fig. 3. Access path elements with
dashed lines showing two examples of
peer interaction.

Chap. 1 • Structure of Computer Networks 11

and are then provided with addresses, and so forth. Two interesting things
are immediately obvious: the elements occur in pairs, and the two members
of each pair talk essentially only to each other. For example, one modem
talks to the other, ignoring both details of the transmission link and the
meaning of bits it is forwarding. As another example, a DLC element
ignores what its modem is doing about modulation and demodulation and
also what the information field within a frame contains. A DLC element
interacts only with the DLC element at the other end to convey the frame
successfully from one sending node to the proper receiving node on the
same line. This isolation of interaction into pairs is almost always true for
all the functions we have been discussing.

C. Peer Interaction and Interfaces

This pairwise interaction, or peer interaction, is summarized in the layer
diagram of Fig. 4, which is derived directly from Fig. 3. Another way of

TERMINAL USlR :::: APPLICATION PROGRAM

1 2

~-~--------------b--HI
TERMINAL PROCESSOR

A 8 C D

~ .. ~· .. ··Q· ·D·· .. ~ ·W
TERMINAL CLUSTER COMMUNICATION PROCESSOR

CONTROLLER CONTROLLER

Fig. 4. Peer pairs of access path elements. (The modem may be absent in local in-plant
connections.)

12 Part 1 • Introduction

thinking of Fig. 4 is that it is the inverse of one end user's view of a
network; instead of showing one end user at the center of his or her
network, we show the transmission facilities at the center and the two end
users at the periphery. The access path across the network is depicted at the
bottom for illustrative cases of zero and two intermediate nodes. Note that
when the access path goes through intermediate nodes, in each intermediate
node it goes no higher in the layered structure than the routing operation.

The various members of a given layer communicate with each other by
a header owned by that layer, as we shall see when we get to Figs. 9-11.

It is instructive to note that we can categorize these layers in terms of
the role they play topologically. The modem, physical dialup, and DLC
functions are two-party structures. They deal with successful conveyance of
packets (frames) between adjacent nodes; the existence of nodes farther
along the access path is invisible. The functions of dialogue management,
protocol conversion and packetizing/depacketizing are also two-party struc­
tures, but here the two parties involved are at the end nodes; the existence
of nodes in between is invisible. Addressing and routing are multinode
functions; all nodes along the access path are involved as the message
threads its way across the network from line to node to line to node, etc.

Layers up through (roughly) addressing-routing-packetizing provide a
portion of the access path that hides from the end user much of the network
detail. Functions outside this layer in Fig. 4 are often referred to as
higher-layer functions. (These are discussed in detail in this book in Part V,
while Parts II through IV discuss the lower layers and the physical interface.)

Several caveats are in order about this seemingly tidy picture. For
example, some generic functions can occur in more than one layer. Con­
sider, for example, multiplexing, the interleaving of several traffic streams as
they flow through the same path. We have already met this function in data
link control. It also occurs (invisibly to the nodes) buried within the
common carrier's transmission system. Moreover, several end users can be
multiplexed on one transmission path, and as one proceeds from a set of
end users at a s~nding node inward in the concentric circles of Fig. 4, there
is a choice of options as to the layer within which this merging might take
place.

Another complication is that there is some interlayer communication of
control information within the same node. This weakens the prior state­
ments to the effect that the two peer-related members of a given layer at the
two ends of the access path ignore the contents of the bit stream handed
down by the next higher layer and are also not involved in the service
provided to them by the next lower layer. For example, in an intermediate
node, the routing function must supply to the DLC function an address it
can use in forwarding a message to the proper choice of several stations on
the same link. It is also appropriate to point out that some layers may be

Chap. 1 • Structure of Computer Networks 13

very simple or even null. For example, the routing function in a small end
node such as a terminal is likely to be nonexistent. The physical (dialup)
level will be completely absent for leased lines.

The term interface has been widely used to describe the interactions
between adjacent layers of Fig. 4, and we shall adopt that convention here.
Only two of these have been standardized. That lying between the modem
and the DLC level is the electrical (or physical) interface as we have said,
and this has been internationally standardized in the many flavors discussed
in Chapter 3. The other interface that has enjoyed some standardization is
that between the outer layer of Fig. 4 and the end user. In some product
lines a reasonably stable application program interface has been defined on
the CPU side; terminal user interfaces have fared more successfully, as
discussed in Chapter 15. In the case of all other interfaces between the
concentric layers of Fig. 4, essentially no uniformity exists; each imple­
mentation handles anyone of these interfaces differently.

Not shown in Figs. 2 and 3 is network control, the set of functions that
do the activation and deactivation of the various portions of the access path
shown, provide some of the control parameters required in their operation,
and manage recovery. Network control can to various degrees be centralized
(in one node) or decentralized (no single node dominant). The many
network control functions that are required in forming the access path can
be classified into several phases. One such rough classification is the
following.

(1) Establishing the electrical transmission path between nodes. This
may involve dialup, which requires that appropriate telephone
numbers be supplied to a participating node.

(2) Assigning data link addresses of stations, designating who is primary
or secondary, and activating the DLC-Ievel function.

(3) Establishing and updating routing tables that tell each node where
to forward a message. If the message must proceed onward to
another node, the table must say which outgoing link to use.

(4) Establishing and updating directories of all end users in the net­
work, and providing name-to-address conversion.

(5) Establishing and later disestablishing the datagram, transaction, or
session connection out to the end users. Parameters must be
supplied at each end to set up the specific dialogue convention
required by the end user. Queues of requests and responses within a
session must be managed.

(6) Providing an interface to the human network manager. This in­
cludes coordinating upgrades, and problem determination func­
tions, such as error reporting, testing, sending traces, making mea­
surements.

14 Part 1 • Introduction

In this section, we have introduced the notion of layers of function as
they occur in peer-related pairs to form an access path through the network.
We have also mentioned the control of these functions. Before discussing
how these ideas are manifested in specific network protocols of the com­
puter manufacturers and the public common carriers, let us return to a
topological view of things and examine in a little more detail what computer
networks look like from that standpoint.

III. Networks of Commercially Provided Access Paths

A. Early Systems.

In order to discuss the rationale of access path implementations that
have been of most interest, it is instructive to sketch the historical evolution
of private networks since the 1960s. Let us look first at what has happened
with large computers, then minicomputers, and then common carrier com­
puter network services.

The earliest systems were single-processor batch systems that later
evolved to support a few local terminals. True teleprocessing (remote access
of a terminal end user to an application program in a processor) came with
systems such as that shown in Fig. 5, of which a well-known example was
the IBM System/360 running the Basic Telecommunications Access Method
(BTAM). Essentially all the processing was concentrated in the central host
processor, as befitted the technology available at that time. Of the various
access path functions we have enumerated in Table I, only elementary
DLC-level functions were performed outboard of the host, specifically in a
transmission control unit, which was often hard-wired and not programma­
ble. The other functions were never cleanly layered, as in Fig. 4, but were so
spread out among the different software systems (as shown in Fig. 6) that a
change in the configuration of a line or its attached terminal required
reprogramming in all these software systems. Terminal cluster controllers
performed the device control functions, but essentially none of the com­
munication access path functions. What proved to be a particularly incon­
venient restriction was the lack of line sharing or terminal sharing. By this is
meant that, since a given line and all the terminals on it were part of the
access path to only one and the same application program, if one user
wanted to access two different applications (e.g., savings accounts and credit
checking), he required two terminals and two lines (dotted circles in Fig. 5).

The next step in commercially provided networks came around 1974,
with systems such as that of Fig. 7, of which a typical example was the
System/370 with software and hardware releases referred to as Systems
Network Architecture (SNA) generations I and 2 [5], [8]. The transmission

Chap. 1 • Structure of Computer Networks

Fig. 5. Typical teleprocessing system of the
1960s such as System/360; dotted and
dashed lines are access paths. T

STORAGE
ACCESS
METHOD

APPLlCA·
OS TION

PROGRAMS
\ :

COMMUNI·
CATION
ACCESS
METHOD

15

DATA
BASES

PROCESSOR

control unit gave way to a programmable communication controller that
handled all data link control and a great deal more. In the communication
controller code, the host communication access method code, and the
cluster controller code, a significant attempt was made to delineate function
into layers, as in Fig. 4. Thanks to the availability of microcomputers and
the lowered cost of main and secondary storage, it began to be possible to
execute limited application code, including that involving significant data­
bases, in the cluster controllers, and (for some non-IBM realizations) in the
communication controller. Most significantly, this design allowed terminals
to share a line to separate applications located in the same host and to do
the same thing with applications in the cluster controller. Moreover, it
allowed access paths between host application programs and cluster con­
troller application programs.

B. Computer Networking

It was soon clear that functions of commercially provided networks did
not go far enough. The ARPAnet [9], developed under U.S. Defense
Department sponsorship, had shown how a number of resource-sharing

16

APPLICA TlON
PROGRAM A

APPLICATION
PROGRAM B

I

Part 1 • Introduction

APPLICATION
PROGRAM C

DB/DC
SUBSYSTEM

TP
ACCESS

METHODS

I/O
SUPERVISOR

Fig. 6. Distribution of terminal-specific code in an early teleprocessing system.

functions could be provided, and it was soon found that such functions were
needed by customers of the computer manufacturers. Specifically, many
commercial network users had multiple processors individually serving tree
networks such as the one in Fig. 7. These networks could not intercom­
municate. A given terminal user frequently wanted an access path to an
application in a different host from the one that normally served him, and it
was either uneconomical or infeasible to run a second copy of that applica­
tion in his own host just to provide this service. Moreover, it became
desirable for one application to talk to a remote other application. These
capabilities were needed for sharing processor resources among locations
and for improving system availability through remote backup. These re­
quirements led to the computer networking solution shown in Fig. 8(C),
realized, for example, in IBM Systems Network Architecture with Advanced
Communication Function (SNAj ACF), also known as SNA-3 [10] and the

Chap. 1 • Structure of Computer Networks

Fig. 7. Typical teleprocessing systems of the
1970s such as System/370 with SNA; dotted
and dashed lines are access paths.

STORAGE
ACCESS
METHOD

APPLlCA·
OS TION

PROGRAMS
\ :

'--...."..-+--t-.....

I
I

!.
!.

I :
<2 I ! CLUSTER
A / T [CONTROLLER

17

DATA
BASES

PROCESSOR

COMMUNICATION
CONTROLLER

later SNA 4.2 [11]. In this arrangement, any terminal can gain an access
path to any of the applications in any of the hosts. Application-to-applica­
tion access paths are also supported. Figure 8(C) shows several of the tree
structures of Fig. 7 [schematized in Fig. 8(B), just as Fig. 8(A) abbreviates
Fig. 5] connected together into a mesh of trees [as in Fig. 2(F)] by physical
paths between communication controllers. Thus, an SNA tree network can
be characterized as a hierarchical network with network control centralized
in the processor [actually in a module called the System Services Control
Point (SSCP) located in the communications access method]. SNA/ ACF is
a hybrid peer-hierarchical structure, that is, hierarchical within each tree or
domain (with its own SSCP), but with peer interconnection between trees at
the level of the host-attached communication controllers. Not shown in the
diagram is the multitail capability of communication controllers, in which
one such controller can support more than one processor. (Also, one
processor can support several controllers.)

In the world of minicomputers, networks have evolved somewhat
differently. Originally, minicomputers were used individually for stand­
alone, real-time, or batch processing or for supporting a few simple termi­
nals. When the need developed for connecting these together, it was found

18

PROCESSOR ,----.---,...---...,

T
T

LARGE·SCALE COMPUTER

MINICOMPUTER

MINICOMPUTER

T

T T

T T

T

(A)

T

(8)

T

(C)

(D)

T T

T T

T T

PROCESSOR

TCU

PROCESSOR

CC

T T

T

Part 1 • Introduction

A PROCESSOR

T T
T

Fig. 8. Schematization of access paths. (A) abbreviates Fig. 5. (B) abbreviates Fig. 7. (C)
Top-down network of trees. (D) Bottom-up approach of DECnet.

Chap. 1 • Structure of Computer Networks 19

desirable to do this in a strictly peer style of interconnection rather than the
peer-plus-hierarchical pattern just discussed. Peer connection had been used
in the ARPAnet, and the flexibility of this mode of operation undoubtedly
had a strong influence on minicomputer networking. In the peer mode of
interconnection, no one computer does network control for the other; there
is no master/slave distinction and there need be no identifiable central
control point. Network control steps are managed in each node more or less
symmetrically. In principle, this allows a wide range of topologies to be
implemented, but requires special procedures for managing routing tables,
flow control, directory functions, and recovery operations, especially when
the network consists of a large number of nodes.

One of the better known of the peer computer network designs is the
set of DECnet offerings of the Digital Equipment Corporation based on
Digital Network Architecture (DNA) [21]. The DECnet design has been
implemented not only for the minicomputers of the DEC product line (e.g.,
PDP-II), but also for the high end (e.g., DECSYSTEM-20). The ultimate
objective is to connect the machines together in a mesh [as in Fig. 2(E)] or in
a hierarchy [as in Fig. 8(D)], or other arrangements. In fact, a natural
evolution for minicomputer users has been for independent users to start
with stand-alone minicomputers of roughly equal power, later to connect
them together, and still later to connect this set to a single large host. This
bottom-up evolutionary pattern may be contrasted with the top-down pattern
of network growth experienced by many users of large machines, as just
described.

The ARPAnet [12], which had a great influence on all succeeding
computer networks, whether commercially or carrier provided, embodied a
mesh-connected backbone network of many small Interface Message
Processors (IMP's), connected together by a packet switching (Section IV B)
IMP-to-IMP protocol. Most computers were connected into the network by
means of the Host-to-IMP protocol, very roughly equivalent to the later
X.25 Interface, which we shall describe in the next section. (A third
protocol, the ARPAnet Host-to-Host protocol is roughly equivalent to a
virtual circuit.) Specially augmented IMPs, called Terminal Interface
Processors (TIPs) provided the additional terminal handling software to
allow terminal connection into the backbone network. Special higher-level
software was provided in the hosts, for example, to support interactive
terminals (TELNET) or to effect bulk file transfers (FTP).

IV. Networks of Access Paths Provided by Carriers

In commercially provided networks, such as the IBM and DEC offer­
ings just described, the physical transmission-level function between nodes

20 Part 1 • Introduction

in the network is, of course, provided by the common carriers. The carriers
have been investigating whether there is any technical reason why other
functions of Fig. 4 at a higher level than the transmission level might not
also be provided by them-for example, protocol conversion. Several refer­
ences, e.g., [13], detail the recent status of common carrier offerings and
data network interfaces.

A. Fast Circuit Switching

The common carriers are, in fact, taking steps not only to improve
service at the transmission level, but to provide higher-level services. At the
transmission level, an urgent need of the data processing community has
been to have dialup service with much faster connect times and much
shorter minimum billing increments than ordinary voice grade dialup service
provides. There has also been the need to improve the space-division
physical interface, such as V.24 (known in the United States as RS-232C),
by providing a combined space- and time-division interface of wider gener­
ality. These needs have been met partially by the X.21 Recommendation of
the international standards body, Comite Consultatif Internationale de
TeIegraphique et Telephonique (CCITT). The 21 (or fewer) wires of V.24,
each performing one and only one function, are replaced in X.2l by up to
eight wires, of which one is used in each direction to send bit patterns for
specific control functions. By this means, the repertoire of control functions
is flexible and expandable. But the real significance of X.2l is not as an
electrical interface, but as a peer protocol below the DLC level, to be used
for dialing and disconnecting at data processing bit stream speeds, thus
serving as the basis of fast circuit-switching common carrier networks, In this
volume, Chapter 7 describes X.21. In particular, it describes the properties
of that portion of the total access path that "X.2l Circuit-Switched Service"
can provide, and then compares these capabilities with those of X.25
packet-switching service.

B. Packet Switching

Packet switching [14] seems to have been inspired by the idea of
sharing communication channel capacity across a number of users by
implementing the same time-slicing philosophy that had earlier proved so
successful in sharing the execution power of a single processor across many
user processes. Every user node that connects to a packet-switched common
carrier makes a contract with the carrier (i.e., follows standard protocols) to
hand him bit streams already segmented (packetized) as we have described
earlier, with each packet supplemented with a header saying, among other
things, to which other user node he wishes the packet delivered. Widespread
interest in packet switching on the part of the carriers has led them to
standardize this contract in the form of the CCITT Recommendation X.25

Chap. 1 • Structure of Computer Networks 21

[15], which is discussed further in the next section and in considerable detail
in Chapters 8 and 9.

The contract includes an agreement on the physical level (not only
from the interface point of view but the dialup point of view), the data link
control, how the remote user is to be addressed, packet size, how the flow of
packets toward and out of the carrier's network is to be regulated, and how
certain recovery actions are to be effected. The contract also includes some
network control functions such as protocols for establishing and disestab­
lishing the access path. Thus, two user nodes (say A and B) each agree to
exchange packets with the carrier network using the X.25 standard, and the
carrier agrees to deliver to B properly addressed packets from A and vice
versa. The combined actions of (1) the X.25 interface of A to the network,
(2) the X.25 interface of B to the network, and (3) the network, provide a
full duplex path, termed a virtual circuit, between the higher-level function
at the two nodes.

Actually, if one adopts the definition of an interface we have been using
(Section II C), then X.25 is not, strictly speaking, an interface (although
often called one), but a set of layered peer interaction protocols, by which a
machine talks to a packet network (as we shall see in Section V D).

There is currently some debate over whether a degenerate form of
virtual circuit, called the datagram mode of operation and referred to earlier
in this chapter, should be supported under X.25. There, the duration of the
contract is essentially only one packet long. The datagram option of X.25 is
described in Chapter 9.

Fast circuit switching and packet switching both offer the user the
economies of paying for the transmission service only to the extent that it is
used. Fast circuit switching has the particular advantage over packet switch­
ing that once the transmission path has been set up, it is totally transparent.
That is, except for uncontrollable random errors, the bit stream out is the
same as the bit stream in for a period of time whose duration is up to the
user. Packet switching, although highly nontransparent (since the user is
required to adhere to what the contract says about packet length, rate of
flow, header structure, etc.) does allow the carrier to offer the user more of
the access path function discussed earlier in this chapter than does fast
circuit switching, and it allows him many freedoms in buffering, delayed
delivery, etc.

V. Network Architectures and Protocols

A. Architecture Versus Implementation

The precise definition of the functions that a computer network and its
components should perform is its architecture. Exactly by what software

22 Part 1 • Introduction

code or hardware these functions are actually performed is the implementa­
tion, which is supposed to adhere to the architecture. Both the data
processing and carrier communities have expressed their network ideas in
layered peer architectures that in one way or another resemble Fig. 4.
Communication architecture is different from processor architecture or
storage subsystem architecture in that it usually involves a pairwise interac­
tion of two parties (although there are a few exceptions, such as routing or
distributed directory protocols [16], in which more than two parties are
involved). For example, as we have said earlier in this paper, a DLC element
in one node interacts with a DLC element in another; the flow control
functions in two nodes interact specifically with each other, and so forth.
The set of agreements for each of these pairwise interactions may be termed
a protocol, and thus we find network architecture specified in terms of
protocols for communication between pairs of peer-level layers. A network
protocol consists of the following three elements: (1) syntax-the structure
of commands and responses in either field-formatted (header bits) or
character-string form; (2) semantics- the set of requests to be issued, actions
to be performed, and responses returned by either party; and (3) timing­
specification of ordering of events.

We shall now briefly discuss SNA, DNA, X.25, and the new Open
System Interconnection from this point of view, saying something about
semantics and syntax, but nothing about timing. All four of these structures
make strict definitions of protocols between the two members of a pair of
functions at the same level (although in different nodes), but usually leave
details of interaction of adjacent layers in the same node (interfaces) to be
decided by the implementer. They are all slightly different in the way they
assign functions to the different layers, in spite of the fact that these
assignments may at first glance appear to be equivalent. The SNA and
DECnet architectures and the OSI Reference Model are different in kind
from X.25. The former two manage the access path from end to end. On the
other hand, as originally conceived, X.25 is not an end-to-end protocol, but
a node-to-packet network protocol; it manages the access path from a user
node to the immediately adjacent node internal to the packet network. End
user to end user functions are built up by a concatenation of the two X.25
paths between each user and the network, plus the internal network paths,
as noted in Section IV B. Recent work has strengthened the end-to-end
message accountability provisions of common carrier networks that use
X.25 into and out of the network, as discussed in Chapter 8.

B. SNA

Figure 9 shows the layers of two SNA nodes. No intermediate nodes
are shown, but in practice one or more of these could exist along the access

Chap. 1 • Structure of Computer Networks 23

END USER EU

PRESENTATION SERVICES REQUEST·RESPONSE PS UNIT (RU)

DATA FLOW CONTROL DFC

.--
TRANSMISSION CONTROL RH TC

t---

r--
PATH CONTROL TH PC

r----;;--, , SERIAL BIT STREAM ,

DATA LINK CONTROL C
'-- OBSERVED ON THE LINK

~ DLC

PHYSICAL • • PHYSICAL
LINK

NODE 1 NODE 2

Fig. 9. SNA architectural layers. Compare with Fig. 4. The request-response unit (RU). is
usually converted user information.

path. Furthermore, the layers at one end could be in more than one physical
box. For example, at the host end, all functions could be in the host (as in
the small System/370s, or functions roughly corresponding to Data Link
Control and Path Control could be in the software of a separate communi­
cation controller and the rest in the host, the more usual situation. Or it
might be possible to move almost all the access path functions out to a
front-end communications processor, leaving the host processor freer to
concentrate its resources on application processing. At the terminal end, all
the functions shown might be in the same box in the case of an "intelligent
terminal," or almost all except the upper layer might be in the cluster
controller that supports a number of "dumb" terminals.

The functions of the SNA protocol layers are as follows [5], [11], [17].
1. Data Link Control (DLC) transfers packets intact across the noisy

transmission facility. For every line attached, there is one instance of DLC

24 Part 1 • Introduction

or DLC Element (DLCE). This protocol layer can be implemented either as
SDLC or the 370 I/O channel.

2. Path Control (PC) routes incoming packets to the appropriate outgo­
ing DLCE or to the correct point within its own node. It allows alternate
path routing between nodes and the use of several sets of parallel DLC
facilities ("transmission groups") between a node pair for better reliability
and throughput. It also does packetizing of outgoing and depacketizing of
incoming messages. There is one instance of PC per node. The pair of PCs
at the two end nodes provide to the higher protocol layers a set of eight
virtual routes upon which sessions may be built, with flow control within
each virtual route. Chapter 11 describes all these functions.

3. Transmission Control (TC) manages pacing (flow control for an
individual session), helps manage session establishment/disestablishment,
and performs a number of other functions on behalf of one of the end users.
There is one instance of TC, namely, a Transmission Control Element
(TCE), per session per end user.

4. Data Flow Control (DFC) has the function of accommodating the
idiosyncrasies of message direction and intermittency demanded by the end
user. Such idiosyncrasies include, for example, whether a user wants to
communicate duplex or half-duplex or whether the separate messages (RUs)
are parts of larger units of work as seen by the end user. For example,
different RUs flowing in one direction might represent different lines of text
that make up a single display screen of text. A screen full of lines of text
would be handled by SNA as a chain. A structured set of related screens,
including messages flowing in both directions, would be handled by SNA as
a bracket, i.e., a set of chains. There is one instance of DFC per end user
session.

5. Presentation Services (PS) define the end user's port into the net­
work in terms of code, format, and other attributes. The pair of PS
realizations in the pair of nodes has the job of accommodating, for example,
the totally different interfaces seen by a terminal end user (and his support­
ing device control hardware or code) and the application that is being
accessed. The PS layer (and other layers as well) are designed for flexibility
as to the fraction of the complexity that lives at each member of the peer
pair. It is thus possible to have a small or even null PS function in a simple
terminal while doing most of it in the processor. As has been mentioned, it
is possible optionally to have not just one, but a number of concurrently
operating "sub-end-users" for each end user (as we have employed the term
end user), so that a form of multiplexing (using so-called FM headers) takes
place at the PS level that is roughly analogous to that at the DLC level. Both
Data Flow Control and Presentation Services are described in Chapter 16.

There are a number of other SNA functions that have to do with
network control [18], but which are too detailed for a discussion here. These

Chap. 1 • Structure of Computer Networks 25

network control functions involve a separate family of access paths that
emanate from the System Services Control Point, which might be in some
other node not shown, and terminate in modules (also not shown) that
control the various functions shown in Fig. 9.

The function of the various headers is shown in Fig. 9. The zig-zag strip
shows the bit stream that would be observed on the line. On an outbound
message, TC adds to the user data RequestjResponse Unit (RU) a
Request/Response Header (RH) on behalf of itself and DFC, PC adds a
Transmission Header (TH), and DLC adds a Link Header (LH) and Link
Trailer (LT). Inbound, each layer strips off its appropriate header (and
trailer) and forwards what is left. (If there is multiplexing within PS, there is
still another header within the RU, namely, the Function Management
(FM) header, not shown.) All of this illustrates the following important
property of peer protocols: it is by means of the header that belongs to a
given layer of the protocol that the interaction of the peer pair constituting
that layer takes place.

C. DNA and DECnet

The architecture on which the DECnet implementations are based is
DNA (Digital Network Architecture). Both DNA and the DECnet imple­
mentation are described in Chapter 10. In the DNA set of protocols,
illustrated in Fig. 10, there are four basic layers, of which the bottom four
are vendor-provided, and the top one is a user implementation, or (in the
case of file access) vendor-supplied. The bottom three layers of DNA
correspond roughly to the bottom three layers of SNA, as shown in Fig. 9,
but with some interesting differences. The Data Link Level is exactly the
DLC level of Figs. 4 and 9, the preferred realization being the DEC line
control, Digital Data Communications Message Protocol (DDCMP). DDCMP

is character-oriented (like BISYNC), but has many of the characteristics of
bit-oriented DLCs. As in HDLC, for example, control and data characters
are distinguished positionally.

The Transport Layer uses the Transport Packet Header (TPH) for its
peer communication. Each packet, with its associated TPH, is handled as a
datagram, i.e., each packet is handled by the Transport Protocol (TP) as a
stand-alone unit, and TP guarantees only a "best effort" to deliver the
packet. It will, however, guarantee that if the packet has not arrived by a
certain time, then it will never arrive. Successive packets may follow
different routes as the TP routing algorithm in each node responds to
changing connectivity conditions in the network, so that packets may arrive
out of order. Packet loss can occur due to temporary line outages, due to
action of TP flow control (which allows for the relief of congestion by

26 Part 1 • Introduction

discarding packets), or because the packet had exceeded the age limit
without being delivered and had to be subjected to euthanasia. The seeming
disadvantages of uncertainty of delivery and ordering buys considerable
simplicity in Transport Protocol, compared, for example, to SNA Path
Control, where tight control is maintained over connectivity, sequentiality,
and guaranteed arrival.

In DNA, sequentiality and guaranteed arrival are restored (if required
by the user) in the Network Service Layer, using sequence numbers,
acknowledgments, and timeouts, much as with Data Link Controls. That is,
if a packet having a given sequence number arrives successfully, this is
acknowledged to the sending Network Services Protocol (NSP), and trans­
mission proceeds to the next packet; but if the sender has to wait longer
than a certain delay before hearing from the receiver, it retransmits the
missing packet. Other NSP functions include end-to-end flow control and
packetizing/ depacketizing.

The basic access path provided by the two NSPs at two end nodes
(using a TP protocol pair per hop, in turn supported by a DDCMP protocol
pair per hop) is called a logical link. The Application Layer of DNA
provides a means for a number of concurrent user processes to communi­
cate with partners across the network, each using a separate logical link.
Usually this layer is user-implemented, but a number of file access and
distributed file management options can be built using the vendor provided
Data Access Protocol (DAP), as illustrated in Fig. 10.

The Network Control functions mentioned in Section II D are almost
completely decentralized in DNA. For example, logical links are activated
and deactivated by commands to the NSP from the Application level
process. In SNA, a session between end users at separate nodes is set up and
taken down by a third party, the System Services Control Point, which
might be in one of the two nodes or might be in a third node.

D. X.2S

The X.25 protocol is illustrated in Fig. 11. The X.21 protocol, men­
tioned earlier in this paper as an interface, is used as a peer protocol for
providing the electrical connection between the user node and the nearest
Data Circuit Terminating Equipment (DCE) node owned by the carrier.
The X.25 specification allows for use of X.21 bis (in which the interface
appears to each user as a V.24-interface) as an interim solution. In Fig. 11,
stations 1 and 2 are the Data Terminal Equipments (DTEs), i.e., the user's
end nodes. Packets PI and P3 are intended for station (DTE) 2 and packet
P2 is intended for some other station. The Link Control Level protocol,
which manages error-free transfers of strings of packets to and from the
packet network, is equivalent to the DLC layer of SNA and the Physical

Chap. 1 • Structure of Computer Networks

USER·
SUPPLIED
PROGRAM

NETWORK
SERVICES
PROTOCOL

TRANSPO RT
PROTOCOL

DIGITAL DATA
COMMUNICATIONS

MESSAGE PROTOCOL

PHYSICAL

NODE 1

LH

NSPH

TSPH

SERIAL
BIT STREAM
OBSERVED
ON THE LINK

DAPH USER DATA

LT

LINK

Fig. 10. DNA architectural layers. Compare with Fig. 4.

DATA
ACCESS

PROTOCOL

NSP

TP

DDCMP

PHYSICAL

NODE 2

27

FILE

Link layer of DNA. The Link Control Level protocol uses the full-duplex
Asynchronous Balanced mode of HDLC. Here each of the two DLC
stations is neither solely a primary station nor a secondary station, but a
"combined" station that is able to take responsibility unilaterally for
transmission and recovery.

The Packet Level protocol produces the Virtual Circuits (VCs) referred
to earlier. There may be one or many (as in Fig. 11) VCs multiplexed onto
o-ne access line. These may be permanent (assigned upon initial subscription
to the service and always in place) or switched (invoked as needed). (A
switched VC is also known as a virtual call.) These virtual circuits have
end-to-end aspects during setup or takedown of the VC and end-to-network
aspects otherwise. For example, flow control usually operates only to
regulate traffic between the user node and the network. After a VC is
initially set up, the addressing is between each node and the network, not
between end users. These are clearly end-to-network functions. But in
initially establishing the VC, the end-user node must know how to address
the other end-user node. This is clearly an end-to-end function.

H
IG

H
E

R
-L

E
V

E
L

FU
N

C
TI

O
N

S

V
IR

TU
A

L
C

IR
C

U
IT

S

==
==

==
==

1:

P
A

C
K

E
T

LE
V

E
L

N
E

W

FR
A

M
E

 L
E

V
E

L

P
H

Y
S

IC
A

L
LE

VE
L

H
IG

H
-L

E
V

E
L

D
A

TA
 L

IN
K

C

O
N

TR
O

L
(H

D
LC

)

X
21

B
IS

t X
21

S
TA

TI
O

N
 1

 D
IG

IT
A

L
T

E
R

M
IN

A
L

E
Q

U
IP

M
E

N
T

(D
TE

)

LH

T
 I I I I I \

A
C

C
E

S
S

 L
IN

K
:

D
A

TA

C
O

M
M

U
N

.
T

E
R

M
I­

N
A

TI
N

G

E
Q

U
IP

M
E

N
T

(D
C

E
)

D
C

E

P
A

C
K

E
T

C
AR

R
I E

R

Fi
g.

 I
I.

 L
ay

er
s

an
d

vi
rt

ua
l

ci
rc

ui
ts

 i
n

 X
.2

5_

TO
 H

IG
H

E
R

-L
E

V
E

L
FU

N
C

TI
O

N
S

O

F
A

N
O

TH
E

R
 S

TA
TI

O
N

".
-

-
-
/

f /
I

/
./

-
-
-
-
-
-
-
-

LH

"
"
, , \ \ \ I I I

LT

S
TA

TI
O

N
 2

D

TE

!It ! • I [

Chap. 1 • Structure of Computer Networks 29

As Fig. 11 shows, there are two X.25 protocols between each of the two
customer-owned end nodes and the network. The packet carrier appears in
this diagram in roughly the position where a single intermediate node would
appear in Figs. 9 and 10. If an SNA or DECnet system operates across an
X.25 packet carrier facility, there are some divided responsibilities. For
example, the SNA and DECnet implementations have specific rules about
packet size, addressing/routing, flow control, internal multiplexing of flows,
and recovery from error and lost- or duplicated-message conditions. When
X.25 services are used, these responsibilities may overlap with those that the
carrier is willing to undertake. There is a growing literature (e.g., [19])
discussing how these overlaps may be resolved.

E. Open System Interconnection

Before ending this brief review of network protocols, architectures, and
implementations, it should be mentioned that there is considerable interest
and activity in the standards bodies that have defined HDLC, X.2l, X.25,
etc., in standardizing even higher-level functions than those represented by
the Packet Level of X.25. The object is to allow any-to-any (i.e., open)
interconnection capability for communication products. This is being at­
tempted by adding four more layers above the X.25 Packet Level, making
seven in all. The next chapter summarizes the available details. The lowest
two layers correspond to the usual peer physical level and DLC, just as with
SNA and DNA, Figs. 9 and 10. These are discussed in Parts I and II of this
volume. The third Network level is equivalent to the Packet level of X.25.
The fourth Transport layer exists only at the end nodes and provides the
necessary high level of end-node to end-node integrity control to support
sessions that require it. Part IV treats questions that appear in OSI Layers 3
and 4. The fifth Session layer corresponds roughly to TC and DFC of SNA;
that is, it acts to bind the end users together in a session and then
administers the rules of the dialogue. The sixth Presentation layer provides
protocol conversion as in Figs. 4 and 9, and the end user's Application layer
completes the structure. Part V corresponds to Layers 5 and 6. In OSI,
network control, as defined earlier in Section II D, runs as an Application
level function.

Since it is being built up carefully using a wide variety of inputs from
many sources of earlier experience, the Reference Model should provide a
fairly clear and comprehensive framework for discussion, analysis, and
comparison.

30 Part 1 • Introduction

VI. Concluding Remarks

Even though networks have been growing more complicated, they
should be getting easier to dissect and understand as systematic formaliza­
tion and layering become more pervasive in the implementations. One
reason for persistence of complexity is that, until now, the architects have
carried a heavier burden than is commonly realized of maintaining
compatibility with individual software and hardware product offerings that
antedated the evolution of systematic, clearly layered sets of network
protocols. These earlier offerings are gradually disappearing or in later
releases are adhering more and more to the strict terms of the architecture.
The modularizatiop- means that new ideas ought to be more easily incorpo­
rated without producing system-wide disruptions. Continuing research will
provide such new ideas.

References

[l] A. S. Tanenbaum, Computer Networks, Englewood Cliff, N. J.: Prentice-Hall, 1981.
[2] P. E. Green Jr., and R. W. Lucky, Eds., Computer Communications, New York: IEEE

Press, I 975.
[3] L. Kleinrock, Queuing Systems, Vol. II, New York: Wiley, 1976.
[4] M. Schwartz, Computer Communication Network Design and Analysis, Englewood Cliffs,

NJ: Prentice-Hall, 1977.
[5] R. J. Cypser, Communications Architecture for Distributed Systems. Reading, MA: Ad­

dison-Wesley, 1978.
[6] D. W. Davies, D. L. A. Barber, W. L. Price, and C. M. Solomonides, Computer Networks

and their Protocols, New York: Wiley, 1979.
[7] J. R. Davey, "Modems," Proc. IEEE, vol. 60, pp. 1284-1292, Nov. 1972. Reprinted in

[2].
[8] J. H. McFadyen, "Systems network architecture: An overview," IBM Syst. J., vol. 15, no.

I, pp. 4-23. See also three companion papers in the same issue.
[9] L. G. Roberts and B. D. Wessler, "Computer network development to achieve resource

sharing," in 1970 AFIPS Con/. Proc (SJCC), vol. 36, pp. 543-549.
[l0] Introduction to Advanced Communication Function, Order No. GC30-3033, IBM Data

Processing Div., White Plains, NY, 10504.
[II] 1. P. Gray and T. B. McNeil, "SNA multiple-system networking," IBM Syst. J., vol. 18,

no. 2, pp. 263-297, 1979.
[12] See, for example, the papers on ARPAnet reprinted in [2].
[13] J. Halsey, L. Hardy, and L. Powning, "Public data networks: Their evolution, interface,

and status," IBM Syst. J., vol. 18, no. 2, pp. 223-243, 1979.
[14] R. E. Kahn, Ed., Special Issue on Packet Communication Networks, Proc. IEEE, vol. 66,

Nov. 1978.
[15] A. Rybczynski, B. Wessler, R. Despres, and 1. Wedlake, "A new communication protocol

for accessing data networks-The international packet mode interface," in AFIPS Con/.
Proc. (NCC), vol. 45, June 1971, pp. 477-482.

Chap. 1 • Structure of Computer Networks 31

[16) J. Bremer and O. Drobnik, "Specification and validation of a protocol for decentralized
directory management," IBM Research Ctr., Yorktown Hts., NY, Tech. Rep. RC-7800,
Sept. 25, 1979.

[17) SNA Format and Protocol Reference Manual, Order No. SC30-3112.
[18) J. P. Gray, "Network services in systems network architecture," IEEE Trans. Commun.,

vol. COM-25, pp. 104-116, Jan. 1977.
[19) F. P. Corr and D. H. Neal, "SNA and emerging international standards," IBM Syst. J.,

vol. 18, no. 2, pp. 244-262, 1979.

2

A Standard Layer Model

Hubert Zimmermann

I. Introduction

In 1977, the International Organization for Standardization (ISO)
recognized the special and urgent need for standards for heterogeneous
informatic networks and decided to create a new subcommittee (SC16) for
"Open Systems Interconnection."

The initial development of computer networks had been fostered by
experimental networks such as ARPAnet [1] and CYCLADES [2], immediately
followed by commercial networks [3], [4]. While experimental networks were
conceived as heterogeneous from the very beginning, each manufacturer
developed its own set of conventions for interconnecting its own equipment,
referring to these as its "network architecture."

The universal need for interconnecting systems from different manu­
facturers rapidly became apparent [5], leading ISO to decide upon the
creation of SC16 with the objective being to come up with standards
required for "Open Systems Interconnection." The term "open" was chosen
to emphasize the fact that by conforming to those international standards, a
system will be capable of interacting with all other systems obeying the
same standards throughout the world.

The first meeting of SC16 was held in March 1978, and initial discus­
sions revealed [6] that a consensus could be reached rapidly on a layered
architecture which would satisfy most requirements of Open Systems Inter­
connection with the potential of being expanded later to meet new require­
ments. SC16 decided to give the highest priority to the development of a
standard Model of Architecture which would constitute the framework for
the development of standard protocols. After less than 18 months of
discussion, this task was completed, and the ISO Model of Architecture

33

34 Part I • Introduction

called the Reference Model of Open Systems Interconnection [7] was
transmitted by SC16 to its parent Technical Committee on "Data Process­
ing" (TC97) along with recommendations to start officially a number of
projects for developing on this basis an initial set of standard protocols for
Open Systems Interconnection. These recommendations were adopted by
TC97 at the end of 1979 as the basis for the ensuing development of
standard protocols for Open Systems Interconnection within ISO. The OSI
Reference Model was also recognized by CCITT Rapporteur's Group on
Public Data Network Services.

The present chapter describes the OSI Architecture Model as it was
transmitted to TC97. Sections II-V introduce concepts of a layered archi­
tecture, along with the associated vocabulary defined by SC16. Specific use
of those concepts in the OSI seven-layer architecture are then presented in
Section VI. Finally, some indications on the likely development of OSI
standard protocols are given in Section VII.

Note on an "Interconnection Architecture"

The basic objective of SC16 is to standardize the rules of interaction
between interconnected systems. Thus, only the external behavior of Open
Systems must conform to OSI Architecture, while the internal organization
and functioning of each individual Open System are beyond the scope of
OSI standards since these are not visible from other systems with which it is
interconnected [8].

It should be noted that the same principle of restricted visibility is used
in any manufacturer's network architecture in order to permit interconnec­
tion within the same network of systems with different structure.

II. General Principles of Layering

Layering is a structuring technique which permits the network of Open
Systems to be viewed as logically composed of a succession of layers, each
wrapping the lower layers and isolating them from the higher layers, as
exemplified in Fig. 1. Each layer performs a specific set of functions which
add to or enhance those performed by the lower layers. For instance, the
transport layer (see Section VI) performs end-to-end transport control
functions on top of packet switching functions performed by the lower
layers.

An alternative but equivalent illustration of layering, used in particular
by SC16, is given in Fig. 2 where successive layers are represented in a
vertical sequence, with the physical media for Open Systems Interconnec­
tion at the bottom.

Chap. 2 • Standard Layer Model 35

Fig. I. Network layering.

Each individual system itself is viewed as being logically composed of a
succession of subsystems, each corresponding to the intersection of the
system with a layer. In other words, a layer is viewed as being logically
composed of subsystems of the same rank of all interconnected systems. For
instance, each system will logically comprise a physical circuit control
subsystem; a data link control subsystem; a packet-switching subsystem; a

r----..... ------------------------------- .----....,

~----I-------------------------------~----I

1--..,.---1------------------------------- t----i

\----1------------------------------- t----i

I Physical media for OSI I
Fig. 2. An example of OS! representation of layering.

36 Part I • Introduction

transport control subsystem; i.e., a transport station, etc. Conversely, all
transport stations form collectively the Transport Layer.

Each subsystem is, in tum, viewed as being made up of one or several
entities. In other words, each layer is made of entities, each of which belongs
to one system. Entities in the same layer are termed peer entities. Entities in
a layer represent the distributed processing capability of the layer in
performance of its functions. On the other hand, entities of all layers within
one single Open System represent the protocol processing capability of this
system; i.e., its processing capability seen by the other Open Systems.

For simplicity of notation, any layer is referred to as the (N) layer,
while its next lower and next higher layers are referred to as the (N - 1)
layer and the (N + 1) layer, respectively. The same notation is used to
designate all concepts relating to layers; e.g., entities in the (N) layer are
termed (N) entities, as illustrated in Figs. 3 and 4.

The basic idea of layering is that each layer adds value to services
provided by the set of lower layers in such a way that the highest layer is
offered the set of services needed to run distributed applications. Layering
thus divides the total problem into smaller pieces. Another major objective
of layering is to ensure independence between layers. This is achieved by
defining services provided by a layer to the next higher layer, independent
of how these services are performed. This permits changes to be made in the
way a layer or a set of layers operate, provided they still offer the same
service to the next higher layer. (A more comprehensive list of criteria for
layering is given in Section VI.) This technique is similar to the one used in
structured programming where only the functions performed by a module
(and not its internal functioning) are known by its users.

System A SystemB SystemD

Highest laye r)

-
) -
) -
)

(N+1)·layer

(N)·layer

(N-1)-Iayer

(N+ 1)-services

(N) -services

(N-1)-services

Lowestlaye r I
I Physical media for OSI I

Fig. 3. Systems, layers, and services.

Chap. 2 • Standard Layer Model 37

(N+ 1 }·Iayer - (N+ 1 }-entities

(N}-services - - (N}-SAPs

(N}-Iayer - (N}-entities

(N-1 }-services- - (N-1}-SAPs

(N-1 }-Iayer

Fig. 4. Entities, service access points (SAPs), and protocols.

Except for the highest layer, which operates for its own purpose, (N)
entities distributed in the (N) layer among the interconnected Open Sys­
tems work collectively to provide the (N) service to (N + 1) entities as
illustrated in Fig. 4. In other words, the (N) entities add value to the
(N - 1) service they get from the (N - 1) layer and offer this value-added
service, i.e., the (N) service, to the (N + 1) entities. For instance, the
Network Layer adds a relaying capability on top of point to point com­
munication service provided by the Data link Layer. Similarly, the Trans­
port Layer adds end-to-end control on top of the control cascade of the
Network Layer.

Communication between the (N) entities makes exclusive use of -the
(N - 1) services. In particular, direct communication between the (N + 1)
entities in the same system, e.g., for sharing local resources, is not visible
from outside of the system and thus is not covered by the OSI Architecture.
Entities in the lowest layer communicate through the Physical Media for
OSI, which could be considered as forming the (0) layer of the OSI
Architecture. Cooperation between the (N) entities is ruled by the (N)
protocols, which precisely define how the (N) entities work together using
the (N - 1) services to perform the (N) functions which add value to the
(N - 1) service in order to offer the (N) sef\Tice to the (N + 1) entities. For
instance, the transport protocol defines how transport stations cooperate to
provide the transport service to session entities, making use of the network
service.

The (N) services are offered to the (N + 1) entities at the (N) service
access points, or (N) SAPs for short, which represent the logical interfaces
between the (N) entities and the (N + 1) entities. An (N) SAP can be
served by only one (N) entity and used by only one (N + 1) entity, but one
(N) entity can serve several (N) SAPs and one (N + 1) entity can use

38

(N+ 1)-Iayer

(N)-services

(N)-Iayer

Part I • Introduction

Q Q ~(N+1)_entity

",-- (N)-SAP
----~~------~~~----~~~~ .-.
••••••• ".' (N)-CEP

.............. ~ (N)-connection

Fig. 5. Connections and connection end points (CEPs).

several (N) SAPs. (N) SAPs represent the means by which (N) entities and
(N + 1) entities carry out their server/user relationship. In other words,
SAPs are used to model relations between processing elements (entities) in
each open system.

A common service offered by all layers consists of providing associa­
tions between peer SAPs (and thus between peer entities using these SAPs)
which can be used in particular to transfer data. More precisely (see Fig. 5),
the (N) layer offers (N) connections between (N) SAPs as part of the (N)
services. The most usual type of connection is the point-to-point connection,
but there are also multi-end-point connections which correspond to multiple
associations between entities (e.g., broadcast communication). The end of
an (N) connection at an (N) SAP is called an (N) connection end point or
(N) CEP for short. Several connections may coexist between the same pair
(or n-tuple) of SAPs. In the following, for the sake of simplicity, we will
consider only point-to-point connections.

Connectionless communications (e.g., datagrams in the network service)
which are important for transaction-oriented applications will be included
later in the OSI Reference Model.

III. Identifiers

Objects within a layer or at the boundary between adjacent layers need
to be uniquely identifiable, i.e., in order to establish a connection between
two SAPs, one must be able to identify them uniquely. The OSI Architec­
ture defines identifiers for entities, SAPs, and connections as well as
relations between these identifiers, as briefly outlined below.

Each (N) entity is identified with a global title* which is unique and
identifies the same (N) entity from anywhere in the network of Open

'The term "title" has been preferred to the term "name," which is viewed as bearing a more
general meaning. A title is equivalent to an entity name.

Chap. 2 • Standard Layer Model 39

4-------- (N+ 1)-title
(N+ 1)-Iayer

#,// (N)-address

(N)-services ---; --t------i------1f----+ +--+---::+---

""" (N)-CEP-identifier

(N)-Iayer -c------ (N)-title

Fig. 6. Titles, addresses, and CEP identifiers.

Systems. Within more limited domains, an (N) entity can be identified with
a local title which uniquely identifies the (N) entity only in the domain. For
instance, within the domain corresponding to the (N) layer, (N) entities are
identified with (N) global titles which are unique within the (N) layer.

Each (N) SAP is identified with an (N) address which uniquely
identifies the (N) SAP at the boundary between the (N) layer and the
(N + 1) layer.

The concepts of titles and addresses are illustrated in Fig. 6.
Bindings between (N) entities and the (N - 1) SAPs they use (i.e.,

SAPs through which they can access each other and communicate) are
translated into the concept of (N) directory which indicates correspondence
between global titles of (N) entities and (N - 1) addresses through which
they can be reached, as illustrated in Fig. 7. For instance, an information
retrieval service on a network can be known by the global title of the
corresponding application entity. A directory will permit one to deduce the
corresponding address (presentation address), i.e., the address towards
which the connection to the information retrieval'service has to be estab­
lished.

Correspondence between (N) addresses served by an (N) entity and
the (N - 1) addresses used for this purpose is performed by an (N)
mapping function. In addition to the simplest case of one-to-one mapping,
mapping may, in particular, be hierarchical, with the (N) address being
made of an (N - 1) address and an (N) suffix. Mapping may also be
performed" by table." These three types of mapping are illustrated in Fig.
8. For instance, a one-to-one mapping is used by the Presentation Layer

40 Part I • Introduction

(N)-title (N-1)-address

A 352

B 237

B 015

C 015

Fig. 7. Example of an (N) directory.

which arranges for presentation of data but does not perform any specific
addressing function on top of the session service, and thus simply maps,
one-to-one, presentation addresses onto session addresses. Hierarchical
mapping offers the advantage of simplicity and will normally be used by the
Transport Layer to offer sub addressing capability within a host (usually
identified with one network address). The price paid for simplicity of
hierarchical mapping is that these sub addresses are tied forever with the
address and thus cannot be moved. Mapping by table offers more flexibility
since a change in configuration will be "easily" reflected in a change of

A

o

(N)·layer

o
A

One·to·one

Ba Bb Bc

QQO
I ,
I ,
I ,
I ,
I ,
I ,
I ,
I ,
I
I
I ,
I ,
I ,
I ,
I ,
I ,
I ,
I ,
I ,

\t;
o

B

Hierarchical

K L M

OOQ
I \ I I

I \ I I
/ \ I I ,.

K

C

I ,
I
I ,
I

t o
c

~ t
K L

D D
I ,
I ,
I ,
I ,
I ,
I I
I I
I I

'H o
D

By table

t
M j
E J
I
I
I
I
I
I
I
I

t
o

E

Fig. 8. Mapping between addresses.

Mapping table

Chap. 2 • Standard Layer Model 41

mapping tables. Mapping by table might be used for instance in the
Network Layer, where flexibility of reconfiguration is important.

Finally, each (N) CEP is uniquely identified within its (N) SAP by an
(N) CEP identifier which is used by the (N) entity and the (N + 1) entity
on both sides of the (N) SAP to identify the (N) connection as illustrated
in Fig. 6. This is necessary since several (N) connections may end at the
same (N) SAP.

IV. Operation of Connections

A. Establishment and Release

When an (N + 1) entity requests the establishment of an (N) connec­
tion from one of the (N) SAPs it uses to another (N) SAP, it must provide
at the local (N) SAP the (N) address of the distant (N) SAP. When the
(N) connection is established, both the (N + 1) entity and the (N) entity
will use the (N) CEP identifier to designate locally the (N) connection. For
instance, a session entity A which wishes to get a connection with a session
entity B needs to know the transport address TA(B) (of the transport SAP)
at which B can be reached. In order to have this connection established,
session entity A requests the transport layer to establish a transport connec­
tion between the local SAP with address TA(A) and the distant SAP with
address TA(B). When the connection has been established, each session
entity A and B will simply refer to this connection at their respective end by
the corresponding transport CEP.

(N) connections may be established and released dynamically on top
of (N - 1) connections. Establishment of an (N) connection implies the
availability of an (N - 1) connection between the two entities. If not
available, the (N - 1) connection must be established. This requires the
availability of an (N - 2) connection. The same consideration applies
downwards until an available connection is encountered.

In some cases, the (N) connection may be established simultaneously
with its supporting (N - 1) connection provided the (N - 1) connection
establishment service permits (N) entities to exchange information neces­
sary to establish the (N) connection. For instance, establishment of a
transport connection requires the availability of a network connection (e.g.,
an X.25 virtual circuit). If it is not available, the network connection must
be established prior to establishment of the transport connection or simulta­
neously, provided the establishment of the network connection permits one
to transmit the transport control information necessary for establishing the
transport connection (e.g., user data in call request and call indication
packets in X.25).

42 Part I • Introduction

B. Multiplexing and Splitting

Three particular types of construction of (N) connections on top of
(N - 1) connections may be distinguished:

(1) One-to-one correspondence, where each (N) connection is built on
one (N - 1) connection.

(2) Multiplexing (referred to as "upward multiplexing" in [7]), where
several (N) connections are multiplexed on one single (N - 1) connection.

(3) Splitting (referred to as "downward multiplexing" in [7]), where
one single (N) connection is built on top of several (N - 1) connections,
the traffic on the (N) connection being divided between the various
(N - 1) connections.

These three'types of correspondence between connections in adjacent
layers are illustrated in Fig. 9. In the Transport Layer, for instance, a
one-to-one correspondence will be used when the Open System is a single
terminal connected to an X.2S Public Data Network, thus implementing
only one transport connection on a network connection (virtual circuit). In
the case of a cluster of terminals, multiplexing of several transport connec­
tions on a single network connection may be used to reduce the cost of
usage of the Public Data Network (this depends of course on its tariff
structure). Finally, splitting one transport connection onto two (or more)
network connections may permit one to have a higher throughput or a
better reliability than that given by a single network connection.

c. Data Transfer

Information is transferred in various types of data units between peer
entities and between entities attached to a specific service access point. The

(N)-Iayer

_----- /(N-1)-CEP

----~~------~ r------~~_e~~~~

One-to-one Multiplexing Splitting

Fig, 9, Correspondence between connections,

Chap. 2 • Standard Layer Model 43

Control Data Combined

(N)-(N) (N)-Protocol (N)-User Data (N)-Protocol Data

Peer Entities Control Information Units

(N)-(N-1) (N-1)-Interface (N-1)-Interface (N-1)-Interface
Adjacent layers Control Data Data Unit

Information

Fig. 10. Interrelationship between data units.

data units are defined below, with an example of what these data units
would be for the Data Link Layer using HDLC as its Data Link protocol
(see Section VII B). The interrelationship among these data units is shown
in Fig. 10.

(N) protocol control information is information exchanged between two
(N) entities, using an (N - 1) connection, to coordinate their joint opera­
tion; e.g., HDLC header and trailer.

(N) user data is the data transferred between two (N) entities on
behalf of the (N + 1) entities for whom the (N) entities are providing
services, e.g., data passed by network entities and transferred transparently
in the information field of HDLC information frames by data link entities.

An (N) protocol data unit is a unit of data which contains (N) Protocol
Control Information and possibly (N) User Data, e.g., HDLC frames.

(N) interface control information is information exchanged between an
(N - 1) entity and an (N) entity to coordinate their joint operation, e.g.,
system-specific control information passed between network entities and
data link entities running HDLC, such as buffer address and length,
maximum waiting time, etc.

(N) interface data is information transferred from an (N + 1) entity to
an (N) entity for transmission to a correspondent (N + 1) entity over an
(N) connection, or conversely, information transferred from an (N) entity

44 Part I • Introduction

to an (N + 1) entity which has been received over an (N) connection from
a correspondent (N + 1) entity, e.g., text to be transmitted transparently by
data link entities.

(N) interface data unit is the unit of information transferred across the
service access point between an (N + 1) entity and an (N) entity in a single
interaction. The size of (N) interface data units is not necessarily the same
at each end of the connection, e.g., one block (or a piece of block or a chain
of blocks) of data to be transmitted by the data link entity serving a
network entity.

(N - 1) service data unit is the amount of (N - 1) interface data whose
identity is preserved from one end of an (N - 1) connection to the other.
Data may be held within a connection until a complete service data unit is
put into the connection, e.g., a block of data transferred as such from one
network entity to its correspondent network entity by their servicing data
link entities (as the information field of an HOLe frame).

Expedited (N - 1) service data unit is a small (N - 1) service data unit
whose transfer is expedited. The (N - 1) layer ensures that an expedited
data unit will not be delivered after any subsequent service data unit or
expedited data unit sent on that connection. An expedited (N - 1) service
data unit may also be referred to as an (N - 1) expedited data unit. There

(Nj-Iayer

,
• • • • • ,

j ~ {~-,---
o (N-1j-PCI

I (N-1 j -SDUI
(N-1j-layer I

I I
(N-1j-PDU

PCI = Protocol control information

PDU = Protocol data unit

SDU = Service data unit

Fig_ II. Logical relationship between data units in adjacent layers.

Chap. 2 • Standard Layer Model 45

is no equivalent of data link expedited data units offered by HDLC, but
proposals have been made for such an enhancement.

Note: An (N) protocol data unit may be mapped one-to-one onto an
(N - 1) service data unit (see Fig. 11).

V. Management Aspects

Even though a number of resources are managed locally, i.e., without
involving cooperation between distinct systems, some management func­
tions require communication between systems.

Highest layer

(N+1)·layer

(N)·layer

(N-1)·layer

Lowest layer

Application management application entities

User application entities System management application entities

0000: 100001
t t tttt+tt

I I I I I

,------'-----'--,,"'7":'"" : : I ::
V/~ I I: I I

'--___ ...-___ ... :0%1'"""'''-''~----------1 i: 1:
t ;! :

:: :
I I I

~-m--m-mJ i !
~t.-------'~ I I I I

I I
I I
I I

~------mm---j i
'-----t.----·~~ !
~.-------'~~~-----------------

t
~~~~--------------------

t 
'----------'~'-LL..<:I ..... -----------------------

- interface between adjacent layers 
----~ special interface for management 

~ layer management functions 
~ 

Fig. 12. A representation of management functions. 

I 
I 
I 



46 Part I • Introduction 

Examples of such management functions are: 

configuration information, 
cold start/termination, 
monitoring, 
diagnostics, 
reconfiguration, etc. 

The OSI Architecture considers management functions as applications of a 
specific type. Management entities located in the highest layer of the 
architecture may use the complete set of services offered to all applications 
in order to perform management functions. This organization of manage­
ment functions within the OSI Architecture is illustrated in Fig. 12. For 
instance, updating routing tables (used by entities in the network layer to 
forward packets towards their destination) is a management function. 
Management entities in charge of this function must communicate to 
determine the proper contents of routing tables (e.g., destination unreach­
able through a given node). In order to communicate, these route manage­
ment entities, located in the Application Layer (i.e., the highest layer) use 
the set of services provided by the lower layers (e.g., data formatted by the 
Presentation Layer, reliable transport of data ensured by the Transport 
layer, etc.). The updating of routing tables is itself a local function by which 
each route management entity in the Application Layer interacts with its 
local network entity (through the dotted arrow in Fig. 12). 

VI. The Seven Layers of the OSI Architecture 

A. Justification of the Seven Layers 

ISO agreed on a number of principles to be considered for defining the 
specific set of layers in the OSI architecture, and applied these principles to 
come up with the seven layers of the OSI Architecture. 

Principles to be considered are as follows: 

1. Do not create so many layers as to make difficult the system 
engineering task of describing and integrating these layers. 

2. Create a boundary at a point where the services description can be 
small and the number of interactions across the boundary is 
minimized. 

3. Create separate layers to handle functions which are manifestly 
different in the process performed or the technology involved. 

4. Collect similar functions into the same layer. 



Chap. 2 • Standard Layer Model 47 

5. Select boundaries at a point which past experience has demon­
strated to be successful. 

6. Create a layer of easily localized functions so that the layer could 
be totally redesigned and its protocols changed in a major way to 
take advantage of new advances in architectural, hardware, or 
software technology without changing the services and interfaces 
with the adjacent layers. 

7. Create a boundary where it may be useful at some point in time to 
have the corresponding interface standardized. 

8. Create a layer when there is a need for a different level of 
abstraction in the handling of data, e.g., morphology, syntax, 
semantics. 

9. Create for each layer interfaces with its upper and lower layer only. 
10. Create further subgrouping and organization of functions to form 

sublayers within a layer in cases where distinct communication 
services need it. 

11. Create, where needed, two or more sublayers with a common, and 
therefore minimum, functionality to allow interface operation with 
adjacent layers. 

12. Allow bypassing of sublayers. 

B. Specific Layers 

The following is a brief explanation of how the layers were chosen: 
(1) It is essential that the architecture permits usage of a realistiQ 

variety of physical media for interconnection with different control proce­
dures (e.g., V.24, V.35, X.2l, etc.). Application of principles 3, 5, and 8 leads 
to identification of a Physical Layer as the lowest layer in the architecture. 

(2) Some physical communications media (e.g., telephone lines) require 
specific techniques to be used in order to transmit data between systems 
despite a relatively high error rate (i.e., an error rate not acceptable for the 
great majority of applications). These specific techniques are used in data 
link control procedures which have been studied and standardized for a 
number of years. It must also be recognized that new physical communica­
tions media (e.g., fiber optics) will require different data-link control proce­
dures. Application of principles 3, 5, and 8 leads to identification of a Data 
Link Layer on top of the physical layer in the architecture. 

(3) In the Open Systems Interconnection, some systems will act as final 
destinations of data. Some systems may act only as intermediate nodes 
(forwarding data to other systems). Application of principles 3, 5, and 7 
leads to identification of a Network Layer on top of the Data Link Layer. 
Network-oriented protocols, such as routing, for example, will be grouped 



48 Part I • Introduction 

in this layer. Thus, the Network Layer will provide a connection path 
(network connection) between a pair of transport entities (see Fig. l3). 

(4) Control of data transportation from source end system to destina­
tion end system (which need not be performed in intermediate nodes) is the 
last function to be performed in order to provide the totality of transport 
service. Thus, the upper layer in the transport-service part of the architec­
ture is the Transport Layer, sitting on top of the Network Layer. This 
Transport Layer relieves higher-layer entities from any concern with the 
transportation of data between them. 

(5) In order to bind/unbind distributed activities into a logical rela­
tionship that controls the data exchange with respect to synchronization and 
structure, the need for a dedicated layer has been identified. So the 
application of pnnciples 3 and 4 leads to the establishment of the Session 
Layer, which is on top of the Transport Layer. 

(6) The remaining set of general interest functions are those related to 
representation and manipulation of structured data for the benefit of 
application programs. Application of principles 3 and 4 leads to identifica­
tion of a Presentation Layer on top of the Session Layer. 

(7) Finally, there are applications consisting of application processes 
which perform information processing. A portion of these application 
processes and the protocols by which they communicate comprise the 
Application Layer as the highest layer of the architecture. 

The resulting architecture with seven layers, illustrated in Fig. l3, obeys 
principles 1 and 2. A more detailed definition of each of the seven layers 
identified above is given in the following sections, starting from the top with 

Layer 

Application .... - ------------- - -- - - - -- - -- -------- ---.. 

Presentation ~--------------------------------... 
Session ~-------------------------------- ... 

Transport ~--------------------------------~ 

Network ~---- ... 
Data·link .... --- .... 
Physical ~---- ... 

I Physical media for interconnection I 
Fig. 13. The seven-layers OS! architecture. 



Chap. 2 • Standard Layer Model 49 

the Application Layer described in Section VI C 1) down to the Physical 
Layer (described in Section VI C 7). 

C. Overview of the Seven Layers of the OSI Architecture 

(1) The Application Layer. This is the highest layer in the OSI architec­
ture. Protocols of this layer directly serve the end user by providing the 
distributed information service appropriate to an application, to its manage­
ment, and to system management. Management of Open Systems Intercon­
nection comprises those functions required to initiate, maintain, terminate, 
and record data concerning the establishment of connections for data 
transfer among application processes. The other layers exist only to support 
this layer. 

An application is composed of cooperating application processes which 
intercommunicate according to application layer protocols. Application 
processes are the ultimate sources and sinks for data exchanged. 

A portion of an application process is manifested in the application 
layer as the execution of an application protocol (i.e., application entity). 
The rest of the application process is considered beyond the scope of the 
present layered model. Applications or application processes may be of any 
kind (manual, computerized, industrial, or physical). 

(2) The Presentation Layer. The purpose of the Presentation Layer is 
to provide the set of services which may be selected by the Application 
Layer to enable it to interpret the meaning of the data exchanged. These 
services are for the management of the entry, exchange, display, and control 
of structured data. 

The presentation service is location independent and is considered to 
be on top of the Session Layer which provides the service of linking a pair 
of presentation entities. It is through the use of services provided by the 
Presentation Layer that applications in an Open Systems Interconnection 
environment can communicate without unacceptable costs in interface 
variability, transformations, or application modification. 

(3) The Session Layer. The purpose of the Session Layer is to assist in 
the support of the interactions between cooperating presentation entities. To 
do this, the Session Layer provides services which are classified into the 
following two categories: 

a. Binding two presentation entities into a relationship and unbinding 
them. This is called session administration service. 

b. Control of data exchange, delimiting, and synchronizing data opera­
tions between two presentation entities. This is called session dialog 
service. 



50 Part I • Introduction 

APPLICATION LAYER (7) 

- Application oriented functions 
- Management functions 

PRESENTATION LAYER (6) 

Data formats, codes and representation 

SESSION LAYER (5) 

Dialogue control and synchronization, initialization, 
support of recovery of distributed processing 

TRANSPORT LAYER (4) 

End to end control of transportation of data, 
optimization of usage of network resources 

NETWORK LAYER (3) 

Forwarding packets between adjacent nodes towards 
their final destination 

DATA LINK LAYER (2) 

Reliable transfer of blocks of data between adjacent 
systems (Error detection and recovery) 

PHYSICAL LAYER ( 1 ) 

Control of data Circuits, transfer of bits 

PHYSICAL MEDIA FOR OSI 

Transmission of electrical Signals 

Fig. 14. Distribution of functions among the seven layers of the OSI architecture. 

To implement the transfer of data between presentation entities, the 
Session Layer employs the services provided by the Transport Layer. 

(4) The Transport Layer. The Transport Layer exists to provide a 
universal transport service in association with the underlying services pro­
vided by lower layers. 



Chap. 2 • Standard Layer Model 51 

The Transport Layer provides transparent transfer of data between 
session entities. The Transport Layer relieves these session entities from any 
concern with the detailed way in which reliable and cost-effective transfer of 
data is achieved. 

The Transport Layer is required to optimize the use of available 
communications services to provide the performance required for each 
connection between session entities at minimum cost. 

(5) The Network Layer. The Network Layer provides functional and 
procedural means to exchange network service data units between two 
transport entities over a network connection. It provides transport entities 
with independence from routing and switching considerations. 

(6) The Data Link Layer. The purpose of the Data Link Layer is to 
provide the functional and procedural means to establish, maintain, and 
release data links between network entities. 

(7) The Physical Layer. The Physical Layer provides mechanical, elec­
trical, functional, and procedural characteristics to establish, maintain, and 
release physical connections (e.g., data circuits) between data link entities. 

Distribution of functions among the seven layers of the OSI architec­
ture is illustrated in Fig. 14. 

VII. OSI Protocol Developments 

The model of OSI architecture defines the services provided by each 
layer to the next higher layer, and offers concepts to be used to specify how 
each layer performs its specific functions. Detailed functioning of each lay~r 
is defined by the protocols specific to the layer in the framework of the 
Architecture model. Most of the initial effort within ISO has been placed on 
the model of OS!. The next step consists of the definition of standard 
protocols for each layer. 

This section contains a brief description of a likely initial set of 
protocols, corresponding to specific standardization projects recommended 
by SCI6. 

A. Protocols in the Physical Layer 

Standards already exist within CCITT defining: 

1. interfaces with physical media for OSI, and 
2. protocols for establishing, controlling, and releasing switched data 

circuits. 

Such standards are described in Chapters 3 and 7. The only work to be done 
will consist of clearly relating these standards to the OSI architecture model. 



52 Part I • Introduction 

B. Protocols in the Data Link Layer 

Standard protocols for the Data Link Layer have already been devel­
oped within ISO, which are described in Chapters 4 and 5. The most 
popular Data Link Layer protocol is likely to be HDLC [9], without ruling 
out the possibility of using also character-oriented standards. Just as for the 
Physical Layer, the remaining work will consist mainly of clearly relating 
these existing standards to the OSI Architecture model. 

C. Protocols in the Network Layer 

An important basis for protocols in the Network Layer is Level 3 of the 
X.25 interface [IO] defined by CCITT and described in Chapter 8. It will have 
to be enhanced in particular to permit interconnection of private and public 
networks. Other types of protocols are likely to be standardized later in this 
layer, in particular, protocols corresponding to Datagram networks (Chapter 
9). 

D. Protocols in the Transport Layer 

A universal transport protocol is expected to be standardized by ISO 
imminently [11] on the basis of a proposal made by the European Computer 
Manufacturers Association (ECMA). 

E. Protocols for the Session Layer 

A minimum session protocol sufficient to support initial requirements 
is under development within ISO on the basis of another proposal made by 
ECMA [12). Standardization of this session protocol would closely follow 
standardization of the transport protocol mentioned in Section VII D. 

F. Presentation Layer Protocol 

So far, Virtual Terminal Protocols (VTPs) and part of virtual file are 
considered the most urgent protocols to be developed in the Presentation 
Layer. A number of VTPs are available (e.g., [13], [14]), many of them being 
very similar, and it should be easy to derive a Standard VTP from these 
proposals, also making use of the ISO standard for "Extended Control 
Characters for I/0 Imaging Devices" [15]. These protocols are reviewed in 
Chapter 15. The situation is similar for File Transfer Protocols. 



Chap. 2 • Standard Layer Model 53 

G. Management Protocols 

Most of the work within ISO has been done so far on the architecture 
of management functions, and very little work has been done on manage­
ment protocols themselves. Therefore, it is too early to give indications on 
the likely results of the ISO work in this area. 

VIII. Conclusion 

The development of OSI Standards is a very big challenge, the result of 
which will impact all future computer communication developments. If 
standards come too late or are inadequate, interconnection of heterogeneous 
systems will not be possible or will be very costly. 

The work collectively achieved so far by SC16 members is very promis­
ing, and additional efforts should be expended to capitalize on these initial 
results and come up rapidly with the most urgently needed set of standards 
which will support initial usage of OSI (mainly terminals accessing services 
and file transfers). The next set of standards, including OSI management 
and access to distributed data, will have to follow very soon. 

Common standards between ISO and CCITT are also essential to the 
success of standardization, since new services announced by PITs and 
common carriers are very similar to data-processing services offered as 
computer manufacturer products, and duplication of incompatible stan­
dards could simply cause the standardization effort to fail. In this regard, 
acceptance of the OSI Reference Model by the CCITT Rapporteur's Group 
on Layered Architecture for Public Data Networks Services is most promis­
ing. 

It is essential that all partners in this standardization process expend 
their best effort so that it will be successful and the benefits can be shared 
by all users, manufacturers of terminals and computers, and the PITs/com­
mon carriers. 

References 

[1] L. G. Roberts and B. D. Wessler, "Computer network development to achieve resource 
sharing," in Proc. SJCC, 1970, pp. 543-549. 

[2] L. Pouzin, "Presentation and major design aspects of the CYCLADES computer network," 
in Proc. 3rd ACM-IEEE Commun. Symp., Tampa, FL, Nov. 1973, pp. 80-87. 

[3] J. H. McFadyen, "Systems network architecture: An overview," IBM Syst. J., vol. 15, no. 
1, pp. 4-23, 1976. 

[4] G. E. Conant and S. Wecker, "DNA, an architecture for heterogeneous computer 
networks," in Proc. ICCC, Toronto, Ont., Canada, Aug. 1976, pp. 618-625. 



54 Part I • Introduction 

[5] H. Zimmermann, "High level protocols standardization: Technical and political issues," 
in Proc. ICCC, Toronto, Ont., Canada, Aug. 1976, pp. 373-376. 

[6] ISO/TC97/SC16, "Provisional model of open systems architecture," Doc. N34, Mar. 
1978. 

[7] ISO /TC97 /SC 16, "Reference model of open systems interconnection," Doc. N227, June 
1979. The OSI Reference Model had reached the stage of a Draft International Standard 
(DIS 7498) at the end of 1981. 

[8] H. Zimmermann and N. Naffah, "On open systems architecture," in Proc.ICCC, Kyoto, 
Japan, Sept. 1978, pp. 669-674. 

[9] ISO, "High level data link control-Elements of procedure IS 4335, 1977. 
[10] CCIlT, "X.25," Orange book, vol. VIII-2, 1977, pp. 70-108. 
[11] ISO/TC97/SC16 Draft Transfer Protocol, Sept. 1980. 
[I 2] ECMA, "Session protocol specification, Draft 4," Doc. ISO/97/16 N 375, Aug. 1980. 
[I3] IFIP-WGF 6.1, "Proposal for a standard virtual terminal protocol," Doc. 

ISO/TC97/SC16/N23, 56 pp., Feb. 1978. 
[I 4] EURONET, "Data entry virtual terminal protocol for EURONET," VTP /D-Issue 4, doc. 

EEC/WGS/165. 
[I 5] ISO, "Extended control characters for I/O imaging devices," DP 6429. 



PART II 

Physical Layer 

In this section we begin to get into the details of what constitutes a fully 
developed set of protocols. Up to now the discussion has been at a global 
overview level, but now we shall see, for some real protocols, exactly what 
sort of actions and reactions occur using just what sorts of information­
conveying mechanisms. 

The physical layer is a good place to introduce protocol details, 
particularly to communication engineers who are more likely to be at home 
with physical signal manipulation notions than with the concepts from data 
processing which dominate the flavor of the higher protocol levels. 

Practically every computer communications practitioner has encoun­
tered the EIA RS-232C interface (or its non-U.S. equivalent), but probably 
without realizing that it can be thought of in the same generic terms as 
data-link controls, session management, and other complex matters to be 
found in the layers above. 

The syntax of the physical layer is stated in physical (or perhaps more 
accurately space-division) terms (which of several interconnecting wires 
have a high or low voltage) or in a mixture of physical and temporal terms 
(specific bit sequences on specific wires). The semantics is the set of actions 
and reactions that take place. These are called functional and procedural 
characteristics in Chapter 3, the semantics being expressed by the mechani­
cal and electrical characteristics. 

What the physical layer protocols are doing is basically two things: 

1. A physical interface protocol is used by the data terminal equipment 
(DTE-a computer terminal or other data-processing box) to con­
trol the internal state, bit by bit, of the attached data circuit­
terminating equipment (DCE, e.g., a modem in the case of voice 
grade lines) or vice versa, and 

2. A physical peer protocol causes two DCEs at two ends of a physical 
connection between two DTEs to establish or disestablish the elec­
trical connection ("dialup"). 

55 



56 Part n • Physical Layer 

In this section of the book we emphasize the first of these two 
functions, deferring until Chapter 7 the peer protocol aspects of the physical 
level. This is done in order to allow in Chapter 7 a comparison of the 
services provided by the X.21 peer protocol and those of the network layer 
protocol X.2S. 

Chapter 3 reviews RS-232C (vintage 1969) very briefly and then details 
the more modem physical level protocols RS-449 and X.21. 



3 

Physical Interfaces and Protocols 

H. V. Bertine 

I. Introduction 

The CCI1T* Recommendation X.25 protocol for access to packet 
switched data networks is probably the first internationally recognized data 
communication protocol to use the concept of levels or layers. The 1976 
version of Recommendation X.25 [1] defined the first level, which it 
designated level 1, as 

the physical, electrical, functional, and procedural characteristics to establish, main­
tain and disconnect the physical link between the DTE and the DCE. 

CCI1T, in its work on a layered model for public data network (PDN) 
applications, states [2] 

The physical layer represents the most basic level of the Model and describes 
transparent transmission of a bit stream over a circuit built in some physical 
communications medium. 

The physical layer provides mechanical, electrical, functional, and procedural char­
acteristics to activate, maintain, and deactivate physical connections, referred to as 
data circuits for bit transmission between link functional units. 

*International Telegraph and Telephone Consultative Committee. CCIIT is a committee of the 
International Telecommunications Union (ITU), a specialized agency of the United Nations 
Organization. The CCIIT work on data communications is focused in two study groups. ccnT 

Study Group XVII is responsible for data communications over telephone facilities. Its work 
is contained in V-series recommendations. CCIIT Study Group VII is responsible for data 
communications over data networks. Its work is contained in X-series recommendations. 

57 



58 Part II • Physical Layer 

ISO, * in its work on open system interconnection, has developed a seven­
layer architectural model [3]. This model defines the physical layer as 

The physical layer provides mechanical, electrical, functional and procedural char­
acteristics to activate, maintain and deactivate physical connections for bit transmis­
sion between data link entities possibly through intermediate systems, each relaying 
bit transmission within the physical layer. 

A physical connection may allow duplex or half-duplex transmission of bit streams. 

ISO also introduces the concept of a physical service data unit: 

A physical servic.e data unit consists of one bit in serial transmission and of "n" bits 
in parallel transmission. 

The transmission of physical service data units (i.e., bits) can be performed by 
synchronous or asynchronous transmission. 

These definitions are being reviewed. For example, an internal working 
document [4] within ISO proposes modifying the definition of the physical 
layer to read 

The physical layer provides the functional and procedural means to activate, maintain 
and deactivate physical connections for bit transmission between data link entities. 
Physical layer entities are interconnected by means of a physical media. Mechanical 
and electrical characteristics are defined at one or more points of interest (e.g., point 
of demarcation) along the physical media. 

Several observations can be made from the above quotations. First, the 
two international sources of the quotations reflect the widespread interest in 
this subject. Second, at the present time, there is no precise consensus of 
what the physical level includes. However, it is clear that the physical level 
has four important characteristics which will be designated here as 

• mechanical, 
• electrical, 
• functional, and 
• procedural. 

*International Organization for Standardization. ISO is a voluntary non treaty group made up 
of the principal standardization body of each represented nation. The U. S. member body is 
the American National Standards Institute (ANSI). The ISO work on data communications is 
focused in two subcommittees of Technical Committee 97 (Information Processing Systems). 
ISO /TC97 /SC6 is responsible for data communications. ISO /TC97 /SC 16 is responsible for 
open systems interconnection. 



Chap. 3 • Physical Interfaces and Protocols 

OTE/OCE 
INTERFACE 

~ 
DATA 

TERMINAL 
EQUIPMENT • 

(DTE) 

DATA 
CIRCUIT­

TERMINATING 
EQUIPMENT 

(DCE) 

TRANSMISSION 

FACILITY 

59 

DTE/DCE 
INTERFACE 

DATA 
CIRCUIT­

TERMINATING 
EQUIPMENT 

(DCE) 

~ ,....-------., 

DATA 
TERMINAL 

EQUIPMENT 
(DTE) 

Fig. I. DTE/DCE interface. 

In Section II, each of these characteristics will be discussed in detail. 
The physical level exists at a variety of places. A very important and 

widely standardized interface is the one between the DTE and the DCE as 
depicted in Fig. 1. The most familiar DTEjDCE interface in the U. S. is 
that described by EIA * RS-232-C [5]. There are other serial data DTEjDCE 
interfaces, such as EIA RS-449 [6], CCITT X.20 [7], and X.21 [7]. There are 
also what are known as parallel data DTEjDCE interfaces, such as CCITT 

V.19 [8] and V.20 [8]. Other types of data communication interfaces are 
important, such as EIA RS-366-A [9], which covers the DTE interface to 
automatic calling equipment (ACE). There is also a physical interface 
between the DCE (e.g., a modem) and the transmission facility (e.g., 
telephone line) as specified in CCITT V-series modem recommendations [8]. 
Another important interface is the signaling interface between networks 
such as that specified by CCITT Recommendation X.75 [7]. 

Space does not permit a description of the physical level characteristics 
of each of the interfaces of this chapter. However, two specific interfaces, 
EIA RS-449 and CCITT X.21, will be discussed in detail in Section III to 
provide a flavor for the considerations which go into the development of the 
physical level. 

Parameters associated with the physical level also have been standard­
ized. For example, EIA RS-269-B [10], ANSIt X3.l [11] and X3.36 [12], 
and CCITT V.5 [8], V.6 [8] and X.1 [7] set forth the signaling rates (i.e., 

'Electronic Industries Association. EIA is a trade association that represents manufacturers in 
the U. S. electronics industry. The EIA work on data communications is carried out by 
Technical Committee TR30. EIA standards on data communications are published in the 
RS-series. In addition, EIA publishes supplementary material in Industrial Electronics Bulle­
tins. 

tAmerican National Standards Institute. ANSI is a nonprofit, nongovernmental organization. 
It serves as the national clearing house and coordinating activity for voluntary standards in 
the U. S. The ANSI work on data communications is focused in two technical committees of 
Standards Committee X3 (Information Systems). Technical Committee X3S3 is responsible 
for data communications and Technical Committee X3T5 is responsible for open systems 
interconnection. American National Standards resulting from the work of these committees 
are contained in the X3. -series. 



60 Part II • Physical Layer 

bitsjs) for the physical level of the DTEjDCE interface. The alignment 
of data and timing signals for synchronous operation are specified in 
EIA RS-334-A [13]. Signal quality for asynchronous operation is specified 
in EIA RS-363 [14] and RS-404 [15] and ISO 7480 [16]. Space does not per­
mit further discussion of these standards. 

Work is continuing to further the standardization of the physical level. 
Section IV provides a look at this effort. 

II. Characteristics of the Physical Level 

As mentioned previously, the four principal characteristics making up 
the physical level are mechanical, electrical, functional, and procedural. 
Each is briefly described in this section. 

A. Mechanical Characteristics 

The mechanical aspects pertain to the point of demarcation. Typically, 
this is a pluggable connector, but other arrangements, such as screw 
terminals, are sometimes used. Included are the specifics of the connector, 
the assignment of interchange circuits (see Section II C) to pins, the connec­
tor latching arrangement, mounting arrangements, etc. The location of the 
interface connector (e.g., close to or on the DCE) is often specified as well 
as the provision of cabling (e.g., interface cabling is generally considered 
part of the DTE). 

The following are the various mechanical interfaces that h~ve been 
standardized by ISO: 

• ISO 2110 [17]: 25-pin connector used for serial and parallel voice-band 
modems, public data network interfaces, telegraph (including Telex) 
interfaces, and automatic calling equipment. EIA RS-232-C and EIA 
RS-366-A are compatible with ISO 2110. 

• ISO 2593 [18]: 34-pin connector used for the CCITT Recommendation 
V.35 [8] wide-band modem. Although there is no equivalent EIA 
standard, this interface is used within the U. S. 

• ISO 4902 [19]: 37-pin and 9-pin connectors used for serial voice-band 
and wide-band modems. EIA RS-449 is compatible with ISO 4902. 

• ISO 4903 [20]: IS-pin connector used for public data network inter­
faces specified by CCITT Recommendations X.20, X.21, and X.22 [7]. 
There is no equivalent standard in the U. S. 

The various connectors and their relative sizes are illustrated in Fig. 2. 
All connectors, except for the 34-pin connector, belong to the same connec­
tor family. 



Chap. 3 • Physical Interfaces and Protocols 61 

PIN 

15 
PIN 

25 
PIN 

37 
PIN 

3' 
PI N 

... 

M3*3.175 MIN. 
DEPTH AVAILABLE 
FOR DIE SCREW 

ltMETRIC THREAD PER INTERNATIONAL 

STANDARD ISO 261, ISO METRIC SCREW 

\ 

UNLESS OTHERWISE 
SPECIFIED TOLERANCES 
ARE: 

2 DECIMAL PLACES:t 51 

\;

DECIMAL PLACES±.254 

LATCHING BLOCK 

----,,.J 

~~ ~~ -----------....... ~ 

1..-------- :~~~ --_____ ..j 

+ 

G 
8 

000000000 
B F L R V Z DO ,).j NN + 

~~~~~~~~ 0) 
000000000

A E K P U Y CC HH 101M 0)
,0,0.0,0.0AA0.eJ::J

Fig. 2. Comparison of DCE connectors.

NOTE DIMENSIONS ARE
IN MILLIMETERS

62 Part II • Physical Layer

The newest standards (37/9-pin and l5-pin) contain additional specifi­
cations to solve many of the mechanical interface problems experienced
with implementations of the earlier standards. A key provision is the
specification of an inexpensive DCE latching block (see Fig. 2) which
enables latching and unlatching to be done either with or without a tool.
:rhis innovation should eliminate the incompatibilities associated with the
wide variety of latching devices in use today. Another improvement is the
placing of limitations on the size of the DTE connector including cover,
cable clamp, and latching arrangement. This permits compact mounting
arrangements involving multiple DCE connectors while assuring adequate
clearances.

The EIA RS-449 and ccnT X.2l interfaces discussed in Section III use
these new connector specifications.

B. Electrical Characteristics

In the early standards (EIA RS-232-C, CCITT Recommendation V.28
[8]), the electrical characteristics were defined at the point of demarcation.
More recent standards (EIA RS-422-A [21] and RS-423-A [22], ccnT
Recommendations V.lO [8l/X.26 [7] and V.11 [8l/X.27 [7]) specify the
electrical characteristics of the generators and receivers and give guidance
with respect to the interconnecting cable. The latter situation, while sim­
plifying the job of the integrated circuit manufacturer, has been criticized
because there is no specification at the point of demarcation. The absence of
this specification hampers sectionalization of trouble.

The following are the various electrical characteristics that have been
standardized by CCITT:

• V.I 0 /X.26: New unbalanced electrical characteristics. EIA RS-423-A,
FED-STD 1030A [23], and MIL-STD 188-114 [24] are compatible
with V.1O/X.26.

• V.ll/X.27: New balanced electrical characteristics. EIA RS-422-A,
FED-STD 1020A [25], and MIL-STD 188-114 are compatible with
V.II/X.27.

• V.28: Unbalanced electrical characteristics. EIA RS-232-C is compat­
ible with V.28.

• V.3l [8]: Electrical characteristics for interchange circuits controlled
by contact closure. Used in parallel modem (CCITT V.20 [8]).
EIA RS-410 [26] is a similar standard.

• V.35 [8]: Balanced electrical characteristics used on the data and
timing circuits of the CCITT V.35 modem. Although there is no
equivalent EIA standard, this interface is used within the U. S.

Chap. 3 • Physical Interfaces and Protocols 63

The use of the latter two electrical characteristics is limited and,
therefore, they will not be discussed further. Figure 3 provides a comparison
of V.28, V.lO, and V.ll. The key item to note is that V.lO provides a
transitional mechanism since it is interoperable with both V.28 and V.II.

The new unbalanced and balanced electrical characteristics were devel­
oped to provide improved performance in terms of supporting higher bit
rates and longer cable distances compared with V.28 and RS-232-C. In­
tegrated circuit manufacturers were active in the development of these new
electrical characteristics to ensure their practical realization in state-of-the-art
technology.

The electrical characteristics of V.28/RS-232-C specify a single-ended
generator that produces a 5-15-V signal (negative for binary 1, positive for
binary 0) with respect to signal ground (common return). A single common
return lead is used for all interchange circuits. Generator rise time is
relatively fast such that the time for the signal to pass through the ± 3 V
transition region does not exceed 1 IDS and, for data and timing interchange
circuits, also does not exceed 3% (for V.28; 4% for RS-232-C) of the
nominal signal element duration. A single-ended receiver is specified having
a dc resistance between 3 and 7 kQ. These electrical characteristics are
generally limited to data signaling rates below 20 kbit/s and cable distances
shorter than 15 m.

The new unbalanced electrical characteristics specify a low-impedance
(:5 50 Q) single-ended generator that produces a 4-6-V signal (negative for
binary 1, positive for binary 0) with respect to the common return. A single
common return lead for each direction of transmission can be used across
the interface. Waveshaping of the generator output signal is used to control
the level of near-end crosstalk to adjacent circuits in the interconnection.
Data signaling rates up to 3 kbit/s can be used over cable distances up to
1000 m. For data signaling rates above 3 kbit/s, the cable distance de­
creases with increasing signaling rate to 10m at 300 kbit / s.

The new balanced electrical characteristics specify a low-impedance
(:5 100 Q) balanced generator that produces a 2-6-V differential signal (A
terminal negative with respect to the B terminal for binary 1, opposite
polarity for binary 0). Each interchange circuit requires a pair of wires for
balanced operation. Data signaling rates up to 100 kbit/s can be used over
cable distances up to 1000 m. For data signaling rates above 100 kbit/s, the
cable distance decreases with increasing signaling rate to 10 m at 10 Mbit/s.

The new balanced and unbalanced electrical characteristics are identi­
cal for the receiver. They specify a differential receiver which has a high
input impedance (~4 kQ) and a small transition region (±0.2 V).

The correlation between the binary 1 and 0 states given above for each
of the electrical characteristics and the states of the interchange circuits is
shown in Fig. 4.

64 Part n • Physical Layer

CCITT V.2B (EIA RS-232-C)

INTERCONNECTI NG
f+- CABLE ---I r-- GENERATOR ---'-I - ___ ... :4 __ -+-\ --- 1

- DESIGNED FOR DISCRETE COMPONENT
-----.. >-1. TECHNOLOGY

- UNBALANCED INTERFACE

I I I
I I 1
I 1

CCITT V.10/X.26 (EIA RS-423-A)

I---GENERATOR I INTERCONNECTING
II .• CABLE - i-I··----LOAD "-1

1

I
1

1 1 !---RECEIVER---!

I I 1 1
I I I I
1 1 1

A I cO~g~~OR 1 A' 1

R

CCITT V.11/X.27 (EIA RS-422-A)

i---GENERATOR

I
1
I

BALANCED

.11:TER~~~~EfT_I_N~G.*I"<-____ LOAD .. I
1 h:ABL; I" RECEIVER--1

1 I TERMI-I I
1 1 NATION I

AI IA'

Vg

- USES ONE CONDUCTOR PER CIRCUIT
WITH ONE SIGNAL RETURN (GROUND)
FOR BOTH OIRECTIONS

- SIGNAL RATE LIMITED TO S20 Kbps

- DISTANCE LIMITED TO S 15 METERS

- GENERATES CONSIDERABLE CROSSTALK

- DESIGNED FOR IC TECHNOLOGY

- UNBALANCED GENERATOR WITH WAVE
SHAPED SIGNAL

- DIFFERENTIAL RECEIVER

- ONE CONDUCTOR PER CIRCUIT WITH AN
INDEPENDENT SIGNAL RETURN FOR
EACH DIRECTION

- SIGNALING RATE UP TO 300 Kbps

- DISTANCE: 1000 METERS I:" 3 Kbps) TO
10METERS(AT 300 Kbps)

- REDUCED CROSSTALK

- INTEROPERABLE WITH V.28 AND
AND V.11/X.27

- DESIGNED FOR IC TECHNOLOGY

- BALANCED GENERATOR

- DIFFERENTIAL RECEIVER

- TWO CONDUCTORS PER CIRCUIT

- SIGNALING RATE UP TO 10 Mbps

- DISTANCE: 1000 METERS (:" 100Kbps) TO
10 METERS (AT10 Mbps)

- ODNSIDERABLY REDUCED CROSSTALK

-INTEROPERABLE WITH V.10/X.26

Fig. 3. Comparison of electrical characteristics.

Chap.3 • Physical Interfaces and Protocols 65

BINARY 1 0

DATA MARK SPACE

CONTROL OFF ON
Fig. 4. Signal state correlation table.

A key feature built into the new electrical characteristics is an evolution
path from the existing V.28 jRS-232-C electrical characteristics. The
V.lOjRS-423-A specifications were specifically designed to permit interop­
eration with both V.28 jRS-232-C and V.II jRS-422-A. The EIA RS-449
and CCITT X.21 interfaces discussed in Section III make use of this capabil­
ity.

C. Functional Characteristics

Interchange circuit functions are typically classified into the following
broad categories: data, control, timing, and grounds. Further classification
into primary and secondary channel functions are made for those DTEjDCE
interfaces employing a secondary channel.

The following are the two CCITT recommendations which define the
functions of interchange circuits:

• V.24 [8]: DTEjDCE and DTEj ACE interchange circuits. Originally
developed for use with modems and automatic calling equipment
associated with modems, they may also be used with digital networks.
EIA RS-232-C and RS-449 are compatible with V.24 for DTEjDCE
interchange circuits and EIA RS-366-A is compatible with V.24 for
DTEj ACE interchange circuits .

• X.24 [7]: DTEjDCE interchange circuits. Developed for use with
public data networks (CCITT Recommendations X.20, X.21, and
X.22). There is no equivalent standard in the U. S.

The V.24 interchange circuits have been used for several decades. They
employ the concept of one function per interchange circuit. Over the years,
the list of interchange circuits has grown steadily. The 1980 version of
Recommendation V.24 defines 43 interchange circuits for use in various
DTEjDCE interfaces and 12 interchange circuits for the DTEj ACE inter­
face.

In the 1968-1972 CCITT study period, work started on interface stan­
dards (X.20 and X.21) specifically designed for the emerging duplex data
networks. The technology to be employed in these networks favored a
"compact" interface where the ACE functions, DCE control functions, and

66 Part II • Physical Layer

data were multiplexed over a single "data" interchange circuit in each
direction. The result of this work was Recommendation X.24, which defines
a small set of interchange circuits. This set includes a data and a control
circuit in each direction plus a single bit timing circuit from the DCE. An
optional byte timing circuit from the DCE is also defined. The 1980 version
of X.24 also defines a framing circuit from the DCE which is used in the
new X.22 interface.

The EIA RS-449 interface described in Section III A uses V.24 inter­
change circuits and the CCITT X.2l interface described in Section III Buses
X.24 interchange circuits.

D. Procedural Characteristics

The final aspect of the physical level is the set of procedures for using
the interchange circuits. These procedures are the ones that need to be
performed to enable the transmission of bits so that the higher-level
functions (described in subsequent chapters) can take place. The exact
division between which procedures are part of the physical level and which
procedures are higher-level procedures is an area of considerable debate.

The following are the various CCITT recommendations which define
procedures at the physical level:

• V.24: Procedures affecting the interrelationships between certain
interchange circuits. EIA RS-232-C and RS-449 contain equivalent
procedures.

• V.25 [8]: Procedures for use with automatic calling equipment. EIA
RS-366-A contains equivalent procedures.

• V.54 [8]: Procedures regarding maintenance test loops. EIA RS-449
contains equivalent procedures.

• V-series modems [8]: Modem-specific procedures for the use of
interchange circuits. Several Federal standards contain equivalent
procedures.

• X.20: Procedures for asynchronous operation on a public data net­
work. There is no equivalent standard in the U. S.

• X.20 bis [7]: Procedures for asynchronous operation on a public data
network for DTEs designed to interface with V-series asynchronous
modems. EIA RS-232-C contains equivalent procedures.

• X.21: Procedures for synchronous operation on a public data net­
work. There is no equivalent standard in the U. S.

• X.2l bis [7]: Procedures for synchronous operation on a public data
network for DTEs designed to interface with V-series synchronous
modems. EIA RS-232-C and RS-449 contains equivalent procedures.

Chap. 3 • Physical Interfaces and Protocols 67

• X.22: Procedures for synchronous operation on a public data net­
work whereby several circuits are time division multiplexed. There is
no equivalent standard in the U. S .

• X.150 [7]: Procedures regarding maintenance test loops for public
data networks.

Two examples of these procedures are given in Section III.
You may have wondered what happened to CCITT Recommendation

X.25 [7], which was discussed on the first page of this chapter. X.25, which
specifies the packet mode interface to packet switched public data networks,
does contain a section on the physical level. This section, however, simply
references the appropriate sections of X.21 and X.21 bis.

III. Examples of the Physical Level

In this section two examples are given of the physical level for
DTE/DCE interfaces. The first is EIA RS-449, which was developed to
replace EIA RS-232-C. The second CCITT Recommendation X.21, which
was developed specifically as a synchronous interface to public data net­
works. In each example, the four characterists of the physicallevel-mecha­
nical, electrical, functional, and procedural-are clearly evident.

Before taking up these new interfaces, it is appropriate to briefly review
EIA RS-232-C, the dominant DTE/DCE interface in use today. The first
version of this standard, RS-232, was adopted in May, 1960. It was revised
three times-in October, 1963 as RS-232-A, in October, 1965 as RS-232-B,
and in August, 1969 as RS-232-C.

RS-232-C defines 21 interchange circuits. Each circuit provides a single
function as summarized in Fig. 5. Not all circuits are needed in every
application. For example, the timing circuits are omitted for nonsynchro­
nous applications, certain control circuits are omitted for nonswitched
applications, and the five secondary channel circuits are omitted when
secondary channel operation is not employed.

The interchange circuit procedures contained in RS-232-C are more
fully described in a separate Application Notes document [27]. Included is a
series of charts giving control circuit state diagrams for a number of
applications. An example illustration of these procedures is given in Fig. 6.
This figure, covering half duplex operation over the switched network,
shows the major states and transitions for the six principal RS-232-C
control circuits.

RS-232-C includes the specification of electrical characteristics for the
interchange circuits. These unbalanced characteristics were described above

68 Part n • Physical Layer

CIRCUIT NAME DIRECTION DESCRIPTION

c AA PROTECTIVE GROUND ELECTRICALl V BONDS TOGETHER THE
z eQUIPMENT FRAMES
:J
c
a: AS SIGNAL GROUND OR ESTABLISHES THE COMMON GROUND REFERENCE

" COMMON RETURN POTENTIAL FOR ALL INTERCHANGE CIRCUITS

SA TRANSMITTED DATA TO CONVEYS O'ATA SIGNALS FOR TRANSMISSION TO THE ..
I-

DCE COMMUNICATIONS CHANNEL ..
C SS RECEIVED DATA TO CONVEYS DATA SIGNALS RECEIVED FROM THE

DTE COMMUNICATIONS CHANNEL

CA REQUEST TO SEND TO REQUESTS ABILITY TO TRANSMIT DATA TO THE
DCE COMMUNICATIONS CHANNEL

CS CLEAR TO seND TO INDICATES WHETHER OR NOT THE DCE IS READY
DTE TO TRANSMIT DATA TO THE COMMUNICATIONS CHANNEL

CC DATA SET READY TO INDICATES WHETHER OR NOT THE DCE IS IN
DTE THE DATA MODE

CD OATA TERMINAL READY TO CONTROLS THE SWITCHING OF THE DCE TO AND

-'
DCE FROM THE COMMUNICATIONS CHANNEL

c
a: CE RING INDICATOR TO INDICATES WHETHER OR NOT A "RINGING SIGNAL" I-
Z DTE IS BEING RECEIVED BY THE DCE
a
u

CF RECEIVED LINE SIGNAL TO INDICATES WHETHER OR NOT THE DCE IS RECEIVING
DETECTOR DTE A LINE SIGNAL FROM THE COMMUNICATIONS CHANNEL

CG SIGNAL QUALITY DETECTOR TO INDICATES WHETHER OR NOT THERE IS A HIGH
DTE PROBABILITY OF ERROR IN THE RECEIVED DATA

CH DATA SIGNAL RATE SELECTOR TO SELECTS BETWEEN TWO DATA SIGNALING RATES OR
(DTE SOURCE) DCE RANGES OF RATES

CI DATA SIGNAL RATE SELECTOR TO INDICATES ONE OF TWO DATA SIGNALING RATES OR
(DCE SOURCE) DTE RANGES OF RATES

DA TRANSMITTER SIGNAL ELE- TO PROVIDES TIMING SIGNALS FOR TRANSMITTED DATA
MENT TIMING (OTE SOURCE} DCE

" z OS TRANSMITTER SIGNAL ELE- TO PROVIDES TIMING SIGNALS FOR TRANSMITTED DATA :l MENT TIMING (DCE SOURCE) DTE ;::
DO RECEIVER SIGNAL ELEMENT TO PROVIDES TIMING SIGNALS FOR RECEIVED DATA

TIMING (DCE SOURCE) DTE

SSA SECONDARY TRANSMITTED TO EQUIVALENT TO CIRCUIT BA EXCEPT IT APPLIES
DATA DCE TO THE SECONDARY CHANNEL

SSS SECONDARY RECEIVED DATA TO EQUIVALENT TO CIRCUIT BB EXCEPT IT APPLIES
> DTE TO THE SECONDARY CHANNEL a:

" c SCA SECONDARY REQUEST TO TO EQUIVALENT TO CIRCUIT CA EXCEPT IT APPLIES z
a SEND DCE TO THE SECONDARY CHANNEL

~ SCS SECONDARY CLEAR TO SEND TO EQUIVALENT TO CIRCUIT CB EXCEPT IT APPLIES
OTE TO THE SECONDARY CHANNEL

SCF SECONDARY RECEIVED LINE TO EQUIVALENT TO CIRCUIT CF EXCEPT IT APPLIES
SIGNAL DETECTOR DTE TO THE SECONDARY CHANNEL

Fig. 5. EIA RS-232-C interchange circuits.

in Section II B. They apply at the point of demarcation between the DTE
and DCE (i.e., at the 25-pin connector). Interface operation is generally
limited to data signaling rates below 20 kbit/s and cable distances shorter
than 15 m.

A. EIA RS-449

RS-232-C was recognized by EIA in 1973 to be a limiting factor in
many user environments. The principal p.ew capabilities and benefits desired
were

• improved performance, longer interface cable distances, and a signifi­
cantly higher maximum data rate (to be achieved with the new
electrical characteristics);

Chap. 3 • Physical Interfaces and Protocols

ORIGINATING STATION

IDLE { CD71'7 ~ 71,' CD
STATES

5,7~5,3

CONN. { DCE
TO

LINE

CC CC

CA

CF'1,7V'1"C8
AROUND

/ " RECEIVE ~ TRANSMIT

DISCONNECT {CD ,,X

SEQUENCE cc 1
7, X

IDLE

FACILITY CONDITION

ON HOOK ON HOOK

OFF HOOK

!:)!AL TONE

DIAL NUMBER

RINGING

OFF HOOK

ON HOOK ON HOOK

FIRST DIGIT OF STATE ENCQD1NGS

CC CD CE
ex = ON TRANSITION DATA DATA RING

ANSWERING STATION

II)LE STATES

r~----~ -----~

3, X

tee
7, X
IDLE

DISCONNECT
SEQUENCE

SECOND DIGIT OF STATE ENCODINGS

CA CB CF
REQUEST CLEAR REC. LINE

OCTAL seT TERMINAL INOI- OCTAL TO TO SIGNAL
ex = OFF TRANSITION CODE READY READY ~ CODe SENa

0= ON

1 = OFF

[tg", LOGICAL
"AND"

FUNCTION

DON'T CARE

~~

DON'T CARE

69

Fig. 6. EIA RS-232-C control lead sequences for half-duplex operation on switched service .

• additional interface functions, such as loopback testing; and
• resolution of the mechanical interface problems which had led to a

proliferation of designs, many of which were incompatible with one
another.

The first approach examined was to update RS-232-C. Creating an
RS-232-D would require a degree of compatibility with RS-232-C which
would have severely compromised the desired new capabilities and benefits. *

'The opposite was true for the automatic calling equipment interface, RS-366. It has been
updated as RS-366-A.

70 Part II • Physical Layer

Therefore, the decision was made to develop a new interface. Two major
approaches for this new interface were studied at the outset and were
reviewed many times thereafter. One was to follow the basic concepts of
RS-232-C. The other was to seek alignment with the developing CCITT work
on Recommendation X.21. (See Section III B.)

The principal advantage of the first approach is the ability to interoper­
ate with RS-232-C. This would not be possible with the X.2I approach. The
principal advantage of the X.2I approach is a lower cost interface achieved
through a substantial reduction in the number of interchange circuits.
However, as discussed in Section IV, there are significant technical and
performance problems associated with the adoption of X.21 for the modem
interface. Therefore, the first approach was taken with two principal objec­
tives:

• the ability to interoperate the new equipment with the presently
existing RS-232-C equipment (no modification to RS-232-C equip­
ment permitted), and

• to obtain the new capabilities cited earlier when two new equipments
are interfaced.

These objectives were satisfied (as described below) and RS-449 was
published by EIA in November, 1977, after international agreement was
reached in CCITT and ISO. To simplify the following discussion, the EIA
terminology will be used. The listings given in Section II can be used for
reference to the equivalent international standards.

1. Functional

One of the problems with RS-232-C was that many equipments in­
cluded interface circuits in addition to those defined in RS-232-C. New
Sync (now known as New Signal) is one example. More importantly, there
was a strong need to incorporate additional capabilities in the interface for
loopback testing and other functions. These problems were solved in RS-449
by the addition of new interchange circuits following the philosophy used in
RS-232-C of one function per interchange circuit. Figure 7 provides a
complete listing of the 30 RS-449 interchange circuits and gives the equiva­
lent interchange circuits in RS-232-C and CCITT Recommendation V.24. *

A new set of interface circuit names and mnemonics is usd in RS-449.
The names were chosen to more accurately describe the function performed
and to eliminate the term "data set," which is no longer appropriate. The

*CCITT is studying the addition to Recommendation V.24 of the one RS-449 interchange circuit
(Terminal in Service) presently not included.

Chap. 3 • Physical Interfaces and Protocols 71

EIA RS-449 EIA RS·232·C CCITT RECOMMENDATION V.24

SG SIGNAL GROUND AB SIGNAL GROUND OR COMMON RET. 102 SIGNAL GROUND DR COMMON RET.

SC SEND COMMON 102a DTE COMMON RETURN

RC RECEIVE COMMON 102b DCE COMMON RETURN

IS TERMINAL IN SERVICE
IC INCOMING CALL CE RING INDICATOR 125 CALLING INDICATOR
TR TERMINAL READY CD DATA TERMINAL READY 10B/2 DATA TERMINAL READY
OM DATA MODE CC DATA seT READY 107 DATA SET READY

SO SEND DATA BA TRANSMITTED DATA 103 TRANSMITTED DATA
RD RECEIVE DATA BB RECEIVED DATA 104 RECEIVED DATA

TT TERMINAL TIMING DA TRANSMITTER SIGNAL ELEMENT 113 TRANSMITTER SIGNAL ELEMENT
TIMING IDTE SOURCE) TIMING IDTE SOURCE)

ST SEND TIMING DB TRANSMITTER SIGNAL ELEMENT 114 TRANSMITTER SIGNAL ELEMENT
TIMING IDCE SOURCE) TIMING IDCE SOURCE)

RT RECEIVE TIMING DO RECEIVER SIGNAL ELEMENT 115 RECEIVER SIGNAL ELEMENT
TIMING TIMING IDCE SOURCE)

RS REOUEST TO SEND CA REOUEST TO SEND 105 REQUEST TQ SEND
CS CLEAR TQ SEND CB CLEAR TO SEND 106 READY FOR SENDING
RR RECEIVER READY CF RECEIVED LINE SIGNAL, 109 DATA CHANNEL RECEIVED LINE

DETECTOR SIGNAL DETECTOR
SQ SIGNAL QUALITY CG SIGNAL OUALITY DETECTOR 110 DATA SIGNAL QUALITY DETECTOR
NS NEW SIGNAL
SF SELECT FREQUENCY 126 SELECT TRANSMIT FREQUENCY
SR SIGNALING RATE SELECTOR CH DATA SIGNAL RATE SELECTOR 111 DATA SIGNALING RATE

IDTE SOURCE) SELECTOR IDTE SOURCE)
SI SIGNALING RATE INDICATOR CI DATA SIGNAL RATE SELECTOR 112 DATA SIGNALING RATE

IDCE SOURCE) SELECTOR IDCE SOURCE)

SSD SECONDARY SEND DATA SBA SECONDARY TRANSMITTED DATA lIB TRANSMITTED BACKWARD
CHANNEL DATA

SRD SECONDARY RECEIVE DATA SBB SECONDARY RECEIVED DATA 119 RECEIVED BACKWARD
CHANNEL DATA

SRS SECONDARY REOUEST TO SEND SCA SECONDARY REQUEST TO SEND 120 TRANSMIT BACKWARD
CHANNEL LINE SIGNAL

SCS SECONDARY CLEAR TO SEND SCB SECONDARY CLEAR TO SEND 121 BACKWARD CHANNEL READY
SRR SECONDARY RECEIVER READY SCF SECONDARY RECEIVED LINE 122 BACKWARD CHANNEL RECEIVED

SIGNAL DETECTOR LINE SIGNAL DETECTOR

LL LOCAL LODPBACK 141 LOCAL LOOPBACK
RL REMOTE LDOPBACK 140 LDDPBACK/MAINTENANCE TEST
TM TEST MODE 142 TEST INDICATOR

SS SELECT STANDBY 116 SELECT STANDBY
SB STANDBY INDICATOR 117 STANDBY INDICATOR

Fig. 7. Equivalency of interchange circuits.

mnemonics were chosen to be easily related to the circuit names and to be
unique from those used in RS-232-C to avoid confusion.

Briefly, the new circuits are

• Send Common (SC)-provides a signal common return path for all
unbalanced interchange circuits employing one wire used in the
direction toward the DCE.

• Receive Common (RC)-provides a signal common return path for
all unbalanced interchange circuits employing one wire used in the
direction toward the DTE.

• Terminal in Service (IS)-indicates to the DCE whether or not the
DTE is operational. A major use is to make an associated port on a
line hunting group busy if the DTE is out-of-service.

• New Signal (NS)-indicates to the DCE when the DCE receiver
should be prepared to acquire a new line signal. A major use is to
improve the overall response time of multipoint polling systems.

72 Part II • Physical Layer

• Select Frequency (SF)-controls the DCE transmit and receive oper­
ation with respect to two frequency bands. Its purpose is to allow
selection of the frequency mode of the DCE in multipoint circuits
where all stations have equal status.

• Local Loopback (LL)-requests the DCE to initiate a loopback of
signals in the local DCE toward the local DTE. Its purpose is to
allow checking of the functioning of the DTE and the local DCE.

• Remote Loopback (RL)-requests the DCE to initiate a loopback of
signals in the remote DCE toward the local DTE. Its purpose is to
allow checking of the functioning of the DTE, local DCE, transmis­
sion channel, and the remote DCE.

• Test ModeJTM)-indicates to the DTE when a test condition has
been established involving the local DCE. Its purpose is to dis­
tinguish test conditions from other nondata mode conditions of the
DCE.

• Select Standby (SS)-requests the DCE to replace regular facilities
with predetermined standby facilities. Its purpose is to facilitate the
rapid restoration of service when a failure has occurred.

• Standby Indicator (SB)-indicates to the DTE whether regular facili­
ties or standby facilities are in use. This may be in response to
activation by circuit SS or by other means.

2. Procedural

The text of RS-449 contains the procedures for using the interchange
circuits. The basic RS-232-C procedures were carried over into RS-4;49. The
state diagrams (e.g., see Fig. 6) prepared in an application note to RS-232-C
[27] can be applied to RS-449.

The procedures for the new test and standby interchange circuits are
principally based on action-reaction pairs. For example, the localloopback
circuit is turned ON by the DTE (the action) to request a localloopback.
The DTE now waits. When the DCE has established the loopback, it turns
the test mode circuit ON (the reaction), indicating that the loop has been
established and any data sent by the DTE on the send data circuit should be
returned to the DTE on the receive data circuit. The DTE can now begin
sending test data. A similar action-reaction sequence is followed when
deactivating the loopback.

3. Electrical

As stated earlier, interoperability with EIA RS-232-C was a principal
objective in the design of EIA RS-449. This is achieved by permitting the
use of the unbalanced RS-423-A electrical characteristics on interchange
circuits when the data rate is less than 20 kbit/s, the upper limit for

Chap. 3 • Physical Interfaces and Protocols 73

RS-232-C. Unlike X.21 (see Section III B 1), this flexibility to use the
unbalanced electrical characteristics is allowed for both the DTE and DCE.
To provide good performance for data rates above 20 kbit/s (where
interoperability with EIA RS-232-C does not apply), EIA RS-449 designates
certain circuits which must be operated with the balanced RS-442-A electri­
cal characteristics. This enables EIA RS-449 to be used for data rates up to
2 Mbit/s.

The key to obtaining this flexibility is the use of two wires for each of
the following interchange circuits (designated by RS-449 as Category I
circuits):

SD-Send Data
RD-Receive Data
TT - Terminal Timing
ST -Send Timing
RT-Receive Timing
RS-Request to Send
CS-Clear to Send
RR - Receiver Ready
TR - Terminal Ready
DM-Data Mode.

Either RS-422-A or RS-423-A generators can be used on these circuits for
data rates below 20 kbit/s. For data rates above 20 kbit/s, these circuits are
RS-422-A. All other interchange circuits (designated by RS-449 as Category
II circuits) always use RS-423-A and thus have one wire per interchange
circuit with a common signal return lead. Figure 8 summarizes this arrange­
ment.

Two important benefits are achieved. For DTEs or DCEs designed for
operation at speeds of 20 kbit / s or less, a manufacturer may choose to
implement the unbalanced RS-423-A electrical characteristics on all inter­
change circuits. With this design, a single RS-449 implementation can
operate with another RS-449 device or interoperate with an RS-232-C
device (see Section III A 5). Alternatively, a manufacturer may choose to
implement the balanced RS-422-A electrical characteristics on the Category
I interchange circuits. With this design, a single RS-449 implementation can
operate with another RS-449 device at all bit rates up to 2 Mbit/s with
maximum performance. This is contrasted with the variety of different
interfaces (RS-232-C, V.35, etc.) required in the past, each applying to a
narrow range of data rates.

4. Mechanical

The RS-449 connectors come from the same connector family as the
familiar 25-pin connector used with RS-232-C. This selection was made

74 Part n • Physical Layer

CATEGORY I CIRCUITS-DATA SIGNALING RATE :5 20,000 BITS PER SECOND

A

OR

=

OR

A

=

0-- --0-----1

0-- - - 0----1

=
NOTE: THE A,A~ B,B~C AND C' DESIGNATIONS ARE

THOSE SPECIFIED IN RS-422-A AND
RS-423-A

CATEGORY I CIRCUITS-DATA SIGNALING RATE>20,OOO BITS PER SECOND

........ ~----.....(J--------c)----t---;

~~-----o------<~-""---I
B

=
CATEGORY 1I CIRCUITS *OPTIONAL CABLE

TERM I NATION RESISTANCE

A
:>----c>-- - ---C~----~

TO CIRCUIT SC IFDTE OR
TO CIRCUIT RC IF DCE

TO CIRCUIT SC IF DCE OR
TO CIRCUIT RC IF DTE

Fig. 8. EIA RS-449 interface connections of generators and receivers.

Chap. 3 • Physical Interfaces and Protocols 75

because of the favorable experience associated with the use of the 25-pin
connector. In order to satisfy the requirements of some foreign administra­
tions, two connectors are used. A 37-pin connector is used for the basic
interface. If secondary channel operation is used, these leads appear on a
separate 9-pin connector. An important side benefit of the 9-pin and 37-pin
connectors is that they are different from the present 25-pin and 34-pin
connectors. This prevents the accidental interconnection of incompatible
electrical characteristics which may result in physical damage to interface
generators and terminators.

The mechanical enhancements described in Section II A involving
standardization of the DCE latching block and maximum DTE connector
envelope size are incorporated in RS-449. The pin assignment plan was
carefully chosen to miillmize crosstalk in multipair cable (i.e., one Category
I circuit or two Category II circuits in the same direction are assigned to a
pair) and to facilitate the design of an adapter when interworking with
RS-232-C is desired.

Finally, provision was made for the use of shielded interface cable. Pin
1 of the interface connector is used to ensure continuity of the shields
between tandem connections of shielded interface cable.

5. Interoperability

Interoperability with RS-232-C, when desired, may be accomplished by
means of a simple passive adapter and a few additional design criteria for
the RS-449 interchange circuits. The adapter specification and the detailed
design criteria are contained in [19] and [28]. No modifications are needed
for the RS-232-C equipment. Performance for interoperability is that associ­
ated with RS-232-C interfaces.

B. CCITI Recommendation X.21

CCITT Recommenqation X.21 will be used in this section as a second
illustration of the four characteristics of the physical level. To simplify the
presentation, references, when made, will be to CCITT and ISO standards.

The 1980 version of CCITT Recommendation X.21 contains two distinct
parts. One part specifies a "general purpose" DTE/DCE interface for
synchronous operation on public data networks. This is the physical level
part of Recommendation X.21. The second part of Recommendation X.21
specifies the call control procedures for circuit switched services. There is
still debate in the standards arena about whether these are also part of the
physical level. The emerging consensus is that the call control elements of
X.21 involve link level (e.g., for character alignment and parity) and
network level (e.g., for addressing and call progress signals) functions. This
viewpoint is taken here and thus these functions are covered in Chapter 7.

76 Part II • Physical Layer

1. Electrical

One of the objectives for Recommendation X.21 was to permit inter­
face operation over distances considerably greater than that available with
Recommendation V.28. To achieve this objective at the synchronous data
rates given in X.I, * the new balanced electrical characteristics (Recom­
mendation X.27) were specified for the DeE side of the interface. To allow
flexibility in DTE design at the four lower data rates, the DTE is permitted
to use either the new balanced or the new unbalanced (Recommendation
X.26) electrical characteristics. For the 48 kbit/s rate, only the balanced
electrical characteristics are permitted to ensure good performance.

2. Mechanical

The mechanical interface for X.2l is specified by ISO 4903. The
mechanical enhancements described earlier for RS-449 involving standard­
ization of the DeE latching block, maximum DTE connector envelope size,
and the use of pin 1 for shield also apply to ISO 4903. Similarly, the 15-pin
interface connector comes from the same family of connectors as the
familiar 25-pin connector.

Another major enhancement is the result of careful assignment of
interchange circuits to connector pin numbers. The pin assignments provide
for the connection of interchange circuits to multipaired interconnecting
cable so that each interchange circuit operates over a pair. Of particular
importance is the use of two wires for each interchange circuit even when
interworking between a DTE using X.26 electrical characteristics and a
DeE using X.27 electrical characteristics. This eliminates the need for either
options inside the equipment or a special interface cord which connects
certain pins together. Also, this provides a performance level when inter­
working which approximates the performance level when X.27 is used by
both equipments.

3. Functional

Another objective in the design of Recommendation X.2l was to
considerably reduce the number of interchange circuits while at the same
time folding into the interface the automatic calling function. Thus, as
illustrated pictorially in Fig. 9, X.21 contains five basic interchange circuits.
A transmit (T) circuit and a receive (R) circuit are used to convey both user
data and network control information depending on the state of the control

'CCIlT Recommendation X.I specifies data rates of 600, 2400, 4800, 9600, and 48,000 bitjs for
Recommendation X.21.

Chap. 3 • Physical Interfaces and Protocols 77

TRANSMIT ..
,

CONTROL ..
,

.; RECEIVE
DTE

"'
DCE

... INDICATION

"
... SIGNAL ELEMENT TIMING

"'
... BYTE TIMING (OPTIONAL)

" SIGNAL GROUND

Fig. 9. CCIlT Recommendation X.21 DTE/DCE interface.

(e) circuit and the indication (I) circuit. Bit timing is continuously pro­
vided by a signal element timing (S) circuit. A sixth interchange circuit
which provides byte timing information is optional. A signal ground circuit
is also provided. Detailed definitions of these interchange circuits are
contained in CCITT Recommendation X.24.

4. Procedural

As mentioned earlier, some of the procedures in X.21 are considered
above the physical level. However, the procedures associated with the
quiescent phase of X.21 are generally agreed to be within the physical level.
Two quiescent signals are defined for the DCE: DeE not ready and DeE
ready.

DeE not ready indicates that no service is available. It is signaled
whenever possible during network fault conditions and when network test
loops are activated. DeE not ready is signaled with continuous binary 0 on
circuit R and the OFF condition on circuit I.

DeE ready indicates that the DCE (network) is ready to enter opera­
tional phases. DeE ready is signaled with continuous binary I on circuit R
and the OFF condition on circuit 1.

A major feature incorporated into X.21 is the definition of three
quiescent signals for the DTE. Two DTE not ready signals are defined to
distinguish between a nonoperational DTE and a condition in which the
DTE is operational but is temporarily out of service.

78 Part n • Physical Layer

DTE uncontrolled not ready indicates that the DTE is unable to enter
operational phases because of an abnormal condition. DTE uncontrolled not
ready is signaled with continuous binary 0 on circuit T and the OFF
condition on Circuit C.

DTE controlled not ready indicates that, although the DTE is opera­
tional, the DTE is temporarily unable to enter operational phases. DTE
controlled not ready is signaled with a continuous bit stream of alternate
binary 0 and binary 1 bits (i.e., 0101 ...) on circuit T and the OFF condition
on circuit C.

DCE DCE
DCE

LEGEND,

EACH STATE IS REPRESENTED BY AN ELLIPSE WHEREIN THE STATE NAME AND NUMBER IS INDICATED, TOGETHER WITH THE
SIGNALS ON THE FOUR INTERCHANGE CIRCUITS WHICH REPRESENT THAT STATE.

EACH STATE TRANSITION IS REPRESENTED BY AN ARROW AND THE EQUIPMENT RESPONSIBLE FOR THE TRANSITION (DTE
OR DCE) IS INDICATED BESIDE THAT ARROW.

RESPONSIBLE FOR
THE TRANSITION

TRANSITION DCE~ n ~ STATE NUMBER
DTE t ~ SIGNAL ON T CIRCUIT

e ~ SIGNAL ON C CIRCUIT

n r ~ ~:gm g~ ~ g:~gH:+
STATE NAME T ~ TRANSMIT INTERCHANGE CIRCUIT

t,e C~ CONTROL INTERCHANGE CIRCUIT
r,i R~ RECEIVE INTERCHANGE C!RCUIT

1-----+1 DCE I ~ INDICATION INTERCHANGE CIRCUIT

DTE

o AND 1 • REFER TO STEADY BINARY CONDITIONS
01 ~ REFERS TO ALTERNATE BINARY 0 AND BINARY 1 CONDITIONS
OFF AND ON' RESPECTIVELY REFER TO CONTINUOUS OFF (BINARY 1) AND

ON (BINARY 0) CONDITIONS

Fig. 10. CeITT Recommendation X.21 quiescent states.

Chap. 3 • Physical Interfaces and Protocols 79

DTE ready indicates that the DTE is ready to enter operational phases.
DTE ready is signaled with continuous binary 1 on circuit T and the OFF
condition on circuit C.

To ensure proper detection of these signals, X.21 requires that the DTE
and DCE be prepared to send these signals for a period of at least 24 bit
intervals. Detection of these signals for 16 contiguous bit intervals is
required.

The various combinations of the two DCE quiescent signals and the
three DTE quiescent signals provide for the six quiescent states of the X.21
interface as shown in Fig. 10. The implementations of X.21 by some
networks do not allow all the possible transitions between these states.
Therefore, Fig. 10 only shows those transitions that are valid for all
networks. .

X.21 also contains provisions to ensure proper interpretation of the
interface under fault conditions (e.g., power off, disconnection of the
interface cable, failure of an interchange circuit, and loss of incoming line
signal to the DCE). Finally, X.21 (and X.ISO) defines the interface state for
each of the various maintenance test loops.

IV. The Future

The preceding sections have reviewed the basic characteristics of the
physical level and have described two recently standardized DTE/DCE
interfaces. However, one should not assume that the physical level work is
complete. In fact, three major activities are presently underway:

• direct DTE-to-DTE operation,
• tandem DCE-to-DCE operation, and
• "universal" DTE/DCE interface and the "mini" interface.

The first activity is being pursued with both EIA RS-449 and with
CCITT Recommendations X.20 and X.21. Present thinking for synchronous
interfaces is to use a data, timing, and control circuit in each direction with
a simple crossover adapter between the two DTEs. Asynchronous interfaces
would omit the timing circuits and, for X.20, also omit the control circuits.
This arrangement is straightforward for EIA RS-449 and CCITT X.20 but
requires the addition of a new timing interchange circuit for the X.21 DTE.
A draft standard based on this thinking is presently being voted on by the
ISO [29].

The second activity is being spurred by the multiplexing capability
provided by the 9600 bitjs modem specified in CCITT Recommendation
V.29 [8]. Tandem DCE-to-DCE operation would allow any number of the
derived channels from the V.29 modem to be extended to a distant location

80 Part II • Physical Layer

by means of a pair of modems. The principal issue is which interchange
circuits need to be interconnected through a simple crossover adapter and
the proper slaving of the timing circuits in the DCEs. These issues are
presently being addressed in CCITT Study Group XVII.

The third activity is the most ambitious of the three. The objective is to
define a single "universal" DTE/DCE interface suitable for use both on
public data networks and on telephone networks. This interface would
include the automatic calling capability and utilize only a small number of
interchange circuits.

The major driving force for the "mini" interface for modems is to
reduce the cost of the interface by reducing the number of interchange
circuits. This translates to the elimination of the separate ACE interface,
fewer wires in the interface cable, a smaller connector, and fewer genera­
tors/receivers. The X.2l interface has been proposed as a candidate for the
"mini" interface but there are several significant problems. One major
problem is the significant reduction in throughput for half-duplex operation
and for multipoint polling systems [30]. This occurs since X.2l does not
provide immediate recognition of a specific control signal. That is, X.21
requires the recognition of a bit pattern in contrast to the instant recogni­
tion of a signal level on a individual control lead.

A second problem with using X.21 is the loss of functionality because
there is no means to pass control information during data transfer. Two
examples concerning signaling to the DTE while the receive direction is in
the data transfer phase illustrate this problem. In this situation, X.21 circuit
I is ON (indicating data transfer phase) and circuit R carries user data.
Thus, there is no way to convey to the DTE information about the receive
direction, such as Signal Quality (RS-232-C circuit CG, RS-449 circuit SQ,
and V.24 circuit 110). In addition, there is no way to convey to the DTE
information about the transmit direction, such as Clear to Send (RS-232-C
circuit CA, RS-449 circuit CS, and V.24 circuit 105). The impact of this
latter problem is illustrated by a centralized multipoint system operating
with the use of continuous carrier from the master station. After the remote
DTE detects its poll, it responds by turning circuit C ON (a function
equivalent to Request to Send in present day modems). However, as
discussed above, there is no means to convey to the DTE when the DCE is
prepared to accept data (i.e., the Clear to Send function). Since this time
interval varies with modem type, this loss of capability is significant.

Other flexibilities of the EIA RS-232-C and RS-449 interfaces, such as
separate send and receive timing circuits, would be lost if X.21 were used
without change. Also, quite a few RS-232-C, RS-449, and V.24 interchange
circuit functions that apply outside of the data transfer phase are not
presently accommodated by X.21. Examples include data signaling rate
selection, selection and indication of standby facilities, select frequency, and
loop back testing. Either these functions will be lost or X.2l must be

Chap. 3 • Physical Interfaces and Protocols 81

modified to accommodate them. In addition, a way must be provided for
handling a secondary channel. A separate connector for the secondary
channel will probably be needed.

An alternative proposal for the "mini" interface, called the encoded
control approach, was introduced by the U. S. in June, 1981 [31]. This
proposal reduces the number of interchange circuits to two in each direction
plus signal ground. Only customer data appears on the two data circuits and
all control information is exchanged on the two control circuits via time
division multiplexing techniques. Time-critical control functions are serviced
more often to avoid throughput penalties. All present control functions,
including the autocalling functions, are accommodated along with spare
capacity for expanded, functions. Timing information is imbedded in the
data and control circuits in each direction via differential Manchester
encoding. Balanced electrical characteristics (V.ll) and a 9-pin interface
connector are used in a manner which facilitates DTE-DCE, DTE-DTE,
and DCE-DCE operation.

While this alternative approach has many attractive attributes, it also
has drawbacks. Differential Manchester encoding doubles the signaling rate
across the interface and the control circuits need to operate at eight times
the rate of the data circuits to avoid a throughput penalty. This reduces the
interface cable distance at the higher data rates and reduces the maximum
interface data rate. Also, it is a completely new interface-it is not compati­
ble with any existing equipment.

The debate is continuing both nationally (EIA, ANSI) and internation­
ally (ISO, CCITT). Some favor the immediate adoption of a modified version
of X.21 for the "mini" interface so as to achieve the" universal" interface
objective. Modifications to X.21 are proposed to reduce or eliminate some
of the drawbacks cited above but a fully "universal" interface is not
achieved since an X.21 "mini" interface used for asynchronous operation
does not align with the public data network asynchronous interface (X.20).
Others feel that the encoded control approach offers a quantum step
forward and is flexible to accommodate future needs as they become
identified. Still others prefer to retain the status quo pending development
of the interface requirements for the Integrated Services Digital Network by
CCITT. They are concerned about standardizing a "mini" interface which
may have a short life.

At this point, the only certainty is that the debate will continue.
However, it is hoped that the strong desire that has been expressed for the
"universal" interface will lead to the necessary agreements in the 1980s.

References

[1] CCITT Recommendation X25, in CCITT Orange Book, vol. VIII. 2 (Public data networks),
1977.

82 Part II • Physical Layer

[2] CCllT COM VII No. R6, Appendix I to Annex 4, "Proposed draft recommendation­
Reference model for public data network applications," May 1981.

[3] ISO Second Draft Proposal 7498, "Data processing-Open systems interconnection­
Basic reference model," Dec. 1980.

[4] ISO/TC97/SC6 N2132, "Physical layer and physical media for OSI," Oct. 1980.
[5] EIA Standard RS-232-C, "Interface between data terminal equipment and data com­

munication equipment employing serial binary data interchange," Aug. 1969.
[6] EIA Standard RS-449, "General purpose 37-position and 9-position interface for data

terminal equipment and data circuit-terminating equipment employing serial binary data
interchange," November, 1977, and Addendum I to RS-449, Feb. 1980.

[7] CClTT X-Series Recommendations, in CClTT Yellow Book, vols. VIII.2 and VIII.3 (Data
communication networks), 1981.

[8] CClll V-Series Recommendations, in CCITT Yellow Book, vol. VIII. I (Data communica­
tion over the telephone network), 1981.

[9] EIA Standard RS-366-A, "Interface between data terminal equipment and automatic
calling equipment for data communication," March 1979.

[l0] EIA Standard RS-269-B, "Synchronous signaling rates for data transmission," January
1976.

[II] ANSI X3.1, "Synchronous signaling rates for data transmission," 1976.
[12] ANSI X3.36, "Synchronous high-speed data signaling rates between data terminal

equipment and data communication equipment," 1975.
[13] EIA Standard RS-334-A, "Signal quality at interface between data processing terminal

equipment and synchronous data circuit-terminating equipment for serial data transmis­
sion," Aug. 1981.

[14] EIA Standard RS-363, "Standard for specifying signal quality for transmitting and
receiving data processing terminal equipments using serial data transmission at the
interface with non-synchronous data communication equipment, May 1969.

[IS] EIA Standard RS-404, "Standard for start-stop signal qUality between data terminal
equipment and non-synchronous data communication equipment," March 1973.

[16] ISO Draft International Standard 7480, "Information processing start-stop transmission
signal quality at DTE/DCE interfaces," Nov. 1981.

[l7] ISO International Standard 2110, "Data communication-25-pin DTE/DCE interface
connector and pin assignments" (Revision of ISO 2110-1972), 1980.

[18] ISO International Standard 2593, "Connector pin allocations for use with high-speed
terminal equipment," 1973 (being revised as "Data communication-34-pin DTE/DCE
interface connector and pin assignments, DIS 2593, Nov. 1981).

[19] ISO International Standard 4902, "Data communication-37-pin and 9-pin DTE/DCE
interface connc:;ctors and pin assignments," 1980.

[20] ISO International Standard 4903, "Data communication-15-pin DTE/DCE interface
connector and pin assignments," 1980.

[21] EIA Standard RS-422-A, "Electrical characteristics of balanced voltage digital interface
circuits," Dec. 1978.

[22] EIA Standard RS-423-A, "Electrical characteristics of unbalanced voltage digital inter­
face circuits," Dec. 1978.

[23] FED-SID 1030A, "Electrical characteristics of unbalanced voltage digital interface
circuits," Jan. 1980.

[24] MIL-SID 188-114, "Electrical characteristics of digital interface circuits," March 1976.
[25] FED-SID 1020A, "Electrical characteristics of balanced voltage digital interface circuits,"

Jan. 1980.
[26] EIA Standard RS-41O, "Standard for the electrical characteristics of Class A closure

interchange circuits," April 1974.

Chap. 3 • Physical Interfaces and Protocols 83

[27] EIA Industrial Electronics Bulletin No.9, "Application notes for EIA Standard RS-232-
C," May 1971.

[28] EIA Industrial Electronics Bulletin No. 12, "Application notes on interconnection
between interface circuits using RS-449 and RS-232-C," Nov. 1977.

[29] ISO Draft International Standard 7477, "Data processing requirements for DTE to DTE
physical connection using 15- and 37-pin connectors," Dec. 1981.

[30] CCITT COM XVII No. 214, U. S. contribution, "Methods of control information
interchange for the Iuini-interface," Oct. 1979.

[31] U. S. working paper to ISO/TC97/SC6/WG3 "Approaches to the DTE/DCE physical
interface," June 1981.

PART III

Link Control Layer

Data link control (DLC) protocols manage the successful conveyance of
messages from one node to the next. The underlying physical layer that was
described in Part II provides only the transport of a stream of bits from
transmitter to receiver (or receivers) on a link (usually noisy) interconnect­
ing two or more nodes. It is up to the DLC protocol partners of transmitter
and receiver to jointly exploit this bitstream capability for error-free mes­
sage conveyance.

To do this the protocol must accomplish several things. First, synchroni­
zation at the byte level must usually be provided by the DLC, bit synchroni­
zation having been handled at the physical level by the DCE (typically a
modem). Second, the information bits or bytes must be delimited on
transmission in some way so that the receiving DLC protocol partner can
separate off those constituting the message intended for the higher protocol
levels from those intended for itself.

The delimitation function can become complicated when it depends on
unique bit patterns that belong to the protocol exchange between DLC
partners, for then means must be provided (called transparency function) to
take care of the fortuitous appearance of just these bit patterns in the
message actually intended for the higher layers.

Third, since there may be more than one receiver listening to the same
bitstream on a shared transmission medium, and since the choice of which
station is transmitting must change from time to time, a transmission­
reception control function must be provided. This typically includes polling
to solicit messages, addressing to vector messages to the right station, and,
in some cases, simply allowing stations to contend independently for the
shared medium using some prearranged scheme for resolving any "collision"
between contenders.

Fourth, the occasional bit errors must be corrected. Because forward
error correction usually expends too many bits in providing the needed
redundancy, it is customary to use only enough redundant bits for error

85

86 Part III

detection at the receiver; the detection of an error then triggers in some way
repeated retransmissions of the same message until it is received properly.

These four DLC functions are the routine ones that occur during
"steady state" operation of the protocol. In addition there are "transient"
ones that involve activating or deactivating the DLC software, hardware, or
microcode. Also, providing downline IPL (initial program load) function
and exchange of certain parameter settings used at the DLC level are also
commonly regarded as part of the required function of modem DLCs.

The art of Data Link Controls has advanced considerably from the
simple but inefficient and inflexible asynchronous (start-stop) DLCs in
which precious line capacity was wasted in adding to each character fixed
bit patterns for. synchronization. Synchronous character-oriented DLCs
(such as BISYNC) alleviate many of the problems with start-stop, and are
described in Chapter 4.

These character-oriented protocols have proved to retain several disad­
vantages, notably that the same alphabet set (for example, ASCII or EBCDC)

and the same positions in a frame are used for line control characters, text
characters, and device control characters. Thus, a character of text could be
spuriously converted by noise into a character that signals the end of a
frame, for example, Another disadvantage of having line control characters
drawn from the same alphabet as device control and text characters is that
every time a new choice of alphabet is made for the peculiar needs of some
particular end user, a new and different variant of the line control results.
These difficulties as well as bit efficiency problems and other problems were
alleviated in the new "bit-oriented" DLCs of Chapter 5, such as the High
Level Data Link Control (HDLC) and its relatives. In these protocols, line
control information always occurs at its own same place in a frame. Thus,
the time origin of the entire frame must be knocked out of line in order for
link control and data to become confused, a much less likely circumstance
than to have a character in error. The line control commands and responses
are specified as bit patterns that have nothing to do with any alphabet set.

The byte-oriented DLCs of Chapter 4 are still the most widely used
class in today's computer networks. As the new network architectures take
over, the bit-oriented DLCs, described in Chapter 5, are gradually supple­
menting them. Also gaining widespread use, particularly for shared satellite
or local area communications, are the contention-oriented "multiaccess"
protocols detailed in Chapter 6. In these two situations there is a single
sharable transmission resource that provides an any-to-any topological
connectivity between stations. Also, the bandwidth of the medium is very
much larger than the average data rate between station pairs. This combina­
tion of circumstances leads to a set of contention based DLC-Ievel protocols
with a much more probabilistic flavor than the more classical ones of
Chapters 4 and 5.

4

Character-Oriented Link Control

James W. Conard

I. Overview

A data link control protocol is a set of very specific rules governing the
interchange of data over an interconnecting communication link between
business machines.

The business machines may be computers, terminals, message or packet
switches, concentrators, or any of a broad range of data terminal equipment
in any mix. The interconnecting communication links may be assembled in
any of several arrangements and may be comprised of private or common
carrier multipoint, point to point, switched (dial), or nonswitched (dedi­
cated) facilities using cable, land line, microwave, or satellite channels. The
data being interchanged can be represented in many forms and can serve
batched, conversational, processor to processor, inquiry/response, or other
typical applications.

The link control protocol rules typically define initialization of an
already established physical link, control of normal data interchange,
termination of the link at the end of the transaction, and, perhaps most
important from the point of view of the user, techniques to control recovery
from abnormal conditions such as invalid or no response, loss of synchroni­
zation, and faults resulting from anomalies in the communication link.

Link control protocols have traditionally been character-oriented. They
utilize, either singularly or in sequence, defined character structures from a
given code set to convey the information necessary to frame the data and
supervise its interchange. Protocols which use defined character structures
for supervisory control are also known as byte-oriented protocols.

Many variations of the basic character-oriented protocol are possible
and form the subject of this chapter. A major subset, perhaps a separate

87

88 Part III • Link Control Layer

class, uses combinations of characters and byte-length fields to supervise the
linle These are known as byte-count or count-framed protocols. A totally
different class of link control protocols uses positionally located control
fields rather than code set combinations for supervisory control. These
are known as bit-oriented link control protocols and are dealt with in
Chapter 5.

Strictly speaking, the term link control excludes other levels within the
commonly recognized standard layer model of communication control
discussed in Chapter 2. Ideally, the link control level should be independent
of the other levels, should be distinct as to functions performed and services
offered, and should have clearly delineated interfaces with the physical level
protocol below it and the network level protocol above it. Character-oriented
protocols, having evolved with rapidly changing communication require­
ments, have certain characteristics such as intermixed message, device, and
link control, which tend to blur the interface between logically independent
layers. These characteristics led to the development of the many variation of
character-oriented protocols and ultimately to the now emerging bit-oriented
protocols.

It must be remembered that character-oriented protocols as control
mechanisms are concerned solely with the transfer of data over an estab­
lished communications link. They are not concerned with the physical
processes necessary to establish a link at Levell. Nor are they network
protocols. They do not control the flow of information between end points
of a multinodal network. They can, however, be applied between nodes or
between a node and an end point user.

Character-oriented protocols are suitable for two-way alternate and,
less often, for two-way simultaneous operation using a variety of data link
configurations, including full and half-duplex, multipoint, switched, and
dedicated. The two facility configurations most commonly encountered in
association with character-oriented link control are illustrated in Fig. l. A
point-to-point facility is one which interconnects two and only two stations.
Point-to-point faCilities may be either nonswitched, sometimes referred to as
private line or dedicated, or they may be switched. The difference between
switched and nonswitched is one of facility acquisition. In the switched case
the facility must be acquired by the lower physical level protocol prior to
the transfer of data and released at the end of the transfer. Nonswitched
facilities are dedicated and usable on demand.

A multipoint facility very common for these applications, consists of a
single master and two or more remote stations. Transmissions from the
master are received by all remotes. Transmissions from the remotes are
received only by the master. This multipoint arrangement normally requires
four-wire channels.

Chap. 4 • Character-Oriented Link Control

I

I
I
I
I
I

MULTIPOINT
CHANNEL

I NONSWITCHED
I POINT·TO·POINT D-+1 MODEM II-__ C_H_AN_N_E_L __ ---11 MODEM ~ STATION t--B

I
I

I
I
I

I

~--------~y~------~A----~y~--~)
CONTROL LINKS TERMINALS
STATION

Fig. I. Typical communications links.

89

Many special and hybrid combinations of interconnect arrangements
are possible and often encountered. The system designer must be aware of
the type and characteristics of the interconnecting link since these character­
istics often directly influence the choice of protocol and its operational
procedures.

II. Protocol Perspective

Data link control protocols are as old as data communications. Over
the years these protocols have been evolving typically to fulfill the require­
ments of a particular application. Early systems, using Baudot code, had no
inherent link control capability. They relied totally on sequences of data

90 Part III • Link Control Layer

characters to implement supervisory functions. The advent of other char­
acter sets led to protocols using controls derived from these sets. Each
manufacturer developed protocols reflecting the needs of its product line
and usually optimized for a specific implementation. Many users groups
also developed protocols to meet their unique requirements. All of these
various protocols were character-oriented in approach and generally incom­
patible with each other.

Standards organizations in the United States and abroad recognized
the problem and struggled to resolve the incompatibilities. The American
National Standards Institute (ANSI) and the International Standards
Organization (ISO) were especially active in this effort. For lack of stan­
dardization, the prptocols developed by the larger dominant manufacturers
tended to fill the vacuum by becoming, in effect, de facto standards. This
has certainly been the case with IBM's BSC (Binary Synchronous Com­
munication) developed in the late 1960s.

The standards organizations finally reached agreement with the publi­
cation in 1971 of ANSI's X3.28 on the use of ASCII control characters for
link control and of ISO's IS1745. These activities, among standards bodies,
manufacturers, and users groups, continue to produce revised, updated, and
even new character-oriented protocols to keep pace with evolving technol­
ogy and requirements. At the present time the most widely used and
familiar link protocols are those briefly described in the following para­
graphs:

ANSI X3.28 [1]: This protocol standard carries the rather lengthy title
of "Procedures for Use of the Communication Control Characters of
American National Standard Code for Information Interchange in Specified
Data Communication Links." It was first promulgated in 1971 and updated
in 1976. This standard specifies a group of control protocols, called cate­
gories, each designed to meet the requirements of a specific combination of
link configuration and message transfer application. These procedures are
based on the use of ten communication control characters provided in the
ASCII code set.

ISO IS1745 [2]: This internationally accepted protocol is titled "Basic
Mode Control Procedures for Data Communication Systems." It, too, is
based on the use of ten communications control characters to supervise a
data link. Link control is organized into phases of connection, link estab­
lishment, information transfer, termination, and disconnect. The standard
defines formats of messages and supervisory sequences for each of these
phases. It is designed for two-way alternate operation. The current version
of this standard was released in 1975.

ECMA-16 [3]: The European Computer Manufacturers Association
(ECMA) also standardized a character-oriented protocol: "Basic Mode
Control Procedures for Data Communication Systems Using the ECMA

Chap. 4 • Character-Oriented Link Control 91

7-bit Code." This standard closely resembles IS1745 in definition of for­
mats, supervisory sequences, and phases.

IBM BSC [4]: The Binary Synchronous Communication (BSC) proto­
col is the most widely implemented of the protocols developed by the
various manufacturers. It is character-oriented and designed for two-way
alternate operation over point-to-point or multipoint links. It can be imple­
mented using control characters from any of three code sets: EBCDIC, ASCII,

or Six-bit Transcode. BSC utilized nine of the "standard" communication
control characters and supplements these with six additional two-character
sequences to provide additional link control functions.

lATA SLC [5]: Less well known but very widespread in use is the
Synchronous Link Control standardized by the International Air Transport
Association. This protocol supervises two-way simultaneous data transfer
over full duplex links. It utilizes a combination of communication control
characters and character length fields to form control blocks for link
supervision. The control blocks permit identification of message blocks,
sequence numbers, priorities, and other parameters.

DEC DDCMP [6]: Digital Equipment Corporation's "Digital Data
Communications Message Protocol" (DDCMP) is, perhaps, the best known of
the byte-count oriented protocols. It combines communication control
characters and control fields to frame information blocks with supervisory
controls. Complete transparency to the information is achieved through the
use of a byte-count mechanism rather than the more common escape
sequences. DDCMP constitutes the data link control level of Digital Equip­
ment Corporation's DNA architecture described in Chapter lO.

The protocols listed above represent only a very small sample of the
character-oriented protocols in use today. Many variations have been devel­
oped and implemented. Often a protocol will be developed and optimized
for a very specific parameter such as response time, efficiency over a specific
facility, or throughput. While satisfying a particular requireme~t, such
specialization usually limits widespread application.

III. Protocol Characteristics

Character-oriented protocols, despite the wide variety of application
and implementation para~eters, generally share a common set of character­
istics. They are much alike in basic structure, functions performed, phases of
operation, code set utilization, and control character definition. The various
protocols differ in how these fundamental characteristics are applied to a
particular situation. Before examining the details of protocol operation it is
apropos to review these basic characteristics.

92 Part ill • Link Control Layer

A. Functions

The fundamental task of any link control protocol involves the inter­
change of information between senders and receivers over a given intercon­
necting link. The integrity of the information being transferred is a
paramount consideration. Garbled or lost information is of no value to the
user and can often be disastrous. If the data interchange always took place
between two stations over an error-free point-to-point facility only a rudi­
mentary data link control procedure would be necessary. The data com­
munications environment is, however, far from ideal and exhibits character­
istics which must be accommodated by the protocol.

In addition to the requirements imposed by the link itself, the protocol
must contend with requirements which derive from the application, the
nature of the information, i.e., conversational, batch, inquiry/response, the
need for transparent operation, recovery techniques, flow control, and
others. To accomplish this task a basic set of link protocol functions have
evolved. These are described next.

Frame Control delimits the beginning and end of transmission blocks
by the use of delimiting characters and a character count in byte-count­
oriented protocols. This is necessary since extremely long blocks of informa­
tion are unlikely to survive transmission through the electrically noisy
medium without error. The block mechanism provides a method of imple­
menting and controlling a block length chosen as most likely to survive and
thus keep retransmission to a minimum. The mechanism also provides the
ability to identify when information should, but may not, be present, and
finally, provides a convenient method of signaling when the checking
mechanism is to be active. Frame control characters are also commonly
used to acquire, maintain, and if necessary, reestablish synchronization
between sender and receiver. This is absolutely essential if the receiver is to
decode the information correctly. Note that bit synchronization, which is no
less critical, is a physical level function.

Error Control provides for the detection of errors, the acknowledgement
of correctly received blocks and messages, and the requests for retransmis­
sion of incorrectly received messages. The most commonly used error
detection techniques are vertical and longitudinal parity checks, and cyclic
redundancy checks. These are described later in this chapter. Another
method of error control is sequence control. Sequence control mechanizes a
method of numbering blocks and messages to facilitate proper retransmis­
sion and to eliminate or at least identify lost or duplicate messages.

Initialization Control governs the establishment of an active data link
over a communication facility that has been idle. It usually involves an
exchange of sequences identifying a particular sender or receiver among the
many present on a multipoint facility or among the almost infinite number

Chap. 4 • Character-Oriented Link Control 93

connectable through a switched facility. Polling and calling are typical of
initialization control.

Flow Control sequences regulate the flow of information across the data
link. They permit a receiver to exercise some control of the amount and rate
of information flowing into his system so as to avoid overwhelming his
capacity to accept and process the incoming data. At link level, flow control
is limited to the ability to accept or not accept information transfers.

A further discussion of flow control at the data link level and other
flow control mechanisms at higher levels is given in Chapter 13.

Link Management sequences are used to supervise the links, by control­
ling transmission direction, establishing and terminating logical connec­
tions, and identifying which station is going to send and which is going to
receive. Link management responsibility usually resides in a master or
control station.

Transparency is a characteristic of some, but not all, character-oriented
protocols. It allows the link control to be totally independent of the pattern
or code structure of the information being transmitted. A transparent link
control is able to transfer machine language data streams without the
information interfering with link control functions. Character-oriented link
protocols require escape or count mechanisms to implement transparent
operation.

Abnormal Recovery controls supervise action to be taken to recover
from abnormal occurrences such as illegal sequence, cessation of block flow,
loss of responses, and other protocol defined exception conditions. Time­
outs are a common method of detecting such conditions.

How the functions are implemented is the basis for the more detailed
review of protocol operation in a later section.

B. Code Sets and Control Characters

Character-oriented protocols make use of defined characters from a
given code set to execute communications supervisory functions. The most
common code set in use is the American National Standard Code for
Information Interchange (ASCII) which is defined in ANSI X3.4-1976 and
reproduced here as Fig. 2. This code set is basically identical to the CCITT

Alphabet 5 and the ISO Standard 646.
Of interest to the communicator are the ten characters of these code

sets which are designated as communication control characters. The primary
functions of these characters will be defined next, but first it will be useful
to clarify the terms "message" and "block." A message is an ordered
sequence of characters arranged to convey information from originator to
user. A message may be contained in one or more blocks. A block is a group

94 Part ill • Link Control Layer

~
0 0 0 b6 0 1 1 1 1

B bS
0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1
'ts b. b3 b2 b , ~

0 1 2 3 4 5 6 7 I I I I ROW I

0 0 0 0 0 NUL DLE SP 0 @ P p

0 0 0 1 1 SOH DCl ! 1 A Q a q

0 0 1 0 2 STX DC2 " 2 B R b r

0 0 1 1 3 ETX DC3 # 3 C 5 c 5

0 1 0 0 4 EOT DC4 $ 4 D T d t

0 1 0 1 5 ENQ NAK % 5 E U e u

0 1 1 0 6 ACK 5YN & 6 F V f v

0 1 1 1 7 BEL ETB 7 G W 9 w

1 0 0 0 8 B5 CAN (8 H X h x

1 0 0 1 9 HT EM) 9 I Y i Y

1 0 1 0 10 LF 5UB * J Z j z

1 0 1 1 11 VT ESC + K [k (

1 1 0 0 12 FF FS < L \ I ,

1 1 0 1 13 CR G5 - = M J m)

1 1 1 0 14 50 RS > N - n
~

1 1 1 1 15 51 US ! ? 0 - 0 DEL

Fig. 2. ASCII Code Set: Communications control characters are outlined.

of characters arranged for technical or logical reasons to be transmitted as a
unit. A block may contain an entire message or part of a message.

SOH (Start of Heading). A control character which identifies the
beginning of a sequence of characters which constitutes the heading of
message. The sequence usually contains addressing and routing information.

STX (Start of Text). A character delimiting that part of a message
which constitutes the text. An STX is often used to terminate the header
which began with SOH.

ETX (End of Text). A control character used to delimit the end of a
series of characters constituting the text of a message.

EOT (End of Transmission). This control character signifies the end of
a transmission which may have contained one or more messages. It usually
implies relinquishment of the data link.

ENQ (Enquiry). A communications control character used to solicit a
response from another station. It may be used as a status request or as a
request for identification, or both.

ACK (Acknowledgment). A control character which represents an
affirmative response to a sender. It acknowledges error-free reception of a
block or segment of a message.

Chap. 4 • Cbaracter-OrientedLink Control 9S

DLE (Data Link Escape). A control character which changes the
meaning of a limited set of contiguous following characters. It is used to
provide supplementary control the most common of which is transparent
operation.

NAK (Negative Acknowledgment). This character represents a negative
response from the receiver to the sender. It indicates that a block of
information has been received with errors and must be retransmitted.

SYN (Synchronous Idle). A communications control character used to
establish and to maintain character synchronization between the sender and
the receiver. It is also often used as a transmission idle in the absence of any
data.

Most Significant Bits (Bit 8 Transmitted Last)

bit Positions 8,7,6,5)

Sit Positions
0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

43
21 ~~ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0000 0 NU~ DLE DS SP & - () \ 0

0001 1 SOH DCI SOS a j '"'\... A J 1

0010 2 STX DC2 FS SYN

E
b k s 8 K S 2

u:: 0011 3 ETX DC3 c I t C L T 3
"0

~ 0100 4 PF RES BYP PN d m u D M U 4
.~

c:
0101 5 HT NL LF RS e e n v E N V 5

I-
~

0110 6 LC BS ETB UC f 0 w F 0 W 6 ..,
iii
l!l 0111 7 DEL IL ESC EOT g P x G P X 7
iii ..,

1000 8 CAN h q Y H Q Y 8 c:
<0

" :;:
Z 9 'c 1001 9 RLF EM \ i r z I R

'" Vi
t:: \010 10 SMM CC SM ¢ !

, : ,
<0

'"J
11 VT $ # 1011

1100 12 FF IFS DC4 < * % @

\101 13 CR IGS ENQ NAK () -

1110 14 SO IRS ACK + ; > =

1111 15 SI IUS BEL SUB I --, ? "

Fig. 3. EBCDIC code set.

96 Part ill • Link Control Layer

ETB (End of Transmission Block). This character signifies the end of
block of data for communication control purposes.

These ten control characters are, in some protocols, combined with
other characters to form a sequence for additional control purposes. For
example DLE is combined with STX to indicate the beginning of a
transparent data sequence which would end with the sequence DLE ETX.

Another code set commonly encountered is the Extended Binary Coded
Decimal Interchange Code (EBCDIC). This code set also contains the com­
munication control characters defined above. See Fig. 3.

C. Transmission Error Control

The three most common error detection methods used by character­
oriented protocols are the Vertical Redundancy Check (VRC), the Longitu­
dinal Redundancy Check (LRC), and the Cyclic Redundancy Check (CRC).
VRC and LRC are often combined.

VRC is simply a parity scheme in which a bit is appended to the bits
which comprise the character. The value of the appended bit is calculated to
provide either an "odd" number of I bits in the character or an "even"
number of 1 bits in the character. The transmitter calculates and appends
the parity bit. The receiver also calculates the correct parity bit and
compares it with the bit appended to the incoming character. Failure to
compare indicates that a transmission error has occurred. VRC schemes can
only detect an odd number of bit errors in a character.

LRC is identical in implementation to VRC except that it is computed
on a sequence of successive characters. The result is transmitted as an extra
check character called an LRC character. LRC schemes are vulnerable to
double-bit errors in the row of characters.

Even when VRC and LRC techniques are combined there are many
possibilities for errors to occur in such a way as to be undetected by the
error detection technique. This shortcoming led to the development of the
much more powerful detection technique known as Cyclic Redundance
Check (CRC).

A complete treatment of the theory of cyclic codes is beyond the scope
of this article. Very simply stated, however, a cyclic redundancy code is one
which makes use of the mathematical properties of the block of data being
transmitted. Any sequence of bits represents the coefficients of a poly­
nomial. If the polynomial representing the message is divided by another
polynomial which represents the cyclic generator polynomial the result will
be a remainder which can be appended to the message as check bits and
transmitted as part of the block. An identical process performed by the
receiver on the incoming block should result in the same remainder. If it
does not, a transmission error has occurred. Generator polynomials are very

Chap. 4 • Character-Oriented Link Control 97

carefully chosen to be immune to the particular error properties of the
transmission medium. The most commonly used CRCs in character-ori­
ented protocols are the CRC-16 and the CeITT VAl polynomial. CRC-16 is
represented by the algebraic expression X l6 + X I5 + X2 + 1. It will detect
all errors occurring in bursts up to 16 bits in length and over 99% of bursts
longer than 16 bits. The VAl polynomial is represented as X I6 + Xl2 + X 5

+ 1 and has performance capability similar to that of CRC-16. Both have
16 check bits which are appended to the block as two 8-bit characters.

D. Phases of Link Control

Character-orienteq protocols are generally structured as a series of
well-ordered logical processes as illustrated in Fig. 4. ANSI calls these

ANSI
CATEGORIES

r- ESTABLISHMENT/
TERMINATION
SUBCATEGORIES __

MESSAGE TRANSFER
SUBCATEGORIES ___

I
CONNECT

LINK ESTABLISHMENT

INFORMATION TRANSFER

TERMINATION

CLEAR

~
Fig. 4. Communications phases.

ISO
PHASES

2

SPAN OF
3 LINK CONTROL

STANDARDS

4

5

98 Part III • Link Control Layer

processes subcategories while ISO calls them phases. In X3.28, in fact,
ANSI creates protocols by combining an information transfer category with
an establishment/termination category. Note that of the five phases il­
lustrated, two, the connect and clear phases, are associated with the level I
protocol. Let's look at each of these phases:

Connect. The connect phase consists of those processes associated with
establishing a connection over a switched facility such as provided by a
common carrier. The process normally includes off-hook signaling, switch­
ing, and an exchange of identification. These functions, as stated, are
normally provided by level 1 protocol and are not required on dedicated
facilities.

Link Establi~hment. Link Establishment is the first phase in the span of
link control protocols. This phase includes processes required to initialize
data transfer over an already established physical link. Polling (inviting to
send) and selecting (calling) are typical processes.

Information Transfer. This phase includes processes associated with the
objective of link control; the transfer of data. It begins following link
establishment and terminates with the end of the message or data transfer.
It includes the actual transfer between connected station comprising the
message and also includes the acknowledgment process.

Termination. The termination process consists of those functions asso­
ciated with relinquishing control of the link following transmission of the
message or messages. Control is normally returned to the master or control
station in a multipoint link who can then return to link establishment phase
to initialize transfer to another station. The termination phase can also
initiate physical disconnect on a switched connection.

Clear. The clear phase functions to release the facility by signaling
on-hook. These functions, like the connect phase, are normally part of level
I protocol.

IV. Protocol Operation

Having reviewed the characteristics which form the common frame­
work for the various character-oriented protocols we can now examine in
more detail the "how" of these protocols.

A specific category of ANSI X3.28 has been chosen as being typical of
the most common character-oriented protocols. This protocol will be de­
scribed in terms of the establishment, information transfer, and termination
phases described earlier.

The objective of this protocol is to supervise the transfer of messages
over a two-way alternate dedicated multipoint link. One station is desig­
nated as the control or master station. The blocks of data being transferred

Chap. 4 • Character-Oriented Link Control 99

may constitute an entire message of a part of a message. VRC /LRC is used
as an error detection technique.

A. Establishing the Data Link

Since a dedicated communications facility has been assigned to the
link, the control station may initiate the link without the need to acquire a
facility as would be necessary on a nondedicated switched network. The
control station may establish the link at any time by either polling or
calling. The control procedure is illustrated in Fig. 5. Polling and calling are
distinguished by the use of unique addresses in the prefix preceding ENQ.
The control station [Fig. 5(1)] wishing to solicit input messages from one of
the tributary stations sends a polling sequence [Fig. 5(2)] consisting of the
control character ENQ and the address of the selected station.

The addressed tributary responds in one of two ways. If it has no
message to send it responds with the terminating control character EOT
[Fig. 5(5), (14)], thus returning control to the control station, which may
then poll or call another station.

If the addressed tributary has a message to send it enters the informa­
tion transfer phase [Fig. 5(4)] described later.

A third possibility is that the control station receives either no reply or
an invalid reply to its poll [Fig. 5(6)]. In this event, usually detected by a
timeout, the control station terminates with an EOT [Fig. 5(14)] before
resuming polling or calling.

The control station having messages to deliver to one of the tributaries
selects or calls that tributary by sending a calling sequence [Fig. 5(1)]
consisting of the control character ENQ preceded by SYN characters and
the tributary's call address.

The addressed tributary, recognizing its call address, has one of two
choices. If it is ready to receive messages it sends the acknowledgement
sequence ACK 0 [Fig. 5(8)], which is represented by the sequence DLE O.
The control station, upon detecting this reply, enters the information
transfer phase.

The two-character acknowledgment sequence is a technique used to
provide an additional check on transmission integrity by the use of alternat­
ing acknowledgments. The first and all odd-numbered blocks of a received
sequence are acknowledged with the sequence ACK I transmitted as
DLE 1. The second and all even-numbered blocks of the sequence are
acknowledged by the sequence ACK O. The receipt of two successive even or
odd acknowledgment, e.g., ACK 0, ACK 0, indicates the loss of a transmis­
sion block. To return to our called tributary, if it is not ready to receive
traffic it responds with the control character NAK [Fig. 5(9)]. The control
station has now the option of calling the same tributary again [Fig. 5(11),
(7)] or terminating the exchange with an EOT [Fig. 5(12), (14)].

E
S

T
A

B
L

IS
H

M
E

N
T

 P
R

O
C

E
D

lJ
IR

'E

(5
)

E

P
re

fi
x

N

(I
)

(2
)

a
(4

)

In
va

lid
 o

r
-
-

no
 r

es
po

ns
e

(3
)

(6
)

S
e

le
ct

io
n

 E

~~
//

//
/0

A'
;

P
re

fi
x

~
~
P
r
e
f
i
x
 I
~C

"'
"

(7
)

a
/j

~
~
K
/

~
&
N
;

~(
Pr
ef
ix
)~

A;

,4

l
~ ;

;(
~r
i)
~/
 ~

(I
I)

.

M
E

S
S

A
G

E
 T

R
A

N
S

F
E

R
 I

T
E

R
M

IN
A

T
IO

N
 P

R
O

C
E

D
U

R
E

P

R
O

C
E

D
U

R
E

I
M

es
sa

oe

tr
a

n
sf

e
r

..l

su
bc

at
eg

or
ie

s
A

 I-
A

4
,

B
 1

,8
2

,
I

C
I,

 C
2

,
01

,
E

I-
E

3

I J I I I I 1
(1

2)

I I I I

I I I I 1 I I I I I I I I I

Tc

re

(1
3)

 p
r

m
in

a
te

~
0

T

(1
4)

,v
er

y
oc

ed
ur

es

S
O

U
R

C
E

:
A

N
S

I
3

.2
8

Fi
g.

 5
.

Su
bc

at
eg

or
y

2.
4:

 T
w

o-
w

ay
 a

lt
er

na
te

,
no

ns
w

itc
he

d
m

ul
ti

po
in

t
w

ith
 c

en
tr

al
iz

ed
 o

pe
ra

ti
on

.
C

ro
ss

-h
at

ch
ed

 a
re

a
is

 s
la

ve
 r

es
po

ns
e.

i ~ == • i i i

Chap. 4 • Character-Oriented Link Control 101

Again the possibility exists that the control station will receive an
invalid reply of no reply [Fig. 5(10)] to its calling sequence. In this event the
control station may either terminate with an EOT [Fig. 5(14)], recall the
same tributary [Fig. 5(11), (7)], or exit to a recovery procedure [Fig. 5(13)].
Usually a number of retries are made before initiating recovery.

B. Information Transfer

Information transfer begins under control of the master station follow­
ing successful establishment of the data link. The master station can be the
control station which has messages to send and which has successfully
selected a tributary station. The master station could also be one of the
tributary stations which has been successfully polled and assigned master
status when it responded with an indication that it had traffic to send.

The information transfer phase is illustrated in Fig. 6. The station
begins transmission of the first message block with either SOH [Fig. 6(2)] if
the message has a heading, or STX if it does not [Fig. 6(3), (4)]. Following
blocks which continue the heading are initiated with SOH. Following, i.e.,
intermediate blocks, which begin or continue the text of a message are
started with STX.

Transmission of the block continues with data characters until the
system-defined block length is reached. At this point the station appends the
end-of-block sequence ETB BCC [Fig. 6(5)] or the end-of-message sequence
ETX BCC [Fig. 6(6)] if the block is the last block of the message. The BCC
is the block check character, in this case a single LRC character. At the
receiver this incoming stream of characters is examined and appropriate
action taken. The SOH character is recognized as both the start of block
and the start of message character. As the start of block character it initiates
the parity-checking mechanism. The STX character was recognized as the
start of block character and initiated parity accumulation. ETB and ETX
initiate parity check comparison and line turnaround for a reply.

If the first block is Teceived correctly and the station is ready to receive
another block it transmits the positive acknowledgment sequence ACK 1
[Figure 6(8)]. ACK 0 would be used as the positive reply to the second block
using the alternate acknowledgment method discussed earlier. The master
station receiving the acknowledgment may transmit the next block [Fig.
6(7)] or, if the acknowledged block was the last of the message, initiate
termination [Fig. 6(9)].

Were the block received incorrectly and not accepted, the receiving
station would respond with NAK [Fig. 6(10)], indicating to the master
station that retransmission is required. Usually a particular block will be
retransmitted [Fig. 6(11), (7)] several times before a recovery procedure [Fig.
6(12)] is invoked. Note that the NAK does not alter the sequence of the

E
S

T
A

B
L

IS
H

M
E

N
T

P

R
O

C
E

D
U

R
E

(I
)

(3
)

S

'.--T
 X (4
)

M
E

S
S

A
G

E

T
R

A
N

S
F

E
R

 P
R

O
C

E
D

U
R

E

T
E

R
M

IN
A

T
IO

N

I P
R

O
C

E
D

U
R

E

I

S{
//
//
~A
~

,
I
 (9

)

.-, ~
;
I

4
E

B

,
T

C

ttL

B
C

(5

)

(7
)

_~
i

'"' ..
(P

re
fi

x
)
/A

~
,

."5
1

~
no

 r
eP

ly
/~

:;

//
/(

1
3

)/
/,

(1
2)

E

(P
re

fi
x
)

N)
(1

4
)

Q

T
o

re
co

ve
ry

p

ro
ce

d
u

re
s

S
O

U
R

C
E

:
A

N
S

I
3.

28

Fi
g.

 6
.

S
ub

ca
te

go
ry

 B
2:

 M
es

sa
ge

-a
ss

oc
ia

te
d

bl
oc

ki
ng

, w
it

h
lo

ng
it

ud
in

al
 c

he
ck

in
g

an
d

al
te

rn
at

in
g

ac
kn

ow
le

dg
m

en
ts

.

.... S ! s • ~ ~ [f

Chap. 4 • Character-Oriented Link Control 103

alternating acknowledgments. The receiver acknowledges the retransmitted
block with the same ACK 1 or ACK 0 it would have used for a successful
first transmission. Were the master to receive the wrong ACK, e.g., ACK 1
when ACK 0 was expected, it would retransmit that block as though a NAK
had been received.

If the master station fails to receive a reply or received an invalid reply
[Fig. 6(13)] to a transmitted block it will usually send an ENQ [Fig. 6(14)]
after an appropriate timeout. The receiving station will then repeat its last
reply. Several unsuccessful attempts at sending an ENQ to solicit a reply
will result in initiation of a recovery procedure [Fig. 6(15)].

C. Termination of the Data Link

The data link is terminated by the transmission of the control character
EOT. Termination may be initiated by the master following reception of a
positive acknowledgment to the last block of a message. Termination is also
initiated by a control station which has received an invalid or no reply to a
poll or a call, or a NAK to a call. Termination can be initiated by a polled
station which has no traffic to send.

D. Abnormal Conditions and Fault Recovery

Any of several causes such as line noise, line breaks, operator errors, or
equipment malfunction may cause operation to violate the established
protocol procedures. This usually results in an abnormal or fault condition.
Recovery procedures are intended to aid in reestablishing normal operation.
Recovery procedures can often only detect the condition and sometimes
require normal intervention to correct the problem. More sophisticated
systems may permit a degree of automatic recovery.

Timers play a very significant role in the detection of and recovery
from fault conditions. In the protocol just described the prudent system
designer would have implemented at least two timers. These timers and their
role in fault recovery are as follows:

1. Response Timer. This timer protects a sending station against an
invalid or missing response. It would be started with the transmission of any
control character requiring a response such as ETX, ETB, or ENQ. It would
be stopped when the valid reply was received. If it expires appropriate
action such as retransmission N times is initiated. If link recovery does not
occur, higher-level intervention by an operator or recovery program is
required. Typical values for a response timer are in the range of 2-3 s.
Timer values are, of course, highly dependent on the properties and parame­
ters of the specific system.

2. Receive Timer. A receive timer will protect against failure to receive
or recognize an end-of-block character ETB or ETX. Such a timer is started

104 Part III • Link Control Layer

on detection of a start of block character SOH or STX, restarted with
continuing data input, and stopped upon recognition of an end-of-block
character. Expiration of this timer, usually in the range of 500 ms, initiates a
search for character synchronization, discarded of the faulted block, and
notification to higher level.

Other possible timer uses are to detect no activity on a line and to
detect a missed DLE EOT where this sequence is used to initiate a switched
circuit disconnect. Failure to clear a switched circuit connection can be very
expensive!

E. Variations

Many variations in procedure and many options to the standard
procedure are available. Most are designed for particular applications and
situations but those described here have come into fairly widespread use.
Most are subject to bilateral agreement, which is to say that both stations
involved in the interchange must be aware of their presence.

1. Block Abort. A block abort occurs when the sending station in the
process of sending a block decides for whatever reason to end transmission
and terminate prior to the normal end of block. An abort is accomplished
by transmitting the control character ENQ and then halting. The receiving
station detects the ENQ (instead of ETB or ETX), discards the partial
block, sends a NAK, and waits for the sender to resume.

2. Send Abort. Should a sending station decide to terminate a transmis­
sion after receiving an acknowledgment for a block but before sending the
next block it may do so by sending EOT. This will cause the receiving
terminal to discard the incomplete incoming message and wait for the
control station to reestablish the link.

3. Receive Abort. A receiving station can abort a sequence of incoming
blocks by sending EOT in lieu of its normal acknowledgment response. It
may do this, for example, if it has become unable to receive owing to a fault
or lack of storage. The sending station would normally try to recall the
station and resend the message.

4. Temporary Delay. This variation allows a receiver to temporarily
delay blocks coming from a sender. It is signaled by sending DLE; in place
of the usual acknowledgment. This sequence, known as WACK, indicates to
the sender that the block has been received correctly but that a temporary
delay is required. The sender will send an ENQ to which the receiver will
respond with another DLE;. This will continue until the receiver responds
to an ENQ with the appropriate ACK or until the sender loses patience and
the initiates recovery procedures.

5. Reverse Interrupt. Another variation in procedure allows a receiving
station to ask a sending station to terminate the transmission so that the

Chap. 4 • Character-Oriented Link Control 105

receiving station may gain access to the line. This would be useful for
high-priority traffic as an example. The receiver asks for a reverse interrupt
by transmitting the sequence DLE < in lieu of its normal acknowledgment
sequence. The sender treats the DLE < as a positive acknowledgment and
releases the line by transmitting EOT at the earliest opportunity.

6. Synchronization Sequence. If the receiver is to accurately locate and
decode data characters from an incoming bit stream it must acquire and
maintain character synchronization with the transmitter. In synchronous
systems this is accomplished by the transmission of a synchronizing char­
acter called SYN at the beginning of a data stream, or following any period
when no characters have been transmitted. Since there is a high probability
that the first character of a stream of data will be distorted or errored, most
protocols require that a minimum of two SYN characters precede the
control or data characters. Many implementations require three or even four
SYN characters. This allows the receiver to search for two successive SYN
characters before declaring that synchronization has been acquired.

For the sake of simplicity, the SYN characters have been omitted from
control sequences described in this chapter. It must be remembered that
sequences such as ENQ, SOH, STX, EOT, and ACK are actually trans­
mitted with two or more preceding SYNs, as for example SYN SYN ENQ
or SYN SYN EOT.

7. Pad Characters. Pad characters are used by some protocols to assure
that the first and last characters of a transmission are fully and properly
transmitted by the associated data set. At the start of a data stream the pad
assures that the receiver is prepared to receive and searching for synchroni­
zation. At the end of the data stream, the pad guarantees that the last
significant character has been transmitted by the data set before it turns off
for line turnaround. Most protocols define the leading pad as a SYN
character and the trailing pad as an all-l's character.

8. Prefixes. In many protocols the control sequences consist of a prefix
followed by the communication control character. The use of a prefix must
be by bilateral agreement. When used they usually consist of up to 15
characters, which must be other than communication control characters.
Prefixes are often used to convey status information or station identity
especially when operating on switched network facilities where it is im­
portant to verify proper connection. The control character EOT is never
preceded by a prefix. DLE EOT, however, is often used in switched network
operation to initiate a disconnect of the switched circuit.

F. Transparency

One of the major and most often encountered variations to the basic
data link control protocol is transparent operation. As defined earlier,

106 Part ill • Link Control Layer

transparent operation provides the link control with the ability to treat all
transmitted and received characters, including normally restricted control
characters, as data.

In character-oriented protocols transparent operation is implemented
by the use of the Data Link Escape (DLE) character to form what are
known as code extension sequences. Transparent operation is illustrated in
Fig. 7 and operates as described next.

In the transparent mode each control character is preceded by a DLE
character to form two-character sequences, examples of which are:

DLE STX Initiates the transparent mode for the following data block.
DLE ETB Terminates a block of transparent data.
DLE ETX Terminates the last block of transparent data.
DLE SYN Character synchronization sequence inserted into trans­

parent transmitted blocks at approximately 1-s intervals;
not accumulated in the BCC.

DLE ENQ Aborts the transmission of a block of transparent data;
used by the transmitting terminal.

DLE DLE Permits the transmission of a DLE as data within a trans­
parent block.

The DLE character effectively instructs the receiver to recognize the
next character as a control character and to ignore control characters (which
may appear in transparent text) not preceded by DLE. Since the character
DLE itself may appear in transparent text, the receiver would decode the
following character as a control character. This is prevented by having the
transmitter insert an extra DLE following one which appears in text,
creating the two-character sequence DLE DLE. The receiver recognizing
this sequence deletes one DLE, restoring the original data stream, and treats
the other as valid data.

G. Byte Count Protocols

The use of escape sequences, based on DLE, introduces considerable
complexity to the character-oriented protocols. Great care is required in
either hardware or software implementation to avoid misinterpretation of
control sequences.

Protocols, such as DDCMP, described in Chapter 10, have been devised
which solve the transparency problem without the use of escape characters.
These protocols are known as byte-count-oriented protocols since they
achieve transparency by keeping track of character count and transmitting
this information with each block.

The character count is normally transmitted as a positionally located
field usually immediately following the SYN characters. The field length is

N
S

F
E

R
 P

R
O

C
E

D
U

R
E

M

E
S

S
A

G
E

 T
R

A

H
M

E
N

T

E
S

T
A

B
L

IS

R
E

P

R
O

C
E

D
U

(3
)

D
E

C

~
D
S

L
T

A

O
S

L

T
IE

XC

L
0

E
X

(6

)
(I

)
I
•

~2~

(4
)

D
E

C

L
T

R

E
B

C

(5
)

(7
)

E

(P
re

fi
x

)
N

(1

4)

Q

I T
E

R
M

IN
A

T
W

EN

P
R

O
C

E
D

U

I I I I I I

(9
)

(1
2)

To
 r

ec
:o

ve
ry

p

ro
c:

ed
u

re
.

S
O

U
R

C
E

:
A

N
S

I
3.

28

i ~ • ~ a If ~ ~ [~ ~
 [

Fi
g.

7.

Su

bc
at

eg
or

y
D

I:

M
es

sa
ge

-i
nd

ep
en

de
nt

 b
lo

ck
in

g,

w
ith

 c
yc

lic

ch
ec

ki
ng

,
al

te
rn

at
in

g
ac

kn
ow

le
dg

m
en

ts
,

an
d

tr
an

sp
ar

en
t

he
ad

in
g

an
d

...

~

S

108 Part III • Link Control Layer

in character increments and indicates the number of characters comprising
the block. The receiver then counts characters instead of searching for a
control character to determine the location of the check characters and the
end of the block.

H. Acknowledgment

Variations in the technique used to acknowledge blocks are quite
common. The majority of these fall into one of the following categories:

No Acknowledgment. Protocols are in operation which use no acknowl­
edgment method at all. Usually these would be found in situations where
only one-way facilities may be used and where the data itself is highly
redundant so that the receiver could discard an obviously errored block.

Single Acknowledgment. In this method the transmitter sends a block of
information and waits for a reply. The reply is a single character providing a
positive (ACK) or negative (NAK) reply. If positive the transmitter sends
the next block. If negative the transmitter retransmits the last block.

Alternating Acknowledgments. This technique is the same as the single
acknowledgement method with the exception that positive acknowledgments
alternate odd and even blocks with a two-character sequences such as ACK
1 and ACK O. This provides an additional protection against lost blocks.

Block Numbering. A much more sophisticated acknowledgment tech­
nique involves the numbering and sequencing of each transmitted block.
Using this method, sometimes referred to as "pipelining," the transmitter
may send blocks continuously, each block having been assigned and identi­
fied with a block number. The receiver, using a reverse channel, sends
acknowledgments containing the block numbers correctly received. A NAK
from the receiver causes the transmitter to retransmit all blocks sent after
the last correctly received block. Many variations of this technique have
been implemented. They all require a backward channel, usually a full
duplex channel. This technique is of course much more efficient than
block-by-block acknowledgment.

V. Implementation Considerations

Despite the existence of standards, the link control implementor must
be aware of the many characteristics of the communications environment
that are either subject to bilateral agreement or influence the behavior of the
control protocol. Among these are the following:

• The physical facility and its interface requirements.
• The precise characteristics of the stations on the link in terms of the

protocol options and variations implemented.

Chap. 4 • Character-Oriented Link Control 109

• The actual code set utilized.
• The formats of the messages being interchanged.
• Additional or optional link controls being implemented.
• The recovery procedures being used by all stations.
• The requirement for synchronization.
• The maximum block length accommodated and provisions for short

blocks.

One way to assure that all parameters, characteristics, and functional
behavior are well understood is to create a protocol specification for the
specific application. This specification can be based on the "standard"
protocol but is expanded to include all options, timers, bilateral agreements,
and unique characteristics if any. The document can then be reviewed and
revised until all parties sharing the communication link agree on its content.

VI. Limitations

Even though character-oriented protocols represent the vast majority of
link control protocols in use today, it has long been recognized that they
suffer from many deficiencies. Among these are the following:

1. The necessity to distinguish between data and control characters
within a code set places a burden on hardware and software imple­
mentation.

2. The assignment of characters for link control subtracts from the
combinations otherwise available for information transfer.

3. The character orientation meant that they were not naturally trans­
parent to the structure or encoding of the text.

4. Transparency could only be achieved by invoking complicated escape
techniques and at the expense of incompatibility with nontrans­
parent protocols.

5. The mixture of message control, device control, and link control
forced a significant amount of processing at a low functional level,
and blurred the interface between these logically independent func­
tions.

6. Error checking is usually done only on the text, thus exposing
supervisory sequences to undetected errors which complicate error
recovery.

7. The inherent two-way alternate nature of these protocols does not
economically utilize full-duplex facilities.

8. The rigid structure of character-oriented protocols lacks flexibility
and expandability.

110 Part ill • Link Control Layer

Many deviations and vanatlOns have been devised in attempts to
improve the character-oriented protocols. To a great extent these have been
unsuccessful. The explosion in information technolt>gy combined with the
rapid evolution in hardware have begun to overwhelm the ability of char­
acter-oriented protocols to keep pace.

This inability to overcome the inherent deficiencies of the character­
oriented protocols was the impetus for the development of a whole new
family of link control protocols now known as bit-oriented protocols.

Despite their deficiencies and despite the rapid emergence of the
bit-oriented protocols, the character-oriented protocols can be expected to
be with us well into the future, primarily because of widescale implementa­
tion. They have served our industry well.

References

[I] ANSI X3.28-1976: "American National Standard procedure for the use of the communi­
cation control characters of American National Standard code for information inter­
change in specified data communication links." American National Standards Institute,
Inc., New York.

[2] IS 1745-1975, "Basic mode control procedures for data communication systems," Interna­
tional Standards Organization, Geneva, Switzerland.

[3] ECMA-16, "Basic mode control procedures for data communication using the ECMA 7
bit code," European Computer Manufacturing Association.

[4] IBM BSC, "General information-Binary synchronous communications," Publication
GA27-3004-1, IBM System Reference Library.

[5] lATA SLC, "Synchronous Link control procedures," ATAjIATA Interline Communica­
tions Manual, International Air Transport Association, Montreal, Canada.

[6] DEC DDCMP, "Digital Data Communication message protocol," Digital Equipment
Corporation.

[7] ANSI X3.4-1977, "American National Standard code for information interchange,"
American National Standards Institute, New York.

5

Bit-Oriented Data Link Control

David E. Carlson.

I. Introduction

A new breed of data link control is emerging today. Known under a
variety of names and mnemonics-ADCCP, HDLC, LAPB, BDLC, SDLC,
UDLC, etc.-it is based on a bit-oriented, rather than character-oriented,
organization and format. It offers a high level of flexibility, enhanceability,
adaptability, reliability, and efficiency of operation for today's as well as for
tomorrow's synchronous data communications needs.

A. Historical Background

Bit-oriented data link control procedures had their beginnings ap­
proximately a decade ago. It was then that it became evident that the
various existing character-oriented data link control procedures (Chapter 4)
that had served so well in so many applications (and still do in some) were
not well suited for many of the newer interactive applications being pursued.
Technology had provided more reliable transmission facilities, more intelli­
gent and cost-effective computers and terminals, and new frontiers for their
use in almost every segment of the business, industry, government, and
academic environments. Extending or modifying the existing protocols to
satisfy these needs was found to be generally inadequate. The character­
oriented procedures were, from a control standpoint, basically two-way
alternate ("half-duplex") in nature and batch-oriented in operation. They
were inherently tied to the transmission code being used, and generally
utilized unprotected control codes and sequences to perform link control
management functions. Generally, only a single data link function was
performed with each transmission unit sent [e.g., transfer data, acknowledge

111

112 Part ill • Link Control Layer

data, solicit (poll) data, etc.] and so large numbers of logical link turnarounds
were often required. This, in tum, would lead to an unsatisfactory ratio of
data transfer exchange to control exchange capability in many cases. Often,
a character-oriented procedure would vary so much in format and function
from one type of application or use to another, that for all intent and
purposes they were no longer the same data link control procedure.

All in all, it was time for a new approach to data link control, an
approach that would correct and improve the identified shortcomings
present in the existing protocols, provide the features and services that this
new environment demanded, and offer the ability for extension and en­
hancement in order to provide for the future. The bit-oriented data link
control described in this paper seems to provide a satisfactory solution to
these problems for many synchronous data communications needs.

B. General Requirements and Capabilities

The principal requirement for this new data link control was that it
support the emerging interactive operations. To this end, the following
capabilities were identified as being essential:

1. code-independent operation (transparency),
2. adaptability to various applications, configurations, and uses in a

consistent manner,
3. both two-way alternate and two-way simultaneous ("full duplex")

data transfer,
4. high efficiency (throughput), and
5. high reliability.

Code independence means that the user should be able to choose the
code set or bit patterns to be used for data transfer without concern for the
data link control procedure being used. There should be no need to dedicate
certain codes or bit patterns from the user's set for data link control
purposes (as had been the case with character-oriented protocols). The
user's choice should be predicated solely on satisfying user-identified objec­
tives.

Adaptability to various applications, configurations, and uses means that
the composition of the procedures should be such that they are readily
applicable to two-wire or four-wire equivalent physical circuits, in point-to­
point or multipoint configurations, on switched or nonswitched circuits.

Adaptability and code independence also mean that there should be a
sense of station independence as well, in that stations of different degrees of
sophistication can coexist on the same link, so long as the controlling station
is aware of the capabilities and limitations of each individual station and the
station operations themselves do not interfere with one another. This should

Chap. 5 • Bit-Oriented Data Link Control 113

allow the combining of stations on a link on the basis of geographic location
and traffic requirements, without concern for the type of stations involved.

The inclusion of two-way simultaneous data transfer capability means
that more efficient operation should be possible, resulting in increased
throughput and probably lower cost where two-way traffic flow require­
ments exist. It also means that fewer overall transmission paths should be
needed in the resultant system configuration. Two-way simultaneous capa­
bility can be vitally important when operating in a long propagation delay
situation, such as over satellite connections or very high speed links.

High efficiency means that the ratio of data transfer exchange to control
exchange per unit of time should be high. The organization of the data link
controls should allow multiple functions to be conveyed in each transmis­
sion, for example, transfer of data, acknowledgments for data received in
earlier transmissions, plus in the case of a controlling station, a solicitation
(poll) for a return transmission. High efficiency should also be realized by
the use of a data link control organization that holds down the number of
logical turnarounds required in the operation of the data link.

High reliability means that all transmissions, data and control, should
be protected from transmission errors by a powerful error detection and
correction mechanism. Recovery from transmission errors should be an
automatic aspect of the procedures (for example, the execution of up to
some design number N retransmission attempts before alarming). High
reliability also means that data transfer sequence integrity should be main­
tained with respect to the order of the data that is passed to the higher level
at the receiving station. Also, no data should be lost or duplicated without
appropriate notification to the higher level.

C. Organization of Chapter

The balance of this chapter is presented in terms of the American
National Standards Institute (ANSI) bit-oriented data link control proce­
dure standard-ADccP,the Advanced Data Communication Control Proce­
dures (X3.66-l979) [1]. ADCCP is compatible with the High-Level Data Link
Control (HDLC) standard that was developed by the International Organi­
zation for Standardization (ISO).

ADCCP is used as the baseline because it covers a wide scope of possible
bit-oriented data link control procedure applications and has had the
benefit of a broad base of input and comment from a large cross section of
providers, users, and general interest organizations and individuals. This
chapter describes the various link configurations, modes of operation, and
station types that are covered by ADCCP. The composition of this bit-oriented
procedure is described, including the frame structure, the repertoire of
commands and responses, and the classes of procedure defined to date. To

114 Part ill • Link Control Layer

illustrate some of the principles of bit-oriented procedure operation, a few
typical examples of operation are examined. The status of similar bit-oriented
data link control procedure activity by other standards bodies (e.g., ISO,
CCITT, etc.) is reviewed. The subject of compatibility with proprietary
bit-oriented protocols (BDLC, SDLC, etc.) is touched on briefly. Finally,
there is a crystal-ball view of possible future development and standardi­
zation in the subject area.

Throughout all sections of this chapter certain liberties have been taken
in the level and completeness of description of the general operation so as
not to cloud the overall picture with details of operation. The goal is to
provide an overview of bit-oriented data link control operation in general,
not an in-depth presentation of the ADCCP standard in particular. For
details of specific ADCCP operation under various operating conditions, [1]
should be consulted.

II. Configurations, Modes and Station Types

During the development of the bit-oriented data link control procedure
approach, every attempt was made to identify the needs and requirements
of a general data link control procedure that would have widespread
applicability in today's and tomorrow's marketplace. Taken into considera­
tion were point-to-point and multipoint configurations, using two-way
alternate and two-way simultaneous operation over switched and non­
switched transmission lines. Both terrestrial and satellite connections were
recognized as being part of the problem. Also included was communication
between logical equals and communication between logical unequa1s.

To satisfy the above needs, three different data transfer modes of
operation evolved and three different types of stations were identified. The
three modes are:

1. the normal response mode (NRM) for use in point-to-point or
multipoint configurations,

2. the asynchronous response mode (ARM) for use in point-to-point or
multipoint configurations, and

3. the asynchronous balanced mode (ABM) for use in point-to-point
configurations. .

The three types of stations are:

1. the primary station (one per NRM or ARM operation),
2. the secondary station (one or more per NRM or ARM operation),

and
3. the combined station (two per ABM operation).

Chap. 5 • Bit-Oriented Data Link Control 115

The normal and asynchronous response modes (NRM and ARM)
provide an unbalanced type of data transfer capability between logically
unequal stations (a single primary station and one or more secondary
stations) operating in a centralized control environment. In both NRM and
ARM, the role of the primary station is to control the overall data link
operation. The primary station is responsible for initializing the link
[activating the secondary station(s)], controlling the flow of data to and
from the secondary station(s), recovering from system errors not recoverable
by retransmission of the same data, and logically disconnecting the sec­
ondary station(s) when required. The secondary stations are subservient to
the primary station at the data link level. Their role is generally passive and
they have little or no capability for recovery from system errors. As a rule
(and in many cases as aD. objective), the extent of their logical complexity is
such that they can be significantly simpler and less costly than their primary
station counterpart.

A primary station issues commands and receives expected responses. A
secondary station receives commands and issues responses in accordance
with the nature of the command received and the mode of operation used.
In NRM, a secondary station initiates transmission only as a result of
receiving explicit permission to do so from the primary station. Once
permission is received, a secondary station response transmission must be
initiated, with the end of the transmission being explicitly identified. The
transmission mayor may not include the transfer of data from the sec­
ondary station to the primary station, depending on the availability of data
to transmit and the form of the explicit permission to send. In ARM, a
secondary station is not required to receive explicit permission from the
primary station in order to initiate transmissions (responses) of its own.
ARM operation, therefore, is more freewheeling and less disciplined than
NRM operation.

The normal response mode (NRM) is ideally suited for polled multi­
point operation where ordered interaction between a central location and a
number of outlying stations is required, or any situation where it is desirable
for one station to be able to control the transmittability of other related
station(s). Similarly, the asynchronous response mode (ARM) seems ideally
suited for situations where a single primary station and a single activated
secondary station wish to transmit freely to one another without the
overhead of a polling control discipline.

Because of the asynchronous nature of secondary station transmissions
when ARM is utilized in a multipoint environment, only one secondary
station can be activated (on-line) at a time. Other secondary stations on the
multipoint link must be kept in a quiescent disconnected mode (off-line) so
as not to interfere with any transmission in progress.

The asynchronous balanced mode (ABM) provides a balanced type of
data transfer capability between two logically equal stations (two combined

116 Part ill • Link Control Layer

stations) in a balanced control environment. Each combined station is
capable of initializing the link, activating the other combined station, and
logically disconnecting the link (deactivating the other combined station)
when required, and is responsible for controlling its own data flow and
recovering from its own system errors. A combined station can both issue
commands and responses, and receive commands and responses. The
asynchronous nature of the balanced mode of operation means that there is
no operational overhead required to control transmission (start and stop
data transfer) from the other combined station.

For a point-to-point configuration, the asynchronous modes (ARM
and ABM) are usually more efficient than the normal response mode
(NRM) because there is no polling overhead required. The choice of which
asynchronous mode to specify is dependent on the relative level of data link
control capability that is provided in each station: ABM operation for
logical equals, ARM operation for logical unequals.

In a great many instances of NRM or ARM application, the primary
station will be a host computer. The secondary stations will be operator­
controlled terminals, simple data collection or data display devices, or the
like, depending on the needs of the data system. In many ABM applica­
tions, each combined station will be a host computer, an intelligent network
node (e.g., a packet-switching node), or at least a highly intelligent terminal
that has the capability to control the data link itself.

In addition to the data transfer modes cited above, there are also
non-data-transfer modes that have been defined to complete the comple­
ment of bit-oriented data link control procedures. They include two dis­
connected modes and an optional initialization mode.

In the optional initialization mode, a primary/combined station may
initialize or regenerate the link control of a secondary/combined station.
Details regarding the nature of such initialization activities have been
deemed to be system dependent and, therefore, are not structured or
specified in a standard manner at this time.

Both disconnected modes have the stations logically disconnected from
the link. The normal disconnected mode (NDM) applies to primary and
secondary stations only. In the normal disconnected mode, the secondary
station may not initiate any form of transmission until explicitly requested
to respond by the primary station. When so requested, the response can
only be one of a limited set of responses that either accepts the command,
refuses the command, or requests some alternative action on the part of the
primary station. The asynchronous disconnected mode (ADM) applies to
combined stations as well as to primary and secondary stations. In the
asynchronous disconnected mode, the secondary / combined station may
generate a particular response on an asynchronous basis as a request for a
mode setting command in order to establish a data transfer mode.

Chap. 5 • Bit-Oriented Data Link Control 117

The choice and evolution of the data transfer modes provided by these
bit-oriented data link control procedures was not driven totally by technical
considerations. Other factors played a role as well. For instance, political
considerations provided some of the motivation for inclusion of the
asynchronous balanced mode (ABM). The NRM and ARM modes had
been defined first, and were pretty well fixed in place, and generally
accepted internationally, when it was observed that they did not quite
satisfy all of the "requirements." True, they supported point-to-point and
multipoint configurations, two-way alternate and two-way simultaneous
operation over switched and nonswitched facilities. They also provided
transparent, efficient, and reliable data transfer. However, each was built on
a primary station/secondary station relationship that had the negative
aspect associated with it that in two-station configurations one of the
stations was operationally "secondary" to the other. The overall control of
data flow and responsibility for system recovery resided in only one of the
stations-the designated primary station. For many applications, this was
considered to be unacceptable. For example, when interconnecting govern­
ments, corporations, independent systems, etc., the thought of being the
"secondary" to another, dependent upon another for one's operation and
livelihood, was generally unacceptable. Hence the asynchronous balanced
mode (ABM) was defined to support fully balanced, independent data
transfer between logical equals. As noted later, ABM has become a vital
part of the bit-oriented data link control procedure solution.

III. Composition of the Bit-Oriented Procedures

This section provides a brief sketch of the major elements that make up
the composition of bit-oriented data link control procedures. Included are
the frame structure and transmission formats; the commands, responses,
and parameters; and the resultant classes of procedures.

A. Frame Structure

The basic transmission unit is called a frame. All transmissions (data,
control, or both) are in frames, and each frame conforms to one of the two
following formats:

1. if there is an information field to transport,

F, A, C, Info, FCS, F

2. if there are only data link control sequences to transport,

F,A,C, FCS, F

118

where

F = flag sequence

A = address field

C = control field

Part m • Link Control Layer

Info = information field

FCS = frame check sequence

The flag sequence (F) is a unique eight-bit pattern (a 0 bit followed by
six I bits ending with a 0 bit) used to synchronize the receiver with the
incoming frame. It delimits the start and close of each transmitted frame
and is also used by the sender to fill time between frames during a
transmission of multiple frames.

To achieve transparency, the unique flag sequence is prohibited from
occurring anywhere in the address, control, information, and FCS fields by
having the transmitter and receiver perform the following action after
sending and receiving, respectively, the opening flag sequence:

• Transmitter: insert a 0 bit following five contiguous I bits anywhere
before sending the closing flag sequence ("bit stuffing") .

• Receiver: delete the 0 bit following five contiguous I bits following a
o bit anywhere before receiving the closing flag sequence ("destuff­
ing").

The closing flag for one frame may also serve as the opening flag for
the next frame.

The address field (A) identifies the station (secondary or combined) on
that link that is to receive (or is sending) the frame. Command frames are
always sent with the receiving station's address. Response frames are always
sent with the sending station's address. Hence, the address field identifies a
secondary station in the normal and asynchronous response modes and the
response-generating portion of a combined station in the asynchronous
balanced mode.

Two mutually exclusive address field options are defined-single octet
and multiple octet addressing. Single octet addressing provides for up to 256
different addresses. Multiple octet addressing provides for greater than 256
addresses and also allows for character-oriented encoding of the address
field where such may be desirable. In the case of multiple octet addressing,
the address field is recursively extendable with the first bit of each octet
used to indicate which is the final octet of the address field. The final octet
will have its first bit set to "1," and each preceding octet will have its first
bit set to "0."

Chap. 5 • Bit-Oriented Data Link Control 119

CONTROL FIELD BITS

CONTROL FIELD FOR 1 2 3 4 5 6 I 7 I 8

INFORMATION TRANSFER COMM'AND I
0 NISI P/F N(RI RESPONSE (! FRAME I

SUPERVISORY COMMANDS I 1 0 S S P/F N(RI RESPONSES (S FRAME I

UNNUMBERED COMMANDS I 1 1 M M P/F M I M I M RESPONSES (U FRAME I

Fig, I. Control field formats,

The all-ones address is specified as a global (broadcast) address that all
stations will be responsive to. The all-zeros address is specified as a null
address that no station will be responsive to. Group addressing is possible
on a system-by-system basis.

The control field (C) identifies the function and purpose of the frame.
Three different control field formats are defined: information transfer,
supervisory, and unnumbered. Figure I depicts the general organization of
the control field formats.

Bit 1 set to "0" identifies the I frame format. Bit 1 set to "1" with bit 2
set to "0" or "I" identifies the S frame format or the U frame format,
respectively. Only the I frame format has a send sequence number N(S) to
uniquely identify the frame and to allow it to be kept in sequential order
during the data transfer operation. Both the I and S frame formats have a
receive sequence number N(R), so both formats are usable to acknowledge J
frames received. The two S bits in the S frame format provide for the
specification of four supervisory functions. The five M bits in the U frame
format provide for the specification of up to 32 commands and 32 responses
to cover the remaining control functions required. The P / F bit in each
format provides for a checkpointing mechanism that allows a response
frame to be logically associated with the appropriate initiating command
frame. (The bit is considered to be the P bit if the frame is a command and
the F bit if it is a response.) Checkpointing is accomplished by setting the F
bit equal to "I" in the response frame that is to be treated as the logical
counterpart of the command frame sent with the P bit set to "I."

In the normal response mode, the P bit set to "I" serves to poll the
secondary station(s) to which it is addressed. Similarly, in NRM, the F bit
set to "1" serves to identify the final frame in a series of frames sent by the
secondary in response to a received P bit set to "1". In the asynchronous
response mode and asynchronous balanced mode, the receipt of a frame
with the P bit set to "1" will cause the secondary station (ARM) or
combined station (ABM) to set the F bit equal to "1" in the next ap­
propriate frame transmitted.

120 Part ill • Link Control Layer

The information field (Info) contains the data that are to be transferred
across the link. The data may be of any length and may consist of any code
or grouping of bits. The bit stuffing protocol ensures "transparency," i.e., it
allows the information field to include any patterns, even patterns that look
to the end users like flags (01111110), without producing a spurious action
at the receiving end.

All frames include a 16-bit frame check sequence (FCS) field prior to
the closing flag sequence to assist in the detection of transmission errors.
The FCS (described in the preceding chapter) is performed on the contents
of the address, control, and information fields of the frame, using the
well-known CeITT V.41 generator polynomial: X 16 + X12 + X5 + 1. Prior to
initiating the FCS check at the transmitter (and the receiver), the FCS
register (or equivalent) is preset to all ones. In the absence of transmission
errors, a unique, nonzero 16-bit pattern is then detected at the receiver.
Frames failing to pass the FCS check are discarded and ignored.

An optional 32-bit FCS is now available for those applications re­
quiring a higher degree of detection of transmission errors. The 32-bit
generator polynomial is:

Should the transmitter of a frame determine during the course of the
transmission that the frame should be discarded and ignored by the receiver,
it may accomplish this in either of two ways. One method involves prema­
ture termination of the frame in the normal manner with a flag sequence,
but purposely causing an incorrect FCS field to be included in the frame.
The other method involves aborting the frame in progress by transmitting a
continuous ones state (with no inserted zeros) that persists for at least seven
bit intervals in length. Aborted frames are ignored by the receiver.

If the ones state on the link persists for 15 bit times or more, an idle
link state is defined. The idle link state indicates that the sending station has
relinquished the right to continue transmission. It is often used in conjunc­
tion with two-way alternate operation on half-duplex transmission facilities.
The reappearance of a flag sequence defines reentry into the active link
state, wherein an operational mode may be established and information
transferred between stations.

B. Elements of Procedure

Each frame contains a command or a response that is either an
information transfer frame, a supervisory frame, or a miscellaneous unnum-

Chap. 5 • Bit-Oriented Data Link Control 121

Table I-Specified adccp I, S, and U Format Control Field Bit Encodingsa

Frame Control field bits

format Command I 2 3 4 5 6 7 8 Response

I I 0 N(S) P/F N(R) I
S RR I 0 0 0 P/F N(R) RR

REJ I 0 0 I P/F N(R) REJ
RNR I 0 I 0 P/F N(R) RNR
SREJ I 0 I I P/F N(R) SREJ

U UI I I 0 0 P/F 0 0 0 UI
SNRM I I 0 0 P 0 0 I
DISC I I 0 0 P/F 0 I 0 RD

UP I I 0 0 P I 0 0
I I 0 0 F I I 0 UA

Nonreserved I I 0 I P/F 0 0 0 Nonreserved
Nonreserved I I 0 I P/F 0 0 I N onreserved
N onreserved I I 0 I P/F 0 I 0 N onreserved
Nonreserved I I 0 I P/F 0 I I N onreserved

SIM I I I 0 P/F 0 0 0 RIM
I I I I F 0 0 I FRMR

SARM I I I I P/F 0 0 0 DM
RSET I I I I P 0 0 I

SARME I I I I P 0 I 0
SNRME I I I I P 0 I I
SABM I I I I P I 0 0
XID I I I I P/F I 0 I XID

SABME I I I I P I I 0

aNote: All unassigned unnumbered control field bit encodings are reserved for possible future standardization.

bered control frame. Although the list of commands and responses seems
long, in most cases only a few are needed and used to any extent in the
provision of normal operation. The majority of them are of the unnumbered
format variety and are either associated with various link establishment/
disconnect procedures or the provision of optional features and capabilities
to satisfy special needs. A brief description of the various commands and
responses that are defined in the ADCCP standard are listed below. (The
specific control field bit encodings are given in Table I)

Information (I) Command/Response (I Format): I frames are used to
transfer sequentially numbered information fields across a data link, and to
acknowledge I frames already received from the other station.

Receive Ready (RR) Command/Response (S Format): RR frames are
used to indicate readiness to receive I frames and to acknowledge I frames
already received from the other station.

122 Part ill • Link Control Layer

Receive Not Ready (RNR) Command/Response(S Format): RNRframes
are used to indicate a temporary busy condition and to acknowledge I
frames already received from the other station.

Reject (REl) Command/Response (S Format): REJ frames are used to
request retransmission of all I frames starting from a designated point in the
numbering cycle and to acknowledge I frames already received from the
other station.

Selective Reject (SREl) Command/Response (S Format): SREJ frames
are used to request retransmission of a single designated I frame previously
transmitted and to acknowledge I frames already received from the other
station.

Unextended Numbering Set Mode (SXXM) Commands (U Format):
Unextended numbering set mode commands are used to establish the
particular Modulo 8 sequence numbering mode of operation to be used.
Upon accepting and acknowledging a set mode command, the receiving
station's send and receive state variables are set to zero. Three unextended
numbering set mode commands are defined:

SNRM-Set Normal Response Mode
SARM-Set Asynchronous Response Mode
SABM-Set Asynchronous Balanced Mode
Extended Numbering Set Mode (SXXME) Commands (U Format):

Extended numbering set mode commands are used to establish the particu­
lar Modulo 128 sequence numbering mode of operation to be used. Upon
accepting and acknowledging a set mode command, the receiving station's
send and receive state variables are· set to zero. Three extended numbering
set mode commands are defined:

SNRME-Set Normal Response Mode Extended
SARME-Set Asynchronous Response Mode Extended
SABME-Set Asynchronous Balanced Mode Extended
Set Initialization Mode (SIM) Command (U Format): The SIM com­

mand is used to establish the initialization mode of operation, during which
the link control may be initialized or regenerated, or operational parameters
exchanged.

Disconnect (DISC) Command (U Format): The DISC command is used
to logically terminate a previously established operational mode, and to
cause the stations involved to assume the system predetermined dis­
connected mode.

Reset (RSET) Command (U Format): The RSET command is used to
reset the send state variable at the transmitting station and the receive state
variable at the receiving station to zero. The values of the state variables
associated with the other direction of transmission remain unaffected.

Unnumbered Poll (UP) Command (U Format): The UP command is
used to solicit response frames from one or more stations by establishing a

Chap. 5 • Bit-Oriented Data Link Control 123

special logical operational condition that exists at each addressed station for
one respond opportunity. (Loop operation [2] is typical of the type of
application that could utilize the VP command.) The UP command does
not acknowledge any I frames (or VI frames) received from the other
station.

Unnumbered Information (UI) Command/Response (U Format): UI
frames are used to transfer information fields across a data link without
impacting the send or receive state variables at any station. There is no
specific link level acknowledgment provided for VI frames.

Exchange Identification (XID) Command/Response (U Format): XID
frames are used to request and/or report a station's identity and, option­
ally, to convey the parameters, operational capabilities, and characteristics
of the transmitting station.

Request Initialization Mode (RIM) Response (U Format): The RIM
response is used to request that the initialization mode be established.

Request Disconnect (RD) Response (U Format): The RD response is
used to request that the link be put in a disconnected mode.

Unnumbered Acknowledgment (UA) Response (U Format): The UA
response is used to acknowledge receipt and execution of a mode setting,
initializing, resetting, or disconnecting command.

Disconnected Mode (DM) Response (U Format): The DM response is
used to indicate a request for a set mode command, or, if used in reply to a
set mode command, as an indication that the set mode cannot be acted on
at this time.

Frame Reject (FRMR) Response (U Format): The FRMR response is
used to indicate that a frame received (command or response) was in error
in a manner not recoverable by retransmission of the identical frame,
such as

1. receipt of a control field that is invalid or not implemented, or
2. receipt of an information bearing frame with an information field

that exceeds the maximum established length, or
3. receipt of an N(R) which either points to an I frame which has been

transmitted and acknowledged or to an I frame which has not been
transmitted and is not the next sequential I frame awaiting transmis­
sion.

In addition, the ADCCP standard sets aside four unnumbered com­
mand/response code points as Nonreserved Commands and Nonreserved
Responses. This provides implementors of the standard with a set of
unnumbered code points that can be used to define special system-dependent
data link functions, that may be necessary for a particular application but
that do not have general applicability and hence were not standardized, with

124 Part III • Link Control Layer

the assurance that said code points will not at some future time be assigned
to a standard function or feature by ANSI.

C. Classes of Procedure

The three modes of operation, NRM, ARM, and ABM, provide the
framework for the definition of three corresponding classes of procedure­
the Unbalanced Normal Class (UNC), the Unbalanced Asynchronous Class
(UAC), and the Balanced Asynchronous Class (BAC), respectively. Classes
of procedure are defined in order to provide organization and direction for
the application of the bit-oriented data link control procedures. Certain
commands and rysponses are identified as belonging to the basic repertoire
of these classes. Other commands and/or responses are viewed as being
optional, either adding capability to the basic set or restricting utility of a
general function for specific applications. Figure 2 depicts the three classes
of procedures, the basic command and response repertoire, plus the optional
functions, that are presently defined in the ADCCP standard.

In addition to certain of the commands and responses being optional
functions, there is also an optional function concerning addressing (option
7) and two optional functions that deal with restrictions on the use of the I
frame as a command only or a response only (options 8 and 9).

The following notation is used to identify a class of procedures and the
optional functions that are supported:

• UNC,3,4-depicts the unbalanced, normal response mode class of
procedures with the selective reject (SREJ) feature plus the ability to
send nonsequenced unnumbered information (UI) frames .

• BAC,2,8-depicts the balanced, asynchronous balanced mode class
of procedures with the reject (REJ) feature plus a restriction on the
use of I frames as commands only.

Class UNC,3,4 might be typical of a multipoint configuration where
the two-way alternate data transfer requirements are such that each sec­
ondary station transmission consists of multiple I frames, where the trans­
mission error statistics indicate that the occurrence of transmission errors is
low and that when errors do occur they generally only affect one frame out
of a multiple frame transmission, and where there is occasionally a need to
send some useful but not indispensable information to all secondary sta­
tions. Class BAC,2,8 might be typical of a point-to-point configuration
involving two computers where balanced, equal control by both parties is
important, where the two-way simultaneous data transfer requirements are
such that the ability to request retransmission on the fly is desirable, and
where the transfer of I frames is used as a continual data link level check
that an inadvertent loopback has not occurred somewhere in the system.
(BAC,2,8 is the class of procedure with optional functions that is used as the

Chap. 5 • Bit-Oriented Data Link Control 125

basis for the ccnT Recommendation X.25 Level 2 LAPB procedures
described in Chapter 8.)

IV. Examples of Typical Operations

Figures 3-6 illustrate some typical on-line operations, with and without
transmission errors, for the two classes of procedure identified above.

UNBALANCED BASIC REPERTOIRE BALANCED BASIC REPERTOIRE
I

PRJ
STA

£~~
I
RR
RNR

UAC

SEC
STA

RESP

I
RR'
RNR

SARM UA
DISC DM

, FRMR

I MODULO 8
: SEQUENCE NUMBERING

I

PRI
I STA

UNC

I CMD RESP
I I I
I RR RR
I RNR RNR

I SNRM UA
I DISC DM
I FRMR

I MODULO B
: SEQUENCE NUMBERING

I

I
I

BAC

COMBINED STATION -----------
CMD

1
RR
RNR

SABM
DISC

RESP

I
RR
RNR

UA
DM
FRMR

MODULO 8
SEQUENCE NUMBERING

OPTIONAL FUNCTIONS ' OPTIONAL FUNCTIONS
RESPONSE : COMMAND RESPONSE COMMAND

...----,!"'~""~:-~"'~O=E_'"'N!'='I::=~ _"'IC_"'-A..""T!.."'O_'"'N _""'::-:"!."'~""_"'~"'~Q=:_U-::5=::~"'!"".P=:~"'~c""_-"'L.L..r-1 --=~-=-Q.R=-_""_M"'~"'!-""'I""!.=-P_L:-:~=-_-'Q.""'C_-=T_"'E _"'T_-:~""'~""'D_"'R_"'E _-=-SS=:_I""'~_"'<>-'----'
i. XID • ADD -+ XID ''''---''' 7. USE EXTENDED IN LIEU OF BASIC

RD i I: ADDRESSING FORMAT
~----------------~ I

I
I : I: FOR COMMAND I FRAMES ONLY

2 REJ .. --------tiD-D----------~REJ :+t+l B- -----------OEL-ET-E--un-- ~ I
FOR IMPROVED TWS PERFORMANCE

L-________________________ ~I I LI _____________________ ~

I
I
I

FOR SINGLE FRAME RETRANSMISSION ! I: FOR RESPONSE I FRAMES ONLY
3. SREJ-i-- -- -- ADO-- n

- -- -.-SREJ l+t+: 9.1-.--------0ElETE- - - - u -

L-_________________________ ~I I LI _________________________ ~

I
I

.---,...F~O~R~U~N~N~U~M~B~E~R~E7D,...I~N~F70R~M~A~T~170~N-----,I :
4 UT.u-------AOD---- ----.-UI l+-t I

L-_____________________ ~: ~

I :

FOR EXTENDED SEQUENCE NUMBERING
10~ uSE - EXTENDED-coNTRoL: -FIELD -FOR-MAT

IN LIEU OF BASIC CONTROL FIELD
FORMAT. USE SXXME IN LIEU OF
SXXM. I I

I L' --------------------~
f.9!U~IJ!A_L.iZJ_T!'O_N_ • RIM laJ

5. SIM • ADD ---_+. ~~ I

: I L-________________________ ~ I

: r-:----=-FO-R--:M~O~D~E~R,.."E,.."S."E."T~O""'N~L~Y----~

r-----:F:-;O:-::R,...."U"'N""N~U-::Mc::B=ER"'E=:D::-:P:-:O::-L7L7.1 N"'G;:-----..." r+j 11 RS-E T - i u - - - - ADD - - - - - -
6. UP 4" --- n - - ADD- - - - - - - -- ~ LI __________________________ -l

Fig. 2. Basic classes of procedures and their optional functions.

126

Fig. 3. Class UNC,3,4-examples
of error-free operation.

Part III • Link Control Layer

PRIMARY
STATION

SECONDARY
STATIONS 9, C a. D

B,SNRM,P

C,SNRM,P

D,SNRM, P

B, RRO,P

C,RRO,P

C, RR4
D,100
9,100
D, RRO,P

D,RR7
8,110
B,120,P

9,RNR 3
G,UI
G,UI
G,UI
C,I04
C,114,P

D, I, 17 ,P

9,133, P

9,RNR5,P

9,DISC,P

C, DISC, P

D,D1SC,P

DISCONNECTED MODE

----- -----
------ --------- --------------------

--- - ------- - ----- - -- -- --

--- -- ----
------ ------ --- ----

---- -----
------------- -------- - ------- ------ -----
---- -- ---
--- -
------------ ----------- ------------ ------ -------- -----
== --------------- ------- -----------
-------- ---
---------- ---
---- --------- ----
--------- ------- ----

DISCONNECTED MODE

9,UA,F

C,UA,F

D,UA, F

9,RRO,F

C,IOO
C,I10
C,I20
C,I30,F

D,101
D,111
D,121
D,131
D,141
D,I51
D,I61, F

9,103
9,113
9,123, F

C,RR2, F

D,RR2,F

9,134
9,144,F

9,RR4,F

8,UA ,F

C,UA,F

D,UA, F

Chap. 5 • Bit-Oriented Data Link Control

PRIMARY
STATION

SECONDARY
STATIONS B,C a. D

D,SNRM,P

D,SNRM,P

B,RRO,P

B,SREJ 3
C,RRO,P

D,RRO,P

B ,SREJ3,P

B,I07
B,I17
B,I27,P

B,I12
B,I32,P

C, RRO,P

D,100,P

D,RNRO,P

D,IOO,P

B,DISC,P

C,DISC,P

D, DISC,P

- -7 r -----J---·;7----

---- ------
-- -- ----

----;;7-----

- - 7Y' - - ---
----------- ------ --------- - ---
--------- ---

----- - ---
---- ----

- - --- -- -

:-::'~;ji - --­
---~ ----

----- __ ...A7------ - J!: ______ -_-

-- - - -- - ---

---- -
---------- ------ - -- ----

------ - ------ - -- - --
I=#::=:::~
---- --------------- ---
----------- ----
---- --------- -- ---
------ --- -----

DISCONNECTED MODE

D,UA,F

D,UA,F

B,IOO
B,110
B,120
B,130
B,140
B,I50,F

C,RRO,F

D,RRO,F

B,130
B,I60
B,170
B,I00
B,I10,F

B,171
B,101
B,I11
B,SREJ1,F

8,RR4,F

C,RRO,F

D,RRO,F

D,RR1,F

8,UA,F

C,UA,F

D,UA, F

Fig. 4. Class UNC,3,4-examples of recovery procedures.

127

128 Part ill • Link Control Layer

COMBINED
STATION

L

COMBINED
STATION

M

M ,SABM,P

M,IOO,P

M,110

M ,121

L ,RR2, F
M,13?

M,I42

M,152

M,162

M,I72,P

M,I03

M,I14

M,124

M,RR5,P

L,RNR6,F
M,RNR6, P

M,DISC, P

~~~:~~:D _M:~E_ I 
~ M,UA,F 

--~~~~ ~ ~~~~~1 L,lOO 
------- ---
---- _______ L,I10,P 

_£-~:-:.;-;:::-: M,RR2,F 

- --- -__ M,RR3 
_-.-... -::.-=: = ::---

M,RR4 -- ------------- ----
--- - ----- L,125 

----:--_ ..... _-=-=-= --- L,136 

----- - --
-----~-=---

L,147 
---- -----
---- -----

Fig. 5. Class BAC,2,8-examples of error-free operation. 

Figures 3 and 4 depict an unbalanced, two-way alternate, multipoint 
operation (UNC,3,4) involving three secondary stations (B, C,and D). 
Figures 5 and 6 illustrate a balanced, two-way simultaneous, point-to-point 
operation (BAC,2,8) involving two combined stations (L and M). The 
examples cover normal, error-free operation as well as various error re-



Chap. 5 • Bit-Oriented Data Link Control 129 

Fig. 6. Class BAC,2,8-exarnple of 
REI recovery procedures. 

COMBINED 
STATION 

L 

COMBINED 
STATION 

M 

DATA TRANSFER 

-----------
M,IOO -------------

L,IOO 
-------------

M,I10 ------------

M,I21 

--_# _ _ __ ___ L,I11 

-------------
----------- L, 121 

M,I32 ::. :.-_-_-_:.-.:----_-_-:Et" M, REJ1 

------------ L,I31 
M,I13 -----------

------------ L,I41 
M,I24 -----------

----------- L,152 
M,135 

L) 163 
M,146 

---------
M,I57 

M, RR5 -- - - -- -----
-----------

M,167 
M,RR6 -- -- - - - ----

-----------
M,I77 ----- ------- M,RR7 

---------- M,RRO 

DATA TRANSFER 

covery situations. Many of the principles of the bit-oriented data link 
control concept are illustrated by these examples. The vertical scale has been 
dramatically reduced so as to allow illustration of various frame exchanges 
during operations such as link setup, data transfer, recovery from transmis­
sion errors, and disconnect. The shorthand used in the figures should be 
interpreted in the following way: 

Consider frame X,Ysr,z. 
X represents the address associated with the frame. Primary station 

transmissions will use the address of the secondary station for whom the 
frame is intended. Secondary station transmissions will include the address 



130 Part ill • Link Control Layer 

of the secondary station that is transmitting. Combined station transmis­
sions will use the remote station address when a command frame is sent and 
will use the local station address when a response frame is sent. 

Y represents the abbreviation for the command or response (for 
example, I, RNR, SNRM, UP, etc.). The "sr" following Y represents the 
send and receive sequence number values N(S) and N(R), respectively, that 
are an integral part of I and S format frames. If only a single number is 
present, it represents the receive sequence number N(R). 

Z, when present, indicates that the P or F bit is set to "1" in that fame. 
When not shown, it means that the value of the P or F bit is set equal 
to "0." 

A. Unbalanced, Two-way Alternate Multipoint (UNC,3,4) 

1. Example of Error-Free Operation 

As indicated in Fig. 3, the primary station activates the secondary 
stations by addressing a SNRM command to each of them individually with 
the P bit set to "I." Each secondary station acknowledges the set mode 
command by returning the UA response with the Fbit set to "I." (The P bit 
set to "I" grants the addressed secondary station the right to transmit an 
appropriate response, and the F bit set to "I" identifies the final frame in 
the corresponding response transmission.) As each secondary station (B, C, 
and D) is activated, its data link to the primary station is activated apd that 
primary-secondary relationship is in the normal response mode (NRM). 

As depicted, after setting up the entire link, the primary station polls B 
for information (traffic). B responds that it has no traffic to send by 
returning the RR response frame. The primary station then polls C, and 
receives four I frames from C. (A basic characteristics of these bit-oriented 
procedures is that a station may send more than one I frame before an 
acknowledgment is required. In fact, up to the modulus minus one I frames 
may be sent before an acknowledgment frame is required.) Each I frame has 
a different in-sequence send sequence number (first digit), plus a receive 
sequence number (second digit) that identifies the next I frame expected 
from the other (primary) station. Upon receipt of C,I30,F from C, the 
primary station acknowledges the receipt of four frames by issuing frame C, 
RR4. The 4 indicates that I frames numbered 0-3 were received correctly. 
Because the P bit is not set to "1," this frame does not grant C permission to 
send. It only acknowledges I frames received. 

Before continuing the polling cycle with D, the primary station finds 
that it has received information for D from some other link and so delivers 



Chap. 5 • Bit-Oriented Data Link Control 131 

it to D. Prior to completion of the I frame transmission to D, information is 
received for B. Consequently, the delivery to B is performed before resum­
ing the polling cycle with D (P bit set to "1"). The primary station will 
check the responses to subsequent polls for acknowledgments from B and D 
for the I frames delivered to B and D. (If the information for Band D had 
both been present when the C,RR4 frame was sent, the primary station 
could have sent B,IOO first and then combined the poll of D with the 
delivery to D by sending a D,IOO,P frame.) D responds to the poll with the 
maximum number of response I frames (the modulus minus one = seven). 
When the primary station receives the seventh frame with the F bit set to 
"1," it acknowledges the transmission by sending D,RR7. 

The primary station delivers two I frames to B, setting the P bit to "1" 
in the second I frame to affect the polling function. B responds with three I 
frames. identifying the final I frame with an F bit set to "1." The primary 
station returns B,RNR3, acknowledging the I frames received, but also 
indicating that the primary station is "not ready" to receive additional I 
frames from B. 

At this point, the typical operation depicted indicates that the primary 
station has three frames worth of information that should be sent to all of 
the secondary stations on the link, but that the information is not so 
important to the operation of each secondary station that it warrants 
individual delivery, with individual acknowledgments. The nature of the 
information is such that should it be lost in transit, it will not cause a 
serioLls problem at any of the secondary stations. Examples of such informa­
tion might include (1) some sort of updated hourly production report 
(missing one out of a series of such updated reports may not pose a 
problem), or (2) periodic time checks or weather reports. The use of the 
unnumbered information (UI) frame (option 4) plus the global address G 
(all ones) allows the information to be sent to all three secondary stations at 
the same time without impacting the send or receive state variables at any of 
the stations. Following the UI frames, the primary station sends two I 
frames to C. A series of exchanges with D and B follow. After receipt of 
B,I44,F from B, the primary station decides that it wishes to go into the 
disconnected mode. The primary station will check that all secondary 
station transmissions have been properly acknowledged. The check indicates 
that the B,I34 and B,144,F frames have not been acknowledged, so the 
primary station issues a B,RNR5,P frame. The 5 acknowledges I frames up 
through 4. The P bit set to "1" will result in a response frame from B 
acknowledging receipt of the RNR frame. The RNR frame serves to inhibit 
any additional I frame transmissions from B. Upon receipt of B,RR4,F 
from B, the primary station initiates a DISC-UA exchange with each of the 
secondary stations, resulting in the link being returned to the normal 
disconnected mode. 



132 Part ill • Link Control Layer 

2. Examples of Error Recovery Procedures 
Figure 4 illustrates some typical error recovery actions that are possible 

with the unbalanced normal class of operation. Assume that secondary 
stations Band C have already been set up. The primary station sends 
D,SNRM,P to activate D. As noted, D responds with a UA response, but 
the response is subject to a transmission hit causing it to fail the FCS check 
at the primary station and, consequently, to be discarded. To determine 
when sufficient time has elapsed while waiting for an expected response, the 
primary station would probably activate a time-out function when it sends 
the D,SNRM,P frame. When this time-out function runs out, the primary 
station may initiate an appropriate recovery action. In the case shown, the 
recovery action is to issue the D,SNRM,P frame again and activate the 
time-out function again. Although D is already in the data transfer mode as 
a result of the first D,SNRM,P frame that it acknowledged, D is reactivated 
and returns another D,UA,F frame to the primary station. The arrival of 
this second acknowledgment at the primary station without error before the 
time-out function runs out, stops the time-out function, and completes the 
setup procedure. Normal polling and delivery functions then follow. 

As depicted, the primary station polls B, and B responds with six I 
frames, the last of which contains an F bit set to "1." To guard against a 
"no response," the primary station would activate the response time-out 
function when it sent the B,RRO, P frame. The time-out function could then 
have been stopped with the reception of each I frame and then restarted in 
the case of the first five I frames when it was determined that the F bit was 
not set to "1" in that I frame. As indicated, I frame B,130 sent by B was 
received in error and was discarded. The two following I fram~s were 
received free of error, and so only B,130 is needed by the primary station to 
complete the data transfer of the six I frames. The first three I frames 
received can be passed along to the higher level. The last two I frames 
received are held, awaiting correct reception of the fourth I frame, B,130. 
The primary station sends a selective reject frame (B,SREJ3) to acknowl­
edge reception of I frames up through I frame numbered 2. B can then free 
up the buffers holding I frames 0-2. The SREJ also tells B that I frame 
numbered 3 will have to be retransmitted when permission to transmit is 
again granted. 

As illustrated, the primary station has decided to complete the polling 
cycle before giving B permission to retransmit its I frame numbered 3. 
(Alternately, the primary station could have initiated retransmission im­
mediately if it had wished to do so.) When the polling of C and D results in 
"no traffic" responses from each station, the primary station requests 
retransmission of the missing I frame numbered 3 from B by sending the 
B,SREJ3,P frame. 



Chap. 5 • Bit-Oriented Data Link Control 133 

B responds by retransmitting B,130, but does not retransmit I frames 
numbered 4 and 5 that were transmitted originally. Since its last transmis­
sion, B has obtained some additional I frames for transfer to the primary 
station. The SREJ command provided B with the opportunity to transmit 
new I frames up to the point where it would have the modulus minus one 
unacknowledged I frames outstanding. Consequently, B follows the 130 
frame with I frames numbered 6, 7, 0, and 1. The I frame numbered I has 
the F bit set to "1" to identify it as the final frame in the transmission. As 
indicated, frames numbered 7 and 0 are subjected to transmission errors. 

When the primary station receives these I frames, it treats them in the 
following manner. Upon correct receipt of B,130, the primary station passes 
it plus I frames B,I40 and B,I50 from the original transmission up to higher 
level. When B,I60 is received, it is passed to higher level also. Frames B,I70 
and B,IOO are identified as missing when B,IlO, F is received out of 
sequence. In this instance, there are two frames requiring retransmission. 
The primary station will evaluate this situation to determine the type of 
recovery action to initiate. 

If the SREJ function is used, it will have to be used twice. First, it 
would be used to have B,I70 retransmitted. Then, after B,I70 is received 
correctly, it would be used to acknowledge B,I70 and to have B,IOO 
retransmitted. After the successful transmission of B,IOO, I frame B,IlO 
would not have to be retransmitted since it was received correctly in the 
original transmission. 

On the other hand, if the SREJ function is not used, the primary 
station can utilize the checkpointing mechanism that is available with I, RR, 
and RNR frame transmissions with the P / F bit set to "1" to indicate which 
I frames have been acknowledged and where in the numbering sequence 
retransmission of I frames should begin. With this approach, only a single 
control exchange is required, but any already successfully transmitted I 
frames (such as B,IlO,F) will be retransmitted. When this approach is 
chosen, the retransmitted I frame (B,Ill) should be passed up to higher 
level, not the originally received I frame (B,IlO,F). There is no link level 
assurance that the contents of an I frame are not altered (updated or made 
more current) at the time of its retransmission. The link control ensures 
sequence integrity at the data link level, but depending upon implementa­
tion, may not have complete control concerning the contents of I frames 
ready for transmission or retransmission. 

In the case being considered here, the primary station detects that I 
frames 7 and 0 are missing, chooses not to use the SREJ recovery action, 
and has I frames of its own to deliver to B. The primary station sends three 
I frames to B, acknowledging receipt of I frames numbered 3-6 from B. 
(The middle frame is subject to a transmission error, resulting in an 



134 Part 1lI • Link Control Layer 

out-of-sequence condition at B as well.) The primary station gives B 
permission to transmit by setting the P bit equal to "I" in the third I frame 
sent to B. This causes a checkpoint to take place at B. The P bit is 
complementary to the earlier F bit sent by B. Since the N(R) associated 
with this P bit does not acknowledge all of the I frames sent by B since B 
last sent an F bit set to "1," it is interpreted by B as an indication of where 
in B's send sequence numbering the retransmission of I frames should 
begin. The subsequent transmission from B includes all of the I frames from 
the number identified (7) and acknowledges only the first of the three I 
frames sent by the primary station. B concludes its transmission with an 
SREJ frame that requests the retransmission of primary station I frame 
numbered 1. The primary station retransmits frame B,Il2 and adds frame 
B,I32,P. All of B'sframes are acknowledged and a response from B has been 
requested. B acknowledges the primary station I frames and indicates "no 
traffic" to send. 

The primary station polls C. C responds "no traffic." The primary 
station sends an I frame to D and requests in the same frame that D 
respond (P bit set to "I"). The time-out function at the primary station runs 
out waiting for the response. In a situation like this, the primary station 
does not know if it was its transmission or D's response that was lost (hit by 
a transmission error). The primary station could assume that D did not 
receive the I frame and simply retransmit it, or as is indicated here, the 
primary station could send a supervisory command with the P bit set to "I" 
to find out the number of the I frame that D next expects to receive. By 
sending the RNR command, the primary station restricts D's response to a 
supervisory frame. Hence, with the exchange of two short frames, the 
primary station is able to determine if retransmission is required or not. In 
this case, the primary station has to retransmit the I frame. However, in 
many instances, the primary station will determine that retransmission is 
not required (that is, the acknowledging response frame was lost), and 
occasionally, will discover that D is in a condition in which it would not be 
able to accept an I frame anyway (for instance, in a disconnected mode 
because of a power failure or equipment failure at the secondary station). As 
a general rule, it is considered to be a wise decision to first inquire as to the 
status of a secondary station before retransmitting unacknowledged I frames. 
This is even truer if the transmission consisted of multiple I frames. 

After receiving the acknowledgment for frame D,IOO,P, the primary 
station in this example initiates the disconnect procedure with each sec­
ondary station. Unlike the situation in Fig. 3 where the primary station 
needed to initiate an exchange of supervisory frames first in order to 
complete the acknowledgment cycle with a secondary station, in Fig. 4 the 
primary station knows that all of the secondary stations are in step with the 
primary station and so proceeds directly with the disconnect procedure. 



Chap. 5 • Bit-Oriented Data Link Control 135 

B. Balanced, Two-Way Simultaneous Point-to-Point (BAC,2,8) 

1. Examples of Error-Free Operation 

In order to illustrate the interplay of two independent transmission 
flows in a balanced, two-way simultaneous operation, a slightly different 
representation of frames is used in Figs. 5 and 6. I frames are shown as 
having random lengths (solid vertical bars between horizontal boundary 
lines) and Sand U format frames are shown as very short, fat vertical bars. 
In this way the interactions can be more reasonably noted. The angling lines 
between the columns serve to indicate where a frame begins or ends at the 
receiver relative to the receiver's transmissions as well as to its beginning 
and end at the sender. Many of the operational characteristic cited for the 
unbalanced case described above also apply here, but are activated in a 
continuous manner instead of only at the point of P / F exchanges. 

As indicated in Fig. 5, combined station L activates the data link by 
sending an SABM command to combined station M. (In the general case, 
either station may initiate this action.) M responds with a UA response, 
acknowledging receipt of the mode setting command. Because of the 
asynchronous nature of these procedures, a P bit set to "1" is not necessary 
in order for the receiving station to respond. In this example, however, the F 
bit is set to "1" in the UA response because the P bit was set to "1" in the 
SABM command. As soon as M returns the UA response, it is in the 
information transfer state and may initiate transmission of frames to L. In 
this instance, M has two I frames ready to send and sets the P bit to "1" in 
the second frame in order to get an immediate response acknowledgment 
concerning their arrival at L. On the other hand, L enters the information 
transfer state when it receives the UA response to its SABM command. 

Because of the two-way simultaneous nature of the operation, I frames 
may be flowing in both directions at the same time as shown. Because 
option 8 restricts I frames to being command frames only, I frames from L 
to M will always have the address M and I frames from M to L will always 
have the address L. Hence, the reception of an I frame with the remote 
station's address is an indication of a fault in the system, probably an 
inadvertent loopback somewhere between the two stations. 

As each station prepares I frames for transmission, it increases the send 
sequence number N(S) by one on each successive I frame as long as it does 
not have more than the modulus minus one unacknowledged I frames 
outstanding, and it sets the receive sequence number N(R) to the value of 
the I frame next expected, thereby indicating acknowledgment of I frames 
number N(R) - 1 and below. Hence, a continual I frame flow from each 
station automatically acknowledges I frames received from the other station 
(freeing buffers at that station for other use) along with exercising its own 



136 Part ill • Link Control Layer 

information transfer. In the absence of errors and as long as both stations 
have I frames to send, the process is self-perpetuating. 

As long as a station does not have an unanswered P bit outstanding, a 
station may decide to set the P bit equal to "1" in anyone of the I frames 
transmitted. In the example, M has done so on its last of two I frames and L 
has done so on its first I frame. (Such action might be taken for a variety of 
reasons, including, in L's case, to check that an operational data link is 
present, and in M's case, to get an acknowledgment response that is 
logically associated with the frame that initiated it, or to provide a P / F 
exchange protected frame for the transfer of a REJ response in the case of 
errors, etc.) 

After the fr,ame with the P bit set to "1" is sent, the station may 
continue to send I frames to the other station. Since the receiving station 
cannot send an I frame with an F bit set to "1" (it would be a response I 
frame), the receiving station must interrupt its sequence of command I 
frames to insert a supervisory response frame (for example, L,RR2,F) that 
will convey both the F bit set to "1" and the N(R) indicating the sequence 
number of the I frame next expected. I frames N(R) - 1 and below are 
acknowledged. The N( R) should acknowledge at least all I frames trans­
mitted up through the I frame sent with the P bit set to "1." In some 
instances, the N(R) may acknowledge I frames beyond the N(S) at the time 
that the P bit was set to "1," but less than or equal to the N(S) at the time 
that the N(R) is received. (The M,I72,P and M,RR2,F exchange shown later 
in this example illustrates this.) 

When one of the stations runs out of I frames to send, then it will 
generate appropriate supervisory frames, (such as M,RR3 and M,RR4 in 
the example) in order to acknowledge I frames received. When I frames 
again become available, I frame transmission will resume with the next 
highest N(S) and then current value of N(R). The N(S) sequence will be 
ever increasing (except during recovery-Fig. 6), incremented by one with 
each new I frame. The N( R) value contained in each frame will be the 
current value of the receive state variable and may be incremented by more 
than one from frame to frame as a result of the transmission of different 
length I frames by the two stations involved (illustrated by the transmission 
of L,IlO,P and L,I47). 

In the example, L has concluded its transmission of I frames with 
M,I24 and is interested in disconnecting the link. After having sent M,124,L 
receives M,RR2,F that is the reply to the earlier P bit (M,I72,P). Except for 
M,I24, all of L's transmitted I frames have been acknowledged. Hence, L 
transmits M,RR5,P to get an acknowledgment report on its last outstanding 
I frame. In the process, L acknowledges receipt of the I frame numbered 4 
from M by setting N( R) equal to 5 in M,RR5,P. While L is cleaning up its 
records in this fashion, M transmits an I frame L,152,P with the P bit set to 



Chap. 5 • Bit-Oriented Data Link Control 137 

"I." When M receives the P bit set to "1" from L, it generates the M,RR3,F 
response as a reply. L receives the P bit set to "1" from M, generates an 
RNR response (L,RNR6,F) in an effort to preclude further I frame trans­
mission by M. In addition, as soon as L receives the F bit frame M,RR3,F 
in response to its P bit frame (M,RR5,P), L sends M,RNR6,P to stop any 
further I frame transmission by M. As soon as the F response frame 
M,RR3,F is received from M, L initiates the disconnect procedure by 
sending M,DISC,P. When M transmits the M,UA,F frame and L receives it, 
the link is in the disconnected mode. 

2. Examples of Error Recovery Procedures 

Many of the error recovery principles that were explained for the 
primary station in the unbalanced case are applicable to both combined 
stations in the balanced type of operation as well. Included are time-out 
functions associated with P bit transmissions, automatic retransmission of S 
or U format frames, and inquiry of status with a supervisory command 
before retransmitting I format frames. Consequently, they are not be 
reiterated here. 

Because of the two-way simultaneous nature of the operation and the 
asynchronous mode of operation, the only way to determine when a 
response received is a response to a command sent is to set the P bit equal 
to "1" in the command frame for which a response is required. Otherwise, 
because of propagation delays and offset of possibly different length I 
frames, it is possible for frame n to be acknowledged in an I or RR frame 
after I frame numbered n + x has been transmitted. It is also possible for 
several I frames in a row to have the same N( R) value because of a long 
frame having been sent in the other direction. If the last I frame in a series is 
sent without the P bit set to "1," then the lack of a receipt of a response 
frame from the other station should not of itself be considered grounds for 
automatic retransmission. An enquiry of the other station's status first 
(using P / F bit exchange) is the recommended operation. In general, the use 
of P bits in both directions helps ensure an orderly operation of the 
two-way simultaneous exchange of data. 

The REJ command/response function provides a mechanism for the 
receiving station to indicate to the sending station that the transmission in 
progress should be halted and retransmission should begin from the I frame 
number indicated by the N( R) value in the REJ frame. It provides a 
mechanism for reporting an error condition prior to the point where a P / F 
exchange would provide for reporting the same condition from the receiving 
station. (As mentioned earlier, the repeat of the same N( R) value in 
non-P / F frames cannot be construed in any way as a request for retrans­
mission of I frames from that specified point.) 



138 Part III • Link Control Layer 

Figure 6 shows how the REJ function can be used to initiate retrans­
mission earlier than waiting for the P j F cycle to be activated or for the 
number of outstanding unacknowledged I frames to equal the modulus 
minus one. Having the ability to send multiple frames between acknowledg­
ments is a valuable asset of the bit-oriented procedures. Using the REJ 
function where two-way simultaneous capability exists helps remove what 
might otherwise be considered to be a negative aspect of the multiple frame 
transmission capability. 

The examples of bit-oriented operation that are given here provide a 
brief insight into the capabilities of such procedures. Needless to say, many 
points have not been covered. The ADCCP standard is offered as a more 
complete description of the general features and capabilities of this new 
breed of data link control. 

V. Related Standards Activities 

The American National Standards Institute approved ADCCP in January, 
1979. A proposal for enhancements and extensions to ADCCP is presently 
scheduled for consideration for adoption in mid 1982. 

There are related efforts in the area of bit-oriented data link control 
standards development that also will likely influence the destiny of bit­
oriented procedures. These are the International Organization for Stan­
dardization (ISO) HDLC, the International Telegraph and Telephone 
Consultative Committee (CCITT) Recommendation X.25 Level 2 (LAPB) 
and Recommendation X.75 Level 2, the Federal Government FIPS 7ljFed 
Std 1003, and the Institute of Electrical and Electronics Engineers (IEEE) 
Project 802. 

The ISO bit-oriented activity is known as HDLC, High-Level Data 
Link Control. The related ISO documents [3]-[8] cover essentially the same 
material that is covered by the ANSI ADCCP standard. Not included are (1) 
switched network conventions, and (2) four reserved U frame format 
commands and responses that ADCCP sets aside for system designer use. The 
four reserved U frame format code points are reserved for implementor use 
to provide data link functions that are not included in the standard but that 
may be required in certain applications, with assurance that the selected 
code points will not be assigned to a standard function at some later time. 

Consolidation efforts are presently underway within ISO to combine 
[4], [5], and [6], concerned with elements of procedures into one replacement 
standard [9]. Similarly, the two classes of procedure documents [7] and [8] 
are being consolidated into one standard under one cover [10]. When 
completed, it is anticipated that there will be an even greater correlation 
between the ISO and ANSI descriptions of these bit-oriented data link 



Chap. 5 • Bit-Oriented Data Link Control 139 

control procedures. Like ADCCP, HDLC is general in scope and broad in 
possible applications. 

The CCITT bit-oriented activity that is consistent with the standards 
activities takes the form of Recommendation X.25 Level 2 LAPB and 
Recommendation X.75, Level 2. (The Recommendation X.25 Level 2 LAP 
procedures are not cited here because the LAP procedures are predicted on 
a different (nonstandard) definition and use of the SARM command than 
that recognized by the ADCCP or ISO standards.) 

Recommendation X.25 defines a DTE/DCE interface to public data 
networks. Recommendation X.75 defines the interface between two network 
signaling terminals (gateways). In both cases, the bit-oriented procedures 
employed were adapteq from the ISO balanced class of procedures (BAC) 
with optional functions 2 (REJ) and 8 (I Frames as Commands Only). To 
date, none of the other classes or optional functions have been utilized by 
CCITT in any of its Recommendations. Future studies of CCITT needs may 
result in reconsideration of other classes and/or optional functions. 

The potentially large scale of applications of the BAC,2,8 class of 
procedure makes it a front runner when it comes to those classes of 
procedure that will likely find themselves "engraved in silicon" and hence 
will become major factors in the design of data link control procedure IC 
chips for link level operation between "logical equals." 

The Federal Government also plays a significant role in the develop­
ment of bit-oriented data link control procedures. FIPS 71/Fed Std 1003 is 
essentially the ADCCP standard, with a few minor exceptions. For example, 
the four reserved U frame format commands and responses are not sup­
ported. 

FIPS 71/Fed Std 1003 is intended to serve as the basis for all future 
bit-oriented data link control equipment procurement throughout the 
government. For that reason, the large number of optional functions that 
are defined presents a potential nightmare when it comes to the interconnec­
tion of stations, or when it is necessary to move a station from one use and 
application to another. At present, in order for a piece of equipment to 
satisfy the condition in PIPS 71/Fed Std 1003 that will ensure a certain 
level of interoperability, it must, as a primary or combined station, be 
capable of (1) accepting a FRMR response from the other station that 
indicates that a command/response received was not implemented, (2) 
resetting the data link, and (3) following a revised data link procedure that 
does not involve the use of the nonimplemented command or response. A 
future alternative is being considered wherein the federal standard would 
specify only a limited set of classes with specified optional functions. If this 
latter course of action is followed, there would likely be a significant 
amount of pressure to rethink the subject of bit-oriented data link control 
procedure standards from the standpoint of standardizing only a minimal 



140 Part III • Link Control Layer 

set of fairly specifically spelled out classes of procedures instead of stan­
dardizing a general framework and the elements of a much larger group of 
possible combinations of classes and optional functions. Whether such 
action would be in the best interest of the data communication community 
at this time is not clear. 

Beginning early in 1980 an intense effort to define bit-oriented data 
link control procedures for local area network applications was initiated by 
the Institute of Electrical and Electronics Engineers (IEEE) Project 802. In 
general, these local area network applications covered communications 
between multiple stations operating in a "peer" relationship in a noncentral­
ized, multiaccess environment on a common medium, running at speeds in 
the tens-of-megabits range. The "peer" relationship has identified a number 
of necessary and desirable extensions and enhancements to the present 
bit-oriented data link control definition. Examples include (l) provision for 
both "destination" and "source" addressing in each frame, and (2) control 
of station access to the medium. To maximize the likelihood of satisfying 
the needs of the local area network applications in an evolving bit-oriented 
data link control definition, close liaison has, and is, being maintained with 
ANSI, ISO, CClTT and others. There is every hope that this coordinated 
effort will result in a fuller and more widely applicable bit-oriented data 
link control standard. 

High Level Compatability with Proprietary Protocols 

The principles and concepts of this bit-oriented approach to data link 
control seems to be well received by the data communications community as 
a whole. Based on available literature, the principal proprietary bit-oriented 
data link protocols that are around today are compatible with the ADCCP 

standard, or some subset of it. 
An important distinction must be understood here. A standard like 

ADCCP is by definition broad in scope and minimally restrictive in what can 
or cannot be done with its elements. A protocol, on the other hand, is 
generally aimed at satisfying a particular need or application. A proprietary 
protocol, by its very name, is something that is designed by an individual or 
organization with a particular purpose in mind. The proprietary protocols 
developed by various equipment manufacturers, for instance, are designed 
with a significant influence from the marketplace as each of them sees the 
marketplace. Of course, all manufacturers do not eye the general market­
place in an identical fashion. Hence, although a standard like ADCCP or 
HDLC attempts to embrace the widest possible view of the marketplace, the 
proprietary protocols that evolve based on views of that marketplace from 
differing vantage points will likely include different subsets of the standard, 



Chap. 5 • Bit-Oriented Data Link Control 141 

and possibly require additional elements that the standard did not include 
in its breadth of coverage. 

Such is believed to be the case with proprietary protocols such as 
BDLC, SDLC, UDLC, and others. Burroughs has long been on record as 
intending that the Burroughs Data Link Control (BDLC) will be compatible 
with the ADCCP and HDLC standards. One might thus assume that as 
Burroughs needs and applications emerge, BDLC will satisfy those needs in 
a manner that utilizes the features and capabilities provided for in ADCCP 

and HDLC where possible. IBM's Synchronous Data Link Control (SDLC) 
claims to conform with the Unbalanced Normal Class of Procedures, a 
subset of ADCCP and HDLC. The basic repertoire of commands and 
responses in this class is the same as in the Unbalanced Normal Class of 
Procedures defined in ADCCP and HDLC. The product lines for which 
SDLC [11] is presently defined support some of the optional functions, but 
not all of them. In many countries, IBM has announced their intention to 
offer compatibility with the CCITT X.25 LAPB access procedure to public 
data networks. As other IBM marketplaces are identified, support for other 
standard bit-oriented features and functions may be announced. In the case 
of Univac, like Burroughs, there has been a long time statement of intended 
compatibility of Univac's Universal Data Link Control (UDLC) with the 
ADCCP and HDLC Standards. In addition, UDLC claims conformity with 
the IBM SDLC as well. 

In line with the literature available, it would seem that most bit-ori­
ented protocol providers claim compatibility with the whole or a part of the 
ADCCP and HDLC standards. However, claiming compatibility with an 
intentionally designed broad-scoped standard should not be misinterpreted 
as meaning that any two things rightly claiming such compatibility will 
necessarily be compatible with each other. The standards provide a guide­
line and a framework in which to develop and design specific protocols to 
answer an identified need and application in the marketplace. It is generally 
hoped that as bit-oriented data link controls become much better under­
stood and their range of application comes into clearer focus, the number of 
necessary variations and perturbations will naturally reduce to the point 
where the essence of the then existing standard is cost-effectively expressible 
in a minimum of fixed variations. The economic impact of having an entire 
data link control protocol on an IC chip may well be the catalyst that will 
force the decision as to what limited list of features and capabilities will be 
available, with what classes of procedures. 

VI. The Future 

Work is still going on in the area of bit-oriented data link control 
standardization. Additional commands and responses are under considera-



142 Part m • Link Control Layer 

tion. Some of the existing functions (e.g., XID, Initialization Mode) are 
being examined in greater detail to identify if there are additional aspects of 
their utility that warrant definition and standardization. 

A multilink operating capability has been approved by CCITT and is in 
its final stages of approval within ISO [12]. Multilink operation provides a 
mechanism that interfaces the higher level (Level 3) with a multiplicity of 
individually operating single link data link control procedure packages in 
such a manner that the group of single links appears to be the higher level as 
a single data link of greater bandwidth and increase reliability and integrity. 
The multilink procedures provide for the automatic distribution of informa­
tion fields to the single link data link controls for transmission to the remote 
station where the information fields will be returned to their original 
sequence before delivery to the higher level. The nature of the multilink 
procedure is predicated on the high level of data transfer integrity of the 
single link procedures and relies on the capabilities of the higher levels to 
recover from any error situations that could result from infrequent equip­
ment malfunctions or system errors that might occur above the single link 
data link level. 

There has also been an increasing interest in possible extension to, or 
other applications of, these bit-oriented procedures. To date, the procedures 
are designed for application in synchronous systems operating in either a 
centralized control environment or a two-equal-party environment. There is 
some interest in applying the procedural concepts to asynchronous (start­
stop) environments. There is also great interest (as is evidenced by the IEEE 
efforts to define a "peer" protocol for local area network applications) to 
determine what needs to be done to these bit-oriented procedures to make 
them applicable to noncentralized control environments as well. Use of 
bit-oriented procedures in areas of application like facsimile, TELETEX, text 
processing, electronic mail, etc., may also result in additions, extensions, or 
modifications to the bit-oriented procedures in the future. 

The secure nature of the data link frame-its transparency (bit stuff­
ing), its high level of error protection (l6-bit or 32-bit CRC), plus its 
directability (address field assignment)-make it attractive for other appli­
cations besides transferring end user data. From a Level 1 maintenance and 
operations point of view, the bit-oriented frame appears to be an ideal 
vehicle for use in activating and deactivating Level 1 (physical line level) 
loopbacks or initiating other Level I related functions. Similarly, data link 
frames seem to be natural vehicles for Level 3 (and higher) use in exchang­
ing user jnetwork information relative to the establishment of a user-to-user 
(end-to-end) data transfer exchange. Consideration of uses such as these 
appear to be subjects of near-future activities. What impact they may have 
on the present organization of bit-oriented data link level procedures is not 
clear. 



Chap. 5 • Bit-Oriented Data Link Control 143 

VII. Conclusions 

After nearly a decade of inv(;!nting, evaluating, deliberating, and com­
prising, a bit-oriented data link control approach has emerged that satisfies 
the general requirements cited earlier for interactive operation. Although 
known by many names at the moment (ADCCP, LAPB, SDLC, etc.), this new 
breed of data link control contains the necessary features, capabilities, 
characteristics, and growth potential, and has the level of acceptance 
nationally and internationally to make it the Data Link Control approach 
for use in providing a high-integrity, transparent data transfer mechanism at 
the data link level that will satisfy today's as well as tomorrow's synchro­
nous data communication needs. 

References 

[I] ANSI Standard X3.66- I 979, "Advanced Data Communication Control Procedures," 
(Copies obtainable from American National Standards Institute, 1430 Broadway, New 
York, NY 10018). 

[2] R.J. Cypser, Communications Architecture for Distributed Systems. Reading, MA: 
Addison-Wesley, 1978, p. 385. 

[3] ISO-3309, "HDLC, Frame structure," (References [3]-[10] and [12] are available from 
Computer and Business Equipment Manufacturers Assoc., 1828 L SI. N.W., Washington, 
DC 20036). . 

[4] ISO-4335, "HDLC, Elements of procedures." 
[5] ISO-4335/ ADI, "HDLC, Addendum I to ISO-4335." 
[6] ISO-4335/AD2, "HDLC, Addendum 2 to ISO-4335." 
[7] ISO-6159, "HDLC, Unbalanced classes of procedure." 
[8] ISO-6256, "HDLC, Balanced class of procedure." 
[9] ISO /TC97 /SC6 N2100, "Consolidation of HDLC elements of procedures." (ISO/DIS 

4335 Revised). 
[10] ISO/TC97/SC6 N2099, "Consolidation of HDLC classes of procedures." (ISO/DIS 

7809). 
[I I] "IBM Synchronous Data Link Control," General Info., IBM form GA27-3093. 
[12] ISO/TC97/SC6 N2121, "Multilink control procedures." (ISO/DIS 7478). 



6 

Multiaccess Link Control 

Fouad A. Tobagi 

I. Introduction 

The need for multiaccess protocols arises whenever a resource is shared 
(and thus accessed) by a number of independent users. One main reason 
contributing to such a situation is the need to share scarce and expensive 
resources. An excellent example is typified by time-sharing systems. Time­
sharing was developed in the 1960s to make the powerful processing 
capability of a large computer system available to a large population of 
users, each of whom has relatively small or infrequent demands so that a 
dedicated system cannot be economically justified. Two advantages are 
gained: the smoothing effect of large populations on the demand, an effect 
resulting from the law of large numbers, and a lower cost per unit of service 
resulting from the (almost always existing) economy of scale. 

A second major reason contributing to the multiaccess of a common 
resource by many independent entities is the need for communication 
among the entities; we refer to this as the connectivity requirement. An 
excellent example today is the telephone system, the main purpose of which 
is to provide a high degree of connectivity among its subscribers. The 
multiaccess protocol used in the telephone system is conceptually simple; it 
merely consists of placing a request for connection to one or several parties, 
a request which gets honored by the system if all the required resources are 
available. 

Packet Communication 

Let us now consider data communication systems. Communications 
engineers have long recognized the need to multiplex expensive transmission 

145 



146 Part III • Link Control Layer 

facilities and switching equipment. The earliest techniques for doing this 
were synchronous time-division multiplexing and frequency-division multi­
plexing. These methods assign a fixed subset of the time-bandwidth space to 
each of several subscribers and are very successful for stream-type traffic 
such as voice. With computer traffic, however, usually characterized as 
bursty, fixed assignment techniques are not nearly so successful, and to solve 
this problem, packet communication systems have been developed over the 
past decade [1]-[7]. Packet communication is based on the idea that part or 
all of the available resources are allocated to one user at a time but for just a 
short period of time. Here each component of the system is itself a resource 
which is multiaccessed and shared by the many contending users. To 
achieve sharing at the component level, customers are required to divide 
their messages into small units called packets which carry information 
regarding the source and the intended recipient. 

One type of packet communication network, known as the point-to-point 
store-and-forward network, is one where packet switches are interconnected 
by point-to-point data circuits according to some topological structure. 
Packets are transmitted independently and pass asynchronously from one 
switch to another until they reach their destination. The multiplexing of 
packets on a channel is done by queueing them at each switch until the 
outgoing channel is free. Typical examples are the ARPAnet [7], the Cigale 
subnetwork [8], TELENET [9], and DATAPAC [10]. 

Another type of packet transmission network is the (single-hop) multi­
access/broadcast network typified by the ALOHA network [11], SATNET [12], 
and ETHERNET [5]. Here a single transmission medium is shared by all 
subscribers; the medium is allocated to each subscriber for the time required 
to transmit a single packet. The inherent single-hop broadcast nature of 
these systems achieves full connectivity at small additional cost. Each 
subscriber is connected to the common channel through a smart interface 
which listens to all transmissions and absorbs packets addressed to it. 

Yet a third type of packet network can be identified. It is the (multi­
hop) store-and-forward multiaccess/broadcast type which combines the fea­
tures exhibited (and problems encountered) in the two types just mentioned. 
The best and perhaps only example of this type is the packet radio network 
(PRNET) sponsored by the Advanced Research Projects Agency [13], [14]. 
The concept of the PRNET is an extension of that of the ALOHA network in 
that it includes many added features such as direct communication by a 
ground radio network between mobile users over wide geographical areas, 
coexistence with possibly different systems in the same frequency band, 
antijam protection, etc. The key requirement of direct communication over 
wide geographical areas renders store-and-forward switches, called re­
peaters, integral components of the system. Furthermore, for easy communi­
cation among mobile users and for rapid deployment in military appli-



Chap. 6 • Multiaccess Link Control 147 

cations, all devices employ omnidirectional antennas and share a high-speed 
radio channel; hence the multiaccess/broadcast nature of the system. 

The main issue of concern in this chapter is how to control access to a 
common channel to efficiently allocate the available communication band­
width to the many contending users. The solutions to this problem form the 
set of protocols known as multiaccess protocols. These protocols and their 
performance differ according to the environment in question and the system 
requirements to be satisfied. We devQte the next few paragraphs to sum­
marizing the basic relevant characteristics underlying these environments. 

Consider first satellite channels. A satellite transponder in a geosta­
tionary orbit above the earth provides long-haul communication capabili­
ties. It can receive signals from any earth station in its coverage pattern and 
can transmit signals to all such earth stations (unless the satellite uses spot 
beams). Full connectivity and multidestination addressing can both be 
readily accommodated. The many characteristics regarding data rates, error 
rates, satellite coverage, channelization, and design of earth stations have 
been fully discussed in a paper by Jacobs et al. [12]. Perhaps the most 
important characteristic relevant to this discussion is the inherent long 
propagation delay of approximately 0.25 s for a single hop. This delay, 
which is usually long compared to the transmission time of a packet, has a 
major impact on the bandwidth allocation techniques and on the error and 
flow control protocols. 

In ground radio environments, the propagation delay is relatively short 
compared to the transmission time of a packet, and as we shall see in the 
sequel, this can be of great advantage in controlling access to a common 
channel. It is important, however, to distinguish single-hop environments 
where direct full connectivity is assumed to prevail, and more complex user 
environments where, due to geographical distance and/or obstacles opaque 
to UHF signals, limited direct connectivity is achieved. Clearly, the latter 
situation is significantly more complex as it gives rise to a multihop system 
where global control of system operation and resource allocation (whether 
centralized or distributed) is much harder to accomplish. Another dimen­
sion of complexity results from the fact that, unlike satellite environments 
where earth stations are stationary, ground radio systems must also support 
mobile users. With mobile users, not only does demand on the system 
exhibit relatively fast dynamic changes, but the radio propagation character­
istics are subject to important variations in received signal strength so that 
system connectivity is at all times difficult to predict; with these considera­
tions it is important to devise access schemes and system control mecha­
nisms that allow the system to adapt itself to these changes. Furthermore, 
multipath effects in urban environments can be so disastrous that special 
signaling schemes, such as spread spectrum, may be in order. Finally, 
another point of growing concern today is RF spectrum utilization. This is 



148 Part III • Link Control Layer 

becoming an increasingly predominant factor in determining the structure 
of radio systems, both in satellite and ground environments. A packet radio 
system which allows the dynamic allocation of the spectrum to a large 
population of bursty mobile users needs flexible high-performance multi­
access schemes which can take advantage of the law of large numbers, and 
which permit coexistence of the system with other (possibly different) 
systems in the same frequency band. 

Finally, we consider local area communication systems. These span 
short distances (ranging from a few meters up to a few kilometers) and 
usually involve high data rates. The transmission medium can be privately 
owned and inexpensive, such as twisted pair or coaxial cable. Local area 
environments are characterized by a large and often variable number of 
devices requiring interconnection, and these are often inexpensive. These 
situations call for cOl;nmunication networks with simple topologies and 
simple and inexpensive connection interfaces that can provide great flexibil­
ity in accommodating the variability in the environment and that achieve 
the desired level of reliability. With these constraints, we again face the 
situation in which a high bandwidth channel is to be shared by independent 
users. Short propagation delays and high data rates are the main character­
istics that are exploited in devising multiaccess schemes appropriate to local 
area environments. 

Multiaccess schemes are evaluated according to various criteria. The 
performance characteristics that are desirable are, first of all, high band­
width utilization and low message delays. But a number of other attributes 
are just as important. The ability for an access protocol to simultaneously 
support traffic of different types, different priorities, with variable message 
lengths, and differing delay constraints is essential as higher bandwidth 
utilization is achieved by the multiplexing of all traffic types. Also, to 
guarantee proper operation of schemes with distributed control, robustness, 
defined here as the insensitivity to errors resulting in misinformation, is also 
most desirable. 

Having so far discussed briefly the basic characteristics and system 
requirements underlying the various communication environments, we now 
proceed with a discussion of the multiaccess protocols appropriate to these 
environments. These protocols differ by the static or dynamic nature of the 
bandwidth allocation algorithm, the centralized or distributed nature of the 
decision-making process, and the degree of adaptivity of the algorithm to 
changing needs. Accordingly, these protocols can be grouped into five 
classes. The first class, labeled fixed assignment techniques, consists of those 
techniques which allocate the channel bandwidth to the users in a static 
fashion, independently of their activity. The second class is that of random 
access techniques. In this class the entire bandwidth is provided to the users 
as a single channel to be accessed randomly; since collisions may result 



Chap. 6 • Multiaccess Link Control 149 

which degrade the performance of the channel, improved performance can 
be achieved by either synchronizing users so that their transmissions coin­
cide with the boundaries of time slots, by sensing carrier prior to transmis­
sion, or both. The third and fourth classes correspond to demand assignment 
techniques. Demand assignment techniques require that explicit control 
information regarding the users' need for the communication resource be 
exchanged. A distinction is made between those techniques in which the 
decision making is centralized (constituting the third class in question), and 
those techniques in which all users individually execute a distributed algo­
rithm based on control information exchanged among them. The latter 
constitute the fourth class. The fifth class, labeled adaptive strategies and 
mixed modes, including those techniques which consist of a mixture of 
several distinct modes, and those strategies in which the choice of an access 
scheme is itself adaptive to the varying need, in the hope that near-optimum 
performance will be achieved at all times. 

We describe the various protocols known today, either implemented or 
proposed, and discuss their performance and applicability to the different 
environments introduced in this Section. For this we consider the (conceptu­
ally) simplest situation consisting of M users wishing to communicate over a 
channel. This situation arises typically in satellite communication, in a 
single-hop ground radio environment, or in a shared bus local network. 

II. Fixed Assignment Techniques 

Fixed assignment techniques consist of allocating the channel to the 
users, independently of their activity, by partitioning the time-bandwidth 
space into slots which are assigned in a static predetermined fashion. These 
techniques take two common forms: orthogonal, such as frequency division 
multiple access (FDMA) or synchronous time division multiple access 
(TDMA), and "quasiorthogonal" such as code division multiple access 
(CDMA). 

A. FDMA and TDMA: FDMA consists of assigning to each user a 
fraction of the bandwidth and confining its access to the allocated subband. 
Orthogonality is achieved in the frequency domain. FDMA is relatively 
simple to implement and requires no real time coordination among the 
users. 

TDMA consists of assigning fixed predetermined channel time slots to 
each user; the user has access to the entire channel bandwith, but only 
during its allocated slots. Here, signaling waveforms are orthogonal in time. 

A number of disadvantages exist for both FDMA and TDMA. FDMA 
wastes a fraction of the bandwidth to achieve adequate frequency separa­
tion. FDMA is also characterized by a lack of flexibility in performing 



150 Part III • Link Control Layer 

changes in the allocation of the bandwidth and certainly the lack of 
broadcast operation. The major disadvantages in TDMA are the need to 
provide AjD converters for analog traffic such as voice, and rapid burst 
synchronization and sufficient burst separation to avoid time overlap. 
However, it has been shown that guard bands of less than 200 ns are 
achievable (as in INTELSAT'S MAT-l TDMA system, for example) and many 
operational systems are moving towards the use of TDMA [16]. Timing at 
an earth station is provided by a global time reference established either 
explicitly by a reference station, or implicitly by measurement of the 
propagation delay from the earth station to the transponder. In order to 
allow the TDMA modems to acquire frequency, phase, bit timing and bit 
framing synchron,ization for each received burst, a preamble is included in 
front of each burst requiring typically from 100 to 200 bit times. Thus 
clearly, TDMA is more complex to implement than FDMA, but an im­
portant advantage is the connectivity which results from the fact that all 
receivers listen to the same channel while senders transmit on the same 
common channel at different times. Accordingly, many network realiza­
tions, both in ground and satellite environments, are easier to accomplish. 

From the performance standpoint it has also been established that 
TDMA is superior to FDMA in many cases of practical interest. 1. Rubin 
has shown that the random variable representing packet delay is always 
larger in FDMA than in TDMA for comparable systems [17]. Lam derived 
the average message delay for a TDMA system with multipacket messages 
and a nonpreemptive priority queue discipline [18]. There, too, it was shown 
that TDMA is superior to FDMA. 

For both FDMA and TDMA, the fixed preallocation of the frequency 
or time resource does not have to be equal for all users, but can be tailored 
to fit their needs (assumed constant). Kosovych studied two TDMA imple­
mentations [19]. In the first, called contiguous assignment, the users are 
cyclically ordered in the time sequence in which they have access to the 
channel. Each user is periodically assigned its own fixed time duration. In 
the second implementation, called distributed allocation, all access periods 
are of equal time duration, but the frequency of accesses can be different 
from one user to the other. It was shown that for situations in which the 
transmission overhead (defined as guard time and synchronization preamble 
time) is large, the contiguous fixed assignment implementation is better 
suited and provides substantially better performance than distributed fixed 
assignments, while when the transmission overhead is small, distributed 
fixed assignments provide slightly better performance. 

Finally we note that, even though the allocation can be tailored to the 
relative need of each user, fixed allocation can be wasteful if the users' 
demand is highly bursty, as we shall explicitly see in the sequel. Given these 
limitations, one may increase the channel utilization beyond FDMA and 



Chap. 6 • Multiaccess Link Control 151 

TDMA by using asynchronous time division multiple access (ATDMA), 
also known as statistical multiplexing [70]. Basically the technique consists 
of switching the allocation of the channel from one user to another only 
when the former is idle and the latter is ready to transmit data. Thus the 
channel is dynamically allocated to the various users according to their need. 
The performance of ATDMA in packet communication systems corre­
sponds to that of a work-conserving single server queueing system, and is 
the best we can achieve under unpredictable demand. Unfortunately, it is 
not always possible to accomplish the necessary coordination among the 
users. This mode of multiplexing is possible only when several collocated 
users (such as the same earth station) are sharing a single point-to-point 
channel. 

B. CDMA: Unlike FDMA and TDMA, code division multiple access 
allows overlap in transmission both in the frequency and time coordinates. 
It achieves orthogonality by the use of different signaling codes in conjunc­
tion with matched filters (or equivalently, correlation detection) at the 
intended receivers. Multiple orthogonal codes are obtained at the expense of 
increased bandwidth requirements (in order to spread the waveforms); this 
also results in a lack of flexibility in interconnecting all users (unless, of 
course, matched filters corresponding to all codes are provided at all 
receivers). However, CDMA has the advantage of allowing the coexistence 
of several systems in the same band, as long as different codes are used for 
different systems. Moreover, it is also possible to separate, by "capture," 
time overlapping signaling waveforms with the same code, thus achieving 
connectivity and efficient spectrum utilization. This interesting possibility 
falls into the class of random access techniques and is addressed in the 
following subsection. 

III. Random Access Techniques 

In computer communication, much data traffic is characterized as 
bursty (e.g., interactive terminal traffic). Burstiness is a result of the high 
degree of randomness seen in the generation time and size of messages and 
of the relatively low-delay constraint required by the user. If one were to 
observe the user's behavior over a period of time, one would see that the 
user requires the communications resources rather infrequently; but when 
he does, he requires a rapid response. That is, there is an inherently large 
peak-to-average ratio in the required data transmission rate. If fixed sub­
channel allocation schemes are used, then one must assign enough capacity 
to each subscriber to meet his peak transmission rates, with the consequence 
that the resulting channel utilization is low. A more advantageous approach 
is to provide a single sharable high-speed channel to the large number of 



152 Part III • Link Control Layer 

users. The strong law of large numbers then guarantees that, with a very 
high probability, the demand at any instant will be approximately equal to 
the sum of the average demands of that population. As stated in the 
introduction, packet communication is a natural means to achieve sharing 
of the common channel. When dealing with shared channels in a packet­
switched mode, one must be prepared to resolve conflicts which arise when 
more than one demand is placed upon the channel. For example, in 
packet-switched radio channels, whenever a portion of one user's transmis­
sion overlaps with another user's transmission, the two collide and "destroy" 
each other (unless a code division multiple-access scheme is used). The 
existence of some positive acknowledgment scheme permits the transmitter 
to determine if hi& transmission is successful or not. The problem is how to 
control the access to the common channel in a fashion which produces, 
under the physical constraints of simplicity and hardware implementation, 
an acceptable level of performance. The difficulty in controlling a channel 
which must carry its own control information has given rise to the so-called 
random-access protocols, among others. We describe these here by consider­
ing again single-hop environments. 

A. ALOHA [20]-[22]. Historically, the pure ALOHA protocol was first 
used in the ALOHA system, a single-hop terminal access network developed 
in 1970 at the University of Hawaii, employing packet-switching on a radio 
channel [11], [20]. The simplest of its kind, pure ALOHA permits users to 
transmit any time they desire. If within some appropriate time-out period 
following its transmission, a user receives an acknowledgment from the 
destination (the central computer), then it knows that no conflict occurred. 
Otherwise it assumes that a collision occurred and it must retransmit. To 
avoid continuously repeated conflicts, the retransmission delay is rand­
omized across the transmitting devices, thus spreading the retry packets over 
time. A slotted version, referred to as slotted ALOHA, is obtained by dividing 
time into slots of duration equal to the transmission time of a single packet 
(assuming constant-lertgth packets) [21], [22]. Each user is required to 
synchronize the start of transmission of its packets to coincide with the slot 
boundary. When two packets conflict, they will overlap completely rather 
than partially, providing an increase in channel efficiency over pure ALOHA. 

Owing to conflicts and idle channel time, the maximum channel efficiency 
available using ALOHA is less than 100 percent, 18 percent for pure ALOHA 

and 36 percent for slotted ALOHA. Both schemes are theoretically applicable 
to satellite, ground radio, and local bus environments. The slotted version 
has the advantage of efficiency, but it has the disadvantage that synchroni­
zation may be hard to achieve, especially in multihop ground radio. 

Although the maximum achievable channel utilization is low, the 
ALOHA schemes are superior to fixed assignment schemes when there is a 
large population of bursty users. This point is illustrated in comparing for 



Chap. 6 • Multiaccess Link Control 153 

~ 
<I) 

a: 
w 
<I) 

:l 
\L-
a 
a: 
w 
CD 
~ 
:l 
Z 

105[!1~~ {FDMA~ INFEASIBLE REGIONS SLOTTED ALOHA ~ 
W = 100 KBS 

104 bm = 1000 BITS 

103 10SEC 

102 1 SEC 

10 
.1 SEC .1 

--FDMA 
-- -- (SLOTTED ALOHA) 

10.2 10.1 1 10 102 

USER INPUT RATE II (PACKETS/SECOND) 

Fig. I. FDMA and slotted ALOHA: performance with IOO-kbitjs bandwidth and 1000-bit 
packets. Contours are for constant delay [23]. 

example the performance of FDMA with that of slotted ALOHA when M 
users, each of which generates packets at a rate of A packets per second, 
share a radio channel of W Hz [23]. Figures I and 2 display the constant 
delay contours in the (M, A) and (W, A) planes, respectively. These figures 
clearly show the important improvement gained in terms of bandwidth 
required, population size supported and delay achieved when the users are 
bursty. 

B. Carrier Sense Multiple Access (CSMA) [24], [25]. In ground radio 
environments the channel can be characterized as wideband with a propaga­
tion delay between any source-destination pair that is small compared to 
the packet transmission time. In such an environment one may attempt to 
avoid collisions by listening to the carrier due to another user's transmission 
before transmitting, and inhibiting transmission if the channel is sensed 
busy. This feature gives rise to a random access scheme known as carrier 
sense multiple access (CSMA) [24], [25]. While in the ALOHA scheme only 
one action could be taken by the terminals, namely, to transmit, here many 
strategies are possible so that many CSMA protocols exist differing accord-



154 Part ill • Link Control Layer 

FDMA 
SLOTTED ALOHA 

10.5 SEC 
105 ...... _-_-.... ...... -=-=-:..=-:...:-:..=-:..-=-.::-::....::-:.,:-:;;.,,;;-:.,:--------'"'"": i3 .-

z .01 SEC 
o 
u 
UJ 
(I) 

cr: 10-4 SEC 
~ 104 ~ ____ o.=:.::-=-=-:.:-=-=-:=..;;-=-;;..-=--__ --::.. 
(I) .1 SEC 
t:: 
00 ~ 

o '" 
~ '" 

'" :.<: 10.3 SEC _ ....... 
i: 103 I----..-...... .::-:..:-=:=-::-::;-:=-=---~ 
J: 1 SEC 
l-
e 
~ ",,,,,,, 
~ .01 SEC _ .......... 

~ 102 F-~-~-=--~-:.,:-~------~~ 
{ FDMA~ INFEASIBLE REGIONS 

t~~~~~~~~~~~M~~~~l~OO~O~~~~:S:L~O~T~T~E:D~A:L:O:H:A~~::~:~ 
10 

10.4 

1000 BITS 

10 

USER INPUT RATE II (PACKETS/SECOND) 

Fig. 2. FDMA and slotted ALOHA bandwidth requirements for 1000 terminals and 1000-bit 
packets. Contours are for constant delay [23]. 

ing to the action that a terminal takes to transmit a packet after sensing the 
channel. In all cases, however, when a terminal learns that its transmission 
had incurred a collision, it reschedules the transmission of the packet 
according to the randomly distributed delay. At this new point in time, the 
transmitter senses the channel again and repeats the algorithm dictated by 
the protocol. There are two main CSMA protocols known as nonpersistent 
and p-persistent CSMA depending on whether the transmission by a station 
which finds the channel busy is to occur later or immediately following the 
current one with probability p. Many variants and modifications of these 
two schemes have also been proposed. Thus, in nonpersistent CSMA, a 
ready terminal (i.e., a terminal with a packet ready for transmission) senses 
the channel and operates as follows: 

1. If the channel is sensed idle, it transmits the packet. 
2. If the channel is sensed busy, then the terminal schedules the 

retransmission of the packet to some later time according to the 
retransmission delay distribution. At this new point in time, it senses 
the channel and repeats the algorithm described. 



Chap. 6 • Multiaccess Link Control 155 

The I-persistent CSMA protocol, a special case of p-persistent CSMA, 
was devised in order to (presumably) achieve acceptable throughput by 
never letting the channel go idle if some ready terminal is available. More 
precisely, a ready terminal senses the channel and operates as follows: 

1. If the channel is sensed idle, it transmits the packet with probability 
one. 

2. If the channel is sensed busy, it waits until the channel goes idle and 
then immediately transmits the packet with probability one (i.e., 
persisting on transmitting with p = I). 

A slotted version of these CSMA protocols can also be considered in 
which the time axis is slotted and the slot size is 7' seconds where 7' is the 
maximum propagation delay among all pairs. Note that this definition of a 
slot is different from that used in the description of slotted ALOHA. Here a 
packet transmission time is equivalent to several slots. We make this 
distinction by referring to a slot of size 7' seconds as a "minislot." All 
terminals are synchronized and are forced to start transmission only at the 
beginning of a minislot. 

In the case of a I-persistent CSMA, we note that whenever two or more 
terminals become ready during a packet transmission period, they wait for 
the channel to become idle (at the end of that transmission) and then they 
all transmit with probability one. A conflict will also occur with probability 
one. The idea of randomizing the starting time of transmission of packets 
accumulating at the end of a transmission period seems reasonable for 
interference reduction and throughput improvement. Thus we have the 
p-persistent scheme which involves including an additional parameter p, the 
probability that a ready packet persists, (1 - p being the probability of 
delaying transmission by 7' seconds, the propagation delay). The parameter 
p is chosen to reduce the level of interference while keeping the idle periods 
between any two consecutive nonoverlapped transmission as small as possi­
ble. 

More precisely, the p-persistent CSMA protocol consists of the follow­
ing: the time axis is minislotted and the system is synchronized such that all 
terminals begin their transmission at the beginning of a minislot. If a ready 
terminal senses the channel idle, then with probability p, the terminal 
transmits the packet; and with probability 1-p, the terminal delays the 
transmission of the packet by 7' seconds (i.e., one minislot). If at this new 
point in time, the channel is still detected idle, the same process is repeated. 
Otherwise some packet must have started transmission, and the terminal in 
question schedules the retransmission of the packet according to the retrans­
mission delay distribution (i.e., acts as if it had conflicted and learned about 
the conflict). If the ready terminal senses the channel busy, it waits until it 
becomes idle (at the end of the current transmission) and then operates as 
above. 



156 Part m • Link Control Layer 

Packet broadcasting technology has also been shown to be very effec­
tive in satisfying many local area in-building communication requirements. 
A prominent example is ETHERNET, a local communication network which 
uses CSMA on a tapped coaxial cable to which all the communicating 
devices are connected [5]. The device connection interface is. a passive cable 
tap so that failure of an interface does not prevent communication among 
the remaining devices. The use of a single coaxial cable achieves broadcast 
communication. The only difference between this and the single-hop radio 
is that, in addition to sensing carrier, it is possible for the transceivers, when 
they detect interference among several transmissions (including their own), 
to abort the transmission of colliding packets. This is achieved by having 
each transmitting device compare the bit stream it is transmitting to the bit 
stream it sees on' the channel. This variation of CSMA is referred to as 
carrier sense multiple access with collision detection (CSMA-CD) [26]. 

While until recently most of the concepts described in this section had 
been realized in experimental systems (namely, the ALOHA System, the 
PRNET, and Xerox's experimental ETHERNET), it is important to note that 
today contention systems of the ETHERNET type are available on the market, 
and new ones have been announced to be soon available. Examples are the 
Hyperchannel and the Hyperbus of Network Systems Corporation [73], and 
Z-Net of Zilog, and ETHERNET itself. Highly publicized, the latter has been 
recently announced as a product to be soon made available jointly by Xerox 
Corporation, Digital Equipment Corporation, and INTEL. Complete specifi­
cations of the data link and physical link protocols have been issued, and 
constitute, among other schemes, a proposal for a standard to the IEEE 
committee on standardization of local networks. A key feature that dis­
tinguishes this product from other already available systems is the LSI 
implementation of many of the data link and physical link protocols. LSI 
implementation of network protocols clearly marks a trend in the evolution 
of computer networking, a trend which is indicative of the existence of a 
wide market and the need to provide reasonably priced components. 

C. Performance of Random Access. Many theoretical studies have been 
carried out to determine the performance of these random access schemes 
[20]-[22], [24]-[29]. We summarize here the most important results. Let S 
denote the aggregate rate of packet generation from the entire population of 
users, G the rate of packet transmissions (new and repeated, hence G? S), 
and D the packet delay (defined as the time elapsed between the time that 
the packet is originated and the time it is successfully received at the 
destination), all normalized to the (fixed) packet transmission time T. 
Analytic and simulation models provide us, for each random access scheme, 
with a relationship between Sand G (displayed in Fig. 3), and the 
throughput delay tradeoff (displayed in Fig. 4) for a normalized propaga­
tion delay a = TIT = 0.01. We note that the behavior of these schemes is 



Chap. 6 • Multiaccess Link Control 

.8 

~ .6 .. 
:I: 
OJ 
=> o 
II: 
:I: 

1::. .4 

.2 

a = 0.01 

.03 - PERSISTENT CSMA 

.1 - PERSISTENT CSMA 

157 

o~====~ ____ ~ __________ -L __ ~~ __ ~ __ L-________ ~ 
0.01 0.1 10 100 

G (OFFERED CHANNEL TRAFFIC) 

Fig. 3. Throughput for the various random access modes (propagation delay a = 0.01) [24]. 

typical of contention systems, namely, that the throughput increases as the 
offered channel traffic increases from zero, but reaches a maximum value 
for some optimum value of G, and then constantly decreases as G increases 
beyond that optimal value. Maximizing S with respect to the channel traffic 
rate G for each of the access modes leads to the channel capacity for t1:J.at 
mode. From Fig. 4 we clearly note that D increases as the throughput 
increases, and reaches infinite values as the throughput approaches the 

Fig. 4. CSMA and ALOHA: throughput-delay 
tradeoffs from simulation (propagation delay 
a =0.01) [24]. 

>­
<I: 
..J 

40 

20 

W 10 
o 
o 
W 
N 

~ 5 
:;: 
II: 
o 
2 

PURE 
ALOHA 

SLOTTED 
ALOHA 

SLOTTEO 
'·PERSISTENT 

SLOTTED 
NON·PERSISTENT 

.1 .2 .3 .4 .5 .6 .7 .8 .9 

S (TH ROUGHPUT) 



158 

.8 

~ 

Part ill • Link Control Layer 

SLOTTED NON - PERSISTENT CSMA 

OPTIMUM p - PERSISTENT CSMA 

NON - PERSISTENT CSMA 

c:; .6 SLOTTED 1 - PERSISTENT CSMA 

~ 
.... 
w z 
:i .4 SLOTTED ALOHA 
5 ~--~~~~~------~------------------~~~----~ 

1 - PERSISTENT CSMA 

.2 PURE ALOHA 

O~--~--~--~--~----~--~~~--~----~~--~-----' 
.001 .002.003 .005 .01 .02 .03.05 .1 .2.3.5 

Fig. 5. CSMA and ALOHA: effect of propagation delay a on channel capacity [24]. 

channel capacity. These results show the evident superiority of CSMA over 
the ALOHA scheme. The CSMA channel capacity in some cases may be as 
high as 90 percent of the available bandwidth. It is clear, however, that, as 
expected, the channel capacity and the throughput-delay tradeoff for the 
CSMA schemes degrade as the normalized propagation delay (a = 'TIT) 
increases. Figure 5 illustrates the sensitivity of the channel capacity to a. 

CSMA-CD offers even more improvement. A system parameter affect­
ing this improvement is the time required to detect collisions and abort 
ongoing colliding transmissions. The smaller this parameter is, the better the 
improvement is [26]. 

The results displayed in the above figures have two important assumed 
conditions, namely (1) acknowledgments are instantaneous, always received 
correctly and for free (Le., do not occupy any channel time), and (2) all 
devices are within range and in line-of-site of each other so that sensing of 
all transmissions on the channel is perfect. While Condition (1) is relevant 
to both ALOHA and CSMA, Condition (2) is mostly relevant to CSMA. We 
discuss these issues in the following. 

D. Acknowledgment Procedures and Their Effect. Basically, errors in 
multiaccess channels are due to two major causes: (1) random noise on the 
channel and (2) multiuse interference in the form of overlapping packets. A 
very reliable method ensuring the integrity of the transmitted data is the use 
of an error-detecting (e.g., cyclic) block code in conjunction with a positive 
acknowledgment of each correctly received message. Each packet contains a 



Chap. 6 • Multiaccess Link Control 159 

field for the cyclic checksum. Each receiver responds to a complete packet 
addressed to it with a correct checksum by transmitting an acknowledgment 
packet back to the originating terminal. This acknowledgment contains 
(among other things) the unique identification of the originating terminal 
along with a checksum to ensure the integrity of the acknowledgment packet 
itself. 

It is all too evident that acknowledgments will use part of the total 
available bandwidth (our limited resource). The amount of overhead intro­
duced, as well as the degradation in delay incurred, varies with the mode of 
operation. When the available bandwidth is provided as a single channel to 
be shared by both information and acknowledgment packets, then the 
channel performance will further suffer from interference between informa­
tion packets and acknowledgment packets unless some kind of priority 
scheme is provided. Concerning the degradation in channel capacity due to 
the overhead created by the error control traffic, it has been shown [30] that, 
in a common-channel configuration with nonpriority acknowledgment 
traffic, the channel capacity of slotted ALOHA drops to 14 percent of the 
channel bandwidth. However, if by some means acknowledgment traffic can 
be given priority so as to guarantee its transmission free of conflict, then the 
channel capacity for slotted ALOHA can be maintained at around 26 percent 
(assuming here that an acknowledgment packet uses an entire slot). The 
effect of acknowledgment traffic on CSMA channels need not be as 
dramatic since it is very simple to implement schemes which give priority to 
acknowledgments packets. One mode of operation is as follows [30, 74]. 

1. If a terminal, with a packet ready for transmission, senses the 
channel idle, then the terminal transmits its packet 'T seconds (the propaga­
tion delay) later if and only if the channel is still sensed idle. 

2. If such a terminal senses the channel busy, then it follows the 
protocol in question (nonpersistent, I-persistent, ... ) repeating step (1) 
whenever the channel is sensed idle. 

3. All acknowledgment packets are transmitted immediately, without 
incurring the 'T second~ delay. 

The capacity of the nonpersistent CSMA protocol with priority 
acknowledgment and a = 0.01 drops gradually from 0.85 to about 0.45 as 
the acknowledgment packet size increases from 0 to a full packet size. 

E. The Hidden Terminal Problem in CSMA and the Busy-Tone Multiple 
Access (BTMA) [28]. We now relax the assumption that all users are in line 
of sight and within range ,of each other. Typically, two terminals can be 
within range of the intended receiver, but out of range of each other or 
separated by some physical obstacle opaque to radio signals. The existence 
of hidden terminals in a ra,dio environment significantly degrades the 
performance of CSMA. To illustrate this effect, consider a population of 
users, each of which is communicating with a central station. This station is 



160 

>­.... 

.9 

.sr--___ _ 

.7 

U .6 
:'t 

NON·PERSISTENT CSMA 

Part III • Link Control Layer 

COMPLEMENTARY COUPLE 
a = 0.01 

< F--______________ ~1~.P~ER~S~IST~E:NT~CS:M~A ______ ~~~ 
~ .5 
w 
z 
::i .4 SLOTTED ALOHA 

~ ~----------------------------------------~~~------~ 
.3 

.2F-_________________ P~U~RE~A~L~O~HA~ ________________________ ~~ 

.1 

.5 

Fig. 6. An example of the hidden terminal situation: complementary couple configuration. 
Channel capacity versus lX, the relative sizes of the two decoupled populations [28]. 

in line-of-sight communication with the entire population, but this popula­
tion is divided into two groups (or relative sizes a and 1 - a) such that the 
radio connectivity exists only between users in the same group. Figure 6 
displays the CSMA channel capacity versus a, showing that the channel 
capacity drops drastically as a increases from 0 and reaches a minimum of 
a = 0.5 [28]. 

Fortunately, in environments where all users communicate with a single 
central station such as in the ALOHA system, the hidden-terminal problem 
can be eliminated by frequency-dividing the available bandwidth into two 
separate channels: a busy-tone channel and a message channel, thus giving 
rise to so-called busy-tone multiple access (BTMA). The operation of BTMA 
rests on the fact that, by definition, there exists a central station which is 
within range and in line of sight of all users. As long as the central station 
senses carrier on the message channel it transmits a (sine wave) busy-tone 
signal on the busy-tone channel. It is by sensing carrier on the busy-tone 
channel that the users' terminals determine the state of the message channel. 
The action that a terminal takes pertaining to the transmission of the packet 
is again prescribed by the particular protocol being used. 

In CSMA, the difficulty of detecting the presence of a signal on the 
message channel when this message occupies the entire bandwidth is minor 
and is therefore neglected. This is not realistic when we are concerned with 



Chap. 6 • Multiaccess Link Control 161 

the (statistical) detection of the (sine wave) busy-tone signal on a narrow­
band channel. In BTMA, the system's design involves a more complex set of 
system variables, namely the window detection time, the false alarm proba­
bility F, and the fraction of bandwidth devoted to the busy-tone signal. For 
a detailed analysis of this scheme, the reader is referred to [28]. The 
throughput-delay tradeoff for BTMA is slightly degraded in comparison to 
CSMA with no hidden terminals, but still exhibits relatively good perfor­
mance. 

F. Dynamic Behavior and Dynamic Control of Random Access Schemes. 
The performance results reported upon above were based on renewal theory 
and probabilistic arguments, assuming that steady-state conditions exist. If 
one examines in morl( detail the (S, G) relationships displayed above, one 
can see that the steady state may not exist because of an inherent instability 
of these random access techniques. This instability is simply explained by 
the fact that statistical fluctuations in the offered traffic increase the level of 
mutual interference among transmissions which in turn increases total G, 
which increases the frequency of collisions, and so forth. Such positive 
feedback causes the throughput to decrease to very low values. Extensive 
simulation runs performed on a slotted ALOHA channel with an infinite 
population of users have indeed shown that the assumption of channel 
equilibrium is not strictly speaking valid; in fact after some finite period of 
quasistationary conditions, the channel will drift into saturation with proba­
bility one [31]. Thus a more accurate measure of channel performance must 
reflect the tradeoffs among stability, throughput, and delay. To that effect, 
Markov models have been formulated to analyze slotted ALOHA and CSMA 
when M interactive users are contending for the channel [31]-[34]. These 
models permit one not only to derive analytic expressions for the average 
throughput-delay performance, but also to understand the dynamic behav­
ior of these systems. In particular, it was observed that even in a finite 
population environment, if the retransmission delay is not sufficiently large, 
then the stationary performance attained is significantly degraded (low 
throughput, very high delay), so that, for all practical purposes, the channel 
is said to have failed; it is then called an unstable channel. With an infinite 
population, stationary conditions just do not exist; the channel is always 
unstable, thus confirming the results obtained from simulation, as just 
discussed. For unstable channels, Kleinrock and Lam [32] defined a stability 
measure which consists of the average time the system takes, starting from 
an empty channel, to reach a state determined to be critical. In fact, this 
critical state partitions the state space into two regions: a safe region, and 
an unsafe region in which the tendency is towards degraded performance. 
The stability measure is the average first exit time (FET) into the unsafe 
region. As long as the system operates in the safe region, the channel 
performance is acceptable; but then, of course, it is only usable over a finite 



162 Part III • Link Control Layer 

period of time with an average equal to FET. For more details concerning 
the determination of FET and the numerical results, the reader is referred to 
[32], [33]. 

In the above discussion, it was furthermore assumed that the system 
parameters were all fixed, time invariant, and state independent. These 
systems are referred to as static. It is often advantageous to design systems 
that dynamically adapt to time-varying input and to system state changes, 
thus providing improved performance. Dynamic adaptability is achieved via 
dynamic control consisting of time and state-dependent parameters. The 
basic problem then is to find the control functions which provide the best 
system performance. Markov decision theory has successfully been applied 
by Lam and Kleinrock to the design and analysis of control procedures 
suitable to slotted ALOHA in particular and random access techniques in 
general [35]. Two main types of control are proposed: an input control 
procedure (ICP) consisting of either accepting or rejecting all new packets 
generated in the current slot, and a retransmission control procedure (RCP) 
consisting of selecting a retransmission delay; in both cases the action taken 
is a function of the current system state, defined as the number of active 
users with outstanding packets. In order to implement such control schemes, 
each channel user must individually estimate the channel state by observing 
the channel outcome over some period of time. The control is of a 
distributed nature, as there is no central station monitoring and broadcast­
ing state information or control actions. In the context of slotted ALOHA, 

Lam and Kleinrock give some heuristic control-estimation algorithms which 
prove to be very satisfactory [35]. With appropriate modification and 
extensions, these algorithms can be applied to CSMA channels as well. 
These algorithms are best suited to fully connected single-hop-type environ­
ments. The dynamic control problem in multihop environments is more 
complex and little progress has yet been made in this area. 

G. Capture. In the preceding discussions it was assumed that whenever 
two packet transmissions overlap in time, these packets destroy each other. 
This assumption is pessimistic as it neglects capture effects in radio chan­
nels. Capture can be defined as the ability for a receiver to successfully 
receive a packet (with nonzero probability) although it is partially or totally 
overlapped by another packet transmission. Capture is mainly due to a 
discrepancy in receive power between two signals allowing the receiver to 
correctly receive the stronger; both distance and transmit power contribute 
to this discrepancy. Clearly capture improves the overall network perfor­
mance, and, by the means of adaptive transmit power control, it allows one 
to achieve either fairness to all users, or intentional discrimination. Some of 
these effects have been addressed in [27], [36]. 

H. Spread Spectrum Multiple Access (SSMA): Spread spectrum multi­
ple access (SSMA) is the most common form of CDMA whereby each user 



Chap. 6 • Multiaccess Link Control 163 

is assigned a particular code sequence which is modulated on the carrier 
with the digital data modulated on top of that. Two common forms exist: 
the frequency-hopped SSMA and the phase-coded SSMA. In the former, as 
its name indicates, the frequency is periodically changing according to some 
known pattern; in the latter the carrier is phase modulated by the digital 
data sequence and the code sequence. SSMA has many applications: it is 
useful in satellite communications, mobile ground-radio, and computer 
communication networks [37]. In a recent article Kahn et al. addressed 
many of the issues concerning the use of SSMA in packet radio systems. 
Security, coexistence with other systems, and ability to counteract the 
effects of multipath are key factors contributing to the choice of SSMA in 
the PRNET; however, pne main point of interest in this presentation is the 
benefit of capture in asynchronous SSMA. Even when several users employ 
the same code, the effect of interference is minimized by the "capture 
effect," defined here as the ability of the receiver to "lock on" one packet 
while all other overlapping packets appear as noise. The receiver locks on a 
packet by correctly receiving the preamble appended in the front of the 
transmitted packet. As long as the preamble of different packets do not 
overlap in time, and the signal strength of the late packets is not too high, 
capture of the earliest packet can be guaranteed with a high probability. In 
essence SSMA allows a packet to be captured at the receiver, while CSMA 
allows a user to capture the channel. CSMA can still be used in conjunction 
with SSMA. This mode will have the benefit of keeping away all users 
within hearing distance of the transmitter and thus help keep the capture 
effect and antijamming capability of the system at the desired level. For a 
complete discussion of all these issues, the reader is referred to [14]. 

IV. Centrally Controlled Demand Assignment 

We have so far discussed the two extremes in the bandwidth allocation 
spectrum as far as control over the user's access right is concerned: the tight 
fixed assignment, which has the most rigid control, is nonadaptive to 
dynamically varying demand, and can be wasteful of capacity if small-delay 
constraints are to be met; and random access, which involves no control, is 
simple to implement, is adaptive to varying demand, but which, in some 
situations, can be wasteful of capacity due to collisions. In this and the 
following subsections, we examine demand assignment techniques which 
require that explicit information regarding the need for the communication 
resource be exchanged. We distinguish those demand assignments which are 
controlled by a central scheduler from those which employ a distributed 
algorithm executed by all users. We address centrally controlled assignments 
in the present subsection. 



164 Part III • Link Control Layer 

A. Circuit-Oriented Systems. In these systems, the bandwidth is divided 
into FDMA or TDMA subchannels which are assigned on demand. The 
satellite SPADE system, for example, has a pool of FDMA subchannels 
which get allocated on request [38]. It uses one sub channel operated in a 
TDMA fashion with one slot per frame permanently assigned to each user 
to handle the requests and releases of FDMA circuits. Intelsat's MAT-l 
system uses the TDMA approach [39]. TDMA sub channels are periodically 
reallocated to meet the varying needs of earth stations. 

The Advanced Mobile Phone Service (AMPS), recently introduced by 
Bell Laboratories, is yet another example of a centrally controlled FDMA 
system [40]. The uniqueness of this system, however, lies in an efficient 
management of the spectrum based on space division multiple access 
(SDMA). That is, each sub channel in the pool of FDMA channels is 
allocated to different users in separate geographical areas, thus considerably 
increasing the spectrum utilization. To accomplish space division, the AMPS 
system has a cellular structure and uses a centralized handoff procedure 
(executed by a central office) which reroutes the telephone connections to 
other available sub channels as the mobile users move from one cell to 
another. 

Given the significant setup times required in allocating subchannels, 
the above systems are attractive only when applications have stream-type 
traffic. When traffic is bursty, we again turn to packet-oriented systems, 
such as in the following. 

B. Polling Systems. In packet oriented systems, polling is one of two 
modes used to centrally control access to the communication bandwidth, 
again provided as a single high-speed channel. A central controller sends 
polling messages to the terminals, one by one, asking the polled terminal to 
transmit. For this the station may have a polling list giving the order in 
which the terminals are polled. If the polled terminal has something to 
transmit, it goes ahead; if not, a negative reply (or absence of reply) is 
received by the controller, which then polls the next terminal in sequence. 
Polling requires this constant exchange of control messages between the 
controller and the terminals, and is efficient only if (1) the round-trip 
propagation delay is small, (2) the overhead due to polling messages is low, 
and (3) the user population is not a large bursty one. Polling has been 
analyzed by Konheim and Meister [41], and their analysis has been applied 
to the environment of M users sharing a radio channel in [23]. Denoting by 
L the ratio of the data message length to the polling message length, and by 
a the ratio of propagation delay to message transmission time, Fig. 7 
displays numerical results corresponding to some typical values of Land a. 
These curves show that indeed as the population size increases, thus 
containing more and more bursty users, the performance of polling degrades 
significantly. Channel utilization can reach 100 percent of the channel 



Chap. 6 • Multiaccess Link Control 165 

/ , 
200 ROLL-CALL POLLING // , 

(a = 0.01) ~ , 
L = 100 ~~ I 
L = 10 ~~ , 

~,. , , , 
100 ," I ...... , ... I 

" I , ... , ... I ...... I ... 
I 

50 I 
jjj I 
:E I 
j:: I 
z J' 0 

i3i 
i I ,'1 
(J) 

~,.~~~ / z 20 
<I: 
a: 
I- ,.' I I I- ... ,' I / w 
~ 
(.) .,,'" <I: 

10 
, I Q. ....... 

Z ........... / / ...... _ .... 
>- ... I <I: 
..J 
W 
c 

5 

2 

.2 .4 .6 .8 

s 

Fig. 7. Packet delay in roll-call polling. L = ratio of data message length to polling message 
length, a = normalized propagation delay, M = number of stations [23]. 

if the terminals are allowed to empty their buffers when they are polled. But 
as a result, the variance of packet delay can become intolerably large. 

C. Adaptive Polling or Probing [42]. The primary limitation of polling 
in lightly loaded systems is the high overhead incurred in determining which 
of the terminals have messages. In order to decrease this overhead, a 
modified polling technique, based on a tree searching algorithm, and 



166 Part ill • Link Control Layer 

referred to as probing, has been proposed. This technique assumes that the 
central controller can broadcast signals to all terminals. First the controller 
interrogates all terminals, asking if any of them has a message to transmit, 
and repeats this question until some terminals respond by putting a signal 
on the line. When a positive response is received, the central station breaks 
down the population into subsets (according to some tree structure) and 
repeats the question to each of the subsets. This can be performed simply, 
for example by using binary addresses for the terminals and by transmitting 
as probing signal the common prefix of the addresses of a group of 
terminals. The process is continued until the terminals having messages are 
identified. When a single terminal is interrogated, it transmits its message. 

Assume that the number of terminals is a power of 2, say M = 2n. Let 
a cycle be recursively defined as the time required for the polling and 
transmission of all messages that were generated in the preceding cycle. If a 
single terminal has a message to transmit, probing requires 2n + I inquiries 
per cycle as opposed to 2n for conventional polling; but if all terminals have 
messages, probing requires 2n+ 1 - I inquiries as opposed to 2n for conven­
tional polling. To avoid incurring such a penalty when the system is heavily 
loaded, the probing technique can be made adaptive whereby the controller 
starts a cycle by probing smaller groups as the probability of terminals 
having messages increases. In particular, the group size may be considered a 
function of the duration of the immediately preceding polling cycle. Simula­
tion of the adaptive probing technique has shown that this scheme is always 
superior to polling in that its mean cycle time is always smaller than that of 
polling. Figure 8 displays the mean cycle lime (obtained from simulation) as 
a function of the message arrival rate for both polling and proQing [42]. 
Reference [42] did not provide any results concerning the message delay, but 
it is intuitively clear that the smaller the mean cycle time is, the lower is the 
average delay. 

D. Split-Channel Reservation Multiple Access (SRMA) [23]. An attrac­
tive alternative to polling is the use of explicit reservation techniques. In 
dynamic reservation systems, it is the terminal which makes a request for 
service on some channel whenever it has a message to transmit. The central 
scheduler manages a queue of requests and informs the terminal of its 
allocated time. 

Since the channel is the only means of communication among termi­
nals, the main problem here is, once again, how to communicate the request 
to the central scheduler. The contention on the channel of these request 
packets is of exactly the same nature as the contention of the data packets 
themselves. Fixed assignment and random access techniques suggest them­
selves, but it is clear from previous results that random access modes for 
multiplexing the requests on the channel would be more efficient. Further­
more, in order to prevent collisions between the requests and the actual 



Chap. 6 • Multiaccess Link Control 

60~--------------------------------------, 

w 
~ 
j:: 
W 
....I 

50 

40 

~ 30 
u 
z « 
w 
~ 20 

10 

.,....-. 
............... ~. 

.,..., ......... k-. · '. • ~DAPTIVE PROBING • 

M = 32 STATIONS 
MESSAGE LENGTH = 1 

MESSAGE ARRIVAL RATE PER USER (MESSAGES/S) 

167 

Fig. 8. Polling and adaptive probing: mean cycle time versus message arrival rate (simulation 
results-32 stations) [42]. 

message packets, the available bandwidth is either time divided or frequency 
divided between the two types of data. In the split-channel reservation 
multiple access (SRMA) scheme, frequency division of a ground radio 
channel is considered [23]. The available bandwidth is divided into two 
channels; one used to transmit control information, the second used for the 
data messages themselves. With this configuration, there are many opera­
tional modes. In the requestjanswer-to-requestjmessage scheme (RAM), 
the bandwidth allocated for control is further divided into two channels: the 
request channel and the answer-to-request channel. The request channel is 
operated in a random access mode (ALOHA or CSMA). Upon correct 
reception of the request packet, the scheduling station computes the time at 
which the backlog on the message channel will empty and transmits an 
answer packet back to the terminal, on the answer-to-request channel, 
containing the address of the terminal and the time at which it can start 
transmission. Another version of SRMA, called the RM scheme, consists of 
having only two channels: the request channel and the message channel. 



168 Part ill • Link Control Layer 

When correctly received by the scheduling station, the request packet joins 
the request queue. Requests may be serviced on a "first-come first-served" 
basis (or any other scheduling algorithm). When the message channel is 
available, an answer packet (containing the ID of a queued terminal 
scheduled for transmission) is transmitted by the station on the message 
channel. After hearing its own ID repeated by the station, the terminal 
starts transmitting its message on the message channel. If a terminal does 
not hear its own ID repeated by the scheduling station within a certain 
appropriate time after the request is sent, the original transmission of the 
request packet is assumed to be unsuccessful. The request packet is then 
retransmitted. 

We now examine the performance of SRMA. Let 1] denote the ratio of 
request packet length to data packet length, this representing a measure of 
the overhead due to control information. In Fig. 9 we plot the (RAM) 
SRMA system capacity versus 1] for the following access modes: pure ALOHA 

SRMA, slotted ALOHA SRMA, and slotted nonpersistent carrier sense 
SRMA. In addition, we show the system capacity for both ALOHA and 
CSMA. We note that the system capacity in SRMA reaches 1 for very small 
1]. Typical values for 1] fall in the range (0.01,0.1). Figure 9 shows that a 
high improvement is gained when the request channel is operated in slotted 
nonpersistent CSMA as compared to ALOHA. The delay for ALOHA SRMA 
and slotted nonpersistent carrier sense SRMA (normalized to bm/W, where 

.8 

~ U .6 

~ 
(J 

::;; 
w 
I-

SLOTTED NON-PERSISTENT CARRIER SENSE SRMA 

SLOTTED I a = 0.01 
NON-PERSISTENT 
CSMA a = 0.05 

SLOTTED ALOHA SRMA 

PURE ALOHA SRMA 

TW/bm = 0.01 J 
TW/bm = 0.05 

~ .4 SLOTTED ALOHA 
~ r-----~~~~~----------------------~~--~~--~~ 

.2 PURE ALOHA 

OL-__ ~ __ ~~~~~L-__ ~ __ -L~-L~~~ __ ~L--L~-L~~ 

0.001 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 

Fig. 9. SRMA: channel capacity versus 1), ratio of request packet length to data packet length 
(normalized propagation delay of 0.01 and 0.05) [23]. 



Chap. 6 • Multiaccess Link Control 

100 ,--------------__ -.-_y-_.-. 

u. 
o 

50 

(I) 20 
!:: 
z 
:::l 

~ 

> :3 10 
w 
o 
to­
w 
lo:: 

~ 
:E 
:::l 
~ 
z 
:IE 

2 

o 

- ALOHASRMA 
.- - _. SLOTTED NON PERSISTENT 

CARRIER SENSE SRMA 
(TW/bm = 0.01) 

.2 .4 .6 

S 

, , 
" 

I 
I 
I 
I , , , 
I 

I 
I 
I 
I 
I 
I 
I 
I , 
I 
I , , 

I , , 
I 
I 

I , , 
I 

I 
I 

/ , 

.8 

Fig. 10. Packet delay in SRMA (normalized propagation delay = 0.01) [23]. 

169 

W denotes again the tot81 channel bandwidth, and bm is the number of bits 
per packet) is shown in Fig. 10 as a function of S for various values of.". We 
again note an important improvement in using CSMA for the request 
channel. Finally, in Fig. 11 we compare carrier sense SRMA with the 
random access modes ALOHA, CSMA, BTMA, and MjDjl, the perfect 
scheduling with fixed size packets and Poisson sources. We note that unless 
." is large (0.1 and above), there is a value of S below which CSMA or 
BTMA performs better than SRMA and above which the opposite is true. 

E. Global Scheduling Multiple Access (GSMA) [43]. GSMA is a con­
flict-free reservation multiaccess scheme suitable for a high-speed data bus, 
which is based on the time-division concept for reservation. Here too a 



170 

~ 
E 
..0 

u.. 
o 

100 

50 

CJ) 20 
!:: 
z 
::> 

~ 

>-::i 10 
UJ 
o 
I­
UJ 
~ 
U « 
Q. 

:2: 
::> 
~ 
z 
:2: 

5 

2 

o 

Part ill • Link Control Layer 

SLOTTED NON PERSISTENT 
CARRIER SENSE SRMA 
(rW/b m = 0.01) 

PURE 
ALOHA 

SLOTTED 
ALOHA 

I , 
I 
I , , , , 

1) =0.1: , 
, " 

! ! 
I J 
'II 

/1/ 
,/ I 

,,1 / 
,," I I 

....... ",'" '" '" / / 
---- I 

//" , 

.2 .4 .6 .8 

S 

Fig. II. Comparison of various schemes (parameters defined as in Figs. 9 and 10) [23]. 

scheduler oversees all scheduling tasks. The users, all connected to the same 
line, listen for scheduling assignments and transmit in accordance with the 
slot allocation initiated by the scheduler. The channel time is divided into 
frames (of variable lengths). A frame is partitioned into two subframes: a 
subframe of status slots statically assigned to the users (in a fixed TDMA 
mode) to request data slot allocation, and a sub frame of data slots, each 
sufficient to transmit a data packet of P bits. The fixed assignment of the 
status slots removes the need to transmit users' IDs and thus reduces the 
size of these slots. In each frame, a user can be allocated a number of data 
slots which does not exceed the number of packets generated at the user 
during the preceding frame or a maximum number specified, whichever is 



Chap. 6 • Multiaccess Link Control 171 

iii 
I- M = 100 UJ 
~ P = 100 
u 
< a. 

20 
~ 
...J 
UJ 
0 
:E 10 
UJ 
l-
I/) 
>-
I/) 

5 UJ 
(!) 
< 
Q: 
UJ 

~ 

1~=±~~~L--L __ ~ __ L-~ __ ~ __ L-~ 
o 0.2 0.4 0.6 0.8 1.0 

THROUGHPUT 5 

Fig. 12. GSMA: throughput delay performance (M = number of stations, P = number of bits 
per data packet) [43]. 

smaller. As a consequence each active user is guaranteed at least one slot per 
frame. Figure 12 displays the performance of GSMA (with P = 100 and 
number of stations M = 100) in comparison to polling (for some typical 
parameter values regarding the polling overhead r) and M / D /1 (the perfect 
scheduling). This illustrates some improvement gained in GSMA over 
polling [43]. 

V. Demand Assignment with Distributed Control 

There are two reasons why distributed control is desirable. The first is 
reliability: with distributed control the system is not dependent on the 
proper operation of a central scheduler. The second is improved perfor­
mance, especially when dealing with systems with long propagation delays, 
such as those using satellite channels. Indeed, if an earth station were to 
play the role of a scheduler, the minimum packet delay in a packet 
reservation scheme would be three times the round-trip propagation delay. 



172 Part 111 • Link Control Layer 

(Of course, this can be decreased if on-board processing is available.) With 
distributed control, this minimum delay can be brought down to twice the 
round-trip delay or less without affecting the bandwidth utilization. Clearly, 
in slotted ALOHA, the best random access scheme available for satellite 
channels, the minimum packet delay is exactly one round-trip delay; but 
this is guaranteed only for a channel utilization approaching zero! In fact, 
the inherent long propagation delay in satellite channels is really the nasty 
characteristic that makes this environment "more distributed" than the 
single-hop ground radio or local area environments. In the latter, we have 
seen that efficient random access schemes, such as CSMA, are available; 
and the shorter the propagation delay, the better the CSMA performance. 
With zero propagation delay, collisions in CSMA can be completely avoided 
and CSMA's performance then corresponds to that of an M / D /1 queue, * 
the best we can achieve under random demand. In fact, when the propaga­
tion delay is zero we no longer have a distributed environment, and the cost 
of creating a common queue disappears. 

The basic element underlying all distributed algorithms is the need to 
exchange control information among the users, either explicitly or im­
plicitly. Using this information, all users then execute independently the 
same algorithm resulting in some coordination in their actions. Clearly, it is 
essential that all users receive the same information regarding the demand 
placed on the channel and its usage in order to achieve a global optimum, 
and thus distributed algorithms are most attractive in fully connected 
systems. This attribute is not always present in ground radio environments, 
but certainly exists in satellite environments due to their inherent broadcast 
nature.t The long-delay/broadcast combination of attributes is one of the 
reasons why many distributed control algorithms have been proposed in the 
context of satellite environments. We examine in this section distributed 
control algorithms suitable for each of our three environments (satellite, 
ground radio, and local area), starting with satellite channels. 

A. Reservation-aloha [45]. Reservation-ALoHA for a satellite channel is 
based on a slotted time axis, where the slots are organized into frames of 
equal size. The duration of a frame must be greater than the satellite 
propagation delay. A user who has successfully accessed a slot in a frame is 
guaranteed access to the same slot in the succeeding frame and this 
continues until the user stops using it. "Unused" slots, however, are free to 
be accessed by all users in a slotted ALOHA contention mode. An unused slot 
in the current frame is a slot which, in the preceding frame, either was idle or 
contained a collision. (Note again the effect of long delays on the control 

'This correspondence applies to CSMA and fixed size packets and Poisson sources. 
tThis is valid unless the satellite uses spot beams, in which case we m'ay lose on the 

connectivity requirement but gain the benefits of space division multiple access (SDMA). 



Chap. 6 • Multiaccess Link Control 173 

procedure.) Users need to simply maintain a history of the usage of each 
slot for just one frame duration. Since no request is explicitly issued by the 
user, this schemes has been referred to as an implicit reservation scheme. 
Clearly Reservation-ALoHA is effective only if the users generate stream-type 
traffic or long multipacket messages. Its performance will degrade signifi­
cantly with single-packet messages, as every time a packet is successful the 
corresponding slot in the following frame is likely to remain empty. 

B. A First-in First out (FIFO) Reservation Scheme [46]. In this scheme, 
reservations are made explicitly. Time division is used to provide a reserva­
tion subchannel. The channel time is slotted as before, but every so often a 
slot is divided into V small slots which are used for the transmission of 
reservation packets (as well as possibly acknowledgments and small data 
packets); these packets contend on the V small slots in a slotted ALOHA 
mode. All other slots are data slots and are used on a reservation basis, free 
of conflict. The frequency of occurrence of reservation slots can be made 
adaptive to the load on the channel and the need to make new reservations. 
This adaptivity can be achieved as a result of the time division of bandwidth 
between reservations and data packets. 

To execute the reservation mechanism properly, each station must 
maintain information on the number of outstanding reservations (the "queue 
in the sky") and the slots at which its own reservations begin. These are 
determined by the FIFO discipline based on the successful reservations 
received. Each successful reservation can accommodate· up to a design 
maximum of, say, eight packets, thus preventing stations from acquiring 
exclusivity of the channel for long periods of time. To maintain synchroni­
zation of control information at the proper time, and to acquire the correct 
count of packets in the queue if out-of-sync conditions do occur, each 
station sends, in its data packet, information regarding the status of its 
queue. This information is also used by new stations which need to join the 
queue. The robustness of this system is achieved by a proper encoding of the 
reservation packets to increase the probability of their correct reception at 
all stations. Furthermore, to limit the effect of errors, a station reacquires 
synchronization if it detects a collision in one of its reserved slots or an error 
in a reservation packet. 

Figure 13 compares the throughput-delay tradeoff of the FIFO reserva­
tion scheme (operated with either a TDMA or a slotted ALOHA reservation 
sub channel) to that of TDMA and slotted ALOHA [66]. FIFO-Reservation 
offers delay improvements over TDMA. When compared to ALOHA, we note 
that higher system capacity is achieved but at the expense of a higher delay 
at low channel throughputs (due to a higher overhead). 

C. A Round-Robin (RR) Reservation Scheme [47]. The basis of this 
scheme is fixed TDMA assignment, but with the major difference that 
"unused" slots are assigned to the active stations on a round-robin basis. 



174 

1.8 

1.6 

U 
1.4 Go 

!!. 

~ 
...J 1.2 UJ 
0 
UJ 
C!) 

1.0 ....: 
CI) 
CI) 
UJ 
~ 
UJ 
C!) 
« 
Q: 
UJ 0.6 
~ 

M= 50 
W= 50KPBS 

Part ill • Link Control Layer 

FIFO* (SLOTTED 
ALOHA RESERVA­
TION SUBCHANNEL) 

Fig. 13. Slotted ALOHA, TDMA, and FIFO reservation: delay throughput tradeoff for 50 users 
and single-packet messages in a satellite environment [66]. 

This is accomplished by organizing packet slots into equal size frames of 
duration greater than the propagation delay and such that the number of 
slots in a frame is larger than the number of stations. One slot in each frame 
is permanently assigned to each station. To allow other stations to know the 
current state (used or unused) of its own slot, each station is required to 
transmit information regarding its own queue of packets piggybacked in the 
data packet header (transmitted in the previous frame). A zero count 
indicates that the slot in question is free. All stations maintain a table of all 
stations' queue lengths, allowing them to allocate among themselves free 
unassigned slots in the current frame. Round-robin is the discipline pro­
posed by Binder [47], but other scheduling disciplines can be used as well. A 
station recovers its slot by deliberately causing a conflict in that slot which 
other users detect. For a station which was previously idle, initial acquisition 
of queue information is required and is achieved by having one of the 
stations transmit its table at various times. However, it is interesting to note 
that in this scheme, while acquiring queue synchronization, a station can 
always reclaim and use its own assigned slot. 



Chap. 6 • Multiaccess Link Control 175 

The above three schemes have been proposed for satellite channels. All 
of them assumed fixed size slots and thus can be implemented in systems 
which have been built for synchronous TDMA. The effect of large propaga­
tion delay is important. Framing is used in two of the schemes to deal with 
it, with the frame duration being equal to or longer than the propagation 
delay. Due to their dynamic nature, these protocols perform better than 
synchronous TDMA. However, when compared to random access (namely, 
ALOHA here), they offer higher capacity, but also higher delay at low 
throughput. If used in systems with small propagation delay, such as ground 
radio, then they will perform significantly better, and are expected to have a 
performance comparable to SRMA. In fact, due to the inherent small 
propagation delay in grpund radio environments, other access modes with 
distributed control are also possible if all devices are in line-of-site and 
within range of each other. We describe these in the following. 

D. Minislotted Alternating Priorities (MSAP) [48]. MSAP is a conflict­
free multiple access scheme suitable for a small number of data users. In 
essence, MSAP is a "carrier-sense" version of polling with distributed 
control. The time axis is slotted with the minislot size again equal to the 
maximum propagation delay. All users are synchronized and may start 
transmission only at the beginning of a minislot. Users are considered to be 
ordered from 1 to M. When a packet transmission ends, the alternating 
priorities (AP) rule assigns the channel to the same user who transmitted the 
last packet (say user i) if he is still busy; otherwise the channel is assigned to 
the next user in sequence [i.e., user (i, mod M + 1)]. The latter (and all 
other users) detects the end of transmission of user i by sensing the absence 
of carrier over one minislot. At this new point in time, either user (i mod M 
+ 1) starts transmission of a packet (which will be detected by all other 
users) or he is idle, in which case a minislot is lost and control of the 
channel is handed to the next user in sequence. The overhead at each poll in 
this scheme is simply one minislot. 

Scheduling rules other than AP are also possible, namely, round-robin 
(RR) or random order (RO). MSAP, however, exhibits the least overhead 
incurred in switching control between users. On the other hand, MSRR may 
be more suitable to environments with unbalanced traffic since then smaller 
users will be guaranteed more frequent access than with MSAP. These 
scheduling rules have also appeared in the literature as BRAM, the broad­
cast recognizing access method. For details, see [72]. 

E. The Assigned-Slot Listen-before-Transmission Protocol [49]. MSAP, 
being a "carrier sense" version of polling, behaves like polling. In particular, 
as the system load decreases, the overhead incurred in locating a nonidle 
user increases, and so does the delay. The assigned-slot listen-before­
transmission protocol has been proposed to improve on MSAP by allowing 



176 Part ill • Link Control Layer 

several users to share common minislots. In such a case, there exists a 
tradeoff between the time wasted in collisions, and the time wasted in 
control overhead. Time is divided into frames, each containing an equal 
number of minislots (say, L). To each minislot of a frame is assigned a 
given subset of MIL users. A user with a packet ready for transmission in a 
frame can sense the channel only in his assigned minislot. If the channel is 
sensed idle, transmission takes place; if not, the packet is rescheduled for 
transmission in a future frame. A packet transmission spans T slots. The 
parameter MIL is adjusted according to the load placed on the channel. 
For high throughput, MIL = 1 is found to be optimum. In fact, with 
MIL = 1, the scheme becomes a conflict-free one which approaches MSAP 
and gives nearly identical results [49]. For very low throughput, MIL = M 
(i.e., L = 1) is found to be optimum; this corresponds to pure CSMA. In 
between the two extreme cases intermediate values of MIL are optimum. 
Figure 14 displays the throughput-delay performance of this scheme for 

100.----------------------------------------, 

I/) 50 
w 
::E 
i= 
z 
Q 

~ 20 
i 
I/) 
z 
~ 
l-
I­
w 
:.c 
u 
~ 
z 

~ 
...J 
W 
o 

M=50 
T = 100, 

PURE SLOTTED 
ALOHA ALOHA 

0.2 0.4 
THROUGHPUT S 

tt=50 5 2 

Fig. 14. Assigned-slot listen-before-transmission protocol: throughput delay tradeoff for 50 
users and T= 100 (propagation time a = 0.01) [49]. 



Chap. 6 • Multiaccess Link Control 177 

various values of M / L when M = 50 and T = 100. It also shows how this 
scheme (and thus, MSAP) compare to CSMA. 

F. Distributed Tree Retransmission Algorithms in Packet Broadcast 
Channels [71]. In many of the multiaccess protocols examined above, 
conflict resolution is achieved by retransmitting randomly in the future. 
Such a rescheduling discipline in slotted ALOHA achieves a 36 percent 
bandwidth utilization, but exhibits some sort of instability unless the 
rescheduling is controlled, as discussed in Section III. Tree algorithms are 
based on the observation that a contention among several active sources is 
completely resolved if and only if all the sources are somehow subdivided 
into groups such that each group contains at most one active source. (Such 
observation is similar t9 that made in the probing technique discussed in 
Section IV.) In its simplest form, the tree algorithm consists of the follow­
ing. Each source corresponds to a leaf on a binary tree. The channel time 
axis is slotted and the slots are grouped into pairs. Each slot in a pair 
corresponds to one of the two subtrees of the node being visited. Starting 
with the root node of the tree, we let all terminals in each of the two 
subtrees of the root transmit in their corresponding slot. If any of the two 
slots contains a collision, then the algorithm proceeds to the root of the 
subtree corresponding to the collision and repeats itself. This continues until 
all the leaves are separated into sets such that each of them contains at most 
one packet. This is known to all users, as the outcome of the channel is 
either a successful transmission or an idle slot. Collisions caused by the left 
subtree (first slot of a pair) are resolved prior to resolving collisions in the 
right subtree. This scheme provides a maximum throughput of 0.347 
packets/slot, and all moments of the delay are finite if the aggregate packet 
arrival rate is less than 1/3 packets/slot [71]. 

Clearly, a binary tree is not always optimum. If, each time we return to 
the root node, we allow the tree to be reconfigured according to the current 
traffic conditions, it can be shown that the optimum tree is binary every­
where except for the root node whose optimum degree depends on traffic 
conditions [71]. The dynamic scheme achieves a throughput of 0.430 
packets/slot, and all the moments of the delay are finite for A < 0.430 
packets/slot. Tree algorithms are implementable in both grQund radio and 
satellite channels as long as the broadcast capability is available. 

G. Distributed Control Algorithms in Local Area Networks: In addition 
to the random access schemes described previously in Section III, the above 
two algorithms are also applicable to local area (broadcast) bus networks as 
these exhibit the required characteristics of small propagation delay and full 
connectivity. But in local area communication, a slightly different topology 
has also been widely considered, namely, the ring (or loop). In the ring 
topology, messages are not broadcast but rather passed from node to node 
along unidirectional links until they reach their destination or, if required by 



178 Part ill • Link Control Layer 

the protocol, until they return to the originating node. Each subscriber is 
attached to the cable by means of an active tap which allows the informa­
tion to be examined before it proceeds on the cable. To avoid excessive 
transit delays, messages are not stored in their entirety, but rather for­
warded onto the cable as soon as possible. The delay incurred at each 
intermediate node can thus be limited to a small number of bit times. 
Messages are removed from the cable by the receiver (or the originator if the 
receiver is inactive). 

A simple access scheme suitable for a ring consists of passing the access 
right sequentially from node to node around the ring. (Note that in a ring, 
the physical location of the nodes defines a natural ordering among them.) 
One implementation of this scheme is exemplified by the Distributed 
Computing System's network where an eight-bit control token is passed 
sequentially around the ring. Any node with a ready message may, upon 
receiving the control token, remove the token from the ring, send the 
message, and then pass on the control token [50]. Another implementation 
consists of providing a fixed number of message slots which are continu­
ously transmitted around the ring. A message slot may be empty or full; a 
node with a ready message waits to see an empty slot pass by, marks it as 
full, and uses it to send its message [51-53]. A still different strategy is 
known as the register insertion technique [3], [54], [55]. Here a message to be 
transmitted is first loaded into a shift register. If the ring is idle, the shift 
register is just transmitted. If not, the register is inserted into the network 
loop at the next point separating two adjacent messages: the message to be 
sent is shifted out onto the ring while the incoming message is shifted into 
the register. The shift register can be removed from the network loop when 
the transmitted message has returned to it. The insertion of a register has 
the effect of increasing the transport delay of messages on the ring. 

VI. Adaptive Strategies and Mixed Modes 

We have so far examined quite a large number of multiaccess schemes 
and compared their performance. One thing is clear: each of these schemes 
has its advantages and limitations. No one scheme performs better than all 
others over the entire range of system throughput (except, of course, the 
hypothetical perfect scheduling, which is clearly unachievable in a distrib­
uted environment). If a scheme performs nearly as well as perfect scheduling 
at low input rates, then it is plagued by a limited achievable channel 
capacity. Conversely, if a scheme is efficient when the system utilization is 
high, the overhead accompanying the access control mechanism becomes 
large at low utilization. Although some characteristics of a system (propaga­
tion delay, channel speed, etc.) are unlikely to vary during operation, it is 



Chap. 6 • Multiaccess Link Control 179 

certain that the load placed upon the system will be time varying. In the 
case of a single subscriber type (say with periodic traffic, stream-type traffic, 
or bursty traffic) the volume of the traffic may be varying; if several 
subscriber types are simultaneously present, the volume of traffic intro­
duced by each, and therefore the proportional mix of traffic types, may also 
be time varying. 

We have discussed at several points in this paper the dynamic control 
of a specific access scheme which improved its performance to a certain 
extent; but such an adaptive control did not change the nature of the access 
scheme nor the nature of its limitation. Dynamically controlled random 
access schemes provide improved packet delay over uncontrolled versions, 
but still exhibit channel,capacity less than 1. The adaptive polling technique 
decreased the overhead at low throughput but only to a certain extent. 
Actually, what one really needs is a strategy for choosing an access mode 
which is itself adaptive to the varying need so that optimality is maintained 
at all times. Clearly, in order to accomplish adaptivity, a certain amount of 
information is needed by the distributed decision makers. The type and 
amount of information required by an adaptive strategy, as well as the 
implementation of the information acquisition mechanism are among the 
most crucial factors in determining the performance and robustness of 
the strategy. A great deal of effort has been spent in recent years on such 
adaptive strategies. We devote this subsection to schemes which fall into this 
category. 

A. The Urn Scheme [56]. We start with this more recent scheme 
because of its simplicity, elegance, and the smoothness by which it adapts to 
varying loads. It has been proposed for fully connected ground radio 
environments. The time axis is divided into packet slots, and all users are 
synchronized. Assuming that all users know the exact number n of busy 
users, the scheme consists of giving full access right (i.e., the right to 
transmit with probability 1) to some subset of k users. A successful 
transmission will result if there is exactly one busy user among these k. The 
probability of such an event is maximized when k = lMlnJ, where lMlnJ 
denotes the integer part of Min. This is in contrast to the controlled slotted 
ALOHA scheme, where all users are given the same partial access right: the 
right to transmit with probability p = lin. If the system is lightly loaded, 
then a large subset of users is given access right, but only a few, and 
hopefully only one user, will make use of it. As the load increases, k 
decreases and the access right is gradually restricted. If n = 1, for example, 
then k = M and a successful transmission takes place. For the extreme case 
of n = M, k = 1 and the scheme converges to TDMA. If the sampling of 
the k users is random, the Urn scheme converges to random TDMA; if the 
sampling is without repetitions from slot to slot until all users have been 
sampled once, the Urn scheme converges to round-robin TDMA. 



180 Part ill • Link Control Layer 

Two important questions remain: how to estimate n, and how to reach 
a consensus on who the k users are. One possible means for estimating n 
with good accuracy is to include a single reservation minislot at the 
beginning of each data slot. An idle user who turns busy sends a standard 
reservation message of few bits. All users are able to detect the following 
three events: no new busy users, one new busy user, and more than one new 
busy user (termed an erasure). As it is impossible with this minimal 
overhead to estimate the exact number of new busy users when the latter is 
greater than one, errors in estimation result; however, analysis and simula­
tion have shown that this error is negligible, and that the scheme is 
insensitive to small perturbations in n. This last statement is even more 
important with respect to the robustness of the scheme since it means that 
all users need not have exactly the same estimate for n. As for coordinating 
the selection of the k users, an effective mechanism is the use of synchro­
nized pseudorandom generators at all users which allow them to draw the 
same k pseudorandom numbers. Another mechanism, referred to as a 
round-robin slot-sharing window mechanism, consists of having a window 
of size k move over the population space. When a collision occurs, the 
window stops and decreases in size. When there is no collision, the tail of 
the window is advanced to the head of the previous window, and the size is 
again set to k as determined by n. 

The improvement obtained by this scheme over slotted ALOHA and 
TDMA can be seen in Fig. 15, where the throughput-delay performance of 
all these schemes is displayed for a population size M = 10 [56]. 

B. Another Adaptive Strategy for the Dynamic Management of Packet 
Radio Slots [57]. Another way to achieve adaptivity is as follows. The time 
axis is again slotted with the slot size equal to a packet transmission time. 
Slots are grouped into k equivalence classes or subchannels. Slots are 
furthermore grouped into frames of m slots, m ~ k, each containing at least 
one slot for every equivalence class. Let M be again the number of users. 
Each user is at anyone time assigned to one of the k equivalence classes. All 
stations in a given class use a random access mode to access slots assigned 
to their class. If CSMA is used as the contention scheme, then time slots are 
minislots of size 7", assigned to the k equivalence classes just as before. By 
dynamically varying the size of the frame and the assignment of slots within 
the frame to classes of users, one can vary the access mode to best fit the 
situation. At low load, for example, choosing k = m = 1 with all users in 
the same class leads to a pure random access mode of low delay. Choosing 
k = m = M with each user constituting a separate class leads to TDMA. 
Increasing the parameter k has the effect of decreasing the rate of collisions 
among users of the same class. The frame size m can be used to allow a 
smooth changeover between the schemes. By partitioning the frame into two 
sub frames, both contention and pure TDMA can coexist simultaneously. 



Chap. 6 • Multiaccess Link Control 181 

20 

18 OPTIMAL 
ALOHA 

M= 10 

16 

14 

12 

~ 10 ...J 
UJ 
0 

8 

6 

4 

2 

Fig. 15. Throughput-delay performance 
00 for the Urn scheme (example for 10 0.2 0.4 1.0 

users) [56]. THROUGHPUT 

The information used in adapting to the situation is the collision rate and 
the rate of empty slots (or minislots) for the randomly accessed slots, and 
the rate of empty slots for the TDMA assigned slots. For example, when 
one minislot of a TDMA slot goes empty, the remainder of the TDMA slot 
may be canceled and reassigned to some other groups (then to be used via 
CSMA). 

Schemes other than CSMA and TDMA can be combined by this 
adaptive strategy. One may, for example, mix CSMA with MSRR. In [57], 
Ricart and Agrawala studied, via simulation, some typical adaptation 
algorithms of this type. Some of their simulation results for a CSMA/TDMA 
combination are shown in Fig. 16. These results exhibit clearly the improve­
ment gained over the entire throughput range by using the adaptive strategy. 

C. The Reservation upon Collision Schemes (RUC) [58]. The basic 
concept in these schemes is to switch back and forth between contention 
mode and reservation mode. The channel time is divided into slots of fixed 
length, which in tum are divided into two parts: a data subslot SSO for 
transmission of information packets and a subslot SS 1 for the transmission 
of (signaling) information regarding the transmitting user(s). The data 
subchanne1 can be in one of two states: the contention state or the reserved 



182 Part m • Link Control Layer 

100 

M=8 

50 a=t=0.05 

~ 20 
..J 
W 
0 
0 w 10 N 
:::; 
« 
:E 
II: 
0 5 z 

S (THROUGHPUT! 

Fig. 16. Simulation results for an adaptive CSMA/TDMA strategy (eight stations, normalized 
propagation delay of a = 0.05) [57]. 

state. It is normally in the contention state and users can access the slots in 
a slotted ALOHA mode as long as no collisions occur. When a collision is 
detected, then the data subchannel switches to the reserved state and 
remains in that state until the queue of reservations is cleared, at which time 
it switches back to the contention state. That is, if a collision is detected, 
reservations are automatically implied for the colliding users. To accomplish 
this, the signaling information identifying the users must be received by all 
users free of interference, and thus a conflict-free use of the SSI subslots 
must be devised. CDMA and TDMA have been proposed in [58]. When the 
number of users is large, a particularly suitable approach is to consider 
grouping the slots into a frame of, say, L slots. Each of the L SSl subslots is 
assigned to a group of size M / L users instead of M users, thus decreasing 
the degree of multiplexing signaling information over the SSl subslots. 
TDMA or CDMA still needs to be used. In this approach, users need not 
transmit their identification as this is implied from the position of the SSI 
subslot. However, each user has to send the number of packets transmitted 
in the frame, and this information requires at most 10g2( L + 1) bits. This 
scheme is referred to as the split reservation upon collision (SRUC). 

Figure 17 shows the performance of SRUC in a satellite environment 
as compared to slotted ALOHA and pure reservation for two values of the 
overhead it required per frame for the signaling information. Clearly, this 



Chap. 6 • Multiaccess Link Control 

Fig. 17. Split reservation upon collision: 
throughput-delay performance for various 
values of the overhead '¥ [58]. 

183 

1oo.-----------------------~ 

~ 
o 

~ 50 

~ 
..J 
UJ 
a 
I­
UJ 

'" U 

~ 
UJ 

~ 
Q: 
UJ 

~ 

SLOTTED 
ALOHA 

SATELLITE DISTRIBUTED SYSTEM 
PROPAGATION DELAY = 12 PACKET 

TRANSMISSION TIMES 

1~~~-OL.2~~0~.4--L-0~.~6~~OL.8~~ 

CHANNEL UTILIZATION 

performance degrades as qr increases. More detailed results can be found in 
[58]. 

Since slotted ALOHA and reservations are both suitable for satellite 
channels, RUC schemes are also particularly suitable for these as well as 
ground radio channels. 

D. Priority-Oriented Demand Assignment (PODA) [12]. In the context 
of a satellite channel, PODA has been proposed as the ultimate scheme 
which attempts to incorporate all the properties and advantages seen in 
many of the previous schemes. It has provision for both implicit and explicit 
reservations, thus accomodating both stream and packet-type traffic. It may 
also integrate the use of both centralized and distributed control techniques 
thus achieving a high level of robustness. 

To accomplish this flexibility, channel time is divided into two basic 
subframes, an information sub frame and a control sub frame. The informa­
tion sub frame contains scheduled packets and packet streams, with the 
packets also containing, piggybacked, control information such as reserva­
tions and acknowledgments. The control sub frame is used exclusively to 
send reservations that cannot be sent in the information sub frame in a 
timely manner. In order to achieve integration of centralized and distributed 
assignments, the information sub frame is further divided into two sections, 
one for each type. 

Access to the control sub frame (which is divided into slots accommo­
dating fixed size control packets) can take any form that is suitable to the 
environment. It can be by fixed assignment (TDMA) if the number of 
stations is small (giving rise to the so-called FPODA), or by contention as in 
ALOHA if the stations have a low-duty cycle (giving rise to CPODA), or a 
combination of both. The boundary between the control sub frame and the 
information sub frame is not fixed, but varies with the demand placed on the 



184 Part ill • Link Control Layer 

channel. As in the FIFO and RR reservation schemes, distributed control is 
aqhieved by having all stations involved in this type of control keep track of 
their queue length information. Priority scheduling can thus be achieved. 
For stream traffic, a reservation is made only once, and is retained by each 
station in a stream queue. Centralized assignment may be used when delay 
is not the crucial element. This scheme has been proposed in the context of 
a satellite channel but may be applied to other environments as well. 

E. More on Mixed Modes. Other studies have appeared in the literature 
that also deal with integrating several different access modes into the same 
system. 

The Mixed ALOHA Carrier Sense (MACS) scheme consists of allowing a 
large user to ste,al, by carrier sensing, slots which are unused by a large 
population of small users accessing the channel in a slotted ALOHA mode 
[59]. Analysis has shown that the total channel utilization is significantly 
increased with MACS, and that the throughput-delay performance of both 
the large user and the background ALOHA users is better with MACS than 
with a split-channel configuration in which the larger user and the ALOHA 

users are each permanently assigned a portion of the channel [59]. 
Group Random Access (GRA) procedures consist of using only certain 

channel time periods to allow some network terminals to transmit their 
information-bearing packets on a random access basis. The channel can 
then be utilized at other times to grant access to other terminals or other 
message types, by applying, as appropriate, group random access, reserva­
tion procedure, or fixed assignment. The idea is simply a fixed time-division 
assignment among groups utilizing different access schemes. For more 
details on and analysis of GRA, the reader is referred to [60], [61]. 

Finally, we consider satellite systems with on-board processing capabil­
ity. These have recently received increased attention and are being consid­
ered as a means to increase the capacity of packet satellite channels 
[62]-[65]. One example is typified by the integration of slotted ALOHA on 
several uplink channels, with TDMA on one or several downlink channels. 
The on-board processing capability is used to filter out all collisions and 
thus improve the utilization of the downlink channels. The overall spectrum 
efficiency is also improved especially if the ratio of uplink channels to 
downlink channels is properly chosen. Analysis of these disciplines is given 
in [62], [63]. Additional improvement over these disciplines is possible by 
providing buffering capability on board the satellite to smooth the input 
and more completely fill the downlink channels. 

VII. Conclusion 

Tremendous advances have been made in recent years in devising 
multiaccess schemes suitable to a variety of data communication environ-



Chap. 6 • Multiaccess Link Control 185 

ments. In this paper, we have briefly reviewed a large number of these 
protocols which we have grouped into five categories according to (1) the 
degree of control exercised over the users' access (2) the (centralized or 
distributed) nature of the decision-making process; and (3) the degree of 
adaptivity of the algorithm to the changing need. We have seen that these 
link level protocols have a great impact on the utilization of the communica­
tion resource in particular and the overall system performance in general. 
We have also briefly discussed their suitability to various traffic characteris­
tics. 

Although an attempt has been made to render the presentation com­
plete, it is by no means exhaustive of all existing schemes, and the field is 
still so wide open that new schemes are constantly being introduced. 
Throughout the paper, an emphasis was placed on that class of packet 
communications that service very many bursty users, since this has been a 
major concern for many years. It is important, however, to note that there is 
a growing interest in the support of applications which lend themselves to 
stream-type traffic (such as packetized voice, facsimile, video data for 
remote conferencing, etc.) and which may also require real-time communi­
cations service on the part of the network. Moreover, with an even greater 
interest in integrating the many different applications onto the same net­
work structure, it is becoming important to devise multiaccess protocols 
which can provide all the capabilities and features required for this integra­
tion. The adaptive strategies discussed in this paper provide an attempt at 
solving this problem but it is still far from being completely resolved. 

Another point of great importance is the impact that these link level 
protocols have on the design of higher-level protocols. Indeed, owing to the 
basically different nature and behavior of some of these multiaccess schemes, 
one is faced with the necessity to find new ways to deal with many of the 
higher level functions. To briefly illustrate this point, we consider for 
example store-and-forward multiaccess/broadcast systems. The routing 
problem in these systems is significantly different from the well-known 
routing algorithms devised for point-to-point store-and-forward networks; 
here the transmitted packet should carry, at each transmission, the next 
node's address, and each receiving node has to decide as to whether to relay 
or ignore the packet. A discussion of routing schemes appropriate to these 
systems can be found in [14]. Clearly, in single-hop broadcast systems, and 
in local area ring architectures, the routing problem is absent. 

Acknowledgment procedures may also have to be handled differently 
in broadcast networks. In the PRNET, for example, hop-by-hop acknowledg­
ments can be passive, in the sense that, due to the broadcast nature of 
transmission, the relaying of a packet over a hop constitutes the acknowl­
edgments for the transmission over the previous hop. Acknowledgments 
may also be active in the sense that an acknowledgment packet is actually 
created and transmitted. If acknowledgment packets are given priority, the 



186 Part ill • Link Control Layer 

active acknowledgment procedure has the benefit of minimizing buffering 
requirements at the repeaters since the acknowledgments are sent at the 
earliest opportunity, and possibly minimizing channel overhead since the 
additional transmissions beyond success resulting from delayed acknowl­
edgments can then be kept to a minimum [67]. (In fact, it was found that if 
acknowledgments were instantaneous, then a few buffers in each packet 
radio unit appear to be sufficient to handle the storage requirements, 
indicating that the system becomes more channel bound than storage bound 
[68], [69].) In satellite environments, PODA achieves the same objective by 
piggybacking acknowledgments, whenever possible, on pending reservation 
requests which are heard by all users including the sender. 

To conclude, we can say that despite the many advances already 
accomplished, this area still presents many challenging open problems, and 
that to best make use of the progress already achieved in link level 
protocols, one also needs to turn one's attention to the many unresolved 
issues concerning higher-level protocols. 

References 

[I] D. W. Davies, K. A. Bartlett, R. A. Scantlebury, and P. T. Wilkinson, "A digital 
communication network for computers giving rapid response at remote terminals," 
presented at ACM Symp. Operating System Principles, Gatlinburg, TN, Oct 1-4, 1967. 

[2] W. D. Farmer and E. E. Newhall, "An experimental distributed switching system to 
handle bursty computer traffic," in Proc. ACM Coni, Pine Mountain, GA, Oct. 1969. 

[3] M. T. Liu and C. C. Reames, "Communication protocol and network operating system 
design for the distributed loop computer network (DLCN)," in Proc. 4th Annu. Symp. 
Computer Architecture, Mar. 1977, pp. 193-200. 

[4] M. T. Liu, "Distributed loop computer networks," in Advances in Computer Networks, M. 
Rubinoff and M. C. Yovitts, Eds. New York: Academic, 1978. 

[5] R. M. Metcalfe and D. R. Boggs, "ETHERNET: Distributed packet switching for local 
computer networks," Commun. Ass. Comput. Mach., vol. 19, pp. 395-403, 1976. 

[6] L. Pouzin, "Presentation and major design aspects of the CYCLADES computer network," 
presented at Datacom 73, ACMjIEEE, 3rd Data Commun. Symp., St. Petersburg, FL, 
Nov. 1973, pp. 80-87. 

[7] L. G. Roberts and B. D. Wessler, "Computer network developments to achieve resource 
sharing," in 1970 Spring Joint Comput. Coni, Proc. AFIPS Coni, vol. 36, 1970, pp. 
543-549. 

[8] L. Pouzin, "CIGALE, The packet switching machine of the CYCLADES computer network," 
presented at IFIP Congress, Stockholm, Sweden, Aug. 1974, pp. 155-159. 

[9] H. Opderbeck and R. B. Hovey, "Telenet-Network features and interface protocols," in 
Proc. NTG-Coni Data Networks, Baden-Baden, West Germany, Feb. 1976. 

[10] W. W. Clipshaw and F. Glave, "Datapac network review," in Int. Comput. Commun. 
Coni Proc., Aug. 1976, pp. 131-136. 

[II] N. Abramson, "The Aloha system," in Computer Communication Networks, N. Abramson 
and F. Kuo, Eds. Englewood Cliffs, NJ: Prentice-Hall, 1973. 



Chap. 6 • Multiaccess Link Control 187 

[12] I. M. Jacobs, R. Binder, and E. V. Hoversten, "General purpose packet satellite 
networks," Proc. IEEE, vol. 66, Nov. 1978. 

[13] R. E. Kahn, "The organization of computer resources into a packet radio network," in 
Nat. Com put. Conf, AFIPS Conf Proc., vol. 44. Montvale, NJ: AFIPS Press, 1975, pp. 
177-186; also in IEEE Trans. Commun., vol. COM-25, Jan. 1977. 

[14] R. E. Kahn, S. A. Gronemeyer, J. Burchfiel, and R. C. Kunzelman, "Advances in Packet 
radio technology," Proc. IEEE, vol. 66, Nov. 1978. 

[15] D. Clark et al., "An introduction to local area networks," Proc. IEEE, vol. 66, Nov. 1978. 
[16] W. G. Schmidt, "Satellite time-division multiple access systems: Past, present and 

future," Telecommun., vol. 7, pp. 21-24, Aug. 1974. 
[17] 1. Rubin, "Message delays in FDMA and TDMA communication channels," IEEE 

Trans. Commun., vol. COM-27, May 1979. 
[18] S. Lam, "Delay analysis of time-division multiple access (TDMA) channel," IEEE Trans. 

Commun., vol. COM-2~, Dec. 1977. 
[19] O. Kosovych, "Fixed assignment access technique," IEEE Trails. Commull., vol. COM-26, 

Sept. 1978. 
[20] N. Abramson, "The ALOHA system-Another alternative for computer communications," 

in 1970 Fall Joint Comput. COllf AFIPS Conf Proc., vol. 37. Montvale, NJ: AFIPS Press, 
1970, pp. 281-285. 

[21] L. G. Roberts, "ALOHA packet system with and without slots and capture," Comput. 
Commun. Rev., vol, 5, pp. 28-42, Apr. 1975. 

[22] L. Kleinrock and S. Lam, "Packet-switching in a slotted satellite channel," Nat. Com­
puter COllf, AFIPS COllf Proc., vol. 42. Montvale, NJ: AFIPS Press, 1973, pp. 703-710. 

[23] F. A. Tobagi and L. Kleinrock, "Packet switching in radio channels: Part III-Polling 
and (dynamic) split channel reservation mUltiple access," IEEE Trans. Commun. vol. 
COM-24, pp. 832-845, Aug. 1976. 

[24] L. Kleinrock and F. A. Tobagi, "Packet switching in radio channels: Part I-Carrier sense 
multiple access modes and their throughput-delay characteristics," IEEE Trans. Com­
mull., vol. COM-23, pp. 1400-1416, Dec. 1975. 

[25] F. Tobagi, "Random access techniques for data transmission over packet switched radio 
networks," PH.D. dissertation, Comput. Sci. Dep., School of Eng. and Appl. Sci., Univ. 
California, Los Angeles, Rep. UCLA-ENG 7499, Dec. 1974. 

[26] F. Tobagi and V. B. Hunt, "Performance analysis of carrier sense multiple access with 
collision detection," in Proc. Local Area Commun. Network Symp., Boston, MA, May 
1979; also Computer Networks, Vol. 4, No.5, Oct./Nov. 1980. 

[27] N. Abramson, "The throughput of packet broadcasting channels," IEEE TrailS. Com­
mun., vol. COM-25, pp. 117-128, Jan. 1977. 

[28] F. Tobagi and L. Kleinrock, "Packet switching in radio channels: Part II-The hidden 
terminal problem in carrier sense multiple access and the busy tone solution," IEEE 
Trans. Commun., vol. COM-23, pp. 1417-1433, Dec. 1975. 

[29] F. A. Tobagi, M. Gerla, R. W. Peebles, and E. G. Manning, "Modeling and measurement 
techniques in packet communication networks," Proc. IEEE, voL 66, pp. 1423-1447, 
Nov. 1978. 

[30] F. Tobagi and L. Kleinrock, "The effect of acknowledgment traffic on the capacity of 
packet-switched radio channels," IEEE Trails. Commun., vol, COM-26, pp. 815-826, 
June 1978. 

[31] S. S. Lam, "Packet switching in a multiaccess broadcast channel with application to 
satellite communication in a computer network," Ph.D. dissertation, Dep. Comput. Sci., 
Univ. California, Los Angeles, Mar. 1974; also in Univ. California, Los Angeles, Tech. 
Rep. UCLA-ENG-7429, Apr. 1974. 

[32] L. Kleinrock and S. S. Lam, "Packet switching in a multiaccess broadcast channel; 
Performance evaluation," IEEE Trails. Commun., vol. COM-23, pp. 410-423, Apr. 1975. 



188 Part ill • Link Control Layer 

[33] F. Tobagi and 1. Kleinrock, "Packet switching in radio channels: Part IV -Stability 
considerations and dynamic control in carrier sense multiple access," IEEE Trans. 
Commun., vol. COM-25, pp. 1103-1120, Oct. 1977. 

[34] G. Fayolle, E. Gelembe, and J. Labetoule, "Stability and optimal control of the 
packet-switching broadcast channels," J. Ass. Com put. Mach., vol. 24, pp. 375-386, July 
1977. 

[35] S. S. Lam and 1. Kleinrock, "Packet switching in a multiaccess broadcast channel: 
Dynamic control procedures," IEEE Trans. Commun., vol. COM-23, pp. 891-904, Sept. 
1975. 

[36] J. Metzner, "On improving utilization in ALOHA networks," IEEE Trans. Commun., vol. 
COM-24, Apr. 1976. 

[37] Special Issue on Spread Spectrum Communications, IEEE Trans. Commun., vol. COM-25, 
Aug. 1977. 

[38] B. Edelson and A. Werth, "SPADE system progress and application," COMSAT Tech. 
Rev., vol. 2, pp. 221-242, Spring 1972. 

[39] W. Schmidt et al., "Mat-I: INTELSAT'S Experimental 700-channel TDMAjDA system," 
in Proc. INTELSAT j IEEE Int. Con! Digital Satellite Commun., Nov. 1969. 

[40] N. Erlich, "The advanced mobile phone service," IEEE Commun. Mag., vol. 17, Mar. 
1979. 

[41] A. G. Konheim and B. Meister, "Service in a loop system," J. Ass. Com put. Mach., vol. 
19, pp. 92-108, Jan. 1972. 

[42] J. F. Hayes, "An adaptive technique for local distribution," IEEE Trans. Commun., vol. 
COM-26, Aug. 1978. 

[43] J. W. Mark, "Global scheduling approach to conflict-free multiaccess via a data bus," 
IEEE Trans. Commun., vol. COM-26, Sept, 1978. 

[44] 1. Kleinrock, "Performance of distributed multiaccess computer communication sys­
tems," in Proc. IFIP Congress, 1977. 

[45] W. R. Crowther, R. Rettberg, D. Walden, S. Ornstein, and F. Heart, "A system for 
broadcast communication: Reservation-ALOHA," in Proc. 6th Hawaii Int. Syst. Sci. 
Con!, Jan. 1973. 

[46] 1. Roberts, "Dynamic allocation of satellite capacity through packet reservation," in 
Proc. AFlPS Con!, vol. 42, June, 1973. 

[47] R. Binder, "A dynamic packet switching system for satellite broadcast channels," in 
Proc. ICC'75, San Francisco, CA, June 1975. 

[48] 1. Kleinrock and M. Scholl, "Packet switching in radio channels: New conflict-free 
multiple access schemes for a small number of data users," in ICC Con! Proc., Chicago, 
IL, June 1977, pp. 22.1-105-22.1-111. 

[49] 1. W. Hansen and M. Schwartz, "An assigned-slot listen-before-transmission protocol 
for a multiaccess data channel," IEEE Trans. Commun., vol. COM-27, pp. 846-857, June 
1979. 

[50] D. C. Loomis, "Ring communication protocols," Univ. California, Dep. Inform. and 
Comput. Sci., Irvine, CA Tech. Rep. 26, Jan. 1973. 

[51] J. R. Pierce, "Network for block switching of data," Bell Syst. Tech. J., vol. 51, pp. 
1133-1143, July j Aug. 1972. 

[52] A. Hopper, "Data ring at computer laboratory, University of Cambridge," Computer 
Science and Technology: Local Area Networking. Washington DC: Nat. Bur. Stand., NBS 
Special Publ. 500-31, Aug. 22-23,1977, pp. 11-16. 

[53] P. Zafiropoulo and E. H. Rothauser, "Signalling and frame structures in highly decentral­
ized loop systems," Proc. Int. Con! on Comput. Commun. (Washington, DC), 1MB Res. 
Lab., Zurich, Switzerland, pp. 309-315. 

[54] E. R. Hafner et al., "A digital loop communication system," IEEE Trans. Commun., 
p. 877, June 1974. 



Chap. 6 • Multiaccess Link Control 189 

[55] M. V. Wilkes, "Communication using a digital ring, "in Proc. PACNET Con!, Sendai, 
Japan, Aug. 1975, pp. 217-255. 

[56] L. Kleinrock and Y. Yemini, "An optimal adaptive scheme for multiple access broadcast 
communication," ICC Con! Proc., Chicago, IL, June 1977. 

[57] G. Ricart and A Agrawala, "Dynamic management of packet radio slots," presented at 
Third Berkeley Workshop on Distributed Data Management and Comput. Networks, Aug. 
1978. 

[58] F. Borgonovo and L. Fratta, "SRUC: A technique for packet transmission on multiple 
access charmels," in Proc. Int. Con! Com put. Commun., Kyoto, Japan, 1978. 

[59] M. Scholl and L. Kleinrock, "On a mixed mode multiple access scheme for packet­
switched radio charmels," IEEE Trans Commun., voL COM-27, pp. 906-911, June 1979. 

[60] 1. Rubin, "A group random-access procedure for multi-access communication charmels," 
in NTC'77 Con! Rec. Nat. Telecommun. Con!, Los Angeles, CA, Dec. 1977, pp. 
12:5-1-12:5-7. 

[61] -"Integrated random-access reservation schemes for multi-access communication chan­
nels," School Eng. AppL Sci., Univ. California, Los Angeles, Tech. Rep. UCLA-ENG-
7752, July 1977. 

[62] 1. K. DeRosa, and L. H. Ozarow, "Packet switching in a processing satellite," Proc. 
IEEE, voL 66, pp. 100-\02, Jan. 1978. 

[63] R. E. Eaves, "ALOHA/TDM systems with multiple downlink capacities," IEEE Trans. 
Commun., voL COM-27, pp. 537-541, Mar. 1979. 

[64] S. F. W. Ng and J. W. Mark, "A multiaccess model for packet switching with a satellite 
having some processing capability," IEEE Trans. Commun., voL COM-25, pp. 128-135, 
Jan. 1977. 

[65] -, "Multiaccess model for packet switching with a satellite having processing capability: 
Delay analysis," IEEE Trans. Commun., voL COM-26, pp. 283-290, Feb. 1978. 

[66] S. S. Lam, "Satellite multi-access schemes for data traffic," in Proc. Int. Con! Commun., 
Chicago, IL, 1977, pp. 37.1-19-37.1-24. 

[67] F. Tobagi et af., "On measurement facilities in packet radio systems," in Nat. Com put. 
Con! Proc., New York, NY, June 1976. 

[68] F. Tobagi, "Analysis of a two-hop centralized packet radio network: Part I-Slotted 
ALOHA," IEEE Trans. Commun., voL COM-28, pp. 196-207, Feb. 1980. 

[69] --"Analysis of a two-hop centralized packet radio network: Part II-Carrier sense 
multiple access," IEEE Trans. Commun., voL COM-28, pp. 208-216, Feb. 1980. 

[70] W. W. Chu, "A study of asynchronous time division multiplexing for time-sharing 
computer systems," in 1969 Spring Joint Com put. Con! AFIPS Con! Proc., voL 35, 1969, 
pp. 669-678. 

[71] J. 1. Capetanakis, "Tree algorithms for packet broadcasting charmels," IEEE Trans. 
Inform. Theory, voL ITc25, pp. 505-515, Sept. 1979. 

[72] 1. Chlamtac et al., "BRAM: The broadcast recognizing access method," IEEE Trans. 
Commun., voL COM-27, pp. 1183-1190, Aug. 1979. 

[73] J. E. Thornton, "Overview of Hypercharmel," 18th IEEE Compo Soc. Int. ConI (Comp 
Con 79 Spring), San Francisco, February 1979, pp. 262-265. 

[74] M. Tokoro and K. Tamaru, "Acknowledging Ethernet," Proc. CompCon 77, pp. 320-325, 
Sept. 1977. 



PART IV 

Network Layer 

In this part we deal with some protocol questions that one would call real 
"network" questions, in the following sense: The Physical Layer division of 
Part II dealt mostly with a particular interface within one node, and the 
Data Link Control discussion of Part III dealt with two protocol partners, 
and so does the Part V discussion of end-to-end higher level protocols. In 
other words, in Parts II, III, and V, the multinode character of the network is 
invisible. But here we shall be dealing with matters involving the interaction 
of all nodes, both end nodes and intermediate nodes, to produce a reliable 
connection path between parties resident in the end nodes. Such a connec­
tion serves as a base on which the protocols described in Part V can build 
complete paths allowing dissimilar end users to not only be connected but 
to communicate. 

The nature of the services provided by the protocols described in the 
different chapters of this section varies considerably, being arranged in 
Chapters 7 through 11 in order of their complexity and thereby functional­
ity. Chapter 7 takes the simplest point of view about this, describing the 
one-hop fast circuit switched connection provided by the peer physical level 
X.2l protocol and comparing it to those provided by an X.25-based packet 
network, this being the subject of the next chapter, Chapter 8. The fast 
circuit switched services provide, on an intermittent basis, a synchronous bit 
pipe supporting the higher protocol layers of Section V. The line error 
recovery features of DLC are missing, since their protocol level is omitted in 
the end-to-end services described in Chapter 7, and must be provided by the 
higher layers. 

In the case of the X.25 packet-switched facilities, whose most recent 
state of evolution is described in Chapter 8, the services provided to the next 
higher layer are called a virtual circuit, a connection that conveys properly 
addressed packets in a full duplex connection between two parties, in proper 
sequential order. This is done by adding a third layer, the X.25 packet layer, 
on top of the physical and DLC levels, the latter providing the usual 

191 



192 PartlY 

mechanisms for recovery from line errors. While logically the virtual circuit 
looks like a single pipe transporting packets, physically it consists of three 
pieces, first one set of three-level X.25 peer protocols working between one 
end node and the public data network, then the internal mechanisms of that 
network, and third the three X.25 peer protocols between the network and 
the other end node. 

In actual use, it is most convenient to set up either the X.21-based fast 
circuit switched service or the X.25-based packet switched virtual circuit and 
then send a number of messages through it before taking it down again. The 
overhead connected with path establishment and disestablishment, particu­
larly with virtual circuits, is clearly unattractive if a single isolated message 
must be sent, say a 1000-bit packet representing a credit card number being 
entered to a credit checking program. Special variants of X.25 have been 
developed to handle this "short message" problem, the datagram and fast 
select facilities, and these are described in Chapter 9. 

The Digital Network Architecture of Chapter 10 provides as its form of 
service a logical link. A logical link provides almost the same functionality 
as a virtual circuit but has the added feature that instead of controlling the 
rate of flow on a packet-by-packet basis, the user can exercise the option of 
having the flow control respond to "messages," i.e., groups of packets. 

In the case of System Network Architecture (Chapter 11), the services 
provided to the higher protocol layer take the form of a class of service 
interface. A session desiring a connection providing particular properties 
(say low delay even if at the expense of bit rate), is mapped onto a 
combination of virtual route and priority level within that route. This class of 
service appearance is supported by several underlying functions that are 
different from those provided by the four other approaches described in 
Chapters 7 through 10 (fast circuit switch connection, virtual circuits, short 
message virtual circuit variants, and logical links.) For one thing, the 
physical route between intermediate nodes (a so-called explicit route onto 
which a virtual route is mapped) is fixed, not dynamically varying from 
message to message, as with DNA logical links; and there are a number of 
other differences. 

An important issue in a network of any significant topological com­
plexity is just this issue of routing. Fully dynamic routing may send 
successive packets by different routes as the load and the topology change 
with time. Dynamic routing has its advocates who argue their case on the 
basis of fast response to changes in topology, and the objective of keeping 
all lines as full of packets as possible for economic reasons. Fixed routing 
advocates argue that reliability is actually lost by doing this since, for one 
thing, accountability of message paths is lost, and this is required for 
managing failure recovery. Chapter 12 discusses these tradeoffs and the 



Introduction 193 

many specific algorithms proposed and in use for actually carrying out the 
node by node routing of messages in response to address information. 

The last chapter in this section discusses the other big technical issue 
which, in addition to routing, enters most prominently into the design of the 
services provided to the higher protocol layers, namely, flow control. This is 
a large and confusing subject for the reason that, unlike routing, flow 
control crops up in different protocol layers, and, in fact, in any practical 
network there are to be found several different flow control mechanisms 
working more or less independently but concurrently. Since "much of the 
flow control function is of a multinode character, we choose to include it in 
this section of the book. 

Reduced to its simplest terms, flow control is simply a mechanism for 
adjusting the rate of flow of packets in some part of the network in an 
attempt to keep down the congestion of the end users and the resources 
within the network (for example lines or buffers) while at the same time 
keeping up their utilization so that they are not idle. 

Much of the complication of flow control can be traced to multiplex­
ing. If every line between adjacent nodes and every route between end nodes 
carried only one end-to-end message stream (i.e., if there were only one such 
stream active in the network at anyone time) flow control could in principle 
be exerted at any point along the route. However, in practice every DLC 
protocol pair is carrying multiplexed traffic between several source and 
destination node pairs, and every X.25 virtual route, DNA logical link or 
SNA virtual route is carrying traffic for a multiplicity of higher-level 
protocol pairs. From this fact, one can appreciate that there is no one 
protocol layer at which flow control could be exerted completely; it must be 
exerted at several simultaneously and independently. For example, it would 
not do to have all the control only at the DLC level because some 
higher-level resource might be congested while the DLC buffers were not, 
and because if they did become congested, only one of the multiplexed 
streams might be at fault, and it is impossible to tell which one from DLC 
level information. Chapter 11 provides a flow control mechanism toxonomy 
based on an association of different mechanisms with different protocol 
layers and also discusses the performance of different schemes. 



7 

Circuit-Switched Network Layer 

Harold C. Folts 

I. Introduction 

CCITT Recommendation X.2l has been developed as "The General 
Purpose Interface between Data Terminal Equipment (DTE) and Data 
Circuit-terminating Equipment (DCE) for Synchronous Operation on Pub­
lic Data Networks" [1]. The only "general purpose" part, however, is the 
designation of the physical elements which include the electrical (X.26 jX.27), 
functional (X.24), and mechanical (ISO 4903) characteristics described in 
Chapter 3 (Bertine). Additionally, the basic family of quiescent signals and 
states for the interface is specified. These provide the fundamental compo­
nents of X.21 which will apply to all modes of operation in new data 
communications applications for circuit-switched, packet-switched, and gen­
eral purpose integrated services [2]. 

The remainder of X.2l includes procedures for leased circuit service 
(both point-to-point and multipoint) and for circuit-switched services. In 
relation to the OSI Reference Model of the ISO architecture, discussed in 
Chapter 2, the leased circuit procedures are a specific application at the 
Physical Layer, while the circuit-switched procedures involve the Data Link 
Layer and the Network Layer. The focus of this paper will be on the 
Network Layer call establishment procedures of Recommendation X.2I. 

II. Background 

Extensive activity by telecommunications administrations around the 
world is taking place implementing public data networks which will provide 
tailored data communication services to the user community. In recognition 

195 



196 Part IV • Network Layer 

of this new evolution, the International Telegraph and Telephone Consulta­
tive Committee (CCITT) established a study program in 1968 by forming a 
Joint Working Party for New Data Networks (JWP jNRD) to set the basis 
for international standardization. In 1972, the resulting first X-series of 
Recommendations, including the original version of X.2l, was approved by 
the Fifth CCITT Plenary Assembly. These Recommendations dealt primarily 
with circuit-switching technology. " 

To further refine and expand this work, CCITT then established Study 
Group VII, Public Data Networks. The main thrust of the work continued 
toward circuit switching with only a minor question directed toward the 
emerging packet-switching technology. In 1976, however, a major diversion 
in direction started to take place with the sudden appearance of the X.25 
Virtual Call packet-switched service, described in Chapter 8. 

As a result, the emphasis on the circuit switching in public data 
networks has been subsequently overshadowed by the fascination for pack­
et-switching technology. This does not mean, however, that circuit switching 
has passed into oblivion, but circuit switching is, in fact, being actively 
pursued by the Nordic Countries (Sweden, Norway, Denmark, and Finland), 
Japan, the Federal Republic of Germany, Italy, Hungary, and Canada 
(Infoswitch). Experience and proven technology may very likely lead in the 
future to an expansion of circuit-switched services in public data networks. 

III. Architecture 

The architecture of Recommendation X.2l has been a suqject of 
considerable misunderstanding and controversy in the ISO and CCITT work 
developing the OSI Reference Model, which was introduced in Chapter 2. 
While X.2l provides the essential physical elements of an interface, it also 
provides the circuit-switched network control procedures. Some have argued 
that these procedures are also within the Physical Layer because they result 
in the establishment of a physical circuit which is the used for data transfer. 

By analyzing the X.2l call establishment procedures in comparison 
with the call establishment procedures of X.25, it will become clear that the 
basic functionality of each is identical. It is technically possible to use the 
X.2l call establishment for a packet-switched virtual circuit as well as to use 
the X.25 call establishment for a circuit-switched physical circuit. Both are 
Network Layer control procedures. 

The necessity for consistent distribution of functionality among layers 
for all switched network services was set forth by the United States to ISO. 
This consistency is essential if the goal of a universal interface for integrated 
services is to be realized [2]. ISO has now endorsed this determination and 
includes the provisions at the Network Layer in the OSI Reference Model 



Chap. 7 • Circuit-Switched Network Layer 197 

for establishment of connections through a switched network regardless of 
the implemented technology: circuit-switched for physical circuits or 
packet-switched for virtual circuits. 

IV. ccnT Recommendation X.21 

When work on Recommendation X.21 began in 1969, during the early 
days of lWP /NRD, it was recognized that use of any CCITT V-series 
interfaces (equivalent of RS-232-C and RS-366) would not be satisfactory 
for the new generation of digital public data networks. Therefore, an initial 
objective was establish,ed to develop a new interface that is compatible with 
advancing technology and tailored for circuit-switched networks providing 
full transparency (bit sequence and protocol independence) for the transfer 
of user data. 

For call control purposes, use of International Alphabet Number 5 
(IA5) was adopted to maintain consistency with the character-oriented data 
link layer basic mode control procedures of ISO 1745 and ANSI X3.28, 
discussed in Chapter 4. At the time, work on the new bit-oriented proce­
dures described in Chapter 10 (ISO HDLC and ANSI ADCCP) was in its 
infancy. 

The first version of X.21 approved by the CCITT Fifth Plenary Assem­
bly in 1972, was little more than an outline of procedures. It was not 
complete enough at that time for practical implementation. During 1973-
1976, however, substantive work was completed to produce a usable Recom­
mendation [3]. This version was approved by the CCITT Sixth Plenary 
Assembly in 1976 and appears in the Orange Book [4]. 

Subsequently, work continued to further refine and expand the Recom­
mendation, as well as to include adjustments resulting from implementation 
experience. The new version of X.21 was completed at the CCITT Study 
Group VII meeting in February 1980. In addition to significant technical 
and editorial enhancements, the new revision of X.21 has been completely 
reorganized to track with the work in developing the standard architecture 
for Open System Interconnection (OSI). The presentation in this paper will 
relate to the latest revision which was approved by the CCITT VIIth Plenary 
Assembly, November 1980 [1]. 

A. General Purpose Physical Layer 

1. Basic Elements 

The physical elements for X.21 as discussed in chapter 3 include 
application of the X.26 and X.27 electrical characteristics, together with 



198 Part IV • Network Layer 

DTE 

Transmit (T) 
I 

Control (Cl 
I 

Receive (R) 

Indication (1) 
I 

Sig.Elem.Timing(S) 

Byte Timing 

Common Return , 
Interface 

Point 

(B) 

(G) 

DCE 
Customer 
Access DSE 
Line 

DTE = Data Terminal Equipment 
DCE = Data Circuit-terminating 

Equipment 
DSE = Data Switching Exchange 

Fig. I. X.21 interface. 

functional circuits defined by X.24. The mechanical element of the interface 
is the I5-pin connector specified by ISO 4903 which is from the same family 
of connectors as the commonly known 25-pin connector used for RS-232-C 
and the CCITT V-series . interfaces. The physical configuration of the 
DTEjDCE interface for X.2I consists of six circuits as shown in Fig. l. 

Circuits T and R convey data and control information, while circuits C 
and I provide control functions similar to "OFF JON hook" indications. 
This simple out-of-band control provides an effective mechanism for main­
taining full transparency during data transfer. Circuit S provides signal 
element (bit) timing from the network, and optionally in some networks, 
circuit B provides an octet byte alignment with the network. 

2. Quiescent Phase Signals 

The signals during the quiescent phase indicate the ability of the DTE 
and the DCE to enter the operational phases such as the call control phase. 
The two basic signals used indicate READY and NOT READY. 

B. Circuit-Switching Procedures 

For circuit-switched operation, X.2I defines four phases-quiescent, 
call control, data transfer, and clearing. Within the phases there are a 



Chap. 7 • Circuit-Switched Network Layer 

n 

STATE WITH FAMILY OF 
DTE/DCE SIGNALS 

STATE NAME 

t,c 
r. i 

n = state number 
t c signal on T circuit 
c = signal on C circuit 
r = signal on R circuit 
i = signal on I circuit 
T = Transmit interchange circuit 
C = Control interchange circuit 
R = Receive interchange circuit 
I = Indication interchange circuit 
D = DTE or DCE data signals 
o and 1 = steady binary condition 

199 

01 = alternate binary 0 and binary 1 
X = any value 
OFF = continuous OFF (binary 1) 
ON = continuous ON (binary 0) 
IA5 = characters from International 

Alphabet No.5 (Rec V.3 and X.4) 
+ = IA5 character 2/11 
BEL = IA5 character 0/7 

~= transition with indication of 
whether DTE or DCE is respons­
ible for transition 

Fig. 2. Conventions for X.21 state diagrams. 

number of states which are defined by the signals appearing on circuits T, 
e, R, and I. Each state is essentially a "snapshot" in time of the interface 
signals presented by the DTE and the DCE as described in Fig. 2. The 
interface procedures are then illustrated by state diagrams to present a 
coherent picture of the operations. 

1. Data Link Layer Elements 

X.21 does not support the full richness of the Data Link Layer 
functions of the OSl Reference Model but provides only the minimum 
necessary elements for basic operation. These include character synchroni­
zation and error detection. 

As X.21 is intended for synchronous operation, the first Data Link 
Layer function provides for correct alignment of the lA5 character se­
quences used during the call control phase. The actual method of achieving 
character alignment was an issue of intense debate for several years [3], but 
was finally resolved in 1976. One proposal was to provide for character 
alignment as typically used for synchronous character-oriented operation. 
This provided for use of two or more contiguous SYN characters preceding 
each sequence of call control characters. The alignment for each direction of 
transmission would be independent. The other proposal was to use a 
separate byte alignment interchange circuit (circuit B, Fig. 1) from the DCE 



200 Part IV • Network Layer 

to the DTE. Circuit B provides the indication of the last bit of an 8-bit byte 
which represents an lA5 character with parity. The byte alignment informa­
tion is used both to align characters received on circuit R and to align 
characters transmitted on circuit T. Each direction of transmission is then 
dependent on the byte alignment information provided by the network 
(DCE). 

The compromise which resulted in agreement essentially recognized 
that either method of operation could be provided, but it requires two or 
more contiguous SYN characters to be present before each call control 
sequence in all cases, even when byte timing is provided by circuit B. Where 
byte alignment with the network is required, the DTE must still align 
transmitted call control characters to the synchronization of either circuit B, 
when used, or received SYN characters from circuit R. 

This compromise now makes it practical to design a new DTE which 
can work with all X.2l network implementations where the provision is 
included in the DTE for alignment of transmitted characters to the synchro­
nization of the received characters. The use of the byte timing circuit B, 
when offered by a network, then becomes a purely optional matter, and 
operation with a nonbyte aligned network is therefore possible. 

Another provision of the compromise agreement allows ready adap­
tation of existing designs of synchronous character-oriented DTEs to X.21. 
This requires, for an intermediate period, that all networks accommodate 
convential SYN character alignment independent of direction of transmis­
sion. The intermediate period is to be determined by customer demand and 
other relevant factors as interpreted by the network provider. 

The other Data Link Layer element of X.2l provides an elementary 
means of error checking using odd parity according to CCITT Recommenda­
tion X.4 [l]. Before the decision was made to employ parity, a thorough 
study was made as to how powerful an error control was needed. The 
conclusion showed that with the low error rates expected in public data 
networks, the use of parity is quite adequate and cost effective. 

2. Network Layer Procedures 

The character-oriented procedures used during the call control phase 
establish a connection to one or more distant subscribers through a circuit­
switched public data network. To clearly define the procedures, a state 
diagram, Fig. 3, is used to show the relationship among the various call 
control phase states which are defined by the text. Only the recognized 
transitions among the states under normal operating conditions are shown 
by Fig. 3. As further clarification of the procedures, illustrative time 
sequence diagrams are also provided in the X.2l documentation. One of 
these examples is shown in Fig. 4. 



Chap. 7 • Circuit-Switched Network Layer 

START OF PROCEDURE 
FOR OUTGOING CALL ~ 

DTE 4 
SELECTI ON 

SIGNALS 
IAS.ON 
+,OFF 

DTE 

DCE DCE 

10 
DCE PROVIDED 
INFORMATION 

l,ON 
IAS,OFF DCE 

DATA TRANSFER 

201 

START OF PROCEDURE 
~ FOR INCOMING CALL 

DCE 

lObis 
DCE PROVIDED 
INFORMATION 

1,ON 
IAS.OFF 

Fig. 3. State diagram for call establishment. 



202 Part IV • Network Layer 

CALLING AND CLEARING DTE 

FROM DTE FROM DCE 

STATE T C R I STATE 

No I NAME 011 ON IOFF 011 ON IOFF NAME I No 

1 READY J J READY 1 

2 CALL REQUEST m PROCEED 3 m f='-'-"- TO SELECT 
fsvN + 

4 SELECTION ~ + 
~ + 

SIGNALS IA5 + 
f-.;:- + 

5 DTE WAITING T + 
m DCE WAITING 6A 
'Sv-N P"-'-'-' CALL PROGRESS 7 
lA5 SIGNALS 

m DCE WAITING 6A 
rsll! 

DCE PROVIDED 10 
lA5 INFORMATION 
~ m DCE WAITING 6A m 
tmi 

CONNECTION 11 
IN PROGRESS 

r- READY 12 
.....- FOR DATA 

13 DATA TRANSFER 
D - DATA TRANSFER 13 
A 
T D 
A A 

T 
A 

16 DTE CLEAR r-- -
REQUEST i-=- '---

DCE CLEAR 17 
CONFIRMATION 

'--
DCE READY 21 

-1 READY READY 1 

Fig. 4. Example of sequence of events: successful call and clear. 



Chap. 7 • Circuit-Switched Network Layer 203 

Call establishment can begin only from the READY state (state 1). Both 
the DTE and DCE must be READY before either INCOMING CALL (state 8) or 
CALL REQUEST (state 2) can be signaled across the interface. It was proposed 
that the DTE and DCE be allowed to enter the call establishment phase 
directly either from or toward a NOT READY state to allow more flexibility in 
operation. Some proposed network designs, however, precluded these addi­
tional state transitions. 

The process for the calling DTE starts with the signaling of CALL 

REQUEST with t = 0 and C = ON. The simple steady-state signal rather than 
a character sequence was used to alert the DCE of the request. As a result, 
only a minimum of intelligence for detection of the signal is needed. Next, 
in response to CALL REQUEST, the DCE signals PROCEED TO SELECT (state 3), 
r = +, i = OFF. 

It is possible for an INCOMING CALL and CALL REQUEST to be inad­
vertently signaled at the same time. Therefore the CALL COLLISION (state 15) 
has been included. There was considerable debate as to how a CALL 

COLLISION should be resolved. In following the principle of simplicity, only 
one means of resolution was desired. It was finally agreed that CALL 

REQUEST should always win because a DTE preparing for an outgoing call 
may not be able to readily reallocate its internal resources to handle an 
incoming call. Accordingly, the only exit transition from state 15 is toward 
PROCEED TO SELECT where the network continues to process the outgoing 
call and abandons the incoming call. 

The DTE can then proceed with the SELECTION SIGNAL SEQUENCE for 
the specific call. During the SELECTION SIGNAL SEQUENCE, the DCE con­
tinues to signal r = +, i = OFF, while the DTE sends a family of signals 
containing facility and address information. The formats for these signals 
are specified in detail in X.21 using the Backus Normal Form. For a 
simplistic description, Table I presents an example illustration of the 
format. 

The FACILITY REQUEST enables selection of special service features for 
each call. It consists of a FACILITY REQUEST CODE followed by one or more 
FACILITY REQUEST pARAMETERS all separated by the "j" character. Multiple 
FACILITY REQUESTS are separated by"," characters. The last FACILITY 

REQUEST is ended with a "-" character. The list of recognized international 
facilities is given in CCITT Recommendation X.2, while the actual coding is 
specified in Annex 7 of X.21. A further discussion on optional user facilities 
is presented in a later section of this chapter. 

The full address signals are in accordance with the format of the 
International Numbering Plan for public data networks of CCITT Recom­
mendation X.121 [I]. ABBREVIATED ADDRESS signals can be used to repre­
sent, with a reduced number of characters, designated FULL ADDRESS signals 
as established by agreement with the specific network. A single ABBREVIA-



204 Part IV • Network Layer 

Table I. Simplified Example of Selection Signals 

- = End of facility request 
+ = End of selection signal 
. = Beginning of abbreviated address 
/ = Parameter separator 
, = Facility request and address separator 
Selection signal sequence = facility requests - addresses + 
Facility requests = facility request code/facility parameter 

/ ... / ... , ... -
Addresses = full address signal, ... , . .. or 

.abbreviated address signal, ... , 
... + 

Facility registration or cancellation = facility request code/ 
parameter/parameter / 
parameter - + 

TED ADDRESS code may represent either a single address or a group of 
multiple addresses. Each ABBREVIATED ADDRESS signal is preceded by the 
"." character. Multiple FULL or ABBREVIATED ADDRESSS, which can be 
intermixed, are separated by"," characters. The last ADDRESS signal is 
followed by the" +" character as the "end of selection." 

If there is no FACILITY REQUEST in the SELECTION SIGNAL SEQUENCE, the 
sequence will start immediately with the ADDRESS signals without any "-" 
character. If there is no ADDRESS signal, but there is a FACILITY REQUEST, the 
sequence is ended by the" -" followed by the" +" character. 

As shown in Fig. 3, the SELECTION SIGNAL SEQUENCE may be bypassed. 
This provides for a direct calling feature similar to an "OFF-HOOK" or "hot 
line" service which may be used as either a fixed mode of operation or on a 
dynamic per-call basis. After receiving the PROCEED TO SELECT signal, the 
DTE signals DTE WAITING (state 5); then the DeE proceeds to establish a 
connection to a predesignated address or group of addresses. If the choice 
of direct call or addressed call is allowed dynamically on a per-call basis, the 
DTE can enter either state 5 or state 4 depending on the service desired. 

Once the DeE has the request and necessary information to establish a 
connection through the network, the DeE signals r = SYN, i = OFF (state 
6a) as it processes the call. If establishment of the call is successful, there 
will normally not be any CALL PROGRESS SIGNALS (state 7), and in the 
absence of any special facilities, there will not normally be any DCE 

PROVIDED INFORMATION (state 10). 
Depending on how fast the connection is made, the DeE may bypass 

state 6a and proceed directly to CONNECTION IN PROGRESS (state 11) or 
READY FOR DATA (state 12). The difference will be whether the connection is 
made to a subscriber within the same switching center, the same network, or 
through an international connection to another network where the process-



Chap. 7 • Circuit-Switched Network Layer 205 

ing time would be greater. The procedure allows a great deal of flexibility in 
this respect. 

The term CALL PROGRESS SIGNALS in state 7 is perhaps a misnomer 
because they primarily indicate the reasons for "nonprogress" or unsuccess­
ful completion of the call. The CALL PROGRESS SIGNALS are defined by CCITT 

Recommendation X.96. The 1980 revision of X.96 has now established a 
great deal of commonality with the CALL PROGRESS SIGNAL definitions used 
for packet~switching operation. The coding for the two applications, how­
ever, are quite different. Figure 5 gives a list of the CALL PROGRESS SIGNALS 

applicable to X.21, together with the respective coding. Initially, a two-digit 

CODE 
GROUP CODE SIGNIFICANCE CATEGORY 

0 00 RESERVED WITHOUT CLEARING 
01 TERMINAL CALLED 
02 REDIRECTED CALL 
03 CONNECT WHEN FREE 

2 20 NO CONNECTION WITH CLEARING DUE TO 
21 NU~1BER BUSY SHORT TERM CONDITIONS 
22 SELECTION SIGNALS 

PROCEDURE ERROR 
23 SELECTION SIGNAL 

TRANSMISSION ERROR 

4&5 41 ACCESS EARRED WITH CLEARING DUE TO 
LONG TERM CONDITIONS 

42 CHANGED NUMBER 
43 NOT OBTAINABLE 
44 OUT OF ORDER 
45 CONTROLLED NOT READY 
46 UNCONTROLLED NOT READY 
47 DCE POWER OFF 
48 INVALID FACILITY REQUEST 
49 NETWORK FAULT IN LOCAL LOOP 
51 CALL INFORMATION SERVICE 
52 INCOMPATIBLE USER CLASS OF 

SERVICE 

6 61 NETWORK CONGESTION WITH CLEARING DUE TO NETWORf; 
SHORT TERM CONDITIONS 

7 71 LONG TERM NETWORK CONGESTION WITH CLEARING DUE TO NETWORK 
LONG TERM CONDITIONS 

72 RPOA OUT OF ORDER 

3 81 REGISTRATION/CANCELLATION WITH CLEARING DUE TO DTE-
CONFIRMED NETWORK PROCEDURE 

82 REDIRECTION ACTIVATED 
83 REDIRECTION DEACTIVATED 

Fig. 5. Coding of call progress signals. 



206 Part IV • Network Layer 

code is applied where the first digit indicates a general category of signal. 
This enables a relatively simple terminal to translate only the basic category 
of the CALL PROGRESS SIGNAL. The second digit indicates the more specific 
reason which can be translated by more intelligent terminals. In the future, 
it will be possible to expand the number of digits if further enrichment is 
needed. 

The CALL PROGRESS SIGNAL SEQUENCE must be preceded by at least two 
"SYN" characters as described earlier for the character synchronization. 
These "SYN" characters will be sent during state 6a. If there is more than 
one block of signals, the period between them will be filled by additional 
"SYN" characters during state 6a. 

In the 1976 issue [4] of X.21, state 10 was named CALLED LINE 

IDENTIFICATION. Further study, however, showed that more flexibility will 
be needed for future enhancements providing a family of signals that may 
be provided to the DTE from the network. Therefore, the name was 
changed to DCE PROVIDED INFORMATION. The only signal presently desig­
nated for state 10 is the original CALLED LINE IDENTIFICATION. In effect, 
CALL PROGRESS SIGNALS are really a subset of the. more general DCE 

PROVIDED INFORMATION. This logically suggests a possible merger of states 
7 and 10 for a simplification of the state diagram, which was done at the 
very last minute during the meeting of Study Group VII in February 1980 
and therefore is part of the 1980 revised Recommendation. 

While the above actions have been occurring at the calling DTE/DCE 
interface, the state diagram also shows the procedures unique at the called 
DTE/DCE interface in states 8, 9, and lObis. The INCOMING CALL signal 
(state 8) with r = BEL, i = OFF is presented to a READY DTE where t = 1, 
C = OFF. The DTE answers the call by signaling the steady-state conditions 
of t = 1, c = ON for CALL ACCEPTED (state 9). 

At this point, the network may wish to provide the called DTE 
additional information relating to the call (state lObis). Similar to state 10 as 
earlier described, state lObis was originally named CALLING LINE IDENTIFI­

CATION in the previous version of X.21 [4], but further work has now 
changed the name to DCE PROVIDED INFORMATION. The new state lObis 
includes the original CALLING LINE IDENTIFICATION and the new addition of 
CHARGING INFORMATION which will be described later. Consideration in the 
future will be given to further enhancing state lObis to include additional 
capabilities such as subaddressing and a means for acceptance of reverse 
charging calls. 

Another feature under future consideration will be a means for positive 
and negative acknowledgment of the DCE PROVIDED INFORMATION. As 
presently defined, negative acknowledgment due to error or rejection is only 
possible with a complete clearing of the call. It is felt that this may be too 
drastic where a simple retransmission could solve the problem. 



Chap. 7 • Circuit-Switched Network Layer 207 

Upon acceptance of the call, DeE WAITING (state 6b) is signaled. Then 
after at least two SYN characters being signaled in state 6b, DeE PROVIDED 

INFORMATION (state lObis) may be signaled. As with state 6a, state 6b may 
be bypassed when connection time is very fast and no DeE PROVIDED 

INFORMATION will be sent. 
The transition to states 11 and 12 is the process known as "connect­

through" in the original version of X.21 in 1972. This was a issue of great 
confusion and debate which resulted in a carefully constructed agreement. 
The concerns were related to the danger of losing bits of user data and the 
possible presence of spurious bits during the "connect-through" process. 

As the "connect-through" procedure is very complex to describe, the 
following extracted text from X.21 is presented to assist understanding: 

All bits sent by a DTE after receiving READY FOR DATA and before sending DTE CLEAR 

REQUEST will be delivered to the corresponding DTE after that corresponding DTE 
has received READY FOR DATA and before it has received DCE CLEAR INDICATION 

(provided that the corresponding DTE does not take the initiative of CLEARING). 

All bits received by a DTE after receiving READY FOR DATA and before receiving DCE 

CLEAR INDICATION or receiving DCE CLEAR CONFIRMATION were sent by the corre­
sponding DTE. Some of those may have originated as DTE WAITING before that 
corresponding DTE has received READY FOR DATA; those bits are binary I. 

In effect, the result of the process of the transition on circuit R from 
"SYN" in state 6, or from "+" of state 5, to "I" of states 11 and 12 is the 
completion of the end-to-end connection. The "SYN" (or" +") is generated 
internally within the network, while the "I" originates from the distant DTE 
on circuit T and is carried through the network and presented to the local 
DTE on circuit R. Because the transition on circuit I may not be concurrent 
with the transition on circuit R, owing to network signaling differences, 
state 11 has been included but, as shown, may be bypassed. The significant 
state is READY FOR DATA (state 12) where a guaranteed transparent end-to­
end path is established and ready for transfer of user data in state 13. 

3. Clearing 

In the proposed OSI Reference Model, a disconnection function is 
defined for each layer to terminate operational phases. In the case of X.25, 
there is a disconnection function at each of the first three layers, each of 
which serves a specific purpose. X.2I, being a greatly simplified procedure 
for circuit-switched applications, does not provide for any disconnection 
function at either the Data Link or the Network Layers. Instead, the basic 
Physical Layer NOT READY functions of t = 0, C = OFF, and r = 0, i = OFF 

serve to terminate the operational phases of a call. 



208 Part IV • Network Layer 

Fig. 6. Clearing phase. 

Figure 6 shows the state diagram for clearing a circuit-switche4 connec­
tion and return to the READY state. Clearing can be initiated at any time by 
either the DTE or the DCE from any state in Fig. 3 except READY. A DTE 
initiates clearing by sending DTE CLEAR REQUEST (state 16) and the DCE 
responds with DCE CLEAR CONFIRMATION (state 17) followed at least 24 bit 
times later by DCE READY (state 21). The DCE initiates clearing by sending 
DCE CLEAR INDICATION (state 19), and the DTE responds with DTE CLEAR 

CONFIRMATION (state 20). The DCE then responds with DCE READY (state 
21). In a normal clearing sequence, regardless of whether the DTE or the 
DCE initiates clearing, the DCE must first indicate DCE READY (state 21) 
r = 1, i = OFF before the DTE can signal READY t = 1, c = OFF to enter 
state 1. This was necessary due to the operation of the network signaling 
system in CCITI Recommendation X.60. Once READY (state 1) is reached, a 
new call can then be processed. 

4. DTE Time-Limits and DeE Time-Outs 

In order to detect error or fault situations and provide a recovery 
mechanism, a family of DTE time-limits and DCE time-outs has been 



Chap. 7 • Circuit-Switched Network Layer 209 

specified. Each timer is started by a transition into a particular state. For 
normal operation within the specified time, the timer stops when the 
designated next state is entered. If the timer expires before the recognized 
normal transition, then a recovery action can be initiated. As a result, 
lock-up or endless loop operations are avoided so when the problem clears, 
normal operation can resume. 

It should be noted that these time-outs and time-limits are not an 
indication of typical response times, but are used to determine when most 
probably a failure in operation has occurred in either the DTE or DCE. 
Much faster response times under normal operation are expected for 
efficient network operation. 

5. Optional User Facilities 

There are a number of optional user facilities (special service features) 
defined for circuit-switched service by CCITT Recommendation X.2. These 
may be selected on a per-call basis by a facility request in the SELECTION 

SIGNAL SEQUENCE. A list of these facilities is given in Table II. 
The Closed User Group provides for communication only among a 

designated group of subscribers. A subscriber may belong to more than one 
such group, and therefore, a calling DTE must then designate to which 
group the subscriber being called belongs. A particular closed user group 
can be designated by the DTE as preferential to enable the network to 
process a call to the requested called subscriber in the preferential group 
without having to receive a facility request. Calls within nonpreferential 
groups would then need a facility request to specify the applicable closed 
user group desired. 

Multiple Address Calling is allowed for circuit-switched service. This 
enables establishment of conference or broadcast types of communication. 
Additionally a centralized multipoint connection can be arranged on an 
addressed call basis. 

Table II. Optional User Facilities 

Closed user group 
Multiple address calling 
Charge advice 
Calling line identification 
Called line identification 
DTE inactive 
Redirection of call 
Abbreviated addressing 
Direct call 
Facility registration/ cancellation 



210 Part IV • Network Layer 

Charge Advice is a new facility established to provide a calling DTE 
with the charging information related to an immediately preceding call. 
Upon clearing of a call for which the charge advice has been requested by a 
facility request, the network will, within 200 ms, return the charging 
information to the DTE by means of an INCOMING CALL (state 8). When the 
call is accepted by the DTE (state 9), the DCE will provide the charging 
information in state 10bis. At the present time, there is no generalized error 
recovery defined if the DTE fails to receive the information correctly. One 
means under consideration is to repeat the information two or more times 
or until the DTE clears. 

Called Line Identification can be requested by a DTE on a per-call 
basis so the network will verify the called number during state 10. Addition­
ally, Calling Line Identification can be provided on a continuing basis to 
called DTEs as part of state 10 bis. This feature is intended to facilitate 
screening of incoming calls by a DTE to avoid unauthorized access. 

A new facility to appear in X.2l is the DTE Inactive facility. It would 
be invoked when a subscriber is to be out of operation for a period of time. 
The DTE would notify the network of certain information indicating the 
reason and when normal operation will resume. The network would forward 
this information to a calling DTE through the DCE PROVIDED INFORMATION 

state 10. The detailed formats and procedures for this facility will be further 
developed between 1981 and 1984. 

Another facility that has been defined is Redirection of Call. This 
enables a subscriber to have incoming calls rerouted to an alternate number 
when desired, such as during nonbusiness hours. Other facilities that are 
also included in X.2 for circuit-switching service are Abbreviated Address­
ing and Direct Call. These have been discussed in detail earlier. 

Facilities can be initiated on a per-call basis using a facility request or 
continuously on a subscription basis. Additionally, there is a procedure 
defined where a DTE can dynamically change or modify a particular 
facility. This is the Facility Registration/Cancellation procedure. It can be 
applied to reallocate or change full X.12l addresses for assigned abbreviated 
address codes. It can also be used to add and delete subscribers from closed 
user groups. 

6. Test Loops 

The new CCITT Recommendation X.I50 has been developed to define a 
family of test loops to assist in the location of faults in an interconnection. 
These are shown in Fig. 7. 

The DTE test loop 1 is implemented in the DTE and is under the full 
control of the DTE. 



Chap. 7 • Circuit-Switched Network Layer 

::: ) TEST 
LOOP 

LOOP 1 

INTERFACE 
A 
I 

I 
I 
I 

I 
I 

DCE 

lOC~ TEST 
LOOP 

LOOP 3 

Fig. 7. Test loops. 

DCE 

NmOR) TEST 
LOOP 

LOOP 2 

INTERFACE 
B 
I 

I 
I 
I 

I 

I 

211 

DTE 

The local test loop 3 types are located in the DCE and provides a loop 
toward the DTE. This enables the DTE to verify the operation of the 
DTE/DCE interface. Loop 3 can only be activated by a switch on the DCE, 
although a means for automatic activation across the interface is being 
studied. 

Finally, network test loop 2 types are implemented in the DCE and 
provide a loop toward the network. This can also be activated manually by 
a switch on the DCE. A provisional procedure was proposed for use in some 
networks but was rejected before the new version of X.21 got approved. 
Automatic activation of loops through the network is very controversial 
with many of the nations and will probably not be universally agreed on. 

V. Future Evolution 

As circuit-switched networks commence operation, practical experience 
will be gained as to the efficacy of this technology for data communications 
applications. As a result, the question can then be answered within the next 
few years as to whether an efficient, fast circuit-switched operation will 
prove to be more effective than the popularized packet-switched service of 
X.25 for a number of applications. 

One significant issue that must be dealt with in future work is the 
convergence toward common protocols to satisfy all modes of operation. It 
is not a practical matter on a continuing basis to have two very different 
protocols satisfying identical functions, i.e., X.2I call establishment and 
X.25 call establishment. As the general purpose physical elements of X.2I 
become the established universal Physical Layer interface for all data 
communications applications in the future, universal Data Link and Net­
work Layer protocols should also be established accordingly. HDLC (AD­
CCP) appears appropriate for the Data Link Layer, but considerable study 
remains to be done for establishment of a universal Network Layer standard 
[2]. 



212 Part IV • Network Layer 

References 

[I] ccnT Yellow Books, ccnT Seventh Plenary Assembly, Vols. VII.2 and VII.3, November 
1980, Geneva, Switzerland. 

[2] H. C. Folts, "Evolution toward a universal interface for data communications," in 
Proceedings on International Conference of Computer Communications, Kyoto, Japan, 
Sep. 1978, pp. 675-680. 

[3] H. C. Folts, "X.21-The international interface for new synchronous data networks," in 
Conference Record of the International Conference on Communications, IEEE, Vol. I, 
San Francisco, June 1975, pp. 15-19. 

[4] H. C. Folts and H. R. Karp, Eds., McGraw-Hill's Compilation of Data Communications 
Standards. New York: McGraw-Hill, 1978. 



8 

Packet-Switched Network Layer 

Antony Rybczynski 

I. Introduction and General Description 

A. Introduction 

The 1970s heralded the beginning of the development of public net­
works either in the form of experimental networks (e.g., France: RCP, U.K: 
EPSS) or commercial networks (e.g., Canada: Datapac, U.S.A: Telenet). 
The basis of all of these networks was the belief that packet switching was 
an appropriate technology for public data networks (PDNs). However, in 
their embryonic stages, the designs of each of these networks incorporated 
substantially different terminal access procedures for both host computers 
and slow speed character terminals. It was recognized that the commercial 
viability of these networks hinged largely on the development and adoption 
of standard access protocols. These standards would facilitate the connec­
tion of varying types of data terminal equipments (DTEs) to the various 
public networks being developed as well as facilitate international internet­
working. 

The International Telegraph and Telephone Consultative Committee 
(CCITT), a permanent organ of the International Telecommunications Un­
ion, is responsible for establishing Recommendations applicable to various 
aspects of international communications, including public data networks. A 
number of Recommendations related to PDN services have been approved 
within the last six years, most notably X.25 for packet-mode DTEs access­
ing packet-switching PDNs. Without these standards, users would almost 
definitely not be benefiting from the establishment of public data networks 
on a worldwide basis. 

213 



214 Part IV • Network Layer 

The year 1980 found us with PDNs offering X.25 packet-mode services 
being available in the U.S.A., Canada, the U.K., France, and Japan and on 
the verge of being established in a large number of other countries [1]. 
Furthermore, international services have already been established among a 
number of these countries. In order to meet the market need of gaining 
access to X.25 services, a number of mainframe and terminal manufacturers 
have announced products supporting X.25. 

CCITT Recommendation X.25 was first approved in March 1976. The 
next formal revision took place in 1977 with the addition of data link 
control procedures that are compatible with the High-level Data Link 
Control (HDLC) procedures standardized by the International Organization 
of Standardization (ISO). The last formal revision of X.25 took place in the 
Fall of 1980. Thispaper conveys the important enhancements to X.25 which 
have been agreed upon and are currently contained in the text of the revised 
Recommendation. 

B. General Description of X.25 Interface 

CCITT Recommendation X.25 is titled: "Interface between Data Termi­
nal Equipment (DTE) and Data Circuit-terminating Equipment (DCE) for 
Terminals Operating in the Packet Mode on Public Data Networks." 
However, applying the concepts of the standard layer model introduced in 
Chapter 1, X.25 is not strictly speaking an interface. In fact, X.25 is a set of 
three peer protocols as follows (see Fig. 1): 

1. a peer protocol between Physical Level entities in the DTE and the 
DCE; 

2. a peer protocol between Link Control Level entities in the DTE and 
the network node; and 

3. a peer protocol between Packet-Switched Network Level entities in 
the DTE and the network node. 

Each of these levels functions independently of the other levels, with the 
exception that failures at a level may affect the operation of higher levels. 

The Physical Level specifies the use of a duplex, point-to-point syn­
chronous circuit, thus provlding a physical transmission path between the 
DTE and the Network. It also specifies the use of Recommendation V.24 
(i.e., the EIA RS-232-C standard) between the DTE and a data set or 
modem. Therefore, no changes to the communications hardware of the DTE 
are required. The Physical Level also specifies the use of Recommendation 
X.21 though this capability is not yet widely available. Physical level 
protocols have been discussed in Chapter 3. 

The Link Control Level specifies the use of data link control proce­
dures which are compatible with HDLC and with the Advanced Data 
Communications Control Procedure (ADCCP) standardized by the U.S. 



Chap. 8 • Packet-Switched Network Layer 

---------, I 
I I 

To/From I I Higher 
Levels I 

I 
I 
I 
I 
I 
I 
I 
I 

Network 14.,------..1-------
Level i---r------lZ-----

Procedures 14,------- ------
I I multi-I I channel 
I I 
I I 

Link Control 
I I 

Level 4~-------~-----_ 
Procedures 

I 
I single 

I data 

I 
link 

I 
Physical I 

Level 
! 1\ Procedures 

I point-to-point 

I synchronous 

I circuit 
--------

DTE 

DTE/DCE 

boundary 

Fig. I. Structure of X.25. 

215 

Network 

DCE 

American National Standards Institute (ANSI) (see Chapter 5). The Link 
Control Level uses the principles of an ISO Class of Procedures for a 
point-to-point balanced system; in X.25, these procedures are referred to as 
the Balanced Link Access Procedures (LAPB). The use of this data link 
control procedure ensures that packets provided by the Packet-Switched 
Network Level and contained in HDLC information frames (see Fig. 2) are 
accurately exchanged between the DTE and the Network. The functions 
performed by the Link Control Level include 

1. the transfer of data in an efficient and timely fashion; 
2. the synchronization of the link to ensure that the receiver is in step 

with the transmitter; 



216 

+ 

PACKET 
FORMAT 

Bits 
8765432 

GFI LOGICAL 
--

Part IV • Network Layer 

FRAME 
FORMAT 

Bits 
8765432 

HDLC FLAG 

HDLC ADDRESS 

HDLC CONTROL 

COMMON 
PACKET 

HEADER 

I ----
CHANNEL NUMBER 

IC/D + CONTROL DATA 

ADDITIONAL 
PACKET 
HEADER HDLC 
AND/OR INFORMATION 

USER FIELD 
DATA 

HDLC CHECK - SEQUENCE -

HDLC FLAC 

Fig. 2. General X.25 packet and frame formats. GFI, General Format Identifier; CjD-O for 
user DATA packet, I for control packet. 

3. the detection of transmission errors and recovery from such errors; 
and 

4. the identification and reporting of procedural errors to higher layers 
for recovery. 

The major significance of the Link Control Level is that it provides the 
Packet-Switched Network Level with an error-free, variable delay link 
between the DTE and the Network. The Packet-Switched Network Level is 
the highest level in X.2S and specifies the manner in which control informa-



Chap. 8 • Packet-Switched Network Layer 217 

tion and user data are structured into Network Protocol Data Units called 
packets. The control information, including addressing information, is con­
tained in the packet header field and allows the network to identify the 
DTE for which the packet is destined. It also allows a single physical circuit 
to support communications to numerous other DTEs concurrently. 

The characteristics of the Packet-Switched Network Level Peer Proto­
col are further described in Section III. 

C. Packet-Switched Network Level Services Available to X.25 DTEs 

A distinction must be made between the X.25 access protocol and the 
Network Level services provided on a PDN operating in the packet mode 
and accessed by the DTE via X.25. Recommendation X.25 defines a set of 
three peer protocols to be used between the packet-mode DTE and the 
common-carrier equipment, generally referred to as the DCE. The X.25 
Recommendation provides access to the following Network services that 
may be provided on public data networks: 

1. switched virtual circuits (SVCs), also called virtual calls; 
2. permanent virtual circuits (PVCs); and 
3. datagrams. 

A virtual circuit (VC) is a bidirectional transparent, flow-controlled 
path between a pair of logical or physical ports. A switched virtual circuit is 
a temporary association between two DTEs and is initiated by a DTE 
signaling a call request to the network. A permanent virtual circuit is a 
permanent association existing between two DTEs which does not require 
call setup or call clearing action by the DTE. 

A datagram (DG) is a self-contained user data unit containing suffi­
cient information to be routed to the destination DTE (independently of all 
other data units) without the need for a call to be established. At this time, 
the datagram service is not provided on any PDNs. This service is described 
in the next chapter. 

The characteristics of virtual circuits are now presented. 

II. X.25 End-to-End Virtual Circuit Service Characteristics 

A. Introduction 

The Network Level virtual circuit service characteristics are currently 
specified in a nonsystematic way in various sections of Recommendation 
X.25. This section attempts to consolidate the specification of VC character­
istics. The perspective for this discussion is a view of the DTE-to-DTE 



218 Part IV • Network Layer 

services provided by ves rather than a view of the signaling performed 
between the DTE and the network. 

B. Establishment and Clearing of a Virtual Circuit 

A switched virtual circuit is established when the call request issued by 
the calling DTE is accepted by the called DTE (see Fig. 3). A permanent 
virtual circuit is always established and therefore no establishment proce­
dures are required. The call request identifies the called and calling ad­
dresses and facilities requested for the call, and may include user data. The 
user data sent during the call establishment phase is available for use by the 
higher layers (e.g., system passwords). 

CALL 
ORIGINATION 

t 
ESTABLISHMENT 

PHASE 

DATA 
PHASE 

DISCONNECTION 
PHASE 

t 

CALL REOUEST 

CALL CONNECTED 

DATA 

CLEAR INDICATION 

CLEAR CONFIRMATION 

CALL 
DESTINATION 

INCOMING CALL 

CALL ACCEPTED 

DATA 

CLEAR REOUEST 

CLEAR CONFIRMATION 

Fig. 3. Illustration of call establishment, DATA transfer and call clearing. 



Chap. 8 • Packet-Switched Network Layer 219 

During the call establishment phase, the calling DTE may request 
certain optional user facilities (e.g., reverse charging) to be associated with 
the VC. In some cases (e.g., throughput class) the called DTE may wish to 
alter the facility values requested by the caller. Thus, the VC service 
provides mechanisms for facility negotiations during call setup. Optional 
user facilities are discussed in Section IV. 

If the call is refused by the called DTE, the DTE can signal the reason 
for call clearing to the calling DTE in a diagnostic code. If the call attempt 
fails for some other reason, a call progress signal is transmitted across the 
network indicating one of the causes specified in X.25 and given in Table I. 
As will be seen in the next section, the diagnostic code is also used by the 
network to provide extra information to the DTE when it has made a local 
procedure error. This latter use is a characteristic of the X.25 Network Level 
protocol rather than of the virtual circuit itself. 

Once the call has entered the data transfer phase, either DTE can clear 
the call using the diagnostic code to signal to the remote DTE the reason for 
the clearing. If the call is cleared by the network, it will signal this fact and 
indicate a call progress signal (Table I). When a call is cleared, data may be 
discarded by the network since the clear is not sequenced in respect to user 
data. All data generated by the DTE before initiation of a clear procedure 
will either be delivered to the remote DTE before completion of the clearing 
procedure at the remote DTE, or be discarded by the network. When a DTE 
initiates a clear, all data which were generated by the remote DTE before it 
has received the corresponding indication will be either delivered to the 
initiating DTE before the clear procedure is completed locally, or discarded 
by the network. 

C. Data Transfer 

In the data transfer phase, user data which are conveyed in DATA and 
INTERRUPT packets are passed transparently through the network. DTEs 
wishing universal operation on all networks should transmit all packets with 
data fields containing only an integral number of octets. 

Virtual circuit flow control is a mechanism provided to ensure that the 
transmitting DTE does not generate data at a rate that is faster (on average) 
than that which the receiving DTE can accept. This is achieved by the 
receiving DTE controlling the rate at which it accepts DATA packets, noting 
that there is an upper limit on the number of DATA packets which may be in 
the network on a virtual circuit. Thus, flow control has end-to-end signifi­
cance in that back-pressure exerted by a receiving DTE is reflected back to 
the sending DTE. 

A considerable debate has taken place in the past on whether the DTE 
or the network should determine the maximum number of DATA packets 



220 Part IV • Network Layer 

Table I. Oearing Call Progress Signals 

Call progress signal 

DTE Originated 

Number busy 

Out of order 

Remote procedure error 

Reverse charging acceptance not 
subscribeda 

Incompatible destination 

Fast select acceptance not 
subscribeda 

Invalid facility request 

Access barred 

Local procedure error 

Network congestion 

Not obtainable 

RPOA Out of Order a 

Explanation 

Called DTE has refused the call or 
remote DTE has cleared it. 

The called DTE is engaged in other 
calls and cannot accept the incom­
ingcall. 

The remote number is out of order. 
(X.25 Physical and/or Link Control 
Levels not in operation.) 

An X.25 procedure error has occurred 
at the remote DTE/network 
boundary. 

Network has blocked the call because 
the called DTE does not accept 
reverse charged calls. 

The remote DTE does not support a 
user or facility requested. 

The network has blocked the call be­
cause the called DTE does not sup­
port fast select calls. 

Facility request invalid (e.g., a request 
for a facility which has not been 
subscribed to or is not available in 
the local network). 

The calling DTE is not permitted the 
connection to the called DTE (e.g., 
incompatible closed user group). 

A procedure error is detected at the 
local DTE/network boundary (e.g., 
incorrect format, expiration of a 
time-out). 

Temporary network congestion or a 
temporary fault condition has oc­
curred within the network. 

Called number not assigned. 

The RPOA nominated by the calling 
DTE is unable to forward the call. 

aReceived only if the corresponding facility is requested by the caller. 

which may be in the network on a virtual circuit. On the one hand, there is a 
need for the network to assign resources to the VC based on information 
available to it (e.g., call routing) and on performance, specifically through­
put, characteristics associated with the service. In this case, the network 
determines the maximum number of DATA packets that can be on a VC and 
the DTE need not be concerned with this aspect. On the other hand, there is 



Chap. 8 • Packet-Switched Network Layer 

Fig. 4. DATA packet format. Q = data 
qualifier bit; D = delivery confirmation bit; 
M = more data bit; P(S) = packet send 
sequence number; P(R) = packet receive 
sequence number. 

octet 

2 

3 

8 7 

Q 0 

peR) 

Bits 
6 5 4 3 2 

0 I I Logical 

Channel Number 

IMI 

user 
data 
field 

peS) 

221 

I 0 

a need to allow DTEs to select the maximum number of DATA packets that 
can be on a VC and thus be able to ascertain whether certain DATA packets 
have been delivered to the remote DTE. This information can be used in 
conjunction with a higher level DTE-to-DTE error control protocol. With 
the addition of the Delivery Confirmation procedure in X.25, both objec­
tives can be met simultaneously. 

It has been agreed that DTE-to-DTE acknowledgment of delivery be 
available as a standard characteristic of X.25 virtual circuits. Specifically, if 
a DTE wishes to receive end-to-end acknowledgment for data it is transmit­
ting, it uses an indicator called the Delivery Confirmation or D bit con­
tained in the header of DATA packets (see Fig. 4). The D bit is always 
associated with the last octet in the DATA packet in which it is set by the 
DTE; this relationship is preserved by the network on an end-to-end basis 
even when the maximum packet lengths by the DTEs at each end of a VC 
are not the same. The acknowledgment is signaled via the packet receive 
sequence number peR), discussed in Section III. 

If a DTE does not wish to receive end-to-end acknowledgment for data 
it is transmitting, it sets the D bit to zero. In this case, the network 
determines the maximum number of DATA packets which it is willing to 
accept bearing in mind the throughput requirements of the communicating 
DTEs. 

The enhancement of X.25 by the addition of the Delivery Confirmation 
procedure increases the robustness of virtual circuits by providing a DTE­
to-DTE acknowledgment scheme. The communicating DTEs can maintain 



222 Part IV • Network Layer 

strict control on the amount of unconfirmed data, thus facilitating error 
recovery in the event of failure. 

Since the network may perform packet-length conversion, X.25 defines 
a "complete packet sequence" which is a sequence of DATA packets which 
may be combined by the network. The only DATA packets which can be 
combined with subsequent DATA packets are those that are full, have the D 
bit set to zero, and have an indication set by the sending DTE that More 
Data is to follow (see Fig. 4); the D bit has priority over the More Data 
Indication in packet combination so that a DATA packet with the D bit set to 
one is never combined with a subsequent packet. The More Data Indication 
may only be set by the DTE in full DATA packets or in partially full DATA 

packets which also. have the D bit set to one. A sequence of DATA packets 
each carrying a More Data Indication except for the last one will be 
delivered as an equivalent sequence of DATA packets. 

Two independent mechanisms are provided to transfer user control 
information between a pair of DTEs outside the normal flow of data on a 
Vc. The first mechanism transfers user control data within the normal flow 
control and sequencing procedures on a virtual circuit. This is called the 
Data Qualifier procedure, uses the Q bit, and applies to "complete packet 
sequences." 

The second mechanism bypasses the normal DATA packet transmission 
sequence and provides an out of band (nonsequenced) signaling channel on 
VCs. The INTERRUPT packet, which is used in this case, may contain one 
octet of user data and is always delivered at or before the point in the 
stream of DATA packets at which it was generated, even when DATA packets 
are being flow controlled. 

The maximum attainable throughput of a virtual circuit may vary due 
to the statistical sharing of transmission and switch resources and is 
constrained by 

1. the access line speed, local flow control parameters, and traffic on 
other calls at the local DTEjnetwork boundary; 

2. the access line speed, local flow control parameters, and traffic on 
other calls at the remote DTEjnetwork boundary; and 

3. the maximum throughput achievable through the network indepen­
dent of access line characteristics. This limit may differ for national 
and varying types of international calls. 

The above throughput will generally be reached if: (a) the DTE access 
data links of both ends of the VC are traffic engineered properly, (b) the 
receiving DTE is not flow controlling the DCE, and (c) the transmitting 
DTE is sending DATA packets which have the maximum data field length. In 
addition, excessive use of the D bit will constrain VC throughput since, in 
this case, the rate of packet transfer will be determined by the rate of packet 
delivery confirmation by the receiving DTE. 



Chap. 8 • Packet-Switched Network Layer 223 

D. Error Recovery 

The reset procedure is used to reinitialize the virtual circuit and in so 
doing removes in each direction all user data which may be in the network. 
When the reset is initiated by the DTE, it may convey to the remote DTE 
the reason for the resetting via a diagnostic code. If it is a network-generated 
reset, the reason is conveyed to both DTEs. Table II lists call progress 
signals associated with resetting in/X.2S. 

All data generated by a DTE before initiation of a reset with either be 
delivered to the remote DTE before the corresponding indicator, or dis­
carded by the network; all data generated after local completion of a reset 
procedure will be delivered after completion of the corresponding reset 
procedure at the remote end. When a DTE initiates a reset procedure, all 
data which were generated by the remote DTE before its receipt of the 
corresponding indication are either delivered to the initiating DTE before 
the procedure is completed locally, or discarded by the network. Multiple 
and simultaneous resets are handled at the local interface as defined by the 
procedures for single resets. 

The maximum number of packets which may be discarded when the 
clearing or resetting procedure has been invoked is a function of network 

Table n. Resetting Call Progress Signals 

Call progress signal 

DTE Originated 

Out of order (PVC only) 

Remote procedure error 

Local procedure error 

Network congestion 

Remote DTE operational (PVC only) 

Network operational (PVC only) 

Incompatible destination 

Explanation 

Remote DTE reset the VC 

The remote DTE is out of order (e.g., 
X.25 Physical and/or Link Control 
Levels not in operation). 

The call is cleared because of a proce­
dure error at the remote DTE/net­
work boundary. 

A procedure error is detected at the 
local DTE/network boundary (e.g., 
incorrect format, expiration of a 
time-out). 

Temporary network congestion or 
temporary fault condition has oc­
curred within the network. 

Remote DTE is ready to resume nor­
mal operation after a temporary 
failure or out of order condition. 

Network is ready to resume normal 
operation after a temporary failure 
or congestion. 

The remote DTE does not support a 
function used. 



224 Part IV • Network Layer 

end-to-end delay and network resources assigned in conjunction with the 
provided throughput. The maximum number of packets with the D bit set is 
a parameter of an X.25 interface (i.e., the local DTE transmit window size 
discussed in Section III D). 

III. X.2S Packet-Switched Network Peer Protocol Characteristics 

A. Introduction 

Recommendation X.25 specifies the peer protocol to be used by DTEs 
in establishing, maintaining, and clearing virtual circuits. This section now 
discusses this packet-switched network level protocol. 

Packet Formats for the various types of packets are introduced during 
the discussion, while Table III summarizes the usage of various packet 
fields. 

B. Multiplexing at the X.2S Interface 

In order to allow a DTE to establish concurrent virtual circuits with a 
number of DTEs over a single physical access circuit, the X.25 Packet­
Switched Network Level employs packet-interleaved Statistical Multiplex­
ing. This multiplexing technique is used to exploit the fact that a typical 
virtual circuit to a remote DTE may actually be carrying data for only a 

Table III. Usage of X.25 Packet Fieldsa 

Packet Addresses and Facilities and 
type Commonb Cause Diagnostic address length facility length Data 

CALL REQUEST REQ REQ REQ OPT (16) 
CALL CONNECTED REQ OPT OPT 
DATA REQ OPT (128) 
INTERRUPT REQ REQ (\) 
RR/RNR REQ 
RESET/CLEAR 

RESTART 
REQUEST REQ REQ OPT 

INTERRUPT/ 
RESET/CLEAR/ 
RESTART 
CONFIRMATION REQ 

aREQ: required; REQ (X): required, of maximum length X octets; OPT: Optional (only if all subsequent 
optional fields are not present); OPT (X): optional, of maximum length X octets; -: not applicable. 

bThree octet Common Packet Header Field. 



Chap. 8 • Packet-Switched Network Layer 225 

small percentage of the time. Each packet contains a logical channel number 
which identifies the packet with a switched or permanent virtual circuit, for 
both directions of transmission. 

A logical channel is a conceptual access path between a DTE and the 
network. A logical channel, when not in use, can be dynamically assigned 
for a new call either originated by the local DTE or by a remote DTE. A 
logical channel, assigned to a call, is busy until the call is cleared. Logical 
channels can be viewed as analogous to dial ports in a conventional 
timesharing network. 

The range of logical channel numbers that can be used for virtual 
circuits is established at subscription time by agreement between the DTE 
and the network. * If the DTE can only support a single VC, then logical 
channel number one will be used. If both PVCs and SVCs are used, then 
individual PVCs are statically assigned logical channel numbers in a range 
starting from number one, while logical channels for calls are assigned a 
range above this. Logical channel numbers for SVCs are dynamically 
assigned during call establishment and identify all packets (i.e., control and 
data) associated with the Vc. The logical channel numbers are only signifi­
cant for a particular DTE. 

Every packet consists of a three octet common packet header field as 
shown in Fig. 2. 

C. Establishing and Clearing a Virtual Circuit 

A signaling method is provided to allow a DTE to establish switched 
virtual circuits to other DTEs, using logical channel numbers at each end to 
locally designate these switched virtual circuits. 

A DTE initiates a call by sending a CALL REQUEST packet, Fig. 5, to the 
Network. The CALL REQUEST packet includes the logical channel number 
chosen by the DTE to be used to identify all packets associated with the 
call. It also includes the network address of the called DTE. A facility field 
(to be discussed in Section IV) is present only when the DTE wishes to 
request an optional user facility requiring some indication at call setup. 
Reverse charging is an example of such a facility. User data may follow the 
facility field and may contain up to a maximum of 16 octets. 

The calling DTE will receive a CALL CONNECTED packet as a response 
indicating that the called DTE has accepted the call (Fig. 6). 

If the call is refused by the called DTE or if the attempt fails, the 
calling DTE will receive a CLEAR INDICATION (Fig. 7) indicating the ap-

*Datagrams (see Chapter 9) are defined in X.25 as being carried on a datagram logical channel 
assigned at subscription time; this allows concurrent support for datagrams and VCs. 



226 

Octet 

2 

3 

4 

8 

0 

o 

Part IV • Network Layer 

Bits 
7 6 5 4 3 2 

General Format 

I 
Logical Channel 

Identifier G roup Number 

------------
Logical 

Channel Number 

Packet Type Identifier 

0 0 0 I 0 I 

Calling DTE address 

I 
Called DTE address 

length length 

DTE Address 

I o o o 

Facility length 

Facilities 

Call User Data 
(0 - 16 octets) 

I 

o 

Fig. 5. CALL REQUEST and INCOMING CALL packet format. 

propriate call progress signal, and a one octet diagnostic field, generated by 
the DTE and by the network in the former and latter cases, respectively. 

Call clearing once the call enters the data phase, may be initiated by 
either DTE (or by the network in case of failure). 

In any event, the logical channel number can be used again for another 
call when the clearing procedure is completed, normally by the transfer of a 
CLEAR CONFIRMATION packet. The CLEAR CONFIRMATION packet is three 
octets long and identifies the logical channel for which the clear procedures 
is completed. 

Figure 8 illustrates the signaling and states associated with call setup 
and clearing on a particular logical channel. 



Chap. 8 • Packet-Switched Network Layer 227 

Bits 
8 7 6 5 4 3 2 

Oefet 

General Format I Logical Channel 
Identifier G roup Number 

-----------
2 

Logical 
Channel Number 

Pocket Type Identi fier 

3 0 0 0 0 I I I I 

Calling DTE address 

I 
Called DTE address 

length length 
4 

DTE Address 

o o o o 

Facility length 

Facilities 

Fig. 6. CALL ACCEPTED and CALL CONNECTED packet format. 

Bits 
8 7 6 5 4 3 2 

Octet 

General Format 

I 
Logical Channel 

Identifier G roup Number 

-------------

2 
Logical 

Channel Number 

Packet Type Identifier 

3 0 0 0 I 0 0 I I 

4 Clearing Cause 

5 Diagnostic Code 

Fig. 7. CLEAR REQUEST and CLEAR INDICATION packet format. 



228 

Clear Confirmation 
from DCE 

DTEClear Request 
(Caller aborts call) 

DTE 
Clear 
Request 

DTE 
Call 
Request 

Part IV • Network Layer 

DTE Clear 
Confirmation 

Clear Indication 
from DCE 

(Note I) 

Call 
Connected 
from 
DCE 

Clear Indication 
from DCE (Note 2) 

Fig. 8. Illustration of call establishment and clearing over a logical channeL Note I: Either 
called DTE refused call or call attempt has failed. Note 2: Either called DTE cleared down call 
or call cleared due to network failure (reason signaled as call progress signal). 

D. Data Transfer 

DATA packets, illustrated in Fig. 4, can only be transferred across a 
logical channel, after the virtual circuit has been established and if flow 
control constraints are not violated. 

P(S) is the packet send sequence number of the packet. Only DATA 

packets are numbered, the numbering normally being performed modulo 8. 
The maximum number of sequentially numbered DATA packets that the 
DTE (or DeE) may be authorized to transmit, without further authoriza­
tion from the network (or DTE), may never exceed seven. The actual 
maximum value, called the window size W, is set for the logical channel 



Chap. 8 • Packet-Switched Network Layer 229 

either at subscription time or at call setup time (using the facility described 
in Section IV B 2). The default value for W is 2. 

Each DATA packet also carries a packet receive sequence number, P(R), 
which authorizes the transmission of W DATA packets on this logical 
channel starting with a send sequence number equal to the value of P(R). If 
the DTE or the network wishes to authorize the transmission of one or more 
DATA packets, but there is no data flow on a given logical channel in the 
reverse direction on which to piggyback this information, it can transmit a 
RECEIVE READY (RR) packet. If, on the other hand, the DTE or the network 
wishes to confirm the acceptance of a DATA packet with the D bit set to one, 
but does not wish to authorize the transmission of any more data, it can 
transmit a RECEIVE N:OT READY (RNR) packet. RR and RNR packets are 
three octets long and identify the logical channel number and a P(R) value. 
Flow control based on the conveyance of P( R) numbers across a logical 
channel ensures that a sending DTE does not transmit data at an average 
rate which is greater than that at which the receiving DTE can accept that 
data. 

The data field of a DATA packet may be any length up to some 
maximum value. The latter may be established independently at each end of 
a virtual circuit. Every network will support a maximum value of 128 octets. 

When the Delivery Confirmation or D bit is set to zero, the P(R) 
number is used to locally convey flow control information. When the D bit 
in Fig. 4 is set to one, the corresponding P( R) is used to convey delivery 
confirmation information and therefore has DTE-to-DTE significance. 

For example, if the D bit is set to one in a DATA packet numbered p 
[i.e., P( s) = p 1 which it is transmitting, then a P( R), which is received in a 
DATA, RR, or RNR packet and is greater than or equal to p + 1, confirms 
acceptance by the remote DTE of the DATA packet. The receiving DTE 
indicates acceptance of a DATA packet with the D bit set to one by 
transmitting the corresponding P(R) value to the Network. 

In order to allow two communicating DTEs to each operate at their 
locally selected packet sizes, the user may indicate, in a full DATA packet or 
any DATA packet with the D bit set to one, that there is a logical continua­
tion of his data in the next DATA packet on a particular logical channel. This 
is done with the More Data" M" bit contained in the DATA packet header 
as indicated in Fig. 4. Only a full DATA packet may have a More Data 
indication since a partially full packet is treated as if it had the M bit off. 

Table IV defines the network treatment of DATA packets with various 
settings of the M and D bits. 

The procedures used in conjunction with the Data Qualifier procedure 
are identical to those that apply to DATA packets. The format used in this 
procedure is identical to that of the DATA transfer packet except that the 
"Q" bit is set in the DATA packet header (see Fig. 4). 



230 Part IV • Network Layer 

Table IV. Treatment of DATA Packets with M and D Bits 

Combining 
with 

subsequent 
Data packet packet(s) is Data packet a 

sent by performed by received by 
sourceDTE the network destination DTE 

M D Full when possible M D 

o or I 0 No No 0 0 
0 No No 0 

No No I I 
0 0 Yes No 0 0 
0 I Yes No 0 1 
1 0 Yes Yes b 1 0 

Yes No 

a Refers to the delivered data packet whose last bit of user data corresponds 
to the last bit of user data, if any, that was present in the data packet sent 
by the source DTE. 

bNote: If the data packet sent by the source DTE is combined with other 
packets, the M and D bit settings in the data packet received by the 
destination DTE will be according to that given in the two right-hand 
columns for the last data packet sent by the source DTE that was part of 
the combination. 

INTERRUPT packets (Fig. 9), on the other hand, may be transmitted by 
the DTE even when DATA packets are being flow controlled. They contain 
neither send nor receive sequence numbers. Only one unconfirmed INTER­

RUPT may be outstanding at a given time. 

E. Error Recovery 

1. Reset Procedure 

The reset procedure is used to reinitialize the flow control procedure on 
a given logical channel to the state it was in when the virtual circuit was 
established (i.e., all sequence numbers equal to zero and no data in transit). 
To reach this state, all DATA and INTERRUPT packets which may be in transit 
at the time of resetting are discarded. RESET REQUEST and RESET CONFIRMA­

TION packets are used in the reset procedure. 

2. Restart Procedure 

The restart procedure provides a mechanism to recover from major 
failures. The issuance of a RESTART REQUEST packet is equivalent to sending 
a CLEAR REQUEST on all logical channels for switched virtual circuits and a 



Chap. 8 • Packet-Switched Network Layer 231 

Bits 
8 7 6 5 4 3 2 

General Format 

I 
Logical Channel 

Identifier G roup Number 

--------------Octet 

Logical 
Channel Number 2 

Paclcet Type Identl fier 

3 0 0 I 0 0 0 I I 

4 Interrupt User Data 

, Fig. 9. INTERRUPT packet format. 

RESET REQUEST on all logical channels for permanent virtual circuits. Thus, 
the restarting procedure will bring the DTE and the Network to the state 
they were in when service was initiated. 

3. Error Handling 

Recommendation X.25 (1976) laid the groundwork for further study on 
how packet level errors were to be handled at the X.25 interface. The 
following principles were established: 

1. procedural errors during call establishment and clearing are reported 
to the DTE by clearing the call; 

2. procedural errors during the data transfer phase are reported to the 
DTE by resetting the VC; 

3. a diagnostic field is included in the reset packet to provide addi­
tional information to the DTE; 

4. timers are essential in resolving some deadlock conditions; 
5. some DTE procedural errors are a result of the DTE and DCE not 

being aligned as to the subscription options provided at the inter­
face; and 

6. rudimentary error tables define the action of the DCE on receiving 
various packet types in various states of the interface. 

Several important error conditions were still not covered. Conse­
quently, a major effort was expended to expand the error tables in X.25, to 
reach agreement on timeout strategies, and to increase the amount of 
information provided to DTEs via diagnostic codes and via a newly defined 
DIAGNOSTIC packet mechanism. These will now be briefly discussed. 

Error tables were enhanced in two ways. Firstly, the number of error 
conditions handled was increased significantly. Secondly, the information 



232 Part IV • Network Layer 

content was increased by indicating not only the action taken by the DCE 
on detecting an error condition but also the state which the DCE enters. 

A number of special error cases (e.g., packet received on unassigned 
logical channel) have been identified in X.25 for which it is inappropriate to 
inform a DTE of a procedural error by resetting or clearing the logical 
channel. In this case it has been agreed that a DIAGNOSTIC packet be used. 
The DIAGNOSTIC packet is nonprocedural in nature and solely for DTE 
logging. The DIAGNOSTIC packet identifies the logical channel number on 
which an error condition has been detected, and includes a diagnostic code. 

Two areas associated with timeouts have been addressed. The first area 
relates to the length of time the DTE has to respond to an incoming call. On 
one hand, the network wishes to minimize its resources. On the other hand, 
short timeout values are not reasonable due to the interaction between calls 
on a single interface, and between the Network and Link Control Levels, 
and due to user processing within higher layers. A minimum value of three 
minutes has been agreed. 

The second area relates to the action of the DCE when no confirmation 
has been received to an indication packet (i.e., during resetting, clearing, 
and restarting). In order to avoid long looping conditions, it has been agreed 
that the DCE will not retransmit indication packets. Instead, the DCE will 
take the following actions: 

1. On expiry of a 60-s timer after issuing a RESET INDICATION, the DCE 
will clear the call, indicating the reason for clearing via the diagnos­
tic code and call progress signal. On a PVC, a DIAGNOSTIC packet is 
sent. 

2. On expiry of a 60-s timer after issuing a CLEAR INDICATION, the 
DCE will issue a DIAGNOSTIC packet and should eventually enter the 
ready state. In this state, the DCE does not ignore any packets sent 
by the DTE. 

3. On expiry of a 60-s timer after a RESTART INDICATION has been 
issued, the DCE will issue a DIAGNOSTIC packet. The DCE considers 
this condition serious and will stay in this state indefinitely. 

Diagnostic codes have been defined for reset, clear, and restart packets. 
The contents of the diagnostic code field provide nonprocedural informa­
tion which do not alter the meaning of the call progress signal also 
provided. A DTE is not required to undertake any action on the content of 
the diagnostic code field. However, the DTE is advised to log the diagnostic 
to facilitate the correction of the problem. 

Network-generated diagnostic codes are hierarchical. That is, for any 
specific diagnostic code there is always a code which is of a more general 
nature. The specific codes provide information allowing the DTE imple­
mentor to quickly diagnose problems. The more general codes are used 



Chap. 8 • Packet-Switched Network Layer 233 

when relatively uncommon or unanticipated problems occur. To accelerate 
trouble resolution, the X.25 error tables have been further enhanced by 
indicating the diagnostic code generated under each error condition. 

F. Interrelationship between Levels 

Changes of operational states of the Physical and Link Control Levels 
do not implicitly change the state of each logical channel at the Network 
Level; such changes when they occur are explicitly indicated by the use of 
Network Level restart, clear, or reset procedures as appropriate. 

A failure at the Physical and/or Link Control Levels is defined as a 
condition in which the DCE cannot transmit and receive any frames 
because of abnormal conditions caused by, for instance, a line fault between 
the DTE and the DCE. When a failure is detected, the DCE will transmit to 
the remote end a RESET INDICATION indicating Out of Order for a perma­
nent virtual circuit and a CLEAR INDICATION indicating Out of Order for an 
existing Vc. During the failure, the DCE will clear any incoming calls. 

When the failure is recovered, the DCE will send a RESTART INDICA­

TION packet indicating Network Operational to the local DTE; this will 
result in a RESET INDICATION indicating Remote DTE Operational being 
transmitted to the remote end of each permanent virtual circuit. 

IV. Optional User Facilities 

A. Introduction 

CCITT Recommendation X.2 defines the availability of various optional 
user facilities as being universally available or only available in some 
countries. Recommendation X.25 defines the procedures associated with all 
optional user facilities, irrespective of their availability. 

This section describes only those optional user facilities which are 
proposed to be universally available. 

B. Optional User Facilities 

1. Closed User Group Facility 

Closed User Group (CUG) is an optional user facility agreed to for a 
period of time between the Administration and a group of users. This 
facility permits the users in a CUG to communicate with each other, but 
precludes communication with all other users. A DTE may belong to more 
than one closed user group. 



234 Part IV • Network Layer 

The calling DTE specifies the closed user group selected for a call using 
the optional user facility parameters in the CALL REQUEST packet. The closed 
user group selected for a call is indicated to a called DTE using the optional 
user facility parameters in the INCOMING CALL packet. 

2. Flow Control Parameter Selection 

Flow Control Parameter Selection is an optional user facility agreed to 
for a period of time which can be used by a DTE for its logical channels. 
The flow control parameters considered are the packet and window sizes for 
each logical channel for each direction of data transmission. 

When the DTE has subscribed to the facility, it may, in a CALL 

REQUEST packet, separately request packet sizes and window sizes for each 
direction of data transmission. The maximum packet sizes that may be 
supported on public data networks are 16, 32, 64, 128, 256, 512, and 1024 
octets. If a particular packet or window size is not explicitly requested, the 
DCE assumes default requests of 128 octets and 2, respectively. 

When the DCE transmits a CALL CONNECTED packet, it indicates in the 
facility field the flow control parameters to be used by the calling DTE. The 
only valid facility indications in the CALL CONNECTED packet as a function 
of the facility requests in the CALL REQUEST packet are specified by the 
following general negotiation rules: 

1. window sizes can be changed in the direction of W = 2; and 
2. packet sizes can be changed in the direction of 128 octets. 

When the called DTE subscribes to the facility, the DCE transmits flow 
control parameter facility indications to be used by the called DTE in 
selecting the flow control parameters for the call. The called DTE can 
change the indicated values using the above negotiation rules. 

The flow control parameters for logical channels used for PVCs are 
established at subscription time. 

The network may have to constrain the available parameter ranges in 
order to allow the call to be established. In this case, the network is involved 
in the negotiations discussed above. This would occur, for example, if a 
requested packet size, though available domestically, was not available on a 
particular international call. 

3. Throughput Class Negotiation 

Throughput Class Negotiation is an optional user facility agreed for a 
period of time which can be used by a DTE for virtual circuits. This facility 
permits negotiation on a per call basis of the throughput classes. The 



Chap. 8 • Packet-Switched Network Layer 235 

throughput classes are considered independently for each direction of data 
transmission. 

A throughput class for one direction of transmission is an inherent 
characteristic of a virtual circuit, related to the amount of network resources 
allocated to it. This characteristic is meaningful when the D bit is set to zero 
in DATA packets. It is a measure of the throughput that is not normally 
exceeded on the Vc. However, owing to the statistical sharing of transmis­
sion and switching resources, it is not guaranteed that the throughput class 
can be reached 100% of the time. 

Default values are agreed between the DTE and the network. The 
default values correspond to the maximum throughput classes which may be 
associated with any virtual circuit. 

4. One- Way Outgoing Logical Channel 

One-way Outgoing Logical Channel is an optional user facility agreed 
for a period of time. This user facility restricts the use of a range of logical 
channels to outgoing calls. One-way logical channels retain their full duplex 
nature with respect to data transfer. 

5. Incoming or Outgoing Calls Barred 

Incoming or Outgoing Calls Barred are two optional user facilities 
agreed for a period of time. These facilities apply to all logical channels used 
for switched virtual circuits. 

Incoming Calls Barred prevents incoming calls from being presented to 
the DTE. The DTE may originate outgoing calls. Outgoing Calls Barred 
prevents the DCE from accepting outgoing calls from the DTE. The DTE 
may receive incoming calls. 

V. Concluding Remarl,<.s 

A. A Common X.25 DTE 

Network implementations of X.25 have come under considerable criti­
cism in technical papers, such as one from IBM [2], which question whether 
a sufficient degree of commonality exists in the various X.25 implementa­
tions. The revised CCITT Recommendation X.25, which has been approved 
by Study Group VII in February 1980, resolves a number of key areas 
which led to network differences. 

From a DTE implementation point of view, a common X.25 interface 
can be defined [3], [4], which consists of the following universally available 



236 Part IV • Network Layer 

features: 

• an ISO-compatible frame level procedure (i.e., LAPB); 
• use of Logical Channel Number one as the starting point for logical 

channel assignment; 
• modulo 8 packet level numbering; 
• dynamic peR) significance by use of the Delivery Confirmation bit; 
• a standard procedure for selecting packet and window sizes, with 

defaults of 128 octets and 2, respectively; 
• two mechanisms for user control data transfer (i.e., qualified DATA 

and INTERRUPT packets); and 
• a standard way of specifying required call throughput. 

What remaIns is for various network implementors to announce their 
implementation plans of the above features. 

B. Relationship of X.2S to the Open System Interconnection 

Chapter 2 has discussed a Standard Layer Model, specifically the 
Model for Open System Interconnection currently being defined by ISO. At 
the same time, the CCITT is developing a "Layered Model of Public Data 
Network Service Applications" for the purpose of facilitating DTE inter­
working or gaining access to network services (e.g., directory assistance, 
electronic mail). A high degree of compatibility between CCITT'S and ISO's 
Models is desirable; in fact, both ISO and CCITT agree on a seven-layer 
architecture. A major difference has been in the interpretation of the 
services provided by the Network and Transport layers and tl;1eir rela­
tionship to X.25 virtual circuits. 

The current view of the CCITT Rapporteur's Group studying OSI is that 
the services provided by the Transport and Network layers are identical 
except perhaps in the quality of service provided, and can be provided by 
X.25 virtual circuits; these can be provided by packet switching networks, or 
by using X.25 between DTEs in leased line and circuit switching networks. 
Quality of service becomes an issue since the Network layer may vary in its 
success in reaching the performance level required by the Transport layer 
(e.g., error rates, reliability, cost, throughput). When a Transport connection 
of higher reliability than that provided by the Network layer is required, this 
may be provided by the use of additional procedures within the Transport 
layer. Since these procedures do not add service features, but only increase 
an aspect of the quality of service, these procedures may be contained in a 
sublayer within the Transport layer. 

The current ISO view appears to be that the services provided by the 
Network layer are somewhat primitive, resulting in distinctly different 
services being provided by the Network and Transport layers. The services 
of the Network layer can be provided by X.25 virtual circuits. However, in 



Chap. 8 • Packet-Switched Network Layer 137 

this model, many of the VC characteristics discussed in Section II are not 
used; instead, these functions are provided by the Transport layer. 

The above discussion reflects two views of the relationship of X.25 to 
the Standard Layer Model. Alignment between the two models is in the 
process of being achieved. 

C. Future Developments 

Future activity and further work are required in the following areas: 
(1) The characteristics of virtual circuits are defined in X.25, though 

much would be gained by having a separate CCITT Recommendation 
addressing them. 

(2) The X.25 specification has become functionally complete after 
nearly six years of network operational experience. Further work will 
concentrate on new optional user facilities, and the addition of multiple line 
procedures defined for the Link Control Level. 

(3) Pr~sently, some networks require the data fields of DATA packets to 
contain an integral number of octets. The transmission by the DTE of data 
fields not containing an integral number of octets to the network may cause 
a loss of data integrity. Further considerations regarding the trends of future 
requirements and implementations toward either bit orientation (any num­
ber of bits) or octet orientation (an integral number of octets) for data fields 
in X.25 packets are under study in CCITT. 

(4) The evolving Standard Layer Model provides a basic structure on 
which future work in ISO and CCITT can be built. The view that X.25 virtual 
circuits can provide the basic Transport layer services required by the 
Session layer must be studied further. 

(5) There is a real need to select meaningful performance criteria, 
bearing in mind that the meaningfulness of criteria is viewed differently by 
network users and by the network providers. Once these criteria have been 
defined, realistic performance objectives should be set based on user re­
quirements as well as 0)1 operating experience. The costs associated with 
meeting these objectives must also be considered. 

References 

[I] P. T. F. Kelly, "Public packet switched data networks, international plans and standards," 
Proc. IEEE, vol. 66, No. II, Nov. 1978, pp. 1539-1549. 

[2] M. L. Hess, et al., "A comparison of four X25 public data networks," Proc. Int. Conj. 
Commun. Boston, June 1979. 

[3] A. M. Rybczynski and J. D. Palframan, "A common X.25 interface to public data 
networks," Comput. Networks J., vol. 4, No.3, pp. 97-110, July 1980. 

[4] Z. Drukarch, et al., "X.25: The universal packet network interface," Proc. Int. Conj. 
Comput. Commun. Atlanta, October 1980. 



9 

Packet-Switched Network Layer for 
Short Messages 

Harold C. Folts 

I. Introduction 

The original version of X.25 [1] which was approved in 1976 provided 
two basic Virtual Circuit services described in the preceding chapter. The 
Permanent Virtual Circuit service provides a fixed end~to-end connection 
analogous to a point-to-point leased circuit, while the Virtual Call service 
provides for the establishment of switched connections to destination sub­
scribers. In Permanent Virtual Circuit service, data packets can only be 
transferred between the two end-subscribers. In Virtual Call service, call 
establishment and clearing procedures are necessary to provide and release 
a switched connection. Permanent Virtual Circuit service is efficient when 
there are large volumes of data to be exchanged between two points. Virtual 
Call service, on the other hand, is efficient for exchange of data packet 
sequences periodically with a number of other subscribers. 

While Virtual Call and Permanent Virtual Circuit services satisfy a 
large number of data communication applications, there are other applica­
tions requiring a different set of characteristics to provide a more optimum 
service. Where short units of data need to be exchanged frequently with a 
large number of other subscribers, the overhead of a Virtual Circuit call 
establishment becomes significant compared to the amount of data being 
transferred. Such applications which use short enquiry/response messages 
include point-of-sale, electronic funds transfer, credit checking, meter read­
ing, reservation systems, directory searches, and inventory control. Addi­
tionally, process control systems need an effective means to handle sporadic 
movement of short units of data in such applications as position and sensor 

239 



240 Part IV • Network Layer 

data, alarms, and telemetry. To satisfy these transaction and short one-way 
message applications, two additional capabilities have been added to the 
1980 version of X.25 which was approved by the CCITT Seventh Plenary 
Assembly [2]. One enhancement is an extension to the Virtual Call service 
and is called the Fast Select facility. This allows conveyance of up to 128 
octets of data within the call establishment and clearing packets. The other 
enhancement is the provision of Datagram service for the transport of 
independent "message" type of packets without the necessity of preestab­
lishment of a connection. The new features of X.25 are complementary to 
the Virtual Call and Permanent Virtual Call services and significantly enrich 
the capability of X.25 to satisfy the broadest range of applications using 
packet-switching technology. 

II. Fast Select Facility 

As the United States was attempting to convince the CCITT to proceed 
with the inclusion of Datagram service in X.25, Japan proposed a variation 
of Virtual Call service to serve transaction-oriented applications. Known as 
the Fast Select facility, this variation provides for the exchange of up to 128 
octets of data during the call establishment and clearing procedures for 
Virtual Call service. Fast Select effectively extends the capability of Virtual 
Call service to satisfy more transaction-oriented applications where at least 
one inquiry and one response is needed for communication. On the other 
hand, Fast Select does not as efficiently satisfy applications where there 
may be delays in the response or where there is a requirement for originat­
ing a large number of packets, each for different destinations. Support for 
Fast Select, however, finally grew to the point where it was agreed to 
provide it in X.25 along with Datagram service. 

When the Fast Select facility is activated for a Virtual Call, the Call 
Request packet contains a facility request, indicating the Fast Select with 
one of two possible parameters. The parameters indicate whether there is a 
restriction on the response allowed to the Incoming Call at the destination. 

The Fast Select call without restriction to response, shown in Fig. 1, 
processes the Call Request packet and delivers the maximum 128 octet call 
user data field to the destination in the Incoming Call packet. The destina­
tion then responds with either a Call Accepted packet or a Clear Request 
packet containing up to the maximum of 128 octets of user data. If a Call 
Accepted packet is sent, the maximum 128 octets of data are delivered to 
the call originator in the Call Connected packet. Subsequent packets during 
the remainder of the call are processed as defined for normal Virtual Call 
service. 



Chap. 9 • Packet-Switched Network Layer 

CALL 
ORIGINA TION 

MAX 128 
OCTETS OF 
DATA SENT 

MAX 128 
OCTETS OF 

DATA RECEIVED 

CALL 
DESTINA TION 

l CONTINUE WITH, 
NORMAL X.25 

< DATA TRANSFER 
AND CLEARING 
PROCEDURES 

Fig. I. Fast select (FS) with call accepted response. 

241 

When a Clear Request with a maximum of 128 octets of data is issued 
by the destination, the data are delivered to the call originator in a Clear 
Indication packet. Thus, a two-way transaction is completed, terminating 
the call. With the second parameter value in the facility request, the 
response to the incoming Fast Select call can be restricted to a Clear 
Request as shown in Fig. 2. This allows the network to process the Fast 

CALL 
ORIGINA TION 

MAX 128 
OCTETS OF 
DATA SENT 

MAX 128 
OCTETS OF 

DATA RECEIVED 

RETURN TO 
P1 READY 

STATE 

CALL 
DESTINATION 

MAX 128 
OCTETS OF 
DATA RECEIVED 

MAX 128 
OCTETS OF 
DATA SENT 

::::-_"'_1 RETURN TO 
P1 READY 
STATE 

Fig. 2. Fast select (FS) with immediate clear response. 



242 Chap. 9 • Packet-Switched Network Layer 

Select call more efficiently, leaving the originator knowing exactly the type 
of response to expect. This variation could be related to the same service as 
provided by a Datagram in each direction with about the same efficiency 
and overhead. There are two additional packets, however, in Fast Select 
with Clear Request response. These are the short three-octet Clear Con­
firmation packets shown in Fig. 2 to reinitialize the logical channels at each 
end of the connection. 

In effect, Fast Select accelerates the Virtual Call process in establishing 
a communication. Additionally, inquiry-response applications can be more 
efficiently satisfied within the Virtual Call mode of operation common to 
the majority of X.2S network implementations. 

III. Datagram Service 

The Datagram mode of operation for packet-switching networks has 
long been the subject of extensive debate, particularly in the academic and 
research world. Pouzin [3] became a strong proponent of Datagrams when 
CCITT established the direction toward Virtual Call service with X.2S in 
1976. Many member countries, in open CCITT debate, however, expressed 
doubt as to the true commercial viability of such a service. 

Support for Datagram service in the United States began to expand in 
1977 with the development of a proposal by the American National 
Standards Institute (ANSI) Task Group X3S37 on Public Data Networks. 
This proposal was subsequently presented to the International Organization 
for Standardization (ISO) and the CCITT for consideration. As a result, 
sufficient interest emerged to support furthering the development effort to 
included Datagram service in X.2S [4]. 

The United States proposal defined Datagram service, in general, as in 
the following paragraphs: 

I) A Datagram is self-contained, carrying sufficient information to be routed from 
source DTE to destination DTE without reliance on earlier exchanges between source 
or destination DTE and the transporting network. 

2) A Datagram is delivered in such a way that the receiver can determine the 
boundaries (i.e., beginning and end) of the Datagram as it was entered by the source 
DTE. The simplest way to achieve this is to deliver the Datagram intact as one unit to 
its destination, but other methods are not ruled out. 

3) A Datagram is delivered with high probability to the desired destination. but it 
may possibly be lost. 

4) The sequence in which Datagrams are entered into a network by a source DTE is 
not necessarily preserved upon delivery at a destination DTE. 



Part IV • Network Layer 

5) If a Datagram cannot be delivered to the destination or is detectably lost, the 
network will attempt to advise the source DTE through provision of a "nondelivery 
notice" which indicates, to the best of the network's knowledge, why the Datagram 
could not be delivered. To distinguish among Datagrams for the purpose of providing 
error indications, the network will employ a Datagram identification supplied by the 
source DTE in each Datagram. The uniqueness of this identifier, if desired, is the 
responsibility of the source DTE and is not necessarily guaranteed. 

243 

The United States did not continue the arguments of Datagram versus 
Virtual Call [3], but instead conveyed the realization that Datagram service 
is a complement to Virtual Call service. In combination, therefore, a greatly 
extended range of user applications can be effectively satisfied through a 
single X.25 protocol supporting both services. 

With this philosophy in mind, the ANSI Task Group developed the 
extensions to X.25 incorporating Datagrams. In maintaining the essential 
commonality with Virtual Call service, the same architecture was followed 
using multiple logical channels at the packet level. As shown in Fig. 3, the 
Physical Layer and the Data Link Layer are common to both Datagram and 
Virtual Call services. At tile packet level, Datagrams are sent over desig­
nated logical channels where Virtual Calls and Datagrams cannot be 
intermixed within any logical channel. (Note that the term "packet level" is 
used here as defined by X.25 and does not fully correlate to the Network 
Layer of the OSI Reference Model, Chapter 2.) 

The format used for a Datagram packet (Fig. 4) has been carefully 
designated to enable two different implementations. The first, considered 
the most practical, is as a self-contained independent service distributed 

PHYSICAL LEVEL 
X.21, X.21 BIS 

VC 

PKT LK PHY 

___________ t_ 

PACKET LEVEL, 
VIRTUAL CKT 
LOGICAL CHANNELS 

PHY LK 

DG 

DTE DeE 

LINK LEVEL PACKET LEVEL, 
LAP, LAP B DATAGRAM 

LOGICAL CHANNELS 

Fig. 3. Model of X.25 DTE/DCE interface supporting virtual circuit and Datagram operation. 



244 

I 

8765432 

GFI LCGN 
--------

LCN 

peR) I 0 pes) I 0 

SOURCE DTE DEST. DTE 
ADDRESS LENGTH ADDRESS LENGTH 

DESTINA TION DTE ADDRESS { 

SOURCE DTE ADDRESS 

o 0 I FACILITY FIELD 
LENGTH 

FACII,ITIES 

DATAGRAM IDENTIFICATION I 
128 
OCTETS 

MAX 

l,----uSER _DATA ----..IlL 
MODULO 8 

Chap. 9 • Packet-Switched Network Layer 

Fig. 4. Datagram packet format. 

among the network nodes. The second builds a Datagram out of a data 
packet on a Permanent Virtual Circuit to a centralized Datagram function 
within a network. 

Figure 4 shows that the first two octets are common with all packets in 
an X.25 interface (see Fig. 2 of Chapter 8). The third octet is common with 
a data packet providing the sequence numbers P(S)jP(R) for logical 
channel flow control. The P( R) acknowledgment is always returned from 
the immediately adjacent network node, since the notion of an end-to-end 
connection does not apply within the definition of Datagrams. 

The address and the facility field of the Datagram packet are identical 
to those of a Virtual Call, Call Request packet. These provide the informa­
tion for the network to route the Datagram to its destination and indicate 
any particular service feature needed. The remainder of the Datagram 
packet is for the User Data field, which has a standard maximum length of 
128 octets. There are not other optional maximum sizes. This is specifically 
to avoid the extreme complexity of handling fragmented and combined 
Datagrams. 

The first two octets of the user data field are reserved for a Datagram 
identification which can be used to uniquely identify the packet associated 



Part IV • Network Layer 245 

8765432 

G F I LCGN 
-------

LCN 

P ( R ) I 0 P(S) I 0 

SOURCE DTE DESTIN. DTE 
ADDRESS LENGTH ADDRESS LENGTH 

I DESTINATION DTE ADDRESS I 
SOURCE DTE ADDRESS 

DA TAGRAM IDENTIFICATION 

SERVICE SIGNAL CAUSE 

DIAGNOSTIC CODE 

T NETWORK INFORMATION J 
Fig. 5. Datagram service signal packet format. MODULO 6 

with the destination address. As discussed later, these two octets will be 
returned to the source within Datagram Service Signal packets from the 
network. Use of the Datagram identification is not mandatory, but is for the 
convenience of the user. When the Datagram identification is used, only 126 
octets remain available in the user data field. 

The other packet related to Datagram service is the Datagram Service 
Signal packet shown in Fig. 5. A Datagram Service Signal-Specific is 
generated by the network relative to a specific Datagram issued by a DTE. 
A Datagram Service Signal-General is generated by the network relative to 
the overall Datagram operation of the DTE or network. 

There are three clas&es for the Datagram Service Signal-Specific packet. 
The first is "Datagram Rejected," indicating that a Datagram has been 
discarded by the network for some error or inconsistency in the issued 
Datagram. Such causes include local procedure error, invalid facility re­
quest, access barred, not obtainable, etc. Another class is "Nondelivery 
Indication" when a Datagram has been discarded by the network. This is an 
optional feature which is provided either by subscription for all Datagrams 
sent or by Facility Request on a per-Datagram basis. The last class of 
Datagram Service Signal-Specific packets provides "delivery confirmation," 
which is also optional either by subscription or by facility request. 

The Datagram Service Signal-General is sent when there is some 
problem associated with the Datagram service. It can be used to indicate 



246 Chap. 9 • Packet-Switched Network Layer 

network congestion and to request a DTE to stop sending Datagrams either 
in general or to certain parts of the network. This enables the network to 
exercise a degree of control over being flooded with Datagrams under 
overload conditions. 

The first three octets of a Datagram Service Signal packet (Fig. 5) are 
the same as for the Datagram packet. The address field is also the same 
format except that the source address is either the network, in the case of 
general signals, or the original destination from the related Datagram 
packet. The Datagram identification contains the first two octets of the user 
data field of the related Datagram packet to uniquely identify the associated 
Datagram. The user data field contains the reason for the service signal, and 
the diagnostic code provides a further explanation. The network informa­
tion field has a maximum length of 16 octets and provides detail to help 
identify the problem; e.g., for a diagnostic of "invalid address," the address 
field of the related Datagram would be provided in the network information 
field. 

A number of additional packets are also applicable for Datagram 
service. These are all common to the other X.25 services and include Flow 
Control, Reset, Restart, and Diagnostic packets discussed in Chapter 8. 
Since Datagrams utilize logical channels in a similar way to the other 
services, the logical channel related functions are identical. 

For incoming Datagrams, the network maintains a queue for each 
Datagram logical channel. When the queue becomes full, additional arriving 
Datagrams or Datagram Service Signals are discarded. The maximum 
length of the queue is a subject for agreement with the specific network. 
Datagram Service Signals have priority over incoming Datagrams and are, 
therefore, inserted at the beginning of the queue. This may lead to discard­
ing the last Datagram of the queue if the maximum queue length has been 
exceeded. 

It is normally considered that only one logical channel is necessary for 
Datagram service because each Datagram is considered a totally indepen­
dent entity, and the notion of end-to-end connection does not exist. If there 
is a need, however, for additional levels of precedence associated with 
Datagrams, multiple channels can then be effectively used, one for each 
level. Flow control procedures can thus be varied according to the associ­
ated precedence. Additionally, it may be desirable to receive Datagram 
Service Signals expeditiously on a separate logical channel to facilitate 
closer control on the overall Datagram operation. 

The Datagram extension to X.25 does not provide the simplistic 
interface envisioned for some theoretical and some experimental networks 
where only a basic Datagram transport is provided with the operational 
functionality contained in the upper layers of the architecture. X.25 Data­
grams represent a pragmatic solution to the problem of providing commer-



Part IV • Network Layer 247 

cially viable public data network services. A single host computer interface 
can now communicate most efficiently with the broadest range of user 
applications in a common compatible way. Further work has been initiated 
to consider a simplified Datagram-only interface for less intelligent termi­
nals in the field to either communicate with an X.25 host or communicate 
among themselves via an X.25 network. So far such an effort has received 
little interest. 

IV. Fast Select/Datagram Interoperability 

For further flexibility in implementing these two optional capabilities, 
it is feasible for Fast Select in one network to interoperate with Datagrams 
in another network via a gateway interface. The gateway would issue a 
Datagram to the next network in response to an incoming Fast Select call 
and vice versa; see Fig. 6. Either end would not realize that such a 
conversion had taken place. For each Datagram arriving at the gateway, a 
Fast Select call request with restricted response (clear request) would be 
issued to the next network. All the procedures for such interoperability have 
not yet been defined in CCITT Recommendation X.75, but work will 
continue in this area during the 1981-1984 CCITT Study Period. 

X.25 NETWORK 

GATEWAY 
NODE 

X.25 NETWORK 
SUPPORTING 

FAST SELECT 

INCOMING, ___ ...... ________ a-__ -.-,FS CALL 
DATAGRAM " REQUEST , 
OUTGOING ...... :-__ -I ________ ..... 1-___ ,/ FS CLEAR 

DATAGRAM INDICATION 

OUTGOING FS INCOMING 
DATAGRAM -- - - - - -;' CALL 

\. CLEAR 
~---'~REQUEST 

INCOMING:--__ ..... ____ ----_I-__ ... ~,FS CALL 
DATAGRAM : REQUEST 

..... 1---- 'CLEAR 
INDICATION 

Fig. 6. Interoperation between fast select and Datagrams. 



248 Chap. 9 • Packet-Switched Network Layer 

V. Conclusion 

Fast Select and Datagram operations provide significant enhancement 
to the X.25 interface procedures. Since both capabilities are optional, not all 
networks will have either or both available. Only Virtual Call and Perma­
nent Virtual Circuit services are mandatory in public packet-switched data 
networks. In the end, only time and the marketplace will tell the amount of 
acceptance the various services will receive in the real world by the users. 

References 

[I] H. C. Folts and H. R. Karp, Eds., McGraw-Rill's Compilation of Data Communications 
Standards. New York: McGraw-Hill, 1978. 

[2] ccnT Yellow Books, ccrrr Seventh Plenary Assembly, Volume VII.2, November 1980, 
Geneva, Switzerland. 

[3] L. Pouzin, "Virtual circuits vs. datagrams-Technical and political problems," in Proceed­
ings of the National Computer Conference, June 7-10,1976, pp. 483-494. 

[4] P. T. Sevcik, "Why the Datagram is needed-And how it will operate," Data Communica­
tions, McGraw-Hill, Mar. 1978. 



DNA-The Digital Network 
Architecture 

Stuart Wecker 

I. Introduction 

10 

The extremely attractive price, capabilities, and performance of mini­
and microcomputers have been major factors in automating a wide variety 
of applications that were previously done manually, by expensive electronic 
logic, or not at all. In some applications these computers operate stand-alone, 
interacting only with locally connected terminals and I/0 devices. In other 
applications they communicate with other computer systems in the perfor­
mance of their tasks, in order to share data, access remote functions and 
programs, and utilize resources located at remote computer sites. Networks 
supporting these distributed applications must provide a flexible communi­
cation mechanism that can accommodate a broad set of applications 
requirements, flow characteristics, and communication components. Creat­
ing such networks requires an architectural framework or structure designed 
to meet these requirements. The architecture serves as the specification for 
the implementations on the individual communicating computer systems. 

Network architectures create a common user application communica­
tion interface independent of the internal structure and topology of the 
network, and standard internal interfaces and peer protocols to interconnect 
the components of these communicating systems (See Chapters 1 and 2). 
Digital Equipment Corporation's Digital Network Architecture (DNA), the 
standard structure for DECnet network products, supports the flexible 
interconnection of Digital's families of computers while providing an easy­
to-use interface. DNA is the definition of the interfaces, structure, and 

249 



250 Part IV • Network Layer 

protocols that compromise the design of the network intercomputer com­
munication mechanism. This chapter presents an overview of this architec­
ture. 

II. Design Goals 

DNA was designed to create a communication mechanism supporting a 
wide range of user applications, host computer systems, and interconnect 
technologies. Specifically, DNA has the following goals: 

1. Create a Common User Interface. The application interface to the 
network should support a broad spectrum of application communication 
requirements ana should be common across the varied implementations. 
Within such a network environment, applications may be moved among the 
systems in the network, with the common interface hiding the internal 
characteristics and topology of the network. 

2. Support a Wide Range of Communication Facilities. The network 
should be adaptable to changes in communication technology and operate 
with a variety of communication channels (e.g., satellite channels, fiber optic 
links, local network links, value-added carrier services). 

3. Be Cost Effective. A network built using DNA should approach the 
efficiency and performance of a network designed specifically for a given 
application. 

4. Support a Wide Range of Topologies. The architecture should sup­
port communication between users, independent of the physical structure of 
the underlying data transport network. 

5. Be Highly Available. The overall operation of the network should 
not be adversely affected by the failure of a topologically noncritical node 
and/or channel. Critical functions such as message routing, communication 
establishment, and network maintenance should use distributed algorithms. 

6. Be Extensible. The architecture should allow for the incorporation of 
future technology in hardware and/or software. 

7. Be Easily Implemented. The architecture should be independent of 
the internal characteristics of the hosts and their operating systems and be 
easily and efficiently implemented on a wide variety of heterogeneous 
hardware and software. 

In addition to the above were the design goals applicable to any good 
development effort, especially modularity and maintainability. 

III. Design Principles 

These goals and previous (prior to 1974) research results, notably the 
ARPA network [1], the National Physical Laboratory Network [2], and 



Chap. 10 • Digital Network Architecture 251 

other research activities [3], led to a set of design principles which guided 
the architecture design. These are as follows: 

1. Be Highly Distributed. The communication functions should not be 
centralized or have centralized components that would be potential single 
points of failure. 

2. Structure via a Layered Communication Hierarchy. This will create a 
highly flexible structure with ease of layer replacement and peer layer 
protocol communication. 

3. Provide Uniformity among All Nodes. The network topology should 
not restrict node access. Nodes should be characterized only by the func­
tions they perform, and not by their location in the network. The goals of 
uniformity and distribution imply an equality and symmetry among the 
network nodes. 

4. Make Tradeoffs in Favor of Flexibility. Functions should be imple­
mented at the highest practical efficient level within the structure where they 
can use the services of the network itself. Such functions as network control 
and maintenance should execute at the level of application programs. 

5. Be Dynamic. Protocols should be flexible to change; new modules 
and functions should be easily added within the structure; and the network 
should be self-configuring. 

These principles were applied both to the basic architectural structure 
and to the individual layers and the protocols of the architecture. 

IV. Logical Link Communications 

The properties and characteristics of network applications (e.g., file 
access and transfer, terminal access, distributed computing) were studied [4]. 
This study led to the basic capability of DNA: a common, general purpose, 
process-to-process communication mechanism, upon which network appli­
cations can be built. This communication mechanism creates a sequential, 
full-duplex, error-free, message-oriented communication path, a DECnet 
logical link, connecting processes in the network. This path is independent 
of the underlying network topology and characteristics of the individual 
communication channels. Processes in DNA represent either user applica­
tion programs, providing for direct program to program communication, or 
other network resources (e.g., disk files, I/0 devices, terminals) providing 
for program to network resource communication (see Fig. 1). 

A. Logical Link Characteristics 

One process requests, via the network interface that a logical link be 
created between itself and a remote process. The network requests com­
munication with the remote process and, assuming no conflicts and an 



252 

COMMON 

COMMUNICATION 
MECHANISM 

Part IV • Network Layer 

FILES 

Fig. I. Common communication mechanism between application programs and network 
resources. 

acceptance by the remote process, the logical link is created. The two 
processes are then free to send and receive messages sequentially over the 
link. 

Flow control functions allow the data receiver to control the rate of 
transfer over the link to match buffer availability. Data may be sent in 
either short segments (part of a message) or longer message blocks. The 
network divides these longer message blocks into smaller segments for 
transmission, reassembling them at the destination. 

In addition to the normal logical link sequential data path, there is an 
interrupt data path over which short, high-priority messages may be sent 
and used to notify the remote process of special conditions and events 
occurring within the application. This interrupt data bypasses the normal 
data flow control mechanism and, in some implementations, actually ini­
tiates a program interrupt or trap to the receiving process. When communi­
cation is complete either process may disconnect and terminate the logical 
link. 

B. Object Addressing 

An important component of logical link operation is the addressing of 
the communicating processes (resource objects) within the network. Objects 
are referenced via a two-component address. The first part is the address of 
the system within which the object resides, the node address; the second part 
is the address of the object within that system, the object address. DECnet 
does not provide for global addressing of objects without knowing their 
node (system) address. This function can be easily added by creating a 
global network directory and resource manager which would be accessed to 
map global name references to specific "node, object" address pairs. 



Chap. 10 • Digital Network Architecture 253 

The object-addressing mechanism of DNA combines, within a common 
scheme, the advantages of global network address mechanisms and local 
node address mechanisms. The socket addressing mechanism used in the 
ARPA network is an example of a global scheme. In these networks users 
see a uniform network address space but require a directory information 
operator to provide the network address by mapping a local name or service 
request onto a network address prior to access. A local addressing scheme 
requires remote users to know the local format of names within each 
computer system they wish to access, but eliminates the need for a directory 
operator. In DNA object references are divided into two categories. User 
application programs are addressed via their local names. Common generic 
services (e.g., file access, maintenance functions) are addressed via global, 
generic service names. 

The address of a user application program is the name of that program 
as defined in the system where the program resides. Thus, users must know 
the name of the remote application program for reference in creating a 
logical link. For common resources or service functions such as disk files, 
terminals, and file transfer functions, the remote name of the function or 
resource managing program need not be known. Instead there is a global 
generic name (service type number) for such objects. The user specifies the 
name of the service or resource requested to the specified system, and that 
system translates the generic name into a local address. 

C. Local Link Interface 

The interface between processes and the network communication service 
consists of five generic commands for operation of the logical link: 

Connect. Create a logical link to the specified object. Objects may be 
either network resources (accessed via generic names), or user application 
programs (accessed via their local system names). 

Transmit. Send a message over a logical link. If the message is longer 
than the maximum transmission block size, the network will segment it for 
transmission over the communication channels. Flow control options may 
cause the message to remain queued at the sending system until requested 
by the receiver. These options allow the user to trade off throughput, delay, 
and buffer utilization. They can be set to optimize the specific requirements 
of an application. They are set independently for each direction of a logical 
link. 

Receive. Request a message from a logical link. This will queue a 
receiver buffer to the link and, depending on flow control settings, may 
cause a request message to be sent to accommodate the receive. 

Transmit Interrupt. Send a short, interrupt message over a logical link. 
This message will be sent independently of the normal data flow control 
settings in effect. 



254 Part IV • Network Layer 

Disconnect. Destroy a logical link. Normally, transmissions in progress 
will be completed and the logical link will be terminated. In the case of a 
program abort, the link is terminated immediately without completing 
transmissions in progress. 

There may also be additional commands as part of the local system 
network interface used to receive incoming Connect Request and Interrupt 
messages. In addition, if a buffer sharing or pooling technique among a 
group of logical links is being used, then there will also be local commands 
to add buffers to and release buffers from the pool. 

Commands on all systems are semantically equivalent; they cause the 
same actions to occur within the network. The syntax and operating system 
interfaces for these commands are implementation specific. In some systems 
they appear as user-callable subroutines from high-level languages; in others 
they are accessed via system service calls or traps. In some systems, they are 
transparent, hidden from the user, the user accessing higher-level functions 
such as file access services via the file system and the file system accessing 
the network via the network interface commands. Synchronization and 
completion notification are also implementation specific, some systems use 
a polling technique while others interrupt the program upon completion of a 
command. The reader should refer to specific implementation documenta­
tion on DECnet products for such details. 

V. Node Addressing and Topological Considerations 

DNA was designed to support a wide range of topologies. Specifically, 
the architecture supports networks as small as two LSI-II microcomputers 
directly connected by an asynchronous data channel, and as large as global 
networks with a separate communication backbone network consisting of 
high-speed switching nodes and communication channels. Data message 
addressing on a logical link is via a two-part address: the node (system) 
address and the logical link address within that node. The node address is 
used by the transport (routing) communication mechanism of DNA. Logical 
link addressing is an end-to-end mechanism and is only known to the nodes 
within which the link terminates. The basic transport function of DNA is a 
node-addressed datagram communication mechanism as in the Cyclades 
research network [5]. 

All nodes in a DECnet network are addressed uniformly. The network 
has no inherent notion of a physical backbone communication network. 
N odes take on specific characteristics based on the applications or functions 
they perform. Thus, for example, a node may support host functions 
(application programs), concentrator functions (terminal access), or switch­
ing functions (routing). These notions are logical ones; a single physical 



Chap. 10 • Digital Network Architecture 255 

node can support multiple functions and, for example, be a host, switch, 
and concentrator simultaneously. A network can initially consist of a group 
of directly connected communicating end nodes and in time grow to a 
network with front-end nodes and switching nodes added between these 
communicating end nodes without affecting the users or network software 
in these nodes. The transport communication protocol and addressing is the 
same, for example, between hosts directly connected or between a host and 
a front-end communication system. This addressing scheme gives DNA the 
topological flexibility required to implement networks with dynamically 
changing configurations. Figure 2 shows some topological examples. 

HOST 
APPLICATION 
COMPUTER 

HOST 
APPLICATION 
COMPUTER 

HOST 
APPLICATION 
COMPUTER 

tD NETWORK 
USER 

TERMINAL 
'----;--.---.::----' 

Fig. 2. Example of DNA topologies. 

HOST 
APPLICATION 
COMPUTER 

HOST 
..---=-----' APPLICATION 

COMPUTER 

HOST 
APPLICATION 
COMPUTER 



256 Part IV • Network Layer 

The control of a DNA network is totally distributed. That is, there is 
no inherent central control function in the network. To achieve high 
flexibility and topological independence, control and maintainance func­
tions execute at the level of user applications within the DNA structure. At 
this level, topological considerations are transparent. 

A requirement of every node is its ability to be addressed for the 
purpose of performing control and maintenance functions, such as dumping 
error counters and setting parameters. The uniform addressing of nodes in 
DNA and the execution of maintenance functions as user application level 
programs supports this access to control and maintenance information from 
all nodes. Thus, small networks that do not need such maintenance and 
control facilities may omit them, while larger networks may have control 
and maintenance nodes (network control center) for overall control of the 
network, located independent of the topology. Control and maintenance 
functions may even be partitioned among the nodes in the network. 

VI. Structure 

A layered hierarchical modular approach was applied to the design of 
DNA. That is, the functions necessary to create the user logical link 
communication facilities have been divided into a layered hierarchy of 
functions. Higher-level functions are built on lower-level ones. Each level or 
layer in the structure performs a well-defined set of communication func­
tions and presents those functions to the layer above it via a well~defined 
interface. Each layer uses the functions of the layer or layers beneath it in 
the performance of its communication functions. 

This structure is similar to that employed in many current operating 
systems. The structure defines layers of abstraction within the architecture. 
That is, higher layers in the structure use only the functions provided by 
interfaces to lower layers. The higher layers are unaware of the algorithms 
and protocols used by the lower layers. Lower layers use only the informa­
tion passed in parameter blocks from the higher layers. This creates an 
independence of the layers, so that a layer module may be replaced by an 
equivalent new module as long as the new module retains the same 
functions and interfaces as the old one, even though it may execute a new 
algorithm and protocol. A protocol is a construct local to a layer, examined 
and used by that layer in communication with its peer counterparts in other 
nodes to create a distributed function within that layer. A given layer may 
not use information in other layer protocol headers. That information must 
be passed separate from the message in a parameter block across the 



Chap. 10 • Digital Network Architecture 257 

interface. This concept, protocol purity, allows the easy replacement and 
independence of layer modules. 

The Digital Network Architecture is divided into six functional layers: 
physical link layer, data link layer, transport layer, network services layer, 
session control layer, and application layer. The functions performed by 
each of these layers are distributed among the nodes and reflected in 
protocols that are used to communicate between and synchronize the peer 
layers in the nodes. The DNA layers and their names were designed prior to 
the efforts of the ISO committee described in Chapter 2. The DNA 
structure corresponds very closely to the ISO architectural model but 
unfortunately differs and conflicts in the names of some of the layers. The 
DNA transport layer ,corresponds to the ISO network layer and the DNA 
network services layer corresponds to the ISO transport layer. The DNA 
layers perform the following functions: 

1. Physical Link Layer. This layer manages the physical transmission of 
information over a data channel. It is concerned with the physical character­
istics of the media, signaling techniques, clocking on the channel, and the 
interfaces to the computer system and communication carrier services. It 
creates a channel-independent interface for the transmission and reception 
of data blocks. Protocols applicable here are communication interface 
standards such as RS-232C and RS-449 as described in Chapter 3. 

2. Data Link Layer. This layer creates a sequential error-free communi­
cation path between adjacent nodes (connected by a single direct channel) 
over which data blocks may be transferred. In addition, this layer manages 
the transmission and reception on multipoint, multiaccess, and half-duplex 
channels. It creates a single-channel error-free sequential interface. The 
standard protocol for this layer is the Digital Data Communications Mes­
sage Protocol (DDCMP). Other protocols to be supported in the future 
include X.2S value-added carrier services and the Ethernet multiaccess 
channel. 

3. Transport Layer. This layer transports messages from source to 
destination nodes. It provides a routing function so that a path between two 
end nodes can be constructed from the individual node to node paths 
provided by the data link layer and associated communication channels (see 
Fig. 3). The path is not guaranteed to be sequential or error-free. The 
routing function switches messages from incoming channels to outgoing 
channels via a node route table. The creation and updating of this table is 
independent of the actual switching and is performed by the routing 
function algorithm. An overview of routing algorithms is presented in 
Chapter 12. The particular algorithm used in DECnet is dynamic and 
adaptive, changing paths when channels fail and using a lowest cost (a 
measure of performance) criteria in selecting those paths. The algorithm is 



258 

SWITCHING 
FUNCTION 

Part IV • Network Layer 

Fig. 3. End-to-end path from node-to-node paths. 

distributed and uses the transport protocol to exchange routing information 
among the switching nodes of the network. 

4. Network Services Layer. This layer creates and manages the user 
communication logical link paths. It uses the transport layer to move 
message blocks from source node to destination node. Within a node, it 
manages the logical link message queues and performs such functions as 
flow control, error control, message segmentation, and buffer management. 
The protocol for this layer is the Network Services Protocol (NSP). 

5. Session Control Layer. This layer performs the system-dependent 
functions of logical link communications. These include node name to 
address translation, local process addressing, generic object name address­
ing, and, in some systems, process activation and authorization/security 
functions. The interface to this layer is the communication service by which 
programs communicate independent of their physical location in the net­
work. 

6. Application Layer. This is the layer at which user application pro­
grams, resource managing programs, and function-oriented programs 
execute. Data exchanges at this level use logical links for sequential com­
munication. Many logical links operate simultaneously, each supporting an 
independent conversation. Generic function and resource managing pro­
grams, part of the DECnet product offerings, executing within this layer 
include the remote system loader, file access and file transfer programs, and 
maintenance and control functions. The Data Access Protocol (DAP) for 
network file access is an example of an application layer protocol. 

The functions provided by layers 1-5 are part of the standard DECnet 
offerings. Layer 6, the application layer, is the only layer where both user­
and DECnet-provided software coexist. Different products include different 



Chap. 10 • Digital Network Architecture 

USER 
APPLICATION 

NODE 1 

SESSION 
CONTROL 
MODULE 

NSP 
MODULE 

TRANSPORT 
MODULE 

DDCMP 
MODULE 

INTERFACE 
TO 
HARDWARE 

DAP 
MODULE 

APPLICATION LAYER 

USER APPLICATION 

PROTOCOL 

DAPPROTOCOL 

SESSION CONTROL LAYER 

SESSION CONTROL PROTOCOL 

NETWORK SERVICES LAYER 

DAP 
MODULE 

1+-----NSP PROTOCOL----~ 

TRANSPORT LA YER 

1+---- TRANSPORT PROTOCOL---~ 

DATA LINK LA YER 

14---- DDCMP PROTOCOL----.j 

PHYSICAL LINK LAYER 

NODE 2 

NSP 
MODULE 

USER 
APPLICATION 

TRANSPORT 
MODULE 

DDCMP 
MODULE 

INTERFACE 
TO 
HARDWARE 

'-----,-----CHANNEL-------....I 

Fig. 4. Peer layer communication in the DNA hierarchy. 

259 

function programs at this layer. Table I gives a list of offerings from the 
current releases of DECnet. 

Layer functions are realized by peer protocols, implemented within 
layer modules, used to synchronize and transfer data between corresponding 
layers within the DNA structure hierarchy. This peer layer communication 
is shown in Fig. 4. Further details on the structure of DNA can be found in 
the protocol specification documents [8], [12], [13], [14], [16], [17]. 



$ 

T
ab

le
 I

. 
D

E
C

ne
t 

S
ys

te
m

 F
un

ct
io

ns
a 

D
E

C
ne

t-
11

 M
 

D
E

C
ne

t-
l 1

M
 

D
E

C
ne

t-
11

 S
 

-P
L

U
S

 
D

E
C

ne
t-

IA
S

 
D

E
C

n
et

jE
 

D
E

C
ne

t-
R

T
 

D
E

C
ne

t-
V

A
X

 
D

E
C

ne
t-

20
 

V
er

si
on

 3
 

V
er

si
on

 3
 

V
er

si
on

 I
 

V
er

si
on

 2
 

V
er

si
on

 I
 

V
er

si
on

 I
 

V
er

si
on

 2
 

V
er

si
on

 2
 

Ta
sk
~t
o-
Ta
sk
 

Y
es

 
Y

es
 

Y
es

 
Y

es
 

Y
es

 
Y

es
 

Y
es

 
Y

es
 

N
et

w
or

k 
C

om
m

an
d

b 
Y

es
 

Y
es

b 
Y

es
 

N
o 

Y
es

 
N

o
 

Y
es

 
N

o
 

T
er

m
in

al
 

F
il

e 
Y

es
 

N
o 

Y
es

 
Y

es
 

Y
es

 
Y

es
 

Y
es

 
Y

es
 

T
ra

ns
fe

r 
C

o
m

m
an

d
/c

 

B
at

ch
 F

ile
 

Y
es

/Y
es

 
N

o
/N

o
 

Y
es

/Y
es

 
Y

es
/Y

es
 

N
o

/Y
es

 
N

o
/Y

es
 

Y
es

/Y
es

 
Y

es
/N

o
 

Su
bm

is
si

on
 

C
om

m
an

d/
 

B
at

ch
 F

ile
 

Y
es

 
N

o 
Y

es
 

Y
es

 
Y

es
 

N
o

 
Y

es
 

Y
es

 
E

xe
cu

ti
on

 
R

em
ot

e 
Fi

le
 

Y
es

 
Y

es
d 

Y
es

 
Y

es
 

N
o 

Y
es

 
Y

es
 

N
o

 
A

cc
es

s 
D

ow
n-

L
in

e 
Y

es
 

N
o 

Y
es

 
Y

es
 

N
o 

N
o 

Y
es

 
N

o 
."

 

Sy
st

em
 L

oa
di

ng
 

~ 
D

ow
n-

L
in

e 
Y

es
 

N
o 

Y
es

 
Y

es
 

N
o 

N
o 

Y
es

 
N

o
 

~
 

T
as

k 
L

oa
di

ng
 

• 
R

ou
ti

ng
 S

up
po

rt
 

Y
es

 
Y

es
 

Y
es

 
N

o 
N

o 
N

o 
Y

es
 

N
o

 
Z

 i ;!- t"
' ~ .. 



D
E

C
ne

t F
un

ct
io

ns
 

• 
T

as
k-

to
-T

as
k 

C
om

m
un

ic
at

io
ns

-P
ro

gr
am

s 
or

 ta
sk

s 
ca

n 
cr

ea
te

 lo
gi

­
ca

l 
lin

ks
 

an
d 

ex
ch

an
ge

 
da

ta
 w

ith
 p

ro
gr

am
s 

or
 

ta
sk

s 
on

 o
th

er
 

sy
st

em
s.

 
• 

N
et

w
or

k 
C

om
m

an
d 

T
er

m
in

a
l-

L
o

ca
l 

us
er

s 
ca

n 
lo

g 
on

to
 s

ys
te

m
s 

in
 

th
e 

ne
tw

or
k 

as
 t

ho
ug

h 
th

ei
r 

te
rm

in
al

 w
er

e 
di

re
ct

ly
 c

on
ne

ct
ed

 t
o 

th
e 

re
m

ot
e 

sy
st

em
. 

• 
In

te
rs

ys
te

m
 

F
ile

 
T

ra
n

sf
er

-D
a

ta
 

fil
es

 
m

ay
 

be
 

m
ov

ed
 

be
tw

ee
n 

sy
st

em
s,

 a
t 

ei
th

er
 p

ro
gr

am
 o

r 
op

er
at

or
 r

eq
ue

st
. 

T
he

 c
om

m
on

 f
ile

 
ty

pe
 s

up
po

rt
ed

 a
cr

os
s 

sy
st

em
s 

is
 s

eq
ue

nt
ia

l 
A

SC
II

. 
• 

C
om

m
an

d/
B

at
ch

 F
ile

 S
ub

m
is

si
on

-L
oc

al
 u

se
rs

 c
an

 s
ub

m
it

 b
at

ch
 

or
 c

om
m

an
d 

fil
es

 t
o 

re
m

ot
e 

sy
st

em
s 

fo
r 

ex
ec

ut
io

n.
 

• 
C

om
m

an
d/

B
at

ch
 F

ile
 E

xe
cu

ti
o

n
-L

o
ca

l u
se

rs
 c

an
 c

au
se

 a
 b

at
ch

 o
r 

co
m

m
an

d 
fil

e 
th

at
 r

es
id

es
 a

t 
a 

re
m

ot
e 

no
de

 t
o 

be
 e

xe
cu

te
d.

 
• 

R
em

ot
e 

F
ile

 
A

cc
es

s-
U

se
rs

 
or

 
pr

og
ra

m
s 

ca
n 

re
m

ot
el

y 
ac

ce
ss

 

se
qu

en
ti

al
 f

ile
s 

on
 a

 r
ec

or
d-

by
-r

ec
or

d 
ba

si
s.

 
• 

D
ow

n-
Li

ne
 S

ys
te

m
 L

o
a

d
in

g
-I

n
it

ia
l 

m
em

or
y 

im
ag

es
 f

or
 D

E
C

ne
t­

II
 S

 s
ys

te
m

s 
ca

n 
be

 s
to

re
d 

on
 t

he
 l

oc
al

 s
ys

te
m

, 
an

d 
lo

ad
ed

 o
n 

re
qu

es
t i

nt
o 

an
 a

dj
ac

en
t 

I1
/S

 s
ys

te
m

. 
R

em
ot

e 
sy

st
em

s 
re

qu
ir

e 
th

e 
pr

es
en

ce
 o

f 
a 

ne
tw

or
k 

bo
ot

st
ra

p 
lo

ad
er

, 
im

pl
em

en
te

d 
in

 r
ea

d-
on

ly
 

m
em

or
y.

 
• 

D
ow

n-
Li

ne
 T

as
k 

L
oa

di
ng

-P
ro

gr
am

s 
to

 b
e 

ex
ec

ut
ed

 o
n 

D
E

C
ne

t-
11

 
S 

sy
st

em
s 

ca
n 

be
 

st
or

ed
 o

n 
th

e 
lo

ca
l 

sy
st

em
, 

an
d 

lo
ad

ed
 o

n 
re

qu
es

t, 
un

de
r 

th
e 

jo
in

t 
co

nt
ro

l 
of

 t
he

 o
pe

ra
ti

ng
 s

ys
te

m
s 

at
 b

ot
h 

en
ds

 o
f 

th
e 

lo
gi

ca
l 

lin
k.

 T
hi

s 
an

d 
th

e 
pr

ec
ed

in
g 

fe
at

ur
e 

si
m

pl
if

y 
th

e 
op

er
at

io
n 

of
 n

et
w

or
k 

sy
st

em
s 

th
at

 d
o 

no
t 

ha
ve

 m
as

s 
st

or
ag

e 
de

vi
ce

s.
 

• 
R

ou
ti

ng
 S

u
p

p
o

rt
-N

o
d

e 
ca

n 
ro

ut
e 

m
es

sa
ge

s 
fr

om
 

in
co

m
in

g 
to

 
ou

tg
oi

ng
 c

ha
nn

el
s,

 f
un

ct
io

ni
ng

 a
s 

a 
ne

tw
or

k 
sw

itc
hi

ng
 n

od
e.

 

"T
ab

le
 I

 p
ro

vi
de

s 
th

e 
in

fo
rm

at
io

n 
fo

r 
de

te
rm

in
in

g 
if

 t
he

 p
re

ce
di

ng
 f

un
ct

io
ns

 
ar

e 
av

ai
la

bl
e 

o
n

 a
 p

ar
ti

cu
la

r 
D

E
C

n
et

 s
ys

te
m

. 
N

o
te

 t
ha

t 
th

e 
ab

ov
e 

de
sc

ri
pt

io
ns

 d
ef

in
e 

th
e 

m
in

im
um

 c
ap

ab
il

it
ie

s 
pr

ov
id

ed
 b

y 
a 

gi
ve

n 
fu

nc
ti

on
. 

A
dd

it
io

na
l 

ca
pa

bi
li

ti
es

, 
ab

ov
e 

th
os

e 
de

sc
ri

be
d 

as
 t

he
 m

in
im

um
 f

or
 a

 
fu

nc
ti

on
, 

m
ay

 b
e 

av
ai

la
bl

e 
be

tw
ee

n 
tw

o 
o

f 
th

e 
sa

m
e 

o
r 

di
ff

er
en

t 
D

E
C

n
et

 s
ys

te
m

s.
 

hT
er

m
in

ai
s 

o
n

 t
he

se
 s

ys
te

m
s 

m
ay

 l
og

 o
n

to
 o

th
er

 D
E

C
n

et
 s

ys
te

m
s 

o
f 

th
e 

sa
m

e 
ty

pe
. 

D
E

C
ne

t-
11

 S
 d

oe
s 

no
t 

su
pp

or
t 

co
nn

ec
ti

on
s 

fr
om

 r
em

ot
e 

co
m

m
an

d 
te

rm
in

al
s,

 o
nl

y 
to

 1
1M

/1
1M

-P
L

U
S

. 
cC

om
m

an
ds

 m
ay

 b
e 

re
ce

iv
ed

 b
y

 t
hi

s 
n

o
d

e/
co

m
m

an
d

s 
m

ay
 b

e 
se

nt
 b

y
 t

hi
s 

no
de

. 
d 

O
ff

er
s 

lo
ca

l 
us

er
s 

ne
tw

or
k 

ac
ce

ss
 t

o 
re

m
ot

e 
fi

le
 s

ys
te

m
s.

 D
oe

s 
n

o
t 

al
lo

w
 u

se
rs

 o
n

 r
em

ot
e 

sy
st

em
s 

to
 a

cc
es

s 
lo

ca
l 

fi
le

s.
 

g .... Q
 • o i ~ l ~ f !;(
 .... 



262 Chap. 10 • Digital Network Architecture 

VII. Data Flow Within the Architecture 

The communication functions managed by DNA have been divided 
into a hierarchy of layered modules. User data messages pass down through 
the hierarchy, each layer adding a communications capability and a proto­
col header to the message. This protocol header carries control information 
to the corresponding (peer) layer in the destination node for that layer. The 
message is then transmitted over the data channels and back up through the 
layer hierarchy to the destination user, the protocol headers being removed 
and processed along the way. Adhering to the rule of protocol purity, each 
layer only examines its own protocol layer header. A general description of 
this layered network architecture structure can be found in [6] and Chap­
ter l. 

Figure 5 shows this data flow through the architecture. The letters near 
the arrows refer to the description below. In this description the name 

APPLICATION 
LAYER 

NETWORK SERVICES 
LAYER 

TRANSPORT 
LAYER 

DATA LINK 
LAYER 

PHYSICAL CHANNEL 
LAYER 

irRANS 
IHEADER 

SOURCE NODE 

(LETTERS REFER TO DESCRIPTION IN TEXT) 

ITRANS I 
HEADER 

INTERMEDIATE NODE 

I TRANS I HEADER 

DESTINATlON NODE 

Fig. 5. Flow of information through the DNA layered structure. 



Part IV • Network Layer 263 

"source" refers to the process sending a data message and "destination" to 
the process receiving it. Both processes may be sending and receiving data 
simultaneously as logical links are full duplex communication paths. For 
this example, however, a simple one-way flow will be described. Assume 
that the source process has already created a logical link to the destination 
process and the destination process has issued a receive request and is now 
waiting for data. 

(a) The source process issues a transmit data command passing the 
local address of the message buffer and a local logical link reference number 
to the network services layer via its interface. (The session layer has been 
omitted here for simplicity. It is used during logical link creation and is 
essentially transparent during data transfers.) 

(b) The network services layer adds a protocol header including the 
logical link identifier and a message sequence number. Since the destination 
process has already issued a receive command, permission to transmit is 
already pending at the source. This releases the message and the network 
services layer passes it to the transport layer specifying the destination node 
address. 

(c) The transport layer adds a header consisting of the destination and 
source node addresses and selects an outgoing channel for this message 
based on its routing table information. It then passes the message to the 
data link layer specifying the outgoing channel address and, if a multista­
tion channel, the logical station address of the receiving node on the 
channel. 

(d) The data link layer adds its protocol header consisting of framing 
and synchronization information, a transmission block sequence number, 
and a cyclic redundancy check (eRC) trailer. It then passes this block to the 
physical link layer for transmission on the channel. 

(e) The physical link layer transmits the message block over the data 
channel. It is received at the next node and passed up to the data link layer 
at that node. 

(f) The data link layer checks the block, via the cyclic check, for bit 
errors in transmission and, via the message number, for proper sequence. If 
there were errors, a correction procedure, retransmission in DDCMP, will be 
used by the data link protocol to recover and receive the correct block. 
When correct, the data link header and trailer are removed from the 
message block, which is then passed up to the transport layer. 

(g) The transport layer checks the destination address in the header, 
testing whether this is the destination node. If not, it selects the next 
outgoing channel from its routing table and proceeds as in Step (c), passing 
the message to the data link layer. The transport layer has switched the 
message from an incoming channel to an outgoing one. This will continue 
until the message finally arrives at the destination node. At the destination 



264 Part IV • Network Layer 

node, the transport header is removed and the message is passed to the 
network services layer in that node. 

(h) The network services layer examines its header, the logical link 
identifier and sequence number. If the message is the next expected, it 
selects the next buffer queued for that logical link for reception of the data 
message, puts the message into the buffer, and passes the message to the 
destination process by completing the outstanding receive command. If the 
received message was in error (usually wrong sequence number), then a 
recovery procedure (retransmission) is invoked at the network services layer. 

(i) The destination process interprets the data according to the specific 
higher-level protocol being used. 

To summarize, the logical link presented at the end user application 
interface uses an underlying node-by-node transport mechanism for trans­
mission of messages from the source to destination node. The internal 
network transports datagrams, independent message blocks addressed to a 
destination node, on a best efforts basis, much like the postal system. The 
network services layer performs error control, end-to-end sequencing, and 
flow control functions, correcting any message loss and sequence errors by 
the transport layer. 

The remainder of the paper describes each of the major communication 
layers and specific protocols of the DNA architecture: the data link layer 
and DDCMP, the transport layer and routing algorithm, and the network 
services layer and NSP. This will be followed by some example facilities and 
applications of DECnet. It should again be noted that this paper describes 
the architecture of DECnet. Individual DECnet products implement varying 
subsets of tIns architecture. 

VIII. The Data Link Layer and DDCMP 

The data link layer of the architecture is responsible for maintaining 
the integrity and sequentiality of data sent over a single communication 
channel. In addition, on multipoint, multiaccess, and half-duplex channels 
this layer is responsible for the orderly management of the channel (which 
station can transmit next and which station is addressed to receive). Any 
algorithm and corresponding protocol providing such functions would be 
acceptable for use within the basic architectural framework of DNA, for 
example, those described in Chapters 4 and 5. Specifically, the Digital Data 
Communications Message Protocol (DDCMP) has been designed to perform 
these functions and is the standard data link protocol of DECnet. 

A. Data Link Layer Goals 

In addition to meeting the basic requirements of creating an error-free 
message-oriented sequential data channel, the DDCMP design was driven by 



Chap. 10 • Digital Network Architecture 265 

the following set of goals: 
(1) Operate over a wide variety of communications channels (e.g., 

synchronous and asynchronous) in both bit serial and bit parallel modes. 
The protocol should be independent of the physical characteristics of the 
data channel, and should operate on existing (1974, pre-"bit-stuffing") 
hardware. 

(2) Operate on point-to-point and multipoint channels in both full­
and half-duplex modes using a common set of messages and operating 
procedures. 

(3) Offer high performance on all channels. That is, it should make 
maximum use of channel bandwidth even on channels with long delay 
characteristics (e.g. satellites), and should be efficient in transmitting binary 
(transparent) data. 

(4) Provide a positive initialization indication so that if one of the 
communicating DDCMP modules on a channel reinitializes, that information 
is positively known to the other corresponding communicating module on 
the channel. 

(5) Provide error recording features so that degradation of a channel 
can be detected and repaired prior to channel failure. 

(6) Provide a basic mode so that bootstrapping and testing functions 
may be performed over the channel with a minimum amount of hardware 
and/or software required in the system to be bootstrapped. 

(7) Create a protocol that is easily implemented on small mini- and 
microcomputers and even within an LSI chip. 

B. Data Link Functions 

The functions of DDCMP are divided into three components: (1) mes­
sage framing, (2) channel management, and (3) sequential error-free data 
exchange [7]. 

Framing. Message framing uses a byte count technique. That is, mes­
sages are either fixed in length (control messages), or contain a length field 
within a fixed leQgth protocol header which denotes the length of the 
succeeding variable length data field (data messages). This is in contrast to 
protocols that use a pattern detection scheme for framing. DDCMP does not 
search for special ending bit patterns and there are no escape mechanisms 
needed to achieve data transparency. 

Byte synchronization is outside the basic protocol message framing 
mechanism and is specific to each channel type. For synchronous channels a 
conventional sync character approach is used, making DDCMP compatible 
with pre-"bit-stuffing" synchronous hardware interfaces. For asynchronous 
channels, byte synchronization is inherent in the 8-bit transmission format, 
so no additional information is needed. The same is true for 8-bit oriented 
parallel channels. The message framing is thus independent of the channel 



266 Part IV • Network Layer 

characteristics and can operate equally well on serial synchronous, asynch­
ronous, and parallel data channels. 

In addition to channel independence, byte count framing has a number 
of other advantages over the bit-stuffing or zero bit-insertion technique of 
HDLC as described in Chapter 5. One is better error detection properties of 
the CRC block check due to a constant block length with all data bit errors. 
In certain cases bits in error in HDLC frames cause inserted framing bits 
(zeros) not to be deleted or data bits to be deleted as framing bits. This has 
the appearance of a long burst error to the CRC and may go undetected 
based on the properties of the CRe. Another advantage of byte count 
framing is its message length independence from the data content. HDLC 
frame length is content dependent and changes (number of inserted zero 
bits) with different data values. This property allows transmission of DDCMP 

fixed length message blocks, a requirement in many satellite multiaccess 
slotted reservation schemes as described in Chapter 6. 

Channel Management. In keeping with the design principle of node 
uniformity and symmetry, and the goal of supporting varied topologies, 
DDCMP assumes no master/slave or primary / secondary relationships be­
tween the communicating stations. Data transfer is a symmetric operation. 
In fact, using a physicalloopback connector on a full duplex point-to-point 
channel, DDCMP will initialize and transmit to itself without knowing it is in 
such a configuration. This feature, symmetrical operation, is used in a 
loop-back test mode to check proper operation of the data channel, modem, 
and interfaces. 

The channel management component of the protocol is used on half­
duplex point-to-point channels and on multipoint channels where multiple 
transmitters and receivers are connected to a single channel. On half-duplex 
channels, permission to transmit (channel ownership) is passed alternately 
between the two attached stations. On multipoint channels, DDCMP uses a 
polling technique with the main end station designated the polling control 
station and the others tributary stations. On such channels, data blocks only 
flow between the control station and the tributaries. There is no direct 
tributary-to-tributary data flow (this can be accomplished via routing 
through the control station at higher levels of the architecture). The polling 
algorithm (which station is chosen next to transmit) is independent of the 
data exchange and framing portions of DDCMP and can be selected to 
provide a mechanism for either priority operation among the tributaries or a 
more equal, round-robin scheme. Channel management and data exchange 
are distinct components of the protocol. The channel management compo­
nent of DDCMP determines when a given station on a channel may transmit, 
but what is transmitted is the same for all channel configurations. Thus, the 
protocol is still data symmetric even when one station is controlling the 
channel flow. 



Chap. 10 • Digital Network Architecture 267 

Data Exchange. To achieve data integrity and sequentiality over the 
channel, DDCMP uses a positive acknowledgment retransmission technique. 
The protocol assigns each message a sequential number, inserted in the 
protocol header, and computes a CRC block check added to the end of the 
message. The message is transmitted on the channel and an error recovery 
timeout timer is started. The receiver checks each message block check for 
bit errors and the sequence number for proper sequence. If there are no 
errors, the receiving DDCMP returns a positive acknowledgment containing 
the number of the message successfully received. If the transmitter does not 
receive such an acknowledgment within its timeout period, it initiates error 
recovery. If the original message was received in error, this will result in 
retransmission of the message. Additional features, for performance im­
provement, include piPeliuing of messages, piggybacking of acknowledg­
ment information within data messages being sent in the reverse direction, a 
negative acknowledgment message used to decrease the time waiting to 
initiate error recovery, and a synchronization message used to recover from 
acknowledgment messages received in error. These are similar techniques to 
the ones used in HDLC. 

C. Message Formats 

DDCMP message formats are of three types: data, control, and mainte­
nance. User data (information from the next higher layer in the architec­
tural hierarchy) is sent within the data message format. Acknowledgment 
and initialization messages use the control message format. A special mode 
of the protocol, called maintenance mode, provides a simple framing 
envelope, via the maintenance message format, used for such functions' as 
downline loading and loop testing. The three message types are identified by 
three special bytes which begin each of the three types. The data message 
format is shown in Fig. 6. 

A DDCMP data message consists of a header, header block check, user 
data field, and data field block check. The header includes the count field 
used for framing, the transmit sequence number of the message, a piggy­
backed acknowledgment number, and a polling flag and station address 
used for channel management. The header is followed by a CRC-16 block 
check used to verify the integrity of the header fields. This separate header 
block check allows verification of the count field prior to using it to receive 
the succeeding data field and allows the remaining header fields to be used 
prior to receiving the remainder of the message. So, for example, the receive 
number field (the piggybacked acknowledgment) can be used to release 
transmit buffers and the station address (for multipoint channels) can be 
checked against the station's address as soon as the header block check is 
verified. Since the header is usually much shorter than the data field the 



268 

Number of bits: a 

SOH 

COUNT 

FLAGS 
RESP 

NUM 

ADDR 

BLKCK1 
DATA 

BLKCK2 

14 

Part IV • Network Layer 

2 a a a 

the numbered data message identifier 

the byte count field 

the link flags (polling flag) 

the response acknowledgment number 

the transmit number 

the station address field 

16 

the block check on the numbered message header 

the numbered message data field 

the block check on the data field 

Fig. 6. DDCMP data message format. 

a"count 16 

probability of bit errors in the header is significantly lower and, thus, 
usually without error. Fields such as the receive number and channel 
management (polling) flags are independent of the included user data and 
provide valuable information even with a corrupted user data field follow­
ing. The data field block check is computed only over the data field. In 
software implementations, it can be added to the message prior to passing 
it to DDCMP, saving processing time during actual transmission. 

DDCMP has five control messages as shown in Fig. 7. They are as 
follows: 

ACK-Positive Acknowledgment. Used to acknowledge correct receipt 
of a sequential data message without bit errors. . 

NAK-Negative Acknowledgment. Used to notify the data transmitter 
of a received error and cause retransmission. A reason field in the NAK 
message gives the reason for the NAK and is used for error recording 
functions. Reasons are: received message with CRC error, buffer tempo­
rarily unavailable, receive overrun, message too long for buffer, header 
format error, and REP response. 

REP-Reply to Message Number. Used to resynchronize after a time­
out. After a timeout period (the timer, started after sending a message, has 
expired and no positive acknowledgment information has been received), 
the transmitter sends a REP with the number of the last sequential trans­
mitted message. The receiver replies with an ACK or a NAK., depending on 
whether or not the message with that number was properly received. The 
NAK triggers any retransmission. 

STRT -Start Initialization. Used to initialize the channel and reset 
message numbering. 



Chap. 10 • Digital Network Architecture 269 

Acknowledge Message (ACK) Format 

ACKTYPE ACKSUB FLAGS I RESP FILL ADDR BLKCK3 

8 8 6 2 8 8 8 16 

Negative Acknowledge Message (NAK) Format 

Reply to Message Number (REP) Format 

I ENQ I REPTYPE I REPSUB I FLAGS IFILL I NUM I ADDR I BLKCK3 

Start Message (STRT) Format 

Start Acknowledge Message (STACK) Format 

STCKTYPE I STCKSUB I FLAGS I FILL I FILL I ADDR 

ENQ = the control message identifier 

ACKTYPE = the ACK message type with a value of 1 

NAKTYPE = the NAK message type with a value of 2 

REPTYPE = the REP. message type with a value of 3 

STRTTYPE = the STRT message type with a value of 6 

STCKTYPE = the STACK message type with a value of 7 

ACKSUB = the ACK subtype with a value of 0 

REASON 

REPSUB 

STRTSUB 

STCKSUB 

FLAGS 

RESP 

FILL 

ADDR 

BLKCK3 

= the NAK error reason 

= the REP subtype with a value of 0 

= the STRT subtype with a value of 0 

= the STACK subtype with a value of 0 

= the link flags 

= the response number used to acknowledge correctly 

received messages 

= a fill byte with a value of 0 

= the station address field 

= the control message block check 

Fig. 7. DDCMP control message formats. 

BLKCK31 



270 Part IV • Network Layer 

STACK-Start Acknowledgment. Used to acknowledge a received start 
message. This message, the START, and the ACK form the initialization 
sequence. 

DDCMP operates in one of three modes: startup, running, and mainte­
nance. Stations are in startup mode during the initialization phase of the 
protocol. To ensure that there is a positive indication of startup on both 
ends of the channel a three-way symmetric startup handshake is used. This 
involves the alternate exchange of START, STACK, and ACK messages. 
With this sequence neither station can go through an initialization sequence 
without the other doing the same. Figure 8 shows this startup handshake 
sequence. After completing startup, the stations are in running mode. This is 
the mode in which data messages, ACKs and NAKs are exchanged. The 
REP message is used in this mode in the event of a transmitter timeout. 
Figure 9 shows a typical message flow for DDCMP. 

Maintenance mode is a simplified mode of the protocol using the 
framing technique and channel management functions outlined earlier but 
without the acknowledgment and sequential numbering features. That is, 
either a message is delivered without bit errors or it is not delivered. A 
simple higher level protocol, MOP (Maintenance Operation Protocol), oper­
ates within this mode of DDCMP and performs such functions as downline 
loading and testing. Further details on the operation of DDCMP can be 
found in the protocol specification [8]. 

NODE 1 

NODE ENTERS STARTING 
STATE 

I START 

NODE ACKNOWLEDGES 
RECEIVED START 

STACK 

NODE2 

-----~~ NODE RECEIVES START MESSAGE 
AND ENTERS STARTING STATE 

.. I START I 
-----~.. NODE ACKNOWLEDGES RECEIVED 

START ACKNOWLEDGE AND ENTERS 
RUNNING STATE 

NODE ENTERS RUNNING ..... _--- ACK 
STATE 

Fig. 8. Symmetric DDCMP startup sequence. 

3-WAY 
HANDSHAKE 



Chap. 10 • Digital Network Architecture 271 

NODE 1 NODE 2 
-" 

DATA (1,0) ~ DATA MESSAGE NUMBER 1 
WITH PIGGYBACK ACK ° 

.. ACK (1) 

DATA (2,0) ~ 

DATA (3,0) I ~ 

THIS MESSAGE ACKS MESSAGES 2,3 '4 DATA (1,3) I 

I DATA (4, 1) I ~ 

TIMEOUT RECEIVED '4 ~ ACK (4) 
IN ERROR 

REP (4) ~ 

.. ACK (4) 

1 I DATA (5,1) I ~ RECEIVED 
IN ERROR 

TIMEOUT I DATA (6,1) .. DISCARDED-OUT OF ORDER 

REP (6) .. 
.. NAK (4) 

DATA (5,1) ... RETRANSMIT 

DATA (6,1) I ... RETRANSMIT 

THIS MESSAGE ACKS MESSAGES 5,6 .. ACK (6) 

Fig. 9. Typical DDCMP message flow. 



272 Part IV • Network Layer 

IX. The Transport Layer and Routing Algorithm 

The transport layer of DNA creates network pathways via a routing 
function among the nodes of the network. That is, using the data link layer 
for transmission of message blocks over individual channels, the transport 
layer routes messages among the network channels, connecting them into a 
path between a source and destination node. This path is not maintained on 
a per user pathway basis, as in circuit-switched systems, but on a node 
addressed basis by having the transport layer at each intermediate node 
examine the transport header of the routed message and determine the 
outgoing channel that forms the best path to the destination node based on 
its routing table, Each message given to the transport layer is treated 
individually. The routing algorithm and table determine whether all mes­
sages to a given destination follow the same route or whether that route 
changes based on the occurrence of specified events, such as operator 
command, channel failures, queue delays, etc. The routing technique used 
by DNA is the distributed hop-by-hop piecewise technique described in 
Chapter 12. 

The transport layer makes a best effort to deliver all messages pre­
sented to it. It does not guarantee delivery, sequentiality, or destruction of 
messages in a bounded amount of time. This service requires higher levels of 
the architecture to use a message numbering, acknowledgment, and retrans­
mission mechanism to recover from lost messages, and to be concerned with 
old duplicates caused by their own retransmissions. The transport level itself 
does not duplicate messages. It operates much the same as the postal 
system. In addition, the transport layer manages the global flow of packets 
in the network through a simple congestion control mechanism. The DNA 
transport layer is similar in function to the network layer of the ISO model 
described in Chapter 2. 

A. Transport Goals 

The goals of the transport layer were driven by the overall goals of 
DNA. In addition to its basic functions of (1) accepting and delivering 
packets to reachable destinations, (2) avoiding congestion in the network, 
and (3) helping limit the lifetime of packets in the network, the transport 
layer goals were as follows: 

1. Be Distributed. The routing algorithm and switching function should 
be distributed within the nodes of the network so that there is no central 
routing supervisor and single point of failure. 

2. Be EffiCient. The routing algorithm and switching function should 
not consume large amounts of channel bandwidth in protocol operation and 



Chap. 10 • Digital Network Architecture 273 

should not consume much processing time in the route determination and 
switching function. 

3. Be Simple. The algorithm should be simple so that it can be easily 
implemented, maintained, and tuned for optimal performance. 

4. Be Stable. The algorithm should be stable so that after a change in 
the network (node or channel failure, for example), routing path changes do 
not oscillate but settle down to a stable set of paths. 

5. Be Adaptable. It should adapt to topological changes in a reasonable 
amount of time and should recover from transient errors such as lost 
routing messages. 

6. Support Heterogeneity. It should operate over a mixture of network 
node types, communication channels, and topologies. 

B. Transport Functions 

The transport layer functions are divided into three components: 
1. Routing. The process of forwarding messages toward reachable 

destinations. It consists of the router which does the real time switching and 
the routing algorithm which updates the switching table of best paths. 

2. Congestion Control. The control of total traffic flow in the network 
so that resources are not overloaded and performance reaches a steady state 
under heavy load rather than degrading with increased offered load. 

3. Message Lifetime Control. The probabilistic bounding of the time a 
message will exist in the network before being discarded. This function 
helps higher-level protocols solve the message number problem of old 
messages being mistaken for current ones. 

C. Transport Algorithms 

Routing. The distributed routing algorithm is based on the premise that 
the best total path from a source node to a destination node, calculated in a 
distributed fashion, is the sum or the concatenation of the many individual 
node-to-node best paths. Each node individually maintains a list of its best 
next hop (outgoing channel) to each destination. Messages to be routed are 
transmitted via that best next hop. The next node does the same, thus 
building a total best path from the source node to the destination node. The 
determination of best path is based on a cost function. Each outgoing 
channel from a node is assigned a cost to route a message through that node 
over that outgoing channel. The better the route, the lower the cost. Cost is 
usually based on line quality characteristics such as delay, throughput, or 
error rate, but may also include characteristics of the switching node such as 
buffer resource availability and processing capacity. These cost values are 



274 Part IV • Network Layer 

assigned by an offline algorithm and can be changed by an operator or 
program. If the costs of all channels are set to the same value, the path 
chosen will be the one with the minimum number of hops (intermediate 
nodes). 

For each channel (j) terminating at a node, the node maintains both a 
path length, HOPS, and a performance or quality measure, COST, to each 
destination node (i) in the network from that node. This is stored in the 
form of two matrices: 

HOPS(i, j)-path length to node (i) via channel (j) 
COST(i, j)-path cost to node (i) via channel (j) 

From these can be calculated (1) the existence of a path to a given 
destination (i) if there are reachable values is some entry of HOPS row (i), 
and (2) the best path to that destination, the channel corresponding to the 
minimum value in COST row (i) with a reachable value for that entry in the 
HOPS matrix. These values of number of hops, cost, and channel (j) are 
saved. The channel is used to route messages toward the specified destina­
tion node. The hops and cost values are sent to adjacent (neighbor) nodes to 
inform them of a node's best routing values to a given destination. 

Whenever an event that potentially changes paths occurs (e.g., a 
channel or node "going down or coming up, or the reception of new path 
information from adjacent nodes via routing messages), a node determines 
if its paths have changed, or if there are new values for number of hops or 
cost. If a change has occurred, the node sends its new best route information 
to all of its neighbors via a routing message. This routing information is 
exchanged between adjacent nodes whenever the best cost/hops value 
changes and at periodic time intervals. The routing information message 
contains the minimum cost and corresponding number of hops from the 
node sending the routing message to all destinations. Upon receiving these 
messages from its adjacent nodes, a node will update its HOPS and COST 
matrices by adding to the received information its own channel cost and 
incrementing the hop count. It will then select its best path based on the 
minimum of the cost information in its revised matrices. Thus, a path is 
built using a distributed piecewise algorithm. Each node gathers input from 
its neighbor nodes via routing messages, adds its own cost values, sends this 
information to its neighbors, and computes its best routing paths. Figure 10 
shows a typical routing data base. 

The path length information, HOPS, is used to detect routing loops 
computed by the routing algorithm. A loop path may be computed by the 
routing algorithm when, in reality, the destination node is really unreacha­
ble. What happens, due to transmission timing delays, is that routing 
messages sent to update the HOPS and COST matrices in a node from other 



Chap. 10 • Digital Network Architecture 

COST = a 

NOOEA CH 1 

CH 2 

COST=1' 

NODE A CH 2 

DATA BASE 
CH 1 

NODE C 

r--' -----------l 
I ~ CHANNEL I 

I I 
I I 
I NODE I 

1 2 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

B 1 2 

C 2 1 

D 3 2 

CHANNEL 

1 2 

B a 1'+/3 
NODE 

C a + /3 l' 

D a+~+Ll l' + Ll 

ASSUME a=~=7=Ll 

I ROUTING MESSAGE FROM A TO B ON CH. 1 I 

I NODE A. HOPS = 0, COST = 0 I 
I NODE B, HOPS = 1 COST = a I 
I NODE C, HOPS = 1 COST = l' I 
I NODE D, HOPS = 2 COST = l' + Ll I L _______________ ~ 

CH 1 NODE B 

CH 2 

COST = Ll 

CH 3 CH 1 

Fig. 10. Transport routing database and routing message. 

275 

NODE D 

nodes are not always received in proper time sequence. These updates 
generate new routing messages which circulate around the network some­
times in a closed loop. The nodes in the loop think they have a path to a 
given destination when in reality there is no path. Each time such a routing 
message traverses a node during the update, the hops count value will be 
incremented by one. Eventually, the hops count will exceed the longest 
possible nonredundant path in the network. When this occurs, the algorithm 
determines that the specified destination is really unreachable and stops 



276 Part IV • Network Layer 

circulating routing messages, marking the node unreachable in the HOPS 
matrix. 

Congestion Control. The congestion control algorithm is used to control 
global flows among the nodes in the network and to prevent the depletion 
of resources within the network so that, under heavy offered load, the 
network reaches a steady state of performance rather than a decreasing one. 
Many techniques for controlling congestion have been researched. These 
include permit schemes [9], limiting the total number of messages in transit 
in the network, and feedback mechanisms [10], notifying the source nodes 
causing congestion to limit their input rates to the network. DECnet has 
chosen a simpler scheme: limiting the buffer utilization within the network. 
When the length .of an output channel queue exceeds a specified threshold 
value [11], input messages (messages originating at this node) are delayed 
and transit messages (messages being routed) are discarded. Measurements 
using this technique have verified its effectiveness and simplicity in prevent­
ing buffer depletion and congestion. 

Message Lifetime Control. The message lifetime control algorithm 
counts the number of nodes a data message has visited using a visit count 
field in the transport header of messages. Each intermediate node incre­
ments this field for each routed message. If the value of this field exceeds 
the maximum node visit limit, usually as the result of the message having 
followed a temporary loop formed in the routing path, the message will be 
discarded. Eventually, the routing algorithm will also detect this loop via the 
hop count, as described above, so future messages will not follow the loop. 
This puts some probabilistic limit on the maximum life of a message. The 
higher layers take additional measures as well to solve the old. message 
detection problem. 

D. Message Transport Header 

The transport layer prefixes messages passed to it for transmission with 
a transport routing header. This routing header, shown in Fig. 11, contains 
the following information: 

Routing Flags. Control flags used by intermediate routing nodes, in­
cluding a "return to sender request" for returning messages addressed to 
unreachable destinations, and an indication of the routing header format 
type for future extensions. 

Destination Node. The destination node address of this message. 
Source Node. The source node address of this message. 
Visit Count. The number of nodes "visited" by this message, as de­

scribed above. 



Chap. 10 • Digital Network Architecture 

IRTFLG DSTNODE SRCNODE VISITCNT I 
8 

RTFLG 

DSTNODE 

16 16 

the routing control flags 

the destination node address 

SRCNODE = the source node address 

8 

VISIT CNT = the number of nodes this packet has visited 

Fig. II. Packet route header format. 

Routing Message Format 

ICTLFLG SRCNODE RTGINFO CHECKSUM I 
16 16 16n 16 

Hello and Test Message Format 

ICTLFLG SRCNODE TEST DATA I 
16 .16 8-1024 

Initialization Message Format 

ICTLFLG 

16 

CTLFLG 

SRCNODE INITFO I 

16 8n 

Transport control flag, with the following types 
(bits 1-3): 

o = Initialization message 

2 = Hello and Test message 

3 = Routing message 

SRCNODE identification of source node's Transport 

RTG INFO path length and path cost to all destinations 

CHECKSUM one's complement add check on routing information 

TEST DATA sequence of up to 128 bytes of data to test the line 

IN ITFO = node type, maximum Data Link layer receive block size, 

Transport version. 

Fig. 12. Transport protocol message formats. 

277 



278 Part IV • Network Layer 

E. Transport Layer Protocol Messages 

The transport protocol sends and receives a number of control mes­
sages, in addition to the routed data messages, in performing its routing 
functions. These are shown in Fig. 12: 

Routing Message. Sent to an adjacent node, it contains the minimum 
cost and number of hops to all destination nodes from the node sending this 
message. 

Test Message. Used for channel and node integrity testing. 
Initialization Message. Used to set parameters between adjacent nodes, 

such as node name and address, maximum data channel block size, and 
version identification; and cause the transport module to initialize its data 
base with respect to the channel on which this message arrived. 

More details on the operation of the transport layer can be found in the 
specification [12]. 

x. The Network Services and Session Control Layers 

The network services layer of the architecture creates and manages the 
logical link communication paths connecting processes in the network. Once 
a logical link is established, both processes may send and receive messages 
(groups of bytes) over the logical link simultaneously. The network services 
layer maintains message sequentiality without loss or duplication indepen­
dently for each logical link. Any change, by the transport mechanism in 
routing of messages for a logical link, due to channel and/or node failures, 
is transparent to the users of the link. If it is not possible to maintain the 
logical link path due to, for example, unreachability of a node in the 
network, the link will be disconnected. The session control layer, residing 
above the network services layer, provides the system-dependent communi­
cation functions. These functions bridge the gap between the generic 
network services, the system-independent logical link mechanism, and the 
system-specific functions required by processes executing within the operat­
ing system environment. Thus, session control is the point of integration of 
DNA with the operating system. The session control functions include 
identifying the requested end user process, activating or creating processes, 
and validating incoming logical link connection requests. The relationship 
of session control to the operating system, users, and the network is shown 
in Fig. 13. To simplify the following discussion, the network services and 
session control layers are considered as a single service in the creation and 
management of logical links. 

The network services layer performs its functions via the network 
services protocol (NSP). It uses the communications service provided by the 



Chap. 10 • Digital Network Architecture 

USER 
SPACE 

SYSTEM 
SPACE 

NETWORK 
SPACE 

A NETWORK NODE 

THE NETWORK 

279 

COMMENTS 

END USERS ARE USER, NETWORK 
APPLICATION, AND NETWORK 
MANAGEMENT MODU LES. 

SESSION CONTROL IS AN INTERFACE 
TO NETWORK SERVICES FOR END 
USERS. IT FUNCTIONS IN CONJUNC· 
TION WITH THE OPERATING SYSTEM. 

NETWORK SERVICES PROVIDES 
LOGICAL LINK SERVICE TO SESSION 
CONTROL. ITS FUNCTIONS ARE NOT 
DEPENDENT ON INDIVIDUAL 
OPERATING SYSTEMS. 

Fig. 13. Session control within DNA. 

transport layer, that is, delivering messages on a best effort basis. NSP must 
create a reliable communication mechanism so that it can offer its users 
no-loss, sequential logical links. The techniques used by NSP are much the 
same as those used by DDCMP in creating an error-free channel from a 
communication medium that may corrupt information. That is, it numbers 
messages sequentially, checks for proper sequence at the receiving node, 
returns a positive acknowledgment to notify the sender of proper receipt, 
and uses a timeout to recover from lost messages via retransmission. The 
only function not needed by NSP is the block error check (eRC) used by 
DDCMP. NSP assumes the switching nodes do not corrupt individual mes­
sage bits. 

The design of the network services layer protocol is more complex, 
however, than the data link protocol due to the nonsequentiality and the 
unbounded lifetime of messages. On a physical channel message blocks are 
sequential with a well-defined lifetime. The protocol need only wait that 
maximum lifetime to ensure that there are no outstanding messages in the 
channel. At the network services layer this is not true because of the lack of 
sequentiality and service guarantees provided by the transport layer. The 
network services protocol must recognize out-of-sequence messages and 
discard old messages that arrive at a later point in time, rather than 
mistaking them for current messages. These problems are solved probabilis­
tically via a large message number and small valid acceptance window. 
Other additional techniques used by NSP for performance include dynamic 
flow control options and holding out of sequence messages. 



280 Part IV • Network Layer 

A. Network Services Goals 

NSP was designed to support the basic architectural principles of 
DNA. The goals specific to NSP were as follows: 

1. User-Oriented Performance. Users and/or NSP can trade off buffer 
requirements against throughput and delay on a logical link. That is, using 
the flow control mechanism, users may either provide one buffer at a time 
for receipt of messages or they may provide many buffers in advance. 
Larger numbers of buffers allow message pipelining and usually result in 
higher throughput on the link. By using these flow control options, the user 
can tailor the performance and characteristics of the logical link to the 
requirements of the application. In some implementations, the user has 
direct access to these options. In others, the NSP module does intermediate 
buffering for the user and takes into account the user-provided buffers in 
setting appropriate flow control parameters. 

2. Fairness. All logical links should provide equal service. That is, a 
user with low data rate requirements should receive the same minimum level 
of performance (delay, minimum throughput) as a user with high data rate 
requirements. No single user should be able to monopolize the network 
service. 

3. Extensibility. The network services protocol should be designed to 
accommodate future additions and extensions. These may come in the form 
of hardware and/or software. If possible, new versions of NSP should 
operate with old versions as welL 

4. Efficiency. As with all the protocols, NSP should be relatively 
simple, easy to implement, use minimal amounts of CPU time, and be 
efficient on the channel in terms of number of messages exchanged and size 
of protocol headers. 

5. Ease of Use. The interface to the network services layer should be 
simple. An unsophisticated user should be able to easily use the services of 
the network. 

B. User Service Functions 

The functions of NSP can be divided into two categories: those that are 
externally visible to the user (user interface commands resulting in protocol 
actions); and those which are usually transparent (internal functions used 
by the protocol). 

The external functions are as follows: 
1. Connection Management. NSP manages logical links on a dynamic 

basis. Links are created and destroyed on command from the communicat-



Chap. 10 • Digital Network Architecture 281 

ing processes much the same way people control the telephone system via 
dialing and hanging up. 

2. Data Transfer. Once a logical link is created, users may send and 
receive data over the link. 

3. Interrupt Transfer. NSP provides a low-throughput low-delay sub­
link part of a logical link used to send short high-priority alarm signal 
messages (interrupts). 

C. Network Service Functions 

The internal functions of NSP are those needed to create and manage 
the logical links using the transport mechanism. These are as follows: 

1. Error Control and Sequentiality. NSP creates a sequential, no loss, no 
duplication communication mechanism using an underlying transport mech­
anism which is inherently unreliable. 

2. Flow Control. NSP controls the flow of information from the sender 
to the receiver on a logical link so that data messages are not sent until 
actually requested by the receiver. (In some implementations, NSP modules 
may buffer some messages ahead for the users.) This gives the receiver 
control of its available buffers. 

3. Segmentation/Reassembly. NSP divides large messages into smaller 
segments for transmission through the network. Reassembly takes place at 
the destination node. In some implementations, the reassembly is directly 
into user buffers. In others, the user receives the individual segments along 
with an indication of the last segment of a message. This reassembly into 
user buffers combined with the flow control mechanism results in a 
deadlock-free technique for application layer buffer management. 

D. NSP Operation 

The operation of NSP can be divided into three basic states shown in 
Fig. 13. 

1. Connection 

The establishment of a logical link. The user (program) requests a 
connection to a destination application program or generic service. It does 
this by specifying the node address and either a process name or generic 
service type in a connect command to the session layer which builds an 
appropriate connect request to the network service layer. The connection 
information is sent in a connect initiate message containing the address of 



282 Part IV • Network Layer 

the requested destination object, as provided by the user, the address of the 
source object, a local, dynamically assigned logical link number (identifier), 
and some optional data provided by the user. This information is sent to the 
destination NSP module via the transport service. 

At the destination node this information is presented to the requested 
object. The destination object may examine the name of the requestor and 
the included optional data in deciding whether or not to accept the link. The 
optional data may contain, for example, information specific to the service 
requested of the destination object or an authorization account and pass­
word. If the requested object accepts the link, it notifies session control and 
a connect confirm message is returned by NSP. This message includes a 
locally assigned logical link number used to reference the link in this 
destination direction. 

Each link has two logical link reference numbers, one for each direction 
of transmission. This reference address is similar to the one used in the X.25 
interface described in Chapter 8, but consists of two addresses rather than 
one, so there are no conflicts or collisions during multiple simultaneous link 
creations, making the addressing symmetric. This symmetry allows direct 
physical connections between equal host systems creating logical links 
without requiring intervening switching nodes or interfaces. In fact, if two 
objects issue link creation commands to each other at the same time, with 
the local NSPs choosing the same local numbers, two links will be created 
without conflict. 

In response to the connect confirm message, a third message, data 
acknowledge, acknowledging the confirm, is returned, completing the logical 
link. This forms a three-way handshake, similar to that of DDCMP, and is 
used to assure synchronization at logical link establishment. During the link 
establishment procedure, processes are directly addressed by name rather 
than by a global port address mechanism. This technique eliminates the 
need for a directory service or initial connection protocol used to find the 
address of an available port for a particular process or service. 

2. Data Transfer 

Once the link is established, both processes may send and receive 
normal data and interrupt data on the logical link. The transfer of data on 
the link uses the error control, flow control, and segmentation/reassembly 
functions of NSP. 

(a) Error Control. The error control mechanism uses a positive 
acknowledgment retransmit scheme. Data messages sent on a link are 
numbered sequentially (modulo 4096). A retransmit timer is started upon 
transmission. When properly received, messages are acknowledged by num­
ber. If an acknowledgment is not received by the message sender when the 
timer expires, the message is retransmitted. In addition, such features as 



Chap. 10 • Digital Network Architecture 283 

piggybacking and multiacknowledge are used for performance improve­
ment. These techniques are similar to the ones used at the data link layer. 

(b) Segmentation/Reassembly. For transmission through the network, 
NSP divides long messages into multiple smaller segments. These segments 
are reassembled at the destination node. Each message segment is numbered 
and sent as an NSP data message. In each segment, there are flags denoting 
whether this segment is the first, middle, or last segment of a message. The 
segment size is set in the connection procedure. For interrupt data there are 
interrupt request, interrupt, and acknowledgment messages used to request, 
transmit, and acknowledge interrupt information on the link. 

( c) Flow Control. Flow control is used to manage buffer resources at 
the receiving end of a logical link. As part of the connection procedure a 
flow control option may be chosen to control the rate at which data blocks 
are transmitted for each direction on a logical link. The flow control options 
are (l) none, (2) segment, or (3) message. If no flow control is chosen then 
data will be sent immediately in response to a transmit command by the 
remote user. If segment flow control is chosen the receiver specifies the 
number of segments requested, usually via receive commands. When trans­
mits are issued, those segments that correspond to receive requests will be 
sent over the logical link. Transmits issued prior to these requests will wait 
at the transmitting node pending corresponding requests. This segment 
request count is conveyed in a data request message. If message flow control 
is chosen, then the flow is based on complete messages rather than on 
segments of messages. In this case, the specified number of messages will be 
sent over the logical link. These will physically be sent as individual 
segments and reassembled at the destination node into the specified number 
of messages, transparent to the user. In addition to the flow control option 
settings, there is an on/off flow control switch which may be used to start 
and stop flows irrespective of the option chosen. 

The choice of flow control setting and the correspondence of user 
receive commands and actual segment or message requests being sent by 
NSP is an implementation-dependent option. In some implementations the 
flow control mechanism is transparent to the user and is used internally by 
NSP to control flows based on a combination of its own buffer availability 
and user receive commands (user buffers). In other implementations the 
flow control mechanism is used directly by the user. That is, each receive 
command, specifying a buffer, results in a specific flow control request. In 
this case, these requests can be used to effectively manage and trade off 
buffer resources and logical link performance at the destination user. The 
choice of using message or segment flow control is based on the characteris­
tics of the application protocol being sent over the logical link. Segment 
flow control gives the user the option of controlling the reception of 
information in small pieces, a useful mechanism for receiving messages of 



284 Part IV • Network Layer 

unknown variable length using a small number of segment buffers. Message 
flow control leaves the segmentation and reassembly to NSP, transparent to 
the user, useful for uniform or known length messages. 

3. Disconnection 

Either process may request disconnection of the logical link. This 
results in a disconnect initiate message being sent and a disconnect confirm 
message being returned to terminate operation of the specified logical link. 

Figure 14 shows an example of an NSP protocol exchange and Table II 
shows the NSP message types. Figure 15 shows the connect message 
information built by the session layer which is passed to NSP and sent in 
the connect initiate message. Additional information on the operation of 
NSP can be found in the NSP protocol specification [13]. 

STATES: 

CONNECTION 

DATA 
TRANSFER 

NODE A 

USER REQUESTS CONNECTION FROM 
PROGRAM X TO Y 

CONNECT INITIATE ITO B.Y FROM A.X 1 

ACKNOWLEDGE VIA 3·WAY HANDSHAKE 

ACK 

FIRST DATA MESSAGE SENT 

DATA 

DATA 

.. 
.. 

.. 
.. 

.. 
... 

.. 

DISCONNECT! DISCONNECT RECEIVED & ACKNOWLEDGED .. 

I DISCONNECT CONFIRM I ------I ..... 

NODE B 
A 

PROGRAM B ACCEPTS CONNECTION 

CONNECT CONFIRM 

PROGRAM B REQUESTS 2 MESSAGES 

DATA REQUEST 121 

ACK 

ACK 

PROGRAM B REQUESTS DISCONNECTION 

DISCONNECT INITIATE I 

Fig. 14. Example NSP message flow. 



Chap. 10 • Digital Network Architecture 

Table n. NSP Messages 

Type 

Data 

Data (also called 
Other Data) 

Acknowledgment 

Control 

Message 

Data Segment 

Interrupt 

Data Request 

Interrupt Request 

Data 
Acknowledgment 

Other Data 
Acknowledgment 

Connect 
Acknowledgment 

Connect Initiate 

Connect Confirm 

Disconnect 
Initiate 

No Resources 

Disconnect 
Complete 

No Link 

No Operation 

Description 

Carries a portion of a Session 
Control message. (This has been 
passed to Session Control from 
higher DNA layers and Session 
Control has added its own con­
trol information, if any.) 

Carries urgent data, originating 
from higher DNA layers. 

Carries data flow control informa­
tion (also called Link Service 
message). 

Carries interrupt flow control in­
formation (also called Link 
Service message). 

Acknowledges receipt of either a 
Connect Confirm message or one 
or more Data Segment messages. 

Acknowledges receipt of one or 
more Interrupt, Data Request, 
or Interrupt Request messages. 

Acknowledges receipt of a Connect 
Initiate message. 

Carries a logical link connect re­
quest from a Session Control 
module. 

Carries a logical link connect 
acceptance from a Session Con­
trol module. 

Carries a logical link connect rejec­
tion or disconnect request from 
a Session Control module. 

Sent when a Connect Initiate mes­
sage is received and there are no 
resources to establish a new logi­
cal link (also called Disconnect 
Confirm message). 

Acknowledges the receipt of a Dis­
connect Initiate message (also 
called Disconnect Confirm mes­
sage). 

Sent when a message is received 
for a nonexisting logical link 
(also called Disconnect Confirm 
message). 

Does Nothing 

285 



286 

BYTES: 19 19 39 

DSTNAME = the destination end user name 

SRCNAME = the source end user name 

MENUVE R = the field format and version format 

39 

RQSTRID = the source user identification for access verification 

PASSWR D = the access verification password 

ACCOUNT = the link or service account data 

USRDATA = the end user connect data 

Fig. 15. Connect message format. 

XI. Higher Levels 

Part IV • Network Layer 

39 16 

Distributed applications execute at higher levels in the hierarchical 
structure using function-oriented protocols to transmit information over 
logical links. Functions executing at this level include file transfer, transac­
tion processing, and distributed application communication. One of the 
standard DNA protocols executing at the application layer is the Data 
Access Protocol (DAP) creating a network file access mechanism. File 
access was chosen as a more basic or primitive mechanism than file transfer. 
File transfer is built on file access via a utility program that uses the access 
mechanism to sequentially access a file and transfer it. The example below 
outlines a use of this mechanism. This paper does not include any specific 
information on DAP; details can be found in the literature and specification 
[14], [15]. 

XII. Example Facilities 

In a brief description such as this, it is impossible to present all the 
details and options of a design and set of products as large as DECnet. The 
inclusion here of a few brief examples of its facilities will help in under­
standing its operation. 

(a) File Access and Transfer. File access in DECnet is accomplished by 
a communication between two programs: (1) the File Access Listener 
(FAL), and (2) the Network File Access Routines (NFARs) using the DAP 
protocol sent over an NSP logical link (see Fig. 16). The NFARs provide the 
interface that convert user file access commands (e.g., Open, Get, Put, 
Close) into the DAP protocol messages used to convey this information to 
the F AL on the remote system where the file actually resides. F AL then 



Chap. 10 • Digital Network Architecture 

, 
NODE A 

Fig. 16. File access via FAL and NFARs. 

LOCAL FILE 
ACCESS 

NODE B 

287 

issues these commands to the local file system. The NF ARs execute as part 
of the user program. A user could implement the DAP protocol (NFARs) 
directly in user code but with minimal saving in overhead and the added 
burden of tracking future protocol changes. 

The user requests a file to be accessed by issuing an Open access 
request. The NF ARs create a logical link to F AL by issuing an NSP connect 
request (via the session control layer), specifying the F AL generic object 
type. The F AL program checks permission to access the file using the user 
account number and password specified in the connect optional data field. 
If permission is granted the link is accepted and the connection completed. 
Using the DAP protocol, the FAL program and the NFARs exchange DAP 
messages (file block request and file block data messages) to access blocks of 
the file. The underlying network services layer, transport layer, and data 
link layer are used to transport these messages from source to destination 
sequentially and without errors. 

In the transfer of a file, the DAP protocol is used in a mode where file 
block request DAP messages are omitted; instead, the flow control mecha­
nism of NSP is used directly to control the flow of file blocks and the 
utilization of buffers. This creates an efficient file transfer function via a file 
access mechanism. More details on this can be found in [15]. Table III 
presents a list of the DAP messages and their functions. They are exchanged 
over DECnet logical links in the access of a file. Figure 17 shows a typical 
DAP exchange for a requested file retrieval. 

In some implementations of DAP, the NF ARs are accessed directly via 
subroutine calls from high-level languages (e.g., CALL NFOPEN). In other 
systems, e.g., VAX/VMS, these routines have been built into the file system 
and are accessed indirectly and transparently via normal I/0 statements 
(e.g., Read, Write). 

(b) Network Management and Downline Loading. The network man­
agement functions of DECnet control and monitor network operation. They 
perform the functions of loading and dumping of remote system memory; 
examining and changing network parameters, error counters, and event 
logs; testing physical channels and logical link paths; and setting and 



288 Part IV • Network Layer 

Table III. DAP Messages 

Message 

Configuration 

Attributes 

Access 

Control 

Continue-Transfer 

Acknowledge 

Access Complete 

Data 

Status 

Key Definition 
Attributes Extension 

Allocation Attributes 
Extension 

Summary Attributes 
Extension 

Date Time Attributes 
Extension 

Protection Attributes 
Extension 

Name 

Description 

Exchanges system capability and con­
figuration information between 
DAP-speaking processes. Sent im­
mediately after a link is established, 
this message contains information 
about the operating system, the file 
system, protocol version, and 
buffering ability. 

Provides information on how data are 
structured in the file being accessed. 
The message contains information 
on file organization, data type, for­
mat, record attributes, record length, 
size, and device characteristics. 

Specifies the file name and type of access requested. 

Sends control information to a file 
system and establishes data streams. 

Allows recovery from errors. Used for 
retry, skip, and abort after an error 
is reported. 

Acknowledges access commands and 
control connect messages used to 
establish data streams. 

Denotes termination of access. 

Transfers the file over the link. 

Returns the status and information on error conditions. 

Specifies key definitions for indexed files. 

Specifies the character of the alloca­
tion when creating or explicitly ex­
tending a file. 

Returns summary information about a file. 

Specifies time-related information about a file. 

Specifies the file protection code. 

Sends name information when renam­
ing a file or obtaining a directory 
listing. 



Chap. 10 • Digital Network Architecture 

User Node Message 
Description 

Configuration Information 
(e.g. Buffer Size, as, File 
System DECnet Phase No., 
and DAP Version No.) 

File Characteristics 
(e.g., Type, Blk Size 
and Record Size) 

Access Request 

Set up Data Stream 

Request Start of Data 
Transfer and Mode of 
Transfer 

Request to Terminate 

Messages 

Configuration Message 

Configuration Message .. 
Attributes Message 

Access Message 

Attributes Message ... 
Acknowledge Message 

• 

.-

.-

Control (Initiate Data Stream) 
Message 

.-
Acknowledge Message 

• 
Control (Get) Message 

.-
Record 1 ... 

• 
• 
• 

Record N ... 
Status Message .. 
Access Complete Message 

• 
Access Complete Response 

• 

Remote Node Message 
Description 

Configuration 
Information 
Returned 

289 

Actual File Characteristics Returned 

File Opened 

Data Stream Established 

Data Sent in Records 

End·of·File Indicated 

Request Completed Successfully 

Fig. 17. DAP message exchange (sequential file retrieval). 



290 

LOCAL 
FILE 
ACCESS 

LOADER SYSTEM 

DDCMP/MOP 
PROTOCOL 

Fig. 18. Down-line loading via DDCMP. 

Part IV • Network Layer 

TARGET SYSTEM 

displaying the status of nodes and channels in the network. Network 
management modules are distributed within the nodes of the network. They 
execute at the application level of the architecture, communicating via the 
Network Information and Control Exchange (NICE) protocol over logical 
links [17], [18]. The NICE messages and their functions are shown in 
Table IV. 

Memory-only nodes in a DECnet network are downline loaded via the 
Maintenance Operation Protocol (MOP) [16]. This is a simple protocol 
which sends a load address and memory image to a system executing a small 
bootstrap program (usually a lOO-200-word ROM). Table V is a list of the 
MOP messages and their functions. MOP messages are sent within DDCMP 

maintenance franung envelopes from one node (the loader system) to an 
adjacent node (the target system). If the loader node contains the file image 
on a local disk, the loader program accesses it directly. The loader program 
has a direct interface to DDCMP used to send and receive messages via 
DDCMP maintenance mode (see Fig. 18). 

If the file is not local, the loader uses the NFARs and DAP to access 
the file from a remote file image system. This is a normal file access as 
explained above. The ability to access a remote file rather than having to 
first transfer the entire file image allows the loader node to itself be a system 
without any local mass storage, allowing for a cascaded load of nodes in the 
network. 

The down-line load can be initiated from (1) the system to be loaded, 
by causing the system to execute the bootstrap and send a MOP request 
program message, initiating loading by the loader system; (2) a local 
command to the loader program on the loader system which will initiate 
loading; or (3) a command entered at another node running the NICE 
protocol. This is the protocol used for control and maintenance of DECnet 
networks, part of the management and control function component of 
DNA. It operates at the application layer much the same as any user 



Chap. 10 • Digital Network Architecture 

Table IV. NICE Messages 

Message 

Request Down-line Load 

Request Up-line Dump 

Trigger Bootstrap 

Test 

Change Parameter 

Read Information 

Zero Counters 

System Specific 

Response 

Description 

Requests a specified executor node to 
down-line load a target node. 

Requests a specified executor node to 
dump the memory of a target node. 

Requests a specified executor node to 
trigger the bootstrap loader of a target 
node. 

Requests a specified executor node to 
perform a node or line loopback test. 

Requests a specified executor node to set 
or clear one or more Network Manage­
ment parameters. 

Requests a specified executor node to 
read a specified group of parameters, 
counters, or events. 

Requests a specified executor node to 
either read and zero or zero a specified 
group of line or node counters. 

Requests a system - specific Network 
Management function. 

Provides request status and requested in­
formation in response to a NICE re­
quest. 

291 

program. The NICE program in the remote system communicates to the 
NICE program running in the loader system to pass the request for loading 
to the loader program and eventually to be returned a completion notifica­
tion. Thus, a user sitting at a terminal at a network control center node can 
control the loading of a remote node via a loader node with a file image 
located on a fourth, file image node system. Figure 19 shows an example of 
such a load; the numbers in the figure are the sequence of message and 
command flows. This complex structure is built from the basic logical link 
communication mechanism and function access programs of the DECnet 
archi tecture. 



292 Part IV • Network Layer 

LOADER SYSTEM ___ -r-D_DC_MP/MOP PROTOCOL TARGET SYSTEM 

® DAP PROTOCOL 

IMAGE SYSTEM 

f----l® 

LOCAL 

~~ZESS~-------~ 

LOADED IMAGE 

NICE 
PROTOCOL ........ ---i~ 

"LOAD TARGET"-------" ~ 
COMMAND ~ 

Fig. 19. Down-line loading via NICE with a remote file image. 

XIII. Example User Application 

This is an example of an actual implemented emergency telephone 
network in a large midwestern city using DECnet. It is included to show a 
typical application of the DNA structure and use of logical link communica­
tion paths. The objective was to establish a standardized number 911 which 
subscribers can reach from any telephone to contact an appropriate dis­
patcher at police or fire department headquarters. 

A conventional approach connects all 911 calls to dispatchers at police 
headquarters, organizing them into zones corresponding to telephone ex­
change boundaries. The responding officer ascertains the location of the 
phone and type of emergency from the caller. There were deficiencies with 
this approach. The telephone network structure did not coincide with police 
or fire department boundaries. Certain classes of callers were unable to tell 
the dispatcher where help was needed (because of language, age, etc.) Some 
callers would not provide the necessary identification, making it difficult for 
the dispatcher to distinguish between crank calls or false alarms and 
anonymous Good Samaritans. The goals for the system were as follows: 

1. Selective routing of calls to dispatchers; 
2. Automatic location identification of the source of calls without 

verbal communication; 
3. Dispatch to responsible agencies: fire or police; 
4. Extremely high availability; 



Chap. 10 • Digital Network Architecture 293 

Table V. MOP Messages 

Message 

Memory Load with Transfer 
Address (Deposit Memory 

and Transfer) 

Memory Load without 
Transfer Address (Deposit 

Memory) 

Request Memory Dump 
(Examine Memory) 

Enter MOP Mode 

Request Program 

Request Memory Load 

MOP Mode Running 

Memory Dump Data 

Parameter Load with 
Transfer Address 

Loopback Test 

Looped Data 

Description 

Causes the contents of the image data to 
be loaded into memory at the load 
address, and the system to be started at 
the transfer address. 

Causes the contents of the image data to 
be loaded into memory at the load 
address. 

Requests a dump of a portion of memory 
to be returned in a memory dump data 
message. 

Causes a system not in the MOP mode to 
enter MOP mode if the password 
matches. Usually transfers control of 
the satellite to a MOP program. Used 
for unattended satellite systems. 

Requests a program to be sent in some 
unspecified number of memory load 
messages. 

Requests the next load in a loading se­
quence and provides error status on the 
previous load. 

Indicates to a host that the system is in 
the MOP mode and supports the fea­
tures indicated in the message. 

Returns the requested memory image in 
response to a Request Memory Dump 
message. 

Loads system parameters and transfers 
control to the loaded program. 

Tests a link by echoing the message sent by the host. 

Returns the test message data in re­
sponse to a Loopback Test message. 
Returned by the passive side if the 
message is looped from a computer. 



294 Part IV • Network Layer 

DIRECTORY 
DATA BASE 

DISPATCHER 
STATION 

DISPATCHER 
STATION 

TELEPHONE SWITCHING LINES 

Fig. 20. 911 communication network example. 

5. Capacity to process at least 40,000 calls per day, with up to 5,600 
calls during anyone busy hour, and provide response within I s; 

6. Restriction of access to the telephone company master directory (to 
safeguard privacy). 

The design chosen for the application was a network of semiautono­
mous systems. PDP-II minicomputers are located at telephone company, 
police, and fire department locations. The network is connected in a star 
topology (Fig. 20) The data base for the location directory is at the 
telephone company. Switching processors are located at police and fire 
dispatch centers. All communication is via DECnet using 4800 bps synchro­
nous communication channels. The telephone company installation acts as a 
directory manager. Many of the systems are dual processors for high 
availability. 

When a 911 call is recognized at a local exchange, it is switched 
through the telephone network to the switching equipment at police 
headquarters along with the identification of the originating number. That 
system sends a request to the central data base for the corresponding 
address and zone. The information is extracted from the master directory 
and returned to the police system. The zone is used to determine routing to 
the proper dispatcher. When the dispatcher answers the call, the telephone 
number and address are displayed at the dispatcher station. If the call is for 
the police, the dispatcher handles it locally. If the caller indicates a fire, the 
dispatcher presses a button which transfers the call, including the number, 
to the appropriate fire department processor. The call is routed to the 
designated dispatcher there in a manner analogous to the initial transfer. 
Voice communication is unnecessary to establish location. The address 



Chap. 10 • Digital Network Architecture 295 

display can be held by the system after the phone is hung up at the point of 
origin. 

The operational availability of the network system has exceeded 99.95 
percent. The system has met its performance and throughput goals and has 
maintained a response time of within 0.25 s. The system was installed 
without any major changes in the line structure of the existing 911 network. 
The network structure offers the b~nefit that each data base is under the 
control of the appropriate agency, thereby maintaining the security require­
ments of the telephone company, and accommodating establishment and 
shifting of boundaries by the police and fire departments. 

XIV. Observations 

Measurements of DECnet systems and comments from its many users 
have verified the effectiveness of the architecture. Implementations now 
exist on the 16-bit PDP-ll, 32-bit VAX, and 36-bit DECsystem-lO and -20. 
Interfacing the DNA structure into a wide variety of operating systems has 
not proven particularly difficult. The architecture has undergone a number 
of minor revisions and modifications from its original 1974 design to the 
present. Throughout these changes the structure has remained flexible and 
extensible. The architecture and protocols have met their goals and expec­
tations. Future requirements and additions to increase the capabilities of 
DECnet and keep pace with advancing technology will continue to verify its 
architectural strengths. 

References 

[I] L. Kleinrock, "Principles and lessons in packet communications," Proc. IEEE, Nov. 
1978. 

[2] D. Davies and D. Barber, Communication Networks for Computers. Somerset, NJ: Wiley, 
1973. 

[3] R. Metcalfe, "Packet communication," Massachusetts Institute of Technology, MIT 
Project MAC, MAC TR-114, Cambridge, MA, Dec. 1973. 

[4] J. Licklider and A. Vezza, "Applications of Information Networks," Proc. IEEE, Nov. 
1978. 

[5] L. Pouzin, "Presentation and major design aspects of the Cyclades computer network," in 
Proc. Third Data Commun. Symp., Tampa, FL, 1973. 

[6] S. Wecker, "Computer network architectures," Computer, voL 12, pp. 58-72, Sept. 1979. 
[7] S. Wecker, "Components of a data communication protocol," presented at Inte1com '77, 

Atlanta, GA, Oct. 1977. 
[8] "DNA: Digital data communications message protocol functional specification," Digital 

Equipment Corp., Maynard, MA, AA-D599B-TC, 1980. 



296 Part IV • Network Layer 

[9] D. Davies, D. Barber, et al., Computer Networks and Their Protocols. Somerset, NJ: 
Wiley, 1979. 

[10] J. Majithia et al., "Experiments in congestion control techniques," in Proc. Int. Symp. 
Flow Control in Computer Networks, Versailles, France, Feb. 1979. 

[II] M. Irland, "Analysis and simulation of congestion in packet switches networks," Univ. 
Waterloo, Waterloo, Canada, CCNGT-61, 1977. 

[12] "DNA: Transport functional specification," Digital Equipment Corp., Maynard, MA, 
AA-J059A-TK, 1980. 

[13] "DNA: Network services functional specification," Digital Equipment Corp., Maynard, 
MA, AA-D600B-TC, 1980. 

[14] "DNA: Data access protocol functional specification," Digital Equipment Corp., 
Maynard, MA, AA-D60IB-TC, 1980. 

[IS] J. Passafiume and S. Wecker, "Distributed file access in DECnet," in Proc. Second 
Berkeley Workshop on Distributed Data Management and Computer Networks, Berkeley, 
CA, May 1977. 

[16] "DNA: Maintenance operation protocol functional specification," Digital Equipment 
Corp. Maynard, MA, AA-D602B-TC, 1980. 

[J 7] "DNA: Network management functional specification," Digital Equipment Corp., 
Maynard, MA, AA-J060A-TK, 1980. 

[18] B. Stewart and S. Wecker, "Network Management in DECnet," Proc. COMPCON 80, 
Wash. DC, Sept. 1980. 



11 

Path Control-The Network Layer of 
System Network Architecture 

James D. Atkins 

I. Introduction 

A person sits at a terminal and keys a logon sequence. A response is 
seen that indicates communication with a computational facility, but it is 
not obvious whether the computational facility is located within the termi­
nal itself, in a controller to which the terminal may be attached, or in some 
processor remote to the terminal. Nor is the person aware of how the 
communication actually occurs. It may also be that the application, with 
which the terminal user is in communication, is unaware of the physical 
characteristics of the terminal in use, as well as of the transmission medium 
that provides the connection between the terminal and the application. This 
transparency is achieved by defining a framework or a set of rules within 
which product designs must conform. Systems network architecture (SNA) 
is an example of such a set of rules [1], defined to provide end user to end 
user communication. 

To accomplish transparency, the management of function as seen by 
the end user is separated from the management of the transport network. 
This chapter will focus on the structure of the transport network of SNA, 
specifically the path control layer, that provides this communications facil­
ity. The layers of SNA above path control are described in Chapter 16. 

After an overview of the role and positioning of the path control layer 
in SNA, the elements of path control will be discussed in more detail as well 
as a form of the network connectivity provided by transmission groups 
(parallel links). The remainder of the chapter will concentrate on the routing 
aspects of the path control network by mapping the end user's interface, 

297 



298 Part IV • Network Layer 

class of service, onto the underlying architectural concepts, virtual routes and 
explicit routes. The rationale for using multiple static routes rather than 
adaptive routing techniques will also be discussed. Virtual routes are the 
logical end-to-end paths through the transport network; the actual physical 
paths are called explicit routes. Path activation, path selection, and path 
flow control will be described in these terms. 

II. SNA Structur~ 

The intent of this chapter is to examine the architectural characteristics 
of SNA. The discussion will center around the formats and protocols that 
make up the formal definition of the path control layer of SNA. It is not the 
intent of this chapter to discuss or describe product specifications. Typi­
cally, products implement only a subset of the formal architecture as 
described here. As an example, different program products may implement 
different layers or subsets of functions within layers. Product specifications 
should be referenced to determine the level or scope of SNA support in a 
given implementation. 

SNA is structured as a layered architecture. The benefits of layering are 
generally accepted with respect to modularity of function and flexibility for 
enhancement. Detailed discussions of layering may be found in [3]-[8]. 
Figure 1 shows the five layers of SNA and the corresponding heading. The 
highest layer, abbreviated here as Presentation Services, defines the end user 
interface for each session. This layer is discussed in detail in Chapter 16. 

Data flow control [1],[3] and transmission control [1], [3], [10] are also 
provided as per-session, end-to-end services. Data flow control (see Chapters 
16 and 25) maintains the order of the messages flowing between two end 
users, including such functions as chaining of requests, management of 
session sequence numbers, response protocols, and concurrency of end user 
send/receive traffic flows. The transmission control elements manage the 
actual rate of flow of data within sessions by a session pacing mechanism. 
This mechanism is referred to in SNA as local flow control and regulates the 
entry of traffic into the transport network. The transmission control layer 
also participates in session establishment and termination. Other functions 
performed by this layer include the creation of request/response headers 
(RR in Fig. 1). 

The subarea path control layer and data link control layer form the 
transport network of SNA. There is one instance of path control per node 
and one instance of data link control per local attached device, rather than 
one per session or per end user. Path control is responsible for routing and 
the segmenting and blocking of messages. Global flow control is also part of 
this layer of SNA, providing regulation of the flow of traffic through the 



Chap. 11 • Path Control 

End User 

Presentation • Services 

Data Flow 
Control • 

Transmission ... 
Control 

Path • Control 

Data Link 
Control ~ 

I 

I 

I , 
B 

I , 

Request/ 
Response Unit (RU) 

RU 

Request/Response I RU 
Header (RH) 

• 
asic Information Unit (BI 

Transmission I BIU 
Header (TH) 

• 

I 

) 

I , 
U) 

I , 

p ath Information Unit (PIU ) 

I I 
Fig. I. SNA layers and headers. 

299 

End User 

.. Presentation 
Services 

-

.. Data Flow 
Control 

.. Transmission 
Control 

• Path 
Control 

.. Data Link 
Control 

transport network. The protocols for the accomplishment of these functions 
use the transmission header generated by path control. The data link control 
layer [1], [9] is defined to provide integrity and efficiency in the transmission 
of data across potentially noisy communications facilities. Data link control 
adds a link header and link trailer to messages to facilitate error recovery 
for each physical communications link in the network. The link header and 
trailer are appended and removed for each link the message traverses. 

III. Network Environment 

Before delving into the architectural specifics of path control it is 
appropriate to discuss the environment in which path control exists [10], 
[11]. SNA is a network architecture, where the network is composed of 
nodes interconnected by communications facilities (see Fig. 2). The nodes 
may be of widely varying functional capability, ranging from terminals with 
minimal native processing capability to complex multiprocessors. The com-



300 

® = Subarea Node 

® = Peripheral Node 
--- = Boundary Function 

Subarea Nodes 

Fig. 2. Network configuration. 

Part IV • Network Layer 

munications facilities also come in a number of varieties ranging from 
high-speed I/0 channels to low-speed, point-to-point telephone lines and 
including such media as satellite links and wide-band optical fibers. 

The nodes that comprise a network may be partitioned in many ways. 
One such partitioning classifies nodes according to the address generation 
and recognition capability associated with the node. SNA categorizes nodes 
this way and defines multiple levels of addressing within the network, two 
of which are at the path control level. The higher of these two levels, called 
the network addresses, consists of two fields. These are called subarea 
address and element address. The second form of addressing uses only 
abbreviated versions of network addresses for the associated nodes. Nodes 
that are capable of recognizing full network addresses are called subarea 
nodes and are indeed assigned unique subarea values in their network 
addresses. In formal SNA terminology [1], these are physical unit type 4 
(PU _ T4) and physical unit type S (PU _ TS) nodes and are usually realized 
as communications controllers or hosts, respectively. The network of sub­
area nodes forms the transport network of SNA. Terminals and cluster 



Chap. 11 • Path Control 301 

controllers, called peripheral nodes, are attached to a subarea node and 
share the subarea address of that node. The subarea nodes represent the 
boundary of the SNA transport network shown by the dotted line in Fig. 2 
as seen by these peripheral nodes (physical unit type I and physical unit 
type 2, abbreviated PU_Tl and PU_T2 nodes). Peripheral nodes support 
only abbreviated addressing. 

Although the support of multiple levels of addressing may appear to be 
an unnecessary complexity, the result is in reality a simpler, more stable 
interface for the attachment of peripheral (PU_ Tl and PU_ T2) nodes. 
These peripheral nodes may be assigned a permanent local address for their 
implementations. This local address will be translated to a network address 
by boundary function path control in the adjacent subarea node. Changes in 
network addresses, e.g., as a result of changes in network configuration or 
the physical movement of peripheral nodes to a different subarea node, are 
transparent to the peripheral nodes. The new network address for the 
peripheral node is absorbed by its boundary function support. 

The management of functionally different addressing capabilities of 
nodes is one of the responsibilities of the path control layer of SNA. Other 
path control tasks include the establishment of the paths for message 
transmission (see Sections X and XI) and the control and management of 
these paths (see Section XII). 

IV. Path Control Functions 

A. Peripheral Node Path Control 

Elements of path control are found in each node in an SNA network. 
This includes both subarea nodes (PU _ T4 and PU _ TS) and peripheral 
nodes (PU_ Tl and PU_ T2). Path control in a peripheral node consists of 
packaging a message for transmission to the associated subarea node and 
routing messages received from the subarea node to the appropriate end 
user in the peripheral node. The packaging function consists of generating 
and appending a transmission header to the basic information unit (BIU) 
created by the transmission control element of the peripheral node to form a 
path information unit (PIU) as shown in Fig. 1. There are two formats of 
transmission headers generated by peripheral nodes. The first is a minimum 
header consisting of 2 bytes of information, providing some control data 
and a I byte address field (see Fig. 3). This transmission header, referred to 
as a format identifier type 3 (FID3) header, is generated by low function 
terminals or cluster controllers (PU _ TI nodes), and the I byte address field 
(local session identifier) identifies a specific session for that device. 



302 Part IV • Network Layer 

..... 1------- 2 Bytes -----~ .... 

I 

FI03-Format Identification i 
MPF-Mapping Field i 
(Other Control Data) I 

LSID Bit: 

Session Type 

SSCP-PU 

SSCP-LU 

LU-LU 

Reserved 

FI03 TH 

0 2 

LU/SSCP LU/PU • 
(1/0) (110) 

0 0 0 

0 1 X 

X 

0 X 

I 
I 

lSIO-Local 
Session 
Identifier 

3 4 5 

Local Address 

0 0 0 

X X X 

X X X 

X X X 

lSIO Field Values in FI03 TH 

Fig. 3. Transmission header format 3. 

6 

0 

X 

X 

X 

7 

0 

X 

X 

X 

The local session identifier (LSID) is formatted to allow the support of 
64 unique end users, or logical units (LU's), in these nodes (see Fig. 3). Note 
that the first two bits in the LSID indicate whether the message is for a 
control session (SSCP-LU or SSCP-PU) or an application session (LU-LU) 
for an end user. The all-zeros value for LSID specifies that the message is 
for the control session with the physical unit of the device (SSCP-PU). 

The transmission header shown in Fig. 4 is used by higher function 
terminals and cluster controllers (PU_ T2 nodes). This transmission header, 
referred to as format identifier type 2 (FID2), contains abbreviated forms of 
both origin and destination address fields as well as a session sequence 
number field. Session sequence numbers enhance session level integrity for 
these peripheral nodes by providing correlation for requests and responses. 
Peripheral nodes using FID3 transmission headers must rely on the data 
link control sequence numbers for integrity along the path between the 
peripheral node and its boundary subarea node. 



Chap. 11 • Path Control 303 

...... 1-------- 1 Byte --------I.~ 

FID2-Format Identification 
MPF-Mapping Field Reserved 
(Other Control Data) 

i 

DAFT-Destination Address OAF'-Origin Address 

SNF-Session Sequence Number Field 

FID2 TH 

Fig. 4. Transmission header format 2. 

B. Boundary Node Path Control 

Certain path control functions of subarea nodes may be classified as 
either boundary function or intermediate function. The dotted line in Fig. 2 
passes through the subarea nodes providing boundary function. Inter­
mediate network node function is provided by all the subarea nodes in this 
diagram. Boundary function is an example of economical distribution of 
function from peripheral nodes to subarea nodes. Intermediate function is 
concerned primarily with the continued transmission of a transport network 
message unit to its destination. As noted above, boundary function per­
forms address translation to minimize the impact of network reconfigura­
tion by shielding the peripheral nodes from the management of network 
addresses. Boundary function path control also provides path selection (see 
Section IX) and global flow control (see Section XII) for sessions that 
terminate in attached peripheral nodes. Boundary function transmission 
control elements provide session services for attached peripheral nodes such 
as local flow control (ses~ion pacing) and session sequence number manage­
ment, as well as session activation/deactivation support. All of these 
components of boundary function result in fewer computational and storage 
requirements for peripheral nodes and a simpler interface for these nodes to 
the transport network. 

Boundary function path control further supports the attachment of 
peripheral nodes in the sense that messages received from peripheral nodes 
are repackaged for distribution through the transport network. Once the 
messages have been repackaged, boundary function provides the initial 
routing determination for the transport network message units (see Fig. 2). 

The repackaging of a message by boundary function path control is 
accomplished by replacing the FID2 or FID3 transmission header with a 



304 Part IV • Network Layer 

FID4- Format Identification 

28 
Transmission Group Sweep Indicator Reserved 
Network Priority Indicator 
(Other Control Data) 

(Other Control Data) VRN-Virtual Route Number 
ERN-Explicit Route Number TPF-Transmission Priority Field 28 

VR-CWI-Virtual Route Change Window Indicator 
28 (Other Control Data) 

TG-SNF-Transmission Group Sequence Number Field 

VRPRQ-Virtual Route Pacing Request 
VRPRS-Virt4al Route Pacing Response 

28 VR-CWRI-Virtual Route Change Window Reply Indicator 
VRRWI-Virtual Route Reset Window Indicator 
VR-SNF-SEND-Virtual Route Send Sequence Number Field 

48 DSAF - Destination Subarea Address Field 

48 OSAF-Origin Subarea Address Field 

(Other Control Data) I 
I Reserved MPF - Mapping Field 
I 
I 

28 

28 DEF - Destination Element Field 

28 OEF-Origin Element Field 

28 SNF-Session Sequence Number Field 

28 DCF - Data Count Field 

FID4 TH 

Fig. 5. Transmission header format 4. 

transport network transmission header. Figure 5 shows the format identifier 
type 4 (FID4) transmission header required for packets traversing the 
subarea path control network. In what follows, we shall explain the purpose 
of all the fields in the header. 

Note that in the FID4 transmission header there are origin and 
destination subarea address fields (OSAF and DSAF) in addition to origin 
and destination element address fields (OEF and DEF). Boundary function 
must provide translation from the abbreviated addresses contained in FID2 
and FID3 headers to the full network addresses required in FID4 transmis­
sion headers and vice versa. To perform this transformation, the subarea 



Chap. 11 • Path Control 305 

node takes advantage of the information contained in the received headers 
as well as prior knowledge of the configuration of peripheral nodes- that is, 
knowledge of the physical attachment configuration and the data link 
control address of a peripheral node will be used in determining the network 
address of that node. Address translation is the routing component of 
boundary function path control. In addition to address translation, the 
boundary function node will determine the logical path on which the 
message is to travel (virtual route number, explicit route number), as well as 
the transmission priority (transmission priority field) to be used for that 
message. Additional information contained in the FID4 header will be 
discussed in later sections of this paper. 

Another path control function is the blocking and segmenting of 
messages. In some instances, a communications path may be used more 
efficiently if the messages to be transmitted across that path are of a size 
different from the lengths of the originally generated messages. If the 
message (basic information unit) is too long to be efficiently transmitted, 
the message may be segmented into several smaller messages. Alternatively, 
if the throughput capability of the communications path between two 
subarea nodes is sufficiently high to warrant simultaneous transmission of 
groups of messages, then multiple messages (path information units) may be 
combined or blocked into a single message (basic transmission unit). 

Two specific advantages may be gained through segmenting. First, the 
transmission of multiple segments may be overlapped where the path of the 
message traverses multiple nodes or parallel links between two nodes. 
The transmission time for the example in Fig. 6 is reduced by 33 percent as 
a result of being able to overlap the transmission of multiple segments. 
Secondly, the use of a shorter transmission unit results in more favorable 
error characteristics-that is, the probability of a segment requiring retrans­
mission is lower in proportion to the decrease in the length of the segment. 

Segment reassembly capability is provided by using either the mapping 
field (MPF) or the virtual route sequence number in the transmission 
header. MPF is used to indicate segment order between peripheral nodes 
and boundary nodes by the following encoding: 

10 = first segment of message 
00 = middle segment of message 
01 = last segment of message 
11 = whole message. 

There is an exposure to the undetected loss of middle segments as these 
segments are not uniquely sequenced. If FID3 transmission headers are 
used, no session sequence numbers are provided. If FID2 headers are 
employed, all segments of a message will contain the same sequence 
number. However, this exposure is limited to the transmission between the 
peripheral node and the boundary subarea node and is minimized by the 



306 Part IV • Network Layer 

I I I 

! I I 
I 

Without Segmenting: I 
I 

Node A to Node B I 
I I I 
I I I 
I I I 
I II i 
I 

Node B to Node C I 
I 

I I I 
I I I 

C2Ji010 
I 

With Segmenting: I 
I 

Node A to Node B I 
I I I 
I I I 
I I I 

Node B to Node C 1[2]10 01 
I I I 

Transmission Time 

Fig. 6. Segmenting performance enhancement. 

use of unique data link control sequence numbers on each segment. At 
the boundary node, messages may be reassembled, transmitted as seg­
mented by the peripheral node, or further segmented as required for 
transmission through the transport network. 

Sequence ilUmbers are generated by path control at a boundary node 
prior to transmission over the virtual route. These virtual route send 
sequence numbers are session independent and distinct from the session 
sequence numbers (SNF) generated by the transmission control element. 
The virtual route sequence number is unique for each segment and will 
allow detection of a missing segment at the message's destination. Current 
implementations guarantee correct sequencing between adjacent subarea 
nodes (see Section V). Consequently, a virtual route sequence number error 
is detected but resequencing at the message's destination is not performed. 

Typically, blocking is done between nodes that support FID4 transmis­
sion headers to gain throughput by better utilizing a high bandwidth facility 
such as an I/O channel of a host processor. Each message or path 
information unit (PIU) included in a blocked basic transmission unit (BTU) 
retains its own individual transmission header. A single set of data link 
control headers is used to transmit several PIUs, resulting in some overhead 
reduction over the I/0 channel. At the destination of the BTU, the 
individual PIUs may be deb locked using the data count field in the 
transmission header of each PIU and routed to independent sessions as 



Chap. 11 • Path Control 307 

appropriate. Note that the transmission headers generated by element nodes 
(FID2 and FID3) have no data count field. Consequently, these messages 
cannot be blocked. 

C. Intermediate Node Path Control 

As mentioned earlier, path control also exists in the intermediate 
subarea nodes with or without boundary function. The intermediate node 
path control function consists of routing messages to the appropriate 
adjacent subarea node based on information contained in the FID4 trans­
mission header. If path control finds a message for the current subarea 
node, then it is routed to the local boundary function path control element. 
Once path control has determined that the message is indeed destined for a 
subarea node other than its own subarea node, the destination subarea 
address and the route specification information in the FID4 transmission 
header are used in conjunction with local routing tables to determine the 
path to be taken by the message. Intermediate function path control will 
then schedule the message for transmission on that path. 

With this understanding of the function of path control in boundary 
and intermediate network nodes, it is now appropriate to examine the 
mechanism that connects the subarea nodes to form SNA's transport 
network. 

V. Transmission Groups 

The basic element of connectivity for an SNA transport network is the 
transmission group (Fig. 7). The transmission group forms a logical connec­
tion between any two subarea nodes and may be comprised of one or more 
physical links between the two nodes. A multilink transmission group 
provides parallel links between two subarea nodes. 

Multiple transmission groups, up to a maximum of 255, may also be 
defined between any two adjacent subarea nodes. A transmission group 
(TG) is thus defined at a given node by the specific transmission group 
number and the adjacent subarea. Multilink transmission groups provide a 
single queue, multiple server environment as sessions have a routing affinity 
for a transmission group rather than a specific link. One configuration 
alternative between two adjacent nodes might be to place all satellite links 
in one transmission group, all terrestrial links in transmission groups by 
speed, and all highly secure links in yet another transmission group. 
Multilink transmission groups provide enhanced reliability for connectivity, 
while multiple transmission groups between two subarea nodes allow the 
specification of alternate paths between the nodes. 



308 Part IV • Network Layer 

TG1 TG1 
TG2 TG2 

A TG3 B TG3 C TG4 TG4 
TG5 

TG1 '~ 
TG2~ ( ) 

TG2->::: A 
"----" 

B C 

TG1 

TG3 ( ) 

'--../ 

A 
TG1~ 

B 

TGA 
c L " ( , ( ) 

\ J \ J 

" / ~ 
------

Fig. 7. Transmission group options. (a) Single link transmission groups. (b) Multilink transmis­
sion groups. (c) Single multilink transmission group. 

Several possible configurations of transmission groups are shown in 
Fig. 7. Note that there are five physical links connecting node A with node 
B and four physical links connecting node B with node C. In Fig. 7(a), the 
five links connecting A and B are treated as five distinct transmission 
groups. The links adjoining B and C are also treated as independent 
transmission groups. In Fig. 7(b), the five links are grouped into three 
transmission groups, and the four links between Band C form two 
transmission groups. Finally, in Fig. 7(c), there is one transmission group 
defined between nodes A and B and one transmission group between nodes 
Band C. Although in all three cases the total physical capacity of the 
communications channels between nodes A, B, and C could be the same, it 
will be seen that the management of this capacity is distinctly different. 

The transmission group is the basic component in the definition of 
end-to-end physical paths. Failure of a transmission group, therefore, results 
in a disruption of service for an end-to-end path through the network. In 



Chap. 11 • Path Control 309 

Fig. 7(a), the five transmission groups between nodes A and B enable the 
specification of five distinct physical paths between these nodes, but the 
restriction of a transmission group to a single physical link means that 
the physical path through the network will fail if the specific link that 
defines the transmission group fails. A transmission group is active as long 
as any link associated with the transmission group is active. Therefore, in 
the case of multilink transmission groups, the transmission group will 
continue to provide the logical connection as long as any link associated 
with that transmission group is operational. In instances of multilink 
transmission groups as in Figs. 7(b) and 7(c), the logical connection between 
nodes A and B will continue to exist, although with degraded throughput 
capacities, even though one or more links (but not all links) associated with 
the transmission group fail. 

. The single message throughput rate of a transmission group may be 
traded off against the reliability characteristic of multilink transmission 
groups. The instantaneous throughput capability of a single 9600-bitjs link 
for a single message is certainly greater than that of a transmission group 
consisting of four 2400-bit/s links, but the latter has significantly better 
reliability. Typically, multiple transmission groups will be defined to pro­
vide different levels of service for traffic between two subarea nodes. As an 
example, consider again the configurations shown connecting A and B in 
Fig. 7(b). Suppose that transmission group 1 in this instance is a satellite 
link, that transmission group 2 is composed of three high-speed terrestrial 
links, and finally, that transmission group 3 is a low-speed terrestrial link. 

Messages will be transmitted over the appropriate physical path accord­
ing to their individual service requirements. These requirements are reflected 
in the class of service (COS) selected for a given session (see Section VI): 

Although it is possible to have included all five physical links in one 
transmission group, the result could be inefficient due to resequencing 
delays. To minimize the resequencing required to maintain original order, 
the elements of a transmission group should be as homogeneous as possible. 
Messages transmitted over a multilink transmission group may arrive out of 
order as the result of: 

1. varying length messages; 
2. nonhomogeneous link characteristics (e.g., link speed); 
3. link errors. 

Any of the above conditions may result in loss of FIFO order across 
the transmission group. Consequently, messages will be held until rese­
quencing can occur. At that time, the messages will be released by the 
transmission group. 

In SNA networks, transmission groups are implemented in such a way 
as to mask the potential out-of-sequence characteristics of the physical 



310 

- .. ---
TG1 

Outbound •• ---
Queue _ •• __ _ 

Part IV • Network Layer 

Priority 0 ~ - Priority 0 
TG2 

Priority 1 Outbound ~ - Priority 1 
Queue -

Priority 2 ~ - Priority 2 

TG1 Resequence TG2 Resequence 

Fig. 8. TG queue structure (one direction view). 

connection. As shown in Fig. 8, a transmission group outbound PIU queue 
may service multiple data links. The transmission group receiver will 
guarantee that messages of the same transmission priority exit the transmis­
sion group in the same order that they entered the transmission group 
outbound queue. This is accomplished through the use of a transmission 
group sequence number generated by the transmission group scheduler at 
the outbound queue and placed in the transmission header of that message. 

Messages are placed on the appropriate transmission group outbound 
queue in a priority sequence determined by the transmission priority field 
(TPF) and network priority indicator in the FID4 transmission headers. 
Three values are defined for the transmission priority field: 

00 = low priority 
01 = medium priority 
10 = high priority. 

These values are associated with the logical path (virtual route) over which a 
session flows. Consequently, a priority will be established for a session at its 
initiation and will be unchanged for the duration of the session. A message 
will be inserted on the transmission group outbound queue in FIFO order 
within its priority class, e.g., a message with TPF = 01 will be placed ahead 
of all messages with TPF = 00 and behind all messages with TPF = 01 or 
TPF = 10. Note that this will not affect message sequence within a session 



Chap. 11 • Path Control 311 

as all messages for a given session will have the same priority. The use of 
transmission priorities allows more critical traffic to preempt less important 
messages. This is especially beneficial when the network is heavily loaded. It 
also allows traffic from one class of service to get ahead of that for another, 
as we shall see in the next section. 

The network priority indicator is used to allow certain control messages 
to overtake other messages regardless of transmission priority. These other 
messages immediately go to the top of the transmission group outbound 
queue behind any other messages flowing at network priority. 

Some products may provide implementation-dependent means for lower 
priority messages to be guaranteed eventual transmission. As an example, 
messages on a transmission group outbound queue may be aged by the 
transmission group sequence number to prevent lockout. When the se­
quence number reaches a specified (modulo) value, all current messages on 
the queue could be logically moved to the highest priority partition of the 
queue. Other techniques may also be used for this purpose. 

Each link in a transmission group comprises a full pair of data link 
control stations, each with its own independent link addressing, error 
recovery procedures, statistics gathering, etc. In the event that an error 
occurs on a data link, a copy of the affected message will be retransmitted 
on that link. No new traffic will be scheduled for the degraded link until 
that message is successfully transmitted. The original message will simulta­
neously be sent on an alternate link in the same transmission group. This is 
done to minimize the resequencing delay resulting from the error in the 
transmission of the original message and to avoid session damage by link 
failures. Multiple copies of the same message will be detected by the 
receiving side of the transmission group. If the transmission group sequence 
number of a received message is lower than the next expected, the message 
is discarded as a duplicate. If the TG sequence number is higher than 
expected, it is held in the TG PIU resequence queue as out-of-order. 
Integrity of the transmission group sequence numbers is provided by 
monitoring the wrap of the sequence numbers and performing a "sweep" of 
the data link outbound queues. Each link outbound queue must be cleared, 
e.g., by transmission and acknowledgment of a specific control message. 
This will result in all existing messages being acknowledged before the 
sequence number wrap occurs. Any outstanding out-of-sequence messages 
at that point will be determined to be permanent errors, and appropriate 
notification will occur. 

The existence of multiple transmission groups between subareas sup­
ports the definition of multiple physical paths between origin and destina­
tion subarea nodes. The provision of transmission priorities allows the 
specification of multiple logical paths on a single physical path. Alternate 
paths with the class of service concept described in Section VI provide a 



312 Part IV • Network Layer 

vehicle for the partitioning of network traffic by service requirements, as 
well as an enhancement for session recovery in the event of a path failure. 
The creation of these paths and the control of routing on them is a key 
responsibility of path control. 

VI. Class of Service 

The end user's view of route selection is formally defined through the 
class of service interface. Class of service specification provides the user 
control of the use of the underlying transmission facility, such as priority, 
throughput, cost,delay, security, and integrity. Other parameters that may 
be associated with class of service include private leased lines, public 
switched lines, terrestrial lines, satellite facilities, etc. The class of service 
name (COSNAME) may be provided either implicitly or explicitly by the user 
when a session is initiated. Specification of COSNAME may be logically 
viewed as selection of a transport network service level for a particular 
session. Existence of multiple COSNAMES usually implies multiple physical 
paths between subarea pairs, but the definition and actual selection of the 
physical path that provides the desired service level is transparent to the 
user. In some instances, several COSNAMEs may be used to provide paths 
giving minimum hop count, maximum throughput, all terrestrial links, 
maximum security, etc. In other cases, COSNAMES may reflect multiple 
transmission priorities on a single physical path. 

The request for session initiation includes specification of the originat­
ing and destination subareas. Multiple COSNAMES may be defined for each 
subarea pair. Each COSNAME defined for an origin/destination subarea pair 
translates to a list of virtual routes, where a virtual route may be thought of 
as a logical point-to-point path between the origin and destination subarea. 
A virtual route is uniquely identified by the subarea address fields of the 
two end nodes of the virtual route (VR) and the virtual route identifier 
(VRID). The virtual route identifier is specified by the virtual route number 
and the transmission priority field discussed in Section V. Current imple­
mentations allow up to eight virtual route numbers between any two 
subarea nodes and three levels of transmission priority. Consequently, it is 
possible to define as many as 24 virtual routes between any two subarea 
nodes. The VRID list associated with the COSNAME represents the defined 
logical connections between the given subareas that can provide the level of 
service associated with the COSNAME. 

The VRID list is assumed to be in order of preference. At session 
initiation, a mechanism is provided for manipulation of the order of the list. 
Through this user exit, load balancing may be accomplished by establishing 
concurrent sessions between two nodes over different routes. Parameters 



Chap. 11 • Path Control 313 

such as the number of sessions active on a given virtual route may be 
available to assist in this process. Following any necessary reordering of the 
VRID list, an attempt will be made to establish the session on the first 
virtual route in the list. If it is determined that this virtual route is not 
available, then the next virtual route will be tried. If the list is exhausted 
without successful activation of a virtual route, then the common session 
control manager will be notified that no route is available in the specified 
class of service. 

Class of service plays an important role in recovery for SNA sessions. 
If the path associated with a session fails, then it is possible to attempt 
reestablishment of the session through specification of the same class of 
service. The first available virtual route in the associated VRID list will be 
used for reestablishment of the session. If the class of service fails (i.e., if 
between the subareas all virtual routes on the list for that class of service 
fail), then the user has the option of selecting an alternate class of service for 
completion of the session. Although all existing paths between the two end 
nodes could be included in a single class of service, the use of multiple 
classes of service provides notification of a service level degradation in the 
case where all paths of a given service level have failed. 

VII. Virtual Routes 

A virtual route is a logical duplex connection between two subarea 
nodes (see Fig. 9). Multiple virtual routes may be defined between a subarea 
pair, and message traffic for multiple independent sessions may flow 
concurrently on a single virtual route. The primary objective of the virtual 
route concept is to enable the management of origin/destination (end-to­
end) subarea protocols without concern for the physical nodes and trans­
mission groups over which the virtual route passes. Given that through 
COSNAME a virtual route has been determined for a session, virtual route 
control in the subarea. node provides the mapping of messages for that 
session from its virtual route to the appropriate physical path (explicit 
route). Virtual route control creates a virtual route control block (VRCB) 
for each virtual route that terminates in the subarea node. The VRCB 
provides segmenting and virtual route sequence number control for its 
associated virtual route, as well as managing the flow control for the virtual 
route. Finally, virtual route control maps messages from the local half­
sessions (one end of a session) to the appropriate explicit route. Messages 
destined for the local subarea node are passed to virtual route control from 
the explicit route control. The routing component of virtual route control 
directs the message to its destination half-session using the appropriate 
VRCB. 



314 Part IV • Network Layer 

Fig. 9. Virtual routes, explicit routes, transmission groups. 

VIII. Explicit Routes 

The actual physical components of the logical path are referred to 
collectively as the explicit route for the associated virtual route. SNA has 
chosen to use the concept of static physical route definition [12] rather than 
dynamic adaptive routing alternatives for several reasons. Dynamic routing 
networks are complex to design and may cause recovery difficulties as the 
determination of specific link failure and affected messages is complicated 
by the lack of physical path affinity for the messages. Adaptive algorithms 
appear no more efficient [13] than static designs, and in fact may be less 
efficient in commercial usage where message order integrity is critical. 
Consequently, SNA has selected multilink transmission groups and multiple 
fixed routes to provide enhanced reliability and recovery rather than adap­
tive routing techniques. Each explicit route is individually testable and the 
explicit route concept provides control over the links and nodes traversed by 
a given path. 



Chap. 11 • Path Control 315 

The physical path between two subarea nodes may be specified by the 
ordered set of transmission groups through which traffic is to pass between 
the two end point subareas. For a given explicit route, only one transmis­
sion group may be specified between adjacent subarea nodes. The specifica­
tion of transmission groups must include the adjacent subarea nodes to 
remove ambiguity. As an example, in Fig. 9, ER2 consists of Subarea A, 
TG 1, Subarea B, TG2, Subarea D. This represents a bidirectional physical 
path, but each direction of transmission may be assigned a unique explicit 
route number (ERN). The reversibility of explicit routes is required to 
simplify failure notification by allowing simultaneous flow of failure detec­
tion to both ends of the associated virtual routes along those routes 
themselves rather than by some other routes. For completeness, then, the 
specification of an explicit route must include the ERN for each direction 
(ERN and reverse ERN) and an ordered indication of the subareas con­
nected by the ERN. Current implementations provide for the possibility of 
eight ERNs per subarea pair and allow multiple virtual routes to be mapped 
to a single explicit route. 

IX. Routing 

A virtual route is a logical end-to-end connection. Virtual routes are 
therefore known only in the origin and destination subarea nodes, where the 
virtual routes terminate. Here the messages are mapped by virtual route 
control onto the correct explicit route. Intermediate node routing is based 
solely on the explicit route number and destination subarea fields of a 
message's FID4 transmission header and represents the primary function of 
explicit route control [12]. Figure 10 shows the relationship of explicit route 
functions with other path control components. While at the boundary nodes 
explicit route control maps messages to and from virtual route control, the 
explicit route control component of intermediate nodes routes traffic to the 
appropriate transmission group using routing tables assembled during sys­
tem generation. Although SNA does not specify the format of routing 
tables, Fig. 11 illustrates the explicit routing concept used in SNA. Explicit 
route control inspects the FID4 transmission header and determines the 
message's destination subarea (B in the example) and the explicit route 
number (2) for the message. These two values are used to access an element 
in the routing table that specifies the next subarea to which the message is 
to be transmitted (M) and the transmission group number to be used (N) 
(recall that multiple transmission groups may exist between two subarea 
nodes). 

Current SNA implementations do not use origin subarea as a routing 
parameter. Consequently, if two explicit routes having common explicit 



316 Part IV • Network Layer 

I VRC I 
I 

t 
ERC I Boundary Node 
t 

I TG I 

-. 

I TG I 
1 

I ERC 
1 

I Intermediate Node 

I TG I 
J~ 

I TG I 

I 
1 

ERC I Boundary Node 
t 

I VRC I 

Fig. 10. VRC, ERC, TG relationships. 



Chap. 11 • Path Control 317 

~ 0 1 2 •• • • • • 7 
DSAF 

A 

B TG= _ 
M,N ~ 

C \ 
• • 

• / • 

X / 
'== AdJ·cent 

SA=M, 
TGN=N 

TG 
Control 
Block 

Fig. II. Routing table for explicit routes. 

route numbers and destination subareas intersect at an intermediate node, 
they will be merged regardless of origins. Care must be taken to recognize 
this situation in defining route configurations. 

X. Explicit Route Activation 

Explicit routes are generally in one of three states: Inoperative, Opera­
tive, or Active. An explicit route is said to be Inoperative if at least one 
transmission group in the explicit route definition is inoperative (no links 
operative). If all transmission groups that form the explicit route are 



318 Part IV • Network Layer 

operative, then the explicit route is said to be operative. Both end node 
explicit route managers will have received a network control (explicit route 
operative) request (NC_ER_OP). An NC_ER_OP message is generated by 
the explicit route manager in each subarea node when a transmission group 
attached to that node becomes operative (at least one operative link), 
providing a connection to an adjacent subarea node. NC_ER_OP flows 
across the newly operative transmission group from both subareas and 
specifies the subareas connected by the transmission group, the transmission 
group number (TGN) of the transmission group, and a list of operative 
explicit routes. 

This list represents the additional connectivity achieved by the trans­
mission group be«oming operative. It is, in fact, a statement by the adjacent 
subarea node of its current routing capability and is generated from the 
operative entries in its explicit route status table. The operative explicit 
route fields in the NC_ER_OP list all destination subareas that may now be 
accessed over the new transmission group. A mask is provided for each 
subarea indicating which explicit route numbers may be used to access that 
subarea. 

The node receiving the NC_ER_OP message will update its routing 
status tables and modify the operative explicit route fields by eliminating 
bits in the mask representing explicit route numbers that are not valid 
beyond the current node (route terminates in the current node). The 
NC_ER_OP is then propagated to all adjacent subarea nodes, except the 
subarea node from which it was received. The process is repeated until all 
masks in the operative explicit route fields contain only zeros (no valid 
explicit route numbers) or all subareas have been notified. The flow pattern 
of NC_ER_OP results in automatic notification of the Operative state of an 
explicit route to the end nodes of the route when all associated transmission 
groups have been activated. 

A similar flow results in the event of a transmission group failure (last 
link inoperative). In this case, the request is network control (explicit route 
inoperative), NC_ER_INOP, and the information content is similar to 
NC_ER_OP. NC_ER_INOP eventually reaches the end nodes of each 
affected explicit route, causing the explicit routes to be set Inoperative and 
notification to be sent to the virtual route manager for appropriate action 
relative to the virtual routes mapped to the affected explicit routes. 

An explicit route remains in the Operative state until a network control 
(explicit route activate) request (NC_ER_ACT) has been sent by the 
explicit route manager and a network control (explicit route activate reply) 
message (NC_ER_ACT _REPLY) has been received. As a result of the 
successful exchange of these two messages, an explicit route number will be 
defined for each direction of the explicit route and the length of the explicit 
route will be determined in units of transmission groups (used in global flow 



Chap. 11 • Path Control 319 

control). The explicit route can now be set to the Active state. The route will 
remain active until connectivity is lost as a result of a transmission group 
failure. Such an occurrence results in all explicit route managers that receive 
the associated NC_E~INOP request resetting the affected explicit routes 
in the Inoperative state. The explicit route managers then notify the 
appropriate virtual route managers that the affected virtual routes are 
inoperative. 

XI. Session Path Activation 

A session cannot be established until an appropriate path has been 
activated. Selection ora class of service provides a list of potential paths in 
the form of the VRID list. The virtual routes in this list are usually in one of 
two states, Reset or Active. Reset state implies that no buffer resources are 
allocated to a virtual route and a VRCB does not exist for that virtual route, 
although the underlying explicit route may have been activated earlier. The 
virtual route will leave the Reset state as the result of a network control 
(activate virtual route) request (NC_ACTVR) flowing successfully on the 
explicit route, entering the Active state. This means that the virtual route 
managers at both end nodes have created VRCBs to support the virtual 
route to explicit route mapping. 

Common session control, the element of SNA responsible for session 
activation/deactivation, passes the selected VRID list from the SSCP to the 
virtual route manager [1]. After any desired reordering of the list, the virtual 
route manager determines if the first virtual route in the VRID list is Ac~ive 
by searching for the corresponding VRCB. If the virtual route is Active, the 
address of the VRCB is returned to common session control and the session 
initiation continues. Otherwise, the virtual route manager determines through 
the explicit route manager if the underlying explicit route is Active. If this is 
the case, the virtual route manager creates a VRCB for the virtual route and 
sends an NC_ACTVR request to the virtual route manager at the destina­
tion subarea. The NC_ACTVR request includes specification of both send 
and receive ERNs, an initial virtual route sequence number, and minimum 
and maximum virtual route pacing window sizes (see Section XII). 

The destination virtual route manager will attempt to allocate required 
buffer resources and create a VRCB for the specified virtual route. If 
successful, the virtual route will be set to the Active state and a positive 
response will be sent to the origin virtual route manager, causing the virtual 
route to be set Active there and the address of the VRCB to be returned to 
common session control. Otherwise, a negative response is sent to the origin 
virtual route manager and the next virtual route in the VRID list is 
processed. 



320 

TG (B,C) Activated 

• ER-OP 

All TGs Activated-
ER Operative 

ER Active 

ACT-VR 

VR Active 

., 
" 

Session Activation 

.... 

Part IV • Network Layer 

ER-OP ., 
ER-OP 

ER-OP 

ER-ACT .. , , , 
ER-ACT-REPLY 

Positive Response (ACT-VR) 

Fig. 12. Route activation sequence. 

If the explicit route is in the Operative state, then the explicit route 
manager issues NC_ER_ACT. If the explicit route is successfully activated, 
then virtual route activation proceeds as described above. An Inoperative 
explicit route will result in consideration of the next virtual route in the 
VRID list. When the VRID list is exhausted, common session control is 
notified that the class of service has failed. 

The relationship of SNA routing commands in creating a session path 
is illustrated in Fig. 12. The protocols defined for the activation of a route 
are structured to prevent the occurrence of a deadlock condition in this 
operation [14]. The next section will describe the protocols defined to 



Chap. 11 • Path Control 321 

prevent deadlock conditions in the allocation of resources for network 
traffic. 

Xll. Flow Control 

Economic considerations in the physical implementation of a network 
generally lead to constraints on the throughput capability of the network. 
The design points selected with respect to processing and storage capacity of 
nodes and bandwidth of communication links are usually such that peak 
loads will exceed the throughput capability of the network. Such a network 
should respond to increased loads with a monotonic increase in throughput, 
with stabilization near the maximum throughput of the system in overload 
conditions. Mechanisms (see Chapter 13) must be in place to prevent 
degradation of throughput under these circumstances and, above all, to 
avoid network deadlock (see Chapter 13). SNA provides flow control 
mechanisms that attempt to avoid deadlock conditions without penalizing 
network throughput in lightly loaded situations. 

SNAs primary flow control mechanisms are based on a window pacing 
concept [13]-[18]. Network traffic is measured in units of windows (see Fig. 
13). A transmitter is allowed to send a window, k messages, upon receipt of 
transmit authorization from the receiver. In Fig. 13, k = 4. The first 
message in a window will contain a request for authorization to transmit 
another window of messages. The receiver may respond to this request 
before the entire window has arrived depending on resource status in the 
node. Consequently, the pacing response may overlap the transmission of 
the current window of messages and may result in a second window being 
transmitted before the first window has been completely received. The 
window pacing mechanism therefore limits the number of messages intro­
duced into the network by the given transmitter to 2k - 1, where k is the 
current window size. The various slopes in Fig. 13 reflect different levels of 
congestion and thus different transmission delays. Note that larger window 
sizes may result in shorter waiting times at the sender or receiver but run the 
risk of creating congestion delays in the network. Pacing attempts to 
balance flow between origin and destination. 

Window pacing is employed on both a session basis and a virtual route 
basis. Session pacing protects the end user, and VR pacing protects the 
network resource along the VR. Session-level pacing, a local flow control 
mechanism designed to control the admission of data into the path control 
network, may be provided in two stages. The first stage is from the 
peripheral node to its supporting boundary node. The second stage is from 
that boundary node to the other end user, typically an application resident 
in a host. The window sizes are specified independently for the two stages at 



322 Part IV • Network Layer 

Node A B c o 

Window 1 
r--_-"'"I PR 

TIME 

.......... ---_ ... ---_ ... 

Window 4r----1 

--+-= Message 
----= Acknowledgement 
PR = Pacing Response 

Fig. 13. Pacing window (size = 4). 

the time the ses~ion is created and remain fixed for the duration of the 
session. The primary objective of session-level pacing is to match the input 
data rate of the source end user to the capability of the destination end user 
to receive and handle the data. The decision to respond to a pacing request 
is based solely on the resource status of the receiving application; session­
level pacing does not reflect resource utilization status within the path 
control network. Session-level pacing is a transmission control layer re­
sponsibility; the flow control mechanism for the path control layer is 
provided by virtual route pacing. 

Virtual route pacing is the global flow control mechanism of SNA. It is 
intended to regulate the flow of traffic through the transport network by 
monitoring the utilization of path control network resources and modifying 
input rates for virtual routes accordingly. (Recall that multiple independent 



Chap. 11 • Path Control 323 

sessions may flow on a single virtual route and that, as shown in Fig. 9, 
multiple virtual routes may share the physical resources of the transport 
network.) Input traffic for a virtual route is again measured in units of 
windows and control is accomplished through the same pacing request/re­
sponse mechanism used in session pacing, but the traffic on a virtual route 
or on a given link in the path control network is much more variable than 
the traffic on a single session. Consequently, studies [17] have shown that 
significantly improved network throughput may be attained by dynamically 
adjusting the virtual route window as the network load fluctuates. Although 
the virtual route is bidirectional, the following discussion of virtual route 
window management will be based on a single direction view for clarity. 

Minimum and maximum virtual route window sizes (WS_MIN) and 
(WS_MAX) are established when a virtual route is activated (NC_ACTVR). 
The minimum window size corresponds to the "hop count," the length of 
the explicit route measured by the number of transmission groups in the 
underlying explicit route. The maximum window size is typically set to some 
multiple of the explicit route length, e.g., three times WS_MIN. The virtual 
route window size is dynamically adjusted between these limits to reflect the 
current throughput capability of the network. 

Five bits are defined in the FID4 transm1ssion header (see Fig. 5) to 
support virtual route pacing. The virtual route pacing request (VRPRQ) bit 
is set on in the first message of each window by the transmitter of the 
window. Upon receipt of a message with VRPRQ on, the receiver may send 
a control message with the virtual route pacing response (VRPRS) bit on to 
indicate that the receiver can accept another window of messages. If the 
receiver cannot allocate resources for another window, then the VRPRS will 
be withheld until resources are determined to be available. Isolated VRPRS 
messages, sent independently of any particular request and without correla­
tion of sequence numbers, have the network priority indicator set in the 
FID4 transmission header, allowing them to overtake all other messages. 
When the sender receives VRPRS it may then transmit another window of 
messages. The sender maintains a virtual route pacing count that represents 
the number of messages the sender has been authorized to transmit on the 
virtual route. Each time the sender receives a VRPRS it increments the 
virtual route pacing count by the current window size. A value of one is 
subtracted from the virtual route pacing count whenever a message is 
transmitted on the virtual route. As long as the virtual route pacing count 
is positive, the sender may continue to transmit messages on the virtual 
route. When the virtual route pacing count is equal to the current window 
size, the VRPRQ bit is set on in the next message, representing the first 
message of a new window. 

The action taken if congestion is detected by an intermediate network 
node is dependent on the level of congestion as measured by implementa­
tion-dependent parameters. For example, a subarea node may define con-



324 Part IV • Network Layer 

gestion on a path by the transmission group outbound queue lengths on that 
path. Minor congestion results in the intermediate network node setting the 
change window indicator (CWI) bit in messages that encounter the conges­
tion. The receiver of CWI notes the existence of congestion on the associ­
ated virtual route and will set the change window reply indicator (CWRI) 
bit in the next VRPRS sent to the transmitter for that virtual route. The 
CWRI may also be set by an end node if congestion exists in that node 
itself. If severe congestion is detected, then the reset window indicator 
(RWI) bit is set on in any message flowing on that explicit route in a 
direction opposite to the message that encountered the severe congestion. 

Although the global flow control mechanism is coupled with virtual 
routes, the detection of congestion in the intermediate network nodes is 
based on the status of explicit route components. The intermediate routing 
function is based on explicit routes as intermediate network nodes have no 
knowledge of virtual routes. If a transmission group or intermediate node 

RWI 
Received 

Pacing 
Count= 
WS-Min 

Window = 
WS-Min 

YES Pacing 
Count= 

o 

Window = 
WS-Min 

YES 

VRPRS 
Received 

~ N0:JWsS-t1 
WS= 

WS-1 

'-------

Pacing Count= 
Pacing Count+ 

Window 

t 
'---------------., .. CONTINUE 

Fig_ 14_ VR window controL 



Chap. 11 • Path Control 325 

experiences a lack of resource availability, all virtual routes flowing through 
that element may be affected. Consequently, all sources of messages flowing 
on that explicit route will be notified and the windows of all notified virtual 
routes utilizing that explicit route will be adjusted accordingly. 

When an end node receives a message with RWI on, the window size 
for the corresponding virtual route is immediately set to WS_MIN 
("slammed"). If the RWI was received in a VRPRS, the virtual route pacing 
count is set equal to the new window size and the next window of messages 
is transmitted. Otherwise, the current virtual route pacing count is ex­
amined. If it is less than or equal to WS_MIN, no action is taken. If the 
current pacing count exceeds WS_MIN, it is set equal to WS_MIN and 
processing continues. 

When an end node receives a VRPRS without RWI set on, then CWRI 
is examined. If CWRI is set on, then the current window size is decremented 
by one to a minimum of WS_MIN. If CR WI is not set on, then the window 
size is incremented by one if the virtual route pacing count equals zero. 
Otherwise, the window size is unchanged as the implication is that the 
virtual route is operating satisfactorily with current window size value. The 
window size will not be incremented beyond WS_MAX. Management of 
the virtual route pacing count and window size is summarized in Fig. 14. 

Although the virtual route is bidirectional and WS_MIN and 
WS_MAX are the same in both directions, there is no correlation between 
the two window sizes after the virtual route has been activated. The window 
sizes are independently modified according to network congestion detected 
in either direction along the virtual route. 

XIII. Summary 

This chapter has presented a tutorial on the transport network of SNA, 
especially the path control layer. The path control network consists pri­
marily of subarea nodes connected by transmission groups, although path 
control functions are also seen in peripheral nodes. The routing structure of 
SNA is built on the transport network through the concepts of explicit 
routes and virtual routes. These concepts provide the definition of multiple 
static routes between end nodes in the transport network. The end user's 
interface to routing is the class of service, a facility for path selection and 
recovery that masks the physical attributes of routes from the end user. The 
protocols for path activation are designed to layer the management of route 
control and prevent deadlock occurrence in route activation. Flow control 
mechanisms are defined to manage the utilization of path control resources, 
allowing maximum throughput in overload conditions while not artificially 
restraining the network when traffic is light. 



326 Part IV • Network Layer 

Definition of the path control layer is critical to the success of SNA. 
The functions of path control are typically transparent to the end user, but 
must create a network that is both flexible in configuration and throughput 
capabilities and reliable in the provision of paths through the network. 
These network attributes are apparent to the end user only in their absence. 
The goal of path control is continued unawareness. 

References 

[I] Systems Network Architecture Format and Protocol Reference Manual: Architecture Logic, 
Order Number SC30-3112, IBM Corp., Data Processing Div., White Plains, NY 10504. 

[2] E. H. Sussenguth, "Systems network architecture: A perspective," in ICCC 1978 Con/. 
Proc., Kyoto, Japan, 1978. 

[3] R. J. Cypser, Communications Architecture for Distributed Systems. Reading, MA: 
Addison-Wesley, 1978. 

[4] P. E. Green, Jr., "The structure of computer networks," and this book, Chapter I, also in 
IBM Syst. J., vol. 18, pp. 202-222, 1979. 

[5] Reference Model of Open Systems Architecture, Int. Standards Org. Document 
ISO/TC97 /XCI6/NI17, Nov. 1978. 

[6] L. Pouzin and H. Zimmerman, "A tutorial on protocols," Proc. IEEE, vol. 66, Nov. 
1978. 

[7] V. G. Cerf and P. T. Kirstein, "Issues in packet-network interconnection," Proc. IEEE, 
vol. 66, Nov. 1978. 

[8] S. Wecker, "Computer network architecture," Computer, vol. 12, Sept. 1979. 
[9] R. A. Donnan and J. R. Kersey, "Synchronous data link control: A perspective," IBM 

Syst. J., vol. 13, pp. 140-162, 1974. 
[10] J. H. McFadyen, "Systems network architecture: An overview," IBM Syst. J., vol. IS, pp. 

2-23, 1976. 
[II] J. P. Gray and T. B. McNeill, "SNA multi-systems networking," IBM Syst. J., vol. 18, 

pp. 263-297, 1979. 
[12] R. R. Jueneman and G. S. Kerr, "Explicit path routing in communication networks," in 

ICCC 1976 Con/. Proc., Toronto, Ont. Canada, 1976. 
[13] H. Rudin and H. Muller, "Dynamic routing and flow control," IEEE Trans. Commun., 

vol. 28, pp. 1030-1040, July 1980. 
[14] V. Ahuja, "Routing and flow control in systems network architecture," IBM Syst. J., vol. 

18, pp. 298-314, 1979. 
[IS] L. Kleinrock, Queuing Systems, Volume 2: Computer Applications. New York: Wiley, 

1976. 
[16] G. A. Deaton and D. J. Franse, "A computer network flow control study," in ICCC 1978 

Conf. Proc., Kyoto, Japan, 1978. 
[17] G. A. Deaton, "Flow control in packet switched networks with explicit path routing," in 

Proc. Int. Symp. Flow Control in Comput. Networks, Versailles, France, 1979. 
[18] M. Reiser, "A queueing network analysis of computer communication networks with 

window flow control," IEEE Trans. Commun., vol. COM-27, Aug. 1979. 



12 

Routing Protocols 

Mischa Schwartz and Thomas E. Stem 

I. Introduction 

In this chapter, we provide an overview of routing techniques used in a 
variety of computer communication networks in current operation. These 
include the public data networks TYMNET and TRANSPAC (the former is a 
specialized common carrier network based in the United States, but with 
connections to Europe as well; the latter is the French government PIT 
data network), ARPAnet, the U.S. Department of Defense Computer 
Network, and the commercial network architectures SNA (Systems Network 
Architecture) and DNA (Digital Network Architecture), developed by IBM 
and Digital Equipment Corporation, respectively. The networks are all 
examples of store-and-forward networks with data packets* moving from a 
source to a destination, buffered at intermediate nodes along a path. The 
path is defined simply as the collection of sequential communication links 
ultimately connecting source to destination. 

The routing algorithms used in these networks all turn out to be 
variants, in one form or another, of shortest path algorithms that route 
packets from source to destination over a path of least cost. The specific 
cost criterion used differs among the networks. As will become apparent in 
the discussion following, some networks use a fixed cost for each link in the 
network, the cost being roughly inversely proportional to the link transmis-

*We use the word packet here to represent a self-contained block of user data, of possibly 
varying size, that will traverse the network as one cohesive unit. In some networks, this is 
synonymous with a message. In others, a message may be broken at the source node, into 
several smaller packets. For this reason, we make no real distinction between the two, and we 
shall, in fact, sometimes use the words interchangeably. 

327 



328 Part IV • Network Layer 

sion capacity in bits per second. For a network with equal capacity links, 
minimization of the path cost generates a minimum hop path. Links with 
measured congestion and/or high error rates may be assigned higher costs, 
steering traffic away from them. Costs may also vary with the type of traffic 
transmitted-whether interactive, asynchronous terminal type, synchronous 
traffic, or file transfers between computers. Other networks attempt to 
estimate average packet time delay on each link and use this to assign a link 
cost. The resultant source-destination path chosen tends to provide the path 
of minimum average time delay. 

Since a least cost routing algorithm is used in all cases, we provide in 
the next section a unifying discussion of least cost routing to further 
demonstrate the similarities in the network algorithms. 

Although the basic routing procedures are similar, differing primarily 
in the choice of a link cost function used to establish the minimum cost 
path, the routing techniques used tend to differ in implementation and the 
place at which the algorithms are run. The routing algorithm may be run in 
centralized fashion by a central supervisory program or Network Control 
Center, or may be carried out in a decentralized or distributed way with 
individual nodes in the network running the routing algorithm separately. In 
the former (centralized) case, global information about the network required 
to run the algorithm (current topology, line capacity, estimated link delays if 
required, condition of links and nodes, etc.) need only be kept by the central 
supervisor. Path setup is then accomplished through routing messages sent 
to each node along the path selected. In the latter (distributed) case, the 
required information must be exchanged among nodes in the network. This 
implies some means of disseminating changes in topology (nodes and links 
coming up or going down), congestion, and estimated time delayinforma­
tion if used in the algorithms. In the next section, we discuss two least cost 
routing algorithms, which are the basis for routing procedures in many 
networks. 

The routing procedures adopted also differ in how dynamic they 
are-how rapidly and in what manner they adapt, if at all, to changes in 
network topology and/or traffic information. In some cases, routes are 
fixed during the time of a user session. (This is the length of a call from 
sign-on or connect time to sign-off or disconnect time.) A node or link 
failure during a session will then abort the call or may, in some cases, cause 
a new route to be selected, transparent to the user. In other cases, paths may 
be changed during a session (although unknown to the user and relatively 
slowly to avoid stability problems). 

Once the path has been determined, routing tables, set at each node, 
are used to steer individual packets to the appropriate outgoing link. An 
example appears in Fig. 1. A typical node N in a network is shown, with 
three neighboring nodes X, Y, Z to which it is connected. In part (b) of the 



Chap. 12 • Routing Protocols 

PACKET IDENTIFICATION 

( 1 ,4) 

( 1 ,5 ) 

(2,4 ) 

(2,5 ) 

( 2,6) 

)--------1. Z 

NEXT NODE ASSIGNMENT 

X 

Y 

X 

Z 

Y 

329 

Fig. I. Routing at a node in a network. (a) Current node and neighbors. (b) Routing table. 

figure, a partial routing table is shown, associating individual user packets 
with an appropriate outgoing line leading to one of the neighboring nodes. 
The packet identification requires two numbers. The two numbers could be 
source and destination address, or they could be a mapping of these two 
fields into a corresponding pair given by the incoming link number and a 
number associated with that link. (This is variously called the logical record 
number, the logical link number, next node indicator etc.) The source-des­
tination addresses could also be combined into one unique network-wide 
virtual circuit number, although this becomes difficult to monitor and assign 
with large networks. If all packets routed to a particular destination follow 
the same path, only a destination address is required to determine the 
proper outgoing link. (This would be the case, for example, if the paths 
chosen are independent of message class, type, etc.) 

It is obvious that routing procedures play an important role in the 
design of data networks. Together with the techniques of flow and conges­
tion control, they are implemented as part of the transport level or end-to-end 
protocols of networks. In layer protocols, this is the level just above the data 
link level that ensures correct transmission and reception of packets between 
any neighboring nodes in a network. 

Because of their importance to the proper operation of data networks, 
routing techniques have received a great deal of attention in recent years. 
They have been variously classified as deterministic, stochastic, fixed, adap­
tive, centrally controlled, or locally controlled [1]. 



330 Part IV • Network Layer 

The fixed versus adaptive classification is particularly vague, since all 
networks provide some type of adaptivity to accommodate topological 
changes (links and/or nodes coming up or going down, new topologies 
being established). In the past, the distinction had been made primarily on 
the basis of individual packet handling. In the original ARPA routing 
algorithm, routing tables could be updated at intervals as short as 2/3 s [2]. 
Routing changes were made by individual nodes in a decentralized manner. 
As a result, individual packets in a message could follow diverse routing 
paths. The ARPA adaptive routing algorithm was adopted by a number of 
other networks as well [3], [4]. The French Cigale network used a related 
decentralized algorithm [5]. 

The hope was that by adapting on a packet-by-packet basis, the 
network could be made more responsive to changes in traffic characteristics 
and to topology, enabling packets to arrive at their destinations more 
rapidly, as well as avoiding failed links and/or nodes and regions of 
congestion. This was the case to some extent, yet the ARPA experience 
indicated some fundamental problems arising-there were problems with 
message reassembly at the destination, packet looping, adaptation problems 
("too rapid a response to the good news of added links and too sluggish a 
response to the bad news of deleted links") [2], etc. As a result, the ARPA 
algorithm has been changed, making it less dynamic. 

Although these routing techniques will be called adaptive in the sense 
of responding to network changes, the time constants are considerably 
longer. In the case of the new ARPA algorithm, changes may take place 
about every 10 s. Details appear in Section III. 

H the algorithms used in most of these networks are adaptiv:e and of 
the shortest path type, how then are they to be distinguished? We have 
already indicated that they may differ in the cost criterion used, and as to 
whether the computations are done centrally or on a distributed basis. The 
rate of adaptation is another distinguishing characteristic. This has also 
been noted already-the ARPA network, as an example, will change routes, 
if necessary, every 10 s. TYMNET and SNA make changes from session to 
session only. DNA changes paths only when necessary. 

Other differences arise due to the actual implementation: the size of 
routing tables, the routing overhead required, the time required to set up a 
path or change one if necessary; all of these will be found to differ in the 
networks to be described. Other differences will be noted during the 
discussion. 

Interestingly, shortest path single routes turn out not to be optimum if 
the long-term average network time delay is to be minimized. In this case, 
multiple or "bifurcated" paths arise [1], [6]. Packets at a node are assigned 
to one of several outgoing links on a probabilistic basis. Bifurcated routing 
has not as yet been used in routing algorithms implemented in operating 



Chap. 12 • Routing Protocols 331 

networks, although there are plans to incorporate this procedure in future 
routing mechanisms for the Canadian DATAPAC network [7]. 

In Section II, we provide a more detailed treatment of routing proce­
dures in networks, focusing, as already noted, on shortest path Oeast cost) 
algorithms. In Section III, we then describe the routing implementations 
currently found in TYMNET, ARPAnet, TRANSPAC, and the two commercial 
network architectures, IBM's SNA and Digital Equipment's DNA. In these 
last two cases, the routing procedures adopted are part of the overall 
protocol design and do not refer to a specific network implementation. 

II. Structure of Routing Procedures in Packet-Switched Networks 

Efficient utilization and sharing of the communications and nodal 
processing resources of a packet-switched communication network require 
various types of control, perhaps the most important of these being packet 
routing, that is, selecting paths along which packets are to be forwarded 
through the network. The objective of any routing procedure is to obtain 
good network performance while maintaining high throughput. "Good 
performance" usually means low average delay through the network, al­
though many other performance criteria could be considered equally valid. 
Since poor routing algorithms often lead to congestion problems, and 
conversely, local congestion often requires at least temporary modification 
of routing rules, the routing problem cannot be completely divorced from 
that of congestion control, which is the subject of Chapter 13. Nevertheless, 
in this paper, we restrict ourselves to routing under the assumption that the 
better the routing algorithm, the less congestion is likely to occur. 

While routing procedures can be set up within a network more or less 
independently of the protocols seen by the users (i.e., the devices external to 
the network), the choice of an appropriate routing procedure is influenced 
to some extent by the transport protocols operating at the network/user 
interface. It is convenient to classify these as either virtual circuit-oriented or 
message-oriented. In the former case, a device or a process within a device 
(e.g., an application program within a computer), prepares to communicate 
with another device by exchanging a number of control messages with the 
network. The purpose of these messages is to determine whether the 
destination device is connected and ready to receive messages, to agree on 
certain aspects of the transmission protocol, and to set up a virtual circuit 
(VC) from source to destination. * Figure 2 illustrates three VCs connecting 
terminals Tl, T2, T3 to a host H. The VC appears to the external devices as 

*VCs set up in this manner ar::: termed "switched" VCs, in contrast to "permanent" VCs, which 
require no call setup procedure. 



332 Part IV • Network Layer 

@}-Packet from Terminal n 

--

Fig. 2. Virtual circuits. 

if it were a dedicated line; under normal operation, individual data packets 
arrive at the destination essentially without loss or error and in the proper 
sequence. It is important to note, however, that within the network, packets 
from many different virtual circuits are generally sharing the same com­
munication lines; errors, losses, and changes of packet order may occur. 
However, it is the function of the internal network protocols to correct for 
all of these effects. In the message-oriented case, communication is on a 
message-by-message basis. Each message or packet (often called a datagram 
in this case) must therefore contain its own destination address, but no 
preliminary control messages are required to set up a communication path. 

A. Functions of Routing Procedures 

In an idealized situation where all parameters of the network are 
assumed to be known and not changing, it is possible to determine a routing 
strategy which optimizes network performance for some class of users, e.g., 
minimizes average network delay for the interactive user or maximizes 
throughput for the batch user. The routing problem posed in this form is 
equivalent to the multicommodity flow problem well known in the opera­
tions research literature, and has been treated extensively in the communica­
tions network context [6], [8]-[11]. Changing situations in real networks 
such as a line failure or a change in the traffic distribution, necessitate some 



Chap. 12 • Routing Protocols 333 

degree of adaptivity. Any adaptive routing procedure must perform a 
number of functions: 

1. Measurement of the network parameters pertinent to the routing 
strategy. 

2. Forwarding of the measured information to the points(s) [Network 
Control Center (NCC) or nodes] at which routing computation takes 
place. 

3. Computation of routing tables. 
4. Conversion of routing table information to packet routing decisions. 

(This may include dissemination of a centrally computed routing 
table to each switching node as well as the conversion of this 
information to a: form suitable for "dispatching" packets from node 
to node.) 

Typical information that is measured and used in routing computation 
consists of states of communication lines, estimated traffic, link delays, 
available resources (line capacity, nodal buffers), etc. The pertinent informa­
tion is forwarded to the NCC in a centralized system and to the various 
nodes in a distributed system. In the distributed case, two alternatives are 
possible: (1) forward only a limited amount of network information to each 
node (i.e., only that which is required for computing its local routing 
decisions), or (2) forward "global" network information to all nodes. (See 
Section III Al for a comparison of these two strategies in a specific 
network.) Based on the measured information, "costs" can be assigned to 
each possible source-destination path through the network. Routing assign­
ments may be based on the principle of assigning a single path to all traffic 
between a given pair of source/destination nodes, or else traffic for a given 
source/destination pair might be distributed over several paths, resulting in 
the multiple path, or bifurcated routing procedure mentioned in Section I. In 
the latter case, single paths might still be maintained for each virtual circuit 
(if a VC-oriented protocol is used). This case is illustrated in Fig. 2, wherein 
VCl and VC2 involve the same source/destination nodes, but take different 
paths. (Bifurcated routing on a packet basis is illustrated in Fig. 3.) While 
maintenance of single paths for each VC is not an optimal procedure, it has 
a number of practical advantages, an important one being the fact that 
packets always arrive at their destination in the proper order. It is therefore 
not surprising that most of the networks currently in operation use VC-ori­
ented protocols with single-path routing per Vc. These paths generally 
remain fixed for the duration of operation of the VC, unless a failure occurs. 

Once one thinks in terms of single-path routing, it is natural to choose 
the "shortest" or, more generally, the least cost path whenever alternate 
paths exist. The path cost can, of course, be assigned using whatever cost 
functions seem appropriate (see above), the only essential property being 



334 Part IV • Network Layer 

Fig. 3. Bifurcated routing. 

that the path cost is computed as the sum of the costs of the links 
comprising that path. In such a case, the routing problem is equivalent to 
that of finding the shortest path through a graph, wherein link "length" is 
understood to have the more general meaning of link "cost." The set of 
shortest paths from all source nodes to a common destination node in a 
network forms a tree with the destination as root node. Thus, it is clear that 
if single-path routing on a source/destination basis is to be used, the path 
of a packet is uniquely determined by its destination alone. (Optimal 
bifurcated routing on a packet basis also only requires destination informa­
tion.) On the other hand, single-path-per-VC routing requires either explicit 
or implicit VC identification for each packet; source/destination informa­
tion alone is insufficient. This is because each time a new VC comes into 
operation, the costs determining the shortest path may be different since 
they generally change with time as network operating conditions change. 
Thus, VCs between the same source/destination pairs, established at differ­
ent times, may take different paths as illustrated in Fig. 2. 

B. Shortest Path Algorithms 

The shortest path problem described above has received much attention 
in the literature. A variant of this problem, that of finding the k shortest 
paths between source and destination, is also applicable to the routing 
problem. (One is often interested in two or three alternate routes ranked in 



Chap. 12 • Routing Protocols 335 

order of cost.) This too has been extensively treated. Since most operating 
networks use some version of shortest path routing, we discuss in this 
section the two algorithms most commonly used in communication network 
shortest path calculations. Algorithm A, due to Dijkstra [12], [13], is adapted 
to centralized computation, while E, a form of Ford and Fulkerson's 
algorithm [14], is particularly useful in distributed routing procedures. Since 
they are simple and intuitive, we present them informally, aided by an 
example. 

Consider the network of Fig. 4(a) in which the numbers associated with 
the links are the link costs. (It is assumed for simplicity that each link is 
bidirectional with the same cost in each direction. However, both algorithms 

5 

o. NETWORK 

b. TREE 

Fig. 4. Example of shortest path routing. 

Routing Table 
for Node 1 

Dest. Next Node 

2 
4 
4 
4 
4 



336 Part IV • Network Layer 

are applicable to the case of links with different costs in each direction.) We 
first use algorithm A to find shortest paths from a single source node to all 
other nodes. The algorithm is a step-by-step procedure where, by the k th 
step, the shortest paths to the k nodes closest to the source have been 
calculated; these nodes are contained in a set N. At the (k + I)th step, a 
new node is added to N, whose distance to the source is the shortest of the 
remaining nodes outside of N. More precisely, let l(i, }) be the length of the 
link from node i to node}, with I(i, }) taken to be + 00 when no link exists. 
Let D( n) be the distance from the source to node n along the shortest path 
restricted to nodes within N. Let the nodes be indicated by positive integers 
with 1 representing the source. 

(1) lnitia1i4ation. Set N = {1}, and for each node v not in N, set 
D(v) = 1(1, v). 

(2) At each subsequent step, find a node w not in N for which D(w) is 
a minimum, and add w to N. Then update the distances D(v) for the 
remaining nodes not in N by computing 

D{v) <- Min[D{v), D{w) + I{w, v)] 

Application of the algorithm to the network of Fig. 4(a) is shown in 
Table I, and the resultant tree of shortest paths appears in Fig. 4(b), 
together with a routing table for node 1, indicating which outbound link the 
traffic arriving at that node should take. (It should be clear that the same 
algorithm can be used to find shortest paths from all nodes to a common 
destination. ) 

Now consider algorithm B. This is an iterative procedure, which we will 
use in the same network to find shortest paths from all nodes to node 1, 
considered now as the common destination. To keep track of the shortest 
paths, we label each node v with a pair (n, D(v)), where D(v) represents the 
current iteration for the shortest distance from the node to the destination 

Table I. Algorithm A 

Step N D(2) D(3) D(4) D(5) D(6) 

Initial {J} 2 5 00 00 

J {I, 4} 2 4 2 00 

2 {1,2,4} 2 4 2 00 

3 {I, 2, 4, 5} 2 3 2 4 
4 {I, 2, 3,4, 5} 2 3 2 4 
5 {1,2,3,4,5,6} 2 3 2 4 



Chap. 12 • Routing Protocols 337 

and n is the number of the next node along the currently computed shortest 
path. 

(1) Initialization. Set D(1) = 0 and label all other nodes ( " + 00). 
(2) Update D(I') for each nondestination node I' by examining the 

current value D( w) for each adjacent node w and performing the operation 

D(I') <"- Min [D(w) + 1(1', w)] 
w 

Update of node I' 's label is completed by replacing the first argument n 
by the number of the adjacent node which minimizes the above expression. 
Step (2) is repeated at each node until no further changes occur, at which 
time the algorithm terminates. 

Table II illustrates the procedure for the network of Fig. 4(a). Two 
complete cycles of updates are required, after which no further changes 
occur and the iteration is complete. The tree of shortest paths generated is, 
of course, the same as that of Fig. 4(b). In this case, the nodes were updated 
in numerical order; however, any arbitrary order, cyclic or acyclic, will 
work. For each nondestination node, the first argument of its final label 
indicates the next node on the shortest path to the destination, and thus 
supplies the necessary routing information (for this destination only). 

A word of comparison is now in order. Construction of routing tables 
based on algorithm A requires a shortest path tree calculation for each node 
in the manner described above. The tree is constructed with the particular 
node chosen as source (root) node, and the routing information that is 
generated is used to construct the table for that node as illustrated in Fig. 
4(b). The tree can then be discarded. It should be noted that tree construc­
tion for each node requires global information about the network. Construc­
tion of a routing table using algorithm B requires repeated application of 
the algorithm for each destination node, resulting in a set of labels for each 
node, each label giving the routing information (next node) and distance to 
a particular destination. Note that in this case, the algorithm can be 
conveniently implemented in a distributed fashion, in which case each node 
requires only information from its neighbors. 

Evaluation of the comparative merits of the two algorithms depends on 
a number of factors: amount of overhead required in passing measured 

Table II. Algorithm B 

Cycle Node --7 2 3 4 5 6 

Initial (',00) (',00) (-,00) (-,00) (',00) 

\ (1,2) (2,5) (I, \) (4,2) (5,4) 
2 (1,2) (5.3) (I, I) (4,2) (5,4) 



338 Part IV • Network Layer 

information to the point(s) at which computation is performed, amount of 
data to be stored, complexity of the computation, speed with which the 
algorithm can respond to changes in link costs, etc. These comparisons can 
only be made meaningful in the context of a specific network. See Section 
III A 1, for an example, namely ARPAnet. 

Finally, it should be noted that the algorithms described here have been 
assumed to be operating under static conditions of topology and link costs. 
(Their convergence has been proved in the literature for this case only.) In 
some applications, the link costs are defined to depend in some fashion on 
link traffic, which in turn depends, through the routing algorithm, on link 
cost; the result is a feedback effect. By studying the dynamics of such 
situations, it has been shown [15] that poor choices of link cost functions 
can, in fact, produce instabilities in the resultant traffic patterns. Stability 
can, however, be ensured by making the link costs sufficiently insensitive to 
link flow. 

C. Packet Routing Implementation 

As indicated in Section II A, computation of the routing tables does 
not complete the routing procedure. These tables must be converted to a 
form appropriate for dispatching packets from node to node. In this section, 
we describe a method which underlies a number of schemes used for 
implementing routing on a single-path-per-VC basis in some existing or 
proposed systems [16], [l7]. The essence of the procedure is that each VC 
has a path number (PN) associated with each link it traverses; if two VCs 
share a link, they obtain different path numbers on that link. Each packet 
carries the appropriate PN, which is updated or "swapped" as the packet 
traverses the network. The updating procedure is determined by, and 
replaces the routing table, at each node. The PN contains all information 
necessary for routing; thus, the packet need not carry a VC number. To 
illustrate, consider a set of four active virtual circuits traversing the network 
of Fig. 5. The second column of Table III indicates the node sequence for 
the paths chosen for these VCs. (Note that VCI and VC2 have the same 
source/destination node pair, but different paths.) Let PN(n) be a path 
number associated with a path on a link outbound from node n; each link 
will have as many path numbers as there are distinct active VCs sharing that 
link. The remaining columns of Table III show how a sequence of PNs is 
assigned at each node, serving to identify uniquely the path to be followed 
by a packet on each Vc. When a packet is received on an inbound line at a 
node, its PN must be updated, and the packet must be placed on the proper 
outbound line or released to its destination. At each node, a simple table 
lookup procedure can perform this function. In Table IV we show the 
necessary table for node 4. Note that it is derived directly from the routing 
information in Table III. 



Chap. 12 • Routing Protocols 

4 3 

4 

Fig. 5. Example of routing implementation. 

Table III. Path Numbers 

vc# Path PN(l) PN(2) PN(3) 

1-2-4-3-6 
2 1-4-5-6 1 
3 1-2-4-3 2 2 
4 2-4-3-5 3 

Table IV. Routing at Node 4 

Arriving from node OldPN NewPN 

2 1 1 
2 2 3 
2 3 2 

PN(4) PN(5) 

1 

1 
3 
2 

Next node 

5 
3 
3 
3 

339 

The PN used in this section is roughly equivalent to the logical record 
number used by TYMNET [16] (see Section III A 2) and the next node 
indicator (NNI) once proposed for explicit routing [17]. It might be thought 
that it would be simpler to tag each packet with a unique VC number rather 
than using the procedure outlined here. However, there will generally be far 
more active VCs in the network (perhaps thousands) than there are distinct 
VCs sharing a link (up to 256 in the case of TYMNET, for example). Thus, the 
PN approach is generally more efficient in memory requirement and table 
lookup time than any method using VC numbers. 



340 Part IV • Network Layer 

III. Examples of Routing Procedures Used in Practice 

A. Computer and Data Networks 

1. ARPAnet, A Computer Network * 

ARPAnet [18] was created in 1969 as an experiment in computer 
resource sharing. Beginning with four nodes in 1969, it now runs as an 
operational system with over 100 computers connected to 56 nodes 
throughout the continental United States, Hawaii, and Europe. It is a 
distributed network with at least two paths between any pair of nodes. Most 
of its lines are 50-kbit/s synchronous links. It is a store-and-forward 
packet-switched network in which the transport protocol is message-ori­
ented. Messages longer than the maximum packet length are segmented into 
up to 8 packets at the source node and are reassembled at the destination 
node. This requires special provision for buffer allocation at the nodes to 
prevent various types of lockups (a significant problem in the early stages of 
network development). 

The network was originally operated with a distributed adaptive rout­
ing algorithm of the minimum cost, i.e., shortest path, type wherein link cost 
was evaluated in terms of measured link delay. Since the measured delays 
were determined by queue lengths encountered along a packet's transmis­
sion path, these quantities varied rapidly with time. Routing was on an 
individual packet basis where each packet was forwarded along the path 
that was perceived by the forwarding node to be the shortest in time to the 
packet's destination at the time of transmission. Since adaptivity was quite 
rapid, and different nodes could have different views of network conditions, 
perceptions of shortest paths could change during the period the packet 
traversed the network, typically ten to several hundred milliseconds. The 
shortest path algorithm used was essentially our algorithm B (Section II B), 
with information necessary for node updates passed among neighbors at 
2/3-s intervals. Details of the algorithm can be found in [19]. A number of 
difficulties appeared in the algorithm, and it underwent several modifica­
tions [2] from the time it was implanted until May 1979 when it was 
replaced by a basically different procedure [20]. 

The new routing algorithm is distributed in the sense that each node 
independently computes its own routing tables using what is called a 
shortest path first algorithm (essentially our algorithm A with some modifica­
tions). That is, each node computes a shortest path tree with itself as the 

'The authors are indebted to Dr. John McQuillan of Bolt Beranek and Newman for providing 
information on ARPAnet. 



Chap. 12 • Routing Protocols 341 

root node. Since algorithm A requires availability of global network infor­
mation at the node doing the routing computation, this procedure can also 
be viewed as a "partially" centralized method. 

Link costs are evaluated in terms of time delays on the links. Each node 
calculates an estimate of the delay on each of its outbound links by 
averaging the total packet delay (processing, queueing, transmission, re­
transmission, propagation time) over lO-s intervals. (One of the problems 
with the first algorithm was that delay estimates were obtained too fre­
quently to be accurate.) Since all nodes must be informed of any changes in 
link time delays, a "flooding" technique is used in the new method for 
forwarding the measured delays throughout the network. Each node trans­
mits to all its neighbors delay information for all of its outgoing links. It 
also acts as a repeater, broadcasting to all of its neighbors the link delay 
information it has received from other nodes. (Transmitting delay informa­
tion back to the adjacent node from which it was received provides an 
automatic positive acknowledgment mechanism.) Duplicate delay informa­
tion packets are dropped, so that while the information propagates to all 
nodes in. the network, it does not circulate indefinitely. To reduce the 
amount of communication overhead involved in this information exchange, 
the lO-s average link delay measurements are not always transmitted. Only 
when the change in link delay since the last transmission exceeds a certain 
threshold does a new transmission take place. The threshold is reduced as 
time increases since the previous transmission. (However, a change in the 
status of a line is reported immediately.) The total communication overhead 
involved in delay update exchanges is less than I percent. 

Since a complete execution of algorithm A at each update requires 
considerable computation, the algorithm has been modified so that "incre­
mental" computation can be performed. When a single link delay changes 
(or if a link or node is added or deleted from the network), each node does a 
partial computation to restructure its shortest path tree. (This, of course, 
implies that each node must store the most recently updated tree as a basis 
for future updates, imposing an additional memory requirement.) Also, to 
take care of the case where link or node failures cause a complete partition 
of the network, an indication of "age" is inserted in each delay update 
packet. In this way, "out of date" delay information can be recognized and 
discarded when lines are reconnected and routing tables are recomputed. 
Operational results indicate that complete processing of a routing update at 
a node requires several milliseconds on the average. 

A series of tests were performed with the algorithm under actual 
operating conditions, revealing a number of its features: it responds fairly 
rapidly (100 ms) to topological changes (one of the problems with the earlier 
algorithm was that it responded too slowly to line failures); it usually does 
minimum hop routing, but under heavy load conditions it spreads traffic 



342 Part IV • Network Layer 

over lines with excess capacity; it can respond to congestion by choosing 
paths to avoid congested nodes; and it seems to be stable and free of 
sustained looping. 

Based on the information available at this time, the new algorithm 
seems to show some advantages over the old in terms of speed of response 
to changing topology, stability, and suppression of looping. These ad­
vantages are apparently attained without undue overhead. It must be kept 
in mind that in going from algorithm B to A, many other aspects of the 
routing scheme were also changed, most importantly, the procedure for 
estimating and forwarding link delay information. Many of the problems 
encountered using algorithm B were due to the extremely rapid updating 
that was used based on information whose accuracy did not warrant such 
rapid adaptivity. 

2. TYMNET Routing Algorithm 

TYMNET is a computer-communication network developed in 1970 by 
Tymshare, Inc. of Cupertino, CA. It has been in commercial operation since 
1971 [1], [21], [22]. Originally developed for time-shared purposes, it has 
more recently taken on a network function as well, and is classified by the 
Federal Communications Commission as a value-added specialized carrier. 
As of 1978, the network had 300 nodes in operation and was growing at the 
rate of 2 nodes/week [16]. Almost all nodes are connected to at least two 
other nodes in the network, giving rise to a distributed topology with 
alternate path capability. The network is designed primarily to handle 
interactive terminal users, although it does handle higher-speed synchronous 
traffic as well. The lines connecting the nodes range in speed from 2400 to 
9600 bit/so The network covers the United States and Europe, with connec­
tions also made to the Canadian Datapac Network. Trans-Atlantic lines are 
cable with satellite backup. Satellites are avoided, where possible, for 
interactive users because of the substantial delay involved. 

Individual user data packets or logical records, each preceded by a 
16-bit header incorporating an 8-bit logical record number to be discussed 
below and an 8-bit packet character count, are concatenated to form a 
physical record of at most 66 8-bit characters, including 16 bits of header 
and 32 bits of checksum for error detection [1]. These data packets can 
range in length from a few characters to a maximum of 58 characters. 
(Physical records are transmitted as soon as available, without waiting for a 
specified size logical record to be assembled.) 

TYMNET routing is set up centrally on a virtual circuit, fixed path, basis 
by a supervisory program running on one of four possible supervisory 
computers in the network. 



Chap. 12 • Routing Protocols 343 

A least cost algorithm [1], [16] is used to determine the appropriate 
path from source to destination node over which to route a given user's 
packets. The path is newly selected each time a user comes on the network, 
and is maintained unchanged during the period of the user connection or 
session. (In the event of an outage, the session is interrupted and a new 
routing path has to be computed. In TYMNET I, the version of TYMNET that 
has operated to the present, this could take up to 2.5 min as the supervisor 
learned of the incident and established the new topology. In the newer 
TYMNET II, which is gradually replacing the earlier version, rerouting in the 
event of an outage is carried out by the supervisor in a manner transparent 
to the user.) The algorithm used by the supervisor is a modification of 
Floyd's algorithm, a v¢ation of our algorithm B. 

Integer-valued costs are assigned to each link, and costs are then 
summed to find the path of least cost. The cost assignments depend on line 
speed and line utilization. Thus, the number 16 is assigned to a 2400-bit/s 
link, 12 to a 4800-bit/s link, and 10 to a 9600-bit/s link. A penalty of 16 is 
added to a satellite link for low-speed interactive users. This shifts such 
users to cable links, as noted above. 

A penalty of 16 is added to a link if a node at one end complains of 
"overloading." The penalty is 32 if the nodes at both ends complain. 
Overload is experienced if the data for a specific virtual circuit have to wait 
more than 0.5 s before being serviced. This condition is then reported by the 
node to the supervisor. An overload condition may occur because of too 
many circuits requesting service over the same link,. or it may be due to a 
noisy link with a high error rate, in which case the successive retransmis­
sions which are necessary slow the effective service rate down as well. The 
penalty used in this case serves to steer additional circuits away from the 
link until the condition clears up. 

Details of the specific algorithm used appear in [16]. In the absence of 
overloading, the algorithm tends to select the shortest path (least number of 
links) with highest transmission speed. As more users come on the network, 
the lower-speed links begin to be used as well. In lightly loaded situations, 
users tend to have relatively shorter time delays through the network. The 
minimum hop paths, favored in the lightly loaded case, also tend to be more 
reliable than ones with more links. Users coming on in a busy period may 
experience higher time delays due both to congestion and to the use of lower 
speed lines. The use of the overload penalties tends to spread traffic around 
the network, deviating from the shortest path case, but attempting to reduce 
the time delay. In practice, the average response time for interactive users is 
0.75 s [16]. 

It takes 12 ms for the supervisor to find the least cost path using this 
algorithm [23]. Once the path has been selected, the supervisor notifies each 
of the nodes along the path, assigning an 8-bit logical record number to each 



344 Part IV • Network Layer 

link on that path. (This allows up to 256 users or channels to share anyone 
link. In practice, the maximum number ranges from 48 for a 2400-bit/s line 
to 192 for a 9600-bit/s line. In addition, one number or channel is reserved 
for a node to communicate with the supervisor and one channel is reserved 
for communications with the neighboring node.) The supervisor also associ­
ates a logical record number on an incoming link to a node with a number 
on the appropriate outgoing link setting entries in routing tables, called 
permuter tables in TYMNET terminology. This process, described in more 
detail later, is basically the same as the method of path number swapping 
described in Section II C. In the TYMNET II version of the network, the 
nodal computers themselves establish the routing table sizes and entries, as 
well as the buffers associated with them, relieving the supervisor of this 
burden. 

Routing information is sent to a particular node in a 48-bit supervisory 
record with the usual 16 bits of logical record overhead as part of a normal 
physical record. The data transmission overhead due to the dissemination of 
this routing information is calculated, on a worst case basis, to be 1.6 
percent [23]. This assumes that the circuit to be set up is 4 links long, with 5 
nodes to be notified (the average path in TYMNET is 3.1 links) during a busy 
period in which an average of 1 user / s requests entry to the network. The 
supervisory overhead is taken as distributed equally over a minimum of 8 
outgoing 2400 bit/s links from the supervisor. This calculation does not 
assign any physical record overhead to the supervisory logical record. The 
assumption is made that there are always data waiting to be transmitted and 
that the supervisory record is piggybacked onto a normal data record, as 
noted earlier. 

Each node acknowledges receipt of the routing information, again 
doing this as part of a physical record. (Nodes, in addition, report any link 
outages to the supervisor as part of a 48-bit record transmitted every 16 s.) 

The procedure at a node for forwarding an incoming data packet 
(logical record) to the appropriate outgoing link, or to either a host 
computer or terminal if at the destination node, proceeds as follows. As 
noted earlier, there is a routing or permuter table associated with each link 
at a node. Each logical record number in either direction on the link is 
associated with an entry in the table. That entry, in turn, corresponds to the 
address of a pair of buffers at the node, one for each direction of data flow 
(inbound and outbound). For L links at a node, L permuter tables are 
needed, each receiving up to 256 buffer addresses. An error-free physical 
record arriving at a node is disassembled into its component data packets 
(logical records). Each data packet is steered by the permuter table entry to 
its appropriate buffer. Data in buffers destined for terminals and/or 
computers associated with this node are then transferred to the appropriate 
device. This node thus represents the destination node for these logical 



Chap. 12 • Routing Protocols 345 

records. Logical records waiting in transit buffers are handled differently. A 
physical record for a given outgoing link is created, under program control, 
by scanning sequentially the entries in the permuter table for that link. As 
each buffer address is read, a determination is made as to whether its pair 
has had data entered. If so, the data are then formed into a logical record 
with their corresponding new logical record number. This logical record is 
incorporated in the physical record and is transmitted out over the link. 

A specific example appears in Fig. 6 [23]. Figure 6(a) shows a typical 
two-link virtual circuit connecting nodes numbered 5, 7, and 10. In this 
example, terminal data enter the network via a terminal port at node 5, 
destined for a Host computer connected to node 10. The link connecting 
nodes 5 and 7 is labeled 1, as seen at the node 5 side, and 2 as seen at the 
node 7 side. Similarly, the link connecting nodes 7 and 10 is labeled 3 at the 
node 7 side and 1 at the node 10 side. 

Figure 6(b) portrays the logical record number assignments and per­
muter table entries in detail, node by node. (Eight possible logical record 
numbers only have been assumed for simplicity.) The logical record num­
bers 4 and 6 have been assigned to this virtual circuit over the two links 
shown, respectively. At node 5, the entry node, the number 3 in entry 4 in 
the permuter table for link 1 indicates that data with logical record number 
4 are to be found in buffer 2, the mate of buffer 3. 

At node 7, data coming from link 2 are stored in buffers designated by 
the contents of the permuter table for link 2 at that node. Continuing with 
this example, data arriving at that link with logical record 4 are to be further 
transmitted over outgoing link 3 to node 10. Their outgoing logical record 
number is to be changed to 6. To accomplish this, note that the contents of 
entry 4 of permuter table 2 and entry 6 of the permuter table 3 are paired 
together. Data arriving over incoming link 2 are stored in buffer 8. They are 
read out over link 3 when the entries for the permuter table for that link are 
scanned, entry 6 pointing to buffer 9, the mate of buffer 8. At node 10, the 
destination node for this virtual circuit, data arriving with logical record 6 
are stored in buffer 100 of that node and are then transferred to the 
appropriate Host. 

3. Routing in TRANSPAC* 

TRANSPAC, the French public packet-switching service [24], began oper­
ation in December 1978 with ten nodes (soon to be expanded to twelve) in a 

'The authors are indebted to J. M. Simon of TRANSPAC for providing information used in 
preparing this section. 



~
2
 

1 

IN
P

U
l 

F
R

O
M

 
L

IN
K

 1
 

2 
,
-
/
.
 3 

1 c;P
 

T
E

R
M

IN
A

L 
P

O
R

T 
5 

\2
).

-=
--

--
--

-'"
-1

 10
 

• 
TO

 H
O

S
T

 P
O

R
T 

N
O

D
E

 5
 

3 
N

O
D

E
 

7 
N

O
D

E
 1

0 

O
. 

T
Y

P
IC

A
L

 V
IR

T
U

A
L 

C
IR

C
U

IT
: 

T
W

O
 L

IN
K

S
, 

T
E

R
M

IN
A

L
 

TO
 

H
O

S
T

 
P

O
R

T
 

FR
O

M
 T

E
R

M
IN

A
L 

\ 
P

O
R

T
 

P
E

R
M

U
T

E
R

 
T

A
B

L
E

, 
L

IN
K

 
1 

0 1 2 3 

:8
"-

--
--

--
4 5 6 

3 

B
U

F
F

E
R

 
P

A
IR

 
7 

LI
N

K
 

P
E

R
M

U
T

E
R

 
T

A
B

LE
, 

L
IN

K
 2

 

0 1 2 3 4 
8 

5 6 7 

P
E

R
M

U
T

E
R

 
T

A
B

LE
. 

L
IN

K
 3

 0 1 2 3 4 5 
9 

6 7 

L
L

O
G

IC
A

L
 R

EC
O

R
D

 
t 

N
U

M
B

E
R

S
 

LI
N

K
 P

E
R

M
U

TE
R

 
T

A
B

LE
. 

L
IN

K
 1

 

0 1 2 3 4 5 6
rT

o
O

 
7 

FR
O

M
 

H
O

S
T

 
P

O
R

T
 

J 
,
~
l
O
O
 

c=
=:

J
10

1 

N
O

D
E

 
5 

N
O

D
E

 
7 

N
O

D
E

 1
0 

b.
 

P
E

R
 M

U
T

E
R

 
T

A
B

LE
S

 
A

N
D

 
LO

G
IC

A
L 

R
E

C
O

R
D

 
N

U
M

B
E

R
S

 

Fi
g.

 6
. 

R
ou

ti
ng

 e
xa

m
pl

e,
 T

Y
M

N
E

T
. 

~ ~ '<: • I { 



Chap. 12 • Routing Protocols 347 

distributed network configuration. As is the case with most public packet­
switching services, the transport procedures for TRANSPAC follow the X.25 
international standard protocol. Thus, this is a virtual-circuit-oriented sys­
tem, and the routing procedures discussed below reflect this orientation. For 
purposes of reliability, there are at least two 72-kbitjs lines, following 
different physical paths, connecting each node to the remainder of the 
network. Each node consists of a control unit (CU) (a CII Mitra 125 
minicomputer) to which are attached a number of switching units (SU). 
Each incident link is controlled by an SU, which executes all data link 
procedures. The SUs also execute the access protocols for customers con­
nected to the node. Routing is handled by the CU, using information from 
the Network Management Center (see below). 

Network control is partially decentralized through six local control 
points which handle a certain amount of statistics gathering and perform 
test and reinitialization procedures in case of node or line failures. However, 
general network supervision, including the bulk of routing computation, is 
exercised through a single Network Management Center (NMC). 

Routes in TRANSPAC are assigned on a single-path-per VC basis. The 
algorithm of interest to us here is that which governs the assignment of a 
route to a switched virtual circuit, i.e., a VC which is established temporarily 
in response to a "call request." The call request takes the form of a Call 
Packet, emitted by equipment connected to the originating network node, 
and requesting connection to a specified destination. The path that eventu­
ally will be retained by the switched VC is identical to that taken by the Call 
Packet as it is forwarded through the network. Routing of the Call Packet is 
effected through routing tables stored at each node; as indicated in Section 
II, the tables associate a unique outbound link with each destination node. 
The network as currently configured has two classes of nodes. One class is 
connected in a distributed fashion, with alternate route capability. The 
second class consists of nodes homing in via a single link to a node of the 
first class. Node 5 in Fig. 7 is an example of a node of the first type; node 6 
is a node of the second type. Messages destined to nodes of the second type 
are routed to the "target" node to which they are connected. In Fig. 7, 
messages destined for node 6 have node 5 as a target node. 

The routing tables for the network are constructed in an essentially 
centralized fashion, using a minimum cost, i.e., shortest path criterion. Link 
costs are defined in terms of link resource utilization. Thus, the cost 
assigned to a link varies dynamically with network load. We shall first 
describe the method of evaluation of link cost and then the routing 
algorithm [25], [26]. Consider a full duplex link k connected between nodes 
m and n. Let Cn,( k), Cn( k) be the cost assigned to link k as perceived by 
nodes m and n, respectively, and let C(k) = Max [Cm(k), Cik)] be the 
"combined" estimate of link cost. The quantities C;( k) are the basic data on 



348 Part IV • Network Layer 

Fig. 7. Routing example, TRANSPAC. 

which routing computation is based; they are determined locally by each 
node's CU which gathers estimated and measured data from its associated 
SU's. Link cost is defined as a function of the level of utilization of two 
types of resources: line capacity and link buffers. The utilization of these 
quantities is evaluated both by estimation (based on the parameters of the 
active VCs using the link) and by measurement. The cost Ci(k) is set to 
infinity if either the link is carrying its maximum permissible number of 
VCs or it has exceeded a preset threshold of buffer occupancy. Otherwise, 
C;(k) is defined as a piecewise constant increasing function of average link 
flow, quantized to a small number of levels and including a "hysteresis" 
effect. A typical function is shown in Fig. 8, with the arrows indicating the 

LINK COST 

t 

T 
LINK UTILI ZATION 

Fig. 8. A typical link cost relation, TRANSPAC. 



Chap. 12 • Routing Protocols 349 

way link cost changes as a function of changing utilization. The nodes send 
updated values of their Clk)'s to the NMC whenever a change occurs; 
these events are infrequent owing to the combined effect of coarse quanti­
zation and hysteresis. At the NMC, the costs perceived by the nodes at both 
ends of each link are compared to form C( k) as defined above. 

The major part of the routing computation takes place at the NMC, 
but some local information is used at each node. The procedure is illustrated 
by an example in Fig. 7 in which a Call Packet arriving at node 1 (which 
may be either the originating node or an intermediate one) is to be 
forwarded through one of the adjacent nodes 2,3,4 to the target node 5, and 
finally to the destination node 6. Let C(k, n) (computed by the NMC) be 
the total cost associated with the minimum cost path between nodes k and 
n. Node 1 determines the "shortest" route to node 5 by choosing the value 
of k which minimizes C( k, 5) + Max [C( k), C1( k )], k = 2,3,4. In this way, 
node 1 chooses the intermediate node that would have been chosen by the 
NMC, unless the value of C1(k) has changed recently. Ties are resolved by 
giving priority to the shortest hop path. Because of the way in which link 
costs are defined, the routing procedure becomes a minimum hop method 
upon which is superimposed a bias derived from the level of link resource 
u tiliza tion. 

Although the TRANSPAC routing algorithm has many of the features of a 
typical centralized routing procedure, its operation departs from being 
purely centralized by allowing the final routing decision to be made locally, 
based on a combination of centrally and locally determined information. 
This is similar to the concept of "delta routing" suggested by Rudin [27]. 

By examining the current topology of the network [24], one can deduce 
the order of magnitude of the computational load at the NMC. The 
C(k, n)'s must be determined for all k and n belonging to the subset of all 
possible target nodes. Only six out of the twelve currently planned network 
nodes are in this category. Furthermore, rather than doing a complete 
shortest path computation to determine these quantities, the designers chose 
to limit the shortest path computation to a minimization over a prescribed 
subset of four or five paths joining each pair of nodes. Thus, the computa­
tion of all pertinent C(k, n)'s involves at most 75 path length evaluations. 

At this writing, the network has recently entered its operational phase, 
with 300-400 subscribers as compared to an expected full load population 
of 1500. It is reported that the routing algorithms are operating satisfacto­
rily, without undue overhead. 

B. Commercial Network Architectures 

The examples discussed thus far have all been operational networks. 
Specific physical implementations exist, although the networks have been 



350 Part IV • Network Layer 

steadily growing and changing their topologies. In the two examples dis­
cussed in this section, we focus on another type of distributed network 
architecture for which routing procedures become important. These are the 
network protocols introduced by most large computer system manufacturers 
during the past decade or so to enable private users to configure their own 
computer networks. Such networks are being increasingly developed to 
handle such diverse tasks as distributed processing, distributed database 
handling, and computer resource sharing. A computer manufacturer's pro­
tocol is designed to enable a user to interconnect a variety of computer 
systems and terminals in any desired configuration. All of these network 
protocols tend to follow a layered architecture, starting at the lowest level, 
that of setting up physical connections, continuing to the next, data link 
level, which controls the flow of data packets between neighboring nodes, 
then proceeding to the transmission or transport level, involved with end-to­
end (source to destination) control of packet flow, routing, and congestion 
control, and finally concluding, at the highest levels, with several levels of 
"handshaking" between users or programs at the two ends. Other chapters 
in this book discuss these network protocols in detail. 

In this section, we describe the routing procedures defined for distrib­
uted versions of the IBM Systems Network Architecture (SNA) and the 
Digital Equipment Corporation's Digital Network Architecture (DNA), 
which are described in Chapters 11 and 10, respectively. These are both 
relatively recent developments since earlier versions of both SNA and DNA 
were tailored primarily to star- or tree-type network configurations with no 
real need for routing. It will be noted that, unlike the network examples 
discussed previously, where networking is essentially transparent to the user, 
it is left to the user of either SNA or DNA to configure his own network. 
There is a certain flexibility in the routing procedures as well, with the user 
free to define his own link costs and paths to be taken. This is, of course, 
not the case in the earlier networks described. 

1. IBM's Systems Network Architecture (SNA)* 

The early versions of SNA, appearing in 1974, were designed for 
single-computer system tree-type networks [28], [29]. In these networks, it is 
apparent that routing was not really a significant problem. Later versions of 
SNA allow two or more such single-system networks to be interconnected, 
leading to the concept of cross-domain networking [28]. Here, too, routing 
requirements were quite simple. IBM's latest SNA architecture, termed SNA 
4.2 [30], envisions multiple computer systems interconnected to form a 
distributed network. Routing thus plays an important role in the architec­
ture. 

'The authors are indebted to Dr. James P. Gray of IBM for help with this section. 



Chap. 12 • Routing Protocols 351 

The routing procedure chosen for SNA incorporates predetermined 
fixed paths from source to destination. A multiplicity of possible routes is 
provided to increase the probability that a route will be available when 
needed to achieve load leveling, to provide alternate route capability in the 
event of node/link failures or congestion, and to provide different types of 
services for different classes of users [30], [31]. For example, batch traffic 
would normally be routed differently from interactive traffic. (Not only are 
the response time requirements different, calling usually for different capac­
ity links, as noted earlier in discussing the TYMNET routing procedure, but 
one would not normally want to have batch traffic interfering with, and 
hence slowing down, interactive traffic. In SNA 4.2, this can be done by 
assigning a lower transmission priority to batch traffic.) Some traffic may 
require high security handling and will therefore be routed differently. 

Multiple routing is provided at two levels: when first initiating a 
session, the user specifies a name corresponding to a particular class of 
service. Examples of classes of service include low response time, high 
capacity lines, more secure paths, etc. Associated with each class of service 
name is a list of possible virtual routes for use by sessions specifying that 
name. This list provides load balancing and backup capability. A particular 
session uses only one of these virtual routes at a time. This corresponds to 
the first level of multiple routing. Each virtual route provides a full-duplex 
connection between source and destination nodes, and can support multiple 
users or sessions. Each virtual route in tum maps into a so-called explicit 
route, the actual physical path from source to destination. It is this path that 
has been precalculated to provide the desired performance. Multiple explicit 
routes will exist, on a unidirectional basis, between any source-destination 
nodal pair. The multiple explicit routes provide the second level of multiple 
route control noted earlier. In the current SNA 4.2 release, up to eight 
explicit routes can be made available between any source-destination nodal 
pairs. Several virtual routes may use the same explicit route. 

Although explicit routes are established by the source node on a 
unidirectional basis, e:x:plicit routes are used in pairs that are physically 
reversible. This simplifies user notification of route failure. 

Up to 24 virtual routes are currently available between any pair of 
nodes. These are grouped into three levels of transmission priority, with 
eight possible virtual route numbers associated with each level. The entire 
set of virtual routes, each identified by a virtual route number and transmis­
sion priority, is stored in a virtual route identifier list. Class of service names 
are then associated with subsets of this list, in some preassigned order. A 
user setting up a session specifies his class of service name. He is then 
assigned to the first virtual route in the virtual route list that is available or 
can be activated. Multiple sessions may be assigned to the same virtual 
route. The same virtual route is defined by four fields-the source and 
destination addresses, a virtual route number, and the transmission priority. 



352 Part IV • Network Layer 

The explicit route corresponding to a specific virtual route is, in turn, 
defined by the source and destination addresses and an explicit route 
number. Each explicit route number represents one of the eight distinct 
routes possible between any source-destination nodal pair. A given explicit 
route is made up of a sequence of logical links connecting adjacent nodes 
along the path. 

The term transmission group is used for logical link in the SNA 
terminology. Transmission groups may consist of multiple physical links. 
Thus, a set of parallel physical links between any two nodes can be divided 
into one or more transmission groups. This adds flexibility to the transmis­
sion function: physical links may be combined in parallel to provide higher 
capacity, links may be dynamically added or deleted without disruption, 
and scheduling of links is employed to optimize the composite bandwidth or 
capacity available. But the use of multiple-link transmission groups means 
that data packets or blocks may arrive out of sequence. Out-of-order blocks 
must thus be reordered at the receiving end of each transmission group 
along the composite path. 

Routing of data packets is carried out by examining the destination 
address and explicit route number as a packet arrives at an intermediate 
node along the path. An explicit routing table at each node associates an 
appropriate outgoing transmission group with the destination address and 
explicit route number. An example of such a table at a particular node 
appears in Fig. 9. The letters represent the transmission groups to which 
packets with the corresponding address, route number pair are directed. By 
changing the explicit route number for a given destination, a new path will 
be followed. This introduces alternate route capability. If a link or node 
along the path becomes inoperative, any sessions using that path can be 
reestablished on an explicit route that bypasses the failed element. Explicit 
routes can also be assigned on the basis of type of traffic, types of physical 
media along the path (satellite or terrestrial, for example), or other criteria, 

EXPLICIT ROUTE NUMBER-

2 3 4 5 
A 

DESTINATION ADDRESS 
B 

+ 
2 A C 

3 B C 

4 B 

Fig. 9. Explicit routing table, SNA. 



Chap. 12 • Routing Protocols 353 

as already noted. Routes could also be listed on the basis of cost, the 
smallest cost route being assigned first, then next smallest cost route, etc. 

Note that the explicit routing concept is similar to that adopted by 
TYMNET in its virtual circuit approach. Here the path selected may be 
changed by the source node, however, by choosing a new explicit route 
number. In essence, a variety of alternate routes is laid out in advance. This 
introduces the alternate route capability noted above. In the current TYMNET 

approach, the central supervisor must set up a new path if one is desired. 
The concept of explicit routing, as first enunciated and as noted in 

Section II earlier, is somewhat broader than the one described here [17]. 
There, rather than using a fixed explicit route number, a variable "next node 
index" (NNI) field was proposed for the packet header. The combination of 
the destination address and the NNI field then directs the packet to the 
appropriate outgoing transmission group. The NNI is changed at the same 
time as well. This allows more explicit routes to be defined than through the 
use of a fixed explicit route number. The idea is similar to the (variable) 
logical record number concept used by TYMNET. In addition, some form of 
intermediate or local node routing capability could be introduced through 
the use of the NNI. For by changing the NNI locally, a new path from that 
point on will be followed. This makes it possible to introduce alternate route 
capability along the initial path chosen in the event of localized congestion 
or some other delaying phenomenon. The British NPL, in a series of 
network simulation experiments., has shown the benefits of alternate route 
capability [32]. Rudin has proposed as well a routing strategy that combines 
centralized routing with a measure of local adaptability [27]. The general 
idea of explicit routing thus enables centralized, distributed, and local 
routing strategies (or some combination of them) to be introduced into the 
network. In the current IBM implementation, however, only precalculated 
routes are used. 

Three steps are required to activate a route. The individual links of the 
transmission groups forming the explicit route must be brought up. The 
explicit route is then activated. Finally, the virtual route to be used that 
maps into this explicit route must be activated. Special command packets 
are used for this purpose [31]. For example, an explicit route is activated by 
transmitting a specific activate command from node to node along the path. 
This packet verifies the routing tables of the nodes along the path. It ensures 
loop-free routes by checking the routing tables of nodes along the route. It 
verifies that there are no packets along the path with the same source-des­
tination address pairs. It also measures the length of the explicit route in 
hops. Activation of the explicit route is considered completed when verified 
by a reply command from the destination. If the activation of the first-choice 
virtual route and its associated explicit route fails, the second-choice virtual 
route is tried, repeating with the third choice, and so on, if necessary. 



354 Part IV • Network Layer 

The user is involved in setting the routing tables, and hence in route 
definition in the SNA architecture. Thus, the user can define the routes he 
desires, given his physical topology, by providing table entries at system 
definition time. The user can also ensure that a session is established on a 
desired route. For unique or specialized requirements, the user can write a 
user-exit routine that is invoked during session establishment. This exit can 
assign a session to a specific route. 

2. Routing in Digital's DNA* 

Digital Equipment Corporation's network architecture is called Digital 
Network Architc;:cture, or DNA for short. It provides the interfaces and 
protocols that enable users to create their own networks using Digital 
Equipment Corporation Systems. The family of network products support­
ing DNA is generally called DECnet. DNA and DECnet were first intro­
duced in 1973. 

As does the IBM SNA, DNA employs a layered architecture. Six levels 
have been defined, as shown in Fig. 10 [33]. The Transport Layer shown in 
the figure was sufficiently simple in the Phase II DECnet implementations 
introduced in 1978 so as to be encompassed within the Network Services 
Layer. Phase II provides for point-to-point connections with no routing 
capability required. The next phase, Phase III DECnet, will have provision 
for store-and-forward distributed topologies requiring routing, flow and 
congestion control, and a network management capability. For this phase of 
DECnet, the Transport Layer has been defined and provides the necessary 
routing and congestion control features. In this section of the paper, we 
focus on routing in Phase III of DECnet. 

The routing procedure adopted by Digital Equipment Corporation is 
based on a variation of the distributed shortest path algorithm (our algo­
rithm B), with each node carrying out its own calculations. It is similar to 
the protocol analyzed by Tajibnapis [34] which has been implemented on 
the Michigan MERIT Computer Network. The routing algorithm adapts to 
changes in network topology (it does not use traffic flow information), and 
so needs to be invoked only when a link or node in the network comes up or 
fails. Unlike the IBM SNA approach, routing is done on a packet-by-packet 
or datagram basis, as contrasted to a virtual circuit service. 

To carry out the least cost routing procedure, each link in the network 
is assigned a fixed cost. The specific cost is set by the user, but is 
approximately inversely proportional to link capacity. (Note that these 
assignments are then roughly similar to those used by TYMNET.) Paths with 

*The authors are indebted to Anthony Lauck of the Digital Equipment Corporation for 
providing information used in preparing this portion of the paper. 



Chap. 12 • Routing Protocols 355 

---=""""'<::-------- User Layer 

~~!::=-.:::....""'~~----- Network Application Layer 
--:::::.....,,--.....::.. ____ ~---- Network Service Layer 

--:::::..."..-~~~~--- Transport Layer 

_---'~-~___T---'<--'r---- Do tali n k La ye r 
--=...---"<--\--\--\--\--- Physi co I Li n k La yer 

---\--\--\-----'\-\-\-+-- Comm u n i co t i on Foe i I it ies 

Fig. 10. DNA layered architecture. 

high capacity links are favored. These costs are used by each node to derive 
a routing database (or routing table) which lists the cost to each destination 
using each of the node's outgoing lines. An example appears in Fig. ll(a). 
(Each node in the network is assigned a unique address. Naming and 
addressing are carried out at a level higher than the Transport level.) 

Packets going to a particular destination are routed to the output link 
with the smallest cost. In the example of Fig. ll(a), packets going to 
destination C would take output line 2 with a cost of 2 units. Those going to 
destination B would take output line 1. The listing of minimum cost 
outgoing lines, one for each destination, that is used in routing the packets 
is kept in a second database, called the forwarding database. An example 
appears in Fig. ll(b) for the routing table of Fig. 11 (a). (A third, Boolean, 
database indicates whether each destination is reachable or not. This.is 
discussed briefly later.) 

As noted earlier, these tables are changed only on receipt of routing 
messages, triggered by a line ( or node) coming up or going down. Specifi­
cally, a node, on learning that one of its links or a neighboring node has 
either been brought up or has failed, will update its tables. If the minimum 
cost to any destination has changed, the cost information is broadcast using 
a routing message to all the neighbors. These nodes, in turn, add to the cost 
forwarded for each destination the link cost for the link over which the 
message has arrived. The sum is then entered in the routing database. 
Minimization is then carried out row by row (i.e., for each destination), and 
the forwarding database is changed. If the resultant cost changes, this is, in 
turn, broadcast, using routing messages, to all neighbors. In this way, 
changes percolate throughout the network. 

Routing messages contain 16 bits per destination, with a maximum of 
128 nodes allowed at present. The routing message thus consists of a 
maximum of 256 bytes. Of the 16 bits, 11 are used to transmit total cost 
information and 5 bits represent a hop count that is transmitted as well. 



356 Part IV • Network Layer 

OUTBOUND LlNE---

1 2 3 
DESTINATION NODE A 3 4 5 

~ B 3 5 6 

C 5 2 6 

D 4 5 2 

E 

F 

o. ROUTING DATA BASE 

DESTINATION 
MINIMUM COST OUTBOUND LINE 

~ A 

B 

C 

D 

E 

F 

1 

2 

3 

b. FORWAR DING DATA BAS E 

Fig. 11. Typical nodal routing tables, DNA routing protocoL (Similar tables are kept at each 
node.) 

This hop count is incremented by 1 at each node, and is used for reachabil­
ity analysis. To avoid indefinite ping-ponging, one node adding 1, its 
neighbor adding 1, back and forth, a destination is declared unreachable if 
the hop count reaches a specified maximum. This maximum could be one 
more than the maximum path length, it could be the diameter of the 
network, etc. 

Packets going to an unreachable destination are discarded. However, 
there is an option of notifying the source that a particular destination is 
unreachable through the use of a "return to sender" packet. This would be 
used on setting up a connection or initializing the operation of the network. 

If a link fails, packets queued on that link are discarded as well. To 
maintain end-to-end (source to destination) integrity, an acknowledgment 
and time-out procedure is carried out by the higher-level Network Service 



Chap. 12 • Routing Protocols 357 

Layer of DNA. (The lower-level digital data communications message 
protocol-DDcMP-provides link, or node-to-node, error control as well. 
This is, of course, similar to link error control carried out by HDLC, SDLC, 
and other data link control protocols [1).) 

How does a node know if a link is down? This is based on the number 
of retransmissions of packets needed. If the number 7 is reached the link is 
declared down. In addition, provision is made for transmitting a low-prior­
ity "Hello" message to a neighboring node that has not been heard from for 
a while. If there is no acknowledgement, the node is declared down. 

The actual software implementation of the routing procedure involves 
three processes: a decision process, which receives routing messages; an 
update process, which updates the routing tables; and a packet forwarding 
process, which uses the forwarding database to route the packets. Normally, 
the third process only is used. The first two are run only when changes in 
the network topology dictate changes in the routing table. Provision is made 
to check the routing algorithm periodically, if desired, with the use of a 
timer. Such a check might be made once a minute, for example. Although 
the forwarding database (minimum cost paths) is normally used for routing, 
the entire routing database is retained as well at each node. This is required 
to run the distributed routing algorithm when needed. The routing database 
can also be used to provide alternate path capability as well, if desired, or if 
necessary. 

Some additional factors provided by the DNA phase III Transport 
Layer in addition to routing include a packet lifetime control and a 
congestion control mechanism. The packet lifetime control is used to bound 
the time a packet spends in the network. A nodal visit count is kept in each 
data packet. If the number is too large, the packet is purged. The congestion 
control involved is the one analyzed by Irland [35). The queues at each 
outbound link at a node are limited in size. Packets are discarded if the 
number queued will exceeq this maximum value. Priority is, however, given 
to transit messages (those already in the network, as contrasted to packets 
originating at the node in question). 

IV. Conclusions 

After a brief discussion of routing in general, we have presented the 
basic features of routing procedures currently used in five representative 
packet-switched communication networks and network architectures. While 
the networks were chosen to represent a broad spectrum of operational 
characteristics, it is interesting to note that there are many similarities in 
their routing algorithms. At the same time, there is a great deal of diversity 
in the manner in which these algorithms are implemented. Most of the 



358 Part IV • Network Layer 

networks use some variation or approximation of a shortest path routing 
strategy. However, each network defines the "length" or "cost" of a 
communication link differently. Some use centralized computation, some 
decentralized, and some use a hybrid of the two. Adaptivity ranges from the 
bare minimum necessary to react to line failures to more sophisticated 
procedures sensing and responding to queueing delays, error rates, and line 
loading. Undoubtedly, a larger set of representative networks would have 
yielded a still richer set of alternative schemes for information gathering, . 
routing computation, and packet forwarding. One can conclude from this 
survey that while the routing function is central to the smooth and efficient 
operation of packet-switched networks, no one scheme can be identified as 
"best." Many viilble alternatives exist at all levels of the routing function. 

References 

[I] M. Schwartz, Computer Communication Network Design and Analysis. Englewood Cliffs, 
NJ: Prentice-Hall, 1977. 

[2] J. M. McQuillan, G. Falk, and I. Richer, "A review of the development and performance 
of the ARPANET routing algorithm," IEEE Trans. Commun., vol. COM-26, pp. 1802-1811. 
Dec. 1978 

[3] T. Cegrell, "A routing procedure for the TIDAS message-switching network," IEEE Trans. 
Commun., vol. COM-23, pp. 575-585, June 1975. 

[4] F. Poncet and C. S. Repton, "The EIN communications sub-network: Principles and 
practice," in Proc. 3rd ICCC, Toronto, Ont., Canada, Aug. 1976, pp. 523-531. 

[5] J. L. Grange and M. I. Irland, "Thirty-nine steps to a computer network," in Proc. 4th 
ICCC, Kyoto, Japan, Sept. 1978, pp. 763-769. 

[6] L. Fratta, M. Gerla, and L. Kleinrock, "The Flow Deviation Method: An Approach to 
Store-and-Forward Communication Network Design," Networks, vol. 3. New York: 
Wiley, 1973, pp. 97-133. 

[7] W. Older and D. A. Twyver, personal communication. 
[8] J. M. McQuillan, "Interactions between routing and congestion control in computer 

networks," in Proc. Int. Symp. Flow Contr. in Comput. Networks, Versailles, France, Feb. 
1979, J. L. Grange and M. Gien, Eds., Amsterdam: North-Holland, pp. 63-75. 

[9] M. Schwartz and C. Cheung, "The gradient projection algorithm for multiple routing in 
message-switched networks," IEEE Trans. Commun., vol. COM-24, pp. 449-456, Apr. 
1976. 

[10] R. Gallagher, "An optimal routing algorithm using distributed computation," IEEE 
Trans. Commun., vol. COM-25, pp. 73-85, Jan. 1977. 

[II] T. E. Stem, "A class of decentralized routing algorithms using relaxation," IEEE Trans. 
Commun., vol. COM-25, pp. 1092-1102, Oct. 1977. 

[12] E. W. Dijkstra, "A note on two problems in connection with graphs," Numer. Math., vol. 
I, pp. 269-271,1959. 

[13] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer 
Algorithm~. Reading, MA: Addison-Wesley, 1974. 

[14] L. R. Ford, Jr. and D. R. Fulkerson, Flows in Networks. Princeton, NJ: Princeton Univ. 
Press, 1962. 



Chap. 12 • Routing Protocols 359 

[15] 

[16] 

[17] 

[18] 

[19] 

[20] 

[21] 

[22] 

[23] 

[24] 

[25] 

[26] 
[27] 

[28] 

[29] 

[30] 

[31] 

[32] 

[33] 

[34] 

[35] 

D. P. Bertsekas, "Dynamic behavior of a shortest path routing algorithm of the ARPANET 
type," presented at the Int. Symp. Inform. Theory, Grigano, Italy, June 1979. 
A. Rajaraman, "Routing in TYMNET," presented at the European Computing Conf., 
London, England, May 1978. 
R. R. Jueneman and G. S. Kerr, "Explicit routing in communications networks," in Proc. 
3rd ICCe, Toronto, Ont., Canada, Aug. 1976, pp. 340-342. 
D. C. Walden, "Experiences in building, operating, and using the ARPA network," 
presented at the 2nd U.S.A.-Japan Comput. Conf., Tokyo, Japan, Aug. 1975. 
J. M. McQuillan, "Adaptive routing algorithms for distributed computer networks," 
BBN Rep. 2831, May 1974. 
J. M. McQuillan et al., "The new routing algorithm for the ARPANET," IEEE Trans. 
Commun., vol. COM-28, pp. 711-719, May 1980. 
1. Tymes, "TYMNET-A terminal oriented communication network," in 1971 Spring 
Joint Comput. Con/., AFIPS Conf. Proc., vol. 38,1971, pp. 211-216. 
J. Rinde, "Routing and control in a centrally-directed network," in 1977 Nat. Comput. 
Con/., AFIPS Con/. Proc., vol. 46, 1977, pp. 603-608. 
-, "TYMNET I: An alternative to packet technology," in Proc. 3rd ICCC, Toronto, Ont., 
Canada, Aug. 1976, pp. 268-273. 
A. Danet, R. Despres, A LaRest, G. Pichon, and S. Ritzenthaler, "The French public 
packet switching service: The TRANSPAC network," in Proc. 3rd ICCC, Toronto, Ont, 
Canada, Aug. 1976, pp. 251-260. 
J. M. Simon and A. Danet, "Contr6le des ressources et principes du routage dans Ie 
reseau TRANSPAC," in Proc., Int. Symp. Flow Control in Comput. Networks, Versailles, 
France, Feb. 1979, J. 1. Grange and M. Gien, Eds. Amsterdam: North-Holland, pp. 
33-44. 
J. M. Simon, personal communication. 
H. Rudin, "On routing and "Delta-routing": A taxonomy and performance comparison 
of techniques for packet-switched networks," IEEE Trans. Commun., vol. COM-24, pp. 
43-59, Jan. 1976. 
R. J. Cypser, Communications Architecture for Distributed Systems, Reading, MA: Ad­
dison-Wesley, 1978. 
P. E. Green, "An introduction to network architectures and protocols," IItM Syst. J., vol. 
18, no. 2, pp. 202-222, 1979. 
J. P. Gray and T. B. McNeill, "SNA multiple-system networking," IBM Syst. J., vol. 18, 
no. 2, pp. 263-297, 1979. 
V. Ahuja, "Routing and flow control in systems network architecture," IBM Syst. J., vol. 
18, no. 2, pp. 298-314,1979. 
W.1. Price, "Data network simulation experiments at the National Physical Laboratory, 
1968-1976," Comput. Networks, vol. I, no. 4, pp. 199-210, 1977. 
Digital Network Architecture, General Description, AA-H202A-TK, Digital Equipment 
Corp., Maynard, MA, Nov. 1978. 
W. D. Tajibnapis, "A correctness proof of a topology information maintenance protocol 
for distributed computer networks," Commun. Ass. Comput. Mach., vol. 20, pp. 477-485, 
July 1977. 
M. Irland, "Buffer management in a packet switch," IEEE Trans. Commun., vol. 
COM-26, pp. 328-337, Mar. 1978. 



13 

Flow Control Protocols 

Mario Gerla and Leonard Kleinrock 

I. Introduction 

A packet-switched network may be thought of as a distributed pool of 
productive resources (channels, buffers, and switching processors) whose 
capacity must be shared dynamically by a community of competing users 
(or, more generally, processes) wishing to communicate with each other. 
Dynamic resource sharing is what distinguishes packet switching from the 
more traditional circuit-switching approach, in which network resources are 
dedicated to each user for an entire session. The key advantages of dynamic 
sharing are greater speed and flexibility in setting up users connections 
across the network and more efficient use of network resources after the 
connection is established. 

These advantages of dynamic sharing do not come without a certain 
danger, however. Indeed, unless careful control is exercised on the user 
demands, the users may seriously abuse the network. In fact, if the demands 
are allowed to exceed the system capacity, highly unpleasant congestion 
effects occur which rapidly neutralize the delay and efficiency advantages of 
a packet network. The type of congestion that occurs in an overloaded 
packet network is not unlike that observed in a highway network. During 
peak hours, the demands often exceed the highway capacity, creating large 
backlogs. Furthermore, the interference between transit traffic on the high­
way and on-ramp and off-ramp traffic reduces the effective throughput of 
the highway, thus causing an even more rapid increase in the backlog. If this 
positive feedback situation persists, traffic on the highway may come to a 
standstill. The typical relationship between effective throughput and offered 
load in a highway system (and, more generally, in many uncontrolled, 
distributed dynamic sharing systems) is shown in Fig. 1. 

361 



362 Part IV • Network Layer 

OFFERED LOAD 

Fig. I. Effective throughput versus offered load in an uncontrolled distributed dynamic sharing 
system. 

By properly monitoring and controlling the offered load many of these 
congestion problems may be eliminated. In a highway system, it is. common 
to control the input by using access ramp traffic lights. The objective is to 
keep the interference between transit traffic and incoming traffic within 
acceptable limits, and to prevent the incoming traffic rate from exceeding 
the highway capacity. 

Similar types of controls are used in packet-switched networks, and are 
called flow control procedures. As in the highway system, the basic principle 
is to keep the excess load out of the network. The techniques, however, are 
much more sophisticated since the elements of the network (i.e., the switch­
ing processors) are intelligent, can communicate with each other, and 
therefore can coordinate their actions in a distributed control strategy. 

Internal network congestion may also be relieved by rerouting some of 
the traffic from heavily loaded paths to underutilized paths. It is important 
to understand, however, that routing can reduce and, perhaps, delay net­
work congestion; it cannot prevent it. We do not discuss the interactions 
between routing and flow control in this chapter. The interested reader is 
referred to the routing protocol survey by Schwartz and Stern in Chapter 
12. 



Chap. 13 • Flow Control Protocols 363 

The main functions of flow control in a packet network are: 

I. Prevention of throughput and response time degradation and loss of 
efficiency due to network and user overload, 

2. deadlock avoidance, 
3. fair allocation of resources among competing users, and 
4. speed matching between the network and its attached users. 

Throughput degradation and deadlocks occur because the traffic that 
has already been accepted into the network (i.e., traffic that has already 
been allocated network resources) exceeds the nominal capacity of the 
network. To prevent overallocation of resources, the flow control procedure 
includes a set of constraints (on buffers that can be allocated, on outstand­
ing packets, on transmission rates, etc.) which can effectively limit the access 
of traffic into the network or, more precisely, to selected sections of the 
network. These constraints may be fixed, or may be dynamically adjusted 
based on traffic conditions. 

Apart from the requirement of throughput efficiency, network re­
sources must be fairly distributed among users. Unfortunately, efficiency 
and fairness objectives do not always coincide. For example, referring back 
to our highway traffic situation, the effective throughput of the Long Island 
Expressway could be maximized by opening all the lanes to traffic from the 
Island to New York City during the morning rush hour, and in the opposite 
direction during the evening rush hour. This solution, however, would also 
maximize the discontent of the reverse commuters (and we all know how 
dangerous it is to anger a New Yorker)! In packet networks, unfairness 
conditions can also arise (as we will show in the following sections); but 
they tend to be more subtle and less obvious than in highway networks 
because of the complexity of the communications protocols. One of the 
functions of flow control, therefore, is to prevent unfairness by placing 
selective restrictions on the amount of resources that each user (or user 
group) may acquire, in spite of the negative effect that these restrictions may 
have on dynamic resource sharing, and, therefore, overall throughput ef­
ficiency. 

Flow control can be exercised at various levels in a packet network. 
The following levels, shown in Fig. 2, are identified and discussed in this 
paper. 

(1 ) Hop Level. This level of flow control attempts to maintain a smooth 
flow of traffic between two neighboring nodes in a computer network, 
avoiding local buffer congestion and deadlocks. (We shall devote Section III 
to the discussion of this form of flow control.) 

(2) Entry-to-Exit Level. This level of flow control is generally imple­
mented as a protocol between the source and the destination switch, and has 
the purpose of preventing buffer congestion at the exit switch (Section IV). 



364 Part IV • Network Layer 

(3) Network Access Level. The objective of this level is to throttle 
external inputs based on measurements of internal (as opposed to destina­
tion) network congestion (Section V). 

(4) Session Level. This is the level of flow control associated with user 
sessions, i.e., the protocols which provide for the reliable delivery of packets 
on the "virtual" connection between two remote processes. Its main pur­
pose is to prevent congestion of user buffers at the process level (i.e., outside 
of the network) (Section VI). 

Some authors reserve the term flow control for the senior level, and refer 
to the other three levels of control as congestion control [34]. This terminol­
ogy is used to emphasize the physical distinction between the first three 
levels, which are realized in the communication subnet (and therefore are 
the responsibility of the network implementer) and the fourth level, which is 
realized in the user devices (and therefore is the responsibility of the 
network customer). In this paper, we have chosen to use the term flow 
control for all four levels. 

The design of an efficient flow control strategy for a packet network is 
a complex task in many ways. The most critical issue is the fact that flow 
control is a multilayer distributed protocol involving several different levels. 
At each level, the flow control implementation must be consistent and 
compatible with other protocol functions existing at that level. Furthermore, 
the interactions between different levels must be carefully studied in order 
to avoid duplication of functions on one hand, and lack of coordination on 
the other. 

The purpose of this chapter is to provide a taxonomy of flow control 
mechanisms based on the above-defined multilevel structure. First, we 
review problems, functions, and performance measures of flow control. 
Then, for each level we survey the most representative flow control tech­
niques that have been proposed and/or implemented, providing a perfor­
mance comparison among techniques at the same level, and discussing the 
interaction between techniques at different levels. Finally, we briefly men­
tion some new flow control issues raised by novel computer network 
applications. 

II. Flow Control: Problems, Functions, and Measures 

Our overall problem is to identify mechanisms which permit efficient 
dynamic sharing of the pool of resources (channels, buffers, and switching 
processors) in a packet network. In this section, we first describe and use 
some toy examples to illustrate the congestion problems caused by lack of 
control. Then we define the functions of flow control and the different levels 



Chap. 13 • Flow Control Protocols 365 

at which these functions are implemented. Finally, we introduce perfor­
mance measures for the evaluation and comparison of different flow control 
schemes. 

A. Loss of Efficiency 

The main cause of throughput degradation in a packet network is the 
wastage of resources. This may happen either because conflicting demands 
by two or more users make the resource unstable (e.g., collisions on a 
random access channel); or because a user acquires more resources than 
strictly needed, thus starving other users (e.g., a slow sink fed by a fast 
source may create a backlog of packets within the network which prevents 
other traffic from gettrng through). The two resources that are most com­
monly "wasted" in a packet network are communications capacity and 
storage capacity. 

Buffer wastage is an indirect consequence of limited nodal storage: a 
given end-to-end packet stream may be blocked at an intermediate node 
along the path because all of the buffers at that node have been "hogged" 
by other streams. This may happen even if channel bandwidth is plentiful 
along the path of our blocked stream, thus causing an unnecessary loss of 
throughput. The source of this throughput degradation is that some users 
unnecessarily monopolize (i.e., waste) the buffers at some congested node. 

A simple example of throughput degradation caused by buffer inter­
ference is shown in Fig. 3. Two pairs of hosts, (A, A') and (B, B'), are 

TRANSPORT LEVEL 

ENTRY TO EXIT LEVEL 

Fig. 2. Flow control levels. 



366 Part IV • Network Layer 

0.8 

I 
A 

C=l 

- C=10 C=l 
B SWITCH B' 

C=l 

A' 

Fig. 3. Buffer interference example. 

engaged in data transmission through a single network node. Access line 
speeds (in arbitrary units) are given in the figure. The traffic requirement 
from A to A' is constant and is equal to 0.8 (measured in the same units as 
the line speed). The requirement from B to B' is variable, and is denoted by 
A. When A approaches 1, the output queue from the switch to host B' grows 
indefinitely large filling up all the buffers in the switch. Packets arriving 
when all the buffers are full are discarded, and are later retransmitted by the 
source host (we refer to this model as the retransmit model). If we plot the 
total throughput, i.e., the sum of (A, A') and (B, B') delivered traffic as a 
function of A (as in the solid curve of Fig. 4), we note that for A = 1, the 
throughput experiences a sharp drop from 1.8 to 1.1. The drop is due to the 
fact that the switch can handle the entire user demand = A + 0.8 for A < 1; 
while for A;:::: 1, the switch buffers become full, causing overflow. Conse­
quently, large queues build up in both the A and B hosts. With a heavy load, 
the rate of packet transmissions (and retransmissions) from B is 10 times the 
rate from A because of the difference in line access speeds. Thus, packets 
from B have a 10 times better chance of being accepted when a buffer 
becomes free than packets from A, leading to a 10 to 1 imbalance in 
effective throughput. Since the (B, B') throughput is limited to 1, the 
(A, A') throughput is reduced to 0.1 (i.e., one tenth of the AA' throughput), 
yielding a total throughput = 1.1 for A ;:::: 1. 

In this example, we have observed a decrease in useful throughput 
caused by an increase of offered load beyond the critical system capacity. 



Chap. 13 • Flow Control Protocols 367 

RETRANSMISSION MODEL 

OL-______ -L ______________________ --J 

o 

Fig. 4. Throughput degradation of system of Fig. 3 due to buffer interference. 

This throughput degradation is typical of congested systems, and is often 
taken as a definition of congestion as was mentioned in connection with 
Fig. 1. (i.e., a system is "congestion-prone" if an increment in offered load 
causes a reduction in throughput) [27]. 

In the previous example, we assumed that dropped packets would be 
retransmitted from the host. A similar analysis can be carried out assuming 
that dropped packets are lost (loss model). The throughput versus offered 
load performance is similar to that of the retransmit model, although the 
drop is somewhat smoother in this case (the dashed curve of Fig. 4). 

Throughput degradation effects, caused by inefficient allocation (and 
therefore wastage) of buffers are found also in multinode networks as 
reported by several studies [27], [13], [18]. To prevent this type of degrada: 
tion, proper buffer allocation rules are generally established at each node, as 
soon described. 

Another cause of throughput degradation is channel wastage. This 
problem manifests itself very clearly in multiaccess channels (e.g., packet 
satellite, or packet radio channels), when users transmit packets at random 
times without prior coordination (random access). A well-known example is 
offered by the ALOHA channel [23]. Packets that collide are lost, thus causing 
channel wastage and consequently, throughput degradation. Congestion 
prevention in multiaccess channels is discussed in Chapter 6. Also, it is clear 
that unnecessary retransmissions of a packet represent another form of 
channel wastage. Yet another manifestation is the use of unnecessarily long 
paths in a network (e.g., looping in routing algorithms). 

B. Unfairness 

Unfairness is a natural byproduct of uncontrolled competition. Some 
users, because of their relative position in the network or the particular 



368 Part IV • Network Layer 

A 

0.5 

B 
A 

SWITCH 
C=1 

Fig. 5. Example of unfairness. 

selection of network and traffic parameters, may succeed in capturing a 
larger share of resources than others, and thus enjoy preferential treatment. 

One example of unfairness has already been given in Figs. 3 and 4 
where the (B-B') flow is allowed to exceed the (A-A') flow by a factor of 
10. Another obvious example of unfairness is offered by the single switch 
loss model in Fig. 5. The speed of the output trunk is 1. Hosts A and Bare 
injecting data into the switch with rates 0.5 and A, respectively. For fairness, 
the output trunk should be equally shared by the two hosts. However, the 
loss model performance results shown in Fig. 6 indicate that for large values 
of A, host B captures the entire output trunk bandwidth, reducing the A 
throughput to zero. As previously observed, for A »0.5 host B has a far 
better chance to seize free buffers in the switch than host A. Specifically, the 
ratio of A packets to B packets in the switch at heavy load is roughly equal 
to 0.5/A. Thus, the ratio of A throughput to B throughput is also 0.5 lA, 
explaining the behavior in Fig. 6. 

Cases of unfairness have been reported in many multinode network 
studies, and several "fairness" techniques have been proposed. Unfor­
tunately, the problem of fairness is considerably more difficult to deal with 

~ 
::::l 
11. 
:z:: 
(!) 
::::l 
o a: 
:z:: 
~ 0.5~---___ _ 
..J « 
~ g 
O~ ____ ~ __ ~L-______ ~~~~ 

o 0.5 
A 

Fig. 6. Performance of system shown in Fig. 5. 



Chap. 13 • Flow Control Protocols 369 

than the problem of total throughput degradation because a general, unam­
biguous definition of fairness is not always possible in a distributed resource 
sharing environment. 

C. Deadlocks 

A deadlock condition manifests itself by a (total or partial) network 
crash. Deadlocks often occur because of a cyclic wait of resources to become 
available. That is, one user is holding a portion of the resources that he 
currently needs and is waiting for another user to release the remaining 
resources necessary to complete his task and this user is waiting for yet a 
third user, etc., such that ,the sequence of "waiting" users closes into a cycle, 
and it is immediately seen that no user in the cycle can make any progress 
[3]. Thus, the throughput for this subset of users is reduced to zero. 

Deadlocks are likely to occur in a network when the offered load 
exceeds network capacity. For a simple example of a deadlock, consider two 
switches, A and B, connected by a trunk carrying heavy traffic in both 
directions (see Fig. 7). Under the heavy traffic assumption, node A rapidly 
fills up with packets directed to B; and vice versa, B fills up with packets 
directed to A. If we assume that dropped packets are retransmitted, then 
each node must hold a copy of each packet (and therefore a buffer) until the 
packet is accepted by the other node. This may result in an endless wait in 
which a node holds all of its buffers to store packets being transmitted to 
the other node, and keeps retransmitting packets to the other node waiting 
for buffers to be freed there. Consequently, no useful data are transferred 
on the trunk. It turns out that this type of deadlock (known as direct 
store-and-forward deadlock [19]) is relatively easy to prevent by setting 
simple restrictions on buffer usage at each node. A more extensive discus­
sion of deadlocks will be given in Section III. 

It is important to point out that buffer deadlocks are possible only in 
networks which retransmit dropped packets, i.e., which save a copy of a 
packet at each node while transmitting the packet to the next node on the 
path, and retransmit a copy of the packet in case of overflow (retransmit 
model). If dropped packets are not retransmitted (i.e., a loss model), the 

A B 

Fig. 7. Deadlock example. 



370 Part IV • Network Layer 

sending node is not required to save a copy of the packet until acceptance at 
the next node, thus removing a necessary condition for deadlocks. Thus, 
lossy networks are deadlock free; however, an additional recovery mecha­
nism for lost packets must then be provided at the end-to-end level, as is 
done for example in DNA (Chapter 10). 

D. Flow Control Functions 

Flow control may be defined as a protocol (or more generally, a set of 
protocols), designed to protect the network from problems related to 
overload and speed mismatches. Solutions to the three problems just dis­
cussed (maintaining efficiency, fairness and freedom from deadlock) are 
accomplished by setting rules for the allocation of buffers at each node and 
by properly regulating and (if necessary) blocking the flow of packets 
internally in the network as well as at the network entry points. Actually, 
multiple levels of flow control are generally implemented in a real network, 
as we shall see. 

Efficiency and congestion prevention benefits of flow control do not 
come for free. In fact, flow control (like any other form of control in a 
distributed network) may require some exchange of information between 
nodes to select the control strategy and possibly some exchange of com­
mands and parameter information to implement that strategy. This ex­
change translates into channel, processor, and storage overhead. Further­
more, flow control may require the dedication of resources (e.g., buffers, 
bandwidth) to individual users, or classes of users, thus reducing the 
statistical benefits of complete resource sharing. Clearly, the tradeoff be­
tween gain in efficiency (due to controls) and loss in efficiency (due to 
limited sharing and overhead) must be carefully considered in designing 
flow control strategies. This tradeoff is illustrated by the curves in Fig. 8, 
showing the effective throughput as a function of offered load. The ideal 
throughput curve corresponds to perfect control as it could be implemented 
by an ideal observer, with complete and instantaneous network status 
information. Ideal throughput follows the input and increases linearly until 
it reaches a horizontal asymptote corresponding to the maximum theoretical 
network throughput. The controlled throughput curve is a typical curve that 
can be obtained with an actual control procedure. Throughput values are 
lower than with the ideal curve because of imperfect control and protocol 
overhead. The uncontrolled curve follows the ideal curve for low offered 
load; for higher load, it collapses to a very low value of throughput and, 
possibly, to a deadlock. 

Clearly, controls buy safety at high offered loads at the expense of 
somewhat reduced efficiency. The reduction in efficiency is measured in 
terms of higher delays (for light load) and lower throughput (at saturation). 



Chap. 13 • Flow Control Protocols 

I­
::J 
D.. 
::t: 

" ::J 
o 
a: 
::t: 
I-

OFFERED LOAD 

Fig. 8. Flow control performance tradeoffs. 

371 

IDEAL 

CONTROLLED 

Furthermore, experience shows that flow control procedures are quite 
difficult to design and, ironically, can themselves be the source of deadlocks 
and degradations. In particular, when one controls flow, one places con­
straints on the flow. If one cannot meet a constraint, then the result is a 
deadlock. Or, if one is slow in meeting the constraint, the result is a 
throughput degradation. 

E. Levels of Flow Control 

Flow control in a packet network can be best described as a multi­
layered structure consisting of several mechanisms operating independently 
at different levels. Since flow control levels are closely related to (and 
sometimes imbedded in) protocol levels, it is helpful for us to begin by 
briefly reviewing the network protocol structure, pointing to the flow 
control provisions existing at each level [17]. The flow control level structure 
will then be defined following the protocol structure model. 

Figure 9 depicts the typical protocol layer architecture implemented in 
a packet network, using as a reference a network path connecting user 
devices called DTEs (data terminal equipment) through a number of 
intervening communications switches called DCEs (data circuit terminating 
equipment). For the user-to-network (i.e., DTE-to-DCE) interface, a stan­
dard set of protocol levels is now being defined by ISO and ANSI [9]. For 
the internode protocols within the communications subnetwork, there is less 
emphasis on standardization since different network manufacturers tend to 
select different solutions to best exploit their equipment capabilities. In spite 
of these differences, it is still possible to define a set of reference levels for 



372 

SESSION LEVEL 

ENTRY TO EXIT LEVEL 

PACKET LEVEL (VIRTUAL CIRCUIT 
OR DATAGRAM) 

(INTERNODE) 

LINK LEVEL 

(INTERNODE) 

Part IV • Network Layer 

Fig. 9. Network protocol levels. (DTE: Data terminal equipment, e.g., host, terminal. DeE: 
Data circuit terminating equipment, e.g., switching processor.) 

internal network protocols which closely parallel the DTE-DCE interface 
protocol levels. 

Starting from the bottom of the protocol hierarchy, we have the 
physical level which has the function of activating and deactivating the 
electrical connection between the nodes. No flow control functions are 
assigned to this level. 

Above the physical level, we have the link level which serves the 
purpose of transporting packets reliably across individual physical links. 
One of the functions of this protocol is related to flow control, and consists 
of retransmitting packets that are dropped because of congestion at the 
receiving node. In some protocols, a congested receiver may stop the sender 
by using appropriate commands (e.g., RNR: receiver not ready, in HDLC 
and SDLC; or, XOFF in asynchronous terminal connections). As men­
tioned before, we find two different types of links in the network: the 
internal (or node-to-node) link and the network access link. Correspond­
ingly, we have (at the same level in the protocol hierarchy) two types of link 
protocol: the network access protocol and the node-to-node protocol. Typical 



Chap. 13 • Flow Control Protocols 373 

examples of link protocol implementation are HDLC, SDLC, and X.25 level 
2 (which is a subset of HDLC). 

Above the link level, we have the packet level protocol, which defines 
the procedures for establishing end-to-end user connections through the 
network and specifies the format of the control information used to route 
packets to their destinations. Two different versions of packet protocol 
exist: the virtual circuit protocol and the datagram protocol. 

When the virtual circuit (VC) implementation is used, a "virtual" 
circuit connection must be set up between a pair of users (or processes) 
wishing to communicate with each other before the data transfer can be 
started. The establishment of this circuit implies dedication of resources of 
one form or another along the network path. A typical virtual circuit 
implementation, used in Transpac [7], assigns a fixed path to each connec­
tion at setup time. A virtual circuit ID number, stamped in the packet 
header, uniquely identifies the packets belonging to a connection, and is 
used to route packets to the destination using routing maps stored at each 
intermediate node at setup time. From the flow control point of view, the 
VC protocol has the distinguishing feature of permitting selective flow 
control on each individual user connection. This selective flow control can 
be applied at the internode level as well as at the network access level. Since 
a fixed path is maintained for the entire user session, the selective flow 
control can also be extended from entry to exit switch and if so desired, 
even from entry to exit DTE. 

In contrast to the virtual circuit implementation, the datagram imple­
mentation does not require any circuit setup before transmission. Each 
packet is independently submitted to the network, and explicitly carries in 
its header all the information required for its delivery to destination [34]. 
Selective flow control, on a connection by connection basis, is not available 
in the datagram implementation since the packet header does not contain 
specific connection information (it merely posts source and destination 
DTE addresses). 

Above the packet protocol, we find (within the subnet only) the 
entry-to-exit (ETE) protocol. The objective of this protocol is the reliable 
transport of single and multipacket messages from network entry to net­
work exit node. Important functions of this protocol which are related to 
flow control are the reassembly of multipacket messages at the exit node 
and the regulation of input traffic using buffer allocation and windowing 
techniques. Some network implementations, e.g., DNA, do not have the 
ETE level of protocol. In this case, the ETE functions are relegated to 
higher-level protocols. 

The highest level of network protocol which has impact on flow control 
is the session protocol. This protocol provides for the reliable delivery of 
packets on the "virtual" connection between two remote processes. One 



374 Part IV • Network Layer 

of the flow control related functions of this protocol is the protection of 
destination buffers. The goal is to regulate the flow so as to make the most 
efficient use of network resources, while avoiding buffer overflow at the 
destination. "Window" and "credit" schemes are generally used for this 
purpose. 

The above network protocol review has identified various flow control 
functions and capabilities built into different levels of protocols, and has 
brought to our attention the fact that each protocol level has its own distinct 
flow control responsibilities. It is now clear that the classification into the 
four types of flow control procedures mentioned earlier parallels the classifi­
cation of network protocols. Recall that there is 

1. hop (or node-to-node) level (Section III), 
2. network access level (Section V), 
3. entry-to-exit level (Section IV), and 
4. session level (Section VI). 

The diagram in Fig. 2 illustrates these levels of flow control for a 
typical network path. A comparison with Fig. 9 reveals the close relation­
ship between flow control and protocol level structures. 

Unfortunately, the true system behavior is far more complex than our 
models and classifications attempt (or can afford) to portray. Therefore, 
actual networks may not always mechanize all of the above four levels of 
flow control with distinct procedures. It is quite possible, for example, for a 
single flow control mechanism to combine two or more levels of flow 
control. On the other hand, it is possible that one or more levels of flow 
control may be missing in the network implementation. The matrix in Fig. 
10 provides a synopsis of the main network implementations and flow 
control schemes that will be surveyed in this paper. It is seen that some of 
the schemes cover more than one level. 

ARPA TRANSPAC SNA GMDNET 

Cal RFNM NCP X.25 SOlC VR SESSION I·C SBP 
PACING PACING 

HOP LEVEL • • • • • • NETW. ACC. • • • 
ENTRY·EXIT • • • • • SESSION • NOT DEFINED • NOT DEFINED 

Fig. 10. Classification of a sample of actual flow implementations. 



Chap. 13 • Flow Control Protocols 375 

F. Perfonnance Measures 

We wish to define a quantitative measure of flow control performance 
for various reasons. First, we wish to be able to "tune" the parameters of a 
given flow control scheme so as to optimize a well-defined performance 
criterion. Second, we wish to carefully weigh performance benefits against 
overhead introduced by flow control. Third, we are interested in comparing 
the performance of alternative flow control schemes in quantitative terms. 

Throughput efficiency (where throughput is expressed in packets/s) is 
probably the most common measure of flow control performance. Total 
effective throughput (sum of all the individual contributions) is evaluated as 
a function of offered load. This representation is particularly useful to 
determine the critical load in an uncontrolled system and to assess the 
throughput efficiency of a controlled network at heavy load. 

Another common measure is the combined delay and throughput perfor­
mance. The delay-vs.-throughput profile allows us to determine the delay 
overhead introduced by the controls (which the throughput versus offered 
load curve did'not display). In general, it gives us a more complete picture 
of system performance than does throughput behavior alone. In fact, a 
system may be designed to deliver high throughput at heavy load, and yet it 
may experience intolerable delays at light load. 

A more compact measure of combined throughput and delay perfor­
mance is offered by the concept of power [13], [24]. The simplest definition 
of power is the ratio of throughput over delay; it is, therefore, a function of 
the offered load. In fact, it defines the "knee" of the throughput-delay 
profile as that point where power is maximized, and as shown in Fig. 11 this 
knee occurs where a ray out of the origin is tangent to the performance 
profile [24]. A very nice characterization of this maximum power point is 

Fig, I \. Delay, throughput, and 
power, THROUGHPUT y 



376 Part IV • Network Layer 

such that it occurs when the average buffer occupancy at each intermediate 
node on the path is unity. In [25], it was shown that blocking due to loss 
systems could easily be included in a more general definition of power (by 
multiplying the simple definition by one minus the blocking probability); 
this leads to system designs whose optimum operating point is easily found 
and which corresponds to the operating point one would intuitively choose. 

In some -important cases, power is maximized for a value of offered 
load which is approximately half of the saturation load [24]. The maximum 
power value reflects both delay performance (at light load) and throughput 
performance (at heavy load) and therefore, represents a good figure of merit 
of the flow control implementation. Much more general definitions of power 
are also studied in [25]. 

III. Hop Level Flow Control 

A. Objective 

The objective of hop level flow control (HL) is to prevent store-and­
forward buffer congestion and its consequences, namely, throughput de­
gradation and deadlocks. Hop level flow control operates in a local, 
"myopic" way in that it monitors local queues and buffer occupancies at 
each node and rejects store-and-forward (SjF) traffic arriving at the node 
when some predefined thresholds (e.g., maximum queue limits) are ex­
ceeded. The function of checking buffer thresholds and discarding (and later 
retransmitting) packets on a network link is often carried out by' the data 
link control protocol. 

This locality of the control does not preclude, however, possible end-to­
end repercussions of hop level flow control due to the "backpressure" effect 
[i.e., the propagation of buffer threshold conditions from the congested 
node upstream to the traffic source(s)]. In fact, the backpressure property is 
efficiently exploited in several network implementations (as soon described). 

Store-and-forward congestion has two unpleasant consequences: 
throughput degradation and deadlocks. These conditions were described in 
Sections II A and II C, respectively. In the remainder of this section, we 
survey and compare a number of hop level flow control procedures, 
specifically designed to eliminate these problems. 

B. Classification of Hop Level Control Schemes 

The hop level flow control scheme can play the role of arbitrator 
between various classes of traffic competing for a common buffer pool in 



Chap. 13 • Flow Control Protocols 377 

each node. A fundamental distinction between different flow control schemes 
is based on the way the traffic entering a node is subdivided into classes. 

One family of hop flow control schemes distinguishes incoming packets 
based on the output queue they must be placed into. Thus, the number of 
classes is equal to the number of output queues; the flow control scheme 
supervises the allocation of store-and-forward buffers to the output queues. 
Some limit (fixed or dynamically adjustable) is defined for each queue; 
packets beyond this limit are discarded. Hence, the name channel queue limit 
schemes is generally given to such mechanisms (see Section III C). 

Another important family of hop flow control schemes distinguishes 
incoming packets based on the "hop count" (i.e., the number of network 
links that they have so far traversed). This implies that each node keeps 
track of N - I classes of traffic, where N - 1 is the number of different hop 
counts, and N is the number of nodes in the network (note that if loop less 
routing is assumed, no network path can exceed N - 1 hops in length), and 
allocates a (fixed or adjustable) number of buffers to each class. We will 
refer to this family of schemes as buffer class schemes (see Section III D). 

A third family distinguishes packets based on the virtual circuit (i.e., 
end-to-end session) they belong to. This type of scheme requires, of course, 
a virtual circuit network architecture; it assumes that each node can 
distinguish incoming packets based on the virtual circuit they belong to and 
keep track of a number of classes equal to the number of virtual circuits that 
currently traverse it. Note that the number of classes varies here with time 
(since virtual circuits are dynamically created and released), as opposed to 
the previously mentioned schemes where the number of classes is merely a 
function of the topology. Upon creation, a virtual circuit is allocated a set of 
buffers (fixed or variable) at each node. When this set is used up, no further 
traffic is accepted from that virtual circuit. We will refer to this family of 
schemes as virtual circuit hop level schemes (see Section III E). 

Many other traffic subdivisions are possible: for example, a traffic class 
may be associated with each traffic source; with each traffic destination; or 
with each source-destination node pair. Indeed, these are all legitimate and, 
in many respects, well justified choices for a link level flow control scheme. 
However, we will restrict our study to the three schemes just mentioned, 
since these are the only schemes which have been extensively analyzed in the 
published literature and implemented in real networks. 

Apart from traffic class distinctions, another parameter that is often 
used to characterize and classify hop flow control schemes is the degree of 
dynamic sharing of the store-and-forward buffers. Here, several possibilities 
exist, namely: 

1. fixed, uniform partitioning of buffers among buffer classes (no 
sharing); 



378 Part IV • Network Layer 

2. buffer partitioning proportional to traffic in each class (no sharing); 
3. overselling (i.e., the sum of the buffer limits, one for each class, is 

larger than the total buffer pool); and 
4. dynamic adjustment of buffer limits based on relative traffic fluctua­

tions. 

The following sections discuss each hop flow control class in more 
detail. 

C. Channel Queue Limit Flow Control 

In the channel queue limit (CQL) scheme, the traffic classes correspond 
to the channel output queues, and there are restrictions on the number of 
buffers each class can seize. We may define the following versions of the 
CQL scheme [20]. 

(1) Complete Partitioning (CP). Letting N be the number of output 
queues, and n i be the number of packets on the i th queue and B the buffer 
size, we have the following constraint: 

(2) Sharing with Maximum Queues (SMXQ). Let bmax be the maximum 
queue size allowed (where, bmax > BIN); we have the following constraints: 

(3) Sharing with Minimum Allocation (SMA). Let brnm be the minimum 
buffer allocation which is guaranteed to each queue (typically, bmin :5 BIN). 
The constraint then becomes 

(4) Sharing with Minimum Allocation and Maximum Queue. This scheme 
combines (2) and (3) in that it provides for a minimum buffer guarantee and 
a maximum buffer allocation for each queue at the same time. 

The above options assume that the buffer limit parameters are fixed in 
time and are the same for all queues. Additional flexibility may be intro­
duced in these schemes by allowing the buffer parameters to change 
dynamically in time and from queue to queue based on traffic fluctuations. 

Having defined a number of CQL flow control options, we now 
proceed to show that this form of flow control can eliminate the perfor-



Chap. 13 • Flow Control Protocols 379 

mance degradation and deadlock effects mentioned in Section II. Referring 
first to Fig. 2, we note that in the presence of CQL flow control, the traffic 
component (B, B') will no longer be permitted to seize all the buffers in the 
switch. Therefore, traffic can now flow freely from A to A', and the 
throughput degradation effect is removed. Similarly, the deadlock condition 
depicted in Figs. 6 and 7 cannot occur since the buffers in node A cannot be 
taken over completely by the channel (A, B) queue. Therefore, some buffers 
in A will always be available to receive packets from node B. 

Some form or another of CQL flow control is found in every network 
implementation.The ARPAnet IMP (Interface Message Processor) has a 
shared buffer pool with minimum allocation and maximum limit for each 
queue, as shown in Fig. 12 [30]. Of the total buffer pool (typically, 40 
buffers of one packet), two buffers for input and one buffer for output are 

INTERNODE CHANNELS 

SHARED BUFFER POOL 

HOST LINES 

~ MINIMUM BUFFER ALLOCATION 

Total buffer pool = 40 packet buffers 

minimum maximum 
allocation allocation 

Reassembly 10 20 
Internode input queue 2 
Internode output queue 1 8 
Total internode queues 20 

(i.e., total S/F buffers) 

Fig. 12. Buffer allocation in ARPAnet IMP (1972 version). 



380 Part IV • Network Layer 

permanently allocated to each internode channel. Similarly, ten buffers are 
permanently dedicated to the reassembly of messages directed to the hosts. 
The remaining buffers are shared among output queues and the reassembly 
function, with the following restrictions: reassembly buffers ::5 20, output 
queue ::5 8, the total store-and-forward buffers ::5 20. 

Next we proceed to the evaluation and comparison of CQL implemen­
tations, and briefly review the main results available in the published 
literature [18], [20]. We first report on some throughput degradation condi­
tions observed in absence of flow control. Figure l3 from [18] shows 
throughput performance as a function of link load for a variety of buffer 
control policies. The curve labeled "unrestricted sharing" corresponds to a 
system without flow control. We notice that, for increasing input load, the 
throughput of the uncontrolled system reaches a peak and then degrades 
asymptotically to unity. This behavior confirms the throughput degradation 
predictions made in Section II. 

Throughput degradation is easily corrected with the introduction of 
CQL flow control, as shown by the remaining curves in Fig. l3. The "no 
sharing" system (i.e., complete partitioning of the buffer pool among the 
outgoing queues) is, as expected, the most conservative scheme and least 
efficient with respect to throughput. The best scheme is the "optimal 
sharing" scheme, which corresponds to optimally reselecting a new buffer 
limit for each level of traffic (i.e., dynamic SMXQ). A heuristic approxima­
tion of the optimal scheme is offered by the "square root scheme," a load 

I­
::J a. 
J: 
C!) 
::J o a: 
J: 
I-

.,' 

- - =-='" -.-... ........ -­=---- .. ~. ----. _. 
'/' '. 

/' -"-'-f "-•• _ , ... -- ... - .. - .. 

--- OPTIMAL SHARING (with maximum queues) 
- - - - SQUARE ROOT RULE 
- • -' COMPLETE PARTITIONING 
-"-" UNRESTRICTED SHARING 

OFFERED LOAD 

Fig. 13. Single switch buffer and allocation model. Throughput versus load behavior for 
various buffer management schemes (unbalanced load pattern). 



Chap. 13 • Flow Control Protocols 381 

invariant scheme with fixed buffer limit = vBIN, where B is the total 
number of buffers and N is the number of output channels. The square root 
scheme is simpler to implement than the optimal scheme since it does not 
depend on traffic load and, therefore, does not require the reoptimization of 
the buffer limit values as a function of traffic pattern changes, and yet, it 
was shown to be practically as efficient as the optimal sharing for a number 
of cases [18]. 

Kamoun [20] used a similar switch model to investigate the sharing 
with minimum allocation (SMA) scheme. The results, obtained in a bal­
anced load environment, show no substantial difference between SMXQ 
and SMA; in fact, neither scheme is consistently better over the entire range 
of offered loads. We conjecture, however, that with strongly unbalanced 
traffic SMA would exhibit better "fairness" since SMA guarantees mini­
mum throughput (with low delay) for each output channel even when the 
shared portion of the buffer pool is captured by a few heavily loaded 
queues. 

Summarizing various published results, we may state that CQL flow 
control is necessary to avoid throughput degradation, unfairness, and direct 
store-and-forward deadlocks. Furthermore, it seems that almost any form of 
CQL implementation will provide the minimum required protection. The 
safest scheme (for fairness reasons) seems to be the combination of SMXQ 
and SMA, which imposes a maximum and minimum limit on each queue 
(incidentally, this was the scheme used in ARPAnet). 

D. Structured Buffer Pool (SBP) Flow Control 

We have shown in the previous section that CQL flow control eliminates 
direct store-and-forward deadlocks. However, there is another, more general 
form of deadlock which can arise in packet networks, namely, indirect 
store-and-forward deadlocks [19]. Figure 14 illustrates a typical indirect 
store-and-forward deadlock situation. Suppose that unfavorable traffic con­
ditions in the ring topology shown in Fig. 14 cause each queue to be filled 
with Qrnax packets, where Qrnax is the limit imposed by the CQL strategy. 
Furthermore, assume that the packets at each node are directed to a node 
two or more hops away [e.g., all packets queued on link (A, B) are directed 
to C]. In these conditions, no traffic can move in the network since all the 
queues are full. Thus, we have a deadlock even if the network is equipped 
with CQL flow control (which is known to prevent direct store-and-forward 
deadlocks)! 

Prevention of indirect store-and-forward deadlocks is obtained with the 
"structured buffer pool" strategy proposed by Raubold et al. [37]. In this 
strategy, packets arriving at each node are divided into classes according to 
the number of hops they have covered. For example, packets entering a 



382 Part IV • Network Layer 

B 

PACKETS TO D 

PACKETS TOC PACKETS TO E 

PACKETS TO B 

D 

PACKETS TO F 

PACKETS TO A 

E 

Fig. 14. Indirect store-and-forward deadlock. 

node from the host belong to class 0 of that node, since they have not yet 
covered any hops. The highest class Hmax corresponds to packets that have 
traversed Hmax hops, where Hmax is the maximum path length in the network 
(a function of the topology and the routing algorithm). The highest class 
Hmax also includes all the packets that have reached their destinations and 
are therefore being reassembled into messages before delivery to the hosts. 
The nodal buffer organization reflects this class structure as shown in Fig. 
15. 

Each packet class has the right to use a well-defined set of buffers. 
Class 0 can access only the buffers available in set O. Buffer set 0 is large 



Chap. 13 • Flow Control Protocols 

r I T 
MAX. NUMBER OF 

BUFFERS AVAILABLE 

r11TJ_ 

BUFFER CLASS 4 

BUFFER CLASS 3 

BUFFER CLASS 2 

BUFFER CLASS 1 

BUFFER CLASS 0 

UNASSIGNED 
BUFFERS, 

AVAILABLE FOR 
ALL CLASSES 

BUFFERS NOT 
AVAILABLE FOR 
INPUT TRAFFIC 

--T--
MAX. NUMBER OF 

BUFFERS AVAILABLE 
FOR INPUT TRAFFIC 

_~ITS __ 
Fig. 15. Structured buffer pool. 

383 

enough to store the largest size message entering the network. Class i + 1 
can use all the buffers available to class i, plus one additional buffer. 
Finally, class Hmax can access all the buffers available to class Hmax - 1, 
plus a number of buffers sufficient to reassemble the largest message to be 
delivered to any destination (this provision is necessary, although not 
sufficient, to avoid "reassembly deadlocks," as will be shown in Section IV). 

Under normal traffic conditions, only set 0 buffers are used. When the 
load increases beyond nominal levels, buffers fill up progressively from level 
o to level Hmax' When at a given node the buffers at levels ~ i are full, 
arriving packets which have covered ~ i hops are discarded. Thus, in case of 
congestion, "junior" packets are dropped in the attempt to carry "senior" 
packets to their destination. This is a desirable property, since senior 
packets correspond to a higher network resource investment. 

It can easily be shown that this strategy eliminates deadlocks of both 
the direct and indirect type [37]. To prove this, we consider the "resource 
graph" [3] associated with the packet-switched network. In this graph, there 
is an arc associated with each packet in the network. The arc originates from 
the buffer currently occupied by the packet and terminates in the (currently 
unavailable, but awaited) buffer in the next node on the path. A deadlock 
occurs if and only if there is a cycle in the graph, i.e., there is a chain of arcs 
which starts from one buffer, and terminates at the same buffer. The 
existence of cycles can easily be recognized in the deadlock situations 
depicted in Figs. 6 and 14. 

With the structured buffer pool, however, no cycle can occur in the 
resource graph since each arc starts from a buffer of class i and points to a 
buffer of class i + 1 (recall that a packet gains seniority at each hop; an 
illustration of this property is shown in Fig. 16. Thus, both direct and 
indirect store-and-forward deadlocks are prevented. 



384 

SINK B 

.... , , 

Part IV • Network Layer 

\ , 
...{'A \ 

A· , 

SOURCE ~ 
. I 

I I . , 
/ / 
;...~ 

Fig. 16. Access to buffer classes. Example for two data streams. Dotted areas: buffers available 
for stream A. Hatched areas: buffers available for stream B. 

The SBP method was developed by the GMD group in Darmstadt, 
Germany, for implementation in GMDNET, an experimental packet switch 
network [37]. Before implementation, an extensive simulation effort was 
carried out to verify and evaluate the performance of all the network 
protocols, and of the SBP procedure in particular [13]. Early simulation 
results showed that the proposed flow control scheme was effective in 
eliminating deadlocks, but was not successful in preventing throughput 
degradation when the offered load exceeded the critical threshold (some 
SBP simulation experiments with typical packet switch network topologies 
showed that the throughput in heavy load conditions was four to five times 
lower than the maximum throughput). 

To correct the loss of throughput efficiency under heavy loads, addi­
tional constraints were imposed on the number of buffers that each traffic 
class could seize. The most dramatic improvement was obtained by limiting 
the number of class 0 buffers that could be seized by input packets (i.e., 
packets entering the network from external sources). In the absence of this 
constraint, input packets had the tendency to monopolize all class 0 buffers, 
leaving only a "thin" buffer layer for the transit traffic to circulate. The 
control of input traffic, known as "input flow control" in GMDNET is a form 



Chap. 13 • Flow Control Protocols 385 

of network access flow control and will be discussed more extensively in 
Section V. 

Additional improvements in the SBP scheme were obtained in the case 
of datagram networks, by setting a specific buffer size constraint L(i) on 
each class i[13]. (In other words, instead of having a nested buffer pool in 
which class i can access all buffers available to class i-I, plus one buffer, a 
different constraint is set on each class). The constraint L(i) was dynami­
cally adjusted to adapt to the relative demands of the various classes. It is 
interesting to note that the deadlock prevention property is not affected by 
dynamic changes in buffer class size (as long as at least one buffer is 
dedicated to each class at all times). 

E. Virtual Circuit (Hop Level) Flow Control 

We recall that packet switch networks can be subdivided into two 
broad classes: datagram (DG) networks and virtual circuit (VC) networks. 
In DG networks, each packet in a user session is carried through the 
network independently of the other packets in the same session; that is, 
packets in the same session may follow different routes, and may be 
delivered out of sequence to the destination. In VC networks, a physical 
network path is set up for each user session and is released when the session 
is terminated. Packets follow the preestablished path in sequence. Sequenc­
ing and error control are provided at each step along the path. 

The previously mentioned flow control schemes, namely, CQL and 
SBP, are applicable to both DG and VC nets. In addition, VC nets permit 
the application of selective flow control to each individual VC stream (VC 
flow control). There are two forms of VC flow control. 

(1) Hop level (or stepwise) VC flow control, which controls VC flow at 
each hop along the path, and is designed to avoid S IF buffer congestion; 
and 

(2) Source-sink (or end-to-end) VC flow control, whose function it is 
to adjust source rate to sink rate so as to maximize VC throughput, yet 
avoiding sink buffer congestion. 

In this section we will mainly deal with VC hop level (VC-HL) flow 
control; we discuss end-to-end VC flow control in more detail in Section IV. 

The basic principle of operation of the VC-HL scheme consists of 
setting a limit M on the maximum number of packets for each VC stream 
that can be in transit at each intermediate node. The limit M may be fixed 
at VC setup time, or may be dynamically adjusted, based on load fluctua­
tions. The buffer limit M is enforced at each hop by the VC-HL protocol, 
which regulates the issue of transmission "permits" and discards packets 
based on buffer occupancy. 



386 Part IV • Network Layer 

The advantage of VC-HL (over CQL and SBP) is to provide a more 
efficient and prompt recovery from congestion by selectively slowing down 
the VCs directly feeding into the congested area. By virtue of backpressure, 
the control then propagates to all the sources that are contributing to the 
congestion, and reduces (or stops) their inputs, leaving the other traffic 
sources undisturbed. Without VC-HL flow control, the congestion would 
spread gradually to a larger portion of the network, blocking traffic sources 
that were not directly responsible for the original congestion, and causing 
unnecessary throughput degradation and unfairness. 

As in the case of CQL and SBP schemes, various buffer sharing policies 
can be proposed. At one extreme, M buffers can be dedicated to each VC at 
setup time; at the other extreme, buffers may be allocated, on demand, from 
a common pool (complete sharing). It is easily seen that buffer dedication 
can lead to extraordinary storage overhead, since there is, generally, no 
practical upper bound on the number of VCs that can simultaneously exist 
in a network; furthermore, the traffic on each VC is generally bursty, 
leading to low utilization of the reserved buffers. For these reasons, most of 
the implementations employ dynamic buffer sharing. 

The shared versus dedicated buffer policy also has an impact on the 
deadlock prevention properties of the VC-HL scheme. With buffer dedica­
tion, the VC-HL scheme becomes deadlock free. This can easily be deduced 
by considering the resource graph and recognizing that the graph cannot 
contain loops, since virtual circuits are loopless by construction. (For 
deadlock freedom, it actually suffices that at least one buffer be reserved for 
each virtual circuit.) If, on the other hand, no buffer reservations are made 
and buffers are allocated strictly on demand, deadlocks may occur unless 
additional protection (e.g., the SBP scheme) is implemented. 

In the following, we briefly describe three different versions of VC-HL 
flow control implemented in existing networks and report on some perfor­
mance results. 

TYMNET is probably the earliest VC network developed [39]. As distinct 
from most VC networks, TYMNET uses a "composite" packet internode 
protocol. This means that data from different VCs traveling on the same 
trunk can be packed in the same envelope, for the purpose of link overhead 
reduction. TYMNET is a character-oriented network in the sense that data 
flows on a virtual circuit in the form of characters, rather than packets (i.e., 
characters are assembled into packets at the entry node, and are then 
disassembled at the exit node). The character-oriented nature of TYMNET 

implies that VC-HL buffer allocation is based on character (rather than 
packet) counts. 

In TYMNET [39], a throughput limit is computed for each VC at setup 
time according to terminal speed, and is enforced all along the network 
path. Throughput control is obtained by assigning a maximum buffer limit 



Chap. 13 • Flow Control Protocols 387 

(per VC) at each intermediate node and by controlling the issue of transmis­
sion permits from node to node based on the current buffer allocation. 
Periodically (every half second), each node sends a backpressure vector to 
its neighbors, containing one bit for each virtual circuit that traverses it. If 
the number of current buffered characters for a given VC exceeds the 
maximum allocation (e.g., for low speed termina1s-1 0 to 30 characters / s­
the allocation is 32 characters), the backpressure bit is set to zero; otherwise 
the bit is set to one. On the transmitting side, each VC is associated with a 
counter which is initialized to the maximum buffer limit and is decremented 
by one for each character transmitted. Transmission stops on a particular 
VC when the corresponding counter is reduced to zero. Upon reception of a 
backpressure bit = 1, the counter is reset to its initial value and transmis­
sion can resume. 

The effect of backpressure from an individual hop back along the VC 
in TYMNET constitutes a good example of the "hybrid" character of many 
practical flow control implementations, since we see here a mixture of hop 
level and transport level flow control. This was pointed out earlier in 
connection with Fig. 10, and we shall encounter other examples as we 
proceed. 

TRANSPAC, the French public data network, is a VC network which uses 
X.2S as an internode protocol [42]. One of the distinguishing features of 
Transpac is the use of the throughput class concept in X.2S for internal flow 
and congestion control. Each VC call request carries a throughput class 
declaration which corresponds to the maximum (instantaneous) data rate 
that the user will ever attempt to present to that VC. Each node keeps track 
of the aggregate declared throughput (which represents the worst case 
situation), and at the same time, monitors actual throughput (typically, 
much lower than the declared throughput) and average buffer utilization. 
Based on the ratio of actual to declared throughput, the node may decide to 
oversell capacity, i.e., it will attempt to carry a declared throughput volume 
higher than trunk capacity. Clearly, overselling implies that input rates may 
temporarily exceed trunk capacities, so that the network must be prepared 
to exercise flow control. Packet buffers are dynamically allocated to VCs 
based on demand (complete sharing), but thresholds are set on individual 
VC allocations as well as on overall buffer pool utilization. Of particular 
interest is the impact of overall buffer pool thresholds on VC-HL. Three 
threshold levels [So, Sl' and S2 (where So < Sl < S2)] are defined and are 
used in the following way: 

1. So: do not accept new VC call requests; 
2. Sl: slow down the flow on current VCs (by delaying the return of 

ACKs at the VC level); and 
3. S2: selectively disconnect existing VCs. 



388 Part IV • Network Layer 

The threshold levels So, S), and S2 are dynamically evaluated as a 
function of declared throughput, measured throughput, and current buffer 
utilization. 

Another example of a VC network is offered by GMDNET [13]. As we 
mentioned before, GMDNET applies SBP flow control. In addition, it applies 
I-control (individual control) on each virtual circuit. I-control consists of 
two components: end-to-end flow control and hop level flow control. 
End-to-end and hop level flow control are irriplemented using variable size 
windows PULE and PULL> respectively (PUL = packet underway limit). 
The window is defined as the maximum number of packets that a sender is 
allowed to transmit before receiving an ACK, or permit [5]. The windows 
PUL E and PULL are dynamically adjusted based on sink congestion and 
intermediate node congestion, respectively; their values may vary within 
predefined ranges (1 ::::; PULE::::; WE; 1 ::::; PULL::::; WL ) [37], [13]. The buffer 
pool is completely shareable, without specific reservations for individual 
VCs. 

Simulation results on the performance of the I-control scheme lead to 
the following important conclusions. 

(1) I-control alone cannot prevent throughput degradation, unfairness, 
and deadlocks. Experimental results clearly show that an I-controlled net­
work without SBP becomes deadlocked immediately after the applied load 
exceeds the critical value (this confirms our prediction that VC flow control 
without specific buffer reservations for individual VCs cannot prevent 
deadlocks). 

(2) The end-to-end component of I-control is very effective in prevent­
ing network congestion in the case of source rates exceeding sink rates. 
Without I-control (i.e., the SBP control alone), a fivefold throughput 
degradation was observed in a typical network overload experiment. 

IV. Entry-to-Exit Flow Control 

The main objective of the entry-to-exit (ETE) flow control is to prevent 
buffer congestion at the exit node due to the fact that remote sources are 
sending traffic at a higher rate than can be accepted by the hosts (or 
terminals) attached to the exit node. The cause of the bottleneck could be 
either the overload of the local lines connecting the exit node to the hosts, or 
the slow acceptance rate of the hosts. The problem of congestion prevention 
at the exit node becomes more complex when this node must also reassem­
ble packets into messages, and/or resequence messages before delivery to 
the host. If fact, reassembly and resequence deadlocks may occur, which 
require special prevention measures. 



Chap. 13 • Flow Control Protocols 389 

NODE 1 NODE 2 NODE 3 HOST 1 

Fig. 17. Reassembly buffer deadlock. 

In order to understand how reassembly deadlocks can be generated, let 
us consider the network path shown in Fig. 17, where three store-and-for­
ward nodes (node 1, node 2, and node 3, respectively) relay traffic directed 
to host 1. In the situation depicted in Fig. 17, three multipacket messages A, 
B, and C are in transit towards host 1. Without loss of generality we assume 
that the maximum message size is 4 packets and that 4 packet buffers are 
dedicated to messages being assembled at a node; furthermore, a channel 
queue limit Qrnax = 4 is set on each trunk queue, for hop level flow control. 
We note from Fig. 17 that message A (which has seized all four reassembly 
buffers at node 3) cannot be delivered to the host since packet A2 is missing. 
Packet A 2 , on the other hand, cannot be forwarded to node 2 since the 
queue at node 2 is full. The node 2 queue, in turn, cannot advance until 
reassembly space becomes available in node 3 for B or C messages. 
Deadlock! 

A very similar order of events leads to resequence deadlocks as shown 
in Fig. 18. Assume that a sequence of single packet messages A, B, ... ,K 
originating from host 2 and directed to host 1 is traveling through a 
three-node network. If messages must be delivered in sequence, messages 
B, C, D, E in node 3 cannot be transmitted to host 1 until message A is 
received at node 3. However, due to store-and-forward buffer unavailability 
in node 2, message A cannot reach node 3. Deadlock! 

Various schemes can be used to prevent these types of deadlocks. In the 
ARPAnet, for example, reassembly deadlocks are avoided by requiring a 
reassembly buffer reservation for each multipacket message entering the 
network; resequence deadlocks are avoided by discarding out-of-sequence 
messages at the destination. Other networks (e.g., TELENET) have sufficient 

HOST 2 NODE 1 NODE 2 NODE 3 HOST 1 

Fig. 18. Resequence deadlock. 



390 Part IV • Network Layer 

nodal storage to permit out-of-sequence messages to be accepted at a 
destination node with the understanding that these may be discarded later if 
storage congestion occurs; again, the existence of a source copy saves the 
day. These and other schemes are discussed in more detail in the following 
sections. 

While the main objective of ETE controls is to protect the exit node 
from congestion, an important byproduct is the prevention of global (i.e., 
internal) congestion. Virtually all ETE controls are based on a window 
scheme that allows only up to W sequential messages to be outstanding in 
the network before an end-to-end ACK is received. If the network becomes 
congested (this may occur independently of destination node congestion), 
messages and ACKs incur high end-to-end delays. These delays, combined 
with the restriction on the total number of outstanding messages, effectively 
contribute to reduce the input rate of new packets into the network. 

Several varieties of ETE flow control schemes have been proposed and 
implemented. We first describe four representative examples, and then 
briefly review some analytical and simulation models for the performance 
evaluation and comparison of such schemes. 

A. ARPAnet RFNM and Reassembly Scheme 

ETE flow control in ARPAnet is exercised on a host-pair basis [30], [23]. 
Specifically, all messages traveling from the same source host to the same 
destination host are carried on the same logical "pipe." Each pipe is 
individually flow controlled by a window mechanism. An independent 
message number sequence is maintained for each pipe. Numbers aresequen­
tially assigned to messages flowing on the pipe, and are checked at the 
destination for sequencing and duplicate detection purposes. Both the 
source and the destination keep a small window w (presently, W = 8) of 
currently valid message numbers. Messages arriving at the destination with 
out-of-range numbers are discarded. Messages arriving out of order are 
discarded since storing them (while waiting for the missing message) may 
lead to potential resequence deadlocks. Correctly received messages are 
acknowledged with short ETE control messages called RFNMs (ready for 
next message). Upon receipt of an RFNM, the sending end of the pipe 
advances its tr~nsmission window, accordingly. 

RFNMs are also used for error control. If an RFNM is not received 
after a specified time out (presently about 30 s), the source IMP sends a 
control message to the destination inquiring about the possibility of an 
incomplete transmission. This technique is necessary to keep source and 
destination message numbers synchronized and also to request a retransmis­
sion from the host in the case of message loss. 



Chap. 13 • Flow Control Protocols 391 

The window and message numbering mechanisms described so far 
support ETE flow control, sequencing, and error control functions in the 
ARPAnet. A separate mechanism, known as reassembly buffer allocation 
[30], is used to prevent reassembly deadlocks. Each multipacket message 
must secure a" reassembly buffer allocation at the destination node before 
transmission. This is accomplished by sending a reservation message called 
a REQALL (request for allocation) to the destination and waiting for an 
ALL (allocation) message from the destination before attempting transmis­
sion. To reduce delay (and, therefore, increase throughput) of steady multi­
packet message flow between the same source-destination pair, ALL mes­
sages are automatically piggybacked on RFNMs, thus eliminating the 
reservation delay for all messages after the first one. If a pending allocation 
at the source node is "not claimed within a given time out (250 ms), it is 
returned to the destination with a "giveback" message. Single-packet mes­
sages are transmitted to their destinations without buffer reservation. How­
ever, if upon arrival at the destination, all the reassembly buffers are full, 
the single-packet message is discarded and a copy is retransmitted from the 
source IMP after an explicit buffer reservation has been obtained. Some 
pitfalls inherent in such schemes are described in [23]. 

B. SNA Virtual Route Pacing Scheme 

The IBM systems network architecture (SNA) is an architecture aimed 
at providing distributed communications and distributed processing capabil­
ities between IBM systems [15], [16]. SNA was first announced in 1974. 
Since then, the original set of functions which supported single rooted 
networks (i.e., single host) have been enhanced to support multiple-dornain 
(i.e., multiple host) networking. In this paper, we refer to SNA release 4.2 
[16]. 

SNA devices can be subdivided into four main categories: host com­
puters (e.g., system/370), communications controllers (e.g., 3704 and 3705), 
terminal cluster controllers, and terminal devices (e.g., TTY s, CR Ts, read­
ers, and printers). Distributed communications with full routing, flow 
control, and global addressing capabilities are provided only on store­
and-forward networks interconnecting host computers and communication 
controllers. These nodes are called subarea nodes in SNA. Terminals and 
terminal cluster controllers are considered peripheral nodes and are con­
nected into the high level net at subarea nodes, which provide the necessary 
boundary functions (e.g., globaljlocal address conversion, etc.). Thus, for 
purposes of this section, SNA can be viewed as the usual two-level network 
architecture, with terminals and terminal cluster controllers at the lower 
level, and hosts and communications controllers at the higher level. 



392 Part IV • Network Layer 

SNA is essentially a virtual circuit network, in the sense that each user 
session is associated with a physical route at session setup time. The routing 
policy is a static, multipath policy which maintains up to eight distinct 
routes between each source-destination pair in the high-level network (i.e., 
between subarea nodes). These routes are called ERs (explicit routes), to 
distinguish them from VRs (virtual routes) defined below. ERs are defined 
as an ordered sequence of network trunks, and are uniquely identified by 
ER numbers. When a failure is detected on an ER currently being used, the 
next ER on the list is "switched in." One difficulty here is that the list of 
ERs must be updated by the network designer each time the network 
topology is changed. 

Next, virtual routes (VRs) are defined between each source-destination 
node pair of the high-level network. A VR is essentially a virtual pipe which 
is constructed on top of an ER and is subject to flow control. Three sets of 
VRs, each with a different level of priority are maintained between each 
subarea node pair. Each set may consist of up to eight VRs, thus allowing 
for up to 24 VRs between each high-level network node pair. Active VRs are 
identified by VR numbers and are stored in lists at each node. 

At session setup time, the entry node scans the VR list and assigns the 
user session to the first available virtual route of desired priority. Several 
user sessions may be multiplexed on the same YR. In turn, several VRs may 
be multiplexed on the same ER. Finally, several ERs can be multiplexed on 
the same trunk. 

The rationale for the distinction between virtual routes and explicit 
routes (a unique SNA feature among all VC networks, which typically 
associate a virtual route with a fixed path) is to " ... insulate the virtual 
route layer from the physical configuration" [16]. As a consequence, user 
packets are driven through the network using the ER ID number, while the 
VR ID number needs to be checked only at the end points of the path. This 
feature considerably reduces storage and processing overhead with respect 
to conventional VC schemes, which typically require large maps at each 
intermediate node to store the information relative to all virtual circuits 
traversing that node. 

In the high-level network, flow control is applied independently to each 
VR from entry to exit node. This scheme, known as VR pacing is actually a 
combination of ETE and hop level flow control. It is based on a window 
mechanism, in which the entry node must request (and obtain) permission 
from the exit node before sending a new group of k packets, where k is the 
window size. The destination may grant (or delay) such permission depend­
ing on local buffer availability. The window size k varies from h to 3h, 
where h is the path hop length. The value of k is dynamically adjusted not 
only by the exit node, but also by any intermediate node along the path on 
the basis of its buffer availability [1]. The fact that both the end node and 



Chap. 13 • Flow Control Protocols 393 

the intermediate nodes can "modulate" the window size k makes VR pacing 
a hybrid ETE and hop flow control scheme. Details are given in Section XII 
of Chapter 11. 

In addition to VR-pacing control, which operates between subarea 
nodes, the SNA architecture provides also for session level pacing which, for 
terminals and clusters, extends beyond subarea nodes and indivudally flow 
controls each user session between terminal and host computer. Session 
pacing is discussed in Section VI. 

C. GMD Individual Flow Control 

In GMDNET, entry-to-exit flow control is exercised individually on e,!ch 
virtual circuit, hence the name of individual flow control assigned to the 
scheme [37]. We recall that GMDNET is a VC network in which a fixed route 
is assigned to each user session at session setup time. 

The main purpose of entry-to-exit flow control in GMDNET is to protect 
the exit node from overflow caused by low sink rates. When the source host 
rate exceeds the sink host rate, the flow control mechanism intervenes to 
slow down inputs from the source host into the entry node. This is achieved 
by maintaining a window of outstanding packets between entry and exit 
node for each virtual circuit. The window must be large enough to permit 
each virtual circuit to efficiently utilize the bandwidth available on the path. 
GMD simulation experiments have shown that w = h + 1 (where h is the 
hop length of the path) is a satisfactory choice under nominal load condi­
tions. Window size can be reduced if the sink is slow in accepting packets. 
More precisely, when for a given VC the queue waiting to be transferred 
from exit node to sink reaches the value w, further arrivals to the exit node 
within that VC are discarded and a negative ACK is returned to the source 
node. Each negative ACK causes a window size reduction of 1 at the source 
node, until the minimum window size w = I is reached. Each positive ACK, 
on the other hand, increases window size by 1, until the maximum window 
size w = h + 1 is reached. In this way, window size is dynamically con­
trolled in the range 1 to h + 1 by positive and negative acknowledgments 
[37]. 

In addition to the entry-to-exit flow control, each hop of the virtual 
circuit is also independently flow controlled (see Section III). The two layers 
of flow control, entry-to-exit and hop, are logically separated one from the 
other, in that the ETE window is controlled by exit buffer occupancy, while 
hop window is controlled by intermediate node congestion. 

Packets within the same virtual circuit must be delivered to the host in 
sequence, and in case of multipacket messages, must be reassembled before 
delivery to the host. Fixed path routing and link level sequencing imply that 
packets arrive at their destination in sequence. This sequencing property, 



394 Part IV • Network Layer 

and the fact that a number of buffers sufficient to reassemble the largest size 
packet is permanently dedicated to traffic leaving the network, preclude the 
possibility of reassembly deadlocks and eliminate the need for reassembly 
buffer allocation schemes of the type implemented in ARPAnet. 

D. DATAPAC Virtual Circuit Flow Control 

The Canadian public data network, DATAPAC, implemented with the 
Northern Telecom SL-lO Packet Switching System provides virtual circuit 
services using an internal transport protocol built on top of a datagram 
subnetwork [28]. Flow control is exercised from entry to exit node on a 
virtual circuit basis, although no physical path is actually assigned to each 
virtual circuit, as was the case with SNA and GMDNET. The absence of a 
fixed path leads to some complications in the resequencing and loss re­
covery procedures, which will soon be discussed. 

In DATAPAC, a virtual circuit is provided between the two end points of 
each user session. The virtual circuit is implemented at the concatenation of 
three protocol segments: a packet level X.25 protocol from the source device 
(i.e., data terminating equipment or DTE) to entry node (i.e., data com­
munications equipment or DCE), an internal protocol from entry DCE to 
exit DCE, and a packet level X.25 protocol from exit node (DCE) to 
destination node (DTE). Each one of these protocol segments is flow 
controlled by a window mechanism. Of particular interest to us is the fact 
that window controls on these three segments are synchronized so as to 
provide a means of matching source DTE transmission rate with destination 
DTE acceptance rate. Window control synchronization is achieved by 
withholding the return of ACKs on a window if the downstream window is 
full. 

As an example, let us assume that all windows are of size w = 3, and 
that the window between entry and exit DCE is full (i.e., there are three 
outstanding packets). The next packet arriving from the source DTE to the 
entry DCE will be accepted (assuming buffer space is available), but will 
not be immediately acknowledged; rather, the ACK will be withheld until 
an ACK from the exit DCE is received, thus opening up the downstream 
window [28]. 

Within the concatenated window mechanism the entry-to-exit flow 
control serves the function of promptly reflecting back to the source an exit 
segment congestion situation by withholding ACKs. Recall that in GMDNET 

the entry-to-exit flow control provided a similar service by dynamically 
adjusting the window with positive or negative ACKs. In DATAPAC, things 
are complicated, however, by the fact that the window mechanism is used 
not only for flow control, but also for sequencing, packet loss recovery, and 
duplicate detection. These latter functions are not required in the GMDNET, 



Chap. 13 • Flow Control Protocols 395 

since sequencing is enforced there by the fixed path routing policy, and 
packet loss could occur only if a node along the path failed, in which case 
the virtual circuit would be automatically reinitiaIized. 

The use of window ACKs for loss recovery in DATAPAC leads to the 
following problem. If the exit DCE does not return to the entry DCE an 
ACK for a correctly received packet (because the exit segment is congested), 
the entry DCE will retransmit the packet after a time out, under the 
assumption that the packet was lost (or was dropped by the exit DCE for 
lack of resequence space). If no ACK is received after a specified number of 
retransmissions, the entry DCE will clear the virtual circuit. In order to 
minimize the generation of duplicate packet, and avoid the unnecessary 
interruption of user sessions, the value of time out must be carefully 
adjusted as a function of window size and other network parameters. 

E. Performance Models 

The great majority of entry-to-exit flow control mechanisms are based 
on the window scheme. Critical parameters in the window implementation 
are the size of the window, and if error and loss recovery are to be provided, 
the retransmission time-out interval. Several analytic and simulation models 
have been developed recently to investigate the impact of these parameters 
on throughput and delay performance. This section briefly surveys some of 
the most significant contributions in this area. 

We start with the Kleinrock and Kermani model of a single source­
to-destination stream flow controlled by a window mechanism [26]. The 
network entry-to-exit delay is simplified as an MjMjl queue delay, and the 
round trip delay therefore follows an Erlang-2 distribution. (This approxi­
mation is supported by simulation experiments showing that more accurate 
delay assumptions do not significantly change the nature of the results.) The 
exit node has finite storage and delivers packets to the destination host on a 
finite capacity channel. Consequently, the exit node may occasionally 
overflow and drop packets. To provide for transmission integrity, the entry 
node will retransmit an unacknowledged packet after a time-out interval. 
This simplified window model is solved analytically, yielding the optimal 
(i.e., minimum delay) window size and time-out interval for a given 
throughput requirement and destination buffer storage size. 

In a subsequent paper [22], the same authors propose an adaptive 
policy (the "look-ahead" policy) for the dynamic adjustment of window size 
to time-varying traffic rate. In the proposed policy, the window size is 
dynamically controlled by the queue size at the exit node. Numerical results 
show that the delay versus throughput performance of the adaptively 
controlled scheme is somewhat superior to the performance of a scheme 
operated under static control, in which the window is adjusted in accor-



396 Part IV • Network Layer 

dance with the traffic volume. These results are very encouraging, and are 
consistent with simulation experiments on dynamic window control carried 
out in multinode networks [1], [13]. 

The models in [26], [22] approximate the network as a single queue and 
therefore do not offer insight into the dependence of window size w on the 
window of intermediate hops. This issue is addressed by a simple multihop 
model developed by Kleinrock in [24]. In this model a packet stream from a 
single destination is transmitted across the network on a k-hop network 
path. Infinite buffer storage and negligible error rates are assumed on each 
hop. The stream is flow controlled by a window mechanism. In this model, 
as the window size w increases, the end-to-end delay grows without limit 
while the throughput asymptotically reaches the path capacity. In order to 
find a meaningful criterion for the optimization of w, the concept of 
"power" as defined in Section II F is used. We find that power is optimized 
by w = k. This implies, that, at optimum, there should be on the average one 
packet in each intermediate queue. This result agrees with our intuition that 
the "entry-to-exit pipe should be kept full (in fact,just full),' for satisfactory 
performance. The general validity of this result is confirmed by actual 
window implementations. In fact, the SNA pacing scheme allows the 
window to dynamically vary from h to 3h, where h is the number of 
intermediate hops. Similarly, the GMD individual flow control scheme uses 
a maximum window of h + 1. 

The main limitation of the two previous models is the single-source, 
single-destination traffic assumption which excludes interference at a given 
node by other traffic traversing it. The model by Pennotti and Schwartz [32] 
includes the effect of interference in an approximate fashion in that it 
represents a virtual link situation in which end-to-end link traffic flowing on 
a multihop path must compete at each hop with external traffic. This is 
essentially a "one-hop" interference model in which some external traffic A 
is injected into one node along the path and is transmitted to the next node 
on the path, where it then is removed from the network. The purpose of this 
study is to evaluate the possible path congestion caused by an increase in 
the virtual link rate AD, both with and without flow control. Congestion is 
defined as the relative average increase in time delay experienced by 
external users due to an increase in AD, taking AD = 0 as a reference. 
Without flow control, congestion rapidly grows to infinity even for mod­
erate values of AD. By introducing end-to-end window control which limits 
to w the number of packets outstanding on the virtual link at anyone time, 
congestion can be bounded for any value of AD. The value of the upper 
bound varies with w, and decreases for decreasing w, as expected. 

As an alternative to window flow control, hop flow control was also 
implemented in the Pennotti and Schwartz model by setting a limit on the 



Chap. 13 • Flow Control Protocols 397 

number of link packets that would be stored at each intermediate node [32]. 
This scheme exhibited essentially the same performance as the window 
scheme. The above experiments show that flow control (either window or 
hop) can be used effectively to maintain fairness in a multiuser environment 
with conflicting requirements; that is, by adjusting the window parameter w, 
one can balance the relative user throughputs as desired. 

The previously mentioned model offers some insight into multiuser 
flow control, but suffers from the limitation that only one virtual circuit can 
be flow controlled at a time, the remaining traffic components being kept 
constant. To remove this limitation, a number of multiple source, multiple 
destination models with selectively controlled user pairs have been devel­
oped. These models combine ETE flow control with network access flow 
control, and therefore may be regarded as hybrid models. Wong and Unsoy 
analyze a simple 5-node network to which individual entry-to-exit window 
control as well as isarithmic control are applied [41]. The isarithrnic scheme 
is a network access flow control scheme which controls the total number of 
packets allowed in the entire network (see Section V for additional details). 
The major finding of this study is the fact that isarithmic control alone is 
not enough to guarantee efficient network operation. In fact, under some 
unfavorable traffic situations, one node pair may capture most of the 
permits, starving other pairs and leading to unfairness and to overall 
performance degradation. Similar results were found by Price in a series of 
simulation experiments [36]. The problem is corrected by introducing indi­
vidual entry-to-exit flow controls in addition to isarithmic control. 

The exact analysis of multinode networks with individually controlled 
node pairs becomes impractical for topologies with more than five to six 
nodes because of the rapidly increasing computational complexity of exact 
solution techniques [41]. To circumvent this problem, Reiser recently pro­
posed an approximate solution technique based on a mean value analysis 
which is computationally affordable even for large networks, and which 
reaches a typical accuracy of 5 percent in throughput and 10 percent in 
delay [38]. With this technique it is now possible to analyze the interaction 
of various flow control schemes in a much more realistic environment (i.e., 
large networks; varied traffic patterns) than was possible with previous 
methods. Important design problems such as the optimization of window 
parameters for all source-destination pairs in order to maximize network 
throughput (within given fairness constraints), now become approachable. 
In particular, mean value analysis was used to study the interplay between 
routing and window flow control in [12b]. 

In spite of the previously mentioned advances in computational solu­
tion techniques, some window flow control issues are still too complex to be 
attacked analytically. For example, the dynamic control of window size in a 



398 Part IV • Network Layer 

multinode network is not amenable to a network-of-queues model even with 
the approximate solution methods. In these cases, simulation is still the 
leading performance evaluation tool [13], [1], [36]. 

V. Network Access Flow Control 

A. Objective 

The objective of network access (NA) flow controls is to throttle 
external inputs based on measurements of internal network congestion. 
Congestion measures may be local (e.g., buffer occupancy in the entry 
node), global (e.g., total number of buffers available in the entire network), 
or selective [e.g., congestion of the path(s) leading to a given destination]. 
The congestion condition is determined at (or is reported to) the network 
access points and is used to regulate the access of external traffic into the 
network. 

NA flow control differs from HL and ETE flow control in that it 
thiottles external traffic to prevent overall internal buffer congestion, while 
HL flow control limits access to a specific store-and-forward node to 
prevent local congestion and store-and-forward deadlocks, and ETE flow 
control limits the flow between a specific source-destination pair to prevent 
congestion and reassembly buffer deadlocks at the destination. The distinction, 
however, is not quite so clearcut, since as we mentioned earlier, both HL 
and ETE schemes indirectly provide some form of NA flow control by 
reporting an internal network congestion condition back to the access point 
either via backpressure (HL scheme), or via credit slowdown (ETE scheme). 

Three NA flow control implementations will be discussed: the isarith­
mic scheme, a global congestion prevention scheme based on the circulation 
of a fixed number of permits [8]; the input buffer limit scheme, a local 
congestion scheme which sets a limit on the number of input packets stored 
at each node [27], [13]; and the choke packet scheme, a selective congestion 
scheme based on the delivery of special control packets of that name from 
the congested node back to the traffic sources [29]. 

B. The Isarithmic Scheme 

Since the primary cause of network congestion is the excessive number 
of packets stored in the network, an intuitively sound congestion prevention 
principle consists of setting a limit on the total number of packets that can 
circulate in the network at anyone time. An implementation of this 
principle is offered by the Isarithmic scheme proposed for the National 
Physical Laboratories network [8], [35]. 



Chap. 13 • Flow Control Protocols 399 

The isarithmic scheme is based on the concept of a "permit," i.e., a 
ticket that permits a packet to travel from the entry point to the desired 
destination. Under this concept, the network is initially provided with a 
number of permits, several held in store at each node. As traffic is offered 
by a host to the network, each packet must secure a permit before admission 
to the high-level node is allowed. Each accepted packet causes a reduction 
of one in the store of permits available at the accepting node. The accepted 
data packet is able to traverse the network, under the control of node and 
link protocols, until its destination node is reached. When the packet is 
handed over to the destination subscriber, the permit which has accompa­
nied it during its journey becomes free and an attempt is made to add it to 
the permit pool of the node in which it now finds itself. 

In order to achieve it viable system in which permits do not accumulate 
in certain parts of the network at the expense of the other parts, it is 
necessary to place a limit on the number of permits that can be held in store 
by each node. If then, because of this limit, a newly freed permit cannot be 
accomodated at a node (overflow permit), it must be sent elsewhere. The 
normal method of carrying the permit in these circumstances is to "piggy­
back" it on other traffic, be this data or control. Only in the absence of 
other traffic need a special permit-carrying packet be generated. 

A simulation program was developed by NPL to evaluate the perfor­
mance of the isarithmic scheme in various network configurations and in the 
presence of different network protocols [35]. The main conclusion of these 
simulation studies was that the isarithmic scheme is a simple congestion 
prevention mechanism which performs well in uniform traffic pattern 
situations, but may lead to unnecessary throughput restrictions, and there­
fore, to poor performance in the case of nonuniform, time-varying traffic 
patterns. In particular, in the presence of high bandwidth data transfers, 
there is the possibility that permits are not returned to the traffic sources 
rapidly enough to fully utilize network capacity (the "permit starvation" 
problem). This would be the case when the destination node redistributes 
the overflow permits randomly in the network. If, on the other hand, the 
destination systematically returns all the permits to the source, the source­
destination pair may end up capturing most of the network permits, thus 
causing unfairness. Tradeoffs between different permit distribution schemes 
are investigated with an analytical model in [41]. Finally, a delicate problem 
in isarithmic control is the bookkeeping of permits, to avoid unauthorized 
generation or disappearance of permits. 

In spite of the above limitations, the isarithmic scheme proved to be 
very effective in weakly controlled networks (namely, networks without hop 
level flow control), eliminating congestion and deadlocks that had occurred 
without flow control. Some simulation experiments were also carried out on 
networks with hop level control (specifically CQL), and with a simple form 



400 Part IV • Network Layer 

of local access control (one buffer on each output queue was reserved for 
store-and-forward traffic). For this class of networks (called strongly con­
trolled networks), it was found that the network performance did not show 
congestion tendencies even without isarithmic control in the case of a fixed 
routing discipline. When the fixed discipline was replaced with an adaptive 
routing discipline, it was found that the network would become easily 
congested since the simple form of network access control implemented 
would not prevent external traffic from flooding all the queues in the entry 
node. Again, the introduction of the isarithmic scheme was successful in 
eliminating the congestion problem for the adaptive routing case [36}. 

Critical parameters in the isarithmic scheme design are the total num­
ber of permits P in the network and the maximum number of permits L that 
can be accumulated at each node (permit queue). Experimental results show 
that optimal performance is achieved for P = 3N, where N is the total 
number of nodes, and L = 3. An excessive number of permits in the 
network would lead to congestion. An excessive value of L would lead to 
unfairness, accumulation of permits at a few nodes, and throughput starva­
tion at the others. 

C. Input Buffer Limit Scheme 

The input buffer limit (IBL) scheme differentiates between input traffic 
(i.e., traffic from external sources) and transit traffic, and throttles the input 
traffic based on buffer occupancy at the entry node. IBL is a local network 
access method since it monitors local congestion at the entry node, rather 
than global congestion as the isarithmic scheme does. Entry node conges­
tion, on the other hand, is often a good indicator of global congestion 
because of the well-known backpressure effect which propagates internal 
congestion conditions back to the traffic sources. 

The function of IBL controls is to block input traffic when certain 
buffer utilization thresholds are reached in the entry node. This flow control 
approach clearly favors transit traffic over input traffic. Intuitively, this is a 
desirable property since a number of network resources have already been 
invested in transit traffic. This intuitive argument is supported by a number 
of analytical and simulation experiments proving the effectiveness of the 
IBL scheme. 

Many versions of IBL control can be proposed. Here, we describe and 
compare four different implementations that have been experimentally 
evaluated. 

The term input buffer limit scheme refers to a scheme restricting the 
number of buffers made available to input traffic and was first introduced 
by the GMD research group [37], [13]. The scheme proposed for GMDNET is 
a by-product of the nested buffer class structure used to allocate buffers to 



Chap. 13 • Flow Control Protocols 401 

different classes of traffic. We recall from Section III D that the ith traffic 
class consists of all the packets that have already covered i hops. Input 
traffic is assigned to class zero (zero hops covered). Traffic class zero is 
entitled to use buffer class zero, which is a subset of the nodal buffer pool 
(in general, class i is entitled to use all buffer classes :::; i). Thus, input 
packets are discarded when class zero buffers are full. The size of buffer 
class zero (referred to as input buffer limit) was found to have a significant 
impact on throughput performance under heavy loads. Simulation experi­
ments indicate that for a given topology and traffic pattern there is an 
optimal input buffer limit which maximizes throughput for heavy offered 
load. The use of lower or higher limits leads to a substantial drop in 
throughput [13]. 

A version of IBL control that is simpler than the GMD version was 
proposed by Lam [27] and analytically evaluated in an elegant model. Only 
two classes of traffic-input and transit-are considered in this proposal. 
Letting NT be the total number of buffers in the node and N[ the input 
buffer limit (where N[ :::; NT)' the following constraints are imposed at each 
node: 

1. number of input packets :::; N[, and 
2. number of transit packets:::; NT' 

The analytical results confirm simulation results independently ob­
tained by the GMD group. There is an optimal ratio N[/NT , which 
maximizes throughput for heavy offered load, as shown in Fig. 19. A good 
heuristic choice for N[/NT is the ratio between input message throughput 
and total message throughput at a node. As shown in the figure, throughput 

Figure 19. Input buffer limit scheme: 
throughput versus buffer limitation for 
heavy offered load. 

U 
w 
en ..... en 
w 

" oct 
en 
en 
w 
~ 

20 

15 

10 

o~ __ ~~~~ __ ~~ __ ~ __ ~ 
o 0.2 0.4 0.6 0.8 1.0 

INPUT BUFFER LIMIT Nil NT 



402 Part IV • Network Layer 

performance does not change significantly even for relatively large varia­
tions of the ratio NT/NT around the optimal value, thus implying that the 
IBL scheme is robust to external perturbations such as traffic fluctuations 
and topology changes. One shortcoming of this model is that all nodes in 
the net are assumed to have the same blocking probability, a somewhat 
unrealistic assumption. 

A scheme similar to Lam's IBL scheme has been earlier proposed by 
Price [35]. In order to prevent input traffic from monopolizing the entire 
buffer pool, one buffer in each output queue was reserved for transit traffic. 
This is essentially equivalent to setting an input buffer limit N[ = NT - C, 
where C is the number of output channels. Simulation studies showed that 
this simple network access control based on source buffer utilization was 
quite successful in single level networks. 

Kamoun [21] proposes yet another version of IBL control, in which an 
input packet is discarded if the total number of packets in the entry node 
exceeds a given threshold (whereas in Lam's scheme an input packet is 
discarded when the number of input packets exceeds a given threshold). 
Transit packets, instead, can freely claim all the buffers. The scheme is 
called drop-and-throttle flow control (DTFC) policy since a transit packet 
arriving at a full node is dropped and lost (loss model); while all previous 
schemes assumed link level retransmission of overflow packets (retransmit 
model). The DTFC scheme was analyzed using a network of queues model 
[21]. The results, shown in Fig. 20, clearly indicate that there is an optimal 
threshold value L which maximizes throughput for each value of offered 
load. Below the threshold, the network is "starved"; above the threshold, the 

I­
::J 
0-
J: 
<!) 
::J 
o cc 
J: 
I-

L = 12 10 8 4 

.O~~ ____ ~ ____ ~ __ L-~~ ____ ~~ 

.4 .5 2 3 4 5 10 

OFFERED LOAD 

Figure 20. Throughput versus 
load for a I2I-node network for 
drop-and-throttle flow control. 



Chap. 13 • Flow Control Protocols 403 

----..------ .... ------~---
Fig. 21. Unfairness condition produced by input buffer limit and drop-and-throttle flow 
control schemes. 

network is congested. A similar scheme, referred to as the free flow scheme, 
is described and analyzed by Schwartz and Saad in [41]. Preliminary results 
indicate that, while free flow and IBL throughput performances are compat­
ible, the free flow scheme offers substantial delay improvements. 

We have pointed out that IBL control prevents congestion by favoring 
transit traffic over input traffic. In most cases (indeed, in all cases analyzed 
in the previously referenced studies), this favoritism leads to throughput 
improvements. In some cases, however, unfairness may result. Consider, for 
example, the 4-node network shown in Fig. 21. In this network, two file 
transfers, A to A' and B to B', respectively, are simultaneously competing 
for trunk (2,3). Node 2 sees traffic A as transit traffic, so it gives it 
preferential treatment over traffic from B. Consequently, the A-A' packet 
stream can acquire more buffers in node 2, and thus achieve better 
throughput performance than the B-B' stream. The unfairness is particu­
larly dramatic when DTFC is used. With the DTFC policy, if the A-packet 
queue in node 2 exceeds the buffer threshold (this could easily occur if 
C23 < CI2 ), B packets cannot be accepted by node 2. Consequently B traffic 
is completely shut off until the A-A' file transfer is completed. 

D. Choke Packet Scheme 

The choke packet (CP) scheme, proposed for the Cyclades network 
[29], is based on the notion of trunk and path congestion. A trunk (link) is 
defined to be congested if its utilization (measured over an appropriate 
history window with exponential averaging) exceeds a given threshold (e.g., 
80 percent). A path is congested if any of its trunks are congested. Path 
congestion information is propagated in the network together with routing 
information, and thus each node knows hop distance and congestion status 
of the shortest path to each destination. 



404 Part IV • Network Layer 

When a node receives a packet directed to a destination whose path is 
congested it takes the following actions: 

(1) If the packet is an input packet (i.e., it comes directly from a host), 
then the packet is dropped. 

(2) If the packet is a transit packet, it is forwarded on the path; but a 
"choke" packet (namely, a small control packet) is sent back to the source 
node informing it that the path to that destination is congested and 
instructing it to block any subsequent input packets to this destination. The 
path to the destination is gradually unblocked if no choke packets are 
received during a specified time interval. 

This is a greatly simplified description of the CP scheme. Several other 
features (which 1;lre essential to make the scheme workable) are discussed in 
[29]. 

It is clear that the CP scheme attempts to favor transit traffic over 
input traffic, much in the same way as the IBL scheme did. The basic 
difference between the two schemes is the fact that IBL uses a local 
congestion measure, namely, the entry node buffer occupancy, to indis­
criminately control all input traffic; whereas, CP uses a path congestion 

100 IDEAL THROUGHPUT FOR CIGALE NETWORK 

'0 
~ 

x 
0 80 w 
> 
iii CONTROLLED NETWORK () 
w 
II: 
(J) 60 
~ w :.:: 
() UNCONTROLLED NETWORK « 
a.. 
IL 40 
0 
0 z 

20 
NETWORK OPERATION TIME = 95 SEC 

GENERATED LOAD (NO. OF PACKETS) xl 02 

Fig. 22. Throughput performance in CigaJe with and without flow control. 



Chap. 13 • Flow Control Protocols 405 

measure to exercise selective flow control on input traffic directed to 
different destinations. 

Simulation experiments based on the Cigale network topology are given 
in Fig. 22 and show that the CP scheme can introduce substantial through­
put improvements (with respect to the uncontrolled case) in sustained load 
conditions, asymptotically achieving the ideal performance for infinite load 
[29]. 

VI. Session Level Flow Control 

A. Objectives 

A transport protocol is a set of rules that govern the transfer of control 
and data between user processes across the network. The main functions of 
this protocol are the efficient and reliable transmission of messages within 
each user session (including packetization, reassembly, resequencing, re­
covery from loss, elimination of duplicates) and the efficient sharing of 
common network resources by several user sessions (obtained by multiplex­
ing many user connections on the same physical path and by maintaining 
priorities between different sessions to reflect the relative urgency). 

For efficient and reliable reassembly of messages at the destination 
host (or more generally, the DTE), the transport protocol must ensure that 
messages arriving at the destination DTE are provided adequate buffering. 
The transport protocol function which prevents destination buffer conges­
tion and overflow is known as session level flow control. Generally, this level 
of flow control is based on a "credit" (or window) mechanism as discussed 
earlier. Specifically, the receiver grants transmission credits to the sender as 
soon as reassembly buffers become free. Upon receiving a credit, the sender 
is authorized to transmit a message of an agreed-upon length. When 
reassembly buffers become full, no credits are returned to the sender, thus 
temporarily stopping message transmissions [5]. 

The credit scheme described above is somewhat vulnerable to losses, 
since a lost credit may hang up a connection. In fact, a sender may wait 
indefinitely for a lost credit, while the receiver is waiting for a message. A 
more robust flow control scheme is obtained by numbering credits relative 
to the messages flowing in the opposite direction. In this case, each credit 
carries a message sequence number, say N, and a "window size" w. Upon 
receiving this credit, the sender is authorized to send all backlogged mes­
sages up to the (N + w)th message. With the numbered credit scheme, if a 
credit is lost then the subsequent credit will restore proper information to 
the sender [45]. 



406 Part IV • Network Layer 

Besides preventing destination buffer congestion, the credit scheme also 
indirectly provides global network congestion protection. In fact, store­
and-forward buffer congestion at the intermediate nodes along the path 
may cause a large end-to-end credit delay, thus slowing down the return of 
credits to the sender, and consequently, reducing the rate of fresh message 
input into the network. 

B. Implementations 

Several versions of the transport protocol are in existence, each incor­
porating its own form of transport level flow control. Here, we briefly 
describe four representative implementations. 

The earliest example of transport protocol implementation is the origi­
nal version of the ARPAnet network control program (NCP) [4]. NCP flow 
control is provided by unnumbered credits called "allocate" control mes­
sages (see Section IV D). Only one allocate could be outstanding at a time 
(i.e., window size W = 1). 

The French research network Cyclades provided the environment for 
the development of the transport station (TS) protocol [50]. In the TS 
protocol, the flow control mechanism is based on numbered credits, each 
credit authorizing the transmission of a variable size message called a letter. 
Flow control is actually combined with error control in that credits are 
carried by acknowledgment messages. 

The transmission control program (TCP) was a second generation 
transport protocol developed by the ARPAnet research community in order 
to overcome the deficiencies of the original NCP protocol [5]. As in the TS 
protocol, flow and error control are combined in TCP. As a difference, 
however, error and flow control are on a byte (rather than letter) basis. This 
allows a more efficient utilization of reassembly buffers at the destination. 

In SNA, the transport level flow control is provided by session pacing. 
The purpose of session-level pacing is to prevent one session end from 
sending data more quickly than the receiving session end can process the 
data [16]. As in TCP and TS, session-level pacing is based on a window 
concept, in which the receiving end grants "credits" to the sending end 
based on its buffer availability and processing capability. As a difference, 
however, subarea nodes in SNA can control the inbound flow from a cluster 
controller into the network by intercepting and withholding the credits 
(called pacing responses in SNA) for a given session, if the subarea node 
buffers are congested or if the virtual route (VR) transmission queue for 
that session is congested. Specifically, session-level pacing responses are 
intercepted at the entry node to exercise network access flow control from 
the terminal into the high-level network [16]. Thus, session pacing may be 
viewed as a hybrid form of transport level flow control, which is obtained 



Chap. 13 • Flow Control Protocols 407 

by concatenating a network access level segment (from the terminal to the 
high-level network node) and an entry-to-exit level segment (controlled by 
virtual route pacing). 

VII. Conclusions and Directions for Further Research 

In this chapter we have proposed a taxonomy of flow control mecha­
nisms based on a multilevel structure. We have defined four levels of flow 
control and have shown how these levels are actually embedded into 
corresponding levels of protocols. To the extent that these levels can be 
independently defined, the analysis, design evaluation, and comparison of 
flow control schemes is greatly simplified, since any complex control 
structure can be decomposed into smaller modules, and each module 
individually analyzed. The overall performance is then obtained by studying 
the interaction of the various modules. 

Recent advances in queueing theory have led to reasonable success in 
the modeling and analysis of individual levels of flow control. We have 
reported on several performance results, and have used such results to 
compare different schemes. 

In real life, however, some control structures defy the simple, hierarchi­
cal representation here proposed, and seem to combine two or more levels 
into hybrid flow control solutions (see Fig. 10). This is particularly common in 
homogeneous networks (e.g., SNA) in which a single manufacturer is 
responsible for the implementation of both DCE and DTE equipment and, 
therefore, has more freedom in the design of the various flow control levels. 

The existence of multiple levels of flow control and the possible 
integration of some of these into hybrid arrangements immediately brings 
up a very critical issue in flow control which requires further study, namely, 
the interaction between levels. Given that we understand the throughput and 
delay implications of each specific level of flow control, we still have to 
study the combined effect when these levels are operating simultaneously in 
the network. For instance, network experience seems to indicate that a 
network equipped with a very conservative hop level flow control, such as 
the SBP scheme in GMDNET or the VC-HL scheme in TYMNET, does not 
require strong network access or ETE flow control schemes since network 
congestion situations are immediately reported back to the entry node by 
back pressure through the hop level [36]. This type of issue can be fully 
investigated only by developing models which include multiple levels of flow 
control. An interesting example in this direction was the combined isarith­
mic and entry to exit flow control model presented in [47]. More research is 
required in this area. 



408 Part IV • Network Layer 

Hybrid packet and circuit networks are now emerging as a solution to 
multimode (voice and data; batch and interactive) user requirements [II]. 
These networks must be equipped with novel flow control mechanisms. In 
fact, if the network were to apply conventional flow control schemes to the 
packet-switched (PIS) component only, leaving the circuit-switched (CjS) 
component uncontrolled, then the CIS component would very likely cap­
ture the entire network bandwidth during peak hours. If this does not cause 
congestion, since the CIS protocol is not as congestion prone as the PIS 
protocol, it certainly creates unfairness. Some form of flow control on CIS 
traffic which is sensitive to the relative PIS load is therefore required. 

The integration of voice and data requirements in packet-switched 
networks has been vigorously advocated in recent years on grounds of 
improved efficiency and reduced cost [14]. Unfortunately, little attention 
has been given to the fact that integrated networks require a complete 
redesign of the conventional flow control schemes since voice traffic cannot 
be buffered and delayed in case of congestion. Priorities are of help only if 
the voice traffic is a small fraction of the total traffic. For the general case, 
new flow control techniques must be developed for voice. These techniques 
should be preventive in nature, i.e., they should block calls before congestion 
occurs, rather than detecting congestion and then attempting to recover from 
it, as is the case for most of the conventional flow control schemes for data 
[10], [31]. 

Routing and flow control procedures have traditionally been developed 
independently in packet networks, under the assumption that flow control 
must keep excess traffic out of the network, and routing must struggle to 
efficiently transport to destination whatever traffic was permitted into the 
network by the flow control scheme. It seems, however, that routing and 
flow control can be brought together into useful cooperation in virtual 
circuit networks, where a path must be selected before data transfer on a 
user connection begins [12], [12c]. In this case, the routing algorithm can be 
invoked first to determine whether a path of sufficient residual bandwidth is 
available. If no path is available, the virtual circuit connection is blocked 
immediately at the entry node by the network access flow control level, thus 
preventing congestion rather than allowing it to occur and then attempting 
to recover from it. A combined routing and flow control strategy is 
implemented in TYMNET [39], and is described in more detail in Section IV 
of Chapter 12. 

Challenging flow control problems exist in multiaccess broadcast net­
works. In single hop multiaccess systems, congestion prevention and stabil­
ity mechanisms are well understood, and are usually directly embedded in 
the channel access protocol [46]. In distributed multihop multiaccess sys­
tems (e.g., multihop ground radio networks), congestion prevention becomes 
a very hard problem because of the interaction between buffer and channel 
congestion. Conventional flow control schemes used in hardwired nets 



Chap. 13 • Flow Control Protocols 409 

cannot be directly applied. In particular, the hop level flow control should 
be revised to combine the buffer allocation strategy with the retransmission 
control strategy. Some pioneering work in this direction is reported in 
[2], [48], [43]. 

Finally, growing user demands require the interconnection of networks 
which may implement different flow control policies and which may even be 
built on different media (e.g., satellite, radio, cable, or optical fiber). These 
networks are interconnected by gateways which provide for internet routing 
and flow control, as well as for protocol conversion between two adjacent 
networks [44], [6]. It appears that a new level of flow control must therefore 
be defined in our hierarchy, namely, the gateway-to-gateway level. This level 
should be designed t9 prevent the congestion of gateways along the path, 
and should be supported by explicit gateway-to-gateway protocols for the 
exchange of status information. The status information should include 
buffer occupancy at the gateway, and load conditions in the adjacent 
networks, and could probably be exploited also for gateway routing. Func­
tionally, the gateway-to-gateway protocol is positioned between the entry­
to-exit protocol and the session protocol hierarchy in Fig. 2. All the other 
levels remain unchanged. The actual implementation of the gateway-to-gate­
way flow control will be dependent on the internet protocol used. If the 
CCITT X.75 Recommendation, which is an extension of the X.25 virtual 
circuit concept to internet connections [45], is adopted, the gateway-to-gate­
way flow control will be virtual-circuit oriented, and will be exercised on a 
connection-by-connection basis. Alternatively, datagram-oriented gateway 
level flow control schemes can also be implemented. 

The design of efficient gateway flow control schemes is very challeng­
ing. It requires vertical consistency between the gateway level and all the 
other levels implemented in each individual network as well as horizontal 
consistency across the various networks on the internet path. Specifically, 
the gateway level flow control must be able to balance loads between 
extremely diverse network environments such as point-to-point, satellite, 
cable, and ground radio. These design requirements further emphasize the 
need for continuing research in multilevel flow control models in order to 
understand the vertical interactions between the various levels in the 
hierarchy, as well as the horizontal interactions between the various seg­
ments of a flow control chain along an internet path. 

In summary, we have presented a framework for the study of flow 
control, showing that flow control mechanisms have advanced somewhat 
beyond simply being "a bag of tricks" [34], and indeed can be conceptually 
organized into a useful and well-structured system of controls. This struc­
ture is extremely helpful in the survey and comparison of existing flow 
control implementations, as well as in the development of flow control 
models. In particular, complex control systems can be (and should be) 
decomposed into smaller modules, thus simplifying the analysis of each 



410 Part IV • Network Layer 

module as well as the analysis of interactions between different modules. 
Furthermore, the proposed flow control structure is sufficiently flexible to 
permit extensions in response to new networking technologies and applica­
tions. 

Although our focus has been on flow control models and performance 
criteria, we expect that the proposed structure will prove to be useful also 
for the actual implementation of flow control techniques. One must be 
aware, of course, of the fact that in actual networks, it is not always possible 
to develop and update flow controls in a well structured fashion. The 
designer, in fact, is usually confronted with a number of constraints 
imposed by the preexisting protocol structure (in which flow control mecha­
nisms must be embedded) and by limited storage and processing resources. 
The designer must therefore avoid overburdening the switch with overly 
sophisticated flow control mechanisms, and creating inconsistencies and 
possibly deadlocks. These constraints, together with the fact that flow 
control is a distributed multilevel control function that cannot be confined 
to a well-defined modular "black box," make flow control design a very 
hard task. It is our strong opinion, however, that the only way to prevent 
flow control implementations from degrading to the state of an uncontrolla­
ble "bag of tricks" is to identify an underlying structure in the early stage of 
flow control design, and to continuously verify this structure during the 
various updates of protocols and flow control procedures. 

Indeed, it is important that one be able to subject a proposed flow 
control algorithm to various tests of correctness, consistency, and proper 
termination [33], [49]. This is, in general, a very difficult task whose solution 
requires advances in the frontier of computer science. Unfortunate~y, since 
it is relatively difficult to create efficient, deadlock-free, flow control algo­
rithms, we cannot totally ignore this need for verification. Moreover, many 
difficulties with flow control procedures often arise due to errors in the 
detailed implementation of otherwise correct algorithms. Consequently, it is 
important that a modular approach to flow control design be taken, that the 
code itself be confined to isolated portions of the network operating system 
(rather than sprinkled through thousands of lines of code), and that the 
mechanisms be simple enough to be understood and tested via simple 
procedures. 

References 

[I] V. Ahuja, "Routing and flow control in systems network architecture," IBM Syst. J .. vol. 
18, no. 2, pp. 298-314,1979. 

[2] G. Akavia and L. Kleinrock, "Performance tradeoffs in distributed packet-switching 
communication networks," Dep. Comput. Sci., School of Eng. Appl. Sci., Univ. of 
California, Los Angeles, Tech. Rep. UCLA-ENG-7942, Sept. 1979. 



Chap. 13 • Flow Control Protocols 411 

[3] P. Brinch-Hansen, Operating System Principles. Englewood Cliffs, New Jersey, Prentice­
Hall, 1973. 

[4] S. Carr et al., "Host/host protocol in the ARPA network," in Proc. Spring Joint Comput. 
Conf, 1970, pp. 589-597. 

[5] V. G. Cerf and R. Kahn, "A protocol for packet network intercommunication," IEEE 
Trans. Commull., vol. COM-22, May 1974. 

[6] V. G. Cerf, "DARPA activities in packet network interconnection," in Interlinking of 
Computer Networks (NATO Advanced Study Inst. Series). Reidel. 

[7] A. Danet et al., "The French public packet switching service: The Transpac network," in 
Proc. Int. Conf Comput. Commull., Toronto, Ont., Canada, Aug. 1976. 

[8] D. W. Davies, "The control of congestion in packet-switching networks," IEEE Trans. 
Commun., vol. COM-20, June 1972. 

[9] H. C. Folts, "International standards in computer communications," in Proc. Nat. 
Telecommun. Conf, Nov. 1979, pp. 59.5.1-59.5.5. 

[10] J. Forgie and A. Nemeth, "An efficient packetized voice/data network using statistical 
flow control," in ProC. Int. Conf Commun. Chicago, IL, June 1977. 

[11] M. Gerla and D. DeStasio, "Integration of packet and circuit transport protocols in the 
TRAN data network," in Proc. Comput. Network Symp., Liege, Belgium, Feb. 1978. 

[12] M. Gerla, "Routing and flow control in virtual circuit computer networks," in Proc. 
INFO II Int. Conf, July 1979. 

[l2b] M. Gerla and P. O. Nielson, "Routing and flow control interplay in computer 
networks," ICCC Proc., Atlanta, November, 1980. 

[12c] M. Gerla, "Bandwidth control in X.25 networks, PTC Proc., Hawaii, January 1981. 
[13] A. Giessler et aI., "Free buffer allocation-An investigation by simulation," Comput. 

Networks, vol. 2, pp. 191-208, 1978. 
[14] 1. Gitman and H. Frank, "Economic analysis of integrated voice and data networks," 

Proc. IEEE, pp. 1549-1570, Nov. 1978. 
[15] J. P. Gray, "Network services in systems network architecture," IEEE Trans.Commun., 

vol. COM-25, pp. 104-116, Jan. 1977. 
[16] J. P. Gray and T. B. McNeill, "SNA multiple-system networking," IBM Syst. J., vol. 18, 

no. 2, 1979. 
[17] P. E. Green, "The structure of computer networks," this book, Chap. 1; also in IBM 

Syst. J. no. 2, 1979. 
[18] M. Irland, "Buffer management in a packet switch," IEEE TrailS. Commun., vol. 

COM-26, pp. 328-337, Mar. 1978. 
[19] R. E. Kahn and W. R. Crowther, "A study of the ARPA computer network design and 

performance," Bolt Beranek and Newman, Inc., Tech. Rep. 2161, Aug. 1971. 
[20] F. Kamoun, "Design considerations for large computer communications networks," 

Ph.D. dissertation, Univ. of California, Los Angeles, Eng. Rep. 7642, Apr. 1976. 
[21] F. Kamoun, "A drop and throttle flow control (DTFC) policy for computer networks," 

Proceedings of the 9th Int. Teletraffic Congr., Spain, Oct. 1979. 
[22] P. Kermani and L. Kleinrock, "Dynamic flow control in store and forward computer 

networks," IEEE Trans. Commun., vol. COM-27, Feb. 1979. 
[23] L. Kleinrock, Queueing Systems: Volume II. Computer Applications. New York: Wiley­

Interscience, 1976. 
[24] L. Kleinrock, "On flow control in computer networks," in Proc. Int. Conf Commul1., 

June 1978. 
[25] L. Kleinrock, "Power and deterministic rules of thumb for probabilistic problems in 

computer communications," in Proc. Int. Conf Commul1., June 1979. 
[26] L. Kleinrock and P. Kermani, "Static flow control in store and forward computer 

networks," IEEE Trans. Commun., vol. COM-27, Feb. 1979. 
[27] S. Lam and M. Reiser, "Congestion control of store and forward networks by buffer 

input limits," in Proc. Nat. Telecommul1. COllf, Los Angeles, CA, Dec. 1977. 



412 Part IV • Network Layer 

[28] R. Magoon and D. Twyver, "Flow and congestion control in SL-IO networks," in Proc. 
Int. Symp. Flow Control Comput. Networks. Versailles, France, Feb. 1979. 

[29] J. C. Majithia et al., "Experiments in congestion control techniques," in Proc. Int. Symp. 
Flow Control Comput. Networks, Versailles, France, Feb. 1979. 

[30] J. M. Mcquillan et al., "Improvements in the design and performance of the ARPA 
network," in Proc. Fall Joint Comput. Con!, 1972. 

[31] W. E. Naylor, "Stream traffic communication in packet-switched networks," Ph.D. 
dissertation, Dep. Comput. Sci., School Eng. Appl. Sci., Univ. of California, Los Angeles, 
Sept. 1977. 

[32] M. Pennotti and M. Schwartz, "Congestion control in store and forward tandem links," 
IEEE Trans. Commun., Dec. 1975. 

(33) J. Postel, "A graph model analysis of computer communications protocols," Ph.D. 
disseration, Univ. of California, Los Angeles, Jan. 1974. 

(34) L. Pouzin, "Flow control in data networks-Methods and tools," in Proc. Int. Con! 
Comput. Commun., Toronto, Ont. Canada, Aug. 1976. 

[35] W. L. Price, "Data network simulation experiments at the National Physical Laboratory," 
Comput. Networks, vol. I, 1977. 

[36] W. L. Price, "A review of the flow control aspects of the network simulation studies at 
the National Physical Laboratory," in Proc. Int. Symp. Flow Control in Com put. Net­
works, Versailles, France, Feb. 1979. 

[37] E. Raubold and J. Haenle, "A method of deadlock-free resource allocation and flow 
control in packet networks," in Proc. Int. Con! Comput. Commun., Toronto Ont., 
Canada, Aug. 1976. 

[38] M. Reiser, "A queueing network analysis of computer communication networks with 
window flow control," IEEE Trans. Commull., pp. 1199-1209, Aug. 1979. 

[39] J. Rinde, "Routing and control in a centrally directed network," in Proc. Nat. Comput. 
Con!, Dallas, TX, June 1977. 

[40] J. Rinde and A. Caisse, "Passive flow control techniques for distributed networks," in 
Proc. Int. Symp. Comput. Networks, Versailles, France, Feb. 1979. 

[41] M. Schwartz, and S. Saad, "Analysis of congestion control techniques in computer 
communication networks," in Proc. Int. Symp. Comput. Networks. Versaille~, France, 
Feb. 1979. 

[42] J. M. Simon and A. Danet, "Controle des ressources et principes de rout age dans Ie 
reseau TRANSPAC," in Proc. Int. Symp. Comput. Networks. Versailles, France, Feb. 
1979. 

[43] J. Silvester "On spatial capacity of packet radio networks," Ph.D. dissertation, Dep. 
Compu!. Sci., School Eng. Appl. Sci., Univ. of California, Los Angeles, Mar. 1980. 

[44] A. C. Sunshine, "Interconnection of computer networks," Comput. Networks, vol. 1, 1977. 
[45] A. C. Sunshine, "Transport protocols for computer networks," in Protocols and Tech­

niques for Data Communications Networks, F. Kuo, Ed. Englewood Cliffs, NJ: Prentice­
Hall, 1980. 

[46] F. Tobagi, "Multiaccess link control," this book, Chap. 6. 
[47] J. W. Wong and M. S. Unsoy, "Analysis of flow control in switched data networks," in 

Proc. Int. Fed. In! Processing Soc. Con!, Aug. 1977. 
[48) Y. Yemini and L. Kleinrock, "On a general rule for access control or, silence is 

golden ... ," in Proc. Int. Symp. Flow Control Comput. Networks, Versailles, France, Feb. 
1979. 

[49] P. Zafiropulo, "A new approach to protocol validation," in Proc. lilt. COil! Commull. 
June, 1977. 

[50] H. Zimmermann, "The Cyclades end-to-end protocol," in Proc. 4th Data Commun. 
Symp., Quebec, P. Q., Canada, Oct. 1975, pp. 7:21-26. 

[51] Schwartz and Stern, "Routing protocols," this book, Chap. 12. 



PART V 

Higher-Layer Protocols 

The protocol layers discussed so far serve the purpose of providing a 
connectivity path between the two end users that hides those peculiarities of 
the network involved in sending messages back and forth between them. 
These include the fact that the message may have to be steered across a 
succession of intervening nodes and lines, that errors in transmission may 
have to be recovered from, that congestion of network resources (lines, 
buffers) may have to be prevented, that alternate paths may sometimes have 
to be substituted, and so forth. We now turn to the remaining functions 
needed to allow the end users to communicate. Those functions that we now 
discuss reflect the needs of the end users themselves, not those of the 
network. They are essentially those functions that would remain to be done 
even if the end users could be plugged together with a hypothetical ideal 
communication channel having no errors, adequate bandwidth, and a 
guaranteed sequential message delivery, albeit with a statistically varying 
time of propagation. 

One of the functions we must consider is the need of the end users not 
to send messages to each other when they are not supposed to. This involves 
not only such actions (partially covered already in Chapter 13) as control­
ling flow rates (for example, to make sure that a high execution rate CPU 
does not overdrive a low acceptance rate line printer) but other user 
limitations on message exchange. For example, it is usually considered part 
of the function of the communication software to respect the end users' 
idiosyncrasies on exchange of requests and responses. A terminal may 
expect to receive a related chain of messages each representing a line of text, 
with the terminal not being expected to request another chain until the first 
one is completed. If a recovery operation is required during this process, the 
unit of information to be recovered is the entire chain. Such protocols are 
embodied in Layer 5, the Session layer of the OSI model presented earlier in 
Chapter 2, and have been most extensively developed in SNA, where they 
are called "data flow control" as will be described in Chapter 16. (We have 

413 



414 Part V 

already met a simpler form of this in the message-versus-packet option of 
the NSP layer of DNA, Chapter 10). 

The other function of the higher-level protocols has to do with presenta­
tion, the form in which the messages generated by one end user are to be 
presented to the other. This is handled in the highest protocol layer (Layer 6 
of the OSI model or Presentation Services of SNA). The simplest example of 
this question is that of code conversion; an application program may 
generate alphanumeric characters from one alphabet whereas a terminal 
may be expecting to receive another. But in practice the problems solved by 
the presentation layer are more extensive than this. As a more complex 
example, it should be possible ideally for an application program to have a 
two-dimensional view of a screen full of characters in some standard format, 
while the other end user (the terminal) has a serial-by-character view of the 
same screen; it is up to the two presentation layer protocol partners to make 
the transformation-perhaps all at one end, all at the other, or partially by 
each end. An example of the last of these three options is the virtual 
terminal convention in which each end makes a conversion to and from the 
code and format convention of a hypothetical but physically nonexistent 
standard terminal type. In this way, if there are M application presentation 
conventions to be accommodated and N terminal conventions, only M + N 
pieces of software have to be developed rather than M X N of them. 

In the first chapter of this part, Chapter 14, Nippon Telegraph and 
Telephone's DCNA architecture is described, with emphasis on the higher 
layers. Then in Chapter 15, an extensive discussion is given of the presenta­
tion issues for terminal support, both the virtual terminal approach and an 
alternative strategy. Chapter 16, after a brief treatment of SNA data flow 
control, gives an extensive discussion of presentation layer issues, including 
the subject of Logical Unit Types, which are roughly analogous to Virtual 
Terminal conventions. An interesting point made at the end of this chapter 
is that as cheap microcomputers become more prevalent, a certain simplifi­
cation becomes possible: one needs only those presentation conventions 
having to do with program-program communication (avoiding the present 
variety of terminal-terminal or program-terminal conventions) since each 
terminal can be regarded from the other end as consisting of a program in 
execution. 

To conclude this part, Chapter 17 discusses the Videotex class of 
protocols, now being widely exploited by telephone administrations and 
cable TV companies to bring flexible alphanumeric and graphics displays 
inexpensively to home and business users. 



14 

DeNA Higher-Layer Protocols 

Iwao Toda 

I. Introduction 

The problem of designing protocols for heterogeneous computer net­
works may be considered as one consisting of two subproblems. 

The first subproblem is how to design lower-level communication proto­
cols "for transferring data between computers and other equipment of 
different types which participate in the computer network. The solution to 
this problem has been considerably simplified by the CCITI Recommenda­
tion X.25 for interfacing with public data networks. It has been shown 
elsewhere [1] that somewhat expanded versions of X.25 can be defined as 
lower-level protocols to be applied to the network using leased lines as well. 

The second subproblem is how to design higher-level communication 
protocols concerned with the mechanism for using and managing network 
resources, i.e., processing power, files, data bases, and I/0 devices existing 
in the computer network. The characteristics of these resources and the 
interfaces between the resources and local users vary greatly among differ­
ent computer types within a heterogeneous computer network. 

Therefore, a network model should be built that is abstract enough to 
relieve the protocol designers of concerns about the heterogeneity of various 
resources. 

In order to decide upon an abstract model of network resources, the 
following problems should be resolved: 

1. What network resources should be defined as common to all com­
puter types? 

2. How should the network resources be managed for efficient joint 
usage among different computer types? 

415 



416 Part V • Higher-Layer Protocols 

3. How should the network resources be seen and used by the 
networkwide users? 

A similar approach has been taken in the design of SNA [2], DNA [3], 
DCA [4], and other computer network architectures. However, another level 
of abstraction will be required for wider applicability to more heterogeneous 
environments, such as open systems interconnection [5]. 

This chapter discusses a viewpoint about all protocol levels, but focuses 
particular attention on the design of higher-level communication protocols 
adopted in Data Communication Network Architecture (DCNA). DCNA is 
an architecture for heterogeneous computer networks which has been devel­
oped jointly by Nippon Telegraph and Telephone Public Corporation 
(NIT) and four Japanese computer/communications manufacturers (Nip­
pon Electric, Hitachi, Fujitsu, and Oki Electric Industry). 

II. The DeNA Model 

The DCNA model for defining higher-level communication protocols 
has been designed based on the following premises: 

(1) The network consists of different types of computers, communica­
tion control processors, terminals, communication circuits, etc. 

(2) The method of communication involves various telecommunication 
means, e.g., public packet-switched networks, leased lines, telephone net­
works, circuit-switched networks, and host I/0 channels. 

(3) The lower-level communication functions, i.e., data transfer functions 
between equipment, are realized by means of the lower-level protocols. 
These consist of the X.25 protocols and their expanded versions [l], includ­
ing routing, flow control, acknowledgment, and other functions. 

(4) To realize the higher-level communication functions, i.e., functions 
for sharing network resources by computers, standard higher-level protocols 
should be defined among different computer types taking into account 
performance, ease of extension, and ease of implementation. 

The DeNA model consists of three submodels [6]. The first submodel 
is the basic model, which describes the network resources and associated 
mechanisms. The second submodel is the logical network model, which 
describes the mechanisms for managing network resources. The third sub­
model is the virtual network model, which describes the mechanisms for 
using network resources. 

III. The Basic Model 

The basic model clarifies the network resources which are used in 
common by different computer types, as well as the mechanisms for 



Chap. 14 • DeNA Higher-Layer Protocols 

O /1 Existing holt 
t LJ: comput.r or t.rmlnal 

i----~ . Model,d into 
I I. d L ____ J on. no , 

H : Hoet computer 
F : Front end proce .. or 
RP : Remote processor 
TC : Terminal controller 
T : Terminal 

0] : o.elgned according to 6l DCNA protocols 

Fig. I. Example of physical network. 

417 

accessing such resources [7], [8]. It represents a logical view of the physical 
computer network by mapping various physical components into the logical 
elements defined in the following. 

A. Constituent Elements 

The constituent logical elements of the basic model are nodes and links. 
A node is a type of logical equipment which models a physical network 
component, e.g., a host computer, a terminal, a public packet-switched 
network, or certain other equipment. 

An example of a physical network and a basic model associated with it 
are shown in Fig. I and Fig. 2. 

A node comprises a set of (logical) network resources and a set of 
(logical) mechanisms for accessing them. Each node is given a unique 
network address. Five types of nodes (N5-NJ) are defined; they model such 
physical network components as host computers (N5 ), front end processors 
(N4 ), public packet-switched networks (N3 ), and terminals (N2 or N J). 



418 Part V • Higher-Layer Protocols 

N2 N I 

N2 N I N2 N I 

IQj:N5,N4,N2 or NI node 

D: N3 node -: Link 

Fig. 2. Example of basic model. 

Network resources of a node are defined as processing power, files, data 
bases, and I/0 devices. These particular resources were chosen as the 
network resources associated with a node because (I) these resources are 
basic in computer usage, and (2) they are generally used in conventional 
on-line systems. 

A link models a physical medium, e.g., a leased line, a telephone circuit, 
a circuit-switched network connection, or a host I/0 channel, which exists 
between the physical components modeled into nodes. A link is defined as a 
logical medium for transferring information between adjacent nodes. 

B. Layered Structure of Node Mechanisms 

A node of the basic model comprises a set of resources and associated 
mechanisms. These mechanisms are, in general, partitioned into two sub­
sets: the C-machine, which executes lower-level and higher-level communi­
cation protocols, and the P-machine, which consists of sources or sinks of 
information transferred by use of such protocols. 

As a degenerate case, certain nodes, e.g., a public packet-switched 
network or relay computer, consist solely of C-machines. 

One requirement of each P-machine is the initial establishment of the 
node and the links which are incident to the node. 

A C-machine performs communication functions in cooperation with 
one or more other C-machines. The protocols are the rules defined between 
several C-machines in order to perform the communication functions. 



Chap. 14 • DeNA Higher-Layer Protocols 419 

To make it easier to modify and extend the protocols, the C-machine is 
divided into an ordered set of four levels. Each of these is defined as a 
collection of communication mechanisms which are more or less dependent 
upon each other. These levels are, from the bottom, the physical level, the 
data link level, the transport level, and the function controllevel. 

The transparent, i.e., unchanging format, data transfer functions be­
tween two arbitrary nodes are performed by the mechanisms of the physical, 
data link, and transport levels. They are called lower-level communication 
functions. The other communication functions, such as network manage­
ment (for overall management of resources and their uses), message transfer 
(for the use of processing power), virtual terminal access (for the use of 
processing power and I/O devices), or virtual file system access (for the use 
of processing power arid files), are performed by the mechanisms of the 
function control level. They are called higher-level communication func­
tions. 

To simplify interfaces between adjacent levels and to make the levels 
more independent of one another, the data transfer functions (which each 
level, except the physical level which provides a lirik to the data link level, 
provides to the next higher level) are expressed by logical paths, i.e., D-link, 
T-path, and F-path, as shown in Fig. 3. For information passed between 
adjacent levels, three types of data transfer units, i.e., data link unit, 
transport unit, and data unit, corresponding to the logical paths are defined, 
as well as the information unit, which is exchanged between a P-machine and 
its associated C-machine. The transport level and the function control level 
are capable of multiplexed use of the D-links and T-paths, respectively, 
provided by the levels below them. 

The transport level and the function control level are each furtht;r 
divided into sublevels. 

In principle, th~re is the following difference between levels and 
sublevels: 

(1) The set of functions of each level is self-contained; the control 
informations for a level are meaningful only within that level and trans­
ferred along a logical path independently of those for other levels. Thus, 
control information is not shared across the boundary between adjacent 
levels. 

(2) The set of functions of each sublevel is not completely self-con­
tained; the control informations for the sublevels of a level may be handled 
collectively in order to reduce the frequency of control information trans­
fers. Thus, control information is shared across the boundary between 
adjacent sublevels within a level. 

The concept of sublevels is introduced to avoid the overhead associated 
with creating more levels. (To make it easier to modify or extend protocols, 
it would be desirable to distinguish between as many levels as possible. 



I"
fo

r.
at

lo
"

 
p

"'
 ..

..
 I.

' f
l.

ld
 

'2 1:
 

8
t;

 
Ii
~ 

:!Z
 

~
~
 

! 
i
~
 

.§
 

..
 :J

 
C

 
...

 ~
 

o
~
 

.2
 

1
-

c 
c
·
 

I 
..

 
>

 
.:

~ 

0 
T

 
0 

..
. 

...
J 

.~
 

Q
 

.
.
.
J
~
 

.e
i .. . O

..
.J

 

'0
 

.2
 _

 
.. 

t 
l
~
 

1
--

--

1-
--

-

1
--

--

r
-
-

-
-

-.
.,

 
I 

f
-
-
-
-
-
-

f
-
-
-
-
-
-

1
-
-
-
-
-
-

f-
p

o
th

 "
'-

-
-

~
f
-
p
o
t
h
 

I 

'7
=

" 

-
-
-
-
-
-

t-
-
-
-

I--
z-

T
-p

a
th

 
'";

:::
"1

 ...
. T

-p
a

th
 

r-
T

-p
a

th
 -

./
\.

 
"'

-
IV

'.
 

.'.
 

D
 I

If
tk

 
D

 1
1f

t' 
D

 l
in

. 

O
Le

 

fC
 

h
o

a
d

.,
 

(f
C

N
) 

D
at

a 
un

it 
(D

U
I 

T
ra

ns
po

rt
 

un
it

 (
T

U
I 

T
ra

ns
po

rt
 u

n
it

 
w

it
h 

h
e

a
d

e
r 

(H
T

U
) 

II
e

a
d

w
 
I 

D
at

a 
lin

k 
un

it 
IO

L
U

) 
(D

L
H

) 

F
ra

m
. 

Fi
g.

 3
. 

Pr
ot

oc
Q

lle
ve

ls
, 

lo
gi

ca
l 

pa
th

s,
 a

nd
 d

at
a 

tr
an

sf
er

 u
ni

ts
. 

~ ! -< • l i ~
 I 



Chap. 14 • DCNA Higher-Layer Protocols 421 

Table I. Summary of Protocols at Each Level 

Level Sublevel Typical Protocols 

Application 
Function Sublevel --

System 
Function Function Sublevel -- S 

Control <l) .... Cd .B .... 
bIl~ ~ .§ en 

~ 
Level (FC) Fundamental '" en ~£ en 'i:' 

~ § 1:: .... .E ~ .0 § ;9 ~ <l) 

Attribute ~~ .~ <l) 

~~ '" '" -5 >f-< >~ Ci~ 2-
Processing Sublevel --
Data Unit 

Control Sublevel 

Setting up and clearing T-path. 
Segmenting a data unit into transport units (TUs) and 

Transport assembling TUs to form a data unit. 
Unit Control TU sequence control, flow control to prevent congestion, 

Transport Sublevel transfer acknowledgment to prevent loss, and error 

Level (TL) recovery (based upon CCITT X.25 Packet Level protocol 
and its extension). 

Addressing and routing. 
Routing Blocking TUs to form a data link unit and deblocking data 

Control Sublevel link units into TUs. 

Transparent transfer control between adjacent nodes. 
Data Link Level (DLC) 

(High-Level Data Link Control Procedures) 

Physical Level (PL) Electrical and physical control of communication media. 

However, creating additional levels would increase the overhead due to such 
factors as the need for independence in the manipulation of control infor­
mation at each level.) 

An outline of the protocols for each level and sublevel of a C-machine 
is given in Table I. 

C. Function Control Level 

Various mechanisms are defined at the function control level for 
accessing the network resources of other nodes by using transparent data 
transfer functions provided by the transport level and other lower levels 
[9]-[13]. 



422 Part V • Higher-Layer Protocols 

These mechanisms of the function control level are divided into four 
sublevels. 

(1) The data unit control (DUC) sublevel consists of mechanisms for 
setting up and clearing of F-paths between P-machines and for data transfer 
over the F-paths. These mechanisms are provided in common with various 
kinds of higher level communication functions, such as network manage­
ment, message transfer, virtual terminal access, and virtual file system 
access. 

(2) The fundamental attribute processing (F AP) sublevel consists of 
mechanisms for code conversion, etc. These mechanisms are provided in 
common with various kinds of higher-level communication functions similar 
to those at the DUe sublevel. 

(3) The system function (SYF) sublevels consists of basic mechanisms 
which are specific to each kind of higher-level communication function, but 
not specific to each application. 

(4) The application function (APF) sublevel consists of additional mech­
anisms specific to each kind of higher-level communication function and 
also specific to each application. 

A summary of the protocols of the various sublevels of the function 
control level is given in Table II. An example of the construction of a 
function control level header is shown in Fig. 4. 

Table II. Summary of Protocols at Each Sublevel of the Function Control Level 

Sublevel 

Application 
Function (APF) Sublevel 

System 
Function (SYF) Sublevel 

Fundamental 

Typical protocols 

System function extension and other application-specific 
protocols. 

Basic protocols for message transfer, Virtual Terminals, 
Virtual File System, and network management. 

Code conversion. 
Attribute Data compression and restoration. 
Processing (FAP) Sublevel Data encryption and decryption. 

Data Unit 
Control (DUC) Sublevel 

Setting up and clearing F-paths (Activation of SCPs and UCPs). 
T-path multiplexing control. 
Superposition of Function Control Level positive response on 

a Transport Level acknowledgment. 
Priority control. 
Sequencing control for data units. 
Data unit chain control and response control. 
Transmission control. 
Bracket control. 



Chap. 14 • DCNA Higher-Layer Protocols 

'" * G t~ F * '* * H N 
1.. ~~ C C F * P T M I A 

L o L F I P T 
T* o 0 

E C A A 0 P L 1 (D) 
C 0 
N L 

TL H for Setting T-path Request 

t 00 

F '" '" T 
I '" ~ ~ U FCH 

T (S R) I 
C 
N 

TLH for data transfer' 

Symbols 

G F I : General format identifier 

TCN : Transport channel number 

TYPE : Type identifier 

CLL : Cailing OTE address length 

COL : Cailed OTE address length 
CLA : Cailing OTE address 

H P P 5 0 L T Header unique to 

I N Y the higher level 

0 
N N U 

P .basic communicatioli 
2 (0 (S) F I F E function 

~OUH SFH 

FCH 

Symbols 
H102: Header identifier 

PN(O). PN(S): P-process number 

S NF : Sequence number 

OU I : Data unit (OU) control 

Information. 
OUH : Data Unit Control sublevel 

header 

N 
A 
0 

(S) 

423 

\ 
FCH 

H 
N (reqUired when fast ) 

select facility is used 

COA : Called OTE address 

F L : Fac ility length 

F : Faci I ities 
PIO : Protocol identlf ler 

TPP : T - path profile 
MTL : Maximum TU length 

HI01 : Header identifier 
NAO(O): Destination node address 
NAO (S): Source node address 
H N : Hand - over number 

S N (S) • SN (R) : Sequence num ber 

TUI : TU control information 

* is the same as CCITT X.25 

L T Header unique to 
IU 0 

F 

Y the higher level 

P extended commu- part 

E nication function 

AFH 

SFH • System Function sublevel 

header 

A FH • Application Function 

sublevel header 

L F : Field length 
TYPE: Type Identifier 

Fig. 4. Example of function controlleve1 header configuration. (a) Relation between TLH and 
FCR. (b) Contents of function control level header. 

IV. Logical Network and its Protocols 

The logical network (LN) model is a model clarifying the mechanisms 
for managing network resources; it models the logical relationships of 
management programs and/or system operators in charge of the manage­
ment of the computer network equipment. 



424 

LN 
LMU1 LMU2 

LN : Logical Network 
SMp: System Management Process 

SCP : System Communicating Process 

LMU 
SPP 

Part V • Higher-Layer Protocols 

LN Management Unit 
System Processing Process 

Node or link 

Fig. 5. Example of logical network management structure. 

The logical network is defined as a combination of one or more logical 
network management units (LMU). Each LMU consists of one or more 
system processing processes (SPPs), a system management process (SMP), and 
system communicating processes (SCPs). (See Fig. 5.) 

An SPP models the management program and/or system operator of a 
host computer, a terminal, etc. An SMP models the network management 
program and/or network management operator residing on a host com­
puter or communication control processor. An SCP models the execution of 
communication functions between two management programs, etc. In other 
words, an SCP offers higher-level communication functions between SPPs 
on the basis of data transfer functions realized by an F-path. 



Chap. 14 • DCNA Higher-Layer Protocols 425 

A. SPP Characterization 

SPPs are characterized by the following statements: 
(1) One SPP is defined on the P-machine of each basic model node. 
(2) Each SPP has a unique process address which is the concatenation 

of a node address and a process number. 
(3) An SPP uses the mechanisms of the P-machine and manages the 

network resources of its own node as well as the links incident to it. 
(4) Through communication functions offered by the SCP, the SPP can 

communicate in order to exchange management information with another 
SPP. 

B. SMP Characterization 

SMPs are characterized by the following statements: 
(l) One SMP is defined in each LMU on the P-machine of one node of 

type Ns or N4 in the LMU. 
(2) An SMP has no process address, i.e., there is only one SMP in an 

LMU. 
(3) An SMP uses the mechanisms of the P-machine and manages SPPs 

and SCPs of an LMU and coordinates with other LMUs. 
(4) An SMP cannot directly use a communication function offered by 

an SCP, i.e., communication is done for the SMP through the SPP on the 
same node. This is a restriction to simplify SMP characteristics. 

c. SCP Characterization 

SCPs are characterized by the following statements: 
(l) One SCP is defined between the SPP of each node in the LMU and 

the SPP of the node which has the SMP of the LMU. 
(2) An SCP is identified by a pair of SPP addresses. 
(3) An SCP uses the mechanisms and protocols of the function control 

level of the C-machine and offers higher-level communication functions, 
including the establishment and maintenance of F-paths between SPPs. 

D. LN Management Protocols 

An outline of the protocols for the management of the logical network 
is shown in Table III. 



~ 

T
ab

le
 m

. 
Su

m
m

ar
y 

of
 P

ro
to

co
ls

 fo
r 

M
an

ag
em

en
t o

f t
he

 L
og

ic
al

 N
et

w
or

k.
 

F
un

ct
io

n 
Ph

ys
ic

al
 

C
on

ne
ct

io
n 

In
fo

rm
at

io
n 

A
ct

iv
at

io
n/

 
F

ai
lu

re
 

M
ai

nt
en

an
ce

 / 
C

at
eg

or
y 

L
ev

el
 

M
an

ag
em

en
t 

M
an

ag
em

en
t 

de
ac

ti
va

ti
on

 
M

an
ag

em
en

t 
op

er
at

io
n 

M
an

ag
em

en
t 

fo
r 

C
ir

cu
it

 
fo

r 
D

at
a 

M
an

ag
em

en
t 

M
an

ag
em

en
t 

Sw
itc

he
d 

L
in

k 
C

on
tr

ol
 

fo
r 

D
at

a 
L

in
k 

L
in

k 

F
un

ct
io

n 
D

T
E

-D
C

E
 

C
on

ne
ct

io
n 

M
an

ag
em

en
t 

A
ct

iv
at

io
n/

 
F

ai
lu

re
/ 

A
ct

iv
at

io
n/

 
in

te
rf

ac
e 

co
nt

ro
l f

or
 

co
nt

ro
l 

de
ac

ti
va

ti
on

 
re

co
ve

ry
 

de
ac

ti
va

ti
on

 
co

nt
ro

l. 
ci

rc
ui

t 
in

fo
rm

at
io

n 
co

nt
ro

l f
or

 
no

ti
fi

ca
ti

on
 

co
nt

ro
l f

or
 

e.
g.

, 
sw

itc
he

d 
su

ch
 a

s 
da

ta
 li

nk
 

m
ai

nt
en

an
ce

/ 
co

nt
ro

l o
f 

ne
tw

or
k 

D
L

C
sy

st
em

 
op

er
at

io
n 

O
N

/O
F

F
 

co
ns

ta
nt

s,
 

fu
nc

ti
on

 
co

nd
it

io
n 

ro
ut

in
g 

fo
r 

ci
rc

ui
ts

 
ta

bl
es

, 
in

X
.2

1 
et

c.
 

! 
A

ss
oc

ia
te

d 
A

ct
iv

at
e 

A
ct

iv
at

e 
Se

t C
on

tr
ol

 
C

on
ta

ct
, 

In
op

er
at

iv
e,

 
E

xe
cu

te
 T

es
t, 

<!
 

C
om

m
an

ds
 

L
in

k,
 

C
on

ne
ct

 I
n,

 
V

ec
to

r,
 

C
on

ta
ct

ed
, 

R
ec

ov
er

ed
, 

S
ta

rt
 D

um
p,

 
• 

D
ea

ct
iv

at
e 

C
on

ne
ct

 
et

c.
 

et
c.

 
et

c.
 

et
c.

 
, 

L
in

k,
 e

tc
. 

O
ut

, e
tc

. 

i ~ l ~ i.
 

'" 



Chap. 14 • DeNA Higher-Layer Protocols 427 

V. The Virtual Network and its Protocols 

The virtual network (VN) model is a model for clarifying the mecha­
nisms of network resource usage. As several sets of interrelated applications, 
e.g., time-sharing applications and information retrieval applications, may 
be run in a single computer network sharing the common network resources, 
the virtual network models a set of interrelated applications from the 
viewpoint of the network resource users. (See Fig. 6.) 

A. Composition of the Virtual Network 

The virtual network is defined as the combination of one or more 
virtual network management units (VMU). A VMU is conceptually defined 
as being independent of LMUs. For example, a VMU can be defined over 
two or more LMUs, while two or more VMUs can be defined within an 
LMU. 

Each VMU consists of user processing processes (UPPs), a user manage­
ment process (UMP), user communicating processes (UCPs), and virtual 
network resources managed by the UMP and the UPPs. (See Fig. 7.) 

A UPP models the application programs and/or terminal operators, 
etc., of a host computer. A UMP models the application service manage­
ment programs, etc., of the host computer. A UCP models the execution of 
the communication functions between two application programs, etc. In 
other words, a UCP offers higher-level communication functions between 
UPPs on the basis of data transfer functions realized by an F-path. 

Fig. 6. Virtual networks and user processes. 



428 

VN 

VMU 3 VMU 4 

V N ' Virtual Network 
UMP , User Management Process 
UCP : User Communicating Process 

Part V • Higher-Layer Protocols 

V M U, VN Management Unit 
UP p: User Processing Process 

.. --0' Communication between SPPs 

Fig. 7. Example of virtual network management structure. 

A UPP can be assigned virtual network resources. The virtual network 
resources correspond to the network resources defined in the basic model, as 
modeled from the viewpoint of the virtual network. 

The reasons for defining UPPs so as to have virtual network resources 
are (1) access rights to the use of network resources from a UPP of another 
node, passwords and other security checks, and the use status of resources 
can be defined for each virtual network; and (2) the form of communication 
for use of various network resources can be standardized as UPP-UPP 
communication. 

B. UPP Characterization 

UPPs are characterized by the following statements: 
(1) For each P-machine of the basic model, an arbitrary number of 

UPPs can be defined. 
(2) Each UPP has a process name as well as a unique process address 

which is the concatenation of a node address and a process number. 
(3) A UPP can use the mechanisms of the P-machine and execute 

arbitrary information processing functions. 



Chap. 14 • DeNA Higber-Layer Protocols 429 

(4) A UPP can, by means of the communication functions offered by 
the UCP, use the virtual network resources of another UPP. 

C. UMP Characterization 

UMPs are characterized by the following statements: 
(1) One UMP is defined for each VMU on the P-machine of one node 

of type Ns or N4 in the VMU. (A UMP and an SMP mayor may not be 
defined on the same P-machine.) 

(2) A UMP has no process address, i.e., there is only one UMP in the 
VMU. 

(3) A UMP cannot directly use a communication function provided by 
an SCP, i.e., communication is done for the UMP through the SPP on the 
same node. 

(4) A UMP uses the P-machine mechanisms and manages the UPPs 
and UCPs of a VMU and coordinates with other VMUs. 

[Note: The following are defined as the VMU management functions 
of a UMP: 

(1) Address conversion of the UPP name. 
(2) Registration and look-up of the sets of C-machine option mecha­

msms. 
(3) Checking of communication qualifications, registration, and check­

ing of passwords, etc. 
(4) Storage of other control information needed for UPPs to com­

municate.] 

D. UCP Characterization 

UCPs are characterized by the following statements: 
(1) An arbitrary number of UCPs can be set up between UPPs which 

request to communicate. 
(2) Permission by the UMP is needed for setting up a UCP. 
(3) A UCP is identified by a pair of UPP addresses. 
(4) A UCP uses the mechanisms and protocols of the function control 

level of a C-machine and offers higher-level communication functions, 
including the establishment and maintenance of F-paths between UPPs. 

E. VN Management Protocols 

An outline of the protocols for virtual network management is shown 
in Table IV. 



430 Part V • Higher-Layer Protocols 

Table IV. Summary of Protocols for Management of the Virtual Network 

Function UMP VMU UPP UCP Failure 
Category Management Management Management Management Management 

Function Activation/ Synchronize Activation/ Activation/ Failure/ 
deactivation control of deactivation deactivation recovery 
control of VMU control of control of notification 
UMP UPP UCP 

Associated Activate UMP, UMP Start, Activate UPP, Initiate, Request 
Commands Deactivate Terminate Deactivate Control Partial VMU 

UMP, VMU, UPP, Initiate, Initiation, 
etc. etc. etc. etc. etc. 

VI. Message Transfer Protocols 

The message transfer protocols are protocols to be obeyed by a UCP 
between UPPs in order to send and receive a message. For a UPP to 
communicate with another UPP, a UCP must be set up between both UPPs. 
Setting up a UCP is done with the permission of the UMP or UMPs which 
manage these UPPs of a virtual network. 

Note 
INIT 

r 

L 

UMP 

·Address translati on 
• Profi Ie data 

devel 0 pmenl 
• Checking UPP 

connection ca1dition 
(Password. etc.) 

Activation of UCP ... -----------~ 
I by C-machine I 

-, 

U 

--- LOG ON 

• Symbolic name of 
the other UPP 

• LOG ON profile name 

• User data 

Requests initiation of UCP activation 

CINIT Requests UCP activation 

Fig. 8. User communicating process activation. 



Chap. 14 • DCNA Higher-Layer Protocols 431 

A UPP wishing to communicate must send to the UMP the name of the 
partner UPP and information for specifying the type of higher-level com­
munication function desired, e.g., message transfer, virtual terminal access. 
This information is transferred by communication between SPPs within the 
logical network. 

The UMP, after checking communication qualifications, etc., sends the 
information needed for activation of a UCP to the requested UPP or the 
requesting UPP. An example of the procedure protocol for activating a 
UCP is shown in Fig. 8. 

VII. Virtual Terminal Protocols 

As stated earlier, a terminal, like a computer or other equipment, may 
be modeled as a node consisting of a P-machine and a C-machine. 

On the other hand, there exists another category of various terminals 
which has been in existence without conforming to architecture specifica­
tions. The concept of a virtual terminal (see the next chapter) is introduced 
in order to unify the handling of both terminal categories existing in the 
physical network. 

A virtual terminal models terminal functions from the viewpoint of the 
application programs in a host computer. As shown in Fig. 9, a virtual 

Virtual 

Transport Level, 
C-machine Data Link Level and 

Physical Level 

--

Fig. 9. Virtual terminal on a node. 

----



432 Part V • Higher-Layer Protocols 

terminal consists of a UPP with virtual terminal devices (VTD) and a UCP 
which executes the virtual terminal protocol. 

The virtual terminal devices model terminal devices, as virtual network 
resources assigned by the SPP at the time of virtual network initiation to the 
UPPs which comprise the virtual terminal. 

The UCP, in accordance with the virtual terminal protocol, outputs the 
message sent by the sending UPP to the virtual terminal device. 

The reasons for modeling the terminal functions by a virtual terminal 
in this way are as follows: 

(1) Application programs may treat various kinds of physical terminals 
uniformly. 

(2) Several virtual terminals may be defined corresponding to a single 
physical terminal, making it easier for several applications to use the same 
terminal. 

(3) An existing terminal may be converted to a virtual terminal UPP, 
i.e., the case in which one node is formed by combining a remote processor 
having mechanisms for executing virtual terminal protocols with an existing 
terminal. 

There are two classes of virtual terminals: the VTD-fixed class and the 
VTD-selection class. 

A virtual terminal of the VTD-fixed class has only one virtual terminal 
device, while a virtual terminal of the VTD-selection class may have several 

Table V. Example of Virtual Terminal Device Control Functions 

Class 

Character 
Class 

Line 
Class 

Page 
Class 

Area 
Class 

Area definition 

Enable Presentation 
Inhibit Presentation 

Maximum Presentation Column 
Set Left Margin 
Set Right Margin 
Set Column Tab. 
Reset Column Tab. 

Maximum Presentation Line 
Set Top Margin 
Set Bottom Margin 
Set Line Tab. 
Reset Line Tab. 
Field Definition 

Area Definition 

Formatting control 

Space 
Backspace 
Bell 

Carriage Return 
Line Feed 
New Line 
Horizontal Tab. 

Form Feed 
Vertical Tab. 
Set Activate Position 
Select Vertical Channel 

Editing control 

Erase in Line 
Delete Character 
Insert Character 
Erase in Field 

Delete Line 
Insert Line 
Erase Column 
Delete Column 
Insert Column 



Chap. 14 • DCNA Higher-Layer Protocols 433 

virtual terminal devices. With the VTD-fixed class, it is not necessary for a 
sending UPP to distinguish between different devices, and control is simple. 
With the VTD-selection class, control is needed for device selection and 
device contention. 

In a single virtual terminal device, several user presentation surfaces, of 
which there are three types (character control, picture control, and binary 
control), may be defined, and each may be controlled independently. 

Information for the selection of virtual terminal class, virtual terminal 
device activation/deactivation, and control of virtual terminal devices and 
of user presentation services is stipulated as the virtual terminal protocols. 

As an example of virtual terminal protocols, formatting and editing 
control protocols are s~own in Table V. 

VIII. Virtual File System Protocols 

A virtual file system, from the viewpoint of application programs on a 
computer, models the file system functions of other computers. This is done 
in the same way as with virtual terminals; a virtual file system consists of a 
UPP having virtual files (VF), and a UCP which executes virtual file system 
protocols. 

A virtual file models the files of a file system. 
The UCP complies with the virtual file system protocols in executing 

requests from a sending UPP for access to a virtual file, transfer of a virtual 
file, etc. 

The reasons for modeling file systems as virtual file systems are the 
same as the reasons for modeling terminals as virtual terminals. 

A virtuBl file consists of two or more units called blocks. The first block 
consists of such file attribute information as file name, file size, and block 
length; the second and remaining blocks are for data. 

Four types of virtual files are defined as nonorganized files, sequential 
files, indexed files, and direct files. 

In nonorganized files, only the file transfer functions are defined. 
Partial transfer is also possible by specifying the number of blocks. 

In the other three types of files, or organized files, both file transfer 
functions and file access functions are defined. In these organized files, 
records are defined as data access units independently of blocks. There are 
both fixed-length and variable-length records. 

In sequential files, the records can be retrieved in the order in which 
they were stored. In indexed files, several keys may be defined within 
records, and records can be retrieved either by specifying these keys or in 
the order of the keys. In direct files, a record can be accessed by specifying 
the position in which it is arranged. 



434 

Type of 
protocol 

File 
Transfer 
Protocol 

File 
Access 
Protocol 

Part V • Higher-Layer Protocols 

Table VI. Virtual File System Protocols 

Command 

SFT 
R.SFT 
GO 

EFT 
R.EFT 

OPEN 
R.OPEN 
CLOSE 
R.CLOSE 
READ 
WRITE 
REWRITE 
START 
DELETE 
DISAT 
R. DISAT 
UPDAT 
R. UPDAT 

Function 

Requests initiation of transfer of virtual file 
Gives yes/no reply to SFT 
Requests virtual file attribute information 

and initiation of data transfer 
Requests completion of transfer of virtual file 
Gives reply to EFT 

Requests initiation of access to virtual file 
Gives yes/no reply to OPEN 
Requests conclusion of access to virtual file 
Gives reply to CLOSE 
Requests input of one or more record from virtual file 
Requests output of one or more record from virtual file 
Requests update of one record in virtual file 
Indicates initiation point for access in virtual file 
Requests deletion of one record in virtual file 
Requests retrieval of virtual file attribute information 
Returns a yes/no and attribute information to DISAT 
Requests renewal of virtual file attribute information 
Gives yes/no reply to UPDAT 

VF activation 

R OPEN 

Multi - record r-----:R~E~A.!:D~ _______ J 
rea d reques t IU 

VF deactivation 

Fig. 10. Example of virtual file access procedure. 



Chap. 14 • DCNA Higher-Layer Protocols 435 

A summary of virtual file system protocols is given in Table VI. An 
example of a procedure for file access by means of these protocols is shown 
in Fig. 10. 

IX. Conclusions 

The DCNA is a network architecture for heterogeneous computer 
networks; it defines higher-level protocols to make possible the common use 
of various network resources among different computer types. These proto­
cols involve functions which are thought to be basic to computer usage, such 
as network manageme:t;lt, message transfer, virtual terminal access, and 
virtual file system access functions. 

The DCNA higher-level protocols have the following characteristics. 
(1) They are defined on two network models-a logical network 

model, with respect to the management of network resources, and a virtual 
network model, with respect to the usage of network resources. These 
models describe the various network resources uniformly and independently 
of their mode of use. The virtual network model is a basis for defining 
virtual terminals and virtual file systems and for facilitating the common 
use of terminals and files by several sets of application. 

(2) After partitioning a C-machine into four basically independent 
levels, some levels are further decomposed into sublevels in order to allow 
for flexibility without deteriorating performance. Specifically, the protocol 
modifications and extensions are made easier by placing the basic parts of 
the higher-level communication functions in the system function sublevel 
and the extension parts into the application function sublevel. 

The logical structure and higher level protocols of the DCNA have 
been discussed, as well as the philosophy for modeling the higher level 
communication functions. With the further development of heterogeneous 
computer networks expected in the future, it is anticipated that various 
higher level protocols, which take into account the subjects discussed in this 
paper more broadly, will be standardized. 

References 

[I] H. Ohba, S. Yoshitake, S. Mutoh, and T. Nishimura, "End-to-end protocol based on 
CCITT X.25 and its implementation," in Proc. 4th Ieee, Sept. 1978, pp. 281-287. 

[2] IBM Corp., "Systems network architecture format and protocol reference manual: 
Architectural logic," IBM Form SC30-3112, Mar. 1976, June 1978. 

[3] G. E. Conant and S. Wecker, "DNA: Architecture for heterogeneous computer net­
works," in Proc. 3rd Ieee, Aug. 1976, pp. 618-625. 



436 Part V • Higher-Layer Protocols 

[4] J. P. McGovern, "DCA-A distributed communications architecture," in Proc. 4th ICC, 
Sept. 1978, pp. 359-367. 

[5] "Reference model of open systems interconnection," ISO/TC97/SCI6 N227, July 
1979. 

[6] T. Kawaoka, T. Abe, and A. Shiraishi, "A logical structure for a heterogeneous computer 
communication network architecture," in Proc. 4th ICCC, Sept. 1978, pp. SI0-524. 

[7] I. Toda and H. Nakata, "Basic concepts of data communication network architecture," 
Information Processing (in Japanese), vol. 20, pp. IS3-160, Feb. 1979. 

[8] K. Naemura, T. Kawaoka, M. Miyazawa, and K. Morino, "Data communication network 
architecture-Objectives and fundamental concepts," Rev. Elec. Commun. Lab., vol. 27, 
pp. 297-311, June 1979. 

[9] K. Naemura and T. Abe, "Descriptions of data communication network architecture 
(I)," Information Processing (in Japanese), vol. 20, pp. 237-246, Mar. 1979. 

[10] K. Naemura and M. Mashio, "Descriptions of data communication network architecture 
(2)," Information Processing (in Japanese), vol. 20. pp. 438-447, May 1979. 

[II] T. Abe, M. Mashio, H. Nakata, and T. Tajima, "Protocol design for data communication 
network architecture," Rev. Elec. Commun. Lab., vol. 27. pp. 312-337, June 1979. 

[12] M. Sobami and T. Abe, "Data communication network architecture development," 
Japan. Telecommun. Rev., vol. 20. pp. 308-312. Oct. 1978. 

[13] DCNA Protocol Manuals. DCNA-PIOIO, P1020, P1030, P1040, PIOSO (in Japanese), 
Nippon Telegraph and Telephone Eng. Bureau, Oct. 1978. 



15 

Terminal Support Protocols 

John D. Day 

I. Introduction 

Terminal protocols provide basic services for the users of computer 
networks. Terminal protocols establish mechanisms that allow efficient and 
flexible terminal access to networks. Terminal protocols not only allow a 
user to access a timesharing service through the network, but can also be 
used as a character-oriented network interprocess communication facility. 
Many of the problems encountered in terminal protocols recur in more 
complex forms in the more sophisticated protocols (e.g., network mail 
protocols, distributed data base protocols). 

In this chapter, we will be concerned primarily with protocols for 
heterogeneous networks. Protocols for homogeneous networks generally are 
a subset of the heterogeneous network protocols in terms of the scope and 
of the mechanisms they use. In order to expose the reader to as wide a 
variety of the problems found in these protocols as possible and to do it in a 
reasonable amount of space, we will restrict our discussion to heterogeneous 
network protocols. 

A computer communications protocol is typically designed as one of 
several successive layers of protocols. Protocols are layered for many of the 
same reasons that large software systems are organized into layers. The 
layers provide a means to aggregate related functions. In addition, a 
protocol layer provides a transparent service for the next higher level, so 
that modifications to a lower level do not affect a higher level. In much of 
the protocol literature, the terms "lower level" and "higher level" are used 
to denote the absolute (rather than relative) position of the protocol. In this 
usage, the term "lower level" is applied to protocols concerned primarily 
with the reliable transfer of data across the network. The term "higher level" 

437 



438 Part V • Higher-Layer Protocols 

is applied to protocols concerned primarily with performing remote opera­
tions. More descriptive labels might be "communications protocols" (for 
lower-level protocols) and "resource sharing protocols" (for higher-level 
protocols). 

II. Terminal Access to Networks 

Probably the most common application of computer communications 
today is for terminal access. Terminal access is commonly provided by 
terminal-concentrator networks. These networks are organized into a star or 
a tree topology. Terminals and terminal concentrators are connected by 
point-to-point lines to the central data processing center. The point-to-point 
lines and in some cases the terminal concentrators of a terminal-concentrator 
network can be replaced with a packet switched network. Replacing a 
terminal-concentrator network by a packet-switched network can signifi­
cantly reduce costs and also increase reliability. 

Terminal access to a network may be provided in one of three basic 
ways: through a large computer, through a network access machine or 
"minihost," or through a direct interface. 

When a large computer (or "host") is connected to a network, terminals 
attached to the large computer may access the network using special 
network access software in the host. The terminal user executes a program 
on the host that allows connections with other hosts to be opened and 
closed. Since the host can support complex software, this technique can 
provide a sophisticated network terminal user environment. 

In the second approach, a minicomputer is dedicated to providing 
many of the network terminal user services available to the terminal user 
accessing a network through a large computer, but at considerably less cost. 
Several of these "minihost" systems [1, 2, 7, lO, 25, 27, 28] have been 
developed. Some are oriented to providing a convenient human interface [1, 
2]. Some support specialized peripherals such as graphics displays or plotters 
[7] and digital voice equipment [28]. Others use artificial-intelligence-based 
systems to provide very sophisticated user facilities [2]. 

In a third approach, the network itself provides a facility through which 
terminals can be directly connected to the network via dialup or permanent 
connections. Once connected, the terminal user then issues commands to the 
network. The command language allows the user to open and close connec­
tions to host computers and to set certain terminal-specific parameters. In 
the ARPAnet, this facility was called the Terminal Interface Processor [25] 
or TIP. In the nomenclature of the CCITT it is called the Packet Assembler 
Dissembler [9] or PAD. The command languages provided by the TIP and 
the PAD are cryptic and primitive. The TIP and PAD are functionally 



~ 

T
h

e
 N

e
tw

o
rk

 (C
C

IT
T

) 
( 

A
 
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
 
~
\
 

( 
I 

r 
X

.2
8 

l r
 

r 
_

_
_

_
_

_
_

_
_

_
 T

 
_

_
_

_
_

_
 X_2

~ _
_

_
_

_
_

_
_

_
_

_
_

_
_

 C
lX

.2
5

 
l 

st
ar

t-
st

op
 

I 
I 

T
h

e
 D

eE
 

O
ff

 ..
 I

 
D

TE
 

I 
I 

IC
la

 

te
rm

in
al

s 

T
el

en
et

* 
D

at
ap

ac
* 

D
e

fin
iti

o
n

 

P
A

D
 

T
er

m
in

al
 

C
on

ce
nt

ra
to

r 

~
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
'
~
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
~
 

r 
.T

e
le

n
e

t a
nd

 D
at

ap
ac

 g
o

 b
e

yo
n

d
 t

h
e

 o
ff

Ic
ia

l d
e

fi
n

it
io

n
 b

y 
a

ck
n

o
w

le
d

g
in

g
 m

e
ss

a
g

e
s 

to
 

"'\
 

th
e

 s
e

n
d

e
r 

w
h

e
n

 t
h

e
 r

e
ce

iv
e

r 
a

ck
n

o
w

le
d

g
e

s 
th

e 
m

es
sa

ge
 o

r 
w

h
e

n
 a

ck
n

o
w

le
d

g
e

d
 b

y"
 

th
e

 
re

m
o

te
 

o
r 

fa
r 

si
d

e
 o

f 
th

e
 D

eE
. 

re
sp

e
ct

iv
e

ly
 

N
et

w
or

k 
S

w
itc

h 
N

e
tw

o
rk

 
S

w
itc

h 

pa
ck

et
-m

od
e 

D
T

E
 

C
om

pu
te

r 

TI
 P

 
'-

--
--

J
 

'-
--

-.
J
 

M
in

i-
ho

st
 

ho
st

-t
o-

ne
t 

ne
t-

to
-h

os
t 

H
o

st
 

L
J
 

co
m

m
an

d 
la

ng
ua

ge
 

pr
ot

oc
ol

 
pr

ot
oc

ol
 

\.. 
~
 

or
 

en
d-

to
-e

nd
 

tr
an

sp
or

t 

l 
I 

pr
ot

oc
ol

 
1 
J 

I 
v 

I 
I 

I 
I 

V
TP

 
I 

I 
I 

\ 
v~

--
--

--
--

--
--

--
--

--
--

-J
 

T
h

e
 N

e
tw

o
rk

 
(A

R
P

A
N

E
T

, C
Y

C
LA

D
E

S
, 

E
IN

) 

Fi
g.

 I
. 

D
ep

en
di

ng
 o

n 
yo

ur
 v

ie
w

 o
f 

th
e 

ne
tw

or
k,

 a
 t

er
m

in
al

 c
on

ce
nt

ra
to

r 
m

ay
 b

e 
a 

ho
st

 o
r 

an
 i

nt
er

fa
ce

. 

f ... U
I • r e:..
 f I 



440 Part V • Higher-Layer Protocols 

almost identical, but are architecturally distinct. In the ARPAnet, the TIP is 
considered architectually to be a host (with very limited capabilities). 
Although the TIP software resides in the packet switch, it appears to all 
other hosts and to the switching software as a host connected to the 
network. The CCITT on the other hand considers the PAD to be part of the 
network, an interface between two kinds of Data Terminating Equipment 
(DTE): the Packet Mode DTE (or the computer) and the Start-Stop Mode 
DTE (or the terminal). There is considerable controversy surrounding these 
two viewpoints. (See Fig. 1.) Although the first appears to be conceptually 
clean and efficient, the second supposedly provides certain economic and 
growth advantages for some networks. 

III. The Need for Terminal Protocols 

Terminal handling has always been problematic, but with networks the 
problem is further complicated. If a network were no more than a different 
technology providing the equivalent of point-to-point lines, networking 
would not compound the terminal handling problem. Data generated by a 
terminal could simply be "packaged" and transferred over the network to 
the computer, and vice versa. However, one of the major advantages of 
networking is that a terminal user can potentially establish communication 
with any computer attached to the network. Conversely then, each computer 
on the network must be prepared to handle every kind of terminal that may 
access the network at large. 

Although terminals exhibit broadly similar characteristics, they differ 
in very significant ways (e.g., line length, the meaning of attentions or 
"breaks," character sets, cursor addressing conventions, etc.). Most operat­
ing systems require a separate piece of software (i.e., a device driver) to 
handle each kind and make of terminal attached to it. Since most computer 
installations support only a few kinds of terminals, this variety does not 
represent an undue burden. However, if this approach were carried over to 
the network, each host would have to support all n kinds of terminals, 
supported by each of the m hosts on the network. Thus each host must 
potentially be able to support m X n terminals in order to allow any user to 
connect to it. Clearly, this is impractical. 

Terminal-oriented protocols are designed to reduce this "m X n" prob­
lem to a manageable size by establishing conventions for handling the 
terminals connected to the network. 

Two basic approaches to terminal protocols have emerged. One ap­
proach [9] attempts to parametrize the differences between terminals. The 
protocol is used by the host to set the various terminal parameters to the 
requested values. The other approach [6, 12, 16, 24, 29, 31, 32, 33, 34] 



Chap. 15 • Tenninal Support Protocols 441 

defines a network Virtual Terminal (YT). The terminal side of a connection 
maps the output of its terminal into the VT format for transmission to the 
host. The host then maps the VT format into its local form. This reduces the 
"m X n" problem to an "m X I" problem. Each host on the network must 
support one new terminal type (the VT) when it joins the network. The next 
two sections will discuss the parametric and virtual terminal approaches in 
more detail. 

IV. Parametric Terminal Protocols 

The parametric approach has been pursued primarily by the national 
PTTs (Postal, Telegraphy, and Telephony Ministries) within the CCITT and 
in the U.S. by Telenet. The CCITT has approved protocols to define a Packet 
Assembler/Disassembler (PAD). These have been designated X.28 and 
X.29. Recommendation X.28 defines the protocol for use between the 
start/stop mode DTE (the terminal) and the PAD. Recommendation X.29 
defines the protocol for use between the PAD and the packet-mode DTE 
(PDTE) (the host). (There is also a Recommendation X.3, which defines the 
PAD.) 

CCITT Recommendation X.25 defines the protocol for data transfer 
between the packet-mode DTE (the host) and the Data Communicating 
Equipment or DCE (the network). X.29 uses the user data fields defined by 
X.25 to exchange control information and user data between the PAD and 
the host. It may seem that X.29 is being used in an end-to-end fashion on 
top of the X.25 protocol. From the point of view of the CCITT, this is not the 
case. The PAD is part of the network or DCE. Thus, X.29 is not being used 
end-to-end even though the PAD may be some distance from the computer. 
X.29 is an interface. 

X.29 provides several PAD Messages which are used to control the 
PAD and to indicate certain conditions. The PAD parameters can be 
inspected and modified by the use of the READ, SET, and SET AND 
READ Messages. For example, a PDTE may send a SET PAD Message to a 
PAD to set the line length parameter (called line folding in X.29). The SET 
Message has as an argument a list of pairs of parameter codes and 
parameter values. The parameter code indicates which parameter is to be 
modified and the parameter value contains the new value of the parameter. 
This (CODE, VALUE) pair is repeated for each parameter that is to be 
modified. The PAD replies to one of these messages with a PARAMETER 
INDICATION Message which gives the current or new values of parame­
ters in the same format as the SET or READ. A list of the PAD parameters 
defined as of January 1979 can be found in Table 1. 



442 Part V • Higher-Layer Protocols 

Table I. PAD Parameters According to ccrrr Recommendation X.3 

PAD Recall 

Echo 

Data Forwarding Signals 

Idle Timer Selection 

Ancillary Device Control 

Suppress PAD Signals 
Break Signal Semantics 

Discard Output 

Carriage Return Padding 

Line Folding 

Flow Control 

Provides the means to leave data transfer state 
and return to PAD command state. 

Determines whether or not the PAD echos characters 
received from the terminal. 

Allows the terminal or host to specify when 
buffered characters are to be transmitted to 
the host. 

Allows the terminal or host to specify a time 
interval for buffered characters to be transmitted 
if no forwarding signal has been received. 

Provides flow control between the PAD and the 
terminal (with PAD as receiver of data). 

Allows PAD service signals to be suppressed. 
Allows the terminal or host to select the action 

of a break signal. 
Allows the PAD to discard all data received from 

the host. 
Allows the terminal or host to specify the number 

of padding characters after a carriage return. 
Allows the PAD to automatically fold lines greater 

than a specified length. 
Provides flow control between the PAD and the 

terminal (with the terminal as receiver). 

Most terminals provide a "break" facility. Its primary purpose is to 
allow the terminal to abort an operation or discard output. When the 
terminal user generates a "break" character at his terminal, the PAD will 
send an X.25 Interrupt followed by an INDICATION OF BREAK Mes­
sage. The Interrupt packet travels outside the normal data flow. The exact 
semantics of the "break" condition are determined by the PAD parameters. 
Other PAD Messages are provided for indicating errors, resetting the PAD 
connection, and cleariJig the PAD. 

The PAD protocols do not provide generic functions as found in the 
Virtual Terminal Protocols discussed below. The data stream consists of IA5 
(International Alphabet No.5) characters. (ASCII is essentially lAS with 
national options.) It is assumed that the application in the host knows what 
the terminal will do with the characters. It is also assumed that the terminal 
will do what is intended. At present, the PAD has only been defined for 
scroll-mode terminals (e.g., a simple TTY). It is unclear how it will be used 
to support more sophisticated devices. Experience with X.25 has shown that 
to ensure reliable communications an end-to-end transport protocol is 
required on top of X.25 or that equivalent end-to-end facilities be added to 
X.25 [17, 21]. It is very unclear how the use of an end-to-end protocol on 
top of X.25 can be extended to use with X.29 in a consistent manner. 



Chap. 15 • Terminal Support Protocols 443 

Another aspect of X.29 which exacerbates this problem is that X.29 uses a 
facility (the Q-bit) of the lower-level X.25 protocol to distinguish PAD 
control messages from data. It may be difficult for some systems to support 
this mixing of levels. 

The Interactive Terminal Interface (ITI) [35] used by Telenet is very 
similar to X.29. There are two major differences between the two. First, 
Telenet supports a much more extensive set of parameters (including such 
things as Tab Padding, Transmit on Timer, six parameters for 2741 opera­
tion, Manual/Automatic Connection, etc.). To some degree IT! indicates 
the kinds of additions to X.29 we can expect in the future. Second, Telenet's 
IT! supports what is called a virtual terminal mode. The Telenet VT 
described is not as fully developed as the ones we will discuss below. This 
VT supports only a very primitive scroll terminal. The only generic func­
tions provided by IT! are the go-ahead (for half-duplex operation), the 
interrupt process, the abort output, and the break functions. 

The parametric approach is most successful when the primary purpose 
is to handle existing terminal types [3]. The PAD provides a basic, trans­
parent mode of operation, which places most of the burden of terminal 
handling on the PDTE or the host. The PAD parameters allow the PDTE to 
shift some of this burden to the PAD. As the PAD is used to support more 
and more complex terminals, the number of parameters required increases 
rapidly. X.29 has 12 parameters; an early version of Te1enet's IT! had 
20-some parameters which have since grown to more than 50. The PAD 
protocols do not allow PAD-to-PAD communication and it is unlikely that 
it will allow the PDTEs to use the PAD protocols for communication 
between themselves. However, symmetrical operation has been mentioned 
as a point for further study. Many of these problems can be avoided by 
using the virtual terminal approach. 

V. Virtual Terminal Protocols 

The VTP approach has been used by the ARPAnet in the U.S. [12, 34], 
by the CYCLADES network in France [24], by the GMD network in West 
Germany [33], by the European Informatics Network (EIN) built for the 
European Economic Community (EEC) [32], and has been proposed for the 
Belgian University Network [6]. (Some vendors of networks advertise that 
they provide a virtual terminal protocol. However, on closer inspection one 
finds that their" virtual" terminal is identical to the terminals sold by these 
vendors. Also these protocols often do not provide any means for extensions 
or negotiations. These protocols are intended for homogeneous systems and 
will not be considered here.) In the VTP approach, the user composes input 
at the terminal. Before this input is transferred across the network it is 



444 Part V • Higher-Layer Protocols 

translated into the VT format. When the host receives the data from the 
network, it then translates this VT form into the form expected by its 
terminal handling software. The application then receives the data as if it 
had come from a local terminal. The major advantage of this approach is 
that it avoids the" m X n" problem while allowing relatively sophisticated 
terminal usage. Many conventional operating systems such as the Burroughs 
MCP or Honeywell MULTICS have used this canonical form approach for 
many years with great success. Depending on the detail with which the VT 
is defined, applications may use network terminals without any loss of 
sophistication. 

A. Background 

The ARPAnet Telnet protocol [12, 34] was the first Virtual Terminal 
Protocol. Telnet (acronym for Telecommunications Network) is a very 
simple protocol intended for use by scroll-mode terminals. It is based on 
three principles: the concept of the network virtual terminal, the concept of 
negotiations (or negotiated options), and a symmetrical view of terminals 
and processes. The Telnet protocol has been remarkably successful within 
the ARPAnet. The two major design successes of Telnet are the symmetrical 
view of terminals and the negotiated options. The scroll-mode VT was 
adequate for most ARPAnet applications. Further development of the 
Virtual Terminal was left for later. Protocol research in the ARPAnet 
terminated in 1973, so that many of the improvements that were intended 
were never made. Since that time almost all protocol research has been done 
in Europe. 

While Telnet focused primarily on the symmetry and negotiation 
issues, the Europeans have focused their attention on the definition of a 
virtual terminal model that could be used in a wider range of applications. 
There are several centers in Europe that have been investigating the design 
of VTPs: Schicker and Duenki in Zurich [30]; Bauwens and Magnee at 
Liege [6]; Schulze at Darmstadt [33], Higginson at University College 
London [18]; and Barber at the National Physical Laboratory in England [3, 
4]. Two basic VTP organizations have emerged in this research. In the 
earlier work [24, 31, 32], symmetric operation was ignored. This led to a 
model in which the combination of the real terminal and the software to 
convert to the protocol appeared as a virtual terminal to the application 
program. Later, Schulze [33] proposed the use of a shared communications 
variable as the basis of a common data structure. Although this approach 
allows symmetric operation, it does so with considerable loss of asynchrony 
and efficiency. Recently, a more flexible approach [19] has been used to 
provide symmetrical operation without the use of a common data structure. 
This protocol uses an organization much like the two-NVT organization 
found in Telnet. -



Chap. 15 • Terminal Support Protocols 445 

The European investigations into VTPs have made two major contribu­
tions: (1) a well-defined virtual terminal and (2) the development of a model 
for attentions or interrupts. Both are crucial in a general VTP. 

The following sections will discuss in detail these and other major 
aspects of virtual terminal protocols. But before doing that let us consider 
the environment in which VTPs will be developed and used. 

B. VTPs in a Layered Architecture 

The virtual terminal protocols described in this paper were defined to 
be used directly on top of an end-to-end transport service, such as the 
Host-Host Protocol in the ARPAnet or the Transport Station protocol in 
CYCLADES. Since the design of these VTPs, there has been much activity by 
the International Organization for Standardization (ISO) in the develop­
ment of a standard networking architecture for interconnecting heteroge­
neous ("open" in the terminology of ISO) systems [20]. This work which is 
being done by ISO/TC97/SCI6 (Open Systems Interconnection) has de­
fined a seven-layer architecture (see Chapter 2). The first four layers 
(physical, link, network, and transport) of this architecture are concerned 
with the reliable transfer of data. The upper three layers (session, presenta­
tion, and application) are the domain of higher-level protocols and are of 
concern here. Layer 4 (the transport layer) corresponds to the transport 
service in the ARPAnet or CYCLADES. However, the VTPs described in this 
paper incorporate functions found in both the session and presentation 
layers. Most of the functions of a VTP are concerned with creating and 
maintaining the virtual terminal. These transformation functions are consid­
ered to be functions of the presentation layer. The functions of dialogue 
control and data delimiting (if used in a VTP) are considered to be session 
layer functions. The VTP designs described here are basically sound al­
though they must be partitioned to correspond to the SCl6 architecture. As 
yet, no one has proposed a VTP consistent with the SCl6 architecture. 
However, one should expect that one or more proposals may be made by 
the time this article appears in print, or soon after. 

c. VTP Architecture 

The purpose of a VTP is to facilitate the use of terminals in a 
heterogeneous environment. Several different models have been proposed 
for organizing a VTP. In this section we compare the overall organization of 
various VTPs and consider global aspects of VTP operation such as termi­
nal classes, phases of operations, and extensions. 



446 Part V • Higher-Layer Protocols 

VTP Models and Symmetry 

In the large majority of cases a VTP will be used by a user at a terminal 
accessing an application program. However, in a network it is often very 
useful to be able to support terminal-to-terminal and application-to­
application configurations. The terminal-to-terminal configuration is very 
useful for record communications and certain kinds of teleconferencing 
applications and other applications. At first, one might think that connect­
ing two application programs together would not require a VT. Indeed 
programs designed to interact with other programs probably would not 
require a VTP to mediate communications. However, if one wishes to 
connect two programs together which were originally intended for use by a 
user at a terminal, a VTP can be very useful in facilitating such an 
arrangement. This arrangement occurred many times in the ARPAnet. The 
Telnet protocol was used in just this manner. For example, the interactive 
graphics system, OLS, at UCSB was connected to the algebraic manipula­
tion system, MACSYMA, at MIT. Thus, users of OLS could use MACSYMA to 
algebraically simplify equations before graphing them [26]. 

Designers of Virtual Terminal Protocols have proposed several models 
as the basis for a VTP. The earliest of these was the Telnet model. In Telnet, 
a VTP connection is seen as two virtual terminals with the keyboard of one 
connected to the presentation unit (or display) of the other and vice versa. 
(See Fig. 2). This model takes a symmetric view of terminals and processes. 
The representation used by a local terminal or process is mapped onto its 
virtual terminal "keyboard." The virtual representation is sent to the 
presentation unit of the remote virtual terminal where it is mapped to the 
representation of the remote host. Each virtual terminal represents the state 
as seen from the point of view of its associated host. In the Telnet protocol, 
echoing is controlled by means of a negotiation sequence which allows 
echoing to be done by none, one, or both VTs. (The default case is for each 
VT to echo for its local partner.) This model allows for considerable 
asynchrony between the two systems. In some applications, the information 

PRESENTATION 

UNIT 

I 
I ' -<:}---'------' I 

Fig. 2. The Telnet virtual terminal model. (The dotted line indicates the ability to echo 
characters locally or remotely.) 



Chap. 15 • Terminal Support Protocols 447 

"displayed" by the two VTs may differ for a time. In other cases, the 
information may differ radically for long periods of time. 

In some of the European VT models [6,29, 30, 31, 32] that have been 
proposed, the Virtual terminal is considered from the point of view of the 
host. The virtual terminal is defined as a combination of the real terminal 
and whatever adaptation functions are required to make the real terminal 
appear as a virtual terminal as seen from the host. (See Fig. 3.) At the host, 
there is an adaptation function which converts the virtual terminal format 
into the local representation expected by the host. This model is asymmetri­
cal. It cannot support termina1-to-terminal or process-to-process interac­
tions. If the host needs to determine the current disposition of the VT, a 
command must be sent to it and a reply must be generated. In order to 
prevent the reply from being invalidated before it is delivered by subsequent 
input from the user, this model relies heavily on an alternating dialogue 
mode to control contention for the VT. Much less asynchrony is allowed by 
this model. The alternating dialogue (or half-duplex) mode is seen by the 
designers as the primary mode of usage. (This is probably related to the 
greater abundance of half-duplex terminal systems in use among European 
researchers than among U.S. researchers.) All input from the terminal is 
displayed locally. No echo control is provided as in Telnet. 

Another VTP model suggested by Schulze [33] is based on the "shared 
communication variable." The essence of this approach is to transplant the 
"single-site" model into the network environment. In this VTP, each side 
takes turns accessing a single virtual data structure. This virtual data 
structure is provided by a lower-level protocol. This protocol is able to give 
the illusion of a single data structure by having a copy of the data structure 
at each host and restricting access to only one user at a time. This approach 
cannot support the asynchronous, full-duplex dialogues found in many 
systems. By taking a centralized approach rather than a distributed ap­
proach and not allowing asynchrony, this approach can incur considerable 
overhead in resolving contention for the data structure. (Other flaws in the 
"shared communication variable" approach appear when it is applied to 
broadcast protocol applications or distributed data bases, e.g., maintaining 
multiple copies of the "shared variables" reliably and consistently.) This 
model does not consider the problem of echo control. 

VIRTUAL TERMINAL 

Fig. 3. Asymmetrical VTP architecture (after Bauwens and Magnee [6]). 



448 Part V • Higher-Layer Protocols 

TERMINAL [ 

OR 

APPLICA nON 

PROCESS -------t::::>-

I t PRESENTATION 
I 

PRESENTATION 

UNIT 1 I UNIT 

~ 

I L 1 1 
KEYBOARD KEYBOARD 

-I J 
Fig. 4. INWG virtual terminal model. 

In the INWG VTP [19] each side has a VT which represents that side's 
view of the state of the VT session (see Fig. 4) much like the Telnet model. 
This model explicitly recognizes the asynchronies present in the network. 
Input from the local user is written on the local data structure and 
transmitted over the network to be entered in the remote data structure. In 
asynchronous full-duplex or "free-running" dialogue mode, the contents of 
the two data structures may be different owing to the concurrency of the 
applications and variable network delays. (The same data are written on 
both, but the order may differ. Control of echo is not provided.) This 
"free-running" dialogue mode can provide greater efficiency by allowing 
messages to be sent at any time. In fact, for some applications it may even 
be desirable that the two data structures be different. This model is 
symmetrical and thus can support terminal-to-terminal and process-to­
process configurations. 

The VT Data Structure 

Regardless of the network architecture of a virtual terminal protocol, a 
central component of all of the virtual terminals is the data structure. This 
data structure is an abstract representation of the data being "displayed" on 
the VT. This data structure is defined to have certain properties and 
parameters. For example, a scroll-mode VT has a one-dimensional data 
structure; a paged terminal, a two-dimensional data structure; and a data 
entry terminal, a two-dimensional data structure within which data elements 
can have special attributes such as protection, highlighting, etc. (Other 
properties such as overprinting or character replacement may also be 
defined.) A pointer to the current character position in the current line is 
associated with the data structure. Various VT primitives (such as "move 
cursor" or "erase protected") are defined by the protocol to modify and to 
manipulate this data structure (see below for more detail). There are also 
several VT parameters (such as line and page length) that may be associated 



Chap. 15 • Terminal Support Protocols 449 

with the data structure. These are set by means of the negotiation mecha­
nism described below. 

Phases of Operation 

It is useful to consider a VTP session as consisting of several phases. 
Depending on the level of sophistication of the VT, the following phases of 
operation are well defined in proposed VTPs: 

(1) Establishment Phase. This phase is entered whenever the VT service 
is requested until a VTP connection is completely established. 

(2) Negotiation Phase. This phase is entered whenever one side or the 
other wishes to negotiate the use of new terminal primitives, parameters, or 
classes; or new parameter settings. 

(3) Form Definition Phase. This phase is peculiar to data entry termi­
nals. It is entered whenever a form is being defined on the terminal's 
presentation unit. 

(4) Data Phase. This phase is entered during the normal exchange of 
data between the two partners. 

(5) Synchronous Attention Phase. This phase is entered whenever an 
attention or out-of-band signal is sent that must be coordinated with a 
particular point in the normal data stream. (See section below on attentions.) 

(6) Termination Phase. This phase is entered whenever the VT service is 
requested to terminate VT service on this connection. 

Special phases may be envisioned for other major classes of terminals. 
These phases of operation are not always strictly enforced in all VTPs, but 
are very useful in organizing and describing a VTP. 

Extensions 

The ultimate terminal has not yet been defined, and probably never 
will be. Therefore, a VTP must provide a general framework within which 
future terminal functions can be accommodated. VTP extensions can be 
categorized into three major categories: termitial primitives, terminal param­
eters, and terminal classes. A VTP should provide a mechanism by which 
new terminal primitives can be defined to allow new operations to be 
performed on the data structure. New terminal parameters are required to 
allow new properties of the data structure to be defined. Although not 
independent of the last two, it is useful in a VTP to allow new terminal 
classes to be defined. Terminal classes define the minimal set of primitives 
and parameters and the nature of the data structure that must be supported. 
A VTP may support several classes and combinations of primitives and 
parameters. These are selected during a negotiation phase. In many cases a 
terminal class can be seen as a macro defining a specific set of primitives 



450 Part V • Higher-Layer Protocols 

and parameters. A VTP user will negotiate a terminal class and then 
perhaps negotiate the use of additional primitives and parameters (or 
parameter settings) to fit his requirements. An excellent example of a VTP 
designed to take advantage of this kind of extensibility is the VTP defined 
by INWG [19]. This VTP specification defines the basic elements of the 
protocol and the rules for specifying terminal classes, pnnntlves, and 
parameters, and then defines the basic set of classes, primitives, and 
parameters according to these rules. 

D. Elements of a VTP 

Negotiation 

All VTPs define a negotiation mechanism that is used to negotiate and 
to select the terminal class to be used, the primitives and parameters to be 
used, and the parameter settings to be used. Two basic negotiation mecha­
nisms have been used in the VTPs discussed here: the one used by Telnet 
[34], and the one found in most of the European VTPs [6, 16, 19, 30]. 

The Telnet protocol negotiation mechanism can be initiated by either 
side. Besides negotiating whether or not a particular option is to be in effect, 
the mechanism also allows one to specify, when appropriate, which side is to 
perform the function. For example, a user may negotiate the Echo option 
and specify whether echoing is to be done locally or remotely with respect to 
the initiator of the negotiation. 

Four commands support option negotiation (DO, DONT, WILL, and 
WONT). WILL (option name) is sent by either party to indicate that 
party's willingness to begin performing the option. DO (option name) and 
DONT (option name) are the positive and negative acknowledgments. 
Similarly, DO (option name) is sent to request that the other party begin 
performing the option. WILL (option name) and WONT (option name) 
are the positive and negative acknowledgments (see [12, 34] for a more 
complete description). Each option specification defines the conditions for 
terminating the negotiation of that option. 

Telnet only provides for extensions to the protocol along one dimen­
sion. Although they are not explicitly constrained by Telnet as such, the 
negotiable options are primarily terminal-related parameters. The ability to 
negotiate the use of new terminal commands or to negotiate new terminal 
classes to modify the basic NVT model is not provided by the protocol. 

The scroll-mode terminal is the only terminal model that Telnet can 
efficiently support. Experiments with extending Telnet to handle more 
complex terminals have shown that major inefficiencies develop (see for 
example [13]). The only reasonable way for new terminal commands or 



Chap. 15 • Terminal Support Protocols 451 

primitives (e.g., position the cursor) to be introduced without modifying the 
protocol is to use the subnegotiation mechanism. 

In the European VTPs, the negotiation mechanism is somewhat differ­
ent. Since the two VTs (in those models where there are two) are more 
tightly coupled, a negotiated function is not seen as occurring at one site or 
the other. The function is either performed by the VT or it is not. Each VT 
supports the function for its local user whether terminal or process. This 
negotiation mechanism defines five primitives. The Request Parameters 
Range and Indicate Parameters Range primitives are used to determine 
what facilities are supported by the remote implementation. (In Telnet, a 
Status option fulfills this function.) The Set Parameter Value, Agree, and 
Disagree primitives are used to select specific values and to agree or disagree 
to their use. In the asymmetric VTPs, negotiation is mediated by the 
application side only. It determines what parameter values it will select 
within the range supported by the terminal side. In the symmetrical VTPs, 
negotiation can be initiated by either side. This requires that a mechanism 
be defined to prevent infinite cycling of proposal and counterproposal. The 
European VTPs attempt to define a single mechanism applicable to all 
negotiations for terminating negotiation. (As opposed to the Telnet scheme 
of letting each negotiable function define an algorithm for termination.) In 
the INWG VTP, an octet containing a random number is sent with each set 
primitive. If a disagreement occurs, when both try to set the value of the 
parameter the suggested value with the largest random number prevails. 
More experience with negotiations is required before it will be clear which 
scheme is the better. 

Terminal Primitives and Parameters 

There are two kinds of VTP primitives: primitives used to control the 
virtual terminal and to establish its parameters, and primitives used to 
modify the data structure. The control-related primitives are used in the 
negotiation sequence arid to control auxiliary devices. The data-structure 
related primitives are used to format and enter text in the data structure (see 
Table II). 

Terminal Parameters are used to characterize the VT and the data 
structure. They include properties such as line length, page size, 
overprint/erase (whether a character is overprinted or replaced when two 
different characters are stored in the same position), and the selection of 
auxiliary devices. These parameters characterize the nature of the data 
structure and the VT. To some extent they also determine how data in the 
data structure will be transformed into what is shown to the user at his real 
terminal. 



452 Part V • Higher-Layer Protocols 

Table II. Minimum Parameters and Primitives Required by the INWG VTP 

Primitives 

Scroll Mode 
Agree 
Disagree 
Request 
Indicate 
NewLine 
Start of Line 
Text Segment 
Purge 
Asynchronous Attention 
Synchronous Attention 

Paged Mode 
Scroll Mode Primitives 
Delete All 
Position 

Data Entry Terminal Mode 
Paged Mode Primitives 
Attributea 

Delete Attribute 
Erase Unprotected 
Next Protected Field 

Parameters 

Terminal Class 
Line Length 
Erase/Overprint 
Dialogue Mode 
Auxiliary Data Structure 

Scroll Mode Parameters 
Page Size 

Paged Mode Parameters 

aAttributes . are protected/unprotected fields, and three levels of display: Nondisplay, 
Normal, and Intensified. 

Attentions 

The use of attentions, or out-of-band signals, has also been a question 
of much concern to designers of VTPs. Attentions are used to provide the 
"break" function found in many terminals and other out-of-band control 
functions. There are essentially two kinds of attentions that are required in a 
VTP: the asynchronous attention, which is independent of the data stream, 
and the synchronous attention, whose action must be coordinated with a 
point in the data stream. The first poses no problems, but there are certain 
race conditions that make providing the second more difficult. An excellent 
solution to this problem was first proposed in [14] and later developed in 
detail by Bauwens and Magnee in [5]. 

The basic issues that the attention mechanism must address are as 
follows: 

1. Whether or not data are to be purged. 
2. The dialogue mode after the attention (full and half duplex). 
3. If half duplex, which side has the turn. 

In the Duenki and Schicker scheme the attention carries these pieces of 
information which provide the remote user with a means to flush data, to 



Chap. 15 • Tenninal Support Protocols 

G 
DATA PHASE 

INHIBIT 
PHASE 

ATTENTION 
PHASE 

ABORT 
OUTPUT IRESUME 
PHASE 

DATA PHASE 

453 

DATA PHASE 

ATTENTION 
PHASE 

DATA PHASE 

Fig. 5. Handling an attention condition. A denotes the process which initiated the attention. B 
denotes the process which receives the attention. (After Bauwens and Magnee [6].) 

request that the "turn" be given to it, and to send other out-of-band signals. 
(In addition, most of the VTPs provide 8 or 16 bits for the terminal classes 
or user applications to define.) 

The mechanism described by Duenki and Schicker assumes that the 
transport service provides reliable delivery of out-of-band signals, often 
called telegrams. In addition, only one attention from either side may be 
outstanding. The attention mechanism consists of the telegram sent out-of­
band and a data mark that is sent in the normal data stream. The mark 
acknowledges that an attention has been received and also indicates the 
point in the data stream at which the attention phase ends and a new data 
phase begins. As seen by the initiator of an attention, the procedure goes as 
follows (see Fig. 5): 

The initiator 

• Stops accepting keyboard and network messages. 
• Transmits an attention telegram specifying dialogue possibilities, 

purge information, etc. 
• Awaits a responding attention telegram with the remote partner's 

request specifying the same information. 
• Reevaluates the dialogue mode and location of the turn according to 

a distributed algorithm. 



454 Part V • Higher-Layer Protocols 

• Transmits a "mark" which carries the confirmation of this "negotia­
tion" and signals the beginning of the next data phase. 

• Accepts incoming messages, discarding or displaying them according 
to the attention information received until a mark is received. 

• Reinitializes the dialogue mode, and continues processing. 

The sequence for the receiver of an attention is very similar: 

• Respond with an attention telegram. 
• Issue a mark in the data stream. 
• Wait for the incoming mark discarding or displaying data according 

to the parameters of the attention telegram. 
• Continue normal processing when the mark arrives. 

The above was freely adapted from the Duenki and Schicker paper 
[14]. For a detailed discussion showing how various deadlocks and races are 
avoided by this scheme, the interested reader should consult the paper by 
Bauwens and Magnee. 

Dialogue Control 

There are two major modes of dialogue found in terminal systems: full 
duplex or free-running and half-duplex or alternating. In free-running mode 
either side can send whenever it pleases. The protocol and its users are 
assumed to be able to sort out what is happening. In alternating mode the 
situation is more structured. One side is given the turn. That side sends 
everything it has and then gives the turn to the other side, who can then 
send. In the European VTPs alternating mode is enforced across the 
network. Only one implementation may send data at a time. In Telnet, the 
situation is more loose. Message traffic between the two VTs is always in 
free-running mode. However, when alternating mode is used, control infor­
mation is also sent with the data that allows the interface between the VT 
and the real terminal or process to be controlled in an alternating mode. 
The superiority of one method over the other is a trade-off between 
response time and buffer requirements. The Telnet scheme may give the 
user better response time since data queued by the VTP may be written to 
the terminal or process as soon as the turn is relinquished. In the European 
VTPs the user would have to wait for the turn to be sent to the remote 
partner and for a reply to come back. However, if a user held the turn for 
some time, the Telnet scheme might cause the user with the turn to incur 
considerable difficulties because of the amount of data queued. 

Data Delimiters 

The problem of data delimiting in VTPs has not been explored in any 
detail as yet. The most common delimiter is the end-of-line. Many VTPs will 



Chap. 15 • Terminal Support Protocols 455 

buffer an entire line before sending it to the remote partner. However, in 
some applications more sophistication is desired. In these cases, it is 
desirable for the VTP to buffer data until a particular character or class of 
characters is encountered, and then forward the data. This aspect of VTPs 
has not been adequately explored. The best example of such a facility is the 
Remote Controlled Transmission and Echo option in Telnet [12, 34]. This 
facility was defined to increase the efficiency of several major application 
systems such as NLS [15] a sophisticated text editing, text manipulation, 
and retrieval system in the ARPAnet that do sophisticated echoing for the 
user. 

VI. Summary 

Virtual Terminal Protocols make the interworking of terminals and 
hosts in a heterogeneous environment possible with very little overhead. At 
the same time, a single VTP provides a framework which can accommodate 
a variety of terminal classes including those prevalently in use today (scroll, 
data entry, etc.) and those we can expect to be prevalent in the future 
(graphics, intelligent terminals, etc.) 

As one can readily see from the above discussion, there is a fair amount 
of variety within the domain of VTPs. A recent survey by Magnee, Endrizzi, 
and Day [23] investigates, in much more detail than is possible here, the 
differences in the various European models. Work in this field is proceeding 
at a fairly fast pace. A proposal for a standard VTP can be expected by the 
end of 1983, if not before. VTP work in the U.S. very nicely complements 
the work that has been done in Europe. Hopefully, a standard VTP will 
combine the best of both Telnet and the European proposals. 

VII. Conclusions 

This chapter has discussed in some detail two basic approaches to 
terminal protocols, the parametric and virtual approaches. The PAD proto­
cols which characterize the parametric approach are more concerned with 
the support of current telecommunication requirements, while the VTPs are 
aimed at the more general communications environment likely to evolve in 
the future. Currently, most users of computer networks use one host. In 
essence, the network is replacing point-to-point lines. The PAD protocols 
are designed for this environment. The PAD protocols parametrize basic 
terminal handling characteristics; but assume that the host knows how to 
manipulate the presentation unit. In a very real sense the parametric 
approach tends to keep users tied to one major host or vendor. Since the 
host must have a fair amount of knowledge about the terminal, it is difficult 



456 Part V • Higher-Layer Protocols 

for users to easily take advantage of the opportunities provided by the 
network. In fact, the users can be expected not to rely heavily on the 
network and remain strongly tied to the mainframe vendor. 

In the future, we can expect users to use several hosts of different 
manufacturers. The VTP will then become a necessity as users break out of 
these essentially closed groups. However, this does not mean that the PAD 
and VTP approaches are diametrically opposed. The VTP is primarily 
concerned with manipulating the presentation unit, which the PAD is not. 
Compatibility between the PAD and VTP can be achieved by making the 
Virtual terminal one of the kinds of "terminals" a PAD can support. Or, if 
the "real terminal" is sufficiently sophisticated it can implement the VTP 
directly and use the PAD protocols as a more sophisticated transport 
service. 

References * 

[I] P. A. Alsberg, J. F. Bailey, D. S. Brown, and J. R. Mullen, Intelligent Terminals as User 
Agents. Trends and Applications 1976: Micro and Mini Systems, IEEE 76CHIIOI-5C, 
Gaithersburg, MD 1976. 

[2] R. H. Anderson "Advanced intelligent terminals as a user's network interface," Proc. 
Comput. Conf., Fall 1975, II th IEEE Computer Society Conference, 1975. 

[3] D. L. A. Barber, "The role and nature of a virtual terminal," Comput. Commun. Rev., 
vol. 7, no. 3, p. 5; also in Proc. NCC'76, 1976. 

[4] D. L. A. Barber, "The real virtual terminal," INWG Protocol Note # 64, 1977. 
[5] E. Bauwens and F. Magnee, "Remarks on negotiation mechanism and attention han­

dling," S.A.R.T. 77/12/13. INWG Protocol Note # 72, 1977. 
[6] E. Bauwens and F. Magnee, "The Virtual Terminal Protocol for a Belgian University 

Network," Proc. Comput. Network Protocols Symp., Liege, Belgium, 1978. 
[7] W. 1. Bouknight, G. R. Grossman, and D. M. Grothe, "The ARPA network terminal 

service-A new approach to network access," Proc. 3rd Data Commun. Symp., 1973. 
[8] R. T. Braden, "NETCRT-A character display protocol," ARPANET RFC # 205, 1971. 
[9] CCITT, "Proposals for draft provisional recommendations for interworking between 

non-packet mode and pocket mode DTE," CCITT Study Group VII Tempormy Docu­
ment no. 62-E, Geneva, 1977. 

[10] G. L. Chesson, "The network UNIX system," Proc. 5th Symp. on Operating System 
Principles, Austin, TX, 1975. 

'Items in the Reference list marked with a NIC number have been archived by the ARPA 
Network Information Center, Stanford Research Institute, Menlo Park, CA 94025. Items 
marked with an RFC number are a series of Requests for Comments maintained at the NIC 
by the ARPA Network Working Group. The ARPAnet Protocol Handbook is edited by 
Elizabeth Feinler and Jon Postel and is produced for the Defense Communication Agency. 
Copies are available from the U.S. National Technical Information Service, 5285 Port Royal, 
Springfield, VA 22161, order number ADA 052 594/9WC. Items marked with INWG 
numbers are the working papers of IFIP Working Group 6.1 (International Network Working 
Group) and can be obtained from Alex McKenzie, Bolt Beranek and Newman, 50 Moulton 
St., Cambridge, MA 02138. 



Chap. 15 • Terminal Support Protocols 457 

[11] G. Cosell, and D. Walden, "Telnet issues," ARPANET RFC # 435, 1973. 
[12] J. Davidson, W. Hathaway, J. Postel, N. Mimno, R. Thomas, and D. Walden, "The 

ARPANET Telnet protocol: Its purpose, principles, implementation, and impact on host 
operating system design," Proc. 5th Data Commun. Symp., 1977. 

[13] John Day, "Telnet data entry terminal option," ARPANET RFC # 731, 1977. 
[14] A. Duenki, and P. Schicker, "Symmetry and attention handling: Comments on a virtual 

terminal," EINjZHRj77j03, INWG Protocol Note, 1977. 
[15] D. C. Englebart, R. W. Watson, and J. C. Norton, "The augmented knowledge 

workshop," AFIPS Proc. NCC, June, 1973. 
[16] EPSS Liason Group, "An interactive terminal protocol," HLP(CP)(75)2 INWG General 

Note 94, 1975. 
[17] F. R. Hertweck, E. Raubold, and F. Vogt, "X.25 based process-process communication," 

Proc. Symp. Comput. Network Protocols, Liege, Belgium, 1978. 
[18] Peter L. Higginson, "Restructured version of ESP 25-Part C; Chapter 2-Packet 

assembler for the adaptation of asynchronous character terminals to the virtual terminal," 
INDRA Note No. 640, Dept. of Statistics and Computer Science, University College, 
London, 1977. 

[19] IFIP WG 6.1. "Proposal for a standard virtual terminal protocol," INWG Protocol Note 
91, 1978, also in Proc. Syrup. Comput. Network Protocols, Liege, Belgium, 1978. 

[20] International Standards Organization, "Reference model for open system architecture," 
ISOjTC97jSCI6jN46 revised, 1978. Available from National Standards Bodies. 

[21] Y. Jacquemart, "Network interprocess communication in an X.25 environment," Proc. 
Symp. Comput. Network Protocols, Liege, 1978. 

[22] Richard Luca, "Zones-A solution to the problem of dynamic screen formatting in 
CRT-based networks," Proc. 4th Data Commun. Symp., Quebec, 7-9 October, p. I-I, 
1975. 

[23] F. Magnee, A. Endrizzi, and J. Day, "Virtual terminal protocols-A survey," Computer 
Networks 3, pp. 299-314, 1979. 

[24] N. Naffah, "Protocole appareil virtuel-type ecran," TER 536, Reseau CYCLADES, 
lRIA, Rocquencourt. France, 1976. 

[25] S. M. Ornstein, et al., "The terminal IMP for the ARPA computer network," Prac. 
SIICC 1972, pp. 243-254. 

[26] W. Parrish, and J. R. Pickens, "MIT-Mathlab meets UCSB-OLS," ARPANET RFC 
# 525, 1973. 

[27] T. N. Pyke, Jr., "Network access techniques: Some recent developments." Proc. 3rd 
Texas Conf. Comput. Syst., Austin, TX, 1974. 

[28] D. L. Retz, "ELF-A system for network access," IEEE Intercon Conf. Rec., New York, 
1975. 

[29] Peter Schicker. "Virtual terminal protocol (Proposal 2)," EINjZHRj75j5 INWG 
Protocol Note # 30, 1975. 

[30] P. Schicker, and A. Duenki, "Virtual terminal definition and protocol," 
EINjZHRj76jOI9a, INWG Protocol Note # 51, 1976. 

[31] P. Schicker, and A. Duenki, "The virtual terminal definition," EIN jZHRj77 j I 086, 
Computer Networks 2, pp. 429-441, 1978. 

[32] P. Schicker, and H. Zimmerman, "Proposal for a scroll mode virtual terminal," 
EINjCCGj77 02, INWG Protocol Note # 62. 

[33] G. Schulze, and Joachim Borger, "A virtual terminal protocol based upon the 'shared 
communication variable' concept," Proc. Symp. Comput. Network Protocols, Liege, 
1977. 

[34] Telnet Protocol Specification, NIC# 18639. 1973. Also in the ARPANET Protocol 
Handbook,1973. 

[35] Telenet Corp. Interactive Terminal Interface Specification, Telnet Corp., Washington, 
D.c.. 1977. 



16 

SNA Higher-Layer Protocols 

Verlin L. Hobere.cht 

I. Introduction 

A. Systems Network Architecture (SNA) LU-to-LU Sessions 

A comprehensive network architecture which addresses the meaningful 
exchange of information between end users must address a number of basic 
requirements. This first requirement involves transporting messages from 
one network node to another over common carrier or privately owned 
communication facilities. It also involves message routing when the source 
and destination nodes of a message are separated by one or more inter­
mediate nodes, all connected by communication links. These SNA functions 
are dealt with in Chapter 11. The second requirement is the definition of the 
content of the messages such that they can be understood and used by both 
end users. How this requirement is met is the subject of this chapter. 

This chapter assumes the architectural framework of SNA as depicted 
in Fig. 1. The sources and destination of messages flowing through the path 
control network are network addressable units. 

End users, for example, application programs or terminal operators, are 
associated with network addressable units called logical units, usually 
referred to as LUs. Each LU has a unique network address indicated by na i 

(see Fig. 1). The ability for two end users to exchange information is 
obtained by establishing a logical connection, called a session, between the 
two LUs associated with the two end users. Once established, the two end 
users are able to send and receive information to and from each other. A 
pair of network addresses is associated with each message flowing through 
the path control network. In Fig. 1, naj identifies a typical destination LU 
and na i identifies ail origin LU. 

459 



-
__

 
r-

--_
__

 
--

--
--

--
--

--
H

al
f· 

l 
E

nd
 

L
-

_ 
se

ss
io

n 
...

. -
..

 _
-
,
-
.
-

1
--

--
--

--
U

se
r 

_ 
l.

-.
--

-
H

a
l
f
.
'
-r
-
-
-
-

~
 

~
 

--,
 

1 
se

ss
io

n 

I 
H

al
f·

 
L

-
....

... 
_

s
e
s
s
io

n
 

_
-
-
1

._
..

] 
-

-l 
, 

LU
 0

',
 

_ 
-

H
.I

f-
I 

1 
_ 

_ 
,.

.;
0

0
 

1 
E

nd
 

1 
-

-

1 
' 

-
L

-
LU

 n
aj

 
-

H
al

f. 
_ 

1 
_ 

se
ss

io
n 

I 
M

sg
 

H
al

f. 
L 

na
j 

se
ss

io
n 

I 
na

j 
LU

 n
a2

 
ot

he
r 

....
 _

_
 -=

:..-
_

_
_

_
 JI 

pa
ra

m
s 

E
nd

 
da

ta
 

I 

U
se

r 

H
al

f· 
1 

~ 
~;o

o 
I 

_ 
-

I 
H

'I
f-

-
se

ss
io

n 
[E

J 
"'

If
-

1 
"""

 ""
""0

' 
-

,-
E

o
' 

"
';

0
0

 
I 

N
""

'o
,k

 
' 

H
,I

f-
-

U
_

 

, 
L

U
O

"
' 

1,
..;

0"
 

-
-

SN
A

 N
et

w
or

k 
LU

 n
ak

 -
I 

Fi
g.

 I
. 

S
N

A
 n

et
w

or
k 

ov
er

vi
ew

 

~ ! -< • t;; l i I 



Chap. 16 • SNA Higher-Layer Protocols 461 

B. Session Level Message Format 

The subject of this chapter is the syntax and semantics of the messages 
which flow between two LUs on LU-to-LU sessions and the protocols used 
by one LU to manage functions performed by a remote LV. The general 
format of these messages when viewed at the point at which they are passed 
from the sending LU to the path control network (or where they are passed 
from the path control network to the receiver LU) is a binary bit string 
divided into two parts 

RH RU 

where (1) RU denotes request unit or response unit, and (2) RH denotes 
RU header. 

The functions encoded in the RH and RU will be discussed in more 
detail in the following sections. The exact syntax of these headers is given in 
[2]. At this point, it should be understood that in addition to carrying the 
information being exchanged between end users, the same general message 
format is used to carry control information between the associated LUs. 

II. General Purpose Function and Protocols 

SNA has defined a number of functions and protocols which are 
fundamental to end user to end user communication but are independent of 
the end user to end user application. These functions are performed by the 
LUs and are referred to as session level protocols. This section briefly 
describes a number of these functions and protocols, most of which are 
concerned with data flow control. 

A. Request-Response Protocols 

Suppose that a session has been established between two LUs and that 
one of the LUs sends a request unit (RU) to the other LU. There are many 
instances in which the sender requires a positive confirmation that the 
request unit was received by the other LU independent of the syntax or 
semantics of the content of the RU. Thus, there are circumstances in which 
the sender of a request unit requires the receiver to return a response unit. 
There are also many circumstances in which there is no requirement for a 
response unit to be returned, and it would be inappropriate to burden the 
network with unnecessary response units. 

This request-response protocol is managed through the use of certain 
bits in the RH (RU header). One bit is used to indicate whether the RU is a 



462 Part V • Higher-Layer Protocols 

request or a response unit. If a request is being sent, the sender uses other 
bits to indicate whether or not a response is to be returned and if so, 
whether it is to be a definite response or an exception response. Exception 
responses are only returned when exception conditions are detected. If a 
definite response is indicated, a response will always be returned. 

The sender of response units uses the same bit positions in the RH to 
indicate that the RU is a response and the type of response being returned, 
i.e., a positive response or an exception response. A positive response is sent 
when a definite response was requested and there were no errors or 
exceptions. A response is sent when either a definite response was requested 
or an exception response was requested and an error or exception condition 
was detected. A~ RH with a response type indicator is always followed by a 
4-byte response unit containing data which define the nature of the error. 

The basic request-response protocol just described allows several dif­
ferent modes of operation. For example, by requesting a definite response 
and not sending additional requests until the definite response is received, 
the sending end user limits the extent to which it gets ahead of the receiving 
end user. This mode simplifies greatly the protocols for recovery and 
resynchronization following a session failure. 

Another operating mode is for an LU to send multiple request units 
before it has received a response to the first. This is done to overcome the 
delay encountered in transporting messages from the sender to the receivers 
and to keep the receiver "fully utilized." In this mode, a sender gets ahead 
of the receiver. This causes no problem until an exception response is 
received by the request sender. This response must be correlated with the 
appropriate request, and then appropriate error recovery steps .must be 
taken including disposition of the requests which were sent subsequent to 
the request having the exception condition. 

B. Request Unit Chains 

In many applications, the unit of information to be sent from one end 
user to another can be most easily handled as a string of request units. 
Examples are the data to print a report, the data for a display screen 
update, or the content of a file which is being transferred. 

Such a unit of information is handled as a chain of request units. (See 
Fig. 6 of Chapter 11 for an illustration of the case where each RU is not 
further segmented, but is handled by path control as one segment.) The 
sender delimits the chain by setting appropriate bits in the RH's to indicate: 

1. first RU of a chain, 
2. middle RU (there may be more than one), 
3. last RU of a chain, and 
4. only RU of a chain. 



Chap. 16 • SNA Higher-Layer Protocols 463 

C. Half-Duplex, Flip/Flop Protocol 

Many applications involve a conversational mode of operation in which 
one LV sends requests for a period of time and then enters a state in which 
it is prepared to receive and process requests. This general mode of 
operation requires a protocol for the sending LV to notify the receiving LV 
that it is changing its state from send to receive and that the other LV 
should change its state accordingly. This is accomplished by the sending 
LV setting the change direction indicator bit in the RH of the last request 
unit it sends. 

D. Half-Duplex Contt:ntion Protocol 

In some conversational applications, the session may go into an "idle 
state" in which neither party has any information to send. A modification to 
the HDX flip/flop protocol is made to allow the two parties to go into an 
idle state at the end of an RV chain. The conversation can be resumed by 
either party. If both should try to resume the conversation at the same time 
as depicted in Fig. 2, the contention is resolved according to a·rule selected 
at the time the session was established. 

LU B Was Identified as the Contention Winner 
LU A when the Session was Established LU B 

1 , 
1 1 
I ~D I 
I I 

I RQDCD I 
l I 
: • ! 
1 1 
,- I 
I I 
I 1 

Return I +RQD I Return Excp 
+ RSP ------:.------, 1 Resp and 

: I , __ ~~<2.P _R~~ __ -I Discard Data 
1 1 1 I 
1 L_~--------~ 
I , I 1- ___________ 1 I 

I Reply to LU B I 
1 I 
I 
J .1 
I RQD = Request Definite Response I 
I CD = Change Direction I 
, Solid Line = Chain of Request RUs 

Dashed Line = Resp RUs 

Fig. 2. Example of half-duplex contention request/response protocol. 



464 Part V • Higher-Layer Protocols 

E. Full Duplex Protocol 

The path control network of SNA has the capability to support sessions 
in which data can be flowing concurrently in both directions between the 
two LUs. However, there has not been a general requirement to develop and 
implement LUs which use this protocol. 

F. Brackets 

Within the scope of this section, the word transaction means a series of 
conversational exchanges between two LUs. One of the LUs initiates the 
transaction by sending a request unit chain to the second LU. The second 
LU sends a request unit chain to the first LU in reply. The cycle may be 
repeated until the transaction is complete. 

Now assume that either of the LUs of a session can initiate a transac­
tion; however, once a transaction is initiated, it is most desirable that it not 
be interrupted by the initiation of a second transaction by the other LU. 
This then leads to the definition of a brackets protocol which defines how 
the boundary of a noninterruptable unit of work involving conversational 
exchanges is identified and how the two LUs are synchronized to work on a 
single transaction at a time. 

The sender sets begin bracket and end bracket indicators in the request 
unit headers. There is also a protocol established at the time the session is 
started which gives one of the LUs the privilege of unilaterally initiating a 
bracket while the other LU must bid for and receive permission from the 
first LU to begin a bracket. 

The example illustrated in Fig. 3 assumes that LU-B has received 
permission to begin a bracket. 

G. Session Pacing* 

In general, an LU is allowed to send request units when they are 
available to be sent. In some instances, the sending of a request unit may be 
held up while the LU waits for a definite response. In other cases, the 
sending of request units is held up due to the restrictions of HDX protocol. 

However, there are still circumstances in which it is possible for a 
sending LU to overrun the receiving LU. This situation is prevented 
through session pacing. 

Whether or not pacing is used in a session is determined at the time the 
session is established along with a number N, called the pacing window. 

'See Chapter 13. 



Chap. 16 • SNA Higher-Layer Protocols 

LUA 
I 
I 

LUB 

B Initiates Transaction 

I ::-======================= Last of Chain 

-----, 
I 
I 

A Replies to B 

B Provides A More Data 

A Replies and ends the 
Transaction Last of Chain 

I Bracket 
1 (Un-interruptable 
I Unit of Work) 
1 
I 
I 

--.J 

A Initiates Transaction I 
----------~~~~~~~~------~. 1---, 

B Replies I I 

A Completes the I i Bracket 
----------~T~r-an-s-a~~i~o-n---L~a-st-o~f~C~h~ai-n--~· I 
------------------------------~.- I~ I 

I 

Fig. 3. Pictorial representation of a bracket. 

465 

The sending LV sends N request units, with the pacing indicator on in 
the header of the first request unit. The sending LV then waits for a 
response with the pacing indicator on before it sends another group of N 
request units. 

The receiving LV sends a response with the pacing indicator on when it 
has received a request header with the pacing indicator on and it is able to 
handle N more request units. 

H. RU Categories and SNA Layers 

The preceding sections discussed a number of general purpose func­
tions that are encoded in the RH. There are also a number of general 
purpose functions which are encoded as RUs. RUs on LV-to-LU sessions 
fall into three categories: 

1. session control, 
2. data flow control, and 
3. function management (FM) data. 

The category of the RU following an RH is indicated by the encoding 
of RU category bits in the RH. 

The three RV categories are associated with three different layers of an 
LV half-session. This association is depicted in Fig. 4. The RVs of a 
particular category are used to carry control information and data from its 
associated layer in one half-session to the corresponding layer in the other 
half-session. 



H
al

 
se

ss
 f- io

n 

P
re

se
nt

at
io

n 
S

er
vi

ce
s 

D
at

a 
F

lo
w

 C
on

tr
ol

 

T
ra

ns
m

is
si

on
 C

on
tr

ol
 

1-1
 

F
M

.D
at

a 
R

U
s 

I
-
-
-

1-1
 

D
FC

 R
U

s 
}-

-

1-1
 

S
es

si
on

 C
on

tr
ol

 R
U

s 
1

-

Se
ss

io
n 

C
on

ne
ct

io
n 

S
N

A
 P

at
h 

C
on

tr
ol

 N
et

w
or

k 

Fi
g.

 4
. 

R
U

 c
at

eg
or

ie
s 

an
d 

S
N

A
 la

ye
rs

. 

P
re

se
nt

at
io

n 
Se

rv
ic

es
 

D
at

a 
F

lo
w

 C
on

tr
ol

 

T
ra

ns
m

is
si

on
 C

on
tr

ol
 

H
 

Sf
 al

f­
ss

io
n 

~ ! <::
 • l i ~ , 



Chap. 16 • SNA Higher-Layer Protocols 467 

FM data RUs are the RUs which carry end user data and are the RUs 
used to manage end user defined application-dependent functions. 

Session and data flow control RUs are used by the LUs to control and 
manage the session. Session control and data flow control are independent 
of the nature of the FM data carried on the session. A complete detailed 
definition of these RUs can be found in [2]. However, a brief summary of 
each category follows. 

I. Session Control RUs 

Session control RUs are concerned with establishing a session, reestab­
lishing a session following a session failure, and ending the session. The 
fundamental RU is the bind RU. It carries the parameters which establish 
the protocols which will be used during the session from the sending LU to 
the receiving LU. For example, the bind RU specifies session protocols such 
as 

1. operating mode, e.g., HDX flip/flop; 
2. maximum RU size; 
3. pacing count; 
4. whether or not multiple request exception response chains will be 

sent; and 
5. bracket termination rules. 

The bind RU also specifies the nature of the FM data that will be used 
on the session. There is also an unbind RU to end the session. Other session 
control RUs are used to reestablish a session following a session failure. 

J. Data Flow Control RUs 

The title of this section gives a general idea of the functions of the RUs 
in this category. Data flow control RUs have been defined to 

1. allow the sender to cancel an RU chain which has been started: 
2. quiesce and resume the flow of FM data on the session; 
3. provide an LU the means by which it will be allowed to begin a 

bracket; 
4. send a change in LU status, for example, to notify the other LU that 

a resource which has been reported temporarily unavailable is now 
available; 

5. provide the means for an LU in receive state to signal the other LU 
that the sending LU should stop sending and pass control to the 
receiving LU so that it can send. 

As an example, the format of the signal RU is shown in Fig. 5. Others 
are defined in [2]. 



468 Part V • Higher-Layer Protocols 

'----.- Reserved 

L..... __________ HEX 0001 = Req. to Send 

L-. _______________ Identifies as Signal RU 

Fig. 5. Format of signal RU. 

III. LU Types 

The preceding discussion has briefly described or outlined a number of 
functions which are essential to end user to end user communications. These 
functions are independent of the nature or character of the end user and the 
information being exchanged between them. 

Given a pair of specific end users and using these functions, it is 
possible to define a set of protocols for exchanging messages between the 
two end users. However, is it possible to define two classes of end users and 
a set of message exchange protocols which are applicable to any pair of end 
users formed by taking one from each class? The answer to this important 
question is yes. It has been done for the following: 

1. program-to-keyboard/printer terminal, 
2. program-to-keyboard/display terminal, 
3. keyboard/printer terminal-to-keyboard/printer terminal, and 
4. program-to-program. 

These four sets of message exchange protocols are part of the defini­
tions of LU session types 1,2,4, and 6, respectively. An introduction to and 
a more detailed description of these LU session types can be found in [3]. 

An examination of the message exchange protocols of LU session types 
1 and 2 will reveal that they are very similar. The significant difference 
between LU 1 and LU 2 is due to differences in the FM data handled by 
these two LU session types. 

However, there are two factors which cause significant differences in 
message exchange protocols. The first factor is the relationship between the 
two parties of the session. Is it a peer relationship or a master/subordinate 
relationship. LU session types 1 and 2 support a master/subordinate 
relationship. LU session types 4 and 6 support a peer relationship. The 
second factor is related to the role or extent of an end user operator in 
recovery. 

Message exchange protocols between peers are symmetric. Message 
exchange protocols between master and subordinate are not. This is re-



Chap. 16 • SNA Higher-Layer Protocols 

flected in such protocol rules as the following: 
(1) The master is responsible for recovery. 

469 

(2) The master establishes the context in which the data are to be 
understood. For example, the program establishes the format of the screen 
which determines what information the operator can enter. 

The second factor is related to the role or extent of an end user 
operator in recovery. The operators of the terminals involved in LV type 4 
sessions play a key role in recovery if there has been a session failure. In 
some circumstances recovery may involve telephone conversations between 
the two operators as they resynchronize their work. 

In contrast, the logic for recovery in program-to-program communica­
tion must be handled. without operator intervention. This leads to the 
definition of recovery protocols for LV 6 sessions which are not required in 
LV 4 sessions. 

Table I is a summary [4] of products which have implemented support 
for LV session types 1,2,4, and 6. 

Table I. Implementations of LV Types 

LU Session LU Session LU Session LU Session 
Product type I type 2 type 4 type 6 

IMS/VS .; .; .; .; 
CICS/VS .; .; .; .; 
RES .; .; 
NOSP .; .; 
JES 2 .; 
JES 3 .; 
POWER/VS .; 
TSO .; .; 
NCCF .; .; 
VSPC .; .; 
TCAM .; .; 
3630 .; 
DPPX .; .; 
DPCX .; .; 
3270 .; .; 
3767 .; 
3770 .; 
3790 .; 
S/32 .; 
S/34 .; .; 
S/38 .; .; 
5250 .; 
6670 .; 



470 Part V • Higher-Layer Protocols 

IV. Function Management (FM) Data 

The raw form of all RUs is a binary bit string. In order for an RU to 
carry information it is necessary to impose a structure on the bit string, 
define syntactical relationships between the elements of the structure, and 
define the meaning or semantics of the structural elements. We shall now 
discuss how this is handled for the end user data expressed in the PM data 
RUs. 

Different structures, syntax, and semantics are defined for carrying 
different kinds of information. More than one structure and syntax can be 
defined to carry a particular kind of information. That is, there is not 
necessarily a ont<-to-one relationship between a particular kind of informa­
tion and a unique structure, syntax, and semantics for carrying that kind of 
information. However, for two parties to communicate, that is, exchange 
information, they must agree on the structure, syntax, and semantics of the 
bit strings carried in the RUs they exchange with each other. 

A. Coded Character Data 

One structure that can be imposed on a bit string is to divide it into 
n-bit bytes and assign a standard meaning to each unique value or code 
point that can be represented with n-bits. ASCII is an example of such a 
standard which defines a set of meanings for 7-bit bytes. EBDCIC is another 
example which defines a set of meanings for 8-bit bytes. (See Char>ter 5 for 
detailed coding.) 

Both EBCDIC and ASCII divide the definitions into two groups. The 
first group of definitions assign graphic characters to specific code points; 
the second group assigns control functions to the remaining code points. 

Information which can be expressed as a string of alphanumeric 
characters and special symbols can be carried in an RU by assigning each 
character and special symbol an n-bit code and creating a coded character 
data stream. However, to communicate this information from a program to 
a terminal operator requires a transformation of the binary coded form of 
the information to a visual form (usually in two dimensions), which can be 
read by the operator. This function of transforming the information and 
presenting it to the end user in a form which is understandable by the end 
user is called presentation services. Presentation services require control 
codes to manage the presentation of the information in the desired format. 
We shall now describe several ways in which presentation services carries 
out these functions. 



Chap. 16 • SNA Higher-Layer Protocols 471 

B. SNA Character String 

The SNA Character String [3] is a set of EBCDIC control codes that has 
been defined for use on SNA sessions to enable one end of the session to 
manage functions available at the other end. It should be understood that 
the functions represented by this set of codes are not new or original with 
SNA. They have evolved from the functions which were used to control the 
earliest keyboard printer terminals. It should also be noted that some of the 
EBCDIC control codes have an ASCII equivalent. However, EBCDIC has 64 
code points for control while current 7-bit ASCII standard has only 32. 

The full set of SNA Character String functions will not be defined here. 
This information is available in [3]. However, the following functions are 
listed to give the reader a general idea of the nature of SNA Character 
String functions: 

NEW LINE 

FORM FEED 

BACK SPACE 

HORIZONTAL TAB 

VERTICAL TAB 

CARRIAGE RETURN 

The syntactical nature of a string of graphic characters and SNA 
Character String controls requires that the receiver process the string 
sequentially by character. In printing (or displaying) the information carried 
in the string, the graphic characters are printed (or displayed) left-to-right, 
top-to-bottom. Control functions are executed when encountered. 

The SNA Character String controls are designed to give the sending 
end user full control over how the graphic character data being sent to the 
other end user are to be presented. The position at which a particular 
graphic character is printed is determined by the data and controls which 
have preceded it. Since the information to be conveyed to the receiving end 
user may be dependent on where certain graphic character data are printed, 
either absolutely or relative to other printed data, the sending end user must 
be responsible for managing the presentation of the data to the receiving 
end user. The SNA Character String controls are not designed to share or 
delegate presentation control to the receiver. That is, the SNA Character 
String controls are based on a certain distribution of function between 
sender and receiver. A change in the distribution of function changes the 
functions which must be encoded and carried in the RU. A prerequisite for 
two end users to be able to communicate is a complementary distribution of 
function. 



472 Part V • Higher-Layer Protocols 

C. 3270 Display Data Stream 

The 3270 display data stream is a character coded data stream with a 
number of interesting exceptions. 

The 3270 data stream is composed of EBCDIC coded graphic characters, 
EBCDIC coded controls, and positionally defined commands, control, and 
status information. The syntax for graphic characters is the same as when 
used with SNA Character String controls, i.e., consecutive graphic char­
acters are displayed left-to-right, top-to-bottom. 

The syntax of the 3270 data stream is not a pure character coded data 
stream because of the positionally defined commands, control, and status 
information. 

1. Commands and Write Control Character 

The first two bytes of the first RU in an RU chain being sent to a 
display are a command byte and a write control character. Semantics for 
different values of the command byte include 

ERASE/WRITE, 

WRITE, 

READ (modified fields), 
READ FULL BUFFER, and 
ERASE ALL UNPROTECTED FIELDS. 

The write control character is bit encoded and controls such func­
tions as 

UNLOCK KEYBOARD, 

SOUND AUDIBLE ALARM, 

RESET MODIFIED DATA TAGS, and 
PRINT. 

These semantics are only associated with the first two bytes of an RU 
chain being sent to the display. The same bit values for a byte appearing 
elsewhere in the data stream will have a different semantic. Similarly on 
input, the first three bytes of the chain are positionally defined. The first 
byte identifies the event which caused the input to be sent, such as 
depression of the enter key or the depression of a program function key by 
the operator. The second and third bytes report the position of the cursor. 

2. Orders 

The character coded controls of the 3270 data stream have a different 
general syntax and a significantly different set of semantics from SCS. This 
is due to the different orientation of the two data streams. SCS is oriented to 



Chap. 16 • SNA Higher-Layer Protocols 473 

describing how to format and print a page of graphic characters. The 3270 
data stream is oriented towards efficiently writing data into a buffer where 
each character position on the display screen has a one-to-one correspon­
dence to a byte position in the buffer. The relative position and format of 
the information on the display screen is determined by where the data are 
written into the buffer. An update to the buffer of information which is 
being displayed is reflected as a change or update to the information 
showing on the display screen. 

A number of character coded controls, called orders, have been defined 
for the 3270 data stream to support this mode of operation. The dominant 
architectural characteristics of the 3270 data stream are determined by two 
of these orders, SET BUFFER ADDRESS and START FIELD. 

(a) Set Buffer Address Order. The set buffer address order, like all 
other 3270 data stream orders, has a unique code which allows it to be 
included in the data stream with coded graphic characters and other orders. 
The special syntax of the set buffer address order uses the two bytes which 
follow the order to define a buffer address. 

When writing data into a buffer, each coded character in the data 
stream is examined to determine whether it is a graphic character or an 
order. If it is a graphic character it is written into the buffer and the pointer 
which was used to address that location is incremented to the next buffer 
location. If the coded character is an order, the specific order is identified 
and executed. 

The set buffer address order causes the pointer to the buffer to be 
updated with the address contained in the two bytes immediately following 
the order. The next byte of data to be written into the buffer will be written 
into this location. 

There are a number of observations to be made. First, the sequence of 
data in the 3270 data stream does not necessarily correspond to the reading 
sequence of the data (i.e., left-to-right, top-to-bottom) as it appears on the 
display screen. For example, data which are displayed at the bottom of the 
display screen may be written into the buffer before data which are shown 
at the top of the screen. 

Secondly, the set buffer address order and the two bytes following are 
not written into the buffer. 

Thirdly, the semantics of the two bytes following the set buffer address 
order are not defined by EBCDIC but are defined by the syntactical context 
of the set buffer address order. 

Fourth, it should be noted that the two bytes following the set buffer 
address order specify a buffer address value not a row or column position 
on the display screen. That is, the data stream semantics are not oriented to 
or coupled with the display screen space. The buffer space is mapped to the 
screen space by display hardware. This mapping may be fixed and simple, 



474 Part V • Higher-Layer Protocols 

or it is possible to provide a buffer which is larger than the screen space and 
a mapping which makes the screen space a window through which one views 
the buffer. By "moving" the window (or the buffer behind the window), one 
is able to look into different parts of the buffer. 

(b) Start Field Order. The special syntax of the start field order defines 
the byte immediately following the order as an attribute byte. Execution of 
the start field order when writing to the buffer causes the attribute byte to 
be written into the buffer and encoded or tagged in such a way that it can 
be distinguished from the graphic characters which have been written into 
the buffer. The pointer used to address the buffer is incremented to point to 
the next location of the buffer. The start field order is not written into the 
buffer. Since there is a one-for-one relationship between buffer positions 
and screen positions, the attributes written into the buffer take up character 
spaces on the screen. 

Attributes written into the buffer delimit fields of graphic characters. 
The particular value of an attribute byte determines the display attributes of 
the field following the attribute bytes. These display attributes are 

1. protected/unprotected, 
2. intensity, 
3. alphanumeric/numeric only, 
4. light pen selectable, and 
5. an indication of whether or not the field has been modified, e.g., 

changed from the keyboard. 

An unprotected field is one into which the operator can key graphic 
characters. A protected field is one into which the operator is prevented 
from keying in graphic characters. 

Similarly, the operator is prevented from keying nonnumeric data into 
fields which are unprotected, numeric only. 

These examples show how a data stream can be created by a program 
to control the format of the information shown on the display screen and 
also control the operations that can be performed on the displayed data by 
the operator. 

A discussion of the full set of 3270 data stream orders will not be 
presented in this chapter. If the reader is interested, more details on the 
3270 data stream can be found in [3]. However, it is of some interest to 
discuss how the 3270 data stream has been extended to accommodate new 
functions. 

3. Extended A ttribute Functions 

How does one extend the 3270 data stream to support 

1. multiple graphic character sets, 
2. color. and 



Chap. 16 • SNA Higher-Layer Protocols 

3. highlighting 
reverse video, 
blinking, and 
underscore? 

475 

The use of multiple graphic character sets means that different symbols 
are to be associated with different instances of a particular graphic character 
code. Similarly, the color and highlighting attributes are to be applied to 
individual graphic characters. This simply requires that this additional 
information must be written into the buffer with each character. The 
question is, how should this additional information be expressed in the data 
stream by the program which is controlling the display? 

(a) Start Field Extended Order. One solution is to make it possible to 
set the extended attributes for all the graphic characters in a field to the 
same value. That is, all characters will have the same color or all symbols 
come from the same character set. This has been accomplished by defining a 
new order with its own unique code and with a new syntax for the bytes 
following the order. This order is called START FIELD EXTENDED. The general 
syntax of the order is to allow a variable number of attributes to be defined 
for the field. 

The first byte following the order is a I-byte binary integer specifying 
the number of attributes being defined. Each attribute is defined by two 
bytes. The first byte specifies the type of attribute, and the second byte 
specifies the value. For example, type = color, value = red, or type = 
highlight, value = underscore. Type = 3270 field attribute indicates that the 
following byte contains the attribute values defined with the START FIELD 

order. 
(b) Set Attribute Order. Another order, the SET ATTRIBUTE order, has 

been defined to allow the program to specify different attributes for 
different characters in the same field. The syntax for the SET ATTRIBUTE 

order is the same as the syntax of the START FIELD EXTENDED order. The set 
attribute order does not cause any data to be written into the buffer; it 
establishes the attribute values that will be associated with graphic char­
acters when they are subsequently written into the buffer. This order can be 
used to change the color of the characters within the same field. 

4. Summary-3270 Data Stream 

As was stated at the beginning of the discussion of the 3270 data 
stream, it is a character coded data stream with a number of interesting 
exceptions. First, there were the command and write control character bytes 
whose semantics were determined by their position in the data stream. 
Second, there were the bytes whose semantics were determined by their 
syntactical relationship to character coded controls called orders. Finally, 



476 Part V • Higher-Layer Protocols 

we note the concept of an order which introduces a variable length context 
and has a type-value syntax which easily accommodates new semantics. 

This discussion has shown how a program is able to control or manage 
the functions of a display using what is fundamentally a character coded 
data stream. There is no single best way to represent functions and controls 
in the data stream. What is absolutely essential is that both sender and 
receiver use the same data stream architecture. 

D. Function Management Headers 

1. New Function Management Requirements 

Suppose one uses LV Session type 1 message exchange protocols and 
SCS coded character controls for program-to-keyboard/printer communica­
tion. How does one extend this architecture to treat the keyboard/printer as 
an operator's console and support additional I/0 devices such as 

1. One or more additional printers, 
2. Card printers, 
3. Card punches, 
4. Diskettes, and 
5. Disk storage. 

The new functions to be managed from the program involve selecting 
the I/0 component to be used for receiving or sending data to the program. 
It also involves sending commands and setup information to the selected 
component. 

Commands must be provided to enable the program to 

1. SELECT a particular device or data set, 
2. SUSPEND I/0 with a selected device or data set, 
3. BEGIN I/O with another device or data set, 
4. END the I/0 operation, 
5. RESUME the last suspended I/0 operation, and 
6. END-ABORT the active I/0 operation. 

The setup information that must be specified includes 

1. electronic forms control information, 
2. identification of the form to be mounted, 
3. the number of copies to be created, 
4. compaction table, and 
5. the prime compression character. 



Chap. 16 • SNA Higher-Layer Protocols 477 

Commands for managing I/0 with disk storage include 

1. Create data set, 
2. Add record, 
3. Erase record, 
4. Scratch data set, 
5. Password, and 
6. Execute program. 

Execute program causes the named program to be scheduled for 
execution after the LU-to-LU session has been ended. 

Much of the information carried by the parameters associated with the 
above commands is not easily or conveniently represented with character 
coded byte strings. The general requirement is to establish a framework or 
structure in which the semantics of the data are determined by position, not 
by code value. 

2. The Solution-Function Management Headers 

The solution to this requirement is an architected structure called a 
function management header (FMH). If FM headers are used they must 
appear beginning with the initial bytes of the request unit (RU) of a chain. 
Whether or not FM headers are present is indicated by an FMH Indicator 
bit in the request header (RH). 

The first two bytes of all FM headers have the same semantics. The 
first byte of an FM header defines its length. The first bit of the second byte 
indicates whether or not another FM header follows. The remaining seven 
bits of the second byte identify the FM header type. The semantics of the 
remaining bytes in the FM header are a function of the FM header type 
field. Syntactical relationships may be defined between certain fields. For 
example, a specific value in one field may require that a certain field must 
also be present, whereas the field will be absent for other values. 

For example, if certain field values indicate that the selected device is 
disk storage, then the field which specifies data set name must also be 
present. 

3. General Applicability of Function Management Headers 

Although FM headers were invented to give programs control over 
terminals and work stations having an operator's console and multiple I/O 
devices of different types, the generality of the architecture of FM headers 
has led to the definition of FM headers which are applicable to program­
to-program communication. Specifically, FM headers have been defined for 
CICS-to-CICS, CICS-to-IMS, and IMS-to-IMS communications. 



478 Part V • Higher-Layer Protocols 

E. Structured Fields 

1. New Function Management Requirements 

A number of functional enhancements to the IBM 3270 Information 
Display System required the definition of new data stream constructs to 
give programs the means to manage these new functions. One of these 
enhancements gives the program the ability to define and manage multiple 
buffers called partitions. Another enhancement gives the program the ability 
to load the display character generator with the bit images of application 
defined graphic symbols. 

(a) Multiple Partitions. The multiple partition feature capitalizes on 
the fact that the basic semantics of the 3270 character coded data stream [3] 
is oriented towards writing to a buffer not to the display screen. This feature 
gives the program the ability to define and write into multiple buffers. It 
also gives the program the ability to define a mapping of each buffer 
(partition) to a portion of the display screen called a viewport, because it 
gives the operator a view into a portion of the buffer. By defining multiple 
viewports it is possible to have portions of multiple partitions showing on 
the display screen at the same time. 

The capacity of a partition may exceed the display capacity of its 
viewport. By appropriately changing the mapping parameters it is possible 
to display different portions of the partition. That is, one may scroll the 
partition buffer past the viewport on the display screen. 

(b) Programmed Symbols. The image of a graphic character or symbol 
can be defined by setting on the appropriate bits of a binary matrix of 
known resolution to create a representation of the symbol. If the dimension 
of the matrix is 9 X 16, the image of a symbol can be defined with 144 bits. 
Other resolutions and aspect ratios will require fewer or more bits. 

The programmed symbol feature provides the program with the ability 
to load the display character generator with the binary images of the 
symbols which are to be associated with different EBCDIC graphic character 
code points. 

Since character coded data structure, syntax, and semantics are not 
applicable for giving representation to the binary bit image of graphic 
symbols, a new kind of structure was required for carrying image informa­
tion. 

Similarly, the character coded structure syntax and semantics of the 
basic 3270 data stream was not readily adaptable to carrying the informa­
tion and control requirements of the multiple partition feature. 

2. The Solution-Extend the 3270 Data Stream 

The key to extending the functional capability of the basic 3270 data 
stream was to define a new, additional command called "write structured 



Chap. 16 • SNA Higher-Layer Protocols 479 

field." The semantics of this command are that the data following the 
command are to be interpreted according to the architecture of structured 
field data streams, not according to the architecture of 3270 character coded 
data. 

(a) Structured Field Format. A structured field data stream is simply a 
string of structured fields where each structured field is of the following 
general format: 

Length ID Information Field 

where (1) length is a l6-bit field which defines the length of the structured 
field; (2) ID uniquely identifies the structured field and implies the format 
and semantics of the information field. The ID is used to determine the 
procedure or logic that must be used to extract the information carried in 
the information field bit string; and (3) the information field is a bit string. 

(b) 3270 Extended Data Stream. Approximately 28 structured fields 
have been defined for the 3270 Extended Data Stream to give programs the 
ability to manage the enhanced functions of the 3270 display systems. 

For example, one of these structured fields is used to load the pro­
grammed character set. The first 13 bytes of the structured field contain the 
length, the ID value which identifies it as the load programmed character 
set structured field, and a number of control parameters. These parameters 
specify such controls as the local ID of the character set, the size of the 
matrix used to define the image of the graphic symbols, the manner in 
which the matrix was converted to a linear bit string, and the manner in 
which the bit string may have been compressed. The semantics of the bits 
in the first 13 bytes of the structured field are determined by their position. 

The remaining bits of the structured field are the binary images of 
graphic symbols. 

A 30-byte structured field is used to create a new partition. Again the 
semantics of the bits are determined by their position in the structured field, 
not by their value. 

An 8-byte structured field is used to change the mapping parameters 
such that a different portion of the partition buffer is displayed on the 
screen. 

3. Generality of Structured Fields. 

Although the general format for structured fields was defined to 
provide an architectural base for encoding the functions required by a 
program to manage and utilize the capabilities of an enhanced 3270 display 
system, the generality of this architecture makes structured fields applicable 
to all new function management requirements. 



480 Part V • Higher-Layer Protocols 

F. Summary-Function Management Data 

SNA defines three categories of RUs. One of these, function manage­
ment (FM) data RUs, is used to carry the information exchanged between 
end users. The raw form of all RUs is a binary bit string. In order to carry 
information, a structure, syntax, and semantics must be imposed on the bit 
string. In order for two end users to communicate they must use a common 
data stream architecture, i.e., structure, syntax, and semantics. 

This section on FM data has focused on the architecture of data 
streams used for program-to-terminal communication. The basic architec­
ture for these data streams is pre-SNA and reflects a distribution of 
function which gives the program responsibility for managing the terminal. 
The program is in full control of how the information will be formatted and 
presented to the terminal operator. The program is also responsible for 
establishing the context in which the operator enters data to be read by the 
program. 

The data streams used for program-to-terminal communication are 
based on the use of coded character data, a structure in which the semantics 
of a particular byte of data is defined by its value, not by its position. As the 
functional capabilities of terminals increased, it has been necessary to 
increase the number of functions to be encoded in the data stream so that 
the program can have control over and make use of these new functions. 

The number of functions to be controlled by the program has quickly 
exceeded the number of code points available for encoding control func­
tions. This has led to two fundamental extensions to a pure coded character 
data stream architecture and the introduction of structured fields. 

The first extension defined special semantics for the initial bytes of a 
data stream. This architectural technique is used by the 3270 data stream to 
identify the first byte of an output data stream as a command and the 
second byte as a write control character. 

This architectural technique is also used with SCS data streams when 
FM headers are used. In the case of the 3270 data stream, the command and 
write control character must always be present. In the case of SCS data 
streams, FM headers are optional; the presence or absence of FM headers is 
indicated by a bit in the RH. 

The second architectural extension uses coded character controls to 
establish a context in which new semantics can be defined. The 3270 data 
stream orders make use of this technique. 

Specific structured fields were introduced to handle new functions to 
be provided with 3270 display systems. However, the general format for 
structured fields defines a data object with four important properties: 

(1) The data construct is self-delimiting. 
(2) There are no constraints on the structure, syntax, or semantics 

which can be imposed on the bits in the information field. 



Chap. 16 • SNA Higher-Layer Protocols 481 

(3) The data construct is self-identifying. The ID field identifies the 
structure, syntax, and semantics which have been imposed on the informa­
tion field. 

(4) Structured fields can be strung together to form a data stream. This 
data stream is capable of carrying all information which can be represented 
in a binary bit string structure. 

v. Impact of Advancing Electronic Technology 

The general effect of advancing electronic and communications tech­
nology is to lower the costs of logic, storage, and communications. This is 
most dramatically reflected in the storage and computing power being 
placed in terminals. The functional enhancements in terminals which lead to 
extensions of data stream architecture are also a reflection of these trends. 

Host program management of a terminal via communications is not a 
simple process. Communication delays also introduce human factors prob­
lems. The process becomes more complex as more functions to be managed 
by the program are added to the terminal. 

A point will be reached where program management of the terminal 
will be most easily accomplished by placing the program in a cluster 
controller or the terminal. Instead of program-to-terminal communication, 
we will have program-to-program communication. 

The shift to program-to-program communication from program-to­
terminal communication will be accompanied by a change in data stream 
structure and semantics. Terminal control semantics will be replaced by 
program oriented data structures and semantics. 

The emphasis will shift from controlling the receiver to sending infor­
mation to the receiver which the receiver has been programmed to process. 
The critical requirement will be to identify easily the many different pieces 
of information the receiver has been programmed to handle. A second 
important requirement will be for the sending program to select the receiv­
ing program which is to process the data stream. 

Function management headers have been defined to perform this 
function. Structured fields seem to be ideally suited for carrying the 
different pieces of information a receiver has been programmed to process. 
The structured field ID is used to invoke the program code which can 
extract the information carried in the information field. What it does with 
this information depends entirely on the design and intent of the receiving 
program. 

In summary, advances in electronic and communication technology will 
cause a shift to program-to-program communication from program-to­
terminal communication. This shift will be accompanied by a change in data 



482 Part V • Higher-Layer Protocols 

stream semantics which deemphasizes the concept that the sender is control­
ling or managing the receiver. The orientation will be a peer relationship 
between sender and receiver and the emphasis will be on the exchange of 
information. SNA function management headers and structured fields pro­
vide a solid architectural base for defining data streams to support program­
to-program communications. 

References 

[l] J. D. Atkins, "Path control: The network level of SNA," this book, Chapter II. 
[2] SNA Format and Protocol Reference Manual, Data Processing Div., IBM Corp., White 

Plains, NY \0504, Order SC-30-3\\2. 
[3] SNA Logical Unit Types, Data Processing Div., IBM Corp., White Plains, NY \0504, 

Order GC-20-1868-1. 
[4] SNA: Introduction to Sessions Between Logical Units, Data Processing Div., IBM Corp., 

White Plains, NY \0504, Order GC-20-\869-1, pp. 3-7. 



17 

Videotex Terminal Protocols 

Paul E. Green, Jr. 

I. Introduction 

In this chapter we shall describe certain higher-level terminal protocols 
that began with experimentation by the telecommunication administrations 
in Europe and which have recently become important computer communi­
cation components. They are rapidly being standardized by standards 
bodies, notably the CCITT. The services based on these protocols have 
proved to have such high function, such low terminal cost, and such good 
ease of use that they appear to be on their way to an explosive growth in 
Europe, Japan, and North America, especially if the protocols can be widely 
standardized. 

A major problem in explaining these protocols is to untangle the 
confusing jargon used to describe them. Many of their names are almost 
identical, and additionally it is often ambiguous whether a name applies to a 
protocol or to the service offering that uses it. As with other chapters in this 
book we shall discuss the protocols, not the services. We begin by attempt­
ing to put the various terms into the common framework of Fig. 1. The 
terminology adopted is that given in Refs. 1-3. 

The term Videotext (note the final "t") is often (but not universally) 
used to describe message services and protocols based on standard home 
television receivers as the presentation media, supported with suitable 
hardware adaptors of modest cost. The adaptors contain some form of 
storage for the screen image and also logic to transform the arriving byte 
stream into the image. Key sets on the adaptors may range from a simple 
one with the digits 0-9 to one with these plus a QWERTY keyset plus 
function keys. 

483 



484 

TELEPRINTERS AND 
COMMUNICATING 

WORD PROCESSORS 
/ \ 

POINT-TO-POINT 

/ \ 
TELEX TELETEX 

Part V • Higher-Layer Protocols 

VIDEOTEXT 
(Videotex) 

/ "'" BROADCAST 
(One-Way) 

/ 
TELETEXT 

(Broadcast Videotex) 

CEEFAX (U.K.) 1975 
ORACLE (U.K.) 1975 
ANTIOPE (France) 1977 
CIBS (Japan) 1978 

INTERACTIVE 
(Two-Way) 

"-
VIDEOTEX 

(Interactive Videotex) 
(Viewdata) 

PRESTEL (U.K.) 1979 
ANTI OPE (France) 1980 
TEll DON (Canada) 1981 
CAPTAIN (Japan) 1979 

Fig. I. Basic terminology, showing some important implementations and their field trial dates. 

Teletext (again note the final "t") refers to one-way information 
broadcast, during the invisible vertical retrace interval, from a central CPU, 
over the cable or free space transmission medium, of byte streams defining 
screens of information (e.g., shopping information, weather reports, and 
many others). The transmitter cycles through all the frames (or "pages"). A 
given "page" may be selected for interception, storage in the buffer within 
the adaptor, and then for display, by keying the page number into buttons 
on the adaptor. The number of pages one can choose from is limited to 
100-200 since it takes several retrace times to transmit one page and the 
transmitting station must cycle through all the pages in no more than, say, 
30 s in the worst case, which is about as long a response time as the viewer is 
apt to tolerate. In spite of these limitations, Teletext seems destined for wide 
usage, particularly in homes, because of the low adaptor cost. In cable TV 
situations where it is economical to dedicate 100% of a channel's duty cycle 
to Teletext, instead of just the retrace interval, the number of pages 
available with reasonable response time is in the many thousands. 

Teletext is sometimes referred to as Broadcast Videotex and the term 
Interactive Videotex is used for what will be called Videotex in this chapter. 
When the former convention is used, Videotex refers to what we are calling 
Videotext. Our Videotex is sometimes referred to as Viewdata. 

Teletext is not to be confused with Teletex, the latter being an up­
graded form of Telex, the service providing message exchange between 
keyboard-printer terminals so prevalent in Europe (Telex or Teletype in 
North America). The upgrade from Telex to Teletex involves increasing the 
speed from below 300 to 2400 bitls and up, sending the message from an 
electronic buffer memory in the sending machine to a similar buffer in the 
receiving one, and allowing the latter to receive while unattended or while 
being used for a different ongoing typewriter or word processor function. 



Chap. 17 • Videotex Terminal Protocols 485 

It is necessary to discuss Teletex along with the two forms of Videotext 
because the protocols must be coordinated. This is because it is expected 
that some users with Teletex terminals will in certain situations want to 
receive and print out Teletext pages without having to buy another termi­
nal; similarly the same combination of TV receiver and Teletext adaptor 
ought to be upgradable to a Videotex terminal. The Videotex protocols 
described in this chapter are closely related to those being considered for 
use with Teletext. 

Videotex is a two-way interactive process. Again the terminal is a TV 
receiver plus an adaptor, but the adaptor is somewhat more complex than a 
Teletext adaptor. Videotex can be used over telephone lines or over cable 
TV systems that provide bidirectional transmission. It is certain to have 
great potential for business or personal use because it is capable of support­
ing a full repertoire of interactive data processing services with terminal 
costs based on the use of consumer TV receivers and the scale economies of 
combining the home and business terminal market and the common Tele­
text and Videotext adaptor market. Not only is an interactive system using 
Videotex likely to be somewhat cheaper than one using commercial CRT­
keyboard terminals, but the screens presented to the user can reach high 
levels of sophistication with low message overhead through the use of 
terminal microprocessors. 

Videotex service, like Teletex has always been aimed at the user with a 
color receiver. Also, both have had, almost from the beginning, some form 
of graphics capability, i.e., the presentation of stationary two-dimensional 
diagrams and figures to go along with the usual alphanumerics. For early 
offerings, these graphics presentations were fairly crude, approximating (by 
use of the "alphamosaic" option, to be described shortly) those available in 
the earliest TV electronic games. The "alphageometric" option, first intro­
duced in the Canadian Telidon system, potentially provides, within the 
resolution capability of the attached TV display, graphics displays whose 
flexibility approaches at the high end that of good commercial graphics 
terminals. At the low end, alphageometric terminal costs may be expected to 
approach (but never quite reach) those of alphamosaic terminals. 

In this chapter, we shall discuss four successively newer protocols, 
Pres tel [4], Antiope [5], Telidon [6], and PLP [7] (the American Telephone 
and Telegraph Company's Videotex Presentation Level Protocol). The Pre­
stel protocol was developed by the British Post Office, Antiope by the 
Centre Commun d'Etudes de TeU:vision et Telecommunications, and Teli­
don by the Department of Communications, Canada. (Recent statements by 
DOC indicate that Telidon is being changed to comform to PLP. In this 
chapter we shall describe the published version of Ref. 6.) Of the four, all 
but PLP have been implemented to some extent in services or trials bearing 
the same name. Since we shall discuss here the architecture, not the 



486 Part V • Higher-Layer Protocols 

implementation, the reader should keep in mind that not all the functions 
attributed to Telidon, for instance, have yet seen field usage. We shall also 
be referring to the "CCITT Recommendation," Ref. 8, which is the latest 
draft document attempting to pick from these four the appropriate features 
for international agreement. 

In addition to the four protocols to be described here, we should 
mention that of the Character And Pattern Telephone Access Information 
Network (CAPTAIN) [9] developed jointly by Nippon Telegraph and Tele­
phone Corp. and the Ministry of Posts and Telecommunications. Because of 
the special problems posed by full-screen Kanji character presentation, this 
system is somewhat different from the other fOUf. 

There are five sorts of information to be somehow encoded and sent to 
the Videotex terminal for conversion into the proper patterns on the TV 
raster: 

(1) Alphanumeric Option. This involves sending the identities of letters 
and numerals to be displayed left-right and top-bottom, and is concerned, 
roughly speaking, with those byte patterns of standard alphabets not used 
for the data link control function described in Chapter 4, Fig. 2. 

(2) Alphamosaic Option. When this option is in effect, a given byte 
stands for one of 64 patterns of light and dark which are placed on the 
screen instead of alphanumeric characters. The cell formerly occupied by an 
alphanumeric character is now occupied by one of the 64 possible two-wide 
three-high patterns of light and dark. Clearly, so long as the terminal 
displays rows of cells continguously in the vertical direction, simple low-res­
olution graphics may be displayed in this way at a low additional terminal 
cost. 

(3) DRCS Option (Dynamically redefinable character sets). We have 
already met the powerful notion of down-line loading of special custom 
character shapes in Chapter 16. In the DRCS option of Videotex (at least 
the more modern versions), the loadable characters are not restricted to 
shapes that occupy one standard character cell, because the latter can be of 
arbitrary size. In principle, this not only allows special alphanumeric or 
mosaic characters, but also other shapes to be created, stored, and then 
displayed on command. In practice the more elaborate such figures take an 
impractically long time to transmit. Clearly, with DRCS, more logic and 
memory are required in the adaptor than with alphanumeric and mosaic 
byte streams and transmission time is large. Most of the simpler services to 
date are limited to these two options for this reason. 

(4) Alphageometric Option. Many limitations of mosaic and DRCS 
graphics, including inefficiency in transmission channel utilization, are 
removed by substituting for character or mosaic identities certain serial 
instructions to a microcomputer in the terminal telling it what picture to 
draw. For example, a circle is specified by the one of a repertoire of Picture 



Chap. 17 • Videotex Terminal Protocols 487 

Description Instructions (PDIs) that specifies "circle" and gives also the 
location of two diametrically opposite points (plus such attributes as color, 
interior shading, and line texture). 

(5) Alphaphotographic Option. Various proposals exist for transmitting 
still color images that are to be displayed full-screen or in an inset. Some of 
these have been tried experimentally, but since no consensus has been 
reached even on which general approach to take, we shall not be very much 
concerned with this option. 

Before proceeding to a discussion of the protocol by which one option 
is selected, and more detail for each, we emphasize that these protocols fit 
into the layered architecture at the presentation or protocol conversion level 
(Chapters 1 and 2). In what follows, it is assumed that whatever link 
control, routing, session establishment, and other protocols are required are 
already functioning. 

II. Shifting between Videotex Options 

The selection of one of the Videotex options amounts to selecting a 
character set or code table appropriate to each. Figure 2 shows the layout of 
a standard 7-bit code, such as ASCII (Chapter 4, Fig. 2). Following computer 
jargon, let us refer to each possible pattern of seven bits as a code point. All 
code points for which both two least significant bits are 0 are reserved for 
control codes and therefore belong to the "c" set, the rest to the "G" set. 

The CO set (Ref. 8) is shown in Fig. 3. Note that in the figure decimal 
numbers corresponding to the rows and column bit patterns are spelled out 
so that we can designate a given code point as "(column)j(row)"; for 
example ESC ("escape") is 1 j 11. 

Among the code points in the CO set, as shown in Fig. 3, there are five 
(SO, SI, SS2, SS3, and ESC) which allow an arbitrarily rich variety of 
"extensions" or "shifts," (analogous to upper case on a typewriter) to 
different interpretations of both the C set and the G set, and also allow 
shifting back again. The way this has all been standardized by ISO (Ref. 10) 
is summarized in Figure 4. The dotted area in the center of the figure 
indicates the in-use code table (repertoire of C and G points used by both 
protocol partners.) Columns 0 and 1 of the in-use table practically always 
contain the CO set of Fig. 3. As shown by the arrowheads, the shift 
characters (ESC, etc) have the effect of bringing a new load into the 
receiver's in-use table, or (in the case of Cl, to be discussed) into an extra 
piece of storage. 

Let us suppose that the GO set is in use, usually corresponding to the 
alphanumeric option. (the GO code set is shown in Fig. 5.) Suppose the 



488 Part V • Higher-Layer Protocols 

b7 0 0 0 0 1 1 1 1 
b6 0 0 1 1 0 0 1 1 

bS 0 1 0 1 0 1 0 1 

b4 b3 bl b1 
~ ~&. ~ o~ 0 1 2 3 4 5 6 7 

0 0 0 0 0 

0 0 0 1 1 

0 0 1 0 2 

0 0 1 1 3 

0 1 0 0 4 

0 1 0 1 5 

0 1 1 0 6 

0 1 1 1 7 
CO G 

SET SET 
1 0 0 0 8 

1 0 0 1 9 

1 0 1 0 10 

1 0 1 1 11 

1 1 0 0 12 

1 1 0 1 13 

1 1 1 0 14 

1 1 1 1 15 

Fig. 2. Seven-bit in-use table. 



Chap. 17 • Videotex Terminal Protocols 

Fig. 3. The standard CCITT CO control set of code points. 
I = Reserved for future study, 2 = Data link control char­
acters (Chap. 4), 3 = Reserved device control characters. 
Others include APF = active position forward, APB = active 
position backward, APD = active position down, APU = active 
position up, APR = active position return, APR = active posi­
tion home (upper left comer), CS = clear screen and return to 
home position, SP = space. (Ref. 8) 

?", ~ -90,,- ~1-

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

489 

0 1 

NUL 0 
0 0 
0 0 
0 0 
0 0 
ENQ 0 
0) G) 

(0 0 
APB CAN 

APF 552 

APD (0 

APU E5C 

C5 (0 

APR 553 

50 0 
51 0 



490 

Control fUnction 
repertoire 

7-bit set 
in use 

Part V • Higher-Layer Protocols 

~ Single additional control m 
functions represented by 

I [ 

ESCF,orESC2/3F 

Extended 
control 
function 
repertoire 

I Designation and 
ESC 2/1 F ESC 2/2 F _invocation of I ____________ .. 1 control function S 

1 81 ;::f;~J;es 
(Fig. 8) Specific control functions 

within the currently designated o C1 set are represented by 
ESC Fe sequence 

-----------, 
I _1,- Invocation of 

graphic sets 

LS3 st~ 
\ i 0. ... :: 

G3 • :~ ro~ppcir,i: 
(Fig. 10) 

1 ' ?S< k' t Designation of 
ESC 2/4 2/9 F / /,'~C 2/10 F graphic sets 

ESC2/4F ES/C2/4:~~;'42/~F ./ ESC 2/1\4 F ESC 2/11 F 
ESC 2/4 2/12 F ESC 2/4 2/14 F ~ ESC 2/9 F ESC 2/15 F I - .., ESC 2/13 F I 

ESC 2/4 2/11 F ""-/C 2/4 2/15 F ~~g ~:~: F........,., "'[J 
Multiple 
byte graphic 
repertoire 

Fig. 4. Extension scheme for 7-bit Videotex codes. (Ref. 9) 

Graphic 
repertoire 

sending protocol partner wishes to shift to the alphamosaic option (given in 
many implementations by G1), one of two forms of which is given in Fig_ 6, 
and after a while shift back to alphanumerics. To perform the first shift he 
sends the SHIFT OUT control code SO (i_e., 0/14), which has the effect of 
overlaying Gl onto GO in the in-use table and later on SHIFT IN (SI = 0/15) 
to shift back again. (SO and SI are "locking" in that their effect persists 
until there is another shift.) And similarly for sets G2 and G3 using the SS 



Chap. 17 • Videotex Terminal Protocols 491 

~ 2 3 4 5 6 7 

0 SPACE 0 @ P 
\ 

P 

1 I 1 A Q a q 

II 

2 2 B R b r 

3 3 C S c s 

4 4 0 T d t 

5 0/0 5 E U e u 

6 8 6 F V f v 

7 
I 

7 G W 9 w 

8 ( 8 H X h x 

9 ) 9 I Y i Y 

10 * : J Z j I 

11 + ; K k 

12 , < L I I 

13 - = M m 

14 . > N n 

15 / ? 0 0) 0 • Fig. 5. Alphanumerics: the CCITT GO code set. 



492 Part V • Higher-Layer Protocols 

4 5 6 7 

Fig. 6. Alphamosaics: the CCITT GI code set for serial mode. 



Chap. 17 • Videotex Terminal Protocols 493 

(SINGLE SHIFT) control codes, except that the in-use G set reverts to the 
previous in-use set GO or G1 after a single character. For example, G2 (Fig. 
7) is used for special symbols (e.g., #) and for diacritical marks required in 
many languages. The shift back after a single character saves a shift back 
byte. Code points from Column 4 are nonspacing-so that if it is desired to 
display "ii", sending "-,, followed by "n" causes first "-,, to be displayed in 
the active position on the screen, then "n" to be added in the same place; 
only then does the active position move to the next cell. Code points in 
columns 2, 3, 5, 6, and 7 are spacing code points, as are all of GO, G1, and 
G2. (As shown in Fig. 4, ISO has recently added two new locking-shift 
characters LS2 and LS3 which are available as substitutes for SS2 and SS3 
when desired.) 

It is to be expected that, CCITT standard G sets notwithstanding, 
different Videotex services will choose to adopt slightly different GO, G1, 
G2, and G3 sets. In the terminal adaptor, the standard character sets CO 
and G1-G3 (if used) are stored in read-only memory (ROM). A terminal 
that may from time to time need to receive frames from different systems 
can (at the expense of more memory) have a library of these and (as shown 
at the bottom of Fig. 4) a member F of this library can be designated for 
potential use in the in-use table by sending ESC (i.e., 1/11) followed by the 
x character shown, followed by the prearranged F character. 

Conceivably it may be desired to change even the CO set. As shown in 
the top part of Fig. 4, some member F of a library of CO sets of 32 code 
points can be brought in upon receipt of ESC followed by 2/1, followed by 
F. A 32 code point extension (not replacement) to whatever CO set is in use, 
the CI set, can be brought into the extra piece of storage from the C1 
library upon reception of ESC, 2/2, F, where F is the byte designating the 
library number. The C1 set is used to control the attributes of the presented 
elements, as will be described in Sections IV and VI. 

To date, the CCITT has agreed upon the code points shown in Figs. 5-7, 
and also agreed on an alternate form of Fig. 6, and a C1 set, both for the 
so-called parallel mode of alphamosaics. Whether "serial" or "parallel" 
treatment of the arriving byte stream at the receiver is to be preferred has 
been a somewhat arcane controversy that has existed between the British 
Prestel and French Antiope proponents and boils down to whether or not to 
save on storage in the adaptor in exchange for having to leave a space 
horizontally every time a color change occurs. This is touched on in Section 
IV. The controversy is in the process of being resolved by the proposal [11] 
of CEPT (Conference of European Post and Telecommunication Adminis­
trations), whose scheme for accommodating both Prestel and Antiope is 
being considered by CCITT along with PLP. Among several other additional 
things that the CEPT proposal includes is a set of 32 more characters which, 
when added to those of Fig. 6, provided somewhat more attractive graphics. 



494 Part V • Higher-Layer Protocols 

~ o~~ 2 3 4 5 6 7 

• 0 .n 0 - K 

• + /!t 1 , - .... 
~ 

2 4 
2 I D d 

3 L 3 1\ a c) 

$ '"- li 11 4 X 

- I 5 ¥ fL I G 

6 # Cff - IJ Lj 

7 § • • L: l: 

~ 
• • 

X. 8 - { 

9 
, ., 

(2) ¢ 

10 " 
')") 0 CE ce 

11 « » 
~ 

0 {3 

12 +-- Y4 J:> P 

13 f Y2 /I T .1:. 

14 ---. 'l'4 L n h 

15 ! . 
C 

v ")n • Fig. 7. Supplementary alphanumerics: the CCITI G2 code set. 



Chap. 17 • Videotex Terminal Protocols 495 

III. Dynamically Redefinable Character Sets 

DRCS is analogous to the alphamosaic option except that instead of 64 
standardized characters (Fig. 6), a set of up to 96 (16 rows, 6 columns) 
customized characters can be down-loaded, each having potentially up to 
the full screen resolution. These new characters are to be presented as 
before, namely, occupying standard character cells in left-right top-down 
raster order on the screen. DRCS is used mainly for the following: 

(1) Special characters, for example those found in hotel and restaurant 
guides (knife-and-fork, Maltese cross), may be defined and loaded downline 
in preparation for eventual access by the terminal to a database of such 
material. 

(2) Line drawings· may be built up from suitably chosen character 
shapes. In our example of a circle, the character set would be a set of 
suitably chosen arcs. 

Using DRCs, large transmission time is exchanged for the expense of 
anticipating the building into the terminal ROM a large number of al­
phabets. 

DRCS has been implemented experimentally in several trial Videotex 
services, at least on a pilot demonstration basis, but the details differ widely. 
The CCITI has adopted no detailed standard to date [8]. One architectural 
description is that given as part of AT & T's PLP document [7]. As we shall 
see, the special Cl . control set (Fig. 8) that PLP defines supports a rich 
repertoire of options. One way to downline loading a character after the Cl 
set is brought into the in-use table, is to send DEFDRCS, followed by the bit 
pattern specifying which code point is to have its presented character shape 
defined, followed by a bit string defining the pattern of dark-light within a 
character cell (details unspecified), followed by END. Then the character 
shape of the next code point in increasing order is similarly downline 
loaded. 

PLP has a way of defining dynamically the new DRCS character size, 
which then applies to the entire screen while it is presented. Earlier 
protocols do not have this option. 

IV. Specifying Color and Other Attributes of Alphanumerics and 
Alphamosaics 

So far in the discussion, we have vaguely referred to alphanumeric, 
mosaic, or dynamically reloadable characters as "patterns of light and 
dark." In actual use, however, it is necessary to be more specific, in fact, to 
consider several attributes of the symbol presented in a character cell, for 



496 Part V • Higher-Layer Protocols 

~ 4 5 

0 
DEF 

PROTECT MACRO 

1 
DEFP EDC1 MACRO 
DEFT EDC2 2 MACRO 

DEF 
EDC3 3 ORCS 

DEF EDC 4 4 TEXTUf( 

WORD 
5 END WRAP 

ON 
WORD 

6 REPEAT WRAP 
OFF 

REPEAT SCROLL 
7 TO ON EOl 

ROUSE SCROLL 
8 VIDEO OFF 

NORMAL UNDER 
9 UNE VIDEO START 

SMALL U1WER 
10 TEXT LINE 

STOP 

11 
MED FLASH 

TEXT CUR $OR 

12 
NORMAL STEADY 
TEXT CURSOR 

13 
DOUBLE CURSOO 
HEIGHT OfF 

14 BLINK BLINK 
START STOP 

15 
DOU!lE UNPRO-
SIZE TECT 

Fig. 8. Control set CI for AT & T's PLP. (Ref. 7.) 



Chap. 17 • Videotex Tenninal Protocols 497 

example: 

• Height and width of the character cell, which determines the number 
of characters per line and lines per screen. 

• Color. 
• Background color. 
• Whether background is a color or is material from some other 

transmission, e.g., a live TV picture (transparency). 
• Blinking or steady, and if blinking, what color is on when the 

character is off. 

These attributes are set by one sort of protocol for alphanumerics, 
alphamosaics, and DR,CS characters and by a completely different scheme 
for alphageometrics in Telidon. In PLP, attribute coding uses a single 
unified set of commands, as described at the end of Section V. In this 
section we shall confine the discussion to the CCITT proposals for al­
phanumerics, alphamosaics, and DRCS, deferring alphageometric attribute 
control to the next section. 

The CCITT defines two alternative modes for attribute encoding: serial 
and parallel. The serial mode (introduced by Prestel) assumes that changes 
in character attribute occur only in interword spacings where a BLANK 

occurs anyhow and that for mosaics one does not object to a blank cell 
whenever the attribute (e.g., color) changes. (Preste1 graphics can often be 
spotted by looking for such dark spaces horizontally at color boundaries.) 
This inconvenience buys the implementation simplicity of having all the 
character cells of a frame appear sequentially in the frame buffer; that is, 
the frame buffer is a map of the frame presented. Any byte defining an 
attribute of all characters to follow (until changed by the arrival of the next 
attribute byte) is stored in the buffer but is displayed as a blank (i.e., the 
background color), by the following protocol. 

Preste1, Antiope, and CCITT specify Cl sets in which, unlike PLP's Cl 
set (Fig. 8), the foreground and background colors are designated by 
specific code points. To set a new attribute, say yellow, one sends ESC 
followed by the Cl code point for yellow followed by the character string to 
be displayed. Before the "yellow" byte can reach the frame buffer it is 
intercepted and interpreted by the color control circuitry, then the most 
significant bit is complemented from 1 to 0, and only then is the character 
stored in the frame buffer. Since the Cl set is drawn from columns 4 and 5 
of the code table and needs to be distinguished from the corresponding 
character codes upon reception on the line, the preceding ESC tells the 
receiver to treat any following column 4 or 5 character as a Cl code point, 
and to flip the bit before storing in the frame buffer. Since all CO characters 
(i.e., ° high-order bit) are treated by the display circuitry as BLANK anyhow, 
the desired nondisplay is achieved. It should be pointed out that by 



498 Part V • Higher-Layer Protocols 

convention, normally arriving CO bytes (including ESC) never reach the 
frame store, only those with a 1 least significant bit (unless preceded by 
ESC). 

All of this means that in serial mode the number of bytes of frame store 
need be no larger than the number of character positions on the screen, and 
the frame store is a map of the screen appearance byte by byte. The 
originators of the parallel mode (Antiope) reasoned that such parsimonious­
ness was unwarranted and suggested an approach which would allow every 
attribute to change as frequently as with every new character position over 
the entire screen, if one were willing to pay for several times the storage in 
this extreme case. The Cl set (again lying in columns 4 and 5 and again 
invoked by preceding each with an ESC) is slightly different from the serial 
mode Cl set. Now, however, the arriving CI bytes are not bit-flipped and 
used as spacing characters in the frame store but are stored elsewhere, the 
amount of extra storage required depending on how many of them are 
permitted to appear per frame, an implementation option. As the "active 
position" progresses (left-right and top-down) the most recent set of 
attributes can be considered to "move with it." The active position does not 
move unless a character (GO, G2, and most of Gl) arrives or some format 
effector like backspace (APB in Fig. 3) arrives. (Remember that GO, G2, and 
most of GI are spacing characters.) 

It is clear that the blank-producing property of the Prestel serial mode 
could be repaired by a new protocol that uses the backspace character APB 
to revisit the otherwise blank screen position, and assumes some extra 
storage for the attribute changes. This is what is done in the British Prestend 
proposal. 

Other attributes defined by code points in the Cl set include blinking 
("flash") and stop blinking ("steady"). 

V. Attribute Specification in Telidon and PLP 

When the mode of graphics presentation is geometric rather than 
mosaic, a different way of specifying the attributes is required. Instead of 
preceding a string of characters with a single CI byte (e.g., yellow), one 
precedes the particular Picture Description Instruction (PDI) for the graphic 
element to be drawn (e.g., a circle) by one or more PDIs just for attributes. 
Both Telidon and PLP provide an extendable number of different colors, as 
follows. Each PDI (of any kind) consists of an opcode of one byte, followed 
by one or more operands, each of which consists of one or more bytes of 
numeric information needed in executing the PDI function. In our example 
of a circle to be drawn in yellow, the PDI that causes the circle to be drawn 
is preceded by the one that causes the circle to be yellow. The operand field 



Chap. 17 • Videotex Tenninal Protocols 499 

of the former, consisting of one of more bytes, specifies one of a number of 
different colors available, which depends on the number of bytes of oper­
and. For color control, there are six bits of each operand byte available for 
color (arranged GRBGRB) so that, even with one byte, 63 resolvable colors 
are available, plus either transparent or black (compared to the 7 in the 
C1-based Pres tel and Antiope schemes just described). With half a byte, 7 
are available in principle with PLP. If more resolvable colors are needed, 
additional operand bytes can be appended. 

An important property of Telidon and PLP is that terminals of varying 
degrees of complexity can simultaneously receive the same presentation 
material. Color resolution is one example. The simplest color terminal with 
only 7 colors would be programmed to ignore operand bits beyond the first 
half byte of the operand. At the same time, if the lower-order bytes are 
present, the more expensive terminals could display a larger number of 
different colors. 

Resolution is another example of this coexistence feature. A point on 
the usable portion of the TV display (the unit screen) has its x value 
expressed by some binary number between 0 and + 1, and similarly with its 
y value. Then an operand expressing position may consist of several bytes, 
the first expressing x and y to 3-bit precision; adding the next gives 6-bit 
precision, and so forth. Terminals with poorer resolution simply ignore the 
lower-order bits and display the same material as higher function terminals, 
but with degraded resolution. 

The specification of the colors is left in more or less the form just 
described in the Telidon architecture [6], but PLP has dealt with it in great 
generality [7]. In particular, the use of color maps allows the increased 
flexibility of downline loading of colors to high-function terminals just as 
DRCS does for character shapes. Two color opcodes are available with PLP, 
SET COLOR and SELECT COLOR. These can be used for one of three color 
modes, 0, 1, or 2 that can be set via the SELECT COLOR PDI: 

0-This is the scheme just described. The in-use drawing color is 
explicitly defined by the arrival of the SET COLOR PDI with the operands 
giving the color values as just described. (Each operand byte has bits 
GRBGRB.) The color remains in use and is applied to later arriving byte 
streams, until changed, for example by a later SET COLOR PDI. 

1-The color is indirectly specified. SET COLOR is used to downline load 
a particular color value (given by the operand) into a particular address in a 
look-up table, the color map. The address is given by the operand of a 
preceding SELECT COLOR PDI with a particular bit set to 0 in its opcode. By 
repeating this process, the map can be built up, and then a particular entry 
later invoked by sending SELECT COLOR with the opcode bit set to 1. 

2-This mode is identical to color mode 1 except that both foreground 
and background color are specified in the operand of SELECT COLOR which 



500 Part V • Higher-Layer Protocols 

is then twice as long. (Mode 1 assumes that the background color already in 
use is the desired one.) 

If this is confusing, it is helpful to keep in mind that the operand of SET 

COLOR is always a set of bits specifying a color, while that of SELECT COLOR 

gives a table address. PLP includes a complete definition of the encoding of 
colors to an arbitrary number of significant bits. It also includes a PDI for 
blinking whose parameters include such things as the two colors, their time 
duration, and it even allows different concurrent blinking of different parts 
of the screen. 

Telidon and PLP handle attributes for text characters (alphanumerics 
and mosaics) somewhat differently. PLP is slightly more general in this 
respect. Color is handled as just described for geometrics. Others are 
controlled by the TEXT PDI, which commands that a choice of these 
attributes be applied to the characters. 

• Character size (in terms of fractions of the unit screen vertically and 
horizontally). 

• Character rotation (right-side-up, 90°, upside-down, or 270°). 
• Cursor style (three standard styles, plus a code point for invoking one 

custom cursor.) The cursor is a special mark (e.g., underline) used in 
alphanumeric, mosaic, and DRCS to indicate the position of the next 
received character. It also exists in alphageometric mode, where it 
mayor may not be related to the position of the drawing point. 

• Direction of cursor advance (right, left, up, down). 
• Intercharacter spacing (including proportional). 
• Interrow spacing. 

The character size encoding is extendable in its fineness of spatial 
resolution by appending extra bytes as described earlier for colors and 
screen resolution. 

VI. The Alphageometric Option 

As we have indicated, this option exploits modern LSI technology by 
exchanging terminal logical complexity for speed and lowered communica­
tion costs when graphics are to be presented. Instead of regarding the screen 
as consisting of an array of character positions as with alphamosaics, the 
screen is regarded as a continuous area on which any point may be defined 
by a set of coordinates to whatever resolution the screen resolution and 
terminal memory cost will permit. A given complex shape having various 
colors, textures of solid fill, and bordering line texture can be built up at the 
receiver from a sequence of received Picture Definition Instructions. Figure 
9 shows an example using the Telidon protocol. Notice Note 3, which points 



I 
§.Q 1.1 
CONTROL Ibl 
Blue 
AREA 
x&y 
~ition 

ax&ay 
displacement 
CONTROL lei 
Grean 
POLYGON 
xS;V-
position 
ax&ay 
displacement / /' a,;&ay 
diSPI~ement 

0 

~ --- - POI Processor 0 ------ • /' ax&ay 
displacement 
CONTROL Idl 
Red 
POLYGON 
x;;;--
position 1.1 Shift Out (SO) to graphics mode 

ax&ay 
Ibl Draw a blue background covering entire display area displacement 

a,;s;ay- lei Draw a green foreground using a filled 8-sided polygon 
displacement 

:::::!!::= 
instruction 

-- Idl Draw the walls of the house in red using a filled 6-slded 

ax&ay polygon instruction 

displacement 
lei Draw a green line to define the edge of the roof 

CONTROL lei 
Green III Proceeding from the present beam position draw the 
LINE remainder of the roof using a filled 4-sided polygon 
xS;-- instruction 
position 
ax&ay Igi Draw a yellow sun using the arc Instruction. Fill in 

displacement the area between the chord and the end points of 

POLYGON III the arc. 
ax&ay 

Ihl Draw a yellow door 
displacement 
ax&ay iii Set the colour to white and reposition the beam ready 
dISplacement for text 
ax&ay 
displacement iii Shift In (SI) to alphanumeric mode and write "House". 

CONTROL Igi 
Yellow 
CONTROL 
S~ 

~ 
.ti21t..l. Positional and dimensional data is transmitted as four bytes of sequential 
information to provide a resolution of one part in ± 2048. The terminal truncates 

x&y or rounds these co-ordinates to whatever degree of resolution has been incorporated 
Start in the POI display processor 
P..2!l!ion 
Finish Note 2. Sequential POls specify the order in which the total Image • drawn. Thus, 
Position newly defined areas may overlay previously drawn parts of the Image and allows 
Radius more efficient coding of the total picture. 
dimension 

AREA Ihl Note 3. The simple drawing shown above can be described with 137 bytes of 

x~ information using POls. 

position 
ax&ay 
displacement 
CONTROL Iii 
W~ 
POINT 
x;;.v-
position 

~-- iii 
House 

Fig. 9. Example of Telidon's use of a PDI sequence to define an image. (Ref. 6.) 

501 



502 Part V • Higher-Layer Protocols 

out that only 137 bytes had to be transmitted_ Conceivably, this same 
diagram could be generated by DRCS but at the expense of an enormously 
long byte stream. 

The reader may have wondered how the shifting procedure described in 
Section II brings into the in-use table the C and G sets required for the 
alphageometric option. The answer is that the proper CI set (Fig. 8) is 
brought into the extra storage for columns 4 and 5 by ESC followed by 2/2 
as explained in Section II, while the new G1 set (Fig. 10) which includes the 
PDI opcode code points is brought into the GI table from the library by 
ESC, 2/9, F and thence into the in-use table (columns 2-7) by SO. The 
code points shown in Figs. 8 and 10 are for PLP. The CCITT alphageometric 
code points for GI, adopted from Telidon, are slightly different, as indi­
cated by the shading in Fig. 10. Unless otherwise specified, PLP uses GO for 
alphanumerics and G2 for supplementary characters like everyone else, but 
relegates the alphamosaics to G3 (not G1) and uses Gl for PDI code points. 

We shall now discuss in more detail the PLP alphageometric protocol. 
The PDls required to construct geometric shapes include POINT, LINE, ARC, 

RECTANGLE, and POLYGON. The INCREMENTAL LINE PDI is used to construct 
images that consist of sequences of points. DOMAIN controls the picture 
element (pel) size used in executing these six commands, FIELD makes inset 
areas, and TEXTURE controls texture of lines and interior fill. 

DOMAIN includes in its operand one or more bytes to define the 
dimensions dX and dY of the logical pel, the width and height of the spot 
used to draw the geometric figure. (It does not operate on alphanumeric or 
mosaic characters.) This ability to control the "stroke width" of a diagram is 
an important advantage of PLP over its predecessors. Inciden~ally, one 
could think of Prestel or Antiope alphamosaics on a 40 X 20 character 
screen of vertically contiguous characters as having a fixed stroke width of 
1/60 of the screen vertically and 1/80 horizontally-not very fine resolu­
tion, when compared to some 200 X 240 pels intrinsically available through 
the RF input or up to 500 X 600 by going directly into the "RGB" color 
video amplifiers. DOMAIN also has operand bits that specify how many bytes 
are to be used in the operands of POINT, LINE, etc. to define an x, y 
coordinate. 

TEXTURE sets up line textures (solid, dotted, dashed, or dot-dashed) and 
fill textures (solid, vertical hatched, horizontal hatched, cross hatched, plus 
four programmable textures). TEXTURE also allows highlighting of filled 
rectangles, arcs, and polygons, e.g., drawing their perimeters in black. 

The PDls DOMAIN, TEXTURE, BLINK, SET COLOR, and SELECT COLOR 

(and one or two others) that we have already discussed are control PDls 
since they control attributes of the presentation. The second class of PDls, 
the six geometric primitives (POINT, LINE, ARC, RECTANGLE, POLYGON, and 
INCREMENTAL LINE) are used to create within the unit screen graphic images 



Chap. 17 • Videotex Terminal Protocols S03 

~ 2 3 4 5 6 7 

0 
C 

1 
0 R 
N E 
T C 

2 R T 0 
L 

3 

4 

5 
p p 
0 0 I 

L 
6 N 

Y T 

7 NUMERIC 
DATA 

8 

9 L I 
I N 

10 
N C 
E R 

11 

12 
C 

13 A 
0 
N 

R T 
14 C R 

0 

15 
L 

Fig. lOa. Picture Definition Instruction (PDI) code points for PLP. Basic layout. Adapted 
from Ref. 7. 



504 Part V • Higher-Layer Protocols 

4 5 6 7 

5 
POINT 
SET 
(REU 

6 POINT 
(ABS) 

7 POINT 
(REU NUMERIC 

DATA 
8 LINE 

(ABS) 

9 LINE 
(REU 

10 
SET a 
LINE 
(ABS) 

SET a 
11 LINE 

(REU 

12 

Fig. lOb. Picture Definition Instruction (POI) code points for PLP. Specific code points. 
Shading indicates additions made to Telidon. Adapted from Ref. 7. 



Chap. 17 • Videotex Terminal Protocols 50S 

that have the attributes given in the operands of the currently effective 
control PDls. Each geometric POI has four possible forms, and thus four 
possible opcodes (See Fig. 10). 

POINT is the most basic primitive and sets in its operand (one or more 
bytes) the x-y coordinates at which to commence drawing (the current 
drawing point). It mayor may not actually draw the dot, and for each of 
these options x, y may be specified either in absolute value or as a 
displacement from the preexisting drawing point. lbis accounts for the four 
forms of POINT. 

LINE is used to draw a straight line, in the currently commanded color 
and texture, between an initial drawing point and a final one. After 
execution, the latter becomes the new drawing point. LINE (ABSOLUTE) and 
LINE (RELATIVE) both' start from the current drawing point and go to either 
an absolute x, y value or by a displacement, respectively. SET AND LINE 

(ABSOLUTE) specifies both points in absolute coordinates and SET AND LINE 

(RELATIVE) specifies the initial point absolutely and the final one relatively. 
ARC draws arcs from an initial to a final point through an intermediate 

point, or it draws circles. In the latter case, the initial and final points are 
coincident and the third point is taken to be diametrically opposite. ARC 

(OUTLINED) and SET AND ARC (OUTLINED) use two or three operands, 
respectively, to define the three points. In the former, the current drawing 
point is implicitly the starting point. ARC (FILLED) and SET AND ARC 

(FILLED) do the same except that the space between the arc and a chord 
joining the end points is filled with the in-use color and texture. Four 
RECTANGLE commands do much the same things, the RECT POls specifying 
in the operands the x and y dimensions, and in the case of SET AND RECT 

POls, the starting point additionally. 
POLYGON is used to draw a series of lines connecting up to 256 (or 

more) points, the initial and final point coinciding. The number of vertices, 
each of which can be acute or obtuse, is determined solely by the number of 
operands. This POI allows figures to be built up in the manner of "connect­
the-dots" puzzles, but with the restriction that in the filled versions the 
figure must be a simple closed one; that is, no two nonadjacent sides may 
cross. The four opcodes are different from one another in the same way as 
those for ARC and RECTANGLE. 

INCREMENTAL POINT is preceded by a FIELD POI which establishes a 
field or rectangular drawing area within which INCREMENTAL POINT oper­
ates. (FIELD also can be used to make an inset area for text and can define a 
terminal-operator-usable region for user input and text editing.) The oper­
ands of FIELD give the placement, height, and width of the field. With 
INCREMENTAL POINT, the alphaphotographic option can be implemented, 
although very tediously. An image can be described as a string of color 
specifications that replace the in-use color attributes but no other attributes, 



506 Part V • Higher-Layer Protocols 

and which are deposited in a raster sequential manner within the field, pel 
by pel. Horizontal flyback occurs automatically upon reaching the edge of 
the field. When the top or bottom of the field is reached, instead of a 
vertical retrace, as with TV, the image begins to scroll within the field area 
until the operand is terminated. 

Perhaps the most sophisticated alphaphotographic approach is Picture 
Prestel [12] which uses run-length coding techniques and special data 
compression algorithms based on human color perception to cut down on 
transmission and storage requirements. 

VII. Other Features of PLP 

We have seen how the big step in Videotex protocol transrmSSlOn 
economy and generality came when Telidon introduced the alphageometric 
option. The further refinements added in the PLP protocol of AT & T have 
not only filled in some of the missing gaps in Telidon-e.g., actual color 
and texture encodings-but have also made important extensions of func­
tion. 

Perhaps the most important of these is the Macro-PDI function. This 
capability allows any presentation byte string to be downline loaded to the 
terminal and represented with a single character name, say X. Subsequently, 
whenever a suitable macro-PDI with operand X is received, the entire 
buffered string is processed and the results presented, as though it had just 
been received. Up to 96 macro-PDls can be defined simultaneously, corre­
sponding to the 96 code points in a G set. Macro-PDls can be nested within 
macro-PDls. 

The string called X can be so designated with the DEF MACRO control 
character from Cl (Fig. 8) followed by X followed by the byte string, 
followed by END (or another DEF MACRO or a DEFP MACRO, a DEFT MACRO 
or a DEF DRCS, for which see Section III). DEEP MACRO works just like DEF 

MACRO except that in addition to storing the string it-concurrently executes 
it. 

DEFT MACRO gives the terminal the important new function of sending 
Videotex byte strings from the terminal to the CPU or another terminal. In 
our example, the key X on the QWERTY keyset could then become a function 
key triggering the execution in the CPU of user-written code. 

To summarize the other features that PLP adds to its predecessors, we 
list (1) the provision of a user (unprotected) inset on the screen for use in 
text editing, for example, and implemented using FIELD; (2) downline 
loadable textures using DEF TEXTURE; (3) a choice of cursor shapes; (4) 
alphaphotographic capability using INCR POINT; (5) reverse video (swapping 
the in-use drawing and background colors); (6) scrolling; (7) underlining; 



Chap. 17 • Videotex Terminal Protocols 507 

(8) proportional spacing; (9) "word wrap," i.e., causing a string of char­
acters that might be many lines long to have a "line feed-carriage return" 
function occur when each line is full; and (10) code points for 8-bit 
alphabets. (Since Teletex uses such alphabets, there are important Video­
tex-Teletex compatibility issues here.) Functions (1), (6), (7), (8), (9), and 
(10) offer obvious word processing possibilities. 

VIII. Conclusions 

In this chapter we have traced the evolution of Videotex architecture 
and protocols from alphanumerics to alphageometrics, from the original 
Prestel to PLP. Although the protocol proposals are evolving rapidly, the 
services based on them are not always that easy to change when there is a 
large base of installed terminals. Therefore, the reader may expect to find 
even the oldest material in this chapter to be of current interest. 

It is tempting to speculate on whether the next few improvements will 
be major or minor. It is the author's opinion that they will be minor. The 
architects have done their work at the basic level to the extent that protocol 
details are in place for as rich a variety of character and graphics function as 
will be needed over the next few years. The problem now is not only to 
reach wide agreement between contending parties, but to make these 
services widely available; and this requires good head-end software systems 
and lower terminal costs. Three key factors will influence terminal costs: the 
availability of standard Videotex LSI chips, lower memory cost, and a move 
by TV manufacturers to provide new receivers with access to the direct color 
"RGB" inputs, bypassing the resolution-degrading RF and IF amplifiers. 

References 

[I] E. Sigel, Editor, Videotext, the Coming Revolution in Home/Office Information Retrieval, 
New York: Harmony Div. of Crown Publishers, 1980. 

[2] Butler Cox and Partners Ltd., International Standardization, vol. 2 of Videotex Report 
Series, 26-30 Holbom Viaduct, London ECIA2BP, Oct. 1980. 

[3] Conference Proceedings, Viewdata 1981, Oct. 1981, Argyle House, Northwood Hills 
HA6IT5, Middlesex, U.K. 

[4] K. E. Clarke, The Post Office Viewdata Service, J. Royal Television Soc., vol. 17, no. 5. 
[5] B. Marti et al., The Antiope Videotex System, IEEE Trans COllSumer Electron., July 

1979. 
[6] H. G. Bown, C. D. O'Brien, W. Sawchuk, and J. R. Storey, Picture Description 

Instructions for the Telidon Videotex System, Commun. Res. Ctr. Technical Note 699-E, 
Dept. of Commun., Ottawa, November 1979. 

[7] Videotex Standard Presentation Level Protocol, Am. Tel. and Telegraph Co., 5 Wood 
Hollow Rd., Parsippany, New Jersey 07054, May 1981. 



508 Part V • Higher-Layer Protocols 

[8] International Information Exchange for Interactive Videotex, CCITT Draft Recommenda­
tion S.loo, Document AP-VlI-No. 88E, Geneva, 1980. 

[9] T. Kumamoto and S. Ohkoshi, CAPTAIN System Features, Proc. of Viewdata ' 80 pp. 
95-\05, March, 1980, Argyle House, Northwood Hills, HA6 ITS, Middlesex, U.K. 

[10] Code ExtellSion Technique for use with the 7- and 8-bit Coded Character Sets, ISO-2022.2, 
International Standards Organization, Torino, May 1981. 

[11] Current Status of Harmonization for Videotex Display Aspects and Transmission Coding for 
26 Countries of Europe, Contribution D41 to CCITT Study Group VIII, Geneva, Oct., 
1981. 

[12] K. E. Clarke, The Application of Picture Ceding Techniques to Viewdata, Proc. IEEE 
Consumer Electronics Conference, Chicago, June 1980. 



PART VI 

Network Interconnection 

Having completed our journey through the various computer network 
protocol layers, we now turn our attention to the first of two large areas of 
current research and development interest that lie outside the subject of 
providing better design for protocol layers. 

The topic of the present section is the interconnection of otherwise 
autonomous networks. There are several motivations for wanting to make 
such interconnections. Having a single large network may be impractical 
because of address space limitations, limitation on how much one network 
management operator can handle, the need to localize the effect of config­
uration changes, and the existence of nonoverlapping patterns of ownership 
and organizational jurisdiction. As to the last of these, the increasingly 
relaxed attitude of regulatory bodies (particularly in the U.S.) toward 
unregulated interenterprise communication acts to encourage the intercon­
nection of networks belonging to different corporations with some com­
monality of interests, for example, a large manufacturer and one of its 
suppliers. 

The connection may be between homogeneous networks (e.g., ones 
using the same release level of the same computer manufacturer's network­
ing products) or it may be a heterogeneous interconnection. Clearly the 
least difficult inhomogeneity to handle is one between different release 
levels of a common product line (e.g., SNA or DNA) or different variants of 
a common design (e.g., different X.25-based packet-switched networks or 
different ARPAnet structures). However, the big challenge to be met in the 
next few years concerns inhomogeneous network interconnections that will 
require significant protocol conversions across many protocol layers. The 
surface has barely been scratched on this problem, and yet it will surely 
have to be solved, because all the evidence indicates that at the same time 
that pressures to interconnect are growing, implementations based on 
different network architectures are prospering independently. 

509 



510 Part VI • Network Interconnection 

The mechanism by which the interconnection is effected at the point of 
contact is the gateway, a special node that belongs simultaneously to the two 
networks. The gateway may be implemented as a machine dedicated to the 
purpose or it may be a special piece of software running in a CPU that is 
also running user applications. 

Depending partly on the amount of inhomogeneity, the gateway may 
involve all of the protocol layers or only the lower ones. For example, if 
only the addressing, routing, and network flow control functions need to be 
managed separately, a gateway functioning only up through the network 
level (Part IV) would suffice. The gateway would splice together two access 
path portions involving only these lower layers; there would be only two 
end users. The higher layers would be absent in the gateway. The other 
extreme would be to have a special application program ("pass through") 
within the same gateway serving simultaneously at the end of two separately 
established and managed access paths within the two networks. It might be 
the case that conversion at all protocol layers, including those described in 
Part V would be required in these very inhomogeneous interconnections. 

In the present volume, all we can hope to present on this evolving topic 
is a sampling of the research and experimentation in progress. Chapters 18 
and 19 both describe approaches that involve only the lower protocol layers 
of the interconnected networks. Chapter 18 provides an overview of the 
subject and treats two homogeneous interconnection examples which are 
being handled in different ways: the CCCITT X.75 recommendation for 
interconnecting X.25-based packet networks, and the ARPAnet Intercon­
nect structure. Chapter 19 describes a completely worked out and proto­
typed system built at Xerox Palo Alto Research Center to interconnect such 
varied networks as the contention-based Ethernet in-plant networks and a 
packet radio network. 



18 

Internetwork Protocol J\pproacbes 

Jonathan B. Postel 

I. Introduction 

The motivations for constructing computer networks-data and pro­
gram exchange and sharing, remote access to resources, etc.-are also 
motivations for interconnecting networks. This follows from the observation 
that the power of a communication system is related to the number of 
potential participants. 

This chapter first discusses a few key concepts involved in computer 
communication networks. The view that computer networks provide an 
interprocess communication facility is presented. The datagram and virtual 
circuit services are compared. The interconnection device or gateway is 
discussed. The relation of the interconnection issues to the Open Systems 
Architecture is described. 

In this chapter, two approaches to internetworking are characterized: 
the public data network system as implied by the CCITT X.75 recommenda­
tion and the ARPA experimental internetwork. These two systems illustrate 
the virtual circuit and the datagram approaches to network interconnection 
respectively. The vast majority of the work on interconnecting networks 
falls into one of these two approaches. 

II. Interprocess Communication 

While discussing computer communication, it is useful to recall that the 
communication takes place at the request and agreement of processes, i.e., 
computer programs in execution. Processes are the actors in the computer 
communication environment; processes are the senders and receivers of 
data. Processes operate in computers or hosts. It should be noted that 

511 



512 Part VI • Network Interconnection 

Interprocess communication system boundary 

P Process 
H Host 
N I Network Interface 

Fig. 1. Communications network. 

terminal-host communication can likewise be implemented as interprocess 
communication (see Chapters 15 and 16). 

The protocols used in constructing the communications capability 
provide an interprocess communication system. Figure 1 shows how the 
combination of the network and the host 'network interface (hardware and 
software) can be viewed as providing an interprocess communication sys­
tem. 

When a new host computer is to be connected to an existing network, it 
must implement the protocol layers necessary to match the existing protocol 
used in the network. The new host must join the networkwide interprocess 
communication system so the processes in that host can communicate with 
processes in other hosts in the network. 

The interconnection of networks require that the processes in the hosts 
of the interconnected networks have a common interprocess communication 
system. This may be achieved by converting the networks to a new interpro­
cess communication system, by converting one or more levels of protocol to 
new protocols, or by translating between pairs of interprocess communica­
tion systems at their points of contact. 

III. Datagrams and Circuits 

Two types of service are commonly discussed as appropriate for the 
network-provided interprocess communication service: datagrams and vir­
tual circuits. 



Chap. 18 • Internetwork Protocol Approaches 513 

Datagrams are one-shot simple messages. They are inherently unreli­
able since they travel one-way and are not acknowledged. Datagrams may 
also arrive in a different order than sent (at least in some networks). 
Datagrams are simple to implement since they do not require the networks 
or gateways to record and update state information (e.g., sequence numbers). 
Datagrams must carry complete address information in each message. The 
transmission of datagrams by a process is via send and receive actions. 

Virtual circuits (or connections) are designed to be reliable and to 
deliver data in the order sent. Implementation of virtual circuits is com­
plicated by the need for networks or gateways to record and update state 
information. Virtual circuits are created through an exchange of messages to 
set up the circuit; when use terminates, an exchange of messages tears down 
the circuit. During the data transmission phase, a short form address or 
circuit identifier may be used in place of the actual address. To use a virtual 
circuit a process must perform actions to cause the virtual circuit to be 
created (call setup) and terminated, as well as the actions to send and 
receive data. 

Datagrams provide a transaction-type service while virtual circuits 
provide a connection-type service. Each of these services is needed in a 
general purpose communication environment. Datagrams are most efficient 
for transaction-type information requests such as directory assistance or 
weather reports. Virtual circuits are useful for terminal access to interactive 
computer systems or file transfer between computers. 

IV. Gateways 

Two or more networks are connected via a device (or pair of devices) 
called a gateway. Such a device may appear to each network as simply a 
host on that network (Fig. 2). 

H Host 
G Gateway 

Fig. 2. Interconnected networks. 



514 Part VI • Network Interconnection 

Some gateways simply read messages from one network (unwrapping 
them from that network's packaging), compute a routing function, and send 
messages into another network (wrapping them in that network's packaging). 
Since the networks involved may be implemented using different media, 
such as leased lines or radio transmission, this type of gateway is called a 
media-conversion gateway. 

Other gateways may translate the protocol used in one network to that 
used in another network by replacing messages received from the first 
network with different messages having the same protocol semantics but 
with the syntax of the second network. This type of gateway is called a 
protocol-translation gateway. 

It should be clear that the distinction between media conversion and 
protocol translation is one of degree: the media-conversion gateways bridge 
the gap between differing link and physical level protocols, while protocol­
translation gateways bridge the gap between differing network and higher­
level protocols. 

The translation approach to network interconnection raises several 
issues. Success in protocol translation seems inversely correlated with the 
protocol level. At the lower levels, protocol translation causes no problems 
because the physical level and link levels are hop-by-hop in nature. It should 
be noted, though, that different protocols even at these low levels may have 
impact on the reliability, throughput, and delay characteristics of the total 
communication system. 

At the network and transport levels, the issues of message size, address­
ing, and flow control become critical. Unless one requires that only mes­
sages that can be transmitted on the network with the smallest maximum 
message size be sent, one must provide for the fragmentation and reassem­
bly of messages. Fragmentation and reassembly is the division of a long 
message into parts for transmission through a small message size network, 
and the reconstruction of those parts into the original message at the 
destination. The translation of addresses is a difficult problem when one 
network or transport level protocol provides a larger address space than the 
corresponding protocol to be translated to. When end-to-end flow control 
mechanisms are used, as they commonly are in transport level protocols, 
difficulties arise when the units controlled are different, for example, when 
one protocol controls octets and the corresponding protocol controls letters. 
More difficulties arise with potential difference in the model of flow control. 
For example, there may exist a difference between pre and post allocation, 
or between the allocation of buffer space and the allocation of transmission 
rate. 

At higher levels, the problems are more difficult because of the in­
creased state information kept and the lower likelihood of one-to-one 
translation of individual protocol messages. A further difficulty is that each 
level further multiplexes the communication so that each connection or 



Chap. 18 • Internetwork Protocol Approaches 

NETWORK A 
SPECIFIC 

STANDARD 
INTERNET PROTOCOL 

Fig: 3. Gateway halfs. 

NETWORK B 
SPECIFIC 

515 

stream or channel or virtual circuit must be separately translated. In spite of 
the difficulties some advocate the translation approach, and there are some 
successful demonstrations of high-level translation gateways for terminal 
access and file transfer. While the number of different protocols remains 
small the translation approach is workable, but as the number of protocols 
grows to N, the number of translations needed grows to N squared. 

It should be pointed out that neither of the specific interconnection 
approaches discussed in this chapter attempts higher-level protocol transla­
tion. 

Gateways may be thought of as having a "half" for each network they 
interconnect. One could model the operation of a gateway as having each 
gateway-half contain procedures to convert from a network-specific proto­
col into a standard protocol and vice versa (Fig. 3). 

V. Relation to Open Systems Interconnect 

In relation to the open systems architecture discussed in Chapter 2, the 
interconnection of networks focuses on levels 3 and 4. 

To review, the Open Systems Interconnect defines the following levels 
of protocol: 

Level Function 

7 Application 
6 Presentation 
5 Session 
4 Transport 
3 Network 
2 Link 
1 Physical 



516 Part VI • Network Interconnection 

The lower levels, the physical and the link levels are hop-by-hop in 
nature and present no interconnection issues in terms of compatibility, 
though there may be some performance concerns. 

The higher levels, the session level, the presentation level, and the 
application level, have so many compatibility requirements that it seems 
quite unlikely that interconnection of different protocols at those levels will 
be workable. 

Thus, it is at the network level and the transport level that the 
interconnection of networks exposes issues of concern. The network level 
corresponds roughly to the interface to datagram service, and the transport 
level corresponds to the interface to virtual circuit service. 

In some networks, the network level and datagram service-have been 
hidden from the user, forcing consideration of network interconnection at 
the transport level. 

VI. Interconnection of X.2S Networks 

Introduction. The public data networks (PDNs) that follow the CCITT 

X.25 recommendation are to be interconnected via an interface specified in 
CCITT recommendation X.75. Recommendation X.25 specifies the interface 
between the customer's equipment, called the Data Terminal Equipment 
(DTE); and the network equipment, called the Data Circuit-terminating 
Equipment (DCE). Recommendation X.25 implies a virtual circuit opera­
tion. Thus, the PDNs offer an interface to a virtual circuit transport level 
protocol. Figure 4 shows the model of a PDN virtual circuit [1]. Chapter 8 
discusses recommendation X.25. 

The interface between two PDNs specified in recommendation X.75 is 
quite similar to that in recommendation X.25. The equipment on either side 
of this interface is called a Signalling TErminal (STE). The STE-STE 
interface is much like the DTE-DCE interface. The STE-STE interconnec­
tion is a split gateway with each gateway-half in a physical device controlled 

D 
H T 

E 
D 

----Ie 
E 

Fig. 4. PDN virtual circuit. 

D 
T H 
E 



Chap. 18 • Internetwork Protocol Approaches 517 

D 
H T 

E 

H 

H 

H 

Fig. 5. Interconnection of PDNs. 

by the PDN connected to that gateway-half [21. Figure 5 shows the 
interconnection of PDN s. 

The interconnection of PDNs via X.75 interfaces results in a series .of 
virtual circuits. Each section is a distinct entity with separate flow control, 
error recovery, etc. Figure 6 shows a PDN transmission path with two 
virtual circuits (VCs) and five separate flow control (FC) steps. 

Addressing. The address field is variable in length up to 15 digits, with 
each digit coded in a 4-bit field. The maximum address is then 60 bits 
(about 8 octets). 

Routing. The user has no influence over routing used. To create the 
series of virtual circuits, a series of call setups establishes a fixed route 
(between pairs of STEs at least). State information must be kept for each 
call in the source and destination DTEs and DCEs and in each STE in the 
route. 

Buffering and Flow Control. Each portion of the total path is a distinct 
virtual circuit. Each virtual circuit has an independent flow control (and 
particular to that PDN). In addition, there is flow control across each 
STE-STE interface. All this flow control is on a per call basis. This stepwise 
flow control may introduce delay in the total path that could be avoided 
with an end-to-end scheme. 



518 

I H I~~ m-rn E E 
L-JI 

VC I 

FCA FCB 

VC Virtual Circuit 
FC Flow Control 

IL-..,JI 

FCc 

Part VI • Network Interconnection 

[U-1rl H 

I~ 

VC 2 

FCD FCE 

Fig. 6. PDN transmission path. 

There are some concerns about the interaction of two types of flow 
control implemented in PDNs. One type allows one message in transit from 
source DCE to destination DCE at anyone time. The other allows multiple 
messages to be in transit, the number being determined by the flow control 
window. 

Acknowledgment. Each portion of the total path has an acknowledg­
ment. The user to network interface also has an acknowledgment. This local 
acknowledgment means only that the first PDN has accepted the message 
for transmission, not that it has arrived at the destination. 

Recovery. The X.25 and X.75 recommendations do not specify how the 
PDNs deal with errors internally. If unrecoverable errors occur, the network 
will signal a Reset, which apparently means that the virtual circuit still 
exists, but the flow control is reset and messages may have been lost. More 
serious errors result in the call being cleared. 

Because of the fixed route nature of the multinet path, a STE failure 
disrupts the communication. 

Security. The X.25 jX.75 recommendations do not provide any security 
features. 

Header Structure. Once the call is established, a header is only 3 octets. 
The call setup headers are substantially longer, typically 20 octets, but 
possibly as large as 166 octets. There is a trade-off between header size and 
state information kept; in the PDNs, the trade-off has been made toward 
small headers and large state. The details of the headers are shown in 
Appendix 1. 

Summary. The most important aspect of the interconnection of PDNs 
is that service provided to the using process is a virtual circuit with 
essentially the same properties a single PDN would have provided. This is 
done by concatenating a series of virtual circuits to provide the total path, 
resulting in a fixed route through a set of network interconnection points. 



Chap. 18 • Internetwork Protocol Approaches 

Fig. 7. End-to-end connection. 

VII. Interconnection of ARPA Research Networks 

T 
C 
P 

519 

Introduction. The ARPA sponsored research on interconnections of 
networks has led to a two-level protocol to support the equivalent function 
of the PDN's X.2SjX.7S service. The ARPA sponsored work on networks 
has developed an Internet Protocol (IP) [3], and a Transmission Control 
Protocol (TCP) [4]. 

TCP is a logical connection transport protocol and is a level-4 protocol 
in the OSI model of protocol structure. The IP is a datagram protocol. The 
collection of interconnected networks is called an internet. IP is the network 
protocol of the internet and this is a level-3 protocol in the OSI model. The 
actual networks used are of various kinds (e.g., the ARPAnet, radio net­
works, satellite networks, and ring or cable networks) and are referred to as 
local networks even though they may span continents or oceans. The 
interface to a local network is a local network protocol or LNP. Figure 7 
shows the model of an end-to-end connection. 

In the ARPA mode, the networks interconnect via a single device called 
a gateway. A gateway is a host on two or more networks. Figure 8 shows the 
ARPA model of the interconnection of networks. 

Each network addresses a gateway on it in the same way it addresses 
any other host on it. The information required to deliver a message to a 
destination in the internet is carried in the IP header. The IP is implemented 
in the gateways and in hosts. A sending host prepares a datagram (which is 



520 Part VI • Network Interconnection 

Fig. 8. ARPA model of interconnection of networks. 

an IP header and the original message) and then selects a gateway in its own 
net to forward the datagram. The sending host then sends the datagram 
wrapped in a local network packet to that gateway. 

A gateway receives a packet from one of the local networks to which it 
is attached and unwraps the IP datagram. The gateway then examines the 
IP header and determines the next gateway (or destination host) address in 
one of the locailletworks it is directly connected to. The gateway then sends 
the datagram with its IP header in a new local net packet to that gateway 
(or host). 

The IP has no provision for flow control or error control on the data 
portion of the message (the IP headers are checksummed). There are no 
acknowledgments of IP messages. The IP is simple and the gateway may be 
implemented in small machines. A key point is that a gateway has no state 
information to record about a message. At the IP level, there are no 
connections or virtual circuits. 

The IP does not provide a service equivalent to the PDN's X.25 jX.75. 
To provide that type of end-to-end reliable ordered delivery of data the 
ARPA internet uses TCP. 



Chap. 18 • Internetwork Protocol Approaches 

HOST GATEWAY 

T .................................................... . 

C I 
P P 

I ' 
DG DataGram 
VC Virtual Circuit 
FC Flow Control 

DG DG 

VC & FC 

Fig. 9. ARPA model of transmission path. 

521 

HOST 

TCP uses end-to-end mechanisms to ensure reliable ordered delivery of 
data over a logical connection. It uses flow control, positive acknowledg­
ments with time out and retransmission, sequence numbers, etc., to achieve 
these goals. Figure 9 shows the conceptual transmission path in this 
interprocess communication system, pointing out the datagram (DG) path 
between the IP modules and the virtual circuit path between the TCP 
modules at the source and destination and the flow control (FC) at that 
level. 

ARPA has used these techniques to interconnect several very different 
networks including the ARPAnet, packet radio nets, a satellite net, and 
several local networks. 

Addressing. The size of the address in this experimental system is fixed. 
The IP provides a one octet network field and a three octet host field. Also a 
one octet protocol identifier in the IP header may be considered address 
information. This protocol identifier allows the IP module to demultiplex 
datagrams to higher-level modules on the basis of protocol, e.g., TCP vs. 
some other protocol. The TCP provides a two octet port field. The total of 
the address length is then seven octets. Provision has been made for a host 
to have several addresses, so the host field is sometimes called the logical 
host field. The total address is the concatenation of the network, host, 
protocol, and port fields. 

Routing. Normally, the user has no influence over the route used 
between the gateways. There is no call setup and the route may vary from 
one message to the next. No state information is kept in the gateways. 

A user might insert a source routing option in the IP header to cause 
that particular message to be routed through specific gateways. 



522 Part VI • Network Interconnection 

Buffering and Flow Control. There is no flow control mechanism in the 
IP. The gateways do not control the flow on connections for they are 
unaware of connections or any relation between one message and the next 
message. The gateways may protect themselves against congestion by drop­
ping messages. When a gateway drops a message because of congestion, it 
may report this fact to the source of the message. 

The TCP uses end-to-end flow control using windows on a per logical 
connection basis. 

Acknowledgment. The IP has no provision for acknowledgments. The 
TCP uses acknowledgments for both error control and flow control. The 
TCP acknowledgments are not directly available to the user. 

Recovery. Errors in a network or gateway result in a message being 
dropped, and the sender mayor may not be notified. This inherent 
unreliability in the IP level allows it to be simple and requires the end-to-end 
use of a reliable protocol. 

TCP provides the reliable end-to-end functions to recover from any lost 
messages. The TCP uses a positive acknowledgment, time out, and retrans­
mission scheme to ensure delivery of all data. Each message is covered by an 
end-to-end checksum. 

Because of the potential for alternate routing, the end-to-end communi­
cation may be able to continue despite the failure of a gateway. 

Security. The IP provides an option to carry the security, precedence, 
and user group information compatible with AUTODIN II. The enforcement 
of these parameters is up to each network, and only AUTODIN II is prepared 
to do so. 

The TCP end-to-end checksum covers all the address information 
(source and destination network, host, protocol, and port), so that if the 
checksum test is successful the address fields have not been corrupted. 

Header Structure. The IP header is 20 octets (plus options, if used), but 
there is no call setup and no gateway state information. Thus, at the IP 
level, the header size vs. state information trade-off has been made toward 
large header and little (no) state information. 

The TCP header is 20 octets (plus option, if used). There is a connec­
tion establishment procedure called the "three-way handshake," and signifi­
cant state information is kept. In this case, there are both large headers and 
large state tables. The details of the headers are shown in Appendix 2. 

Summary. The ARPA networks are interconnected by using a common 
datagram protocol to provide addressing (and thus routing) information and 
an end-to-end transport protocol to provide reliable sequenced data connec­
tions. 

This model has evolved from the ARPAnet experience, in particular 
from the internetwork protocol model suggested in a paper by Cerf and 
Kahn [5]. 



Chap. 18 • Internetwork Protocol Approaches 523 

VIII. Conclusion 

Both the PDNs and the ARPA networks are interconnected by estab­
lishing standard protocols. The PDNs provide a virtual circuit service by 
concatenating the virtual circuit services of the individual networks. The 
ARPA networks use two levels of protocol to provide both datagram and 
virtual circuit services. 

Fig. 10. X.75 Packet. 

Format I Channel Group 

Channel Number 

Type 

Src Adr Len I Dst Adr Len 

Destination Address 
then 

Source Address 
(maximum 15 octets) 

o 0 1 Network Uti! ities Len 

o 

Network Util ities Data 

(maximum 62 octets) 

o I User Facilities Len 

User Facil ities Data 

(maximum 62 octets) 

User Data 

(maximum 16 octets) 

Format I Channel Group 

Channel Number 

Flow Control Data 

Data , 



524 Part VI • Network Interconnection 

Additional discussion of the interconnection of PDNs is provided in 
[6,7]. In Chapter 19 Boggs et aZ. present in detail another example of 
network interconnection using the datagram approach. 

The issues of network interconnection have been discussed for at least 5 
years (for example, McKenzie [8]). The recent expositions by Sunshine [9], 
by Cerf and Kirstein [10], and by Gien and Zimmermann [11] are particu­
larly recommended. 

Version I Header Length 

Type of Service 

Total Length 

Identification 

Flags I Fragment 

Offset 

Time to Live 

Protocol 

Checksum 

Source Address 

I-

Destination Address 

Data or TCP Header 

· 

· 

· 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

Fig. 11. IP format. 



Chap. 18 • Internetwork Protocol Approaches 525 

Appendix 1 

X 75 Header Formats. The Call Request and Data packet formats are 
illustrated in Fig. 10. These typify the X.75 packet formats. All the X.75 
packets are the same in the first two octets. The Format field indicated the 
type of packet. 

Source Port 

Destination Port 

Sequence Number 

Destination Address 

Data Offset I 
Control Flags 

Window 

Checksum 

Urgent Pointer 

Data 

Fig. 12. TCP format. 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 



526 Part VI • Network Interconnection 

Call Request. The call request packet is variable in length from a 
practical minimum of 11 octets to an unlikely maximum of 160 octets. 

Data. The Data packet has a three octet header. 

Appendix 2 

ARPA Protocol Header Formats. Every datagram carries the basic IP 
header. Every TCP segment transmitted carries the basic TCP header. 

Internet Protocol (Fig. 11). The ARPA IP has a basic header of 20 
octets, and may carry a variable number of options up to a total length of 
60 octets. 

Transmission Control Protocol (Fig. 12). The basic TCP header is 20 
octets, and the header may be up to 60 octets long if options are used. 

References 

[I] "Recommendation X.25/interface between data terminal equipment (DTE) and data 
circuit-terminating equipment (DCE) for terminals operating in the packet mode on 
public data networks," CCITT Orange Book, vol. 7, International Telephone and Tele­
graph Consultative Committee, Geneva. 

[2] "Proposal for provisional recommendation X.75 on international interworking between 
packet switched data networks," in CCITT Study Group VII Contribution No. 207, 
International Telephone and Telegraph Consultative Committee, Geneva, May 1978. 

[3] DARPA, "DOD standard internet protocol," IEN-128, Defense Advanced Research 
Projects Agency, National Technical Information Service ADA079730, January 1980. 

[4] DARPA, "DOD standard transmission control protocol," IEN-129, Defense Advanced 
Research Projects Agency, National Technical Information Service ADA082609, January 
1980. 

[5] V. Cerf, and R. Kahn, 'A protocol for packet network intercommunication, "IEEE 
Trans. Commun., COM-22, 5, 637-2648, May 1974. 

[6] G. Grossman, A. Hinchley, and C. Sunshine, "Issues in international public data 
networking," Comput. Networks, 3, 4, 259-266, September 1979. 

[7] V. DiCiccio, C. Sunshine, J. Field, and E. Manning, "Alternative for interconnection of 
public packet switching data networks," Proc. Sixth Data Commun. Symp., ACM/IEEE, 
120-125, November 1979. 

[8] A. McKenzie, "Some computer network interconnection issues," Proc. Nat. Comput. 
Conf., AFIPS, 857-859, 1974. 

[9] C. Sunshine, "Interconnection of computer networks," Comput. Networks, 1,3, \75-195, 
January 1977. 

[10] V. Cerf, and P. Kirstein, "Issues in packet-network interconnection." Proc. IEEE, 66,11, 
1386-1408, November 1978. 

[II] M. Gien, and H. Zimmermann. "Design principles for network interconnection," Proc. 
Sixth Data Commun. Symp., ACM/IEEE, 109-119, November 1979. 



A Specific Internetwork 
Architecture (Pup) 

David R. Boggs, John F. Shoch, Edward A. Taft, 
and Robert M. Metcalfe 

I. Introduction 

19 

Research in network interconnection techniques has been motivated by 
the desire to permit communication among diverse, geographically distrib­
uted computing resources and users interconnected by a wide variety of 
network technologies. 

It is the purpose of an internetwork architecture to provide a uniform 
framework for communication within a heterogeneous computing, com­
munication, and applications environment. The work described in this 
chapter represents one internetwork architecture, known as Pup, in 
widespread regular use within Xerox. The name referred originally to the 
abstract design of a standard internetwork datagram (the PARe Universal 
Packet), but has expanded in usage to include the whole hierarchy of 
internetwork protocols as well as a general style for internetwork communi­
cation. 

To assist in understanding the design of the Pup protocols, it is useful 
to characterize briefly the environment in which this architecture has 
evolved. 

The computational environment includes a large number of "Alto" 
minicomputers [11], [31], and other personal computers capable of high­
quality interaction with human users. Supporting these are various special­
ized server systems that are shared among many users and provide access to 
expensive peripherals such as large disks, magnetic tapes, and high-quality 

527 



528 Part VI • Network Interconnection 

printers. Additionally, there are several general-purpose time sharing sys­
tems providing customary services for terminal users. 

The communications environment includes several different individual 
network designs. The dominant one is the "Ethernet" communications 
network, a local-area broadcast channel with a bandwidth of 3 Mbit/s [15]. 
Long-haul communication facilities include the ARPAnet, the ARPA packet 
radio network, and a collection of leased lines implementing an ARPAnet­
style store-and-forward network. These facilities have distinct native proto­
cols and exhibit as much as three orders of magnitude difference in 
bandwidth. 

The applications to be supported include a wide range of activities: 
terminal access to the time sharing services, electronic mail, file transfer, 
access to specialized data bases, document transmission, software distribu­
tion, and packet voice, to name just a few. We would also like to facilitate 
more ambitious explorations into the area generally referred to as "distrib­
uted computing." 

This chapter is organized as follows. In Section II we discuss some of 
the design issues which have emerged in the formulation of the Pup 
architecture, while Section III provides more detail on the protocols them­
selves. Section IV describes briefly some of our operational experience with 
the present implementation. The final section presents a retrospective 
critique of the work, highlighting some areas which merit further attention. 

II. Design Principles and Issues 

Constructing an architecture for internetwork protocols is, first and 
foremost, an exercise in design: identifying individual issues, exploring 
alternative solutions, and then knitting these pieces together to form the 
final result. Along the way, many compromises are made as one trades off 
among different criteria: functionality, efficiency, generality, ease of imple­
mentation, extensibility, and others. 

In this section we enumerate some of the major design issues con­
fronted in the development of a network architecture and describe, in 
general terms, the choices made in the development of Pup. (Several of these 
and other issues are enumerated in [2] and [17].) From this discussion the 
broad outlines of Pup will emerge; the section that follows provides more 
specific detail about the actual design. 

A. The Basic Model: Individual Networks Connected with Gateways 

As with most internetwork models, one envisions a collection of 
heterogeneous networks, connected with a set of internetwork gateways to 



Chap. 19 • A Specific Internetwork Architecture 529 

form a loosely coupled system known generally as an internet [1], [2], [26]. 
An internet should provide the ability for any two hosts to communicate, so 
long as their own local networks are interconnected. 

An important feature of the Pup internet model is that the hosts are the 
internet. Most hosts connect directly to a local network, rather than 
connecting to a network switch such as an IMP, so subtracting all the hosts 
would leave little more than wire. Gateways are simply hosts in the internet 
that are willing to forward packets among constituent networks. Thus, most 
of the properties of the internet are primarily artifacts of host software. The 
architecture must scale gracefully, and in particular must allow for the 
existence of a degenerate internet consisting of a single local network and 
no gateways. 

B. Simplicity 

One of the guiding principles in designing Pup has been the desire for 
simplicity. Pup is a framework for computer communications research, and 
simplicity is one of the best ways to minimize restrictions and maximize 
flexibility for experimentation. Attempting deliberately to eliminate un­
needed complexity helps to keep the design open-ended. This in turn makes 
it easier to incorporate the existing diverse collection of networks and hosts 
and to accommodate new alternatives as the technology matures. Keeping 
the design simple helps to avoid building in technological anachronisms. 

A second motivation for this principle is the desire to foster efficient 
implementations of the protocols in the host machines, which are typically 
quite small. Software overhead must be kept low in order to sustain 
high-bandwidth local communication, which constitutes the bulk of the 
traffic; yet the same software must support the full generality of internet­
work communication. 

C. Datagrams versus Virtual Circuits 

There are two major approaches to providing an interface to packet­
switched communications: accepting individual datagrams or providing a 
higher level of service in the form of a virtual circuit. The two interfaces are 
not unrelated, since a virtual circuit interface is usually implemented within 
a network by the use of datagrams. In some sense, datagrams provide access 
to a network at a lower level, closer to its underlying capabilities. Data­
grams are particularly useful in many kinds of transaction-oriented proto­
cols. Furthermore, the task of the internet is significantly simplified if it 
need only transport independent, individually addressed datagrams, without 
having to maintain the state required to support virtual circuits. If the 



530 Part VI • Network Interconnection 

internet provides a datagram interface, virtual circuit interfaces can be 
provided by adding appropriate mechanisms at the end points. 

Therefore, the basic function provided by the Pup internet is the 
transport of datagrams; this simple abstraction is the foundation of Pup. 
The internet does not guarantee reliable delivery of datagrams (called 
"Pups"); it simply gives its "best efforts" to deliver each one, and allows the 
end processes to build protocols which provide reliable communications of 
the quality they themselves desire [14]. The internet has no notion of a 
connection. It transports each Pup independently, and leaves construction 
of a connection-if that is the appropriate interprocess communication 
model-to the end processes. Keeping fragile end-to-end state out of the 
packet transport system contributes to reliability and simplicity. 

D. Individual Networks as Packet Transport Mechanisms 

Individual networks within the internet can be viewed simply as packet 
transport mechanisms. As links in the internet they give their best efforts to 
deliver internet packets, but they do not guarantee reliable delivery. Packets 
may be lost, duplicated, delivered out of order, after a great delay, and with 
hidden damage. A network can have any combination of bandwidth, delay, 
error characteristics, topology, and economics; the routing algorithm should 
attempt to take these characteristics into consideration. 

Encapsulation is an invertible, network-dependent transformation per­
formed on a Pup to permit it to be carried transparently through a network: 
an abstract Pup is presented at one end, encapsulated for transmission 
through the net, and decapsulated at the other end, yielding the Qriginal 
Pup. For some networks, encapsulation consists merely of adding headers 
and trailers. More elaborate transformations may be necessary to pass a 
Pup through other networks (for example, using low-level acknowledg­
ments or error correction because the network has a high loss rate). 
Encapsulation and decapsulation take place in a network-specific driver in 
which is vested all knowledge of the encapsulation technique. The internet 
specification has nothing to say about encapsulation except that it be 
invisible. 

E. Internetwork Gateways 

We distinguish two kinds of gateways: media translators and protocol 
translators. Media gateways are hosts with interfaces to two or more packet 
transport mechanisms among which they forward internet datagrams, using 
the appropriate encapsulation for each. These are the heart of any data­
gram-based internet. Protocol gateways are hosts which speak two or more 
functionally similar but incompatible higher-level protocols used to trans-



Chap. 19 • A Specific Internetwork Architecture 531 

port information within networks, mapping one higher-level abstraction into 
the other. (It is clear that a media gateway is just doing protocol translation 
at the link level, but the distinction is useful given the importance of 
internet datagrams in this architecture.) 

In the Pup internet, media gateways are by definition simple, since all 
that is required of the translation process is that it preserve the semantics of 
internetwork datagrams. Protocol gateways are usually more difficult, even 
when the protocols are similar, since such higher-level protocols provide 
richer and more specialized semantics and it is not always clear how one 
should map the functionality of one protocol into another. Development of 
higher-level protocol translators between different network and internet 
architectures, e.g., between the ARPAnet file transfer protocol (FTP) and 
the Pup-based FTP, is a thorny task, but one that must be confronted when 
interconnecting systems that do not share the necessary lower-level primi­
tives. 

F. A Layered Hierarchy of Protocols 

Layering of protocols is one of the most effective means for structuring 
a network design: each level uses the functions of the lower level, and adds 
some functionality of its own for possible use by the next level. Provided 
that suitable interfaces are maintained, an implementation at one level can 
be modified without impacting the overall structure; this helps to simplify 
both the design and the implementation. 

Pup protocols are organized in a hierarchy, as shown in Fig. 1; the 
details of this figure will be presented in Section III. A level represents ·an 
abstraction, to be realized in different ways in different hosts. There are 
four levels of interest, but there may be more than one protocol at any level 
except levell, representing a different use of the underlying layers. (The 
numbering of layers-and, indeed, the choice of points at which to divide 
the layers-is arbitrary; there is no relationship between Pup's numbering 
and that of other designs such as the Open Systems Interconnect, as 
discussed in Chapter 2.) 

The level 0 abstraction is a packet transport mechanism. There are 
many realizations: an Ethernet channel, the ARPAnet, the ARPA packet 
radio network, our store-and-forward leased line network, and others. Level 
o protocols include specifications such as hardware interfaces, electrical and 
timing characteristics, bit encodings, line control procedures, and network­
dependent packet formatting conventions. Associated with each packet 
transport mechanism is a convention for encapsulating Pups. 

The level 1 abstraction is an internet datagram. The realization of this 
abstraction consists of the format of a Pup, a hierarchical addressing 
scheme, and an internetwork routing algorithm. There is only one box at 



532 

levels 4 and above 

Application-defined protocols 

level 3 

Conventions for 
data structuring and 
process interaction 

level 2 

Interprocess 
communication 
primitives 

level 1 

Internet packet format 
Internet addressing 
Internet routing 

level 0 

Packet transport 
mechanisms 

Part VI • Network Interconnection 

Fig. I. The Pup protocol hierarchy. 

level I: the internet datagram protocol; it is this layer of commonality which 
unifies all of the different networks that might be used at level 0, and which 
makes available a uniform interface to all of the layers above. It is the 
purpose of this level to provide media independence while maintaining the 
common properties of the underlying packet networks. 

The level 2 abstraction is an interprocess communication mechanism: a 
way to move bits without saying much about their form or content. Various 
level 2 protocols provide many combinations of reliability, throughput, 
delay, and complexity. These protocols can be divided into two classes 
according to the amount and lifetime of state information kept by the 
communicating end processes. Connectionless protocols support short-lived 
interactions; the end processes maintain little state, and usually only during 
the exchange of a few Pups-no more than a few seconds. Connection-based 
protocols support sustained interactions, generally requiring substantial 
state to be maintained at both ends, and for longer periods-minutes to 
hours. 

Level 3 adds structure to the data moved at level 2, as well as 
conventions for how processes interact. For example, the file transfer 



Chap. 19 • A Specific Internetwork Architecture 533 

protocol (FTP) consists of a set of conventions for talking about files and a 
format for sending them through a level 2 byte stream protocol connection. 
These are sometimes referred to as function-oriented protocols [4]. 

Above level 3 the dividing lines become blurred, and individual appli­
cations evolve with their own natural decomposition into additional layers. 
With respect to layering of protocols, Pup is similar in many ways to the 
ARPA internet and TCP design [1] and the Open Systems Architecture [32]. 
Unlike the Open Systems Architecture (and others), Pup often has several 
alternative boxes which all rest on a lower level and offer different function­
ality and interfaces to the next higher level. 

G. Naming, Addressing, and Routing 

Names, addresses, and routes are three important and distinct entities 
in an internet [19]: 

The name of a resource is what one seeks, 
an address indicates where it is, and 
a route is how to get there. 

A name is a symbol, such as a human-readable text string, identifying 
some resource (process, device, service, etc.). An address is a data structure 
whose format is understood by level 1 of the internet, and which is used to 
specify the destination of a Pup. A route is the information needed to 
forward a Pup to its specified address. Each of these represents a tighter 
binding of information: names are mapped into addresses, and addresses 
are mapped into routes. Error recovery should successively fall back to find 
an alternate route, then an alternate address, and then an alternate name. 

The mapping from names to addresses is necessarily application­
specific, since the syntax and semantics of names depend entirely on what 
types of entities are being named and what use is being made of them. This 
is dealt with at the appropriate higher levels of protocol. 

An address field, as contained in a Pup, is one of the important 
elements of commonality in the internet design. An end process sends and 
receives Pups through a port identified by a hierarchical address consisting 
of three parts: a network number, a host number, and a socket number. This 
structure reflects the attitude that the communicating parties are the end 
processes, not the hosts' protocol handlers; among other things, this permits 
alternate implementations of a higher-level protocol to coexist in a single 
machine. (In contrast, the ARPA Internet Project [17] takes the position 
that the socket abstraction does not belong at the internet level; therefore, 
ARPA internet addresses contain only network and host numbers. When a 
packet arrives, it is first demultiplexed by the protocol type field in the 
internet header; higher-level protocols such as the TCP, datagram protocol, 



534 Part VI • Network Interconnection 

and packet voice protocol then impose their own concept of socket if they 
find it useful, which, as a practical matter, they all do.) 

The actual process of routing a packet through the Pup internet uses a 
distributed adaptive routing procedure. The source process specifies only 
the destination address and not the path from source to destination. The 
internetwork gateways route Pups to the proper network, a network then 
routes Pups to the proper host, and a host routes Pups to the proper socket. 

This routing process is associated with level I in the protocol hierarchy, 
the level at which packet formats and internet addresses are standardized. 
The software implementing level 1 is sometimes referred to as a router. 
Thus, the routing table itself is kept at level I; a very simple host (or 
gateway) would need only levels 0 and 1 in order to route Pups. But the 
routing table also requires periodic updating, as gateways exchange and 
distribute their current routing information; this routing table maintenance 
protocol is found logically at level 2 of the hierarchy. 

Gateways provide internet routing tables to individual hosts as well as 
to each other. Hosts use this routing information to decide where to send 
outgoing packets destined other than to a directly connected network. 

H. Flow Control and Congestion Control 

Although the terms are often confused, flow control and congestion 
control attack two very different problems in packet-switched communica­
tion, as discussed in Chapter 13. Flow control is a mechanism used to 
regulate the behavior of a specific source and destination pair, so that the 
source does not send data at a rate greater than the receiver can process it. 
In an internet architecture, flow control remains the responsibility of the 
end-to-end protocols, particularly those at level 2 supporting regular stream 
traffic. 

Congestion control, as used in this chapter, is a network-wide mecha­
nism, used to control the number and distribution of packets in the network 
so as to prevent system overload. Internet congestion control is necessary to 
help protect the gateways from being burdened with excessive traffic. 

The Pup datagram-based internet model does not require that the 
internet successfully deliver every packet that has been accepted. Therefore, 
an intermediate gateway which suddenly encounters a period of severe 
congestion is free to discard packets, although the system should be en­
gineered to make this an uncommon event. 

If a gateway is forced to discard an incoming packet because of 
congestion, it should attempt to return some information to the source: an 
error Pup (negative acknowledgment) indicating that a packet had to be 
discarded in midroute. This error Pup is simply returned to the source port, 
as identified in the discarded Pup; this is a good illustration of the value of 



Chap. 19 • A Specific Internetwork Architectnre 535 

including the socket number as part of the standard internet address. The 
source process can use this information to modify its transmission strategies, 
for example, to reduce its offered load (the rate at which it attempts to send 
Pups along the congested path) and thereby help to relieve the congestion. 

Long-term congestion should eventually be reflected in the routing 
information exchanged among gateways, discouraging subsequent traffic 
from attempting to pass through a badly congested area. 

I. Reliable Transport 

Defining datagrams to be less than perfectly reliable is realistic since it 
reflects the characteristics of many existing packet transport mechanisms. 
Probabilistic transmission is basic to the theory of operation of network 
designs such as Ethernet. Even in networks nominally designed to deliver 
correctly sequenced, error-free packets, occasional anomalies may result 
from certain hardware or software failures: an ARPAnet IMP may crash 
while loading the only copy of a packet, or an X.25 virtual circuit may be 
reset. 

As mentioned previously, the Pup internet always has the option of 
discarding packets to relieve congestion, although this is certainly not an 
optimal strategy. This point is of considerable practical importance when 
one considers the complicated measures required to avoid deadlock condi­
tions in the ARPAnet, conditions which are a direct consequence of 
attempting to provide reliable delivery of every packet in a store-and-for­
ward network [13], [14]. Packet management strategies that attempt to 
guarantee perfect reliability must be designed to operate correctly under 
worst case conditions, whereas strategies that have the option of discarding 
packets when necessary need operate correctly only under most conditions. 
The idea is to sacrifice the guarantee of reliable delivery of individual 
packets and to capitalize on the resulting simplicity to produce higher 
reliability and performance overall. 

For some applications, perfectly reliable transport is unneccessary and 
possibly even undesirable, especially if it is obtained at the cost of increased 
delay. For example, in real-time speech applications, loss of an occasional 
packet is of little consequence, but even short delays (or worse, highly 
variable ones) can cause significant degradation [3], [24]. 

Reliable delivery requires maintaining state information at the source 
and destination. The actions of a large class of simple servers, such as giving 
out routing tables or converting names into addresses, are idempotent (i.e., 
may be repeated without incremental effects), and a client of that service 
can simply retransmit a request if no response arrives. These protocols 
reduce to a simple exchange of Pups, with an occasional retransmission by 
the client, but with no state retained by the server. (The server may choose 



536 Part VI • Network Interconnection 

to retain answers to the last few requests to improve response time, but this 
optimization is invisible to the protocol.) 

On the other hand, many applications such as file transfer and terminal 
connection do depend upon fully reliable transmission. In these cases, it is 
perfectly reasonable to build a reliable end-to-end protocol on top of the 
internet datagrams. Ultimately, reliability (by some definition) is always 
required; the issue is where it should be provided. The Pup attitude is that it 
is the responsibility of the end processes to define and implement whatever 
form of reliable transport is appropriate to the situation. 

J. Packet Fragmentation 

It is inevitable that some process will want to send an internet packet 
which is too large to be directly encapsulated for transmission through an 
intermediate network that has a smaller maximum packet size. This problem 
is usually approached with one of two forms of packet fragmentation [20]. 

With internetwork fragmentation, an internet-wide design specifies the 
operations to be performed on a packet that is too large for a network it is 
about to enter. The internet datagram is fragmented into a number of 
smaller internet datagrams, thereafter to be transported independently and 
reassembled at the ultimate destination. This is the approach taken, for 
example, in the ARPA internet design. It requires every destination to have 
procedures for reassembly. 

Alternatively, one may use intranetwork fragmentation (or network­
specific fragmentation): when presented with an oversize packet, the net­
work-specific driver undertakes to fragment the packet in a manner specific 
to that network, to be reassembled by the corresponding driver as the 
packet exits the network (e.g., at the next gateway). This approach confines 
the fragmentation and reassembly procedures to the level 0 modules of hosts 
directly connected to the network in which fragmentation is required. 

The Pup design does not attempt to provide any form of general 
internetwork fragmentation. This complex issue has been simply legislated 
out of existence by requiring that every agent in the internet handle Pups up 
to a standard maximum size, using network-specific fragmentation where 
necessary. 

K. Broadcast Packets 

Broadcast packets are a particularly useful means for locating available 
resources or distributing information to many hosts at once. Some local 
networks, such as the Ethernet, directly support transmission of broadcast 
packets. In store-and-forward systems, however, specialized algorithms are 



Chap. 19 • A Specific Internetwork Architecture 537 

required to propagate a packet efficiently to all hosts [5], [6]; no existing 
store-and-forward networks support any technique besides brute-force 
transmission of a packet to every node, although such a capability is now 
being implemented in the ARPAnet. 

Broadcasts may also be expensive since every host that receives one 
must expend some resources, if only to discard it. In networks where a 
broadcast involves generating more than one packet, there is the additional 
cost of creating and transporting the extra copies. Because of their poten­
tially high cost, internet-wide broadcasts are not presently supported in the 
Pup design. Nor is it clear that such a capability would be desirable, since it 
would not extend well to a very large internet. The problem of locating 
distant resources in t):le internet at reasonable cost is a topic of current 
research. 

But Pups can be broadcast on a single network; they are frequently 
used to locate nearby resources, or to permit gateways to announce their 
presence on a network. Implementation of the broadcast procedure is left to 
the network-specific driver, using the best technique available on that net. 

L. Privacy and Security 

It must be recognized that in practical internet environments, packets 
may be delivered to the wrong host, intercepted by another host, or 
generated by a host masquerading as some other host. To prevent this 
would require one to interpose some agent between hosts and the internet 
and to specify a secure access control procedure. This would significantly 
increase the complexity of the internet, and truly suspicious users would 
probably not trust it anyway. 

Processes are encouraged, however, to ensure the privacy and 
authenticity of their communication by whatever end-to-end encryption 
techniques seem appropriate [16]. Particularly vulnerable components, such 
as gateways and servers, should take precautions to protect their own 
integrity, but ultimate. responsibility rests with the end processes. The Pup 
internet does not attempt to protect users from traffic analysis or from 
malicious replay of previous traffic. 

III. Implementation 

The preceding section has outlined some of the important properties of 
the Pup architecture and the internetworking issues it addresses. What 
follows is a more detailed description of the present design of the four major 
layers in the system. 



538 Part VI • Network Interconnection 

A. Level 0: Packet Transport 

An individual network moves network-specific packets among hosts; 
the addressing schemes, error characteristics, maximum packet sizes, and 
other attributes of networks vary greatly. An internetwork packet transport 
mechanism, however, moves Pups between hosts. The level 0 code which 
transforms a network into an internet packet transport mechanism is called 
a network driver. 

A machine connected to a single network, therefore, has one level 0 
network driver; a gateway has one driver for each directly connected 
network. Only the driver knows about the peculiarities of a network's 
hardware interface and low-level protocol. 

The interface between levels 0 and 1 is very simple. Level 1 passes 
down a Pup and a network-specific host address, and the driver encapsu­
lates the Pup and does its best to deliver it to the specified host. When a 
Pup arrives at a host, the driver decapsulates it and passes it up to level 1; if 
for any reason the Pup looks suspicious (as determined by network-specific 
error checking), the driver discards it. 

Every packet transport mechanism must be able to accept a maximum­
size Pup; if the actual network cannot directly encapsulate a packet of that 
size for transmission, the driver must include some form of intranetwork 
fragmentation. 

A network driver may also be asked to broadcast a packet to all other 
hosts on that net. On some networks this is straightforward; on others it 
may require use of a reverse-path forwarding algorithm [6] or brute-force 
replication of the packet to each destination. 

The transport mechanisms do not have to be perfectly reliable, but they 
should be successful most of the time-a packet loss rate of less than 1 
percent is usually acceptable. A network operating for a short time in a 
degraded mode with a higher loss rate is harmless, so long as the probability 
is low that Pups will transit more than one net that is in this condition. 
However, if a network's inherent error characteristics are unfavorable, the 
driver should take steps to improve its performance, perhaps by incorporat­
ing a network-specific low-level acknowledgment and retransmission proto­
col. 

To date, there have been five major types of networks integrated into 
the Pup architecture, each with a different level 0 driver. 

Ethernet. Local Ethernet facilities can very easily serve as transport 
mechanisms for Pups: a Pup fits in an Ethernet packet with only a few 
additional words of encapsulation (see Fig. 2), and requires no fragmenta­
tion. These systems have good reliability, high speed, and can send broad­
cast packets [15], [21], [22]. 

MeA. The Multiprocessor Communications Adapter (MCA), a parallel 
TDM bus, serves as a local network tying together a limited number of 



Chap. 19 • A Specific Internetwork Architecture 

4 bytes 

20 bytes 

532 bytes 

2 bytes 

2 bytes 

4 bytes 

20 bytes 

532 bytes 

2 bytes 

{ Ethernet Header 

{ Internet Header 

-
Internet Data 

{ Internet Checksum 

{ Ethernet Checksum 

Ethernet Encapsulation 

{ Arpanet Header 

{ Internet Header 

- Internet Data 
:--

{ Internet Checksum 

Arpanet Encapsulation 

Pup Internet Header 
20 bytes 

Pup Internet Data 
532 bytes 

Pup Internet Checksum 

Pup Internet Datagram 
(maximum length) 

f--

f--

PRNet Header 

Fragmentation etrl 

Internet Header 

Internet Data 

PRNet Checksum 

PRNet Header 

Fragmentation etrl 

Internet Data 

PRNet Checksum 

} 22 bytes 

} 4 bytes 

} 20 bytes 

}mo_ 
} 4 bytes 

} 22 bytes 

F~ 
} 4 bytes 

PRNet Header } 22 bytes 

Fragmentation etrl } 4 bytes 

Internet Data } 96 bytes 

Internet Checksum } 2 bytes 

PRNet Checksum } 4 bytes 

Packet Radio Encapsulation 

Fig. 2. Pup encapsulation in various networks. 

539 

Nova computers [7]. It has good reliability and requires no fragmentation, 
but does not support broadcast packets. Broadcasts are accomplished by the 
brute-force method, sending a copy of a broadcast packet to each of the 
possible hosts. 

ARPAnet. To cover longer distances, Pups can be routed through the 
ARPAnet; the format for encapsulating a Pup in an ARPAnet message is 
shown in Fig. 2. (Note that ARPAnet Pup transport is based on host-IMP 
protocol messages, not on host-host protocol streams.) Because the stan­
dard maximum Pup length is less than that of an ARPAnet message, the 
driver itself need not fragment Pups; however, the ARPAnet does perform 
network-specific fragmentation internally: one "message" containing a Pup 
may become multiple "packets" within the ARPAnet. Furthermore, the 
ARPAnet provides increased reliability through the use of its own internal 
acknowledgment and retransmission protocols. The ARPAnet does not pres­
ently support broadcast packets; rather than sending packets to all possible 
ARPAnet hosts, the network driver does not implement broadcasts at all. 

Leased Line Store-and-Forward Network. More frequently, different 
local networks are interconnected over long distances through the use of a 



540 Part VI • Network Interconnection 

private store-and-forward network constructed using leased telephone cir­
cuits. Similar in spirit to the ARPAnet, this system is used to connect 
internetwork gateways. Unlike the ARPAnet, the system does not use 
separate packet switches (IMP's), but instead switches packets through the 
hosts themselves; that is, the connected hosts include network-specific 
drivers that implement a store-and-forward network. This network has its 
own adaptive routing procedure, independent of the internetwork routing. 
The system is fairly reliable and does not require low-level acknowledg­
ments. At present, the network drivers do not fragment Pups, but they do 
promote small packets to the front of transmission queues at intermediate 
points to help improve performance for interactive traffic. 

Packet Radip Network. On an experimental basis, the ARPA packet 
radio network [10] has been used to carry traffic among local networks in 
the San Francisco Bay area. The packet radio network was integrated into 
the system by building a suitable level 0 network driver [23]. The system 
provides good reliability; but due to the relatively small maximum packet 
size (232 bytes), the driver must perform fragmentation and reassembly (see 
Fig. 2). Though using a broadcast medium, the packet radio protocols do 
not support broadcast packets. In this case, the low-level driver includes a 
procedure to periodically identify packet radio hosts that might be running 
Pup software; when asked to broadcast a packet, the driver sends copies of 
it to all such hosts. 

To date we have not used any public packet-switched networks, such as 
Telenet, as packet transport mechanisms. These systems usually provide 
only a virtual circuit interface (X.25) that requires a user to pay for 
functionality that may not be needed. Compared to our existing leased line 
network, a Telenet-based packet transport mechanism would not be cost­
effective except under conditions of very light traffic volume. We would 
prefer to use a service that provided simple, unreliable datagrams; if there 
were an appropriate interface, we could dismantle our leased line store­
and-forward network. 

B. Levell: Internetwork Datagrams 

This is the level at which packet formats and internetwork addresses 
are standardized. It is the lowest level of process-to-process communication. 

(1) Pup Format. The standard format for a Pup is shown in Fig. 3. The 
following paragraphs highlight the sorts of information required at the 
internet datagram level. 

The Pup length is the number of 8-bit bytes in the Pup, including 
internetwork header (20 bytes), contents, and checksum (2 bytes). 

The transport control field is used for two purposes: as a scratch area 
for use by gateways and as a way for source processes to tell the internet 



Chap. 19 • A Specific Internetwork Architecture 

Pup Header 
(20 bytes) 

I-

I-

Pup Length 

Transport Control I Pup Type 

Pup Identifier 

Destination Network I Destination Host 

Destination Socket 

Source Network I Source Host 

Source Socket 

Data 
(0 to 532 bytes) 

Pup Software Checksum 

-

-

-

.... o(f------- Two Bytes --------J)o~ 

Fig. 3. The Pup internet datagram. 

541 

} 
Destination 
Port 

} Source 
Port 



542 Part VI • Network Interconnection 

how to handle the packet. (Other networks call this the "facilities" or 
"options" field.) The hop count subfield is incremented each time the packet 
is forwarded by a gateway. If this ever overflows, the packet is presumed to 
be traveling in a loop and is discarded. A trace bit is specified, for potential 
use in monitoring the path taken by a packet. 

The Pup type is assigned by the source process for interpretation by the 
destination process and defines the format of the Pup contents. The 256 
possible types are divided into two groups. Some types are registered and 
have a single meaning across all protocols; Pups generated or interpreted 
within the internet (e.g., by gateways) have types assigned in this space. 
Interpretation of the remaining unregistered types is strictly a matter of 
agreement between the source and destination processes. 

The Pup identifier is used by most protocols to hold a sequence 
number. Its presence in the internetwork header is to permit a response 
generated within the internet (e.g., error or trace information) to identify the 
Pup that triggered it in a manner that does not depend on knowledge of the 
higher-level protocols used by the end processes. 

Pups contain two addresses: a source port and a destination port. These 
hierarchical addresses include an 8-bit network number, an 8-bit host 
number, and a 32-bit socket number. Hosts are expected to know their own 
host addresses, to discover their network numbers by locating a gateway 
and asking for this information, and to assign socket numbers in some 
systematic way not legislated by the internet protocol. 

There are some important conventions associated with the use of 
network addresses. A distinguished value of the network number field refers 
to "this network" without identifying it. Such a capability is necessary for 
host initialization (since most hosts have no permanent local storage and 
consequently no a priori knowledge of the connected network number), and 
to permit communication to take place within a degenerate internet consist­
ing of an unidentified local network with no gateways. A distinguished 
value of the destination host address is used to request a broadcast. Certain 
values of the socket number field refer, by convention, to "well-known 
sockets" associated with standard, widely used services, as is done in the 
ARPAnet. 

The data field contains up to 532 data bytes. The selection ofa 
standard maximum packet length must reflect many considerations: error 
rates, buffer requirements, and needs of specific applications. A reasonable 
value might range anywhere from lOO to 4000 bytes. In practice, much of 
the internet traffic consists of packets containing individual "pages" of 512 
bytes each, reflecting the quantization of memory in most of our computers. 
But just carrying the data is not enough, since the packet should accommo­
date higher-level protocol overhead and some identifying information as 
well. Allowing 20 additional bytes for such purposes, we arrive at 532 bytes 



Chap. 19 • A Specific Internetwork Architecture 543 

as the maximum size of the data field (a somewhat unconventional value in 
that it is not a power of 2). Thus, there may be between 0 and 532 content 
bytes in a Pup, so its total length will range from 22 to 554 bytes. Pups 
longer than 554 bytes are not prohibited and may be carried by some 
networks, but no internetwork gateway is required to handle larger ones. 

The optional software checksum is used for complete end-to-end cover­
age-it is computed as close to the source of the data and checked as close 
to the ultimate destination as is possible. This checksum protects a Pup 
when it is not covered by some network-specific technique, such as when it 
is sitting in a gateway's memory or passing through a parallel I/0 path. 
Most networks employ some sort of error checking on the serial parts of the 
channel, but parallel data paths in the interface and the I/O system often 
are not checked. 

The checksum algorithm is intended to be straightforward to imple­
ment in software; it also allows incremental updating so that intermediate 
agents which modify a packet (gateways updating the hop count field, for 
example) can quickly update the checksum rather than recomputing it. The 
checksum may (but need not) be checked anywhere along a Pup's route in 
order to monitor the internet's integrity. 

(2) Routing. Accompanying the packet format defined at level 1 are the 
protocols for internetwork routing. Each host, whether or not it is a 
gateway, executes a routing procedure on every outgoing Pup, as illustrated 
in Fig. 4. This procedure decides, as a function of the Pup destination port 
field, upon which directly connected network the Pup is to be transmitted (if 
there is more than one choice), and it yields an immediate destination host 
which is the address on that network of either the ultimate destination or 
some gateway believed to be closer to the destination. Each routing step 
employs the same algorithm based on local routing information, and each 
Pup is routed independently. 

Routing information is maintained in a manner very similar to the 
ARPAnet-style adaptive procedures [12]. The initial metric used for select­
ing routes is the "hop count," the number of L..termediate networks between 
source and destination. The protocol for updating the routing tables involves 
exchanging Pups with neighboring gateways and rests logically at level 2 of 
the protocol hierarchy. This is an example of a connectionless protocol 
which does not require perfectly reliable transmission for correct operation. 
Changes in internetwork topology may cause different gateways' routing 
tables to become momentarily inconsistent, but the algorithm is stable in 
that the routing tables rapidly converge to a consistent state and remain that 
way until another change in topology occurs. 

A host which is not a gateway still implements a portion of this level 2 
routing update protocol: it initially obtains an internetwork routing table 
from a gateway on its directly connected network, and it obtains updated 



544 

Source host 

Pup destination 
network = B 

------+..., host = d 
,-____ L-___ --, socket = p 

Immediate 
destination 

------1---1 network = A 

host = 9 

Network B 

Pup destination 
network = B 

------+-1 host = d 

socket = p 

Part VI • Network Interconnection 

Network A 

Pup destination 
network = B 

------+-1 host = d 

socket = p 

Immediate 
destination 

------+-1 network = B 
host = d 

Fig. 4. Internetwork routing. 



Chap. 19 • A Specific Internetwork Architecture 545 

information periodically. If there is more than one gateway providing 
connections to other networks, the host can merge their routing tables and 
thus be able to select the best route for packets directed to any network. 

C. Level 2: Interprocess Communication 

Given the raw datagram facility provided at levell, we can begin to 
build data transport protocols, tailored to provide appropriate levels of 
reliability or functionality for real applications. 

These protocols generally fall into two categories: those in which a 
connection is established for a sustained exchange of packets, and those in 
which individual packets are exchanged on a connectionless basis. Connec­
tion-style protocols usually transport data very reliably, and transparently. 

EFTP-The Easy File Transfer Protocol. This is a very simple protocol 
for sending files. Each data Pup gives rise to an immediate acknowledg­
ment, and there is at most one Pup outstanding at a time. This protocol is 
an indirect descendant of the one outlined in [15]. Its simplicity makes this 
piece of communication mechanism easy to include under conditions of very 
limited resources. For example, we have implemented a complete EFTP 
receiver in 256 words of assembly language, for use in a network-based 
bootstrap and down-line loading process. 

Rendezvous and Termination Protocol (RTP). This is a general means to 
initiate, manage, and terminate connections in a reliable fashion [28]. In 
normal use, an RTP user initiates a connection by communicating with a 
well-known socket at some server. That server will spawn a new. port to 
actually provide the service, and the RTP will establish contact with this 
port. It employs a nonreusable connection identifier to distinguish among 
multiple instantiations of the same connection and to cope with delayed 
packets without making assumptions about maximum packet lifetimes. RTP 
also synchronizes Pup identifiers for use in managing the connection. 

Byte Stream Protocol (BSP). This is a relatively sophisticated protocol 
for supporting reliable, sequenced streams of data. It provides for multiple 
outstanding packets from the source, and uses a moving window flow 
control procedure. User processes can place mark bytes in the stream to 
identify logical boundaries and can send out-of-band interrupt signals. RTP 
and BSP combined perform a function similar to that of the TCP, with 
which they share a certain degree of common ancestry [1], [17]. 

Connectionless protocols do not attempt to maintain any long-term 
state; they usually do not guarantee reliability, but leave it up to the 
designer to construct the most suitable system. Their simplicity and ease of 
implementation make them extremely useful. 

Echo. A very simple protocol can be used to send test Pups to an echo 
server process, which will check them and send back a reply. Such servers 



546 Part VI • Network Interconnection 

are usually embedded in gateways and other server hosts, to aid in network 
monitoring and maintenance. The server is trivial to implement on top of 
the level I facilities. 

Name Lookup. Another server provides the mapping from string names 
of resources to internetwork addresses; this is accomplished by a single 
exchange of packets. This service is often addressed with a broadcast Pup, 
since it is used as the first step in locating resources. (The name lookup 
service itself, of course, must be located at a well-known address. To be 
useful, it must be widely available; therefore, it is typically replicated at 
least once per network.) 

Routing Table Maintenance. The internetwork routing tables are main­
tained by Pups exchanged periodically among internetwork gateways and 
broadcast for use by other hosts. 

Page-Level File Access. The Woodstock file server (WFS), one of the 
family of file servers available on the internet, provides page-at-a-time 
access to a large file store [29]. The protocols used for this do not require 
establishment of a connection, but merely exchange request and response 
Pups that each carry both commands and file data. This arrangement 
supports random-access, transaction-oriented interactions of very high per­
formance, frequently better than that obtained using local file storage, 
because the file server's disks are much faster than those typically connected 
to personal computers. 

Gateway Monitoring and Control. There is no single network control 
center, but individual gateways may be queried from a monitoring program 
run on any user machine. With suitable authentication, the user may assume 
remote control of the gateway so as to perform operations such as' changing 
parameters and loading new versions of the software. 

Other connectionless protocols are used to access a date and time 
server, an authentication server, and a mail check server integrated with an 
on-line message system. These protocols are designed to be as cheap as 
possible to implement (i.e., without connection overhead) so that such 
servers may be replicated extensively and accessed routinely without con­
suming excessive resources. For example, instances of some of these servers 
are present in all gateway hosts so as to maximize their availability. 

D. Level 3: Application Protocols 

Armed with a reasonable collection of data transport protocols at level 
2, one can begin to evolve specific applications at level 3. These are 
supported by various function-oriented protocols [4]. 

Telnet. Terminal access to remote hosts is provided with an internet­
work Telnet protocol, which makes use of the combination of the ren­
dezvous and termination protocol (RTP) and the byte stream protocol 



Chap. 19 • A Specific Internetwork Architecture 547 

(BSP) at level 2. Using the notion of a virtual terminal, Telnet implementa­
tions map characteristics of actual terminals into a network-independent 
representation; a mark byte in the stream and an out-of-band interrupt, for 
example, are used to signal an "attention." (This approach is a subset of the 
ARPAnet Telnet protocol, without any of its options such as RCTE [8], [9].) 

FTP. The RTP and BSP are again combined as the foundation for an 
internetwork file transfer protocol (FTP), supporting stream-oriented access 
to files. The underlying byte streams provide reliable communication, and 
the major task of FTP is to communicate commands and responses and to 
sort out different representations of data in different file systems. FTP 
implementations have been embedded within existing time-sharing systems, 
and also constitute the .core of dedicated, high-capacity file servers. 

Printing. Among the important shared resources in the internet are 
high-quality printing servers. Rather than using the fully developed BSP and 
FTP, the specialized task of sending unnamed, standard format document 
files to a printer makes use of the more restricted but much simpler EFTP. 

CopyDisk. Given high-performance networks and simple gateways that 
can forward Pups among them efficiently, it is perfectly reasonable to copy 
entire disk packs through the internet. The CopyDisk protocol negotiates 
between the participating machines to ensure that the disks are compatible, 
and handles error recovery should something break down. 

Remote Graphics. Personal display-oriented computers such as the Alto 
can be used to provide a convivial front end for large programming systems 
such as Interlisp. The Alto Display protocol is used for exchanging descrip­
tions of graphical structures as well as text; it is similar to the ARPA 
network graphics protocol, but with extensions to support raster-scanned 
graphics [24], [25], [30]. 

Additional applications have included cooperative editing of common 
documents from multiple machines, audio communication and packet voice, 
and many others. 

As users create new applications, these systems tend to develop their 
own natural layering offunction. Some may require new protocol designs in 
the existing heirarchy; the Pup architecture permits this degree of flexibility 
down to the level of the simple internetwork datagram. As we gain experi­
ence with new systems, common pieces of design will begin to emerge that 
might be of more general use; they will eventually find their way into an 
appropriate place in this hierarchy of communications protocols. 

IV. Evolution, Actual Experience, and Performance 

The Pup architecture emerged against a background of ARPAnet 
protocols. Many of its important ideas-and those of its key relative, TCP 



548 Part VI • Network Interconnection 

- first appeared during the course of a series of meetings of the Interna­
tional Network Working Group (IFIP TC-6 WG6.l) during 1973. Pup and 
TCP share a number of important principles, most notably that of reliable 
end-to-end transmission through an internet. Pup subsequently diverged 
from TCP as the desire for implementation within Xerox required decou­
pIing it from TCP's long and sometimes painful standardization process. 

The fundamentals of the Pup design crystallized in 1974 and have 
remained essentially unchanged since then. During this interval many 
higher-level protocols have been developed, the implementations have 
evolved considerably, and the internetwork system has grown to include 
approximately 1000 hosts, attached to 25 networks of 5 different types, 
using 20 internetwork gateways. The system is in regular use, is quite stable, 
and requires little regular maintenance or attention. 

From a functional point of view, this internetwork architecture has 
been able to fulfill the needs of a very diverse community. While the bulk of 
all traffic is carried by means of a few standard protocols, it has proven 
extremely valuable to be able to define new protocols-aiming at different 
points in the space of performance, cost, and functionality-and to fit them 
into the internet protocol hierarchy at any of several levels. 

In terms of performance, the internetwork gateways impose very little 
overhead because they are so simple. In regions of the internet where 
multiple high-bandwidth local networks are interconnected directly by a 
single minicomputer-based gateway, there is almost no noticeable difference 
between intranet and internet performance. Total throughput in an individ­
ual gateway is high, ranging from 400 to 1000 kbit/s (depending on the 
particular implementation), and the typical delay experienced by 
maximum-length Pups in the case just mentioned is 2 to 5 ms. 

These figures do not represent limits to what is achievable, even with 
the relatively low-powered machines now being used as gateways, because 
the gateway software has not been highly tuned for this application but 
rather is based on general-purpose software packages that are also used in 
many other hosts. But the current performance is adequate because the 
internetwork traffic load is typically only a tiny fraction of the capacity of 
the underlying local network channels. There exists one Alto-based gateway 
that interconnects three 3-Mbit/s Ethernet channels as well as several 
9.6-kbitjs leased lines and a packet radio interface. In general the bot­
tlenecks are not the gateways but rather the slower communication chan­
nels; discard of Pups due to congestion in gateways is almost exclusively 
due to overload of the 9.6-kbit/s lines. 

As might be expected, most of the traffic in our local networks is 
intranetwork, that is, consisting of Pups whose source and destination are 
on the same network. For example, measurement of one such network has 
shown a typical volume of 2.2 million packets per day, 72 percent of which 



Chap. 19 • A Specific Internetwork Architecture 549 

are intranetwork packets [22]. Furthermore, of the remaining 28 percent, 
more than half consist of traffic to or from another nearby local network 
connected via a single gateway. (This site is served by multiple local 
networks because it is too large to cover with a single one using existing 
Ethernet technology, and also because it would exhaust a single network's 
address space.) The rest of the traffic-some 250000 packets per day-is 
transported to or from other campuses in the internet, mostly via the leased 
line network. 

The higher-level protocols, such as the byte stream and FTP, are 
generally limited in performance by the processor capacity or the secondary 
storage bandwidth at the source and destination. For example, our BCPL 
implementation of BSP can maintain a data stream at the rate of about 500 
kbit/s between end processes running on Alto minicomputers, at which 
point both machines are CPU-bound. While it is certainly adequate for 
most applications, we find this performance somewhat disappointing, and 
we view it as an indication that BSP-although substantially simpler than 
say, TCP-is still too complicated a protocol for high-performance com­
munication. 

The Pup architecture allows individual networks to be added to the 
internet system on an ad hoc basis, with no need for central control or 
coordination except to assign new network numbers. Users sharing a local 
network can assemble gateways and lease lines to other nearby gateways; 
they are encouraged to make multiple intergateway connections to provide 
alternate routes and thereby reduce the probability of being isolated. The 
gateway software has evolved to the point where if one starts a copy of it on 
a host having at least one connection to the existing internet, it will 
automatically obtain the files and other information it needs, announce its 
availability to the rest of the internet, and begin forwarding Pups. 

V. A Retrospective Critique, Possible Improvements, 
and Future Research 

While the architecture works extremely well, there are some lessons to 
be learned from this experience. 

A. Addressing and Routing 

The size of address fields is a question of continuing controversy. An 
8-bit network number supports up to 256 nets; that is fine for now, but 
eventually it should be made larger. To date, 256 hosts per net has not been 
a problem, though it is likely to become one (for example, when the 



550 Part VI • Network Interconnection 

ARPAnet's new 24-bit addressing convention starts to receive wide use). We 
have avoided variable-length address fields in the Pup design because they 
increase per-packet processing costs. 

If an internetwork system becomes extremely large, the number of 
networks becomes so great that it is no longer practical for all hosts to keep 
routing table entries for all possible destination networks. Area routing 
strategies may be employed to attack this problem [12]. Alternatively, one 
may adopt a scheme in which the local routing table becomes a cache of 
recently used routing information, with routes to specific networks com­
puted and maintained as needed. The problem of locating routes to distant 
parts of the internet is an area of current research. 

One could consider revising the entire notion of a hierarchical address 
space. Under the current design, it is sometimes necessary to change the 
host number of a machine which is moved from one net to anther-an 
operational annoyance. It is conceivable that every host could be given a 
unique address within a flat address space; a more sophisticated mechanism 
would then be needed to map addresses into routes, since there would no 
longer be a network number as part of the address (except perhaps as a hint, 
to improve performance). 

We view with some disfavor nonhierarchical organizations in which 
internet addresses consist of a concatenation of network-specific addresses 
[27]. Such arrangements have the effect of fixing the path to a given 
destination and blur the distinction between addressing and routing. 

Socket numbers, which are now 32 bits wide, could easily shrink to 16. 
Originally, 32 bits were assigned to allow inclusion of a unique sub field to 
distinguish among m}lltiple instantiations of a connection; we now recog­
nize that a better approach is to use a distinct connection identifier at the 
time a connection is established, as mentioned earlier in the presentation of 
the rendezvous and termination protocol. 

Using hop counts as the metric for routing decisions has worked 
remarkably well. An obvious drawback, however, is that it considers a hop 
through a 9.6-kbitjs phone line equally as good as a hop through a 
3-Mbitjs Ethernet link. As the topology becomes more richly connected, 
this will increasingly become a problem. We intend eventually to change the 
routing algorithms to reflect some consideration of bandwidth and delay, 
using known techniques based on research into adaptive distributed routing 
algorithms in the ARPAnet and elsewhere. 

We have given little consideration to source routing or other forms of 
advice (e.g., class of service) provided to the internet routing procedures by 
source processes. In providing such facilities, one must take great care not to 
compromise the simplicity of the basic internet datagrams or violate the 
layering of protocols. 



Chap. 19 • A Specific Internetwork Architecture 551 

B. Congestion Control and Utilization of Low-Bandwidth Channels 

The current congestion control techniques must be regarded as primi­
tive. Discarding Pups and (where possible) notifying the source process 
when congenstion occurs has the virtue of simplicity, and we believe it is a 
good general approach; but the present design has several defects. Insuffi­
cient information is returned to the source process to enable it to make an 
informed decision about how to proceed; further, the discard of Pups is 
haphazard, and no provision is made for fairness. Congestion occurs most 
often at the entry to slow channels, and under overload conditions the 
perceived performance of paths through those channels is highly variable. 

This is a situation in which it would be appropriate to perform a 
relatively large amount of computation per packet in order to optimize the 
utilization of the communication bandwidth. For example, the network­
specific driver for a leased telephone circuit could examine the source and 
destination addresses of Pups to deduce the existence of "conversations," 
and use this information to share the slow channel more effectively. (The 
ARPAnet IMPs deduce conversations in precisely this way, though for 
purposes having to do primarily with flow control rather than congestion 
control.) 

In the same vein, techniques such as code compression, elimination and 
regeneration of identical internet headers in successive packets, etc., may be 
implemented in the network-specific drivers for the slow channels, with 
minimal impact on the end-to-end protocols. Such techniques are used 
widely in virtual circuit designs, and their applicability is sometimes cited as 
an advantage of virtual circuits over datagrams [18]. But there is no reason 
they cannot be employed in a datagram-based internet, so long as the 
necessary additional computation is done in the right place. 

The important point is that optimizing the utilization of the com­
municatin channel is appropriate only when the channel bandwidth is 
scarce compared to the computation required to perform such optimization. 
Where the processing capacity of the end machines is itself the scarce 
resource, as we have observed in the local network environment, such 
techniques are highly inappropriate. 

C. Pup Types in the Internet Header 

The distinction between registered and unregistered Pup types at the 
level of itnernet datagrams has not turned out to be particularly useful, 
except in a few cases: Pups of type "error" and "trace" may be generated 
from within the internet without knowledge of the higher-level protocols 
being employed by the end processes. 



552 Part VI • Network Interconnection 

D. Performance of Reliable End-to-End Protocols 

Present implementations of the byte stream protocol include fairly 
sophisticated adaptive flow control heuristics that also try to take note of 
any packets lost due to internet congestion. This approach has worked 
reasonably well in enabling a source to adapt to the conditions encountered 
along the path to a particular destination. However, use of networks with 
highly variable behavior, such as the wide-ranging delays experienced when 
using the packet radio network, can confound these heuristics. Under 
unusual circumstances, the flow control procedures have been observed to 
move suddenly into very unfavorable operating regions. The difficulty 
involving the radionet has since been solved, but the general design of 
simple, effective flow control and congestion control procedures is just a 
very hard problem, particularly procedures intended to adapt dynamically 
to and make good use of different networks whose performance may vary 
by nearly three orders of magnitude. 

The step from raw Pups to a byte stream may be too large. The byte 
stream protocol does too much for many applications; it is complex enough 
that few systems have ever implemented the entire specification. As dis­
cussed previously, performance of the BSP, when compared to some other 
systems, is reasonable; but it does not give a user the full capacity of the 
underlying networks. In a high-bandwidth local network environment, 
paying attention to per-packet processing overhead is of extreme impor­
tance. 

We have considered, but have not yet implemented, a proposal for an 
intermediate level of functionality: a reliable packet protocol (RPP) that 
takes care of connection establishment and processes flow control informa­
tion, but tries not to dictate how a client program should do buffer 
management. It ensures reliable delivery (i.e., each packet once and only 
once), but may deliver packets to the client out of order, and does not 
deliberately attempt to hide packet boundaries. A BSP connection, where 
that is what is desired, may then be reimplemented as a veneer on top of an 
RPP connection. 

E. Access to the Internet 

The present Pup architecture can be characterized as "open": users and 
applications are permitted, and indeed encouraged, to take advantage of the 
internet for routine communication. Access to the internet is uncontrolled; 
as in many network designs, responsibility for access control rests with the 
host systems, and whatever accounting is performed is for the services 
rendered by individual servers. In our research and development environ­
ment this is ideal, but obviously in some other environments it might not be. 



Chap. 19 • A Specific Internetwork Architecture 553 

F. Conclusions 

The success of Pup as an internetwork architecture depends on a 
number of important principles. Key among these is the layering of function 
in such a way that applications may make use of the internet at any of 
several levels, with the ability to choose among alternative protocols at each 
level or to develop new ones where necessary. Simple internetwork data­
grams constitute the level at which media independence (through encapsula­
tion) is achieved; they are also the unit of direct process-to-process 
communication. This is crucial both to flexibility and to performance, 
particularly in an internetwork environment dominated by relatively 
lightweight hosts and high bandwidth local networks. 

During 1976, the Pup internet reached a level of functionality roughly 
equivalent to that provided by the standard ARPAnet protocols-byte 
streams, Telnet, and FTP. From that time to the present we have con­
centrated on building servers and constructing applications to access them 
through the internet. We are just beginning to explore that area of interpro­
cess communication traditionally considered the domain of multiprocessors. 
Some interesting opportunities arise from the availability of 100 or so 
minicomputers interconnected by a 3-Mbitjs broadcast channel, and by ten 
or so similar clusters, all interconnected by a store-and-forward network. 
We believe that the Pup architecture serves as a good foundation for such 
investigations. 

References 

[1] V. G. Cerf and R. E. Kahn, "A protocol for packet network intercommunication," IEEE 
Trans. Commun., vol. COM-22, pp. 637-648, May 1974. 

[2] V. G. Cerf and P. T. Kirstein, "Issues in packet-network interconnection," Proc. IEEE, 
vol. 66, pp. 1386-1408, Nov. 1978. 

[3] D. Cohen, "Issues in transnet packetized voice communication," presented at the 5th 
Data Commun. Symp .• Snowbird, UT, Sept. 1977. 

[4] S. D. Crocker, 1. F. Heafner, R. M. Metcalfe, and J. B. Postel, "Function-oriented 
protocols for the ARPA computer network," in AFIPS Conf. Proc. Spring Joint Comput. 
Conf.. vol. 40, 1972. 

[5] Y. K. Dalal, "Broadcast protocols in packet switched computer networks," Stanford 
Univ. Digital Syst. Lab .• Tech. Rep. 128, Stanford, CA, Apr. 1977. 



554 Part VI • Network Interconnection 

[6] Y. K. Dalal and R. M. Metcalfe, "Reverse path forwarding of broadcast packets," 
Commun. Ass. Comput. Mach., vol. 21, Dec. 1978. 

[7] Data General Corp., "Type 4038 multiprocessor communications adapter," Tech. Ref. 
014-000002-01, Sept. 1971. 

[8] J. Davidson, W. Hathaway, J. Postel, N. Mimno, R. Thomas, and D. Walden, "The 
ARPANET Telnet protocol: Its purpose, principles, implementation, and impact on host 
operating system design," in Proc. 5th Data Communc. Symp., Snowbird, UT, Sept. 1977. 

[9] E. Feinler and J. Postel, Eds., "Telnet protocol specification," in Arpanet Protocol 
Handbook, Jan. 1978. 

[10] R. E. Kahn, S. A. Gronemeyer, J. Burchfiel, and R. C. Kunzelman, "Advances in packet 
radio technology," Proc. IEEE, vol. 66, pp. 1468-1496, Nov. 1978. 

[II] A. C. Kay, "Microelectronics and the personal computer," Sci. Amer., vol. 237, Sept. 
1977. 

[12] J. M. McQuillan "Adaptive routing algorithms for distributed computer networks," 
Ph.D. dissertation, Harvard Univ., Cambridge, MA, 2831, Bolt Beranek and Newman, 
Rep. 2831, May 1974. 

[13] 1. M. McQuillan and D. C. Walden, "The ARPANET design decisions," Comput. Networks, 
vol. I, Aug. 1977. 

[14] R. M. Metcalfe, "Packet communication." Ph.D. dissertation, Harvard Univ., Cam­
bridge, MA. M.I.T. Project Mac TR-114, Dec. 1973. 

[IS] R. Metcalfe and D. Boggs, "Ethernet: Distributed packet switching for local computer 
networks," Comm. Ass. Comput. Mach., vol. 19, July 1976. 

[16] R. Needham and M. Schroeder, "Using encryption for authentication in large networks 
of computers," Comm. Ass. Comput. Mach., vol. 21, Dec. 1978. 

[17] J. Postel, "Internetwork protocol approaches," this book, Chapter 17. 
[18] L. G. Roberts, "The evolution of packet switching," Proc. IEEE, vol. 66, pp. 1307-1313, 

Nov. 1978. 
[19] J. F. Shoch, "Internetwork naming, addressing, and routing," in Proc. 17th IEEE 

Comput. Soc. Int. Conf. (CompCon), Sept. 1978. 
[20] J. F. Shoch, "Packet fragmentation in internetwork protocols," Comput. Networks, vol. 3, 

Feb. 1979. 
[21] J. F. Shoch, "Design and performance of local computer networks," Ph.D. dissertation, 

Stanford Univ., Stanford, CA, University Microfilms, Aug. 1979. 
[22] J. F. Shoch and 1. A. Hupp, "Performance of an Ethernet local network-A preliminary 

report," in Proc. Local Area Network Symp., Boston, MA, May 1979. 
[23] J. F. Shoch and L. Stewart, "Interconnecting local networks via the packet radio 

network," in Proc. 6th Data Comm. Symp., Pacific Grove, CA, Nov. 1979. 
[24] R. F. Sproull and D. Cohen, "High-level protocols," Proc. IEEE, vol. 66, pp. 1371-1386, 

Nov. 1978. 
[25] R. Sproull and E. Thomas, "A network graphics protocol," Comput. Graphics, vol. 8, Fall 

1974. 
[26] c. Sunshine, "Interconnection of computer networks," Comput. Networks, vol. I, Jan. 

1977. 
[27] c. Sunshine, "Source routing in computer networks," ACM Comput. Commin. Rev., vol. 

7, Jan. 1977. 
[28] C. Sunshine and Y. Dalal, "Connection management in transport protocols," Comput. 

Networks, vol. 2, Dec. 1978. 
[29] D. Swinehart, G. McDaniel, and D. Boggs, "WFS: A simple shared file system for a 

distributed environment," Oper. Syst. Rev., vol. 13, Nov. 1979. 
[30] W. Teitelman, "A display-oriented programmer's assistant," in Proc. 5th Int. Joint Conf. 

on Artificial Intelligence, Cambridge, MA, Aug. 1977; also available as Xerox PARC 
Tech. Rep. CSL-77-3. 



Chap. 19 • A Specific Internetwork Architecture 555 

[31] C. P. Thacker. E. M. McCreight, B. W. Lampson, R. F. Sproull, and D. R. Boggs, "Alto: 
A personal computer," Computer Structures: Readings and Examples, Siewiorek, Bell, and 
Newell, Eds., 1980. 

[32] H. Zimmermann, "A standard layer model," this book, Chapter 2. 



Formal Specifications and 
Their Manipulation 

PART VII 

Up to now, our mode of defining each protocol we have encountered has 
been to describe in words what happens. An event occurs in one protocol 
partner in a given layer. This triggers either another event in the same 
partner (as with the expiration of a timeout, for example), or the emission of 
some sort of message unit specified by the protocol's semantics. The arrival 
of this message unit triggers an event in another protocol partner, being 
either in an adjacent layer or remotely in the same layer. 

Such "informal" descriptions suffice very well for gaining a general 
idea of what is going on, but when it comes time to actually produce 
running hardware or software implementations, the imprecision and am­
biguity of such descriptions leads to difficulties. This section focuses on how 
protocols may be represented (specified) in a totally unambiguous way and 
on some of the practical consequences of doing this. 

One consequence of formal protocol specification is of course to 
provide a compact and unambiguous way of documenting the protocols and 
architectures for the use of a product's implementors and others whose 
products must interact with it. But the benefits go quite a bit beyond this. 
As we shall see in the ensuing chapters, one may carry out operations on the 
formal specifications that will verify in advance of any implementation 
whether or not the implementation will work in some sense. And it is also 
becoming possible to generate real executable programs directly by auto­
matic means from the specification (rather than by ad hoc hand pro­
gramming methods) and have the resulting code be fairly efficient. 

There are three basic approaches to formal protocol specifications and 
the possible manipulations that can be carried out upon them. Each has its 
particular merits in ease of creating the representation and in how much can 
be verified using it. Chapter 20 presents an overview of the current state of 
the art of all three. In the transition model approach (discussed in detail in 

557 



558 Part VII 

Chapter 21), each protocol partner, or entity, is represented as a finite state 
machine (FSM), or an equivalent Petri net. We have met examples of FSMs 
in Chapters 3, 7, and 8. An event in the action of one of the entities is 
portrayed as a transition from one state to another. In the abstract program 
approach (which Chapter 22 discusses at length), an event is portrayed as 
the execution of a line of code or an entire procedure in the abstract 
program. The hybrid approach uses a combination of the two techniques. 
Hybrid techniques are described in Chapters 23 and 25. 

If one wants to carry out verification of real protocols in a real system 
development environment, the transition model approach to representation 
(Chapter 21) has proved to be quite practical. This is because of the relative 
lack of specialized knowledge required to use it and the fact that one can 
automate the search through the space of all possible combinations of states 
of the FSMs looking for such pathologies as deadlocks and spurious 
responses to unanticipated message arrivals. The price paid for this conveni­
ence is that verification is only a test that the representation is free of a 
limited set of defects, not that it provides a required set of services to the 
next higher protocol layer. Also, clever tricks or restrictions are required to 
avoid an explosion in state space size (for example, instead of allowing 
message sequence number to be a variable, it may be necessary to allow it to 
take on integer values only up to 2 or 3). The size of the space of all possible 
states of all protocol entities acting jointly is the product of those of the 
individual entities. 

Other things that contribute to the state explosion are the need to have 
more than two protocol partners (as with multiple access, routing, or 
distributed directory protocols) and to allow a complex message transmis­
sion medium between the partners (the protocol layers below the one being 
examined), for example, one that can lose an occasional message. 

In principle, these two problems, limited range of guarantee and state 
explosion, can be avoided in the abstract program class of representation 
discussed in Chapter 22. It is possible to construct a service level specifica­
tion (for example, that a stream of messages inserted at one end will arrive 
eventually and in sequential order at the other) and prove, for example 
using the Floyd-Hoare program verification approach, that the protocol 
representation will satisfy it. The protocol representation is in terms of 
program statements whose execution (if proven correct) converts a stated 
precondition into a stated postcondition. State space explosions are avoided 
because the pre- and postconditions can express clusters of states (e.g., 
sequence numbers as a variable). Also an abstract program is inherently 
executable, if compiled down to a suitable machine interface. In spite of 
these advantages, abstract program approaches have not proved very practi­
cal in a development environment, because they require a great deal of 
special knowledge and skill to apply and because complete automation of 
the process of proving individual programs seems to be some years away. 



Introduction 559 

Hybrid approaches are the ones that seem to be receiving the most 
attention. The state transition part of the model captures the control aspects 
of the protocols while variables and data are easily handled by the program 
part of the model. A hybrid representation approach motivated along these 
lines is described in Chapter 23. 

The idea of being able to execute directly the protocol representation is 
a particularly valuable consequence of protocol formalization. One reason is 
that it circumvents much of the expense and error susceptibility of hand 
coding. Such a motivation has led to the hybrid model described in Chapter 
25, in which both FSM and program parts of the model are expressed in a 
variant of one of the standard programmming languages. 



20 

A Survey of Formal Methods 

Gregor V. Bochmann and Carl A. Sunshine 

I. Introduction 

As evidenced by the earlier chapters in this book, increasingly numer­
ous and complex communication protocols are being employed in distrib­
uted systems and computer networks of various types. The informal tech­
niques used to design these protocols have been largely successful, but have 
also yielded a disturbing number of errors or unexpected and undesir­
able behavior in most protocols. This chapter describes some of the more 
formal techniques which are being developed to facilitate design of correct 
protocols. 

As they develop, protocols must be described for many purposes. Early 
descriptions provide a reference for cooperation among designers of differ­
ent parts of a protocol system. The design must be checked for logical 
correctness. Then the protocol must be implemented, and if the protocol is 
in wide use, many different implementations may have to be checked for 
compliance with a standard. Although narrative descriptions and informal 
walk-throughs are invaluable elements of this process, painful experience 
has shown that by themselves they are inadequate. 

In the following sections, we shall discuss the use of formal techniques 
in each of the major design steps of specification, verification, and imple­
mentation. Section II clarifies the meaning of specification in the context of 
a layered protocol architecture, identifies what a protocol specification 
should include, and describes the major approaches to protocol specifica­
tion. Section III defines the meaning of verification, discusses what can be 
verified, and describes the main verification methods. Section IV provides 
pointers to some important case histories of the use of these techniques. For 
detailed examples, we refer to the subsequent chapters of this book, which 

561 



562 Part VII • Formal Specifications 

generally provide additional support for the points which we have had to 
treat briefly in this survey. A complete bibliography may be found in [18], 
and complementary surveys in [44J, [8], [33], [43]. 

II. Protocol Specification 

As noted above, protocol descriptions play a key role in all stages of 
protocol design. This section clarifies the meaning of specification in the 
domain of communication protocols, identifies the major elements that 
comprise a specification, and presents the major methods for protocol 
specification. 

A. The Meaning of Specification 

We assume that the communication architecture of a distributed system 
is structured as a hierarchy of different protocol layers, as described in 
earlier chapters. Each layer provides a particular set of Services to its users 
above. From their viewpoint, the layer may be seen as a "black box" or 
machine which allows a certain set of interactions with other users (see Fig. 
1). A user is concerned with the nature of the service provided, but not with 
how the protocol manages to provide it. 

This description of the input/output behavior of the protocol layer 
constitutes a Service Specification of the protocol. It should be "abstract" in 
the sense that it describes the types of commands and their effects, but 
leaves open the exact format and mechanisms for conveying them (e.g., 
procedure calls, system calls, interrupts, etc.). These formats and mecha­
nisms may be different for users in different parts of the system, and are 
defined by an Interface Specification. 

Service Specifications 

Specifying the service to be provided by a layer of a distributed 
communication system presents problems similar to specifying any software 
module of a complex computer system. Therefore methods developed for 
software engineering [36], [31] are useful for the definition of communica-

USER USER 

PROTOCOL 

LAYER 
Fig. I. Services provided by a protocol layer. 



Chap. 20 • Survey of Formal Methods 563 

tion services. Usually, a service specification is based on a set of Service 
Primitives which, in an abstract manner, describe the operations at the 
interface through which the service is provided. In the case of a transport 
service, for example, some basic service primitives are Connect, Disconnect, 
Send, and Receive. The execution of a service primitive is associated with 
the exchange of parameter values between the entities involved, i.e., the 
service providing and using entities of two adjacent layers. The possible 
parameter values and the direction of transfer must be defined for each 
parameter. 

Clearly, the service primitives should not be executed in an arbitrary 
order and with arbitrary parameter values (within the range of possible 
values). At any given moment, the allowed primitives and parameter values 
depend on the preceding history of operations. The service specification 
must reflect these constraints by defining the allowed sequences of opera­
tions directly, or by making use of a "state" of the service which may be 
changed as a result of some operations. 

In general, the constraints depend on previous operations by the same 
user ("local" constraints), and by other users ("global" constraints). Consid­
ering again the example of a transport service, a local constraint is the fact 
that Send and Receive may only be executed after a successful Connect. An 
example of a global constraint is the fact that the "message" parameter 
value of the first Receive on one side is equal to the message parameter 
value of the first Send on the other side. 

Protocol Specifications 

Although it is irrelevant to the user, the protocol designer must be 
concerned with the internal structure of a protocol layer. In a network 
environment with physically separated users, a protocol layer must be 
implemented in a distributed fashion, with Entities (processes or modules) 
local to each user communicating among one another via the services of the 
lower layer (see Fig. 2). The interaction among entities in providing the 

USER USER 

Fig. 2. Internal structure of a protocol layer. 



S64 Part VII • Formal Specifications 

layer's service constitutes the actual Protocol. Hence a protocol specification 
must describe the operation of each entity within a layer in response to 
commands from its users, messages from the other entities (via the lower 
layer service), and internally initiated actions (e.g., timeouts). 

Abstraction and Stepwise Refinement 

The specifications described above must embody the key concept of 
Abstraction if they are to be successful. To be abstract, a specification must 
include the essential requirements that an object must satisfy and omit the 
unessential. A service specification is abstract primarily in the sense that it 
does not describe how the service is achieved (Le., the interactions among its 
constituent entities), and secondarily in the sense that it defines only the 
general form of the interaction with its users (not the specific interface). 

A protocol specification is a refinement or distributed "implementa­
tion" of its service specification in the sense that it partly defines how the 
service is provided (Le., by a set of cooperating entities). This "implementa­
tion" of the service is what is usually meant by the design of a protocol 
layer. The protocol specification should define each entity to the degree 
necessary to ensure compatibility with the other entities of the layer, but no 
further. Each entity remains to be implemented in the more conventional 
sense of that term, typically by coding in a particular programming lan­
guage. There may be several steps in this process until the lowest-level 
implementation of a given protocol layer is achieved [20], [11]. 

B. What a Protocol Definition Should Include 

A protocol cannot be defined without describing its context. This 
context is given by the architectural layer of the distributed system in which 
the protocol is used. A description of a layer should include the following 
items [28]. 

1. A general description of the purpose of the layer and the services it 
provides. 

2. An exact specification of the service to be provided by the layer. 
3. An exact specification of the service provided by the layer below, 

and required for the correct and efficient operation of the protocol. 
(This of course is redundant with the lower layer's definition, but 
makes the protocol definition self-contained.) 

4. The internal structure of the layer in terms of entities and their 
relations. 



Chap. 20 • Survey of Formal Methods 565 

5. A description of the protocol(s) used between the entities including: 
a. An overall, informal description of the operation of the entities. 
b. A protocol specification which includes 

i. a list of the types and formats of messages exchanged between 
the entities; 

ii. rules governing the reaction of each entity to user commands, 
messages from other entities, and internal events. 

c. Any additional details (not included in point b), such as consider­
ations for improving the efficiency, suggestions for implementa­
tion choices, or a detailed description which may come close to an 
implementation. 

Reference [8] presents an example of these items for a simple data 
transfer protocol. 

C. Specification Methods 

Descriptions of communication services and protocols must be both 
easy to understand and precise-goals which often conflict. The use of 
natural language gives the illusion of being easily understood, but leads to 
lengthy and informal specifications which often contain ambiguities and are 
difficult to check for completeness and correctness. The arguments for the 
use of formal specification methods in the general context of software 
engineering [36] apply also in our context. 

Protocol Specifications 

Most of the work on formal specification of protocols has focused on 
the protocol itself and not on the service it provides. A variety of general 
formalisms such as state diagrams, Petri nets, grammars, and programming 
languages have been applied to this problem and in many cases adaptations 
or extensions to facilitate protocol modeling have been made [14]. These 
techniques may be classified into three main categories: transition models, 
programming languages, and combinations of the first two. 

Transition models are motivated by the observation that protocols 
consist largely of relatively simple processing in response to numerous 
"events" such as commands (from the user), message arrival (from the lower 
layer), and internal timeouts. Hence state machine models of one sort or 
another with such events forming their inputs are a natural model. However, 
for protocols of any complexity, the number of events and states required in 
a straightforward transition formalism becomes unworkably large. For 
example, to model a protocol using sequence numbers, there must be 



566 Part VII • Formal Specifications 

different states and events to handle each possible sequence number [37]. 
Models falling into this category include state transition diagrams [4], [SO], 
grammars [2S], [47], Petri nets and their derivatives [3S], [46], L-systems 
[19], UCLA graphs [37], and colloquies [30]. 

Programming language models [24], [41], [6], [21] are motivated by the 
observation that protocols are simply one type of algorithm, and that 
high-level programming languages provide a clear and relatively concise 
means of describing algorithms. These models are described in Chapter 22. 
Depending on how high level and abstract a language is used, this approach 
to specification may be quite near to an implementation of the protocol. As 
noted above, this proximity is a mixed blessing, since unessential features in 
the program are often combined with the essential properties of the algo­
rithm. A major advantage of this approach is the ease in handling variables 
and parameters which may take on a large number of values (e.g., sequence 
numbers, timers), as opposed to pure state machine models. 

Hybrid models [4S], [16], [10], [40], [3] attempt to combine the ad­
vantages of state models and programs. These typically employ a small-state 
model to capture only the main features of the protocol (e.g., connection 
establishments, resets, interrupts). This state model is then augmented with 
additional "context" variables and processing routines for each state. In 
such hybrid models, the actions to be taken are determined by using 
parameters from the inputs and values of the context variables according to 
the processing routine for each major state. For example, the sequence 
number of an arriving message may be compared with a variable giving the 
expected next sequence number to determine whether to accept the message, 
what the next state should be, and how to update the expected sequence 
number. Bochmann and Gecsei [10] have demonstrated the potential for 
trading off the complexity of the state model with the amount of context 
information for a given protocol. (Other techniques for managing the 
complexity of protocols are discussed in Section III C.) 

As noted above, one major goal of protocol specification is to provide a 
basis for implementation. Some specification methods facilitate this goal 
more than others. Programming language specifications may be quite close 
to implementations (but often lack the desired degree of abstraction). Direct 
implementation of transition or hybrid model specifications by some form 
of interpreter or "compiler" is also relatively straightforward [11]. In many 
cases, these implementation methods have been at least partially automated 
[40], [47], [22], [2]. 

Service Specifications 

It is only recently that the need for comprehensive protocol service 
specifications has been realized [3], [39], [43]. Initial efforts at formal service 



Chap. 20 • Survey of Formal Methods 567 

specifications have been directed towards applying general software en­
gineering methodology. As noted in Section II A, definition of the primitive 
operations supported by the layer (e.g., Send, Connect) is a basic feature of 
any specification. In abstract machine type specifications, internal "states" 
of the layer are also defined. These states are used in defining the effects of 
each operation, and may be changed as a result of the operation [38]. 

Other specification methods that do not require definition of explicit 
states may also be used. I/0 history type methods define the allowed input 
and output sequences of the layer and their relation to each other (e.g., that 
the sequence of messages delivered is identical to the sequence of messages 
sent) [20], [3]. Algebraic specifications [23] provide another way of defining 
the allowed sequence of operations. Sunshine [42] provides a comparison of 
several of these methods, but work in this area is just beginning. 

Ill. Protocol Verification 

In its broadest interpretation, system validation aims to assure that a 
system satisfies its design specifications and (hopefully) operates to the 
satisfaction of its users. Validation activity is important during all design 
phases, and may include testing of the final system implementation, simula­
tion studies, analytical performance predictions, and verification. Verifica­
tion is based on the system specification, and involves logical reasoning. 
Therefore it may be used during the design phase before any system 
implementation exists, in order to avoid possible design errors. While testing 
and simulation only validate the system for certain test situations, verifica­
tion allows, in principle, the consideration of all possible situations the 
system may encounter during actual operation. 

A. The Meaning of Verification 

Verification is essentially a demonstration that an object meets its 
specifications. Recalling from Section II that Services and Protocol Entities 
are the two major classes of objects requiring specification for a protocol 
layer, we see there are two basic verification problems that must be 
addressed: (1) the protocol's Design must be verified by analyzing the 
possible interactions of the entities of the layer, each functioning according 
to its (abstract) protocol specification and communicating through the 
underlying layer's service, to see whether this combined operation satisfies 
the layer's service specification; and (2) the Implementation of each protocol 
entity must be verified against its abstract protocol specification. 

The somewhat ambiguous term "protocol verification" is usually in­
tended to mean this first design verification problem. Because protocols are 



568 Part VII • Formal Specifications 

inherently systems of concurrent independent entities interacting via (possi­
bly unreliable) exchange of messages, verification of protocol designs takes 
on a characteristic communication oriented flavor. Implementation of each 
entity, on the other hand, is usually done by "ordinary" programming 
techniques, and hence represents a more common (but by no means trivial) 
program verification problem that has received less attention from protocol 
verifiers. 

The service specification itself cannot be verified, but rather forms the 
standard against which the protocol is verified. However, the service specifi­
cation can be checked for consistency [20]. It must also properly reflect the 
users' desires, and provide an adequate basis for the higher levels which use 
it. Unfortunately, techniques to achieve these latter goals are still poorly 
understood. 

It is important to note that protocol verification also depends on the 
properties of the lower-layer protocol. In verifying that a protocol meets its 
service specification, it will be necessary to assume the properties of the 
lower layer's service. If a protocol fails to meet its service specification, the 
problem may rest either in the protocol itself, or in the service provided by 
the lower layer. 

Most of the verification work to date has been on design rather than 
implementation, and we shall focus on design verification in the remainder 
of this section. While a protocol design need only be verified once, each 
different implementation must be verified against the design. 

B. What Can Be Verified 

The overall verification problem may be divided along two axes, each 
with two categories. On one axis, we distinguish between general and 
specific properties. On the other we distinguish between safety and liveness. 

General properties are those properties common to all protocols that 
may be considered to form an implicit part of all service specifications. 
Foremost among these is the absence of deadlock (the arrival in some 
system state or set of states from which there is no exit). Completeness, or 
the provision for all possible inputs, is another general property. Progress or 
termination may also be considered in this category since they require 
minimal specification of what constitutes "useful" activity or the desired 
final state. 

Specific properties of the protocol, on the other hand, require specifica­
tion of the particular service to be provided. Examples include reliable data 
transfer in a transport protocol, copying a file in a file transfer protocol, or 
clearing a terminal display in a virtual terminal protocol. Definitions of 
these features make up the bulk of service specifications. 



Chap. 20 • Survey of Formal Methods 569 

On the other axis, safety has the usual meaning that if the protocol 
performs any action at all, it will be in accord with its service specification. 
For example, if a transport protocol delivers any messages, they will be to 
the correct destination, in the correct order, and without errors. Liveness 
means that the specified services will actually be completed in finite time. In 
the case of logical verification, which is the subject of this report, it is 
sufficient to ascertain a finite time delay. In the case that the efficiency and 
responsiveness of the protocol is to be verified, it is clearly necessary to 
determine numerically the expected time delay, throughput, etc. 

C. Verification Methods 

Approaches to protocol verification have followed two main paths: 
reachability analysis and program proofs. Within the scope of this paper, we 
can only outline these two approaches. The references cited in Section IV 
provide more details on particular techniques. 

Reachability analysis is based on exhaustively exploring all the possible 
interactions of two (or more) entities within a layer. A composite or global 
state of the system is defined as a combination of the states of the 
cooperating protocol entities and the lower layer connecting them. From a 
given initial state, all possible transitions (user commands, time-outs, mes­
sage arrivals) are generated, leading to a number of new global states. This 
process is repeated for each of the newly generated states until no new states 
are generated (some transitions lead back to already generated states). For a 
given initial state and set of assumptions about the underlying layer (the 
type of service it offers), this type of analysis determines all of the possible 
outcomes that the protocol may achieve. Chapter 24 provides a clear 
exposition of this technique. 

Reachability analysis is particularly straightforward to apply to transi­
tion models of protocols which have explicit states and/or state variables 
defined. It is also possible to perform a reachability analysis on program 
models by establishing a number of "break points" in the program that 
effectively define control states [24]. Symbolic execution (see the following) 
may also be viewed as a form of reachability analysis. 

Reachability analysis is well suited to checking the general correctness 
properties described above because these properties are a direct conse­
quence of the structure of the reachability graph. Global states with no exits 
are either deadlocks or desired termination states. Similarly, situations 
where the processing for a receivable message is not defined, or where the 
transmission medium capacity is exceeded are easily detected. The genera­
tion of the global state space for transition models is easily automated, and 
several computer aided systems for this purpose have been developed [16], 



570 Part VII • Formal Specifications 

[50], [37]. The major difficulty of this technique is "state space explosion" 
because the size of the global state space may grow rapidly with the number 
and complexity of protocol entities involved and the underlying layer's 
services. Techniques for dealing with this problem are discussed below. 

The program proving approach involves the usual formulation of 
assertions which reflect the desired correctness properties. Ideally, these 
would be supplied by the service specification, but as noted above, services 
have not been rigorously defined in most protocol work, so the verifier must 
formulate appropriate assertions of his own. The basic task is then to show 
(prove) that the protocol programs for each entity satisfy the high-level 
assertions (which usually involve both entities). This often requires formu­
lation of addition,al assertions at appropriate places in the programs [41], [6]. 

A major strength of this approach is its ability to deal with the full 
range of protocol properties to be verified, rather than only general proper­
ties. Ideally, any property for which an appropriate assertion can be 
formulated can be verified, but formulation and proof often require a great 
deal of ingenuity. Only modest progress has been made to date in the 
automation of this process. 

As with specification, a hybrid approach promises to combine the 
advantages of both techniques. By using a state model for the major states 
of the protocol, the state space is kept small, and the general properties can 
be checked by an automated analysis. Other properties, for which a state 
model would be awkward (e.g., sequenced delivery), can be handled by 
assertion proofs on the variables and procedures which accompany the state 
model. Such combined techniques are described in [16] and [10]. 

While a large body of work on general program verification exists, 
several characteristics of protocols pose special difficulties in proofs. These 
include concurrency of multiple protocol modules and physical separation 
of modules so that no shared variables may be used. A further complication 
is that message exchange between modules may be unreliable requiring 
methods that can deal with nondeterminism. A few early applications of 
general program verification methods to protocols are cited in Section IV 
and in Reference 42. Chapter 22 provides a detailed example of this 
technique. 

A particular form of proof that has been useful for protocols with large 
numbers of interacting entities (e.g., routing protocols) may be called 
"induction on topology" [33]. The desired properties are first shown to be 
true for a minimum subset of the entities, and then an induction rule is 
proved showing that if the properties hold for a system of N entities, they 
also hold for N + 1 entities. 

When an error is found by some verification technique, the cause must 
still be determined. Many transitions or program statements may separate 
the cause from the place where the error occurs, as for example when the 



Chap. 20 • Survey of Formal Methods 571 

acceptance of a duplicate packet at the receiver is caused by the too rapid 
reuse of a sequence number at the sender. In some cases the protocol may 
be modeled incorrectly, or the correctness conditions may be formulated 
incorrectly. In other cases, undesired behavior may be due to transmission 
medium properties that were not expected when the protocol was designed 
(e.g., reordering of messages in transit). Even when an automated verifica­
tion system is available, considerable human ingenuity is required to under­
stand and repair any errors that are discovered. 

Another approach to achieving correct protocols that has been pro­
posed recently is based on constructive design rules that automatically result 
in correct protocols. In one approach [50], described in Chapter 24, design 
rules are formulated which guarantee that the specifications obtained for a 
set of interacting entities will be complete. For each send transition speci­
fied by the designer, the rules determine the corresponding receive transition 
to be added to the partner entity. In another case [34], the specification of a 
second entity is determined by a design rule such that it will operate with a 
specified first entity to provide a given overall service. 

A major difficulty for protocol verification by any method is the 
complexity of the global system of interacting protocol entities, also termed 
"state space explosion." The following methods may be used to keep this 
complexity within manageable limits. 

(1) Partial Specification and Verification. Depending on the specifica­
tion method used, only certain aspects of the protocol are described. This is 
often the case for transition diagram specifications which usually capture 
only the rules concerning transitions between major states, ignoring details 
of parameter values and other state variables. 

(2) Choosing Large Units of Actions. State space explosion is due to the 
interleaving of the actions executed by the different entities. For example, 
the preparation and sending of a protocol data unit by an entity may 
usually be considered an indivisible action which proceeds without interac­
tion with the other entities of the system. The execution of such an action 
may be considered a single "transition" in the global protocol description. 

A particular application of this idea is to consider only states where the 
transmission medium is empty. Such an "empty medium abstraction" [4] is 
justified when the number of messages in transit is small. In this case, 
previously separate sending and receiving or sending and loss transitions of 
different entities can be combined into single joint transitions of both 
entities. 

(3) Decomposition into Sublayers and/or Phases. The decomposition of 
the protocol of a layer into several sub layers and/or phases of operation 
simplifies the description and verification, because the protocol of each part 
may be verified separately [52]. An example of this idea is the decomposi­
tion of HDLC into the sublayers of bit stuffing, checksumming, and 



572 Part VII • Formal Specifications 

elements of procedure, and the division of the latter into several compo­
nents as described in [9]. 

(4) Classifying States by Assertions. Assertions which are predicates on 
the set of all possible system states may be formed. Each predicate defines a 
set (or class) of states which consists of those states for which the predicate 
is true. One may then consider classes of states collectively in reachability 
analysis instead of considering individual states. By making an appropriate 
choice of predicates (and therefore classes of states) the number of cases to 
be considered may be reduced considerably. This method is usually applied 
for proving safety of protocol specifications given in some programming 
language [41], [6], and forms the basis for symbolic execution [13]. Typically, 
the assertions depend on some variables of the entities and the set of 
messages in transit (through the layer below). 

To illustrate the possible savings in the number of cases to be analyzed, 
consider the state of an entity receiving numbered information frames. 
Instead of treating all possible values of a sequence counter variable 
explicitly as different states, it may be possible to consider only the three 
cases where the variable is "less than," "equal to," or "greater than" the 
number in the information frame received. 

(5) Focusing Search. Instead of generating all possible states, it is 
possible to predetermine potential global states with certain properties (e.g., 
deadlocks), and then check whether they are actually reachable [16]. 

(6) Automation. Some steps in the analysis process may be performed 
by automated systems [13], [16], [20], [24], [50], [37], [13]. However, the use 
of these systems is not trivial, and much work goes into representing the 
protocol and service in a form suitable for analysis. Human intervention is 
needed in many cases for distinguishing between useful and undesired 
loops, or for guiding the proof process. 

IV. Uses of Formal Techniques 

We give in the following a ( certainly incomplete) list of cases where 
formal methods were successfully used for designing data communication 
and computer network protocols. In some cases, the formal specification 
was made after the system design was essentially finished, and served for an 
additional analysis of correctness and efficiency, or as an implementation 
guide. In other cases, the formal specification was used as a reference 
document during the system design. 

Standards 

Call establishment in the CCITT X.2l protocol has been modeled with a 
state transition-type model and analyzed with a form of reachability analy-



Chap. 20 • Survey of Formal Methods 573 

sis [49]. The analysis checked for general correctness properties of complete­
ness and deadlock, and uncovered a number of completeness errors (i.e., a 
protocol module could receive a message for which no processing was 
defined). 

Virtual circuit establishment in the ccnT X.25 protocol has been 
modeled with a state transition model and analyzed by a manual reachabil­
ity analysis [3], [1], [7]. It was found that several cycles with no useful 
progress could persist after the protocol once entered certain unsynchro­
nized states. 

A formal specification method was used during the design of several 
interface standards for the interconnection of minicomputers with measure­
ment and instrumentation components [26], [48]. The relatively concise 
description of the protocols was used as means for communication between 
the members of the standard committees and for the verification of the 
design. It is also part of the final standard documents. 

The HDLC link protocol has been specified with a regular grammar 
model [25] that incorporated an indexing technique to accommodate se­
quence numbering. The same protocol has also been specified with a hybrid 
model combining state transitions with context variables and high-level 
language statements [9]. The latter specification also heavily employed 
decomposition to partition the protocol into seven separate components, 
and was used in obtaining an implementation of the HDLC link level 
procedures of X.25 [11]. 

ARPAnet 

Connection establishment in a transport protocol (TCP) for the 
ARPAnet has been partially modeled with a hybrid state transition model 
and validated with a manual reachability analysis [45]. An automated 
reachability analysis [24] was also used on a simplified model and revealed 
an error in sequence number handling, and incorrect modeling of the 
transmission medium. 

A simplified version of the ARPAnet IMP-IMP link protocol has been 
analyzed with a transition model augmented with time constraints to show 
that proper data transfer requires certain tinle constraints to be maintained 
between retransmission, propagation, and processing times [35]. 

A simplified version of the ARPAnet communications subsystem has 
been modeled with a high-level programming language, and verified using 
partially automated program proving techniques [20], [21]. A software 
engineering system (called Gypsy) was used which provides a unified 
language for expressing both specifications and programs so that high-level 
specifications in the design can be progressively refined into detailed 
programs. Program modules can be both comprehensively verified in ad-



574 Part VII • Formal Specifications 

vance, or checked against their specifications at run time for the particular 
inputs which occur. 

Connection establishment between a requester and a shared server 
process (the ARPAnet Initial Connection Protocol) has been modeled with 
a state transition model and analyzed by an automated reachability analysis 
[37]. The analysis showed that one of a pair of simultaneous requests for 
service might be rejected. A revised version of the protocol was shown to 
eliminate this error. The same analysis technique was also used to validate a 
simple data transfer protocol. 

Other Examples 

The end-to-end transport protocol of the French computer network 
Cyclades was first specified in a semiformal manner using a high-level 
programming language. This specification was the basis for the different 
protocol implementations in different host computers. Some of these imple­
mentations were obtained through a description in a macrolanguage, de­
rived from the original protocol specification [51]. The same specification 
was also the basis for simulation studies which provided valuable results for 
the protocol validation and performance evaluation [29], [17]. A formalized 
specification of the protocol has also been given using a hybrid model with 
state machines augmented by context information and processing routines 
[ 15]. 

The procedures for the internal operation of the Canadian public data 
network Datapac were described by a semiformal method using state 
diagrams and a high-level programming language for the specification of the 
communicating entities [32]. This description was very useful for doing 
semiformal verifications of the protocols during the design phase, and 
served as a reference document during the implementation and testing 
phases of the system development. 

IBM's SNA has been specified with a hybrid model using state ma­
chines augmented by context information and processing routines, as de­
tailed in Chapter 25. Hierarchical decomposition is heavily used to create a 
large number of more manageable modules. The model provides a basis 
both for automated verification of general properties, and for compilation 
of executable code. 

The Message Link Protocol [12] for process-to-process communication 
has been formally specified in a hybrid model. A formal service specifica­
tion was also given, and the design has been partially verified by a manual 
reachability analysis using symbolic execution [5]. The verification un­
covered a synchronization problem that has been corrected in a more recent 
version of the protocol. 



Chap. 20 • Survey of Formal Methods 575 

V. Conclusions 

The specification of a protocol layer must include definitions of both 
the services to be provided by the layer, and the protocol executed by the 
entities within the layer to provide this service. "Design verification" then 
consists of showing that the interaction of entities is indeed adequate to 
provide the specified services, while "implementation verification" consists 
of showing that the implementations of the entities satisfy the more abstract 
protocol specification. A useful subset of design verification may be de­
scribed as verification of "general properties" such as deadlock, looping, 
and completeness. These properties may be checked in many cases without 
requiring any particular service specification. 

Although protocol specifications must serve many purposes, verifica­
tion and implementation are two critical tasks which require rigorous or 
formal specification techniques in order to be fully successful. Formal 
protocol specifications are more precise than descriptions in natural lan­
guage, and should contain the necessary details for obtaining compatible 
protocol implementations on different system components. The cases 
mentioned in Section IV demonstrate that formal methods may be used 
profitably for the specification, verification, and implementation of com­
munication protocols. However, a great deal of work remains to be done in 
improving verification techniques and high-level system implementation 
languages, in integrating performance (efficiency) analysis with analysis for 
logical correctness, and in automating these analysis techniques. 

Most published papers on protocol verification present some particular 
verification technique, and demonstrate this technique by discussing its 
application to a simple protocol of more or less academic nature. This is not 
surprising, considering the short history of tins specialized discipline. Some 
a posteriori verifications of protocol standards of general concern have been 
presented pointing out certain difficulties with the adopted procedures [1], 
[7], [49]. These verification efforts were based on a state reachability 
analysis, and in one case [49] an automated system was used. The results 
will influence the implementation of these protocols, and may have an 
impact on future revisions of the standards. 

We believe that more effort should be spent on the logical verification 
of protocols during the design phase. Based on a formalized description 
method, this effort may in the future be simplified by the use of interactive 
automated systems for protocol verification. The same protocol specifica­
tion used for the verification should also serve as an official definition of the 
protocol, and could be transformed, possibly through a semiautomated 
process into a usable protocol implementation [40], [22], [11]. It is clear that 
such an approach would increase the reliability of the protocols, decrease 
compatibility problems, and lower the cost of the protocol implementations. 



576 Part VII • Formal Specifications 

References 

[I] D. Belsnes and E. Lynning, "Some problems with the X.25 packet level protocol," ACM 
SIGCOMM Comput. Commun. Rev., vol. 7, pp. 41-51, Oct. 1977. 

[2] D. Bjomer, Finite state automation-definition of data communication line control 
procedures," in Fall Joint Comput. Con/., AFIPS Con/. Proc., 1970. 

[3] G. V. Bochmann, Chapter 23 of this book. 
[4] G. V. Bochmann, "Finite state description of communication protocols," Comput. 

Networks, vol. 2, pp. 361-372, Oct. 1978. 
[5] G. V. Bochmann, "Formalized specification of the MLP," "Specification of the services 

provided by the MLP," and "An analysis of the MLP," Dniv. Montreal, Dep. d'I.R.O., 
June 1979. 

[6] G. V. Bochmann, "Logical verification and implementation of protocols," in Proc. 4th 
Data Commun. Symp., Quebec, Canada, 1975, pp. 8-5-8-20. 

[7] G. V. Bochmann, "Notes on the X.25 procedures for virtual call establishment and 
clearing," ACM SIGCOMM Comput. Commun. Rev., vol. 7, pp. 53-59, Oct. 1977; see 
also [4]. 

[8] G. V. Bochmann, "Specification and verification of computer communication protocols," 
chapter 5 in Advances in Distributed Processing Management, T. A. Rullo, ed., Phila­
delphia, PA: Heyden & Son, 1980. 

[9] G. V. Bochmann and R. J. Chung, in "A formalized specification of HDLC classes of 
procedures," in Proc. Nat. Telecommun. Con/., Los Angeles, CA, Dec. 1977, Paper 3A.2. 

[10] G. V. Bochmann and J. Gecsei, "A unified model for the specification and verification of 
protocols," in Proc. IFlP Congress, 1977, pp. 229-234. 

[II] G. V. Bochmann and T. Joachim, "Development and structure of an X.25 implementa­
tion," IEEE Trans. Software Eng., vol. SE-5, pp. 429-439, Sept. 1979. 

[12] G. V. Bochmann and F. H. Vogt, "Message link protocol-Functional specifications," 
ACM SIGCOMM Comput. Commun. Rev., vol. 9, pp. 7-39, Apr. 1979. 

[13] D. Brand and W. H. Joyner, Jr., "Verification of protocols using symbolic execution," 
Comput. Networks, vol. 2, pp. 351-360, Oct. 1978. 

[14] A. Danthine, Chapter 21 of this book. 
[15] A. S. Danthine and J. Bremer, "An axiomatic description of the transport protocol of 

Cyclades," presented at Prof. Conf. Comput. Networks and Teleprocessing, Aachen, 
Germany, Mar. 1976. 

[16] A. S. Danthine and J. Bremer, "Modeling and verification of end-to-end transport 
protocols," Com put. Networks, vol. 2, pp. 381-395, Oct. 1978. 

[17] A. Danthine and E. Eschenhauer, "Influence on the node behavior of a node-to-node 
protocol," in Proc. 4th Data Commun. Symp., Oct. 1975, pp. 7-1-7-8. 

[18] J. Day and C. Sunshine, Eds. "A bibliography on the formal specification and verifica­
tion of computer network protocols," ACM SIGCOMM Comput. Commun. Rev., vol. 9, 
Oct. 1979. 

[19] C. A. Ellis, "Consistency and correctness of duplicate database systems," in Proc. 6th 
Symp. Op. Syst. Principles, Purdue Dniv., West Lafayette, IN, Nov. 1977; ACM Op. 
Syst. Rev., vol. II, pp. 67-84, 1977. 

[20] D. I. Good, "Constructing verified and reliable communications processing systems," 
ACM Software Eng. Notes, vol. 2, pp. 8-13, Oct. 1977; also Rep. ICSCA-CPM-6, Dniv. 
Texas at Austin. 

[21] D. I. Good and R. Cohen, "Verifiable communications processing in GYPSY," Dniv. 
Texas at Austin, Rep. ICSCA-CPM-II, June 1978. 

[22] M. G. Gouda and E. G. Manning, "Protocol machines: A concise formal model and its 
automatic implementation," in Proc. 3rd Int. Con/. Comput. Commun., Toronto, Canada, 
1976, pp. 346-350. 



Chap. 20 • Survey of Formal Methods 577 

[23] J. V. Guttag, E. Horowitz, and D. R. Musser, "Abstract data types and software 
validation," Commun. Ass. Comput. Mach., vol. 21, Dec. 1978. 

[24] J. Hajek, "Automatica1ly verified data transfer protocols," in Proc. 4th Int. Comput. 
Commun. Conf., Kyoto, Japan, Sept. 1978, pp. 749-756; also see progress Rep. in ACM 
SIGCOMM Comput. Commun. Rev., vol. 8, Jan. 1979. 

[25] J. Harangozo, "An approach to describing a link level protocol with a formal language," 
in Proc. 5th Data Commun. Symp., Utah, 1977, pp. 4-37-4-49. 

[26] IEEE Standard 488-1975; see also D. E. Knoblock, D. C. Loughry, and C. A. Vissers, 
"Insight into interfacing," IEEE Spectrum, May 1975. 

[27] IFIP WG 6.1, "Proposal for an internetwork end-to-end transport protocol," INWG 
Gen. Note 96.1; also in Proc. Comput. Network Protocols Symp., Univ. Liege, Belgium, 
Feb. 1978, p. H-5. 

[28] International Organization for Standardization, TC97 jSC 16 jN380 and N381, "Guide 
lines for the specification of services and protocols," 1981. 

[29] G. LeLann and H. LeGoff, "Verification and evaluation of communication protocols," 
Comput. Networks, vol. 2, pp. 50-69, Feb. 1978. 

[30] G. LeMoli, "A theory of colloquies," Atla Frequenza, vol. 42, pp. 493-223E-500-230E, 
1973; also in Proc. First European Workshop on Comput. Networks, Aries, France, Apr. 
1973, pp. 153-173. 

[31] B. Liskov and S. Zilles, "Specification techniques for data abstractions," IEEE Trans. 
Software Eng., vol. SE-I, pp. 7-18, Mar. 1975. 

[32] F. Mellor, W. J. Olden, and C. J. Bedard, "A message-switched operating system for a 
multiprocessor," in Proc. COMPSAC'77, IEEE, Chicago, IL, 1977, pp. 772-777. 

[33] P. M. Merlin, "Specification and validation of protocols," IEEE Trans. Commun., vol. 
COM-27, pp. 1671-1680, Nov. 1979. 

[34] P. Merlin and G. V. Bochmann, "On the construction of communication protocols," 
Proc. International Conf. on Computer Communication, Atlanta, October 1980. 

[35] P. M. Merlin and D. J. Farber, "Recoverability of communication protocols-Implica­
tions of a theoretical study," IEEE Trans. Commun., voL COM-24, pp. 1036-1043, Sept. 
1976. 

[36] D. L. Parnas, "The use of precise specifications in the development of software," in Proc. 
IFfP Congress 1977, pp. 861-867. 

[37] J. B. Postel, "A graph model analysis of computer communications protocols," Ph.D. 
thesis, Comput. Sci. Dep., Univ. California, Los Angeles, UCLA ENG-741O, 1974. 

[38] L. Robinson, K. N. Levitt, and B. A. Silverberg, The HDM Handbook, vol. I-III, SRI 
Int., 1979. 

[39] A. M. Rybczynski and D. F. Weir, "Datapac X.25 service characteristics," in Proc. Fifth 
Data Commun. Symp., 1977, pp. 4-50-4-57. 

[40] G. D. Schultz et al., Chapter 25 of this book. 
[41] N. V. Stenning, "A data transfer protocol," Comput. Networks, vol. I, pp. 99-110, Sept. 

1976. 
[42] C. A. Sunshine, "Formal methods for communication protocol specification and verifica­

tion," The Rand Corp., N-1429, Nov. 1979. 
[43] C. A. Sunshine, "Formal techniques for protocol specification and verification," Comput. 

Mag., vol. 12, pp. 20-27, Sept. 1979. 
[44] C. A. Sunshine, "Survey of protocol definition and verification techniques," Comput. 

Networks, vol. 2, pp. 346-350, Oct. 1978. 
[45] C. A. Sunshine and Y. K. Dalal, "Connection management in transport protocols," 

Comput. Networks, vol. 2, pp. 454-473, Dec. 1978. 
[46] F. J. W. Symons, "Modeling and analysis of communications protocols using numerical 

Petri nets," Dep. E1ec. Eng., Univ. Essex, England, Tech. Rep. 152, May 1978. 
[47] A. Y. Teng and M. T. Liu, "A formal model for automatic implementation and logical 

validation of network communication protocols," in Proc. Comput. Networking Symp., 



578 Part vn • Formal Specifications 

Nat. Bureau Standards, Dec. 1978, pp. 114-123. 
[48] C. A. Vissers and B. V. D. Dolder, "Generative description of DIN 66 202(E)" German, 

English, Twente Univ., Rep. 1261, 1881, Mar. 1977. 
[49] C. H. West and P. Zafiropulo, "Automated validation of a communications protocol: 

The ccnT X.21 recommendations," IBM J. Res. Develop., vol. 22, pp. 60-71, Jan. 1978. 
[50] P. Zafiropulo et al., Chapter 24 of this book. 
[51] H. Zimmermann, "The Cyclades end-to-end protocol," in Proc. Fourth Data Commun. 

Symp., 1975, pp. 7-21-7-26. 
[52] S. S. Lam and A. U. Shankar, "Protocol projections: a method of analysing communica­

tion protocols," Proc. Nat. Telecom. Conf. 1981, pp. E3.2. 



21 

Protocol Representation with Finite 
State Models 

Andre A. S. Danthine 

I. Introduction 

Although the problem of process cooperation has been under thorough 
study since 1965, the development of distributed systems and computer 
networks has increased its importance. Now the problems associated with 
communication between entities located in the same machine have been 
supplemented by those due to the characteristics of the communication 
medium and the disparities of environment in terms of space, time, and 
function. 

The cooperation between two communicating entities is governed by a 
set of rules called a protocol. When the two communicating entities are 
connected to the same bus, the protocol is based on electrical signals. When 
the two communicating entities are located in different environments, the 
protocol is based on message exchanges. Any line protocol is an example of 
such a situation. 

A computer network is generally represented as a set of distributed 
processes organized in a hierarchical structure. 

In Fig. 1, we show a three-layer model with the application layer at the 
top, the transmission layer at the bottom, and the transport layer in 
between. The transmission layer may consist, e.g., of a set of private lines, a 
circuit-switching network or a packet-switching network. The transport 
layer provides a transport service to the processes located in the top layer. 
This requires an interface protocol between the upper layer and the trans­
port layer. Another interface protocol is needed between the transport layer 
and the transmission layer. 

579 



580 

Host 1 

Process 
A 

Part VII • Fonna! Specifications 

Host2 

HIGH LEVEL PROTOCOL 

------~ 
Request Request 
r---- - ----------------------- - ---~ 

r,;;y:o;t! BE~~_~~~~~e~5~R===~~~G ! 
L__ _ __ -1 

Transmission {oyer (PL, CSN, PSN) 

Fig. I. A computer network as a three-layer structure. 

From Fig. 1, it is clear that the communication between process A and 
process B involves a set of chained interface protocols. However, most 
modem networks have introduced the concept of end-to-end or peer proto­
cols which govern the interaction of processes located at the same level of 
the hierarchy. 

In Fig. 1, a peer protocol symbolized by dashed lines exists between 
processes located in the upper layer and also in the transport layer. We 
assumed that the transport service is provided by two distributed processes 
called transport stations (TSs). The cooperation between these two processes 
is governed by a peer transport protocol. 

We would like to survey, using finite-state models, the problem of 
protocol modeling, starting with a simple protocol and moving with increas­
ing complexity to the network protocols. But it is not without interest to 
consider first the design methodology. 

The designer first builds a basic scenario. This involves the simulta­
neous definition of the basic messages and of the basic sequence of these 
messages. He then looks into alternative situations and during this process 
may introduce new messages and new sequences. In general, he also has to 
introduce scenarios for error recoveries. This gives rise to additional mes-
sages and increases the list of acceptable sequences. . 

Except for very simple cases, the protocol has reached a level of 
complexity which requires a systematic approach to be able to validate the 
design. A description based on a natural language is not adequate. There is, 
therefore, a strong need for a formal model at the design level. This formal 
model must also be usable for formal verification. 



Chap. 21 • Protocol Representation 581 

It is not certain that a model suitable for design and verification will 
also fit the needs of the implementers. If another formal model is more 
appropriate to their needs, the mapping from one model to the other must 
preserve the verification results. 

II. Interface Protocol 

As already indicated, interface protocols occur between adjacent layers 
of a network hierarchy. In an interface protocol, first there exists a direct 
exchange capability an'd second, interest is limited to the exchanges taking 
place in the dashed rectangle of Fig. 2. 

I 

I 

---r-----

------ ... 
PEER PROTOCOL .-------

INTERFACE I 

-_~R~~~~~~LERVICE - --­

I 
I 

___ J 
-------., 
PEER PROTOCOL 

Fig. 2. Interface protocol. 



581 Part VII • Formal Specifications 

SOURCE DES TINA TlON 

Fig. 3. A simple example of protocol. 



Chap. 21 • Protocol Representation 583 

A. A Simple Example 

For an example of such an interface protocol, let us consider the 
flowcharts of Fig. 3. This protocol is based on a master-slave relationship 
between source and destination and the exchange of messages takes place in 
a half-duplex mode. 

In any protocol, we have to consider two parts. The first one is 
concerned with the synchronization between the two entities at the "process 
level." This covers the exchange of messages which has to take place before 
they are able to send data. This exchange is often called the "control phase." 
The second part is concerned with the synchronization between the two 
entities at "data level." This covers the message exchange which takes place 
when data are transferred and which is sometimes called the "data phase." 

For the protocol of Fig. 3, the pair request to send and ready to receive 
is concerned with the synchronization at the process level. The pair data sent 
and data consumed is related to the synchronization at the data level. 

From the flowchart of the source, it is clear that the two events directly 
related to the protocol are the arrival of the two messages ready to receive 
and data consumed. The arrival of data to send will be considered as internal 
to the source process but outside the dashed rectangle of Fig. 2. 

The flowchart of Fig. 3 is already a model of the protocol. Let us now 
look at other possible modeling techniques. 

B. Finite State Machine 

A finite state machine or automaton is a 5-tuple (X, I, 0, N, M) where 
X is a finite set of states; I is a finite set of inputs; 0 is a finite set of 
outputs; N is a state transition function (N:I X X ~ X); M is an (action 
and) output function (M: X X I ~ 0). Nand M express the behavior of the 
automaton. If, in any given state, an input is received, the (action and) 
output function will indicate (the action and) the output to generate and the 
state transition function will indicate the new state of the automaton. 
Incoming messages belong to the set of inputs and outgoing messages to the 
set of outputs, but we may have to introduce, in the set of inputs, "internal 
events" or "null events" which are necessary to model events occurring 
outside of the specifications of the protocol but in direct connection with its 
behavior. 

There exist several representation methods for a finite state machine 
but the most widely used is the state transition diagram [1]-[5]. From Fig. 3, 
two finite state machines may be defined, one for the source and one for the 
destination. They are represented as state transition diagrams in Fig. 4. 

For the source finite state machine (FSM), we have as inputs the two 
messages and two "internal events." The first one (i.e., I) is related to the 



584 

(a) 

IDLE 
i. B. 1 

prepare data 
~?~ 4>:Je-nd -. 

READY TO SEND 

~ 4> uceeVtJ +-

SENDING STATE 

i.e.2 

J 

J 
~a :Ja~---+ 

WAIT ACK 

/.u4 twndunud" +-

SOURCE 

J 

Part vn • Fonnal Specifications 

DATA CONSUMING 
STATE 

i. e. 

(b) 

DESTINATION 

Fig. 4. State transition diagrams for the source and the destination of Fig. 3 (names of states 
are in capital letters, italic is used for messages, and lower case is used for local action or 
internal event, abbreviated i.e.). 

arrival of data to send. The second one (i.e., 2) is a true internal event and is 
related to the end of data transmission. These two internal events model the 
relationship between the protocol process and its environment. The same 
thing is true for the internal event introduced in the destination FSM. 

From Fig. 4, it is clear that our model gives rise to four states for the 
source FSM and three states for the destination FSM. It is always possible 
to introduce additional states. For example, we may introduce between IDLE 



Chap. 21 • Protocol Representation 585 

and RECEIVING STATE, a state such as PREPARING TO RECEIVE DATA. This 
would, however, imply that we are not only modeling the protocol but also 
some details of the process which implement it. 

Up to now we have considered the source and the destination sep­
arately, but we may take a more global view and try to model the global 
FSM, i.e., the dashed rectangle of Fig. 2. The state space of the global FSM 
belongs to the Cartesian product of the two state spaces but is in fact a 
subset of it. With the four and three states of Fig. 4, we end up with only 
seven states instead of twelve: {OOjOO;lOjOO;lOjlO;lljlO;OljlO;Oljll; 
OljOO}. 

The state transition diagram is not the only representation which may 
be used in connection with finite state automata. Another representation 
uses state transition matrices [3], [6]-[8]. The Appendix gives an example of 
such a representation for the protocol of Fig. 3. 

Another possible representation is based on decision tables. The deci­
sion table of Fig. 5 corresponds to the source FSM of Fig. 3. In a given state 
and for any possible input, we find in the table the next state and the output 
function, if any. From Fig. 5 it is clear that in any given state, most of the 

~ Ready 
i. e. 1. to i. e. 2. Data 

State receive 
consumed 

x, (00) X Y Y Y-OI 

x2 (to) y y Y- Y-
x3 (11) Y- Y % Y O]I 

x4 (01) Y Y Y / 
Fig. 5. Decision table of the source. The outputs are OJ: request to send, all: data sent,-: no 
output. 



586 Part VII • Formal Specifications 

inputs will give rise neither to a state transition nor to an output generation. 
This indicates that we do not expect to receive such inputs in this given 
state. These "unexpected" inputs are not represented in Fig. 4. 

c. Petri Nets 

Petri nets [9], [10] were used initially to study the interconnection 
properties of concurrent and parallel activities. It is not surprising that they 
have been of interest in the modeling of protocols [11]-[13]. 

A Petri net (Fig. 6) consists of places (nodes, conditions) and transi­
tions (events) which are connected by directed arcs. A directed arc connects 
either a place to a transition or a transition to a place. The places from 
which there are arcs incident to a transition are called the input places of 
that transition. The output places of a transition are similarly defined to be 
those which are connected to the transition by arcs which originate at the 
transition and terminate at the place. 

A place may have one or several tokens or it may be empty. The 
transition obeys the following rules of operation: 

(1) A transition is said to be enabled or firable if each of its input 
places contains at least one token. 

(2) The firing of an enabled transition consists of removing one token 
from each of its input places and adding one token to each of its output 
places. 

(3) The firing of an enabled transition takes zero time but may not 
occur immediately. The firing of an enabled transition may be considered to 
depend on an outside authority. Notice that if all conditions are met to run 
a job (enabled transition), it does not mean that the job will be go 
immediately into the "running" state. 

INPUT 
PLACES 

TOKEN 

} 
OUTPUT 
PLACES 

TRANSITION 

Before firing After firing 

Fig. 6. Petri net principle. 



Chap. 21 • Protocol Representation 587 

Figure 6 is a representation of the formal definition of a Petri net which 
is 4-tuple 

where 

C=(P,T,I,O) 

P is a set of places (conditions) 
T is a set of transitions (events) 
I is the input function 
o is the output function 

For the simple protocol of Fig. 3, it is possible to construct the Petri 
nets of Fig. 7 with the Petri net of the source on the left and that of the 
destination on the right. Our comments about the source FSM and its 
internal events are illustrated here. The internal event 1 is here the arrival of 
a token in B; and internal event 2 is the firing of t3' Notice also that the 
CONSUME DATA of Fig. 3 appears here as an interaction with the environ­
ment. 

A token distribution amongst the available places in a Petri net is 
called a marking. From an initial marking of a Petri net, it is possible to 
construct the set of markings reachable from it. Each marking represents a 
state of a process· and defines a state machine called a token machine 
[11]-[12]. The token machine of the source is represented in Fig. 8. 

Each arc of the token machine is labeled with the name of the 
transition that affects it. However, we very often have peripheral places, i,e., 
places receiving their token from outside the limits of the process we intend 
to model. In the source process of Fig. 7, B, D, and G are peripheral places. 
The introduction of a token in such a peripheral place results from a 
transition located outside the process and in the token machine the arc is 
labeled by the name of the place where the token is introduced. The same 
situation exists with pl~ces located inside the model but where the removal 
of a token depends upon a transition located outside. 

Let us compare Figs. 4(a) and 8, which are both derived from the same 
source process of Fig. 3. The markings A, C, E, and F are, respectively, 
equivalent to the states OQ, 10, 11, and 01. Inputs of the SSM such as ready 
to receive and data consumed appear as additional markings in the Petri net 
(CD and FG in Fig. 8). Finite state machine and Petri net are not strictly 
equivalent constructs [9], [14]; however, in most problems they will give the 
same results. 

A Petri net provides a detailed model of the conditions related to the 
information flow in a process and corresponds, in a more abstract form, to a 
flowchart or a natural language description. As a token machine and a FSM 



588 Part VII • Formal Specifications 

(-/-, , 
1-10 ........... ---»; J- -.- - - - - -, ./ I 

T/ 

"3~\ I 
\ ,.------­,-/ I 

Tj 

I ,,-, 
-------.-{ 4}4-I ,_ ..... 

T4 

I DESTINATION 

Fig. 7. Petri net for the source and the destination. Initial marking: Token in A and A'. 
B = data to send, D = ready to receive, G = data consumed, B' = request to send, D' = data 
sent. 

A AB C CD E F FG 

~ 
Fig. 8. Token machine of the source process. 



Chap. 21 • Protocol Representation 589 

are equivalent, it means that a FSM is, as a token machine, the result of a 
transformation. States are derived from conditions. Therefore, a FSM is not 
the best tool to use at the very beginning of the design of a protocol. At this 
stage a Petri net model may be very useful, while the final design may be 
presented as a classical and more compact FSM. 

D. Interface Machine 

From Fig. 7, it is possible to obtain the token machine of the destina­
tion process. It is also possible to derive the token machine for the global 
process located inside the dashed rectangle of Fig. 2. A transmission 
medium with no delay between A and B may even be replaced by a model 
involving four places (1 to 4) and four transitions (TJ to T4 ) as in Fig. 7. 

However, if we take into account the master-slave relationship and the 
half-duplex characteristic of our protocol, it is possible to introduce the 
ideal of an interface machine. Such a machine does not exist but it may be a 
useful conceptual tool. Such an interface machine is located between the 
two processes A and B of Fig. 2 and receives as inputs the messages 
generated by A and B [Fig. 9 (a)]. Figure 9(b) is the Petri net graph of the 
interface machine. Figure 9(c) is the state transition diagram associated with 
the interface machine and Fig. 9( d) is the token machine. 

This virtual interface machine places in evidence the fact that, in the 
example analyzed, «the knowledge of the state of the source is enough to know 
the state of the destination and vice versa." Even if the two processes have 
only local information, our protocol is such that this local information is 
equivalent to global information. 

The FSM of the interface machine involves four states [Fig. 9(c)]. We 
mentioned in Section II B that the global FSM involves seven states. Besides 
the initial states, the only pair of truly equivalent states is the state 11/10 of 
the global FSM and the state 11 of the interface machine [Fig. 9(c)]. The 
greater number of states of the global FSM comes from the asynchronous 
character of the transitions of the source and destination processes and also 
from the internal events introduced in Fig. 4. This again raises the problem 
of the boundary between the specifications of the protocol and the specifica­
tions of the processes which implement it. 

E. Transmission Medium 

In the simple example of Section II A, we assumed a perfect transmis­
sion medium. We did not consider that a message might be lost. In the 
general case, we will need to model this transmission medium more realisti­
cally because its properties may be essential at the design level (Fig. 10). 



590 Part VII • Formal Specifications 

A B 

(a) 

(b) (e) 

(d) 

Fig. 9. (a) Interface machine. (b) Petri net of the interface machine. Initial marking: token in 
A. I = request to send, 2 = ready to receive, 3 = data send, 4 = data consumed. (c) State 
diagram of the interface machine. (d) Token machine. 

The transmission medium must be defined in terms of actions on the 
messages which may take various forms such as variable delay of transmis­
sion, loss of a message, duplication of a message, etc. In such an environ­
ment, it is no longer possible to introduce the idea of a unique interface 
machine because the information about one process no longer allows one to 
deduce the global state. Even with a perfect transmission medium but with a 
full-duplex protocol, the interface machine concept has to be discarded. 



Chap. 21 • Protocol Representation 

A 

(a) 

A MEDIUM 

._-----.. 

r------, 
I I 

.~ Interfacel J machine I 

I I L.. ______ ~ 

Fig. 10. Interface machine with nonideaI transmission medium. 

591 

B 

B 

It has been suggested that two interface machines be introduced [Fig. 
lOeb)] each reflecting the view that each side has about the global state. 
However, there may be difference between the state of any interface 
machine and the real global state due to the behavior of the transmission 
medium. Therefore, the value of interface machines is questionable and we 
prefer to rely on a global model which involves two local models and. a 
model of the transmission medium. 

F. Other Transition Techniques 

Besides FSMs and Petri nets, other representation methods have been 
proposed such as the UCLA graph [15]. Variable structure sequential 
machines have also been proposed for modeling [16]. 

In [17], Zafiropulo used a directed graph where only the basic events, 
message transmission, and reception are represented. The processes are 
assumed to begin and terminate in state O. From the directed graph of a 
local model, it is possible to find one or several paths beginning and ending 
in state 0, which is a "unilogue." A unilogue is, at the local model level, a 
possible sequence of events-messages received or transmitted. After identi­
fication of all possible unilogues, it is possible to build a "duologue matrix" 
used for validation. The duologue matrix is related to the search for 
compatible unilogues. If the transmission medium is not assumed to be 
perfect, its characteristics are mapped into extensions of the direct graph. 



592 Part vn • Fonnal Specifications 

This work, which has been used to validate the X.21 protocol [18], has been 
extended and automated [19]-[21], as described in Chapter 23. 

G. Programming Languages 

Our starting point for introducing our simple protocol was flowcharts 
and it is not surprising that high-level programming languages have been 
used for modeling the source and the destination processes [22]-[25]. We 
will return to this later. 

III. Peer ProtQcol 

In the Introduction we mentioned the concept of an end-to-end or peer 
protocol which governs the interaction of processes located at the same level 
of the hierarchy of a computer network (Fig. 1). The purpose of such a 
protocol is very often to provide a service to entities located in the next 
higher level of the hierarchy. For instance, the transport protocol between 
the two TSs in Fig. 1 is designed to provide a transport service to the 
processes located in the upper level. It is therefore essential not to limit the 
model to the "interface between the two TSs" but to include the interface 
protocol between the user process and a TS (Fig. 11). 

The link between the two TSs is a virtual one. The characteristics of 
such a virtual link may depend upon series of chained interface protocols, 
and the properties of the transmission medium over the virtual link have to 
be carefully evaluated. 

These considerations eventually lead us to the global model of a peer 
protocol represented by the dashed rectangle in Fig. 11. It involves the 
models of two TS and the transmission medium model. A TS is a local 
entity and the model of it will be called a local model. 

USER USER 

r- -; 
I I 
! TS TS i 
L _________________ ~ 

Fig. II. Global model of a peer protocol. 



Chap. 21 • Protocol Representation 593 

Any local entity (e.g., the TS in Fig. 11), exchanges messages with its 
peer entity but interacts also with the user process. The user process 
requests services from the TS, which has to respond to these requests. This 
leads us to introduce for the local model two sets of inputs and two sets of 
outputs. 

The rationale for separation is based on the following considerations. 
Between peer entities there is no reason to introduce a master-slave 
relationship, and furthermore, the set of output messages of one local model 
must be the same as the set of input messages of the other. Between a user 
process and the TS, which are in two different levels of the hierarchy, it may 
be essential to introduce a master-slave relationship, and furthermore, the 
interface protocol is alocal one. In two locations, it may be different in the 
extent of the services provided. The set of requests from a user to its local 
TS and the set of responses from the TS to the user may therefore be 
different from one location to another. 

The differences between the two types of interactions call for a clear 
separation between the two input sets and between the two output sets 
involved in the modeling of the local process. 

If we compare Figs. 2 and 11, it is clear that in the latter, the two 
interacting entities are entirely enclosed in the dashed rectangle. All interac­
tions with the environment of a TS are part of the input and output 
definitions. Here, internal events will now really be internal to the model. 

As our global model involves two local models and a transmission 
medium model, we are back to our initial point, i.e., to model a local 
process. However, the additional inputs and outputs raise the problem of 
the usefulness of the methods presented when the complexity increases. As 
will be seen, it is necessary to extend the methods in order not to be limited 
to academic examples. 

IV. General Local Model 

A. State Variables and Context Variables 

When the number of states becomes very large, any type of state 
machine is difficult to apply and all transition diagram becomes unusable. 
This dimensionality problem may be overcome by decomposition tech­
niques. 

In an instance of a program, the status word is only part of the 
complete state of the process. The information associated with the status 
word is supplemented by a set of context variables. Following the same 
approach to overcome the dimensionality problem in protocol modeling, it 
has been proposed to associate with a set of states, a set of context variables 



594 Part VII • Formal Specifications 

[7], [30]. Transitions involving context variables are described by a set of 
procedures. Using such an extended model, it has been possible to com­
pletely model the transport protocol for Cyclades [4] and to verify certain 
aspects of it [8], [31]. 

During this study, two basic questions were raised. (1) How do we 
separate state and context variables? (2) What are the relationships between 
the procedure, execution and the state transition? 

The second question will be considered later. Let us try to address the 
first one. 

The protocols we are interested in are based on message exchanges and 
the interface with the upper level is based on requests and responses (Fig. 
1). The general structure of any input to the local process may be assumed 
to be the following: 

( op. code) (parameter vector) 

The operation code indicates the kind of request or message, e.g., (send 
letter), (ack), etc. 

The parameter vector is used to transmit additional information in 
connection with this (op. code) and we have, therefore, a dependency 
relationship which may be used to separate state and context. 

Let us define 
I = {(op. code)(parameter vector)} 
11 = {(op. code)} 
12= {(parameter vector)} 
Ie 11 X 12 , 

The cardinal number of the finite set 11 of the operation codes is in 
general much smaller than the cardinal number of the finite domain of the 
discrete parameter vector space. A small cardinal number for the input set is 
a necessary condition for limiting the number of states of the FSM. 
Therefore, adopting a FSM model with the input set 11 is a possible way to 
overcome the dimensionality problem. 

To any input from the set, 11 (basic input) will correspond a state or a 
set of states in the FSM. As the parameter vector has a dependency 
relationship with its (op. code), we may associate with a state (or a group of 
states) a set of context variables selected in connection with the elements of 
the parameter vector. The dependence of the (parameter vector) on the (op. 
code) will be mapped into a dependency of the context variables on the 
state variables. Roughly speaking, (op. code) will change state variables and 
(parameter vector) will modify context variables. We will return to this 
point in Section IV E. 

B. Petri Nets 

If the problem of dimensionality of the FSM has to be considered, the 
same is true for the Petri net. In order to get a usable tool to describe 



Chap. 21 • Protocol Representation 595 

complex and real situations, Nutt [32] introduced the concept of an evalua­
tion net which, like a Petri net, is also made up of transitions interconnected 
by directed arcs to locations (places), but here the transitions obey the 
following rule: a transition fires if the set of input and output locations 
satisfied the definition of that particular transition causing one token to be 
removed from each location of a prespecified subset of input locations and 
one token to be placed on each location of a prespecified subset of the output 
locations. Furthermore, the time required for each execution of a transition 
is part of the specification of the net. This extension allows one to introduce 
time as a measure of the net performance. 

Nutt introduced several evaluation net primitives: 
(1) The T-transition is a transition involving one input location and 

one output location. The T-transition is enabled if the input location is full 
(contains one token) and the output location is empty (contains no token). 
Here, the state of the output locations has to be verified before enabling the 
transition. The F-transition with one input and two output locations and the 
I-transition with two input locations and one output location also require 
empty output locations to enable the transition. 

(2) The X-transition is reproduced in Fig. 12. In the X-transition, a 
hexagon has been introduced. It represents a resolution location which is a 
special type of input location whose status may be 0 (i.e., empty), 1 (i.e., 
full) or 0 (i.e., undefined), The two output arcs have also been marked with 
a 0 or a 1 and the X-transition definition is the following: the X-transition is 
enabled if the input location is full (contains one token) and the resolution 
location status is defined (0 or 1) and the output location corresponding to 
the value of the resolution location status is empty. The firing of an enabled 
transition consists of removing the token from the input location, putting 
one token in the output location corresponding to the value of the resolu­
tion location status and changing the resolution location status to be 
"undefined." As previously mentioned, the transition time is specified for 
each transition. 

As the resolution location status returns to the undefined state, the 
complete specification of the X-transition implies a resolution procedure 
which is activated when a token is placed in the input location. One purpose 
of this resolution procedure is to define the status of the resolution location. 

Figure 12. X-transition. (a) As defined 
by Nutt [32]. (b) As used in [13]. 

~
. 

o B 

A 

1 C 

(a) (b) 



596 Part VII • Formal Specifications 

The resolution procedure includes an expression of the form 

M:[PI ~ S(r):= i;P2 ~ S(r):= 1 - i] 

where S(r) is the status of r, i is either 0 or 1, and PI and P2 are two 
predicates. 

If p I is true, the status is set to i and further evaluation of the 
procedure is discontinued. Otherwise, P2 is evaluated and if it true, the 
status of r is set to 1 - i. When both predicates are false, the status of r 
remains undefined and the procedure need not be evaluated again until one 
of the arguments of the predicates changes its value. 

The purpose of the resolution procedure is to prepare the firing of the 
transition by setting the value of r to 0 or 1. One may also introduce a 
transition procedure which is executed at the firing time. 

Another important extension of the classical Petri net introduced by 
Nutt is the concept of attribute token. A token may be a simple token only 
denoting occupancy or it may be an attribute token, i.e., a vector represent­
ing a set of attributes, some or all of which may change as the token flows 
through the net. A transition procedure may reference and alter value 
attributes of tokens as they flow through the associated transition. They 
may also reference and alter environment variables, i.e., global variables that 
may be accessed by any procedure in the net. A resolution procedure may 
reference but not alter token attributes and environment variables. 

Since in general the execution of a resolution procedure is immediately 
followed by the execution of an associated transition procedure, we will not 
here distinguish any further between the two and will only refer to a 
resolution procedure which in the first step may reference (but not alter) 
token attributes and environment variables in order to set the value of r, 
and in second step depending upon the value of r, may proceed further and 
alter token attributes and environment variables. 

C. Time Petri Net 

The time Petri net is another extension of the classical Petri net. 
Introduced by Merlin [11]-[12], it consists in adding two time values to each 
transition of a Petri net. The first time value associated with the transition i 
will be noted t * i and denotes the minimal time that must elapse from the 
time that all the input conditions of a transition are enabled until this 
transition can fire. The second time value associated with the transition i 
will be noted t * * i and denotes the maximum time that the input 
conditions can be enabled and the transition does not fire. We always have 
t * i < t * * i and a Petri net is a special case of a time Petri net with t * 
i = 0 and t * * i = 00. 



Chap. 21 • Protocol Representation 597 

The time concept introduced here is completely different from the 
transition time of Nutt. Time Petri nets are useful in protocol modeling, for 
instance to model the discarding of a token received under some conditions 
(token absorber) or to model a retransmission mechanism based on a 
timeout. 

D. Combined Petri Net 

A combination of the time Petri net and the X-transition of Nutt has 
been used to model the Cyclades transport protocol in the following way 
[13]. We already know the general structure of an input (request or 
message): 

( operation code) (parameter vector> 

Therefore, the occurrence of an input with a given operation code is not 
represented by a simple token but by an attribute token. The occurrence of 
a request or of a message must first be checked with an input condition and 
therefore the transition will have two input locations [Fig. 12(b)]. When an 
awaited request or an awaited message occurs, the protocol has to check the 
parameter vector associated with it and make a basic evaluation. Such an 
evaluation may be expressed with the help of predicates and the X-transition 
is just what is needed to model it. Eventually, we end up with the basic 
module of Fig. 13. 

The occurrence of an input with a given (op. code> will be indicated by 
a token in location A. Location B will be used for marking the condition 
under which the request or message will not be discarded. 

(I) If the token is missing in B when a token appears in A, we must 
provide a mechanism which removes the token in A without firing!I' Such a 
mechanism, not represented in Fig. 13, involves an arc from location A to a 

Fig. 13. Basic module (left) with its token machlne (right). 



S98 Part vn • Formal Specifications 

transition to used to absorb the unwanted token. To avoid any interference 
between transitions 10 and II' we will set (t * 0 > t * * 1). 

(2) If the condition B is not missing when A occurs, the resolution 
procedure r may be activated and will decide to put a token in Ao or Al or 
not to fire II immediately. From a conceptual point of view, we may say that 
the case 1 where a token is placed in Al means that the request is accepted 
and that the case 0 where a token is placed in Ao means that the request is 
not accepted. In both situations, the token resulting from the firing of 
transition II will eventually fire the transition 12 or k The most that such a 
firing may do is 

(a) to pass a message to the next unit (token in MJ; 
(b) to send- a reply to the origin of the request or message received 

(token in RJ and 
(c) to set a waiting condition for another incoming message or request 

(token in JJj). 

On the right-hand side of Fig. 13, the token machine associated with 
the basic module has been reproduced. Transitions between states (mark­
ings) are due to transitions firing (/1,/2' and A), to token arrival (a) or to 
token removal (b). For simplicity, we assume that if the output location 
involves a message MI and a response R" both proceed further at the same 
time. 

In our model we will need the concept of environment variables that 
may be accessed by any procedure in the net and we will allow a resolution 
procedure to alter these variables. Returning to Fig. 13 and assuming a 
token in the B location when a token in A arrives, the general stru~ture of a 
resolution procedure involves 

(1) checking up on available resources; 
(2) setting or updating of environment variables; and 
(3) selection of an output location by evaluation of predicates. 

The predicate evaluation may involve the availability of resources, the 
matching of the parameter vector associated with the input A with the 
global variables, and so on. 

Without environment variables and resolution procedures, the number 
of places and consequently of markings would be too numerous and the 
model would not be usable. By keeping the parameter vector information at 
the environment variable level, it is possible to gain a partial control of the 
dimensionality problem. To every (op. code> we associate a place like A in 
Fig. 13 and introduce environment variables and resolution procedures to 
deal with the parameter vectors. As an example, it has been possible to 
develop a model with 28 places for the basic control phase of Cyclades 
protocol [13]. 



Chap. 21 • Protocol Representation 599 

In our two state transition models (extended FSM of Section IV A and 
extended Petri net of this section), we have now introduced very equivalent 
ideas. With the FSM, we had state variables and context variables. With the 
Petri net we have the markings and the environment variables. With the 
FSM, we had a procedure execution and a state transition. With the Petri 
net we have a resolution procedure and a firing. 

To complete this comparison we would like to point out that one of the 
main attractions of Petri net oriented models lies in the insight they give 
into the mechanisms of the protocol. With the basic module of Fig. 13, a lot 
of questions are raised when a protocol is analyzed. But such a tool will 
even be more useful at the design stage. For instance, if we want to define 
the way to interpret a request to open a link issued by the user process to its 
TS (Fig. 11), we may use the basic model of Fig. 13. 

The occurrence of the request <open link) will put a token in place A. 
A syntactically correct request may be rejected if the source process does 
not have the access rights to the service or if the TS does not have the 
resources and does not want to queue the request. If the request is rejected 
the firing of II will put a token in AD. The firing of 13 will put a token in R o, 
i.e., will send a negative response to the source of the request. Places like Mo 
(message sent to the other TS) and Wo (waiting condition) are not necessary 
in this example. If the request is accepted, the firing of II will put a token in 
AI' A message will be sent to the remote TS (token in M I ) and a waiting 
condition will be set (token in WI)' The introduction of a place like RI 
would mean that the source will receive a reply with the following semantic: 
your request has been accepted by your local TS. However, the designer 
may prefer to avoid all partial replies and wait until the end of the 
processing of the request by all distributed entities before reporting back to 
the source. If so, places like R I very often have to be dropped. 

In summary, for every received request or message, the designer will 
tailor the basic module (Fig. 13), define environment variables, and define 
resolution procedures to determine the processing of the information in­
cluded in parameter vectors. 

E. Finite State Machine Decomposition 

In our Petri net, we have attribute tokens and states represented by 
markings and environment variables. Furthermore, transitions are com­
pleted by resolution procedures. 

In Section IV A complex inputs were introduced, basic state variables 
were supplemented by context variables, and state transitions by procedure 
executions. We would like here to formalize this approach and propose the 
replacement of a unique FSM model by a two-step process involving two 



600 Part VII • Formal Specifications 

I ,----­
I 

Figure 14. Decomposition of a 
finite state automaton into context 
and a basic automata. 

successive FSMs (Fig. 14) [31]. The second FSM is, of course, equivalent to 
the set of procedures. 

Let us expand our previous definitions and define 

XI as the finite set of states of a basic automaton 

X2 as the finite set of states of a context automaton 

with X C XI X X2 • 

The first step involves the FSM defined as the 5-tuple XI X X2 X 11 X 
12 , Y, P, Q, where Y is a set of output symbols 

As only X2 is modified by the state transition this FSM will be called the 
context automaton. To define more precisely the transition and the output 
functions we may use the following notation: 

which means that the mappings from X 2 X 12 into X2 or Y depend upon the 
values of the basic automaton state and the input symbol (op. code). The 
second step involves the FSM defined as the 5-tuple 



Chap. 21 • Protocol Representation 601 

where 

The introduction of the Cartesian product ° X ° in the output mapping 
function G is necessary, as an element of Y may generate two outputs. The 
input symbol of this FSM is the output symbol of the first one. As only X1 

is modified by the state transition this FSM will be called the basic 
automation. The decomposition process is summarized in Fig. 15. 

To understand why the mapping G depends upon X2 , we must remem­
ber that any response or output message has the following structure: 

( op. code) (parameter vector) 
and if we define ° 1: finite set of output symbols ( op. code), °2 : finite domain of a discrete parameter vector space, 

the output set ° is a subset of the Cartesian product 01 X 02' To construct 
the parameter vector of an output we need the values of some of the context 
variables. 

The behavior of the two automata may be summarized as follows: 
when a request or input message is received, the op. code is first examined 
and, depending on the basic state, the input is accepted or rejected (ne­
glected). If acceptt:d, the processing of this input will involve the parameter 
vector of the input and the value of the context state, the net result of the 
processing being the generation of an output symbol y and the possible 

Step 1 

O-OELAY 

~ X, x X2.!, X I2 ' Y, P, Q :> 

Y'set of output symboLs 

p(X, xI,J'I2 xXz --'Xz 

Q [X, x I,J :IzxXz"'Y 

Step 2 

o 

-< X, X Xz , Y, 0, F, G > 

F' Y X X, ..... X, 

G'YxX,xXz ... no 

Fig. 15. Finite state automaton as a two-step process. 



602 Part VII • Formal Specifications 

modification of the context state. For a pair of op. code and basic state we 
may have several possible elements of Y which are to be selected depending 
on the values of the parameters associated with the op. code and of the 
context state. For instance, an input message for opening a liaison, received 
in a given basic state, may be mapped into one output symbol if there is 
parameter agreement or into another output symbol if there is parameter 
disagreement. 

Therefore, the cardinal number of Y is in general greater than the 
cardinal number of I I but much smaller than the cardinal number of I and 
thus, one of the goals, which was to overcome the dimensionality problem, 
has been achieved, at least for the basic automaton. 

When the output symboly is passed to the basic automaton the context 
state is already updated. The basic automaton is a classical FSM with a 
state transition and output generation depending upon the input symbol 
and the basic state. The complete output generation implies the concatena­
tion of the op. code and of a parameter vector depending on context state 
X2 • If the parameter vector is neglected the output mapping of the minimal 
basic automaton becomes G': Y X XI ---> 01 X 01. 

One may prove that this decomposition is always possible and with this 
two-step process we have now answered the second question of Section 
IV A. 

F. Hybrid Models 

In Section IV B, extended Petri nets were associated with resolution 
procedures. In Section IV E the second FSM was normally described by a 
set of procedures. This combination of a transition model and an abstract 
program is called a hybrid model. 

In [33], Bochmann also proposed a hybrid model involving a FSM part 
plus additional state variables, and concluded that "since reachability 
analysis of state machines seems to be more amenable to algorithmic 
methods than verifying (and finding) program assertions, the above tradeoff 
may have important implications for future automated methods of protocol 
verification." The hybrid model of [33] is based on Keller's model [34], itself 
very close in concept to the evaluation net of Nutt [32]. 

The model of [33] has been used in [35] for the HDLC protocol. In this 
example, it is interesting to notice the heavy use of functional partitioning 
which is another way to reduce the dimensionality problem of the finite 
state machine. This decomposition method has been used in [36] for 
modeling SN A. 

In [37], Sunshine raises an interesting objection against the use of a 
programming language as a specification tool: "a program, even in a 'high 
level language,' is usually not a satisfactory specification because it is 



Chap. 21 • Protocol Representation 603 

impossible to separate the essential features of what the program is sup­
posed to do from the particular way chosen to accomplish those functions." 
As almost all hybrid models are using programming languages at least 
partially, Sunshine's objection concerns the whole protocol community. Our 
personal opinion is that, even with formal models like FSM, it is extremely 
difficult to model only the protocol and to avoid completely the process 
which will implement it. This was pointed out in Section II F. 

Owing to the limitations of transition models, the interest in hybrid 
models is increasing. They have also been used in [38] and are mentioned as 
a natural extension by several authors. 

As FSM and abs~ract program are equivalent constructs, it is possible 
to represent protocols as abstract programs. This will be developed in 
Chapter 22. The dimensionality problem is no longer an issue at the 
representation level but verification remains a very difficult problem. 

V. Global Model 

If we have the model of the two peer entities of Fig. 11, we still need a 
model of the transmission medium to be able to consider the complete 
end-to-end protocol. The nondeterministic aspect of the transmission 
medium model does not allow the use of the same modeling techniques and 
this raises additional difficulties. As this is related to the verification 
aspects, it will not be treated in this paper. Let us just say that reachability 
analysis is the basic method for transition-oriented models and that asser­
tion proving is the cornerstone of models based on programming languages. 
Of course, hybrid models require both methods. Additional information 
about verification aspects may be found in [35], [37], [39] and in other 
chapters of this book. 

VI. Conclusion 

The problem of modeling protocols in order to validate or verify or 
implement them has now reached a level of development which allows 
practical problems to be solved. 

The generalization of the hybrid approach is certainly not an accident. 
In the long run, the superiority of reachability analysis versus program 
assertions or the converse will probably depend upon their relative capa­
bility in terms of automated methods. 

At the modeling level, there are quasiequivalent tools starting from 
Petri nets and evolving to programming languages through automata theory, 



604 Part VII • Formal Specifications 

grammars, and formal languages. The past experience of people will proba­
bly decide their choice. It is, therefore, more important to stress the 
similarities of these methods than to focus on their differences, and we hope 
to have contributed to this goal. 

Appendix: State Transition Matrices for Fig. 3 

If we represent inputs and outputs by unit vectors, it is possible to 
express the state transition and the output functions by matrices whose 
elements are logical functions of the state 

x = N( x) . i and 0 = M( x) . i 

For instance, for the source FSM, if we used the following input vectors i: 

ffitemill event, 2 ~ m data oonsumoo = m 
and the following output vectors 

request to send = [~], data sent = [~] 
with the following states: 

XI = [O,O]T = (idle) x 2 = [I,OV = (ready to send) 

X3 =[1, IV = (sending state) X 4 = [0, IV = (data consumed) 

we have 

N(x) = [p(x l + X 2 + x 3) P(x2 + x3) P(X2) P(X2 + x3) 1 
P(X3 + x 4 ) P(X2 + X3 + x 4 ) P(X3 + x 4 ) P(X3) 

where 

p(X; + Xj) = 1 

=0 otherwise 



Chap. 21 • Protocol Representation 605 

and 

~l 
References 

[I] D. Bjomer, "Finite state Automaton-Definition of data communication line control 
procedures," AFIPS Proc., Vol. 37, FJCC, Houston, November 1970, pp. 477-491. 

[2] H. Kawashima, K. Futami, and S. Kand, "Functional specification of call processing by 
state transition diagrams," IEEE Trans. Comm. Tech., Vol. COM-19, October 1971, pp. 
581-587. 

[3] R. E. Rusbridge and A. Langsford, "Formal representation of protocols for computer 
networks," Report AFRE-R-7826, UKAEA, Harwell, England, December 1974, 20 p. 

[4] A. A. S. Danthine and J. J. Bremer, "An axiomatic description of the transport protocol 
of cyclades," Rechnernetze und Datenfernverarbeitung, Aachen 1976, Springer-Verlag, pp. 
259-273. 

[5] G. V. Bochmann, "Finite state description of communication protocols," Proc. Comput. 
Network Protocols Symp., Univ. of Liege, February 1978, pp. F3-1 to F3-11, and Comput. 
Networks, 2,4/5, October 1978, pp. 361-372. 

[6] R. W. Stutzman, "Data communication control procedures," Com put. Surv., Vol. 4, No. 
4, December 1972, pp. 197-220. 

[7] A. A. S. Danthine and J. J. Bremer, "Communication Protocols in a Network Context," 
Proc. ACM Interprocess Comm. Workshop, Santa Monica, March 1975, pp. 87-92. 

[8] A. A. S. DanthiDe and J. J. Bremer, "Modeling and verification of end-to-end protocols," 
SART 77/11/13, Third European Network User's Workshop, IIASA, Laxenburg, Austria, 
April 19-20 1977, 17 p. 

[9] J. L. Peterson, "Petri nets," ACM Comput. Surveys, Vol. 9, No.3, September 1977, pp. 
223-251. 

[10] R. C. Chen, "Representation of Process Synchronization," Proc. ACM SIGCOMM/ 
SIGOPS Interprocess Commun. Workshop 1975. 

[II] P. M. Merlin, "A methodology for the design and implementation of communication 
.protocols," IEEE Trans. Commun., VoL COM-24, No.5, June 1976, pp. 614-621. 

[12] P. M. Merlin and D. J. Farber, "Recoverability of Communication Protocols. Implica­
tions of a theorical study," IEEE Trans. Commun., VoL COM-24, No.9, September 1976, 
pp. 1036-1043. 

[13] A. Danthine, "Petri nets for protocol modeling and verification," Proc. Comput. Net­
works and Teleprocessing Symp., Budapest, Hungary, October 1977, VoL II, pp. 663-685. 

[14] P. M. Merlin, "Specification and validation of protocols," IEEE Trans. Commun., VoL 
COM-27, No. 11, November 1979, pp. 1671-1680. 

[15] J. Postel, "A graph model analysis of computer communications protocols," Ph.D. 
dissertation, UCLA-ENG 7410, January 1974, 184 p. 

[16] L. Mezzalira and F. A. Schreiber, "Designing colloquies," 1st Europ. Workshop on 
Comput. Networks, Aries, April 1973, pp. 351-363. 

[17] P. Zafiropulo, "Protocol validation by duologue-matrix analysis," Proc. Intern. Commun. 
Con!, Chicago, June 1977, pp. 259-263, and IEEE Trans. Commun., VoL COM-26, 
August 1978. 

[18] C. H. West and P. Zafiropulo, "Automated validation of a communication protocol: The 
CCITT X.21 recommendation," IBM J. Res. Dev., VoL 22, No. I, January 1978, pp. 
60-71. 



606 Part VII • Fonnal Specifications 

[19] H. Rudin, C. H. West, and P. Zafiropulo, "Automated protocol validation: One chain of 
development," Proc. Comput. Network Protocols Symp., Dniv. of Liege, February 1978, 
pp. F4-1 to F4-6 and Comput. Networks, 2, 4/5, October 1978, pp. 373-380. 

[20] C. H. West, "An automated technique of communications protocols validation," IEEE 
Trans. Commun., Vol. COM-26, No.8, August 1978. 

[21] C. H. West, "General technique for communication protocol validation," IBM J. Res. 
Dev., Vol. 22, No.4, July 1978. 

[22] G. V. Bochmann, "Logical verification and implementation of protocols," Proc. 4th Data 
Commun. Symp., Quebec, October 1975, pp. 7-15 to 7-20. 

[23] N. V. Stenning, "A data transfer protocol," Comput. Networks, Vol. I, No.2, September 
1976, pp. 99-110. 

[24] D. Brand and W. H. Joyner, "Verification of Protocols using symbolic execution," Proc. 
Comput. Network Protocols Symp., Dniv. of Liege, February 1978, pp. F2-1 to F2-7 and 
Comput. Networks, 2, 4/5, October, 1978, pp. 351-360. 

[25] J. Hajek, "Automatically verified data transfer protocols," Proc. Int. Comput. Commun. 
Conj, Kyoto, September 1978, pp. 749-756. 

[26] J. Harangozo, "Protocol definition with formal grammars," Proc. Comput. Network 
Protocols Symp., Dniv. of Liege, February 1978, pp. F6-1 to F6-1O. 

[27] A. Y. Teng and M. T. Liu, "A formal approach to the design and implementation of 
network communication protocol," Proc. COMPSAC 78, Chicago, pp. 722-727. 

[28] A. Y. Teng and M. T. Liu, "A formal model for automatic implementation and logical 
validation of network communication protocol," Proc. Comput. Networking Symp., 
N. B. S., Gaithersburg, Maryland, December 13, 1978, pp. 114-123. 

[29] J. C. Day, "A bibliography on the formal specification and verification of computer 
network protocols," Proc. Comput. Network Protocols Symp., Univ. of Liege, February 
1978. 

[30] A. A. S. Danthine and J. J. Bremer, "Definition, representation et simulation de 
protocoles dans un contexte reseau," J. AIM Mini-Ordinateurs et Transmission de 
Donnees, Liege, janvier 1975, pp. 115-126. 

[31] A. Danthine and J. Bremer, "Modeling and verification of end-to-end transport proto­
cols," Proc. Comput. Network Protocols Symp., Univ. of Liege, February 1978,.pp. F5-1 to 
F5-12 and Comput. Networks, 2, 4/5, October 1978, pp. 381-395. 

[32] G. J. Nutt, "Evaluation nets for computer system performance analysis," AFfPS Conj 
Proc., Vol. 41 Part I, 1972, pp. 279-286. 

[33] G. V. Bochmann and J. Gecsei, "A unified method for the specification and verification 
of protocols," Proc. IFfP Congress, Toronto 1977, pp. 229-234. 

[34] R. M. Keller, "Formal verification of parallel programs," CACM, 7, 1976, pp. 371-384. 
[35] G. V. Bochmann and R. J. Chung, "A formalized specification of HDLC classes of 

procedures," Proc. Nat. Telecommull. Conf, Los Angeles, December 1977, pp. 03A .. 2-1 to 
2-1 L 

[36] R. 1. Sundstrom, "Formal definition of IBM's system network architecture," Proc. Nat. 
Telecommun. Con/, Los Angeles, December 1977, 3AL 

[37] C. Sunshine, "Formal techniques for protocol specification and verification," IEEE 
Comput. Mag., August 1979,21 p. 

[38] C. A. Sunshine and Y. K. Dalal, "Connection management in transport protocols," 
Comput. Networks, 2, 6, December 1978, pp. 454-473. 

[39] C. A. Sunshine, "Survey of protocol definition and verification techniques," Proc. 
Comput. Network Protocols Symp., Dniv. of Liege, February, 1978, and Comput. Net­
works, 2, 4/5, October 1978, pp. 346-350. 



Specifying and Verifying Protocols 
Represented as Abstract Programs 

Brent T. Hailpern 

I. Introduction 

22 

Network protocols form the cornerstone upon which distributed sys­
tems are built. Because of their fundamental importance, protocols must be 
designed with care so that they work correctly. In this chapter we discuss the 
techniques that have evolved for specifying and verifying protocols. In 
particular, we concentrate on those techniques that model protocols as 
abstract parallel programs. 

In order to specify a protocol, one must describe what the protocol 
should do, what the protocol should not do, and how the protocol should 
react to external stimuli. The implementation of a protocol is an implicit 
specification; the protocol is specified to behave exactly as does the imple­
mentation. We prefer, however, to specify the protocol abstractly and to 
leave until later those details of the implementation that do not affect our 
idea of how the protocol should behave. 

To verify a protocol, one describes some desirable property (or proper­
ties) of the protocol. One then proves that the specification of the protocol 
satisfies that property. 

We are interested in two kinds of properties of network protocols: 
safety and liveness. Safety properties are of the form "bad things will not 
happen." Partial correctness-if an operation terminates, then the correct 
result will occur-is a safety property. (In other words, it will not happen 
that the operation terminates with an incorrect result.) Note that a program 
can be partially correct by never terminating. Another example of a safety 
property is "the number of acknowledgments sent does not exceed the 

607 



608 Part VII • Formal Specifications 

number of messages received." Note again that a program that never sends 
any acknowledgments would satisfy this safety property. In order to state 
that a program makes progress-that it does something-we use liveness 
properties. Liveness properties have the form "good things will happen" (for 
example, "the program will terminate" and "acknowledgments will be 
sent"). In general, we use safety properties to state that if something is done, 
then it is done correctly; we use liveness properties to state that the 
something is done. 

How should we evaluate a technique for specifying a protocol? There 
are many criteria: how easy is it to implement the specification, how easy is 
it to use the specified protocol (if the only information provided is the 
specification), how easy is it to prove properties of a specification, and how 
easy is it to prove that a given implementation meets its specification? We 
will not attempt to rate the techniques described in this report, but rather to 
discuss some of their strengths and weaknesses. 

First we briefly discuss four techniques for specifying and verifying 
protocols. In Section III we describe the hierarchical view of network 
protocols and the importance of this view in abstract-program techniques. 
Section IV presents a brief overview to the Floyd/Hoare approach to 
verifying programs. Section " describes those abstract-program techniques 
that deal only with safety properties of protocols. Section VI discusses those 
techniques that use temporal logic in order to specify and verify both safety 
and liveness properties of protocols. Finally, we give an overview of 
automatic verification of network protocols expressed as abstract programs. 

II. Overview 

We will describe four approaches to specifying network protocols: 
informal, transition model, abstract program, and mixed model. (The major­
ity of this paper will be concerned with the abstract-program approach.) In 
the informal approach, the protocol is specified in a natural language (for 
example, English). The input/output characteristics are described along 
with the expected responses to external stimuli. Verification consists of 
describing how the protocol responds in every conceivable situation. The 
informal approach is not reliable enough for most applications; English is 
imprecise and can lead to ambiguities. In addition, without some formal 
model it is difficult to guarantee that all circumstances are being considered. 

The most commonly used formal techniques are based upon transition 
models in which the protocol is described as a set of finite state machines 
(or similar systems such as Petri nets). Each machine represents a compo­
nent of the network (for example, reader, writer, and communication 
medium). Transitions correspond to external stimuli (for example, receipt of 



Chap. 22 • Specifying and Verifying Protocols 609 

a message). To verify the correctness of a protocol, one forms the system 
state space as the cross product of the state spaces of the protocol's 
component machines. One then performs a reachability analysis on the set 
of system states. Deadlock is detected when a reachable system state with no 
exit transitions is discovered. Bochmann, Sunshine, and Danthine have 
written excellent surveys on the transition-model approach. (See Chapters 
20, 21, and 23. Also see Sunshine's survey [35].) 

The transition-model approach is superior to the informal approach 
because the former permits less ambiguity. Another advantage of the 
transition model is that generating the system state space and performing 
the reachability analysis can be automated [15, 36]. Such automatic verifica­
tion reduces the possibility that some situation (combination of states) may 
be forgotten. The main disadvantage of the transition-model approach is 
that as the complexity (number of states) of the protocol increases, the 
number of systems states and hence the length of the proof grows exponen­
tially. (This phenomenon is known as "state-space explosion.") 

In the abstract-program approach, the protocol is described as a 
parallel program (in a language such as Concurrent Pascal). The program 
may serve as the specification or as an abstract implementation. If it serves 
as the specification, then various properties of the program can be proved 
(such as freedom from deadlock and correct data transfer). If, instead, the 
program represents an implementation, then the task is to show that this 
implementation meets the properties stated in the specification. Verification 
follows the standard Floyd-Hoare technique [9,16] described below. This 
approach will be discussed in more detail in the remainder of this paper. 

The mixed-model approach [2] is an attempt to combine the best 
features of the transition-model and abstract-program techniques. Variables 
are associated with the states to record sequence numbers and other 
information that is not easily represented in a reasonable number of states. 
The resulting representations are smaller than the corresponding pure finite 
state machine representation. The proof technique, however, is no longer 
simple because the system state space involves more than the simple cross 
product of the individual machine state spaces; it also involves the variables, 
the values of which are potentially unbounded. 

III. The Hierarchical View of Network Protocols 

In all of the techniques described below, protocols are specified and 
verified in the context of the hierarchical framework used throughout this 
volume. In this view, the various functions of the network are separated into 
layers. Each layer uses the services provided by the next lower layer as 
primitive instructions. In turn, each layer provides services to be used by the 



610 Part VII • Fonnal Specifications 

next higher layer. For example, one protocol layer can define a bit data type 
in terms of high and low voltages. The next layer can define characters in 
terms of bits, and so on. A layer need not define a new data type; it can 
provide some other service. For example, if one layer provides a message 
data type and an unreliable transmission medium (that is, messages can be 
lost), then the next layer can provide the same message data type with a 
reliable medium. 

Each level of a protocol is specified and verified in terms of the services 
provided by the next lower level and by the services it provides to the next 
higher level. There are three advantages to using this hierarchical structure 
when specifying protocols: the layers to be designed are all of a reasonable 
size and complexity, the layers can be designed independently as long as the 
interfaces (service specifications) have been precisely defined, and alterna­
tive implementations for a layer can be interchanged without affecting the 
correctness of the rest of the protocol. In addition, each part of the protocol 
can be verified independently-proving its specification in terms of the 
specifications of the operations it uses. This independence simplifies the 
task of verifying large protocol systems. 

IV. The Floyd-Hoare Technique for Verifying Programs 

The Floyd-Hoare technique consists of attaching logical statements, 
called assertions, to the program to describe the program state (that is, the 
value of the program variables) at each control point. One can think of the 
control points of a program as being the different values of the program­
counter. For parallel programs, there is a control point between each atomic 
(indivisible) operation. For example, in a program that adds up a series of 
positive integers, we can assert that after the addition of each integer in the 
series, the new partial sum equals the old partial sum plus the added integer. 

In addition to these "local" assertions, one develops invariant assertions 
(or invariants). Invariants are also logical statements about the program 
variables and control points, but they describe properties of the program 
that are always true (that is, true at each and every control point). Using the 
example above, we can state that the value of the partial sum is always 
nonnegative. These assertions and invariants allow one to abstract informa­
tion from the representation of the program state. One can then reason 
about classes of states (avoiding the state-space explosion of the 
transition-model reachability analysis). 

To describe the behavior of a program statement, we associate two 
assertions, called the precondition and postcondition, with that statement. If 
S is a statement and P and Q are the pre- and postconditions, respectively, 



Chap. 22 • Specifying and Verifying Protocols 611 

then we write 

{P} S {Q} 
to mean that if P is true before S executes, and if S terminates, then Q will 
be true after S terminates. For each programming language, rules are 
developed to derive the pre- and postconditions for each type of statement 
in that language. 

In addition to describing the properties of individual statements, pre­
and postconditions can be used to specify the properties of procedures and 
functions. No additional notation is needed, just rules for proving that the 
precondition of a procedure and the code of that procedure suffice to prove 
the postcondition of the procedure. Pre- and postconditions are used to 
specify the actions of the low-level operations that a given protocol uses 
(such as "send" and "receive"), as well as the actions of the protocol 
procedures themselves. (Note that there is no restriction that the pre- and 
postconditions must specify deterministic procedures. Hence, unreliable 
transmission media may be described easily using this technique 
[5], [l3], [14], [33].) 

The Floyd-Hoare technique deals only with sequential programs. 
Owicki and Gries [22] describe the additional concepts needed to verify 
safety properties of parallel programs. 

V. Specifying and Verifying Safety Properties 

In this section we discuss five abstract-program approaches to specify­
ing and verifying safety properties of network protocols. We first discuss the 
early work of Bochmann that introduced the idea of treating protocols as 
abstract programs. Next we describe Stenning's approach, which is similar 
to Bochmann's, but with more formal proofs. Thirdly, we discuss Krogdahl's 
protocol skeletons for specifying and verifying classes of protocols. Then we 
describe Schindler's specification technique. Finally, we present an overview 
of the work of Bremer and Drobnik; their technique is especially suited to 
specifying and verifying safety properties of distributed systems. 

Bochmann 

Bochmann [1] made one of the earliest attempts at specifying and 
verifying a protocol using an abstract program. He cited three properties 
that a protocol specification method should have: 

1. A protocol can be specified in a comprehensive form; in particular, 
the complete definition of a protocol can be partitioned into differ­
ent levels of abstraction; 



612 Part vn • Formal Specifications 

2. the specification of a protocol allows proving certain properties of 
the protocol and its operation, proving in particular that the error 
recovery is effective, and that all possible situations of erroneous 
behavior have actually been considered; 

3. given the specification of a protocol, its implementation is simple, 
and part of the implementation may be obtained automatically. 

He went on to say that no method then existed that satisfied all three 
requirements, but that useful tools for specifying and proving properties of 
parallel processes did exist. Note the emphasis on the hierarchical view of 
protocols and the necessity for both precise specification and formal verifi­
cation; these concepts permeate the other techniques that we will discuss. 

Bochmannpresented, as an example, a simple data transfer protocol 
based upon HDLC [7]. The protocol was specified in a "free-style Pascal." 
The program structure was event driven, with statements of the form "when 
event X occurs perform actions Y and Z." In many ways, the structure was 
similar to a transition model: the states were specified by the values of the 
variables at each "station," and the state transitions were represented by 
events. 

Bochmann partially verified the protocol by stating three safety in­
variants that described the number of messages sent and received by each 
station. He presented the outline of a proof for these invariants in terms of 
other simpler invariants. The proof was not formal, but at that time there 
was no good theory for verifying the correctness of parallel programs. 

It should be noted that Bochmann intended (in this paper) that the 
program code be the specification of the protocol. Invariants were meant to 
describe certain properties of the protocol. 

Stenning 

Independently of Bochmann, Stenning was attacking the problem of 
specifying and verifying data-transfer protocols using abstract programs 
[34]. He also described his protocol in a procedural manner (that is, by 
program code). Stenning, however, specified the safety properties of his 
primitive operations and the safety criteria that the procedures of the 
protocol were supposed to fulfill (using the Floyd-Hoare notation described 
above). As in Bochmann, the program can be considered as the specification 
and the safety assertions as properties that have been proved of this 
specification. Alternatively, the safety properties can be considered to 
specify the protocol and the program to be a sample implementation. 

Stenning's proof technique was more formal than that of Bochmann. 
His code was very close to standard Pascal, which enabled him to rely on 
the standard Pascal rules for deriving pre- and postconditions. He provided 



Chap. 22 • Specifying and Verifying Protocols 613 

specifications for the behavior of those statements that were not strictly 
Pascal. He outlined the proofs of eleven invariants and presented a rigorous 
proof of the final system invariant. 

Krogdabl 

Krogdahl [18] developed the technique of protocol skeletons for describ­
ing and verifying safety properties of classes of protocols. A protocol 
skeleton includes the "essence" of what is necessary for a protocol to be safe 
(there is no notion of timers or time-out conditions). The skeleton consists 
of a set of operations for the stations (processes) of the protocol system. The 
operations use only variables local to the associated station and any incident 
communication medium (FIFO queues). There are two restrictions on the 
execution of these operations: within one station operations must be ex­
ecuted sequentially, and associated with each operation there is a condition 
that has to be met before the operation can be initiated. The specification of 
the operations themselves uses an Algol-like language. 

After the operations have been developed one proves a system in­
variant that describes the safe operation of the protocol. The variables 
referred to by the invariant may be accessed only by the specified opera­
tions. The proof of the invariant follows the standard Floyd-Hoare tech­
nique (that is, assuming that the invariant assertion is true before an 
operation is executed, show that the operation preserves the invariant's 
validity). Because only the specified operations can access the invariant's 
variables and because the specified operations always preserve the invariant, 
any order of execution of the specified .operations is safe. (Note that 
seemingly unsafe sequences are prevented by the condition clauses of the 
operations that state when it is safe to execute the operation in question.) 
Different protocols can be developed that use the operations in different 
orders-with respect to the invariant all of these protocols will be safe. 

Schindler, Didier, and Steinacker 

Schindler, Didier, and Steinacker [29], [30], [31], [32] have been working 
to precisely specify the X.25 packet level protocol with the goal of develop­
ing a system in which the implementation can be automatically generated 
from the specification. Though one of their objectives is that their specifica­
tion system be easily verifiable, they have not detailed any verification 
techniques. 

They divide the problem into the specification of a number of protocol 
machines. (A protocol machine is a special purpose abstract machine with 
only a few meaningful execution sequences-namely, those consistent with 
its protocol [31].) Each protocol machine consists of a number of modules 



614 Part vn • Formal Specifications 

(data abstractions). Each module consists of specifications of a state vector 
(the variables of the module), functions accessing the state vector, admissi­
ble execution sequences of these functions, and interface specifications. 

The functions in a module enforce restrictions and conventions, pro­
vide data transfer, and implement internal routines (such as buffering and 
multiplexing). Unlike most other specification techniques, these functions 
are allowed to have side effects; they may affect the state vectors of other 
modules. The authors claim that if properly controlled, such side effects 
allow for a more natural specification and implementation than would be 
possible without side effects. 

In order to specify a function, one provides the following information: 
a precondition, an if-condition, and a postcondition. The pre- and postcon­
ditions have the usual meanings; the if-condition has the form 

IF sem-cond THEN T.postcond ELSE F.postcond. 

The meaning of this if-condition is "if the function begins with 'sem-cond' 
true and if it terminates, then when it terminates 'T.postcond' will be true; if 
the function begins with 'sem-cond' false and if it terminates, then when it 
terminates 'F.postcond' will be true." On the surface, the if-condition could 
be merged with the pre- and postconditions. However, all conditions must 
be based on predicates (functions that return true or false) also specified in 
the protocol. Pre- and postconditions must consist of predicates that do not 
alter the system state- they may be safely checked to see if the function 
may be executed in a particular circumstance. The evaluation of the 
sem-cond, however, may call predicates from a lower-level module that do 
affect the system state-these predicates may have side effects. Therefore, 
if-conditions should only be checked if the function is actually being 
executed. The if-conditions are used to model the side effects of the 
functions that they specify. 

Bremer and Drobnik 

Bremer and Drobnik [5] use additional hierarchical structure in their 
technique in order to further simplify the task of specification and verifica­
tion. They explicitly specify the lower-level services that the protocol is 
provided (which they call the transmission subsystem service) and the 
higher-level services that the protocol is to provide (which they term the 
protocol service). These two services specify what the protocol must do. 
The verification problem, then, is to show that a given implementation 
satisfies the constraints specified by these two services. 

They expand the pre- and postcondition notation in order to describe 
more completely the intricacies of a distributed environment. This addi-



Chap. 22 • Specifying and Verifying Protocols 615 

tional information is stated in terms of three conditions that must be true 
during different phases of an operation's execution. The environment of the 
call to an operation must guarantee that the execution condition of the 
operation remains true as long as execution of the operation has not 
terminated. Similarly, the operation guarantees that the invariant condition 
remains true as long as execution has not completed. Finally, the completion 
condition must become true in order for the operation to terminate. Bremer 
and Drobnik do not give a formal theory for deriving these conditions, but 
they do present many examples of the conditions. 

In order to simplify the programming and verification of the parallel 
processes, Bremer and Drobnik further decompose each protocol layer into 
two levels: the concurrency level and the distribution level. The concurrency 
level provides a high-level description of the protocol without specifying the 
distribution of the parts of the protocol among the component processes. 
The distribution level allocates the functions defined in the concurrency 
level among the different processes. The verification task involves showing 
that the distribution level program, using the transmission subsystem 
services, correctly implements a set of operations that the concurrency level 
(correctly) uses to implement the protocol service. 

Bremer and Drobnik have outlined proofs of the alternating bit proto­
col, the HDLC link protocol (in a multipoint environment), and a decentral­
ized directory management protocol. They note that the split between the 
concurrency and distribution levels reduces the complexity of designing, 
implementing, and verifying protocols. 

VI. Temporal Logic Techniques 

The techniques described above involve only safety properties of proto­
cols; that is, assertions that the protocol cannot reach an undesirable state. 
Liveness properties-assertions that the protocol will progress-refer to the 
future occurrence of a. certain event. For example, we can say that an 
operation will terminate, that a message will be sent, or that an acknowledg­
ment will be received. Conventional logic formulas are inadequate for 
expressing and reasoning about liveness, because they cannot refer to any 
state other than the present one. In an attempt to reason about liveness 
properties of protocols, Hailpern, Lamport, Owicki, Melliar-Smith, and 
Schwartz have adopted the notation of temporal logic [10], [20], [26], [27], 
which provides operators for making assertions about future program states. 
(Hailpern, Owicki, and Lamport [14], [25] discuss rules for deriving and 
proving temporal assertions about programs.) 

The simplest form of temporal logic includes two temporal operators: 
o (henceforth) and 0 (eventually). The formal definitions of these opera-



616 Part vn • FonnaJ Specifications 

tors are stated in terms of sequences of states in a program computation. 
Informally, we may interpret the formula 0 P as meaning that P is true now 
and will remain true forever. The eventually operator is the dual of the 
henceforth operator; the informal interpretation of OP is that either P is 
true now or P will be true at some time in the future. As an example, the 
statement "the operation P will terminate" can be written as 

at P ::) o (after p) 

where "at P" is an assertion that is true if the program is just about to 
execute operation P. Similarly, "after P" is true immediately after executing 
operation P. (The statement would be read as "if 'at P' is true, then 
eventually 'after P' will be true.") Other, more complex, temporal operators 
are also used in the papers discussed below, but these two operators, 
henceforth and eventually, give much of the flavor of the logic. 

Hailpern and Owieki 

Hailpern and Owicki [13], [14] model a protocol system as a set of 
interacting modules that represent the logical units of the system (for 
example, transmitter, receiver, and communication medium). (Each module 
is either a process or a monitor. A process is an active program component 
-a procedure with its own program-counter. A monitor is a synchronized 
data abstraction, that is, a collection of data and procedures that access that 
data where only one process can access a given monitor at a time.) Hailpern 
and Owicki exploit this modularity in their specifications and proofs. All 
low-level operations are specified by safety and liveness inference rules. 
Each module, in tum, is specified by safety invariants and liveness commit­
ments (the temporal statements that correspond to invariants) that must be 
verified directly from the code of that module. In constructing the system 
proof, only the verified properties of the modules are used; the internal 
implementation is ignored. This method is hierarchical in that any level of 
abstraction may be assumed as long as the inference rules of the constituent 
operations are specified. 

In addition to temporal logic, Hailpern and Owicki use auxiliary history 
variables [12], [17], [23], [24] to record the interactions between the modules 
of the protocol system. (Auxiliary variables are used only in the proof of a 
program. They record information as do normal variables, but they may 
affect neither the value of any normal variable nor the control flow of the 
program. History variables have the ability to record an unbounded se­
quence of values-all the messages sent through a communication medium, 
for example.) One frequently stated safety property of a link protocol is that 
the output is an initial subsequence of the input (that is, the output history 



Chap. 22 • Specifying and Verifying Protocols 617 

may be no longer than the input history and corresponding elements of the 
two histories are equal). This safety invariant would be stated as 

out:::; in 

where:::; indicates "initial subsequence," in represents the input history, and 
out represents the output history. Histories also facilitate liveness state­
ments. For example, to state "if message X has been received, then acknowl­
edgment Y will eventually be sent" we would write 

X E in :J O(Y E out) 

Hailpern and Owicki have verified the safety and liveness of the 
alternating bit protocol, two versions of Stenning's data transfer protocol, 
and Brinch Hansen's multiprocessor network [6]. 

Lamport, Schwartz, and Melliar-Smith 

Lamport, Schwartz, and Melliar-Smith have divided the task of defin­
ing and verifying protocols into two parts: service-level specification and 
network-level specification. This separation is similar to that of Bremer and 
Drobnik; the service level defines the operations available to the users of the 
protocol, and the network level represents an abstract specification of the 
essential details of the protocol implementation. The goal is to verify 
the service level from the network level and to verify the network level from 
the protocol code. 

A major difference between this technique and that of Hailpern and 
Owicki is that the latter relies on large-scale synchronized units, such as 
monitors where this technique is defined in terms of fine grain atomic 
operations (possibly as small as changing the parity of a bit). A second 
difference is that this technique does not use history variables or any kind of 
auxiliary variable. (The Hailpern-Owicki technique relies heavily on the use 
of auxiliary variables.) By not using auxiliary variables, the programmer 
avoids describing properties of the protocols in terms of variables that are 
not actually implemented in the program. However, input/output relation­
ships, such as out:::; in, are more difficult to describe without the use of 
auxiliary histories. 

In describing the service-level specification, Lamport and Schwartz [21] 
rely on Lamport's notation for stating the safety properties of concurrent 
processes [19]. In Lamport's notation, the formula {P} S {Q} is interpreted 
to mean "if execution is started anywhere inside S (including at its begin­
ning) with predicate P true, then P will remain true so long as control 
remains in S-and Q will become true if and when S terminates." This 



618 Part VII • Formal Specifications 

notation allows for multiple (visible) control points during the execution of 
S, allowing for interference with S by other processes. Liveness statements 
take the same form as in Hailpern and Owicki: P ~ <)Q (if the program 
ever reaches a state in which P is true, then it will eventually reach a state in 
which Q is true). 

The service-level specification of the alternating bit protocol is ex­
tremely simple, it consists of four assertions for each of the two operations 
give and take. The assertions do not mention the existence of the alternating 
bit, because it is transparent to the user. Lamport and Schwartz have 
attempted to specify only those properties that would be relevant to a user 
of the protocol. 

Schwartz and Melliar-Smith [33] describe the network-level specifica­
tion. While the service level did not include implementation details, the 
network level is specified in terms of sequence numbers, timers, and internal 
control points. The resulting assertions (about safety and liveness proper­
ties) are correspondingly more complex. These invariants involve additional 
temporal operators to describe the duration of one event in relation to 
another event. As with the service-level specification, the network-level 
specification has been stated in a way that avoids overspecification. For 
example, messages and acknowledgments can occasionally be ignored, and 
decisions as to when sequence numbers are updated are left to the imple­
menter (as long as the network-level specifications are met). 

Lamport, Schwartz, and Melliar-Smith have not, as of yet, verified the 
service level in terms of the network level. Neither have they verified the 
network level in terms of a sample implementation. The main direction of 
their current research is the development of higher-level temporal operators 
to "bring the level of expression closer to the level of conceptualization of 
the requirements." 

VII. Automated Verification 

One drawback of the techniques described above is that they are paper 
and pencil exercises. As such, they are limited in size to the amount of 
specification and verification that one person (or a few people) can do. 
There are some attempts, however, to automate the verification of network 
protocols using an abstract program model. In this section, we will discuss 
the protocol work of Brand and Joyner, and the Gypsy, SARA, and AFFIRM 

projects. All four systems are general program provers that have been 
adapted to the task of proving the correctness of protocols. 

Brand and Joyner 

Brand and Joyner's verifier [3], [4] was designed and implemented as a 
part of a general purpose verifier oriented towards microcode verification. 



Chap. 22 • Specifying and Verifying Protocols 619 

The protocols are stated in an Algol-like language and are verified using 
symbolic execution. 

The goal of symbolic execution is to create a proof tree, a node of 
which represents a class of states of the system at one point in time. The 
root of the tree represents all initial states in which the protocol can begin; 
the leaves represent all possible final states. Associated with each node is a 
predicate list that describes the class of states represented by that node. For 
example, an IF statement generates two cases, one with the test true, the 
other with the test false; correspondingly, one branch leads to those states in 
which the test is true and the other branch leads to those states in which the 
test is false. To prove that a program has a given end result, one must show 
that all final states (leaves) have that result true. Parallelism is modelled (in 
the standard way) as nondeterminism, that is, the execution of two processes 
do not overlap, but may be arbitrarily interleaved. 

In some sense this technique is another form of reachability analysis 
with the predicates acting to reduce the state-space explosion by combining 
states into classes. Alternatively, the proof technique can be thought of as a 
predicate transformation technique; the possible consequences of each 
program statement contribute a branch to the tree, the nodes of which 
describe the new situation after the statement's execution. 

In proving the correctness of the HDLC protocol [4], Brand and 
Joyner's verifier produced a tree with l3lleaves. To verify all of these cases, 
l347 theorems had to be proved, of which the verifier was able to prove 80% 
automatically. The remaining 20% required knowledge of modular arith­
metic that the verifier did not have. 

The Gypsy Project 

Gypsy [12] is intended to provide an effective, practical language for 
developing large (conc\lrrent) software systems that are formally verified. 
Gypsy systems are built out of well-defined subsystems so that proofs of the 
system and of each subsystem are mutually independent. Process coordina­
tion is accomplished strictly through message buffers; formal specifications 
are stated in terms of buffer transaction histories. The language syntax is 
similar to that of Pascal. 

DiVito [8] has taken the first steps to specifying and verifying the 
alternating bit protocol with Gypsy. The major difficulty is modeling the 
unreliable nature of the communication medium; the transmitter and re­
ceiver processes easily fit the Gypsy paradigm. The problem with the 
medium is that Gypsy restricts all communication between processes to 
message buffers-buffers that do not lose or corrupt messages. Therefore, 
the current line of research is to modify Gypsy to accept unreliable media. 



620 Part vn • Formal Specifications 

The SARA System 

The SARA system [28] has grown out of the UCLA-graph transition 
model. SARA, however, has been augmented to be equivalent to the 
abstract-program systems discussed elsewhere in this survey. The SARA 

paradigm allows a program to be modeled in three domains: control flow, 
data flow, and interpretation. The control graphs are similar to Petri nets. 
Each node has input logic, which describes the conditions that must exist 
for a node to be initiated. Similarly, each node has output logic, which 
dictates the arcs along which the node passes control upon termination. 
Control is represented by tokens on the control arcs; the tokens move as a 
result of actions by the nodes. The data graphs describe static collections of 
data. The interpretation links events in the control graph to transformations 
of the data, using a PLjI-like syntax. 

Razouk and Estrin have used SARA to model the X.21 interface between 
Data Terminal Equipment (DTE) and Data Circuit-terminating Equipment 
(DCE) on a public data network [28] (based upon the work of West and 
Zafiropulo [36]). Using the resulting model, the automatic verification 
system discovered 14 deadlocked states. They further extended their analy­
sis to include what they called the "intent" of the interface specification. 
That is, those states in which the components of the protocol did not agree 
on the status (empty or not empty) of the communication medium were 
examined as possible violators of the "intent." They then used formal 
verification techniques (invariants) to determine if these states were indeed 
errors. This technique is not a complete verification of a protocol, but it 
does allow for the verification of vital aspects of a system. 

The AFFIRM Project 

The last system that we will discuss is AFFIRM [11]. In AFFIRM, data 
structures are specified in terms of constructors, extenders, and selectors. 
Constructors create the objects of a given data type. Extenders are more 
complicated operators built up from the constructors. Selectors compute the 
value of functions with arguments of the given data type. (For example, 
"insert," "remove," and "newlist" might be constructors in a list data type; 
"joinlists" and "sortlist" might be extenders; "listlength" and "frontvalue" 
might be selectors.) The actions of these operators are defined by a set of 
axioms. An automatic theorem prover is used to prove properties of these 
user-defined data types based upon the set of axioms. 

The basic structure of AFFIRM has been generalized in order to prove 
the correctness of protocols. The "data object" is equated with the "state" of 
the protocol. The "constructors" become "events." (Sample events include 
send, receive, and timeout.) Thus a sequence of events are treated as the 



Chap. 22 • Specifying and Verifying Protocols 621 

concatenation of a series of constructors. Gerhart gives the following 
example. The state 

RevS (TimeoutS(RevR(Send(Jnit,m)))) 

represents one state reached after the sequence of operations 

Init, Send(m), RcvR, TimeoutS, RevS 

Each "state" includes the value of the variables at that time. Therefore, the 
"selectors" return the values of these variables. (Examples include the 
contents of the transmission medium and the current sequence number.) 
Finally, the AFFIRM "axioms" define the "transitions" of the protocol; they 
specify the legal relationships between states. 

The AFFIRM project has verified safety properties of a simple message 
system, a transport protocol, the alternating bit protocol, and a version of 
Stenning's data transfer protocol. They are currently attempting to verify 
FTP (ARPAnet's File Transfer Protocol). 

VIII. Conclusion 

We have discussed some techniques for specifying and verifying net­
work protocols expressed as abstract programs. The different techniques 
emphasized different aspects of the problem: specification, safety verifica­
tion, safety and liveness verification, and automatic verification. It is as yet 
unclear which of the techniques will turn out to be the best for the 
specification/verification task, especially since most of them have been 
tested only against simple link-level protocols. 

At a recent workshop held at USC's Information Sciences Institute, a 
number of researchers in the field met to compare techniques for specifying 
and verifying network protocols. All were to provide a specification and 
proof of the alternating bit protocol. Not only were all of the proofs 
different, but none of the specifications agreed as to what the alternating bit 
protocol was. If anything, this should indicate the desperate need for tools 
to precisely specify and rigorously verify network protocols. Extending the 
hierarchical approaches described in this paper should help simplify this 
formidable task. Pursuing the various versions of temporal logic should give 
us a handle on the elusive liveness properties. Finally, automatic verification 
becomes a necessity as more complex protocols are designed. 



622 Part VII- Formal Specifications 

References 

[I] Gregor V. Bochmann, "Logical verification and implementation of protocols," Fourth 
Data Commun. Symp., (Quebec City) pp. 7.15-7.20, IEEE, October 1975. 

[2] Gregor V. Bochmann and Jan Gecsei, "A unified method for the specification and 
verification of protocols," Proc. IFIP Congo 77, pp. 229-234. North Holland Publishing 
Company, 1977. 

[3] Daniel Brand and William H. Joyner, Jr., "Verification of protocols using symbolic 
execution," Comput. Networks, vol. 2(4/5), pp. 351-360, September/October 1978. 

[4] Daniel Brand and William H. Joyner, Jr., "Verification of HDLC," IBM Research report 
RC7779, Yorktown Heights, New York, July 1979. 

[5] J. Bremer and O. Drobnik, "A new approach to protocol design and validation," IBM 
Research Report RC8018, Yorktown Heights, New York, December 1979. 

[6] Per Brinch Hansen, "Network: A multiprocessor program," IEEE Trans. Software Eng. 
vol. SE-4(3), pp. 194-199, May 1978. 

[7] "Data communication-High level data link control procedure-Elements of procedures 
(independent numbering)." Draft International Standard ISO/DIS 4335, September 
1976. See also ISO TC97 /SC6, Document 1005. 

[8] Benedetto L. DiVito, "A mechanical verification of the alternating bit protocol," 
ICSCA-CMP-21, University of Texas, Austin, June 1981. 

[9] Robert W. Floyd, "Assigning meanings to programs," Proc. Symp. Appl. Math. XIX, pp. 
19-32, American Mathematical Society, 1967. 

[10] Dov Gabbay, Amir Pnueli, Sharon Shelah, and Yonatan Stavi, "On the temporal 
analysis of fairness," Seventh Annual ACM Symp. on the Principles of Programming 
Languages, (Las Vegas) pp. 163-173, January 1980. 

[II] Susan L. Gerhart, "Protocol specification and verification: A progress report" Technical 
report AFFIRM MEMO-18-SLG, USC Information Sciences Institute, February 1980. 

[12] Donald L Good and Richard M. Cohen, "Principles of proving concurrent programs in 
Gypsy," Sixth Annual ACM Symp. on Principles of Programming Languages, (San 
Antonio) pp. 42-52, January 1979. 

[13] Brent T. Hailpern and Susan S. Owicki, "Verifying network protocols using temporal 
logic." Proceedings Trends and Applications 1980: Computer Network Protocols, (Gaithers­
burg), pp. 18-28, IEEE Computer Society, May 1980. 

[14] Brent T. Hailpern, Verifying Concurrent Processes Using Temporal Logic. Ph.D. thesis, 
Computer Science Department, Stanford University, 1980. Technical report 195, Com­
puter Systems Laboratory, Stanford University, August 1980. 

[15] J. Hajek, "Automatically verified data transfer protocols," Evolutions in Computer 
Communications: Proceedings of the Fourth International Conference on Computer Com­
munication, (Kyoto) pp. 749-756, North Holland Publishing Company, 1978. 

[16] C. A. R. Hoare, "An axiomatic basis for computer programming." Commun. ACM, vol. 
12(\0), pp. 576 + , May 1969. 

[17] John H. Howard, "Proving monitors," Commun. ACM, vol. 19(5) pp. 273-279, May 
1976. 

[18] Stein Krogdahl, "Verification of a class of link-level protocols," Bit, vol. 18, pp. 436-448, 
1978. 

[19] Leslie Lamport, "The Hoare logic of concurrent programs," Acta Informatica, vol. 14, 
pp. 21-37,1980. 

[20] Leslie Lamport, "Sometime" is sometimes "not never": On the temporal logic of 
programs," Seventh Ann. ACM Symp. Principles of Programming Languages, (Las Vegas), 
pp. 174-185, January 1980. 



Chap. 22 • Specifying and Verifying Protocols 623 

[21] Leslie Lamport and Richard L. Schwartz, "Notes on a service specification for the 
alternating bit protocol," In preparation, Computer Science Laboratory, SRI Interna­
tional, June 1980. 

[22] Susan S. Owicki and David Gries, "Verifying properties of parallel programs: An 
axiomatic approach," Commun. ACM, vol. 19(5), pp. 279-285, May 1976. 

[23] Susan S. Owicki, "Specifications and proofs for abstract data types in concurrent 
programs," in F. L. Bauer and M. Broy, eds., Program Construction, pp. 174-197. 
Springer Verlag, 1979. 

[24] Susan S. Owicki, "Specifications and verification of a network mail system," in F. L. 
Bauer and M. Broy, eds., Program Construction, pp. 198-234. Springer Verlag, 1979. 

[25] Susan Owicki and Leslie Lamport, "Proving liveness properties of concurrent programs," 
to appear in ACM Transactions on Programming Languages and Systems, 1982. 

[26] Amir Pnueli, "The temporal logic of programs," Eighteenth Ann. Symp. Foundations of 
Compo Sci. (Providence) pp. 46-57, IEEE, October 1977. 

[27] Amir Pnueli, "The temporal semantics of concurrent programs," Semantics of Concurrent 
Computation, pp. 1-20. Springer-Verlag, 1979. 

[28] Rami R. Razouk and Gerald Estrin, "Validation of the X.21 interface specification using 
SARA," Proc. Trends and Applications 1980: Com put. Network Protocols, (Gaithersburg) 
pp. 155-167, IEEE Computer Society, May 1980. 

[29] Sigram Schindler, 10chen Didier, and Michael Steinacker, "Design and formal specifica­
tion of an X.25 packet level protocol implementation," Proc. Compsac78, (Chicago), pp. 
686-691, IEEE Computer Society, November 1978. 

[30] Sigram Schindler, "Synchronized data types and their suitability for protocol implemen­
tations," Proc. Twelfth Hawaii Int. Con! System Sci., (Honolulu), pp. 18-27, Western 
Periodicals Company, 1979. 

[31] Sigram Schindler and Michael Steinacker, "A formal specification of an X.25 protocol 
machine," Proc. Trends and Applications 1979: Adv. Syst. Techno!', (Gaithersburg), pp. 
54-64, IEEE Computer Society, May 1979. 

[32] Sigram Schindler and Michael Steinacker, "A uniform protocol machine organization for 
the transport layers of the ISOI TC-971 SCI6j reference model," Proc. Trends and 
Applications 1979: Adv. Syst. Techno!., (Gaithersburg), pp. 65-73, IEEE Computer 
Society, May 1979. 

[33] Richard L. Schwartz and P. M. Melliar-Smith, "Temporal logic specification of distrib­
uted systems," Proceedings of the Second International Conference on Distributed 
Systems, Paris, April 1981. 

[34] Norman V. Stenning, "A data transfer protocol," Comput. Networks, vol. 1(2), pp. 
99-110, September 1976. 

[35] Carl A. Sunshine, "Formal techniques for protocol specification and verification," 
Computer, vol. 12(9), prJ. 20-27, September 1979. 

[36] C. West and P. Zafiropulo, "Automated validation of a communications protocol: The 
CCITT X.21 recommendation," IBM J. Res. Dev. vol. 22(1), pp. 60-71, January 1978. 



A Hybrid Model and the 
Representation of Communication 
Services 

Gregor V. Bochmann 

I. Introduction 

23 

Different approaches have been used for the formal specification and 
verification of communication protocols. As explained in Chapter 20, most 
of these approaches use finite state transition diagrams or programs written 
is some high-level programming language or both. The purpose of tbis 
chapter is threefold. 

First, in Section II, we review some experience with a general transition 
model, which we called a "unified" approach [1] because it involves state 
transitions and programming language elements. We believe that such an 
approach is appropriate for the formal specification of protocols, the 
specification of the services provided, and the verification of correct opera­
tion. In Section IV, we point out certain similarities between finite state 
transition and programming language approaches to verification. Knowl­
edge of the indicated references may be useful, but are not necessary for the 
understanding of these sections. 

Second, we discuss these issues by considering, as an example, the 
HDLC classes of procedures. 

Third-and this is the main part of the chapter in Section III-we 
describe a method for specifying the communication service provided by a 
protocol. While certain aspects of this method are related to our "unified" 
approach, we believe that most elements of the method are of general 
validity and applicability. In fact, the method is related to software en­
gineering methods [2] for specifying software modules. However, certain 

625 



626 Part VII • Formal Specifications 

elements of our method are specific to protocols due to their distributed 
nature. 

II. A General Transition Model 

For a given communication layer of a distributed computer system, we 
assume that the protocol is specified by separate descriptions for both 
entities executing the protocol, as shown in Fig. l. We explain in this section 
the main features of a general transition model [1] which is based on 
Keller's transition model [3] for parallel programs. We also discuss the 
relation of this model to other protocol description methods, and the 
importance of modularization which may lead to the subdivision of a given 
communication layer into several sublayers or protocol modules. Without 
giving the complete definitions which may be found in the literature, these 
concepts are explained using the HDLC classes of procedures as an exam­
ple. The complete HDLC specifications, based on this method, may be 
found in [4]. An experience of using these specifications for the implementa­
tion of X.25 link level procedures is described in [8]. 

A. The Description Method 

In our general transition model, an entity is described by the set of 
possible states in which it may be, and the possible state transitions (which 
are assumed to exclude one another in time). The possible states are 
generally described by two components: 

1. a finite state transition diagram, and 
2. a set of program variables which each may assume certain values. 

The state of the entity is characterized by (l) a token which indicates 
the active place in the transition diagram, and (2) the values of the program 

entity 1 ~ -? enti ty 2 

layer 

}

- - interface 

protocol 
layer 

-------- .... 

underlying 
transmission medium 

Fig. 1. A protocol layer within a layered system architecture. 



Chap. 23 • Hybrid Model Representation 627 

(b) 

(a) 

Fig. 2. State transition diagrams for the primary link setup module of an HDLC station. (a) 
Operational procedure which may be discontinued due to a failure. [The diagram is hierarchi­
cally dependent on the operational state of diagram (b).] (b) Diagram showing the possible 
failure and restart transitions. 

variables. As an example, Fig. 2 shows the transition diagram of an HDLC 
module which operates the link setup and disconnection procedure. The 
state space of a complete HDLC station is defined by this and similar 
diagrams (one for each of the modules shown in Fig. 4) and the program 
variables shown in Fig. 3. 

The operation of an entity is defined by the possible state transitions. 
These transitions are indicated in the transition diagram (see, for example, 

received: frame-type;} I genera 
status: status-type; 

unack: sequence-count; 
VS: sequence-count; 
buffer 

data (VS:sequence-count): info-block 
to-send (VS:sequence-count): boolean 

VR: sequence-count; 

PF-control.bit: (0 .. 1); 

Fig. 3. Program variables of HDLC station. 

}Sink 

}Primary 
PF control 



T
ab

le
 I

 
~ 

T
ra

ns
it

io
n 

E
na

bl
in

g 
pr

ed
ic

at
e 

A
ct

io
n 

M
ea

ni
ng

 

P
ri

m
ar

y 
st

at
io

n:
 

S
X

R
M

 
P

F
-c

on
tr

o1
.b

it
 =

1
 

se
nd

-u
nn

um
be

re
d 

(S
X

R
M

);
 

S
X

R
M

 is
 S

N
R

M
 o

r 
S

A
R

M
 d

ep
en

di
ng

 
o

n
 t

he
 m

od
e 

to
 b

e 
se

t 
U

A
 

re
ce

iv
ed

. k
in

d 
=

 U
A

 
in

it
 (s

ou
rc

e)
; 

ln
i t

ia
liz

e 
th

e 
so

ur
ce

 a
nd

 s
in

k 
in

it
 (

si
nk

);
 

co
m

po
ne

nt
s 

in
i t

 (
tr

an
sm

is
si

on
);

 
D

IS
C

 
P

F
-c

on
tr

ol
.b

it
 =

 
1 

se
nd

-u
nn

um
be

re
d 

(D
IS

C
);

 
C

M
D

R
 

re
ce

iv
ed

.k
in

d 
=

 C
M

D
F

 
in

it
 (

tr
an

sm
is

si
on

);
 

E
R

R
O

R
 

S
ta

tu
s 

in
 

in
it

 (
tr

an
sm

is
si

on
);

 
F

ra
m

e 
re

ce
iv

ed
 c

on
ta

in
ed

 a
n 

er
ro

r 
[i

nv
al

id
-c

on
tr

ol
-f

ie
ld

, 
to

 b
e 

re
so

lv
ed

 b
y 

a 
hi

gh
er

-l
ev

el
 

in
va

li
d-

in
fo

, 
re

co
ve

ry
 p

ro
ce

du
re

 a
t 

in
va

li
d-

si
ze

, 
P

ri
m

ar
y 

in
va

li
d-

N
R

] 
O

T
H

E
R

 
in

it
 (

tr
an

sm
is

si
on

);
 

In
 c

er
ta

in
 s

ta
te

s,
 t

he
 r

ec
ep

ti
on

 
of

 c
er

ta
in

 k
in

d 
of

 f
ra

m
es

 
is

 s
im

pl
y 

ig
no

re
d 

(n
ot

 s
ho

w
n 

in
 

th
e 

tr
an

si
ti

on
 d

ia
gr

am
s 

"
, 

I 
bu

ff
er

. t
o-

se
nd

 (V
S)

 
se

nd
-i

nf
o 

(V
S,

 V
R

, b
uf

fe
r.

 d
at

a 
(V

S
»;

 
W

he
n 

th
er

e 
is

 a
n 

I 
fr

am
e 

to
 b

e 
S-

an
d 

se
nt

, w
hi

ch
 li

es
 w

it
hi

n 
th

e 
se

nd
 

~
 -

V
S 

=1=
 (

un
ac

k 
+

 w
in

do
w

) 
V

S:
 =

 (
V

S 
+

 1
) 

m
od

 m
od

ul
us

; 
w

in
do

w
, 

se
nd

 it
 

• 
m

od
 m

od
ul

us
 

"'
i ~ 

I 
re

ce
iv

ed
. k

in
d 

=
 I

 
un

ac
k:

 =
 r

ec
ei

ve
d.

N
R

; 
!.

 
an

d 
V

R
:=

 V
R

 +
 I:

 
If

 !.. 
fr

am
e 

is
 i

n
 s

eq
ue

nc
e,

 
rJ'

J 
1 

re
ce

iv
ed

.N
S

 =
 V

R
 

in
it

 (
tr

an
sm

is
si

on
) 

pa
ss

 d
at

a 
to

 u
se

r 
13

. ~
 

l>O
 g. =
 

~
 



Chap. 23 • Hybrid Model Representation 629 

Fig. 2); however, additional information must be provided. For instance, 
each transition, when executed, may change the values of the program 
variables and interact with the user entity through the upper layer interface 
or with the underlying transmission medium through the lower interface (see 
Fig. I). A given transition may only be executed when its enabling predicate, 
i.e., a Boolean expression depending on the program variables, is true. This 
additional information may be given in the form of a table, as shown in 
Table I. For example, the! transition, which sends an information (1) 
frame to the peer entity, may only be executed when a data block is to be 
sent and not too many I frames are unacknowledged. When executed, the 
action of the transition sends an I frame and updates the value of the send 
variable VS. 

B. Relation to Other Description Methods 

It has been pointed out ([5]; see also Chapter 20, Section II C) that 
most protocols contain certain aspects that are naturally described by finite 
state (FS) transition diagrams and other aspects that are better described by 
program variables and executable statements written in some programming 
language. The HDLC procedures provide a typical example. The link setup 
and disconnection procedure is described relatively completely by the FS 
transition diagram of Fig. 2, whereas the data transfer, exemplified by the! 
and 1= transitions given in Table I, essentially involves program variables 
and statements. Different approaches have been taken to cope with this 
situation (see, for example, Chapter 20). 

The approach of attempting to write complete descriptions in the FS 
model is limited because most protocols are so complex that the resulting 
FS descriptions become too large to be useful. However, partial descriptions 
in the FS model may be very useful. For example, the FS descriptions of 
X.21 and X.25 are of this kind. We note that even a relatively complete FS 
description and analysis [7] of the simple "alternating bit" protocol ignores 
the contents of the exchanged user messages. The partial description ap­
proach corresponds to keeping only the FS transition diagram of our 
general transition model (in the case of the HDLC procedures, for example, 
keeping Fig. 2 and ignoring Fig. 3 and Table I). But it is clear that such a 
description, and a protocol analysis based on it, must be complemented 
with additional information. 

On the other hand, the FS aspects may be eliminated from the 
description of a protocol in the general transition model by replacing each 
FS transition diagram, which contains one token, by a variable which 
indicates the place of the token in the diagram, together with appropriate 
enabling predicates and update actions for the transitions. Such a transfor­
mation is straightforward, and is usually performed in order to obtain an 
implementation of the protocol. 



630 Part vn • Formal Specifications 

C. Modularization 

Most protocols implemented in a given layer of a hierarchical system 
are so complex that a conceptual subdivision into several sublayers or 
functions is very useful. In this case, each sublayer or function corresponds 
to a module within each entity executing the protocol. The different 
modules of an entity are relatively independent of one another. In the 
examples which we have considered, i.e., the link level HDLC Rrocedures 
[4], the X.25 packet level procedures [8], and the ML Protocol [9] providing 
transport and session layer functions, the following concepts were sufficient 
to naturally describe the interactions between the modules within one entity, 
and different entities through a layer interface. We note that all, except the 
second concept; are also applicable to FS models. 

Complete Independence. Each module is described by a separate transi­
tion model. 

Shared Variables. The modules are independent, except that the transi­
tions of one module may update the program variables of the other module, 

Primary 
link set-up 

• • 
• • Primary 

• • PF control • 
• 
• 
• 
• 
• • clock • 

Sink 

NOTATION: 

~ direct coupling 

••• -+ hierarchical dependence 

- - ~ update of shared variable 

Fig. 4. Modules of an HDLC primary station and their relation. 



Chap. 23 • Hybrid Model Representation 631 

thus influencing its behavior. Figure 4 shows a possible modular decomposi­
tion of an HDLC primary station. In this example, a shared variable is used 
to indicate a time-out condition to the PI F-bit control module, and the 
variable unack of the source module is accessed by the sink module when a 
piggybacked acknowledgment arrives. 

Hierarchical Dependence [4]. A module B is hierarchically dependent 
on a module A if B enters its initial state whenever A enters a particular 
state, which we call the activating state for B, and the transitions of Bare 
only possible while A remains in the activating state. In the example of Fig. 
4, hierarchical dependence is used to describe the fact that the data transfer 
executed by the source and sink modules is only active when the link setup 
module is in the connected state (see Fig. 2). 

Direct Coupling [''iL [7]. This concept introduces a strong synchroniza­
tion between certain transitions of different modules. Two transitions of 
different modules are directly coupled if they can only be executed jointly 
(only when both respective enabling predicates are true). This mechanism 
may be used to describe the local interaction of an entity through the upper 
layer interface with its user or through the lower interface with the underly­
ing transmission medium (see Section III). In a more general form, where a 
given transition is directly coupled alternatively to several transitions of the 
other module, this concept was also used for describing the interaction 
between the PI F-bit control module and the other modules of an HDLC 
station [4], as indicated in Fig. 4. In fact, each sending and receiving 
transition of the other modules must be coordinated with a transition of the 
PI F-bit control module which checks the validity of the P IF-bit sent or 
received. 

III. Specification of Communication Service 

The specification of the communication service provided by a given 
protocol layer (see Fig. 1) defines what the user entities have to know about 
the protocol layer they use, without being concerned with the details of the 
protocol. We distinguish the local and the global properties of a communi­
cation service. The local properties of the service are those which char­
acterize the local interaction of one user entity through a service access 
point (see Section II of Chapter 2) with an entity providing the service, 
ignoring what happens at the other access points of the same layer. Given 
that we consider a communication service, the local properties leave an 
important aspect unspecified, namely, the relation between what happens at 
the different access points of the layer. In most cases the communication 
service may be characterized as connections between a pair of access points. 
The global properties, then, specify the relationship between the two access 



632 Part vn • Formal Specifications 

points of a connection. Therefore they are sometimes called the "end-to-end" 
properties of the communication service. We note that the distinction 
between local and global properties is not "exclusive" since the specification 
of the global properties of a service usually implies (i.e., includes) its local 
properties. We include in the following only some simple examples. A 
complete service specification along the lines discussed here may be found 
in [14]. 

A. Local Properties 

In this subsection, we concentrate on the local properties of a com­
munication service. These properties clearly determine the local interface 
through which a user entity accesses the service. The properties may be 
considered to be the abstract specification for the local interface, which must 
be satisfied in each local system. At the end of the section, we comment on 
how this abstract interface may be refined in order to give rise to a 
particular interface implementation. 

1. A Directly Coupled Interface 

We assume that both entities that interact through the interface are 
described by a general transition model, as explained in Section II. We 
describe the interaction between the two entities by direct coupling. In 
particular, certain transitions of the service-providing entity are directly 
coupled with certain transitions of the user entity. If we do not want to 
specify the operation of the user entity (which is usually the case), we may 
simply give a list of interface transitions which may be executed by the user 
entity subject to some (unspecified) enabling predicates, and which are 
directly coupled with transitions of the service-providing entity. For exam­
ple, for the entity using the HDLC link layer service, we may define the 
interface transitions given in Table II. We note that the flow control at the 
interface is automatically present since a pair of directly coupled transitions 
may only be executed when the corresponding enabling predicates in both 
entities are true and no other transition is in progress. Parametrized 
transitions may be used for passing value parameters between the two 
entities, such as the data parameter in the case of the i, D and l' D 
transitions. 

2. Abstraction 

While the conceptual operation of the interface may be described by 
directly coupled transitions, as explained above, we discuss in the following 
three further abstractions which lead to simpler interface descriptions. The 
first two abstractions are based on the fact that the user entity does not 



Chap. 23 • Hybrid Model Representation 

Interface transition 
of user entity 

,j, Open request 

i Open indication 
Open confirmation 
,j, CIOSerequest 
i Close indication 
Closeconfirmation 

,j, D( data:info-block) 

i D( data:info-block) 

Fail 

Table II 

Coupled transition 
of HDLC station (see fig. 2 and Table I) 

SXRM starting in disconnected or 
connected state 

SXRM starting in CMDR exception state 
UA starting in Wait for SXRM ack state 
DISC starting in connected state 
DISC starting in CMDR exception state 
UA starting in Wait for DISC ack state 
A transition appending the data parameter 

into the buffer variable of the source 
module 

I = where the data parameter is equal 
to received. data 

failure 

633 

need to (and should not) know the operation of the protocol which provides 
the service. The same considerations apply also in the general context of 
software engineering for the specification of the service provided by a 
software module. The last abstraction is particular to the context of com­
munications. 

Ignoring the Operation of the Protocol. The order in which the interface 
transitions may be executed by the user entity is clearly determined by the 
direct coupling and the order in which the transitions of the service-provid­
ing entity may be executed. Let us consider the example of the layer 
interface for the HDLC protocol. We may deduce from the information in 
Table II and Fig. 2 that the interface transitions may be executed in the 
order shown in Fig. 5. (This diagram is obtained from the diagram of Fig. 2 
by merging the Connected and CMDR exception states, and replacing the 
transition labels according to Table II. We note that this derivation is 
generally not so simple because the interaction between the two protocol 
entities may limit the transition possibilities.) 

Combining Interface Transitions into "Service Primitives." Continuing 
with the example above, we see in Fig. 5 that certain interface transitions 
are always followed by the same next transition. We may therefore combine 
these transitions into a single one, thus simplifying the overall transition 
diagram. Adopting the following combinations 

J, Open request 
t Open indication 
J, ClOSerequest 
t Close indication 

Open confirmation 
Open confirmation 
ClOSeconfirmation 
ClOSeconfirmation 

=J,Open 
=tOpen 
=J,Close 
=tClose 



634 Part vn • Formal Specifications 

tD .J.D 

Fig. 5. Local service interface transition diagram based on Fig. 2(a). 

leads to the interface transition diagram of Fig. 6. We call the remaining 
(partially combined) interface transitions service primitives [15]. 

Ignoring the Source of Initiation. The symbols "i" and" t" in the 
names of the service primitives have been introduced to explicitly indicate 
whether the execution of the primitive is initiated by the service providing 
entity (" i ") or the user entity (" t "). In the case of the data transmission 
primitives i D and t D, this distinction is clearly important. In the case of 
the link setup or disconnection primitives, however, this distinction is not 
always important, in which case one may make abstraction from it. In 
particular, the diagram of Fig. 6 does not require this distinction; neither 
does the specification of the global properties of the service discussed in the 
next section. We therefore drop the symbol "i" or "t" whenever this 
distinction is of no importance. 

If we consider the exchange of parameter values between the interact­
ing entities during the execution of a service primitive, the situation may 
become more complicated. In the case of a primitive for establishing a 
virtual circuit through a packet-switched data network, for example, a 
distant subscriber address parameter value is provided by the initiating 
entity, while a response parameter value is returned by the other entity. 



Chap. 23 • Hybrid Model Representation 635 

Fig. 6. Simplified local service interface transition diagram. 

Independently of which entity lrutIates the primitive, this fact may be 
described by the following notation: 

VC-Establishment (-> x: distant subscriber address, ~ y: response 
code). 

3. Discontinuation of Seroice Primitives 

As shown in Figs. 5 and 6, the concept of hierarchical dependence (see 
Section II C) may be used to indicate that the normal link layer service is 
only available as long as the physical circuit is operational. Since a Fail 
interface transition may occur any time in the operational state, link 
establishment primitives, for example, will be "interrupted" by a failure 
which occurs after an Open req transition and before the corresponding 
Openconf transition (see Fig. 5). We say that the service primitive is 
discontinued. In Fig. 6, this possibility is not shown explicitly, but it must be 
taken into account. We conclude that whenever the layer interface descrip­
tion involves some hierarchical dependence, the possibility of discontinua­
tion for the dependent service primitives must be considered. 

Another example of discontinuation is given by the virtual circuit data 
transmission service where, according to X.25, the transfer of a complete 
user sequence (i.e., variable length data block) between the DTE and the 
network may be "interrupted" by a reset or circuit clear. 

4. Interface Implementation 

It is clear that many details must be added to the abstract interface 
specification suggested in this section in order to obtain an interface 



636 Part VII • Formal Specifications 

implementation. However, these details may be chosen differently for each 
local implementation, whereas the abstract interface properties discussed in 
this section must be valid for every actual interface. In particular, the 
mechanisms for implementing flow control and the distinction between 
which entity initiates a service primitive may be implemented in quite 
different ways. For instance, the use of message queues between the 
service-providing entity and its user would be a particular way of imple­
menting the interface. 

B. Global Properties 

An interface description, as discussed in Section III A, defines the 
service primitives and the order in which these primitives may be executed 
at a local interface between a user and a service-providing entity. Here we 
concentrate on the global properties of a communication service, which are 
those aspects that make the service useful for communication. The local 
service interface description for the HLDC protocol, for example, states that 
sending and receiving of user data blocks is possible in the connected state 
(see Fig. 6). Only the global properties state that the first block received at 
one end is equal to the block first sent at the other hand. 

The global properties of a communication service usually have two 
aspects: (1) restrictions on the order in which the service primitives at the 
two ends of a connection may be executed, and (2) restrictions on the 
possible parameter values exchanged. An example of the second aspect is 
given above; an example for the first aspect is the fact that (usually) the 
number of possible receive executions at one end is always smaller than or 
equal to the number of send executions performed at the other end. 

Speaking about the execution order of service primitives at different 
service access points (in usually different locations) brings up the problem 
of how such an order can actually be observed or enforced. We assume, for 
the present purposes, that the execution order at different locations can be 
determined by some hypothetical observer or with sufficiently well syn­
chronized real time clocks. 

We use the following notation. Given two service primitives A and B, 
"A ~ B" means that the beginning of the execution of A is earlier (in real 
time) than the end of the execution of B (that is, there may be a causal 
influence of A on B, or equally, B is not earlier than A). The notation 
"A ~ B" means that A ~ B and A ¢= B holds (that is, there is some instant 
(in real time) when both service primitives are in progress). We say that A 
and B are simultaneous. 

For many purposes, instead of considering the execution order to be 
defined in respect to the real time, it may be adequate to consider that the 
execution order defined by the global properties of the service determine 



Chap. 23 • Hybrid Model Representation 

(1) (Link Seq) ::= empty 

{ CI~Se} (Link Seq) (Open Seq) II 

(2 ) (Open Seq) = {own} (Data Seq) 
Open 

:: = (Open Seq) {omen} 
Open 

Close 

(Data Seq) 

637 

(3) (Data Seq)::= (Fifo Seq 12)II(Fifo Seq 21), i.e. arbitrary interleaving of 
data transfer in both directions 

{ 
J,O(X1) 

(4) (Fifo Seq 12)::=· ~ 
iD(x;) 

where 0:::; m:::; n and Xi = X; for i = 1,2, ... m 
(Fifo Seq 21::)= ... (similarly) 

(5) Discontinuation due to a failure: The execution sequences defined above for 
entity 1 and entity 2 may be "interrupted" by a local Fail transition, such that 
the last primitive executed by an entity may be discontinued. If A = B holds 
between executions of two service primitives the following is true: A is com­
pletely suppressed due to the failure implies that B is discontinued or com­
pletely suppressed. 

Fig. 7. Global properties of the link layer communication service. 

some partial order of events which represents some "logical time" as 
discussed by Lamport [10]. 

A Possible Notation. A possible notation for specifying the global 
properties of a communication service are production rules of a particular 
form. We adopt the usual convention of writing the nonterminal symbols in 
brackets ( ... ), and writing the possible productions after the symbol 
":: = ". Each production is defined in terms of (possibly other) nontermi­
nals and terminals which are written in the form {n. X and Yare sequences 
of service primitives which describe a possible pair of corresponding execu­
tion sequences at the respective ends of a connection. More details are given 
in the Appendix. 

As an example, Fig. 7 contains a possible specification of the global 
properties of an HDLC link layer service. Rule 2, for instance, states that an 
(Open Sequence) consists of Open primitives executed simultaneously at 
both ends of the connection followed by a (Data Sequence) with possibly 
further repetitions. The (Data sequences) are defined by rules 3 and 4, and 
rule 1 defines the possible global execution sequences which consist of a 
repetition of an (Open Sequence) followed by a pair of simultaneous Close 



638 Part VII • Fonnal Specifications 

primitives executed at the two ends of the connection. (We note that the 
rules of Fig. 7 imply the "local" transition rules given in Fig. 6 which apply 
separately at each end of the connection.) 

Restrictions on the possible parameter values may be stated for each of 
the production rules. In the case of Fig. 7, the only parameters exchanged 
are the user data sent and received (see parameters x in rule 4a of Fig. 7). In 
the case of the establishment of a virtual circuit, using the service primitive 
given in Section III A 2), the following rule may apply: 

{
VC-EstabliShment (x, y) } 

(VCOpen)::= t 
VC-Establishment (x', y') 

where y = y', x is the subscriber address of the entity executing the "lower" 
part, and x' is the subscriber address of the entity executing the "upper" 
part. 

C. Elements for a Communication Service Specification 

We conclude from the foregoing discussion that the specification of a 
communication service for a given protocol layer should contain the follow­
ing elements: 

(l) An informal explanation of the service provided and the functions 
included in the layer: this part is given in natural language. It should give an 
overall understanding of the purpose and operation of the layer. 

(2) A list of service primitives available at the layer interface: this part 
describes precisely each of the service primitives individually. 

(3) Local properties determining in which order the service primitives 
may be executed at one service access point without regard to other access 
points within the same layer. 

(4) Global properties relating the execution order and exchanged 
parameter values at different access points: this is the essential part of the 
communication service specification. 

(5) Grade of service considerations: they specify quantitative proper­
ties such as throughput, delay, etc., and also indicate in which situations and 
with which probabilities certain malfunctions, such as undetected errors and 
failures, may occur. [In contrast to this, points (2)-(4) above concentrate on 
qualitative properties of the service which are always satisfied.] 

We believe that any communication service specification that does not 
contain the equivalent of the elements (2)-(5) must be considered incom­
plete. Elements (2)-(4) are discussed in the foregoing sections. We believe 
that formal methods, similar to those described here, may be useful for 
specifying these elements in a more precise manner. 



Chap. 23 • Hybrid Model Representation 639 

IV. Protocol Verification 

Instead of giving a review of protocol verification (which may be found 
in Chapter 20) or describing any particular approach to verification, we give 
in the following some remarks which show the relation of the previous 
sections with the problems of protocol verification, and which show also, we 
hope, that many approaches to verification are basically very simple. 

A. What Should be Verified? 

The term protocol verification usually means to ascertain that the 
entities executing a giv~n protocol together with the underlying transmission 
medium (see Fig. 1) actually provide the specified communication service to 
the user entities in the layer above. It is therefore necessary to determine the 
service actually provided (based on the specification of the underlying 
transmission service and the definition of the communicating entities) and 
compare it with the communication service specified. Let us assume that we 
want to verify that the service actually provided is equal to the service 
specified. The proof may be divided into two parts. 

(1) Partial correctness: to show that every execution sequence of service 
primitives at different access points (in particular, at the two ends of a 
connection, and including specific parameter values) that is actually possible 
satisfies the constraints imposed by the service specification. 

(2) Effective progress: to show that every execution sequence of service 
primitives that satisfies the service specifications is actually possible, and 
that no situations of deadlock or starvation or infinite loops without 
progress exist. 

B. Various Kinds of Assertions 

The use of assertions is a well-known technique for the verification of 
sequential programs and has been extended for use with parallel programs. 
Similar techniques also apply to the verification of protocols. The basic idea 
consists of defining an invariant assertion, or briefly invariant, i.e., a 
Boolean expression depending on the state of the system which is always 
true (i.e., as long as no state transition is in progress). Since this technique 
was developed for verifying programs, it seems natural to use it for verifying 
protocols that are defined in terms of program variables and executed 
statements. In this case, the invariants typically involve the program varia­
bles of both entities and the state of the underlying transmission medium 
(i.e., the "messages" in transit) [5], [11]. 

It is interesting to note that certain approaches to the verification of 
protocols based on FS description techniques may be shown to be based on 



640 Part vn • FonnaI Specifications 

a particular form of invariant assertions. For example, the equations given 
in [7] for the adjoint states of a protocol are such that the following 
assertions are always true when the underlying medium is empty (Le., no 
"message" in transit). If a j (i = 1,2, ... , n) are the possible states for entity 
1, and s) and S2 are the actual states of entity 1 and entity 2, respectively, 
then the assertion 

s) = a j implies S2 is an element of Adj( a j ) 

holds for every possible state a j • This is not surprising since the definition of 
adjoint state, roughly speaking, is as follows. The adjoint states Adj(a j ) of a 
given state aj are those states of entity 2 in which entity 2 may possibly be 
when entity I is in state a j • 

Another example is the detection of incompleteness or overspecifica­
tions as described by Zafiropulo et al. (see, for example, [12]). Their main 
idea is as follows. Given an FS protocol definition, an invariant assertion of 
the following form is derived for each possible state aj (i = 1,2, ... ,n) of 
entity 1: 

s) = a j implies the messages ... may now be received 
by the entity 1, but no other messages 

Given such assertions, it is easy to check whether the definition of entity 1 
includes all necessary receiving transitions and no unnecessary ones. It is 
sufficient to verify, for any given state a j , that the definition foresees the 
handling of exactly those received messages which are mentioned in the 
corresponding assertion. 

In the case of a protocol definition in terms of the general transition 
model described in Section II where the state of an entity is defined by an 
FS transition diagram and certain program variables, invariant assertions 
are in general of the following form: 

where a j and bj are possible states of the entities 1 and 2, respectively, and 
Assertion jj is a Boolean expression depending on the program variables of 
both entities and possibly also on the state of the underlying transmission 
medium [13]. 

As an example, we give the following invariant assertion which may be 
derived from the definitions of the HDLe procedures given in Figs. 2 and 3 
and Table I and the assumption that each frame received without error 



Chap. 23 • Hybrid Model Representation 641 

notification is an exact copy of a frame sent by the other entity: 

Sl = connected and S2 = connected implies 

[

entity 2. received. kind = I and 1 
entity 2. received. NS = entity 2. VR 
implies entity 2. received. data = 

entity 1. buffer. data (entity 2. VR) 

This assertion is important for the verification of correct data transfer of the 
HDLC procedures. It specifies conditions under which a data block received 
by entity 2 is equal to the corresponding data block in the buffer of entity 1. 
Given the definitions of the service primitives ~ D and t D (see Table II) 
and the transition 1= (see Table I), this invariant assures that the data 
blocks received by the user from entity 2 are the same as those submitted by 
the user to entity 1. This is what rule 4 of the service specification in Fig. 7 
postulates. 

We conclude that the above invariant assertion proves the partial 
correctness of the HDLC protocol, as far as rule 4 of the service specifica­
tion is concerned. However, it does not imply effective progress, which 
would mean that each data block submitted to entity 1 will eventually be 
delivered to the user by entity 2. For proving this, we must rely on the 
underlying transmission service not to make "too many" transmission 
errors. A more detailed discussion of a simple protocol verification example 
in the context of the general transition model is given in [1]. 

V. Conclusions 

In the framework of distributed system architecture involving a 
hierarchy of different protocol layers, the clear delimitation between the 
different layers becomes an important issue. The delimitation between a 
given layer and its user is given by the layer interface which is characterized 
by the communication service provided through that interface. For the 
description of the layered architecture of a distributed system, the service 
specifications for the individual layers seem to be the main tool. For 
instance, one objective for a layered system architecture is the possibility to 
change the protocol adopted in a given layer without affecting the other 
layers of the system. During such a change, the protocol of that layer clearly 
changes, while the service provided must remain unchanged. 

Because the communication service definitions play such an important 
role in the design of distributed systems, great care should be taken for their 



642 Part VII • Formal Specifications 

exact specification. This paper presents a possible formal approach to the 
specification of communication services. While a finite state approach seems 
to be useful for many aspects of communication protocol specification and 
verification (although not all), we feel that, for the specification of com­
munication services, the finite state approach alone is insufficient. It seems 
that important service characteristics are naturally described by constraints 
on parameter values which are exchanged over the interface during the 
execution of the service primitives. The two aspects of order of execution and 
exchanged parameter values seem to correspond to the two aspects of our 
general transition model described in Section II, namely, state transitions 
and program variables. 

Appendix: Notation for Specifying Global Properties of 
Communication Services (as Used in Fig. 7) 

OUr notation is an extension of BNF, which is used for specifying 
formal grammars and the syntax of programming languages. 

A terminal symbol stands for the execution of a service primitive and is 
represented by the name of that primitive. The nonterminal symbols, written 
in brackets, ( ... ), stand for the set of execution sequences that may be 
generated from them (see below). Sequential execution of service primitives 
is expressed by writing terminals or nonterminals in the usual order from 
left to right. A production rule is written in the form 

(some terminal) : : = Xl X2 ••• Xn 

where each X; (i = I, ... , n) is a terminal or non terminal symbol. Such a rule 
specifies that the set of execution sequences that are generated from (some 
nonterminal) includes all the sequences that are obtained by the successive 
execution of sequences generated by the X;. (A terminal symbol X only 
"generates" the execution of the service primitive it stands for.) 

For example, the rules 

(LS)::= empty 

(LS):: = (LS)( OS)Close 

specify that the empty sequence (no execution) may be generated from 
(LS) (first rule) and any sequence that is a repetition of sequences 
generated by (OS), each followed by the execution of the Close primitive 
(repeated application of the second rule, with final application of the first 
rule). 



Chap. 23 • Hybrid Model Representation 643 

We have adopted the following extensions to BNF: 

1. Grouping of service primitives executed at different service access 
points: 
a. The symbol 

{ ~} 
stands for the execution of the service primitives X and Y at the 
two respective access points of a connection. No specific order of 
execution is assumed between these two primitives. 

b. The symbol 

means the same as a}' but X is executed not later than Y (see 
Section III B). 

c. The symbol 

means the same as {:}, but X and Yare executed simultaneously 
(see Section III B). 

2. Parallel execution: Parallel and independent execution of two 
processes results in an overall execution order which is an arbitrary 
interleaving of the execution sequences of the two processes. We 
write II to indicate this parallel execution. 

3. Constraints on parameter values: Parameters of service primitives 
are written in parentheses, ( ... ). They represent the actual values of 
the parameters during the execution of the primitives. Conditions 
that must be satisfied by these values are associated with the 
production rules (see, for example, rule 4). 

References 

[1] G. V. Bochmann and J. Gecsei, "A unified model for the specification and verification of 
protocols," in Proc. IFfP Congr. 1977, pp. 229-234. 

[2] D. L. Parnas, "The use of precise specifications in the development of software," in Proc. 
IFfP Congr. 1977, pp. 861-867. 



644 Part vn • Formal Specifications 

[3] R. M. Keller, "Formal verification of parallel programs," Commun. Ass. Com put. Mach., 
vol. 19, pp. 371-384, July 1976. 

[4] G. V. Bochmann and R. J. Chung, "A formalized specification of HDLC classes of 
procedures," in Proc. Nat. Telecommun. Conf., Los Angeles, CA, Dec. 1977, pp. 03A. 
2-1-2-11; reprinted in Advances in Computer Communications and Networking, W. W. 
Chu., Ed. Dedham, MA: Artech House, 1979. 

[5] N. V. Stenning. "A data transfer protocol," Com put. Network vol. 1 pp. 99-110, Sept. 
1976. 

[6] G. V. Bochmann and C. Sunshine, "A survey of formal methods," Chapter 20 of this 
book. 

[7] G. V. Bochmann, "Finite state description of communication protocols," in Proc. 
Com put. Network Protocols Symp., Univ. Liege, Liege, Belgium, Feb. 1978, pp. F3-1-
F3-11; and Com put. Networks, vol. 2, pp. 361-372, Oct. 1978. 

[8] G. V. Bochm1lllil and T. Joachim, "Development and structure of an X.25 implementa­
tion," IEEE Trans. Software Eng., vol. SE-5, pp. 429-439, Sept. 1979. 

[9] G. V. Bochmann and F. H. Vogt, "Message link protocol-Functional specifications," 
ACM Comput. Commun. Rev., vol. 9, pp. 7-39, Apr. 1979. 

[10] L. Lamport, "Time, clocks and the ordering of events in a distributed system," Commun. 
Ass. Comput. Mach., vol. 21, pp. 558-565, July 1978. 

[II] G. V. Bochmann, "Logical verification and implementation of protocols," in Proc. 4th 
Data Commun. Symp., ACMjIEEE, 1975, pp. 8-15-8-20. 

[12] P. Zafiropulo et al., "Protocol analysis and synthesis using a state transition model," 
Chapter 24 of this book. 

[13] G. V. Bochmann, "Combining assertions and states for the validation of process 
communication," in Constructing Quality Software, P. G. Hibbard and S. A. Shuman, Ed. 
North-Holland, 1978, pp. 229-232. 

[I 4] G. V. Bochmann, "Specification of the services provided by the MLP," Univ. Montreal, 
Montreal, P.Q., Canada, Tech. Rep., 1979. 

[I 5] In the formal description techniques developed for OSI (ISO TC 97 jSCl6 N380 and 
381) the term "service primitive" is used for individual, non-combined abstract interface 
transitions. 



24 

Protocol Analysis and Synthesis using 
a State Transition Model 

Pitro Zafiropulo, Colin H. West, Harry Rudin, 
D. D. Cowan, and Daniel Brand 

I. Introduction 

The growing trends both to increase the sophistication of functions 
implemented in information-handling systems and to distribute these func­
tions in different processes has resulted in an enormous growth in complex­
ity. This complexity is particularly acute in the interactions or protocols 
which specify how these processes are synchronized and communicate with 
one another. However, formal methods are gradually being introduced to 
describe these interactions; see chapters 20,21,23, and 25 as well as [1]-[5]. 

The benefits of using such formal methods have already proven to be 
substantial: the imprecise interpretation which is characteristic of prose 
description has been eliminated, formal proofs are now possible, and the 
door is opened to techniques for computer-aided validation and computer­
supported synthesis or design of such interactions or protocols. It is these 
last two areas, computer-aided validation of protocols and computer-sup­
ported synthesis of protocols, that this paper examines. These have been the 
main lines of research in protocols at the IBM Zurich Research Laboratory. 
This work has been guided by two main objectives: 

1. automation of these techniques using computers, and 
2. primary concern with the logical structure of a protocol as opposed 

to a protocol's intended function. 

The first objective is to provide automated tools to lighten the task of 
the designer while at the same time achieving a thorough analysis in the face 

645 



646 Part vn • Formal Specifications 

of great complexity. A concern primarily with the logical structure of 
interaction also guarantees widespread applicability. 

In recent years, there has been a sharp increase in activity in the area of 
formally expressed protocols, and the work of many individuals should be 
referenced here. Instead, the reader is referred to Chapter 19 and the papers 
of Sunshine [6] and Merlin [7]. Furthermore, protocols were the subject of a 
conference held in Liege early in 1978; the Proceedings provide an excellent 
overview of the field [8]. 

Both our work in validation and in synthesis is based on logical 
structural properties derived from notions of physical causality and com­
pleteness [9]. In the case of validation, a protocol is examined for these 
properties by means of a reachability analysis similar to that suggested by 
Sunshine [3] and Bochmann [10] and implemented in an automated valida­
tion system [11]. Hajek has also developed a validation system using 
state-transition techniques [12]. 

In validating protocols such as the CCITT X.2l and X.25 and Data Flow 
Control from IBM's SNA, we have found that the designer(s) of a protocol 
usually does not foresee all the structural properties of the design, in that 
the protocol may be incomplete or logically inconsistent [13], [14]; see also 
Chapter 25. From this experience, we feel well justified in examining only 
the limited aspect of logical structure in protocols. In theory, compared with 
assertion-proving techniques we test for little; in practice these few tests 
have turned out to be very effective. 

An automated validation process is usually intended for a protocol in 
an advanced stage of development, while for a protocol in the early stages of 
design, a synthesis technique is preferable. This paper describes two meth­
ods of analyzing protocol behavior, and both techniques can be used for 
either validation or synthesis. The first method, the perturbation technique, 
has already been implemented as an automated validation system which has 
had extensive use in examining existing protocols. The second method based 
on a set of production rules has been incorporated into an automated 
synthesis system. A protocol developed through the use of these production 
rules will be free of the same errors guaranteed by the perturbation 
approach. Our initial attempt at protocol synthesis [15] is one of the earliest 
in the field. 

The techniques of validation and synthesis and the tools described in 
this paper have widespread applicability to the entire field of cooperating 
processes since a protocol is a very general concept. We quote the definition 
given by Merlin [7] to indicate this generality: "Given a system of cooperat­
ing processes such that the cooperation is done through the exchange of 
messages, a protocol is the set of rules which governs this exchange." This 
statement implies that protocols are not just concerned with the correct 



Chap. 24 • Protocol Analysis and Synthesis 647 

transfer of data, but pervade all areas where interaction between processes is 
inherent. 

II. Modeling of Protocols 

A model with which to represent protocols and interaction examples is 
required; we employ a representation similar to the one proposed by 
Bartlett et al. [16] and used by Bochmann [10]. Figure 1 shows a simple 
access authorization protocol in which each interacting process is modeled 
by a finite-state graph, and the two initial states are identified by states 
labeled o. The messages exchanged between the processes are represented by 
integers. Message transmission is represented by the negative value of the 
corresponding integer, and message reception by its positive value. For 
example, the message ACCESS-REQUEST is represented by the integer 1, its 
generation is represented by traversal of the arc labeled -1 in process A, 
and its reception by traversal of the arc labeled + 1 in process B. The 
integer representation is a notational detail, but one that is compact and 
which lends itself to numerical manipulation. This model using finite-state 
graphs can be used to represent both nonideal communication channels (i.e., 
ones which lose and distort messages) and interactions between more than 
two processes (see Appendix A). 

A 
REQUESTING 

PROCESS 

• 

ACCESS REQUEST 

GRANTED ACCESS 

REFUSED ACCESS 

RELINQUISHED ACCESS 

• 

• 

B 
AUTHORIZING 

PROCESS 

Fig. 1. Simple access authorization protocol. 



648 Part VII • Fonna! Specifications 

III. Types of Design Errors 

We make two basic assumptions about protocols and interactions. 
First, we are not concerned with explicit time constraints such as transmis­
sion and response delays, and second, we assume the processes to be 
correctly initialized (all in their zero or reset states) prior to the start of an 
interaction. Within this framework we can handle four potential design 
errors, namely, state deadlocks, unspecified receptions, nonexecutable inter­
actions, and state ambiguities. Figure 2 shows a two-process interaction 
example that exhibits all these errors, each of which is explained separately 
in the following sections. Although the form of these design errors is 
syntactic, their successful resolution must consider their semantic intent. 
Since we are not concerned with the semantics or meaning of the interac­
tion, messages in Fig. 2 are given no descriptive identifiers. Other potential 
design errors can be formulated; for example, channel overflow has been 
incorporated into the automated validation system [I]. 

A. State Deadlocks 

Different types of deadlocks are definable within the context of process 
interactions but we shall only be concerned with state deadlocks. We define: 
a state deadlock occurs when each and every process has no alternative but 
to remain indefinitely in the same state. Stated differently, a state deadlock 
is present when no transmissions are possible from the current state of each 

+3 

PROCESS 
Pi 

PROCESS 
P2 

+1 

Fig. 2. Two-process interaction example containing various design and potential design errors. 



Chap. 24 • Protocol Analysis and Synthesis 649 

process and when no messages are in transit, i.e., all channels are empty. 
This type of deadlock occurs in the interaction of Fig. 2 when PI transmits 
message 1 at the same time that P2 transmits message 3. As a result both PI 
and P2 enter states 1 and then 2 where they must wait to receive messages 
(no transmissions possible). As no further messages are in transit, the 
processes have no alternative but to wait indefinitely in these states. 

State deadlocks usually represent errors but there are exceptions. 
Protocols may be designed to terminate in states with no exit when their 
function is complete. We therefore consider state deadlocks as potential 
errors that must be detected. Their evaluation is then a matter of semantics. 

B. Unspecified Receptions 

An unspecified reception occurs when a posItIve arc that can be 
traversed is missing, in other words when a reception that can take place is 
not specified in the design. For example, if in Fig. 2 P2 transmits message 3, 
and PIon receiving message 3 transmits message 2, then state I of P2 will 
receive message 2, yet this reception is not specified in the design. 

Unspecified receptions are harmful since in the absence of adequate 
recovery procedures, occurrence of an unspecified reception causes the 
respective process to enter an unknown state via a transition not specified in 
the design. As a consequence, the occurrence of an unspecified reception 
causes the subsequent behavior of the interaction to be unpredictable. 

Protocols can be protected by state-check mechanisms [2], [4]. These 
mechanisms initiate recovery procedures when states receive messages which 
they are not designed to accept. Unfortunately, in the case of unspecified 
receptions, recovery procedures can adversely modify the interaction 
semantics as the occurrence of an unspecified reception is not caused by an 
operational malfunction yet is handled in the same manner. For example, if 
a connection setup protocol contains an unspecified reception and such a 
reception occurs in every connection setup attempt, then the ensuing 
recovery procedures will not fulfill the intended purpose, namely, to set up a 
connection. In other words, error recovery procedures should not be in­
voked unless the error for which they have been designed has occurred. 

Thus, unspecified receptions are design errors. They are more common 
than expected: a number of unspecified receptions were identified in the 
CCITT X.21 interface version of 1976 [13]. These were brought to the 
attention of CCITT and are reflected in the current X.21 working papers. 

C. Nonexecutable Interactions 

A nonexecutable interaction is present when a design includes message 
transmissions and receptions that cannot occur under normal operating 



650 Part vn • Fonnal Specifications 

conditions. A nonexecutable interaction is equivalent to dead code in a 
computer program and is illustrated in Fig. 2. No normal interaction 
sequences can cause state 2 of P2 to receive message 1, hence state 3 is not 
entered and message 4 cannot be generated. Consequently, state 3 of PI 
cannot be reached. 

The creation of nonexecutable interactions must be treated with great 
caution. If the designer erroneously believes that state 2 of P2 can receive 
message 1 during normal operation, then the nonexecutable interaction 
represents a design error. On the other hand, if the designer's intention is to 
create recovery actions to handle abnormal conditions, and he purposely 
wants P2 to enter state 3 if abnormal (error) conditions cause state 2 to 
receive message 1, then it does not represent a design error. In order to 
distinguish between normal and abnormal conditions, it is probably good 
design practice to design and validate a protocol for normal operation 
before adding recovery actions. 

D. Stable-State Pairs and State Ambiguities 

A stable-state pair (x, y) is said to exist when a state x in one process 
and a state y in the other can be reached with both channels empty. In such 
a case, states x and y coexist until the next transmission occurs. Monitoring 
stable-state pairs is useful for detecting loss of synchronization, i.e., the 
presence of unintended stable-state pairs or the absence of intended ones. A 
case of spe(;ial interest is when ambiguity occurs among stable states. A 
state ambiguity exists when a state in one process can coexist stably with 
several different states in the other process. Figure 2 contains state ambigui­
ties. For example, if both processes are in their initial states (state 0), and PI 
transmits messages 1 followed by 2 while P2 only receives messages, then 
PI reaches state 2 while P2 returns to state O. Thus, state 0 of P2 can 
coexist stably with both state 0 and state 2 of PI. State ambiguity is closely 
related to the adjoint-state concept [10]: state ambiguity implies that the 
cardinal number of the corresponding adjoint-state set is greater than 1. 

State ambiguities do not necessariiy represent errors but they must be 
treated with caution. If, for example, the designer's intention was that state 
o of PI coexist stably solely with state 0 of P2, then the identified state 
ambiguity does represent an error. We therefore consider state ambiguities 
as potential design errors that need monitoring. State ambiguities are 
detectable via an examination of syntax; their evaluation is a matter of 
semantics. 

IV. Analyzing Interactions 

In this section we describe techniques to detect the presence of design 
and potential design errors in an interaction or protocol. Our first approach 



Chap. 24 • Protocol Analysis and Synthesis 651 

was based on an analysis of dialogues of interaction between communicat­
ing processes [9], [17], [18]. It was significantly improved and generalized in 
a method based on a technique of perturbation [11]. This technique is a 
reachability analysis conceptually similar to one proposed by Sunshine [3]. 
This perturbation method has been programmed and has successfully 
detected errors in protocols. 

A. The Perturbation Analysis 

We describe the perturbation method by analyzing in Fig. 3 the 
example of Fig. 2. A system state consisting of a two-dimensional array is 
defined where the elements on the main diagonal represent the individual 
process states (element 1, 1 is state of PI and so on) and each off-diagonal 
element i, k represents the message content of the communication medium 
from process Pi to process Pk. Figure 2 represents a two-process interac­
tion; hence the system states SS in Fig. 3 are 2 X 2 arrays. 

One begins by defining SSO which is the initial system state. It consists 
of both processes in SO (state 0) and both channels empty (represented by 
E). SSO is then "perturbed" into all possible successor states reachable by 
executing a single transition in one of the individual processes PI, P2 (in 

SYSTEM 
STATE 
(55) 

Fig. 3. Corresponding reachability tree for the example in Fig. 2. 



652 Part VII • Fonnal Specifications 

Fig. 2). Thus, either 881 is entered by PI transmitting message 1 (PI enters 
81 and places 1 in channel PI --'> P2) or 882 is entered by P2 transmitting 
message 3 (P2 enters 81 and places 3 in channel P2 --'> PI). 

The procedure continues by perturbing each of these new system states 
in turn. Thus considering 882, either 883 is entered by PI receiving 
message 3 (PI takes 3 from channel PI --'> P2 and enters 81) or 884 is 
entered by PI transmitting message 1 (PI enters 81 and places 1 in channel 
PI --'> P2). The procedure continues until no new system states are created, 
thus indicating that all reachable system states have been determined. 
Asterisks in the ensuing reachability tree indicate system states that have 
been previously generated by perturbation of earlier states. 

The method has the attractive property that it creates the reachability 
tree for any n-process interaction by simply defining the system states as 
n X n arrays. For example, the system states for a three-process interaction 
are 3 X 3 arrays, each consisting of three process states and six channels, 
some of which may remain empty. Certain types of interactions can cause 
unbounded growth in the number of messages in transit (see Section VI). In 
order to contain such unlimited growth, bounds are set on the channel­
storage capacity. These bounds make it possible to detect when a prescribed 
channel-storage capacity is exceeded. 

B. Error Detection via Analysis 

Deadlocks are identified in a reachability tree by system states with all 
channels empty (E in Fig. 3) and no departing transitions. For example, the 
deadlock described in Section III A (PI and P2 in 82) is identified by 887. 
Such system states represent deadlocks because there are no further recep­
tions (all channels empty) and no possible further transmissions (no depart­
ing transitions). 

Unspecified receptions are identified by system states with no depart­
ing transition to absorb the next output from one of the channels. For 
example, the unspecified reception discussed in Section III B (message 2 
cannot be received in 81 of P2) is identified by 885, where the next 
81 ...... 82 channel output is message 2, yet there is no transition out of 885 
to absorb that message. 

Stable-state pairs (tuples for many-process interactions) are identified 
in the reachability tree by system states having all channels empty. State 
ambiguities are identified by a particular process state appearing in a 
plurality of such system states. For example, the state ambiguity discussed 
in Section III D is identified by state 80 of process P2 appearing in both 
system states 880 and 8822. Figure 3 identifies other ambiguities, for 
example, 883 , 8824 represent an ambiguity with respect to 81 of P2. 



Chap. 24 • Protocol Analysis and Synthesis 653 

Nonexecutable interactions are identified as state transitions present in 
the design that are absent in the reachability tree. For example, P2 in Fig. 2 
contains a -4 arc which never appears in the tree of Fig. 3. 

V. Synthesizing Interactions 

An alternative to testing an existing design for errors is to create from 
the outset a design devoid of the errors considered here. In this section we 
shall describe a mechanism (or tool) which is used interactively by a 
designer to create a protocol or interaction. The tool prevents the occur­
rence of unspecified receptions and immediately notifies the designer of the 
presence of state deadlocks and ambiguities. This immediate response has 
the advantage that at this point in time, the designer has the most insight 
into the resolution of the design problem. The tool is based on three 
production rules which create only those arcs needed to prevent unspecified 
receptions. A tracking algorithm then specifies where and when to apply the 
rules. Both tracking algorithm and production rules have been automated 
using a novel programming method called data-directed design [19], [20]. 
The rules are based on a study of the cause-and-effect relationships that 
occur when two entities exchange messages. They are currently limited to 
two-process interactions. 

A. Production Rules 

Three rules governing the derivation of two-process interactions are 
described in this section and proofs for their necessity and sufficiency are 
given in Appendix B. These rules are a modification of an earlier version 
which was developed [15] but was found to be incomplete. The relative 
simplicity of the rules rests on the fact that they are designed to produce 
tree-structured graphs. Section V B shows how interactions can be con­
structed from such graphs. We now explain the rules. 

The first rule specifies all receptions of a message whose transmission 
directly succeeds the reception of a previous message. Consider Fig. 4(a) 
where P2 upon receiving message x transmits message e. If PI transmits no 
further messages before receiving e, then it receives e in the state entered 
upon transmitting x. Hence a + e arc is appended to - x in Pl. On the 
other hand, if PI transmits y before e is received, then e is received after y is 
transmitted. Hence a + e must be appended to -yo We append +ey instead 
to note the fact that in this case messages e, y occur concurrently, or collide. 
Two messages are said to collide when neither is received before the other is 
transmitted. As we shall see, identifying collisions via subscripts is necessary 
for Rule 3. The subscript refers to all collisions. Thus, as shown in Fig. 4(a) 



654 Part VII • Formal Specifications 

PROCESS 
Pi 

PROCESS 
P2 

-x ---------+x 

+e.- --;.==-- -e 
/ 

..... I 
..... f:,.. 

"r........... +Ye +eY ___ "'1 \ ...... - --.-

I COLLISION +ze 
...... I 
----71-------------

+ey,z -" \ COLLISION 

-x -------- +x 

+e -- ...... 
I ...... ------e 

I ;' 

" 
"" I 

...... 

" ..... 

(

-S/...... 1/ 

...... I " 
---7i-------~ ........... 

,,/ \COLLISIONS 
+es ~ 

Fig. 4. Derivation of production Rule I. 

if z is also transmitted before e is received, then we append + e y, z to - z, 
We now formulate the first rule using the generalized example in Fig. 4(b) 
where - s represents a transmission sequence. 

Rule 1. If - e is appended to + x then 
(a) append +e to -x; 
(b) append + e s to every negative arc sequence - s attached to 

-x. 



Chap. 24 • Protocol Analysis and Synthesis 655 

Part (a) specifies collisionless receptions whereas part (b) specifies all 
receptions associated with collisions. 

The second rule specifies all receptions of a message whose transmis­
sion directly succeeds the transmission of a previous message. Consider Fig. 
5(a) where P2 transmits e directly after transmitting x. Therefore, PI can 
receive e directly after x. Hence, + e is appended to + x in PI. If PI 
transmits y before receiving x, then not only do y and x collide but y and e 
also collide. Then e is received after + x y and we append + ey to + x Y" 

Finally, if PI transmits z after traversing + Xy but before receiving e, then e 
is received after z is transmitted. In this case e collides with both y and z, 
hence +ey.z must be appended to -z. Similar circumstances hold true if PI 
transmits Zf. We now formulate the second rule using the generalized 
example shown in Fig. 5(b) where -s and -Sf represent transmission 
sequences. 

Rule 2. If - e is appended to - x then 
(a) to every +x and +xs append +e and +es' respectively; 
(b) to every negative arc sequence - Sf attached to + x or + x s 

append +es' and +es.s" respectively. 

A third production rule is necessary because new cause-and-effect 
mechanisms come into play when a negative arc is appended to a sub­
scripted reception. Consider Fig. 6(a) where P2 transmits e directly after 
receiving +wx ' i.e., after receiving a w that collides with an x. Message e is 
the next P2 transmission after x. Therefore, PI receives e directly after x. 
But w is received before e is transmitted, hence PI can only receive e after 
transmitting w. Therefore, PI can only receive e after it both transmits w 
and receives x. Hence, +e must be appended to +xw' The arc +e is not 
indexed because, as shown in Fig. 6(a), no collisions are associated with its 
transmission. If, on the other hand, PI transmits y before receiving x, then x 
collides with both wand y, whereas e collides only with y. Hence, +ey is 
appended to + xw. y' 

Finally, the mechanism of the third reception case +ey,z is identical to 
that of + ey, x in Fig. 5(a). We now formulate the third rule using the 
generalized example in Fig. 6(b) where - sand - Sf represent transmission 
sequences and " ... " stands for an arbitrary message sequence. 

Rule 3. If -e is appended to +v ... , u' then within the tree with root 
-v 
(a) append +e to +u .... v and +es to every +uv.s; 
(b) to every negative arc sequence - Sf attached to + u ... v or 

+u .. ,v.s append +e; or +es.~' respectively. 

Part (b) of Rule 3 describes the same specification mechanism as part 
(b) of Rule 2. 



656 

: 

PROCESS 
P 1 

Part VII • Fonnal Specifications 

PROCESS 
P2 

--..... ..... 

--.... .... 

--..... ..... 

Fig. 5. Derivation of production Rule 2. 



Chap. 24· Protocol Analysis and Synthesis 

PROCESS 
Pi 

, 
, -....... --;::::."- ....... 

PROCESS 
P2 

.... --- ....... 
--- " +w -______ X 

..... 

...... ...... 

..... 
:;:,-­

" 

------~ 

----',,,/_--- -ul //, 6 
.. ~ ''-, ·'+V",u 

j -Sl:~ ~---- __ 
. " -s ;/ 

...... / 
...... 1 

" +es' / , ~ / / 

'...... / 
" / 

+es ...... , / 
I " ..... , / 

..... - / .......... ; - / +eSS'~ - - _ ......... - ..... , -
..... 
---~ ~

-S ........ _ '-_ -4/" 

------
Fig. 6. Derivation of production Rule 3. 

-,-, 

-,-..... 

, , 

, , 

657 



658 

PROCESS 
Pi 

-n 

INITIAL STATE 

Part VII • Formal Specifications 

PROCESS 
P2 

FICTITIOUS 
------- ---- +n MESSAGE EXCHANGE 

---~-----~ 

INITIAL STATE 

Fig. 7. Example showing minor notational extensions. 

A few notational conventions simplify application of the production 
rules. For example, entering the initial states via a fictitious message 
exchange as shown in Fig. 7 enables Rules I or 2 to specify reception arcs 
appended to initial states. Furthermore, to generate only exercisable se­
quences, the rules require that every negative arc within one process be 
uniquely specified. The ensuing problem of representing different transmis­
sion instances of a same message is solved as follows. The first transmission 
of a message 8 is represented by - 8, the second transmission is represented 
by - 8.1, and so on (see Fig. 7). The eleventh occurrence would be specified 
as 8.10 and would be considered different from 8.1. 

B. On Using the Rules 

We require an algorithm that specifies where and when to apply the 
rules. The algorithm is based on an incremental design approach requesting 
designer intervention whenever semantic-dictated decisions are needed. The 
designer creates state diagrams, but in order to describe the algorithm, we 
will consider tree structures. Consider the design portrayed in Fig. 8(a). The 
algorithm begins by automatically creating the fictitious message exchange 
( - n, + n), which initializes both processes. It then requests a first design 
action. The designer complies and creates the transmission of message 1 in 
PI by specifying Pl,(O) - (-1) ~ (1), where PI is the process considered, 0 



Chap. 24 • Protocol Analysis and Synthesis 659 

PROCESS P 1 PROCESS P2 

t FLOORING 

Fig. 8. Synthesis design example. 1bickly lined arcs in (a) are explicitly discussed in the text. 

is the departure state, 1 the entry state, and - 1 is the message transmitted. 
The algorithm then invokes Rule 2 ( - 1 is appended to - n) which creates 
P2,(O) - (+ 1) --7 (?) and requests the designer to specify the entry state 
identified by (?). He specifies this as state 2. The algorithm again requests 
the next designer action which is P2,(O) - (- 3) --7 (1). This new arc is 
appended to a reception, hence Rule 1 is invoked and creates the arcs 
Pl,(O) - (+3) --7 (?) and Pl,(I) - (+3\) --7 (?). The designer then specifies 
the entry states as 1 and 2, respectively. This specification causes the node 
representing state 1 to appear twice. We are building trees, and tree nodes 
have at most one entry arc, hence state names may appear more than once. 

Creating arc - 3 in P2 causes arcs - 3 and + 1 to have a common 
origin, namely, state O. Hence, it is possible for P2 to receive message I after 
transmitting message 3. This reception can be specified by reapplying Rule 
1 to arc -1. But a much simpler method is to duplicate arc + 1, append it 
to arc - 3 and index it accordingly. Indexing is necessary, for this arc can 
only be traversed if messages 1, 3 collide. We call this reception-replication. 
The algorithm automatically executes reception-replication, thereby creating 
the arc P2,(I) - (+ 13 ) --7 (?) with the designer then specifying "?" to be 
state 2. 



660 Part VII • Formal Specifications 

The next designer action is to create the transmission P1,(1) - (-2) -> 

(2). At this point the tree structure PI contains two copies of state 1. Hence, 
the algorithm appends a second transmission P1,(1) - (-2.l) -> (2) to the 
second copy of state 1 (in general, if state i transmits message e, then arc 
-e is appended to the first created node i, arc -e.l to the second created 
node i, etc. and the rules are applied in the creation sequence). The 
algorithm then invokes Rule 2 for arc - 2 and Rule 1 for arc - 2.1. This 
creates reception arcs in P2. One such arc is P2,(2) - ( + 2) -> (?). The 
designer specifies its entry state as 0 ("?" set to 0). He thereby creates a 
cycle which enables P2 to retransmit message 3. The algorithm takes care of 
this by automatically appending an arc -3.1 to the arc +2 and invoking 
Rule 2 which ilJ. turn creates further receptions, and so on. In this way the 
algorithm adds arcs to the trees. This tree growth would continue indefi­
nitely if it were not for a termination mechanism that halts the growth when 
the configuration of Fig. 8(a) is reached. The designer could then enter a 
further message transmission if he so wished. The above-mentioned 
termination mechanism is an important part of the algorithm and is 
described in Section V D. 

It is worth noting that when the algorithm creates a duplicate arc such 
as +3.2 (duplicate of +3 because +3 and +3.2 have same departure state) 
in PI, then its entry state must be equal to that of the original arc + 3 and 
hence, no designer intervention is needed. 

When the designer is finished, the algorithm collapses the tree struc­
tures by using a "flooring" operation to obtain the finite-state graphs of the 
actual interaction, shown in Fig. 8(b). The flooring operation drops all 
decimal fractions from message numbers and merges identical states and 
arcs in each tree. It is important to note that the algorithm masks the 
complexity of the tree structures from the designer by displaying all arc 
identifiers without decimal fractions and by not displaying duplicate arcs. 
The designer therefore need not even realize that the algorithm uses trees as 
internal representation. The reader will note that the interaction we have 
just designed (Fig. 8) is very similar to that of Fig. 2. In fact, it is the same 
interaction devoid of unspecified receptions and of nonexecutable interac­
tions. The monitoring of deadlocks and ambiguities during the synthesis 
process is discussed in the next section. 

C. Error Prevention via Synthesis 

The algorithm together with the production rules specify those and 
only those positive arcs that must be created to prevent unspecified recep­
tions. Hence, it is not possible to create nonexecutable interactions (see 
Section III C). 



Chap. 24 • Protocol Analysis and Synthesis 661 

Every time an arc pair (-e; +e), (+ey ; +Ye) or (+e ... , y; +y ... , e) 
is created the corresponding entry states (i, k) represent a stable-state pair. 
Hence, stable-state pair monitoring is quite easy. A state deadlock (see 
Section III A) is present if for such a pair neither state has a negative 
departing arc. The algorithm monitors state deadlocks by testing for the 
absence of negative departing arcs in every created stable state pair. 

State ambiguities (see Section III D) can be monitored in the following 
way. Every time a new stable-state pair (i, k) is created, it is stored in a list. 
If the list already contains a pair (i, x) or (x, k), then a state ambiguity is' 
identified. 

D. Termination 

As mentioned in Section V B, the design rules could be applied 
continually, defining infinite trees. It is necessary to stop the growth at a 
point when continuation cannot reveal any new information about the 
protocol. This section presents a method for termination. 

Termination is achieved by deleting negative arc copies. When the 
algorithm creates a new tree node, it tests whether certain repetition criteria 
are fulfilled. If they are, the node is marked "dead." Dead nodes are a form 
of duplicate nodes. They are treated differently in that a transmission arc as 
well as its corresponding reception arcs are deleted if they all tum out to be 
appended below dead nodes. Thus, in the example of Fig. 8, the whole 
process is complete because all further arcs are deleted. 

We now describe the criteria that define a node dead. Consider the 
situation where the algorithm specifies an arc +e with entry node i. This 
node i is marked "dead" if there already exists an arc + e' with entry node 
i', where e, e' represent the same message, the nodes i, i' represent the same 
state, and i' has no dead-node predecessors. For example, in process PI of 
Fig. 8(a), the entry node i of arc + 3.2 is dead. This is so as PI already 
contains an arc + 3 with entry node i' where i, i' represent the same state 0, 
3.2 and 3 the same message and i' has no dead predecessors. Similarly, if the 
algorithm specifies an arc +es with entry node k, then k is marked dead if 
there already exists an arc +e;, with entry node k' where in addition to the 
above requirements being fulfilled, sand s' represent the same message 
sequence. For example, in process PI of Fig. 8(a), the entry node k of arc 
+ 3.21.1, 2.2 is dead. This is so because PI already has an arc + 3\,2 with 
entry node k' where (1.1,2.2), (1,2) represent the same message sequence, k 
and k' the same state, 3.2 and 3 the same message, and k' has no dead-node 
predecessors. 

Appendix C shows that this method is valid, i.e., it will not cause any 
receptions to be missed in the graph. It also shows that it will terminate the 
growth of the trees for any protocol where both channels are bounded. The 
unbounded-channel case is discussed in the next section. 



662 Part VII • Formal Specifications 

VI. The Unbounded Channel 

In this section we consider interactions that can lead to unbounded 
growth in the number of messages transmitted by one process but not yet 
received by the other. One example of such an interaction is shown in Fig. 
9. P2 can transmit message 3 after every message reception. Assume P2 
does this and that at the same time PI transmits messages 1 and 2 with 
sufficient speed so that it receives all messages in state 2. Then for every 
message PI receives, it transmits two messages. Hence the number of 
messages in transit, i.e., in the PI to P2 channel grows without bound. This 
is a generic example from which more complicated ones can be derived. 
Another type of interaction that can lead to unbounded-channel growth are 
transmission cycles. Such a cycle would be present if in PI of Fig. 9, arc -2 
were modified so as to enter state O. PI would then contain a transmission 
cycle -1, -2. 

The perturbation method (Section IV A) sets bounds on the maximum 
channel capacity. Hence, a perturbation analysis will always terminate when 
interactions exhibiting unbounded-channel growth are considered. The same 
holds true for the synthesis case when one sets upper bounds on the index 
sequences and on the number of consecutive transmissions. The conse­
quence of these termination mechanisms is that interactions exhibiting 
unbounded channel growth may not be fully analyzable or synthesizable. 
This limitation is by no means unique to our termination mechanisms. It is 

+3 

PROCESS 
Pi 

+2 

PROCESS 
P2 

--~'-"" 

+2 

Fig. 9. Interaction exhibiting unbounded-channel growth. Indexing not shown. 



Chap. 24 • Protocol Analysis and Synthesis 663 

a necessary property of all termination mechanisms, as will be proven in a 
forthcoming paper. Consequently, we can improve termination mechanisms 
to cover more and more practical protocols, but we must always be 
prepared for protocols that can never be completely analyzed or synthe­
sized. 

It is interesting to consider design criteria that guarantee unbounded­
channel capacity and hence, guarantee complete analysis and synthesis. One 
such criterion is that every cycle in an interacting process that contains one 
or more transmission arcs must also contain at least one collisionless 
reception. This limits the channel capacity because when a collisionless 
reception occurs, the transmitting channel of the receiving process is empty. 
Hence, the transmitting channel is emptied every time a message generation 
cycle is traversed, thereby causing the channel capacity to be bounded. 

VII. Conclusions 

Two approaches to improving protocol correctness have been de­
scribed. The first, perturbation, is implemented as a method for validating 
an existing protocol, while the second is a set of production rules applied in 
a stepwise interactive manner to synthesize a "correct" design. The underly­
ing principles of both approaches are equivalent in that the production rules 
could be used for validation purposes and the perturbation method could be 
used for synthesis purposes. Both approaches require limits on the channel 
content when handling protocols or interactions that exhibit unbounded­
channel growth. This limitation can be transformed, for example, into 
design criteria which when fulfilled prevent unbounded-channel growth. But 
some form of limitation is a necessary condition for there is no solution to 
the general problem of reception specification. 

In the case of validation, a thorough analysis of CCITT X.21 circuit­
switched network interface specification has already been published [13]. 
Some of the results of applying the perturbation technique to the data-flow­
control portion of IBM's SNA network architecture are discussed in [8]. 

The validation procedure has also been applied to the packet-level 
portion of the CCITT X.25 packet-switched network interface specification. 
The results, which were independently discovered by Belsnes and Lynning 
[21], were submitted by IBM to study group VII of the CCITT [14]. The 
reader interested in X.25 may wish to examine the issue of Computer 
Communication Review devoted to this topic [22]. In the definition of X.25, 
it was found that a collision of the DCE-CLEAR-INDICATION message coming 
from the network could collide with the DTE-CALL-REQUES'F coming from the 
terminal. According to the specification, the network was to identify this 
collision as a "local procedure error" even though such a collision is allowed 



664 Part VII • Formal Specifications 

by the same protocol specification. Thus, the "procedure-error" indication 
became ambiguous, being used both for the identification of natural colli­
sions and actual protocol violations. The repair to this anomaly was also 
validated by the same method [14]. The correction has since been accepted 
by the CCITT study group VII's Rapporteurs' group. 

An experiment was also performed using the protocol synthesis package 
to try to duplicate the same X.25 level-3 specification. During the redesign 
of this portion of the protocol (for the error-free channel), the synthesis 
package demanded that the receptions resulting from the previously men­
tioned collision be resolved as soon as the developing design makes them 
possible. Terminating these receptions as recommended [14] leads to the 
successful complete design. 

Our work and that of others in protocol specification and validation 
has only examined one aspect of a large and important area which perhaps 
should be called "interaction science." Work of others on such topics as 
concurrent programming is exploring this science from a different view­
point. Many of the problems inherent in distributed processing will be 
resolved as this science develops. 

Appendix A: Further Considerations about the Model 

The representation described in Section II can be used to model both 
nonideal communication channels and interactions between more than two 
processes [16]. This is illustrated by the very simple three-process interaction 
shown in Fig. 10. Process PI transmits message x to process, P2, P2 models 
a nonideal channel from PI to P3, and P3 receives messages from P2. 
Message x' (generated by P2) represents a corruption by the channel of 
message x, and the arc with identifier 0 represents a nonevent, i.e., a state 

PROCESS 
Pi 

PROCESS 
P2 

PROCESS 
P3 

~ ~x------~ +x 0 
~x -------- +x~--------1- ~+Xl 

CORRECT ERRONEOUS 
RECEPTION RECEPTION 

Fig. 10. Interaction example demonstrating how to model many process interactions and how 
to include communication channels that can lose and distort messages. 



Chap. 24 • Protocol Analysis and Synthesis 665 

transition that generates no messages. P2 is initially in state O. On receiving 
message x from PI it enters state I and can proceed in one of three ways: 
either it faithfully retransmits x to P3 by transmitting x or it corrupts x by 
transmitting x' to P3 or it loses x by traversing arc O. Thus, P3 can either 
receive message x or a corrupted version x' or no message at all. 

Appendix B: Sufficiency and Necessity Proofs for the Production 
Rules 

We present arguments which demonstrate that the production rules, 
derived in Section V A, are both necessary and sufficient. We say that the 
rules are sufficient if they create enough arcs to prevent unspecified recep­
tions and that they are necessary if every created arc is needed to prevent 
unspecified receptions. The proofs assume that arc replication (Section V B) 
is replaced by repeated application of the rules. We begin with the suf­
ficiency proof and consider Fig. 11. 

(1) Assume the rules insufficient and let e be the first message that 
manifests this, i.e., there exists a state c of PI that can receive e yet this 
reception is not specified by the rules. 

PROCESS 
Pi 

PROCESS 
P2 

Fig. 11. Derivation of suffiency proof for Rule 2. 



666 Part VD • Formal Specifications 

(2) Consider first the case that -e is appended to a negative arc -x, 
i.e., that Rule 2 causes this unspecified reception. Later, we will consider -e 
appended to reception arcs. 

(3) By virtue of (2) and the fact that FIFO channels are assumed, 
message x is always received before message e. 

(4) Hence, state c must be below a reception of x; let b be the entry 
state of that reception. 

(5) The path from b to c must contain at least one positive reception 
arc, say arc + n . .. because otherwise Rule 2 would specify the reception of 
e in state c. 

(6) Since PI would receive message n after x and before e, P2 must 
traverse - x followed by - n followed by - e. 

(7) But this contradicts our initial assumption that - x then - e be 
consecutively traversed. 

(8) Hence, there is no reception of message e in PI not specified by 
Rule 2. 

We outline the rest of the proof. The above derivation (steps 2-8) is 
repeated for the case where arc - e is appended to an arc + x, i.e., where 
Rule 1 causes the insufficiency. It is then repeated for the case where arc -e 
is appended to an arc + x s ' i.e., where Rule 3 causes the insufficiency. Since 
we obtain a contradiction with the assumptions of steps I and 2 in all three 
cases, the rules are sufficient. We now prove with the help of Fig. 12 that the 

PROCESS 
Pi 

PROCESS 
P2 

+e ... ~ __ --

/ 
/ ...-

,/ 

~--

I 
/ 

/ 

-:;:.- -e 
/ 

/ 
/ 

Fig. 12. Derivation of necessity proof for Rule 2. 



Chap. 24 • Protocol Analysis and Synthesis 667 

rules are necessary. 
(1) Assume that the rules overspecify and that e is the first message 

that manifests this, i.e., there exists a state c in PI that cannot receive 
message e yet the rules specify this reception. 

(2) Consider first the case that -e is appended to a negative arc - x, 
i.e., that Rule 2 causes this overspecification. Later, we will consider - e 
appended to reception arcs. 

(3) By virtue of (2) and the fact that FIFO channels are assumed, 
message x is always received before message e. 

(4) Hence, state c must be below a reception of x; let b be the entry 
state of that reception. 

(5) PI enters state b on receiving x, hence state b can receive e, and 
Rule 2 specifies a reception of e in state b. 

(6) c =1= b because otherwise e could be received in state c and the 
assumptions of (1) would be contradicted. 

(7) Since c =1= b and Rule 2 specifies reception of message e by state c, 
there must be a negative-arc sequence connecting state b to c. 

(8) The entry of any negative-arc sequence attached to state b can also 
receive message e (no time constraints assumed). 

(9) By virtue of (7), state c is the entry of such a negative-arc sequence, 
hence state c can receive message e. 

(10) But this contradicts our initial assumption that state c cannot 
receive e, hence all receptions of e specified by Rule 2 are occurrable. 

We outline the rest of the proof. The above derivation (steps 2-10) is 
repeated for the case where arc - e is appended to an arc + x, i.e., where 
Rule I causes the overspecification. It is then repeated for the case where 
arc - e is appended to an arc + x s ' i.e., where Rule 3 causes the overspecifi­
cation. Consequently, all receptions of e specified by the rules can occur. 
Hence, the rules are necessary. 

Appendix C: Outline of Proof for the Termination Algorithm 

We have to prove two facts about ignoring some arcs as described in 
Section V D: 

1. that it will not cause any arcs to be missed in the protocol, and 
2. that it will terminate the building of the trees, provided the channels 

cannot grow without bounds. 

The proofs will only be outlined due to space limitations. For the first 
point consider a situation when a reception +es is added to a tree with 
entry node i, and assume that the node i is declared dead because of a 



668 Part VII • Formal Specifications 

previous reception +e's' with entry node i'. Let the entry nodes of the 
transmission arcs -e and -e' be j and j', respectively. Consider two 
executions: one brings the two processes into nodes i and j, the other into 
nodes i' andj'. There is no way to distinguish between these two executions 
because the nodes i and i' represent the same process state,j andj' represent 
the same process state, and the contents of the two channels are also the 
same (namely, one channel is empty, the other contains the messages 
represented by the sequences sand s'). Therefore, no matter how the 
execution from i, j continues, there must be an equivalent execution where 
the processes are in states i' and j', respectively. From this, one can prove 
that for every arc that could possibly be generated (if the design rules were 
allowed to run forever), there is an equivalent arc attached to an equivalent 
node generated under the limitations of Section V D. 

To show termination, we will show that no infinite branch can be 
generated in either tree. For the sake of argument assume an infinite 
branch. First, this infinite branch must contain an infinite number of 
receptions, for otherwise there would exist a cycle consisting of transmis­
sions only (see Section VI), contradicting our assumption of bounded 
channels. Secondly, this infinite branch must contain a dead node because 
there must be a message whose reception is repeated infinitely often along 
the branch, but there is only a finite number of nonequivalent combinations 
of channel contents and entry node. Thus, every branch is either finite or 
contains a dead node. Therefore, there is only a finite number of transmis­
sions that are both transmitted and received above dead nodes. Keeping a 
finite number of transmission arcs keeps the trees finite. 

References 

[I] J. Postel, "A graph model analysis of computer communication protocols," UCLA-ENG-
741, University of California, Los Angeles, January 1974. 

[2] T. Piatkowski, "Finite-state architecture," IBM Technical Report TR-29.0133, Systems 
Development Division (now Systems Communications Division), Research Triangle 
Park, North Carolina, August 1975. 

[3] C. A. Sunshine, "Interprocess communication protocols for computer networks," Ph.D. 
thesis, Computer Science Dept., Stanford University, 1975. 

[4] IBM Corporation, "Systems network architecture format and protocol reference manual: 
Architectural logic," Publication SC30-3112-1, File No. S370-30, 1976. 

[5] J. Hajek, "Automatically verified data transfer protocols," Proc. Internat. Conf. Comput. 
Commun., Kyoto, Japan, pp. 749-756, September 1978. 

[6] C. A. Sunshine, "Survey of protocol definition and verification techniques," Proc. 
Comput. Network Protocols Symp., Liege, Belgium, FI-ljFI-4, February 1978. 

[7] P. M. Merlin, "Specification and validation of protocols," IEEE Trans. Commul1., vol. 
COM-27, pp. 1671-1680, Nov. 1979. 



Chap. 24 • Protocol Analysis and Synthesis 669 

[8] A. Danthine (Ed.), Proc. Comput. Network Protocols Symp., Liege, Belgium, February 
1978. See also Special Issue on Computer Network Protocols, Comput. Networks, voL 2, 
no. 4/5, September/October 1978. 

[9] P. Zafiropulo, "Protocol validation by duologue-matrix analysis," IEEE Trans. Commun., 
voL COM-26, no. 8, 1187-1194, August 1978. 

[l0] G. V. Bochmann, "Finite state description of communications protocols," Proc. Comput. 
Network Protocols Symp., Liege, Belgium, F3-I/F3-11, February 1978. 

[II] C. H. West, "General technique for communications protocol validation," IBM J. Res. 
Develop., voL 22, no. 1,393-404, July 1978. 

[12] J. Hajek, "Protocols verified by APPROVER," SIGCOM Comput. Commun. Rev., voL 9, 
no. I, January 1979. 

[13] C. H. West and P. Zafiropulo, "Automated validation of a communications protocol: 
The CClTT X.21 recommendation," IBM J. Res. Develop., voL 22, no. 1,60-71, January 
1978. 

[14] IBM Europe, "Technical improvements to CClTT recommendation X.25," Submission to 
Study Group VII, October 1978. 

[15] P. Zafiropulo, "Design rules for producing logically complete two-process interactions 
and communications protocols," Proc. Second Internat. Conf. Comput. Software and 
Applications, Chicago, pp. 680-685, November 1978. 

[16] K. A. Bartlett, R. A. Scantelbury, and P. T. Wilkinson, "A note on reliable full-duplex 
transmission over half-duplex links," Commun. ACM, voL 12, no. 5, 2260-2261, May 
1969. 

[17] C. H. West, "An automated technique of communications protocol validation," IEEE 
Trans. Commun., voL COM-26, no. 8,1271-1275, August 1978. 

[18] H. Rudin, C. H. West, and P. Zafiropulo, "Automated protocol validation: One chain of 
development," Proc. Comput. Network Protocols Symp., Liege, Belgium, Paper F4, 
February 1978. 

[19] D. D. Cowan and C. J. P. Lucena, "Some thoughts on the construction of programs-A 
data-directed approach," ProC. of Third Jerusalem Conf. Information Technology, Jerusa­
lem, Israel, August 1978. 

[20] D. D. Cowan, J. W. Graham, J. W. Welch, and C. J. P. Lucena, "A data-directed 
approach to program construction," to appear in Software Practice and Experience. 

[21] D. Belsnes and E. Lynning, "Some problems with the X.25 packet level protocol," 
Comput. Commun. Rev., voL 7, no. 4, 41-51, October 1977. 

[22] A. A. McKenzie (Ed.), Comput. Commun. Rev., ACM Special Interest Group on Data 
Communications, October 1977. 



Executable Representation and 
Validation of SNA 

25 

Gary D. Schultz, David B. Rose, Colin H. West and 
James P. Gray 

I. Introduction 

The 1960s and early 1970s were the design heyday and proving ground 
for operating systems within single computers and across tightly coupled 
ones. Today we are experiencing a new design era for coordinating data 
processing distributed over ensembles of cooperating processors, configured 
into networks. 

Software engineering for operating systems developed layered structur­
ing of systems, top-down design, structured programming, disciplined syn­
chronization ( e.g., semaphores) for cooperating processes, and research into 
proof-of-program-correctness methods. Today's era of network architectures, 
which are specifications of the message formats and interaction protocols 
for services provided within networks, has had the need for additional 
design innovations for the changed system context of loosely coupled 
system components, disparate processor architectures, and widely dispersed 
groups of people implementing a common network architecture. 

This chapter focuses on the evolving specification of IBM's Systems 
Network Architecture (SNA) and the formal techniques developed to de­
sign, describe, and test it. A survey of the flourishing literature on other 
formal techniques, developed independently of those described here, is 
outside the scope of this chapter. We refer the reader to Sunshine's extensive 
survey [1] and other chapters in this book for discussions of parallel 
advances. 

671 



672 Part VII • Formal Specifications 

The next section presents a brief overview of SNA. Section III discusses 
the evolution of the architectural description of SNA into a state-oriented 
metairnplementation, and the early representations of the metairnplementa­
tion in the form of block diagrams, combinational functions, and finite-state 
machines (FSMs). Section IV describes the development and essential 
features of the Format and Protocol Language (FAPL). FAPL, based on 
PL /1, replaces the earlier combinational function flow charts and FSM 
state-transition graphs by procedures and state-transition matrices, having 
rigorous semantics and machine-readable syntax. This allows compilation 
and machine execution of the metaimplementation. In turn, automated 
validation of the architecture can be performed, as described in Section V. 
Speculation on the implications and future possibilities of the F APL de­
scription of SNA concludes the chapter. 

II. Services and Control Structures of SNA 

The purpose of this chapter is twofold: to describe briefly how (and 
why) SNA is defined by a metaimplementation of a node, and to discuss the 
formal techniques developed for the specification and validation of the SNA 
metaimplementation. To do this requires that enough of SNA be defined so 
that we can explain the rationale for the methodology used to specify the 
architecture. To the extent that other network architectures are similar, the 
SNA design approach can be generally applied. See, for example, the 
discussion in [2] of the application of this approach to ISO's Open Systems 
Interconnection architecture. 

A. Functional Layering and Control of Sessions 

The purpose of SNA is to provide means for end users to use data 
processing services and devices distributed throughout a network. An end 
user can be a person using a terminal, or an application program executing 
in a network node. Device media are also regarded as end userS when they 
can be the source or destination of data. With this view of end users and 
their needs, SNA can be represented as a services network, concentrically 
layered by function, as shown in Fig. 1. 

The top layer provides data formatting and other presentation services, 
as well as connection, or session, services allowing an end user to initiate an 
activation of a session with another end user. Data flow control provides 
functions for sequence numbering and logical chaining of user messages, for 
correlation of requests and responses between the end users, for control of 
send-receive concurrency between them, and for bracketing (or serially 
multiplexing) transactions during the session-active period (e.g., for data-base 



Chap. 25 • Representation and Validation of SNA 673 

---------

Fig. I. Functional layers of communication between end users. 

applications). Transmission control enforces the end-to-end session-level 
pacing of message traffic between the end users in accordance with the 
storage and processing available for it, provides other functions related to 
session control, and enciphers user messages when requested. Path control 
supports the routing and flow control of messages throughout the network, 
while data link control schedules traffic and performs error recovery on the 
links between adjacent network nodes. For additional details, see Chapter 5 
(data link control), Chapter 11 (path control), and Chapter 16 (presentation 
services and data flow control). 

With this model of a network architecture, the task remained to define 
the protocol boundaries (or interfaces) between adjacent layers, the peer-to­
peer (e.g., data flow control to data flow control) protocols, and the message 
headers and requests and responses exchanged by layer peers. What is 
lacking in this model is any representation of the partitioning of control for 
individual end users and their sessions. It is obvious that control and 
routing need to be exercised on behalf of different end users and different 
sessions, but the structural components for this control are hidden in a 
model such as Fig. I that deals only with functional layers. 

The notion of the logical unit (LU) (see Fig. 2) served to fill tlus 
particular gap in the simple layered model. An LV serves as a port for an 
end user to gain access to the network. Each LU contains the functions of 
the top three layers of Fig. 1, with a control structure imposed. A session 
now is represented by a half-session in each LU and the signaling path 



674 Part VII • Fonna! Specifications 

LUs 

L--__ ---I1 / _ LU Services Manager . LU Services Manager 

Half-
FI PS Sessions FI NS 

/ '" DFC DFC DFC ":II DFC DFC DFC 

TC TC TC TC TC TC 

, / 
'.......... // --- ---~ 

Path Control Network 

Fig. 2. LUs and the inner path control network. 

connecting them through the path control network-the set of all path 
control and data link control elements in the SNA network. * 

The half-sessions contain the same functions as described in the 
corresponding layer model, but are sensitive to interactions between specific 
end-user pairs. Based on session parameters exchanged at session activation, 
the half-sessions provide particular subsets and variations of the layered 
functions, for example to vary pacing control. The half-sessions also, during 
the time a session remains active, synchronize and track the sequence of 
events transpiring at both ends. The top layer of Fig. 1, session and 
presentation services, is represented by the top layer of the half-sessions and 
by the LU services manager. The top layer of a half-session, when con­
nected to a half-session in another LU, provides presentation services, as 
described earlier. The LU services manager intercepts new session initiation 
(log-on) requests from its end user and represents the end user in a 
multistep process to activate a new LU-LU session, thereby supporting the 
session services previously mentioned. 

Each LU is represented within the path control network by a network 
address for routing purposes and, external to the SNA network among end 

*We adopt the convention from [3] of designating an inner network by its outermost layer. 
Thus, later we refer to the inner network underlying data flow control as the transmission 
control network. 



Chap. 25 • Representation and Validation of SNA 675 

users, by an LU name. End users are thereby freed of routing concerns and 
can be insensitive to changes in the underlying network configuration. 

The directory problem of resolving LV names (used in session-initiation 
requests) to network addresses supplies the rationale* for an additional type 
of network addressable unit-the system services control point (SSCP). 
Because of the potential number of LVs a network can contain, a full 
directory of network addresses may be too large to carry at every node of 
the network. For this reason, the directory assistance is provided by an 
SSCP, and an LV-LV session initiation is performed by an LV in conjunc­
tion with the SSCP, using an LV-SSCP session. 

The top layers of the LV half-sessions are shown in Fig. 2 with 
differentiated names. SPS, or session presentation services, and SNS, or 
session network services, distinguish the types of services that are provided 
for LV-LV and LV-SSCP sessions, respectively. The SSCP (not shown) 
has a similar services manager and half-session structure, and also attaches 
to the path control network. 

B. The Configuration Model 

The model of Fig. 2 is still too simple: it fails to differentiate the 
underlying node and link configuration, and is therefore not rich enough to 
deal with the issues of network management and control of real physical 
networks, in which nodes, links, and their interconnections are of central 
concern. Also, the model does not deal with the realities of nodes having 
varying capabilities and roles within the network. The product designer 
following the architecture has to implement a node; this perspective must be 
served in an architectural specification. 

Figure 3 provides an example of a configuration model, which exposes 
the underlying physical configuration, and illustrates the basic node types, 
control structures, and interconnections defined in SNA. This model em­
phasizes the organization of the layer elements into larger control structures 
-the node itself being one. It allows the relationships of these larger 
control structures to be exposed and defined. (For simplicity, we suppress 
the details of path control and data link control elements in this figure.) 

The node is the focus of product design, being a partitioning of 
resources and services that can form a configurable element, interconnected 
by links to other nodes within a network configuration. A physical unit (PV) 
exists in each node to control the resources associated with the node, 
perhaps in response to an SSCP request, such as to activate a particular link 

*Other network services can be selected as rationale, but we choose the directory and routing 
issues to motivate this overview, and to serve as the integrating theme. For a discussion of 
other network services, see [3], [4]. 



676 Part VII • Formal Specifications 

~-------.... 
/ ----~ ~ 

/ boundary / / r.;;',\ '" "" 
node ~ ~ 

/ -- // @ ... @) ~ \ \ / ~e peripheral \ 
( SCp ® nodes 

/ ® / ) / \ @) ... @ / subarea 

,,/---___ @ .. @ /J J / /V, ... - __ --- / 

(1,=,@e.@0do'T 
~ w .. ~ / ) 

I) ® ... /~~t---~~ 
@) ... @) @) ... @ I ®/ 8 \ \ I ~ \@)/@®@} .. @)'/") Q bOUndary),l-/-7-'--=~ 

1 'C:J node /r / 
@ .. @) 1 PU / 

I peripheral ~ ~ (( e.·· @ 
\ 

nodes ~ ~ \" 
Q~ '-..... ,.../ 

~'-- ~ ... ~) '--,------- -----
Fig. 3. The network as NAUs, nodes, link connections, subareas, and domains. 

to another node. Like the other network addressable units (NAUs)-the LU 
and the SSCP-the PU has a services manager and half-session structure, 
and uses the path control network. 

Each NAU is represented in the path control network by a network 
address. To facilitate network routing and reduce routing table sizes, the 
network address has a subarea address and an element address component; 
the network as a whole is then partitioned into subareas. To reduce the 
number of nodes responsible for network address routing-and hence 
sensitive to reconfigurations-only some nodes are involved in network 
address routing. These are called subarea nodes. Other nodes use shorter, 
local addresses or session identifiers that need be unique only within 



Chap. 25 • Representation and Validation of SNA 677 

individual nodes; we refer to these as peripheral nodes. (Typically, these are 
terminals or terminal cluster controllers.) Peripheral nodes attach to SNA 
networks through subarea nodes, which provide a boundary function for 
transforming between the local and network addresses. Peripheral nodes, 
therefore, are not sensitive to changes, additions, or deletions to the network 
address space. A subarea consists of the PU, the SSCP (if present), and the 
LUs in a subarea node, along with the PU and LUs in each peripheral node 
(if any) attaching to it. Each PU or LU in a subarea has a unique element 
address within the subarea. The PU in the subarea node may dynamically 
assign a PU or LU in its subarea to a network address. For details of 
subarea node routing and flow control, see Chapter 11. 

To reduce the size of the directory a single SSCP maintains, the 
responsibility for directory management and assistance is distributed over 
multiple SSCPs throughout the network, and the network is partitioned into 
domains. A domain consists of an SSCP and the PUs, LUs, links, and link 
stations that it can activate, deactivate, and control. Serial or concurrent 
sharing of control of network components is possible, and so domains can 
overlap. An SSCP knows the network address of every member of its 
domain, as well as of every other SSCP in the network. It also knows the 
domain (or SSCP) associated with each LU whose name it is authorized to 
encounter in a request. The directory assistance (and other functions) 
related to cross-domain LU-LU session activations involves the coopera­
tion of the SSCPs controlling the separate domains, transparent to the 
participating LUs. For further discussion of cross-domain session services, 
see [3], [6] 

C. Overview of a Node 

With this brief rationale for the network control structures, and the 
emphasis on the node as the focus of product design, we can now discuss 
SNA as a node-based architecture. Figure 4 (derived from [3], [7]) provides 
the architectural overview of a node in its most general representation. It 
shows a subarea node having a PU (always present), one or more LUs, the 
boundary function, and an SSCP. The PU controls the physical resources 
(e.g., links) of the node, while the LUs can be used to partition, allocate, 
and control the devices associated with end-user communications (Chapter 
16). 

A peripheral node lacks the SSCP and boundary function (BF) compo­
nents-consisting of BF.PC, for transforming between network and local 
addresses, and NAU-like subcomponents (called BF.PUs and BF.LUs) for 
assisting in session-level control. (The period notation represents decom­
position of the larger structure into subcomponents.) The path control 
element in a peripheral node routes on local addresses or local session 



678 Part VII • Fonna! Specifications 

Boundary 
Function 

1 PU.SVC_MGR I 
A A A· I • 

V· 

A1 t 
r-' .. -I-L,.--

I ~~pV I IV ~~~. I 
A A 

Fig. 4. Overview of an SNA node. 

End 
A User 

v 

~.' 
(LU 

~~li 
SEC 

LU 

identifiers, rather than on network addresses. Subarea nodes vary from each 
other only by the presence or absence of an SSCP and boundary function 
support, and by the number and types of links and LUs they support. 

The definition of SNA in the form of a node-based structure, succes­
sively refined into substructures, provides an archetypal control structure 
for implementation groups to follow, without having to reinvent the basic 
organization from the ground up. Early IBM implementations of SNA have 
evolved to the metaimplementation structure, while later ones have built 
upon it from the start. 

With this overview of SNA as a layered functional structure on which 
control structures are imposed, and from which a node definition is derived, 
we turn in the next section to the design and specification of an SNA node 
in the form of a state-oriented metaimplementation. 

III. State-Oriented Design and Specification 

Sundstrom [9] has discussed the futility of relying solely on sequence 
descriptions and supplementary explanatory prose for the protocol specifi­
cation of large systems. For a network architecture like SNA, a new 
approach was needed to remove specification ambiguities and provide 



Chap. 25 • Representation and Validation of SNA 679 

greater precision. At the same time that the node structure described in the 
previous section was evolving, descriptive techniques were being developed 
to define the SNA protocols and the functional components, or protocol 
machines, within layers, in terms of states and state machines. This effort 
was led by T. F. Piatkowski, who set forth the general principles to be 
followed [10], and developed the basic descriptive tools [11]. Piatkowski 
proposed that the block diagram of the node be successively refined until 
the fundamental jinite-state machines (FSMs) and combinational junctions 
(or logic) interconnecting them were reached. This approach was rooted in 
classical FSM theory, such as described in [12]-[14]. Earlier use of FSMs in 
defining data link controls for an operational data communications system 
is described in [15];. see also [16], [17] for general discussions of the 
application of finite-state representations to data link controls. 

An FSM is formally defined as a five-tuple: 

FSM = (S, 1,0, FNS, FOUT) 

where S is a finite state set; I is a finite input set; 0 is a finite output set; 
FNS: S X 1-> S is the next-state junction, which maps current (state, input) 
pairs into the next state; and FOUT: S X 1-> 0 is the output junction, 
which maps current (state, input) pairs into the current output. [The current 
state itself is a static output-like memory, it can be read at any time; 
pulsed output signal(s), such as message units to be forwarded out of the 
node, can also be issued.] 

The FSM provides a representation of a component that has memory 
and tracks the current status of the system. By placing complementary 
FSMs at the sending and receiving half-sessions, the two ends can retain 
synchronization with respect to a given protocol. For example, the two ends 
of an LU-LU session contain complementary FSMs that are sensitive to 
Bind-Unbind Session request-and-response exchanges, to track session 
active-reset (and intermediate) states. These FSMs can be checked (via state 
checks on their static outputs) at both ends by other protocol machines to 
test the validity of other send-receive actions. 

The representation of complementary FSMs allows convenient enumer­
ation of all state pairs, (si, sj), where si is the state of FSMi and sj is a state 
of its complementary (or peer) FSMj. Within a given system context, some 
of the state pairs may be defined to be invalid, i.e., representing state 
combinations not allowed (or overlooked) by the architectural specification. 
A validation system can test whether connected complementary FSMs can 
reach invalid state pairs. A later section describes such a validation system 
that has been applied to SNA. 

The decomposition of the structure into FSMs, and interconnecting 
routing logic, allowed the specification of protocols in terms of sequence 



680 Part VII • Formal Specifications 

generators [3], [9], whose input and output specifications show the relation­
ships and generation of sequenced signals. This removes the necessity to 
define all possible sequences graphically. (The definition of protocols through 
comprehensive sequence descriptions was actually performed in IBM in the 
1960s for binary synchronous communication (BSC), and later for SDLC; 
see [18] for application of the technique to the American Standard version 
of BSC. Even for these relatively contained link controls, the task was 
formidable.) 

In describing the structure and protocols of SNA in this state-oriented 
fashion, a generic structure of a layer element (e.g., a DFC component 
within a single half-session) was developed. This is shown in Fig. 5. Each 
layer element has send and receive subelements, which are coupled with 
complementary receive and send sub elements at the remote peer-layer 
element. Each send and receive subelement consists of state-independent 
usage checks (e.g., for message parameter validation), state checks (to reject 
a state violation on sending or record one on receiving), a message router, 
and multiple-state FSMs. State checks were (in the original notation) 
separated out from FSMs into tables, to allow error cases to be separately 
considered, while the FSMs themselves focused on the basic (normal) 
function provided. (Now, FAPL allows these easily to be merged.) The 

From Outer Layer 

I 
I message 
I un 
I 

r----i -------1 • I I 
I I 
I .. I 

USAGE-
CHECKS_ 
SEND 

reject I 
STATE_ 
CHECKS_ 

SEND 

ROUTE_ 
SEND 

f-

ro' 

I 
r--I. 
I.,' 

I 
I I 
I I 

L I ELEMENT. SEND I 
--"'I --------

Toward Outer Layers 

t 
I message 
lun 

I 
i-------I----l 
I I 
I I 
I I 
I I 
I I 

-
ROUTE_ 

RCV .-
STATE-
CHECKS_ 

ReV error 

USAGE-
CHECKS_ 

RCV 

__ 1 __ 
I ELEMENT I message 

I 
I message ! Unit 

Toward Inner Layers 

I Un! 

I 

From Inner Layers 

Fig. 5. A generic layer element in SNA. 



Chap. 25 • Representation and Validation of SNA 681 

router sends the message unit to one or more of the FSMs, depending on its 
content. The FSMs change state according to the input and may produce 
output messages (to be sent forward), and signals to other FSMs. The FSMs 
are shown as spanning the send-receive subelements, since local coupling of 
send-receive FSMs can exist. In the closest coupling, the send-receive 
FSMs can form a composite FSM, for example in the case of two-way serial 
(or half-duplex) protocols. More loosely coupled, separate FSMs can ex­
change signals to synchronize local states. 

Piatkowski identified the notion of friendly adjacent layers, i.e., those 
produced by a single implementation group. To avoid a "reject" by a lower 
layer, and the necessity to "back-out" state transitions already performed in 
an upper layer, the send checking logic for all friendly layers can be 
exercised in the uppermost friendly layer. 

The checking and routing logic are single-state FSMs, i.e., algorithms 
without memory. The checking logic was represented in checking tables, or 
in flowcharts with the routing logic. For general, multiple-state FSMs, a 
notation of state-transition graphs was developed. Figure 6 shows the FSMs 
defined for the Bind-Unbind protocol machines at both half-sessions. The 
vertical lines represent the states, while the arrows show the state transi­
tions. Input signals appear above the arrows, and pulsed output signals 

"I -RSP (BIND) to SESSAD.BIND_ASP_RCV I 
---PEND.RESET-- 0 1 

+RSP(UNBINDj from FI SC.ACV I 
+RSP(UNBIND) to SESSAD 
UNBIND. RSP _ AeV 

-RSP(UNBIND) from FI_SC.RCV 

-ASP(UNBIND) to SESSAO 
UNBIND.RSP.ReV 

I "~"'~~~~~m~~ '. UNBIND to CPMGR SEND 

(a) (PlU,SLU).PRtSESS.SENO" the FSM (10 Tel at the primary half'sesslon 

"RESET 

---R=:SET--- ---PEND. ACTIVE-- --ACTIVE---

! BIND from FI.SG ReV ,..1 +RSP(BIND) from FI_SC~ 
1 

BIND to SESSAD.BIND AQ ReV 7 t +RSP(BIND) to eSC,SEND . 6 1 

o~(~~R~SP~[B~IN~D)~f'~Om~F~'_S~e~.SE~ND~ ____ ,o I 
-RSP(BIND) to eSC.SEND t 1 

--PEND RESET--

o~( c:i'R~SP;;;lU;:c.N;;:::BIN""Dc-;) f;::;wm:;,;Fi;I-"'Sec;:Sc:-EN:::D __ ---1l.: <' UNBIND Iwm F,-"e Rev 'RESET 

I +RSP(UNBIND) 10 esc SEND r" UNBIND 10 SESSAD UNBIND_ 
. _ AQ_ReV 

1 0 -. r-----------' I . 
(b) (PlU,SlU) SEC SESS_RCV the corresponding FSM at the secondary half-sesstQn 

Fig. 6. An example of SNA FSMs. 



682 Part VII • Formal Specifications 

appear below. The "broad arrow" in the figure is a notational convenience 
for reducing the number of transition lines in the graph; the predecessor 
states are identified at the tail (","means logical not) and, for added 
redundancy, numbers identical to the number in the arrow head appear on 
the state line for each possible predecessor state. Note that the two FSMs 
are complementary rather than symmetric, e.g., the primary FSM always 
sends the Bind, while the secondary always receives it. 

In addition to the checking tables, flowcharts, and state-transition 
graphs, certain special-purpose state machines were defined and repre­
sented. These included counters, registers, request-response correlation 
tables, message-segment accumulators, and queues. Some of these are 
unbounded in theory and, hence, not FSMs. In practice, SNA protocols can 
be used to keep these bounded. For example, pacing of message traffic can 
be used to constrain queue lengths. 

This assemblage of descriptive techniques was used in the first edition 
(1976) of the SNA Format and Protocol Reference Manual [3]. The result was 
a description of an SNA node by a "human-executable" model, or 
metaimplementation. The next step was to establish the framework for a 
machine-executable version. 

IV. Executable Description of SNA 

Representation of SNA using state-oriented graphic techniques created 
great desire among architects, implementers, and testing groups within IBM 
for a machine-interpretable version. The questions were: How could this 
translation be done? And what machine-interpretable language should be 
used? The ensuing debate focused on various requirements. Foremost 
among these were the needs to keep the official specification understandable 
to the broad audience of implementers, and to retain the FSM-oriented 
description. 

A leading candidate for the language was PL/I, because of its wide 
exposure and availability, both inside and outside IBM, and its similarity to 
the systems programming languages used internally by IBM. Also, PL/I 
allows structured programming, a required discipline for the executable 
metaimplementation. The disadvantage of PL/I was that it lacked special­
ized capabilities for representing FSMs. 

One of the authors (Rose) began a pilot project in 1976 to determine if 
PL/I, suitably augmented, could be used to represent the SNA data flow 
control layer. This project was successful, and culminated in the definition 
of the Format and Protocol Language (FAPL) as an augmentation of PL/I. 
FAPL was then applied generally to the SNA specification. The second 
edition (1978) of the SNA Format and Protocol Reference Manual [3] used a 



Chap. 25 • Representation and Validation of SNA 683 

hybrid representation to define the metaimplementation. All flowcharts of 
the first edition were converted to FAPL procedures, and many (all DFC) 
state-transition graphs were converted to FAPL state-transition matrices. 
The conversion is proceeding for future editions. 

A. FAPL Language Features 

FAPL augments PLjI to provide representations of FSMs and refer­
ences to them. It also defines general list-handling capabilities, and has 
features for queued dispatching of procedures. PLjI itself has rich data­
variable definition capabilities for representing any special-purpose state 
machine, such as the required counters, registers, and accumulators men­
tioned earlier. 

Currently, FAPL usage is confined to the following subset of PLjI 
statements: 

assignment statements 
CALL 
DECLARE 

DO groups 
END 
IF jTHEN jELSE 

PROCEDURE 
RETURN 
SELECT groups 

These features are described in the PLjI reference manual [19]. Other 
features of PLjI, such as data types and built-in functions, are constrained. 
FAPL extends the PLjI use of the period(.), as a name qualifier for data 
structures, to procedure and FSM names, as was shown in Fig. 6. This 
allows showing hierarchical decomposition of functional, as well as data, 
components into subcomponents, in a common fashion. 

1. Data Entities and List-Handling Facilities 

The language extensions to PLjI for list handling are based on 
concepts used in SIMPLjI [20], a PLjI-based simulation language. Some 
concepts are used directly, while others are modified slightly. 

A basic data-element construct in FAPL is the entity. An entity may be 
sent from one procedure to another, reside on a list, and be created and 
discarded by F APL statements. For the SNA metaimplementation, the main 
use of an entity is to represent a message unit flowing in the network, but 
other data structures that are to be manipulated in lists are also represented 
as entities. An entity is defined using an ENTITY statement. Data fields in 
the entity are defined using the same syntax as for a PLjI DECLARE 

statement. The difference is that an entity contains header fields preceding 
the defined data structure; this allows the entity to be manipulated by other 



684 Part VII • Fonna! Specifications 

F APL statements. The CREATE and DISCARD statements allow entities to be 
generated and destroyed. 

F APL provides high-level list handling statements for managing lists of 
entities. These extensions allow more succinctness in the metaimplementa­
tion representation by subordinating list processing to language features of 
F APL. NEWLIST and DESTROY control the existence of lists, and INSERT and 
REMOVE manipulate list entries. Lists conveniently represent a table of like 
data structures, such as the request-response correlation tables in SNA data 
flow control. The SNA definition also uses lists to contain the half-session 
control blocks for all active sessions. (These control blocks have architected 
content for the metaimplementation; they also have format representation in 
F APL. They contain all implicit storage for FSM current-state values, and 
explicit storage for session-activation parameters and session variables.) The 
SCAN statement provides a convenient method to examine each list entry 
sequentially. The SCAN group contains statements that can be executed 
each time a list entry is found with particular attributes. 

Data queues are handled as special-case lists. A data queue, like a list, 
may be defined to contain multiple entities, but a specific data queue or list 
may contain only one entity type. The INSERT statement provides options 
that allow first-in, first-out (FIFO) or priority management of a list repre­
senting a data queue. REMOVE is used to dequeue. 

2. Finite-State Machine Representation 

A general, multiple-state finite-state machine (FSM) always has a name 
using the prefix, FSM_, and is represented in F APL in the form of a 
state-transition matrix, illustrated in Fig. 7 (derived from the SNA data flow 
control definition [3]). This representation allows definition of a complex 
FSM in a concise form. Inputs and outputs are represented in mnemonic 
form, and both are defined outside the matrix itself. The primary benefits of 
the matrix representation are that it allows easy visual verification of the 
completeness of the inputs considered, and it facilitates consideration of all 
state and input combinations. It is not as efficient as the state-transition 
graph in showing predecessor-state relationships; however, it allows easy 
merging of state error-checking into the basic FSM representation, which 
the graph form does not. The matrix representation is also easily translated 
and compiled, as described later. 

Each column heading in the matrix contains the state name and state 
number. Each row heading contains a set of input conditions. The mnemon­
ics used to represent input conditions are defined in an FSM_INPUT_ 

DEFINITION at the top of the figure. In the input definition section, each 
input condition mnemonic is associated with a logical test that determines if 
the input condition is true or false. The mnemonic variables and values, 



Chap. 25 • Representation and Validation of SNA 

THE SYMBOLS USED IN THE "INPUTS" COLUMN 
STATE-TRANSITION MATRIX ARE DEFINED BELOW. 

BC 
CANCEL 
EXP 
NORI1 
QC 
QEC 
R 
RELQ 

'RESET' 
RQ 

+RSP 
S 

BCI=BC; 
RQ CODE=CANCEL; 
EFI=EXP; 
EFI=NORI1; 
RQ CODE=QC; 
RQ-CODE=QEC; 
MU=DIRECTION=RECEIVE; 
RQ_CODE=RELQ; 
FSHINPUT='RESET'; 
RRI=RQ; 
RRI=RSP & RTI=POS; 
MU_DIRECTION=SEND; 

OF THE I 
! 

685 

STATE NAMES---------->I RESET I PEND_ I QUIESCEDI 
I I QC I 

INPUTS STATE NUHBERS---------->� 01 I 02 I 03 I --------------------------------1-----1-----1------R,RQ,EXP,QEC 
S,+RSP,QEC 

I - I >(R) I >(R) I 

R,RQ,EXP,RELQ I - I - I -
1_2 __ 1_-__ 1 - 11I1 

S, +RS p, R ELQ I - I 1 I 1 
~--~--~----------------------I-----I-----I------

S,RQ,NORH,QC I >(S1) 1 3 I >(S1) 
R,+RSP,QC I - - I ---------------------------------1-----1-----1------1 
S,RQ,NORH, CANCEL I - I - I >(S2) I 
S,RQ,NORH,~CANCEL, BC I - I >(S2) I >lS2) I 
S,RQ,HORH,~CAIlCEL,~BC I - I - I >lS2) 

------~------------------------11------11-1----11 1 1:11 'RESET' /* FROM DFC RESET */ 

OUTPUT FUNCTION 
CODE I 

S1 SEND CHECK_SENSE=X'0809'; /* MODE INCONSISTENCY ~/ ,I' 

S2 SEHD CHECK SENSE=X'2006'; n DATA TRAFFIC QUIESCED */ .11 
R RECEIVE CHECK SEHSE=X' 0809'; /* HODE UICONSISTENCY U . 

Fig. 7. Example of FAPL FSM. 

such as "BCI" and "BC" in the first line, are defined in a PL /1 data 
declaration, not shown. (In Fig. 7, the" R" and "S" indicate whether the 
DFC layer element is receiving from or sending to its peer element at the 
remote end of the session. The other values indicate DFC commands or 
header indications.) The input definition section allows more concise input 
specification within the matrix itself. 

The matrix elements-(row, column) intersections-contain a next­
state indicator, optionally followed by an output code in parentheses. The 
next-state indicator may be the number of the next state, a hyphen (-) to 
indicate that no state change is called for, a greater-than symbol (» to 



686 Part VII • Formal Specifications 

indicate that a matrix element selection represents an error condition, or a 
slash U) to indicate that a matrix element selection cannot occur because of 
prior checking in a previously invoked procedure or FSM. The (» and U) 
designations are useful for validation and testing purposes; in essence, they 
allow representation of specific assertions about the expected environment 
within which the FSM has been designed to operate. (Section V.B.4, "Error 
Detection," discusses the significance of these symbols for validation in 
greater detail.) The output code, if present, references an output function 
description that follows the transition matrix. 

When an FSM is referenced, it is assumed that it may have input 
conditions that test the value of any entity or system variable that exists for 
which it has ad\lressability. Addressability is provided through a control 
block that contains pointers to the "current" copy of each entity type. In 
addition, a specific signal (represented as a character string) may be sent to 
an FSM as described below. 

F APL provides two modes for referencing FSMs. One is the normal-type 
FSM reference, in which the next-state and output functions are applied to 
the current input and state. This type reference is accomplished by 

CALL FSM_fsmname[(fsm_input)]; 

where the brackets indicate that the syntactical element is optional. The 
other reference mode is a "check" type FSM reference that is invoked by the 
SEND_OR_RECEIVE_CHECK built-in FAPL function: 

This type of reference does not cause the FSM to change state, or to execute 
any output function unless the output function is associated with a (» 
next-state indicator, representing an error condition. This checking FSM 
reference allows a group of FSMs to be checked for error conditions before 
any FSMs are allowed to change state, to eliminate "backing-out" of FSM 
states set before an error is detected. In the SNA metaimplementation, 
checking-type references of all applicable FSMs always precede normal-type 
references that may cause state changes. 

One byte of storage exists in a control block for each FSM instance 
(e.g., on a half-session basis) to contain its current-state value. The current 
state of an FSM may be tested by 

IF FSM_fsmname = state_name THEN ... 

3. Generic FSM References 

F APL allows referring to FSMs by a generic name so that one of 
several FSMs may be selected at execution time, based, for example, on 



Chap. 25 • Representation and Validation of SNA 687 

some SNA session-activation parameter. An FSM reference of this form is 

This type of reference implies that a variable named # HDX has been 
assigned the actual name of the FSM to be referenced before the statement 
is executed. This example (taken from [3]) could result in calling anyone of 
the FSMs: FSM_HDX_FF, FSM_HDX_CONT_ WINNER, or FSM_HDX_CONT_ 

LOSER, depending on the name resolution previously performed. Generic 
names allow greater conciseness of the metaimplementation description 
where a reference to any of several FSMs can be made, independent of the 
particular FSM-tailoring resulting from session-activation parameters. In 
the metaimplementation, the generic name is resolved to a specific name, for 
the given example, during the session-activation process. 

B. Translation from F APL to PL II 
A F APL preprocessor translates all F APL language statements to 

PL/I-compatible statements that can then be compiled by PL/I and 
executed within the proper environment-a straightforward process. Here 
we discuss FSM translation, which has some novelty. Each FSM state­
transition matrix is translated by the preprocessor to a PL/I procedure. The 
technique involves generating an array to contain the matrix elements, and 
addressing the array with the current state value and the input line number 
that is true when the FSM is invoked. During translation, each unique input 
condition found in an FSM is assigned a number. After scanning the 
complete FSM, the preprocessor generates two bit-strings for each input 
line, as shown in Fig. 8 for the FSM of Fig. 7. Each bit-string is equal in 
length to the number of input conditions used by the FSM, and each bit 
position corresponds to the input condition of the same number. One string, 
called the mask string, contains a one-bit for each input condition that 
applies to the input line. The other string, called the match string, indicates 
with a one- or zero-bit whether each applicable input condition should be 
true or false for this input line. When the FSM is invoked during execution, 
a bit-string, having the same length as the mask and match bit-strings, is 
generated, to represent the current value of each input condition to the 
FSM. This current-input bit-string is then AND-ed with the mask string, 
and the result compared to the match string for each input line; an equal 
compare determines the input line-number index into the matrix elements. 

C. The Execution Model 

In general, SNA does not define, or constrain, processing scheduling or 
parallelism within an implemented node, because these concerns are so 



688 

Input Conditions From Example FSM 
(Figure 71 

Order Encountered Bit Number 
Assigned 

R 
RQ 
EXP 
QEC 
S 

+RSP 
RELQ 
NORM 
QC 
CANCEL 
BC 

'RESET' 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

Input Line Generated Bit Strings 
Number 

1 111100000000 <-----
111100000000 {-----

2 000111000000 
000111000000 

3 111000100000 
111000100000 

4 000011100000 
000011100000 

5 010010011000 
010010011000 

6 100001001000 
100001001000 

7 010010010100 
010010010100 

8 010010010110 <-----
010010010010 

9 010010010110 
010010010000 

10 000000000001 
000000000001 

Part VII • Formal Specifications 

Mask String 
Match string 

Input lines 8 and 9 contain 
tests for the off condition of 
an input condition 

Fig. 8. FSM input condition testing (for the FSM in Fig. 7). 

implementation dependent. Diverse product contexts, processor architec­
tures, and operating environments cannot easily be served within the 
framework of a single execution model. Nevertheless, for execution pur­
poses, the F APL-definition required an execution model for the metaimple­
mentation. A simple one was chosen. 

Two procedures, the node scheduler and the node thread-dispatcher, are 
defined in F APL to manage the invocation of the other procedures in the 
meta-implementation. The node scheduler is the root procedure (or the main 
procedure, in PL/I terms) in a single calling tree of procedures within the 
node. It is data-queue driven, responding to the states (occupied, empty) of 
the data queues defined in the metaimplementation for holding message 
units as they pass through the node. Upon finding an occupied data queue, 
the node scheduler initiates the dispatching of a dequeueing execution 
thread, which consists of the successive invocation of all procedures required 
to process a message unit from its dequeueing to its enqueuing on another 
data queue, or its exit from the node. 



Chap. 25 • Representation and Validation of SNA 689 

FAPL defines a dispatching queue, and a SEND statement, which is 
used to place a procedure name and pointers to a message unit and other 
signals on the dispatching queue. The dispatching queue is managed by the 
node thread-dispatcher, as follows. The node scheduler creates the original 
entry on the dispatching queue (via SEND), when it finds a data queue from 
which a message unit can be dequeued; this entry identifies the dequeuing 
procedure for the data queue. The node scheduler then calls (via CALL) the 
node thread dispatcher. Upon finding its dispatching queue occupied, the 
dispatcher removes the first entry from the dispatching queue, creates 
the necessary execution environment using the pointers contained in the 
entry, and calls the procedure named in the entry. 

The dequeuing procedure dequeues from its data queue and initiates 
the processing for the message unit. Within a layer, this processing can 
involve the calling of multiple procedures and FSMs, transparent to the 
node scheduler and thread dispatcher. To send the message unit to a 
procedure in another layer for further processing, a procedure (or FSM) 
executes either INSERT (if a data queue is used) or SEND. This limits a calling 
subtree to a single layer, and a layer element ultimately returns (via RETURN) 

to the thread dispatcher, rather than to a procedure in another layer. 
Upon regaining control, the thread dispatcher finds as many new 

entries on its dispatching queue as the number of SENDs executed since it 
last held control. It then dispatches the next subthread, using the new first 
entry on the dispatching queue, to call a new procedure. This process 
continues until the thread dispatcher finds its queue empty; it then returns 
control to the node scheduler, ending the thread. 

V. Automated Validation of SNA Data Flow Control 

SNA, as a dynamic architecture, is continually being defined, modified, 
and extended for new products and applications. In an evolving architec­
ture, the automation of error detection is important in order to rapidly 
evaluate architectural changes. 

The development of the F APL representation has made it possible to 
consider using automated techniques to validate those parts of the SNA 
metaimplementation fully defined in F APL. 

In this section we describe how one particular automated technique has 
been used to validate the data flow control (DFC) layer of SNA. It is not 
our purpose here to review validation techniques- these are discussed in 
other chapters in this book. 

We have applied the state-perturbation technique, which is discussed in 
[26] and in more detail in [24]. This is a form of reachability analysis, which 



690 Part VII • Formal Specifications 

exercises a system of finite-state machines that interact via signaling chan­
nels modeled as message queues. The technique detects errors representing 
deadlocks, inconsistent or incomplete design, or loss of synchronization. 

The validation procedure has been reformulated as a driver that 
surrounds two communicating DFC elements; it drives them through their 
accessible states, searching for error conditions in much the same way as in 
[24]. 

The input to the driver consists only of the compiled architecture 
definition and the parameters defining the session options to be validated. 
(In particular, it is not driven by test sequences.) 

In the following sections, the data flow control layer of SNA is first 
described. The validation procedure, as modified by one of the authors 
(West) to match the context of the DFC definition, is then discussed; some 
sample results of this work are also presented. 

A. The Function of Data Flow Control Within SNA 

Communication takes place by exchanging message units that have 
well-defined formats. Each message contains three parts, the transmission 
header (TH), request/response header (RH), and request/response unit 
(RU), collectively called a path information unit (PIU). The principal 
contents of the transmission header are the addresses identifying the source 
and destination NAUs and the sequence number of the message. The RH 
identifies whether the message is a command or contains user data, and 
whether it is a request or a response to a request; the RH also contains a 
number of other indicators used by DFC. The RU contains control infor­
mation and/or user data. 

The exchange of messages between two half-sessions in both directions 
is via either the expedited flow (EXP) or the normal flow (NORM). The two 
flows have independent sequence numbering schemes and carry different 
types of messages. The expedited flow has higher priority so that its 
messages can bypass queues of normal-flow messages at various points 
within the TC network. 

The layers of SNA below DFC, the transmission control elements and 
the path control network, comprise the TC network, which links two DFC 
elements. The TC network contains error recovery facilities, which enable it 
to transport normal- and expedited-flow messages in both directions without 
loss or mistakes in sequencing. The TC network introduces a delay, which is 
a function of the overall workload and configuration of the system and is 
therefore not precisely defined. The session protocols control the synchroni­
zation of the states of the communicating half-sessions despite this delay. 



Chap. 25 • Representation and Validation of SNA 691 

The structure of data flow control is shown in more detail in Fig. 9. It 
is divided into two parts, DFC.SEND and DFC.RCV, which respectively pass 
requests and responses from FMDS to TC, and vice versa. (FMDS is a 
generic designation for the higher-level session functions, SPS and SNS, 
shown in Fig. 2). DFC.SEND and DFC.RCV reference a number of FSMs, some 
of which are common to both. The FSMs referenced are determined by the 
optional DFC functions specified when the session is activated. Not all 
combinations of options are allowed. Permitted combinations are specified 
by function management (FM) profiles, details of which can be found in [3]. 

Each FSM is responsible for controlling a particular function of DFC 
and, in general, communicates with a complementary FSM in the other 
half-session by means of indicators or command codes in transmitted 
requests. For example, the chaining protocols permit a large message to be 
broken up at a higher layer, and sent through the network by DFC as a 
chain of requests transported as a single logical entity in terms of error 
recovery. DFC.SEND contains an FSM, CHAIN_SEND, which assures that 
requests sent conform to the architectural rules for chaining. Its state 
represents the status of chains underway, enabling it to check the begin-chain 
and end-chain indicators in the current request, and prevent transmission of 

Messages 
from FIJMD 

DFC.SEND 

Messages 
to TC 

----- -~1 FSM N ~---

----I FSM 1 1-:...-----

Messages 
to FIJMD 

DFC.RCV 

Messages 
from TC 

Fig. 9. Structure of a data flow control element. 



692 Part VII • Formal Specifications 

the request if it would result in an incorrectly structured chain. CHAIN_RCV 

checks the same indicators on received requests. 
Two correlation tables, SEND_RQ_NORM_NORM_CT and RCV _RQ_NORM 

_CT, are used to correlate responses with previously transmitted normal-flow 
requests. The first request of a chain creates an entry in SEND_RQ_NORM_CT, 

which may be updated by subsequent requests in the chain, and removed 
when a response to the chain is received. RCV _RQ_NORM_CT is used to 
check that responses sent by FMDS correspond to a previously received 
chain and that no more than one response to a chain is sent. SEND_RQ_EXP_ 

CT and RCV _RQ_EXP _CT perform similar functions for the expedited flow. 
The definition of all variants of DFC in F APL comprises some 30 

procedures and 26 FSMs, the latter containing over 1200 state transitions. A 
given example of DFC (selected by means of the "FM profile") within a 
session is much more compact than this. 

B. Adapting the Validation Procedure to Data Flow Control 

The protocol validation procedure consists of driving a system through 
all of its accessible states and examining each for a number of error 
conditions. In applying it to the validation of DFC, it was necessary to 
modify the procedure discussed in [24] to take into account the properties of 
DFC, the environment in which it executes, and the potentially enormous 
number of system states that a session may reach. 

In this section we discuss the modifications that were made, for 
validation purposes, to the validation procedure and to the version of DFC 
used as input to the validation system. Some of the properties ofDFC that 
reduce the size of the required computation are also described. Using a 
simple example, we then show in the following section how the set of 
protocols constituting a session is validated. 

A DFC element in the most general session may reference up to 17 
FSMs out of the 26 defined (some of which are complementary, and 
therefore not present at both ends); these FSMs have up to 9 states each. 
Thus, in principle, the DFC element may be in any of over a billion possible 
states. Up to 65,000 requests may be sent before a response is received; each 
has up to 13 bytes in headers and may generate an entry in a correlation 
table. The states of the FSMs and the queues in the network, as well as the 
correlation tables, may all influence the future execution of the session. All 
must therefore be considered as part of the system state. The potential 
number of system states to be validated is, at first sight, truly astronomical. 

The nature of the DFC layer is such that the number of accessible 
system states is significantly smaller than the above Cartesian product 
estimate. The states of individual FSMs, tables, and queues are strongly 



Chap. 25 • Representation and Validation of SNA 693 

correlated by the flow of control information within the system, as discussed 
below. 

Furthermore, not all accessible states need be examined. Many of the 
functions of the DFC layer are loosely coupled, so that subsets of the whole 
can be validated separately. 

1. The Data Flow Control FSM Representation 

The individual FSMs that are referenced within a DFC element do not 
execute asynchronously, but are closely synchronized using a calling tree, as 
described earlier in the ,chapter. Thus, they all change state as part of a 
single execution subthread for the processing of the current message. The 
individual FSMs, and also the correlation tables, behave as a single, 
composite FSM, whose total number of states is much less than the 
Cartesian product of the states of its component machines. A state transi­
tion of the composite FSM corresponds to the execution of a subthread, as 
described in the section on the execution model. 

The decomposition of the composite machine into individual FSMs 
permits a concise representation of the whole without defining directly each 
individual state of the composite machine. The reachable states of a layer 
element are not directly stated as part of the architecture definition, but can 
be derived from it. in validation, they are found by executing the definition 
and driving it with appropriate inputs. 

Although the number of reachable states is much less than the Carte­
sian product of the states of the component machines, a layer element may 
still have an extremely large number of states, unless a much lower limit is 
placed on the number of entries in correlation tables than the architecture 
allows. 

The validation driver does impose a predefined limit and restricts the 
size of the interaction domain by constraining the number of requests that 
are sent without a response having been received to two or three. This 
controls the amount of desynchronization between the communicating 
half-sessions. The resulting validation is therefore incomplete, but this is not 
as serious a drawback as might be supposed. 

During the development of DFC it was found that, if a loss of 
synchronization occurs in a complex sequence, it is generally possible to 
find a related sequence that manifests the error without generating a large 
number of correlation table entries at any time during the sequence. It 
appears that most error conditions that can occur in the system will occur 
within the interaction domain accessible using limited-size correlation ta­
bles. 



694 Part VII • Fonnal Specifications 

The reason for this lies largely in the design of DFC, which enforces 
close synchronization of the two half-sessions when significant control 
information is exchanged. 

2. Modeling the Transmission Control Network 

The model used for the signaling channels in the earlier validation work 
[21]-[24] was that of a single FIFO channel queue in each direction between 
individual pairs of communicating processes. The model of the inner TC 
network used in DFC validation contains separate channel queues for the 
normal and expedited flows in both directions. [We distinguish these queue 
representations from the SNA data queues described earlier. The channel 
queues are composite representations of the network of data queues that 
exist within the inner network underlying the (DFC) elements being vali­
dated.] 

All messages passing through the network are assigned to the ap­
propriate queue, except normal-flow responses with the queue response 
indicator (QRI) not set. These pass via the expedited-flow queue, in order to 
model their ability to pass other normal-flow data in the inner TC network. 

The channel queues in the model have a limited size so as to limit the 
domain of the interaction between the two half-sessions. The validation 
driver controls the enqueuing and dequeuing of messages in the normal- and 
expedited-flow channel queues in such a way that all timing combinations 
of message flow through the network are generated, except for those 
corresponding to normal-flow messages passing expedited-flow messages, 
which is not allowed in a real TC network. 

3. The Protocol Boundary between DFC and FMDS 

DFC controls the flow of information between the FMDS and TC 
layers, so that in order to exercise the DFC architecture it must be driven by 
requests and responses from FMDS. When a request or response is sent 
from FMDS to DFC, the latter always either rejects it with no change of its 
state, or passes it to TC, having possibly changed the state of one or more 
FSMs and/or changed a correlation table. 

Message rejection is used to prevent the wrong sequencing of messages 
or the transmission of messages that the session does not allow. The DFC 
layer does not assume correct ordering or formatting of messages passed 
from FMDS to DFC. FMDS may attempt to send any message at any time, 
but those that are incorrect are rejected by DFC. 

The usage checks provide a convenient means of reducing the vast 
number of requests that may be transmitted on a session to the minimal set 
necessary to exercise all the functions of DFC. Only a few of the many 



Chap. 25 • Representation and Validation of SNA 695 

combinations of the bits in a message header need be considered. The 
function of DFC is independent of address fields and some of the indicators 
in the RH, such as those controlling pacing and cryptography (which are 
handled by TC). Only combinations of those message parameters directly 
referenced by DFC need be considered. 

Note that the elimination of unreferenced parameters does not in any 
way imply a limitation of the validation of the DFC layer, but simply that 
correct routing, traffic pacing, etc., can only be validated by analyzing the 
layers of the architecture responsible for such functions. 

The subset of requests required to exercise DFC is determined in the 
following way. A particular type of session is chosen for validation and its 
session parameters defined in terms of an FM profile and a set of options. 
Requests containing all combinations of parameters used for the chosen 
DFC options, and fixed assignments of unused parameters, are generated 
and passed through the usage checks described above. The set of requests 
that pass the usage checks generally contains 10 to 100 requests that 
subsequently drive the session through its accessible states. 

When a request passes through DFC, it is assigned a sequence number. 
Elsewhere, sequence numbers are used to check for correct ordering of 
messages in the network; within DFC, they are used only for correlation 
between requests and responses. For the purpose of validation, it is possible 
to replace the incremental assignment of sequence numbers by fixed assign­
ments, as follows. All requests in the input set for the driver are assigned 
distinct, fixed sequence numbers. The sequence number assignment in DFC 
is replaced by one that sets the sequence number on all requests in a chain 
equal to that of the first request in a chain. In this way, there is no 
multiplicity of states produced by sequence numbers. The change means 
that the sequence number generation is not validated, but this can be tested 
in other ways. 

The validation driver correctly formats responses and sends them only 
if they correspond to an entry in the RCV _RQ_NORM_CT or RCV _RQ_EXP _CT 

correlation tables, in order to avoid unnecessary rejects. 

4. Error Detection 

Errors are detected in much the same way as described in [24], but a 
few differences should be noted. 

The earlier work investigated the problem of incomplete design. Design 
errors were detected by searching for situations where no provision had 
been made for the reception of an incoming message. While provision for 
specific inputs can be erroneously omitted in the routing logic or from FSM 
matrices, the FSM matrix representation of F APL makes it impossible for 
the design to be incomplete for any specified input, since a transition is 



696 Part VII • Formal Specifications 

specified for all inputs in each st-ate of the FSMs. Two types of next-state 
indicators, indicating error conditions (» and cannot-occur conditions (j), 
can be interpreted as design error indicators. An attempt to execute a (» 
while sending a message does not indicate a design error, but merely that an 
attempt has been made to send a message in violation of the protocol. If one 
is executed while receiving, a violation of the architectural rules has oc­
curred. In an executing system, it would indicate a failure or the presence of 
a system component that violates the architecture. During the validation of 
a session involving metaimplementations of the architecture, it can only 
indicate an architecture error. An attempt to execute a (j) in such circum­
stances always indicates a design error. 

In validating SNA, it was useful to restrict Bochmann's concept of 
adjoint states [25] to consider only those system states in which there are no 
messages underway and no entries are in correlation tables. Such states can 
be characterized as states of the session in which a sender has received all 
responses to requests that have been sent, and the state of the session will 
not change until more requests are sent by FMDS. These stable states can be 
examined during a validation run to check for loss of synchronization. 
Generally, they are few in number and are simply listed by the validation 
driver. 

In principle, assertions concerning the allowed or required combina­
tions of individual FSM states could be formulated, and the detection of 
erroneous ones automated. However, the number of stable states is small 
and erroneous ones easily recognized. Errors are therefore simply de­
termined by inspection, there being little point in automating this minor 
task. 

During validation, pointers are maintained, so that it is possible to 
retrace the message exchanges and state transitions by which it was accessed 
from the initial system state. This is sufficient information to determine the 
cause of an error. 

C. The Validation Procedure 

In this section we show how a session between two DFC elements can 
be validated, using a model that exercises a simplified version of the DFC 
chaining protocol. We first describe the behavior of the DFC elements in 
the session model, then how the driver controls the validation, and finally 
trace each step in the state generation process. 

The model is a session in which only one half-session-the primary­
may send requests, the secondary being limited to sending a positive 
response when it has received a complete chain. The primary DFC element 
is represented by a single FSM, CHAIN_SEND, and the secondary by CHAIN_ 

RCV; these are shown in Fig. lO(a). The validated session references only the 



Chap. 25 • Representation and Validation of SNA 

CHAIN_SEND: FSM DEFINITION 

STATE NAMES->I BETC I INC I 
RQ SENT I 01 1 02 1 

-----------1----1----1 
BC, EC 
BC, -EC 

-BC, EC 
-BC,-EC 

1 - 1 > 1 
I 2 I > I 
I > 1 1 1 
1 > 1 - 1 

I 

CHAIN_Rev: FSM DEFINITION 

STATE NAHES-> 1 BETC 1 INC I 
RQ RECEIVED 1 01 1 02 1 

-----------1----1----1 
BC, EC 
BC, -E C 

-BC, EC 
-BC, -EC 

1 - 1 > 1 
1 2 1 > 1 
1 > 1 1 1 
1 > 1 - 1 

I 

(a) Sample FSMs 

i 
1 Systeml CHAIN_I SEND_RQ_I PRI-> 1 CHt,IN_I RCV_RQ_I SEC-> 1 From 1 
1 State 1 SEND I NORf<I_CT 1 SEC I RCV ! NORM_CT I PRI 1 Statesl 
1 1 state 1 1 1 state I 1 1 1 

i 
To 1 

Statesl 
1 

1-----1-----1 1-----1-----1---1---1-----1-----1 
1 1 1 BETC 1 1 [ BETC 1 1 1 6 1 2.3 1 
1 1 1 1 1 1 1 1 1 1 
1 1 BETC 1 EC 1 BC EC 1 BETC 1 1 1 1 1 4 I 
1 1 1 1 1 1 1 1 1 1 
1 1 INC 1 -EC 1 BC-EC 1 BETC 1 1 1 1 1 5 1 
1 1 1 1 1 1 1 1 1 1 
1 1 BETC 1 EC 1 1 BETC 1 EC 1 1 2,8 1 6 1 
1 1 1 1 1 1 1 1 1 1 
1 1 INC [ -EC 1 1 INC 1 -EC 1 1 3,7 1 7,8 1 
1 1 [ [ [ [ [ [ [ 1 
1 [ BETe [ EC [ 1 BElC 1 [ +RSP [ 4 [ 1 [ 
1 1 [ [ 1 1 [ [ [ 1 
[ 1 INC 1 -EC [ -BC-EC 1 INC [ -EC [ 1 5 [ 5 1 
[ [ 1 [ 1 [ 1 1 [ 1 
[ 8 1 BETC [ EC [ ...,BC EC [ INC [ -EC 1 1 5 1 4 [ 
[ 1 [ [ [ [ [ [ [ [ 
i I 

(b) Valid<:ltion of the FSMs in (;:d 

Fig. 10. A sample validation. 

697 

chaining indicator, begin-chain (BC) and end-chain (EC), in normal-flow 
requests, and there is no expedited flow. As no requests are sent by the 
secondary, only two correlation tables are referenced: SEND_RQ_NORM~CT 
in the primary, and RCV _RQ_NORM_CT in the secondary, 

A set of four requests is needed to drive this simple session through all 
of its states. The requests are designated by their chaining indicators. The 
first is a single-RU chain with both the begin-chain and end-chain indicator 
set (BC, EC). The other three represent first-of-chain, middle-of-chain, and 
end-of-chain and are abbreviated as (BC, -, EC), (-, BC, -, EC), and 
(-, BC, EC), respectively. 

When requests are sent by FMDS, the sequencing for sending correctly 
formed chains is controlled by CHAIN_SEND. When in the state, Between­
Chain (BETC), CHAIN_SEND rejects requests that do not start a chain, and 
when in the state, In-Chain (INC), it rejects those that start a chain. In the 
primary, the correlation table SEND_RQ_NORM_CT is used to correlate 
received responses with previously sent requests. An entry is inserted when a 
chain is initiated, and deleted when its response is received. The last entry 
indicates whether a complete chain has been sent (EC) or only a currently 
incomplete chain (-, EC). 



698 Part VII • Fonnal Specifications 

The secondary is represented by CHAIN_RCV, similar in structure to 
CHAIN_SEND. The correlation table RCV _RQ_NORM_CT has entries indicat­
ing the status of received chains. When an entry corresponding to a 
complete chain is present (EC), a positive response will be accepted from 
FMDS, and the entry deleted. 

The above summarizes the behavior of the DFC elements in the 
session. The validation driver is responsible for defining the initial system 
state of the session in terms of the FSM states and correlation tables, as well 
as the message queues, PRI -> SEC and SEC -> PRI, in the TC network. 
The first line in the table of Fig. lO(b) shows the initial system state, with 
the FSMs in BETC state and the queues and tables empty. In the validation 
shown in the tab,1e, the driver prevents messages being sent that would result 
in more than one entry in a queue or table. Starting from the initial system 
state, the driver tries to generate new system states by sending and receiving 
all possible messages. Each state so generated is added to the list of 
reachable system states if it is not identical to one already in the list. Each 
generated system state is identified by a state number, and the state from 
which it was entered is shown in the column marked "From States." 

When an attempt is made to send the set of requests in the initial 
system state, (....., BC,....., EC) and (....., BC,EC) are rejected by CHAIN_SEND; 

(BC, EC) can be sent and leads to state 2, with a complete-chain entry (EC) 
in SEND_RQ_NORM_CT and (BC, EC) underway from the primary to sec­
ondary. Sending (BC,....., EC) leads to state 3, with a partial-chain entry in the 
correlation table and CHAIN_SEND in INC, indicating a partial chain has 
been sent. When an attempt is made to send further requests in states 2 and 
3, it is prevented by the driver, as it would result in overflow of theqlfeue in 
the network. 

In both states 2 and 3 the requests underway can be received, leading 
to states 4 and 5 with the network queues empty, and entries in RCV _RQ_ 

NORM_CT; in state 5, CHAIN_RCV has changed state from BETC to INC. 
Further request cannot be sent in state 4 without creating more entries 

in SEND_RQ_NORM_CT; but the secondary can send a response, thus delet­
ing the entry in RCV _RQ_NORM_CT and resulting in state 6. The requests 
(....., BC,....., EC) and (....., BC, EC) can be sent in state 5 (leading to states 7 and 
8), as they update an entry in SEND_RQ_NORM_CT rather than create a new 
one. The three last states created lead to already existing states when the 
message underway is received. The response underway in state 6 deletes the 
entry in SEND_RQ_NORM_CT when it arrives, and the requests underway in 
states 7 and 8 produce states 5 and 4 on reception. When all exits from state 
8 have been explored, no further states of the system can be reached within 
the specified limits of the channel queue sizes, and the validation is 
complete. 



Chap. 25 • Representation and Validation of SNA 699 

The simple example shown contains none of the errors that the 
technique detects. All reachable system states that do not have full queues 
or correlation tables have exits to other system states, so that no deadlocks 
are present. The error conditions (» shown in the FSM CHAIN_RCV are, in 
effect, assertions concerning the syntax of chains. As none of these were 
activated, the validation demonstrates that only correctly formatted chains 
are received in the interaction domain exercised. The only system state with 
empty queues and correlation tables is in the initial state; so synchroniza­
tion is not lost. 

D. Sample Validation Results 

Figures 11 and 12 show some sample results of applying the validation 
technique to a recent version of DFC, which had been reformulated in order 
to correct a few known errors. Prior to validation, a number of test 
sequences had been run in order to show that the known errors had been 
corrected. The results were obtained while validating a session for which 
FM Profile 3 had been specified. This profile has a number of optional 

PRIMARY STATES MESSAGES SENT SECONDARY STATES 

BSM_BIDDER = BETB BSM_FSP = BETB 
HDX_FF =CONT _BETC_PEND_SEND HDX_FF =CONT_BETC_PEND_SEND 

RQCFMDlBB-EB-CD RQCDFClRTR 

BSM_BIDDER = PEND_INB BSM_FSP = BETB 
HDX_FF=CONT_BETC_PEND_SEND HDX_FF=CONT_BETC_PEND_SEND 

'--- > 

<--------------~ 

BSM_BIDDER = PEND_INB 
HDX_FF=CONT_BETC_PEND_RCV 

-RSPCRTRl080B 

BSM_BIDDER = PEND_INB 
HDX_FF=CONT_BETC_PEND_RCV 

+RSPCFMDl 

'---- -------> 

BSM_BIDDER = INB 
HDX_FF= RCV 

<--------------~ 

BSM_FSP = PEND_INB 
HDX_FF=CONT_BETC_PEND_RCV 

BSM_FSP = INB 
HDX_FF= RCV 

BSM_FSP = INB 
HDX_FF= RCV 

Fig. II. A sequence leading to a deadlock. 



700 

STATE 
NO. 

18 

19 

20 

164 

170 

186 

187 

469 

470 

471 

472 

473 

474 

475 

711 

PRIMARY FSM STATES 

BSM_BIDDER=INB 
HDX_FF=SEND 

BSM_BIDDER=INB 
HDX_FF=ERPS 

BSM_BIDDER=INB 
HDX_FF=RCV 

BSM_BIDDER=BETB 
HDX_FF=CONT_BETC_PEND_SEND 

BSM_BIDDER=BETB 
HDX_FF=CONT_BETC_PEND_SEND 

BSM_BIDDER=BETB 
HDX_FF=CONT_BETC_PEND RCV 

BSM_BIDDER=PEND_BB 
HDX_FF=CONT_BETC_PEND_SEND 

BSM_BIDDER=PEND_BB 
HDX_FF=CONT_BETC_PEND_RCV 

BSM_BIDDER=BETB 
HDX_FF=CONT_BETC_PEND_RCV 

BSM_BIDDER=BETB 
HDX_FF=CONT_BETC_PEND_RCV 

BSM_BIDDER=BETB 
HDX_FF=CONT_BETC_PEND_SEND 

BSM_BIDDER=INB 
HDX_FF=RCV 

BSM_BIDDER=BETB 
HDX_FF=CONT_BETC_PEND RCV 

BSM_BIDDER=BETB 
HDX_FF=CONT_BETC_PEND_SEND 

BSM_BIDDER=PEND_BB 
HDX_FF=CONT_BETC_PEND_RCV 

BSM_BIDDER=INB 
HDX_FF=SEND 

Part VII • Formal Specifications 

SECONDARY FSM STATES 

BSM_FSP=INB 
HDX_FF=RCV 

BSM_FSP=INB 
HDX_FF=ERPR 

BSM_FSP=INB 
HDX_FF=SEND 

BSM_FSP=BETB 
HDX_FF=CONT_BETC_PEND_SEND 

BSM_FSP=BETB 
HDX_FF=CONT_BETC_PEND_RCV 

BSM_FSP=BETB 
HDX_FF=CONT_BETC_PENO_SEND 

BSM_FSP=PEND_BB 
HDX_FF=CONT_BETC_PEND_RCV 

BSM_FSP=PEND_BB 
HDX_FF=CONT_BETC_PEND_SEND 

BSM_FSP=INB 
HDX_FF=RCV 

BSM_FSP=BETB 
HDX_FF=CONT_BETC_PEND_RCV 

BSM_FSP=INB 
HDX_FF=RCV 

BSM_FSP=INB 
HDX_FF=RCV 

BSM_FSP=INB 
HDX_FF=SEND 

BSM_FSP=INB 
HDX_FF=SEND 

BSM_FSP=PEND_BB 
HDX_FF=CONT_BETC_PEND_RCV 

BSM_FSP=INB 
HDX_FF=SEND 

Fig. 12. stable states generated during a validation run. 

parameters, of which half-duplex flip-flop send-receive mode and bracket 
usage were selected for the validation run described here. The session was 
further restricted so that only normal-flow single-RU chains were sent, and 
responses were not allowed to pass requests in the TC network. All channel 
queues for the TC network and all correlation tables were limited to one 
entry. 



Chap. 25 • Representation and Validation of SNA 701 

Figure 11 shows a sequence by which a deadlock in the normal flow is 
reached, as the half-duplex FSMs (HDX_FF) both get into state RCV, 
where they cannot send requests and there are no outstanding responses. 
This error was not present in earlier versions of the architecture and proved 
easy to correct. The ability of the validation system to reconstruct a 
sequence leading to a system state manifesting an error has always enabled 
the cause of the error to be easily identified. Error correction may be quite 
complex, sometimes requiring several iterations before a solution is found 
that does not introduce further errors. 

Figure 12 shows the stable states generated during a validation run. 
Whereas the validation run generated approximately 900 system states, only 
16 were stable states, so. that visual inspection could be used to determine if 
synchronization has been lost. The four system states (469, 471, 473, 474) 
with bracket-state-managers, BSM_BIDDER and BSM_FSP, in different 
states, or the two (472, 711) with HDX_FF FSMs both in SEND or RCV, 
indicate that synchronization has been lost. The other system states are 
stable without being in error. 

The validation run from which these results were obtained also resulted 
in attempting to execute nine error (» transitions, and required a total of 
84 seconds of CPU time on a 370/168, which we believe is negligible 
compared to the value of the results obtained. 

E. Summary Remarks on the Validation 

An automated protocol validation technique has been applied to the 
executable representation of the SNA data flow control layer. So far, a 
number of subsets of the architecture have been validated. This experience 
has established the validation technique as a significant tool for the detec­
tion of design errors, particularly in newly developed architecture that has 
not yet been implemented. The technique is completely automated and 
directly uses a compiled version of the architecture definition. It is able to 
detect deadlocks, loss of synchronization, and other conditions that should 
not occur. The detected errors might otherwise only appear under particular 
timing conditions in a subsequent implementation, and therefore are dif­
ficult to detect and reproduce using traditional testing techniques. 

The current implementation of the validation system applies only to the 
data flow control layer of SNA, because it is tailored specifically to the 
DFC protocol boundaries with adjacent layers. There is no reason why 
the technique itself could not be applied to other layers of SNA, or to other 
systems defined in F APL or in a similar FSM representation. 

The technique described should not be considered as performing a 
complete validation. Not all conceivable types of design errors are detected, 
and placing explicit limits on channel queue sizes means that the validation 



702 Part VII • Formal Specifications 

is incomplete: there may be session states that are reachable only when the 
limits are removed. However, a complete validation of such a complex 
system is probably beyond the capabilities of any currently available 
validation technique. The main purpose of this work has not been to 
perform a complete validation, but rather to demonstrate that applying an 
automated validation technique to an executable, formal representation of a 
large-scale architecture is an effective way of detecting design errors. 

VI. Conclusions and Prospects 

The evolution of SNA has seen a steady refinement of formal tech­
niques for its description and validation, resulting from a progressive raising 
of consciousness within IBM concerning methods to clarify and guide its 
successful implementation. 

Defining SNA in the form of a metaimplementation, as discussed here, 
has forced meticulous attention to detail and, inevitably, has selected among 
alternative choices within the architectural specification. Considering that 
the number of people engaged in designing, implementing, testing, and 
documenting IBM SNA products worldwide exceeds the number directly 
participating in its architectural specification by orders of magnitude, the 
effort on the metaimplementation has not been misplaced. The result has 
been that architects and implementers think in common terms. They face 
most of the same concerns regarding function, control, representation, 
performance, testing, and extendability. The metaimplementation approach 
has reduced the complexity of coordinating the implementation process, and 
has been useful in exposing common implementation issues. 

The state orientation developed for the metaimplementation is a signifi­
cant advance that is being transferred more and more to product design. It 
has also hastened the architectural definition process for extensions to SNA 
where the analysis of race conditions and error cases is complex by other 
methods. We expect FSM representation to have a major effect on IBM 
software technology as the technique disseminates among programmers. 
(See Landau [27] for a discussion of the application of independently 
developed FSM-Ianguage techniques.) 

In the future, we anticipate that the existence of the F APL description 
of SNA will shape advances in several areas, just as it has already been 
useful in the validation process. The compilable version makes it possible to 
consider ways to shorten the product code-generation process and to devise 
enhancements for automated testing of products against the architectural 
specification. 

Compiling the F APL description directly to product code is an exciting 
concept, but difficult to achieve. A number of problems must be solved 



Chap. 25 • Representation and Validation of SNA 703 

before designers can routinely use the compiled F APL description in this 
way. 

First, the product context itself would need to be taken further into 
account, especially by the F APL preprocessor. Product sub setting of the 
architecture and fixing of free variables, or options, is one such considera­
tion; others concern product control-program and processor environments, 
as well as product-specific representations of end user and device interfaces. 
These would seem always to require incorporation of product-specific code. 

Second, the F APL translation and compilation process would require 
greater emphasis on efficiency of object-code generation, for different prod­
uct-specific subsets of PL/I. Currently, language descriptive clarity has been 
the primary emphasis, ~lthough many improvements have been made in the 
efficiency of the preprocessor since its initial development. F APL object-code 
generation will probably never be as efficient as product-specific designs, 
and manual optimization will likely be required. 

Despite these problems, minor success in this area has been achieved. 
Already, one group has applied manual optimization to a compiled version 
of data flow control to hasten the design and code-generation process for a 
new product in development. Other product groups are investigating similar 
activities. 

The testing area provides many opportunities to use the F APL version 
more directly. Testing is expensive and time consuming; traditionally, the 
testing process increases roughly as the square of the number of products 
for which interconnection pairings (e.g., sessions) are supported and an­
nounced. To speed this process, and reduce expense, testing could use the 
F APL model as follows. First, the model could be run against itself, and 
then the two products against it separately; with respect to SNA functions 
implemented, the products could be seen to work together without ever 
being specifically tested together. (SNA products cannot be timing depen­
dent on each other.) In this environment, total testing costs would rise 
linearly with the number of products. Testing costs' per product would be 
proportional to the range of SNA functions implemented by the product. 

Testing groups are exploring use of the F APL model in two contexts. 
One is in the context of real-time simulation testing; this involves interfac­
ing F APL code to existing IBM simulation programs, which then connect to 
products under test. Another use is being considered in the context of 
tracing. A trace tape captured from the connection of two products could be 
run against the F APL code to test the validity of the exchanges between 
them. In both contexts, work has been started using the compiled F APL 
version of data flow control. 

The formal techniques described in this chapter should have continuing 
useful application in the extension and clarification of SNA. They also offer 
a more formal context for research into questions concerning distributed 



704 Part VII • Formal Specifications 

processing. The consideration of formal descriptive techniques for the 
specification of network protocols by existing standards bodies is also 
proceeding. Based on the SNA experience, we believe use of such techniques 
is worthy of wide support within the technical community. 

References 

[I] c. Sunshine, "Formal techniques for protocol specification and verification," Computer, 
vol. 12, No.9, September 1979, pp. 20-27. 

[2] T. F. Piatkowski, "The ISO-ANSI open systems reference model-A proposal for a 
systems approach," Comput. Networks, vol. 4, No.3, pp. 111-124, June 19S0. 

[3] IBM Corp., Systems Network Architecture Format and Protocol Reference Manual: Archi­
tecture Logic, IBM Form No. SC30-3112-1 (I 97S). 

[4] J. P. Gray, "Network services in systems network architecture," IEEE Trans. Commun. 
vol. 25, No. I, January 1977, pp. 104-116. 

[5] J. D. Atkins, "Path control-The network level of SNA," Chapter II in this book. 
[6] J. P. Gray and T. B. McNeill, "SNA multiple-system networking," IBM Syst. J., vol. IS, 

No.2, pp. 263-297 (1979). 
[7] IBM Corp., Systems Network Architecture: Logical Unit Types, IBM Form No. GC20-IS6S. 
[S] V. L. Hoberecht, "SNA Higher Layer Protocols" Chapter 16 in this book. 
[9] R. J. Sundstrom, "Formal definition of IBM's systems network architecture," NTC '77 

Conference Record, vol. I, pp. 03A: I-I to 03A: 1-7, December 1977. 
[10] T. F. Piatkowski, "Finite-state architecture," Proc. 7th Ann. Southeastern Symp. System 

Theory, March 1975, Auburn University, Auburn, AL, and Tuskegee Institute, Tuskegee, 
AL, IEEE Cat. No. 75 CH096S-SC. 

[II] T. F. Piatkowski, "Finite-state architecture," IBM Technical Report, TR29.0133, July 
1975. 

[12] A. Gill, Introduction to the Theory of Finite-State Machines, New York: McGraw-Hill 
(1962). 

[13] J. Hartmanis and R. Steams, Algebraic Structure Theory of Sequential Machines, En­
glewood Cliffs, N.J.: Prentice-Hall, (1967). 

[14] E. Moore, Sequential Machines-Selected Papers, Reading, MA: Addison-Wesley (1964). 
[15] K. A. Bartlett, R. A. Scantlebury, and P. T. Wilkinson, "A note on reliable full-duplex 

transmission over half-duplex telephone lines," Commun. Ass. Comput. Mach. vol. 12, pp. 
260-261, May 1969. 

[16] D. Bj¢rner, "Finite-state automaton definition of data communication line control 
procedures," Proc. FJCC 1970 vol. 37, pp. 477ff. 

[17] J. P. Gray, "Line control procedures," Proc. IEEE, vol. 60, No. II, November 1972, pp. 
1301-1312. 

[IS] "Proposed USA standard, data communication control procedures for the USA standard 
code for information interchange," Commun. Ass. Comput. Mach., vol. 12, No.3, March 
1969, pp. 166-17S. 

[19] IBM Corp., OS PLjI Checkout and Optimizing Compilers: Language Reference Manual, 
IBM Form No. GC33-0009-4. 

[20] IBM Corp., SIMPLj I (Simulation Language Based on PLj I) General Information 
Manual, IBM Form No. GHI9-5035-0 (1972). 

[21] P. Zafiropulo, "Protocol validation by duologue matrix analysis," IEEE Trans. Commun. 
vol. COM-26, No.8, pp. 1187-1194, August 1978. 



Otap.25 • Representation and Validation of SNA 705 

[22] C. H. West, "An automated technique of communications protocol validation," IEEE 
Trans. Commun., vol. COM-26, No.8, pp. 1271-1275, August 1978. 

[23] C. H. West and P. Zafiropulo, "Automated validation of a communications protocol: 
The CCITT X.21 recommendation," IBM f. Res. Dev. vol. 22, No.1, January 1978, pp. 
60-71. 

[24] C. H. West, "General technique for communications protocol validation," IBM f. Res. 
Dev. vol. 22, No.1, July 1978, pp. 393-404. 

[25] G. V. Bochmann, "Communications protocols and error recovery procedures," ACM 
SIGOPS Operating Syst. Rev., vol. 9, 1975, p. 45. 

[26] P. Zafiropulo, C. H. West, H. Rudin, D. D. Cowan, and D. Brand, "Protocol Analysis 
and Synthesis Using a State Transition Model" Chapter 24 in this book. 

[27] 1. V. Landau, "State description techniques applied to industrial machine control," 
Computer, vol. 12, No.2, pp. 32-40, February 1979. 



Index of Acronyms 

In most cases an acronym is defined on the page cited. Multiple page 
references mean that a given acronym has more than one interpretation. 

ABM,114 
ACE,59 
ACF,16 
ACK,94 
ADCCP, 113 
ADM,116 
ALGOL,613 
AMPS, 164 
ANSI,59 
AP,489 
API, 13 
ARM,114 
ARPA, 15 
ATDMA,151 

BAC, 124 
BC,697 
BCC, lOl 
BDLC,141 
BETB,700 
BETC,697 
BF,677 
BISYNC, 90 
BIU,301 
BNF,203 
BRAM,175 
BSC = BISYNC 
BSM,701 
BSP,545 
BTAM,14 
BTMA,159 
BTU, 306 

CAN, 489 
CAPTAIN,486 
CCITT,20 
CD, 463 
CDMA,149 
CEEFAX,484 
CEP, 38 
CIBS,484 
CICS,477 
CONT,687 
COS, 309 
CP, 378, 403 
CPMGR,681 
CPODA,183 
CQL,378 
CRC,96 
CS = CIS, 73 
CS, 73, 489 
CSMA,153 
CSMA/CD, 156 
CSN,580 
CT,692 
CTS = CS, 73 
CU,347 
CUG,233 
CWI,324 
CWRI,324 

DAF,303 
DAP, 26 
DCA,416 
DCE,26 

707 

DCNA,416 
DDCMP,25 
DECnet,19 
DEF,304 
DFC, 24 
DG,217 
DISC, 123 
DLC,8 
DLCE,24 
DLE,95 
DM, 73,123 
DNA,19 
DRCS,486 
DSAF,304 
DTE,26 
DTFC,402 

EBCDIC, 96 
EC,697 
ECMA,52 
EEC,443 
EFI,690 
EFTP, 545 
EIA,59 
EIN,443 
ENQ,94 
EOT,94 
EPSS,213 
ERC,315 
ERN, 315 
ETB,96 
ETE,373 

ETX, 94 
EXP,690 
ESC, 489 

FAL,286 
FAPL,672 
FCH= RH 
FCS, 120 
FDMA,149 
FDX=TWS 
FET,161 
FF,687 
FI,681 
FID,301 
FIFO, 173 
FIPS,139 
FM,465 
FMD,470 
FMDS, 691 
FMH,24 
FPODA,183 
FRMR,123 
FS,629 
FSM,558 
FSP, 701 
FTP, 52 

GMD,384 
GRA,184 
GSMA,169 



708 Index of Acronyms 

HDLC,138 NA,398 QC,685 SIMPL/I,683 
HDU= FMH NAK,95 QEC, 685 SLC, 91 
HDX = TWA NAU, 676 QRI,694 SLU, 681 
HL,376 NC,318 QWERTY,483 SMA,378 

NCC, 333 SMP = SSCP 
NCP, 406 SMXQ,378 

IATA,91 NDM,1I6 RAM,167 SNA,14 
IBL,400 NFAR,286 RC,71 SNF,303 
ICP, 162 NICE,290 RCP, 162,213 SNRM,122 
IEEE, xiii NMC, 347 RD, 73,123 SNRME,122 
IFIP,456 NNI,339 REJ,122 SNS,675 
IMP, 19 NPL,353 RELQ,685 SNS = NS,691 
IMS,477 N(R),119 REP, 268 SO, 490 
INB,700 NRM,114 RFNM,390 SOH, 94 
INC, 697 N(S), 119 RH,25 SP, 489 
INWG,448 NS, 71, 674 RIM, 123 SPADE,I64 
IP,519 NSL,26 RL,72 SPP = PU 
IPL,86 NSP,26 RM,167 SPS, 675 
IS, 71 NIT, 416 RNR,122 SPS = PS, 691 
ISDN, 81 RO,175 SREJ,122 
ISO, 33 RQ,691 SRMA,166 
ITI,443 OAF, 303 RQD,463 SRUC, 182 

OEF,304 RR, 121, 173 SS, 72, 490 

JCM = JCCM, OSAF,304 RS, 59, 73 SSAD,681 

416 OSI, I RSET,123 SSCP, 17 

IWP /NRD, 196 RT,73 SSMA,162 
RTP, 545 ST,73 

PAD, 105,438 RTS = RS, 73 STACK,270 

LAN,156 PARC,51O RU,25 STE,516 

LAP, 139 PC, 24 RUC, 181 STRT,268 

LAPB,138 PCI,44 RVI, 104 STX, 94 

LH,25 PDN,57 RWI,324 SU,347 

LL,72 PDP, 294 SVC,217 

LMU,424 PDTE,441 SXRM= SXXM, 

LNP, 519 P/F,119 SABM,122 628 

LRC, 96 PIU,301 SABME,122 SXXM,122 

LS,490 PL,580 SARA,620 SYN,95 

LSID,302 PLP,485 SARM,122 

LT,25 PLU, 681 SARME,122 

LU,302 PL/I,682 SAP, 37 TC, 24, 34 

LUSM,678 PODA,183 SATNET,146 TCE,24 
PN,338 SR,72 TCP, 406 
PR,322 SBP,381 TCU,14 

MACS,184 P(R),229 SC, 33, 71, 681 TDMA,149 
MCA,538 PRNET,146 SD,73 TELNET,444 
MERIT,354 PS = PIS, 8 SDLC, 141 TG,307 
MLP,630 PS, 8,24 SDMA,164 TGN,318 
MODEM,7 P(S), 228 SDU, 44 TH,25 
MOP, 270 PIT, 441 SF, 72 TIP, 19 
MPF,302 PU,300 S/F,376 TL,25 
MSAP,175 PUL,388 SI,490 TLH = TH 
MSRR,175 PVC, 217 SIM,123 TM,72 



Index of Acronyms 709 

TP.25 UA,123 VC,27 WACK,I04 
TPF,310 UAC, 124 VR,312 WFS, 546 
TPH,25 UDLC, 141 VRC, 96, 313 WS, 323 
TR,73 UI,123 VRCB,313 
TS,406 UNC,124 VRID,312 
IT,73 UP, 123 VRN,304 
TrY,484 UPP= LU VRPRQ,323 
TWA = HDX,88 VRPRS, 323 XID,123 
TWS = FDX, 88 VAX,287 VT= VTP, 52 XOFF.372 



Subject Index 

Abort, 104 
Abstract program, 558, 602, 607-621 
Abstraction, 564, 632-635 
Access path, 5- II 
Acknowledgment, 94, 99-103, 158, 221, 268, 

282, 388-394 
Adaptive polling, 165 
Adaptive routing, 192, 330, 332 
Adaptive multiaccess strategies, 178-184 
ADCCP, 113-143 
Address translation, 514 
Addressing, 8, 39, 549 

DLC, lIS 
DNA, 252-256 
Network interconnect, 517, 521 
Pup, 533 
SNA, 302-307 

Address, abbreviated, 203 
Advanced Mobile Phone Service, 164 
AFFIRM,620 
Algol,613 
Aloha, 146, 152-178,367 
Alphageometrics, 486, 500-507 
Alphamosaics, 486, 492 
Alphanumerics, 486, 491 
Alphaphotographics, 487, 505 
Alternating bit protocol, 615, 617 
American National Standards Institute, 59, 

90 
Antiope, 485-507 
Application layer, 48-53, 258, 286 
Application program interface, 13 
Architecture, I, 22 
Architecture vs. implementation, 4, 22 

711 

ARPAnet, 15, 19,340-342,379,389-391, 
519-522 

ASCII, 93-96, 470 
Assertions, 610, 639-641, 686 
Assigned-slot -listen-before-transmit, 175 
Asynchronous DLC, 86 
Asynchronous balanced mode, 114-116, 

\35-138 
Asynchronous disconnect mode, 116 
Asynchronous response mode, 114-117 
Asynchronous TDMA, 151 
Attention, 452 
Attribute, 474-476, 495-500 
Attribute token, 596 
Automated verification, 618-621, 645-668, 

689-702 
Automatic calling equipment, 59 
Automaton: see Finite State Machine 

Backpressure, 376, 386 
Balanced/unbalanced,62-65, 74 
Balanced DLC, 135- \38 
Basic information unit, 30 I 
Basic model: see Configuration Model 
Basic Telecommunications Access Method, 

14 
Belgian University Network, 443 
Bifircated routing, 330, 333 
Binding, session, 49, 430 
Binary Synchronous Communication, 90 
Bit-oriented DLC, 86, 111-143 
Bit stuffing, 120 
Block,93 



712 

Block check character, 101, 543 
Blocking, 306 
Bottom-up network growth, 19 
Boundary function, 303-307, 316, 677 
Boundary node, 300, 303-307 
Bracket, 24, 464, 672, 700 
Bri tish Post Office, 485 
Broadcast, 536 
Buffer management, 9,363-410,473,517, 

522 
Buffer pool, 254, 363-410 
Business machine: see Data Terminal 

Equipment 
Busy-tone multiple access, 159-161, 169 
Byte-count DLC, 88, 91, 264-271 

Call clearing, 207, 218, 225-228 
Call control: see Dialup 
Call establishment, 218,225-228 
Call progress, 205, 220-224 
Call redirection, 210 
Called line identification, 206, 210 
Calls barred, 235 
Capture, 151, 162 
Carrier-sense multiple access, 153-162, 169 
CCITT, 20, 57, 213, 236, 441, 483 
Centralized vs. distributed routing, 328, 347, 

353 
Centre Commun d'Etudes de TV et 

Telecomm., 485 
Chaining, 24, 44, 462, 691-699 
Channel queue limit, 377-381 
Channel management: see Link Management 
Character-oriented DLC, 86-110 
Character string syntax, 22, 93-96, 470-476, 

486-494 
Charging, 206, 210 
Checksum: see Block Check Character 
Choke packet, 403-405 
Cigale Network, 146, 330, 404 
Circuit switching, 8, 20, 195-211 
Class of service, 192,312,351,376 
Class, DLC procedure, 124 
Clearing, virtual circuit, 225 
Closed user group, 209, 233 
Cluster controller, 14,23,438 
Code-division multiple access, 151 
Code sets: see Character String Syntax 
Coded character data: see Character String 

Syntax 
Collision, call, 203 

Collision detection, 156-162 
Combinational functions, 679 
Combined Petri net, 597-599 

Subject Index 

Combined station, 116, 128-130, 135-138 
Commands/responses, DLC, 121-124 
Communication controller, 15,300 
Compaction, 476 
Computer networking, 17 
Configuration model, 416-423,675-677 
Congestion Control: see Flow Control 
Connect: see Dialup 
Connection end point, 38 
Connectors, 61 
Contention PODA, 183 
Contention, 151-163, 463 
Context variables, 593 
Contiguous assignment TDMA, 150 
Control, DLC: see Link Management 
Correlation table, 692 
Cyclades network, 403, 406, 443, 445 
Cyclic redundancy check, 96, 120, 267, 279 

Data Access Protocol, 26, 258, 286-289 
Data circuit terminating equipment, 26, 

55-83 
Data Communication Network Architecture, 

414-436 
Data flow control, 24, 298, 461-467, 689-702 
Data link control, 8, 23, 25, 47-53, 85-189, 

264-271 
Data link control element, 23-24 
Data link escape, 95 
Data link layer: see Link Control Layer 
Data qualifier bit, 229 
Data terminal equipment, 26, 55-83 
Datagram, 9, 25, 217, 225, 242-248, 373, 

512 
Datapac, 146,331,394,574 
DDCMP, 25, 91, 106, 264-271 
Deadlock, 369, 648, 699 
Decision table, 585 
DECnet, 19,25,249-296 
Delimiting, 85, 92, 118, 265, 454 
Delivery confirmation, 221, 229 
Delta routing, 349, 353 
Demand assignment, 163-178 
Demultiplexing, 42 
Department of Communications, Ottawa, 

485 
Design rules, 571, 653-661 
Diagnostic packet, 231 



Subject Index 

Dialogue control: see Request-Response 
Protocol 

Dialup, 8,20,98,195-211 
Digital Network Architecture, 19,25-27, 

192,249-286, 354-357 
Direct call, 210 
Directory, 39-41, 558, 615 
Distributed allocation TDMA, 150 
Distributed Communication Architecture, 

416 
Distributed control of demand assignment, 

171-178 
Domain, 17, 39, 424, 677 
Downline loading, 287 
DTE-to-DTE operation, 79 
Duologue, 591 
Dynamic routing: see Adaptive Routing 
Dynamically redefinable character sets, 478, 

486,495 

EBCDIC, 95, 470 
Echoing, 442, 545 
ECMA-16 data link control, 90 
Electrical characteristics, 62-65, 72, 76 
Electrical interface: see Physical Layer 
Electronic Industries Association, 59 
Element address, 300 
Encapsulation, 530 
End node, 5 
Entity, 36, 558, 563, 683 
Entry-to-exit flow control, 363, 388-398 
EPSS network, 213 
Error recovery, DLC, 8, 85, 92, 120, 132-134, 

137, 158 
Error recovery, network layer, 200, 223, 

230-233, 282, 306 
Establishment, link, 99, 130, 135 
Establishment, virtual circuit, 225 
Ethernet, 146, 156,528, 538 
European Computer Manufacturers 

Association, 90 
European Informatics Network, 443 
Evaluation net, 595 
Exchange identification, 123 
Executable protocol specification, 559, 

671-705 
Execution thread, 688 
Expedited flow, 44, 690 
Explicit route, 192,314-321, 339, 351-354, 

392 
Extension, code set, 487, 493 

Facilities, user, 203, 209 
Fairness, 280, 367-369, 381, 403 

713 

Fast circuit switching: see Circuit Switching 
Fast select, 192,240-242,247 
Field-formatted syntax, 22, 478 
FIFO reservation protocol, 173 
File transfer protocol, 19,286,433-435,547, 

621 
Finite state machines, 558, 583-586, 

599-602, 647-650, 678-687 
Finite state machine, HDLC, 627, 634, 635 
Finite state machine, SNA-DFC (partial), 

685 
Finite state machine, X.21, 78, 201, 208 
Finite state machine, X.25, 228 
First exit time, 161 
Fixed assignment, 149-151 
Fixed PODA, 183 
Fixed routing, 192 
Flag, 118 
Flooding, 341 
Flow chart, 582 
Flow control, 9, 93,193,219,234,276,283, 

321-325, 361-412, 517, 522, 534 
Floyd-Hoare verification, 610 
Formal specification, 557-644, 647, 678-689 
Format And Protocol Language, 682-704 
Fragmentation: see Segmenting/Reassembly 
Frame, 8, 117-120 
Frame check sequence, 120 
Frame control: see Delimiting 
Framing: see Delimiting 
Frequency-division mUltiple access, 149-151 
Front end communications processor, 23 
Full duplex, 88, 113, 135-138, 464 
Function management data, 470-481 
Function management header, 24, 476 
Function management profile, 691 
Functional characteristics, 65, 70-72, 76 

Gateway, 510, 513-515, 519,528 
Global vs. local representation, 603, 631-638 
Global scheduling multiple access, 169-171 
GMDnet,374,384, 388, 393,400-402,443 
Ground radio, 147, 159-161 
Group random access, 184 
Gypsy, 573, 619 

Half duplex, 88, Ill, 130-134, 463, 583, 
700 



714 

Half-session, 460, 673 
HDLC, 113,214, 573, 625-641 
Header, 12, 101,262 
Header syntax, ADCCP, 117-119 
Header syntax, ARPA Internet, 524 
Header syntax, ARPA TCP, 525 
Header syntax, DDCMP, 268 
Header syntax, DCNA, 423 
Header syntax, DNA/TP, 277 
Header syntax, HDLC, 117-119 
Header syntax, Pup Internet, 541 
Header syntax, typical SNA RU, 468 
Header syntax, SNA/TH, 302-304 
Header syntax, X3.28 DLC, 99 
Header syntax, X.25 Virtual Circuit, 216 
Header syntax, X.25 Datagram, 244 
Header syntax, X.75, 523 
Heterogeneous networks, 415, 509 
Hidden terminal problem, 159 
Hierarchical network, 17 
Higher layer protocols, 12,413-508 
History variable, 616 
Hop level flow control, 363, 376-388 
Hot line: see Direct Call 
Hybrid Flow control, 407 
Hybrid network, 408 
Hybrid representation, 558, 566, 602, 

625-643 
Hyperchannel and Hyperbus, 156 

I-control, 388 
lATA data link control, 91 
IEEE Local Area Network Standards 

Committee, 156 
Implementations, 14-19, 260, 469 
Induction on topology, 570 
Information field, 120 
Information frame, 121 
lni tial program load, 86 
Initialization, 92, 268-270, 278 
Input buffer limit scheme, 400-403 
Input control procedure, 162 
Input-output channel, 24 
Instabili ty in random access, 161 
Integrated services data network, 81 
Integration, voice-data, 408 
Intelsat, 150 
Interconnection of networks, 409,509-556 
Interface machine, 589 
Interface message processor, 19, 573 
Interface protocol, 3, 13,562,581-592, 

632-635 

Subject Index 

Intermediate node, 307, 316 
International Alphabet 5, 93, 197,442 
International Numbering Plan, 203 
International Organization for 

Standardization, 33, 58, 90, 113, 196, 
487 

International Telecommunications Union, 
57 

Internet, 519, 529 
Interprocess communication, 511, 545 
Interrupt flow, 252, 311, 452 
Interrupt packet, 219, 222 
Invariants: see Assertions, 
INWG virtual terminal protocol, 448-452 
Isarithmic flow control, 398-400 
ISO-646 (ASCII-IA5), 93-96 
ISO-1745 (character DLC), 90, 197 
ISO-2110 (connector), 60-62 
ISO-2593 (connector), 60-62 
ISO-4902 (connector), 60-62 
ISO-4903 (connector), 60-62, 198 
ISO-7480 (signal quality), 60 

LAPB,215 
Layered architecture, 3-11, 33-54, 256, 372, 

418-421,579,610 
Lifetime control, 276 
Link control: see Data Link Control 
Link control layer, 85-189, 257, 372 
Link control level of X.25, 26, 214-217 
Link header, 25, 117-119 
Link management, 85, 93, 119,266 
Link trailer, 25, 120 
Liveness, 607 
Local area network, 148, 156, 177,519 
Local session identifier, 302 
Locking shift, 490 
Logical channel, 225 
Logical link, 192,251-256, 263, 278-286 
Logical network management unit: see 

Domain 
Logical network model, 416, 423-426 
Logical record, 343 
Logical unit, 302, 459-481, 673 
Logical unit type, 414, 468 
Longitudinal redundancy check, 96 
Look-ahead, 395 
Loop: see Ring 
Loopback, 72, 210, 266 
Loss model, 367 



Subject Index 

Macro picture description instruction, 506 
Maintenance operation protocol, 290-292 
Management, network, 287 
Management protocols: see Network Control 
Mapping, address, 39, 301, 677 
Markings, 587 
MAT-I,164 
Mechanical characteristics, 60-62, 73-76 
MERIT network, 354 
Message, 93 
Message link protocol, 574 
Metaimplementation, 672-702 
Mini interface, 79-81 
Minislotted alternating priorities protocol, 

175 
Mixed Aloha carrier sense, 184 
Modelling: see Representation 
Modem, 7, 55-83 
Modes, DLC, 114 
Modularization: see Sublayering 
Monitor, 616 
More data bit, 229 
Multidrop: see Multipoint 
Multiple access, 8, 86, 145-189,408,558 
Multiple address calling, 209 
Multiplexing, 8, 12,42, 193,224 
Multipoint, 8, 38, 88, 99-108, 114-117, 

130-134 
Multitail, 17 

Naming, 38, 253, 533, 675 
National Physical Laboratory, 353, 398-400 
Network access flow control, 364, 398-405 
Network addressable unit, 676 
Network control, 13, 45 
Network Information and Control-Exchange 

program, 290-293 
Network layer, 47-53, 191-412 
Network management center, 347 
Network priority: see Interrupt Flow 
Network services protocol, 26, 258, 278-286, 

414 
Node, 5, 675-678 
Node scheduler, 688 
Nonexecutable interactions, 649 
Nonnumbered (SDLC): see Unnumbered 

Frame 
Normal disconnected mode, 116, 134 
Normal response mode, 114-117, 122, 

130-134 
NIT,416 

Open interconnection, 29, 33 
Open System Interconnection, 29, 33-54, 

236, 445, 515 
Orthogonal fixed assignment, 149 
Out-of-band signalling: see Interrupt Flow 

Pacing, 9, 321-325, 392,464,682 
Packet Assembler Disassembler, 438-443 
Packet mode DTE, 441 

715 

Packet Radio Network, 146, 156, 183,540 
Packet switched network level (X.25), 27-29, 

213-217, 224-233, 373 
Packet switching, 8, 20,145,191,213-248 
Packetizing/depacketizing, 9,213-247 
PAD character, 105 
Paged terminal, 448 
Parallel links, 62, 297, 307-321, 352 
Parametric terminal support, 440-443 
Partial correctness, 607 
Pascal,612 
Pass-through, 510 
Path control, 24, 297-326, 673-675 
Path information unit, 301 
Peer network, 19 
Peer protocol, 3, II, 36, 592 
Peripheral node, 300-303, 391, 677 
Persistent and nonpersistent CSMA, 154 
Perturbation analysis: see Reachability 

Analysis 
Petri net, 558, 566, 586-591, 594-599 
Phases, DLC, 97 
Physical layer, 7,13,47,51,55-83,214,257 
Physical unit, 300, 675 
Picture Prestel, 506 
Piggybacked acknowledgment, 221, 267 
Pipelining, 108 
PL/I, 620, 682-684 
Point-to-point, 88, 135-138, 266 
Poll/final bit, 119 
Polling, 99, 114-117, 122, 130-134, 164-166, 

171 
Power, 375 
Predicate, 614, 629 
Presentation layer, 48-53 
Presentation Level Videotex Protocol, 

485-507 
Presentation protocols, 10,414,431-435, 

437-508 
Presentation services, 24, 466, 470-481, 672 
Prestel, 484-507 
Primary station, 115 



716 

Priority, 192, 310, 690 
Priority-oriented demand assignment, 183 
Privacy and security, 522, 537 
Probing, 165 
Procedural characteristics, physical, 66, 72, 

77-79 
Procedures, DLC, 120-126 
Product listings, 260, 469 
Production rules, 653-666 
Program proving, 558, 570, 607-621 
Programmed Symbols: see Dynamically 

Redefinable Character Sets 
Programming language model: see Abstract 

Program Representation 
Protocol, 1,4,22,37,256 
Protocol conversion, 10,414,514,530 
Protocol machine, 613, 679 
Protocol skeleton, 613 
Pup, 527-553 

Quasi-orthogonal fixed assignment, 149 
Quiescent phase, 77, 198 

RA~ protocol, 167 
Random access, 151-163 
Random order scheduling, 175 
RCP network, 213 
Reachability analysis, 569, 609, 651-653, 

689,696-702 
Reassembly: see Segmenting and Reassembly 
Recovery, 103, 127-138,518,522 
Register insertion ring, 178 
Reject, 122 
Representation, 557-705 
Request/response header, 25, 298, 461, 465 
Request/response protocol, 9, 461-468, 

689-702 
Request/response unit, 24, 461, 467 
Request/response unit categories, 465 
Resequencing, 278, 311 
Reservation Aloha, 172 
Reservation upon collision, 181 
Resource sharing, 15, 145, 361, 438 
Retransmission control procedure, 162 
Reverse interrupt, 104 
Ring, 177 
Ringing, 68 
R~ protocol, 167 
Round-robin reservation protocol, 173-175 
Route numbering, 312-317, 338, 373 

Subject Index 

Routing, 8,192,273,313-321,327-360, 
408,517,521,549,558 

Routing, virtual circuit vs. datagram, 
331-334 

Routing tables, 274, 315-318, 328-355 
RS-232A,B (physical interface), 67 
RS-232C (physical interface), 55-83, 197, 

214,257 
RS-269B (signalling rates), 59 
RS-334 (timing), 60 
RS-363 (signal quality), 60 
RS-366A (autocall), 59, 65, 197 
RS-41O (contact closure), 62 
RS-422A (balanced electrical), 62-65 
RS-423A (unbalanced electrical), 62-65 
RS-449 (Physical interface), 56-83, 257 

Safety, 607, 611-615 
SARA,620 
Satellite transmission, 113,147,150,172, 

182 
Satnet, 146 
Scroll mode, 448, 450 
Secondary station, 115 
Segmenting and reassembly, 252, 281, 305, 

373,514,536; see also Packetizing and 
Depacketizing 

Selecting, 99 
Selective reject, 122 
Semantics, I, 22 
Sequence generator, 680 
Sequence numbering, 119, 130-138,228-230, 

306 
Serial vs. parallel attribute control, 493-498 
Service access point, 37 
Service specification, 562-705 
Session, 9, 278, 319, 459, 672 
Session control (SNA), 467 
Session control layer (DNA), 278-286 
Session layer (OSI), 48-53 
Session level flow control, 364, 405-407 
Shared variable protocols, 447, 630 
Sharing, line and terminal, 14 
Shifts, character set: see Extensions, Code 

Set 
Shortest path algorithms, 334-338, 340, 343 
Signal,468 
Slotted multiple access, 152-184 
Socket, 533 
Space-division multiple access, 164, 172 
SPADE,164 



Subject Index 

Specification: see Representation 
Split channel reservation, 166-169 
Split reservation upon collision, 182 
Splitting: see Demultiplexing 
Spread spectrum multiple access, 162 
Start-stop: see Asynchronous DLC 
State ambiguities, 650 
State checking, 680 
State diagram: see Finite State Machine 
State explosion, 558, 571, 608, 662, 682 
Station, 114 
Store and forward, 146, 539 
Structured buffer pool, 381-385 
Structured fields, 478 
Subarea, 300, 676 
Subarea node, 300-307, 391, 676 
Sublayering, 630 
Supervisory frame, 120 
Swapping, route number, 338, 344 
Symbolic execution, 619 
Synchronization, 85, 95,105,199,207,265 
Synchronous Data Link Control, 23, 141 
Syntax, 1,22 
Synthesis of protocols, 646-668 
System Network Architecture, 14-17, 22-25, 

297-326, 350-354, 374, 391-393, 
459-481,671-704 

System services control point, 17,24, 675 

Telenet, 146,213,389,441,443 
Teletex, 484 
Teletext, 484-507 
Telex, 484 
Telidon, 484-507 
TELNET, 19,444-447,450-455,546 
Temporal logic, 615-618 
Terminal concentrator: see Cluster Controller 
Terminal interface processor, 19,438-440 
Terminal support protocols, 437-457, 

483-507 
Termination, DLC, 103, 131, 137 
Termination, protocol, 607 
Test loops: see Loopback 
Throughput, 375-410 
Throughput class, 234 
Time-division multiple access, 149-151 
Time Petri net, 596 
Timeouts, 26, 103, 132, 137, 208, 232 
Timing, 1,68,71 
Title: see Naming 
Token, 586, 626 

Token machine, 587-589 
Token ring, 178 
Top-down network growth, 19 

717 

Topologies, 6, 16-18,254-256,300,417-428, 
676 

Transaction, 9 
Transition model, 557, 565, 579-605, 608, 

626-638, 645-668, 678-688 
Translation, address: see Mapping, address 
Transmission control, 24, 298, 673, 690 
Transmission Control Program, 406, 573 
Transmission control unit, 14 
Transmission groups, 297, 307-318, 352 
Transmission header, 25, 299-303 
Transmission priority: see priority 
Transpac, 327, 345-349, 373, 387 
Transparency,code,85,93,96, lOS, 112, 

118 
Transport layer, 25,48-53,257,272-278 
Transport protocol header, 25, 276 
Transport protocol (DNA), 25, 272-278 
Tree, calling, 688 
Tree networks, 6, 16 
Tree retransmission algorithms, 177 
Two-way alternate: see Half duplex 
Two-way simultaneous: see Full duplex 
Tymnet, 327, 330, 339, 342-345, 386 

UCLA graphs, 566, 591 
Unbalanced DLC operation, 130-134 
Unbalanced electrical interface, 62-65, 74 
Universal physical interface: see Mini 

interface 
Unnumbered frames, 120-124 
Unspecified receptions, 649 
Urn protocol, 179 

V.5 (signalling rates), 59 
V.6 (signalling rates), 59 
V.IO (unbalanced electrical), 62-65 
V.II (balanced electrical), 62-65, 81 
V.19 (parallel interface), 59 
V.20 (parallel interface), 59, 62 
V.24 (physical interface), 20, 65, 70, 214 
V.25 (autocall), 66 
V.28 (unbalanced electrical), 62-65 
V.29 (9600 bls multiplex), 79 
V.31 (contact closure), 62 
V.35 (high speed modem), 60, 62 
V.41 (CRC polynomial), 97, 120 



718 

V.54 (test loops), 66 
Validation: see Verification, 
Verification, 557-705 
Vertical redundancy check, 96 
Videotex protocols, 483-508 
Videotext, 483 
Virtual call, 27, 217, 239 
Virtual circuit, 21, 217-237, 239, 331, 373, 

512,516 
Virtual circuit, switched vs. permanent, 27, 

217-237,239 
Virtual file protocol: see File Transfer 

Protocol 
Virtual network model, 416, 427-30 
Virtual route, 192,312-325,351-354,392 
Virtual terminal, 414, 431-433, 441, 443-455 

Windows, 228, 321-325, 373 

X.I (signalling rates), 59 
X.2 (facilities), 203, 210 
X.3 (PAD parameters), 442 
X3.1 (signalling rates), 59 
X3.4 (ASCII), 93 
X3.28 (DLC), 90, 98-108, 197 

X3.36 (signalling rates), 59 
.X3.66 (ADCCP), I J3 

Subject Index 

X.20 (asynchronous physical interface), 60, 
65, 79-81 

X.20 bis (asynchronous physical interface), 
66 

X.21 (synchronous physical interface), 20, 
56-83, 191-212,572,620 

X.21 bis (synchronous physical interface), 
26, 66 

X.22 (synchronous TDM), 60, 65, 67 
X.24 (timing), 66 
X.25 (packet network access), 20, 26-29, 

67,213-248,394,441-443,516-518, 
573, 663 

X.26 (unbalanced electrical), 62-64, 197 
X.27 (balanced electrical), 62-64, 197 
X.28 (asynchronous DTE to PAD), 441 
X.29 (PAD to packet mode DTE), 441-443 
X.60 (network signaling), 208 
X.75 (network interconnection), 59, 409, 

516-518,523 
X.96 ( call progress), 205 
X.121 (numbering plan), 203, 210 
X.150 (test loops), 67 

Z-net, 156 



Computers and computer networks-fo~- Paul E. Green, Jr., has been with IBM's 
merly the hidden servants of banks, retaIl Research Division since 1969 and is cur­
outlets, and airline reservation ?ffice~ - rently a member of the company's Corpo­
are emerging .10 play an increasmgly un- rate Technical Committee. Since joining 
portant role throughout our daily lives. In IBM his work has centered on decentral­
their early phase of development, com- ized network architectures and protocols, 
puters functioned more or less indepen- speech and signal processing, network per­
dently of one another, but the current formance modeling, and fault deter­
widespread use of computer networks ~d mination in large computer networks. He 
terminals has nec:essitated the. es~abbsh- received his Sc.D. degree in electrical engi­
ment of worldwIde standardiZB:tlon on neering from the Massachusetts Institute 
certain aspects of network archItectures of Technology in 1953. His doctoral dis­
and protocols. sertation on storage and synchronization 
In the last several years, a semblance of of ps~udonois~ in antijam~ng systems 
order and modularity has emerged. The led. hIm and hIS c~lleagues mto proto­
procedures for putting together a number typmg one of the earliest suc~ssfu~ spread­
of computer networks have been codified spectrum systems: Dr. ~reen IS co-~nventor 
into sets of design rules known as network of the RAKE antlmultlpath ~echruque and 
architectures. These sets of rules form performed early r~dar studIes of Venus. 
the subject of this book. He developed varIous methods ?f mea-

surement of such targets and mvented 
Those involved with ~ommunication planetary range-Doppler mapping. He 
systems and computer sCIence and tech- later led the Lincoln Laboratory program 
nology will find this book a valuable to develop an experimental large-aperture 
source of information on the method- seismic array for the Advanced Research 
ology and application of computer net- Projects Agency. The author of more 
work architectures and the protocols of than thirty technical papers, Dr. Green is 
which they are composed. a member of the National Academy of 

Engineering, a Fellow of the Institute of 
Electrical and Electronics Engineers 
(IEEE), and recipient of the IEEE 
Aerospace Pioneer Award. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFA1B:2005
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (sRGB IEC61966-2.1)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
    /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
    /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
    /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
    /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
    /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
    /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0034002e00350032003600330029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003100200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




