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Preface

The aim of this book is to provide an account of the state of the art in Com-
putational Kinematics. We understand here under this term that branch of
kinematics research involving intensive computations not only of the numer-
ical type, but also of a symbolic nature.

Research in kinematics over the last decade has been remarkably ori-
ented towards the computational aspects of kinematics problems. In fact,
this work has been prompted by the need to answer fundamental question-
s such as the number of solutions, whether real or complex, that a given
problem can admit. Problems of this kind occur frequently in the analysis
and synthesis of kinematic chains, when finite displacements are considered.
The associated models, that are derived from kinematic relations known as
closure equations, lead to systems of nonlinear algebraic equations in the
variables or parameters sought. What we mean by algebraic equations here
is equations whereby the unknowns are numbers, as opposed to differen-
tial equations, where the unknowns are functions. The algebraic equations
at hand can take on the form of multivariate polynomials or may involve
trigonometric functions of unknown angles.

Because of the nonlinear nature of the underlying kinematic models,
purely numerical methods turn out to be too restrictive, for they involve
iterative procedures whose convergence cannot, in general, be guaranteed.
Additionally, when these methods converge, they do so to only isolated solu-
tions, and the question as to the number of solutions to expect still remains.
These drawbacks have been overcome with the development of continuation
techniques that are meant to produce all solutions to a given problem. While
continuation techniques have provided solutions to a number of problems,
they are still subjected to the uncertainties of iterative procedures. Hence,
alternative approaches have been sought, that rely on modern software and
hardware for symbolic computations. Commercial software of this kind is
now very reliable and widespread; it has naturally found its way into kine-
matics research. In fact, current research in kinematics involves symbolic
manipulations that were impossible to even imagine as recently as fifteen
years ago, when the first symbolic manipulation packages started coming
out of the computer science laboratories.

The book reports trends and progress attained in Computational Kine-
matics in a broad class of problems. In order to ease the task of the reader
searching for information on particular topics, we have divided the book
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into six parts, namely, ¢) kinematics algorithms, whereby general kinematics
problems are discussed in light of their solution algorithms; i) redundant
manipulators, which is self-descriptive; iii) kinematic and dynamic control,
in which the link between kinematics and the disciplines of dynamics and
control is highlighted; iv) parallel manipulators, in which an open problem
is discussed, namely, the number of solutions of the associated direct kine-
matic problem; v) motion planning, touching upon computational geometry;
and vi) kinematics of mechanisms, in which the main issue is the presence
of closed kinematic chains, is discussed with regard to both analysis and
synthesis.

The reader will find here a representative sample of the most modern
techniques available nowadays for the solution of challenging kinematics
problems. Thus, resultant methods based on dyalitic elimination are dis-
cussed critically, while Grébner bases are proposed as a powerful alternative.
Other, equally novel techniques, available only in conference proceedings of
limited circulation, are included for the first time in book form.

In light of its contents, the book should be of interest to researchers,
graduate students and practicing engineers working in kinematics or related
problems. Especially, roboticists, biomechanicists, machine designers and
computer scientists will find here a useful source of information comprising
methods, algorithms and applications.

This book contains the Proceedings of the Workshop on Computational
Kinematics, held at the International Conference and Research Center for
Computer Science (IBFI), of Germany, from October 11 to October 15, 1993.
IBFI is herewith given due acknowledgement for its financial and logistical
support and encouragement. This support made it possible to bring together
specialists of various disciplines working in the area. Among the participants,
who met for one week at the Dagstuhl Castle of IBFI, we count engineer-
s, computer scientists and biomechanicists, all of whom share a common
interest, namely, Computational Kinematics. Prof. Dr. Reinhard Wilhelm,
Scientific Director of IBFI, and his staff are especially acknowledged for their
support. Dr. Nigel Hollingworth, of Kluwer Academic Publishers, is acknowl-
edged for his encouragement and support in editing the book and publishing
it in record time. The technical support of Mr. Kourosh Etemadi Zangane-
h, a Research Assistant at the McGill Centre for Intelligent Machines, was
decisive in bringing this book to completion.

Jorge Angeles, Giinter Hommel and Peter Kovacs, Editors
Dagstuhl Castle, Germany
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Computations in Kinematics

Bernard Roth

Department of Mechanical Engineering
Stanford University

Stanford, CA 94305

USA

Abstract

Several methods to solve sets of nonlinear equations are discussed.
Then a modification of dialytic elimination is described, and two
methods for obtaining new linearly independent equations are pre-
sented. Finally, one of the methods is applied to three quadratics and
is shown to yield all of the solutions, without any extraneous roots.

Introduction

This paper deals with the numerical solution of sets of nonlinear
equations which arise in the kinematics of mechanical systems. The
most commonly used methods are iterative. All such methods require
an initial guess at a solution, and, if the initial guess is not close to an
acceptable solution, they tend to diverge, or converge very slowly, or
converge to an unacceptable solution. Furthermore, nonlinear prob-
lems have more than one solution, and iterative methods produce only
one of these — the solution “closest” to the initial guess. Once one so-
lution is obtained, it is not any easier to obtain additional ones, and
repetitive applications of iterative methods may not yield all solutions.

In order to overcome these difficulties, a technique known as the
bootstrap method (Roth and Freudenstein 1963) was developed in the
early 1960s and applied to kinematic synthesis of mechanisms, as well
as to sets of nonlinear polynomial equations. This iterative procedure
has been improved and is now known as the homotopy or continuation
method. It is widely used in kinematics (for example, Wampler and
Morgan (1990), and Raghavan (1993)). The advantage of the continua-
tion method is that it incorporates a “good” initial guess and it yields
all possible solutions. The disadvantages are that it is an iterative nu-
merical procedure which (i) can have numerical difficulties, (ii) gives
little or no information about how physical parameters influence the
solutions and (iii) can require dealing with large numbers of unwanted
solutions at infinity. This latter difficulty can be somewhat mitigated by
the use of m-homogeneous coordinates (Raghavan 1993; Morgan and
Sommese 1987).

J. Angeles et al. (eds.), Computational Kinematics, 3-14.
© 1993 Kluwer Academic Publishers.



4

In this paper we will discuss non iterative methods which yield all the
solutions to sets of nonlinear equations, and also partially overcome
the disadvantages mentioned in the preceding paragraph. Grébner
bases and elimination methods are two classes of methods which
gotentially have the characteristics we are interested in. Grébner
ases seems to have first been published in 1964 under the name
standard bases. They were then renamed and applied to various

roblems including the solution of multivariate polynomial sets
Buchberger 1985) and geometrical theorem proving. To-date this
method seems inefficient for most of the types of (Froblems we are in-
terested in since it is prone to exploding intermediate results and
computational time. However, some of the ideas behind the method
are useful to us.

Currently, the elimination methods seem to be the most promising
analytical techniques. The original ideas come from Cayley (1848). All
elimination methods require forming equations known as eliminants
or resultants. Summaries of various types of eliminants and resultants
can be found in several books (Salmon 1885; Van der Waerden 1964).
The elimination methods will, in theory, lead to a solution of any sys-
tem of multivariate polynomial equations. In practice the method can
only be applied to relatively simple e%uations — beyond these it ex-

lodes in complexity and introduces large numbers of extraneous so-
utions. There have been various attempts at improving these methods
in order to make them practical computational tools, for example
Arnon et al. (1984) and Canny (1987). Although there has been some
success in certain problem areas, see for example Macaulay’s resultant
and the u-resultant (Lazard 1981), the basic methods remain compu-
tationally too costly to be applied to the types of multivariate polyno-
mial problems which are common in kinematics.

One elimination method, known as Sylvester's dialytic method
(Salmon 1885), has been used in kinematics to eliminate one or two
unknowns from small sets of equations (Bottema and Roth 1990).
Although this method has been known for a long time, its use has been
limited because it is not practical for problems with more than two or
three unknowns or equations of high degree. Recently we have been
able to modify the dialytic method, in order to make it part of a more
practical apgroach. In the following, first the basic dialytic method is
described, then its limitations are pointed out with suggestions on
how these may be overcome.

Dialytic elimination methods

There are six basic steps in using the dialytic elimination method to

solve a nonlinear set of equations. Although the steps are easy to ex-

plain, the ideas behind Step 2 and Step 3 at first-sight seem strange,

and even incorrect. The basic steps are:

1. Rewrite equations with one variable suppressed.

2. Define the remaining power products as new linear, homogeneous
unknowns.



3. Obtain new linear equations so as to have as many linearly
independent homogeneous equations as linear unknowns.

4. Set the determinant of the coefficient matrix to zero, and obtain a
polynomial in the suppressed variable. (If one is interested in only
numerical solutions, this step can be omitted if we calculate eigen-
values in Step 5.)

5. Determine the roots of the characteristic polynomial or the eigen-
values of the matrix. (This yields all possible values for the sup-
pressed variable.)

6. Substitute (one of the roots or eigenvalues) for the suppressed vari-
able and solve the linear system for the remaining unknowns.
Repeat this for each value of the suppressed variable.

These steps can best be explained with a simple example. Consider
the following two nonlinear equations:

axy3+bx3+cy3+dx?y+ex?+£=0 ; gx*+hxy3+ix3+jx%+kxy?+Lx+m=0. (1)

Here, a,b,c,d,e.f,g,h,i,j,k,l and m are known coefficients, and x and y
are the unknowns. Normally one considers these to be two fourth-
degree algebraic equations in two unknowns. For elimination theory it
is useful to take a different viewpoint. First we suppress one of the
variables, say, x; i.e., we assume the value(s) of this variable are known
and therefore it becomes part of the coefficients. In this example we
obtain for Step 1:

(ax+0)y>+(dx?)y+(bx3+ ex?+0)=0 ; (hx)y3+(kx)y?+(gx*+ix3+jx2+Lx+m)=0

) 2)
The two equation now are in the form:

Ay>+By+C=0 ; Dy>+Ey?2+F=0, (3)

where the new coefficients, A,B,C,D,E and F, contain the suppressed
variable x. No matter how many equations we have, the first step is the
same: suppress one variable (or a single power product) and thereby
reduce the number of explicit variables by one. (There are also cases
where it is advantageous to simultaneously suppress several variables
or power products.

In Step 2, each power product is considered as a separate indepen-
dent linear unknown. In order to illustrate this concept in a multivari-
able setting, it is instructive to revisit equation (1). In equations (1), if
we consider the power products, we have nine unknowns, viz. x4, xy>,

x3, y3, xzy, x?, Xy, X, 1. It is important to note that we count the num-
ber 1 as a variable. The reasons for doing this are (i) it is convenient to
always have homogeneous equations and (ii), as we shall see, it pro-
vides a rationale to discount trivial solutions. The coefficient of the
“variable” 1 is the constant term. Taking this viewpoint is equivalent
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to rewriting equations (1) as the linear set:
aX; +bX+cXz+dX g+eXs+{Xe=0 ; gX7+hX#iXo+jXs5+kXg+ X o+mX¢=0.

The result is that the equations are transformed in to linear equations.
However, instead of simply x and y, we have seven additional variables.
So far this change of variables seems rather trivial. However, it is here
that the first important idea comes into play: in order to maintain the
linear structure, we never explicitly employ any relationships between
the new linear variables. So for example the fact that Xg-Xg = Xs,

XgXg = X4 XoXs =Xy, etc. (€., xx = X2, XyX = X%y, xX?=x,

etc.) is not used. Hence, we regard all nine variables as independent
linear variables. The price we pay for this is that we now must
introduce new equations in order to assure that the number of
equations and unknowns are commensurate. Applying these ideas to
the equations with the suppressed variable, (3), we obtain as a result of
Step 2:

AY1+BY2+CY3=O;DY1+EY4+FY3=O. (4)

Where Y;, Y5, Yz and Y4 are linearly independent unknowns. Since we
have two equations with four unknowns, we need additional equations.
In Step 3, we obtain the additional equations. In our example this can
be accomplished by multiplying equations (3) by y and then y?. The
results are four new equations (with only two new power products).

Using the concept of Step 2, i.e., labeling every power product as an
independent linear unknown, we can write these new equations as:

AY5+BY4+CY2=0 N DY5+EY1+FY2=O ; AY6+BY1+CY4=O ; DY6+EY5+FY4=O.( )
5

This completes Step 3, since if we combine equations (5) and (4) we
have a system of six homogeneous linear equations in six linear un-
knowns. This step contains the second major idea in the dialytic
elimination method. Namely, new linearly independent equations can
be obtained from the original set of equations simply by multiplying
the original equations by one or more of the unknowns or power prod-
ucts of the unknowns. The key here is that even though the new equa-
tions are dependent on the original equations their dependence is not
linear and hence they are linearly independent.

We are now ready for Step 4, in which we obtain a single polynomial -
equation in the suppressed variable. In our example, we rewrite equa-
tions (4) and (5) in a combined matrix form:



A B CO0 0 0 T[Y;"
DOFEOO Y,
0O COBAO Y3
=0 . 6)
EFO0OO0ODO Yq
BOOCOA Ys
|0 00 F ED LYl

Since we know that Yz = 1, it is clear that the trivial solution of Y;= 0

(i=1,2,...,6) is not admissible, and therefore the determinant of the
coefficient matrix must be equal to zero. Expanding this determinant,
and setting the result equal to zero, yields a polynomial equation in
AB,C,.D.,EF. If we then substitute into this polynomial the expressions

for the suppressed variable (viz.:A=ax+c, B=dx?, C=bx3+ex?+f, D=hx,
E=kx, F=gx4+ix3+jx2+Lx+m) we obtain a polynomial in the suppressed
variable, x, and the original coefficients, a,b,c,d,e,f,g,h,i,j,k,l,m. The
term with the highest power in x is a3g3x'® (it comes from A3F3); the
resulting polynomial is of degree 15 in x.

The result of Step 4 will always be a polynomial in terms of the sup-
pressed variable (or power product). For design studies and theoreti-
cal concepts there is a large advantage in obtaining the polynomial
coefficients explicitly. However, in cases where we need only a numer-
ical answer, obtaining the coefficients explicitly may add unnecessary
computation time. Instead, we can threat (6) as an eigenvalue problem
and determine the values of x in that way (Golub and Van Loan 1985;
Manocha and Canny 1992). Step 4 can be omitted in such cases. There
are problems for which the degree of the polynomial is too large for
practical numerical comgutation. In such cases, an eigenvalue or alter-
native computation methods needs to be employed to deal with the
matrix equation.

This brings us to Step 5. Here we obtain all the values of the sup-
pressed variable (or power product) by using a root-finder routine for
the roots of the suppressed-variable polgrnomial. In our example, we
get 15 values of x as the roots of the 15%* degree polynomial, or from
an eigenvalue routine anlied to (6). Usually we are only interested in
real roots, so any complex or imaginary roots will reduce the number
of actual solutions from the maximum possible value of 15.

Finally, in Step 6, we substitute for the suppressed variable in to the
linear set of equations, and solve for the other original variables. In our
example, we can use (6) to obtain y: substitute one root of x into (6),
set Yz = 1, and then use any five of the resulting equations to solve for
Y. Note that, because the system is linear, this will yield one y for
each x. Thus the number and character (i.e., real or imaginary) of
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solutions are generally determined by the roots of the polynomial (or
the eigenvalues). Exceptions to this occur only when the linear
system, (6) in our example, has rank less than n-1 (where nxn is the
size of the matrix). Hence, regardless of the size of the problem, if the
rank the nxn is n-1 for each root, all the other variables are linear
(single valued) functions of each root of the suppressed-variable
polynomial.

Basic difficulty

In principle, the foregoing procedure will always work if enough new
equations can be determined from the original equations to obtain an
nxn system of linear homogeneous equations. Thus the crucial step is
Step 3, where we obtain the additional equations. However there is a
subtle and important practical caveat: It is not enmﬁh to obtain an nxn
system, it is important that the value of n be as small as possible. If the
procedure introduces extraneous roots, n is larger than its minimum
value and the suppressed variable polynomial is of higher order than is
necessary. In most problems with more than two variables, multiplying
the equations by the variables create sets of linear equations where the
values for n are much larger than they need to be.

In some problems we inherently have a very large value for n. It is not
unheard of for nonlinear systems irt kinematics problems to have sev-
eral hundred or even several thousand solutions. In such systems, it is
extremely important not to introduce extraneous power products,
since these increase the number n geometrically. To minimize n we
need to, as far as possible, avoid introducing new power products and,
if possible, eliminate solutions at infinity.

Even if we do not introduce extraneous roots, it may turn out that the
value of n is so large that literal or even numerical calculation of the
suppressed-variable polynomial becomes unfeasible. In such cases we
need to resort to other means of dealing with the matrix in Step 4.
The important idea here is that even if the entire polynomial cannot
be obtained as a literal expression, it is still possible to determine
properties of the physical system by studying the affect of the parame-
ters on selected polynomial terms or the rank of the matrix. In this,
we can utilize existing methods for dealing symbolically and numeri-
cally with matrices with polynomial entries, see for example Horowitz
and Sahni (1975).

Minimum n

The theoretical minimum value for n is not a simple matter to deter-
mine. Even when it is known, it is not easy to obtain such a set of
equations. In our example, we see that once we suppressed x, the re-
sulting set of equations (3) had four power products. In our solution
we used a 6x6 set of equations, and so our n was 6 not 4. The resulting
polynomial was of degree 15. This seems to be a reasonable result,
since we started with two fourth-degree polynomials. We know that
two, non degenerate, fourth-degree polynomials have 16 common val-
ues. In this case because of the special nature of the fourth-degree



terms one solution is at infinity regardless of the values of the coeffi-
cients, and that accounts for the degree of the suppressed variable
polynomial being 15 rather than 16. Knowing what n should be is very
useful. To-date the only two practical methods are to make use of the
m-homogeneous Bezout count (Morgan and Sommese 1987), or to
rely on physical insights into the nature of the solution.

A further complication is that the size of the nxn system is only indi-
rectly related to the degree of the suppressed variable golgnomial. For
example, if in our problem we had suppressed y instead of x, then our
equations (2) would become:

(b)x3+(dy+e)x?+(ay)x+(cy3+0)=0 ; (@x*+()x3+())x%+(hy3+ky2+L)x+m=0

Here we have five power products, and a balance between unknowns
and equations occurs at n=7. (The additional five equations can be ob-
tained by multiplying the first equation three times and the second
twice by x.) If we then expand the 7x7 determinant, we will again get
a 15th degree polynomial in the suppressed variable — this time y. So
for this example we see that an n of 6 and an n of 7 yield suppressed-
variable polynomials of the same degree.

Determining the theoretically smallest possible n is directly analogous
to the problem of determining the set of variable groupings which give
the smallest Bezout count (Morgan and Sommese 1987). This can be
determined by exhaustive checking of all groupings (Raghavan 1993).
A much greater difficulty occurs when the number of power products
grows rapidly as we multiply equations by one or more variables. This
effect is very pronounced when we have more than one non sup-
pressed variable. For example if our original equations contained
three, rather than two, unknowns, say:

axy> + bx3z + cy’z + dx?%y + ex?z%+ fz= 0
gx? + hxy® + ix® + jx° + kxy?z+ Lxz3+m=0 .

Then after suppressing x we obtain:

(©)y3z + (ax)y® + (ex?)z? +(dx?)y + (bx3+)z= 0
(hx)y® + (Lx)z3 + (kx)y?z + (gx*+ix3+jx2+m)= 0.

Here we have eight power products as opposed to the four we had in
equation (3). If we multiply both equations by y we get two additional
equations but now we have seven additional power products. Even with
a third original equation without any new power products in it, it is
clear that by the time we got to an e?ual number of equations and
power products, the resulting value for n would be much larger than
the eight power products we started with.
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Minimum number of power products — first method

There appear to be ways to obtain new equations (for Step 3) without
increasing the number of power products. One of the most promising
is the method that was discovered in connection with the manipulator
inverse kinematics problem (Raghavan and Roth 1990). The idea is
rather simple: one obtains the additional equations by combining the
original equations rather than multiplying them by a variable.

This can be illustrated with a simple example:

Consider the two links shown the Figure. The link of length a is con-
nected to ground with a revolute joint and the link of length b is con-
nected to link a, also with a revolute joint. The coordinates of the tip P
are u,v as measured in the fixed coordinate system shown. Here we as-
sume that the lengths a and b are known an({ the tip coordinates u,v
are known, and we wish to determine the link angles © and ¢. From
the geometry it follows: u = a cost + b cos(t+¢) ; v = a sint + b sin(t+¢)

- v . . .
P i.e., u = a cost + b cost cos¢ —b sint sin¢
v = a sint + b sint cos¢ + b cost sin¢ .

These have seven power products: (1, cost,

cost cos¢, sint sing, sint, sint cosd, cost sing)
and two equations. Getting new equations by
multiplying by the power products further
U increases the number of power products.
" Instead we square each equation:

2 2

cos?t + b? cos?t cosz¢ +b? sin?t sin%p+2ab cos?t cosd

—2ab cost sint sing - 2b? cost cos¢ sint sing @)
7 + b? sin?t cos?¢ +b? cos?t sin%p+2ab sin®t cos¢
+2ab cost sint sing - 2b? sint cos¢ costT sing .

u’=a

2 2 2

v< = a“sin

This gives us two new linearly independent equations but these equa-
tions contain ten new power products, so the situation seems to have
deteriorated. However if we sum these two equations we get:

u2+V2=a2+b2+2abcos¢. 8)

This equation is exactly what we are looking for: it does not add any
new power products to the original set! Now if we suppress all the t
terms we have from (7) and (8):

(b cost)cos¢ — (b sint) sing +(a cost-u) =0
(b sint)cos¢ + (b cosT) sing + (a sint- v) =0 9
(2a b) cosq>+(a2 +b%2-u?-v9)=0.
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The set (9) can be viewed as three linear homogeneous equations in
the three power products cos¢, sing, 1. Hence we need to equate the
determinant of its coefficient matrix to zero. This yields a polynomial
in terms of the suppressed variable 1 (actually, it is a linear equation in
terms of cost and sint), from which two values of 1 follow. Then, with t
known, the first two equations in (9) are a linear set for cos¢ and sin¢.

Clearly, in this example equation (8) could be solved directly for cos¢,
and this could be used to simplify the problem. We have not done this
here, since our interest is in showing how (8) can be used in the gen-
eral procedure. The point is that we are able to obtain this additional
linearly independent equation by squaring and adding the original
equations, and this new equation does not contain any additional
power products.

This example touches upon the key to solving very complicated sets of
equations. Namely: it is necessary to determine ways to manufacture
new linearly independent equations from the original equations, and
to do so in a manner which does not introduce new power products,
or at worst introduces less power products than equations. In
Raghavan and Roth (1990), we have shown how to produce eight new
linearly independent equations from an original set of six by using the
notions of vector products, and what is most important is that the
power products in the eight new equations are the same as in the
original six. With these equations we are able to obtain a minimum-
degree, suppressed-variable Lgolynomial — in this case the degree is
sixteen. We are able to use these fourteen equations to determine the
inverse kinematics of open chain manipulators with six revolute joints.

In Raghavan and Roth (1992), it is shown that exactly the same proce-
dure can be used when some of the joints in the manipulator are
prismatic, and in Raghavan and Roth (1993), it is shown that this
method can be used for the inverse kinematics of single loop spatial
linkages with lower pair joints. We conclude, therefore, that these
operations are of general utility in solving mechanism kinematics
problems.

Minimum number of power products — second method

Another method that sometimes yields new equations without increas-
ing the power tproducts relies upon the fact that the derivatives of the
determinant of the Jacobian of a system of equations (written in terms
of homogeneous coordinates) have the same zeros as the original sys-
tem of equations (Salmon 1885). This method can be applied to the
problem of finding the common intersection points of a system of
three quadratic surfaces. This is an important practical problem which
appears in connection with computer aided design and other aspects
of kinematics (Morgan and Sarraga 1982). As far as the author knows,
the solution presented here has not been previously published.

From Bezout's theorem we know that three quadratic surfaces have
2x2x2=8 common points. The goal here is to show how to use our



12

methods to obtain these eight points directly, without any extraneous
values. For the most general quadratics:

ajx?+bjy?+¢iz? + dixy + ejxz + fiyz + gix + hjy + i;z +§; = 0,i=1,2,3 (10)
If we suppress z we have:
a;jx? + b; y2 +djxy + (ejz+ gj )x + (fjz +h; )y + (g 224+ z+j;) =0,i=1,2,3 (11)

We have three equations and si};}&;ower products, and so we need at
least three more equations. We will obtain these by using the Jacobian
of the system. First, however, we convert to homogeneous coordinates:

substituting x= X/W, y=Y/W and then multiplying by W2. The result is:
a; X2+bY2+d; XY+(ej z+g; )XW +(f; z+h; )YW +(c; z2+i; z+j; )W?=0, i=1,2,3  (12)

The Jacobian matrix, J, of (12), with respect to the homogeneous
coordinates is: J=

2aX+d Y+(ez+g) W 2b)Y+d X+(fz+h)W  (ejz+g)X+(fiz+h ) Y+2(ciz2 +igz+j;) W
2a2X+d2Y+(ezz+g2)W 2b2Y+d2X+(f22+h2)w (ezz+g2)X+(fzz+h2)Y+2(c222+izz+j2)W

2azX+dzY+(ezz+gz) W 2bgY+dzX+(fzz+hz)W (ezz+gz)X+(fzz+hz)Y+2(c3z2+izz+jz) W

If we form the determinant of this matrix, a cubic polynomial follows:

IJl = A(z) X3 + Blz) X2Y + C(z9) X2W + D(z) X Y2 + E(z3) X W2
+FZYXYW+GE Y +HEZY Y2W+ 1) YW2 +Jdzh W (13)

The coefficients A,B,C,...,d are functions of a;b;c;...j; (i=1,2,3) and z.
The parentheses are used to indicate that these coefficients are func-
tions of z, and the power of z indicates the highest degree that it ap-
pears in that coefficient. Now, we take the derivatives of this equation
with respect to the homogeneous coordinates:

1J1y =3A(2)X?2 + 2B(z) XY + 2C(z) XW + D(2) Y2 + E3) W2 + F(z) YW
1J 1y =B@)X?+2D(2)XY+F(z2)XW+3G(2)Y2+2H(z2) YW+I(z3)W? (14)
11 ,=C(z)X?+2E(z3)XW+ F(z?) X Y + H(z?) Y? + 21(z%) Y W + 3J(z% W2

If we set equations (14) equal to zero we obtain three new equations
which have the same zeros as the original set of equations, as given in
(12). The main thing to notice is that the power products in (14) are
identical to those in (12). So now we have achieved our ideal goal, we
have the same number of equations as power products, and we have
accomplished this without introducing any new power products.
Rewriting equations (12) and (14) we obtain:
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[ ay by d (eyz+ gy (f1z +h)  (cz%+isz+jy
a, by dy (egz+g) (Faz +hy) (coz2+isz4j) | Y2
as bz dz  (ezz+gz) (fzz+hgz) (cgz’+izz+jz) | XY
3A(z) D(z) 2B(z) 2C(z3) F(z? E(z3) XW =0 (13
B(z) 3G(z) 2D(2) Fz)  2H(z?) 1(z%) YW

| C(z?) H(z?) F(z3) 2E(z¥ 21(z%) 3J(z% .

W2 _
What remains now is to set the determinant of the coefficient matrix
equal to zero (or to determine the eigenvalues of this matrix). If we
expand this determinant, we obtain an eight-degree polynomial in z.
The coefficients of this polynomial are functions of the coefficients of
the original three equations, so the roots can be readily determined if
the surfaces are known.

For each real root, we can then substitute for z into (15) and solve the
linear system for x and y. The easiest way to do this is to set W = 1, in
which case the first five equations of (15) can be rewritten as:

(a; by dy (eiz+g) (fz+h) [ x*¥ [ (ciz?+iiz+j)
az by dy  (epz+g2) (fzz‘ +hy) I y2 (c222+iz+jp )
az bz ds (ezz+gz) (fz+hg) | xy [=—]| (caz?+izz+j3)
3A(z) D(z) 2B(z) 2C(z?) F(z?) x E(z3)

| Blz) 3G(z) 2D(2) Fz%)  2HEH Ly 1 | q,3 i

From this, it is obvious that in general we get one value of x and y for
each z. Furthermore, since the polynomial in z can be obtained with
explicit literal coefficients, we have a way of studying all the singular
and special cases. (An alternative way ofyidentifying singular cases is to
determine when the rank of equation (15) is less than five.) Since, in
general, we have at most eight real intersection points, this method
gives us all the intersection points without any extraneous roots.

Summary

A basic six-step elimination method has been detailed, and two meth-
ods for obtaining new linearly independent equations have been de-
scribed. Finally, for three quadratics it is shown how to find (i) all of
the solutions, and (ii) an analytical means to determine the affect of
the system parameters on the number and character of the solutions.
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Reducing the Inverse Kinematics of Manipulators to the
Solution of a Generalized Eigenproblem
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ABSTRACT. A new method is presented which reduces the full determination of the in-
verse kinematics of manipulators with revolute and prismatic joints to the solution of a
generalized eigenproblem G-p+A H-p=0. Related single-loop mechanisms can also be
solved. The eigenproblem-method is numerically stable, because eigensystems can be
computed without previous determination of the characteristic polynomial. Furthermore,
a compact and efficient formulation of the basic equations is shown. Numerical results
are reported at the end.

1. INTRODUCTION

In the study of robot manipulators there are two basic problems. The first, known as the
forward kinematics, requires as input the geometry and the joint variables of the manipu-
lator. Output are the position and orientation of the endeffector. This task is easily solved
and has a unique solution. The second problem is just the reverse: given the position and
orientation of the endeffector, compute all the joint variables. The problem is highly
nonlinear, and multiple solutions exist. Because the equations are nonlinear, there are
closed-form solutions only for some special manipulators. Other manipulators can
merely be solved with numerical and iterative methods. This paper focus on manipula-
tors of the last kind, however, the method can also be applied to other mechanisms.

A first general method to obtain one inverse kinematic solution can be traced back to
(Uicker, Denavit, Hartenberg 1964). They described the problem as an overconstrained
system of nonlinear equations. Starting at an appropriate initial value, they solved the
equations with a least-square-method.

The first complete solution, i.e. with all the configurations, originates from (Tsai,
Morgan 1985). The problem has been formulated as a system of eight second-degree
equations in eight unknowns. The iterative numerical solution is done with a continu-
ation method. The method starts with 256 initial solutions. Most of them are eliminated
during the solution process. Their experiments suggest that there are only 16 solutions
for the general 6R-manipulator.

A full and theoretically correct solution to the inverse kinematics of closed-loop 7R-me-
chanisms was given by (Lee, Liang 1988). They derived a 16th degree polynomial in the
half tangens of one joint variable and mapped the 16 roots to the 16 configurations. Un-
fortunately, the roots are very sensitive to the unavoidable roundoff errors in the polyno-
mial coefficients (Wilkinson 1969).

The generalization of the polynomial-method to any open-loop manipulator and related
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single-loop mechanism can be found in (Raghaven, Roth 90) and (Lee 90). Polynomials
of degree n=2,4,8,16 were derived.

The basic new idea in this work is to reduce the inverse kinematics of nonredundant
manipulators with revolute and prismatic joints and related single-loop mechanisms to a
generalized eigenproblem

G-p+AH-p=0 G,HeR™"; peC"; AeC; ne{2,48,16} (1)

The eigenvalues and right eigenvectors will be computed with stable standard numerical
methods. Therefore the eigenproblem-method combines the advantages of determining
all the configurations and delivering numerically accurate results.

The method will particularily be used for manipulators with general geometry and with-
out closed form solutions. However, the eigenproblem-method is not restricted to such
manipulators, which is expressed in (1) by n e$2,4,8,16}. By virtue of the fact that any
lower-pair joint can be modelled by a combination of prismatic and.revolute joints, ma-
nipulators with such joints may also be solved with this method.

The sequel starts with an introduction of used notation and terms. Next, an efficient for-
mulation of the extension of the closure equations for a 6R-manipulator is worked out,
followed by a discussion of the obtained basic equations and their special properties.
Afterwards the generalized eigenproblem for the inverse kinematics problem is derived.
The issue of enhancing the method to prismatic joints is taken up in a separate section.
Finally, the numerical properties of the eigenproblem-method are shown by an example.

2. FUNDAMENTALS

This paragraph is intended to be a short introduction to used terms and notation. For
more information it is referred to textbooks like (Paul 81) or (Craig 89).

A manipulator (arm) can be modelled to consist of rigid-bodies, or links, that are con-
nected by revolute (R) or prismatic (P) joints. Furthermore, we will make the restriction
to manipulators with rigid-bodies connected in series. Therefore each body has at least
one and at most two neighbours. The link at one end of the chain is fixed to a nonmo-
vable base, the link at the other end is free and is called the endeffector (hand).

Because of its complexity we begin with the nonredundant 6R (Revolute) manipulator
and extend later to easier solvable manipulators.

For the purpose of formal description of the 6R manipulator, coordinate systems, or
frames, are attached to the 6 joints and to the endeffector. Homogenous transformation
matrices A, refer the position and orientation of the (i+1)th frame to the position and
orientation of the ith frame.

! . TI_ T 3
A= [%i_i_?_zii_t_i] e R™ A= I:_o'.i_g"i.'_t_‘} e R™ ()
The rotational parts C,eR** and C[ are defined as
C:=C,,;-C,, ¢ -5 0 10 0 (| (3
with C,;:=Rot(z,6)=|s; ¢, 0] C, :=Rot(x,a;)=|02, -,
CT:=CI,i‘C:i 001 0p; A,
¢;:=cosB;, s;:=siné, Agi=cosq;, Ui=sinq;

T .t. with

X i

ti=[a, 0 4] (3b)

and the translational parts C,;-t, and —-C
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The matrices C, C,,, C,, are orthogonal with a determinant equal to 1. This property
will be used. The Denavit-Hartenberg-parameters a,, @;, d; (i=1..6) are constant geome-
tric quantities. The 6R manipulator can now be described by the matrix closure equation

Apna =A Ay Ay A A A @)
A,..4 defines position and orientation of the endeffector with respect to the base frame.

Using A,=A;. , the open-loop 6R manipulator can be related to a closed-loop 7R-me-
chanism, and vice versa. Therefore the matrix closure equation (4) can also be stated as

Aj-A, Ay A A A A, =1 )

I defines the identity matrix of appropriate dimensions. The interpretation of an open-
loop manipulator as a single-loop mechanism is preferred. A, will be defined as

n, 0y ax:px C ;= I
| a, C,, C,,IC,, t -
A {9_,.&@ :rth’iﬂ‘i]= mOal, A, =[__zao__xa%_avi_z} . C,=CL, ®
T)z— _Oz— —6 r Tlﬂ t7 =-t hand

Figure 1 represents equations (4) and (5) as a directed graph. The inversion A;" of the
homogenous transformations A, is simply the inversion of the ith arrow.

The goal of inverse kinematics is, given the endeffector description by A,, , and given
the equations (4) or (5), to determine the unknown joint variables 6, (i=1..6). The pro-
blem is highly nonlinear and has up to 16 solutions for the 6R manipulator.

The easier and unique problem, the forward kinematics, needs, given the joint variables
6, (i=1..6) and equations (4) or (5), the evaluation of A,, .

3. SOLVING THE INVERSE KINEMATICS OF THE GENERAL 6R MANIPULATOR

The eigenproblem-method is described by the following steps:

[1] Define 14 basic equations: 2 scalar and 4 vector equations.

[2] Replace the vectors in the equations by their matrix representations.

[3] Factor out all the unknowns.

[4] Enlarge the system of equations by 6 more equations.

[5] Eliminate 6,, and 6;.

[6] Derive the generalized eigenproblem.

[7] Take A,,,, as input, solve the generalized eigenproblem = 6, 0,61.
[8] Compute the other unknowns 6%, 6, .

STEP 1: THE 14 BASIC EQUATIONS

To solve the inverse kinematics, at most 6 joint variables must be found. For manipula-
tors with special geometric properties there are closed-form solutions, which can be
derived by algebraic manipulations of equations (4) or (5) (Paul, Zhang 1986). Most of
the industrial robots have special geometries and therefore closed-form solutions.

For manipulators like the general 6R manipulator such solutions don't exist. In these
cases the matrix closure equation (5) has to be enhanced. First (5) may be written as

Aj-A A=A AT AT AT @

Geometrically this corresponds to cut the chain of links at two different joints (Woernle
88). For instance, the chain could be cut at joint 3 and joint 6. Figure 2 verifies that there
are two different subchains to get from joint 3 to joint 6. Clockwise you obtain



18

A, A -A, (the A-chain), counterclockwise A;'-A;'-A;'-A;’ (the B-chain).

Fig. 1. 6R manipulator with its homoge- Fig. 2. Geometric interpretation of eqn.
nous transformations A, AyA A=A AT ATAY

Multiplying the matrix equation (7) by e; and e, on both sides produces
7= AA A, = AJATAT'AV'e, =7, 8)
Pli= AsAAse, = AJATATAle, =ip), )

Some remark on notation. p alone specifies the whole vector-equation p| 4 =p| s P
defines the ih equation. The same is true for future equations of the form ....| aTeed g

;iA and p| are the vectors starting at the origin of the 3rd frame and ending at the origin
of the 6th trame and written in components of the 3rd frame. 7, and 17, describe the z-
axis of the 6th frame written in components of the 3rd frame.

The p,- and z,-equations define the trivial equations 1=1 und 0=0 and are ignored.
More equations are got by applying scalar- and vector-products to the vectors p|
and 7,, 7, The nontrivial results are the two scalar and one vector-equations

(p"p),=("p), O ("2 =p 2], an  exz),=xz), 2

A last relation is obtained by applying scalar- and vector-product as well as addition and
multiplication to the scalar (p*-z K (pT.z , and the vectors o, Bl (p><z)|A, (pxzxﬂz

A? B

{px(ex2)+p-(p" 2)}|, ={px(px2)+p-(p"-2)}|, (13)
The vector-equation (13) has been published by (Lee, Liang 1988) in the form

{(o7-p)-2=206"2)-lf, = {67 -p)- 226" 2) ], 14
Using the identity for double vector products,

ax(bxz)=(a"-z)-b-(a"-b)-z Va,b,z € R® (15)

it can be shown that the equations are equivalent. But for our purpose equation (13) can
be handled easier. At the moment, no more equations have been found which also hold
the condition to be linear in the terms cos#, and sin6,.

The basic equations in a compound form are therefore (see also Lee, Liang 1988)

7,:= A,AAge, = A;IAIIA;IA?es =7, (16)
Plo=AA A, = AJATA'ATe, =p|, (17)
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(0"p), = (p"P), (18)
(p"z), = (p"2), (19)
(px2), =(pxz), (20)
{p x(pxz)+ p(pTz)}L = {p x(pxz)+ p(pTz)}L (1)

STEP 2: REPLACING THE VECTORS BY THEIR ORTHOGONAL MATRIXDEFINITIONS

For the evaluation of the equations (16-21), first, the formal definitions (2) for the homo-
genous matrices A, should be applied and not their component definitions (3). Using (2)
and the relations (22-24), it is easy to simplify the terms in the basic equations (16-21).

VQ,ReR™*: orthogonal A detQ=detR=1, Va,b,zeR*:
(Qa)" - (Qb)=a"> (22) (Qb)x{ax(QRz)]+ (Qb)[a"(QR2)| (24)
(Qa)x(Qb)=Q(axb) (23) + ax[(Qb)x(QRz)]+ a{(Qb)"(QRz)|
= 2{ax{Q{bxRaz]} + a-[bT-Rz]}

On the other hand, begining with the component definitions (3) for the A;-matrices,
trigonometric identities such as

cos’B+sin*B =1

frequently occur and must be eliminated from the equations. Especially the simplifica-
tion of the vector-equation p X (p X z)+ p(p"z) gets very expensive in terms of computer
time (some days on a SUN 4-390 with Mathematica™) and com puter memory.

The relations (22-23) express the fact that the scalar- and vector-products are invariant
with respect to orthogonal transformations. The last relation will only be used for the
evaluation of px(pxz)+p(p'z) and reveals the symmetry of this equation. (24) is
easily proved by application of (22-23) and the identity for double vector products (15).

This way the orthogonal properties of parts of the homogenous matrices A, are used.
The fully worked out equations in orthogonal matrix form are found in Appendix A.

DISCUSSION OF THE EQUATIONS

An analysis of the basic equations (16-21) in orthogonal matrix form reveals some
interesting properties:

a) The endeffector-description A,, , appears only on the right hand side.
b) All the equations are independent of 6.

C) Z;, P3, P Z, P' P, (PX2Z), and {p x(pX1z)+ p(pTz)}3 are independent of 6,.
d) 6,,6,,6,,65 appear only as the linear variables cos6, and sinf; with i€{1,2,4,5},
i.e. never as cos’ ;, sin’ 6, or cos 6, -sin 6,.
©z, z, P P PP Pz x2, @x2,  {px(px2)+p(p"2)},
{p x(pxz)+ p(pTz)}2 are linear in the variable tan(0,/2).
The proof of these properties is very easy, as long the basic equations in orthogonal

matrix form (Appendix A) are used, and is worked out in Appendix B. Other proofs may
be found in (Raghaven, Roth 1990) and (Lee 1990).
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STEP 3: FACTORING OUT THE UNKNOWNS

In order to prepare the later elimination of some unknowns out of the basic equations, all
the unknown terms must be factored out.
The angle 6, will be replaced by its half tangens substitution

2
cos9‘.=1—x"2 , sin@, = 2x‘.2 , x‘.:=tangi (25)
; 1+x, 2
respectively better by the matrix-equivalent
-x; 10 x 10
X;-C,,=X; where Xi= 1 x;0|and X{=| 1-x,0| (26)
001 001

The right hand side terms cos6,, sin6,, cos6, and sin6, are also replaced by their half
tangens substitutions. The basic equations now can be formulated as

ﬁ~{Eé—;}-(1+xf)(1+x§)=vf[5§6—g] U,VeR™8; EpeC’® (7)

_ 1017 5=[x2x2 2 2 2 2 T
é"[s:tss’ S4Cs» CaSss C4Csy 845 Cy S5, Cs, ] » PE[XI X, XXy, X1s X0 X5, X Xp, Xy X5 X, 1

For the determination of all the elements in the matrices U and V without formula-ma-
nipulation-programs, it is usefull to apply the following matrixdefinitions:

, 000 0-10 100
C.i=D,+sD,+cD, [i=4,5] D, =[0 0 o}, D, ={1 0 o], D, ={o 1 0}
X; =D, +xD,; X;=D -xD, [i=3] 01 0 00 000] gy

[ &4

010 1 00
C I={I+x,.2(Du—Dc)+2x,D$} [i=12] D,=[100|D,=[0-10
2 422 001 0 00

After multiplication with (1+x?)(1+x2) to cancel denominators, the elements of the
matrices U and V are easily extracted.
STEP 4: 6 MORE EQUATIONS

Multiplying the 6 scalar equations p,, z,, p'z, p'p, (pxz)s, {px(pxz)+p-(pT~z)}3,
which are independant of 6, with x,:=tan(6,/2), and then adding one of the other 5
equations, results in 6 new equations:

[xz+ps], =[xz +ps], @9  [xp"z+p"p], =[xp"z+p"D], (200)
[x;p; +12, ]|A = [x,p, + z3]|B (29b) [x3(p X1z), +12, ]lA = [x,(p X1Z), + zg]'y (29
[x:0"p+p"z], =[xp"P+p"2]|, (29¢)
[xa{pX(pXZ)+p(pTZ)}3 +p3] = [xg{pX(pXZ)+ p(p"2)}, +p3] @9

The addition of original equations is necessary to get later a full rank eigenproblem.

An inszpection of the combined system of equations (27,29) shows that the terms
DoX7x;, X%, X,x3, Xy, x7x3, x7, x3, 1} are found on both sides of the equations.
Therefore they are collected on the right hand side. Thereby the vector £ is shortened by
the elements {x,,1} and the 20 equations (27,29) can be written as
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U-§-(1+ xlz)(l + x22) =V. l:xaﬁ' P] UeR®, VeR®™, &e@m, ﬁEC9 (30)

T
£E= [x3s4s5,x3s4c5,x3c4s5,x3c4cs,x3s4,x3c4,x3s5,x3cs, s4s5,s4cs,c4s5,c4c5,s4,c4,s5,c5]

T
A 2.2 2 2 2 2
p=[x1x2,x1x2, X, XX5, X\ Xp, Xpy Xy, Xy, l]

STEP 5: ELIMINATION OF 6, AND 6,

There are 16 different terms, which contain 8, and 6, and they only appear in the vec-
tor &. 16 linear independant equations out of the 20 equations (30) are used to eliminate
the vector &-(1+ x7)(1+ xJ) in the other 4 equations: steps (31) through (33):

" 4x16, 16x16
v ]-&-<1+x3)(1+x§>=[¥“]-[x3~'p] Ve s SR s G
4 4

p V4 e RAxIS; V“ ERIGXIS
2 2 -1 X3 f)
E-(1+x )(1+x2)=U16V16{ 5 ] (32)
U, U v, I:xsﬁ' p} =V, |:st p] (33)

STEP 6: 12 MORE EQUATIONS AND THE GENERALIZED EIGENPROBLEM
Now we can derive the generalized eigenproblem. Equations (33) can also be written as

a2 fx P 1« X,P Vi, 1V, € R
U4 ’ U161 [ V16’ 1‘]16] l: ép]=[ V4: IVA]'[ ép:| xV“ IV16 e R4x9
4> 4

Expanding this yields
(UUR) Vi~ V) p+2,((UU) * Vi ="V, )-$=0 GHeR™ (34
G e peC’ x,eC

The essential trick is now to multiply these 4 multivariate polynomial (!) equations by
x,x,, X, and x, respectively to get 12 more independant equations. Using for the
equations (34) the column-representation

[abcdefghj]p+x,[kimnpqrst}p=0  a,bcd.ef,gh,jklmn,pqrsteR* (35)
G H peC’

T
A—|+2,2 2 2 2 2
p—[)c,xz,x1 Xyy X{ s Xy X5, X\ Xpy Xy, X5y Xy, 1]

then the 16 final equations have the form

abc0;def0,ghj0,0000 kImOnpqOirst0/0000
Uabel0aeT 0gh 70000 | | UKk Tm0 npqi0rs€0000| o
V000abc0ide F0ghj 0P| TOUOKImOinpgorsio P~0CO
V000[0abci0deribghy| |V0UVOKImOnpqUrsTE

=G =H

_[,3,3 3,2 .3 31.2.3 2.2 2 2 1.3 2 1.3 u
p—[x1x2’x1x2’xlx2’xl 2 1 Xy X Xy Xg Xy Xy Xy 5 1 X1 X5 X1 Xy, Xy Xg 5 Xy qxz,x22,X2,1] eC’
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But that's nothing else than the Generalized Eigenproblem
| Gp+x,Hp=0 GHeR"" peC x,eC | 1)

In case the matrix H is nonsingular, the generalized eigenproblem may be reduced to the
Standard Eigenproblem

H' G p+x,p=0 (38)

But if the matrix H is ill-conditioned, the original generalized eigenproblem (37) should
be used (Golub, Van Loan 1989, p. 395). Otherwise the results won't be accurate.
Generating new equations by multiplication of existing equations with already appearing
terms, is a standard technique to solve multivariate polynomial systems of equations
(Cox, Little, O'Shea 1991).

STEP 7: SOLVING THE EIGENPROBLEM

The eigenproblem can be solved by standard numerical methods, as for instance the QR-
algorithm for the standard eigenproblem or the QZ-algorithm for the generalized eigen-
problem (Golub, Van Loan 1989).

An alternative approach to determine the generalized eigenvalues would be to calculate
the roots of the characteristic polynomial det(G+x, H)=0. Unfortunately, the accuracy
of the roots is very sensitive to the unavoidable roundoff errors in the polynomial coeffi-
cients (Wilkinson 1969). But, because polynomials and their roots have a unique map-
ping, the polynomials appearing in (Raghaven, Roth 1990) and (Lee 1990) are identical
to the characteristic polynomials det(G+x, H)=0 respectively det(G+x, H)=0.

The generalized eigenproblem G-p+x, H-p=0 has always 16 eigenvalues x¥eC
and eigenvectors p® eC'®. Whereas the cigenvalues x{ are uniquely defined, the
eigenvectors p™ of different eigenvalues x{*' are only uniquely defined with respect to
the direction, but neither with respect to sign nor length. In our context, this problem is
fortunately solved by noting in (36) that the last element p¥ in the kth eigenvector p™
should equal to 1. The following statement reflects this

p®):=p™ o k=1.16 (39)

DETERMINATION OF 6,6, 6

The eigenvectors p™ contain the elements x and x*. Therefore the joint variables

65%,6,6™ can be determined by applying the relation x, =tan(6,/2) to each

eigenvalue x{* and eigenvector p™:

6% = 2arctan x* 1=1,2,3; k=1.16 (40)

STEP 8: COMPUTATION OF 6,6 9
The terms c{:=cos@, s¥:=sinf%, cM:=cosf® and s*:=sin6® appear in the vector
€. Substituting the numerical values into the 4 appropriate equations in (32) we get

6 = Arctan(c®,s®) i=4,5; k=1..16 (41)

fl I

And last, the joint variables 6{ can be determined out of A;A,A,A,AA A,=I.
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DISCUSSION OF THE SOLUTIONS

Each solution with a real eigenvalue represents a realizable manipulator configuration. In
case all the solutions are imaginary, the endeffector cannot reach the specified

joi i ions 6 and 6 have th 1val
pose A,,.q- As soon as two joint variable solutions and 6" have the same real value,
the manipulator is at a singular position (Lee 1990, p. 95).

4. PRISMATIC JOINTS, SPECIAL MANIPULATORS

Only prismatic and revolute joints will be considered. Other lower-pair joints may be
modelled by a combination of these two joint types.

The eigenproblem-method can be extended to prismatic joints using the same arguments
as can be found in (Raghaven, Roth 1990) for the polynomial method. The reason are the
substantially common basic equations (16-21?1.

Replacing in a general 6R manipulator the ith revolute (R) joint by a prismatic (P) joint
does not change the dimension of the corresponding generalized eigenproblem, since the
cos6, and sin8, are simply replaced by d; and d”. On the other hand, if there are more
than one prismatic joint, the dimension n of the generalized eigenproblem reduces to
n=8, 4 or even 2. In this context the following properties are noteworthy

f) z doesn't contain any d;.

g) p, p'z und pxz contain d;, but neither d? nor dd,.

h) p™p and px(pxz)+p(p*z) contain d,, d* and d,d,, but neither d’d, nor d’d}.
Therefore the equation system (30) consists of less unknown terms than in case of a
general 6R manipulator. As a consequence, less equations are needed to eliminate
unknowns and derive a generalized eigenproblem. Appendix C shows the application of
these ideas to a RPRRPR-manipulator.

Manipulators with special geometry can also be reduced to a variant of equations (31)
with less unknown terms, and thus to an eigenproblem with a dimension smaller than 16.

5. EXAMPLE: GENERAL 6R-MANIPULATOR

The following computations have been done with 15-digit arithmetic.
Given a general 6R manipulator, its Denavit-Hartenberg-parameters and the joint
variables 6,,0,,0,, 6,,0,,0, of table 1 (Raghaven, Roth 90):

[link| a | & [deg]| 4, | 6, [deg]|

lsolution k=15 |s01ution k=16 ]

1 {08 20 |09 14 8™ | 13.1097107766116 [ 14.0000000000008
2 112] 31 3.7] 297 O | 50.9925511934656 | 29.7000000000001
3 1033 45 10| -45 0% | -72.0441108063809 | -45.0000000000015
4 | 18] 81 05| 71 0™ | 72.0649090215457 | 70.9999999999993
5106 12 21| -63 0% | -7.19625925238062 | -62.9999999999977
6 | 22] 100 [o063] 10 6% | -37.8522931900531 | 10.0000000000018

[ Error | 1.83047*10° | 1.63307*10°"°]

Table 1 Table 2

Solving the forward kinematics we obtain position and orientation of the endeffector:

0.461639573991742 —0.812962663562557 6.82151837150213
—| 0.876709605247149 0.137616185817978 0.460914366741046 1.4614670400283

A

0.35493747530797

0

0

0

1

hand ™1 (0.324653132880913 —0.876327957516839 —0.355878707125017 5.36950521368663
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Using the eigenproblem-method (standard eigenproblem variant) to solve again the
inverse kinematics yields for {6,,6,,6,,0,,6;,0;} the only two real solutions of table 2.
The error of the solution has been determined by solving the forward kinematics for each
inverse kinematics solution. Then the matrix-2-norm has been applied to the difference
of the exact and the approximated value for A,,,, (Golub, Van Loan p. 58).

6. CONCLUSIONS AND FUTURE WORK

This paper presented a new method to solve the inverse kinematics of nonredundant ma-
nipulators with prismatic and revolute joints and related single-loop mechanisms. The
key idea is to reduce the inverse kinematics problem to a generalized eigenproblem
G-p+A Hp=0 where G,HeR™, peC", AeC, ne{2,4,8,16}. The eigenproblem-method
combines the advantages to determine all the configurations and to deliver numerically
accurate results. It has been shown, by using simple orthogonal-matrix-relations, that the
necessary basic equations may be derived without using formula-manipulation-pro-
grams.

Future work will be done on the optimization and on the automatization of the eigen-
problem-method with a partial implementation on a parallel processor system.
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APPENDIX A: THE BASIC EQUATIONS IN ORTHOGONAL-MATRIX-FORM
With substitutions (42), the definitions (2), and the application of the orthogonal-matrix-
§,:=C, ,C,;=C,,, S;:=C,,,C,, fori=2.7 42)

relations (22-24) to the basic equations (16-21), the following equations in orthogonal
matrix form are obtained

ZIA = C,:5.5:5q¢; = CI,ZSISIS%E = ZIB
C.ats _C;ztzT
pl, = +C, :S,t, - -G8t =p|
A +C,,384Ssts ‘Cr,zsgslTﬁ 8
-C; 2838187t
tot +
t3ts ih
+2t3S,t, Zt%s%tlT M
T 2t,S,S;t; +
+2t5S,Ssts LS A
2tZSZTSIS,t‘ +
T\ = + it = tit, + =(pT
(p p)lA + ZtTSsts Zt;S?.,T + (P p)ls
2t,5;S,t, +
+ tats tit, +
26787t +
, titg +
t35,S:Sce, —tfszsiiszes
T + t4S.S.e -t,S;S,e T
z) = 49594€3 = 19197€;5 -
(p )[A + 1S, —t787e, (p z)lx
T
—tees
C,5(ts XS,SS¢e;) C,5(t, XS,SSe;)

(pxz)|, = | +C,3S4(ts X SsS¢es) | = | +C, 38, (t x SsSe;) | =(p x z)|,
+C, 38,5:(ts X Sqe3) +C, 38,Ss(ts X S¢e;)

{pX(pXZ)+p~(pT’Z)}|A=
C, 3{t;x(t;xS,SsS¢e3)+t;(t1S,S:Sce;)}+

2C, 4 {t; xS, (t,XSsS¢es)+t; (t;S,See;)H+
2C, 5{t3xS,Ss(tsxSees)+t;  (t3Sqe;)H+

CR 2 {t,X(t,XS3STSTe;)+t, (t;S7STSTe, )+
ZCI,z {t, XS; (t, XSITS;es )+t, (thIS;% N+
2C] ,{t,XS78] (t,xSTe;)+t,  (t7STe )+
2C] ,{t,;XS7S7S] (tsxe;)+t, (tTe,))+

C,SeltaX(tyxSsSees)+ to(tTSSeey)i+ | Cu2Sz {tx(t,xSTSTes)+  t;(t{S]STe;)}+
2C, S, {t,xSs(tsxSees)+ t, (tTS,e;)i+ | | 2Cx2S1 {tixST (t,xS7e)+ t;  (t757e3)}+
2C7,S7 {t;XSTS7 (texes)+ t;  (tTey )+

C,3SSs{tsx(tsxSee3)+  ts(tiSee;)} Cr2S3ST{t,X(t,xSTe; )+ t,(tTSTe )3+
2C7 ,S;ST{t, XS] (tsxe, )+ t, (tiey)+
C} 1835187 {teX(tsxe, )+ te(tse,)}

={px(p><l)+P’(PT”)}L
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The regular structure of the equations p'p, px(pxz)+p-(p'-z) should be noted, espe-
cially the t;-terms. E.g. the structure is the same you get by expanding (a+b+c)’:

(a+b+c)?=(a*+2ab+2ac)+(b*+2bc)+(c?)

APPENDIX B: PROOF OF PROPOSITIONS a) - €)

The easiest way to prove the propositions a) through e) is to use the basic equations in
orthogonal-matrix-form (see Appendix A).
Proof a): S, and t, appear only on the right hand side.

Proof b): 6, always appears as Sq-e,. But using the substitutions (42), this can be
reduced to S4-e,=C, (-C, (-¢,=C, ,-e;, which proves the independance of 6,.

Proof ¢): In none of the equations p"z and p”p the orthogonal matrix C,, can be
found. Thus the equations are independant of 8,. In the equations z,, p,,
(px2);, {PX(pxZ)+p-(p’ -2}, the variable 6, always appears as e,-C, ,. But
it can easily be shown that equation ej-C, ;=e; always holds.

Proof d): Each orthogonal matrix S, and C,, appears at most once in each multiple
matrixproduct.

Proof e): This property is a direct consequence of (26).

APPENDIX C: RPRRPR-MANIPULATOR

This section shows how the inverse kinematics of a general RPRRRPR-manipulator can
be reduced to a generalized eigenproblem with dimension 8. It is known that this
manipulator has at most 8 solutions to the inverse kinematic problem.

Only the equations (16,17,19,20), i.e. z, p, pTz, pXxz, are used. The kinematical chain
will be cut as before at the joints 3 and 6. The analogous system of equations of (30) can
be obtained as

U- é . (1 + x12) =V. [:xsﬁ' p:| UERMXG’ VeRldle’ &ECG, ﬁecﬂ (43)

T o 2, 2 T
E=[xys,ds, xcds, xds, s, cods, ], Pz[sa’ Cor Xy, Xi'y Xydy, Xy, d2,1]

Using 6 equations out of the 14 in (43), the unknown vector ﬁ-(l+xl2 ) may be stated as

' 2y _yi-ly | X P . [U¢] v [Ve] Ug € R, U, € RS*¢
E-(1+x2) = UV, [ A ] with U-[UJ, V—[VJ Vie RV cRes @9

and then eliminated out of the remaining 8 equations. One more reformulation yields
(U V="V,) - p+ 2, (U U V=" V,) p =0 GHeR™; peC’ x,eC (45)
=G =A
where Vo=V, 'Ve | Vi=[*V,,'V,] V,, 'V,eR%¢, *V,, 'V,eR>

With G:=G, H:=H, p:=p this is already the generalized eigenproblem with dimension 8
for the RPRRRPR-manipulator.

| Gp+xHp=0 G,HeR™; peC*; x,eC | (46)

In this case the steps analogous to (35,36) are unnecessary.
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Abstract. The tangent-half-angle substitution is commonly used to convert “goniometric’
equations in the sine and cosine of a certain variable 8 into polynomial equations in a new variable
x= tan(9/2). This facilitates the solution of goniometric equations and systems of equations.
Elementary problems conceming the special case tan(x™/7) and the introduction of trivial extrane-
ous roots into systems of equations are well known and can be handled. The article shows that
nontrivial extraneous roots may be generated when a tangent-half-angle substitution for some vari-
able is used to derive a characteristic equation for another variable from a goniometric system of
equations. An effective method is presented to decide before the symbolic solution of a system
whether a tangent-half-angle substitution produces such extraneous roots. The results can also be
used to detect relevant simple subclasses of manipulators in a given superclass when no general
symbolic solution for the superclass is explicitly known.

As an application, it is proven that the Raghavan-Roth algorithm for the symbolic solution of the
inverse kinematics problem never generates these nontrivial extraneous roots.

1 Introduction

The solution of equations and systems of equations containing trigonometric functions in one or
several variables is more difficult than the solution of ordinary polynomial equation(system)s.
Therefore, methods for converting such equations into polynomial equations are desirable. This
article investigates problems of a special conversion method for a special class of goniometric func-
tions, the so-called sine-cosine polynomials or short SC-polynomials. An SC-polynomial g(6) in
some variable 8 is a function of the type
8(6) = ZZ/':O gijstc)  where s and ¢ stand for sin(6) and cos(6) and m € N. )

The coefficients g;; can be arbitrary functions in other variables; in particular, they can be SC-poly-
nomials in other variables.
The most familiar conversion method for SC-polynomials is the so-called tangent-half-angle substi-
tution. It is based on the elementary trigonometric identities

2 tan(9/p) 1 - tan2(9/p)
1+ tan2(9/2) 1+ tanz(e/z)

By application of (2), every SC-polynomial g(68) can be converted into a rational polynomial Z(x) in
anew variable x = tan(8/2). When Z(x) 1s collected over the common denominator, common factors

sin(@) = and cos(9) = forO@£km ke Z . )
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are cancelled and the maximal factor (1 + x2)k in the denominator is eliminated, one obtains an or-

dinary polynomial g(x) in x. g(x) is called the TS-form (“TS” stands for tangent-half-angle substitu-

tion) of g(6) concerning 6. To find the roots 6® of an SC-polynomial g(6) it is sufficient to deter-
mine the roots x() of the corresponding TS-form g(x) because 6 = 2 arctan(x®) for 60) = +7/,.

The conversion into the TS-form poses two well known, elementary problems. One results from

the fact that tan(9/5) is undefined for 6 = +x. This causes problems in reconstructing the roots

6= 1r from g(x). Moreover, it can become difficult to reconstruct other roots, occuring in conjunc-
tion with the root 6 = 1x; see (Lipkin & Duffy, 1985) for a detailed discussion of this problem. In

(Koviécs, 1991), the homogeneous tangent-half-angle susbstitution was introduced which solves

these problems in an elegant, unified way but complicates subsequent calculations with the con-

verted equations.

The actual reason for a conversion to TS-form is not so much the solution of single SC-polynomi-

als but the symbolic solution of systems of equations of SC-polynomials (“SC-equations”). The

second problem is related to this type of systems. The major step in a symbolic solution is to find a

so-called (univariate) characteristic equation for a variable 6, i. e. to eliminate all other variables

from the system until an equation is obtained that contains only the desired variable 8. To find a

characteristic equation for , it may be helpful to bring SC-equations into TS-form with respect to

6. It is obvious that the elimination of the denominator (1 + x2)k during the conversion may prevent

the cancellation of factors (1 + x2) in later steps of the elimination process. Therefore, extraneous

roots x = +1with 1= V-1, may appear in the final characteristic equation for x. This phenomenon,
well known in kinematics, is discussed for example by Raghavan and Roth (1991). Obviously, ex-
traneous factors (1 + x2) can be detected and eliminated easily from characteristic equations.

This article investigates another problem of the tangent-half-angle substitution which is closely re-

lated to the last one. We show that extraneous roots “generated” by a conversion to TS-form with

respect to ; can induce extraneous roots also in the characteristic equations f(6;) = O for variables

6; with i # j. Note that the extraneous roots are generated in f{6)) although their “generator”’, the

variable x;, is eliminated during the solution of the system of equations and does not appear in

(0. In contrast to the second problem mentioned above, this kind of extraneous roots cannot be

detected and eliminated easily anymore. Simultaneous conversions into TS-form for variables

6;, 6j, ... can generate a set of different extraneous roots in the characteristic equation for 6.

The results presented in this article are the following:

. An effective method is developed to decide “in advance”, before a symbolic solution of the
system is known, whether a conversion into TS-form with respect to some variable generates
extraneous roots in a given system of SC-equations (“SC-system”).

. The method can serve as an indicator for certain relevant simplifications during the solution of
SC-systems. They can be detected easily before the system is solved. The simplifications are
independent from the conversion into TS-form - they apply to unconverted systems.

»  The technique permits to identify “in advance” subclasses of a manipulator class that possess
simpler solutions than the general class. Manipulators with simple solutions are relevant for
industrial applications.

2 Extraneous roots and extraneous factors

From now on the problem is discussed from a kinematical viewpoint; see (Paul, 1981) for a com-
prehensive introduction to kinematics. SC-polynomials play a major role in this field. In the sequel
we distinguish in particular between revolute variables 6 and prismatic variables d. If a variable is
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revolute, all equations in the system of kinematics equations are SC-equations with respect to 6.
For a prismatic variable d, all equations are ordinary polynomial equations with respect to d.

In kinematics, we are not so much interested in isolated extraneous roots that occur only at certain
effector poses. Their occurence after a conversion to TS-form is a normal, unavoidable phenome-
non that does not affect the solution of kinematical systems of equations; see (Kovics, 1993).
Much more important are extraneous factors. A (global) extraneous factor in a characteristic equa-
tion f{g) = O for some variable g, which may be revolute or prismatic, is a factor p(q) of f(g) such
that all solutions of p(q) = 0 are extraneous roots. Note that extraneous factors yield extraneous
roots for any given effector pose, reachable or not. The distinction between extraneous roots and
factors is apparently meaningless if all parameters in the system of kinematics equations are set to
numerical values. The method presented here detects both: isolated extraneous roots and extraneous
factors caused by a conversion into TS-form.

2.1 An example
To examine the problem in detail, a kinematical example is investigated. Let

(61,0,0,0) (0, d2, 0, ™/2) (63, d3, a3, a3) (64, d4, a4, 0) (65, 0, as, as) (66, 0, 0, 0) ©)
be the Denavit-Hartenberg specification (see (Paul, 1981)) of a manipulator class with constant d3
and 0y, i. e. the third and fourth joint variable are 63 and d4. As usual, sin(6;), cos(6;), sin(ay)

and cos(ay) are abbreviated by s, ¢;, fj and Aj respectively. The pose parameters, i. . the elements
of the homogeneous 4 x 4 effector matrix T specifying the effector position, are denoted by ;. Let

X=(A3d3+ds), Y=(c4a3+aa+d3u3s4), Z=(c4d3p3-a3s4) @
The following equations can be derived from the system of kinematics equations of (3)
0= n4+13Ws(csZ-s5Y)-AsX)+s6 (111 (A5 (s5Y - 5 2) -us X) +

112 (as+cs5 Y +552)) +c6 (112 (A5 (55 Y - ¢5 2) -u5 X) - 111 (@5 + ¢5 Y + 55 2)) 5
0= ma+13WUs(csZ-s5¥)-A5sX)+ 56 (01 (A5 (s5Y - c52) -us X) +

02 (as+csY+552)) +c6 (1 (A5 (55 Y - ¢52) -5 X) - 121 (a5 + c5 ¥ + 55.2)) ©)
0= (A3 us+ A5 u3(c5c4 - 5554)) (56 131 + €6 132) + U3 (c4 55+ €5 54) (C6 31 - S6 132) +

(A3 A5+ U3 15 (-c5 c4 + 85 54)) 133 @)

Equations (5) and (6) are the first and second “‘positional equation” (“element-equation (1,4) and
(2,4)”) of the homogeneous 4 X 4 kinematic matrix equation

A1 *A2=T*Agl x A5l x A4l + 4371 ®

where the A; are the familiar arm matrices; see (Paul, 1981). (7) is element-equation (3,3) of (8).
Equations (5), (6) and (7) constitute a system of three equations in three variables d4, 65 and 6.
For a first, detailed inspection of the problem, we simplify the manipulator class drastically and set
d3=a3=a3=04=a4=0,a5=1and o5 = atan2(3, 4),i.e. us = 3/5 and A5 = 4/5. In this case,
05 vanishes from (§) and (6), yielding a simple system of two equations in two unknowns d4 and
06. To avoid any distraction and to simplify considerations further, all pose parameters are set to
(arbitrary) numerical values

-100 -5

010 2

00-13 : ©)
0001

Ty =

As a notational simplification we omit the indices of the variables. This transforms (5) and (6) into
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{3/5sd+c-5

0 (10)
s-3/scd+2

0 (11)

Obviously, no direct simplification of this system is possible. Solution of (10) for d and subsequent
substitution into (11) gives

Sc+c2+25+52=0 fors#0. (12)
The last equation can be simplified and yields a characteristic equation of degree 2 after conversion
to TS-form.

Next, we investigate the solution in the case of a tangent-half-angle substitution. The substitution
according to (2) yields for (10) and (11):

6 2
oo+ /54X - OXT
4 + /dx2 6x -0 13)
1+x
.3 3 2
2 /5d+2x+§2+ /5d)x -0 (14)
1+x

No simplification is possible in neither of the equations. An extraneous root is generated when the
denominators (l+x7-) are cleared. Solution of the numerator of (13) for d and substitution into ( 14)
yields forx #0

24+2x+x2+2x343x%4 = (1) (2 +2x+3x2) =0. 15)

(15) contains an extraneous factor and the equation also reveals its origin: it is cancelled, if the
denominator (1+x2) of (14) is not eliminated. This side-effect of a coversion to TS-form is well
known and it is easy to determine the correct characteristic equation in such a case: We only have to
investigate if! x = 1 is a solution of the characteristic equation and if so, divide the equation by the
maximum power of (1+x2). According to (2), x = £t corresponds to a solution 0 at complex
infinity.

A more difficult problem arises if a characteristic equation for another variable is derived after con-
version to TS-form. Let F be the system of equations consisting of the numerators of (13) and
(14). If Fis solved for d instead of 8 we get

-17500 - 607542 + 81d* = (942 - 700) * (9d% +25) = 0. (16)

The factor (942 - 700) yields the correct solutions, corresponding to the two proper solutions of
(10) and (11). The solutions d = i5/3l of (9d2 + 25) = 0 are generated by the “original” extraneous
roots x = 1 of #. This becomes obvious by setting d = +5/31in F because the only solutions of
the resulting two systems in one variable are x = 1. We say that x (or more precisely: the extrane-
ous factor (1 + x2) in (15)) is the generator and (9d2 + 25) in (16) is its conjugate extraneous fac-
tor. Note that the origin of the two solutions d = £5/3t and the fact that they are extrancous cannot
be derived from the characteristic equation (16) alone. The conjugate extraneous factor (942 +25)
in (16) does not appear in a particular, clearly recognizable form like its generator (1 + x2) in equa-
tion (15). In general, generators are always of the form (1 + x2) but the form of their conjugate
extraneous factors is not unique. The latter is determined by the particular system of cquations.
Thus, generators can be identified directly but not their conjugate extraneous factors. To detect
conjugate extraneous roots in the general case, one has to inspect all solution sets (in kinematics: all
Joint configurations) of the system of equations.

1 As mentioned before, ¢ stands for V-1 € C.
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All observed phenomena can obviously occur as well if the system contains no prismatic but only
revolute variables.

It is evident that the symbolic solution of systems of equations usually becomes far more difficult in
the presence of extraneous factors since intermediate and resulting equations are more complicated
and of larger degree than the correct ones. Moreover, it is more difficult to solve the resulting char-
acteristic equations if conjugate extraneous factors are not detected and eliminated because they are
of larger degree. This is particularily important for time critical applications like in robot control
units.

The above problems can even increase. If complicated systems of multivariate SC-equations are to
be solved it may be helpful to carry out simultaneous conversions to TS-form with respect to sev-
eral variables, i. e. the converted system may contain different new variables x; = tan( 6ify).
According to the preceding considerations, a characteristic equation for some variable ¢; may now
contain different extraneous factors which are difficult to identify. Each of these factors corre-
sponds to a solution x; = 1 for some x;. The identification and elimination of these extraneous
factors can require considerable effort, especially in the case of large systems with several formal,
i. e. nonnumerical, parameters. Section 4 gives an example of such a combination of extraneous
factors.

Consequently, it is desirable to decide in advance, before a system is solved symbolically, if a con-
version to TS-form introduces extraneous roots. Before an effective method for the early detection
of extraneous roots is developed we briefly investigate some attempts to circumvent the problem.
First, it may seem that the homogeneous tangent substitution mentioned above can prevent the
generation of extraneous roots but is proven in (Kovdcs, 1991) that this is never the case.
Theoretically, the concept of ideal-quotients can be used to eliminate extraneous factors from an
ideal but unfortunately this does not provide a practical method of solving the problem.

2.2 Real extraneous roots

Equation (16) seems to indicate that conjugate extraneous roots must be complex. This is not true.

The system of equations ®
10s2s51-4¢1d+7=0
45s1d+5¢c1-1=0 a7

s22-5/2s251—s1d =0

is a counter example. When it is converted to TS-form with respect to 8y, extraneous roots are gen-
erated. The resulting univariate characteristic equation for s is

(252-1)2 % (-294 + 49 57 + 674 522 - 100 593 - 196 594 + 16 525 + 16 529) =0 18)

and §7 = 1/2 is the extraneous root conjugated to xj. Thus, extraneous roots in characteristic equa-
tions can even be real.

2.3 Euler substitution

Actually, the problem is not specifically related to the tangent-half-angle substitution. It occurs
whenever a conversion of a system of equations into polynomial form requires the elimination of
non-trivial common denominators. As an example, the Euler substitution is investigated which is
based on the familiar identities
2

sin(6) = 1% 2

2
3 , cos(8) = y o+l

2y

with y = el6. (19)
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Conversion of (10) and (11) and subsequent elimination of common denominators yields
{51-3d+20y-51y2-3dy2 0} )
5+431d-50y+5y2-31dy2=0 |

1}

The resulting univariate characteristic equation for y is

(21-201)y+(-10+41)y2+29y3=0 Q1
and obviously, y = 0 is an extraneous root. The univariate characteristic equation for d is

35001 -2100d- 45 1d2+27 d3=(9d2-700) * 3d-51) =0 22)

and d = 5/31 is the corresponding extraneous root. Thus, a similar effect as in the case of the
conversion to TS-form is encountered. However, the Euler substitution is apparently better suited
for practical purposes: The elementary “original” extraneous factor (y) is linear instead of the
quadratic factor (1 + x2) and is of simpler form! Moreover, the conjugate extraneous roots in other
characteristic equations are also linear as demonstrated by (22). (Kovics, 1993) contains details
about Euler substitutions.

3 Control systems

In this section a method is developed to decide whether a conversion to TS-form generates extrane-
ous roots in a given system of SC-equations.

3.1 Definition and basic properties
Let Fbe a system of SC-equations in variables 6, g1, q2, ... of the type

b

with coefficients gji(q1, g2, ...) that are functions in the remaining variables q1, g2, ... . The task is
to determine if a conversion to TS-form with respect to 0 produces a factor (1 + x2) in the resulting
characteristic equation for x. Such a factor appears if and only if the two values x = +1 lead to
correct solutions of the system for all values of the formal parameters contained in the system. That
means: For x = £t and for any set of real or complex values for the formal parameters there exists a
set of values for the remaining variables q1, g2, ... such that the resulting converted system of equa-
tions is satisfied. In the case of kinematic systems of equations, x = +t must lead to correct solu-
tions for arbitrary real or complex values of the pose parameters #; and of the formal (nonnumeric)
Denavit-Hartenberg parameters (short: DH-parameters).

Before continuing we introduce a normalization for SC-polynomials that was already proposed by
Lipkin and Duffy (1985). This normalization proves to be crucial for the subsequent investigation.
If all occurences of s2 in an SC-polynomial g(6) of type (1) or (23) respectively are replaced by
(1 - ¢2), one obtains an equivalent SC-polynomial 4(6) where s appears only linearly

WO)=1" ) hojd +S*z;'=-(1)h1jcj withne N,n<m 4

iij= 891,928’ =0, meN 23)

and with corresponding coefficients A;; and hop # 0 or A1 -1 # 0. (24) is called the c-s-normalform
of g(8). All SC-polynomials are considered to be in ¢-s-normalform from now on.

The conversion of (24) to TS-form yields!

1 Indices are separated by comma when necessary.
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(271 (hoj (1) + o1 22)) (121 (12T ) + oo (1432 = 0. 25)

To investigate if the system produces the factor (1 + x2) we must set x first to t and subsequently to
-t and inspect the resulting two systems. Each of both substitutions eliminates all but the leading
two summands (with j = n) on the left-hand side of (25), yielding

hon (1 - 2Y* + hy oy (£20 (1 - 271=0. 26)
Thus, after dividing the resulting equations by the common factor 2” one obtains

hon+thip1 =0 forx=1 27

hop-thipq =0  forx=-1 28)

Note that the two coefficients are usually functions 4;j(q1, g2, ...) containing the remaining vari-

ables. Obviously, the two equations are considerably simpler than the original equation (25). The
prior conversion to ¢-s-normalform has contributed significantly to this simplification. The two

equations (27) and (28) are called the positive and negative control equation of (25) with respect to
6. The set of positive control equations of all equations of % constitutes the positive control system

with respect to 0. In the analogous way, the negative control system is formed. A solution of a con-

trol system is a set of values for the “remaining” variables g1, g2, ... such that the control system is
satisfied. If a control system of a system of kinematics equations is solvable for all real and
complex effector poses we say that it is globally solvable. The solutions of the control system must
of course be the conjugate extraneous roots with respect to x; section 3.2 gives an example.

If both control systems of a system of (kinematics) equations with respect to a variable 6 are
globally solvable, x = 1 must be a solution of the converted system for all effector poses.

Therefore, the characteristic equation for x must contain an extraneous factor (1 + x2) and the char-

acteristic equations for the other variables contain conjugate extraneous roots.

If one of the control systems is not globally solvable, then x cannot generate an extraneous factor.

However, if a conversion of # to TS-form was done also for some other variable ; # 0, the uni-

variate characteristic equation for x may contain conjugate extraneous factors which are generated
by the conversion with respect to 6;.

Nonglobal solutions of a control system identify effector poses where the total number of real and
complex joint configurations decreases. Every neighbourhood of such an effector pose contains
correct solutions 6 that are arbitrarily close to complex infinity (without proof).

If all equations in the original system have real coefficients the (global) solvability of one of the two
control systems always implies the solvability of the other; a proof of this statement is contained in
(Kovics, 1993). Systems of kinematics equations always have real coefficients and thus it is suffi-
cient to check only the positive control system.

3.2 The general case of the initial example

As an example, the general, unspecialized system of equations (5), (6) and (7) is investigated. Its
positive control system with respect to 6g is

i +012) (tas-usX+csY-A52) +s5(AsY+12)) =0 29)
(i1 +10) (tas-psX+c5s(1Y-A52) + s5(As Y +12)) =0 (30)
(131+132) (A3 5 + 13 (5 (A5 c4 - 154) - 55 (1 ca + As 54))) =0 31)

This system is globally solvable: The second factor of (31) determines 85 and for any value of s,
the right factor in (30) vanishes by appropriate choice of d4 in X. The right factor in (29) is identical
to the corresponding factor in (30) and vanishes simultaneously. Consequently, a conversion to
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TS-form generates an extraneous factor (1 + xg2) in the system. If the parameters are set to the val-
ues of the example in section 2.1, (29) or (30) yield exactly the conjugate extraneous roots of (16).

3.3 Extraneous roots under equivalent transformations

It is an important fact that the generation of extraneous roots can be prevented in some cases by a
preceding equivalent transformation of the system. This is demonstrated by the trivial example

nmdc2+ny1s+m=0 (32
13dc2+mnc+d=0 (33)

The system ((32) and (33)) leads to a globally solvable control system {z11 d=0, 133 d=0}. If
this system is converted to TS-form, the resulting characteristic equations contain an extraneous
factor. The generation of extraneous roots can be prevented as follows. Prior to the conversion to
TS-form the algebraic combination £33 * (32) - #11 * (33) of the original equations yields

$3315-1022¢+13312-111d=0. (34
One of the two original equations, e. g. (32), may be replaced by (34) without changing the solu-
tion set of the system. If the conversion to TS-form is done after this transformation the control sys-
tem is not globally solvable since the control equation corresponding to (34) is t33#11 L - £11£22 = 0!
The reverse transformation of ((33) and (34)) into ((32) and (33)) demonstrates that equivalent
transformations of the original system can introduce additional extraneous roots into the converted
system! It is obvious that a conversion to c-s-normalform never has this effect.

4 Essential pythagorean simplifications

After having investigated methods to identify extraneous roots we inspect the unconverted system
in case that a conversion generates extraneous roots. First, single equations are investigated. A tan-
gent-half-angle substitution of (12) yields

Sc+2s + c2+52
l l 35)
-5+4x+5x2 (1 +x2)2
pnErA2x+ox= 0 LA X)7
1+ x2 (1 +x2)2

When (35) is collected over the common denominator (1 + x2)2 (i. e. without cancellation in the
second term!), the extraneous factor appears in the numerator. The resulting numerator equals (15)
multiplied by 2. (35) indicates that the occurence of an extraneous factor (1 + x2) in the numerator
(TS-form!) corresponds to the applicability of the pythagorean formula s2 + ¢2 = 1 in the original
SC-polynomial. We investigate the general case. Let

gO=(2+DXb1(6)+by(f), ke N (36)
with some SC-polynomials b1(6) and 2(6) in c-s-normalform. Apparently, g(6) is not in c-s-nor-
malform. The equivalent transformation of g into b) + b is called a pythagorean simplification. We
speak of an essential pythagorean simplification if deg(b1) + 4 x > deg(b2), where the degree
deg(g) of an SC-polynomial g(6) is defined as the total number of roots of g(8) counted with mul-
tiplicityl. Essential pythagorean simplifications are exactly those that eliminate all m+1 leading co-

1 With some practically irrelevant exceptions, deg(g) equals the ordinary polynomial degree of the TS-form
of g with respect to x. For h(6) of (24) it can be shown that deg(g) = 2n.
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efficients g;; in (1), i. e. the coefficients with i + j = m. If such a simplification is possible for cer-
tain parameter values only the degree of the equation apparently decreases for these values.

Let b1 and &) be the TS-forms of b1 and 7. A tangent-half-angle substitution for the right side of
(35) yields

(1 + x2)2¥ bi(% ()

(1+ x2)v (1 +x2)H
Since b1 and b are in c-s-normalform, (25) shows that 57 and b cannot contain a factor (1 + x2).
When (37) is collected over its common denominator without cancellation of common factors the
numerator contains a factor (1 + x2) if and only if (2v =) deg(b1) + 4 x > deg(b2) (= 2u).
Consequently, an extraneous factor (1 + x2) appears in the numerator of (37) if and only if the
original SC-polynomial g(8) permits an essential pythagorean simplification. The extraneous factor
can obviously be cancelled in (37), i. e. it does not appear in the TS-form of g(6).
This has an important practical consequence for the solution of SC-systems: the appearance of the
extraneous factor (1 + x2) in a characteristic equation indicates an essential pythagorean simplifica-
tion at some time during the solution process of the unconverted system. Thus, any symbolic solu-
tion of the system must contain one characteristic equation whose degree decreases!. For manipu-
lators, all prior results show that there is at most one equation of degree greater two in a symbolic
solution. Consequently, the degree of this “complicated” equation must drop due to an essential
pythagorean simplification. Usually, the univariate characteristic equation is affected.
Note that it is impossible to obtain this information with methods that yield (symbolic) solutions
only in case that all formal parameters are set to numerical values.
The above observation is helpful for practical mass examinations of manipulator classes. Assume
that a manipulator class M is investigated and no general symbolic solution for the class is known
but some system of equations is found from which characteristic equations can be derived. The
concept of control systems permits the identification of subclasses of M for which the degree of the
“complicated” characteristic equation decreases. These are the simple subclasses, i. e. the industri-
ally relevant manipulators among the given class. The information is obtained without having to cal-
culate the general symbolic solution of the - perhaps very difficult - system of equations. It is suf-
ficient to determine the values of the DH-parameters for which the control system with respect to
some variable 8 is globally solvable.
As an example we investigate the system ((29), (30), (31)) again. As seen before, there must be an
essential pythagorean simplification due to the extraneous factor generated by xg. Now, simplifica-
tions due to 65 or x5 respectively are investigated. The positive control system with respect to 05 is

withv, te N @3N

(tY-2) (t11 (Asse+ tce) + 12 (A5 c6 - 156) - 45 113)=0 (38)
(tY-2) (121 (Ass6+1ce)+ 122 (A5 c6 - 156) - 5 £23)=0 (39
13 (ca +-154) (A5 (s6 131 + ¢6 132) + 1 (c6 131 - 56 132) - U5 133) =0 (40)

First we note that the variable d4 is not contained in the control system. The system is globally
solvable only if (1 Y - Z) = 0 because the factors of (38) and (39) containing pose parameters cannot
vanish identically for arbitrary T. On the other hand, if (1 ¥ - Z) = 0 then there is always some g
satisfying (40) and thus the system is globally solvable. For real DH-parameters, (1 Y - Z) = 0 is
equivalent to Y = Z = 0. Except from trivial solutions, the last condition is satisfied if and only if

1 A symbolic solution always consist of a sequence of characteristic equations such that the j-th equation
determines the solutions of some variable qij.
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a3 =-c4 a4 and a4 = - d3 u3 / s4. Consequently, an essential pythagorean simplification must be
possible during the derivation of the resulting characteristic equations. Thus we have identified a
simple(r) subclass of the original class having a smaller number of configurations.

Actually, the global solvability of the control system ((38), (39), (40)) for Y = Z = O just reflects
the fact that the variable 65 vanishes from (5) and (6) in this case. The resulting system of two
equations can be solved easily.

The control system ((29), (30), (31)) with respect to 0 was globally solvable without restrictions.
Thus, Y = Z =0 is an example of a case where two essential pythagorean simplifications combine,
i. e. a simultaneous conversion to TS-form with respect to 65 and g generates two extraneous fac-
tors, one by 65 and the other by 8.

Obviously, a drop in the number of solutions of a system of SC-equations must not necessarily be
caused by an essential pythagorean simplification. It can occur as well in the way it does in ordinary
polynomial systems. These “‘ordinary” cases can be investigated with the aid of the familiar homo-
genization of the system. Information about a drop in the number of solutions is obtained by setting
the homogeneous extension to zero. It must also be mentioned that control systems do not indicate
all pythagorean simplifications. The corresponding statement only holds for control equations, but
not for systems. A detailed analysis of the remaining cases is contained in (Kovécs, 1993).

S Application to the Raghavan-Roth algorithm

As a relevant example the universal algorithm for the solution of the inverse kinematics problem by
Raghavan and Roth (1991) (short: RR-algorithm) is investigated. In the following, we use the nota-
tion of Raghavan and Roth and refer to the formulae in their paper by preceding formula-numbers
with “RR”, e. g. (RR-17). The RR-algorithm reduces the solution of the inverse kinematics prob-
lem to the solution of a system of 6 quadratic equations in three variables 83, 84 and 6s. This sys-
tem is solved via a conversion to TS-form for all three variables and a subsequent dialytic elimina-
tion of x4 and x5. Raghavan and Roth prove that a conversion with respect to 83 always generates

an extraneous factor (1+ x32)4 in the characteristic equation for x3. For this reason they do not

eliminate denominators (1+ x32) in all six equations but leave two equations in rational form, i. e.
in the form g (x3) = O of section 1. They prove that the extraneous factor (1+ x32)4 is cancelled in

this way during the dyalitic elimination.

In the light of the preceding sections it is natural to ask whether the conversion with respect to 64
(or 65) generates nontrivial conjugate extrancous factors in the characteristic equation for x3. Since
the RR-algorithm produces at most a 16-th degree polynomial in x3 it is obvious that conjugate
extraneous factors cannot appear in the case of manipulators with 16-th degree characteristic equa-
tions. Thus, the question is whether special manipulator geometries with lower degree characteristic
equations exist where the algorithm produces nontrivial extraneous factors.

The naive approach to this problem would try to proceed as follows: Calculate the symbolic solu-
tion for the completely general case where all DH- and pose parameters are formal (unspecialized)
parameters, inspect the characteristic equations for x4 and xs (after having determined x3) and try to

determine DH-parameters such that one of these equations contains solutions x; = 1 for all effector
poses. The last step is difficult enough, but the naive approach already fails because of the first
step. It is virtually impossible to explicitly obtain the characteristic equations for completely general
formal parameters with the RR-algorithm (or in any other known way) due to the extreme complex -
ity of the necessary calculations in this case. Thus, the concepts developed above are the only
means to investigate the problem.
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The system of the original six equations (RR-17) consists of two extremely complex equations
(equations A and B of appendix 2 in! (Raghavan & Roth, 1991)) and four comparatively simple
equations (RR-26). The control system of the original six equations (RR-17) still is very complex.
It contains two remaining variables 63 and 65. No pair of control equations contain a common
factor which is free of pose parameters as in (29) and (30). Consequently, two of the six control
equations determine values of 83 and 65 and the other four equations must hold for all these values.
We assume first that A and B determine 83 and 8s. This is the most difficult case. The four remain-
ing equations (RR-26) are obtained from a system of six quadratic equations in 6y, 83, 64 and 05
by using two of the six equations to eliminate 81. We investigate this system in detail. The equa-
tions are denoted 13,p3, p - p.p - [, @x D)3, ((p - p)T-@2p - T)p )3 in the original article. For
the sake of simplicity we denote these equations by E] to Eg in the sequence given above. The left-
and right-hand sides of E; are L; and R;, i. e. E; is of the form L; = R;. Without loss of generality it
can be assumed that d] = dg = ag = 0 = 0 because the corresponding constant elementary transfor-
mations of the kinematic matrix equation can always be “multiplied into the effector matrix T,
yielding a constant, linear, invertible transformation of 7. All six equations E; are of the form

up1® cq + u10® 54+ ugo® = vy1 D ¢y +v1gD sy | ie {1,..6) @1
where 101 and 110 are functions of 63, 65 and of the Denavit-Hartenberg- but not of the pose
parameters. The coefficients upo(®) depend on all variables and parameters including the pose pa-
rameters. vg1® and v1o® are variable-free expressions in ay, A1, i1 and the pose parameters. The
RR-algorithm leaves open which equations to use for the elimination of 8;. We select Eq and Ej,
i. e. I3 and p3 for this purpose because their right sides have a simple structure. The solution of Eq
and E» for 6y yields

5= L113-Ly 14 o= Lin3-Lytia for 11 0 @)

M1 (114 123 - 113 124) M1 (114 123 - 113 124)

When all occurences of 51 and ¢ in R3, ... Rg are replaced by (42) one obtains four new equations
of the form

Li=w1OD Ly +w)® Lyforie {3, .., 6) @3)
with variable-free expressions w1(®) and wy() containing a1, A1, 111 and the pose parameters.
These are the four equations of (RR-26). According to (41) the control equation of (43) is

up1D + u10@ 1=w1O L' +wy®D Ly ie (3,..,6) “44)
with L1' = (o1 (D + w19 1) and Ly' = (up1@ + u10® 1). L1’ and Ly’ and the left-hand side of
(44) are free of pose parameters. To be globally solvable the right side must also be free of pose pa-

rameters. The only possibility to achieve this is to select DH-parameters such that L1' = L' = 0. To
find appropriate sets of parameters we investigate L)' and Ly'. Let r = (c3 A3 tp + A2 u3) and let

U=(ss, tcs, 55, ¢5, 1, 1) 45)
Vi=(s3as5A4 1, ras, ras A4, s3asu, raq+s3ds 1 fia, $3a4 1 - r ds j14) (46)
Vo=(rps, s34 a2 us, s34 [s, -r A4 s, s3As 2 pa, -r As jg) . @7

The V; terms consist of the first six elements of the rows corresponding to /3 and p3 of the matrix P
in (RR-16). In accordance with (RR-13) and (RR-14), L1'=V] * U and Lp' = V3 * U. To be
identical zero, all components of V1 and V2 must be zero. Figure 1 depicts all different possibilities
to achieve this. A complete directed path in the figure defines a sequence of conditions yielding
Ly'=Lyp'=0. The label (i, j) indicates that the following condition(s) or alternatives, respectively,

1 These two equations contain minor printing errors.
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Figure 1

originate from the j-th component of V;. We restrict considerations to non-degenerated manipu-
lators. This rules out both paths with a4 = 0 and the only remaining case is 0 = o3 = 0. This im-
plies a2 # 0 # a3 because the class would be degenerated otherwise. The control equations of E3
and E4 can also be written in the form V; * U =0 fori e (3, 4}. Now, a similar investigation as
above leads directly, without any alternative, to the conditions oy = a4 = a5 = a5 = 0 (components
(3,2), (4,1), (4,6) and (3,5) of V3 and V4). The resulting manipulator class is degenerated.

Even in the degenerated case extraneous factors can be prevented completely. If we eliminate 6 not
from E1 and E7 as in (42) but from £3 and E4 a similar investigation shows that the resulting sys-
tem of six equations is free of extraneous factors for this manipulator class.

It only remains to inspect the second case of the initial alternative, i. e. we assume now that at most
one of the equations A and B is used for the determination of 63 and 6s. In this case the control
equation of the unused equation is globally solvable only if four complicated expressions that are
free of pose parameters (the left-hand sides of the control equations of /1, /2, p1, p2 in (Raghavan
& Roth, 1991)) are constantly zero. This very restrictive case can be ruled out with the same meth-
ods as above. Thus we have shown that a coversion to TS-form with respect to 64 of the system
(RR-17) does not generate extraneous factors. Due to the structure of the original system (RR-17) it
can be expected that x5 cannot generate extraneous roots either. This was not checked explicitly yet.

6 Conclusions

We have investigated effects of a tangent-half-angle substituion on the solution of systems of SC-
equations. It was demonstrated that a tangent-half-angle substituion and subsequent elimination of
common denominators (“TS-form”) can introduce nontrivial extraneous roots into SC-systems. A
simple kinematical example showed how these extraneous roots can combine in resulting character-
istic equations. An elementary but effective technique was presented that permits the determination
of extraneous roots which are generated by a conversion to TS-form. This information can be
obtained prior to the solution of the original SC-system. The concept of control systems can be
used to determine certain simple, industrially relevant subclasses of a given manipulator class with-
out knowing a symbolic solution for this class.

The results were applied to the Raghavan-Roth algorithm and it was proven that the generation of
nontrivial extraneous roots by x4 can be prevented in all cases. The example demonstrated how the
use of control systems reduces the investigation of extraneous factors and essential pythagorean
simplifications in very complicated systems of SC-equations to remarkable simplicity. An important
means to reduce the complexity further was to delay the evaluation of the concrete equations as long
as possible and to inspect only their abstract structure instead; see equations (41), (43) and (44).
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RESULTANT METHODS FOR THE
INVERSE KINEMATICS PROBLEM
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Abstract. We closely reconsider the mathematical tools needed for the solution
of the inverse kinematics problem for 6 R series manipulators by resultant methods.
We discuss the reduction of the original problem, the homogenization of the reduced
equations, and several approaches for the application of resultant methods.

1. Introduction

In recent years the application of resultant methods (dyalitic elimination) to the inverse
kinematics problem of 6-degrees-of-freedom robots with 6 revolute joints gave interest-
ing results. In particular for robots of general geometry Lee & Liang (1988a, 1988b) and
Raghavan & Roth (1990) demonstrated that there is a univariate trigonometric polyno-
mial of degree 16 in one of the joint angles, which determines all solutions of the inverse
kinematics problem.

Failures of the methods when applied to some robots of special geometry make it
necessary to reconsider their mathematical foundations, and to make an in depth analysis
of their limitations and their range of applicability.

While we develop the material we will closely follow the paper of Raghavan & Roth
(1990). Their paper contains two main results. From the closure equations they derive a
system of 6 equations multilinear in three angles. By resultant methods they determine a
univariate polynomial of degree 16 in one angle from this system.

First we show that the first 4 of the 6 equations given by Raghavan & Roth are uniquely
extensible to a system equivalent to the closure equations (in mathematical terms they
generate an elimination ideal).

Resultant methods intrinsically work with homogeneous equations only. Thus we dis-
cuss the relations between affine systems of equations and homogeneous systems. In
particular we apply these considerations to trigonometric polynomials. In this context we
reconsider the homogeneous substitution by the tangent of the half angle. This substitu-
tion allows us to eliminate the algebraic dependencies between sine and cosine.

The central part of the article will be a review of resultant methods and their limita-
tions.

In the Jast section we apply our theory to the inverse kinematics problem. We consider
robots of general and special geometry. We give examples which demonstrate some of the
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difficulties encountered. In particular we discuss an approach for handling systems with
an infinite number of solutions at infinity. Finally we state some open problems.

2. Notation

We use the notation of Tsai & Morgan (1985) and Raghavan & Roth (1990) throughout
this article. We describe the links of an 6R series manipulator by homogeneous 4 X 4
transformation matrices A; relating the coordinate system of the (i + 1)t link to that of
the ith link.

A; = Rot,(6;) Trans,(d;) Trans,(a;) Rot,(e;) (2.1)

with the translation and rotation matrices defined by

¢ -s 0 0 1 00 0
Rot,(6;) = (0 a9 g) Trans,(d;) = (g 0y 2)
10 000 Oa. \ ? 00 001 0 (22)
Trans,(a;) = (g (1] (1) g Rot,(a;) = (g 2: _;:.i g)
00 0 1 0 0 o0 1
where
¢; = cos(6;) s; = sin(6;) A = cos(ay) Hi = sin(a;). (2.3)
The closure equation for the 6 R manipulator is the matrix equation
Iz mz nz pz
A1A2A3A4A5A6:AH:(§3 Y T gg). (2.4)
0o 0o 0 1

The inverse kinematics problem consists in solving these 12 scalar equations for the vari-
ables 6,,...,6s.

3. Reduction to 4 equations in 3 variables

From these 12 equations (2.4) in 6y, ..., 60s, which constitute the inverse kinematics prob-
lem, we will construct a system of 4 equations in 83, 84, 05, which may be uniquely extended
to a system equivalent to the closure equations. This is to say that every solution of the
inverse kinematics problem solves these 4 equations. And each solution (65, 84, 85) of these
4 equations may be uniquely extended to a solution of the original system. Furthermore,
we get two additional equations of the same form, such that for robots of general geome-
try these 6 equations are linearly independent. Naturally, these two additional equations,
though linearly independent, are algebraically dependent on the first 4 equations. The 6
equations were already given by Raghavan & Roth (1990). The proof that the first 4 of
them may-be uniquely extended to a system equivalent to the closure equations seems to
be new.

Splitting up the matrix A, we may equivalently write the closure equation (2.4) in the
following form: .

Trans,(d;)Trans,(a;)Rot,(a2)AzA4As = Rot; '(8,)AT Ay Ag? (3.1)
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Let I be the third column of these matrix equations, p the fourth:
h=0 p=p (3.2)

Both vector equations are independent of 5. Kovics & Hommel (1990) proved that this
system of 6 scalar equations in the 5 variables 6i,...,60; may be uniquely extended to a
system equivalent to the closure equations.

The next step is the elimination of #;. We may hope that invariants under the rotation
group built from [ and 7 do not depend on some angles at all or have a polynomial
dependence on ¢; and S of low degree. The invariants are scalar and cross products of our
vectors. We consider I and p of the first degree, " p, p- ['and P 5x I of the second degree and
the difference (p'- p’)l - 2(p- l)p of the third degree in p and [. The system of 6 equations
formed by the scalar equations and the third components of the vector equations, that is

ls ps 77 -0 (FxDs (79— 25 Dp)ss (3.3)

is free of 6; and does not have higher degree with respect to the other variables than
the equations [ and p. In particular the equations are linear with respect to ¢ and s;
(Raghavan & Roth 1990). The 5 equations I3, ps, - P, P - I, (5 x l)3 may be uniquely
extended to a system equivalent to the vector equations ['and 7 (Kovacs & Hommel 1990),
provided p-p— p% # 0 or Ii- I2 # 0. The second condition is equivalent to I3 # 1.
Thus the last equation ((7- )i — 2(F- [)f)s of the system (3.3) is algebraically dependent
on the first 5 equations.
The right-hand sides of some of these 6 equations (3.3) are

pa: (st = ge) + Au(r — dy) (3.4)
nz:  p(usy —ve) + Aw (3.5)
p-p: —2a,(gs; + pe)) +p° + ¢ +r* +af + di — 2rd, (3.6)
7L —ai(vs; + uer) + pu + qv + rw — dyw. (3.7)

The constants p, ¢, 7, and u, v, w depeﬂd on the geometry of the robot and the hand
matrix only (Raghavan & Roth 1990). Given these 6 equations (3.3) linear in ¢; and s,
we may eliminate ¢; and s; by Gaussian elimination. This gives 4 equations in 65, 8,,05:

fg(03,04,05) = 0, 1= 1, .. .,4 (38)

Given a solution to the equations (3.8) and provided that y; # 0 or a; # 0 and pu—qv # 0,
we are able to determine ¢; and s; uniquely by linear equations. But we have to check
that the condition ¢? +s? = 1 is satisfied. To prove that this is always the case, we observe
that there is the following algebraic relation between the 6 equations (3.3).

(717 + G x 17 + [(7- ) - 25 D3] s = (- 5) - p3) = 0 (39)

The left-hand sides of the equations (3.3) satisfy this relation identically in 63, 6,,65. The
right-hand sides (assuming no relation between ¢; and s;) give

(F+s;-1)(i(P* + ¢ + (7 — d1)* = (up + vg + w(r — dy)*) + ai(v® +v°)) = 0 (3.10)
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For most positions and orientations of the hand matrix, the second factor is not 0. So the
first factor must be 0, giving the needed relation.

We have shown that the 4 equations (3.8) may be uniquely extended to a system
equivalent to the inverse kinematics problem. Any solution of these 4 equations may
be uniquely extended to a solution of the inverse kinematics problem. And this gives all
solutions. Because the sines and cosines of the remaining variables 6,, 6,, §s are determined
by linear equations, we further note, that any real solution of the 4 equations will extend
to a real solution of the inverse kinematics problem.

These 4 equations will be multilinear in the variable sets S; = {¢;, s;}, ¢ = 3,4,5 as
shown by Raghavan & Roth (1990). Thus they will have a total degree of 3. From the 8
unused components of the vector equations we may derive 2 additional equations of the
same form.

fi(85,04,05) = 0, i=5,6 (3.11)

These are necessarily algebraically dependent on the equations (3.8). But for a robot of
general geometry the six polynomials are linearly independent.

4. Homogenization

Solutions of the equations (3.8) and (3.11) may be calculated by several methods. (Multi-
variate) resultant methods may be applied to homogeneous polynomials only. So it seems
necessary to recall some results on the connection between affine and homogeneous ideals
and the connection between the solutions of affine and the corresponding homogeneous
equations. Proofs and further background can be found in Macaulay (1916), Zariski &
Samuel (1958), Renschuch (1976), and Moller & Mora (1984).

First we define the operator ® which maps polynomials to homogeneous polynomials
and the inverse operator ®. Let K be a field.

" : I([xh N -azn] - If[(l)o, i 'azn] hf = zgeg(f)f(zl/zm N .,12,,/1,‘0) (41)
¢ K[z, ... xn] = K[z1,...,2,) F=F(1,z1,...,2,) (4.2)

We note the following properties:
o hf=f
o if F is homogeneous and F = z{G,G ¢ (o), that is, o does not divide G, then
*F=2Gand ™F =G.

Next we extend these operators to ideals. For the ideal I C K{z,,...,z,] define *I =
(*f | f € I). Note that the set {*f | f € I} is not an ideal. If the ideal I is given by
a basis, that is I = (fi,..., f,), we define *I = (*f,,...,"f.). *I depends on the basis
chosen. Given an affine system of polynomial equations f; = 0, ¢ = 1,...,r, we will call
hf, =0, 4=1,...,r the homogenized system of equations. This relation corresponds to
the relation between I and *I. We note some properties:

o The operator * maps the polynomials of I of degree less than or equal to d bijectively
onto the polynomials of "I of degree d.

o fel => Jtsuch thatzi?fe"I
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o *IChI

o Fe*] = *Fel

o Ml :(zy)="1

o *I:(zg)="1 = *I="I

o A basis (fi,...,f.) of I is an H-basis for I,iff Vf € I,3g;,¢=1,...,r such that f =
S g:f; with deg(f) = max;<;<-(deg(g:fi)). Let I be given by an H-basis, then
[ ="

The zero set V of an ideal I C K[z,,...,2,] is

V(1) = {(a1,...,a,) € K" | f(a1,...,a,) =0, Vf € I}. (4.3)

For homogeneous polynomials F(aq,...,a,) = 0 implies F(Aao,...,Aa,) = 0, A € K.
For homogeneous ideals J we identify these points with each other and count a complete
solution ray as one point in projective space, that is V(J) C Pg. If the zero set V(I)
consists of a finite number of points only, there is a bijection between these points and
points of V(*I). The inclusion *I C *I implies the reverse inclusion for the zero sets of
the ideals. The zero set of *I may be bigger than the zero set of I; that is, it may contain
additional points, which are called points at infinity. Depending on the basis given, the
zero set V(*I) may have no, finitely many, or infinitely many additional points at infinity.

In the context of affine or homogeneous systems of equations, the zero sets V(I) and
V(*I) of the ideals I and *I generated by the polynomials in the equations correspond to
the solutions of the equations. The additional points at infinity in V(*I) correspond to
solutions at infinity of the homogenized equations.

Given an affine ideal I by its basis (fi,..., f,), we would like to work with the homo-
geneous ideal *I. But this requires the construction of an H-basis of I, which is a difficult
task. It will be important to find as many linearly independent elements of low degree in
the ideal I as possible. We must certainly avoid the case of infinitely many solutions at
infinity, because this will completely break resultant methods.

5. Trigonometric Ideals

We will apply the considerations of the last section to trigonometric polynomials and
trigonometric ideals. Let us assume that the ¢;,s;, ¢ = 1,...,n are indeterminates. Let
T = (ct+s?-1,i=1,...,n). Wewill call an ideal I C K[cy, $1, ..., Cn, S5] @ trigonometric
ideal if I C T'. Equivalently we may work with I/T C K[cy,81,...,¢n,8a]/T.

We homogenize trigonometric polynomials in the following way:

M K[er,815x s CnySn] = K[C1,815 21, -y Cny Sny Zn] (5.1)
degc,,s,1(f
fler, $15- -y Cny8n) — zleg( e () --‘z,‘feg“m'n’(f)f(cl/zl,sl/zl, ceesCn/Zny Sn/2n)

The well known homogeneous substitution by the tangent of the half angle is the
ring homomorphism t1;5 : K[e1, 81,21, ..,y 8ny20] — K[ui,v1,. .., un,v,), defined by
the images of the generators

2 2 2, 2
¢ U] — v 8; V> 2u;v; zi— ul + vl (5.2)



46

The kernel of the homomorphism is 7. The image is generated by (u?, u;v;,v?, i =
1,...,n). That is, the image is the tensor product @7_; &3, K [u;, v;]24. K[u;, v;]a denotes
the K-module of homogeneous polynomials in u; and v; of degree d.

The image of t,; is isomorphic to K[ey, s1,21,. .., Ca, Sn, 2,)/™T, the ring of homog-
enized trigonometric polynomials in n angles, by the Isomorphism Theorem. We define
the inverse mapping @™, ®% o K [ui, vilaa — K[c1,81,21,+ - Cny 8,y 2a] /T by the images

2 2
of u?, u;v;, v

we (zi46)/2 vie (z—a)/2 w82 (5.3)

This definition of the inverse map immediately results in a simple algorithm for the con-
version of trigonometric polynomials in the form f(u,v) to the standard form f(c,s). For
example write the polynomial

f = au® + buPv + cu®v? + duv® + ev? (5.4)

in the form
£ = a(u?)? + b(u?)(uv) + e(u?)(v?) + d(uv)(v?) + e(v?)% (5.5)
Use the substitutions (5.3) and set z to 1.

ExaMPLE 5.1. The system of two linear trigonometric equations

() (2) (&) -

may be solved in the following ways:

o Grébner basis method: Add the equation ¢? + s> — 1 = 0 to the scalar equations
given and calculate a Grébner basis with respect to a lexicographic variable order.

o direct method: Assume that the coefficient matrix of ¢ and s is invertible. Write

() (k) (&) e

This allows us to calculate the solutions, provided c® + s> — 1 = 0, that is

(b1d2 - bgd])2 + (a1d2 - a2d1)2 = (albg - a2b1)2 (58)

o resultant method: Map the equations to
((1,; + d,‘)uz + Qb,-uv + (d, - a,')’l)2 = 0, 1= 1, 2, (59)

and calculate the resultant of these equations. The vanishing of the resultant is
necessary and sufficient for the existence of solutions. The condition is the same as
the condition (5.8).

It is obvious that the Grébner basis and the resultant approaches are valid even for non-
linear systems of equations.
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6. Resultant Methods

In this section we will develop a criterion for the non-ezistence of solutions of polynomial
equation systems. That this is a reasonable approach will become clear as we proceed.
Consider the ideal I C K[z,,...,z,], which is generated by fi,..., f,.

I={f|f= Zr:gifu gi € K[zy,...,z,]} (6.1)

Now a special version of Hilbert’s zeros theorem states that 1 € I & V(I) = 0. So if it is
possible to write 1 = Y"I_, ¢; f; with appropriate g; € K[z1,...,z,], the equations

fi=0, i=1,...,r (6.2)

do not have any solutions. Let d; = deg(f;). Given D € N, consider the set Sp of
polynomials f € I of the form f = YI_, ¢;f; with deg(g;) < D —d;. If 1is in the set Sp,
1isin I and V(I) is empty.

We may view the set Sp as the image of the map

Op : K[zy,...,z,]" = Klz1,...,2,) (gl,...,gr)r—»Zgif,-. (6.3)
i=1

This map is linear in the coefficients of the g;. The image Sp is a subspace of the I-vector
space with a basis which consists of all monomials of degree < D.

We have thus reduced our nonlinear problem to a linear algebraic problem. If 1 is in
the image of the linear map ®p, the equations (6.2) do not have solutions. We will further
simplify our criterion. If the map ®p is onto, 1 is certainly in the image, and there are no
solutions.

The surjectivity of the linear map ®p described by an n x m matrix ¢ may be checked
by the following methods: Assume that n = m; then ® is onto if and only if det(®) # 0.
If the dimensions do not agree, the surjectivity may be verified by a method suggested by
Cayley (1848). For a modern treatment see Gelfand et al. (1992). Another method is the
calculation of the gcd of the maximal minors of ® (Macaulay (1902, 1916, 1921)). The
equivalence of the methods is shown in Kapranov et al. (1992).

We have shown that the surjectivity of ®p is sufficient, that our equations do not have
solutions. But it is not necessary.

What else is needed for a necessary condition? The first problem is the degree bound
D. Given d and 1 ¢ S;, maybe 1 € 54,17 Let us assume that the f; are ordered in
such a way that d; > dy > ... 2> d,. Ur<n+4+lsetd;=1fori=r+1,...,n+1.
Let D' = """ d; — . Under appropriate conditions, in particular that the homogenized
system has only a finite number of solutions, Lazard (1981) shows, that 1 ¢ Sp/ implies
1¢S5y, d> D'. For our applications this a priori bound will prove to be too high to be
useful.

The second problem is that we test for surjectivity and not if 1 is in the image of the
map ®p. If the map is not onto, we cannot be sure which monomial(s) is(are) not in
the image. A closer inspection shows, that the absence of an arbitrary monomial in the
image is a criterion for a solution of the homogenized equations. Thus, resultant methods
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give criteria for the existence or nonexistence of solutions for systems of homogeneous
equations only. When applied to affine systems the methods treat solutions at infinity on
equal footing with ordinary solutions.
We will use these considerations in the following context. Given a system of affine
equations
filzy, .. Tp), i=1,...,r (6.4)

with a finite number of solutions (ay;,..., @), ¢ = 1,...,1. If we specialize the indeter-
minate z; to ¢ € K, the system

file,zay ... 2y,), t=1,...,r (6.5)

has solutions if and only if ¢ € {ay; | 1 = 1,...,I}. We may consider z, as a parameter
and determine if the resulting system has no solutions. A sufficient condition, that no
solutions exist is the surjectivity of the linear map ®p, which is now parametrized by z;.

The importance of the surjectivity tests described above is that they still work, when
the linear map is parametrized. Both tests give a polynomial R in the parameter z;. The
map as a function of z; is onto if and only if R(z,) # 0.

For all specializations of the parameter ¢ with R(c) # 0, the map is surjective and
there are no solutions. Only if R(¢) = 0 there may be solutions of our system (6.4). We
may factor R into irreducible components over K. All roots of an irreducible factor are
algebraically equivalent. Each irreducible factor of R corresponds to

o solutions of the affine system (6.4),

o solutions at infinity, that is, solutions of the homogenized system not present in the
affine system,

o or to an artefact, because the degree D, up to which we considered polynomials in
our ideal, was too low.

If the homogenized system has an infinite number of solutions at infinity, R will be iden-
tically 0. And the methods discussed so far will fail.

7. Inverse Kinematics Problem

In section 3 we reduced the inverse kinematics problem to a system of four equations (3.8)
in 65, 604,0s. Our aim is to apply the resultant methods developed in the last section. This
will necessitate the homogenization of the equations. The two additional equations (3.11),
which in general are linearly independent will help us to avoid some zeros at infinity.

We treat the angle 63 as a parameter. Thus the result of our resultant methods will
be a trigonometric polynomial in 6.

We call robots without algebraic relations between the Denavit-Hartenberg parameters
robots of general geometry. Note, that this definition is different from the one given in
Mavroidis & Roth (1992). If there are algebraic relations, we call the robot a robot of
special geometry. In particular, a robot with rational values for some of the parameters is
a robot of special geometry, because there will be linear equations for these parameters.
For example if d3 = 5, there will be the equation d3 — 5 = 0.
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7.1. Robots of General Geometry. For robots of general geometry the 6 equations
(3.8) and (3.11) are linearly independent. They are still linearly independent when viewed
as polynomials in 84,85 with coefficients which are trigonometric polynomials in 6;5. The
equations are linear in the 9 monomials c4cs5, ¢485, S4C5, 485, C4, S4, C5, S5, and 1.

Let us homogenize these equations with one additional variable z. Multiply each of
the six equations by ¢4, s4 and z. Using the relation s> = 2? — ¢? we get 18 equations
in the 15 monomials cZcs, €255, c484Cs, CaS4Ss, €22, CaS4Z, C4C52, €4S52, S4C52, 84852, €427,
s42%, ¢522, 8522, and 2°.

It is not correct to choose 15 equations which are linearly independent out of these 18,
because the determintant of this system will have extraneous factors. But we may apply
Cayley’s method to the 18 equations. The result is a trigonometric polynomial in 65 of
degree 16.

Raghavan & Roth (1990) homogenize the angles 8, and 65 separately and apply the
ring homomorphism t;,,. Then they set v4 and vs to 1. In principle this may generate
singularities not present in the original equations. In practice, because they use the re-
sulting equations as the input to a resultant method, they implicitly continue to use the
homogeneous form of the equations anyway. In the following we will not set vy and vs to
1. The result of the transformations is a system of 6 equations in the 9 monomials ujuZ,
ulusvs, UI0Z, UsV UL, UgV4UsVs, UgVaVE, VIUZ, VIUsvs, and vIvE.

Multiplying these equations by us and vs gives 12 equations in the 12 monomials
wiu?, udusvs, uivd, ulvgul, ulvgusvs, uivgvl, ugviu?, ugviusvs, ugvivg, viul, viusvs, and
v3vZ. These 12 equations are linearly independent for robots of general geometry. The
determinant of these equations is a trigonometric polynomial in 83 of degree 16.

7.2. Robots of Special Geometry. For robots of special geometry the methods just
described may not work. Equations linearly independent for robots of general geometry
may become linearly dependent.

Systems with an equation in one angle or systems with two equations in two angles
only should be handled separately. In these cases there usually exist some additional
polynomials of low degree in the ideal linearly independent of the ones given. If we
homogenize the equations, this will lead to solutions at infinity. In the worst case there
may be an infinite number of solutions at infinity, rendering our resultant methods useless.
Besides, a direct treatment of such simple cases is much more efficient.

If we still want to use the second method, that is homogenizing the angular variables
separately, we must consider the case that an equation does not depend on an angle at
all, say 6;. So the homogenized form of this equation is of degree 0 in the homogeneous
variables u; and v;. Multiplying the equation by u?, w;v;, and v?, we get 3 equations
homogeneous of degree 2, which we all need to consider. It is not sufficient to multiply
the original equation by u? + v? only, as this may add solutions at infinity.

7.3. Examples.
EXAMPLE 7.1. Let us consider a robot given by the Denavit-Hartenberg parameters
(017 07 ay, al)v (027 d27 07 a2)7 (037 d37 as, a3)7 (947 d47 07 77/2)7 (057 07 07 7['/2)7 (067 07 07 0) (71)

and a; = 5,A = 3/5,p1 = 4/5,dy = 3,0y = 5/13,pp = 12/13,d3 = T,a3 = 11, )3 =
4/5, 15 = 3/5,ds = 13.
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The six equations (3.8) and (3.11) considered as polynomials in 64,85 contain the four
monomials c48s, 8485, €5, and 1 only. If we homogenize each angular variable separately, the
resulting system of equations does not have a finite number of solutions. If we homogenize
with one variable z only, we may directly apply the resultant methods to the six equations
in the 4 monomials c4s5, s48s5, ¢5z, and z2. The result is a fourth degree univariate
polynomial in 85 without extraneous factors. If we had taken the first four equations (3.8)
only, which are sufficient to eliminate the four monomials, the result for 85 would have
developed an additional factor of degree 4, which does not correspond to any solutions of
the affine system.

ExaMpLE 7.2. This example demonstrates, that for some robots it is not sufficient to
consider polynomials of degree 3 in w4 and vy and of degree 2 in us and vs.

(0]1 07 Oa al)v (027_(1‘27 ag, a2)7 (037 d37 01 7{'/2), (047 Oa Oa ”/2)7 (051 d57 a53 a5)7 (067 03 03 O) (72)

with A, = 3/5, 1, = 4/5,dy = 5,05 = 3,Ay = 5/13, 4y = 12/13,ds = 7,d5 = 11,05 =
13, \s = 4/5, us = 3/5. .

From the six equations (3.8) and (3.11) only 5 are linearly independent in 63,84,0;.
The methods of Raghavan & Roth (1990) lead to 10 linearly independent equations in 12
monomials. So the resultant methods are not applicable at these degrees. If we multiply
the 5 linearly independent equations by w4us, Usvs, Vats, and v4vs instead of uy and v,
only we will get 20 equations in 16 monomials. These give a polynomial in 83 of degree 8
without extraneous factors. This solution cannot be obtained by considering polynomials
of lower degree only. This effect may even occur when the original 6 equations are linearly
independent.

ExAMPLE 7.3. Here we give an example, where our resultant methods fail completely.
(ala Oa a, al)a (023 dZa 07 az)v (037 03 as, a3)7 (047 d‘h 07 04)7 (057 07 0’ a5)7 (06’ 0’ 07 0) (73)

with a; = 3,A, = 3/5,u1 = 4/5,dy = T,Ay = 5/13,p4p = 12/13,a3 = 7,A3 = 4/5,u3 =
3/5,ds = 5, A = 8/17, g = 15/17, A5 = 12/13, 5 = 5/13.

From the six equations (3.8) and (3.11) only 4 are linearly independent in 84,85. Only
the monomial ss is missing in the equations, when compared to the general case. The ho-
mogenized system always has an infinite number of solutions at infinity. A close inspection
of the ideal by Grébner basis methods reveals that we have not identified all polynomials
of low degree, which are linearly independent. So our resultant methods fail.

7.4. An Infinite Number of Solutions at Infinity. As demonstrated by Example
7.3, resultant methods may fail due to an infinite number of solutions at infinity. This
indicates, that there are polynomials of low degree in our ideal, which we were not able
to identify. This problem is unrelated to the problem addressed in Example 7.2, though
both problems manifest themselves by almost the same symptoms. In both cases we do
not have enough linearly independent equations to eliminate all monomials.

How could we hope to handle systems with an infinite number of solutions in our
framework? If there is only a finite number of solutions, we find the minimal degree at
which we can apply the resultant methods by the condition that we need as many linearly
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independent equations as we have monomials (see Example 7.2). If the equations have an
infinite number of solutions, we do not have as many linearly independent equations as we
have monomials for any degree. Thus, we may not constructively determine this bound.
Unfortunately, the @ priori bound given in Section 6 is too high to be useful.

If we knew an appropriate bound D, we could examine our parametrized linear map
®p. Because there is an infinite number of solutions, the map will not be onto. But in
a matrix representation of the map the ranks of all minors of maximal rank will drop
for some specializations of the parameter. Basically this seems to be the idea of Canny
(1990).

A similar approach is suggested in Mavroidis & Roth (1992). But their methods exhibit
two problems. They use the degree bound obtained from robots of general geometry. In
general it seems not to be sufficient to look at one minor of maximal rank only.

7.5. Open Problems. At the end of section 6 we have shown that resultant methods
may give extraneous factors which correspond to solutions at infinity or even to artefacts
of the method. In practice it seems that factors corresponding to artefacts of the method
occur very rarely if they occur at all. There should be a theoretical reason for this.

On theoretical grounds this question seems to be closely related to the degree bound
for systems with an infinite number of solutions discussed in the last subsection.

If more equations than monomials are given, there may be circumstances when a
judicious choice of equations may prove it unnecessary to apply Cayley’s method at all,
reducing the problem to a single determinant.

If no general answers can be obtained, constructive criteria would be helpful. In-
tegrated into implementations of the algorithms they could prevent the application of
solution methods inappropriate for a specific robot.

8. Conclusions

Resultant methods are an important tool for solving the inverse kinematics problem.
They map the problems of systems of nonlinear equations to linear algebraic problems.
This allows us to use fast and well understood algorithms for handling matrices and
determinants. The general drawbacks of resultant algorithms may be mostly avoided by
the proper use of specific knowledge about the ideals involved. Therefore, they seem to
be better suited for the inverse kinematics problem than Grobner basis techniques.

9. Acknowledgements

This work is supported by the Deutsche Forschungsgemeinschaft under grant Kr 393/4-1.

References

J. CaNNY (1990), Generalised characteristic polynomials. Journal of Symbolic Computation 9,
241-250.

A. CaYLEY (1848), On the theory of elimination. Cambridge Dublin Mathematical Journal 3,
116-120. reprinted in “Collected Papers”, Vol. 1, No. 59, pp. 370-374, Cambridge University
Press, London/New York, 1889.



52

I. M. GELFAND, M. M. KAPRANOV, AND A.V. ZELEVINSKY (1992), Hyperdeterminants. Ad-
vances in Mathematics 96, 226-263.

M. M. KAPRANOV, B. STURMFELS, AND A. V. ZELEVINSKY (1992), Chow polytopes and general
resultants. Duke Mathematical Journal 67, 189-218.

P. KovAcs AND G. HoMMEL (1990), Reduced equation systems for the inverse kinematics prob-
lem. Forschungsbericht 1990-20, Technische Universitat Berlin, Fachbereich 20.

D. LazaRrD (1981), Resolution des systémes d’équations algebriques. Theoretical Computer Sci-
ence 15, 77-110. ’

H. Y. LEe aND C. G. LIANG (1988a), A new vector theory for the analysis of spatial mechanisms.
Mechanism and Machine Theory 23, 209-217.

H. Y. LEe aND C. G. LianGg (1988b), Displacement analysis of the general spatial 7-link 7R
mechanisms. Mechanism and Machine Theory 23, 219-226.

F. S. MacaAuLAYy (1902), Some formulz in elimination. Proceedings of the London Mathematical
Society 35, 3-27. -

F. S. MacauLAY (1916), The Algebraic Theory of Modular Systems. Cambridge University Press,
Cambridge.

F. S. MacauLay (1921), Note on the resultant of a number of polynomials of the same degree.
Proceedings of the London Mathematical Society 21, 14-21.

C. Mavroipis AND B. RoTH (1992), Structural parameters which reduce the number of manip-
ulator configurations. In Robotics and Spatial Mechanisms, and Mechanical Systems. Proc.
ASME 22nd Biennial Mechanisms Conference, ed. G. KINZEL ET AL., DE-vol. 45, 359-366

H. M. MOLLER AND F. MoRa (1984), Upper and lower bounds for the degree of groebner bases.
In Eurosam 84, ed. JOHN FITCH, vol. 174 of Lecture Notes in Computer Science, Berlin-
Heidelberg-New York, Springer-Verlag, 172-183.

M. RaGHAvVAN AND B. RoTH (1990), Kinematic analysis of the 6R manipulator of general geom-
etry. In Proc. of 5** International Symposium of Robotics Research, ed. H. MIUARA AND
S. AriMoTO. MIT Press, 263-269.

B. RENscHUCH (1976), Elementare und praktische Idealtheorie. VEB Deutscher Verlag der Wis-
senschaften, Berlin.

L-W. Tsal AND A. MoRGAN (1985), Solving the kinematics of the most general six- and five-
degree-of-freedom manipulators by continuation methods. Transactions of the ASME, Journal
of Mechanisms, Transmissions, and Automation in Design 107, 189-200.

O. ZARISKI AND P. SAMUEL (1958), Commutative Algebra, vol. I/II. D. van Nostrand Company,
New York, London, Toronto.



Part 2

Redundant Manipulators

21

22

23

24

25

H. Heif$
Redundancy Resolution for an Eight-Axis Manipulator

M. Kauschke
A Mixed Numeric and Symbolic Approach to Redundant
Manipulators

J. Lenardic
Computational Considerations on Kinematics Inversion of Multi-Link
Redundant Robot Manipulators

E. Celaya and C. Torras
On Finding the Set of Inverse Kinematic Solutions for Redundant
Manipulators

F. Thomas
The Self-Motion Manifolds of the N-Bar Mechanism



REDUNDANCY RESOLUTION FOR AN EIGHT-AXIS MANIPULATOR

H. Heil, BMW, ET-203, 80788 Miinchen, Germany

Abstract A method allowing closed form solutions of the joint variables (inverse kinematic
problem) has been developed for a man-like kinematic structure. Moreover, the procedure
takes into account the available joint range, thus opening up new ways towards intelligent
optimization strategies.

Keywords man-like kinematic structure; redundant robots; explicit backwards solution;
mechanical variables control; computer aided simulation; automation.

INTRODUCTION

Robots with 7 or 8 degrees of freedoms, which require an efficient control are currently
under development, or even in use [Karlen, 1989; Karlen, 1990].

Moreover, there is great potential not only for increasing the efficiency of manual work
operations, but also for optimizing the design of workshop places under ergonomic
aspects in order to reduce the burden on the workers. It is for this reason that the Institut
fiir Montageautomatisierung (ifm) has developed a simulation system for the 3-dimen-
sional graphic planning of both the layout of the work cells and the sequence of manual
operations. This system, which is called COSIMAN (COmputer aided SImulation of
MANual assembly), is implemented on a microVAX II from DEC and draws on the
capabilities of the graphic terminal PS390 from Evans&Sutherland.

In order to enable the assembly planner to simulate the sequence of manual operations of a
human worker, it was necessary to design a kinematic model of man. After modelling in a
CAD system, the different geometrical elements of the model were linked together, defin-
ing 40 joints (see Fig. 1). Each single joint could be moved using the dials of the PS390.
The kinematic model described in Table 1 and Fig. 2 is the arm part of this man model
without the three gripper axes, which simulate the fingers of a hand.

This paper thus deals with a kinematic model with 8 rotational joints, arranged as follows:
rotational joint — spherical joint — rotational joint — spherical joint
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DESCRIPTION OF THE PROBLEM AND THE METHOD OF SOLUTION

Prior to the continuous simulation of the series of manual operations by the robot or
worker each individual position adopted by the man model had to be taught to the robot by
the assembly planner (similar to the "Teach-In" of robots). Up until now this procedure
has always required a lot of practice because the planner can only change the values of the
different joints using the dials of the PS390. For example the planner has to change and
coordinate the values of up to eight joints of the hand-arm-system, in order to move one of
the man's hands to a new position. It is thus very difficult and time-consuming — in some
cases nearly impossible — to place, for example, an object grasped by one of the man's
hands in a position where one of its planes is coplanar to another object's plane. It is par-
ticularly these placement functions, however, which are very often necessary when simu-
lating the assembly of several components. To reduce the time needed for the planning,
therefore, it was necessary to simplify the method of teaching new positions. This meant
realizing the possibility of moving the man model's hand both in the direction of the axes
of a system of coordinates, and additionally by adopting elementary placement functions
(like point-to-point, plane-to-plane and other CAD-functionality).

Fig. 1: Volume model of a human worker Fig. 2: D-H-coordinate systems of the

and its affiliated kinematical structure kinematic model of the arm
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In both cases the basic requirement was to develop a backwards solution for the eight rota-
tional joints of the man model's hand-arm-system. This meant calculating the values for
these axes at a given position and orientation of the hand. Because of the on-line visualisa-
tion in the simulation system COSIMAN, it was necessary for the solution to be computed
as quickly as possible. The same is true for a robot control which processes cartesian
coordinates. It is for this reason that we do not employ differential methods (using velocity
information) to solve the inverse kinematics, but an explicit solution of the eight joint
variables [HeiB3, 1986a]: 6; = f(<values of aim pose>)

TABLE 1 The Denavit-Hartenber, ription of the model

0; (Rotation | d; (Translation | a; (Translation | o; (Rotation
about z) along z) along x) about x)
0 (variable) 0 a3 (o8}
0, (variable) dy 0 90°
0, (variable) 0 0 90°
| 04 (variable) dg ag oy
9; (variable) ds as Olg
O (variable) dg 0 90°
07 (variable) 0 0 90°
O¢ (variable) 0 0 0

Another reason for an explicit solution formula is that we want to hold all joint values
within their mechanical range. As a universal movement in space has six degrees of free-
dom, two of the eight joint variables can be defined by the user. For the remaining six joint
variables it is necessary not only to find a closed solution formula, but also to take into ac-
count the mechanical — that means in this case also the anthropometrical — joint range. A
result of this is that the range of the two user-defined variables will be further reduced so
that the other joint values — computed by the solution formula — are within their mechanical
range.

PREPARATIONS

Basics of the robot kinematic

The D-H-Parameters shown in Table 1 lead to the basic kinematic equation

A12°Ag 3°A3 4°A4 5°As 6°Ag 7°A7 8*Ag 9 = T, in which the parameters dy, dg, ag, aig and
the tool transformation TR are integrated in the given aim pose [HeiB, 1987] and denoted
by T. A j+1=Z;*X4] is the well-known "Denavit-Hartenberg matrix", as described, for
example, by [Heifl, 1987]. Application of the method of the characteristic joint pair
[Woernle, 1988] and modification of the basic equation by inverting the outer rotation-
translation-matrices Z; and X, yield suitable single equations for solving the joint vari-
ables [HeiB, 1986c]. Because our kinematic structure has only rotational joints, we have

attempted to find an equation "a*sin(8)+b*cos(8)=c" which can be solved as follows:
6 = ATAN2(c , +\aZ+b%-c2) + ATAN2(-b , a).
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ATAN2(0,0) is a special case, indicating that the variable 0 vanishes from the equation,
thus rendering the equation correct for all 6-values, or never in the case of c#0. We can
make a distinction between mathematical attainability and mechanical joint range [HeiB,
1986b]. Unattainability is expressed by insoluble equations, an effect which can be put
down to the existence of a negative argument under a square root in the formula (see
aZ+b2-c2). Result values 0 out of the joint range, however, cannot be seen in the structure
of the formula.

Definition of the term ''free variable"

Because it has eight degrees of freedom, the given aim pose of the robot/man model can be
achieved by varying two joint variables in an application specific way. These variables are
called "free variables". For the above described kinematical structure one of them is inter-
preted as a distance related degree of freedom and will be represented by 6, or 85. This
free variable has an influence on all other joint variables. Due to the special kinematic with
two spherical joints, the other free variable affects only the variables of the two spherical
joints. This degree of freedom rotates about the axis through the two spherical joints (see
Fig. 3) and is expressed by one of the joint variables 6, (83,) 84, 6¢ (, 67) or 8g.

shoulder

Fig. 3: Elbow rotation

SOLUTIONS FOR 6; TO 64

Use of the appropriate kinematic equation (I) provides us with the possibility of defining
the two free variables and of solving the variables 6y, 8;, 83, 64 and 6.

A3,4.A4,5.A5,6.A6,7.Z7 = (A1,2.A2,3)-I.T.(XS.AS,Q)‘I (I)
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Deducing 6; and 65 from distance equation

I1.4 denotes the single equation at position 1.4 (first row, fourth column) of the matrix
equation (I) and the distance equation is defined by 11.42+412.42+13.42. This distance
equation gives us as*sin(Bs) + bs*cos(Bs) + kj5 = a;*sin(8) + by*cos(0y) (1)

Further details of the principles of this method can be found in [Hei8, 1986c].
0).as free variable Defining c5:=a;*sin(0;) + by *cos(0) - k5,

05 = ATAN2(cs, +4/as2+bs2-cs2) + ATAN2(-bs , a5) ()
05.as free variable Defining c;:=a5*sin(@s) + bs*cos(05) + ks,

8, = ATAN2(c, 2\ a24b,2-c.2) + ATAN2(-by ,a)  (3)
Choosing 0 or 85 as a free variable and fixing its value as described in a later section
("Choice of the free variables") provides us with a user-defined and a deduced (from
formula) value for 6, and 65. These values are the basis for the further computations.
Deducing 6, and 64 from the "single position equation"

With help of the position method using 13.4 [HeiB}, 1986¢] we get

a,*sin(0;) + by*cos(0,) = ag*sin(B4) + bgy*cos(6y) 4

With cyi=ag*sin(@y) + by*cos(8y) = ¢y = a2+ 2*sin(6,4-¢)
and c4i=ap*sin(0y) + by*cos(6y) => ¢4 = \f ay2+by2*sin(6-y)  follows

8, = ATAN2(c, , +\ ay2+b,%-c)2) + ATAN2(-b, , ay) (5
or 04 =ATAN2(cy, +4/a,2+b,2-c,2) + ATAN2(-bg , a) (6)
As discussed below, the smaller amplitude -\ a;2+b;2 defines the free variable.

Unique solution of 65

From I1.4 and 12.4 we have I1.4: by*sin(B3) - az*cos(63) =e3 @)
12.4: a3*sin(03) + by*cos(83) = c3 (8)

and therefore 83 = ATAN2(az*c3+bs*es,by*c3-a3*es) always exists [HeiB, 1985]. (9)

SOLUTIONS FOR 6, 8; AND 64

In order to solve the joint variables 6¢, 67 and dg we use the orientation method
[HeiB, 1986c] and choose the kinematic equation

A78°Ag9 = Ac 7 "(A12°Ar3°A3 4*A4 5°As.6) 1o T (M
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With K:=(A1'2°A2’3°A3,4°A4,5°A5’6)'1°T and Konf@ge {-1,1} we get the formulae:
when K3=0 and K»3=0

then O¢ = an arbitrary value; (10)
67 = ATAN2(0, -K33); (11)
0g = ATAN2(K;*sin(8g)-Ky*cos(0g) , Kjp*sin(6g)-Kpp*cos(6g) ) (12)
According to the later described algorithm for defining the permissible joint

range, ¢ has to be restricted with respect to g in order to avoid a 8g-value
out of the permissible range.

otherwise 65 = ATAN2(Konf6g*K,3 , Konf6g*K13) (13)
0) = ATANz(Konfe(,*\] K132+K232 , -K33) (14)
63 = ATAN2(-Konf64*K3, , KonfBs*K31) (15)

OBSERVATIONS ON THE JOINT RANGE
Basic considerations

Viewing the joints from a mathematical perspective means that rotational joints with a
range of 360° and translational joints with an unlimited range have to be assumed. Based
on this assumption we can identify a variable of the spherical joints which — moving over
its full range of 360° — does not produce insoluble equations for the other variables. This
can be interpreted geometrically as the 360°-rotation of the "elbow" around the axis
through the two spherical joints (see Fig. 3). The variable depends on the given aim pose
and cannot therefore be determined in advance, but has to be integrated into the solution
algorithm.

The mechanical joint range is even more important than the mathematical view, as a result
of which the joint range of the free variable has to be connected with the accompanying
values of the othei joint variables. If the dependent joint variables run out of their range,
the range Dy, Of the free variable has to be restricted in such a way, that all the dependent
joint variables lie within their mechanical range.

That means:  fpacksol(Dfree ) S MRgependent

For this purpose it is necessary to find "inverse" functions fj: 8; — O, and project the
mechanical range MR; of 6; to the definition range of Ofee:
Dﬁ-ce = f\fl(MRl) N MRfree

Then it is possible to find for each value from Dg, a backwards solution variant, which
projects the result value in the permissible mechanical range of the calculated joint.

Algorithm to define the permissible joint range of the both free variables

Defining the "inverse" functions

The distance equation (1) and the equation (4) are both suitable for the generation of solu-
tion formulae (function) and computations of range limits (inverse function). The third
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inverse function, necessary for the range definition of the free variable O, € {07, 64} by
03, will also be derived from the kinematic equation L

In order to simplify the computation process, the whole kinematic equation will be inverted
using the kinematic symmetry between the two spherical joints.

(A3 4°Aq5°As6°A6 777! = Xg*Ag oo T 1A 20A 3 q11))

This allows interchange between the two spherical joints and enables the variables 6, 6,
and 0g to be dealt with in an analogous way, like 8;, 83 and 64. Therefore the variable
Bpseudofree 18 defined as an element of {86, 63}. Because there is no degree of freedom for
the (pseudo-)free variable from g, 87 and Og, this variable has to be determined by the
kinematic equation and the second free variable has to take into consideration the permis-
sible joint range of the pseudo-free variable. The advantage of this procedure is that the
limits of B¢, 8; and 6g can be applied to the pseudo-free variable [Kiener, 1991], meaning
that it is only necessary to connect the pseudo-free variable with the free variable by a fur-
ther inverse function. This function arises from

A3 g+Z4 = Ay 37 oA| 371 To(Xs5As 6*Ag 1A g Ag o) ! av)

Joint range computation
The inverse functions f; from (1) and (4) can be described by *Fee M*Featc: Dealc = X -

Featc(0catc) =CtreeOcalc) tFf,ee-1(x)=ATAN2(x,i\/ Afree 2 +Dpree>- X )HATAN2(-Droe.afree)

To obtain efficient computation of the set f;(MR;) we use the property of monotony.
Dividing Dy into the two sets *B,). and "By, wWe can prove the following statement:

*B.yc iS the set of mathematical solutions of 6y from an equation with "+..."

“Bgyc is the set of mathematical solutions of 6, from an equation with "—..."

a) Fae: ¥ Beaic = R is monotone
b) +/_Ffree-1 is monotone for all soluble values xe Fcalc(*‘/“B calc)

Because we do this computation in order to restrict the free variable to the mechanical
range of O, it is not important, that there are some values ecalg with 042 ¥ By
which cannof be attained from 8. Based on this restriction to */B ., the require-
ment "Dgree € MRfree M {Ofree | Ocatc=fhacksol(Ofree) 1S soluble}" implicitly holds true
for Dgee and does not have to be specifically guaranteed.

Proof:

Differentiating *Fgeo 1(x) results in * F'ee 1(x) = 1 / (2 a2 +bpree >-X2) and this con-
firms statement b).

Dealing with a) we need knowledge about +/—Bcalc' Later in this paragraph you find from
(24) and (25)

+B, < [ATAN2(-b;,a)-7/2 , ATAN2(-b;,a;)+1/2] = [ATAN2(-a;,-b,) , ATAN2(a;,by)]
B, < [ATAN2(-b;,a)+7/2, ATAN2(-b;,a;)+3*1/2] = [ATAN2(a;,b;) , ATAN2(-a;,-b;)]
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Differentiating F,).(6.q1c) gives us
F'ca1c©@calc) = 2calc*c08(0caic) - bealc*sin(Bcqyc)
=V acgi2+bearc? *sinOcye-®),  9=ATAN2(-aczic-bearc)

Therefore Fy0(6.41c) is monotone for 8,;.€ [ATAN2(-ac41c,-beaic) ATAN2(acg1c:bearc)]

and 6.41c€ [ATAN2(ac1c,beatc) ATAN2(-acgic,-beare)]
and consequently statement a) is proved true.

D alc_sfree 18 @ set of Ogee-values, calculated from *B g MR 41 by means of *Fege, !
“+Dcaleosfree 18 a set of Bfree-values, calculated from "B g MR g1c by means of *Fypee !
D calcosfree 1 @ Set Of Bfree-values, calculated from *Bgy MR by means of ~Fpe, !
" Deale—sfree 18 @ set of Oge-values, calculated from B, MR, by means of “Free !

Thus:  Dree = (™ Deaieostree Y T Dealeree Y~ Dealeosfree Y ™ Deale—sfree ) N MReree

6, and 05 will be considered in isolation of the other variables due to the fact that there is
another second free variable to guarantee the solubility of the kinematic system. Only in the
case of a degeneration of the permissible range of the second free variable does the deter-

mination of 01 or 05 and of an appropriate value become necessary.

The second free variable 8, or 84, however, has to take into account the variable 63. We
got the value of 03 from equation (9): 83 = ATAN2(az*c3+bs*es , bg*c3-az*e;)

But there is a more suitable equation for the range computation; [Kiener, 91] has shown,
that from equation "-e3*sin(63)-c3*cos(03)=-b3" (when O¢.=0;) (16)

or from equation (8) (when Og.e=04) 63 can be computed. 17)

The main advantage is that from this equation "f¢ee(Ogee) *sin(03) + k*cos(63) = m” the
inverse function f3: 83 — O can be derived and the + ambiguity of B,y is strictly con-
nected to the % solution of 65.

Thus the permissible range Dg. Of the second free variable is defined by

D, 5 sfree = (MDeatcsree Y " Deateosree) N D3 556ree Y D3 free)

D_p_,free = (" Deatcsree Y~ Deatesfree) N (TD35free U™~ D3 sree)

Deree = (DyBsfree Y D_Bosfree) N MRfree
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Now we have to deal with the computation of --'D3_,gee. Again the inverse function f3 will
be transformed into Fpee 1F3: 03 — dree

F3(93) = (m—k*cos(93))/sin(93)
Fpree 1(X) = ATAN2( x, i\/ Afree2+Dree2-X2 ) + ATAN2( -afree » -Dfree )

Firee (%) is confirmed as monotone by statement b) and only the following statement has
to be proved:

¢) Fz:]-n,n[ - {0} > R is strictly monotone

F'3(03) = (k-m*cos(63))/sin%(83) and when k22m? the statement c) holds true;
the subdivision into ~S3=[-%,0] and *S3=[0,] is congruent with *B; and ~B;.

I1.4: bs*sin(83) - a3*cos(03) = €3

12.4: az*sin(83) + b3*cos(63) =3
13.4: a4*sin(84) + by*cos(04) = ap*sin(6;) + by*cos(6;)

The distance equation "1.42+2.42+3.42" from (I) gives us

with a3=-bg*sin(B4)+as*cos(64) and e3=b,y*sin(6;)-ap*cos(6;)

the equivalence "ag2+bs2+bs2 = a22+b22+c32".

When O¢e=65,

then k=-c3; m=-bs; k2-m2=c32-b32=a42+b42-(a22+b22) and )

with the condition "a;2+b;2 > agee2+bgree2" for the second free variable

k2-m220 is proved true. (18)

When Oge=64,
then k=bs; m=c3; k2-m2=b32-c32=a,2+b)2-(ag2+b4%)>0 (19)
according to the condition "a;2+b;2 > agee2+bgrec?".

« Calculation of the limits of *-B;

There are two types of equation which are responsible for +/‘Bi:

0, = ATAN2(c; 2V a;2+b;2-c;2)+ATAN2(-b;,a;) with ci:=a;*sin(6;)+b;*cos(8;)+k (20)
and

ffrec(efree)*sin(ei)"'k*COS(ei):m @1)
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For equation (20) it holds true
[UG,0G] =[-\ aj2+b? +k + aj2+b2 +k] N [-Va2+b2 , +\ a;2+b2]

+B, = [ATAN2(UG , +V a;2+b;2-UG%)+ATAN2(-b; , a;) ,

ATAN2(OG , +\ a;2+b;2-0G%)+ATAN2(-b; , a;)] (22)

~B; = [ATAN2(OG , \/22+b2-0G2+ATAN2(-b; , ),
ATAN2(UG , \] 2;2+b;2-UG)+ATAN2(-b; , a;)] (23)
(20) leads to  *B; < [ATAN2(-b;,a;)-n/2 , ATAN2(-b;,a;)+n/2] (24)
“B; < [ATAN2(-b;,2))+m/2 , ATAN2(-b;,a;)+3*/2] (25)

For (21) we define: % lefg . : 000 — Op
firee(Ofree) = ~Deree *SiN(Bree) + afree *COS(Bpree) (=X)

*f-1(x) = ATAN2( m , +\Vx2+k2-m? ) + ATAN2( k , x )

= ATAN2( x*mFk*Vx2+k2-m? , k*mx*\ x2+k2-m2 )

k2>m? holds true (see (18) and (19)) and thus *f;"1(x) cannot fail; in dependence
on the sign of k *f;"1(x) is monotone. From this it follows for +-B;:

+B; = [+fi-1(-sign(k)*\] afroe>+biree? ) » H37L(sign(K)* agroe2+bpree2 )] (26)
“B; = [f; !(-sign(k)* 24bgree? ), T3 (sign(k)* aggee2+biree 27
i = [ (-s1gn(k)*V afree “+bgree” ) , 137 (8ign(K)*V afree “+biree” )] (27)

* Connecting the pseudo-free variable to the second free variable

In order to connect the range of the pseudo-free variable with the second free variable we
use equation IV and get — abbreviating to LZ=A1'2‘1'T'(X5’A5,6'A6,7'A7,8’A8,9)'1 — the
inverse functions

Bfree = 02 = P(Opseydofree) = ATAN2(Ly3, Ly3) {+7} or (28)
Ofree = 04 = P(Opseudofree) = ATAN2(-L3p , L3y ) {+7} (29)

Inside L the backwards solutions of 87 and 8¢4c ( F7(Bpseudofree)> Fo/8(Opseudotree) )»
based on Opgeygofree, have to be applied and therefore we must distinguish between the *L-
and “L-variant and the accompanying range of 8peedofrec-
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Until now we have not succeeded in proving the theorem "f(8)=ATAN2( F1(6) , F2(8) )
is monotone in [- , ®]", but all our simulations have shown this result; so we use this
theorem to simplify the last step of the range computation.

The backwards solution Of Opseydofree frOm Ofree COntains two ambiguities and this results
in four intervals S+H+, S+H-, S-H+, S—H- of 8pgeygofree instead of two (see +-B),

We have already reduced MReydofree 10 Dpseudofree. but With sin(8+2m)=sin(6) and
c08(0+27)=cos(0) the theorem shows that all intervals S---H--- have an extent of 2% and

therefore there is no need for the intersection "S-"H*MD,/_B_spseudofree » a8 done in the
former section.

The interval Dyseygofree—free arises from the union of four sets:

- b+
++Dpseudofree—)free = +(I)(D+B—)pscudofreeﬁl\'IRpseudofree) with *L

_+ S -
+_Dpseudofree—)£ree = (D(D—B—)pseudoﬁ'eemMRpseudofree) with "L
. sth ] (=
“Dpseudofree—tree = PD+Bspseudofree " MRpseudofree) With *L (=" Dpgeydofree—free ™)
-- - S =T [
Dpseudofree—free = " P(D_Bspsendofree "MRpseudofree) With "L (=""Dpeeudofree —sfree +)

_ 4+ — —
Dpseudofree—free = Dpseudofree—free Y Dpseudofree—free '  Dpseudofree—free
pseudofree—free

The final form of Dy, 100ks like

Deree = ((D4BsreeDpseudofree—free) 2 (D_B—freeMDpseudofree—tree)) N MRree

= Dfree = (D4Bsfree Y D_Bsfree) M Dpseudofree—sfree N MReree

Choice of the free variables

The described algorithm will be applied to both 8; and 85. We can then choose this vari-
able as a free variable whose actual value lies within the definition range D; or very near to
it. A user-specific decision has to be made when both actual variables values lie within D;.

As shown earlier there is a*sin(8)+b*cos(0)=r*sin(8-¢), which means that — viewing
joints G2 and G4 from a mathematical perspective —, the second free variable has a range
of 360°, when choosing the variable with the smaller amplitude r as the free variable.
Besides we have to choose the second free variable under this condition because the
statement about the monotony of 6 is based on it.

More details on the computation of f;(*B;"MR;) and the optimization of the free variable
6,/65 in the case of degeneration of the other free variable can be found in [Kiener, 1991].
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CONCLUSION

The proposed algorithm provides explicit, closed formulae for solving the inverse kine-
matic problem of a man-like structure with eight rotational joints, and it takes into account
the available range of the joints. As a result of this it becomes possible to stay close to the
current joint values and to implement further optimization strategies to define the values of
the free variables adequately from the permitted range.

The algorithm was implemented on a microVAX II (DEC) and needs about 60 msec com-
putation time (without optional optimization of the free variable 6,/85).

Based on this work it was shown that also kinematical structures with more than six joints
can also be handled efficiently and profitably by explicit methods.
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A Mixed Numeric and Symbolic Approach
to Redundant Manipulators!

Michael Kauschke

Institute for Robotics and Computer Control
Technical University of Braunschweig
D-38114 Braunschweig F.R.G.

Abstract
This paper presents a method for generating locally optimized link variable solution
for redundant serial link robots. It combines closed form solutions for the inverse
kinematic problem of nonredundant subchains and a numeric approach solving the
local optimizing problem. The result is an efficient method for low degree of redun-
dancy and complex optimizing tasks.

1 Introduction

Most methods dealing with redundant robots reduce the highly nonlinear mathema-
tical descriptions to a locally linearized representation. This allows the use of well
known methods from linear algebra for solving the inverse kinematic problem (IKP)
plus additional tasks. Unfortunately it is difficult to transfer simplifications resulting
from a specialized kinematic structure to these approaches. Therefore a closed form
solution of the IKP, which relys on specialization, often gives better results in the
case of nonredundant manipulators. The solution can efficiently be generated by the
algorithms given by R. Paul in 1981. Attempts to build closed form solutions, which
are able to handle additional tasks for redundant manipulators, lead to impracti-
cal results with respect to computational complexity. Even a simple task, like the
limitation of a link variable range, produces exhaustive expressions. Nevertheless
combining numerical and symbolic approaches lead to efficient solutions as will be
shown in the following.

IThis work has been supported by the German Forschungsgemeinschaft DFG.
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2 The Closed Form Solution

The direct kinematic equations for a manipulator with n links can be written in the
following form:

{4 d) = %

q,, is the n-dimensional link variable vector, X contains the position of the end ef-
fector in k-dimensional Cartesian space. Vector d describes the kinematic structure
of the robot, often given as Denavit-Hartenberg parameters (omitted in the follo-
wing). When dealing with globally nondegenerated structures, it is often possible to
generate a closed form inversion of fforn=k:

—-1 -

f ()_(.k) = l(fk,h) =4, AN k=n

. . . . 71
h is used to select a unique solution of the finite set of solutions for f . The
corresponding scalar equations of i(Xx) can be denoted in a triangular form:

2'nl = = gl(i, h) (1)
tny = qn2 = g2()-(‘a qn1, h)
inn = Gnn = gn()-(‘v qnly -« -y qn n—l,h)

This can be extended to redundant robots by building a subset q,, out of g, with
m = k link variables, which allows the detemination of a closed form solution for
this subset as shown by Schrake in 1990.

i(%, G, k) = q, (2)

d, contains all link variables not in §,,. The solution set Q, for g, is R excluding
those elements which do not lead to a valid solution for the inverse kinematic:

Q = {3 €R 7@ d) =% A 4, € Q)

To be able to use all elements of Q, it is necessary that i describes the complete
solution set of the IKP. This is a natural property of symbolic solutions. Note, that
equation (2) delivers a stable solution for the positioning task independent of g, as
long as the manipulator is not in a singularity with respect to q,,.

3 Integrating Additional Task Constraints

To get a finite set of solutions for g, additional task constraints have to be introdu-
ced. These can be divided into two groups:
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1. Tasks, which depend directly on the link variables, like obstacle avoidance,
joint range limitations, etc.

2. Tasks, which are described by equations including differential expressions of
the link variables. Examples are energy minimization, torque optimization,
etc.

The second group implies that a differential term for the inverse kinematic has to
be generated:
di(%,q., k)
a5 )
q,
Having a triangular form of 1 like in (1), this can be obtained by applying the chain
rule recursively to the equation system. Unfortunately the results are far too complex
to be of any practical use. So, this work is focused on tasks of the first kind. They
can be described by a cost function ¢(q,) to be minimized. Using equation (2), one
gets .
t(qn) = t(l()-(‘k’(_l‘rah)’q;) = t’()_(‘ka h’q‘r) (4)
In the case of tasks with a given trajectory Xi(t) the optimizing problem advantage-
ously can be considered in the configuration space Q,. According to (4) one has to
solve the following differential equation for every point of the trajectory:

dt'(%,q,) _ dt((%,q,,h),q,)

T Ta T4
- dU3 ) ARG h) | di(Re ) )
dn dq, dq, =

The second term of the sum is the same as in (3); so the solution of (5) cannot be
determined independently of the optimizing task with reasonable efforts.
Nevertheless, it is possible to build a local model of ¢’ which is easy to produce and
easy to differentiate:

(q) =Y (a.‘q.‘ + Y b.'j<1i¢1j> +d (6)

1=1 Jj=t

This quadratic polynomial has n, = r + %)1 + 1 coefficients to be determined by
solving a linear equation system generated by n. test points of t'(q,). The minimum
of I(q,) can be found by the following set of differential equations which are linear
in g,:

_di@)

0= dq: =ai+zbij<1j+bm1i A i=1,...,r (7)

=i
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Using a local model of the modified cost function t’, there is no need to differentiate
t’. This means that one can use nonanalytic functions combining many different
task constraints. Nevertheless, a function t' € C? supports a stable iteration. The
resulting computational complexity of this optimizing strategy is determined as
follows:

Computational Step Costs

Calculation of the test points for t' | O(r?)
Determining coefficients of (6) O(n) = O(r®)

c

Calculating d1(q,)/dd, =0 O(n2) = O(r%)

4 Handling Singularities of the Inverse
Kinematic

The differential movement of the robot in Cartesian coordinates can be derived from
a differential movement in link variable space:

¢ - 4@) - o T
A% = —7=2dd = | 4L@) - fh@) | 44, (®)

1 Eﬁl

The manipulator is in a nonsingular position if the set I of all k-dimensional link
variable vectors corresponding to k linear independent columns contains at least one
element. An inverse kinematic (IK) i(q,, k) = g,, becomes singular if g,, & L. So, it

is necessary to build an IK i(q,, k) for each possible k-dimensional subvector of g, to
cover all cases of nonsingular positions of the whole manipulator with |I| = 1. This

gives a total number of (:) different IKs, which can be generated in advance by the

aid of automatic IK generators like SKIP (H. Rieseler 1990) or INKAS (L. Herrera-
Bendezu 1988). Having a complete set of IKs at hand, it is possible to generate a
stable iteration for all nonsingular positions of the complete manipulator by choosing
an adequate IK. As all IKs describe the complete solution set for the corresponding
subchain, switching between nonsingular IKs can be done in a continious way by
choosing the corresponding pairs of selection variables h.

In cases where the complete set of IKs cannot be built, the cost function ' has to
be modified by an additional term expressing the distance to a singularity of the
actually used IK to prevent the iteration process to select such configurations.
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5 An Example

The end effector E of a 2D-manipulator consisting of 3 rotational links represented
by arbitrary polygons follows a given trajectory €(¢) simultaneously avoiding colli-
sion with some obstacle O:

Using the described strategy one has to build 3 different IKs 1R, @), 2(X(), ¢2),
i3(%(t), ¢3). The IK i; solving gz, ¢3 has the following form:

P = €5(t) — ay cos(q1)
Py = ey(t) —a Sin(ql) ¢
sq=(az + a3)® — pz® — py®) * (a2 — a3)* — pz* — py?)
g2 = atan2(plp, + p) + alpy, + pz/5q — a3py,
a3ps + p3 + PP — p2a3 — \/3qp,) — @1
g3 =atan2(p, — azsin(q1 + ¢2),p. — G2 ¥ cos(q1 + ¢2)) — @2 — @

The other IKs can be built in an analogous way. To avoid collision one has to intro-
duce a cost function t describing a potential field. As there is no need to differentiate
t, this field can be defined in a simple manner:

t(q) = 1/i€r{r11,121,13}(mmdzst(P,-, 0)) 9)
mindist(P;, O) gives the shortest distance between the polygon attached to link @

and the obstacle O. The resulting potential field is not a C?-curve in configuration
space:
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In contrast to global differentiable definitions of ¢ this approach allows the use of
heuristic strategies for finding the minimal distance to an obstacle in more complex
environments. The local model | and its minimum Ty are calculated once for an
instant ¢,4; using sample points Ty, Ty, T, derived from the last iteration n for the
free link variable of the IK in use:

To(nt1) = quadmin(Ton, Tin, T2n) (10)
To(ns1) + Ton

T1(n+1) = —O(-ﬂ;—o (11)
Tos, + Tin

Tognyry= L, 2 ! (12)

The function quadmin realises the optimization.

The end effector of the given manipulator is moving along a straight line from
the space point (5,5) to (5, —5) avoiding collision with obstacle points. In the first
example (Fig. 1) the potential field generates a continuous run of the local minimum
for all instants of time giving a continious movement of the manipulator.

Figure 1: A task leading to a continious movement
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The second example (Fig. 2) shows a potential field which has two local minima
to the left and right auf P,. The resulting jump of the trajectory in configuration
space can be seen in Fig. 3. As the task optimization and the tracking of a given
trajectory are decoupled by the inverse kinematic, a simple limitation of the joint
velocity can deliver a continious solution for g,.

Figure 2: An noncontinious movement produced by a second obstacle
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Figure 3: The plot of q, = ?(é'(t)) belonging to the second example
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6 Conclusions

The use of closed form solutions for the inverse kinematics of subchains of redundant
robots leads to a reduction in the dimension of the configuration space in which the
local optimization is performed numerically according to some task constraint. This
approach has the following advantages:

o High speed for a low degrees of redundancy.
¢ Nonanalytic task functions can be integrated.

o A stable trajectory for the end effector is guaranteed. The distance between two
interpolation points of the trajectory can be tailored to the precision needed
for the optimizing task.

However, there are some drawbacks:

o High degree of redundancy results in unacceptable high computational effort.

¢ Known properties of the task constraints can not be integrated in the local
model.

o There is no simple criterion for the stability of the iteration.

Future work will concentrate on the development of better local models and task
constraint functions for obstacle avoidance.

References

Herrera-Bendezu L. G. , Mu E. and Cain J. T. 1988. Symbolic Computa-
tion of Robot Manipulator Kinematics. In Proc. IEEE International
Conference on Robotics and Automation, pages 993-998.

Paul, R. P. 1981. Robot Manipulators: Mathematics, Programming, and
Control. MIT Press.

Rieseler H., Schrake H., and Wahl F. M. 1991. Symbolic Computation
of Closed Form Solutions with Prototype Equations. In Proc. 2"
International Workshop on Advances in Robot Kinematics. Springer
Verlag.

Schrake H. , Rieseler H. , and Wahl F. M. 1990. Symbolic Kinema-
tics Inversion of Redundant Robots. In Proc. of the 4" International

Symposium on Foundations of Robotics, Institut fiir Automatisierung
(Berlin) und Institut fir Mechanik (Chemnitz).



COMPUTATIONAL CONSIDERATIONS ON KINEMATICS INVERSION OF
MULTI-LINK REDUNDANT ROBOT MANIPULATORS

Jadran Lenardcic
The "Jozef Stefan" Institute, Ljubljana, Slovenia

ABSTRACT - The paper critically evaluates the utilisation of pseudo-inverse-based
methods for the kinematic inversion of hyper-redundant multi-link robot
manipulators. The validity of these methods is questioned from the viewpoint of the
computational efficiency specified in terms of arithmetic operations per iteration step.
Even though the pseudo-inverse-based methods provide better convergence, less
computation time is needed by steepest descent methods especially in continuous path
control and in applications where very few iterations are needed or good initial

estimations are provided.

1. INTRODUCTION

A common feature in the utilisation of multi-link hyper-redundant manipulators is an
infinity of possible motions that these mechanisms can make. There is a need to decide
which particular motion should be executed in order to satisfy the task constraints and
simultaneously optimise a given set of criteria. From the kinematics viewpoint, the
advantages that multi-link manipulators introduce in the task are their high flexibility and
versatility. These mechanisms have the ability to solve a given task with a minimum effort
with respect to various kinematic and dynamic criteria, and in the same time, to move in
very complex environments avoiding obstacles, as reported by Maciejewski and Klein
(1985), Galicki (1992), Colbaugh et al. (1989), and undesired or ill-conditioned
configurations reported by Baker and Wampler (1988), Nakamura and Hanafusa (1986),
and Shamir (1990). The large number of degrees of freedom permits the grasping of
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objects with the body of the manipulator, presented by Pettinato and Stephanou (1989),
and Kerr et al. (1992), introducing the objects in tubes of different shapes, presented by
Chiacchio et al. (1991), or gaining advantages of kinematic singularities with the goal to
compensate weak actuators, presented by Kieffer and Lenarc¢i€ (1992). With a large
number of rigid links they can approximate a continuous morphology of snakes or
tentacles, reported by Chirtkjian and Burdick (1991).

Despite their potential advantages, practical utilisation of multi-link hyper-redundant
manipulators is still far away. This is primarily because of several technical and
technological problems in the mechanical design, control and programming, which call
for more effective mathematical treatment. Numerical complexity of the existing methods
for redundancy resolution usually increases with the number of degrees of freedom.
Hence, real-time computation for robot manipulators possessing one hundred or more
degrees of freedom is still unrealisable in practice or requires extreme computer capacity.
The closed-form solutions to the inverse kinematics problem for redundant manipulators
are rather exclusive and exist only for special manipulator structures. These were
investiagted by Chang (1987). For a general manipulator, there are only iterative
numerical solutions that can be computationally very expensive. However, the numerical
approach is essential for the development of a general-purpose computer-aided robot

design and control.
2. POSITION AND ORIENTATION OF THE END EFFECTOR

As is well known, the kinematics model of a serial robot manipulator is specified as a set
of independent algebraic equations (Lenar¢ic, 1993)

P-Ppo(®) =0, (1)
where p is an m-dimensional column vector that expresses the desired end effector
position and orientation of the robot mechanism, 6 1s an n-dimensional column vector of
joint (generalised) coordinates, and p,(6) is a trigonometric vector function of joint
coordinates representing the actual end effector position and orientation that is also
referred to as the vector of Cartesian (task) coordinates. The Jacobian form of (1) is

obtained by differentiation with respect to time

p-J(8)0=0, @)

where
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J=[0py/8,,..,0p4 / 30,] . 3)

J is the mxn Jacobian matrix, and ;)and é are Cartesian and joint velocities of the
manipulator, respectively. The inverse kinematics problem is referred to as the calculation
of joint coordinates for a given combination of Cartesian coordinates based on their
relationship specified by (1,2,3).

In general, the inverse kinematics problem of a robot manipulator is the problem of
finding joint coordinates or their velocities that will produce a given end effector motion.
The solution to this problem can be used in the real-time control of robots to determine
joint motions that correspond to a desired Cartesian path of the end effector. For serial
robot manipulators, the inverse kinematics problem is often difficult to solve, since the
joint coordinates appear in (1,2,3) as arguments of trigonometric functions. This problem
may not always have a real solution, and the closed-form solution can be specified only
for the simple, usually non redundant, structures of robot mechanisms. For more complex
mechanisms, time-consuming numerical procedures must be used. The solutions are
multiple and there is a need to decide which combination of values is more suitable in
each particular case. Providing a robot mechanism with some redundant degrees of
freedom enhances its motion capabilities considerably. Kinematically redundant robots
provide the means for solving sophisticated motion tasks, but require complex approaches
in both mechanical design and control. The main feature of redundancy is that there is an
infinity of possible motions which these mechanisms can make, all of which satisfy the
task constraints. Mathematically, a robot manipulator is redundant with respect to the
prescribed task, when (1) is underdetermined and the dimension of 0 is greater than the
dimension of p; n > m. It results in a non square Jacobian matrix (3) which is not directly

invertible.
3. THE MOORE-PENROSE GENERALISED INVERSE

A widely used approach of finding joint coordinates 6 for a given combination of
Cartesian coordinates p is to use the pseudo inverse. Also termed the Moore-Penrose
generalised inverse, it was proposed by many authors in similar variations of iterative
numerical schemes (Klein and Huang, 1983; Benhabib et al., 1985; Lovass-Nagy and
Schilling, 1987, Nakamura et al., 1987; Nenchev, 1989). The Moore-Penrose generalised

inverse M of the Jacobian matrix J is given by
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M=J7JI"y" @)

Its size is nxm and solves (2) as follows

6=Mp, ©)

This is a particular solution. We can verify that from the infinity of solutions the Moore-
Penrose generalised inverse chooses the one that minimises the Euclidian norm of joint
velocities. These are very known results in mathematics related to underdetermined
systems of equations where the number of unknowns is greater than the number of
constraints. The formulation (5) forms the background of very elegant numerical
procedures which by integration of (5) can calculate joint coordinates of a redundant
manipulator for given end effector positions and orientations. One is given by

6" =6" +M(6')(p-po (")), ©
where 7 = 1,2,...is the number of iterations, p is a desired end effector pose, pqy(0') is the

actual end effector pose, M(8') is the corresponding Moore-Penrose generalised inverse
as given in (4), and 0° is a known initial estimation. In order to control the error in
Cartesian coordinates of the end effector we must additionally compute
e®)=(p-po(®")) (p-po(6")) Q)

for all i = 1,2,... The procedure is stopped when ¢ is less than the desired accuracy €,.
There are, however, some disadvantages that must be taken into account in the utilisation
of the pseudo-inverse-based methods. These are entirely numerical procedures and is very
difficult to find any analytical result. They have intrinsic inaccuracy and accumulate error
that becomes larger as the velocity increases. To overcome these difficulties some authors
developed analytical or semi analytical methods to resolve redundancy. However, no
symbolic solution can be developed for a general redundant manipulator unless certain
conditions are met by the manipulator structure. Some attempts were reported by Stanisi¢
and Pennock (1985), Varma and Huang (1992), Duffy and Crane (1980), and Chaware
and Amarnath (1987). More general approaches were presented by Ghosal and Roth
(1988), and Chang (1987). The calculation schemes based on the Moore-Penrose
generalised inverse are procedures of local optimisation (Nenchev, 1989). They minimise
a weighted Euclidian norm of joint velocities at every point or any given moment. It is
very hard to know a priori how large the minimum is. Recently, promising results were
obtained in the global optimisation with integral-type criteria (Nedungadi and
Kazerounian, 1989; Kazerounian amd Wang, 1988). Generalised inverse methods yield a
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non conservative motion. The particular problem of concern is the non-repeatability of
periodic motions resulting from drift associated with pseudo inverse approach. The drift
problem was described Klein and Huang (1983). It has become the major criticism of the
methods based on pseudo inverses and, consequently, one of the most investigated
subjects in redundancy resolution. We can refer here to the work presented by Klein and
Kee (1989), and more recently by Luo and Ahmad (1992), and Bay (1992).

From the viewpoint of adopting the pseudo inverse techniques for the inverse kinematics
of multi-link robot manipulators, the main difficulty is associated to their numerical
complexity. According to (6,7), the calculation of the vector of joint coordinates in each
iteration i = 1,2,... contains Ng’” multiplications and divisions and ngl additions and

subtractions is proportional to a third order polynomial of # and m

Ngm =n(n’+m)+m’+m’+m

MPI 2 3 ’ ®)
Ng  =n(m +m)+m +m-1

where the number of arithmetic operations is taken from regular matrix multiplication

rules and matrix inversion by performing LU decomposition. It can be observed that for a

high number of degrees of freedom, for example n = 100, and for m = 6 that corresponds

to the number of position and orientation constraints, the number of multiplications ng !

= 4458, and additions Ng” = 4421 in each iteration step i = 1,2,... The number of
iterations that find a solution depends on the accuracy of the first estimation and on the
desired accuracy of the result. We can also observe in (8) that the number of
multiplications and additions increases with the number of degrees of freedom multiplied
by a quadratic polynomial of the number of the task constraints.

4. RAPIDLY CONVERGENT DESCENT METHOD

We can minimise the number of arithmetic operations by decreasing the task constraints
m or, as it is shown in this section, by simply redefining the optimisation criterion.
Searching for a solution of (1) we can consider a local optimisation problem of
minimising the difference between the desired Cartesian coordinates p and the actual

Cartesian coordinates py(0). An adequate criterion would be a quadratic function of the

form
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F(0)=5(0), ©)

where f is the objective function given as a norm €(0) specified in (7). The criterion
function f (0) can be interpreted as the quadratic distance between the desired and the
actual end effector position and orientation. Assume that f is differentiable with respect to
0. Its gradient is then given, in accordance to the definition of the Jacobian matrix J (3),
by

2(0)=3"(p-py(6)), (10)
‘where g is n-dimensional column vector. We are concerned here. with the general
problem of finding an unrestricted local minimum of the function f(0) of several variables.
We suppose that the function of interest can be calculated at all points. It is also
convenient to group functions into two main classes according to whether the gradient
vector g is defined analytically at each point or must be estimated from the difference of
values of f. The method described in this paper is applicable to the case of the analytically
defined gradient.
The steepest descent method introduced almost fifty years ago and later modified by many
authors, for example by Powell (1962), is still one of the most attractive and efficient
approaches for non linear minimisation problems. The aim is to find the sequence of
vectors of joint coordinates 0 that minimises the objective function f(8). Applied to our
case, this method can be expressed as

0 =0"+a'g(0’), (1)
where i = 1,2,... is the number of iterations, o' is the iteration step size, and 0% is a
known initial estimation. The gradient g is minimised in each iteration depending on the
step size o' until the error €(8') is less than the desired accuracy g,. o' can be kept
constant or can be changed within the procedure in order to guarantee the convergence,
as well as to minimise the number of iterations. The reader is referred to the work of
Powell (1962) for more extensive details. Comparing (11) with (6) and in relation to the
definition of the Moore-Penrose generalised inverse (4), a suitable choice of the step size
a',i=12,.. canbe

i &(8')

* @) ee) 12
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For functions of several variables, there are two very useful conditions that enable very
fast and stable convergence. One is to have the Jacobian matrix J whose columns
depend only on a very small number of variables, and the other is to have quantitatively
similar dependency on each of the variables. The resulting numerical procedure has a
quadratic convergence and finds the nearest local minimum of a function of several
variables very efficiertly, especially when the initial estimation is sufficiently close to the
solution. From the computational viewpoint, the main difference between the steepest
descent method and the method that utilises the Moore-Penrose generalised inverse is in
the number of arithmetic operations needed in each iteration. For every i = 1,2,... the

steepest descent method as presented in (11,12) contains

N2 = n(m+1)+2m+1

(13)
NP = n(m+1)+2m-1
arithmetic operations. When n >> m
NSD NSD 1
&~ ’—Sﬁ ~— (14)

W Ng m
However, to properly compare the mentioned approaches we must also take into account
the number of iterations needed to obtain a desired accuracy, as well as the number of
operations necessary to compute the Jacobian matrix in each iteration step.

5. NUMERICAL EXAMPLE: N-R PLANAR MECHANISM

In order to validate these theoretical findings a planar mechanism that possesses equal
links and parallel revolute joints was used. The Moore-Penrose generalised inverse
method (6) and the descent method (11) were implemented and compared on a personal
computer IBM 425SX (486-processor). The inverse kinematics problem was solved for a
given end effector position, m = 2, and for a series of examples of mechanisms with
different number of degrees of freedom, n =20, 50, 100, 500. The computation time per
iteration as a function of the number of degrees of freedom is as follows

n 20 50 100 500

MPI(ms) 2860 6.570 1291 64.59

SD (ms) 1.530 3.790 7.630 39.14

SD/MPI 0535 0577 0591 0.606
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The ratio SD/MPI is in favour of the descent method and approximately corresponds to
the prediction in (14) - the difference arises from the computation of the end effector
position and its derivatives that are not included in (14). The generalised inverse method
showed better convergence. However, extremely fast convergence was obtained also with
the descent method when the joint coordinates of the mechanism were specified in terms
of the absolute angles between the links and the reference coordinate frame - instead of
relative joint angles that are measured between neighbouring links. A comparison of the
convergence specified in terms of the square root of the error (7) for a typical case (n =
100) is as follows
iteration ~ MPI SD

1 0.737188 0.737188

2 0.341060 0.293930

3 0.009324 0.013108

4 0.000005 0.000810

5 0.000000 0.000037

6. CONCLUSIONS

This work reports a critical evaluation of the pseudo inverse approach in the kinematic
inversion of multi-link hyper-redundant robot manipulators from the viewpoint of
computational efficiency. If the inverse kinematics problem is defined as an optimisation
problem of minimising the quadratic distance between the desired and the actual end
effector position, the pseudo inverse approach can be converted to a more simple
procedure of finding local minimum of a function of several variables by using the
steepest descent approach. The iteration step of this procedure is approximately m-times
less expensive (where m is the number of task coordinates). However, the main point of
concern in the implementation of the steepest descent method is related to its
convergence. It was shown that very fast convergence, comparable to the convergence of
the pseudo-inverse-based method, can be obtained when the coordinates are expressed by
the absolute joint angles. This, on the other hand, can incorporate some difficulties in the
algorithm. For instance, if there are limits applied to the joint angles, the transformation
between absolute and relative joint angles must be performed in each iteration step. In the
presented case of a planar n-R mechanism the transformation is trivial, but for a general-
type spatial mechanism might be more complex. Another difficulty of the utilisation of



83

absolute angles in the iterative procedure is when, in an initial configuration, two or more
absolute angles are equal. They remain equal in the whole procedure, as well as in the
final configuration, and may, therefore, disturb the convergence. In conclusion, the
steepest descent method is more efficient in applications where the number of iterations is
small. An example is in continuos path control where the neighbouring points of the end
effector trajectory are~re]ative]y close and thus good initial estimations are provided.
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On Finding the Set of Inverse Kinematic
Solutions for Redundant Manipulators
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Abstract

The inverse kinematic solution of a manipulator with p redundant d.o.f.’s can be
seen as the configuration space of a closed kinematic loop with mobility M = p. This
set can be described by means of the fasible ranges of values that each variable can
take. It is possible, for all planar and spherical loops, obtaining such ranges without
explicitly finding the algebraic expression of the solution. The form presented by
such ranges permits inferring topological properties of the solution space as a whole.

1 Introduction

A serial manipulator with n degrees of freedom (d.o.f.) can be described by an open
kinematic chain with r revolute pairs and p prismatic pairs, with n = r +p. A
manipulator configuration is determined by an n-dimensional vector q = (q1,. .., ¢x),
where ¢; is the joint coordinate corresponding to joint i. The forward kinematic
function f associates each joint configuration vector q to an end-effector pose (in
general, location and orientation), x:

x = f(q). 1)

The manipulator joint space, or configuration space, is an n-dimensional manifold
with the structure 77 x RP, where T" is an r-dimensional torus. The set of all
possible poses x reachable by the end-effector, that we will call end-effector workspace,
is a subset of SE(3) = SO(3) x R, whose dimension, m < 6, depends on the
manipulator’s morfology and link-parameters. Thus, for example, in general planar,
spherical and regional manipulators m = 3, and in spatial manipulators m = 6. Since
the end-effector workspace cannot have a higher dimensionality than the configuration
space, we must have m < n. We say that a manipulator is redundant if n > m, and
the difference p = n — m is the redundancy of the manipulator. In the case of m =n
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the manipulator is non-redundant, and for any given pose x there are in general a
finite number of joint vectors q satisfying (1).

For a redundant manipulator, the different dimensionality between the joint space
and the end-effector workspace implies that the forward kinematic function must de-
fine a many-to-one mapping where an infinite number of configurations q are mapped
onto the same pose x.

Of major interest in Kinematics is the study of the inverse kinematic function

q=f7(x), (2)

that computes the set of configuration vectors that place the end-effector at a given
pose.

The solution to the inverse kinematic function for a regular value x is one or more
self-motion manifolds of dimension p (Burdick 1989).

The solution set can be mathematically characterized by a set of non-linear equa-
tions involving the joint variables. By using appropriate algebraic methods, as for
example, those described in Buchberger (1989), it is possible, in principle, to derive
a generalized input-output equation for any variable, i.e., a single equation involving
only the desired variable and a set of p other variables that play the role of parame-
ters. The parameterization of the solution set obtained in this way is not a “proper”
one, in the sense that it is not clear beforehand what vectors of parameter values
will provide an actual solution (the input-output equations may produce imaginary
values). This is so since, in general, for a given pose of the end-effector, each joint
variable has a restricted set of feasible values. In order to characterize the solution
set, it is necessary to provide, besides the n — p generalized input-output equations,
the feasible ranges for the variables treated as parameters. In fact, this is not yet
enough, since in general, the feasible set of values for a given parameter depends on
the values already assigned to other parameters. A solution to this problem is to
determine parameter ranges “on-line”: before assigning a value to a parameter, its
feasible range compatible with the already assigned ones has to be computed.

Note that if there is an effective way of computing compatible ranges for variables,
solution vectors q may be obtained without any need of deriving input-output equa-
tions: Just extending the process to all variables in the loop (and not just to those
taken as parameters) will provide the desired solution vector q. This is adequate
for those kinds of problems in which one or more particular solutions, and not the
functional relationships between variables, are required. Furthermore, the solution
may be directed by the user in the process of fixing variables into their ranges. Ad-
ditional constraints, as externally imposed joint limitations, may be accounted for in
a straightforward way.

The remaining of this paper is organized as follows: In Section 2 each inverse
kinematic problem is associated with a kinematic loop, Sections 3 and 4 are devoted
to the determination of feasible ranges for variables in planar and spherical loops,
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respectively, and Section 5 shows some consequences for the topology of the solutlon
derived from the properties of the ranges.

2 Kinematic Loop Associated to an Inverse Kine-
matic Problem

When the end-effector of a manipulator is fixed at a given pose x, the resulting
kinematic chain becomes a loop with an extra imaginary link attaching the end-
effector to the base link. The set of inverse kinematic solutions of the manipulator
for this pose coincides with the configuration space of the corresponding loop. The
redundance p of the manipulator corresponds to the mobility M of the loop, which,
according to the well-known Kutzbach-Griibler formula (Duffy 1980), is

M= th - d7
v =1
where f; is the number of d.o.f. of joint ¢, and d is, roughly speaking, the dimension
of the loop’s workspace. In our case f; =1 and d = m, which yields

M=n—m=p.

This formula fails to provide the correct mobility value in those loops obtained from
a non-regular point of the end-effector workspace. In this case, the dimension of
the workspace locally decreases to some value m' < m, and the actual mobility M’
increases:

M=n—-m'>M.

Our purpose is the determination of the feasible ranges for variables in kine-
matic loops without explicit derivation of generalized input-output equations. We
will provide explicit ranges for variables in arbitrary planar and spherical loops. The
approach we take is broadly the same in both cases: First, loop closure conditions are
derived for each kind of loop. Such closure conditions take the form of inequalities
involving all link parameters in the loop, and they establish necessary and suficient
conditions for the loop to be possible. To find the feasible range for a variable ¢; in
a given loop we consider a new loop obtained by formally substituting the two links
sharing joint ¢ by a single link whose parameters are a function of ¢;.! The closure
condition for this new loop is interpreted as a condition on ¢;. The feasible range for
variable ¢; in the original loop is the set of values for which this condition is satisfied.

In some cases, due to the conventions used in the link-parameters definition, the parameters
affected may correspond to some other link.
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RR RP

Figure 1: Representation of planar links.

3 Planar Loops

Each link in a planar loop can be characterized by no more than a single magnitude
whose meaning depends on the type of joints it connects. Figure 1 shows the repre-
sentation used for each type of link, and the parameters by means of which they are
characterized.

According to these conventions, a planar loop may be represented in two alterna-
tive forms, depending on what direction is taken to define the loop. The difference
comes from the uneven treatment given to RP and PR links. Figure 2 shows a loop
represented in non-standard form, and its two possible normalized representations.

From simple geometric considerations, loop closure conditions to be satisfied by
the links’ parameters can be derived (see Celaya (1992) for details). Depending on
the number of P pairs existing in the loop, different closure conditions hold:

1. Loops with no prismatic pairs:
A planar loop with n R pairs is characterized by n parameters /;. The necessary and
suficient closure condition can be expressed as:

20 <1, ®3)

i=1

Figure 2: A planar loop and its two possible representations.
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Kind of loop | Variable | Ranges for which there is a solution
§2-12_, 12 PLIN LR
nR 0k o7 I S COs gk S W

21l

0= Yigtkk-13 i
6 = max(0, 2lpp — o)

lMI == max(l,-, ) ¢ {k,k — 1})

n—1 n—1
=iy li—d > iy li—d
nR-P 0, I < cosb, < i

d— n 21 d n 21
6, Ehish o ging, < Hhimh
L
01: WT SCOSgk

(k#1,n) '
6 = max(0, d — Yigrxk-13 i)

T - << (T L)~ &

§ = max(0, 2lp — E" L k)
I =max(l;, 1 € {1,...,n —1})

nR-P-P 0 No restriction if there are two or more R pairs
T | zpsina |[< 0L
n R-P-nyR-P 0 No restriction
T 2 —di <zl

6 =max(0, d; — Y 1))

...P..P..P 0, No restriction if there are two or more R pairs

Tk No restriction

Table 1: Ranges for variables in planar loops.
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where Iy = max(l;,7 € {1,...,n}). An equivalent form to express this condition,
that is more appropriate for the purpose of finding ranges for variables is:

U =Y L <UL <YL, (4)

i#k ik
where lMl = max(l,-,i ?é ]C)
2. Loops with one prismatic pair:

If the loop has n R pairs, the loop will have one PR link with parameter d, one RP
link, which is characterized by no parameter, and (n — 1) RR links with parameters
l;. In this case, the closure condition is:

d< Yl (5)

3. Loops with two or more prismatic pairs:

In this case there is no closure condition to be satisfied, provided there is at least one
R pair. In the particular case of a loop with n P pairs and no R pairs, the loop is
formed by n PP links with parameters a;, and the closure condition is:

cos(i a;) =1 (6)

i=1

Using these closure conditions, and following the general procedure described
above, ranges for variables in any planar loop can be obtained (Celaya 1992). The
feasible ranges for all possible cases are summarized in Table 1.

4 Spherical Loops

A spherical kinematic loop may be represented by an articulated spherical polygon
in which sides correspond to links, and vertices correspond to revolute pairs. A link
of length « in a spherical loop is kinematically equivalent to a link of length 27 — «
(Chiang 1988), thus the sides of the polygon may always be taken of length < .

If, in a polygon with sides o; < 7, we substitute one vertex p; by its antipodal
P;, sides @;_; and «; are replaced by 7 — a;_; and 7 — «;, respectively. The differ-
ent polygons obtained through these substitutions are called supplementary polygons
following Chiang (1988), and they may be used to represent the same spherical loop.
With an appropriate selection of the vertices or their antipodals, it is always possible
to obtain a supplementary polygon with at most one side > /2 representing the
same spherical loop as the original polygon (Fig. 3).

The closure condition for a spherical loop with n links represented by a spherical
polygon with sides o; € [0,7/2] for ¢ # k, and oy € [0, 7] is (see Celaya and Torras
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b 2n—oy by 1
o,
B
o
Figure 3: Supplementary spherical polygons.
(1990) or Celaya (1992) for a derivation):
20{M .<.. Z ay, (7)
=1
where apr = max(ay,...,a,). This closure condition can be rewritten as:
20m — Y oy < ap <Y a, (8)
ik itk

where apr = max(o;,1 # k).
Replacing sides ax_; and oy by a variable side @ (Figure 4) we have, using the
cosine law for spherical triangles:

COS T = COS (k1 COS Q}, — SIN (g1 SIn g cos Gy. (9)
The closure condition for the new loop yields the following constraints for 6;:

cos & — cos aj_; €os ag COS 0 — COS Qrg_1 COS Qg
< cosfy <

—25sIn ag_y sin ag —25sIn ag_q sin ag

Where 6 _ max(o, zaM - E'lg{k—lyk} a{), With ap = max(a‘i’ l ¢ {k bt 1,k})7 and
o = min(7, Yigk-1,k) %)-

5 Properties of the Solution Sets

An examination of the conditions obtained for the different variables in all planar
and spherical loops (Table 1 and eq. (10), respectively) reveals that in all cases,
angular variables §; appear in sine or cosine functions, and translational variables z;
in absolute value or in squared form. The fact that the inverses of these functions are
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Oy 2

g2

Figure 4: Finding ranges for 0 in an spherical loop.

double-valued implies that the sets of feasible values for the variables are symmetric.
More precisely, the set of permissible values S; for any variable ¢; must take one of
these forms:

1. The empty set (unfeasible loop).

2. A single point or interval, that eventually may be the full range [0, 27] for
rotational variables, or (—o0, 00) for translational variables.

3. Two points or two intervals S, and S;" of the same length.

It is useful considering the mapping M;; that for each value of variable ¢; in a
given loop gives the set of compatible values for ¢;. Figure 5 shows the graphical
representation of M;; for a particular spherical loop. The image of each value a of
g; is obtained as the set of feasible values for ¢; in the loop with one less link that
results when ¢; is fixed to the value a. The projection of the shaded region on the
horizontal (resp. vertical) axis is the set S; (resp. S;) of allowed values for ¢; (resp.
g;) in the original loop. Of course, the same sets S; and S; can be obtained directly
by using the corresponding conditions for variables ¢; and ¢; in the original loop.

The above-mentioned properties of symmetry holding for S; must hold also for the
image M;;(a) of each value a of ¢;, since this is the set of feasible values for variable
g; in a different loop. Note also that the intervals’ extremes for §; vary continuously
with the parameters of the links, and hence with the value of #;. In general we can
derive the following property:

Prop. 1 If the mapping M;; has two disconnected regions, their projections on 0;,
St and ST, either coincide or form two non-intersecting intervals.

This is so since a partial overlapping of S} and S would imply an assymetry at
the extreme points of the overlapped regions. A direct consequence of Prop. 1 is:
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Figure 5: Set of compatible values for variables ¢; and ¢; in a given spherical loop.

Prop. 2 A revolute joint is a crank (is able to perform complete turns) if and only
if its feasible range is the complete interval [0, 27].

This can be seen as a generalization of the Grashof condition (Hunt 1978) for
planar and spherical loops with more than four links, and for planar loops with both
R and P pairs.

Clearly, the existence of a variable with two disjoint feasible intervals implies that
the configuration space of the loop has two disconnected parts, i.e., the loop has two
modes of assembly. As a consequence of Prop. 1, the converse is also true:

Prop. 3 The solution space is formed by a single connected manifold if and only if
the feasible range for each variable is a single interval.

The only circumstance in which Prop. 3 is not justified by Prop. 1 is the hypo-
thetical case of a loop having two different modes of assembly, in which all variables
have full mobility, thus avoiding the partial overlapping problem. We conjecture that
such a situation is not possible.
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6 Conclusions

Expressions giving the sets of feasible values for variables in all planar and spherical
loops have been provided in explicit form. This results can be applied to finding
inverse kinematic solutions of redundant planar and spherical manipulators. A simple
examination of the feasible sets for variables permits deriving global properties of the
solution set, as the number of self-motion manifolds.

This formulation based in ranges for variables lends itself to considering problems
with multiple kinematic loops, an issue that has been investigated in Celaya and

Torras (1992). Some extensions of these procedures to spatial kinematic chains can
be found in Celaya (1992).
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1 Introduction

This paper investigates the global sets of solutions for single loop inverse kinematic
problems containing only independent rotational and translational degrees of freedom,
providing a rational and compact method to obtain these sets. This is a sequel of the
work presented in Thomas (1992).

A forward kinematic function, F, is defined as a non-linear vector function which
relates a set of n joint coordinates, §2, of a closed kinematic chain so that

F(2)=1, 1)

where I is the identity displacement. .

One of the primary problems of practical interest in kinematies is determining the
inverse kinematic function, F~!, which computes the sets of joint coordinates that
keep the mechanism closed. The problem is especially hard to solve when dealing
with redundant kinematic chains, i.e. kinematic chains with extra degrees of freedom
(d.o.f.). This paper essentially deals with the problem of obtaining these solution sets,
keeping in mind that, for redundant mechanisms, there is an infinite number of joint
coordinates that satisfy (1).

Kinematics of interconnected rigid bodies may lead to very complex computations
and it is important to perform these computations in the most compact form and
to search for their most rational organization. This goal motivates a great deal of
research on the fundamental operations and the algebraic structures underlying kine-
matic methods. Nevertheless, no general satisfactory solution, convenient for prac-
tical use, has been found for the general positional inverse kinematic problem. This
problem is highly complicated because of its non-linearity, the non-uniqueness of the
solution, and the existence of singularities. This is why the redundant manipulator
literature has focused on the linearized first order instantaneous kinematic relation
between joint velocities, that is

I =0 (2)
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where J(£2) = dF(42)/df2 is the Jacobian of the kinematic chain. In this literature, the
inverse solution of (2; is often referred to as the inverse kinematic solution, rather than
that of (1). Thus, given the position and velocity states, the set of joint coordinates
can be obtained either by directly solving positional equations (1), or by solving
the first-order differential equations (2). Since (2) at a particular position is linear,
numerical solutions to the inverse velocity problem are relatively easier than that
of the inverse position problem. Nevertheless, practical applications, including most
industrial robot coordination algorithms, avoid numerical inversion of the Jacobian
by using analytical inverses developed on an ad hoc basis.

In general, ad hoc methods make use of simplifying heuristic arguments.These
simplifying arguments have made ad hoc analytical inverses dominate many of the
practical applications in this area.

The first foundation for a unified theory of analysis of spatial mechanisms was
provided in Duffy (1975). Nevertheless, the algebra used prevents any intuitive in-
terpretation of the results, making any further insight difficult. The present work
presents an alternative foundation for a unified theory of analysis of spatial mecha-
nisms based on simple results.

This paper is structured as follows. Section 2 states the inverse positional kinematic
problem in terms of 3 x 3 dual-number matrices. Section 3 is devoted to finding the
expressions of the components of rotation and translation of a kinematic equation used
throughout this paper. Section 4 investigates the sets of solutions of the rotations
equation. It is shown that this problem is equivalent to that of finding a global
solution to the positional kinematic problem of the orthogonal spherical mechanisms.
Section 5 deals with the problem of obtaining those points of the sets of solutions of
the rotations equation that also satisfy the equation of translations. Section 6 deals
with the problem of parameterizing the sets of solutions of the rotations equations.
Section 7 presents two examples whose analysis is carried out using the developed
methodology and, finally, Section 8 provides a brief summary of the main points in
this paper.

2 Stating the problem

The general inverse kinematic problem will be formulated in terms of 3 x 3 dual ma-
trices (see, for example, Duffy 1975, or Veldkamp 1976). The dual matrix formulation
is preferred here to the popular homogeneous coordinate form because, for analyti-
cal manipulation, the formulation obtained for the separation of the rotational and
translational parts is essential herein.

A kinematic chain is defined as a set of n links in series. The proportions of link

i will be specified by a constant dual angle ¢; = ¢; + £d; between the two adjacent
joint axes. The dual operator is defined by €™ = 0 where m is any integer greater
than one. The parameters ¢; and d; are referred to as the twist angle and the length
of link ¢, respectively.

Neighboring links have a common joint axis between them. One parameter of
interconnection is the distance along this common axis from one link to the next.
Thus, the displacement linking the reference frame of element ¢ with that of element
t + 1 can be expressed as:

Rx(a; + ezi) Ry (6 + eyi), 3)
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or, in other words,
Rx(a; + ez;) X Rx(B; + 7 + eyi) X Rx(x). 4)

where

0 -1 0
X=Rz(7r/2)=(1 0 o). (5)
0 01

Thus, any kinematic chain can be described kinematically by giving the values of
four quantities for each link. Two describe the link itself, and the other two describe
the link’s connection to a neighboring link (Craig 1986, page 64). In what follows, we
will consider the four quantities as variables. This way we can model any kinematic
chain by constraining the appropriate rotational or translational d.o.f.

If we define

00 0
B(4:) = Rx(¢:) X = (RX(¢i) + die ( 0 —sing; —cos¢; )) X, (6)
0 cos¢; — sin ¢;

the kinematic equation for a closed kinematic chain is an equation of the form:

n

F($)=[[B(d) =1L (7)

i=1

This equation can be interpreted as the loop equation of the n-bar mechanism

(Thomas 1992), where & = (¢, da,...,8n) = (¢1 + ed1,ds + eda, ..., dn + £dy,) is

called the vector of displacements; & = (¢1, ¢, ...¢,), the vector of rotations; and
D = (di,ds,...d,), the vector of translations.

3 Equating real and dual parts

Some proposed symbolic methods for solving simple inverse kinematic problems can
be factored into a solution for the rotational component and a solution for the trans-
lational component (thomas and Torras 1988). Notice that the rotation component
can be extracted directly from the original equation by simply removing all the trans-
lations, but not the translational component. The approach taken here also follows
this sequencing strategy. Under the dual number formalism, both components can be
obtained by equating the real and dual parts of (7), respectively.
Equating the real parts in (7), we have:

F(@) = [[B() = I (®)

=1

which will be called the equation of rotations.
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The partial derivatives of F(®) with respect to ¢; can be expressed as:

OF(®
79‘53?)”:'%: o
where
00 O 1 o
= 0 0 -1 s d A'.= ’i- ._.
Tlot o) { i1B(y), i>1 (10)

Thus, we define VF(J) as

On the other hand, the linearization of equation (8) around a solution ¢y =
(¢9,...,¢%) can be expressed as:

" Ad: AQAL =0 (12)
i=1

where Ag; = (¢; — ¢?9). In other words,
VF(®,)(@ — 8o)! = VF($o)Ad' = 0 (13)

This is called the equation of approzimation, which agrees with the result obtained
in Uicker (1964). Actually, equation (12) is the first order approximation of F(®) =1
around @q, which defines a hyperplane of approzimation.

Now, equating the dual parts in (7) and taking into account that €2 = 0, it can be
easily shown that

VEF(®)D' =0 (14)

which will be called the equation of translations.

Note that the superposition principle applies for the translational solutions, that
is, if for a given vector of rotations we have two vectors of translation that satisfy
equation (14), say D; and D, then any vector of translations which can be expressed
as D3 = py Dy + poDo, Yy, po € R also satisfies it.

Considering that there are three translational degrees of freedom in space, it should
be expected that there be three equations representing this information. Actually, if

Ny O QAix

A,’ = (n; 0o; a,-) = n;y Oy Q;y , (15)
n;; 0;; a;

then it can be proved that

0 —I;, Ny
.A,(Q.A:5 = n;, 0 N, . (16)

—gy n;; 0
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Then, if we define the vectors AaAt (nig, njy, n;;)!, and we express the equation
of approxunatlon and the equation of translations in terms of them, we get the | three

equations we were expecting. Actually, a deeper insight reveals that vector A,QAf in
$3 is a unit vector pointing in the positive direction of translation d; with respect to
the first bar of the n-bar mechanism. Thus, the equation of translations can also be
expressed as:

Ny N2z ... Ny
Ny, N2y ... Ipy Dt = J(@)Dt = 0. (17)
Nz N2z ... Dg;

Likewise, for the equation of approximation. It can be checked that J(®) is the
3 x n Jacobian matrix of the spatial transformation F(¢), that is:

_dF(9)

J(P) Y

(18)

This formulation leads to the following remark.

Remark I. The solution of the translations equation of the n-bar mechanism (13) is
the Jacobian null space of the corresponding rotations equation (8).

If the following condition is satisfied

max (rank J(P)) =3, (19)
o

it is said that the degree of redundancy of the closed spherical kinematic chain is
r=n-3.1f

rank J(9) = 2, (20)

for some @, then we say that the closed kinematic chain is in a singular state (all the

n bars are on a plane). In others words, the vectors A;QAY, i.e. the columns of the
Jacobian matrix, define a subspace of %2 which coincides with ®2 iff the mechanism
is not in a singular state.

Since all the axes of rotations of an n-bar mechanism can never be arranged so that
they all keep aligned, rank (J(®)) cannot be lower than two.

Let N(J) be the null space of the linear mapping J. Any element of this subspace is
mapped into the zero vector. If the Jacobian is of full rank, the dimension of the null
space, dim(/N(J)), is the same as r, the degrees of redundancy. When the Jacobian
is degenerate, its rank decreases, and the dimension of the null space increases by the
same amount. The sum of the two is always equal to n, that is:

rank(J) + dim (N(J)) = n. (21)

The solution to equation (17) involves the same number of arbitrary parameters as
the dimension of the null space.
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4 Self-motion sets and singularities

Equation (8) corresponds to the loop equation of a orthogonal spherical mechanism.
The configuration space, C, for a spherical mechanism is a product space formed by the
n-fold product of the individual variables of rotation, that is, C = §* x S1x...x S =
T™, where T™ is an n-torus, which is a compact n-dimensional manifold. The space
of pointing directions in three-space is two-dimensional and can be represented by
the set of unit vectors in three-space or, equivalently, by the surface of a sphere. In
contrast, the configuration space is an n-torus. The mismatch between the topological
properties of a sphere and a torus prevents the construction of a singularity-free inverse
kinematic mapping (Baker and Wampler 1988).

For non-redundant kinematic chains, there is a finite set of configurations that
solve the inverse kinematic problem. For redundant ones, there is an infinite number
of configurations, which can be grouped into regions of the configuration space with
the structure of algebraic sets of dimension .

The term “self-motion sets” was coined by Burdick in Burdick (1989) motivated
by the fact that any trajectory inside these sets corresponds to a continuous motion
of the elements of the closed kinematic chain which does not require to open it.

Formally, let a redundant inverse kinematic solution of a rotation equation be
denoted as the union of disjoint r-dimensional algebraic sets

Fo)=1 = o={J5, (22)

where S; is the ith r_dimensional connected algebraic set and S; N S; = 0 when ¢ # j.
Self-motion sets can be seen as smooth hypersurfaces of dimension r intersecting
themselves. The stratification of these sets leads to several manifolds of dimension
r, which will be denoted M;, connected through manifolds of lower dimension. The
former will be called self-motion manifolds, and the latter just singularities. Note
that, motivated by the presence of these singularities, the definition of self-motion
manifolds is a rather different definition from the one introduced in Burdick (1989).

Bounds on the number of self-motions sets are also discussed in Burdick (1989),
where it is shown that a redundant kinematic chain can have no more self-motions
sets than the maximum number of inverse kinematic solutions of a non-redundant
kinematic chain of the same class.

In Yoshikawa (1986), Thomas and Torras (1988), or Wampler (1989) it is shown
that a discrete closed-form solution exists for spherical mechanisms with up to three
d.of. For n = 3, there are two discrete solutions. For n > 3, a spherical kine-
matic chain becomes redundant. Thus, regardless of the number of d.o.f., a spherical
redundant mechanism can have at most two distinct self-motion sets.

Self-motion manifolds can be parameterized, at least locally, by a set of r indepen-
dent parameters, say ¥ = {¢1,...,%,}, so that distinct self-motions can be generated
by continuously sweeping ; through their range.

As already noted in Duffy (1975), equation (8) has a straightforward geometric
interpretation as an n-sided spherical polygon. Consider a unit radius sphere centered
at the coordinate origin. As a result of applying successive rotations, the z—axis will
describe on the surface of the sphere a spherical polygon with sides (arcs of great
circles) of length ¢;, and exterior angles 7 /2. Alternatively, the y-axis will describe a
spherical polygon with sides of length 7 /2 and exterior angles ¢;. These two polygons
are considered duals. All theorems from spherical trigonometry are thus applicable; in
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particular, the sine, cosine, and sine-cosine laws, which are the the three basic laws for
spherical triangles. By triangulating the thus obtained n-sided spherical polygon, the
global solutions to equation (8) will be obtained in terms of r independent parameters.
This is not the only possible parametrization. Actually, we can take any r variables
as parameters. We will discuss in detail this latter parameterization in section 6,
but, for the moment, let us assume that a set of expressions of the ¢;, 1 = 1...n,
parameterized in terms of n — 3 independent parameters, is obtained, so that they
yield one solution for every choice of the parameters.

5 Satisfaying the equation of translations

The set of all tangent vectors to a manifold M at a fixed point @q is called the
tangent space to the manifold M at point $g. This set is denoted Tg,(M), which can
be endowed with the structure of a linear space. The tangent space to M; at some
&y = ¢(P) in terms of the independent parameters is:

dM;i(® do (¥,
ra ) = L00) _ 40100

c §Rnx(n—3) (23)

where d¥ € R"~3. Then, by applying the chain rule,

dF(®) _ dF(2(%)) d2(%) (%) 3% (n-3
dW = d@ dw - J(éo)W = J(QQ)TQO(M,') € §R ( ) (24)

However, when F is restricted to a self-motion manifold, F must equal the identity
displacement, dF(®,)/d¥ must be zero, and therefore the tangent space of M;(¥) at
¥ = ¥,, must be in the null space of the Jacobian evaluated at this point. Thus, since
the null space of the Jacobian is the solution of the equation of rotations, the tangent
space of M;(¥) is part of the solution of the translations equation.

If &(¥,) is a point on the self-motion manifold, then

ank (ddil(go)> =NJ(2(%)))=r. (25)

If §(W) is a point of a singularity, then the dimension of N%J(@(Wo))) is greater
than r and d®(¥,)/d¥ is not strictly defined. This leads to the following remark:

Remark II. For the n-bar mechanism, the vector of translations that satisfies the
equation of translations at $(¥p), restricted to a self-motion manifold of the equation
of rotations, is any vector in the subspace of dimension n — 3 defined by d®(¥,)/dV¥.

The set of all tangent vectors T, (M;) to a manifold at a point @q is a linear space
of the same dimension as that of M;. The whole set of tangent vectors to a manifold
M; is denoted T'(M;) and called the tangent bundle of M;. Then, if the solution of the
rotations equation can be represented by the self-motion manifolds M;, the solution
of the translations equation 1s the tangent bundle of M;, that is T'(M;). Hence,

08(o) 90(Wy)
A VA

D=)\1 V/\],..‘,)\TGQR. (26)
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Following differential geometry nomenclature, the numbers (My, ..., A,) are called
coordinates of the tangent vector D to M; at point &#(¥,) in a local coordinate system
(%1, ...,%,) on the surface M;, and equation (26) is called the tensor law of coordinate
transformation for the tangent vector D.

At a point belonging to a singularity, the Jacobian becomes degenerate, that is,
the dimension of its null space is greater than r. Hence, the associated spherical
mechanism becomes planar (all axis of rotation lie on a plane), and, since an n-bar
mechanism can degenerate to planar only when n is even, it is easy to infere that
there are no singularities when n is odd.

Given a point on a singularity, there is a set of arbitrarily close points on the self-
motion manifolds for which we know the allowed translations. Then, by applying the
superposition principle for the translational component, the solution at a point of the
singularities can be expressed as a linear combination of the solution for each of these
points.

6 Local parameterizations

In this section, we concentrate ourselves in obtaining simple local parameterizations,
or local charts, useful for local analysis of the self-motion manifolds.

Since the rank of the Jacobian matrix is maximal at every point $5 € M, (i.e. rank
of J(®o) = 3), M, is a r-dimensional smooth manifold of class C*, and r coordinates
of the surrounding space T™ can be taken as local coordinates in the neighborhood
of each point &g € M.. This is, in fact, the implicit function theorem formulated in
convenient terms whose proof can be found in any text book of differential geometry.
In what follows we will study this simple parameterization.

Let us take r consecutive variables in the chain as parameters. Without loss of gen-
erality, let {¢1, ¢2,...,d,} be the set of parameters. Hence, the equation of rotations
can be expressed as:

Rx(¢,+1) X Rx(¢r+2) X Rx(¢r43) = A, (27)

which has always solution for any proper orthogonal matrix A encompassing all the
parameters. In general, this equation has the following two discrete solutions:

ér+1 = atan2(tas;, Faz)
Grp2 = atan2(:t\/1 - a%la a'll) (28)
¢r43 = atan2(Faq3, Faiz)

where a;; denotes the element (7,5) of A. One solution is obtained by taking the
upper row of signs, and the other, the lower one.

When a;; = +1, there appear infinite solutions. Those points of the self-motion
manifolds where this happens are called singularities of the parametrization, and it
can be easily shown that they correspond to those situations in which the axes of
rotation of bars r + 1, r + 2, and r + 3 lie on the same plane.

Using this parameterization, two different sets of values for the parameters might
lead to the same point on the self-motion manifold. Therefore, this mapping is not
inyective but, by constraining its domain, we can get a local chart (this will become
clear in the second example of the next section). Let ¥, be a point of the space of
parameters that maps onto @,. This mapping is regular because at least one of the
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minors of order 3 x 3 of the Jacobian matrix is different from zero in ¥,. Since this
minor is continuous, it is different from zero in a neighborhood of ¥,. Therefore, we
conclude that there will be an open subset in the space of parameters containing ¥
in which the mapping in inyective. The highest the value of n, the smaller the size of
this set. This is why, as n — oo (that is, the n-bar mechanism behaves like a rubber
band), this parametrization becomes useless.

Thus, taking the proper r consecutive rotational variables as parameters, we al-
ways obtain a local parameterization of the self-motion manifold. This leads to the
following remark:

Remark III. The set of n local charts consisting of r consecutive variables used as
parameters constitutes an atlas of the self-motion manifolds.

Obviously, certain points are provided with several local coordinate systems.

7 Examples

This section contains two examples. The first one is a simple global analysis, including
the stratification of the resulting self-motion sets and the analysis of the singularities.
The second one is about a local analysis using the parameterization described in the
last section, including the situation in which 1t is singular.

7.1 Global analysis of the 4-bar mechanism

The kinematic equation to solve for the 4-bar mechanism is:
4
H Rx(¢i+edi)) X =L (29)
=1

It is a well-known result that a rotation can be resolved into three successive rota-
tions about perpendicular axes of rotation. In doing so, we get

$ ==+
Al &

The stratification of this algebraic set leads to 4 manifolds of dimension 1 and 4

of dimension 0. As shown in the following diagram, the strata of dimension 1 are
connected through those of dimension 0.

¢1_¢3=0} — @ =(0,0,0,00 —> ¢2”¢“:°}

¢2=¢4:0 ¢1=¢3=0
7 i

Ql = (7!',0,77,0) ¢2 = (0;7"70)77) (31)
l !

$2+¢4=0 _ . d+d3=0

¢1=¢3=7r} %= (mm,m,7) ¢2=¢4=7T}
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The tangent spaces of these strata are constant. For example, the tangent space
of the upper left stratum on diagram (31) is (1,0,1,0). Thus, D; = X(1,0,1,0),
lambda, € R, is the only possible solution of the corresponding equation of transla-
tions for any point on this stratum. For the other strata, the solutions are: D, =
A2(0,1,0,1), for the upper right stratum; D3 = A3(1,0, —1,0), for the lower left stra-
tum; and Dy = A(0,1,0,—1) for the lower right stratum.

Let us just see what happens at the singularity &3 = (0,0,0,0). In this point the
Jacobian is:

10 -1 0
J(dso):(o 1 0 —1) (32)
00 0 0

which is clearly singular, as expected. Since its rank is two, the 4-bar mechanism is
planar, also as expected.

By applying the superposition principle at this singular point (i.e. the solution to
the translations equation at this point can be expressed as a linear combination of
those at the non-singular points on their boundaries), we get:

Ds = A1(0,1,0,1) + A2(1,0,1,0), VA, A € R, (33)

which is clearly the solution sought.

7.2 Local analysis of the 5-bar mechanism

The equation to solve for a 5-bar mechanism is:

i=1

A solution to its rotational component is @ = (0,—%, 5, =%, ). At this point the
Jacobian is:

1 0 —0.707 —0.707 0
J@W)=[01 0 0 -1 (35)
0 0 —0.707 0.707 0

This point is located on a self-motion manifold of dimension 2 embedded in T°.
Now, let us assume that we want to know the allowed translational d.o.f. for this
particular set of rotational values. To this end, we can obtain the tangent space
around @, using a finite differences technique as follows.

We can take ¥, = ¢; and 1, = ¢, as parameters of the self-motion manifold. This
choice is obviously arbitrary. Note that given a set of values for the parameters, there
are two solutions for the other rotational d.o.f., but choosing the closest points to @,
we get:

By(1 = A,y = —g) = (0.001, —0.78539, 1.5715034, —1.570089, 0.78539) (36)
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Bo(thy = 0,9, = ‘% + A) = (0,—0.78439,1.57079, —1.57079, 0.7863) (37)

with A = 0.001. Thus,

OMy &,—9¢
o0, 1= (1,0,0.7071,0.7071, 0) (38)
and
oM, &,— & _
90, = A =(0,1,0,0,1). (39)
Since
oM, oM,
D=P) = \i——+ Ag—— AL A 4
D( 0) la"bl-}- 2a¢2, 1,2€§R, (0)
finally we get,
d; 1 0
ds 0 1
ds | =X | 07071 | + X, | O (41)
ds 0.7071 0
ds 0 1

Thus, d; = ds, and d3 = dg = 0.7071 - dy, which certainly corresponds to solution.
It is important to realize that, if we would take ¢3 and ¢4 as parameters, we would
be in a singular point of this particular parametrization.

8 Conclusions

We have proved that the information required for the analysis of any single loop spa-
tial mechanism is essentially stored in the self-motion sets of the orthogonal spherical
mechanism. Thus, it has been shown the great relevance of deepening on the struc-
ture of the self-motion manifolds of the orthogonal redundant spherical mechanisms,
and how a thorough understanding of them is very helpful in the study of spatial
mechanisms.

Any kinematic loop equation can be modeled as the loop equation derived from
an n-bar mechanism by taking as many bars as needed and constraining some of the
resulting d.o.f. It has been shown that the set of angle solutions of a n-bar mechanism
can be obtained by computing the tangent space of the self-motion manifolds of the
orthogonal redundant spherical mechanism.
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Feedforward Torque Computations with the Aid
of Maple V

Thomas H. Connolly and Friedrich Pfeiffer
Lehrstuhl B fir Mechanik
Technische Universitat Miinchen
80333 Miinchen, Germany

Abstract

Using the symbolic manipulation software package Maple V, the kinematic and dy-
namic representations needed to design a feedforward torque controller are derived.
The derived kinematic representations include the inverse kinematics, the Jacobian
and its time-derivative, which are needed to convert a task space trajectory to the
joint level. Two Newton-Euler based recursive multibody dynamics algorithms are
also programmed symbolically; one for the inverse dynamics to design the feedfor-
ward torque controller and one for the forward dynamics to validate the controller.
The symbolic computations are demonstrated on a six degree of freedom PUMA 560
manipulator.

1 Introduction

Kinematic and dynamic representations of robotic manipulators are regularly nec-
essary for their control. For multilink manipulators these representations are alge-
braically complex, making hand calculation impractical. The development of symbolic
manipulation software such as MACSYMA, Mathematica and Maple V has made the
derivation of complex kinematic and dynamic systems less time-consuming and less
error prone.

Engineers have made use of commercially available symbolic manipulation soft-
ware and have also written problem specific software for deriving kinematic and dy-
namic expressions of mechanical systems. Manocha and Canny (1992) developed
an algorithm for solving the inverse kinematics of a general 6R manipulator with
the aid of symbolic computation. While optimizing the design of a redundant ma-
nipulator, Mayorga et al. (1992) used symbolic manipulation software to develop a
Jacobian based objective function for their minimization procedure. Custom symbolic
manipulation software has also been written to automatically generate the forward
and inverse kinematics of a manipulator from its Denavit-Hartenberg parameters
(Herrera-Bendezu et al. 1988; Rieseler and Wahl 1990). The equations of motion
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for manipulators have also been written making use of symbolic manipulation. Lieh
(1991) made use of Maple for developing the equations of motion for an elastic ma-
nipulator. Armstrong et al. (1986) developed an explicit dynamic model of a PUMA
560 manipulator using the software EMDEG. Symbolic computation software has also
been used in control systems design. Van Essen and De Jager (1993) used Maple V to
analyze and design nonlinear control systems, and to check for stability of nonlinear
systems Rothfufl et al. (1993) used MACSYMA to assist in the extensive analytical
and numerical calculations.

Computed feedforward torque controllers have been demonstrated to provide good
tracking performance (Leahy 1988; Tarn et al. 1993) in robotic control systems. The
structure of such a controller is shown in Equation (1).

7= M(04)04 + V(04,04) + G(O4) + K,(© — O4) + K4(© — O,) (1)

where the first three terms make up the feedforward part of the control law and are
computed off-line and the last two terms are the PD controller part calculated on-
line. Solving for the feedforward terms involves computing the inverse dynamics for
a preplanned path. The path (position,velocity and acceleration profiles), however, is
often described in task (Cartesian) space and hence needs to be converted into joint
space using the manipulator’s inverse kinematics, Jacobian and its time-derivative as
shown in Equations (2-4)

Qd = F(xd) ~L. (2)
0, = JY(O)X, (3)
0s = J7HO) (X~ J(0,6)0) (4)

where I' represents the inverse kinematics. For a multilink manipulator these deriva-
tions as well as deriving the inverse dynamics model are time consuming and prone to
errors, therefore, the use of symbolic manipulation software will greatly aid in their
development.

In Section 2.2 the use of Maple V is demonstrated in developing the inverse kine-
matics, the Jacobian and its time-derivative for a PUMA 560 manipulator. The ap-
plication of Maple V to the development of the inverse dynamics model is discussed
in Section 3. The appendix contains some of the results.

2 Kinematics

The coordinate frames used for developing the kinematic relationships are those used
by Unimation, Inc. and are shown in Figure 1. The modified Denavit-Hartenberg
parameters for this coordinate frame convention can be found in Armstrong (1986).
After writing the corresponding Denavit-Hartenberg matrix for all six links, the dis-
placement of a point in the sixth coordinate frame can be written in the base coordi-
nate frame using the closure equation of the manipulator

o7 =Ty T3T{TSTST (5)
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‘Figure 1: PUMA 560 Manipulator in the Zero Position

Algebraic manipulation of this equation will be the basis of the inverse kinematics
solution.

2.1 Inverse Kinematics

The procedure used to solve for the inverse kinematics is the algebraic technique
described in Paul (1981). If 87T is specified, then succesive premultiplication of Equa-
tion (5) by the inverse of the coordinate transformations between the links (¢,,7")
will yield expressions isolating each joint variable.

Using Maple V, this procedure is greatly simplified and leaves little work to be
done by hand. To show the ease at which this technique can be implemented the case
for calclulating the inverse kinematics of joint angle 5 is shown.

Equation (5) can be rewritten as follows

[T01T127T23T34) ™" T06 = T45T56
In Maple V the two sides of the equation can be written as

SIDE1 multiply (inverse(multiply(T01,T12,T23,134),T06));
SIDE2 := multiply(T45,T56);

Examination of the resulting 12 nonlinear equations shows that the (1,3) and (3,3)
elements of SIDE2 isolate sin(fs) and cos(fs) respectively in terms of known link pa-
rameters and already determined joint angles. Joint angle 5 can then be solved as
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t5 := arctan(SIDE1[1,3],SIDE1[3,3]);

2.2 Jacobian and its Time-Derivative

The linear velocity partial derivative terms of the Jacobian can be found by differ-
entiating the translational elements in Equation (5) with respect to time. This can
be performed using Maple V by applying the “diff” function to each of the three
translational elements. For example,

v[i] ;= diff(T06([1,4],t);

will perform chain rule differentiation on the x component of the translational part
of T with'respect to t. The elements of the Jacobian coming from the linear velocity
partial derivative terms are then extracted using the “coeff” function. The linear
acceleration partial derivative terms, which are needed for determining the time-
derivative of the Jacobian, are found similarly by differentiating each of the three
linear velocity components with respect to time.

The angular velocity terms for the Jacobian come from the angular velocity equa-
tion for the sixth link, which is found recursively using the following equation.

o = TR 4 01y (6)

Such recursive equations, which are often used in multibody system analysis, can
easily be implemented using Maple V. For the six links of a PUMA 560, Equation (6)
was implemented as follows

omegal := vector([0, 0, 0]);
omegal := add(multiply(inverse(minor(T01,4,4)),omega0),tdot1);

omegab := add(multiply(inverse(minor(T56.,4,4)),omegab),tdot6);

where “tdot” is the relative angular velocity between coordinate frames. The elements
of the Jacobian are again extracted using the “coeff” function.

The angular acceleration terms used for the time-derivative of the Jacobian come
from the angular acceleration equation for the sixth link, which is found recursively
using .

i+101i+1 = ::HRiOli + f--HRZUJ X 8y + éi-)-l

This was written in Maple V as

fl

alpha0 := vector([0, 0, 0]);
alphal := add(add(multiply(inverse(minor(T01,4,4)),alpha0),\
crossprod(multiply(inverse(minor(T01,4,4)),omega0),tdot1)),tddot1);

|
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alpha6 := add(add(multiply(inverse(minor(T56,4,4)),alpha5),\
crossprod (multiply(inverse(minor(T56,4,4)),omegab),tdot6)),tddot6);

where “tddot” is the relative angular acceleration between coordinate frames.
The expressions for the time-derivative for the Jacobian are given in the Appendix.

3 Inverse Dynamics Model

The feedforward joint torques can be computed from the desired joint angle positions,
velocities and accelerations (2-4) using the manipulator’s inverse dynamics equations.
The recursive multibody dynamics algorithm chosen for solving the inverse dynam-
ics is the Newton-Euler based method which can be found in Craig (1989). This
algorithm can be easily implemented in Maple V using similar linear algebra state-
ments demonstrated in Section 2.2. The PUMA 560 parameters used in the recursive
equations are from Armstrong (1986).

The resulting expressions for the joint torques, even after applying the trigono-
metric simplifications built into Maple V, were pages of expressions containing manip-
ulator parameters and trigonometric functions. Verifying these results with a hand
derivation would be impractical, therefore, a second recursive multibody dynamics
algorithm was programmed to check these expressions.

The second recursive multibody dynamics algorithm, which is also based on a
Newton-Euler formulation, is that of Roberson and Schwertassek (1988). This method
solves for the forward dynamics of the manipulator recursively without inversion of the
mass matrix. The resulting expressions for the joint accelerations can be compared
to the first method's results by solving the first method for the manipulator’s joint
accelerations.

Since the resulting expressions of both methods were too complex to check term for
term, the model of the PUMA 560 was built up one link at a time so that application
errors of the algorithms could be found early from less complicated expressions. After
correcting these errors, the complete PUMA 560 models were compared against each
other with numerical examples and agreement was achieved. The required vectors and
matrices used for the recursive inverse dynamics algorithm are given in the Appendix.

4 Conclusions

In this paper we have shown how symbolic manipulation can be used in writing kine-
matic and dynamic expressions for a multilink manipulator. The use of symbolic
computation reduces immensely the amount of hand calculation and simplification
needed when deriving these expressions. The tree structure associated with most
manipulators allows for easy application of programs such as Maple V to the recur-
sive equations used to write the kinematics and dynamics of the systems. Symbolic
computation has also been demonstrated to be a useful tool on understanding how
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a particular algorithm should be implemented. Although the results from symbolic
computation for the inverse dynamics could not provide a compact closed form so-
lution, symbolic computation software did provide a convenient means to implement
and check the recursive multibody dynamics algorithm for future programming in a
lower level computer language.
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Appendix

The time-derivative of the Jacobian in the coordinate frame system shown in
Figure 1 is given below. The angular acceleration terms of the time-derivative of the
Jacobian have been expressed in frame 6. To express these terms in the base frame,
as were the linear acceleration terms, the lower 3 x 6 submatrix of the time-derivative
of the Jacobian should be premultiplied by IR, which is the rotational submatrix of
the closure equation.
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Nonlinear Control of Constrained
Redundant Manipulators

Christoph Woernle
Institute A of Mechanics, University of Stuttgart,
Germany

Abstract. The dynamic hybrid position and contact force control of open-chain
manipulators with redundant degrees of freedom by means of exact input-output
linearization is investigated. The dynamics of the manipulator is transferred into a
decoupled linear dynamics in the subspace of the control variables and a still nonlinear
dynamics in the subspace of the redundant degrees of freedom. By projecting artificial
potential and damping forces into the subspace of the redundant degrees of freedom,
it is possible e. g. to realize repeatable motions in the joint space for cyclic trajectories
or to avoid collisions with obstacles in the workspace.

1 Introduction

Kinematically redundant manipulators have more independently controllable degrees
of freedom than control variables specified by the particular task. This provides in-
creased flexibility for the execution of complex tasks. Typical variables for dynamic
control are the position coordinates of the endeffector or independent position coor-
dinates together with contact forces in case of material contacts between manipulator
and environment. The considered control task is to make all control variables track
prescribed time functions and to accomplish desirable subtasks using the redundant
degrees of freedom such as avoiding collisions with obstacles in the workspace. Be-
cause of the nonlinearities of the mechanical system, the method of exact input-output
linearization is applied. By means of a nonlinear state feedback the dynamics of the
manipulator is transferred into a linear, decoupled dynamics in the subspace of the
control variables and a still nonlinear dynamics in the subspace of the redundant
degrees of freedom that is non-observable from the control variables.

The dynamics of the manipulator in the subspace of its redundant degrees of free-
dom is then prescribed by nonlinear artificial potential and damping forces that ge-
nerate asymptotically stable equilibrium positions in this subspace. Potential forces,
that depend only on the joint coordinates, are applied to realize repeatability in
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the joint motions for cyclic trajectories. Collision avoidance is achieved by potential
forces that are defined over the cartesian workspace and push the manipulator away
from the obstacles. The described procedure can be applied to unconstrained mani-
pulators, to manipulators with material contacts at the endeffector, as described e. g.
by KHATIB (1987) or YOSHIKAWA (1990), and also to manipulators with multiple
contacts at the endeffector and/or other limbs.

2 Dynamics of a Constrained Manipulator

2.1 Equations of Motion

Assuming a rigid-body model of an open-chain manipulator with f degrees of freedom
and f control forces u € IR/ acting directly along the f independent joint coordinates
q € IR/, the equations of motion are

M(q)g=9(q,q)+u. (1)

Here, M € IR’/ is the symmetric, positive-definite inertia-matrix, while the vector
g € R/ summarizes the generalized centrifugal forces as well as all applied forces
except for the control forces u.

During execution of a task, the manipulator may be constrained by material con-
tacts of the endeffector or other limbs with the environment. It is assumed that these
material contacts lead to d < f independent constraints on the joint coordinates q :

QOF.'((])=0, i:l,...,d, or <PF'(Q)':O' (2)

If the functions ¢ (q) are differentiable at least twice with respect to time, the total
second-order time derivative of Eq. (2) is

¢r=Pr(q) G + ¢r(q,4) =0

9 L. dor(q) (3)
with  @p(q)= 222D eper|  po(q,q) =220 g e,
0q dt
The d < f constraints (2) reduce the number of degrees of freedom of the
manipulator from f to f — d. In the equations of motion (1) constraint forces 7 A
are to be added, whereby A € RR? are independent coordinates of the constraint
forces:

M(@)g=9(q,a)+Pr@) A +u. (4)

The differential-algebraic set of equations (2) and (4) then describes the dynamics
of the constrained manipulator. Hereby, the constraints (2) must be fulfilled on
position, velocity and acceleration level. If the positions q and the velocities ¢, which
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have to be consistent with the constraints (2) and their first-order time derivatives,
as well as the control inputs u are given, Eqgs. (3) and (4) together represent a set of
f + d linear equations to determine uniquely the f unknown accelerations ¢ and the
d unknown contact force coordinates X :

M o[ a] [g+tw )
¢F 0 —A _‘;F )

2.2 Control Variables

The objective of the considered control is to make altogether m control variables y(t)
track prescribed functions §(t). For the constrained manipulator described by (2)
and (4), the m control variables may include mp force outputs yr as well as mp
position outputs yp. In this work, all d coordinates A of the constraint forces are
defined as the mpr = d force outputs:

yri=X, t=1,...,mp, or Yr=A. (6)
If only a subset of A is chosen as control variables, the manipulator is statically

redundant. This case is not considered here, although the following derivations can
be easily extended to include it.

With f — mp degrees of freedom of the constrained manipulator, mp < f — mp
position outputs yp can be defined as functions of the position variables q :

ypi =¢pi(q), t=1,...,mp, or yp=ep(q). (7)
In the same manner as the constraint functions ¢(q) of Eq. (2), they are assumed
to be at least twice differentiable with respect to time:

yp=Ppr(q) ¢ + ¢p(q,9)

8
with Pp(q) = M € R™P/ , ‘;P(Qa(I) _ d¢P(Q) ( )

oq 7 qg e R™?,
The kinematical control variables yp must be chosen within the admissible motion
space of the constrained manipulator. This condition is fulfilled, if the mg functions
¢r(q) of Eq. (2) and the mp functions ¢ p(q) of Eq. (7) are independent, or equiva-
lently, the mp + mp row vectors of the functional matrices @r and @p are linearly
independent.

For m = mp + mp < f, the manipulator is kinematically redundant with f —m
redundant degrees of freedom that are not specified by control variables of type (7).
Basically, it can be always made non-redundant by introducing f — m additional
independent control variables of type (7). The practical problem is, however, that
desired values for these additional outputs are not prescribed by the manipulator
task. The redundant degrees of freedom will be therefore controlled in a different
manner.
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3 Input-Output Linearization

3.1 Linear Input-Output Equation

For the derivation of the input-output linearization, the so-called partial relative
degree §; of the i-th output y; is important. It is exactly the number of times one
has to differentiate y; totally with respect to time in order to have at least one
component of the input vector u explicitly appearing, refer to ISIDORI (1989). By
this, a set of equations is obtained that is linear in the §;th-order derivatives of y; and
the inputs u . The solution of this “linear input-output equation” with respect to u
yields the “inverse system” necessary for input-output-linearization and -decoupling.

The linear input-output equation for the manipulator is obtained by inserting
the accelerations ¢ and the contact forces A resulting from Eq. (5) into the control
output equations (6) and (8). It can be brought into the form

[?F]zF([¢F]M"g+[?F]) + F ¢F]M‘lu 9)
Yp Dp Pp g op 3

d(g,9) D(q)
with .

— (erM1B})" 0

— (#pM'@Y) (85 M'ST) " T
The matrix D € R™/ here has full row rank r(D) = m < f and is the decoupling
matriz of the system, ISIDORI (1989). This means that the m outputs y can be

independently controlled by the f inputs w . Thus, the relative degrees are dp; = 2
for all position outputs yp and dr; = 0 for all force outputs yp.

3.2 General Decoupling Feedback

To obtain the linearizing state-feedback, the input-output equation (9) is solved with
respect to u. The control outputs yr € R™F and §p € IR™? are hereby replaced
by new inputs wr € R™F and wp € R™” of the decoupling feedback. Since in
the considered redundant case the decoupling matrix D is nonsquare, the solution of
Eq. (9) is not unique. It can be generally expressed by
wFr
u=D'[ :|—D‘d+(I—D"D)w". (10)

wp

The matrix D~ € RY™ is an arbitrary generalized right-inverse of D with the pro-
perty DD~ = I. The arbitrary vector w* € R/ is projected into the nullspace of D .
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A particular generalized inverse D~ will be determined in section 4.2. The cancel-
lation of the nonlinearities of the mechanical system by the feedback (10) is shown
by inserting Eq. (10) into the input-output equation (9). If the matrices D and d in
Egs. (9) and (10) coincide, a linear and decoupled system is obtained consisting of
mp proportional and mp double-integrating input-output channels:

Yp = wp or yri=wri, i=1,...,mp, (11)

@P = wWp or fjp,'=‘wp;, i=1,...,mp. (12)

These input-ouput channels and the redundant degrees of freedom can now be sepa-
rately controlled.

4 Control of the Decoupled System

4.1 Control of the Output Variables

To obtain asymptotically stable tracking control for the system outputs, i. e.
lim (Gr() - yp(M) =0,  lim (5(t) — yp(t) =0,

(desired values marked by “ " ") each input-output channel (11) for the contact forces
is separately controlled by an integral feedback

'LUp;(t):dp;/ep,' dt, i=1,...,mp, (13)

of the force error er; = §r; — yri, while each input-output channel (12) for the
positions is separately controlled by a feedback

wpi(t) = §p; + api €p;i + api ep; + ai; /eP:' dt, i1=1,...,mp, (14)

of the position error ep; = §p; — ypi. The feedback gains ey, ap;, ap;, and ap; are
determined by pole-placement, see e. g. ISIDORI(1989) or YOSHIKAWA (1990).

4.2 Control of the Redundant Degrees of Freedom

Independently from the control of the decoupled input-output channels, the dynamics
of the manipulator in the subspace of its f — m redundant degrees of freedom is
inherently determined by a particular inverse system (10). This dynamics is now
prescribed in such a way that desired configurations of the manipulator are asympto-
tically stable equilibrium positions. The manipulator then tends to move towards
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these configurations. In terms of the joint coordinates q, this artificial dynamics is
stated as simple as possible in the form

Qéu=p7 (15)

where Q is regarded as a diagonal, positive-definite inertia-matrix and p as a vector
of generalized applied forces in the joint space. The asymptotic motion of the kine-
matical chain towards desired configurations must be realized by the applied forces p,
while the time behaviour of this motion is additionally influenced by the masses Q.
Eq. (15) only holds, if the joint accelerations g, are unconstrained, as indicated by
the index “u”. However, the actual accelerations ¢ must be consistent with the mpg
constraints (3) and the mp output equations (8). With the replacement §p — wp,
the latter are additional constraints on ¢. Egs. (3) and (8) together are a set of
m = mp + mp constraint equations for q :

br 7 (]
q=- =F + wp . (16)
QP Pep I
—— h_'—’ | ——
& ¢ R™/ @ \4

Because of these constraints, the “unconstrained” accelerations g, = Q™! p from
Eq. (15) is different from the actual accelerations ¢. The determination of the actual
g can be formulated as an optimization problem by means of the principle of least
constraint of GAUSS, refer e. g. to PARS (1968). It defines the “constraint” Z as the
sum of the mass-weighted squares of the differences between the accelerations ¢, of
an unconstrained and g of a constrained mechanical system, and requires that Z gets
minimal with respect to @, i. e.

N L. ..\ N
2(@)=5@-4) Q(@-4,)=min
or, with g, = Q' p,
. 1, N . - 1.
Z2(@)=354"Q4-9"4 (+p" Q7' p) = min. (17)

This optimization problem is constrained by Eq. (16). To solve it, the extended
objective function

[ o 1.. . . . = ! .
2@)=53"Q4-p a+u (23+ ¢ - Vwep) = min (18)

with LAGRANGE-multipliers g € IR™ is minimized. The necessary minimum condi-
tion gives in combination with the constraint equations (16) the linear set of equations

aZ T .
L L N A
& 0 M -+ Vwp

agT
(16) —
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These are differential-algebraic equations of motion for the dynamics of the manipu-
lator within its redundant degrees of freedom. Elimination of g yields the solution

q= 45(+Q) (Vwp—9) + (I- @?Q)QS)Q‘I p (20)
with
¢?‘Q) — Q—l ¢T (¢ Q—l ¢T)—1 .
Here, ¢(+Q) € R/™ is the pseudoinverse of & weighted by Q . It has the property

454522» = I. Inserting (20) into (4) yields together with (6) the particular inverse
system, refer to Eq. (10):

wF - —
u= [—45}; | M45(+Q)V] ['wp] -MJo-g+M(I-9(,¢)Q'p. (21)

If the corresponding matrices of the input-output equation (9) of the mechanical
system and the inverse system (21) coincide, the decoupled input-output channels
(11) and (12) are obtained, as shown by inserting (21) into (9). The feedback (21)
transfers the dynamics of the mechanical system into the linear input-output dyna-
mics (11), (12) and the nonlinear “internal” dynamics (19) that is non-observable
from the outputs yp and yp. A block diagram of the overall control structure is
shown in Fig. 1.

position output control linearizing feedback mechanical system

Yp

Fig. 1: Nonlinear Control Structure
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5 Examples

The desired configurations are now formulated as equilibrium positions of the con-
strained dynamics (19) of the manipulator in the subspace of its redundant degrees
of freedom. This can be achieved by an artificial potential energy field U(q) that
is minimal in desired configurations of the manipulator. The control forces p then
are conservative forces p_(q) together with dissipative forces p,(q, §) for asymptotic
stabilization:

T k11

p(g,9) =— (ag—flq)) —Pi(q,9) withe.g. py=|

: , ki=const. (22)
krgy

The choice @ = I for the artificial mass matrix turned out to be reasonable for
manipulators with revolute joints. Compared to e. g. @ = M(q), these decoupled
“masses” avoid undesired dynamic couplings between the coordinates that make the
dynamic transition to the equilibrium position less predictable, see also HOLLERBACH

and SUH (1987). Examples are given in the following,.

5.1 Repeatable Motions

If there are no other restrictions, it is usually desired to reach the initial joint positions
at the end of a closed-loop trajectory of the position outputs yp in order to be able
to carry out repeated tasks in the same manner. This can be realized by artificial
springs in the joints that are not tensioned in the initial configuration gy

1 f
U(q) = 52&' (g — 04)* ¢; = const . (23)
=1

A repeatable motion of a planar manipulator with three redundant degrees of freedom
tracking a circular trajectory §p(t) (no contact constraints) is shown in Fig. 2.

1 cycle 1 cycle

80.00 P .

1] TN N q4
qi RN - R N -
60.00 f< — T~z -7 -\_\ﬁzqg
50.00 }

40.00 AN PR
30.00 < ~ - N 7~ T

~ ~_ ~-

20.00 q2
10.00

o.uo'\/\\/\

-10.00
q1
-20.00

0.00 8.00 18.00 27.00 36.00t [ 45.00
s]

Fig. 2: Repeatable motion in joint space (f = 5, mp = 2, mp = 0)
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5.2 Hybrid Position/Force Control

The motion of a planar manipulator with one redundant d.o.f. along a wall with

prescribed contact force under a potential of type (23) is shown in Fig. 3a. The

contact force A(t) converges asymptotically towards its desired value A, Fig. 3b.
M|

123.33

o 96.87

70.00

- At) 43.33 |

18.67

yp(t)l
a) 4t0 b) N0 o7 0.3 osn 067 0.8 1.00
t[s]

Fig. 3: Hybrid position-/force control (f =3, mp =1, mp = 1)

5.3 Collision avoidance

A main advantage of kinematically redundant robots is their ability to avoid collisions
with obstacles in the workspace while tracking a desired trajectory. This can be
achieved by artificial potential forces repulsing the manipulator arm from the obstacle.
To a discrete point P, on the manipulator with the absolute position vector r; and
the shortest distance d(r;) from the obstacle a potential #/(r;) is assigned, refer to
KHATIB (1986):

-I—K(L—l)z for d(r;) < dy
Ur)=4{ 2 \d(r) do V= (24)
0 for d(r;) > d,.

Here, & is a scaling factor and dy denotes the distance of influence of the obstacle.
The artificial repulsing force on P; derived from U(r;) for d(r;) < dy is:

- (B8] (L) by (4] o

To get the control force p needed in Eq. (21), the forces f; on all np; discrete points
P; are projected into the joint space and there summarized:

npg . T
p=Sp wih p=(ZD) g (26

Two examples for trajectories of a planar five-link manipulator with this collision
avoiding strategy are shown Fig. 4.
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Fig. 4: Collision avoidance (f = 5, mp = 2, mg = 0)

6 Conclusion

The dynamics of a constrained redundant manipulator in the subspace of its red-
undant degrees of freedom is prescribed by artificial applied forces that generate
asymptotically stable equilibrium positions in this subspace. Control goals such as
repeatability in the joint motions or collision avoidance can be realized. It is a “local”
optimization procedure instantaneously minimizing the “constraint” on the motion
in the subspace of the redundant degrees of freedom. Further improvements can be
expected by application of “global” dynamical optimization schemes covering whole
trajectories, that are, however, more complex. Other future investigations concern
control of combined kinematically and statically redundant manipulators where the
control inputs needed to realize a desired motion can be minimized, if no explicit
control of the contact forces is desired.
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ANALYSIS OF MECHANISMS BY THE DUAL INERTIA OPERATOR

M. Shoham and V. Brodsky
Department of Mechanical Engineering,
Technion - Israel Institute of Technology, Haifa 32000, Israel

ABSTRACT

The application of dual numbers to kinematics is based on the principle of
transference that extends vector algebra to dual vector (motor) algebra. No such direct
extension exists however, for dynamics. Inertia binor is used to obtain the dual
momentum, from which the dual equations of motion are derived. This derivation raises the
dual dynamic equations to six dimensions, and in fact, it does not act on the dual vector as
a whole, but rather on its real and dual parts as two distinct real vectors.

In this investigation, the dual inertia operator is introduced. This gives the mass a
dual property which has the inverse sense of Clifford's dual unit, namely, it reduces a
motor to a rotor proportional to the vector part of the former, allowing direct relation of
dual force to dual acceleration. As a result, the same equation of momentum which holds
for linear motion, holds also for angular motion if dual force, dual acceleration, and dual
inertia, replace their real counterparts.

This approach was implemented in a symbolic computer program. By adding dual
number algebra, the program is able to handle dual quantities. Furthermore, applying the
dual inertia rules, the dual equations of motion are obtained by replacing real with dual
quantities as it is illustrated in the example of a three-degrees-of-freedom robot.

1. INTRODUCTION

Dual numbers were invented by Clifford in the nineteenth century [Clifford, 1873],
and were generalized for kinematic applications by Kotelnikov's principle of transference
[1895] that extends the algebra of vectors to that of dual-vectors (motors). This principle
states that when dual-numbers replace real ones, the relations of vector algebra for
kinematics of a rigid body with a fixed point, hold for motor algebra of a free body (see
also [Hsia and Yang, 1981; Martinez and Duffy, 1993; Rooney, 1975]). But it was about
one century latter before they were applied to mechanisms analysis [Dimentberg, 1965;
Yang and Freudenstein, 1964; Yang, 1966].

In the 80's, as robot manipulators became popular, several investigators applied the
dual-numbers to their kinematic analysis [Gu and Luh, 1987; Lee and Soni, 1979;
McCarthy, 1986; Pennock and Yang, 1985; Pradeep, Yoder, and Mukundan, 1989]. Direct
kinematics of robot manipulators, both position and orientation, can therefore, be obtained
by consecutively multiplying 3X3 dual orthogonal matrices, one for each degree of
freedom, instead of 4X4 real ones. It was shown [Gu and Luh, 1987] that the same
multiplication also yields the Jacobian matrix in an explicit form.
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Only a few investigations over the past thirty years aimed, however, at the
application of dual numbers to mechanisms dynamics [Dimentberg, 1965; Lee and Sony,
1979; Luh and Gu, 1984; Yang, 1967; Yang, 1967; Yanzhu, 1988]. In order to understand
the difficulties involving the use of dual numbers in dynamics, it is best to quote from
Dimentberg's book [1965] "... It will be appropriate to note here that the attempt to apply
the transfer principle to dynamics no longer produces such simple relationship as can be
obtained for kinematics and statics.... because the complex operator linking the kinematic
and force screws cannot be obtained from the corresponding affine operator linking the
angular velocity vector with the moment by substitution of complex for real quantities. As a
result many dynamic and static problems must be solved on the basis of general screw
theory with the screw expressed by means of six Plucker coordinates. [page 61]".

Also, on page 137, he remarked that even though the three-dimensional dual-
kinematic equations are expanded into six real ones, there is still a discrepancy in the
derivation of the dynamic equations " ... Then the dynamic equations decompose into two
groups of three equation each. But those three equations that express the relation of the
principal part of screw U, i.e., the angular-velocity vector, to the moment of the external
forces will be not the principal part of the equations, but rather their moment part. The
corresponding vector equation will be not the principal, but the moment part of the screw
equation. Thus, the differential equations for the principal part of the kinematic screw are
not the principal part of the basic differential equations, but, to the contrary, are their
moment part.". The same problem obviously, arose in Yanzhu's [1988] investigation,
where he reversed the order of the velocity screw in order to derive the Newton-Euler
equations in a screw matrix form.

Furthermore, Yang [1966] showed that the acceleration of a rigid body is not a dual
vector, as it does not follow the relevant transformation rule. Nevertheless, the acceleration
can be composed in the regular manner of a dual vector into real and dual parts, a quantity
Yang called a pseudo-dual vector [Yang, 1967].

In order to overcome the problem of dual number representation of a rigid body
dynamics, Kotelnikov (according to Dimentberg) introduced the inertia binor concept. The
binor is a combination of two dual matrices which, when applied to a dual vector
transforms it into a new dual vector, according to the rule:

o A _ A At
r'=(A)r=Ar+A"r, o

where r and ro are, respectively, the real and dual parts of a dual vector f , and

A and A" are dual matrices, generally different. The symbol * defines a pair of a real
and dual quantities.

The inertia binor about a body-fixed coordinate system is defined as:

) €l xx Sy +elyy ~Sytely || m  -eS, Sy
T)=(TTY) =| [-S,+elyy. ey Sx+ely, |,[es, m -,
Sy+ely, —Sx+ely, el, €Sy €S, m

o)
where € - the dual unit
m, Iij - body mass, and moments of inertia matrix element, respectively

S, - body moments about axis 1
Multiplying the above equation by the dual velocity, we obtain the dual momentum:
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p=Mi=To+T"v A3)

where U = @+ ev - is the kinematic screw of the body, in accordance with Dimentberg's
definition. Thus we obtain the dynamic equation in dual form:
dp d A A
2L -—imal =t
dt dt @)

where f isa dual force ( wrench ).

Examining the binor operation and its effect on a screw, Dimentberg observed that
replacement of the real quantities of any real operator with dual ones does not yield a binor.
Hence, the screw formulation for dynamics is not a straight generalization of a vector
formula into the dual-number domain. In other words, the principle of transference does
not_extend to rigid body dynamics.

It has to be noted that even though dual matrices were applied in earlier
investigations to the Lagrangian dynamics of rigid bodies (see for example [Luh and Gu,
1984] ), their use was limited there to the kinematic part, and after separation of the dual
expressions into linear and angular parts, the dynamic terms were calculated in the
traditional way.

Dual numbers were applied to dynamics of a rigid body in almost complete dual
number form by Yang [1967, 1969]. The dual momentum about the body's center of mass
is utilized in his study as follows:

fl:mv+£h
h=1w

where v - is the velocity of the center of mass with respect to the inertial frame;

I - is the body moment of inertia about its center of mass.

If dual number algebra is applied, then the expression for the momentum is
obtained through an inertia binor multiplication (Eq. 3). But such an operation expands the
equation's dimensionality to six, and actually operates on two separate sets of three-
dimensional real vectors. For dual dynamic analysis, the six-dimensional real vector is in
turn, combined into a three-dimensional dual one in reverse order.

In order to obtain a general formulation of the dynamics of a rigid body in dual
form, and to utilize its advantage of compactness and efficiency, we propose to consider
the inertia as being of a dual nature and replace the binor operator with a much simpler dual
inertia operator. Under the new representation, the spaces of wrenches and their integrals
(i.e. dual forces and dual momenta) can directly be connected with those of twist
derivatives and twists (i.e. dual accelerations and dual velocities), respectively.

®)

2. FORMULATION OF DUAL MASS OPERATOR

Let us begin our dynamic analysis with the motion of a particle. The use of dual
numbers and dual vectors in representing particle motion is obviously formal, since they
refer to motion of rigid bodies about lines not of points. Hence, formally, a particle velocity
in space is described by a dual vector as follows ( this is a pure vector; hence, in its dual
representation, is a pure dual number ) :

u=¢v
. . 6)
and its acceleration is,



132

~ d d .
a=ta=—¢ecu=—au.
dt dt )
When the particle of mass m moves with acceleration, there is a force which acts
on it in accordance with Newton's law,

f =ma ®)
In terms of the dual numbers as defined by Clifford, the force is the rotor part of a
motor, hence a real vector,

f=f )
whereas the linear acceleration is the dual part of a motor, hence a pure dual vector,
a==¢€a (10)

In order to satisfy Eq. (8) it is necessary to include with the mass a dual operator in
order to transform the pure dual vector into a real one. This transformation can be achieved

if the dual symbol ¢ in the acceleration is eliminated. We propose to add such an operator

to the mass and denote it formally by d/de , even though it has no derivative sense.
This at first sight artificial operation, is justified if one considers it in the light of

Clifford's definitions of a motor and the dual symbol €. The operator d/de applied to any
motor, changes it into a rotor parallel to its vector axis and proportional to the vector part of

it. We can easily see that d/de operating on a motor twice, also reduces it to zero.
Accordingly, Newton's law in dual vectors reads

f=m—dﬁ=m-9—(sa)=ma ¢8))

de de
Considering dynamical relations such as Newton's law or the expression for
momentum, we can conclude that with respect to dual-vectors the mass has a special
property, that it acts on the vector part of a motor (pseudo-motor) and transforms it into the
rotor part of a pseudo-motor (motor). Therefore, we can combine the mass and its dual

operator into the dual mass operator m as follows

m= mi (12)
de
Using this operator we can rewrite the equation of motion of a particle
f=nma
h, = /¢ (13)

where hy is the linear momentum of a particle.

In accordance with the above formulation one can obtain the moment of momentum
of a rigid body as the sum (integral) of moments of momentum of all elementary particles
which constitute the body. Carrying out this derivation the dual moment of momentum, h,
becomes:

h, =¢lo 14)

where 1 - is the body inertia matrix.

Comparing this equation with the analogous real one it is seen that in order to
satisfy the dual relation we must multiply I by €. Note that ® is a rotor, or in other
words the real part of the velocity motor. Accordingly we can rewrite (14) in the form:



133

flc =ED(w+ev) = elv (15)
Note that the linear momentum of a rigid body is still a real vector:
hy = @9 =dee (@+€&v) =mv (16)
it seems to be natural to combine momentum and moment of momentum into a new
quantity - dual momentum, given by the expression:
h=h;+h, 17
After substitution (13) and (15) in (17) we finally obtain,
h=fmv+eld = (m—d +el)(w+ev) =mv+elw
de (18)

We can expand the mass into a diagonal matrix, if a unified notation is desired.
Then we define dual inertia as follows:

d
m— + €l el el
. de XX ) Xy XZ
M=ﬁ1+i=mE+£I= elyx m-a—e +Eelyy ely,
d
i gsz €Izy mTE + EIE (19)

At this point we can summarize the derivation of dual momentum by the following
compact form:
h=Myv (20)
To derive the dual force acting on the body, we differentiate equation (20) with
respect to time in the moving body-fixed coordinate system: &
f=dh=M +ox iR Q1)
dt dt
It is seen from Eqgs. (20) and (21) that both dual momentum and dual force are
obtained without using the inertia binor, and without artificially interchanging the dual with
the real part. In fact, Eq. (20) and its time derivative might be considered as an extension of
the principle of transference to dynamics.

3. DYNAMIC ANALYSIS OF MECHANISMS

In this section we use the dual inertia operator to obtain the equations of motion of a
mechanism. We propose to base the sought equations on the virtual-work and D'Alembert
principles [Shoham and Srivatsan,1992] since almost all components of this equation are
parts of the Jacobian matrix which is explicitly obtained through the dual-direct-kinematics
expression. This equation has the form:

L .0 ...
n= JTf+ZJiT|:[Ig' I:||:S+Ji9+ Jie:'+
i=1 i (22)

o o[l che]
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where: £ = [fy, fy,f,7x,Ty,Tz] - vector of external force and moment
n - vector of joint moment or force
J - Jacobian matrix for the end-effector
Ji - Jacobian matrix for center of mass of the i-th link
m; - mass of the i-th link
L - number of links
h;j - moment of momentum of the i-th link about its center of mass
g - gravitation vector

and
mj 0 0 0 =y miy
m; = 0 mj 0 Q| = (Dlz 0 _mix
0 0 my —miy (O 0

We now extend this equation to dual formulation. The vector of generalized
coordinates in dual form is given by:

A aa AT
0 = (q1,92,---91) 23)

where §; =0; - for a revolute joint

§; = ed; -for aprismatic joint

q; = 0;+¢d; - for a cylindrical joint.

Using the dual inertia operator to relate dual force and acceleration (19) we, finally,
obtain:

A A L A A A R A A A A A
n=Jf+Y 7 M[£g+J,6+J.9:|+QMJ.Oj| (24)

~ T
where:  f = (fy +€Ty,fy +&Ty,f,+€T,) - dual force applied at the end-effector

A

A A d
M=m+I= mF{-:- +¢€l - dual 3x3 inertia operator

] i J - dual Jacobians, obtained in accordance with a known algorithm, e.g. [Gu
and Luh, 1987].

One can see that the 6 x L and 6 x 6 matrices of equation (22) have been reduced to
3xL and 3 x 3 matrices in (24). The advantage of the dual-form equation (24), apart
from its compactness, is reduction of the number of generalized coordinates when the
manipulator has cylindrical joints (see below).

4. COMPUTER PROGRAM FOR SYMBOLIC DERIVATION OF A
MECHANISM DUAL-DYNAMIC EQUATIONS
A symbolic computer program based on the Mathematica software package, was
developed to obtain the symbolic representation of a mechanism dynamic equations.
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Utilizing the dual inertia operator, derivation of the dual dynamic equation is direct
extension of the real one. Since the same mathematical formulas hold also for dual vectors,
it is possible to define the algebraic rules of dual numbers, and then the development
environment becomes "dually” oriented where numbers can be pure real, pure dual, or a
combination of both (this is similar to the program's ability to handle complex numbers).
Once these rules are defined, all build-in mathematical rules, e.g., vector, scalar, and
matrix multiplication, as well as special dual rules such as function of dual numbers,
become applicable. As a result, it was relatively simple to expand the Mathematica program
to deal with dual numbers, which facilitates the derivation of a mechanism symbolic
dynamic equations once kinematics and inertia parameters are given.

S. ILLUSTRATIVE EXAMPLE

As an example, consider a three-degrees-of-freedom robot, shown below. First the
dual transformation matrices are derived and then from their corresponding columns, the
dual Jacobian is constituted. The dual inertia operator is then applied to obtain the joint's
dual forces.

Transformation from the tool coordinate system to coordinate system 1 is given by:
1 &l S2 —¢l (%)
A'}‘ =10 Cy S2
el —s c
2 2 ©5)

and complete dual transformation from the tool to the world coordinate system by means
of:

c1—€&(l sysp +dsp) sp+e(dey+1cysp) —elcy
A% = —-s1¢p +&dsp ¢y c1sp —¢edeps; S2

-s18p+€( ¢+ de;sp) —cy8p +(l s;—dsys2) o 26)

where sj and ci denote sinBj and cos6j, respectively.
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Because of the cylindrical pair, we consider the manipulator as having only two dual
degrees of freedom ( instead of three real ones )
4,=9, @7
The first rotation and translation is about the z-axis in frame O (see Fig. 1) and the
second about the x-axis in frame 1, hence, the third column of (44) is the first column of

the Jacobian matrix, and the first column of (43) is the second column of the latter; we then
obtain:

—¢l (%) 1
j = sy 0
(%) el

(28)

Let r be the distance from the origin of coordinate system 1 to the center of mass of

link 1, and let the link inertia matrix, in a link-attached coordinate system at the center of
mass, be:

I 00
1=|0 I,
10 0 1

(29)
The Jacobian matrix J 1 for the center of mass is obtained by replacing r for 1..

The dynamic equation (24) requires knowledge of the angular velocity matrix, which
is also a part of the Jacobian matrix, given by:

0 -c0, s,9
Q=|c6 0 -6,
—5291 62 0
(30)
Substituting Eqgs. (28,29,30) in Eq.(24), the dual forces are obtained:
~ f
~ |-€le, s, || F *| |-ere, s, ¢,
"ELr oo a||YETL L 0 e
- f, +eg
0 -erc, 1 8 ved ers,0, 0 6 + d\
~ + .
{M||-gs,e + s, O [1..8} 0, 0 l:l.e} + 31)
2 N 92
—gc,€ c, ¢&r -,0, 0 y

O' —czél SZQI |E 1 b, +ed
c,6 0 -6[(M]|s, O .

-s,0, 92 0 c, ¢€r
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where M is as per (19).

After simple calculations, we obtain the vector of dual forces in the directions of the
corresponding joint axes, or more precisely, the corresponding dual degrees of freedom

fis,+fc,+ md —mg + mfc2é2—mr329'§-ij
elt,s, +T,c,—f ) ¢, + mr’c6,—2mr’c,s,6,6, +

A,s2+1c2)B,+2(I, —I),s,6,6,]

>
]

" . 32)
f,—mrc,8,+2mrs,6,0,+

g[t. +f.| +mrc,d +mr?0, + mrlc,s,0? — mgrc, +
T 2 2 25,9 gre,

16, + (1-1,)c,s,67]

L. -

This simple derivation of the inverse dynamics of a three degrees-of-freedom robot,
yields even more than is needed. The bottom term in (34) contains not only the moment
about the second joint but also the force along it, which is not specifically needed for
control purposes but is useful in robot synthesis and design.

6. CONCLUSIONS

As the principle of transference was not extended to dynamics, dual number
representation of the dynamics of a rigid body was unobtainable merely through
replacement of real with dual numbers. Rather, the inertia binor was utilized to derive the
dual momentum, which actually operates on two separate three-dimensional real vectors.
By introducing the dual inertia operator and development from the basic particle equation,
the equation of motion of a rigid body is obtained in a complete dual three-dimensional
form. This operator may be considered as the inverse of Clifford's dual number, reducing a
motor to a rotor proportional to the vector part of the former, and thus relating the dual
force acting on a particle to its dual acceleration. There is no need for the inertia binor, and
at no point are the equations expanded to six dimensions. The dual force is obtained merely
by manipulation of dual-generalized displacements (dual angles), dual velocities, and dual
transformation matrices.

A mechanism equation of motion is written in such a manner that most of its
kinematic elements are parts of the Jacobian matrix. This lend itself to dual representation
since the dual Jacobian is explicitly obtained from the dual-direct kinematics of the
mechanism. The application of the dual inertia operator to the analysis of mechanisms is
illustrated by an example of a three-degrees-of-freedom robot. Apart from the compact
equation obtained by the dual representation, it has to be noted that since this particular
robot contains a cylindrical joint which counts in dual terms as one degree of freedom, the
dimensionality is further reduced to two dual-degrees-of-freedom.

A symbolic computer program was developed to implement the derivation of the
dual dynamic equations. By adding such rules as dual number algebra and dual inertia
operator, the build-in mathematical library was adopted to operate on dual-numbers. This
provides a useful and convenient tool which enables the derivation the dual dynamic
equation merely by replacing real with dual numbers.
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Abstract. This paper presents the analytical form solution of the direct position analysis for a
fully-parallel manipulator that features @ base and a platform connected by six adjustable-length
legs whose extremities meet the base and the platform respectively at four and five points. When
the leg lengths are given, the manipulator becomes a statically determined structure that can be
assembled in different configurations. The direct position analysis aims at solving all possible
configurations. In the paper, the analysis is first reduced to the solution of a three non-linear
equation system in three unknowns, then two unwanted unknowns are eliminated thus obtaining a
final 24th order polynomial equation in only one unknown. The twenty-four roots of the equation
provide as many configurations of the 5-4 structure in the complex field. Numerical examples
support the new theoretical findings.

1 Introduction

Recently the interest of many researchers has been focused on parallel mechanisms. These,
indeed, offer appealing performances in many fields, ranging from automobile to aerospatial
applications, in addition to robotics. Outstanding characteristics are a favorable payload to
manipulator weight ratio and high structural stiffness, which allow for great precision of end
effector positioning. Parallel manipulators are closed-chain mechanisms with one or more loops
where only a certain number of pairs are actively controlled. Fully parallel mechanisms, in
particular, feature two rigid bodies, base and platform, connected by six adjustable-length legs
whose extremities meet the base and platform at single or multiple spherical kinematic pairs. The
six variable-length legs provide the platform with six degrees of freedom with respect to the base.
When a set of leg lengths is given, the mechanism becomes a statically determined structure.
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Position analysis of fully-parallel manipulators involves a direct and an inverse problem. The
inverse problem is trivial for it asks for the leg lengths when position and orientation of the
platform are given with respect to the base. On the contrary, the direct position analysis (DPA),
which calls for the position and orientation of the platform when the leg lengths are given, is a
difficult problem since non-linear equations are involved and many solutions are possible.
Numerical methods prove difficulty to find all solutions and do not guarantee finding all of them,
whereas analytical solutions would give more insight into the mechanism behavior and make it
possible to improve the control strategies for platform motion. Although some general ideas are
worthy of consideration when tackling the solution of a new mechanism in analytical form
(Innocenti and Parenti-Castelli, 1992), a general, successful procedure has not yet been found.
Moreover, for the time being, general approaches would lead to a system of closure equations too
cumbersome to deal with even using the most powerful symbolic computational packages. As a
consequence, every mechanism, or at least a class of mechanisms, must be solved by a customized
strategy. In this perspective analytically solving a mechanism may represent a further step toward
the solution of more difficult cases.

Basic ideas for solving the DPA in analytical form can be summarized as follows. First, the
position and orientation of the platform with respect to the base are parameterized by as small
number of parameters as possible, so that a closure system with a reduced number of equations and
unknowns can be written. Second, by a suitable elimination procedure a final polynomial equation
in only one unknown is sought. When the whole process succeeds, the roots of the final polynomial
equation (which is solved numerically when the order is greater than four) can be found and, by
substitution, all solutions can be found. Consequently the order of the polynomial equation
represents the number of solutions of the DPA in the complex field.

The DPA of numerous fully-parallel manipulators has been solved in analytical form and
presented in the literature. Much work has been done by Duffy, Song, Merlet, Waldron and their
coworkers (Lin et al., 1992; Lin et al., 1990; Merlet, 1990; Nanua et al., 1990; Zhang and Song,
1992); further references can be found in (Innocenti and Parenti-Castelli, 1992). Nevertheless other
mechanisms still remain unsolved. Well known among these is the most general - and difficult -
case, the 6-6 fully-parallel manipulator also referred to as the 6-6 generalized Stewart platform.
For special geometries such as, for example, base and platform planar or symmetrically shaped,
the DPA in analytical form can be more workable (Merlet, 1990; Lin et al., 1992; Zang and Song,
1992).

In this paper the analytical form solution of the DPA of the fully-parallel manipulator shown in
Fig. 1, is presented. Such an arrangement is called the 5-4 fully-parallel manipulator because of the
number of connection points on the base and the platform. When the leg lengths are frozen the
manipulator becomes the structure shown in Fig. 2, which is called the 5-4 structure. Different leg
arrangements are possible while maintaining the 5-4 pattern. These cases are shown in (Lin et al,,
1992), where their DPA in analytical form is also presented when the base and platform are both
planar. The mechanism studied in the present paper is more general than that considered in (Lin et
al., 1992) since it allows for both base and platform with general geometry, i.e., spherical pair
centers both on the base and on the platform do not necessarily belong to a plane.

The direct position analysis of the 5-4 structure here considered is carried out in two steps.
Position and orientation of the platform with respect to the base are first parameterized by three
angles, a closure system of three equations in these angles being obtained. Then, by a suitable
procedure, two unwanted unknowns are eliminated thus obtaining a final 24th-order polynomial
equation in only one unknown, which is representative of the structure assembly. Hence, from each
root of the polynomial equation, and via a back substitution, all sets of three angles can be
determined. Thus, twenty-four closures of the 5-4 structure are possible in the complex field.

Finally, a numerical example supports the new theoretical result.
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Fig. | Schematic of a 5-4 fully-parallel manipulator

2 Direct kinematics
2.1 Kinematic model

Inspection of the 5-4 structure (see Fig. 2) shows that for a given set of leg lengths the three
triangles t;=A;B,A,, 1,=A|B,B| and 13=A4AB, can be considered as rigid bodies. If the
platform is momentarily disconnected from the legs at points By, B,, and B3 and the distance
between points B and B, is maintained, the triangles 1;, i=1,2,3, can rotate about the axes A A,,
AB, and A A5 respectively, and their angular positions with respect to each other or the base can
be defined by three angles 0|, 0,, and 0. Thus the positions of points B, B, and B4 with respect
to the base is uniquely defined by these angles. In particular 8, defines B,, 8, and 0, define B,,
and 0 defines By. Points B, B,, and By also belong to the platform, and their mutual distances
are known quantities. By lying down that corresponding mutual distances evaluated with respect to
the base and to the platform are the same, two equations can be written. One involves 8, and 65,
when considering distance BB, and the other 0|, 8,, and 85, when considering distance B,B,.

A third equation can be obtained as follows. Angles 6;, 1=1,2,3, uniquely define the positions of
the three points B, B, and B,, and consequently parameterize the position and orientation of the
platform with respect to the base. Thus the position of point B3 of the platform can also be defined
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Fig. 2 Kinematic model of the 5-4 structure

with respect to the base as a function of the three angles 6;, i=1,2,3. Point A5 belongs to the base,
then the distance between points A3 and By can be written as a function of the three angles 6,
i=1,2,3. Considering that points A; and Bj also belong to a leg whose length, Ly, is known, a
constraint equation can be written. Then a third equation in the unknowns 8;, i=1,2,3, is obtained.

2.2 Closure equations

With reference to Fig. 2, Wy, represents the reference system where the base points A,
(i=1,...,5), are given. Then a second reference system, Wy, fixed to the base is chosen with origin
in A, z axis from A} to A,, and x axis parallel to the plane x-y of Wy. The x axis of W has a
positive component along the x axis of W}, (when vector (A|-A,) is parallel to the x axis of Wy,
then the x axis of Wy is chosen parallel to the y axis of Wy). Moreover, an arbitrary coordinate
system Wp fixed to the platform is chosen.

Since triangles 1, 1 and 14 can be considered as rigid bodies, angles ), a,, and a3 can be
evaluated in terms of their sines and cosines as follows:

L2+ (Ay-A))p2 - Ly?
u = : vi=+V (1-u}2) 0))
2 LV [(Ay-A)p2




145

L2+Ls2- (Bz-Bl)pz
up = ; vo=+V (l-up?) (03]
2L|L,

Ls? + (As-Ay)p2- L2
uy = : ; v3=+V (1-u32) 3)
2 LsV [(As-Agp2]

where Uj=cosa;; vj=sinaj, J7=1,2,3, and L;, i=1,2,...,6, are leg lengths. A vector subscript points to
the coordinate system where vector components are to be evaluated.

The distance H of point B4 from the line A4jA5 is equal to Ls-v3. The projection Q of point By
on line A4A; is defined by:

LS'U3
(Q-Ay=—— " (As-Ay) 4
VI(As - Ayl

Two unitary vectors ay and b are chosen so that vectors (ag, by, (As - Ay)) represent a right
hand reference system; vector a is parallel to the x,y plane of Wy, and has a positive component
along the x axis of Wy, (if (As - Ay) is parallel to the x axis of Wy, vector agy is parallel to the y
axis of Wy). Position vectors of points B, B, and B, in reference system W can be obtain as
follows:

Vi)
(Bl -Al)LzL]' -VlCl (5)
uj
V2€Sy T upvas €y + Viugs)
(B,-A) =Ly V2515 - U[VoC|C) - V] UC| (6)
SVVaCy T U
(B4 - Q)L =H- (an3 + qu3) (7)

where cj=c059j and sj=sin9j (=1,2,3).
The first closure equation can now be written by setting the distance between points B4 and B,
be equal when measured in W and in W,,. The equation can be written as follows:

(B4-B)) 2 = (B4-B)),?2 ®)
The following position holds:

[(B4-Q), + (Q-A)) - (B-A)L]? - (B4-B)),2 =0 ©
which leads to:

[H2 +(Q-Ap) 2 + L2 - (B4-B)), 212

+(B4- Q)L (Q-Ap - (B4-Q (Bj-A))p, - (Q-AD(Bj-Ay), =0 (10
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Equation (10), taking into account relations (5) and (7), can be written as:

E aij-slP(i)-le(i)-s3P(j)-c3Q(j) =0 (l 1)
1,j=0,2
where a;; are coefficients which depend only on the geometry of the 5-4 structure, p(i) = (i mod 2)

means tgle remainder of the division of integer i by 2, and q(i) = [i - p(i)]/2. Equation (11)
represents a sine-cosine linear equation in the two unknowns 8, and 85.

A second closure equation can be written by setting the distance between points B, and B4 be
equal when measured in W and W,,. The equation is:

(B4-By)1 % = (B4-By),? (12)
that can be writter‘n as:

[(B4-Q)p+ (Q-Ay) - (By-A 1)Lj2 - (B4-By)p2 =0 (13)
and, subsequently, as:

[H2 +(Q-Ap) % +Ls%- (B4'Bz)p2]/2 +(B4-Q)L(Q-Ap)L

- (B4-Q)L"(By-A)L, - (Q-Ap) (By-Ap) =0 (14)
Equation (14), taking into account relations (6) and (7), can be written as:

z mijk-slp(i)-clq(i)-52p0)-czq(i)-s3p(k)-c3q(k) =0 (15)
ij,k=0,2

Here my;i are coefficients that depend only on the geometry of the 5-4 structure. Equation (15)
represents a sine-cosine linear equation in the three unknowns 6, 8,, and 6.

Before developing the third closure equation, the position of point B3 is revalued in W, as
follows. Since all points B;, i=1,2,3,4, belong to the same rigid body, the following relation holds:

(B3-By)p = w(By-By), + vi(B4-By), + w-(Bz-Bl)p x (B4-By)p (16)
where u, v, and w are constant scalar quantities to be determined.

Vector equation (16) represents three linear scalar equations in the unknowns u, v and w.
Equation (16), after rearrangement, leads to:

[ (By-B)),? (B,-B)),(B4-B)), } { u } l;(Bz-Bl)p'(B:;-B])pji -
= 1

l. (By-By)y(B4-B)), (B4-B)),? v (B4-By)p(B3-By)p

w[(By-B})x(B4-B/)1? = (B3-B))- (B,-B))*(B4-B)) (18)

The two linear equations (17) provide u and v, while equation (18) provides w.
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By imposing the distance between points A3 and By measured in W equal to leg length Ly, the
third closure equation can be obtained:

(B3-A3) 2 =L4? (19)
which can be written as: |
[(By-Bp)L + (B1-Ap)L - (A3-AL I - L2 =0 (20)
By adopting the following positions:

(BrAl)L =a, (Bz'Al)L =b; (B4'Q)L =c (Q'Al)L =d; (A3'A1)L =€ (21)
vector (B3-By); becomes:

(B3-B))L, = u(b-a) + v(c+d-a) + w(b-a) x (c+d-a) (23)
and the closure equation (20) can be written in the following form:

[(B3-B)),2 +Ly2 + (A3-A)? - Ly2J/2 + v(ae) + v(a-d) + u(ah) - (u + v)a +

+ w(axb)-¢c + w(axb)-d - v(c-e) - v(d-e) - u(b-e) + (ut+v)(a-e) +

- w(bxc)-e + w(axc)-e - w(dxe)-b + w(dxe)-a - w(axb)e-ae=0 (24)

Moreover, by considering that

a-b = Ll'L3'U2 (25)
and
-U1Vy818y + VC1Cy
a><b=L1'L3 UpvsaCi8Sy +V251C2 (26)
ANOLY)
the third closure equation (19) can be written as follows:
Z nijk'S1p(i)'C1q(i)'Szp(j)‘Cqu)'Sj,p(k)'C}q(k) =0 (27)

ij,k=0,2

where njj are coefficients which depend only on the geometry of the 5-4 structure. Equation (27)
represents a sine-cosine linear equation in the three unknowns 8, 8,, and 65.

2.3 Elimination of 0, and 05

To solve the direct position analysis in analytical form, two unknowns must be eliminated from
the three closure equations (11), (15), and (27). Since equation (11) does not contain the unknown
6,, the dialytic elimination of 8, between equations (15) and (27) could be performed as a first step
then, in a second step, either of the unknowns 6| or 85 could be dialytically eliminated between
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equation (11) and the resultant of equations (15) and (27). This procedure is correct but
cumbersome, so, in the following a single-step elimination procedure proposed in (Lin et al., 1992;
Innocenti, 1993) will be used.

The closure equations are first transformed into algebraic equations by substituting for sine and
cosine of 0, and 05 the well-known expressions:

G =(-tD)/(1+t2);  s;=24/(1 +2) (28)

where t;=tan(6;/2). After substit’ution, equations (11), (15) and (27) can be respectively written in
compact form as follows:

_Z Rj-t3j =0 (29.1)

j=0,2

I Wyt tsk =0 (29.2)

jk=0,2

L Zjtyt55=0 (29.3)

j.k=0,2

where:

R; =X rjjs Pl ) (=0.1,2) (30.1)
i=0,2

Wi = Z wijis P-c, 90 (.k=0,1,2) (302)
i=0,2

ij =2 Zijk'slp(i)'qu(i) (,k=0,1,2) (30.3)
i=0,2

and coefficients ry;, Wi, Zik, (1J.k=0,1,2), resulting from substitution of positions (28) into
equations (11), (15), and (27;, are functions of quantities ajj, myji, and ik therefore they depend
on the geometry of the 5-4 structure only.

Multiplying equations (29) by suitable factors, sixteen equations are obtained that can globally
be regarded as a homogeneous linear system in sixteen unknowns. In particular, the first eight
equations are obtained by multiplying equation (29.1) by factors:

1 t3, t, by, 62, 123, 153, 343 (3D

and the remaining eight equations, grouped in fours, are obtained by multiplying equations (29.2)
and (29.3) by factors:

1, ty, ts, tyt (32)
2> 13- 1243

The sixteen unknowns of the homogeneous linear system are represented, apart from an arbitrary
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scaling factor, by the following sixteen quantities:
L ty, 12, 13, 13, tyt3, 213, 13 b3, t32,05132, 12132153432, 133, 15133, 1r2:133, 1,3-t33 (33)

In order to have non trivial solutions for the above-mentioned homogeneous linear system, the
determinant of the coefficient matrix;

R, 0 0 0 R, 0 0 0 R, 0 0 0 0 0 0 0
0 0 0 0 Ry O 0 0 R, 0 0 0 Ry 0 0 0
O Ry 0 0 0 R, 0 0 0 R, 0 0 0 0 0 0
0 0 0 0 0Ry 0 0 0 R 0 0 0 R 0 0
0 0 Ry, 0 0 0 R, 0 0 0 R 0 0 0 0 0
0 0 0 0 0 0 Ry O 0 0 R 0 0 0 Ry 0
0 0 0 Ry, 0 0 0 R, 0 0 0 R, 0 0 0 0
M=|0 0 0 0 0 0 0 R 0 0 0 R 0 0 0 R, (34)
WooWioWyo 0 Wo Wy Wy 0 WeoWpWy 00 0 0 0
0 Woowlowzo 0 Wo Wi 1Wy 0 WeaWihWy, 0 0 0 0
0 0 0 WooWi oWy 0 Wo Wi Wy 0 Wy WiHWyy 0
0 0 0 0 0 WooWi; oWy 0 Wy Wi Wy 0 W WiHWo,
Zoo L1 Zyo O Zgy Zy1 Zyy O Zyy Z1p3Zy; 0 0 0 0 O
0 Zog ZygZyg O Zgy Zy1 Zy 0 ZppZi3Zy; 0 0 0 0
0 0 0 0 .ZygZygZy O Zoy ZyyZy 0 ZypZyyZy 0
LO 0 0 0 0 ZgZygZy 0 Zy Z) Zy 0 Zy Z)y Zy |

must vanish. Then:
detM=0 (35)

represents the necessary and sufficient condition under which a couple of values t, and t;
simultaneously satisfy equations (29). Equation (35) is the result of the elimination of unknowns t,
and t; from equations (29).

When expressions (30) are substituted for the elements of matrix M, by direct computation it
results that equation (35) can be written as:

2 bysPi)c) 9D =0 (36)
i=0,24

where coefficients b;, i=(0,1,...,24) depend only on the geometry of the 5-4 structure.
If positions (28) for i=1 are substituted for sine and cosine in equation (36), it follows that:

Z hyti=0 (37
i=0,24

that represents an algebraic equation in the unknown t; of order twenty-four. Coefficients h;,
i=(0,1,...,24), are known quantities that depend only on the geometry of the 5-4 structure. Equatlon
(B7)is the final result of the elimination of unknowns 8, and 65 from closure equations (11), (15),
and (27). It provides 24 solutions for t; in the complex field.
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2.4 Back substitution

For a given geometry of the 5-4 structure, equation (37) can be solved for t;. Every root t;,
r=1,2,...,24, provides the values s, and ¢, for s; and ¢; by means of relations (28), and the
solution 8, for angle 8, can be determined. For every value 6, of 6, all elements of matrix M
can now be computed by equations (30). Since condition (35) is satisfied, the homogeneous linear
system of 16 equations, whose coefficient matrix is M, provides a non-trivial solution for the 16
unknowns (33). In particular, solutions t, and t5, for the unknowns t, and t5 are then determined.
Actually, they are the second and fifth quantities of (33) when the first one is made unitary. Again,
relations (28) provide the sine and cosine of 0, and 85, thus angles 0,,, and 63 can be
determined. Since every (0, 6,, 63) triplet defines a configuration of the 5-4 structure, it follows
that for the 5-4 structure 24 configurations are possible in the complex field.

3 Case study

The direct position analysis of a 5-4 fully-parallel manipulator is reported in this section. With
reference to Fig. 2, the geometry of the 5-4 structure is defined by the following data, with
arbitrary length unit. Position vectors of points A;, i=1,2,3,4,5 in base reference Wy, are in the
order (4,-2,1), (1,5,2), (-3,-4,-1), (-2,3,-2), (6,1,0). Position vectors of points B., j=1,2,3,4, in
platform reference system Wp are in the order (5,4,4), (-2,1,3), (2,3,-3), (3,-6,5). The leg lengths
L;, i=1,2,...,6, are in the order 6.78, 4.58, 7.00, 8.83, 12.44, 9.11.

The results of the DPA for all twenty-four configurations are shown in Table 1 in terms of
coordinates of points BJ-, (¢=1,...,4), in Wy,. All solutions have been verified by inverse position
analysis.

Table 1. Coordinates x, y, z in reference system Wy, of points B, B,, B3, and B, for every
configuration (only one out of two complex conjugate configurations is reported.)

# X y z

1 ( 5.01956785,  0.00000000) (' 4.01336765, 0.00000000) (' 3.96113000, 0.00000000)
( -1.99075338,  0.00000000) (' 1.03099903, 0.00000000) (' 2.98088840, 0.00000000)
(' 2.01638037, 0.00000000) ( 2.97675411, 0.00000000) ( -3.03217374, 0.00000000)
(' 2.98487373, 0.00000000) ( -5.97269309, 0.00000000) (' 5.02818701, 0.00000000)

2 (' 1.56385449, 0.00000000) (' 3.42139699, 0.00000000) ( -2.26221546, 0.00000000)
( -0.66318696, 0.00000000) ( -3.73995867, 0.00000000) ( -3.92211654, 0.00000000)
( -3.96435898,  0.00000000) (' 2.00334207,  0.00000000) ( -7.40303020, 0.00000000)
(' 7.04394220,  0.00000000) ( -2.92105316, 0.00000000) ( -8.15644695, 0.00000000)

3 (- 1.34235715,  0.00000000) (' 3.32454892,  0.00000000) ( -2.24877103, 0.00000000)
(- 8.90648553,  0.00000000) ( 2.47133853, 0.00000000) ( -1.22115543, 0.00000000)
(- 4.18038607, 0.00000000) ( -1.17425139,  0.00000000) (1 3.29256343, 0.00000000)
( 7.19944446,  0.00000000) ( -2.47706914,  0.00000000) ( -8.33447198, 0.00000000)

4 (' 1.07154018, 0.00000000) (' 3.20326692, 0.00000000) ( -2.21224788, 0.00000000)
(' 2.23885959, 0.00000000) ( 3.16889458, 0.00000000) (' 5.37960195, 0.00000000)
( 5.36038824, 0.00000000) ( -2.18647962, 0.00000000) ( 1.18722481, 0.00000000)
(' 7.52038695, 0.00000000) (' 9.63042102, 0.00000000) (' 2.48924820, 0.00000000)



Table 1 (continued)

151

5

9-10

11-12

13-14

15-16

17-18

19-20

21-22

23-24

e VNN N

( 4.12514321,
10.48426203,
4.36483712,

7.25736521,

-1.55641752,
-0.89947156,
3.60620617,
2.97078677,

0.54566594,
4.55959244,
-1.95842254,
8.92113465,

0.56763720,
6.29086862,
5.65633200,
8.95569086,

1.45872664,
-5.98729698,
3.30724075,

-0.06343771,
-3.63041762,
-6.15192074,

6.55312948,

7.67181424,
6.98775527,
0.63796195,
10.61173565,

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
( -1.92028430,
(
(
(
(
(
(
(
(
(
(
(
( -1.82549262,
( 7.74142362,
( 5.66011502,
( 6.79425093,
( 8.74940158,
( 16.02750547,
(12484567831,
(1 15.95816486,

( 8.82557583,
-0.01314890,
12.66712640,
2.36458704,

-1.17427028,

1.73421878,
-6.38191737,
( 7.00513791,

( 1.83065526,
( -4.51615060,
( 0.98369071,
( 3.32108424,

0.00000000)
0.00000000)
0.00000000)

0.00000000)

0.00000000)
0.00000000)
0.00000000)
0.00000000)

0.00000000)
0.00000000)
0.00000000)
0.00000000)

0.00000000)
0.00000000)
0.00000000)
0.00000000)

0.18943905)
-0.25139656)
-0.24049775)
-0.21262471)

-0.57884262)
4.16989024)
-0.54193989)
4.05666233)

-1.46468268)
0.17434734)
-0.89506311)
-1.57841677)

2.76557083)
5.18134230)
-0.02349371)
1.30698055)

0.49424291)
10.73728234)
5.01017039)
-3.87429192)

-0.15927829)

7.19717413)
10.06368418)
-0.98513816)

3.24700238)
-1.49225442)
-0.30647878)

1.29875706)

-4.38396402)
-0.51171999)
0.26794119)
0.25601072)

( 4.38024067, 0.00000000)
( 0.13678564, 0.00000000)
( -1.75614555, 0.00000000)
( -2.30617224, 0.00000000)
( 1.75861745, 0.00000000)
( -5.41394980, 0.00000000)
( -0.08909495,  0.00000000)
( -5.77947829, 0.00000000)
( 2.95820529, 0.00000000)
( -2.30543616, 0.00000000)
( 0.10100381, 0.00000000)
( 5.21431480, 0.00000000)
( 2.96871231, 0.00000000)
( 4.35022969, 0.00000000)
( -2.46183588, 0.00000000)
( 8.29404568, 0.00000000)
( 149683659, 0.24240132)
( -0.43820406, 1.69220030)

( -1.00465406,
( -7.52505868,

1.82755079)
0.38368057)

( 266729611,
( -7.99650246,
( 2.15174433,
( -8.58941136,

-0.29637671)
-1.31890178)
-0.04240203)
9.07731357)

( 5.13877186, -1.32490296)

( 3.53910508, 4.45047803)
( 4.74222925, -0.25596295)
( 1445294747, 4.66538743)
( 0.84319449, 0.75301065)
( 0.77760801, 2.42857510)
( -1.92088666, 1.34785212)
( 9.45433979, 1.91922319)
( 5.96400427, -0.68652897)

(-25.98402681, 41.70915767)
(-65.89968503, 12.77368796)
(129.51312050, 12.54384233)

( 5.93503772, 0.83988708)
(122.51665587, -26.73504293)
( -7.97367778, 41.02338271)
( -9.52248577, 2.92310312)

( 1.02198897,
( 4.08999128,
(520033726,
( 9.76341220,

( 2.08793107,
( -2.22521488,
( 3.89546324,
( -7.59858147,

1.02342008)
-0.33950430)
-0.83228020)

1.71225658)

-1.83727455)
-1.57618618)
-0.13749610)
-0.42695331)

( -1.29025504,
( -0.54547502,
( 3.32356236,

( -8.39525806,

( 0.01642529,
( <2.65241362,
( -5.36254074,
( 5.27774965,

( -2.07443922,
( -5.97090848,
( -8.75021188,
( -7.52984881,

( -2.08207456,
( 285108182,
( -0.18093500,
( -4.58834275,

( 0.75729097,
( 7.57862564,
( 7.00432275,
( 2.18635332,

( -1.86538595,
( -2.76840029,
( -6.52760258,
(-11.86155430,

( 4.04003969,
( -5.61224324,
( 0.51643720,
( -5.05362014,

( 5.61716071,
9.35536116,
0.68588930,
5.21771109,

1.49617485,
(144.21193364,
(-10.77660035,
(-11.37916396,

( 1.92746342,
(-27.11910421,
(-41.77698994,
( 3.95954107,

( 6.31926640,
( -2.05053113,
( 0.49669658,
( 4.68323557,

( 7.87244824,
( 2.00832076,
( -1.04687959,
( 2.05745658,

0.00000000)
0.00000000)
0.00000000)

0.00000000)

0.00000000)
0.00000000)
0.00000000)
0.00000000)

0.00000000)
0.00000000)
0.00000000)
0.00000000)

0.00000000)
0.00000000)
0.00000000)
0.00000000)

-1.12849211)
-0.49884871)
-0.77365509)

1.23417939)

0.33810911)
-6.34465673)
0.26183235)
-7.14933576)

4.88027270)
3.80696410)
3.62289472)
10.97905453)

3.02563797)
-3.12748014)
-1.54154787)
-3.30869901)

6.28843151)
-26.13852662)
-66.60553213)

28.04101000)

-6.35704446)
-24.33709031)
7.86430575)
6.86365577)

2.57706658)
0.43059511)
4.42359038)
-3.48277167)

-0.29097019)
4.67397404)
-0.38824148)
-1.45099620)
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4 Conclusions

This paper presented the direct position analysis in analytical form of a general-geometry 5-4
fully-parallel manipulator. By considering the 5-4 structure, which derives from the manipulator
when inputs are given, an original kinematic model has been reported which reduces the closure
equations to a three-equation system in three unknowns. By a single-step elimination procedure two
unknowns are eliminated and a final 24th-order polynomial equation in only one unknown has been
found. Since introduction of extraneous roots is avoided, twenty-four configurations are possible
for the 5-4 manipulator in the complex field. Numerical results validated the new theoretical
findings.
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THE KINEMATICS OF 3-DOF PLANAR AND SPHERICAL
DOUBLE-TRIANGULAR PARALLEL MANIPULATORS
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Abstract. Two double-triangular mechanisms are introduced here. These are planar and
spherical three-degree-of-freedom mechanisms that consist of two triangles moving with
respect to each other. Moreover, each side of the moving triangle intersects one corre-
sponding side of the fixed one at a given point defined over this side. The direct kinematic
analysis of the mechanisms leads to a quadratic equation for the planar and a polynomial
of 16th degree for the spherical mechanism. Numerical examples are included that admit
two real solutions for the former and four real solutions for the latter, among which only
two positive values are acceptable. All solutions, both real and complex, are listed.

Key words: Direct Kinematics — Double-Triangular — Manipulator — Parallel — Planar —
Spherical - 3-dof

1. Introduction

Parallel manipulators are known to offer some advantages over convention-
al serial manipulators when high accuracy, superior structural stiffness and
low inertia are required. The best known spatial parallel manipulators are
probably those of the platform type (Stewart, 1965). The kinematics of sev-
eral planar parallel manipulators was investigated by Gosselin and Angeles
(1990), Hunt (1983) and Gosselin and Sefrioui (1991). Spherical parallel
manipulators constitute an important type in that they find applications in
robotic wrists and other devices used to orient rigid bodies. The kinematics
of a few spherical parallel manipulators was investigated by Gosselin and
Angeles (1989, 1990), Craver (1989) and Gosselin et al. (1992a, 1992b).

In this paper we introduce first a new class of parallel manipulators in
two versions, planar and spherical, as shown in Fig. 1. Similar to the double-
tetrahedron mechanism, which was investigated by Tarnai and Makai (1988,
1989a, 1989b) and Zsombor-Murray and Hyder (1992), these two manipula-
tors consist of two bounded rigid bodies whose bounding edges are in con-
tact. The geometric model of a planar 3-dof double-triangular (DT) device
consists of two triangles. These triangles move with respect to each other
such that each side of the moving triangle intersects a corresponding side of
the fixed triangle at a designated point defined over that fixed side. More-
over, the intersection point should lie within the physical boundaries of the
respective edges in contact. For a given set of intersection points defined over
the sides of the fixed triangle, we determine the position and orientation of
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Q

,Q (movable)

a— Planar Manipulator b— Spherical Manipulator

Fig. 1. Planar and Spherical Double-Triangular Parallel Manipulators

the moving triangle, a problem that we call direct kinematics (DK) of the
device at hand. We show that the DK of this device leads to a quadratic
equation. The two real solutions, for one numerical example, are included
here.

On the other hand, the geometric model of a spherical 3-dof DT device
consists of two spherical triangles. These triangles move with respect to each
other so that each arc of the fixed triangle intersects one arc of the moving
triangle at a designated point exactly as in the planar case. For a given set of
intersection points defined over the sides of the fixed triangle, we determine
the orientation of the moving triangle. We show that the DK of this device
leads to a polynomial of 16th degree in the tangent of one half of one of the
arcs sought. We include all real and complex solutions of this problem for
one numerical example.

2. Planar DT Parallel Manipulator

Consider two triangles, P and Q, with vertices P, P, P; and ()10Q2Q3, respec-
tively. Triangle P is designated the fized triangle (FT), while Q is the
movable triangle (MT), such that P,Ps intersects 2Q3 at point Ry, P3P,
intersects Q3Q; at R, and Py P, intersects Q1Q2 at R3. Moreover, R;, for
1t = 1,2,3, cannot lie outside its corresponding vertices. Thus, feasible or
admissible motions maintain R; within edges Q;+1Qi-1 and P4 P;—;, for
i = 1,2,3, the sum and the difference in the foregoing subscripts being
understood as modulo 3.

The motion of triangle Q can thus be described through changes in the
edge length parameters, p;, which locate R; along a side of P, measured from
P;11, as shown in Fig. la, for ¢ = 1,2,3. The non-negative displacements
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(a) (b)

Fig. 2. a, Triangles Q and R; b, Solutions of the Example Problem

p; are assumed to be produced by actuators, and hence, they are termed
the actuator coordinates. The coordinates of the moving triangle Q, in turn,
are the set of variables used to define its pose. Note that the Cartesian
coordinates of the three vertices of Q can be used to define this pose.

2.1. DirecT KINEMATICS

The direct kinematic problem of the manipulator described above is the
subject of this subsection. This problem may be formulated as: Given the
actuator coordinates p;, for i = 1,2,3, find the Cartesian coordinates of the
vertices of triangle Q.

We solve this problem by kinematic inversion, i.e., by fixing the MT Q
and letting the FT P to accommodate itself to the constraints imposed. To
this end, we define points R; at given distances p;, for + = 1,2, 3, on the
edges of P, thereby defining a triangle R; R;R3, henceforth termed triangle
R, that is fixed to P. Next, we let d, e and f be the lengths of the sides of this
triangle. The problem now consists of finding the set of all possible positions
of triangle R for which vertex R; lies within the side Q;+1Qi—1,fori =1,2,3,
as shown in Fig. 2a. By carrying R back into its fixed configuration, while
attaching Q rigidly to it, we determine the set of possible configurations of
the MT for the given values of actuator coordinates.

In Fig. 2a we note that each vertex R; is common to three angles labeled
with numbers 1, 2 and 3. We will denote these angles by a subscripted
capital letter. The subscript indicates one of the three angles common to
that vertex, while the capital letter corresponds to the lower-case label of
the opposite side of the triangle Ry R;R3. We thus have at vertices Ry, R,
and R3 the angles D;, E; and F;, for i = 1,2, 3.

Considering triangle @ R3R2, the law of sines for triangles yields

Qle = a sin(Fl) (1)
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where

d

1= ———

- SiIl(Ql)
Similarly, for triangle Q3 R2R; we have
Q3R2 = az Sin(Dg)

where

f

® 7 5in(@s)
Adding eq.(1) to eq.(2) gives
aysin(Fy) + agsin(D3) = b
where
b= 0105
From triangle Q2 R; R3, we have
Di=n1-F3-Q2
but
FBR=r-F-F

Substitution of F3 from eq.(5) into eq.(4) yields

Di=FR”+F,-Q
Again, we have

D3=7I'—D1—D2

Substitution of D; from eq.(6) into eq.(7) yields in turn

D3 = G-F
where

G=7n—-Dy;—F,+ Q2

(2)

(3)

(4)

(5)

(6)

(7)

(8)

Substituting the expression for sin(D3) from eq.(8) into eq.(3), we obtain

bl sin(Fl) + b2 COS(Fl) =b

where

bl =aj —as COS(G), b2 = az SlIl(G)

(9)
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In the above equations, we substitute now the equivalent expressions for
cosines and sines given below:

1-T72 2T

COS(F]) = W, Sin(Fl) = 1+ T2

where

T = tan(F1/2)

Upon simplification, eq.(9) leads to

aT?*+ce;T+¢3=0 (10)
where

¢ = —by—b, ¢ = 2by, c3=by—b
Solving eq.(10) for T gives

_ —by £ 1/b% + b2 — b2 (1)
—(b2 1+ d)

The above expression leads us to the result below:

Theorem 1: Given two triangles R and Q, we can inscribe R in Q in
at most two poses such that vertez R; is located on the edges Qi+1Qi-1 of
triangle Q, fori1=1,2,3.

2.2. EXAMPLE
Consider the following sides assigned to the triangles P and Q:

@1Q2 = 0.4m Q2Q3 = 0.5m Q3Q; = 0.6m
P1P2 = 0.29065m P2P3 = 0.5m P3P1 = 0.47875m

Choose three points, Ry, R; and R3, located by three actuator coordinates
specified as p; = 0.2m, p; = 0.14161m and p3 = 0.03064m. These values
produce the lengths d, e and f given below:

d = 0.33166m, e = 0.26458m, f=02m
The two roots of eq.(11) are:
T: =1.0788, T, = 0.4447

ie., (F1)1 = 94.34°, (F}); = 48°. Equations(1-8) are used to compute the
other parameters, which leads to two poses of the triangle, Fig. 2b. The
two triangles Q and Q' represent the two solutions which correspond to the
assembly modes of the manipulator.
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3. Spherical DT Parallel Manipulator

Consider an unit sphere with centre at O and a spherical triangle P, P, Ps,
referred to as P, on its surface. Moreover, a second spherical triangle, labeled
Q1Q2Q3, likewise referred to as @, is defined. Furthermore, the side P, Ps
of P, arbitrarily regarded as the FT, intersects the arc )2Q)3 of Q, regarded
as the MT, at point R;. We denote by R; and Rz the other intersection
points, that are defined correspondingly. Moreover R;, for : = 1,2, 3, cannot
lie outside its corresponding vertices. Thus, feasible or admissible motions
maintain R; within edges Q;4+1Qi-1 and P;41P;—1, for i =1,2,3.

Thus, the motion of triangle Q can be described through the arc lengths
p; of Fig. 1b, or actuator coordinates, for i = 1,2, 3. Likewise, the Cartesian
coordinates of the moving triangle Q are the set of variables defining its
orientation. Note that the Cartesian coordinates of the three vertices of Q
can be determined once its orientation is given.

3.1. DirecT KINEMATICS

Similar to the direct kinematic problem of the planar mechanism, the same
problem, as pertaining to the spherical mechanism, may be formulated as:
Given the actuator coordinates p;, for ¢ =1,2,3, find the Cartesian coordi-
nates of the vertices of triangle Q.

Likewise, we solve this problem by kinematic inversion, i.e., by fixing
the MT Q and letting the FT P to accommodate itself to the constraints
imposed. To this end, we define points R; at given arc lengths p;, for
i = 1,2,3,on the edges of P, thereby defining a triangle Ry R, R3, henceforth
termed triangle R, that is fixed to P. Next, we let d,e and f be the sides
of this triangle. The problem now consists of finding the set of all possible
orientations of triangle R for which vertex R; lies within the side Q;41Qi-1,
for i = 1,2,3, as shown in Fig. 3a. By carrying R back into its fixed con-
figuration, while attaching Q rigidly to it, we determine the set of possible
configurations of the MT for the given values of actuator coordinates.

In Fig. 3a we note that each vertex R; is common to three spherical angles
labeled with numbers 1, 2 and 3. Similar to the planar mechanism, we call
them the spherical angles D;, E; and F;, for : = 1,2,3.

We introduce now the definitions below:

s=(d+et )2, k= \/sin(s——d) sin(s — e) sin(s — f)

(12)

sin(s)
From spherical trigonometry we have
k
= tan( ————— 1
Dy = 2arctan( Sin(s = d)) (13)
k
E; = 2 arctan(——) (14)

sin(s — €)
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(a) (b)

Fig. 3. a, Triangles Q and R; b, Solutions of the Example Problem

F, = 2arctan(;i;(—:—$) (15)

Consider now the spherical triangle Q1 R3R2. Using the law of cosines for
spherical triangles we have

cos Q1 = — cos F cos E3 + sin Fj sin E3 cosd (16)

Similarly, for the spherical triangles @2 R1R3 and Q3R2R; we have

cos Q2 = —cos Dj cos F3 + sin Dy sin F3 cose (17)

cos Q3 = — cos E; cos D3 + sin E; sin D3 cos f (18)
However,

D3 = 7I'—D1+D2 (19)

E3 = 7I'—E1+E2 (20)

F3 = 7F—F1+F2 (21)

Substitution of the expressions for cos E5 and sin E3 from eq.(20) into
eq.(16), we obtain

ay1€1¢2 + a12¢182 + a135182 + 14812 + a5 = 0 (22)

where

ajl; = Ccos E2 aijz = — sin E2
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a3 = cosdcos F, a14 = cosdsin F,
a5 = —cos@ c1 = cosFy
$1 = sinF ¢y = cosE,

S = sin El

Similarly, substitution of eq.(21) into eq.(17) yields:

a21€3€1 + @22€351 + @238351 + a2483¢1 + azs = 0 (23)
where
ag1 = cos Fy a9 = —sin F,
az3 = cosecos Fy ag4 = cosesin Fy
G5 = —cos Q2 ¢3 = cos Dy
83 = sin _D1

Likewise, substitution of eq.(19) into eq.(18) yields:

a31€2€3 + a32€283 + 4338253 + a3482¢3 + azs = 0 (24)
where

az; = COos Dz a3z = — sin D2

a3z = cos fcos Dy a3zq = cos fsin D,

azs = —cos Q)3

Equations (22-24) must be solved simultaneously to determine the values
of angles D, F; and Fj. In the above equations, we substitute now the
equivalent expressions for cosines and sines given below:

_ 1- :172 2:1),‘

1
- — S;
2 1
1+ z;

- 1+z?

G

where z;, for 1 = 1,2, 3, are tangents of one half of the angles F;, E; and
D, respectively.
Upon simplification, eqs.(22-24) lead to
diz} + dyza+d3 = 0 (25)
d4z§ +dszo+dg = 0 (26)
d7z3 + dgzz +dg = 0 (27)
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where

di = (a1 + a15)z3 — 2a1471 + (15 — @11)

dy = —2a122% + 4a1371 + 2412

ds = (a15 — a11)2] + 2a1421 + (a15 — a11)

dy = (a31 + ass)r3 — 2a3473 + (ass — az1)

ds = —2a3;73 + 443373 + 2a3;

de = (azs — a31)73 + 203473 + (ass — a31)
(a1 + azs)z} — 262471 + (a5 — azn)

dg = —2a3227 + 4a2371 + 2022

dg = (azs5 — az1)z} + 2a4z1 + (azs — az1)

We now eliminate z; from eqs.(25) and (26), using Bezout’s method
(Salmon, 1964), the resulting equation thus containing only z; and z3, name-
ly,

det | 211 A”] =0 (28)

.
3
(l

Az An

where quantities A3, A1z and Aj; are defined below:

_ dy d3 - ds dy = d ds
A11=det[d4 dG], A12=det[d4 dl]’ Azl:det[d5 dG]

After expansion and simplification, eq.(28) reduces to

Alxg + AgiL‘g + A313§ + Agzz3+ A5 =0 (29)
where
4
A= Z Aipz] (30)
p=0

and the coefficients A;, are constants and depend only on the data. Detailed
expressions for A, are not given here because these expansions would be
too large to serve any useful purpose.

Now, z, is eliminated from eqgs. (25) and (26), while z3 is eliminated
likewise from egs. (27) and (29), thereby obtaining one single equation in
z1, namely,

dy1 dya Aydy Asdy
dgy daz Aydg + Asdy Asdg (31)
dy dg dg 0
0 d; dg dgy

det

Il
o
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where

di1 = A2d7 — A1dg dyg = Azd7 — Ardg
d1 = Asd7 — Ardg dyg = Azdg — Aadg + Aydy

The foregoing determinant is now expanded and simplified, which then
leads to

16 )
Y kizi =0 (32)
1=0
where k; are constants and depend only on kinematic parameters, and are
related by

ki = (=1Vkiooiy i=1,...,7 (33)

As with coefficients A;, of eq.(30), detailed expressions for k; are not
given here because these expansions would be too large to serve any useful
purpose. What is important to point out here is that the above equation
admits 16 solutions, whether real or complex, among which we are interested
only in the real positive solutions. The real negative solutions lead to the
same configurations of the positive ones with the exception that the sides of
the triangle R, d,e and f, are replaced by another triangle with the same
vertices Ry R R3, but different sides, namely, 27 —d, 27 —e and 27— f. Then,
the negative solutions are discarded. The upper bound for the number of real
positive solutions of a polynomial is given by Descartes theorem, namely,

The number of real positive solutions of a polynomial is given by the
number of change of signs of the coefficients ko, k1, - - -, k, minus 2m, where
m > 0.

The maximum number of changes of sign in the foregoing polynomial
is eight. Therefore, the problem leads to a maximum of eight real positive
solutions and, as a result, triangle Q of Fig. 1b admits up to eight different
orientations, for the specified values of p;, p2 and ps.

3.2. EXAMPLE
Consider the spherical triangles P and Q given as:

Q@2 =60° Q203 =70° Q3Q1 = 50°
PP, =70°  P,P3=586°  P;P =815°

and three points, Ry, R; and Rg3, located by the three values p; = 10°,
p2 = 49.5° and p3 = 40°. These values correspond to the angles D,, E; and
F, given below:

D, = 43.4745°, E; = 37.9120°, F, = 106.7287°
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TABLE I
The sixteen solutions of the example problem

No. T3 D; Deg. Fy Deg. F1 Deg.

1 —3.52853659 180° + (D1)13 180° + (E1)13 180° + (F1)1a
2 —1.81493883 180° + (Dl)le 180° + (El)ls 180° + (Fl)le
3 —0.7122360 — 70.9461246 - - -

4 —0.7122360 + 70.9461246 - - -

5 —0.4987636 — 71.64486621 - - -

6 —0.4987636 + 71.6448662 - - -

7 —0.0110361 — 31.7618928 - - -

8 —0.0110361 + 71.7618928 - - -

9 0.00355500 — 30.5675491 - - -

10 0.0035550 + 70.5675491 - - -

11 0.1688234 — 30.5567607 - - -

12 0.1688234 + 30.5567607 - - -

13 0.28340360 31.64584216 76.17273858 42.53021089
14 0.5078577 — 70.6746313 - - -

15 0.5078577 + 70.6746313 - - -

16 0.55098275 57.70801252 99.32576667 64.91849185

Equation (32) is solved for z;. The solutions are shown in Table 1. For this
particular problem, we were able to find two real positive solutions. These
solutions, which are depicted in Fig. 3b, correspond to the assembly modes
of the manipulator.

4. Conclusions

In this paper planar and spherical double-triangular parallel manipulators
with three degrees of freedom were introduced. The direct kinematics of
the two manipulators have been formulated. We showed that the direct
kinematics of the planar mechanism leads to a quadratic polynomial in the
tangent of one half of a representative angle. The direct kinematics of the
spherical mechanism leads, in turn, to a 16th-order polynomial in the tangent
of one half of a representative angle. This result implies that, for a set of
three given actuator displacements, the foregoing polynomial admits up to
16 different solutions, among which only eight would be real positive. Since
only the real positive solutions are acceptable, the moving triangle Q admits
up to eight different orientations. However, in tests we ran, we found that
the maximum number of geometrically distinct solutions was only two.



164

Acknowledgements

The research work reported here was made possible under NSERC (Natu-
ral Sciences and Engineering Research Council, of Canada) Grants A4532,
A4219, STRGP 205, and EQP00-92729. Support from IRIS, the Institute for
Robotics and Intelligent Systems, a network of Canadian centres of excel-
lence, is also acknowledged. The first author was funded by the Ministry
of Culture and Higher Education of the Islamic Republic of Iran and the
third author completed his contribution while on leave at the Institute B for
Mechanics of the Technical University of Munich, under an Alexander von
Humboldt Research Award.

References

Craver, W.M.: 1989, Structural Analysis and Design of a Three-Degree-of- Freedom Robotic
Shoulder, M. Eng. Thesis, The University of Texas at Austin: Austin.

Hunt, K. H.: 1983, ‘Structural Kinematics of In-Parallel-Actuated Robot Arms’, ASME J.
of Mechanisms, Transmissions, and Automation in Design vol. 105, no. 4, pp .705-
T12.

Gosselin, C. and Angeles, J.: 1989, ‘The Optimum Kinematic Design of Spherical Three-
Degree-of-Freedom Parallel Manipulator’, ASME J. of Mechanisms, Transmissions,
and Automation in Design vol. 111, no. 2, pp. 202-207.

Gosselin, C. and Angeles, J.: 1990, ‘Kinematic Inversion of Parallel Manipulator in
the Presence of Incompletely Specified Tasks’, ASME Journal of Mechanical Design
vol. 112, pp. 494-500.

Gosselin, C. M. and Sefrioui, J.: 1991, ‘Polynomial Solutions for the Direct Kinematic
Problem of Planar Three-Degree-of-Freedom Parallel Manipulators’, Proc. of the Fifth
Int. Conf. On Advanced Robotics, Pisa, pp. 1124-1129.

Gosselin, C. M., Sefrioui, J. and Richard, M. J.: 1992a, ‘On the Direct Kinematics of Gen-
eral Spherical Three-Degree-of-Freedom Parallel Manipulators’, Proc. of the ASME
Mechanisms Conference, Phoeniz, pp. 7-11.

Gosselin, C. M., Sefrioui, J. and Richard, M. J.: 1992b, ¢ On the Direct Kinematics of a
Class of Spherical Three-Degree-of-Freedom Parallel Manipulators’, Proc. of the ASME
Mechanisms Conference, Phoeniz, pp. 13-19.

Nanua, P., Waldron, K. J. and Murthy, V.: 1990, ‘Direct Kinematic Solution of a Stewart
Platform’, JEEE Trans. on Robotics and Automation vol. 6, no. 3, pp. 438-444.
Salmon, G.: 1964, Lessons Introductory to the Modern Higher Algebra (5th ed.), New

York: Chelsea.

Stewart, D.: 1965, ‘A Platform with Six Degrees of Freedom’, Proc. of the Institution of
Mechanical Engineers vol. 180, no. 5, pp. 371-378.

Tarnai, T., and Makai, E.: 1988, ‘Physically Inadmissible Motions of a Pair of Tetrahedra’,
Proc. of 8rd Int. Conf. Eng. Graph. and Desc. Geom., Vienna vol. 2, pp. 264-271.

Tarnai, T., and Makai, E.: 1989a, ‘A Movable Pair of Tetrahedra’, Proc. of R. Soc. Lon.
A432, pp. 419-442.

Tarnai, T., and Makai, E.: 1989b, ‘Kinematical Indeterminacy of a Pair of Tetrahedral
Frames’, Acta Technica Acad. Sci. Hung. vol. 102, pp. 123-145.

Zsombor-Murray, P. J. and Hyder, A.: 1992, ‘An Equilateral Tetrahedral Mechanism’, J.
of Robotics and Autonomous Systems vol. 9, pp. 227-236.



THE SEMIGRAPHICAL SOLUTION OF THE DIRECT
KINEMATICS OF GENERAL PLATFORM-TYPE PARALLEL
MANIPULATORS
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McGill Research Centre for Intelligent Machines &
Department of Mechanical Engineering, McGill University
817 Sherbrooke Street West, Montreal, Canada H3A 2K6
e-mail: etemadi@mcrcim.mcgill.ca and angeles@mcrcim.mcgill.ca

Abstract. A semigraphical method is presented for computing all real direct kinemat-
ic solutions of platform-type parallel manipulators with general geometries. The direct
kinematic problem is reduced to basically two bivariate equations in the sines and cosines
of two unknown angles. One equation is derived by solving an overdetermined system of
equations that can be perturbed by different multiples of the least-square error involved
in the solutions. Upon perturbing this equation by two different multiples, two distinct
equations are obtained. The first bivariate equation and each of these two equations define
three contours in the plane of the two angles involved, the intersections of these contours
providing all real solutions. The method is uscd to find all real dircet kinematic coluticrs
of a general parallel manipulator of the platform type.

Key words: Direct kinematics — Parallel manipulator — Semigraphical - Symbolic com-
putations

1. Introduction

Platform-type parallel manipulators are multibody mechanical systems com-
prising a movable platform, henceforth abbreviated as MP, connected to a
base platform (BP) by several kinematic subchains leading to an architecture
with multiple kinematic loops. The direct kinematic problem of these manip-
ulators is, in general, more challenging than the inverse problem, because of
the nonlinearities involved. Hence, all methods presented in the literature for
the direct kinematic analysis of general platform-type parallel manipulators
are essentially numerical (Parenti-Castelli, 1992). Among these methods,
only few aim at finding all possible solutions (Innocenti and Parenti-Castelli,
1992; Raghavan, 1991; Lazard, 1992; Angeles and Zanganeh, 1992).

In this paper we introduce a comprehensive semigraphical method for
solving the direct kinematics of general platform manipulators, as compared
to the procedure previously presented in (Angeles and Zanganeh, 1992).
Within the proposed solution procedure, we derive two basic bivariate equa-
tions in the sines and cosines of two unknown angles. One equation is derived
by solving an overdetermined system of equations that can be perturbed by
different multiples of the least-square error involved in the solutions. Upon
perturbing this equation by two different multiples, two distinct equations
are obtained. The first bivariate equation and each of the latter two equa-
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tions define three contours in the plane of the unknown angles, the intersec-
tions of the three contours providing all real solutions of the problem.

Figure 1 depicts the general platform manipulator under study. It com-
prises a kinematic chain with six legs connecting a mobile platform to a
base platform. The legs at each end are joined to the platforms by spherical
joints, the centers of the latter being, in general, non-coplanar. Moreover,
each leg is driven by a prismatic actuator.

The direct kinematic problem (DKP) of the manipulator under study is
defined as: Given the lengths of the siz legs, determine the corresponding MP
pose, i.e., the orientation and position of the MP.

Fig. 1. General platform-type parallel manipulator

2. Kinematic Model

Given the general platform manipulator of Fig. 1, the attachment points
of the ith leg on the BP and MP are denoted by R; and P;, respectively.
Further, we fix a coordinate frame F to the BP at point O, and a coordinate
frame G to the MP at point P. Moreover, the MP is moved from the home
configuration (HC) to the current configuration (CC) with the aid of the
six actuators. Hence, if at the HC the vector directed from point P to P; is
denoted by o;, and at the CC by =, then we can write

where Q is the rotation matrix relating the orientation of the MP at the HC
with that at the C'C. Moreover, at the CC we denote the position vectors of
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the vertices P; and R; by p; and 7;, respectively, while vector u; is defined
as directed from R; to P;, its magnitude being ¢;, for : = 1,---,6, and p is
the position vector of P, as shown in Figure 1. Referring to this figure, the
geometrical relations below can be readily derived:

lwill> = [Ip; = 7:ll*; i=1,-,6 (2)

where || - || denotes the Euclidean norm of (-). After expanding the right-
hand-side of eq.(2), we obtain

1 . .
§p2+(Qa,-~ri)Tp—r?Qa,-+sz:=0; i=1,.,6 (3)

where s; = 1(o? + 7} — u}) and ()T represents the transpose of (-). The
DKP of the general platform manipulator under study consists of finding all
real solutions to the system of six equations in eq.(3).

3. The Contour Equations

For completeness, we recall a part of the elimination procedure introduced
first in (Angeles and Zanganeh, 1992). At the outset, we eliminate p by
rewriting eq.(3) in linear homogeneous form, namely,

Az =0 (4)

where the 5-dimensional vector  is defined as ¢ = [p? p 1) and A is
the 6 x 5 matrix shown below:

1/2 (Qoy —r)T *7‘1Q01 + 81

A (5)

1/2 (Qoe—r16)T —TgQUG + sg

Now, for eq.(4) to admit a nontrivial solution, all determinants of the 5 x
5 submatrices of A should vanish. This results in a set of six nonlinear
equations in Q. However, only five of them are independent. If we denote
the determinant of the ith submatrix by A;, then

A Z l+]77] ”_0 121,.6 (6)
J#z

where 7; = 7] Qaj —sj, A;j = det(A;;) and Ajyj is the 4 x 4 submatrix of
A obtained by deleting the ¢th and jth rows and the last column of A. The
expansion of A;; yields in turn an expression of the form

~]’

6

Z l+j+kAijk (
k=1

kit ket

N | =
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where A;jx = det(A,;jx) and the 3 x 3 matrix A} is also a submatrix of A,
namely, that obtained by deleting the first and last columns together with
the 7th, jth and kth rows of A. Using the above notation. some symmetry
properties can be exploited among the foregoing subdeterminants that ease
their computations. Moreover, every rotation matrix Q can be written in
the form

Q=[m n mxn] (8)

subjected to the conditions

T

mn =0 (9a)
mim =1 (gb)
nfn =1 (9c)

where. m = [m;, my, ms]T and n = [n1, na, n3]T. Now, in order to derive
the bivariate equations of the contours, we have to eliminate four of the
unknowns among the six unknown components of m and n. To do so, we
first use eq.{9a) to eliminate one of the components of rn. Without loss of
generality, we can eliminate the third component, i.e., m3, provided that
n3 # 0. Thus, we have:

1
ms = —;l;(nlml + noms) (10)

Upon substitution of the above equation into eq.(9b) and multiplying the
equation thus resulting by n to clear denominators, we obtain:

(n? 4 n2)mi + (n3 + n3)mi + 2nyngmymy — 02 = 0 (11)

Moreover, the same substitution in eq.(6) yields a set of six nonlinear equa-
tions free of ms, only four of which are independent. These equations can
be cast in the form

N/y/ — 0 (12)

where all entries of the 6 X 6 matrix N’ are functions of vector m only,
while ¥’ = [m?, m%, mymy, m;, ma, 1)7. Furthermore, from eq.(11) we can
derive an expression for m?, i.e.,

1

m[(n% + n2)m3 + 2nyngmymg — n?] (13)
1 3

2 _
my =

Now, we substitute eq.(13) into eq.(12) and then pick up four independent
equations among the six equations thus obtained. This yields a system of
four homogeneous equations in the form

Ny=0 (14)
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where all entries of the 4 x 5 matrix IN are functions of vector n only, while
Yy = [m% myms, my, Mo, 1]T. Moreover, N is of full rank, and hence, a
5-dimensional nonzero vector ¢ exists that spans the nullspace of N. Let ¢
have the components below:

(=[G ¢ - G (15)

Comparing the components of ¢ with those of y defined above, we notice
that (5 should be different from zero, for the fifth component of y is. Hence,
we can normalize ¢ by dividing all its components by nonzero (5. Moreover,
the 3rd and 4th components of y are nothing but m; and my, and so, the
latter are equal to the 3rd and 4th components of the normalized ¢, namely,

my = (3/Cs, mo = (4/Cs (16)

Moreover, if eq.(16) is substituted into eq.(10) we obtain an expression for
ma in terms of n only, i.e.,

-~
-
-1

{101C3 + 12C4)

nmz = —
n3(s

Since m is of unit magnitude, we can use eqs.(16 & 17) in order to «erive
. 1 .
G+G-¢+ F("lc.z +n2()* =0 (18)
3

We now express the components of vector n in spherical coordinates in order
to reduce the number of unknowns to only two, i.e.,

n = [sin 8, cos 02 sin 6 sin @, cos6,; ]T (19)
Upon substitution of eq.(19) into eqs.(18), a bivariate equations in #; and
6, is derived, namely,

. . 1 .

f1(01q92)5C§+€3—€§+F(”1€3+n2€4)2= 0 (20)

3

Function f; defines a contour Cy in the 6;-6, plane, which represents the locus
of all possible solutions, actual and spurious. However, the actual solutions
of the problem are only those which satisfy the equation:

p’—p'p=0 (21)

If we now substitute eqs.(16, 17 & 19) into eq.(4), all entries of the coefficient
matrix A become functions of #; and 6, only. The equation thus resulting
can be written in the form

Bz =b (22)
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where & = [p?, p]T and the entries of the 6 x 4 matrix B and the compo-
nents of the 6-dimensional vector b are functions of 6; and 6, only. Hence,
we can solve eq.(22) for p? and p in terms of the two angles involved. How-
ever, this is an overdetermined system of six equations in four unknowns.
The least-square solution to this system can readily be found by applying
Householder reflections (Golub and Van Loan, 1989) to both sides, thereby
deriving

BEA

where R is a 4 X 4 upper triangular matrix, O is the 2 x 4 zero matrix and
b1 and b, are 4- and 2-dimensional vectors, respectively. Hence, the solution
is obtained by back substitution into RZ = by, which yields four relations
for p? and the components of p in terms of #; and #;. On the other hand,
the least-square error to eq.(22) is equal to ||bz||. Thus, the foregoing four
relations, when substituted into eq.(21) and added with a multiple of b1 b,,
result into a single equation in #; and 6,, namely,

fl-+1(01,()2)Ep2~prp—i—aib§mb2::0; i=1,2, ... (24)

where a; is a nonzero constant that is meant to perturb the equation. For
two distinct values of «;, i.e., a; and a3, we obtain two equations that, in
turn, lead to functions f; and fs, respectively. These functions define two
more contours, Cz and Cs, in the 6;-0; plane. Thus, the intersection points of
the three contours Cy, C2 and C3, when superimposed, yield all real solutions
of the problem.

4. Numerical Example

By means of the above procedure, the contour intersections and the posi-
tion and orientation of a general platform-type parallel manipulator were
obtained, for given values of the actuator variables {¢;}%. The parameters of
this manipulator are given as

0.06503501 —0.50508753
ry = | —1.42475422|, 7o = | —0.0289200 |, r3
1.93172294 —0.04608834

0.00048050
T4 =

0.22313340
1.93280714

0.75279702 0.11011463
rs = | 0.81007514 | | re = | —0.32291556

1.82952667 0.01200174

[—1.09491488:|

0.32929144
~0.05044410

0.01346965 —1.04206133 —1.73287180
, 02 = y O3 = )

o = [—1.65009147 —0.59772236 1.51458094
0.77441816 0.02532155 0.95305524
—0.00177893 5.07444276 1.11289374

oy = | 1.22775426 o5 = |0.77126528 | , o; = | —0.62965332
—0.00914577 0.90334291 0.00374341
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g1 = 0.26321981, g2 = 1.52167226, q3 = 1.49376759,
g1 = 153376882, g5 = 4.25152610, g6 = 1.53758131
For the values of a; = —1 and a; = —3, the superimposed contours are

shown in Figures 2, in which C; is shown with dashed line. Moreover, in
Fig. 3 we magnified the region where the intersection points exist. From
these figures two solutions are found as recorded in Table 1.

01 (rad)

Fig. 2. C1,C; and Ca contours of the numerical example

It should be noted that the contours have been plotted for all values of
6, between zero and 7. We have done this because, for each pair of (6;,6;)
values in Table 1, we can always find a complementary pair (67, 65) that
satisfies the following identity:

sin 6y cos 0 sin 0] cos 6,
n = | sinfsinf; | = | sin @] sin @)
cos 0y cos 0}

where, ] = -6, and 0, = 0, — 7.
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TABLE 1

Direct kinematic solutions

point 1 2

6, (rad)  1.570796  1.643131
0, (rad)  1.570796  1.742817

my 1.0 0.983827
mo 0.0 0.165975
msa 0.0 -0.067350
Dx -0.0790339 -0.034122
Py 0.0005794 0.158842
P 1.198686 1.152051

1.5 1.525 1.55 1.575 1.6 1.625 1.65 1.675

01 (rad)

Fig. 3. Magnifcation of the contours of Fig. 2

The architecture of the manipulator of this example was chosen so as to
yield an isotropic Jacobian matrix. Isotropic Jacobian matrices with dimen-
sionally inhomogeneous entries, as in the case at hand, were defined using
the concept of characteristic length in (Angeles et al., 1992).
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5. Conclusions

In this paper, a mathematical model for the direct kinematic problem of
platform manipulators with general geometries was derived. Then, the equa-
tions were reduced to two bivariate equations. By using the first equation
and perturbing the second equation, we found three contours in the plane of
the two unknown angles involved. The superimposed plots of contours yield
all real solutions. A numerical example was included that admits two real
solutions.
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ON THE REPRESENTATION OF RIGID-BODY MOTIONS
AND ITS APPLICATION TO GENERALIZED PLATFORM
MANIPULATORS*

D. LAZARD**
LITP, Institut Blaise Pascal, boite 168,
4 place Jusstieu, 75252 Paris Cedex 05, France

Abstract. Different ways for representing rigid-body motions (direct isometries) in a
computer are presented. It appears that the choice between them may have a dramatic
eftect on the difficulty of a computation or of a proof.

As an application, a computational proof is given of the fact that the direct kinematic
problem for a generalized Stewart platform has at most 40 complex solutions.

1. Introduction

A generalized Stewart platform is a body with 6 legs. The legs are fixed on
the body and on the ground, which is not necessary plane. The geometry
of the platform is given, as well as the points where the legs are connected
with the platform and with the ground. The position of the platform is
commanded by modifying the lengths of the legs.

The problem studied in this paper consists in computing the position of
the platform from its geometry and the lengths of the legs (direct kinematic).

If an initial position of the platform is defined, this problem is equiva-
lent to compute a rigid-body motion (i.e. a direct isometry) satisfying some
constraints, i.e. to solve an equation, the unknown of which is a rigid-body
motion.

The variety of rigid-body motions has dimension 6; there are many ways
for representing it with scalar variables submitted to some constraints. It
appears that the complexity of solving an equation with a rigid-body motion
as unknown heavily depends on the representation chosen.

In Section 2, we describe some representations that have been tried, and
we discuss their interest for solving the problem. which is the main result of
this-paper: Prove that the number of complex solutions of the direct problem
for the generalized Stewart platform is at most 40 or infinite.

We first proved this result for the case of planar platforms (Lazard, 1992).
Then Ronga and Vust proved by hand the general case, using intersection
theory, blowing-up and Chern classes. Having heard the result by J.J. Risler,
we figured out their proof before reading their paper, which led us to the
proof given below, that is conceptually very simple, but needs machine com-

* Work supported by EEC projects POSSO and PROMOTION.
** E-mail : lazard@litp.ibp.fr
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putations. Ronga and Vust (1992) were, in turn, influenced by this and
devised a much simpler proof.

At the same time, B. Mourrain devised a different proof of the same
result, as yet to appear.

As rigid-body motions appear in many applied geometrical problems,
especially in robotics, we hope that the considerations developed in this
paper will be useful in a much more general context than the one of gener-
alized Stewart platforms, which is for us a kind of paradigm for problems of
spatial geometry.

2. How to Represent Rigid-Body Motions?

A rigid-body motion is the product of a translation by a rotation. Many
authors use Euler angles for representing rotations. For this reason, angles
and trigonometric functions appear in many papers related to generalized
Stewart platforms. Angles are convenient if floating point computations are
used, but are very difficult to handle in symbolic or exact computations. For
this reason, we do not consider here the representations that involve angles
explicitly.
A standard way for eliminating angles consists in using the formulas

. 2t . 1— 1
sin(f) = T:—t_?; cos(f) = e

(1)

As three angles are needed for a spatial rotation, such a transformation leads
to complicated formulas of a rather high degree. For this reason, we do not
consider further this approach.

2.1. REPRESENTATION BY IMAGES OF POINTS

In (Lazard, 1992), we have represented a rigid-body motion by the images of
three points of the platform (nine coordinates), submitted to the constraint
that their three respective distances are given. The other points of the plat-
form are defined by their coordinates in the local coordinate system defined
by the first three points. For the direct kinematic problem we are consider-
ing, this leads, when the platform is planar, to a system of nine equations,
six of them being quadratic, the remaining ones being linear.

Thus, in this case, the variety of rigid-body motions (of dimension six) is
represented as imbedded in R®. Bezout’s theorem, applied to the system of
equations to be solved, gives a bound of 64 for the number of solutions. A
study of the “solutions at infinity” (i.e. the solutions obtained in homogeniz-
ing the equations and looking at the solutions for which the homogenizing
variable is 0) shows that they are of dimension 0 and of degree 24. Thus, in
the planar case, the number of solutions is at most 40, if they form a set of
dimension 0.
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If the platform is not planar, for representing a point of it in the coordi-
nate system defined by three points, we need to use vector products of the
vectors defined by these three points. After some reductions, this leads to a
system with eight quadratic equations and one cubic one. It is clearly much
more difficult to solve. It appears also that the solutions at infinity now form
an algebraic set of positive dimension. It follows that Bezout’s theorem does
not give a sharp bound. This is the reason for which the sharp bound of 40
was so difficult to prove.

Another representation, also introduced in (Lazard, 1992) consists in
defining a rigid-body motion by the images of four points subjected to six
constraints (the values of their respective distances). This representation
codes not only rigid-body motions, but also skew isometries (product of a
rigid-body motion by a reflection). For the Stewart platform problem, this
leads to ten quadratic and two linear equations. The best general bound
obtained in (Lazard, 1992) follows from this representation.

2.2. QUATERNIONS

In previous representations, rigid-body motions do not really appear explic-
itly. We consider now representations where rigid-body motions appear as
explicit objects.

The representation by quaternions has the advantage to be rational, as
the expressions appearing in eq.(1) are, and to introduce less denominators
than if the identities of eq.(1) were used.

Let us recall that the quaternions are a skew field which is a real vector
field of dimension 4 with (1,4, 7,%) as a basis. The multiplication table may
easily be deduced from

2=t = k= =1 ijk=—kji= -1

The pure quaternions are those that are in the subspace generated by (z, 7, k).
A quaternion ¢ acts on the vector space of pure quaternions by v — qvg™'.
This action is a rotation of this real vector space that defines an isomorphism
between the real projective space of dimension 3 (quaternions up to the
multiplication by a real number) and the space of rotations.

A rigid-body motion is the product of a rotation represented by a quater-
nion 7 = ro+7r1i+7ryj+r3k and a translation of vector t = tyi4t,5+1t3k. The
image produced by this motion of a point of coordinates xy, 22,23 has, for
coordinates, the sum of a t; and of a fraction with numerator homogeneous
of degree 2 in rg, 1, 72,73 and denominator r3 + r? + r2 + r.

Using this, the direct kinematic problem for generalized Stewart plat-
form leads to an equation of degree 2 in the ¢; and five equations that are
homogeneous of degree 2 in the r; and linear in the t;.

There are several ways for applying Bezout’s theorem to such a system.
The standard ones give a bound of 486. The multi-homogencous Bezout
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theorem (Shafarevich, 1974) gives a bhetter bound of 160.

Thus, this approach leads to systems of higher degree, but with only six
equations. The fact that the equations are homogeneous with respect to a
part of the variables may be useful in some situations.

2.3. REPRESENTATION WITH ORTHOGONAL MATRICES

The most obvious representation of the rotations consists in using orthogonal
matrices, i.e. matrices such that R- R' = I and det(R) = 1. This makes the
rotations a subvariety of RY, of dimension 3. This means that rigid-body
motions are represented by twelve parameters submitted to six conditions
(in fact, seven). As computational problems grow exponentially with the
number of variables, we have preferred the preceding representation.

Let us examine further the equations that arise here.

The condition R- R' = I means that the three row vectors of the matrix
R have norm 1 and that the three dot products between rows are zero. These
relations and det(R) = 1 generate many other conditions, among them are
the similar conditions on columns (R- R' = I') and R = cofactor(R), where
cofactor(R) is, as usually, defined by det(R) - fofactor(R)]' = R™1.

It appears that the 21 equations R-R' = I,R-R! = I and R = cofactor(R)
give a Grobner basis of the ideal generated by R - R' = I and det(R) = 1,
for the degree ordering. This basis is neither minimal nor reduced, but a
reduced basis is easily obtained by replacing the equations for the norms of
the first column and the first row by their common normal form with respect
to the other equations. The resulting Grobner basis appears as a subset of
the Grobner basis given below.

Using this Grobner basis, the Hilbert function is easy to compute, showing
that the rotations are a variety of dimension 3 and degree 8 in R?.

With this representation, the distance between a point A (represented by
its position vector) and the image of a point M by the rotation R followed
by the translation of vector T is given by the norm of R.M + T — A.

For the Stewart platform problem the data are the coordinates of six pairs
of points M and A such that the first M and the first A may be chosen at
the origin, as well as the six lengths of the legs. This leads to the equations

1T = i
T'-R-M;—A"“R-M; —A'-T = constant for « = 2..6, (2)

where the unknowns are the coefficients of the square matrix R and the
column matrix 7'. This means that we intersect the variety of degree 8
of the rigid motions by six quadratic hypersurfaces. But the vector space
generated by the quadratic parts of the five last equations is of dimension
at most 3 (the dimension of the space generated by the M;). Thus, two of
these equations reduce to linear ones, and Bezout’s theorem gives a bound
of 8 x 23 = 64 for our problem.
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3. Bounding the Number of Solutions for the Generalized
Stewart Platform Problem

In the above considerations, we have viewed a rigid-body motion as a rota-
tion of matrix R followed by a translation of vector T'. It may also be viewed
as another translation U followed by the same rotation T'. The two repre-
sentations are related by formulas

T=R-U U=R'T, (3)

where the nonlinear part of preceding equations appears.
This leads us to introduce a new representation of rigid-body motions as

a subvariety of R®, where the coordinates are the coefficients of the matrix
R and of both vectors T' and U. The equations of this variety are those of
the rotations and eq.(3). Surprisingly, the Grébner basis of this ideal is very
simple and rather easy to compute (note that the twenty polynomials not
depending on t; and u;, which appear in the middle, are a Grobner basis for
the variety of rotations:

.

T9,172,2U1 + 73,173 2U1 — 1172 2Us — 71 173 2U3 — 11 182,
7’3,2“1 + 7‘3;»“1 — r19P2 20Uz — 71 aP3 2U3 — P ol — Up,
Po 172 3U1 + 73,17°3,3U1 — P1,172 3Us — P1 17'3,3U3 — 71,113,
T2 2Ta 3U1 + 73273 3U1 — T'p 202 3U2 — 11 273 3U3 — ry ol3,
1’%}311‘1 + 7’;311.1 - 7“1,31’3‘3’113 — 1"1 373.3U3 — 7'1‘313 — U,
Pl =15y =Ty — 13, =133+ L,

11712 + 21722 + 13,1732,

Pl + i+, — 1

r1,171,3 + 72,1723 + 73,17'3,3,

r1271,3 + r2are 3+ 1'3,273,3,

7'%,3 + 7'%,3 + 7’3,3 -1,

11721+ T1,2722 + 71,3723,

71,2721 — 71,1722 + 3,3,

1,372,1 — 71,172,3 — 73,2,

7’:2),1 + r%,z + 7'3,3 -1,

r1,37T22 — 712723+ 131,

r1,173,1 + 12732 + 71,3733,

12731 — 711732 — T2.3,

r1,3731 — 1,173,3 + 22,

72,1731 + 72 27°3,2 + 1'2,37'3 3,

92731 — 21732 + 71,3,

23731 — T2173,3 — I'1,2,

2 a2 2
r31+r30+r33— 1,
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71,373,2 — T"1,273,3 — I'2,1,
23732 — T22r33+ 11,

ry1ty + 7y 2ts + 7y 3tz + Uy,
ry,2ty — r11t2 — 73 3u2 + T2 3U3,
r1,3t1 — 71183 + r3,2us — 72 2Us,
ro,1t1 + Taats + 1o 3tz + uo,
T9,2ly — r21t2 + 133U — 1 3U3,
rg 3ty — 72,113 — 132U + 71 2U3,
7311 + 73,2t0 + 73 3t3 + ug,

r3 oty — r31ta — 12 3u1 + 71 3U2,
r3 3ty — 73,183 + 1o 2uy — 712Uz,
t% + tg + t% — 'uf — u% - ug,
ry,aty — Py oty — r31us + T2 U3,
ro 3ty — Toat3 + r3 Uy — 1 1U3,
r33ty — r32lz — ro Uy + 71U,
Py + e ue + raaus + 1,
r1,2U1 + P2 2U2 + 132Uz + 12,
P1,3U) + 723Uz + 33Uz + 13

This Grobner basis computation took 3h30" with Maple (Char et al., 1985,
1988), 4’ with Axiom (Jenks and Sutor, 1992) and less than 3” with GB, an
experimental software written by J.C. Faugere (on SUN-Sparc 2 station or,
for Axiom, IBM-RISC 6000). Computing the Hilbert function of this ideal,
for example with Macaulay (Bayer and Stillman, 1983, 1990), it is easy to
see that it is of dimension 6, as expected, and of degree 20.

Now, by replacingT?- R by U? in ‘equations (2), they become linear, except
for the first one, which is unchanged and remains of degree 2. Thus, Bezout’s
theorem asserts that, if the set of solutions is of dimension 0, it has a degree
of 220 = 40.

Clearly, for special configurations, some of these 40 points may be at
infinity, and the number of actual solutions may be smaller. We have also to
remark that the version of Bezout’s theorem given by Heintz (1983) bounds
also the number of isolated solutions, even if there are components of positive
dimension at infinity. Thus, we have proven:

THEOREM 1. If the direct kinematic problem for generalized Stewart plat-
form has a finite number of complex solutions, this number is at most {0.
4. Conclusions

We have shown that the choice of the equations for describing rigid-body
motions may have a dramatic effect on the difficulty of a problem.
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Clearly, for the generalized Stewart platform, the main problem is to
effectively compute the solutions. We have the hope that the Grobner basis
method could be an efficient and robust way for this purpose. Unfortunately,
floating point computations are not convenient, because of the number of
equality tests which are needed. Thus, it would be better to compute with
exact integers or rational numbers.

This is possible, but difficult because of the size of the integers that appear
during the computation, and even in the final output. We have done some
experiments with randomly chosen configurations. For a planar platform
modelled as in subsection 2.1, the Grobner basis is computed in 8 minutes
by GB on a Sparc 10 without the final verification that all S-polynomials
reduce to 0. Another example (not planar) has been run using the modelling
of Section 3, starting from the Grébner basis given there. Despite the fact
that the equations which are added to this Grobner hasis are one very simple
quadratic one and five linear ones, the computation took 4 hours (without
the final verification) and the result needs 5Mbytes for storing the integers
of several thousand of digits which appear in the result.

Thus, the best way for modelling this problem in order to efficiently com-
pute the position of the platform requires further study. Clearly, execution
depends on the solution algorithm that is used, and the best choice may by
completely different for floating point algorithms and for exact computations
like Grébner bases.
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ALGEBRAIC-GEOMETRY TOOLS FOR THE STUDY OF
KINEMATICS OF PARALLEL MANIPULATORS

JEAN-PIERRE MERLET
INRIA Sophia Antipolis, BP 93, 06902 Sophia-Antipolis Cedex, France

Abstract. Manipulation of algebraic equations arise frequently in kinematic problems.
But in many of these problems it is not necessary to solve the algebraic equations to
establish interesting results as sometimes only the number of real solutions is important.
Fortunately many theorems in algebraic geometry, some of them being not well known,
may give some insight on this point. We present some of these theorems and show how
they can be applied to demonstrate interesting results in the field of kinematic problems
for parallel manipulators.

Key words: Parallel manipulators — Kinematics — Algebraic geometry

1. Introduction

Systems of algebraic equations play an important role in kinematics prob-
lems as most of these problems can be stated as solving such a system. For
some kinematics problems it is not necessary to solve the equations but it
is more important to determine:

— the maximum number of real roots of the system
—  the number of real roots in a given interval

We will present some tools which can be used for these purposes without
computing the roots of the equations and study their application for some
kinematics problems related to parallel manipulators.

2. Bezout’s theorem

This theorem is one of the most interesting in algebraic geometry. An exten-
sive study of Bezout’s theorem can be found in (Walker, 1950). We give here
a simplified version of this theorem:

The intersection of m algebraic equations in n unknowns (m>n) of degree

Ny, N2,y..0yMy 18 constituted of at most [[;=]" n; points

In the case of planar algebraic curves a version of Bezout’s theorem can
be stated as:

two curves of order m,n with no common components have exactly mn
intersection points.
183
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3. Circularity

This notion and its application to kinematic problems has been discussed in
detail in (Hunt, 1978).
3.1. PLANAR CASE

Bezout’s theorem may seem to be rather strange in some cases. Let us con-
sider two circles described by algebraic equation of order 2. It is well known
that they will have at most two real intersection points....

Let a circle of radius r, with center at coordinates (a,b), be defined by the
equation:

(a:—a)2+(y—b)2—r2:0
By expanding this equation we get:
:r2—2ma+a2+y2—2yb+b2—r2 =0

The terms of this equation are not homogeneous, i.e. their order with respect
to the variables z,y are 2, 1 or 0. Let us rewrite this equation with a new
unknown w:

T S . .
(——a)z—i—(i—b)z—rz::O
w

where w is simply a scaling factor. The previous equation is now homoge-
neous as it can be written as:

(z —aw)? + (y — bw)? — r’w? =0
or

22— 2zaw + a?w? + y?‘ —2ybw + b2w? — rw? =0

for which the order of each term with respect to the variables z,y, w is now
2. The system of unknowns z,y,w is called a planar homogeneous system
of coordinates.

If w = 0 the circle is infinitely enlarged and every point is at infinity. The
line w = 0 is called the line at infinity and this line crosses the circle in two
points defined by:

4+t =0 (1)

i.e. at the points 1, S,

s{rZ0 sf o

T =1y r = -1y

These two imaginary points are called the the imaginary circular points and
equation (1) defines the imaginary circle
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As the parameters a, b, r do not appear in the definition of the imaginary
circular points, they belong to any circle. Therefore, they belong too to the
intersection of two circles. Accordingly, two circles with two real intersection
points have also in common the two imaginary circular points, i.e. a total of
four intersection points, in accordance with Bezout’s theorem.

If a planar curve has the points Sy, S as double, triple.. points it will
be said that this curve has a circularity of 2,3,... Therefore a circle has
circularity 1.

3.2. APPLICATION OF CIRCULARITY

Let us consider the following planar parallel manipulator described in fig-
ure 1. The triangular plate BDE is connected to the three fixed points

F(Cg,dg)

A(0,0) C(e2,0)

Fig. 1. A planar parallel manipulator.

A, (') F by three links with revolute joints at each extremity. A linear actu-
ator in each link enables to change the link length and it may be shown
that by controlling these lengths the posture of the triangular plate can be
adjusted at will. Indeed let us assume that we have fixed the position and
orientation of the triangular plate BDFE in some reference frame. There-
fore, the positions of its vertices are also known in this frame. The link
lengths corresponding to the given posture are simply the distances between
the points AB,C' D, EF and we have solved the inverse kinematic problem
of this manipulator. Formally let us define the reference frame such that:
A:(0,0),C :(c2,0), F : (c3,d3) and we define the posture of the triangular
plate by the coordinates (z,y) in the reference frame of point B and its
orientation by the angle ¢ between the line BD and the z axis. The link



186

lengths p can be computed as:

pi= 2ty (2)
ps = (z+1ycos® — ¢3)? 4 (y + Iy sin ®)? (3)
pt = (2 +1l3c08(® + 0) — ¢3)* + (y + Iz sin(® + 0) — d3)? (4)

Let T = tan(®/2). We have:

2T 1-7°
_- W COS(@) —_ “lﬁ (5)

The previous equations can be written now as:

sin(P)

e +y*—pi=0 (6)
22 4+ 22T? + ®’T? + y2 + a1z + apeT? + asT? + agyT? 4 a5 = 0 (7)
2® + 2 T? + *T? + 4 + bz + byaT? + b3T% + byyT? + b5 =0  (8)

The orders of these equations.are 2, 4, 4. Suppose now that the lengths of
the links are fixed and that we want to determine the position and orienta-
tion of the triangular plate i.e. solve the direct kinematic problem. We have
therefore to solve the previous system of algebraic equations. Using Bezout’s
theorem we deduce that this system will have at most 32 (2x4x4) solutions,
either real or complex. We will show now thart in fact a smaller upper-bound
of the number of real solutions can be established. Let us consider another
mechanism, as described in figure 2.

This mechanism is called a four-bar mechanism. Many authors (Hunt,
1978) have shown that point C' of this mechanism describes a sixth order
curve, a sextic with a circularity of 3 (which is the maximum for the circu-
larity of a sextic).

Now let us consider the four-bar mechanism ABE DC in the mechanism
of figure 1. E lies on the sextic of the four-bar mechanism but also belongs
to the circle centered in F, of radius F'E for a valid solution of the direct
kinematic problem. E is therefore the intersection point of two algebraic
curves of order 2 and 6 and there will be at most 12 intersection points
according to Bezout’s theorem.

But the intersection will contain the two circular imaginary points Sy, So
as triple points. Therefore there will be at most 6 real intersection points
and therefore this is an upper bound for the number of postures of the direct
kinematic problem.

This has been confirmed in (Gosselin, 1990) who has shown that the
system of equations (2, 3, 4) can be reduced to a 6th-order polynomial in
one variable. Indeed, let us subtract equation (2) from equations (3), (4).
We get a linear system of two equations in the two unknowns z, y, which can
be solved, the result being substituted into equation 2. The only unknown
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Fig. 2. A four-bar mechanism.

in this equation is now ®. Using the substitution described by equation (5)
the remaining equation becomes a 6th-order polynomial in 7"

agT® + asT° + asT* + asT> + a;T* + a1y T + ag = 0 (9)

3.3. SPATIAL CASE

Let us consider now the intersection of two spheres i.e. two surfaces of degree
2 which, according to Bezout’s theorem, must intersect along a curve of order
4.

But it is known that the intersection of two spheres is a circle of degree 2.
We must therefore find a conic at infinity which explains the missing degree.
We rewrite the equation of the sphere in homogeneous coordinates:

(z — aw)? + (y — bw)? + (2 — cw)? — r?w? = 0

The plane w = 0 is called the plane at infinity and the intersection of the
sphere and this plane is found as:

4yt 422 =0 (10)

As none of the parameters a, b, r appear in this equation, this curve of order
2 belongs to all the spheres and, therefore, to the intersection of any two
spheres. Equation (10) defines an imaginary cone whose intersection with
the plane at infinity is the imaginary spherical circle which belongs to all
the spheres.
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The imaginary cone intersects the plane z = 0 along two imaginary lines
defined by x = iy and, therefore, the circular imaginary points belong to
the cone. As a consequence there cannot be more than 2 real intersection
points between a sphere and a circle.

The circularity of a surface is then defined as the order of multiplicity
with which it contains the imaginary spherical circle. A sphere has therefore
a circularity 1. For example, it may be shown that a general torus (fourth-
order surface) has a circularity 2 (maximal circularity).

3.4. APPLICATION TO A KINEMATIC PROBLEM

Let us consider the spatial mechanism described in figure 3. A triangular

B3

Az

ball and socket joint

B;

rotoid joint

Fig. 3. A general spatial mechanism.

plate ByByBj3 is connected to three fixed points Ay, Ay, A3 by three links
which have a rotoid joint at point A and a ball-and-socket joint at point B.
We assume that the lengths of links Ay By, Ay By, A3B3 are fixed and we
want to determine the possible locations of the triangular plate B; By Bs i.e.
solve the direct kinematic problem for this mechanism.

We will consider the spatial mechanism obtained when we dissociate one
of the B;. We get the mechanism described in figure 4 which is known under
the name RSSR.

We use now one of Cayley’s theorem (Hunt, 1978):

A line with two points C', D lying on two algebraic curves of degree n.,ng
and circularities p.,py describes a ruled surface of degree 2n.(ng — pq) +
271/([(])(‘ - nc)

For the RSSR mechanism we have two points lying on two circles i.e.
Ne = Ng = 2,p. = pg = 1. The order of the surface is therefore 8 and B lies on
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Fig. 4. The RSSR mechanism

a surface of order 16 (as point B can freely rotate around the line joining the
centers of the ball-and-socket joints). It may be shown that the circularity
of this surface is 8 (Merlet, 1989). For a valid posture of the mechanism
described in figure 3, point By belongs to such a surface but also to the
circle centered in A; whose radius is the link length . According to Bezout’s
theorem there are 32 intersection points (either complex or real) between
the surface and the circle and, according to the circularity of the surface
and the circle, 16 points among these 32 intersection points are the circular
imaginary points. Therefore, there are at most 16 real intersection points
and, consequently, the direct kinematic problem has at most 16 solutions.
Now let us consider a parallel manipulator (figure 5). In this manipulator

Fig. 5. A parallel manipulator.

the 6 legs have their extremities connected to the plates by ball-and-socket
joints. Their lengths can be modified in order to control the position and
orientation of the upper plate.
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Suppose that the legs have a known fixed length. The direct kinematics
problem consists in determining the maximum number of postures of the
upper plate for these leg lengths. Let us consider two legs with a common
point B on the upper plate. As the leg lengths are fixed, B will lie on a
circle whose center and radius can be computed from the leg lengths and the
position of the joint centers on the fixed plate. We can therefore substitute
the two legs by a virtual leg whose only possible motion is a rotation around
a fixed axis.

This can be done for any pair of legs sharing a common point on the
upper plate and, therefore, the parallel manipulator upper plate will have the
same possible postures as the mechanism described in figure 3: its maximum
number of postures will be 16.

A more tedious way to demonstrate this result is to combine the algebra-
ic equations describing the inverse kinematic problem to get a polynomial
in one variable, whose order shall be 16 or less. A sixteenth-order poly-
nomial has been first found in (Charentus and Renaud, 1989) and later by
many authors, for example (Dedieu 1990) (who give additional results about
the convexity of the solution), (Griffis, 1989), (Innocenti, 1990). Using this
result, an example of manipulator with 16 possible postures for the end-
effector has been presented by (Merlet, 1989) and (Dedieu, 1990). In the
former reference it has been shown that this result can be extended to many
others manipulators as soon as they have a triangular end-effector.

4. Number of real roots of a polynomial in a given interval

The systems of algebraic equations arising in some kinematic problems can
be reduced to the analysis of a polynomial in only one variable which shall
furthermore lie in a given interval. Therefore, it is of interest to consider a
polynomial in one variable and to determine the number of its real roots in
a given interval.

4.1. STURM’S METHOD
An excellent and practical introduction to this method can be found in

(Mineur, 1966).

Principle
Let f(z) be a polynomial of degree n in z

i=n

fO(:L) = Zanl'n =0
1=0
We consider the first derivative of this polynomial with respect to x:

hi(=z) = folw)
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We denote by Rem(fi—1(z), fi(z)) the remainder of the Euclidian division
of fi1(x) by fi(x)

We build a sequence of functions by:

fiz1 = —Rem(fi_1(z), fi(z)) i €[l,n—1]

The last function of this sequence does not depend upon z. Let [zq, ;] be
the interval in which we are looking for the real roots of fo(z) = 0.

Sturm’s theorem

The number of real roots of the equation fo(z) = 0 in the interval [z1, ;]
is obtained as the number of sign changes in the sequence f;(z1), fit+1(z1),7 €
[0, n—1] minus the number of sign changes in the sequence fi(z3), fiy1(z2),t €
[0,n—1].

4.2. APPLICATION EXAMPLE

We consider a particular case of the planar parallel mechanism described in
a previous section (figure 6). The equations giving the links lengths for a

B(z,y) E ls
~€ > D
>
I3
Yy P3
o1 P2
T

A(0,0) F(Cg,o) C(CQ,O)

Fig. 6. A special case of planar parallel manipulator.
given posture of the end-effector are:

pi= o'ty
p3 = (z+1yc08® — ¢3)* 4 (y + lysin )?
p3 = (z +13c08® — c3)* + (y + l35in ®)?

By manipulating these equations in a similar manner as in section 3.2, they
can be reduced to a polynomial in one variable:

fo(T) = a3T3 + (L2T2 +aiT4+a3=0 (11)
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with T' = cos ®. Therefore there can be up to 3 real roots for this polynomial
and, as each root defines two values for ®, we may think that an upper bound
of the number of postures for the direct kinematic problem is 6. We will show
now that, in fact, there will be at most 4 solutions to this problem.

To solve the direct kinematic problem we have to find the real roots of
the polynomial, but we are looking only for the roots in the interval [-1,1]. It
may be shown that fo(1), fo(—1) are always strictly positive (their symbolic
values are squares)

If we build the Sturm sequence, we get four functions fy, f1, fo, f3, where
f3 is a constant. We are looking for sequences such that the number of real
roots in the interval [-1,1] is maximal. This number will be a maximum in
four cases:

fo fi fo f3 | number of sign changes

z=-1|+ - + + 2
+ 4+ 0

Il
+
+

fo fi f2 fs | number of sign changes
z=-1|4+ + - + 2
z =1 + + + + 0

fo fi fa fs | number of sign changes
r=-1|+ - + - 3
c=1 |+ + + - 1

fo fi f2 f3 | number of sign changes
e=-1.+ - + - 3
r=1 + - - - 1

In all cases the number of roots will be at most 2 and, therefore, the direct
kinematic problem will have up to 4 solution.

5. Huat’s Theorem
Let a polynomial equation of degree n in z:

i=n

fo(z) = Zan.r” =0
=0

with real coeflicients.
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Theorem: If the roots of fo(z) are all real, the square of every non
extremal coefficients is necessarily greater than the product of its neighboring
coefficients

azk > ag—1aky1 Yk € [1,n— 1]

In fact, Huat’s theorem is a result of Newton inequalities (Hardy, 1967),
which states that, if fo(z) has only real roots, then:

k(n—k)ai > (k+ 1)(n—k+ Dag_rapyr Yk €[l,n—1]

5.1. APPLICATION IN KINEMATICS

Let us consider the planar parallel manipulator described in figure 1. We
have seen in a previous section that, for a fixed set of link lengths, there
can be a maximum of 6 different postures for the triangular mobile plate.
We are considering now a robot with a given geometry and are looking for
a set of link lengths such that the direct kinematic problem has effectively
6 solutions i.e. 6 postures of the end-effector can be found.

To solve this problem we may choose randomly three link lengths, com-
pute the coefficients of the 6th order polynomial (9) and then solve the
polynomial until we find a set of link lengths such that all the 6 roots of
the polynomial are real. Although this method has worked in practice (an
example of solution is given in (Merlet, 1989)), the computation time may
be huge.

A faster way is to choose randomly only two of the three link lengths,
say p1,p2 and then compute the 7 coefficients a; of the forward kinematics
polynomial (9) as functions of the unknown link length p3.

Then we compute the square of all the non extremal coefficients minus the
product of their neighbor coeflicients i.e. af — agasy, a% —ayas, a% — aqay, aﬁ -
asaz,a? — agag, which happen to be all fourth-order polynomials in ps.

The roots of these 5 polynomials P; are computed and are used to deter-
mine for each polynomial the intervals of p3 such that the polynomial is
positive.

If the intersection I of these intervals is empty, then there is no value of
p3 such that the direct kinematic problem will have 6 solutions for the link
lengths pq, pa.

On the contrary, if the intersection is not empty, the possible solutions for
p3 will lie in the interval In. Therefore, random values for p3 can be tested
but only in I.

Such an algorithm has been implemented using the symbolic computation
program MAPLE.
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6. Conclusion

Dealing with algebraic equations is the "essence” of kinematic problems, but
many of these problems can be solved in an elegant way without determining
the roots of these equations. By using basic theorems of algebraic geome-
try we have shown that many powerful results can be established in the
field of parallel manipulator kinematic problems. These results have been
established in most cases by dealing either with the geometrical aspect of
the problem or with manipulations on the symbolic values of the coefficient
of the algebraic equations that arise during the solution of the problem.
Therefore, we have avoided to use numerical procedures in which numerical
errors may introduce spurious results. Unfortunately many of these algebraic
geometry theorems are not well known and are missing in many textbooks.

References

Charentus S. and Renaud M.: 1989, ‘Calcul du modéle géométrique direct de la plate-forme
de Stewart’, Research Report 89260, LAAS, Toulouse, France

Dedieu J-P and Norton G.H.: 1990, ‘Stewart varieties: a direct algebraic method for
Stewart platforms’, SigSam, 24(4)

Gosselin C.: 1990, ‘Solution polynomiale au probléme de la cinématique directe des manip-
ulateurs paralleles plans & 3 degrés de liberté’, Mechanism and Machine Theory,
27(2):107-119

Griffis M. and Duffy J.: 1989, ‘A forward displacement analysis of a class of Stewart
platform’, J. of Robotics Systems, 6(6):703-720,

H. Mineur: 1966, Technique de calcul numérique. Dunod

Hardy , Littlewood , and Polya: 1967, Inequalities. Cambridge University Press

Hunt K.H.: 1978, Kinematic geometry of mechanisms. Clarendon Press

Innocenti C. and Parenti-Castelli V.: 1990, ‘Direct position analysis of the Stewart plat-
form mechanism’, Mechanism and Machine Theory, 25(6):611-621,

Merlet J-P.: 1989, ‘Manipulateurs paralléles, 4eme partie : mode d’assemblage et cinéma-
tique directe sous forme polynomiale’, Research Report 1135, INRIA

Walker R.J.: 1950, Algebraic curves. Springer-Verlag, New-York



Part 5

Motion Planning

5.1 J.E. Lloyd
Singularity Control for Simple Manipulators using ‘Path Energy’

5.2 J. Kieffer and B. O’Loghlin
An Investigation of Path Tracking Singularities for Planar 2R
Manipulators

5.3 H. Heif3
Robot Motions with Trajectory Interpolation and Overcorrection

54 Q.J. Ge and B. Ravani
Computational Geometry and Motion Approximation



SINGULARITY CONTROL FOR SIMPLE MANIPULATORS
USING “PATH ENERGY”
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Abstract. A new method is presented for controlling the trajectories of straight-line
Cartesian paths near the kinematic singularities of simple manipulators. Conventional
approachs to this problem, which typically employ a pseudo-inverse of the manipulator
Jacobian, result in path deviations and have difficulty controlling joint accelerations. The
more global approach described here uses a “potential function” in the region of the
singularity to reduce the path velocity in such a way that both the joint velocities and
accelerations remain bounded without incurring any deviation from the desired path. For
cases such as the elbow or shoulder singularities of the PUMA manipulator, the results
are very good and the necessary computations are simple enough to be done on-line.

1. Introduction

It is well known that most serial chain robot manipulators possess regions
in their workspace where the mapping from Cartesian to joint coordinates
becomes ill-conditioned along one or more degrees of freedom. Such regions
correspond to singularities of the manipulator. The execution of a Cartesian
trajectory in such a region may produce arbitrarily large accelerations or
velocities in one or more of the manipulator’s joints. Singularities are asso-
ciated with a loss of rank in the manipulator Jacobian J which maps joint
velocities © into Cartesian velocities v. The inverse of the Jacobian (or a
pseudo-inverse in the case of a redundant manipulator) can be used to deter-
mine the joint velocities required to effect a particular Cartesian velocity,
according to

©=J1v. (1)

Clearly, in regions where the Jacobian is ill-conditioned, some of the resulting
joint velocities may become very large.

Since singularities restrict the Cartesian workspace of the manipulator,
and because Cartesian trajectories can easily blunder into them, particu-
larly when controlled on-line by sensors or operator inputs, techniques for
managing singularities are of importance.

Most approaches to singularity control involve trying to condition the
relationship in (1), either by using some form of pseudo-inversion technique
(Chiaverini, et al., 1991; Maciejewski and Klein, 1989; Wampler, 1988) or by
directly eliminating degenerate degrees of freedom from the Jacobian (Aboaf

and Paul, 1987). An overview is given in (Chiaverini et al., 1990).
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Fig. 1. A two-link manipulator being driven to its outer boundary singularity (left). The
corresponding velocity profile (for discretely sampled values of ) is shown at the right.

A common limitation of these approaches is that they control only the
joint velocities (as a consequence of using only equation 1). The effect of the
singularity, however, extends to higher derivatives. In particular, the joint
accelerations must be controlled as well, as has been discussed briefly in
(Maciejewski and Klein, 1989).

As an example of this, consider Figure 1, which shows a two-link planar
manipulator being driven at constant speed along the = axis into the bound-
ary singularity at @ = 0. The velocity é rises rapidly as the singularity is
approached, but when the singularity is reached, the velocity falls immedi-
ately to zero. The problem in this case is not only that 6 becomes large,
but that it is also discontinuous at the singularity. The practical effect of
this is that, upon reaching the workspace boundary, § will overshoot, caus-
ing the manipulator to reverse direction and possibly inducing controller
instabilities. This problem has been noted in (Deo and Walker, 1992).

Unfortunately, acceleration constraints complicate the singularity prob-
lem considerably. Simply “clipping” the acceleration can introduce consider-
able wander and overshoot into the computed path, since this fails to ensure
that the integral of the resulting velocity profile matches the displacement
to the target.

In this paper, we introduce a somewhat different approach to singularity
control, in which we handle velocity and acceleration constraints by simply
slowing down the trajectory execution without deviating from the desired
path. This capability is particularly useful because it opens the way for
making explicit time/accuracy tradeoffs near singularities.

The method is intended for simple manipulators for which closed form
inverse kinematic solutions are available. It implicitly makes use of the obser-
vations by (Nielson et al., 1990; Pohl and Lipkin, 1991) that well-behaved
motion along the degenerate degrees of freedom associated with a singular-
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ity is often possible, particularly when the trajectory is sampled in discrete
time, providing the desired Cartesian path displacements are scaled appro-
priately.

2. Problem Description

We will limit our consideration to straight-line Cartesian trajectories with
constant orientation. Such a path can be described in terms of a single
parameter s by

P(s) = p1 + $ P4, (2)

where p, is the initial point and py is a unit vector in the path’s direction.

Timing for the trajectory is established by making s a function of time
t. In areas of the workspace where the Jacobian is well-conditioned, it is
generally possible to keep the joint velocities © and accelerations © w1th1n
bounds by placing constant bounds on § and §:

5| < My, |3 < M,. (3)

Such bounds are also frequently part of the task specification.

Close to singularities, these constraints will not be sufficient, and so the
path timing s(¢) must be further constrained. If we were only interested in
limiting the joint velocities, then it would be enough to simply scale $ to
match the corresponding rise in ©. However, we must also limit the joint
accelerations, while at the same time preserving the bounds on $ and § given
in (3) so as to maintain the behavior of joints which are not directly affected
by the singularity.

3. The Path Energy Approach

It is often the case for simple manipulators that one joint dominates the
singularity, such that if the derivatives for that joint are controlled, the
derivates of any other joints associated with the singularity will be controlled
as well.

In such cases, we should be able to control the singularity by “stretching”
the velocity timing for the dominant joint and then back-solving for the
appropriate path parameter timing s(t). We have found that an easy way
to do this is to use the concept of “path energy”, which is defined simply as
52/2.

With path energy so defined, a potential energy function U(s) can be
established to control the path execution. Figure 2 shows one such function
Uo(s) defined by two line segments of slopes +M, descending from 0 to a
third line segment of constant value —M2/2. If the path energy is initialized
to zero at s = 0, then letting the path parameter s follow this potential will
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Fig. 2. Potential energy curves for controlling the path parameter s.

generate a simple trapezoidal profile for § that satisfies the constraints in
(3).

“Slowing down” the velocity profile in certain parts of the path can be
accomplished by adding extra potential functions U;(s) that serve as “hills”
over which the path parameter must climb, such as U; in Figure 2. The net
U(s) can be computed from these by

U(s) = max Ui(s). (4)

One useful aspect of the energy function approach is that it allows easy
accommodation of the constraints in (3). The maximum operation in (4)
takes care of the velocity, and acceleration bounds are satisfied by simply
ensuring that |dU;(s)/ds| < M,, which follows from the fundamental rela-
tionship

§=—dU(s)/ds.

Using this technique, the slowing down required in the region of a singu-
larity can be accomplished using an appropriate potential function U,. How
can this function be generated?

Let the dominant angle for a singularity be given by 6, and let I =
[sa,sp] define a path interval where 6 or 8 exceed limits under the default
path timing. Let 6,, 0a, 0y, and 8, denote 8 and 6 at s, and s,. From the
manipulator forward kinematics, 6 can be determined as a function § = f(s)
of the path parameter. Connect 6,,6, and 6,6, with a smooth timed curve

= ¢(t) that satisfies the joint velocity and acceleration constraints. Then
sample ¢(t) at various values of ¢ and determine the corresponding values
for s and s from

s = f7(a(t)), (Q(t))

These values are used to construct a piecewise linear approximation to the
required potential curve Us.

f‘
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To ensure that s remains monotonically increasing, ¢(t) must be con-
structed so that sgn(q) = sgn(df/ds) within I. If I contains points s, where
df /ds = 0, then knot points where § = f(s,) and § = 0 must be added
to ¢(t). The inversion of f can be performed piecewise between these knot
points.

The rate at which ¢(¢) must be sampled when producing points for the
potential has only been studied experimentally thus far. We have found that
a rate equal to the nominal trajectory sampling rate (about 30 milliseconds)
works well, and that this can be reduced farther from the singularity.

4. Elbow and Shoulder Singularities of the PUMA Manipulator

To compute a controlling potential Us(s), we need to be able to relate the
path parameter s to the dominant angle for the singularity. In this section we
do this for the elbow and shoulder singularities of the PUMA robot. Because
the PUMA is wrist-partioned, such paths imply a straight-line path for the
center of the wrist, which is itself @ function of only the first three joints.

4.1. REVIEW OoF THE PUMA KINEMATICS

wrist
center

shoulder
base

(a) (b)

Fig. 3. (a) Kinematic structure of the first three links of the PUMA manipulator. (b)
The workspace boundaries for the center of the wrist.

Results similar to those found in (Elgazzar, 1985) are given here. Figure
3(a) shows the kinematic structure of the first three joints. Note that the

canonical offsets d4 and a3 can be combined into a single offset Iy = y/d2% + a2
so that joints two and three comprise a two-link revolute sub-manipulator,
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with link lengths a; and l4. Redefining 63 by 65 = —03 + 7/2 —tan~(a3/d4)
makes it correspond to the more standard definition of the elbow joint for a
two-link manipulator.

With the origin taken to be the base frame for joint one, the forward
kinematics gives the position of the wrist center (px,py,pz)T as a function
of the joint angles (6y,6,,63)T:

1 = d4523 + a3Ca3 + a0y, (5)

pz = Cir1 — S1ds,

py = 5111+ Cida,

Pz = d4C23 — azSaz — a3 5y,
where S;, C;, Sij, and C;; denote sin 6;, cos 8;, sin(6; + 6;), and cos(; + 6;).

It is easier to state the inverse kinematics using 6% in place of 6s:

1 = ks \/P% + Pg - d%v (6)

0, = tan_l(py/pz) - tan_l(dg/rl),

24 .2_ 2 _ 12
_ +p; —a; -1
0. = k, 1" 2 2744
% cos ( 2l , (7)

L.
6, = tan™! (ML—) —tan™! <Iﬁ) .

az + lycos by 1

The variables ks and k. are assigned values of either 1 or —1 to resolve
solution ambiguities and select the robot’s “configuration”. Similar variables,
with slightly different definitions, are described in (Elgazzar, 1985).

The elbow and shoulder singularities occur at the boundaries of the
workspace reachable by the wrist center (ignoring joint limits). These bound-
aries are geometrically quite simple (Zhang, 1991), consisting of an out-

er sphere of radius R, = y/(az + l4)* + d% and an inner sphere of radius

R; = \/(az — 14)* + d3, both centered at the origin, and a cylinder of radius
R, = d3 centered on the z (or ;) axis (Figure 3(b)).

4.2. THE ELBOW SINGULARITY

The elbow singularity occurs when 85 = 0. In this situation the arm is fully
outstretched and is touching the outer sphere of the workspace boundary*.
The dominant angle for the elbow singularity is 6%, which we will now
relate to the path parameter s.
It will be convenient to replace s in (2) by u = s + p; - P4, so that

p(u) = po+ up4, Wwith po=p1 - (P1-Pa)Pa- (8)

* There is a companion singularity at 3 = =, which corresponds to the inner sphere of
the workspace boundary. This singularity is slightly more complicated to handle and will
not be discussed here. As a matter of practicality, it lies outside the range for joint 3.
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Po gives the point of closest approach to the origin, which implies that
Po - Pa = 0 and ||p||* = p§ + u? (where po = ||pol|). Noting that ||p||* =
%+ p} + p?, applying (7) and (6), we get

2 2_ 222
6% = ke cos™! (1”0+ u 2a2314 a3 4) , 9)

which can be differentiated to yield
. u
0y = —————u.
3% Taglysingl

Now we need to solve for u and . It is easy to invert (9) to get

u= :I:\/2a214 cos 0y — pi + d% + a3 + 13.
To determine the sign, apply the sgn function to both sides of (10) to get

yy _ _ sgn(u)sgn()
sgn(63) = (@)

From (9) we have that sgn(6%) = k., and if the path is directed such that
s (and consequently u) is increasing, then sgn(#) = 1 and so sgn(u) =
—k. sgn(6%). Lastly, inverting (10) for i, we obtain

u = —kesgn(05)y/2azls cos 0y — pE + d2 + a2 + 12,
3 3~ Pptazta;tiy

aslysin 0y
- 03.

(11)

4.3. THE SHOULDER SINGULARITY

The shoulder singularity occurs when the argument of the square-root in
equation (6) equals zero. The set of points for which this is true corresponds
to the inner workspace cylinder of radius R, = d3. The shoulder singularity
is dominated by #6,.

Since 6; is a function of p, and p, only, the problem can be treated as
a two-dimensional one in the z-y plane. From this perspective, the cylinder
becomes a circle of radius d3 centered on the origin (Figure 4).

The projection of the path (2) into the z-y plane is also a straight-line
path that can be expressed as

q(S) =q+ SQ eld,

where q; is the initial point, q4 is a unit vector in the path direction, and
@ =4q4-Pa.
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Fig. 4. Path projected into the r-y plane, with the axes rotated so that the path is
parallel to the z axis, while z; and z2 denote the path endpoints.

Again, it will be convenient to replace s by v = @s + q; - qq, so that
q(u) = qo+ uqq4, with qo=q; —(q1 - qd)qa- (12)

(Note that if Q is very small, the corresponding displacement of #; will also
be small and so, this case is not of concern).

Now, without loss of generality, rotate the z and y axes by the angle
¢ = tan~'(qoz/qoy), so that qq is parallel to the y axis and §q is parallel to
the = axis (Figure 4). q now becomes

= (%)-() 09

where go = ||qo|| and ¢4 = £1, depending on the direction of qq along the z
axis. 6; is also transformed according to 6; = 6, — ¢, although for notational
simplicity we will denote 6] simply as 6;. Combining (13) with the forward
kinematics (5) and differentiating yields

w— Cl‘]o*ds’ = —(10+Cz'1d391_ (14)
q4 51 (IdSI

5. Implementation and Experimental Results

Our implementation of this method for the PUMA works in this way: First,
the path is clipped to lie entirely within the manipulator workspace. This is
easy to do using methods described in (Zhang, 1991). Second, the controlling
potentials are constructed roughly as follows: let # be the dominant angle
for a singularity. A trapezoidal velocity profile is constructed to connect the
values of 6 at the path endpoints (computed from the forward kinematics).
This is sampled at time intervals of about 30 milliseconds, and the corre-
sponding values of # are used to compute s and $, and hence Us(s), from
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Fig. 5. Velocity profiles for 8;, 85, 85, (deg/s) and $ (m/s) for a straight-line motion
(pictured at the top) from a shoulder-singular position at (ds,0,300.0)” to an elbow

singular position at (R,,0,300.0)T. The graphs at the left show the velocities without
singularity control; note the large spikes. The graphs at the right show the velocities as
controlled by the method described in the paper.

the relations (11) or (14). In the case of the elbow singularity, if the path
contains the point u = 0 (see 8), then the corresponding value of f3 must
be computed and added to the profile as a knot point with 65 = 0 (since
this corresponds to a place where df/ds = 0, as described in section 3).
Lastly, the net potential function U(s) is integrated to produce the output
trajectory. Integration is relatively simple because U(s) is composed of line
segments.

In practice, we can omit computing many of the points in a controlling
potential for locations far from the singularity. In these places, the con-
trolling potential will generally lie greatly below the default path energy.
The sampling rate used to build the potential can also be reduced farther
from the singularity. With these optimizations, calculation of the controlling
potentials typically requires about 20 points for the elbow singularity and
35 points for the shoulder singularity. The total compute time is about four
milliseconds on a Silicon Graphics Indigo workstation with an IP12 CPU,
permitting all computations to be done on-line. The results have been test-
ed and shown to work well both in simulation and on a physical robot. A
particular demonstration is shown in Figure 5.
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6. Conclusion and Future Work

A “path energy” method has been developed for computing straight-line
Cartesian trajectories near certain singularities of simple robot manipula-
tors. The resulting trajectory can be calculated quickly, and satisfies both
joint velocity and acceleration constraints without deviating from the path.

Further investigation should study extending the method to curved tra-
jectories, handling multiple singularities, and dealing with on-line changes in
the path direction. Also, as currently implemented, the controlling potentials
are computed prior to execution of the path. While this can be done quickly
(in several milliseconds), it would be more efficient to compute the potentials
concurrently with the path execution, by previewing the trajectory ahead
of the current path point.
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AN INVESTIGATION OF PATH TRACKING
SINGULARITIES FOR PLANAR 2R MANIPULATORS

J. KIEFFER AND B. O’LOGHLIN

Engineering Department, The Faculties,
The Australian National University
Canberra, Australia

Abstract. The planar 2R manipulator is used as a vehicle for investigating the problem
of tracking end-effector paths that force the manipulator into a singular configuration.
Results show that isolated points, turning points, nodes, cusps, hypernodes, and hyper-
cusps can arise in the locus of inverse kinematic solutions depending the end-point path’s
degree of contact with the workspace boundary. Methods for determining smooth local
representations of each type of path-tracking singularity are developed based on low-order
analysis. These representations provide complete low-order information on all families of
trajectories that track the path at the singularity.

1. Introduction

Kinematic singularities of serial manipulators are of interest for a num-
ber of reasons. Primarily for the nuisance they present to robot control,
but also due to their fundamental relation to workspace boundaries, closed-
form inverse kinematic solutions, and the possibility of using them to gain
mechanical advantage. A fairly comprehensive review of related literature is
given in Kieffer (1993).

The problem of tracking end-effector paths that force the manipulator
into a singularity configuration was investigated by Kieffer (1992) and (1993)
for general six-degree-of-freedom serial manipulators.: Results showed that
the locus of inverse kinematic solutions can take the form of three types of
curve singularities: isolated points, turning points, and simple nodes. In addi-
tion, general algorithms were developed to determine smooth local models
for each of these cases, but these results were not exhaustive. They extended
only to those singularities that can be unambiguously defined by the first
three terms in a Taylor series expansion of the matrix equation of closure.

In this paper we take advantage of the much simpler equations associated
with the planar 2R manipulator to derive an exhaustive classification of path
following singularities for any smooth path passing through a point on the
outer workspace boundary. In addition, we determine smooth local models
for each case that provide low-order joint rate relations as well. The results
show that the topology of local models is closely related to the degree of
contact between the endpoint path and the workspace boundary. Section 2
presents the problem formulation. Sections 3 and 4 develop the analytic

solutions. Section 5 presents results and their physical implications.
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Fig. 1. 2R manipulator with path §()) forcing it into a singular configuration.

2. Problem Formulation

Figure 1 depicts the robotic path tracking problem that we wish to address.
We assume that a smooth endpoint path § is given that includes a point
P on the outer workspace boundary that forces the manipulator into an
outstretched singular configuration. The proplem is to determine the locus
of inverse kinematic solutions (6;,6;) that maintain the path in the neigh-
borhood of P, as well as their differentials and possible time rates of change.
The endpoint path 8 may intersect the workspace boundary at P or have
any degree of tangency with it.

To simplify explanations in this short paper we choose not to consid-
er folded singularities associated- with the inner workspace boundary even
though the approach can be easily modified to include them with only minor
differences in detail. The approach is not so easily extended to include the
special singularity that occurs when the workspace void shrinks to a point
for 2R manipulators with equal link lengths.

Without loss of generality we choose to represent § in polar coordinates
(r,$) as a parametric function of a path parameter A, i.e., B(A) = [r(A), ¢(A)],
with A = 0 corresponding to point P. To exclude reversals along the path,
we also require the parameterization to be regular, i.e.,

()2 + (r¢)* > 0 (1)

The degree of contact between the endpoint path and the workspace bound-
ary at point P can be determined from the first nonzero coefficient in the
Taylor series expansion of () about A = 0. Without loss of generality let
B(\) be represented in a Taylor series as follows.

(k)
r(A) = (Ly + L) + T—er‘f +HOT  (k>1) (2)
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p(\) = ¢ + 6MX 4+ H.O.T. (3)

Here r(%) denotes 7’s first nonzero derivative, %{—IO # 0. The degree of con-

tact between the endpoint path and the workspace boundary is equal to k:
e.g., k = 1 implies 1-point contact (intersection), k = 2 implies 2-point con-
tact (simple tangency), etc. Requirement (1) for a regular parameterization
implies that if & > 1, then ¢(1) £ 0.

The following equations relate the endpoint coordinates (7, ¢) to the joint
coordinates (6,62). Equation (4) can be derived using the law of cosines.
Equations (5) and (6) follow from simple trigonometry.

r? =L} + L} + 2L, Lycosf, (4)
rcos(¢p —6y) = Ly + Lz cos by (5)
rsin(¢ — 0y) = Lysin 0, (6)

Recalling that r and ¢ are parametric functions of the path parameter A,
our problem is to solve equations (4)-(6) for local relations between A, 6,
and 6y in the neighborhood of the singular solution, (X, 8;,82) = (0,6(®,0).
Because equation (4) does not involve 6, we can solve this problem in two
steps: first analyze equation (4) to determine local relations between A and
6,, then analyze equations (5) and (6) to locally determine 6;.

In the neighborhood of any outer workspace boundary singularity, equa-
tions (5) and (6) provide the following unique and continuously-differentiable
solution for #,, considering that 63 =~ 0 has been previously determined.

Lo sin 8,

) (7)

6, = ¢ — arcsin(

With this in mind, we replace equations (5) and (6) with equation (7), but
defer its use to section 4 where 6; will be determined. For the moment we will
concentrate on determining the local relation between 6, and A by analyzing
the following form of equation (4) that is obtained by substituting Taylor
series expansion (2) into equation (4).

k
cosfy = 1+ a—Xk + H.O.T. (k>1) (8)

k!
L1+ Ly
LiL,

where : a =



210

3. Local Relations between A and 6,

Our objective is now to determine the locus of solutions to (8) in the neigh-
borhood of the singular solution (A, 6;) = (0,0). In addition to determining
the relation between finite displacements in 63, and A, we want to determine
the relations between differentials in 63, and A that track the path near
(A, 82) = (0,0).

We will see that a variety of forms can arise, including isolated solutions,
turning points, nodes, and cusps. The following subsections explore the diffi-
culties of identifying these path-following singularities and representing them
with low-order models that are smooth and differentiable.

3.1. DIRECT APPROACH

It is straightforward to solve equation (8) for 6, and to represent 62()) by
the following double-valued function.

(%)

: T .

6, = + arccos(1 + GW/\k + H.0.T.) (10)
We can classify solutions (10) into three cases based on the fact that the
argument of the arccos function must be less than 1 to obtain a physically-
meaningful real value for 6,.

(a) If kis even and #(*) > 0, the solution (), 82) = (0,0) will be locally
isolated.

(b) If k is even and r(*¥) < 0, both functions (10) will be continuous,
but not necessarily smooth at A = 0. It will be shown that these
cases correspond to nodes or hypernodes of degree k/2.

(c) If kis odd, each function (10) will be undefined for either positive
or negative values of A\. We will show that these cases correspond
to turning points, cusps, and hypercusps for k¥ = 1, k¥ = 3, and odd
k > 3, respectively.

These three cases are simple to explain based on the geometry of contact
between the endpoint path () and the workspace boundary. Figure 2 illus-
trates a representative example for each case. For case (a), the endpoint path
only touches the workspace boundary without entering the workspace. For
case (b) the entire endpoint path lies within the workspace, except points
that contact the workspace boundary. For case (c) half of the endpoint path
lies within the workspace and the other half lies outside. The observations
made in the previous paragraph then follow considering that two, one, and
zero kinematic solutions exist for the workspace interior, boundary, and exte-
rior, respectively. The two kinematic solutions for the workspace interior
correspond to elbow-right and elbow-left configurations of the manipulator.
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Fig. 2. Representative examples for the three cases.

The plots of Fig. 2 also highlight two difficulties in determining relations
between differentials at the singularity. Firstly, for case (b) examples, like
the one shown in Fig. 2(b), both functions (10) are continuous, but not
smooth at the singularity. Nevertheless it appears that alternate sides of
the two functions join smoothly, implying that this is only a problem of
representation. In subsection 3.2 we show that such loci of solutions can be
represented by two smooth branches that cross at (A, 6;) = (0,0) to form a
node or hypernode.

The second difficulty relates to case (c) examples such as the cusp shown
in Fig. 2(c). Here the two functions (10) terminate at A = 0 as a consequence
of the path leaving the workspace. Although the robot cannot follow the
path out of the workspace, it is possible for the manipulator to change
configurations (elbow-left vs. elbow-right) while reversing the direction of
path traversal at A = 0 and never leaving the path. However, because (10)
represents the locus of solutions discontinuously, by two functions that join
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at A = 0, the constraints on performing such a maneuver are unclear. In
subsection 3.3 we show how turning points, cusps, and hypercusps can be
represented as a smooth parametric function of an introduced parameter s
at the singularity. In doing so we clarify the constraints on performing such
maneuvers.

3.2. Low-ORDER APPROACH FOR CASE (B) SINGULARITIES

If we are only interested in the most local representation of solutions near
(A,02) = (0,0), we can replace equation (8) with the following local equiv-
alent obtained by replacing cosf, with its Taylor series expansion about
62 = 0 and ignoring all but the lowest order terms in 63 and .

(k)

T

02 = —2a—E—!—/\k (11)
Solving (11) for #3(\) provides the following double-valued function which
shares the same local properties as (10).

k
6,()) = + 20"\ (12)
k!

In particular, the need for a positive argument to the square root leads to
the same classification of singularity types (a)-(c) and the same observa-
tions made in subsection 3.1. Furthermore, functions (12) have the same
“local discontinuities as functions (10) and present the same difficulties in
determining relations between differentials. Thus the low-order approxima-
tion (12) seems to duplicate the characteristics of functions (10) without
offering any advantages.

Nevertheless, we can gain advantage from the low-order approach by
considering that, for case (b) singularities (recall 7(¥) < 0, and k = even), it
is not necessary to represent the locus of solutions in the form of (12). We
can instead represent solutions to (11) as follows.

(k)
02(A) = £/ —2aT - AF/2 (13)

&

Note that (13) does not follow as a simplification of (12) because proper
extraction of A from under that radical would require that A in (13) be
replaced by |A|. Nevertheless (13), provides a correct solution that is easy
to verify by substitution into (11).

The advantage of representation (13) over (10) is that, for case (b) sin-
gularities only, both branches are now represented by smooth and differen-
tiable functions of A. For the case (b) example shown in Fig. 2(b), the two
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branches of (13) are linear functions that cross at A = 0 to form a simple
node. Together, they locally form the same loci of solutions, as before but
now in a branchwise-differentiable manner. Similar results hold for case (b)
singularities of higher order.

The disadvantage of representation (13) is that it is only a locally- valid
approximation to the exact locus of solutions to (8). The following conjecture
attempts to quantifying the accuracy of that approximation.

CONJECTURE 1. For case (b) singularities, functions (13) provide a low-
order approzimation to the loci of solutions to (8) in the neighborhood of the
singularity that are correct up to the orders in A\ shown. This means the first
k/2 derivatives of functions (13) evaluated at A = 0 will agree with those of
the exact locus of solutions. Namely:

_{0 ifn <

kv, /=2ar(%)
T3/ = fn=

3.3. LocAL PARAMETRIC APPROACH FOR CASE (C) SINGULARITIES

d"é,

ol (14)

(S NIE

Recall that for case (c) singularities, the double-branched solutions (10) or
(12) join at in a turning point, cusp, or hypercusp at A = 0. This implies that
the manipulator can pass from one solution branch to the other at A = 0,
but because the locus of solutions is represented discontinuously, by two
functions that join at A = 0, the constraints on performing such a maneuver
are unclear. In this section we overcome this problem by introducing an
auxiliary parameter s to interrelate 8, and A.

The locus of solutions to (11) for case (c) singularities can be represented
by the following parametric functions of s.

A(s) = —sign(r(F)s? k = odd (15)

(k)

2a—

o k k = odd (16)

02(8) =

Functions (15) and (16) are not unique because there are many other
equally-valid parameterizations of the same curve that differ in speed of
parameterization. This parameterization was chosen because it is minimum-
order in s and its correctness is easy to verify by substitution into (11).

The advantage of this parametric representation over the double-valued
function (10) or (12) is that both branches are now combined into a single
smooth and differentiable function of s that implicitly provides the con-
straints for changing solution branches (elbow-right vs. elbow-left) at the
singularity while tracking the endpoint path.

The following conjecture attempts to quantify the accuracy of this low-
order representation.
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CONJECTURE 2. For case (c) singularities, parametric functions (15) and
(16) provide low-order approzimations to the loci of solutions to (8) in the
neighborhood of the singularity that are correct up to the orders in s shown.

4. Local Determination of 6,

We now consider that local relations between A and 6, have been determined
by functions (13) for case (b) singularities, or parametric functions (15) and
(16) for case (c) singularities. The problem is now to extend these local
models to include ;. No such problem exists for case (a) isolated solutions
because equation (7) provides a unique value for 8; given that 6, and A have
been uniquely determined.

Local determination of 6;(A) for case (b) singularities can be based on a
Taylor series expansion of (7) in terms of A about A = 0. Considering that
r=r71(A), » = $(A), and 6, = 02(\) we obtain the following expression.

Ly
01(A) = ¢+ [¢'—7292] A
Ly I

224 1] y2 ! -
S8 - 520+ 927‘] A+ H.O.T. (17)

Evaluating all quantities at A = 0 using equations (2), (3) and (13) and
retaining only the lowest order terms in A, we obtain the following results
that apply to case (b) singularities only.

noy =120t [¢(1) o “'Tu)l} A k=2 (18)
#O 4+ ) even k > 2.

L,
L+ L,

Here a is given by (9) and b = (19)

Local determination of 6;(s) for case (c) singularities can be based on
a Taylor series expansion of (7) in terms of s about the singularity where
s = 0. Considering that 7 = 7(A(s)), ¢ = ¢(A(s)), and 0, = 02(s) we obtain
the following expression.

() = o+ [63 - 245 s

+ [—%W” + %sb”(k’)z - %—‘2—292 + %0;7"’)\’ s+ HO.T. (20)



215

Evaluating all quantities at the singularity using equations (2), (3), (15), and
(16) and retaining only the lowest order terms in s, we obtain the following
results which apply to case (c) singularities only.

#©) — by/2a|r(V)| s k=1
01(s) = 0 1 - k)] o2 (21)
¢ — [d)( )sgn(r ))J s odd k > 1.
It is worth noting that the regularity condition (1) guarantees that ¢(1) # 0
for low-order solutions (18) and (21) if £ > 1. The following conjecture
attempts to quantify the accuracy of these low-order representations.

CONJECTURE 3. For case (b) and (c) singularities, respectively, functions
(18) and (21) provide low-order approzimations to the loci of solutions to
(7) in the neighborhood of the singularity that are correct up to the orders
in A\ or s shown.

5. Results and Physical Interpretation

Recall that our objective is to determine the locus of inverse kinematic
solutions (64,0;) that track a smooth path B()\) in the neighborhood of a
point P on the outer workspace boundary. In addition we want to determine
the relations between joint rates for real motions that track the path at P.

Our results so far have been to classify all singularities of this path-
tracking problem into three cases (a),(b), and (c) based on the degree of
contact, k, between the path and the workspace boundary, using the sign of
rk) = %{;’ # 0, to distinguish between cases (a) and (b). For each case,
we have also developed appropriate low-order representations of the locus
of inverse kinematic solutions at the singularity that are smooth and locally
accurate (assuming conjectures 1-3 are correct). Our final objective is now
to show how these results can be interpreted.

The most obvious results are the dramatic differences between the three
cases: case (a) singularities allow no motion whatsoever, case (b) singular-
ities allows complete tracking of the path using either one of two smooth
branches of inverse kinematic solutions as well as the possibility of switching
between these branches at the singularity, and case (c) singularities allow
path tracking on the workspace side of point P using either one of two
inverse kinematic solution branches that join at point P.

More subtle results apply to the differences between members of each
case, excluding case (a), whose members are all simply isolated points. For
case (b) members, we make the following observations.

(i) all case (b) members represent nodes or hypernodes composed of
two smooth branches that contact each other with degree of contact
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equal to % —- e.g., members k = 2, k = 4, and k = 6 correspond

to simple nodes, tachnodes, and flecnodes respectively.

(ii) if £ is odd (even) each smooth solution branch results in (does not
result in) a change in the manipulator configuration (elbow-right
vs. elbow-left) as the singularity is passed.

(iii) switching between smooth solution branches at the singularity implies
a discontinuity at the level of the %th derivative.

With respect to case (c) members, we make the following observations.

(i) member k = 1 represents a turning point and higher-order mem-
bers represent cusps or hypercusps —- e.g., k = 3 corresponds to
a simple cusp and k = 5 corresponds to a ramphoid cusp.

(ii) joint rates become unbounded for member £ = 1 (turning point) as
the singularity is approached with unit speed in the path parameter
A. However this does not occur for higher-order members (cusps
and hypercusps).

Finally we make a general but powerful observation that can be applied
to, either case (b) or case (c) singularities: the constraints and freedoms in
timing joint trajectories that track the path (in particular allowable joint
velocities, accelerations, etc. at the singularity) can be determined by con-
sidering the free parameter, A (case b), or s (case c) in the appropriate
low-order model to be an arbitrary function of time. Chain rule evaluation
of the derivatives of the model with respect to time will then provide infor-
mation about allowable joint rates at the singularity. Care must be taken,
however, not to infer too much from the low-order models. In general they
will only define the first non-zero derivatives for 6, 6,, and A
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ROBOT MOTIONS WITH
TRAJECTORY INTERPOLATION AND OVERCORRECTION

H. Hei, BMW, ET-203, 80788 Miinchen, Germany

Abstract This paper makes proposals for trajectory interpolation in joint space and in
cartesian space regarding as well orientation as position and enlarging the application
bandwidth; furthermore it shows new methods for connecting path segments in a smooth
manner, which take into account not only velocity but also acceleration values and improve
the facility of robot programming by user-defined starting and end points of the smoothing
interval.

Keywords robot motion computation; trajectory interpolation; interpolation of position and
orientation; path smoothing; overcorrection.

PRESENT SITUATION AND OBJECTIVES

From the point of view of the user two areas stand out as worthy of improvement in the
field of robot motions with trajectory interpolation and overcorrection:

1) performance of the robot control in path smoothing and trajectory interpolation
2) clarity of these two functions in the robot control manual

Apart from such obvious things like the failure of overcorrection when changing the tool
or base values, the first point is very difficult for the user to check. This is especially the
case if there is a lack of documentation, when very costly measurements have to be taken
to establish the principles inside the robot control. Such a task is not the responsibility of
the user, nor is it relevant for the user to know what future developments are being worked
on in the labs of universities and producers of robot controls; in practice only the functions
of an available robot control count. This paper is based on the author's experience of cur-
rently available robot controls, whereby the overriding impression is one of a performance
deficiency. Whether this deficiency is based on slow processors, or on non-observance of
special conditions, or on inadequate design and implementation inside the control remains
an unanswered question for the user; moreover it is a question which is largely irrelevant.

217

J. Angeles et al. (eds.), Computational Kinematics, 217-228.
© 1993 Kluwer Academic Publishers.



218

Taking user wants and needs with regard to robot controls and their manuals as a basis,
this paper will present a framework which consists of the following functions and their
description:

* equivalent use of interpolation of orientation and position
 circular interpolation up to 360 degrees

¢ clear and simple handling of parts and integration of external axes into the program-
ming of robots by extending the interpolation concept over several areas

* mathematical base for dealing with the path smoothing calculations
* maintaining a smooth position, velocity and acceleration curve

* user-determined starting point and length of the smoothing interval and ability to make
contact with all the path definition points

* joint interpolated motion with integrated overcorrection

TRAJECTORY INTERPOLATION IN JOINT SPACE
Joint calculation

Cartesian target values (including sensor correction and other modifications) have to trans-
form into joint values; for this purpose the following main equations are used:

robot base equation: baseerobot kinematicsetool = aim
joint base equation: robot kinematics = base-leaimetool!

In order to simplify the joint calculation further modifications of the joint base equation can
be made [Heif, 1986]. This calculation results in a suitable set of joint values.

(time coordinated) point-to-point movement
Velocity profile with lin leration leration ram

The joint movements of a robot designed to overcome the joint difference between two tar-
gets are initiated from within the robot control and are limited by the maximum velocity
and the maximum acceleration of the single joint. In most cases the velocity profile of a
joint movement looks like a trapezium and is defined by the constant maximum accelera-
tion during the acceleration and deceleration phases and by a constant velocity between
them. It is essentially the overall motion time T and the appropriate velocity of each single
joint which have to be calculated.

Start- m with smoo leration behaviour

The above-mentioned method gives rise to two disadvantages:
1) peaks in the acceleration
2) The movement can only be defined stage-by-stage due to the trapezium form
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A smooth movement taking into account both position, and velocity and acceleration, in
the starting and aim pose can be defined by a fifth degree polynomial:

p(t) = k5*h5+k4*h*+k3*h3+k2*h2+k1*h+k0  with h=tT 0<t<T
kO =pl, kl=T*vl, k2=T>2*al/2,
K3 = 10%(p2-p1)-T*(6*v1+4*v2)+T2*(a2-3*al)/2
K4 = -15%(p2-p1)+T*(8*v1+7*v2)-T2*(a2-3*al/2)
K5 = 6*%(p2-p1)-T*3*(v1+v2)+T2*(a2-al)/2

pl, vl, al, p2, v2 and a2 are the position, velocity and acceleration values in the starting

and aim pose.
As the start-stop mode has to be used, it results in the following: vl =v2=al=a2=0.

As in the case of trapezium shaped velocity, the overall motion time has to be calculated
according to its dependence on the upper limit of the joint velocity and joint azceleration

) . 3+3 . _10*(p2-pl) 10*Ip2-plI
values: the extreme acceleration value at h= 3 with ¥ T23 = A3 <T
The extreme velocity values lie at h=0 and h=1, per definition always with a value equal to

*(p2-
0, and at h=0.5 with a value of 1.875*(p2-p1)/T; this results in 1’8731&5((?_ D <T
1

time coordin oint-to-point movement with leration-orient moothin

Because the polynomial p(t) is an overcorrection polynomial and because no path forms
have to be adhered to for point-to-point movements, it appears reasonable to integrate the
overcorrection into the trajectory interpolation. For this way all joint positions can be
attained, although the velocity and the acceleration do not always decrease to zero at the
end of a motion segment.

vmax; = 1.875*(p2-p1)/T is the extreme velocity value of the current segment,
vmaxf; = 1.875*(p3-p2)/TT is the value of the following segment.

With regard to acceleration, the second extreme value of the current segment at h=(3+v3)/6

-10% - * _
amax;= IOTZ(*?B D corresponds to the first value of the next segment amaxfi—l(,)rf(ziﬁz).

For v2 and a2 of the current segment (and the analogous values v1 and al of the following
segment) this results in:

0 if signum(vmax;)#signum(vmaxf;)
v2 = {min{vmax;,vmaxf;}  if vmax;>0 and vmaxf;>0
max{vmaxj,vmaxfj} if vmax;<0 and vmaxf;<0

0 if signum(amax;)#signum(amaxf;)
a2 ={min{amax;amaxf;}  if amax;>0 and amaxf;>0
max{amaxj,amaxf;}  if amax;<0 and amaxf;<0
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TRAJECTORY INTERPOLATION IN CARTESIAN SPACE

Cartesian trajectory interpolation between starting and aim should not carried out with the
two robot flange points "robot kinematicsay" = basegin ! ostartetool, ! and "robot kine-

Matics " = baseyim 1*aimetool,, 1; instead, it should be dependent on the start and the
aim in order to maintain the given shape and not to swing out.

swing out of the TCP during linear movement of the flange

tool  gta aim _tool

'° !

correct movement of the flange

tool

Figure 1: Deviation during flange interpolation

Trajectory interpolation therefore requires knowledge about the last aim pose, even in case
of overcorrection.

interpolation curve IC(t) = f(start, aim) robot kinematics(t) = base™1eIC(t)etool!

In the draft version of DIN 66312 part 2 methods of interpolation will be described as
defined by producers of robot control, institutes or users.

Three areas of interpolation

If a change in the base or tool values is permitted during the robot movement for the pur-
pose of modelling external axes or part handling, then the interpolation has to be applied to
all three areas of change. If this is not the case, the robot will leave the given path shape or
move jerkily.

Interpolation of aim defines the movement of the tool by the robot (tool handling), interpo-
lation of tool values allows definition of a path on a part, and interpolation of changed base
values integrates external axes into the programming of the robot. In the event that the
robot is moved by an external axis, the definition of base is trivial; otherwise, if a tool is
connected to the external axis, the base values have to be calculated as follows:

base = EXIAXissystemy i rjye-leWorldsystemey A xjssystem e Worldsystemp obothage
base(t) = fy(basegar, basegim) interpolation curve IC(t) = f(start, aim)
t00l(t) = f(to0lgear, t00l4im) robot kinematics(t) = base(t)"1eIC(t)stool(t)!

In order to interpolate base and tool the robot control has to have data on the last base and
tool values; moreover a third auxiliary position is needed for circular interpolation. "base"
uses the world system as its reference system, "tool" the flange; the motion time T should
be given, or possible to calculate.
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The diagram below provides an example of the advantages of interpolating in three dif-
ferent areas:

World SW2

W3‘ demanded shape > w2

World SH1

programmed motion

PTP-
motion of
the flange

stationary tool (aim)

The task is: to work on the part moved by robot  in a circle from W1 via H1 to W2 and
linearly from W2 to W3.

Transforming the task into normal robot programming terms, we obtain the following:
WKZ =WI1; move PTP aim; activate (stationary) tool;

WKZ =W2; move CIRC aim via WOrldgH1;
WKZ =W3; move LIN aim;

This procedure gives rise to the following problems:

A) Extensive calculation by the robot programmer is necessary before the point SH1 can
be transformed into world coordinates.

B) Activating the new WKZ during running interpolation calculations (LIN or CIRC)
will create a jerk in joints.

C) Smoothing between two path segments and pre-planning of the desired path shape
requires modifications within the robot control
(methods to deal with the different WKZ values or strictly sequential operations in
start-stop mode; it should be possible to calculate the flange pose F from "move PTP
aim" with aimeW1-! at the end of PTP-motion and then to compute WoldSW2 with

FsW2. The same is true for WOrldSH1, for which only the relative transformation
"Flange—H1" is known, but which needs global values (see A)).

In order to overcome these problems, interpolation should be carried out separately in the
three arcas "base”, "aim" and "tool". Moreover, the task-oriented view remains valid, and
the range of the available path shapes increases considerably due to these 3 interpolations.
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Interpolation in position space
Linear

X(O=Xgstart+(Xaim - Xstar)*UT: Y(O=YstarttVaim - Ystard) *VT: 2(0=ZgariH(Zgim - Zstar) *UT

Circular

The three circle points are a (start of the circle segment), b (auxiliary point for circle defini-
tion) and ¢ (aim of the circle segment); m is the centre of the circle and M the centre system
in world coordinates with an x-axis=(a-m)/lla-mll and z-axis=perpendicular to the circle

plane. Hence, the following must be valid: Ma, =Mp, =M¢, =0

radius r = lla-mlfl, o is the extent of the circle segment, and circular interpolation results in
My (1) = r*cos(o*/T) My (t) = r*sin(o*t/T) Mzty=0  0<t<T

The time function of the circular interpolation is:

x(t) = My *r¥cos(o*t/T) + Mp*r*sin(o*t/T) + M4

y(©) =My *r*cos(o*tT) + Mar*r*sin(o*t/T) + Moy

z(t) = M3 *r¥cos(a*t/T) + Map*r*sin(o*v/T) + M3y 0=<t<T

As a result it becomes clear that path definition using discrete point is more complex and
time-consuming than using time functions.

In most current robot controls the extent of the circle has an upper limit of 180°. This limi-
tation can be overcome by dealing with each different case separately.

Mp = Mleh; Mc=Mrleg;
B = ATAN2Mb, ,Mby) € J-2m, 2],  y=ATAN2Mcy , Mc,y) € 1-2m, 2n]

if y=0, I l P 1

— I —1 | 1 1
then on.t-27'c . o ‘_0 o
else  if signum(B)*signum(y)>0 direction of the

then ify>0 circle segment
then if P<y, then o=y  else ou=y-27
else if B>y, then o=y  else a:=y+2n
else ify>0
then  if B+2m<y, then o=y else c:=y-2x
else  if B-2m>y, then o=y else ou=y+2n



223

Interpolation in orientation space

A is the orientation at the beginning of the interpolation phase, E the orientation at the end
and U is the 3x3-matrix defined by U = A"1+E, namely a "transition matrix".

Two-Angle-Interpolation

Expressed in Eulerian notation (c, B, v), U is Rot(z,o)*Rot(x,B)*Rot(z,y) with
o= ATAN2(-U13 , 023) {+Tt}; if [“J13 = 023 =0, then o =0.

B = ATAN2(-\ 1-U332 , Usg) {*-1}
Y= ATAN2(-U3; , -Usp) {+7};
if Uy3 = Ups = 0, then y= ATAN2(Uy,, U1 *Us3

Linear interpolation takes place in the case of angles B and v; in order to avoid the jerk
"A—AeRot(z,a)" caused by a at the beginning of the interpolation process, the interpola-
tion procedure A*Rot(z,o)*Rot(x,B*t/T)*Rot(z,y*t/T) is modified according to [Paul, 81]:

InterpolationOr(t) = A*Rot(z,0)*Rot(x,*VT)*Rot(z,-o)*Rot(z,(a+Y)*U/T) o+ye]-x, n]

A result of this is that the problem of ambiguity of (c, B, ) is solved; there is a difference
between interpolation in (o, B*U/T, y*¢/T) and in (o+mx, -B*U/T, (y+m)*U/T), but not in

(a{+r}, B*UT, (a+y{+2n})*UT)
Many other interpolation procedures are conceivable, but their practical use seems
questionable.

Fusion of the three interpolation areas

The orientation interpolation function and the position interpolation function are collected
in all three interpolation areas together in a homogeneous matrix H; the joint base equation

has to be calculated according to "robot kinematics(t) = Hbase(t) lsHIC(t)Htool(t) 1"
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OVERCORRECTION BETWEEN TRAJECTORY SEGMENTS

Suitable data structure

The calculation of overcorrection cannot take into account conditions such as orthogonality

or normality, which means that redundant data structures, e.g. homogeneous matrix, dual

matrix [Hei3, 86b] or quaternion, cannot be applied.

Non-redundant structures are the basis of the calculation:
* n-dimensional joint related time function (resulting from interpolation in joint space)
* six-dimensional cartesian time function (from interpolation in cartesian space)

An example of the difficulties arising from the use of redundant structures is:

1 0 0 0 -1 0 .
A=[ 0 1 0 E=| 1 1 0 U = Rot(z,90°)
0 0 1 0 0 1

Linear overcorrection (without consideration of velocity and acceleration) results in the

1-1*¢/T 0-1*YT O
following orientation process: 1*vT 1-1*vT 0
0 0 1

0,5 -0,5 0
0,5 0,5 0 |, and this violates the unit restriction.

t=T/2 results in [
0 1

Description of pose with joint coordinates

The problem of potential redundancy resulting from more than six active joints is already
solved in the process of inverse kinematic computation, meaning that the functions g;(t),
..., 8a(t) are not subject to any restrictions and can be used without any problem for the
calculation of overcorrection.

Description of ixtuple (x(t), v(t). z t 1))

x(t), y(t) and z(t) result directly from the fourth column of the homogeneous matrix "robot
kinematics(t)". Using the 3x3 orientation matrix Or(t), which is part of "robot kinematics",

(o, B, y) can be calculated in Eulerian notation as Or(t)=Rot(z,ct)*Rot(x,B)*Rot(z,y):
ot) = ATAN2(-Or5(t) , Orp3(t) ) {+m};  if Ory3(t) = Orps(t) = 0, then a(t) should be

. . . . —Ors(t
continued continuously with arctan(lim 10)

=10 Orau(t)

B(t) = ATAN2(-\ 1-0r332(f) , Ora3(t) {*-1}

Y(t) = ATAN2(-Or3; (1) , -Or3p(t) ) {+7};
if Or3(t) = Orps(t) = 0, then Y(t) = (ATAN2(Orp; (1),0r11 (1)) - a(t))*Or33(t)

)+ (1= im (signum(Or=(1)))) *—’25
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Due to this computation with two result values, care has to be taken to ensure that the
function values of o(t), B(t) and y(t) at the beginning of the second trajectory segment are

close to the values of a(t), B(t) and ¥(t) at the end of the first trajectory in order to avoid
extensive movements during the overcorrection phase.

Overcorrection by means of a polynomial

Degree an ffici f a univer, vercorrecti lynomi

With respect to position, velocity and acceleration of the accompanying trajectory segments
at the beginning and end of the overcorrection phase, there are six conditions which must
be fulfilled, and thus a five degree polynomial results:

p(t) = k5*hS+k4*hd+k3*h3+k2*h2+k1*h+k0  with h=tT 0<t<T

With pl1, v1, al, p2, v2 and a2 as the position, velocity and acceleration values of the two
neighbouring segments at the start and end of the overcorrection phase, the coefficients of
p(t) can be defined as follows:

kO =pl, kl=T*vl, k2=T>2*al/2,

k3 = 10%(p2-p1)-T*(6*v1+4*v2)+T2*(a2-3*al)/2,
k4 = -15%(p2-p1)+T*(8*v1+7*v2)-T2*(a2-3*al/2),
K5 = 6%(p2-p1)-T*3*(v1+v2)+T2*(a2-al)/2

The overcorrection polynomial p(t) is universal, meaning that there are no restrictions on
the shape of the two trajectory segments, which should be connected. Should there be a
symmetrical overcorrection between two linear trajectory segments, then al=a2=0 and
p2=p1+v1*T/2+v2*T/2 and the polynomial decreases to degree four:

kO =pl, kl =T*vl, k2=0,

k3 = 10%(p2-p1)-T*(6*v1+4*v2),

k4 = -15*(p2-p1)+T*(8*v1+7*v2)
However, these savings in computation time and effort do not justify being treated as a
special case.

The idea of three interpolation areas makes a wide variety of trajectory shapes possible, but
it prevents an AeD(r)*W description of the trajectory shape based on linear interpolation.

This idea, using the sixtuple D(r)=(x(t),y(t),z(t),c(t),B(t),y(t)) to describe the trajectory
shape was mentioned in [Paul, 81] and is a relative method. It refers to the starting pose A
and is applicable only for linear interpolation, not for circular movements. Moreover
neither tool changes nor part handling are possible with this method. As a result, it is not
suitable for a universal approach.

Application of vercorrection polynomial

The polynomial p(t) has to be calculated for each joint function g;(t) or each cartesian func-
tion x(t), y(t), z(t), a(t), B(t), ¥(t), and thus for each interpolation mode there must be a
function in the robot control which provides the matrices H(t), I:I(t) and ﬁ(t) in relation to
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time t and the values of starting and aim (in the case of linear interpolation), or a, b and ¢
(in the case of circular interpolation) or U (in the case of orientation interpolation).

The starting and end points of the smoothing phase — as well as the length — can be chosen
arbitrarily. The best way to establish these is by using time based functions since position,
velocity and acceleration functions can be easily calculated using this form of parameteri-
sation.

Two examples of overcorrection curves:

0 trajectory segment I T trajectory segment 11 >
0 N

0 - Ty
smopthing phase .
0f——0

The wide scale of application of the overcorrection technique enables producers of robot
controls, to offer many functions related to trajectory smoothing, e.g.:

» start of the overcorrection procedure only when the required pose is attained; this
results in an exact movement through all the required poses.

» use of distance values to define the beginning and end of the overcorrection phase
» constant length of the overcorrection phase

The movements at the beginning and end of the trajectory can be integrated just as easily
into the method: at the beginning the overcorrection starts with both the first trajectory
segment and with pl=start, vl=0 and al=0; the length of the adaptation phase must be
defined by the user; at the end of the trajectory deceleration begins under user control and
finishes at the scheduled time with p2=end, v2=0 and a2=0.

It is very difficult for the user to obtain a spatial image of the trajectory. Therefore, over-
correction should be reduced to joint coordinates, meaning that neither inverse kinematic
computation nor transformation into sixtuples will be necessary during overcorrection.
Only at the start and end of the overcorrection phase the pose, velocity and acceleration
have to be determined (in form of 4x4 matrices) and calculated in joint values, joint veloci-
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ties and joint accelerations.
The differential of the joint related overcorrection polynomial can be described in a formal
manner, thus reducing the time and effort needed for calculation.

VARIABLE OVERRIDE FACTOR AND SHAPE CONSTANCE

An important aspect of trajectory planning is to obtain the same trajectory shape under dif-
ferent override values.

The following statement holds true for time interpolated trajectory functions F(t) and their
velocity function v(t) and acceleration function a(t):

The override value ov € ]0,...] is a factor of the time parameter t. The trajectory shape
F(t*ov) is the same shape, but the motion time will, of course, vary; velocity behaviour
ov*v(t*ov) changes as expected by the factor ov, and analogous statements are valid for

acceleration ov2*a(t*0v).

From this it becomes clear that despite the use of discrete poses to define the trajectory,
continuous functions (preferably based on time parameters) have to be utilized inside the
robot control to fulfil the requirements.

The question of shape behaviour during overcorrection is more interesting and a little more
complex. Working on the basis that users want the same overcorrection shape in spite of
different motion time, velocity and acceleration, it is important that shape constance is
ensured. This can be achieved by the following steps inside the robot control:

Overcorrection phase starts at t=ts;)4/ov and lasts T/ov. The overcorrection polynomial p(t)

has the form  p(t) = k5*h3+k4*h*+k3*h3+k2*h2+k1*h+k0
with the coefficients calculated originally and a new parameter h=t*ov/T 0 <t < T/ov

The form of the overcorrection trajectory thus remains the same.

Furthermore, %g(t) = f)(t)*ov/T shows with %%(O):vl*ov, %%(1)=v2*0v, gt%(0)=al*0v2

d . . . .
and (—é—(l)=a2*ov2 that the correct velocity and acceleration values exist at the connection

points between trajectory segments and overcorrection path.
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CONCLUSION

The above-described advance from discrete description forms to time functions as well as
the integration of velocity and acceleration functions open the way to a unified, but never-
theless variable overcorrection method.

Even if acceleration is ignored in order to cut calculation time, the method still remains
valid, the polynomial simply reducing to degree three with new coefficients:

k2 =3*(p2-p1)-T*(2*v1+v2) k3 = -2*(p2-p1)+T*(v1+v2)

A procedure was developed for PTP movements which combines overcorrection with
time-controlled, steady motion behaviour.

"non

The idea of three interpolation areas "basis", "aim" and "tool" increases the range of avail-
able path shapes considerably and simplifies programming substantially. In order to sim-
plify robot programming for the user, care was taken to establish a definition of circular
interpolation which can deal with circles less than 360°.
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ABSTRACT

This paper develops a geometric construction algorithm for designing a second
order geometrically (G?) continuous motion. It combines results in kinematics with
the notion of geometric continuity from the field of Computer Aided Geometric Design
and develops geometric conditions for piecing two motion segments smoothly. A
complete algorithm is presented for constructing a G2 continuous piecewise Bézier type
motion. The results have applications in mechanical systems animation, computer
vision, robot trajectory planning and key framing in computer graphics.

INTRODUCTION

This paper deals with design and modeling of motions of a three dimensional
object for Computer Aided Animation. Motion approximation involves finding a
smooth motion of an object that approximates a given set of configurations® (or key
configurations) of the object. If the motion allows the object to pass through the key
configurations, it is said that the motion interpolates these key configurations. The
purpose of this paper is to develop a geometric construction algorithm for synthesizing
or designing a smooth desired motion by adjusting the key configurations. Such a
motion approximation method can be used in mechanical systems animation.

The traditional approach for computer animation of three dimensional objects has
separated interpolations of translations and rotations, see Reeves (1981), Shoemake
(1985), Duff(1986), and Pletinckx (1989). Recently, Ge and Ravani (1993a) extended
the work of Shoemake, who used unit quaternions for animating rotations, and de-
veloped an analytical method for designing complete motion interpolants (including
both translations and rotations), which properly took into account the geometry of
the underlying space. They used a kinematic mapping (see Ravani and Roth 1984) to
establish a geometric foundation for studying motion interpolation and approximation
problems. They made the mapping orientable to capture topological considerations

lpositions and orientations
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and used the mapping to transform the problem of motion interpolation into that of
interpolating points in a special projective three-space called the image space of the
mapping. In this manner, a piecewise parametric motion was represented by curve
segments in the image space. Continuity conditions for piecing motion segments then
correspond to continuity conditions for the corresponding curve segments in the image
space. They then developed a method for generating a piecewise cubic Hermite type
motion interpolant such that its image curve has curvature and torsion continuities.
Furthermore, Ge and Ravani (1993b) developed deCasteljau-like geometric construc-
tion algorithms for generating motions based on repeated screw motion interpolation.

The present paper extends the work of Ge and Ravani (1993b) and seeks to de-
velop smooth composite Bézier type motions that can be used to design or model more
complex trajectories of a rigid body. The problem of achieving second order geometric
continuity or G? continuity in piecing motion segments together is studied geomet-
rically, taking advantage of the notion of geometric continuity in Computer Aided
Geometric Design (CAGD). This results in a geometric algorithm for constructing G?
continuous spline motions that has similarities to the Farin (1993) construction of G?
spline curves.

The organization of the paper is as follows. First a review of the orientable image
space is given as a geometric representation of oriented screw displacements. This is
followed by a brief discussion on screw motion interpolants and Bézier type motions.
Section 2 addresses geometric continuity of motion segments. Section 3 develops a new
geometric construction method for designing G? continuous motions. The material in
section 2 and 3 are the new contributions presented in this paper.

1 THE ORIENTABLE IMAGE SPACE

The orientable image space (see Ge and Ravani, 1993a and 1993b) is a mathe-
matical space (Ravani and Roth, 1984) each point of which represents an oriented
screw displacement. An oriented screw displacement in physical space (denoted as P)
is a rotation about and a translation along a directed line in P called the (directed)
screw axis. Two screw displacements are considered to be “oppositely oriented” if
their screw axes occupy the same position in P but with opposite sense of direction.
They may be called the “forward” screw displacement and the “backward” screw
displacement, respectively.

A general displacement is geometrically equivalent to a pair of two oppositely ori-
ented screw displacements. They can be represented by two sets of oppositely signed
dual Euler parameters X = (X1, X3, X3, Xy) and —X = (=X, — X3, — X3, — X4) with
X = Xi+ eX? (i = 1,2,3,4) where X; are the Euler parameters of rotation and X?
are defined in terms of the vector of translation d = (d;, dz, d3) as

X0 0 —d; dp di [ X,

X| 1l d 0 —di do || X )
Xg ) —~dy d, 0 ds X3 |

Xg —d, —dy —ds3 0 X4

The symbol € denotes the dual-number unit with the property €2 = 0. Details on dual
numbers and the Euler parameters can be found in Bottema and Roth (1979).
Only six of the eight components of the dual Euler parmaters are independent, for
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they satisfy the relations

X2+ X2+ X2+ X2=1, ©
Therefore, the dual Euler parameters X = (Xl,Xg,Xg,X4) may be used as a set
of signed homogeneous dual-number coordinates to define a geometric mapping of
oriented screw displacements into oriented points in an orientable projective space
with three dual dimensions. This space, denoted by X, is called the orientable image
space of spatial displacements. Let 1 denote a nonpure dual number w + ew® where

w # 0. By signed homogeneous coordinates, we mean that the coordinates X and wX
represent one and the same point in the image space if w > 0; and they represent two
oppositely oriented (or antipodal) points if w < 0. In this way a general displacement,
which can be achieved either by a forward or a backward screw displacement, can be
represented by either one of the two corresponding oppositely oriented image points.

Specialists in projective geometry will notice that geometry of the orientable image
space X is equivalent to geometry of a unit hypersphere (denoted by H?) in a space
of four dual dimensions, with oriented points, oriented lines, and oriented planes in
¥ corresponding to points, oriented great circles, and oriented great spheres on H3,
respectively. This oriented version of spherical geometry is also termed doubly elliptic
geometry. o

The distance between two points, X and Y, in ¥ is a dual angle, ¢ = ¢ + ¢h,
which is obtained from:

cosg=X Y =X,V + XoYs + X3¥3 + X,Ya. (3)

The dual angular distance ¢ is uniquely defined, provided that ¢ is restricted to the

range [0, 7]. When ¢ < 7/2, the two points X and Y are said to be similarly oriented.

Since the image space ¥ has three dual dimensions, a general line in ¥ is a one-
dual-dimensional line or a twofold line. Kinematically, a twofold line in ¥ is the
mapping of a two-degree-of-freedom screw motion which consists of two independent
simple motions, a rotation and a translation. If the translation is made dependent
on the rotation, then the resulting motion becomes a one-degree-of-freedom screw
motion which maps into a special line, called a unifold line, in 2. Of special value is
the unifold line-segment that corresponds to a constant-speed screw motion (see Ge
and Ravani 1993b):

L(Bo, b; ) Si“(gn‘(;)‘b)ﬁo ; Sisri‘r(fg)ﬁl, te o) ()

where by and b; denote two similarly oriented image points that represent two config-
urations of an object in physical space and ® = ¢+ ¢h is the dual distance from by to
b;. This unifold linear interpolation was used by Ge and Ravani (1993b) to construct
special image curves, called the Bézier type image curves®, that have Bézier type end-

2This type of curves are not of the Bernstein form, for they are not algebraic curves and do not
possess the subdivision property, see Ge and Ravani (1993b).
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point interpolation properties. The corresponding one-degree-of-freedom motions are
termed Bézier type motions.

2 GEOMETRIC CONTINUITY

The smooth joining of two one-degree-of-freedom motion segments corresponds to
the smooth joining of two unifold curve segments in the image space . The simplest
way to define local smoothness for an image curve is to require the curve to be n-
times differentiable with respect to its current parametrization. Kinematically, this
corresponds to the continuity of kinematic instantaneous invariants at the junction
point. The geometric instantaneous properties of a motion are related to the dif-
ferential properties of the corresponding image curve (McCarthy and Ravani, 1986).
This section describes smoothness conditions in terms of the tangent directions and
curvature of the image curve. From kinematics point of view, this corresponds to the
continuity of the second order geometric instantaneous invariants of two motion seg-
ments. From CAGD point of view, this work represents an extension of the concept of
geometric continuity of the second order, denoted as G2, form Euclidean three-space
to the image space. The study of geometric continuity and its application to curve
design can be found in many CAGD literature, see for example, Barskey and DeRose
(1989), Boehm (1987), and Farin (1993).

2.1 General Unifold Image Curves

G? continuity for unifold curves in ¥ is defined in the same way as G? continuity
for curves in Euclidean three-space. A unifold image curve is G2 continuous if it
is two-times differentiable with respect to arc length but not necessarily two-times
differentiable with respect to its current parametrization.

Let X_(t-) and X, (t4+) (t-,t+ € [0,1]) denote the left segment and the right
segment, respectively. They can be thought of as a composite curve with a dual
arc length parametrization §(t) defined over [3_, 3,]. The junction point is X (%) =

X_(1) = X, (0). The joining of the two segments is G! continuous at X (o) if

X[ _X(0) _X-() .
déls=s  04(0)  0_(1)°
where
2 _dX4(0) g CdX_(1) . ds(ty) . d(t-)
X+(O) - dt+ ) X—(l) - dt_ ) 'U+ - dt+ ) v- = dt_ .

Let & = 9,(0)/9_(1) = a+ea® (a > 0), then Eq.(5) leads to X, (0) = &X,.(0), which
is equivalent to the continuity of the tangent line-segments at the junction point:

X,(0) AX,4(0) = aX_(1) AX_(1), (6)

where the symbol “A” denotes the vector wedge product which generalizes the three-
dimensional vector cross product to higher dimensions (see Flanders 1967, Ge and
Ravani 1993a).
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Similarly, the requirement that the second order derivative of X(§) be continuous
at § = $o leads to the G? continuity condition:

A

X, (0) AX4(0) A X4 (0) = 6*K_(1) AX_(1) A X_(1). (7)
This implies the continuity of curvature and osculating plane at the junction point.

2.2  Bézier Type Image Curves

We now specialize G? continuity conditions to composite Bézier type image curves.
Let b_3, b_s, b_;, by and bg, by, bs, b3 be the control points of two adjacent Bézier
curve segments which are denoted by X_(¢-) and X, (), respectively. For the

segment X+ (t4+) on the right, the tangent and curvature properties at the junction
point are given by

X, (0) A K, (0) = 3-22 By A By, ®)
sin ¢y
X,(0) A X4 (0) A X, (0) = 18 A 5 AbiAb
+ + + = — 5~ ———= Do 1 2y (9)

sin2 (bo sin ¢1

where o, ¢, are the dual angular distances between Bo, b; and by, by, respectively.
It is interesting to note that, in the limiting case when ¢; — 0 (¢ = 0,1), the
tangent and curvature properties of the Bézier type image curves approach to those
of Bernstein-Bézier cubics in Euclidean three-space, 3bp A b; and 18bg A by A b,
respectively. R
Similarly, for the segment X_(¢_) on the left, we have

X AK (1) =3-221 b, A by, (10)
sing_;
% ; 2o $ida o o ¢
CMAR_(MAX_(1) =18—221%2 __§ . AB_, Aby, (11)

sin? ¢_ sin _
where ¢_, $_, are the dual angles between b_,, b_; and b_;, by, respectively.
In view of (6), (8), and (10), the two segments are G continuous at by if

90 {0 ABy = do_1—2=1B_y A By, (12)
sin ¢ sing_;

Substitute the ratio of dual speed Go,_; = (2)0 /<i>_1 into (12) to obtain

Bo AB; = S%0 5 A b (13)

sin ¢_1
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Figure 1: The curvature conditions.

In view of (7), (9), and (11), the two Bézier segments are G2 continuous at by if
in addition

2o s
—-géoqbl—Abo/\bl /\b2- ao 1#‘2———13_2/\1) 1 /\bo
sin? ¢ sin ¢, sin®¢_; sin¢_,
After the substitution of & _; we obtain
o Ay Ay = P02 osindy (14)
¢1¢_1 sin ¢_1 sm¢ 2
Combine (13) and (14) to obtain
By Aby A Dy = of2sindosinds o b i (15)

$1p-18ind_sing_o

Eq.(13) indicates that the three neighboring control points, b_;, by and by, are
collinear and they define the common tangent line T at bo. Eq. (14) indicates that
the five control points, b_s, b_1, bo, by, and by, are coplanar and they define the
common osculating plane at by. Therefore the line defined by b_s, b_; and the line
defined by by, by are coplanar and meet in a point qo. This suggests the use of points
such as qo to construct the control points for a G? continuous composite Bézier type
image curve (Figure 1 and 2).

_ Essential to the construction algorithm is the ability to determine the dual angles

¢3; and ¢31+1 that spe01fy the location of the Bézier Junctlon point b3l on the line

segment joining b3l 1 to b3,+1 such that G? condition at bg,1 are satisfied (see Figure 2).
In view of Eq.(15), the G? condition is given by:

¢3 35 2sm¢3 s1nq53 1 ~ ~ ~
bai— A b3¢+1 A b3¢+2 = t¢ = * i bga Abgi A bsit.

¢3¢+1¢31 1 8in ¢3¢ 28in @3y
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Figure 2: Construction of a G? continuous piecewise motion of Bézier type.

This leads to ) ) ) )
¢3i 8in ¢3; = Gi3i—1 5in P31, (16)
where 6; = 0; + €0? is a dual number given by
5 = 1‘}i¢3i-—3 sin @311 (17)
B;isin ¢3i_2¢5,
and A,', B; are the magnitudes of the trivectors 635_1 /\B3¢+1 /\}33,-+2 and 63,'_2 /\Bgi_.l A
bs; 11, respectively. Eq.(16) and the relation

¢23i—1 + ¢31 = lZ)i, (18)

where w, = arccos(ba, 1 b3,+1) are the two equations needed to solve for the dual

angles b3i1, B3 After eliminating ¢s;, the real parts of (16) and (18) combines into
the following equation:

COS ¢3;_1 _ COS ¥ Oi¢3i—1
singsi_1  sing (Y — paio1) singy’
from which the angle ¢3;_; can be solved using the Newton-Raphson method. From
the dual parts of (16) and (18), one can obtain ¢3,_, = 99 — ¢3; and
00 P3iP3i1 SinY; +0,9); (b3 Sin i + P3ihsiy cos ;) +021/1, ¢3,_1
¢31 +03(¥; sin1h; + 2331 cos 1/%) +o; ¢

¢31

3  DESIGNING A G?> CONTINUOUS MOTION

This section presents a construction algorithm for designing a G? continuous piece-
wise Bézier type motion that approximates m key configurations. The orientation is
specified by the angle (f) and the axis (s) of rotation, and the translation is specified
by a vector d. The algorithm proceeds as follows:
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Figure 3: A set of seven given configurations.

1. Compute the dual Euler parameters q = q+ eq? for all m configurations, where

= S—zsing Elsing —Sising cosg
=AM 22

and |s| = (s2 + s2 + s2)!/2. The dual part q° is obtained using (1).

2. Generate the control points Bj, where 5 = 0,1,2,---,3(m — 3), of a piecewise
Bézier polygon:

(a) Let bo = &0, by = 41 and use (4) to compute b, = L(dy, 2; 1) where
A1 = 1/2 and can be adjusted in the range of (0,1) for fine tuning.

(b) Let bs (m=3)—-1 = = Qm-2, bs (m-3) = Qm-1 and b3(m 3)-2 = L(qm—Squ—ti; Am—3)
where Am_3 = 1/2 and can be adjusted in the range of (0, 1).
(c) Fori=1,2,3,---,(m— 5) compute the in-between control points, bgiy1 =

L(Qz+1,qt+2, 1+1) and b3z+2 = L(Ch, Qi+1s 1+1) where /\1+1 = 1/3 and
A4 = 2/3 and they can be adjusted in the range of 0 < Aiy1 < A <L

(d) Generate bsy (i=1,2,3, y(m— 4)) such that both G! and G? continuity
conditions are satisfied. Thls is achieved by the following:

i. Compute A,‘ = IbSi—l A b3,‘+1 A b3i+2‘ and B,' = |b3i—2 A 63,;_1 A Bgi+1‘.
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Figure 4: A G? spline motion which approximates a set of seven configurations.

ii. Compute b3iza = arCCO§(B3i—2 -b3i_1), Paip1 = arccos(baiyy - baiya),
and ; = arccos(bs;_; - bsi11)-
iii. Compute a; using (17).
iv. Obtai