COMPUTATIONAL KINEMATICS ’95



SOLID MECHANICS AND ITS APPLICATIONS
Volume 40

Series Editor: G.M.L. GLADWELL
Solid Mechanics Division, Faculty of Engineering
University of Waterloo
Waterloo, Ontario, Canada N2L 3G1

Aims and Scope of the Series

The fundamental questions arising in mechanics are: Why?, How?, and How much?
The aim of this series is to provide lucid accounts written by authoritative research-
ers giving vision and insight in answering these questions on the subject of
mechanics as it relates to solids.

The scope of the series covers the entire spectrum of solid mechanics. Thus it
includes the foundation of mechanics; variational formulations; computational
mechanics; statics, kinematics and dynamics of rigid and elastic bodies; vibrations
of solids and structures; dynamical systems and chaos; the theories of elasticity,
plasticity and viscoelasticity; composite materials; rods, beams, shells and
membranes; structural control and stability; soils, rocks and geomechanics;
fracture; tribology; experimental mechanics; biomechanics and machine design.

The median level of presentation is the first year graduate student. Some texts are
monographs defining the current state of the field; others are accessible to final
year undergraduates; but essentially the emphasis is on readability and clarity.



Computational
Kinematics ’95

Proceedings of the Second Workshop on
Computational Kinematics,

held in Sophia Antipolis, France,
September 4-6, 1995

Edited by

J.-P. MERLET

Institut National de Recherche en Informatique et en Automatique,
Sophia Antipolis, France

and

B.RAVANI

Department of Mechanical Engineering,
University of California,
Davis, California, U.S.A.

5

SPRINGER-SCIENCE+BUSINESS, MEDIA, B.V.



A C.LP. Catalogue record for this book is available from the Library of Congress.

ISBN 978-94-010-4147-8 ISBN 978-94-011-0333-6 (eBook)
DOI 10.1007/978-94-011-0333-6

Printed on acid-free paper

All Rights Reserved

© 1995 Springer Science+Business Media Dordrecht

Originally published by Kluwer Academic Publishers in 1995

No part of the material protected by this copyright notice may be reproduced or
utilized in any form or by any means, electronic or mechanical,

including photocopying, recording or by any information storage and

retrieval system, without written permission from the copyright owner.



Table of Contents

Preface . . ... .. . . .. ix
1 Kinematics Algorithms

1.1  D.P. Chevallier

Coordinate Free Criteria for Testing the Linear Dependence of the Sets

of Screws . . . . 1
1.2 J.-M. Hervé

A Pseudo-dual Notation for Kinematic Calculations . ............ 11
1.3  D. Hong, K.J. Mueller and S.A. Velinsky

Mobile Robot Localization by Cable-Extension Transducers . . . . .. .. 19
1.4  P. Kovics and G. Hommel

An Extension Theorem for Kinematic Systems of Equations . . . ... .. 31
1.5 B. Mourrain and N. Stolfi

Applications of Clifford Algebras in Robotics ... ............... 41
1.6 I Nielsen and B. Roth

Elimination Methods for Spatial Synthesis . ... ................ 51
1.7  LA. Parkin

The Application of Finite Displacement Screws to Drawing Constraints 63
1.8  F. Rouillier

Real Root Counting for Some Robotics Problems ............... 73
1.9 CM. Hoffmann and P.J. Vermeer

A Spatial Constraint Problem . .. ... ........ .. ... . ... ...... 83
1.10 K. Wohlhart

Motor Tensor Calculus . .. ........ ... .. ... ... .. ...... 93

2 Kinematics of Mechanisms

2.1

22

E.A. Dijksman and A T.J.M. Smals

The Inverted Slider-Crank Used for the Design of an Approximated
Straight-Line Mechanism .. ............. ... ... ... .. .... 103
P. Fanghella and C. Galletti

On the Choice of Independent Loops in Mechanism Kinematics . . . .. 113



vi

2.3 C. Garnier, B. Mourrain and P. Rideau
Symbolic and Numeric Computation for the Real-Time Simulation of
a Car Behavior . . .. ... ... . . . ...
2.4 I Lenar¢i¢
On Minimum Joint Torque Configurations of Multiple-Link
Manipulator . .. ... .. .. ..

Singularities
3.1 J.M. Rico, J. Gallardo A. and J. Duffy
A Determination of Singular Configurations of Serial Non-Redundant
Manipulators, and Their Escapement from Singularities Using Lie
Products ... ....... .. ..
3.2 J. El Omri and P. Wenger
A General Criterion for the Identification of Nonsingular Posture
Changing 3-DOF Manipulators .. .........................
3.3 D. Zlatanov, R.G. Fenton and B. Benhabib
Identification and Classification of the Singular Configurations of
Mechanisms . . ....... . . ...

Workspace
4.1 M. Ceccarelli and G. Scaramuzza
Analytical Constraints for a Workspace Design of 2R Manipulators . .
42  R. Featherstone
A Hierarchical Representation of the Space Occupancy of a Robot
Mechanism . ... ... ... .. ...
43 E.J. Haug, F.A. Adkins and C.M. Luh
Domains of Operation and Interference for Bodies in Mechanisms and
Manipulators . . ........ . ...
44  J.-P. Merlet
Designing a Parallel Manipulator for a Specific Workspace . . . . . . ..

Parallel Manipulators

5.1 KE. Zanganeh and J. Angeles
On the Isotropic Design of General Six-Degree-of-Freedom Parallel
Manipulators .. ........ . ...
52  SE. Fenyi
Stewart Platform Based 6-Axis Force and Torque Transducers . . . . ..

173



53

54

55

5.6

vil
C.M. Gosselin and M. Gagné
A Closed-Form Solution for the Direct Kinematics of a Special Class
of Spherical Three-Degree-of-Freedom Parallel Manipulators . . . . . . 231
C. Innocenti
Algorithms for Kinematic Calibration of Fully-Parallel Manipulators . 241
S. Losch
Parallel Redundant Manipulators Based on Open and Closed Normal
Assur Chains ... ... ... 251
L. Tancredi, M. Teillaud and J.-P. Merlet
Forward Kinematics of a Parallel Manipulator with Additional Rotary
Sensors Measuring the Position of Platform Joints .............. 261

6 Motion and Grasp Planning

6.1

6.2

6.3

6.4

V. Brodsky and M. Shoham

On the Modeling of Grasps with a Multi-Fingered Hand . . . . ... ... 271
Q.J. Ge and J. Rastegar

A Special Class of C3 Rational Quartic Spline Curves for Two-

Harmonic Trajectory Synthesis . . .......................... 281
J. Ponce, J. Burdick and E. Rimon

Computing the Immobilizing Three-Finger Grasps of Planar Objects . 291
K. Sprott and B. Ravani

A Dynamic Formulation for Planar Motions Using Geometric

Kinematics and CAGD . ... ..... .. ... .. . .. . .. 301



Preface

The aim of this book is to provide an account of the state of the art in Com-
putational Kinematics. We understand here under this term that branch of
kinematics research involving intensive computations not only of the nu-
merical type, but also of symbolic as well as geometric nature.

Research in kinematics over the last decade has been remarkably ori-
ented towards the computational aspects of kinematics problems. In fact,
this work has been prompted by the need to answer fundamental questions
such as the number of solutions, whether real or complex, that a given
problem can admit as well as computational algorithms to support geo-
metric analysis. Problems of the first kind occur frequently in the analysis
and synthesis of kinematic chains, when fine displacements are considered.
The associated models, that are derived from kinematic relations known as
closure equations, lead to systems of nonlinear algebraic equations in the
variables or parameters sought. The algebraic equations at hand can take
the form of multivariate polynomials or may involve trigonometric functions
of unknown angles.

Purely numerical methods can be used to solve the problem but they
turn out to be too restrictive, especially those involving an iterative process
whose convergence cannot, in general, be guaranteed. These drawbacks have
been overcome with the development of continuations techniques that are
meant to produce all solutions to a given problem. While continuation
techniques have provided solutions to a number of problems, they are still
difficult to implement and are subject to numerical uncertainties. Hence
alternative approach have been sought, that rely on recent advances in
algebraic geometry and on modern software for symbolic computations.
Current research in kinematics involves symbolic manipulations that were
impossible to imagine as recently as ten years ago.

Problems of the second type occur in handling the computations asso-
ciated with studies of kinematic geometry of motion. Geometric analysis
has much of its roots in kinematics and has been the basis for many clas-
sical methods of kinematic analysis and synthesis. This includes problems
associated with evaluation of singularities of mechanisms and manipula-
tors, rigid body guidance and motion synthesis problems, analysis of the
workspace and reachability of manipulators, and generation of trajecto-
ries of rigid bodies. Current research in these areas include development of
computational algorithms to support such geometric analysis methods.

This book reports the trends and progress attained in Computational
Kinematics in a broad class of problems as described above. It has been
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divided into six parts, namely, i) kinematics algorithms, whereby general
kinematics problems are discussed in light of their solution algorithms;
it) kinematics of mechanisms, in which problems related to specific mecha-
nisms are studied; 4ii) singularities, which is self-descriptive; 1v) workspace,
in which the determination of the workspace of given mechanisms is dis-
cussed;v) parallel manipulators, in which problems related to this kind of
closed-loop mechanisms are addressed; and vi) motion and grasp planning,
touching upon computational geometry.

The reader will find here a representative sample of the most modern
techniques available nowadays for the solution of challenging kinematics
problems. In light of it contents, the book should be of interest to re-
searchers, graduate students and practicing engineers working in kinematics
or related fields. Especially, roboticists, CAD/CAM specialists, biomechan-
ics specialists, machine designers and computer scientists will find here a
useful source of information comprising methods, algorithms and applica-
tions.

This book contains the Proceedings of the second Workshop on Com-
putational Kinematics, held at INRIA Sophia-Antipolis in France, from
September 4 to September 6, 1995. INRIA is herewith given due acknowl-
edgment for its financial and logistical support and encouragement. The
decisive financial support of IFToMM and of the European HCM network
HEROS must be mentioned. Dr. Karel Nederveen, of Kluwer Academic
Publishers, is acknowledged for his encouragement and support in editing
the book and publishing it in record time. We wish to thank the organizers
of the first Workshop, Pr. J. Angeles and Dr. P. Kovécs, for their useful
advice. The support of Dr. Nadia Maizi from Ecole des Mines de Paris and
doctorate student Luc Tancredi was decisive in organizing this workshop.

Jean-Pierre Merlet and Bahram Ravani, Editors
INRIA Sophia-Antipolis, France



COORDINATE FREE CRITERIA FOR TESTING THE
LINEAR DEPENDENCE OF THE SETS OF SCREWS

D.P. CHEVALLIER Centre d’Enseignement et de Recherches
en Mathématiques Appliquées,

E.N.P.C La courtine 98167 Noisy le Grand, France.

Tel. 49 14 35 72, Faz. 49 14 35 86

1 Introduction

The verification of the linear dependence and the calculation of the rank of a set of
screws are very important tasks in kinematics in the search for singular positions
of open chains as as well as in the search for movability conditions of closed loop
chains. This mathematical problem is generally solved by standard techniques of
linear algebra using determinants of coordinates of the screws relative to more
or less arbitrary bases (see for example Hunt [5], Sugimoto and Duffy [10] or
Sugimoto [11], Wholhart [12]). However, such methods make no use at all of the
specific algebraic structure which can be defined on the set of screws and, as for
any coordinate method, the geometrical meaning of the result may be unclear.

It is well known that the checking of the linear dependence of a set of ordinary
vectors in three dimensional space can be completely performed by use of coordi-
nate free criteria lying on the properties of the vector product and the triple vector
product. Nevertheless, to our knowledge, no similar coordinate free criterion has
been exposed in screw theory. In this paper we expose a list of mathematical prop-
erties leading to an algorithm for testing the linear dependence or computing the
rank of any set of screws. In some sense, this list generalizes to the Lie algebra
of the displacement group the two classical criteria valid in ordinary vector algebra
(the Lie algebra of the rotation group). Due to the higher dimension of the vector
space, many particular cases must be studied for the design of a complete algo-
rithm. They are the concern of specific criteria and so the finite sets of screws are
divided into three classes including respectively three, four and eight non obvious
subcases.

Several remarks seem to be noteworthy. First, the expression of these criteria
requires all the algebraic operations defined in Chevallier [2], in particular the Lie
bracket and the module structure of © derived from operation V, except opera-
tion III. In other words the classical form of screw theory using only the vector
space structure and the Klein form should not contain all the necessary tools for
this. The remark also meet an idea exposed by Hervé [4]: the mathematical prop-
erties of the displacement group and its Lie algebra are a key to the understanding
of kinematics.

Second, the form of the general criteria seems to be closely related to prop-
erties met in kinematics of overconstraint mechanisms such that the existence of
transversals (see Wholhart [12] or Baker and Wholhart [1]); the following results
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contain a purely algebraic technique for pointing out such “transversals screws”
in various cases. The eight criteria exposed for the third class sets correspond
to simpler applications and one can find corresponding mechanisms with finite or
infinitely small mobility.

Third, the classification of vector subspaces of D (screw systems), has been
recently studied by Rico Martinez and Duffy [8], [9] and by Gibson and Hunt [3].
Here we consider a given set of generators, in practice the data defining a linkage
in some configuration, and we solve a rather different problem.

2 The Screw Theory as the Study of a Lie algebra

In this section we explain the relationships between the classical screw theory and
the algebraic properties of a Lie algebra endowed with additional operations. We
denote by £ and E the three-dimensional affine Euclidean space and the associated

vector space (to every pair (a,b) of points in £ is associated a vector ab € E and
the scalar product denoted by a dot and the vector product denoted by X are
defined in E).

2.1 Screws and skew-symmetric vector fields

Definition 2.1 A skew-symmetric vector field on £ is a map X from £ to E such
that p¢ - X(p) = Bq - X(q) for all points p and q or, what is equivalent, such that
there exists a unique vector wx with the following property: for all p and ¢ in &,
X(q) = X(p) + wx X Pq.

The set of all the skew-symmetric vector fields will be denoted by D, the subset
of the constant vector fields over £ will be denoted by T (the vector field X 1is
constant over £ whenever wx = 0).

If X is in D but not in ¥ (i.e. wx # 0) the set of the points p such that X(p)
is directed as wx (i.e. X(p) x wx = 0) is a straight line Ax directed as wx in
& (the axis of X). Moreover X(p) takes the same value fxwx at every point p
on Ax, where the number fx is the pitch and fx = [X | X]/2(X | X) (for the
meaning of the notations see subsection 2.2 (IV) and (V)).

For a member of ¥ the axis does not exist (or, otherwise stated, the axis is a
line at infinity).

The picture of a line A, a director w and an associated real number f is a screw
within the common meaning. As we see, it is equivalent to define a screw and to
define a skew-symmetric field (taking account of some particular cases). Another
picture of a skew-symmetric vector field on £ meets screw theory: if o is any fixed
origin point the relation X +— (wx, X(0)) is one-one and onto; in fact this relation
is an isomorphism between the vector spaces D and E x E. The vectors wx and
X(o0) are the Pliker vectors. The pair (wx,X(0)) is the “ray representation” of a
screw (the “axis representation” is equivalent and should be (X(0),wx)).



2.2 The algebraic structure of D

We summarize below the algebraic operations defined in D (see reference [2]).

(I) Vector space structure over the real field.(Obviously defined).
(II) Lie bracket. The Lie bracket of two skew-symmetric vector fields X and
Y is the skew-symmetric vector field U = [X, Y] such that

U(p) =wx X Y(p) ~wy x X(p) forall peé&.

Endowed with the Lie bracket, the vector space D is a Lie algebra, that is [X, Y]
is skew-symmetric and the Jacobi identity holds:

(X,[Y, 2] + [V, [Z,X]] + [Z,[X, Y]] = 0.
(I11) Adjoint action of D on D. (We do not use it in this article.)

Actually D is the Lie algebra of the displacement group D and an algebraic
structure defined by operations like (I), (II), (III), exists on the Lie algebra of
each Lie group. The last two operations are specific properties of the displace-
ment group.

(IV) The Klein form.This is the non degenerate symmetric bilinear form
defined by

X ]Y]=wx-Y(0) + wy - X(0) (with o = arbitrary origin in £).

(V) The operator Q and the Killing form.
For X € D define X € © as the constant vector field such that

QX(p) = wx for all p€e €.

Then € is a linear operator in D and its range and its kernel are equal to €. Hence
Q0Q = 0 and, in the dual number setting, the operator Q is the multiplication
by €. Moreover, the Killing form, a positive degenerate symmetric bilinear form
on D, may be defined from the operator  and the Klein form by

(X |Y)=[X|QY]=[0X]Y].

The Lie algebra D contains remarkable subsets: ¥ defined above is a commutative
ideal corresponding to the translation group, and for each fixed point p: 3, =
{X | X(p) = 0}, is the Lie subalgebra corresponding to the rotation group about
p. The members of 3, correspond to line vectors through p of screw theory.

Let us note other relations making a link with familiar ones in classical screw
theory and allowing geometrical interpretations. Let X and Y be in D — T, then
the axis of [X, Y] is the common perpendicular é to the axes Ax and Ay. Let w
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be a is a normed vector along §, § = £(Ax,Ay). f p=Ax N6, ¢g=AyN§and
p§ = dw with d € R, then the value of [X, Y] on its axis is:

X, Yl(p) = [X,Y](q)=(fx+fy)wx xwy +(X]|Y)pd
(1) = [(fx + fy)sind + dcos ] lwx|| lwy |l w,
X Y] (Fx+f)X|Y)-pf wx xwy

LI

((fx + fy) cos 6 — dsin 0] [lwx || lw]| -

In particular we have the following result about pairs of screws with parallel axes:

ifXand Y € D - % and [X,Y] € T then, for all m in &:
(2) (X, Y](m) = (X | Y)pq.

2.3 The module structure on ®

Let A be the dual number ring (that is the ring of the “numbers” of the form
z =z + €y with z and y in R and €2 = 0; the real and dual parts of z are denoted
by Rez = z and Duz = y, the conjugate of z by Z = z — ey). Then D has a
natural module structure over A which extends its real vector space structure, the
product of X € D by the scalar z € A being defined by:

2X = 2X 4 yOX.

The dual inner product is defined as a dual coefficient combination of the Killing
and Klein forms:

{X]|Y}=(X|Y)+¢[X]Y] for X, Y€ED.
With the Lie Bracket we define the dual triple product by:
{X;Y;2} ={X|[Y,2]}.

Using this module structure, it makes sense to speak of A-linearity or A-
bilinearity for properties involving scalars belonging to A rather than real scalars.
For example the Lie bracket in ® is not only bilinear but is also A-bilinear:
[2X,Y] = [X,2Y] = 2[X,Y] for 2 € A. The following important properties
(see [2]), which look like the classical ones for the dot product and cross product
of ordinary vectors sum up rather cumbersome calculations on screws in a very
compact form and will play a role in the sequel:

o {-| -} is a symmetric nondegenerate A-bilinear form on D (although individually
the Killing and Klein forms define nothing particular in the dual number setting).
o {-;+;-} is a A-trilinear skew-symmetric for on D.

e The following formula holds: [X |[Y,Z)]={X|Z} Y- {X|Y}Z.

It is worth noting that any translation of an ordinary vector algebra property
into a formally similar statement in the module D is not necessarily correct. The
results about the linear independence of two or three elements of © over A and
the bases of the module ® are summarized in the following propositions which
play a major role in proving the results of this paper.
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Proposition 2.1 Let X,Y and Z be in D. The following properties are equivalent
i) {X,Y,Z} is a basis of D over A.
i) {X,Y,Z} is linearly independent over A.
i) {€X,€Y,eZ} (that is {wx,wy,wz}) is linearly independent over R.
i) {X;Y;Z} is invertible in A.
v) {[Y,2),[Z,X],[X,Y]} is a basis of D over A.
Whenever these conditions hold each U € D expresses as U = e X +yY +27 with:

1 1 1
3) z= E{U’Y’Z}’ y= E{U,Z,X}, z= —G—{U,X,Y}, G=1{X;Y;Z}

(Note the nice formula {[Y, Z); [Z,X];[X, Y]} = {X;Y;Z}? proving the equiva-
lence i) & v) as soon as i) & iv) is proved.)

Proposition 2.2 Let be X and Y in D, put W = [X,Y], then the following
properties are equivalent:
i) X and Y are linearly independent over A.
ii) eX and €Y (in other words wx and wy) are linearly independent over R.
i) [X,Y] ¢ T
i) {[X,Y] | [X,Y]} =G is invertible in A.
v) {X,Y,W} is a basis of the A-module D.
Whenever these conditions hold each U € D expresses as U = 2X + yY + wW
with:

_ iy, v, xyy VX XY} o {U[X Y]}
4) =z= e y Y= e , W= e .

In another form, the property [X,Y] € ¥ (that is wx x wy = 0) means that the
set {X,Y} is linearly dependent over A.

In order to point out the real and dual parts of the dual coordinates of U in
Propositions 2.1 or 2.2 let us define a map M : D x D x D — D, which will play
an important role below, by

M(X’Y’Z) = {X;Y;Z} [YyZ] = (x | [Y,Z]) [Y,Z] - [x l [Y,Z]]E[Y,Z].

Note that M(X,Y,Z) = M(X,Z,Y) is reciprocal (orthogonal for the Klein form)
to X, Y, and Z. Using the A-linearity of the inner product {- | -}, it is readily
proved that the formulas (3) write (note that GG = Re{X;Y;Z}? € R):

5 oo WIMEYD)  (UIMY.ZX) | (U|MEXY))
(5) == GG V= GG 2= GG :

Now we turn to the basic classification of the finite subsets of D.

Definition 2.2 Let k be an integer equal 1o 0, 1, 2 or 3. A subset G of D is said
to be of order k if the mazimal number of elements independent over A in G is
equal to k (in other words the rank of G overA is equal to k).



For an order 2 subset G, all the axes of the elements of & which are not in ¥
are parallel to a plane and for all X,Y,Z € & the dual number {X;Y;Z} is non
invertible (in other words: (Z | [X,Y]) = 0).

For an order 1 subset, all the axes of the elements of & which are not in T
are parallel straight lines, all the Lie brackets are in ¥ and we have {X;Y;Z} =
0 for all X,Y,Z € &. An order 0 subset is simply a subset of ¥.

Up to a permutation, every finite subset & of at most six non zero elements of
D can be expressed in one and only one of the following normal forms:

OrDER 3 NorMAL sETs: {X,Y,Z}, {X,Y,Z,U},... ,{X,Y,Z,U,V,W}

where {X,Y,Z} is a basis of the A-module D (see proposition 2.1).

OrDER 2 NORMAL sETs: {X,Y}, {X,Y,Z},... ,{X,Y,Z,U,V,W}

where [X,Y] ¢ ¥ (see proposition 2.2).

ORDER 1 NORMAL SETS: They will be classified according to the number of
elements of GN(D— %) and of ENT and their normal forms are expanded writting
at the head the elements which are not in ¥; the normal form of an order 1 set of
the type (m,n) is

6={X1,... , Xm, Ug, ... ,Un} with Xi,...,X,, ¢‘I and U,,...,U, €%.

3 Linear dependence over R of two elements of ©

Proposition 3.1 A necessary and sufficient condition for a set & = {X,Y}
of non zero elements of D be lLinearly dependent over R is that one among the
following properties holds:

o X and Y are in T and are linearly dependent over R,
e X andY are not in ¥ and ([X,Y] =0 and fx = fy).

In the first case G is order 0 and in the second case it is order 1 of the type (2,0).
Note that the condition fx = fy also writes: [X | X](Y | Y)-[Y | Y](X | X) =0.

4 Linear dependence over R of order 3 sets

Since an order 3 subset G = {X,Y,Z} of D is linearly independent over A it is
always linearly independent over R. We only have to treat the cases where the
subset contains 4, 5 or 6 elements. Our method based on the use of the function
M and the Klein form for constructing a screw reciprocal to a given set of screws
differs from the method proposed by Kerr and Sanger in [6], moreover it has an
“Euclidean meaning”.

Proposition 4.1 A necessary and sufficient condition for an order 8 normal set
G ={X,Y,Z,U} be linearly dependent over R is that U be reciprocal (orthogonal
within the meaning of the Klein form) to

M(X,Y,Z), M(Y,Z,X), M(ZX,Y).
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Proposition 4.2 A necessary and sufficient condition for an order 3 normal
set {X,Y,Z,U,V} be linearly dependent over R is that either {X,Y,Z,U} or
{X,Y,Z,V} is linearly dependent (test from Prop. 4.1), or V is reciprocal to

The three reciprocity conditions for V are not independent (only two of them are).
Moreover, the elements (6) span the reciprocal subspace to {X,Y,Z, U} and the
proposition means that V lies in Spang{X,Y,Z, U} if it lies in the biorthogonal
subspace (within the meaning of the Klein form).

Proposition 4.3 A necessary and sufficient condition for an order 3 normal sub-
set {X,Y,Z,U,V, W} be linearly dependent over R is that one among the follow-
ing properties holds:

¢ {X,Y,Z2,U}, {X,Y,Z,V}, {X,Y,Z,W}, {X,Y,Z,U,V}, {X,Y,Z,V,W}
or {X,Y,Z,U, W} is linearly dependent (tests from Prop. 4.1 and Prop. 4.2).
o W is reciprocal to P M(X,Y,2) + Q M(Y,Z,X) + RM(Z,X,Y) where:

Q=[U|M(Z,X,Y)|[V|MX,Y,Z)]-[V|M(ZX,Y)U|MX,Y,Z),

P=[0 | M(Y,Z,X)][V | M(Z,X,Y)]-[V] M(Y,Z,X)][U | M(Z,X,Y)],
{ R=[U|M(X,Y,2)][V|M(Y,2,X) - [V|MX,Y,2z)][U | M(Y,Z,X)].

5 Linear dependence of order 2 sets

Proposition 5.1 A necessary and sufficient condition for an order 2 normal set
{X,Y,Z} be linearly dependent over R is that Z be reciprocal to

MX,Y,[X,Y]), M(Y,[X Y],X), M(X Y]X,Y).

Proposition 5.2 A necessary and sufficient condition for an order 2 normal set
{X,Y,Z, U} be linearly dependent over R is that either {X,Y,Z} or {X,Y,U}
is linearly dependent (test from Prop. 5.1), or U is reciprocal to the following
elements

[Z | MY, [X, Y], X)IM([X, Y], X, Y) - [Z | M(IX, Y], X, Y)] M(Y, [X, Y], X),

(Z | M([X, Y], X, V)] M(X, [X,Y],Y) - [Z | M(X, [X, Y], Y)] M([X, Y], X, Y),
[Z | M(X,[X, Y], Y)] M(Y, [X, Y],X) - [Z | M(Y, [X, Y], X)] M(X, X, Y], Y).

The statement of Proposition 5.2 deserves a remark similar to the one following
Proposition 4.2: the three reciprocity conditions are not independent.

Proposition 5.3 A necessary and sufficient condition for an order 2 normal sub-
set {X,Y,Z,U,V} be linearly dependent over R is that one among the following
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properties holds:

¢ {X,Y,Z}, {X,Y,U}, {X,Y,V}, {X,Y,Z2,U}, {X,Y,Z,V} or {X,Y,U, V}
is linearly dependent (tests from Prop. 5.1 and Prop. 5.2).
o V is reciprocal to PM(X,Y,[X,Y])+ QM(Y,[X, Y], X)+ RM([X, Y], X,Y),
where
( P = [Z|M(Y,[X Y],X)[U|M(X Y],X,Y)
Q = [Z|M(X,Y],X,Y)[U|MX,[X,Y],Y)]
R = [Z|MX[X,Y]Y)][U]|M(Y,[XY]X)]
_[Z I M(Y’ [X,Y],X)] [U l M(x’ [X’Y]:Y)]

\

Proposition 5.4 FEvery order 2 set of siz elements G in D is linearly dependent
over R.

6 Linear dependence of order 1 sets

The order 1 sets of more than four elements are always linearly dependent. Hence
we a priori need ten criteria for testing order 1 sets and they reduce to eight since
two cases, the types (1,0) and (1,1), are obvious. We only give some examples of
these criteria and some geometrical interpretations.

For an order 1 set & let II = IIg be a plane orthogonal to the axes Ax
(X € G — %) and ax be the intersection of I and Ax. Let [G, &] be the set of
the elements [X, Y] with X, Y € 6. Using formula (2) we see that, for X and Y
in 6 — %, [X, Y], which is in %, is the constant field equal to (X | Y)axay (this
property is useful for geometrical interpretations).

A first criterion reduces the testing of the sets of the type (1,n) to ordinary
calculations in the three dimensional space ¥ (isomorphic to E):

Proposition 6.1 A necessary and sufficient condition for an order 1 normal set
6 = {X,Uy,...,U,} of the type (1,n) be linearly dependent over R is that
{Uy,...,U,} be linearly dependent. In particular, if n > 3, & is linearly de-
pendent and, if n =0 or 1, G is linearly independent.

Proposition 6.2 A necessary and sufficient condition for an order 1 normal set
G = {X,Y, U} of the type (2,1) be linearly dependent over R is that either {X,Y}
is linearly dependent over R (second test from Prop. 3.1), or one among the fol-
lowing properties holds:

o [X,Y]=[X,U]=0, [and fx # fy].
o [X,Y]#0 and [X | U] =0 and Rank{[X,Y],[X,U]} =1 and fx = fy.
o [X,Y] #0 and [X | U] # 0 and fx # fy and

X[ Y)(fx - )X, U]l = [X]|U][X,Y]



The geometrical form of the last three conditions is the following:

e Ax = Ay and U is directed as Ax [and fx # fv].

e Ax # Ay, U is orthogonal to the plane (Ax,Ay) and fx = fy.
¢ Ax # Ay, U is not orthogonal to Ax, fx # fy and

(fx = fy)wx x U = (wx - U) axay.
Define the quantity 2D(X,Y,Z) as:
X X)Y | Z) Y, Z) + (Y | Y)Z | X)fy[Z,X] + (2| Z)(X | Y)fz[X, Y].

Proposition 6.3 A necessary and sufficient condition for an order 1 subset G =
{X,Y,Z} of the type (3,0) be linearly dependent over R is that either {X,Y]},
{Y,Z} or {Z,X} is linearly dependent over R (second test from Prop. 3.1), or the
following condition holds:

¢ Rank [G, 6](= Rank{[X,Y],[X,Z]})=1 and D(X,Y,Z) =0
In particular, when Rank [G, 6] = 2 the set & is linearly independent.

The geometrical form of the condition is the following:

e Ax, Ay, Az are coplanar and fxayaz + fyazax + fzaxay = 0.

In particular when the axes Ax, Ay, Az are not coplanar the set & is linearly
independent. The condition D(X,Y,Z) = 0 (or its geometrical form) holds in
particular when Rank[G, 6] = 0 (Ax = Ay = Ay) or when Rank[G, 5] < 1 and
fx = fy = fz, due to the relation

(7
X I X)(Y 1 2)[Y, 2]+ (Y | Y)(Z | X)[Z,X] +(2 | Z)(X | Y)[X, Y] =0.

Proposition 6.4 A necessary and sufficient condition for an order 1 subset G =
{X,Y,Z, U} of the type (4,0) be linearly dependent over R is that either one three
element subset of G is linearly dependent or Rank[&, 8] < 1 or one among the
properties similar to the following holds:

o Rank{[X, Y],(X,Z]} = 2 (for ezample) and if « and B are the real numbers
such that [X, U] = o[X,Y] + B[X, Z], then

oX | Y)(fy - fx)+BX | 2)(fz - fx) = (X | U)(fu - fx).
Owing to relation (7), in the last case Rank[G, G] = 2. The last properties holds

in particular when the four numbers fx, fy, fz and fu are equal. The geometrical
form of the condition is either Ax, Ay, Az, Ay are coplanar or:
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o Ax, Ay, Az (for example) are not coplanar and if @ and, f are the real
numbers such that axay = a axay + faxaz, then

a(fy — fx)+B8(fz — fx) = fu - fx.

Conclusion. The principles of an algorithm for testing the rank of any
set G of non zero members of D are now clear. It is compound of two stages:

FIRST STAGE: find the order k and a normal form of & (then RankG > k).

SECOND STAGE: apply specific criteria from sections 4, 5, 6 for the calculation
of the value of the rank. For example when k = 3 and 6 = {X,Y,Z,...} one test
the sets of the form {X,Y,Z,U}, (U € &) (Prop. 4.1) and stop if the rank is 3.
Else one has to test selected sets of the form {X,Y,Z,U,V} (Prop. 4.2) and, if
this is necessary, selected sets of the form {X,Y,Z,U,V, W} (Prop. 4.3).
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A PSEUDO-DUAL NOTATION FOR KINEMATIC CALCULATIONS

J.M. HERVE,
Ecole Centrale Paris
92295 Chatenay Malabry France

Abstract

We present a new type of algebra which can be used for any kinematic calculation.

1. Introduction

Since the original work by Dimentberg [1], dual numbers and dual vector algebra has
been applied to kinematics. We note particular applications to mechanism design by
Keler [2], Sugimoto, Duffy and Hunt [3] and numerous papers on robotics. Modern
algebraic formulation of the dual algebra is given by Chevallier [4].

In this article, we present a new type of algebra with some analogy to the dual algebra .
The pseudo-dual notation makes some calculations in kinematics easier.

2. The pseudo-dual algebra

We recall that a dual number d is a complex mathematical entity composed of two real
numbersaand b :

d=a+¢€b € is the dual unit endowed with the characteristic property £ 2 =0
The number 1 may be considered as the identity operator i ,then d becomes an operator

d=ia+ €b able to act on any vector space.

The pseudo-dual algebra is defined with a base of three operators [, J, E.
The characteric properties of these pseudo-dual units are

12=1,J2=7,E2=0
1J=J1=0
IE=EJ=E

EI=JE=0
This system of operators is connected with the dual algebra.
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Indeed, we can easily verify
I1+J=i,i2=i,iE=Ei=E

where i is the identity operator and E may be equated to the dual unit € .
The operators I, J, E may be represented by matrices acting on any vectors.

ilo olo ol i
=[] J=[-w]  E=[ee]
olo ol i olo

where i is the identity and o the zero operator.
3. Pseudo-dual notation of the affine space

Points of the affine Euclidean space of dimension 3 are denoted by capital letters N, M,

Vectors obtained from two ordered points may be represented by the difference of two
points
NM=M-N

An origin point, O, is needed to introduce the pseudo-dual notation . The pseudo-dual
notation for point O is :

O0=EO+]
The pseudo-dual notation for a generic point M will be :

M=EOM +]

Then, we are able to give the pseudo-dual notation for a vector :
OM=M-0=EOM
M=0+0OM

4. Velocity field

If M is the generic point of a mobile affine Euclidean space relative to a fixed Euclidean
space, it is well known that the field of velocity vectors is a field of moments or screw
(or twist).
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dM/dt=VM)=V+RxOM

where

VM) is the velocity vector of point M

v is a given vector equal to the velocity of the point which coincides
with point O at the given time t

R is the angular velocity vector

Rx is the linear skew-symmetric operator obtained from R and the
vector product.

The pseudo-dual notation is

EdM /dt=EVM)=E (V+ R x OM)

It is easy to verify that the expression for V (M) can be split in two factors :
dEOM+])/dt=[IRx+EV] [EOM +]]
dM/dt=§ M

S = IR x + E V is a pseudo-dual screw

I R x is the rotation part and E V the translation part.

We notice :

IRxM=ERxOM

EVM =EV

S. The finite displacement

If the pseudo-dual screw is constant (independent of t), we have a differential equation for
the function M in the variable t, which can be integrated between times o and t.

M@®=exp(tM (0
EOM () +J=exp[t(EV+IRXx)][EOM(0) +1]]

exp[t(IRX+EV)]=i+t(IRXx+EYV)

+t2/21(IRX+EV )2 4+ ..

+t0/n!(IRx EV ) 4+
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We verify :
(IRXx+EV) =I(Rx)2+ERxV

(IR x+EV) =IRx)P+E(RxM vV
Employing thé f.o.rmula i=1+J, we obtain

exp[t(IRx+EV)]=J+Iexp(tRx)
+E[tV+2/2!RxV + ..
+@M /(R v 4 ]

To continue the computation, the vector V can be decomposed into its projection on R

and on a plane perpendicular to R.
The orthogonal projection of V on R is easily obtained employing the scalar product

(dot product) (R / R2) (R . V). The complement of V is the orthogonal projection of
V on a plane perpendicular to R :

V-(R/R2)(R.V).
Because of the double vector product, this last expression can be proved to be equal to

-(1/R%)(Rx)?2V
Then, we may write :
V=-(Rx2V/R2+R(R.V)/R?2
and consequently
RxV=-(Rx3V/R2
The coefficient of E becomes

tR(R.V)/R2_t(R x)2V/R2
-2/21(Rx)3V/R2

- /nt@Rx0+1 v/R2
=tR(R.V)/RZ+(RxV)/R2-exptRx)[(RxV)/RZ]
These vectors have a geometric sense. The fixed origin O coincides at t = o with a

mobile point O. O becomes O' at time t.
H is the foot of the perpendicular drawn from origin point O on the screw axis.
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OH = (R x V) / R2

By rotation of angle tR, (R=R R/IIR ),

OH becomes O' H'

O'H' =exp (t R x) OH

HH' =tR (R.V)/R2

The coefficient of E is OO' = OH + HH' + H'O'

6. The Lie algebra of screws
The vector space of screws at a given point may be endowed with an algebraic structure
of Lie algebraic structure in several ways [5], [6].

The commutator or Lie bracket of two pseudo-dual screws provides the closed product of
the Lie algebra of pseudo-dual screws.

It may be called a"screw product” because of its analogy to the vector product in

classical 3 dimensional vector space.
Let us consider two pseudo-dual screws

S1=IRyx+ EVy
S92 =IRyx + EVy
The Lie bracket is
81,.81=81%-S2 &
Using the known property (Jacobi identity) of the classical vector product
R; xRy x - Ry xRy x = (R] xRp )x
After some calculation we arrive at :

[S1.S21=1®R; xRy )x +ERy xV3-Ry xV)
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7. Composition product of displacements

A mobile rigid body may undergo two successive displacements. The first displacement
is characterized by two vectors S§1 and T . Sy is the rotation vector and T is the
translation vector of the origin .
The pseudo-dual representation of this first displacement is the operator

Di=Tlexp(S1 x)+ETq +J
For the second displacement, it is :

Dy =Texp(Sy x)+ETp+]
Two successive displacements produce a new displacement, the composition product

Dy Dy
Dy Di=Texp (S x)exp(S1x)+E [Ty +exp(Sy x)T11+]

The absence of displacement or identity leads to a zero vector for rotation and translation
vectors.
The inverse displacement is

[Iexp(Sx)+ET+J]'1=Iexp(-Sx)+E[-exp(-Sx)T]+J

The pseudo-dual notation of finite displacements is able to express the algebraic group
structure for the set of displacements [7].

8. Description of kinematic pairs
A revolute pair, the axis of which is fixed at the origin, O provides rotations of angle

0 about the unit direction vector u :

OM — OM'
[EOM' +J]=[Texp(Oux)+J][EOM +]]

If the revolute pair axis is determined by a point N = O, the corresponding operators are
obtained by conjugacy from the previous ones :

I+EON+J][Iexp(Oux)+J][I-EON +]]
=lexp(Bux)+E[1-exp(Bux)JON +]
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A prismatic pair is represented by
I+Eat+]

where is the translation amplitude with the unit direction vector t.

All the lower kinematic pairs are easily deduced from the combinations of revolute pairs
and prismatic pairs.

9. Series of kinematic pairs

Dealing with this problem in its generality would require extremely lengthy
calculations. To simplify, we have chosen the typical example of a series of two
revolute pairs. For a given initial configuration of a set of three rigid bodies connected
by two R pairs, the successive axes are determined by

(N7 ,up) and (N7 ,uy ).

The rotation angles are denoted 8 and 6, . The series is represented by the
composition product of the allowed relative displacements in each pair.
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