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PREFACE

This workbook was designed to accompany the software package ODE Ar-
chitect, and that’s why we call it aCompanion. Each of the 13 Companion
chapters corresponds to a multimedia module in the Architect and provides
background and opportunities for you to extend the ideas contained in the
module. Each chapter ends with several problem sets, called Explorations,
related to the chapter and module topics. The Exploration pages can be pho-
tocopied so that you can write in answers and derivations, and hand them in
along with printouts of graphs produced by the Architect. There is also a
notepad facility in the Architect which, with the cut and paste features, makes
it possible to write reports.

ODE Architect

ODE Architect provides a highly interactive environment for constructing and
exploring your own mathematical models of real-world phenomena, whether
they lead to linear or nonlinear systems of ODEs. The Architect’s multime-
dia front end guides you through experiments to build and explore your own
ODEs. The software has numerical solvers, 2- and 3-D graphics, and the
ability to build physical representations of systems such as pendulums and
spring-mass systems as well as the ability to animate them. Together with its
library of ODEs, the ODE Architect brings a wealth of opportunities to gain
insights about solutions to ODEs.

The overall guiding feature is for the software to be easy to use. Nav-
igational paths are clearly marked and simple to follow. When starting the
software, you are presented with a title screen followed by a main menu al-
lowing selection of a specific module. You may prefer to go directly to the
Architect Tool to run your own experiments. At any place in the software, you
will be able to call up the contents menus and access the material in any order.
We expect that most will work through the multimedia modules. Let’s look
at each of the three principal parts of the ODE Architect in more detail: The
Multimedia ODE Architect, The ODE Architect Tool, and the ODE Library.
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Multimedia ODE Architect

C.ODE.E members and colleagues have authored the multimedia modules,
each with its own theme. The modeling process is detailed, supported by
highly interactive simulations. You will explore the problem-solving process
via “what-if” scenarios and exercises. You are guided to build your own ODEs
and solve them numerically and graphically, and compare the predicted results
to empirical data when appropriate.

Each module has up to four submodules, and they range from the straight-
forward to the advanced. The animations are often funny, the voice-overs
and text informal, but the modeling and the mathematics are the real thing.
Most submodules go through a model-building process and several experi-
ment screens, and then end with some questions (Things-to-Think-About, or
TTAs). These questions extend the topics of the submodule and take you to
the solver tool to produce solution curves and orbits, or write a report con-
necting the mathematics, the models, and the pictures. When you open the
Tool using a TTA link, the pertinent equations and parameter settings will au-
tomatically be entered into the equation quadrant of the Tool. You are then
poised to think about, and without constraint, explore the model introduced in
the submodule.

ODE Architect Tool

The ODE Architect Tool is a first-rate, research-quality numerical ODE solver
and graphics package. The ODE Architect Tool employs a graphical user
interface to enter and edit equations, control solver settings and features, and
to create and edit a wide variety of graphics. A second mode of operation, the
Expert Mode, provides access to more advanced features.

The Tool is the heart of the software, and it is a workspace where you
can:

� Construct, solve, and explore ODEs

� Input data tables

� Graph and animate solution curves, phase plane graphs, 3D graphs,
Poincaré sections, discrete maps, direction fields, etc.

� Build, analyze, and animate physical representations of dynamical sys-
tems.

The robust Tool will solve systems of up to 10 first-order ODEs which
can be entered using a simple, natural scripting language. Auxiliary func-
tions involving the state variables can be defined. A solver/grapher feature
for discrete dynamical systems is also available from the Tool. A variety of
engineering functions such as square waves, sawtooth waves, and step func-
tions are included in the Tool function library. Two- and three-dimensional
graphics are supported, as well as time and parameter animations of solution
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data. Initial conditions can be entered by clicking in a graph window or via
the keyboard. Graph scales can be set automatically or manually. Numer-
ical values of solutions can be viewed in tabular form. Parameter-sensitive
analysis is made easy with a built-in parameter-sweep tool. You can do pa-
rameter and initial-value sweeps to see the effects of data changes on orbits
and solution curves. Graphs are editable and you can scale and label axes,
mark equidistant-in-time orbital points, color the graphs, change line styles,
overlay graphs of functions and solution curves for different ODEs—all with
no programming or special commands to remember.

The solvers in the ODE Architect are state-of-the-art numerical solvers
based on those developed by Dr. L.F. Shampine and Dr. I. Gladwell at South-
ern Methodist University. For a delightfully readable account on using nu-
merical ODE solvers in teaching ODEs, please refer to their paper:

Shampine, L.F., and Gladwell, I., “Teaching Numerical Methods in
ODE Courses”

in the bookRevolutions in Differential Equations, edited by Michael J. Kalla-
her in the MAA Notes series.

Module 1, “Modeling with the ODE Architect”, is an on-line tutorial for
many of the features of the Tool. The Architect also has help facilities and the
multimedia side is self-documenting.

ODE Library

The ODE Library has dozens of pre-programmed, editable, and interactive
ODE files covering a wide range of topics from mathematics, physics, chem-
istry, population biology, and epidemiology. There are also many ODEs to
illustrate points such as data compression, ODEs with singular coefficients,
bifurcations, limit cycles, and so on. Each Library file has explanatory text
along with the equations and includes an illustrative graph or graphs. The Li-
brary files are organized into folders by topic and they have descriptive titles
to facilitate browsing. These files also provide a marvelous way to learn how
to use the tool.
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INFORMATION
ABOUT MODULES/CHAPTERS

Overview

Modules/Chapters 1–3are all introductory modules for first-order ODEs
and simple systems of ODEs. Any of these modules/chapters can be
used at the beginning of an ODE course, or at appropriate places in
elementary calculus courses.

Modules/Chapters 4–9 involve higher-order ODEs and systems and their
applications. Once students understand how to deal with two-dimen-
sional systems graphically, any of these modules/chapters is easily ac-
cessible.

Modules/Chapters 10–12apply two-dimensional systems to models that il-
lustrate more advanced techniques and theory; the multimedia approach
makes them nevertheless quite accessible. The modules are intended to
enable students to get much further with the technical aspects explained
in the chapters than would be otherwise possible.

Module/Chapter 13 treats discrete dynamical systems in an introductory
fashion that could be used in a course in ODEs, calculus, or even a
non-calculus course.

A Multimedia appendix on numerical methods gives insight into the ways
in which numerical solutions are constructed.

Description/Prerequisites for Individual Modules/Chapters

We list below for each Module/Chapter its prerequisites and some comments
on its level and goals. In general, each module progresses from easier to
harder submodules, but the first section of nearly every module is at an intro-
ductory level.

The modules can be accessed in different orders. It is not expected that
they will be assigned in numerical order. Consequently, we have tried to ex-
plain each concept wherever it appears, or to indicate where an explanation
is provided. For example, Newton’s second law,F = ma, is described every
time it is invoked.
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There is far more material in ODE Architect than could possibly fit into a
single course.

Module/Chapter 1: Modeling with the ODE Architect
Assumed concepts: Precalculus; derivative as a rate of change

This module is unlike all the others in that it is not divided into submod-
ules, and it provides a tutorial for learning how to navigate ODE Architect. It
carries that tutorial process along in tandem with an introduction to modeling
that assumes very little background.

Module/Chapter 2: Introduction to ODEs
Assumed concepts: Derivatives; slopes; slope fields

The module begins with some simple first-order ODEs and their solutions
and continues with slope fields (and a slope field game).

The Juggler and the Sky Diver submodules use second-order differential
equations, but both the chapter and the module explain the transformation to
systems of two first-order differential equations.

Module/Chapter 3: Some Cool ODEs
Assumed concepts: Basic concepts of first-order ODEs, solutions, and
solution curves

Newton’s law of cooling, and solving the resulting ODEs by separation
of variables or as linear equations with integrating factors, are presented thor-
oughly enough that there need be no prerequisites.

The submodule for Cooling a House extends Newton’s law of cooling to
real world cases that are easily handled by ODE Architect (and not so easily
by traditional methods). This section makes the point that rate equations and
numerical solutions are often a much smarter way to go than to trudge toward
a solution formula.

Module/Chapter 4: Second-Order Linear Equations
Assumed concepts: Euler’s formula for complex exponentials

The module and chapter treat only constant coefficient ODEs. The chap-
ter begins by demonstrating how to treat a second-order ODE as a system
of first-order ODEs which can be entered in ODE Architect. Both the first
submodule and the chapter explain from scratch all the traditional details of
an oscillating system such as amplitude, period, frequency, damping, forcing,
and beats.

The Seismograph submodule is a real world application. The derivation
of the equation of motion is not simple, but the multimedia module gives in-
sight into the workings of a seismograph, and it is not necessary to understand
the details of the derivation to use and explore the modeling ODE.
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Module/Chapter 5: Models of Motion
Assumed concepts: Newton’s second law of motion

This module’s collection of models of motion in one and two dimensions
is supported by a chapter that gives background on vectors, forces, Newton’s
laws, and the details of the specific submodules; so it stands on its own without
further prerequisites.

Module/Chapter 6: First-Order Linear Systems
Assumed concepts: Basic matrix notation and operations (multiplication,
determinants); complex numbers; Euler’s formula

This unit introduces all of the basic notions, both algebraic (emphasized
in the chapter) and geometric (emphasized in the module), for linear systems.
The central roles of eigenvalues and eigenvectors are explained. The Tool can
be used to calculate eigenvalues and eigenvectors.

The Explorations bring in coupled tank problems (Chapter 8 introduces
compartment models) and small motions of a double pendulum (which are
extended in Chapter 7).

Module/Chapter 7: Nonlinear Systems
Assumed concepts: Equilibrium points; phase plane and component plots;
matrices; eigenvalues and eigenvectors

The goal is to use graphical solutions to make handling nonlinear sys-
tems as easy (almost) as linear systems. Linearization of a nonlinear ODE is
introduced as a basic concept, and the chapter goes on to elaborate perturba-
tions and bifurcations. The Tool can be used to find equilibrium points, and
calculate the Jacobian matrix and its eigenvalues/eigenvectors at each equi-
librium point. The predator-prey and saxophone reed models are introduced
and explained in the module while the spinning bodies and double pendulum
models are treated in the chapter and also in the Library with an animated
model linked to the ODE.

Module/Chapter 8: Compartment Models
Assumed concepts: Systems of ODEs

Both the module and the chapter use 1D, 2D, 3D, and 4D applications
(in sequence) to illustrate principles of the Balance Law and interpretations
of solutions. The final submodule introduces Hopf bifurcations and the inter-
esting behavior of chemical reactions in an autocatalator. Three of the models
are linear; the last is nonlinear.

Module/Chapter 9: Population Models
Assumed concepts: Systems of ODEs

The module and chapter introduce simple 1D, 2D, and 3D nonlinear mod-
els, and give a discussion of the biology behind the models.
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Module/Chapter 10: The Pendulum and Its Friends

Assumed concepts: Systems of ODEs; the first submodule of Module 4;
the arctangent function; parametric curves on a surface

The pendulum submodule explores all the traditional aspects of a pendu-
lum, using integrals of motion. Child on a Swing and Geodesics on a Torus
give new extensions of pendulum analysis; supporting detail is given in the
chapter. The approach to modeling is a little different in this chapter—for ex-
ample, how to invent functions that behave as needed (Child on a Swing), or
how to exploit part of an ODE that looks familiar (Geodesics on a Torus).

Module/Chapter 11: Applications of Series Solutions

Assumed concepts: Systems of ODEs; acquaintance with infinite series
and convergence; the first submodule of Module 4

The module introduces the techniques and limitations of series solutions
of second-order linear ODEs. The Robot and Egg provides motivation for the
subject and Aging Springs illustrates Bessel functions. The chapter contains
information about the mathematics of series solutions.

Module/Chapter 12: Chaos and Control

Assumed concepts: The pendulum ODEs of Module 10; systems of ODEs;
experience with Poincar´e sections and/or discrete dynamical systems (Chap-
ter 13) is helpful

The three submodules of this unit tell a story, and in the process illus-
trate a theorem from current research. This module uses sensitivity to initial
conditions and the Poincar´e section to assist with the analysis. Sinks, sad-
dles, basins, and stability are described. Finally, the elusive boundaries of the
Tangled Basin provide a mechanism for control of the chaotically wandering
pendulum. The module ends in a fascinating control game that is both fun to
play and illuminates the theorem mentioned above.

Module/Chapter 13: Discrete Dynamical Systems

Assumed concepts: Acquaintance with complex numbers and the ideas of
equilibrium and stability are helpful

The module provides a gentle introduction to an increasingly important
subject. The chapter fills in the technical and mathematical background.

This module could be used successfully in a liberal arts course for stu-
dents with no calculus.
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Level-of-Difficulty of Modules

The chart below is a handy reference for the levels of the submodules.

Elementary Intermediate Advanced
1

2.1, 2.2 2.3, 2.4
3.1 3.3 3.2
4.1 4.2
5.1 5.2 5.3

6.1 6.2 6.3
7.1 7.2 7.3

8.1 8.2 8.3 8.4
9.1 9.2 9.3

10.1 10.2 10.3
11.1 11.2
12.1 12.2, 12.3

13.1 13.2 13.3

In constructing this chart we have used the following criteria:

Elementary: Straightforward, self-contained, can be used as a unit in any
introductory calculus or ODE course.

Intermediate: Builds on some prior experience, including earlier submodules
and chapters.

Advanced: More challenging models or mathematics, especially suitable for
term or group projects.

User’s Guide

TheUser’s Guideis the basic reference for the features of the ODE Architect
Tool. The Guide is included on the CD-ROM for ODE Architect.
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Pacific sardine population and harvest.

Overview In the two decades from 1932 to 1951, the Pacific sardine fishery completely
collapsed. In this chapter you will learn to use the ODE Architect to construct
a mathematical model which describes this event rather well. This will have two
purposes: it will familiarize you with the menus and features of the ODE Architect,
and it will acquaint you with the principles of mathematical modeling.

First we’ll construct a model for the Pacific sardine population during the
years 1930–1950 as if it were unharvested. Then we will focus on the harvesting
that actually took place and see how it contributed greatly to the destruction of
the sardine population.

Key words Modeling; Pacific sardine; population model; initial conditions; exponential growth;
carrying capacity; logistic equation; harvesting

See also Chapter 9 for more on population models.
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◆ Building a Model of the Pacific Sardine Population

Step 1: State the problem and its context
The Pacific sardine (Sardinops sagax caerulea) has historically experienced☞ In this chapter we will

build a model for the sardine
fishery in California and also
introduce features of the ODE
Architect Tool for solving
differential equations. Consult
theUser’s Guidefor a full
description of all features of the
tool.

long-range cycles of abundance and depletion off the West Coast of Califor-
nia. It was during one of the abundant periods, 1920 through 1951, that a huge
sardine fishing and canning industry developed. The total catch for the Cal-
ifornia coastline reached a peak of 726,124 tons during the 1936–37 season
(June through the following May). The Pacific sardine population then began
a serious decline during the 1940s until, as one estimate has it, by 1959 the
sardine biomass was 5% (0.2 million tons) of the 1934 level (4 million tons).
(Thebiomassis the amount of a particular organism in its habitat.) There is
general agreement that heavy harvesting played a role in the decimation of the
Pacific sardine during that period. The fishing industry had a serious decline
after the 1950–51 season: increasing numbers of fishermen went bankrupt or
moved to other fisheries. Undoubtedly the canneries were also affected.

After 50 years of fishing for the Pacific sardine, a moratorium was im-
posed by the California legislature in 1967. The Pacific sardine seems to be
making a comeback as of the mid-1980s, though the numbers are not yet near
the abundant levels of the 1930s.

Here are the goals of your model:

1. Determine the extent to which the precipitous decline of the Pacific sar-☞ Problem statement.

dine population was due to over-harvesting from 1941 to 1951.

2. Ascertain an optimal harvest rate that would stabilize and sustain the
sardine population during that time period.

Step 2: Identify and assign variables
Assigning the variables in a mathematical model is a skill that requires some
practice. Doing some background reading and studying the context of the
problem and the problem statement helps to clarify which are the most impor-
tant features of the system you wish to model.

It turns out that there tend to be long-range cycles of Pacific sardine abun-
dance and scarcity. These cycles are not yet completely understood, but it is
certain that factors such as ocean temperature, nutrient upwelling from deep
waters, currents that aid fish migration, predator populations of larger fish and
of sea lions, and, of course, fishing, play a vital role in the cycles. In this
model we will focus on a period when the harvesting of the sardine was very
heavy. Due to the large magnitude of the harvesting, its effect was dominant
for the period of time we will model, 1941–1951, so we will neglect the other
factors. That the other factors still operate on the population is evidenced by
the difficulty in getting the model to match the data perfectly. Nevertheless,
you’ll see how modeling, while not always explaining every aspect, provides
insight into the dynamics of an otherwise very complex biological relation-
ship.
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Given the information we have at this point we need the following vari-
ables and parameters in our model:

1. Sardine biomass (in units of million tons)☞ Sardine biomass is a state
variable, the other quantities are
parameters. 2. Growth rate for the Pacific sardine (in units of million tons/year)

3. Maximum biomass, orcarrying capacity(in units of million tons)

4. Sardine harvesting (in units of million tons/year)

Note that we opted to define sardine biomass in million tons, rather than num-
bers of fish, to be consistent with the data and estimates used.

It’s good practice to introduce as few parameters as necessary into a
model at first. Additional parameters can be added if they are needed to im-
prove the accuracy of the model. The model may be refined until the desired
level of accuracy is achieved.

With the variables and parameters identified, the next step is to construct
an equation for the rate of change of the state variable in terms of the state
variable itself, the model’s parameters, and possibly also time. This equation
is known as a differential equation (abbreviated ODE). When an ODE is en-
tered into ODE Architect along with an initial value of the state variable, the
Architect Tool displays a graphical representation of the solution.

Figure 1.1 represents the estimated Pacific sardine biomass and harvest☞ Graphical representation
of the problem. during the period 1941–1951. Note again the use of sardine biomass in million

tons, rather than numbers of fish.
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Figure 1.1: Sardine biomass and harvest.

Our first task is to use ODE Architect to build a mathematical model
to simulate the growth and decline of the Pacific sardine biomass without
harvesting. Then we can explore the impact of harvesting on that biomass.
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Place the ODE Architect CD-ROM in your computer and start the ODE☞ Click on the spinning orb
to go directly to the Architect
Tool.

Architect Tool. Four quadrants will be displayed on the screen (see Fig-
ure 1.2). The upper left quadrant is the equation quadrant; it should be empty
now. The two right-hand quadrants should be empty. These are plot quad-
rants that will display 2- or 3-dimensional plots when you solve differential
equations. The lower left quadrant currently shows the initial conditions (IC )
display. Notice that it is selectable using the four tabs (IC , Sweep, Solver,
Equilibrium ) on the lower edge of the quadrant. For now leaveIC selected.

Figure 1.2: ODE Architect tool screen

Step 3: State the relationships that govern the variables
We begin by simulating the unchecked growth (no harvesting) of the Pacific
sardine population, which we will designate as the state variablesardine. Ba-
sic biology suggests that it is reasonable to assume that the rate of biomass
growth (i.e., the derivatived(sardine)/dt) at a given timet is proportionalto
the quantity of sardines (the size of the biomass) present at that timet.

Step 4: Translate the laws into equations
Sincesardine′ is a common notation for the derivative (rate of change) of
sardine, we can write

sardine′ = r ∗ sardine

wherer is a proportionality factor that we will refer to as thegrowth rate
factor.
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Fishery and biomass data collected over the period 1932–1958 indicate
that the Pacific sardine population has had a volatile history. The Pacific sar-
dine biomass, if not manipulated or constrained, can grow at a rate of between
10% and 40% per year. We will assume a moderate position and set the growth
rate factor atr = 0.20. A modeler often has to make assumptions and guess
parameter values to get a model started; you can refine the assumptions later.

Step 5: Solve the resulting differential equations
Point and click the cursor in the equation quadrant and type in☞ Entering differential

equations.
sardine′ = r ∗ sardine (1)

using an apostrophe for the prime, and an asterisk for multiplication; hitRe-
turn (or Enter) and assign the value 0.20 to the parameterr by typing in

r = 0.20

Now click the cursor on the box markedEnter just below the equation quad-
rant. Notice that this causes scales to appear in the two plot quadrants.

Now go to the lower left quadrant to set the initial conditions. Double☞ Setting initial conditions.

click in the appropriate box to select a variable; then type in the new value.
Set t (time) to start at 1930 and setsardine to be 1 (unit of million tons).
We’ll go back later and put in a more realistic estimate forsardine. In the☞ Setting the time interval.

Integration panel, set the solve time to 20 by inserting the number 20 in the
Interval box. Leave the default value of 100 in the# Pointsbox.

Click theSolve icon and notice that the right arrow is automatically se-
lected. Your screen will look something like this (Figure 1.3):☞ Starting the solution.

Figure 1.3: Exponentially growing sardine population.
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Step 6: Interpret and test the solutions in context
There is now a classical exponential growth curve in the upper right quadrant.☞ Unbounded growth.

This implies that the sardine biomass grows without bound, which can’t be
true as there is not enough room on the planet! The exponential growth must
be limited by factors like available food supplies, disease, predators, and so
on; therefore we have to modify our model to reflect this fact. We learned
earlier that the sardine biomass has been as large as 4 million tons, but we
don’t truly know the maximum sustainable biomass (carrying capacity), so
to start let’s assume a carrying capacity of 6 million tons. We can refine this
guess later if we have trouble fitting the model to actual data. As we said
before, it’s not uncommon to have to make informed guesses for values that
are not known or available. Then the values can perhaps be deduced by “fine
tuning” (refining) the model in subsequent iterations to conform to reality.

Step 7: Refine the model to predict the empirical data
The following differential equation is sometimes used to exhibit maximum☞ Introduce a carrying

capacity. carrying capacity behavior in a population:

sardine′ = r (capacity− sardine)

This equation says that the growth rate at any time is proportional to the “room
to grow” factorcapacity− sardine. Now click the cursor in the equations
region. Using our assumed growth rate constant ofr = 0.20 per year and a
carrying capacity of 6 million tons, we modify the sardine growth to be

sardine′ = r ∗ (6− sardine) (2)

Before entering the new sardine ODE, clear the graphics screens by clicking
on Clear at the lower left and choosingClear All Runs. A “confirmation”
window will pop up; click onYes. Now click in the equation region, make the
corrections to your equation, and then click on the box markedEnter. Click
on theSolveicon and notice in the plot window that the graph of the sardine
biomass climbs and levels out at the assumed carrying capacity of 6 million
tons.

✓ “Check” your understanding by comparing this curve with the earlier
one and notice some significant differences: (1.) The first curve was concave
up; this one is concave down. Why is that significant? (2.) The first curve
grew without bound and had no asymptotes; the second curve has a horizontal
asymptote. Explain why.

Examine the two graphs carefully at early values oft, say the first five
years. Recall that the slope of a line tangent to the solution curve is the growth
rate of the biomass at that time. How do the two curves differ in this regard?
When is the rate of change of the biomass the greatest? Is it realistic for a
biomass to exhibit its greatest rate of increase when the population is small-
est? The answer to these questions is not as simple as you might think. For
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many biological populations, rate of change is proportional to the size of the
population. The solution of ODE (1) exhibits this proportionality but it is un-
constrained and so it’s not useful over its whole domain. The solution curve of
ODE (2) doesn’t exhibit the proportional growth property. Which of the two
is most appropriate for the Pacific sardine? We’ll come back to that question
after a little exploration with ODE (2).

Now let’s see if ODE (2) will allow us to exceed the carrying capacity for☞ Exceed carrying capacity.

any length of time. Change the initial biomass to 12 million tons of sardines
in the IC window. Click on theSolve icon. Notice that the vertical scale in
the graph changes to accommodate the revised values and that both the old
(lower) and the new (upper) curves are displayed on the graph. Observe what
happened to the “overstocked” sardine population. How does this compare to
what happened when the initial sardine biomass was 1 million tons? If you
examine the two plots closely, you’ll see that both plots stabilize at a level of
about 6 million tons (see Figure 1.4).

Figure 1.4: Sardine populations approach carrying capacity.

Sometimes it’s advantageous to change the scales of the axes to make☞ To set scaling of axes.

graphs easier to read and interpolate, so we’d like to show you how to reset
the vertical and horizontal scales. (The default setting for scales for ODE
Architect isAuto Scale.) Select the upper right graph by placing the cursor
arrow on the graph and clicking theright-mostmouse button (or click on the
icon at the upper right corner of the graph). You will see various plot window
options presented. SelectScalesfrom the resulting dropdown menu using the
left-mostmouse button. Click onAuto Scaleto toggle it off. (The check in the
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box will disappear.) To change other values, double click in the box to select
the value and just type to make a change. On theX-Scalemenu setMinimum
= 1930;Maximum = 1950;Number of Ticks = 10; andLabel every = 2.
(Adjust the number of ticks by clicking on the down arrow and selecting, or
by double clicking the box and typing in the new value.) Make sureLinear is
selected (notLog). Now select theY-Scalemenu (at the top): click theAuto
Scaleto toggle it off; setMinimum = 0; Maximum = 12;Number of Ticks
= 10; andLabel every= 2; and check that theLinear button is selected. Your
screen should have a window that looks like Figure 1.5:

Figure 1.5: Plot scales window.

Click on OK to cause the graph to be rescaled. (In this particular case, it☞ You must click theOK
button to enter changes. turns out that the scale did not change from the automatically selected value.)

Now click on theClear box in theIntegration panel and chooseClear
All Runs. What has changed? Next click on theSolveicon again. Notice that
you got only the most recent curve (carrying capacity exceeded); you cleared
the previous solution.

We can extend the ease of making comparisons by sweeping through sev-☞ Sweeping a variable.

eral possible initial values forsardineand displaying them all on one graph.
Click on theClear box and chooseClear All Runs. Now notice theSweep
tab beneath theInitial Conditions panel; click onSweep. Click onSinglefor
type of sweep. We will chooseSweep 1to be a sweep (multi-plot) of various
initial values ofsardine. In theSweep 1box, click on the down arrow and
selectsardine. SetStart = 1; Stop = 7; and# Points= 3. Now click on the☞ If the # Points is set ton,

you’ll get n overlayed graphs. Sweepbox next to theSolveicon (not theSweeptab) (Figure 1.6).
Notice that ODE Architect makes several runs. Notice also that the initial

value forsardinelocated in the IC window was ignored and the values we
entered in the sweep conditions were used instead.

To better see these results, let’s rescale the vertical axis (Y-Scale) to Min-
imum = 1 andMaximum = 7. Look back at page 7 if you do not recall how to
do this. Figure 1.7 shows that multiple runs are easily comparable in this for-
mat. Which initial value forsardinecreated the most stable or flattest curve?
Does the population always stabilize around the same biomass?
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Figure 1.6: Setting up the sweep for sardine with three initial values 1, 4, 7.

Figure 1.7: The sardine curves with a rescaled vertical axis.
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Do the resulting curves accurately represent the growth you’d expect over
the whole range of values fort? Growth is usually proportional to population
size when well below the carrying capacity. However, when you look at your
graph notice that for small populations of sardines, the growth rate is rather
steep. As the sardine population approaches the carrying capacity the biomass
should level off, which the preceding curves do reflect.

Now we’ll examine the properties of the model we created in ODE (2).
The growth rate is proportional to(capacity− sardine) and so for small sar-
dine biomass, the biomass grows at a nearly constant rate. Near the carrying
capacity, the factor(capacity−sardine) causes a leveling off (see Figure 1.7):
the factor forces growth to be proportional to the distance from capacity.

◆ The Logistic Equation

Combining the elements of the proportional growth model given by ODE (1)
and the restricted growth model given by ODE (2) leads to what is called
thelogistic equation for growth(or theVerhulst equation, after the nineteenth
century Belgian mathematician and biologist P. F. Verhulst):

sardine′ = r sardine
6− sardine

6
(3)

Notice that for values ofsardinevery near zero, the factorr ∗ sardinedom-
inates the computation, causing approximate exponential growth behavior.
This is because the factor(6− sardine)/6 has a value very near 1. For val-
ues ofsardinenear 6 (the carrying capacity), the factor(6 − sardine)/6 is
near zero, and so growth slows to approach zero. Therefore we can expect
exponential growth for small biomass with growth tapering off as the biomass
approaches carrying capacity. Let’s see if this refinement improves the model.

Click on theIC tab to clear the graph and enter a new equation. After
clicking on theClear box, and choosingClear All Runs, click in the equa-
tions quadrant and modify the growth ODE to read:☞ Changing the equation.

sardine′ = r ∗ sardine∗ (6− sardine)/6 (4)

Don’t forget to click the box labeledEnter. Reset the initial sardine biomass
to 1. Finally, click on theSolveicon. Your screen should look something like
Figure 1.8.

Notice that the graph now displays a mathematical representation more
like what we expect of the sardine biomass over the long term. It is an elon-
gatedS-shaped curve with slow growth for small biomass, maximum growth
near the midrange, and slow growth near the carrying capacity.

Use the sweep feature now to see how the logistic growth curve responds☞ Try various initial values.
As before, use aSinglesweep. for various initial conditions for the variablesardine. Sweep 1sardine; Start

= 1; Stop = 7; # points = 4. Click onSweep. Figure 1.9 shows the four
solution curves.
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Figure 1.8: A logistic growth curve.

Figure 1.9: Four logistic solution curves.
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✓ Does the model respond to your initial conditions in a reasonable man-
ner? Do you think that this is a good population model to use for modeling
the biomass of the Pacific sardine?

Let’s now use the model given in equation (3) to explore the harvesting that
took place in the years 1941–1951.

◆ Introducing Harvesting via Landing Data

In Figure 1.1 you saw a graph of the Pacific sardine harvest and the resulting
biomass decline during the years 1941–51. We have not yet taken into account
this harvest (orlanding) data in our model; so our model does not yet reflect
the collapse of the sardine fishery that occurred. We’ll now incorporate the
landing data into our model in the form of a lookup table.

The tutorial in Module 1 provides you with landing data for the Pacific
sardine over the time period 1941–1951 in the form of a table with 11 rows
and 2 columns (tutorial steps 13 and 14). This data can be entered as alookup
tablenamed HTABLE by following these directions (which also appear in the
tutorial):

� Start by clicking on theEquationsentry on the menu bar and choosing
Lookup Tables to display the lookup table manager window.

� Double click on<Create New Table> to display the new table win-
dow. Enter the name HTABLE, and specify 11 rows and 2 columns in
the appropriate boxes. Then click theOK button. An array of empty
cells will appear with 11 rows and 2 columns.

� Enter the data (provided in the tutorial window) in the array by clicking
on cell [1,1] to start. When all of the data is entered, click theOK
button.

� Close the lookup table manager window.

Now you have a lookup table called HTABLE.
Go to the equation quadrant and, on a new line, add the following☞ Defining the harvest.

harvest= lookupval(HTABLE,1, t,2)

Be sure to click theEnter box. The value returned by lookupval is the data in
column 2 of HTABLE corresponding to thet-value of the data in column 1.
(If t is not an integer, the value returned is computed by linear interpolation.)

Let’s now look at this harvest data. Sinceharvestis not an ODE state
variable, the Architect does not automatically generate a plot tab; we will
have to make it by hand. Click on the2D tab at the lower right to select what☞ Using the2D custom tab.

we want to plot on each of the two axes. Place the cursor on the lower right
plot quadrant, and after clicking theright-mostmouse button, selectEdit with
theleft-mostmouse button. Leave theX-Axis variable set tot. For theY-Axis
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click on the down arrow after1: <None> and selectharvest. Now click on
Titles at the top of the edit window and type in theGraph Title box: Harvest.
In the X-axis Title box type: Year; and in theY-axis Title box: Harvest.
See Figure 1.10. ClickOK . Using theright-mostmouse button again on the
lower graph, selectScales. Set theX-Scaleas follows: deselectAuto Scale;
set Minimum = 1940; Maximum = 1955; Number of Ticks = 3; Label
every = 2. Select theY-Scale, deselectAuto Scale, and set:Minimum = 0;
Maximum = 1; Number of Ticks = 5; andLabel every= 1. ClickOK .

Figure 1.10: Plots and Titles panels for 2D tab.

Click on theSolve icon. Notice that a graphical representation of the☞ See the lower right graph
in Figure 1.11. Pacific sardine landings appears in the lower graph but the upper graph has

not been affected. That’s because we have not included harvest (landings)
in the sardine model yet. (Note: the two graphs have different vertical axis
scales.)

After clicking onClear and choosingClear All Runs, go to the equation☞ Includingharvestin the
sardine model. quadrant and modify thesardineODE as follows:

sardine′ = r ∗ sardine∗ (6− sardine)/6− harvest (5)

You may have to scroll the equations quadrant (on some computers) in order
to see the whole equation. (You can also move the dividing line between
the right and left quadrants, at the slight expense of the graphing resolution.)
Click the Enter box. Before we run the model, we must change the initial
conditions to reflect the reality of the Pacific sardine population at that time.
In the literature, the most reliable data for the Pacific sardine biomass starts
in 1941. Thus set theIC for t to 1941 and theIC for sardineto 2.71. Reset
Interval to 10. Now click theSolveicon and note the results. For best viewing
of the top right graph window choose theX-Scale; deselectAuto Scale; set
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Figure 1.11: Model sardine biomass (upper), harvested biomass (lower).

Minimum = 1940;Maximum = 1955;Number of Ticks = 3; Label every
= 2. Rescale theY-Scaleaxis to:Minimum = 0; Maximum = 3; Number of
Ticks = 3; Label every= 1. See Figure 1.11 for the graphs.

How do these model results compare with the expected behavior at the☞ Fishery collapse.

beginning of the chapter? While the overall behavior is captured in general
terms by the model, it is unusual to have a model match the estimated data
exactly.

✓ What are your thoughts about the model as it relates to historical behav-
ior? Explain any discrepancies.

Step 8: Interpret the implications of the model
It is now clear that while over-exploitation of the sardine landings was not the☞ Analysis.

sole factor, it played a very large role in the collapse of the California fishery
in the early 1950s. Since we now have a functioning model of that ten-year
period in time, you have the amazing power to use your computer to revise
history and attempt to save the fishing industry. What limit on the landings
would have allowed a sizable sardine harvest1 but not a collapse of the fishery?

1Historical note: A limit to the total catch of sardines at between 200,000 and 300,000 tons was
recommended as early as 1929, and repeatedly over the next several years.
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Now it is your turn to examine some options and try some alternate scenarios
in the Explorations that follow.

◆ How to Model in Eight Steps

Modeling a situation mathematically involves many ideas and activities, but
modeling is not always straightforward. There are many times when you may
be puzzled, confused, and frustrated and you must retrace or rethink the steps
involved. We summarize the steps in an order that allows for easy reference,
but keep in mind the need to retreat, reassess, and redefine your thinking.

1. State the problem and its context.

2. Identify and assign variables.

3. State the laws that govern the relationships between the variables.

4. Translate the laws into equations.

5. Solve the resulting equations.

6. Interpret and test the solutions in the context of the natural environment.

7. Refine the model until it predicts the empirical data.

8. Interpret the implications of the model.
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Answer questions in the space provided, or on
attached sheets with carefully labeled graphs. A
notepad report using the Architect is OK, too.

Name/Date

Course/Section

Exploration 1.1. Constant Harvesting of a Biomass

1. No harvesting.
Let’s examine the rate of growth (the derivative) of the sardine biomass using
the logistic model of ODE (3). To do this we’ll look at the values ofsardine′

as a function of sardine biomass size. Go to the equations quadrant and type
in the ODE

sardine′ = r ∗ sardine∗ (6− sardine)/6

r = 0.20

Click theEnter box.
To create a plot ofsardinevs. sardine′, select the2D tab (if necessary),

place the cursor over the lower right graph, press theright-mostmouse button,
and selectEdit . For theX-Axis use the down arrow to selectsardine. ForY-
Axis 1, selectsardine′. Click now on theTitles tab at the top of the edit
window. Type Rate of Growth vs. Biomass as the Graph Title, Sardine as
the X-axis label and Sardine′ as the Y-axis label. ClickOK . Place the cursor
over the lower right graph again, press theright-mostmouse button and select
Auto Scales: Both(if necessary). Next set theIC for t to 1941 and theIC
for sardineto 1, and set theInterval to 20. ClickClear and selectClear All
Runs (if necessary), then click theSolveicon.

The top graph shows (by default)sardinevs. time. Notice in the lower
graph that the sardine growth rate,sardine′, is maximized somewhere near a
midsized sardine population of about 3 million tons. Rescale the Y-axis of the
top graph (if necessary) toMinimum = 0; Maximum = 6; Number of Ticks
= 6. Verify that the sardine biomass grows at the rate of approximately 10%
to 40% per year, depending upon the size of the biomass.
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2. Constant harvesting.
Let’s analyze the effect of constant harvesting on the logistic sardine popula-
tion of Problem 1. Since the sardine biomass was 2.71 million tons in 1941,
reset thesardineIC to 2.71 and keep thesardinevertical scale set on the range
0 to 6 and re-solve to observe the relative stabilization of the population.

Now insert a constant harvesting term in the model by modifying the
ODE in the equation quadrant to read

sardine′ = r ∗ sardine∗ (6− sardine)/6− harvest

Try a harvest value that is slightly less than the biomass growth amount for
2.71 million tons by setting a constant harvest in the equation quadrant. For
example you could tryharvest= 0.28 (280,000 tons per year) and solve the
model. (Be sure to click on theEnter box first.)

Now click on the2D tab in the lower graph quadrant. Clear the graph☞ Clearing a 2D custom
graph. The same procedure clears
a 3D custom graph.

in that quadrant by setting all axes to<None> in the Plots tab of theEdit
box, then going to theTitles tab and deleting all titles. For the upper right
graph you can set up and run a sweep ofharvestover the values 0.1 (100,000
tons/year) to 0.7 (700,000 tons/year) using 7 points in the sweep. Describe
the biomass behavior for harvest levels of 0.1; 0.3; 0.5; 0.7. From your explo-
ration, determine what constant harvest amount provides a large harvest yet
does not jeopardize the long-term viability of the Pacific sardine population.
Explain what you mean by “large harvest” and “long-term viability.” Did the
harvest levels suggested by fishery researchers stand up?

3. How does the IC affect the optimum harvest level?
Is the optimum harvest level that you determined in Problem 2 affected by the
initial biomass of the sardine in 1941? Try some different values for the IC
and explain what you learn about the relationship between initial biomass and
the optimum constant harvest amount.



Answer questions in the space provided, or on
attached sheets with carefully labeled graphs. A
notepad report using the Architect is OK, too.

Name/Date

Course/Section

Exploration 1.2. Constant Effort Harvesting

1. Using a constant effort harvesting function.
Another model for harvesting is to land a certain percentage of the existing
biomass each year. This is calledconstant effort(or proportional) harvesting.
Introduce constant effort harvesting into ODE (5) by setting

harvest= 0.25∗ sardine

to harvest 25% of the sardine population each year. Try a run. What happens?
Go back and revise the harvest function to

harvest= k ∗ sardine

and sweep through several values of your choosing for the harvest coefficient
k. Summarize your results. What is the optimum harvest coefficient? Explain
what you mean by “optimum” harvest coefficient.
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2. How does the IC affect the optimum harvest percentage?
Run some experiments to determine if the optimum harvest percentage you
select in Problem 1 is sensitive to the initial biomass of the sardine in 1941.
Explain your results. How do your results compare to the results of Problem 3
in Exploration 1.1?
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attached sheets with carefully labeled graphs. A
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Exploration 1.3. Investigating a Harvesting Function

1. A unifying harvest strategy.
We can combine the strategies used in Explorations 1.1 (Problem 2) and 1.2
(Problem 1) by using a function that approximates each strategy at the ap-
propriate time: proportional harvest for small sardine biomass and constant
harvest for sufficiently large sardine biomass. A function suitable to this pur-
pose is

harvest= α ∗ sardine
β+ sardine

Use some algebra to demonstrate that the function does behave as claimed.
Approximately what is the proportional harvest coefficient? Approximately
what is the constant harvest level?
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2. Testing the function.
Determine values forα andβ suitable for the Pacific sardine based on what
you learned from Explorations 1.1 (Problem 2) and 1.2 (Problem 1). Is the
optimal choice ofα andβ dependent on the initial biomass of the sardine?
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Exploration 1.4. The Ricker Growth Rate Model

Biologists commonly use the Ricker function to model fish population repro-
duction. The Ricker function is R = αPe(Pr −P)/Pm, where R is the reproduction☞ Compare the Ricker

with the logistic function:
R= r P(1− P/K) for positive
constants r and K.

rate, α is a constant, P is the parental or spawning stock population, Pr is
the stock size at which R = P, and Pm is the stock size that yields maximum
reproduction in the absolute sense. Calibrated for the Pacific sardine during
the time period 1941 through 1951, this function is: R= 0.15Pe(2.4−P)/1.7.

1. The Ricker population model.
Replace the logistic term in ODE (5) with the Ricker function to obtain

sardine′ = 0.15∗ (sardine) ∗ exp((2.4− sardine)/1.7)

This function exhibits “compensatory behavior” that biologists know many
fish populations exhibit. Plot two sardine populations vs. time on the same
set of axes for comparison:sardine1′ as per the Ricker function above and
sardine2′ as per the logistic growth model used earlier. You have to select the
2D tab on the graphics window when defining the graph to get both popula-
tions on the same graph. To compare their respective growth patterns, plot the
two sardine populations from 1920 to 1960 (# Points= 40) with IC set to 1 on
both plots and with no harvesting. Based on this comparison, speculate what
“compensatory” behavior is as envisioned by the biologists and reflected by
the Ricker function.
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2. Repeat the harvest experiments.
Repeat Exploration 1.1, Problem 2, using the Ricker function in thesardine
ODE. What harvest level would provide a stable sustainable Pacific sardine
population? Test whether the optimal harvest rate depends on the popula-
tion IC. Are the results significantly different than when you used the logistic
function?
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A slope field and some solution curves fory′ = ysin(t + y).

Overview Ordinary differential equations (ODEs) model many natural processes, so solu-
tions of ODEs can be used to predict the behavior of those processes.

This chapter will investigate ODEs and initial value problems, their solutions,
and their solution curves, along with some methods for finding solution formulas.
Slope fields are introduced and used as guides to the behavior of solution curves.
The path of a juggler’s ball and the descent of a sky diver are modeled by ODEs.

Key words Differential equation; solution; integration; separation of variables; initial values;
modeling; slope field; direction field; juggling; sky diving; free fall; parachute;
gravity; Newton’s second law

See also Chapter 1 for more on modeling, and Chapter 5 for more on models of motion.
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◆ Differential Equations

Differential equations were first used in the seventeenth century to describe
physical phenomena, such as the motion of orbiting planets or swinging pen-
dulums. Since then they have been applied to processes, such as the growth
of biological populations, the management of investment portfolios, and many
other dynamical systems.

An ordinary differential equationis an equation involving an unknown
function of one variable and one or more of its derivatives. For example, the
ODE

dy
dt

= ycost

is a statement about an unknown functiony (the dependent variable) whose
independent variable ist. To solvethe ODE we need to find all the functions
y(t) that satisfy the ODE (we will discuss what we mean by a solution in the
next section).

✓ “Check” your understanding by identifying the independent and depen-
dent variables and theorder of each ODE (i.e., the highest-order derivative
that appears):

dy
dx

= 2y+ 2x

3
d2z
dt2

− 4
dz
dt

+ 7z= 4sin(2t)

◆ Solutions to Differential Equations

A function is a solution of an ODE if it yields a true statement when substi-
tuted into the equation. For example,y = 2t2 is a solution of the equation

dy
dt

= 4t (1)

✓ Can you find another solution of ODE (1)?

Actually, ODE (1) has infinitely many solutions. A single solution is☞ Most ODEs have infinitely
many solutions. called aparticular solution. The set of all solutions is called thegeneral

solution. For example, the general solution of ODE (1) isy = 2t2 + C, where
C is any constant, whiley = 2t2 + 3 is a particular solution.
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◆ Solving a Differential Equation

Solving a differential equation involves finding a function, just as solving an
algebraic equation involves finding a number.

An ODE such asdy/dt = 2ty gives us information about an unknown
function y in terms of its derivative(s). In your differential equations class,
you’ll learn some methods for finding solutions of ODEs. The section “Find-
ing a Solution Formula” later in this chapter also describes two techniques.

◆ Slope Fields

One useful way to get information about solutions of an ODE is to graph
them; graphs of solutions are calledsolution curves. For first-order ODEs,
you can actually get a good idea of what solution curves look like without
solving the equation! Notice that for the ODEy′ = ycost the slope of the
solution curve passing through the point(t, y) is given byycost. Every first-

☞ Slopes fory′ = ycost:
Point Slope
(0,0) 0
(0,1) 1
(0,2) 2
(0,−1) −1
(0,−2) −2
( π2 ,y) 0

order ODE gives you direct information about the slope of the solution curve
through a point, so you can visualize solution curves by drawing small line
segments with the correct slopes on a grid of fixed points. With patience (or
a computer), you can draw many such line segments (as in the chapter cover
figure). This is called aslope field. (Some books call it adirection field.) With

☞ Each segment of a slope
field is tangent at its midpoint to
the solution curve through that
midpoint.

practice you’ll be able to imagine some of the line segments running together
to make a graph. This approximates the graph of a solution to the ODE, that is,
a solution curve. Figure 2.1 shows a slope field with several solution curves.
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Figure 2.1: Slope field and seven solution curves for y′ = ycost.
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◆ Initial Values

We have seen that an ODE can have many solutions. In fact, the general
solution formula involves an arbitrary constant. What happens if we spec-
ify that the solution must satisfy another property, such as passing through a
given point? For example, all functionsy = 2t2 + C are solutions of the ODE
dy/dt = 4t, but only thespecificsolution y = 2t2 + 3 satisfies the condition
that y = 5 whent = 1. So, if we graph solution curves in thety-plane, only
the graph of the solutiony = 2t2 + 3 goes through the point(1,5).

The requirement thaty(1) = 5 is an example of aninitial condition, and
the combination of the ODE and an initial condition

dy
dt

= 4t, y(1)= 5 (2)

is called aninitial value problem(IVP). Its solution isy = 2t2 + 3.

✓ Replace the conditiony(1) = 5 in IVP (2) by y(2) = 3 and find the
solution of this new initial value problem. How many solutions are there?

◆ Finding a Solution Formula

An ODE usually has many solutions. How can you find a solution, and how
can you describe it? A solution formula provides a useful description, but
graphs and tables generated by ODE Architect are also useful, especially in
the all-too-frequent case where no formula can be found. Two techniques to
find solution formulas are summarized here, and others are in your textbook.

Integration

If f (t) is a continuous function, then the general solution of the ODE

dy
dt

= f (t)

is y(t) = F(t)+ C, whereF(t) is an antiderivative off . For example, the☞ A table of integrals comes
in handy here. general solution ofdy/dt = sint is y = −cost + C.

Separation of Variables

If you can write a differential equation in the form

dy
dt

= f (t)g(y)

then whereverg(y) �= 0 you can rewrite it as

1
g(y)

dy
dt

= f (t)

so that ∫
1

g(y)
dy=

∫
f (t)dt
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Figure 2.2: Four solution curves of dy/dt = sint/(3y2 + 1) through the marked
initial points.

If H(y) is an antiderivative of 1/g(y) and F(t) is an antiderivative off (t),☞ Keep that table of integrals
handy! then a solutiony(t) of the ODE solves the equation

H(y(t))= F(t)+ C

for some constantC.
Here’s an example of a separable ODE:

dy
dt

= sint
3y2 + 1

(3)

Separating the variables and finding the antiderivatives, we see that

(3y2 + 1)
dy
dt

= sint

y3 + y = −cost + C (4)

We won’t attempt to express a solutiony(t) directly in terms oft (andC),
but we can check that formula (4) is correct by differentiating each side with
respect tot. This gives

3y2dy
dt

+ dy
dt

= sint

which has the form of ODE (3) if we divide each side by 3y2 + 1. Fig-
ure 2.2 shows solution curves of ODE (3) through the initial points(0,−1.5),
(0,−1), (0,0), (0,1). The curves were plotted by using ODE Architect to
solve ODE (3) with the given initial data.

Solution formulas are useful, but they exist only for a small number of
ODEs of special forms. That’s where numerical solvers like ODE Architect
come in—they don’t need solution formulas.
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◆ Modeling

A mathematical modelis a system of mathematical equations relating specific
variables that represent some aspect of a natural process. Modeling involves
several steps:☞ The eight steps are

described in Chapter 1.

1. State the problem and its context.

2. Identify and assign variables.

3. State the laws that govern the relationships between the variables.

4. Translate the laws into equations.

5. Solve the resulting equations.

6. Interpret and test the solutions in the context of the natural environment.

7. Refine the model until it predicts the empirical data.

8. Interpret the implications of the model.

The models we consider all involve ODEs.

◆ The Juggler

You can observe the modeling process in the following juggler problem.

1. Find an ODE that describes the height of a ball between the time it
leaves the juggler’s hand, moving vertically upward, and the time it
falls back into the hand.

2. Lett = time (in seconds),h= height of the ball above the floor (in feet),
v = velocity (in ft/sec), anda = acceleration (in ft/sec2).

3. Apply Newton’s second law of motion to the ball: the massm of a
body times its acceleration is equal to the sum of all of the forces acting
on the body. We treat the ball as a point mass encountering negligible
air resistance (drag) so the only force acting on the ball is that due to
gravity, which acts downward.

4. By Newton’s second law, we have thatma= −mg, whereg= 32 ft/sec2

is the acceleration due to gravity near the surface of the earth, and the
minus sign indicates the downward direction of the gravitational force.
Since the ball’s acceleration isa = v′ wherev is its velocity, andv= h′,
we can model the ball’s motion byh′′ = −32. The initial heighth0 of☞ So the juggler’s ODE for

vertical motion ish′′ = −32. the ball is that of the juggler’s hand above the floor when the ball is
launched upward, and that is easy to measure. The initial velocityv0 is
harder to measure directly; it is simpler to solve the model first and then
experiment to deduce a reasonable value forv0.

5–8. Solving and testing are up to you. See Figure 2.3 for graphs ofh(t)☞ In the multimedia module
h0 = 4.5 ft. corresponding toh0 = 4 ft and five values ofv0.
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Figure 2.3: Five tosses of the juggler’s ball: initial velocities v0 range from 5
to 25 ft/sec. Which time-height curve corresponds to v0 = 25?

✓ How must you revise the process when the ball is thrown to the juggler’s
otherhand? (The result appears on Screen 3.4 of Module 2.)

◆ The Sky Diver

You might think that the path of a sky diver in free fall looks like the down-
ward path of the ball in the simplest juggler problem of vertical motion. How-
ever, as the sky diver’s velocity becomes large the effects of air resistance (or
drag) become noticeable and must be included in the model. A revised model
(starting with Step 3) follows:

3. In this case, Newton’s second law says that mass times acceleration is
equal to the force due to gravity plus that due to air resistance. Expe-
rience has shown that the force of air resistance can be modeled fairly☞ This kind of air resistance

is calledviscousdamping. well by a term that is proportional to velocity and opposite in direction.

4. We havemh′′ = mv′ = −mg− kv, wherek is a constant coefficient of
air resistance. The initial velocity of the sky diver isv0 = 0 ft/sec; the
initial height when the sky diver jumps from the plane ish0 ft.

5. We solve the second-order ODE forh in two steps, first forv (by sep-
arating the variables) and then forh (by integrating the expression we
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find for v, sincev = h′). Here are the steps:

☞ C is an arbitrary constant.

v′ = −g− k
m
v, v(0) = 0

1
g+ kv/m

dv
dt

= −1
∫

1
g+ kv/m

dv = −
∫

dt

(m/k) ln(g+ kv/m) = −t + C

ln(g+ kv/m) = (k/m)(−t + C)

Exponentiating and settingK = exp(kC/m) we obtain

g+ kv/m= Ke−(k/m)t

Sincev = 0 whent = 0, we find thatK = g. Solving forv we obtain

v = −mg
k

+ mg
k

e−(k/m)t

That means thath(t) solves the IVP

h′ = v = −mg
k

+ mg
k

e−(k/m)t, h(0) = h0

We find the formula forh(t) by integration and the fact thath = h0 at
t = 0:

h = −mg
k

t − m2g
k2 e−(k/m)t + m2g

k2 + h0

In our example of free fall (Screen 4.3), these equations become

☞ So the sky diver’s free fall
ODE ish′′ = −32− (k/5)v.

h′′ = v′ = −32− k
5
v if m= 5 slugs

h′ = v = −160
k

+ 160
k

e−(k/5)t

h = −160
k

t − 800
k2

e−(k/5)t + 800
k2

+ 13500 (5)

See Figure 2.4 for some time-height curves.

Since the massm of the sky diver doesn’t drop out of the ODE when
damping is added, we have to use appropriate units for the mass. In English
units (which the English have been wise enough to discard) we have

mass= force
acceleration

= weight
gravity

= lbs
ft/sec2

= slugs

Opening the Parachute

If we wish to model what happens when the parachute opens, we’ll need to
alter the model slightly to account for the sudden change in drag—that is, for
how the value ofk suddenly changes.
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Figure 2.4: Six sky divers in free fall from 13,500 ft: viscous damping con-
stants range from 0.5 to 1.5 slug/sec. Which sky diver has the smallest damp-
ing constant?

4. We can use experimental values for the drag coefficients: in free fall
k f f = 0.86, and, after the parachute opens,kp = 6.71, both in slugs/sec.
The parachute opens at timet p, whenh is 2500 feet. It’s hard to calcu-☞ Opening the chute changes

k from kf f to kp. late tp from formula (5), so we can approximate it by reading the graph
of h vs. t (use the Explore feature on graphs of Screen 4.4).

We noticed on Screen 4.5 of Module 2 that an instantaneous opening of
the parachute would exert an enormous force on the sky diver, so the model
was further revised to allow the chute to open over a few seconds (a more
realistic model), and we letk grow gradually, in a linear way, as it goes from
k f f to kp. Take a look at Exploration 2.4, Problem 3.

References Borrelli, R. L., and Coleman, C. S.,Differential Equations: A Modeling Per-
spective, (1998: John Wiley & Sons, Inc.)

Boyce, W. E., and DiPrima, R. C.,Elementary Differential Equations and
Boundary Value Problems, 6th ed. (1997: John Wiley & Sons, Inc.)

Hale, M., and Skidmore, A.,A Guided Tour of Differential Equations, (1997:
Prentice-Hall)

C.ODE.E Newsletter, http://www.math.hmc.edu/codee, for articles on model-
ing with ODEs

IDEA (Internet Differential Equations Activities), created by Thomas LoFaro
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Answer questions in the space provided, or on
attached sheets with carefully labeled graphs. A
notepad report using the Architect is OK, too.

Name/Date

Course/Section

Exploration 2.1. ODEs and Their Solutions

1. Where is that constant?
Solution formulas for first-order ODEs often involve an arbitrary constantC,
and it can show up in all sorts of strange places in the formulas. Solve each of
the following ODEs fory in terms oft andC.

(a) y′ = 1+ sint (b) y′ = −y/3 (c) y′ = t/y (d) y′ = 2t2y/ ln y

2. Let’s check out the ODE Architect.
You can see how good the ODE Architect solver is by creating initial value
problems for the ODEs of Problem 1 and using the Architect to solve them
and graph the solutions. Then compare the solver graphs with those obtained
using the solution formula. For example, use ODE Architect to solve and
plot the solution of the IVPy′ = −y/3, y(0) = 1. Then graph the solution
y = e−t/3 and compare. To do this, enter the following two equations on the
editor screen:

y′ = −y/3

u = e−t/3

Next enter the initial condition for the ODE, then solve and plot the solution
on one of the graphics screens. Use the custom 2D plot tab to overlay the
graph ofu. Do the graphs match? Repeat with your own initial data for each
of the other three ODEs in Problem 1.



36 Exploration 2.1

3. How many1solutions does this IVP have?
Find formulas for two different solutions for the IVPy′ = y1/3, y(0) = 0.
Which solution does ODE Architect give? Repeat withy′ = y2/3, y(0) = 0.
[Hint: Is y(t)= 0 for all t a solution?]

4. The effect of a singularity in the differential equation.
The ODEy′ = y/t has a singularity at the point(0,0) because at that point,
y/t = 0/0, which is undefined. Find a formula for all solutions of the ODE.
Does the IVPy′ = y/t, y(0)= 0, have any solutions? Use ODE Architect for
y′ = y/t, y(1) = a, for various positive values ofa and then solve backward
in time to see what happens ast gets near zero. Explain.

1Usually an IVP has a single solution, but in this Exploration you will see some exceptions. You
can find out why by reading about “existence” and “uniqueness” in your text.
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Exploration 2.2. Slope Fields

1. What happens in the long term?
The following ODEs are given in Screen 2.2 (Experiment 1). Using ODE
Architect, describe what the solutions do ast gets very large. Include sketches
or printouts of your solution curves and their slope fields.

(a) y′ = y− 1 (b) y′ = t/4 (c) y′ = (y− t)/10

2. More long-term behavior.
Repeat Problem 1 with the following ODEs.

(a) y′ = ty (b) y′ = (y2 − 4)/10 (c) y′ = (y− 3)/5
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3. Still more long-term behavior.
Using ODE Architect, describe the long-term behavior of the solutions of
y′ = ysin(t + y).

4. Strange solutions.
Make up your own ODEs, especially ones whose solution curves or slope
fields form strange patterns. Use ODE Architect to display your results. De-
scribe the long-term behavior of solution curves. Attach printouts of your
graphs.
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Exploration 2.3. The Juggler

Second-order ODEs of the form y′′ = f (t, y, y′) are to be solved in Explo-
rations 2.3 and 2.4. Since ODE Architect only accepts first-order ODEs, we
will replace y′′ = f by an equivalent pair of first-order ODEs. We do this by
introducing v = y′ as another dependent variable:

y′ = v

v′ = f (t, y, v)

1. What goes up must come down.
Use ODE Architect to find the position of the ball at several different timest
for several different initial velocities. Assume no air resistance and that the
ball moves in a vertical line. What is the name for the shapes of the solution
curves in thety-plane? Does it take longer for the ball to rise or to fall? Show
and explain the difference (if there is one!).

2. Hand-to-hand motion of the ball.
For a given initial speedv0, find the range of values of the angleθ0 so that the
ball goes from one hand to the other. Now increase the initial speed. What
happens to the range of successful values ofθ0? Explain. [Suggestion: First
take a look at Screen 3.5 (Experiment 2 in Module 2); then enter the equations
in ODE Architect and varyθ0 with fixed v0 to find the ranges. You may also
want to take a look at Screens 1.2 and 1.3 in Module 5.]
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3. Raise your hand!
Suppose the juggler raises his catching hand one foot higher. Repeat Prob-
lem 2 in this setting.

4. Juggling two balls.
Construct model ODEs for tossing two balls, one after the other, from one
hand to the other. Use ODE Architect to find the positions of both balls at
time t.



Answer questions in the space provided, or on
attached sheets with carefully labeled graphs. A
notepad report using the Architect is OK, too.

Name/Date

Course/Section

Exploration 2.4. The Sky Diver

Second-order ODEs of the form y′′ = f (t, y, y′) are to be solved in Explo-
rations 2.3 and 2.4. Since ODE Architect only accepts first-order ODEs, we
will replace y′′ = f by an equivalent pair of first-order ODEs. We do this by
introducing v = y′ as another dependent variable:

y′ = v

v′ = f (t, y, v)

1. Terminal speed of a falling body.
Use ODE Architect and determine the sky diver’s terminal speeds for several
different values of the viscous damping coefficient (usem= 5 slugs andg =
32 ft/sec2). Is there any difference if the sky diver jumps at 25,000 feet instead
of 13,500 feet? [Suggestion:After entering the ODE and solving, click on a
Data tab in either of the two graphics windows and use approximate data you
find there.]

2. Slow down!
If a sky diver can survive a free-fall jump only if she hits the ground at no
more than 30 ft/sec, what values of the viscous drag coefficientk make this
possible? Are thesek-values realistic? (Usem= 5 slugs andg = 32 ft/sec2.)
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3. A Modeling Challenge!
Let’s construct a model for a parachute that opens over a 3 second time span.
The ODEs for this model are given on Screen 4.5 (Experiment 2), but we have
to definek(t). Assume that the sky diver has a mass of 5 slugs and that she
jumps from 13,500 ft. The parachute starts to open after 65 seconds of free
fall and the damping coefficient changes linearly fromk f f = 0.86 slugs/ft to
kp = 6.71 slugs/ft as the chute opens. In other words,

k(t) =



k f f , t < 65
k f f + kp−kf f

3 (t − 65), 65≤ t ≤ 68
kp, t > 68

(a) Write an expression fork(t) using the properties of step functions.Hint:☞ A step function is one of
the engineering functions. You
can find them by going to ODE
Architect and clicking on Help,
Topic Search, and Engineering
Functions.

Step(t,65)− Step(t,68)=
{

1, 65≤ t ≤ 68
0, otherwise

(b) Use ODE Architect to plot the sky diver’s acceleration, velocity, and
height vs. time, using your expression fork(t).
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A room heats up in the morning, and the air conditioner in the room
starts its on-off cycles.

Overview In this chapter, we’ll use Newton’s law of cooling to build mathematical models
of a number of situations that involve the variation of temperature in a body with
time. Some of our models involve ODEs that can be solved analytically; others will
be solved numerically by ODE Architect. We’ll compare the analytical solutions
and the numerical results and see how both can be used to verify predictions
made by the models.

Key words Modeling; Newton’s law of cooling (and warming); initial conditions; general so-
lution; separation of variables; integrating factor; heat energy; air conditioning;
melting

See also Chapter 1 for more on modeling and Chapter 2 for the technique of separation of
variables.
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◆ Newton’s Law of Cooling

Have you ever gotten an order of piping hot French fries, only to find them
ice cold in what seems like a matter of moments? Whenever an object (or
substance) is warmer than its surroundings, it cools because it loses heat en-
ergy. The greater the temperature difference between the object and its sur-
roundings, the faster the object cools. The temperature of a body rises if its
surroundings are at a higher temperature than it is. What happens to the ice
cream in a cone on a hot day?

Although it is an oversimplification, we will assume that the temperature
is uniform at all points in the objects we wish to model, but the temperature
may change with time. Let’s assume that the rate of change of the object’s
temperature is proportional to the difference between its temperature and that
of its surroundings. Stated mathematically, we have:

☞ This becomes a “law of
warming” if the surroundings are
hotter than the object.

Newton’s law of cooling.If T(t) is the temperature of an object at time
t andTout(t) is the temperature of its surroundings, then

dT
dt

= k(Tout − T) (1)

wherek is a positive constant called thecooling coefficient.

◆ Cooling an Egg

What happens to the temperature of a hard-boiled egg when you take it out
of a pot of boiling water? At first, the egg is the same temperature as the
boiling water. Once you take it out of the water the egg begins to cool, rapidly
at first and then more slowly. The temperature of the egg,T(t), drops at a
rate proportional to the difference between the temperature of the air,Tout,
and T(t). Notice from ODE (1) that ifTout < T(t), the rate of change of
temperature,dT/dt, is negative, soT(t) decreases and your egg cools.

✓ “Check” your understanding by answering this question: What happens
to the temperature of an egg if it is boiled at 212◦F and then transferred to an
oven at 400◦F?

◆ Finding a General Solution

Equation (1) is a first-order ODE and its general solution contains one arbi-
trary constant. We can see this as follows: IfTout is a constant, then ODE (1)
is separable, and separating the variables we have☞ See Chapter 2 for how to

solve a separable ODE. ∫
dT

Tout − T
=
∫

k dt
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Finding an antiderivative for each side we obtain

☞ Why are the absolute value
signs needed?

− ln |Tout − T(t)| = kt + K

whereK is an arbitrary constant. Multiplying through by−1 and exponenti-
ating gives us

|Tout − T(t)| = e−Ke−kt

or, after dropping the absolute value signs, we have that

T(t) = Tout + Ce−kt (2)

whereC = ±e−K is now the arbitrary constant. The solution formula (2) is
called thegeneral solutionof ODE (1).

✓ How does the temperatureT(t) in (2) behave ast → +∞? Why can the
constantC be positive or negative?

Given an initial condition, we can determineC uniquely and identify a
single solution from the general solution (2). If we takeT(0)= T0, then since
T(0) = Tout + C we see thatC = T0 − Tout and we get the unique solution

T(t) = Tout + (T0 − Tout)e
−kt (3)

The constant of proportionality,k, in ODE (1) determines the rate at
which the body cools. It can be evaluated in a number of ways, for exam-
ple, by measuring the body’s temperature at two different times and using
formula (3) to solve forT0 andk. Figure 3.1 shows temperature curves corre-
sponding toTout = 70◦F, T0 = 212◦F, and five values ofk.
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Figure 3.1: The cooling coefficient k ranges from 0.03 to 0.3 min−1 for eggs
of different sizes. Which is the k = 0.03 egg?
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✓ An object is initially at 212◦F and cools to 190◦F after 5 minutes in a
room that is at 72◦F. Find the coefficient of cooling,k, and determine how
long it will take to cool to 100◦F.

Finding the general solution formula (2) for ODE (1) was straightforward.
However, the vast majority of ODEs are not so simple to solve and we have
to use numerical methods. To demonstrate the accuracy of such methods,☞ ODE Architect helps out

again. you can compare the numerical solutions from ODE Architect with a known
solution formula.

✓ How long will it take for a 212◦F egg to cool to 190◦F in a 72◦F room
if k = 0.03419 min−1? Use ODE Architect and formula (3) and compare the
results.

◆ Time-Dependent Outside Temperature

When considering the cooling of an egg, ODE (1) is separable becauseTout

is constant in this instance. Let’s consider what happens when the outside
temperature changes with time.

We can still use Newton’s law of cooling, so that ifT(t) is the egg’s
temperature andTout(t) is the room’s temperature, then

dT
dt

= k(Tout(t)− T) (4)

Note that ODE (4) is not separable (becauseTout varies with time) but it is
linear, so we can find its general solution as follows. Rearrange the terms to
give the linear ODE in standard form:

dT
dt

+ kT = kTout(t)

Multiply both sides byekt, so that

ekt

(
dT
dt

+ kT

)
= kTout(t)e

kt (5)

Since the left-hand side of ODE (5) is(d/dt)(ektT(t)), it can be rewritten:

d
dt

(
ektT

) = kTout(t)e
kt (6)

Integrating both sides of ODE (6) we have that

ektT =
∫

kTout(t)e
ktdt + C

whereC is an arbitrary constant. The magic factorµ(t) = ekt that enabled us
to do this is called anintegrating factor. So ODE (4) has the general solution☞ Every ODE text discusses

integrating factors and first-order
linear ODEs. T(t) = e−kt

(∫
kTout(t)e

ktdt + C

)
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Figure 3.2: Eggs at initial temperatures of 180, 150, 120, and 90◦F cool in a
room whose temperature oscillates sinusoidally about 70◦F for k = 0.03min−1.
Do the initial temperatures matter in the long term?

Finally, lettingT(0) = T0 and integrating from 0 tot, we get the solution

T(t) = e−kt

(∫ t

0
kTout(s)e

ksds+ T0

)
(7)

It may be possible to evaluate the integral (7) analytically, but it is easier
to use ODE Architect right from the start. See Figure 3.2 for egg temperatures
in a room whose temperature oscillates between hot and cold.

✓ Show that ifTout is a constant, then formula (7) reduces to formula (3).

✓ Use equation (7) to find a formula forT(t) if☞ You may find a computer
algebra system or a table of
integrals helpful! Tout(t) = 82− 10sin

(
2π(t + 3)

24

)

Use a table of integrals to carry out the integration.

◆ Air Conditioning a Room

Now let’s build a model that describes a room cooled by an air conditioner.
Without air conditioning, we can model the change in temperature using
ODE (1). When the air conditioner is running, its coils remove heat energy at
a rate proportional to the difference betweenTr , the room temperature, and the
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temperatureTac of the coils. So, using Newton’s law of cooling for the tem-
perature change due to both the air outside the room and the air conditioner
coils, our model ODE is

☞ Newton’s law of cooling
(twice)!

dTr

dt
= k(Tout − Tr )+ kac(Tac − Tr )

whereTout is the temperature of the outside air andk andkac are the appropri-
ate cooling coefficients. If the unit is turned off, thenkac = 0 and this equation
reduces to ODE (1).

Let’s assume that the initial temperature of the room is 60◦F and the out-
side temperature is a constant 100◦F. The air conditioner operates with a coil
temperature of 40◦F, switches on when the room reaches 80◦F, and switches
off at 70◦F. Initially, the unit is off and the change in the room temperature is
modeled by

☞ Time t is measured in
minutes.

dTr

dt
= 0.03(100− Tr ), Tr (0) = 60 (8)

where we have taken the cooling coefficientk = 0.03 min−1. As we expect,
the temperature in the room will rise as time passes. At some timeton the
room’s temperature will reach 80◦F and the air conditioner will switch on. If
kac = 0.1 min−1, then fort > ton the temperature is modeled by the IVP

dTr

dt
= 0.03(100− Tr )+ 0.1(40− Tr ), Tr (ton) = 80 (9)

which is valid until the room cools to 70◦F at some timeto f f . Then fort > tof f

the room temperature satisfies the IVP (8) but with the new initial condition
Tr (tof f ) = 70. Each time the unit turns on or off the ODE alternates between
the two forms given in (8) and (9).

Solving the problem by hand in the manner just described is very tedious.
However, we can use ODE Architect to change the ODE automatically and
without having to findton andto f f . The key is to definekac to be a function
of temperature by using a step function; here’s how we do it. In the equation

☞ The modeling here is more
advanced than you have seen up
to this point. You may want to
just use the equations and skim
the modeling.

quadrant of ODE Architect write the ODE as

Tr′ = 0.03∗ (100− Tr)+ kac∗ (40− Tr)

Now definekac as follows:

☞ The step function is one of
the engineering functions. You
can find them by going to ODE
Architect and clicking on Help,
Topic Search, and Engineering
Functions.

kac= 0.1∗ Step(Tr,Tc)

where

Tc= 75+ 5∗ B

HereTc is the control temperature and

B = 2∗ Step(Tr′,0)− 1

Note thatB = +1 whenT′
r > 0 (the room is warming) andB = −1 when

T′
r < 0 (the room is cooling). This causesTc to change from 80◦F to 70◦F (or
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Figure 3.3: Air conditioning keeps the room temperature in the comfort zone,
70◦F ≤ Tr ≤ 80◦F.

the reverse) depending on whether the room is warming or cooling. Finally,
kac is zero (the air conditioner is off) whenTr < Tc, andkac = 0.1 (the air
conditioner is on) whenTr > Tc.

The overall effect is that the air conditioner switches on only if the room
temperature is above 80◦F, then it runs until the room is cooled to 70◦F, and
then it switches off. The room temperature rises again to 80◦F, and the pro-
cess repeats. The temperature-vs.-time plot is shown in Figure 3.3. The ac-
companying screen image shows that we have set the maximum time step to
0.1 (under the Solver tab). If the internal time steps are not kept small, the
Architect will not correctly notice when the step functions turn on and off.

◆ The Case of the Melting Snowman

It is difficult to model the melting of a snowman because of its complicated
geometry: a large roundish ball of snow with another smaller mound on top.
So let’s simplify the model by treating the snowman as a single spherical ball
of snow. The rate at which the snowman melts is proportional to the rate at
which it gains thermal energy from the surrounding air, and it is given by

dV
dt

= −h
dE
dt

(10)

whereV is the ball’s volume,E is thermal energy, andh is a positive constant.
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Our snowman will gain thermal energy only at its surface, where it is
exposed to the warm air. So, it is reasonable to assume that the energy gain
is proportional to both the surface area of the snowman and the temperature
difference between the air and the snow:☞ Remember that the

snowman’s temperature is always
32◦F. dE

dt
= κA(V)(Tout − 32) (11)

whereκ is a positive constant, andA(V) is the surface area of a sphere of
volumeV.

If we combine equations (10) and (11) and takek = κh, we obtain☞ This is the snowman’s law
of melting.

dV
dt

= −kA(V)(Tout − 32) (12)

✓ The volume of a sphere of radiusr is V = 4
3πr3 and its surface area is

A = 4πr2. Eliminater between these two formulas to expressA as a function
of V. (You will need this soon.)

Note that ODE (12) is separable even when the outside temperatureTout

is a function of time. Separating the variables and integrating we find the
formula ∫

1
A(V)

dV = −
∫

k(Tout(t)− 32)dt+ C (13)

which definesV implicitly as a function oft. We can find the constant of
integrationC from the volume of the snowman at a specific time. However,
expressions for the integrals in formula (13) may be hard to find. Once again
ODE Architect comes to the rescue and solves ODE (12) numerically, given
formulas forA(V), Tout(t), and the initial volume.

✓ If k = 0.1451 ft/(hr◦F), the original volume of the snowman is 10 ft3, and
the outside temperature is 40◦F, how many hours does it take the snowman’s
volume to shrink to 5 ft3?

References Nagle, R.K., and Saff, E.B.,Fundamentals of Differential Equations, 3rd ed.
(1993: Addison-Wesley)

Farlow, S.J.,An Introduction to Differential Equations and their Applications,
(1994: McGraw-Hill)



Answer questions in the space provided, or on
attached sheets with carefully labeled graphs. A
notepad report using the Architect is OK, too.

Name/Date

Course/Section

Exploration 3.1. Cooling Bodies

1. Too hot to handle.
When eating an egg, you don’t want it to be too hot! If an egg with an initial
temperature of 15◦C is boiled and reaches 95◦C after 5 minutes, how long will
you have to wait until it cools to 70◦C?

2. A dead body, methinks.
In forensic science, it is important to be able to estimate the time of death if
the circumstances are suspicious. Assume that a corpse cools according to
Newton’s law of cooling. Suppose the victim has a temperature of 72◦F when
it is found in a 40◦F walk-in refrigerator. However, it has cooled to 66.8◦F
two hours later when the forensic pathologist arrives. Estimate the time of
death.1

1From “Estimating the Time of Death” by T.K. Marshall and F.E. Hoare,Journal of Forensic
Sciences, Jan. 1962.
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3. In hot water.
Heat a pan of water to 120◦F and measure its temperature at five-minute in-
tervals as it cools. Plot a graph of temperature vs. time. For various values
of the constantk in Newton’s law of cooling, use ODE Architect to solve the
rate equation for the water temperature. What value ofk gives you a graph
that most closely fits your experimental data?

4. More hot water.
In Problem 3 you may have found it difficult to find a suitable value ofk. Here
is the preferred way to determinek. The solution to ODE (1) is

T(t) = Tout + (T0 − Tout)e
−kt

where in this contextTout is the room temperature. We can measureTout and
the initial temperature,T0. Rearranging and taking the natural logarithm of
both sides gives

ln |T(t)− Tout| = ln |T0 − Tout| − kt

Using the data of Problem 3, plot ln|T(t)− Tout| againstt. What would you
expect the graph to look like? Use your graph to estimatek, then use ODE
Architect to check your results.



Answer questions in the space provided, or on
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notepad report using the Architect is OK, too.

Name/Date
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Exploration 3.2. Keeping Your Cool

1. On again, off again.
When a room is cooled by an air conditioner, the unit switches on and off
periodically, causing the temperature in the room to oscillate. How does the
period of oscillation depend on the following factors?

� The upper and lower settings of the control temperature

� The outside temperature

� The coil temperature,Tac
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2. Keeping your cool for less.
The cost of operating an air conditioner depends on how much it runs. Which
is the most economical way of cooling a room over a given time period?

� Set a small difference between the control temperatures, so that the tem-
perature is always close to the average.

� Allow a large difference between the control temperatures so that the
unit switches on and off less frequently.

Make sure the average of the control temperatures is the same in all your tests.
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Exploration 3.3. The Return of the Melting Snowman

1. The half-life of a snowman.
Use ODE Architect to plot volume vs. time for several different initial snow-
man volumes between 5 and 25 ft3, assuming thatk = 0.1451 ft/(hr◦F) and
Tout = 40◦F. For each initial volume use the Explore feature of ODE Archi-
tect to find the time it takes the snowman to melt to half of its original size,
and make a plot of this “half-life” vs. initial volume. Any conclusions? [To
access the Explore feature, click on Solutions on the menu bar and choose Ex-
plore. This will bring up a dialog box and a pair of crosshairs in the graphics
window. Move the crosshairs to the appropriate point on the solution curve
and read the coordinates of that point from the dialog box. Note that the Index
entry gives the corresponding line in the Data table.]

2. Sensitivity to outside temperature.
Now fix the snowman’s initial volume at 10 ft3 and use ODE Architect to plot
a graph of volume vs. time for several different outside temperatures between
35◦F and 45◦F, with k = 0.1451 ft/(hr◦F). Find the time it takes the snowman
to melt to 5 ft3 for each outside temperature used and plot that time against
temperature. Describe the shape of the graph.
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3. Other snowmen.
In developing our snowman model, we assumed that the snowman could be
modeled as a sphere. Sometimes snowmen are built by rolling the snow in
a way that makes the body cylindrical. How would you model a cylindrical
snowman? Which type of snowman melts faster, given the same initial volume
and air temperature?
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The phenomenon of beats.

Overview Second-order linear differential equations, especially those with constant coeffi-
cients, have a host of important applications. In this chapter we explore some
phenomena involving mechanical and electrical oscillations. The first part deals
with some basic features common to oscillations of all sorts. The second part
applies some of these results to seismographs, which are instruments used for
recording earthquake data.

Key words Newton’s second law; oscillation; period; frequency; amplitude; phase; simple
harmonic motion; viscous damping; underdamping; overdamping; critical damp-
ing; transient; steady-state solution; forced oscillation; seismograph; Kirchhoff’s
laws

See also Chapter 5 for more on vectors and damping, Chapters 6 and 10 for more on oscil-
lations, and Chapter 12 for more on forced oscillations.
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◆ Second-Order ODEs and the Architect

ODE Architect will accept only first-order ODEs, so how can we use it to
solve a second-order ODE? There is a neat trick that does the job, and an
example will show how. Suppose we want to use ODE Architect to study the
behavior of theinitial value problem(or IVP):

u′′ + 3u′ + 10u = 5cos(2t), u(0)= 1, u′(0) = 0 (1)

Let’s write v = u′, then

v′ = d
dt
(v) = d

dt
(u′) = u′′

u′′ = −10u− 3u′ + 5cos(2t)

so IVP (1) becomes

u′ = v, u(0)= 1

v′ = −10u− 3v+ 5cos(2t), v(0) = 0
(2)

ODE Architect won’t accept IVP (1), but it will accept the equivalent IVP (2).☞ ODE Architect only
accepts ODEs innormal form;
for example, write 2x′ − x = 6 as
x′ = x/2+ 3 with thex′ term
alone on the left.

The componentsu andv give the solution of IVP (1) and its first derivative
u′ = v. If we use ODE Architect to solve and plot the component curveu(t)
of system (2), we are simultaneously plotting the solutionu(t) of IVP (1).

✓ “Check” your understanding by converting the IVP

2u′′ − 2u′ + 3u = −sin(4t), u(0)= −1, u′(0) = 2

to an equivalent IVP involving a system of two normalized first-order ODEs.

◆ Undamped Oscillations

Second-order differential equations arise naturally in physical situations; for
example, the motion of an object is described by Newton’s second law,F =
ma. Here, F is the sum of the forces acting on the object of massm and
a is the acceleration, which is the second derivative of the object’s position.
Many of these differential equations lead tooscillationsor vibrations. Many
oscillating systems can be modeled by a system consisting of a mass attached
to a spring where the motion takes place in a horizontal direction on a table.
This simplifies the derivation of the equation of motion, but the same equation
also describes the up-and-down motion of a mass suspended by a vertical
spring.

Let’s assume an ideal situation: there is no friction between the mass and
the table, there is no air resistance, and there is no dissipation of energy in the
spring or anywhere else in the system. The differential equation describing
the motion of the mass is

m

-u

k

m
d2u
dt2

= −ku (3)
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whereu(t) is the position of the massm relative to its equilibrium andk is the
spring constant. The natural tendency of the spring to return to its equilibrium
position is represented by the restoring force−ku. Two initial conditions,☞ This is also calledHooke’s

law restoring force.

u(0)= u0, u′(0) = v0 (4)

whereu0 andv0 are the initial position and velocity of the mass, respectively,
determine the position of the mass uniquely. ODE (3) together with the ini-
tial conditions (4) constitute a well-formulated initial value problem whose
solution predicts the position of the mass at any future time.

The general solution of ODE (3) is☞ See the first two references
for derivations of formula (5).

u(t)= C1 cos(ω0t)+ C2 sin(ω0t) (5)

whereC1 andC2 are arbitrary constants andω2
0 = k/m. Applying the initial

conditions (4), we find thatC1 = u0 andC2 = v0/ω0. Thus the solution of the
IVP (3), (4) is

u(t)= u0 cos(ω0t)+ (v0/ω0)sin(ω0t) (6)

The corresponding motion of the mass isperiodic, which means that it repeats
itself after the passage of a time intervalT called theperiod. If we measure
time in seconds, then the quantityω0 is thenatural (circular) frequencyin☞ The term “circular

frequency” is only used with
trigonometric functions.

radians/sec, andT is given by

T = 2π/ω0 (7)

The reciprocal ofT, or ω0/2π, is thefrequencyof the oscillations measured
in cycles per second, orhertz. Notice that sinceω0 = √

k/m, the frequency
and the period depend only on the mass and the spring constant and not on the
initial datau0 andv0.

By using a trigonometric identity, the solution (6) can be rewritten in the
amplitude-phase formas a single cosine term:

☞ This motion is called
simple harmonic motion. See
Screen 1.3 of Module 4 for
graphs.

u(t)= Acos(ω0t − δ) (8)

whereA andδ are expressed in terms ofu0 andv0/ω0 by the equations

A =
√

u2
0 + (v0/ω0)2, tanδ = v0

u0ω0
(9)

The quantityA determines the magnitude oramplitudeof the oscillation (8);δ
is called thephase(or phase shift) becauseδ/ω0 measures the time translation
from a standard cosine curve.

✓ Show that (8) is equivalent to (6) whenA andδ are defined by (9).
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◆ The Effect of Damping

Equation (8) predicts that the periodic oscillation will continue indefinitely. A
more realistic model of an oscillating spring must include damping. A simple,
useful model results if we represent the damping force by a single term that is☞ The viscous damping

force is−c du/dt. proportional to the velocity of the mass. This model is known as theviscous
dampingmodel; it leads to the differential equation

m
d2u
dt2

= −ku− c
du
dt

(10)

where the positive constantc is the viscous damping coefficient.
The behavior of the solutions of ODE (10) is determined by the rootsr1

andr2 of thecharacteristic polynomial equation,

mr2 + cr + k = 0

Using the quadratic formula, we find that thecharacteristic roots r1 andr2 are

r1 = −c+
√

c2 − 4mk
2m

, r2 = −c−
√

c2 − 4mk
2m

(11)

The nature of the solutions of ODE (10) depends on the sign of thediscrimi-
nant c2 −4mk. If c2 �= 4mk, thenr1 �= r2 and the general solution of ODE (10)
is☞ Check that this equation

gives a solution of ODE (10).

u = C1er1t + C2er2t (12)

whereC1 andC2 are arbitrary constants.
The most important case isunderdampingand occurs whenc2 − 4mk< 0,

which means that the damping is relatively small. In the underdamped case,
the characteristic rootsr1 andr2 in formula (11) are the complex numbers

r1 = − c
2m

+ iµ, r2 = − c
2m

− iµ, whereµ =
√

4mk− c2

2m
�= 0 (13)

Euler’s formula implies that

e(α+iβ)t = eαt(cosβt + i sinβt)

for any real numbersα andβ, so

er1t = e−ct/2m(cosµt + i sinµt), er2t = e−ct/2m(cosµt − i sinµt) (14)

Now, using the initial conditions together with equations (12) and (14), we
find that the solution of the IVP

m
d2u
dt2

+ c
du
dt

+ ku= 0, u(0)= u0, u′(0) = v0 (15)

is given by☞ Solutions of an
underdamped ODE oscillate with
circular frequencyµ and an
exponentially decaying
amplitude.

u = e−ct/2m

{
u0 cos(µt)+

[
v0

µ
+ cu0

2mµ

]
sin(µt)

}
(16)
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Figure 4.1: A solution curve of the
underdamped spring-mass ODE,
u′′ + 0.125u′ + u = 0.
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Figure 4.2: Solution curves of the
overdamped spring-mass ODE, u′′ +
2.1u′ + u = 0.

✓ Verify thatu(t) defined in formula (16) is a solution of IVP (15).

The solution (16) represents an oscillation with circular frequencyµ and
an exponentially decaying amplitude (see Figure 4.1). From the formula
in (13) we see thatµ < ω0, whereω0 = √

k/m, but the difference is small
for smallc.

If the damping is large enough so thatc2 − 4mk> 0, then we haveover-☞ Take a look at Screen 1.6
of Module 4. dampingand the solution of IVP (15) decays exponentially to the equilibrium

position but does not oscillate (see Figure 4.2). The transition from oscilla-
tory to nonoscillatory motion occurs whenc2 − 4mk= 0. The corresponding
value ofc, given byc0 = 2

√
mk, is calledcritical damping.

◆ Forced Oscillations

Now let’s see what happens when an external force is applied to the oscillat-
ing mass described by ODE (10). IfF(t) represents the external force, then☞ F(t) is also called the

input, or driving term; solutions
u(t) are theresponsesto the
input and the initial data.

ODE (10) becomes

m
d2u
dt2

+ c
du
dt

+ ku= F(t) (17)

Some interesting things happen ifF(t) is periodic, so we will look at the ODE

m
d2u
dt2

+ c
du
dt

+ ku= F0 cos(ωt) (18)
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whereF0 andω are the amplitude and circular frequency, respectively, of the
external forceF. Then, in the underdamped case, the general solution of
ODE (18) has the form☞ Check that this formula

gives solutions of ODE (18).
u(t) = e−ct/2m[C1 cos(µt)+ C2 sin(µt)] + acos(ωt)+ bsin(ωt) (19)

wherea and b are constants determined so thatacos(ωt)+ bsin(ωt) is a
solution of ODE (18). The constantsa andb depend onm, c, k, F0, andω of
ODE (18), but not on the initial data. The constantsC1 andC2 can be chosen
so thatu(t) given by formula (19) satisfies given initial conditions.

The first term on the right side of the solution (19) approaches zero as
t → +∞; this is called thetransientterm. The remaining two terms do not
diminish ast increases, and their sum is called thesteady-state solution(or
the forced oscillation), here denoted byus(t). Since the steady-state solution
persists forever with constant amplitude, it is frequently the most interesting
solution. Notice that it oscillates with the circular frequencyω of the driving
force F. It can be written in the amplitude-phase form (8) as

us(t) = Acos(ωt − δ) (20)

whereA andδ are now given by

A = F0√
m2(ω2

0 − ω2)2 + c2ω2
, tanδ = cω

m(ω2
0 −ω2)

(21)

Figure 4.3 shows a graphical example of solutions that tend to a forced oscil-
lation.

For an underdamped system with fixedc, k, andm, the amplitudeA of
the steady-state solution depends upon the frequency of the driving force. It
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Figure 4.3: Solutions of u′′ + 0.3u′ + u = 10cos 2t approach a unique forced
oscillation with the circular frequency 2 of the input.



Beats 63

is important to know whether there is a valueω = ωr for which the amplitude
is maximized. If so, then driving the system at the circular frequencyωr

produces the greatest response. Using methods of calculus, it can be shown
that if c2 < 2mk thenωr is given by

☞ Recall that thenatural
circular frequencyω0 is the value
ω0 = √

k/m.

ω2
r = ω2

0

(
1− c2

2mk

)
(22)

The corresponding maximum valueAr of the amplitude whenω = ωr is

Ar = F0

cω0

√
1− (c2/4mk)

(23)

✓ DoesA have a maximum value when 2mk< c2 < 4mk?

✓ Find the forced oscillation for the ODE of Figure 4.3.

◆ Beats

Let’s polish the table and streamline the mass so that damping is negligible.
Then we apply a forcing function whose frequency is close to the natural
frequency of the spring-mass system, and watch the response. We can model
this by the IVP

u′′ + ω2
0u = F0

m
cos(ωt), u(0) = 0, u′(0) = 0 (24)

where|ω0 − ω| is small (but not zero). The solution is

u(t)= F0

m(ω2
0 − ω2)

[cos(ωt)− cos(ω0t)]

=
[

2F0

m(ω2
0 − ω2)

sin
(ω0 − ω

2
t
)]

sin

(
ω0 + ω

2
t

)
(25)

where trigonometric identities have been used to get from the first form of the
solution to the second. The term in square brackets in formula (25) can be
viewed as a varying amplitude for the sinusoid term sin[(ω0 + ω)/2]t. Since
|ω0 − ω| is small, the circular frequency(ω0 + ω)/2 is much higher than the
low circular frequency(ω0 − ω)/2 of the varying amplitude. Therefore we
have a rapid oscillation with a slowly varying amplitude. This is thebeat
phenomenonillustrated on the chapter cover figure for the IVP

u′′ + 25u = 2cos(4.5t), u(0)= 0, u′(0) = 0

If you try this out with a driven mass on a spring you will see rapid oscillations
whose amplitude slowly grows and then diminishes in a repeating pattern.
This phenomenon can actually be heard when a pair of tuning forks which
have nearly equal frequencies are struck simultaneously. We hear the “beats”
as each acts as a driving force for the other.
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◆ Electrical Oscillations: An Analogy

Linear differential equations with constant coefficients are important because

Y

L

R

C

E(t) I (t)
+
−

they arise in so many different physical contexts. For example, an ODE sim-
ilar to ODE (17) can be used to model charge oscillations in an electrical
circuit. Suppose an electrical circuit contains a resistor, an inductor, and a
capacitor connected in series. The currentI in the circuit and the chargeQ
on the capacitor are functions of timet. Let’s assume we know the resistance
R, the inductanceL, and the capacitanceC. By Kirchhoff’s voltage law for a
closed circuit, the applied voltageE(t) is equal to the sum of the voltage drops
through the various elements of the circuit. Observations of circuits suggest
that these voltage drops are as follows:

� The voltage drop through the resistor isRI (Ohm’s law);

� The voltage drop through the inductor isL(dI/dt) (Faraday’s law);☞ See also the electrical
circuit files in the Physical
Systems and Model Based
Animation folders in the Library.

� The voltage drop through the capacitor isQ/C (Coulomb’s law).

Thus, by Kirchhoff’s law, we obtain the differential equation

L
dI
dt

+ RI + Q
C

= E(t) (26)

SinceI = dQ/dt, we can write ODE (26) entirely in terms ofQ,

L
d2Q
dt2

+ R
dQ
dt

+ Q
C

= E(t) (27)

ODE (27) models the chargeQ(t) on the capacitor of what is called thesimple
RLC circuitwith voltage sourceE(t). ODE (27) is equivalent to ODE (17),
except for the symbols and their interpretations. Therefore we can also apply
conclusions about our spring-mass system to electrical circuits. For exam-
ple, we can interpret the ODEu′′ + 0.3u+ u = 10cos2t, whose solutions are
graphed in Figure 4.3, as a model for either the oscillations of a damped and
driven spring-mass system, or the charge on the capacitor of a drivenRLC
circuit. We see that a mathematical model can have many interpretations, and
any mathematical conclusions about the model apply to every interpretation.

✓ What substitutions of parameters and variables would you have to make
in ODE (27) to transform it to ODE (17)?

◆ Seismographs

Seismographs are instruments that record the displacement of the ground as a☞ Look at “Earthquakes and
the Richter Scale” in Module 4. function of time, and a seismometer is the part of a seismograph that responds

to the motion. Seismographs come in two generic types. Matt’s friend Seismo
is a horizontal-component seismograph, which records one of the horizontal
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components of the earth’s local motion. Of course, two horizontal compo-
nents are required to specify fully horizontal motion, usually by means of
north-south and east-west components. The other type of seismograph records
the vertical component of motion. Both of these instruments are based on pen-
dulums that respond to the motion of the ground relative to the seismograph.

Since Seismo is an animation of a horizontal-component seismograph,
we’ll outline the derivation of the ODEs that govern the motion of his arm.☞ If you’re queasy about

cross products or approximating
functions (used in formulas (28),
(31), (32)) you may prefer to skip
directly to ODE (33) or
ODE (34).

The starting point is the angular form of Newton’s second law of motion, also
known as theangular momentum law:

d
dt

L = R × F (28)

whereL is the angular momentum of a mass (Seismo’s arm and hand) about
a fixed axis,F is the force acting on the mass,R is the position vector from
the center of mass of Seismo’s arm and hand to the axis, and× is the vector
cross product.

We’ll apply this law using an orthogonalxyz-coordinate system which is
illustrated on Screen 2.2 of Module 4. In this system they-axis is horizontal.
Seismo’s body is parallel to thez-axis and the rest position of Seismo’s arm
is parallel to thex-axis. Thez-axis is not parallel to the local vertical, but
instead is the axis which results from rotating the local vertical through a small
angleα about they-axis. Because of this small tilt, thex-axis points slightly
downward and the arm is in a stable equilibrium position when it is parallel
to thex-axis. The seismic disturbance is assumed to be in the direction of the
y-axis. Thexz-plane is called Seismo’srest plane.

Seismo’s hand writes on the paper in thexy-plane, and the angleθ mea-
sures the angular displacement of his arm from its rest position. Consider an
axis pointing in thez-direction and through the center of mass of Seismo’s arm
and hand, and letm represent the mass of the arm and hand. Thez-component
of the angular momentum about that axis ismr2(dθ/dt) wherer is the radius
of gyration of the arm.

To compute the right-hand side of ODE (28), we need to knowR, the
position vector from the center of mass of Seismo’s arm and hand to the origin.
Note that

R = −l cosθx̂ − l sinθŷ

wherel is the distance from the center of mass to Seismo’s body, andx̂ and
ŷ are unit vectors along the positivex- andy-axes. For smallθ, we have the
approximations cosθ ≈ 1 and sinθ ≈ θ, so

R = −l x̂ − lθŷ (29)

Using equation (29) in ODE (28) and computing the cross product, we obtain

mr2
d2θ

dt2
= −l F (y) + lθF(x) (30)
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indicating by superscripts the components of the net forceF exerted on the
arm and hand.

Now we need expressions for the two components ofF in ODE (30). If
thex-component of friction is assumed negligible then the two force compo-
nents acting in thex-direction are thex-component of the gravitational force
and thex-component of the force due to the seismic disturbance. Because the
arm displacement angleθ and the body inclination angleα are both assumed
small, thex-component of the force due to the seismic disturbance can be
shown to be negligible also. Therefore thex-component of the net force,F (x),
is given by the simple form

F(x) ≈ mgα (31)

The right side of equation (31) is the gravity componentmgsinα approxi-
mated bymgα.

In the y-direction, the forces acting are the force due to the seismic dis-
turbance and to friction, the latter assumed to be proportional to the angular☞ This isviscous friction.

velocity dθ/dt. The force due to the seismic disturbance can be computed
as follows: Leth be a small ground displacement in they-direction. Then
the y-coordinate of the center of mass is approximatelyh+ lθ. Therefore the
force due to the earthquake is approximated by

m
d2

dt2
(h+ lθ) = m

d2h
dt2

+ ml
d2θ

dt2

and the net force in they-direction is

F(y) ≈ m
d2h
dt2

+ ml
d2θ

dt2
− k

dθ
dt

(32)

wherek is a positive constant characterizing the effect of friction.
Combining ODE (30) with formulas (31) and (32), we find that the mo-

tions of Seismo’s arm are governed by the ODE

d2θ

dt2
+ c

dθ
dt

+ ω2
0θ = − 1

L
d2h
dt2

(33)

In ODE (33) the quantitiesω2
0, L, andc are given byω2

0 = gα/L, where
L = (r2 + l2)/ l , andc = k/(mL). We can interpret the terms in (33) as
follows. The first term on the left arises from the inertia of Seismo’s hand and
arm. The second term models the frictional force due to the angular motion
of the arm. The third term, arising from gravity and the tilt of the arm, is the
restoring force for the oscillations of the arm and hand. Finally, the term on
the right arises from the effective force of the seismic displacement.

To simplify ODE (33) a little more, we leth(t) = H f (t), whereH is the
maximum ground displacement, which means that the maximum value of the
dimensionless ground displacementf (t) is one. Then ODE (33) becomes the
following equation for the dimensionless arm displacementy(t)= Lθ(t)/H:

d2y
dt2

+ c
dy
dt

+ ω2
0y = −d2 f

dt2
(34)
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This is the ODE used in Screen 2.3 of Module 4.
It’s an important result that ODE (34) is the same type as ODE (18),☞ A given ODE can model a

variety of phenomena. the only differences being in the definitions of the parameters that multiply
the individual terms, and in the choice of variables. A second striking result is
that this same ODE (34) applies as well to the motions of a vertical component
seismograph. All that is necessary are other modifications in the meanings of
the parameters and functions. Details are available in the book by Bullen and
Bolt in the references.

References Borrelli, R. L., and Coleman, C. S.,Differential Equations: A Modeling Per-
spective, (1998: John Wiley & Sons, Inc.)

Boyce, W. E., and DiPrima, R. C.,Elementary Differential Equations and
Boundary Value Problems, 6th ed. (1997: John Wiley & Sons, Inc.)

Bullen, K. E., and Bolt, B. A.,An Introduction to the Theory of Seismology,
4th ed. (1985: Cambridge University Press)
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Figure 4.4: The sweep on c generated five solution curves. The selected
curve is highlighted, and the corresponding solution u(t) satisfies the condi-
tion |u(t)| < 0.05 for t ≥ 40. The data tells us that c = 0.175 for the curve.

Figure 4.5: The Dual (Matrix) feature produces six solutions for various val-
ues of c and k. We have selected one of them (the highlighted curve) and
used the Explore option to get additional information.
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Exploration 4.1. The Damping Coefficient

Assume that Dogmatic’s oscillations satisfy the IVP

u′′ + cu′ + ku= 0, u(0) = 1, u′(0) = 0 (35)

1. Let k = 1 and use ODE Architect to estimate the smallest valuec∗ of the
damping coefficientc so that|u(t)| ≤ 0.05 for all t ≥ 40. [Suggestion:Fig-
ure 4.4 illustrates one way to estimatec∗ by using the Select feature and the
Data table.]

2. Repeat Problem 1 for other values ofk, includingk = 1
4, 1

2, 2, and 4. How
doesc∗ change ask changes? [Suggestion:Figure 4.5 shows the outcome
of using a Dual (Matrix) sweep on the values ofc andk, and then using the
Explore feature.]
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3. Let k = 10 in IVP (35).

(a) Find the value ofc for which the ratio of successive maxima in the graph
of u vs. t is 0.75.

(b) Why is the ratio between successive maxima always the same?
Note: Since the values of the maxima can be observed experimentally,
this provides a practical way to determine the value of the damping
coefficientc, which may be difficult to measure directly.
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Exploration 4.2. Response to the Forcing Frequency

1. Suppose that Dogmatic’s oscillations satisfy the differential equation

2u′′ + u′ + 4u = 2cos(ωt)

Let ω = 1. Select your own initial conditions and use ODE Architect to plot
the solution over a long enough time interval that the transient part of the
solution becomes negligible. From the graph, determine the amplitudeAs of
Dogmatic’s steady-state solution.

2. Repeat Problem 1 for other values ofω. Plot the corresponding pairsω, As

and sketch the graph ofAs vs. ω. Estimate the value ofω for which As is
a maximum.Note: You may want to use the Lookup Table feature of ODE
Architect (see Module 1 and Chapter 1 for details).
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3. In Problems 1 and 2, the value of the damping coefficientc is 1. Repeat
your calculations forc = 1

2 andc = 1
4. How does the maximum value ofAs

change as the value ofc changes? Compare your results with the predictions
of formula (23).
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Exploration 4.3. Low- and High-Frequency Quakes

In experiments with Seismo, you used ODE (34) to find the response of his
arm to different ground displacements of sinusoidal type, f (t)= cosωt, when
1 ≤ ω ≤ 5. In this exploration you’ll investigate what happens for ground
displacements with frequencies that are lower or higher than these values.

1. Choosec = 2 andω0 = 3 in ODE (34), and set the initial conditionsy(0) and
y′(0) to zero. Usef (t) = cosωt with ω = 0.5 for the ground displacement.
Use ODE Architect to plot the displacementy(t) determined from ODE (34);
also plot f (t) on the same graph. How do the features ofy(t) compare with
those of f (t)?

2. Repeat Problem 1 for values ofω smaller than 0.5. Be sure to plot for a long
enough time interval to see the relevant time variations. What do you think is
Seismo’s arm response asω approaches zero? How does this compare with
the corresponding response of a mass on a spring from ODE (18)?
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3. Repeat Problem 1 for values ofω larger than 5, such asω = 10 andω = 20.
What do you think is Seismo’s arm response asω becomes very large?
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Exploration 4.4. Different Ground Displacements

In explorations with Seismo, we assumed that the dimensionless ground dis-
placements f (t) are sinusoidal, with a single frequency. Real earthquakes
however, are not so simple: you’ll investigate other possibilities in the fol-
lowing problems. The ODE for Seismo’s dimensionless arm displacement
y(t) is

d2y
dt2

+ c
dy
dt

+ ω2
0y = −d2 f

dt2
(36)

1. Suppose the ground displacement can be modeled by the function

f (t) =
{
(t/T)2, 0 ≤ t ≤ T

1, t > T

How do you interpret this motion? Choosec = 2 andω0 = 3, and sety(0)=
y′(0) = 0. Use ODE Architect to findy(t) from ODE (36) for the caseT =
2, and display bothy(t) and f (t). Note: d2 f/dt2 can be written using a
step function. How do the features ofy(t) compare with those off (t)? For
example, what is the maximum magnitude ofy(t), and when does it occur?
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2. Now suppose that the ground motion is given by the functionf = e−at sin(πt).
Choose some values ofa in the range 0< a ≤ 0.5 and study how Seismo’s
arm displacements change with the parametera.

3. How do you think the results of Problem 2 would change if the period of the
sinusoidal oscillation were different from 2? Try a few cases to check your
predictions.
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Seventeen ski jumpers take off from an upward-tilted ski-jump.

Overview How would you model the motion of a baseball thrown at a target, or the rise and
fall of a whiffle ball, or the trajectory of a ski jumper? You need modeling principles
to explain the effects of the surroundings on the motion of a body.

Building on the work of Galileo, Newton formulated the fundamental laws of
motion that describe the forces acting on a body in terms of the body’s acceler-
ation and mass. Newton’s second law of motion, for example, relates the mass
and the acceleration of a moving body to the forces acting on it and ultimately
leads to differential equations for the motion.

Bodies moving through the air near the surface of the earth (e.g., a whiffle
ball, Indiana Newton jumping onto a boxcar, or a ski jumper) are subject to the
forces of gravity and air resistance, so these forces will affect their motion.

Key words Vectors; force; gravity; Newton’s laws; acceleration; trajectory; air resistance; vis-
cous drag; Newtonian drag; lift

See also Chapter 1 for more on modeling, and Chapter 2 for “The Juggler” and “The Sky
Diver”.
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◆ Vectors

A vectoris a directed line segment and can be represented by an arrow with a
head and a tail. We use boldface letters to denote vectors.

Some terminology:

� The lengthof a vectorv is denoted by|v|.
� Two vectorsv andw areequivalentif they can be made to coincide by

translations. (Translations preserve length and direction of vectors.) So
parallel vectors of equal length and pointing in the same direction are
equivalent.

� Thesumv + w of v andw is defined by the parallelogram law as fol-

-

� �

v

w

v + w

P

lows: v + w is the diagonal vector of the parallelogram formed byv and
w as shown in the margin figure.

� If r is any real number, then theproduct rv is the vector of length|r | |v|
that points in the direction ofv if r > 0 and in the direction opposite to
v if r < 0.

� If a vectoru = u(t) depends on a variablet, then thederivative du/dt
[or u′(t)] is defined as the limit of a difference quotient:

u′(t) = du
dt

= lim
h→0

u(t + h)− u(t)
h

-
6

�

7

�

-

6

î ĵ

k̂

v

v1î

v2ĵ

v3k̂

� A coordinate frameis a triple of vectors, denoted by{î, ĵ , k̂}, that are
mutually orthogonal and all of unit length. Every vector can be uniquely
written as the sum of vectors parallel toî, ĵ , andk̂. So for each vectorv
there is a unique set of real numbersv1, v2, andv3 such thatv = v1î +
v2ĵ + v3k̂. Herev1,v2, andv3 are called thecoordinates(orcomponents)
of v in the frame{î, ĵ , k̂}.

Let’s see how to use vectors in a real-life situation. Suppose a particle of
massm moves in a manner described by theposition vector

R = R(t) = x(t)î + y(t)ĵ + z(t)k̂

If R is differentiable, then

R′(t) = x′(t)î + y′(t)ĵ + z′(t)k̂

The vectorR′(t)= v(t) is thevelocity vectorof the particle at timet, andv(t)
is tangent to the path of the particle’s motion at the pointR(t). If R′(t) is
differentiable, then

R′′(t) = v′(t) = x′′(t)î + y′′(t)ĵ + z′′(t)k̂

The vectorR′′(t) = a(t) is theacceleration vectorfor the particle.

x

y

R(t)

z

m

a(t)

v(t)
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✓ “Check” your understanding by answering this question: If a particle
moves at a constant speed around a circle, does the acceleration vector from
the particle point to the inside of the circle or to the outside of the circle?

✓ If a particle’s acceleration vector is always tangent to its path, what is the
path?

Next, let’s use vectors to express Newton’s laws of motion.

◆ Forces and Newton’s Laws

Our environment creates forces that act on bodies in a way that causes the
bodies to accelerate or decelerate. Forces have magnitudes and directions and☞ Deceleration is just

negative acceleration. so can be represented by vectors. Newton formulated two laws that describe
how the forces on a body relate to its motion.

Newton’s First Law. A body remains in a state of rest, or in a state of
uniform motion in a straight line if there is no net external force acting
on it.

But the more interesting situation is when thereis a net external force
acting on the body.

Newton’s Second Law. For a body with accelerationa and constant
massm,

F = ma

whereF is the sum of all external forces acting on the body.

Sometimes it’s easier to visualize Newton’s second law in terms of the
x-, y-, andz-components of the position vectorR of the moving body. If
we project the acceleration vectora = R′′ and the forces onto thex-, y-, and
z-axes, then for a body of massm,

mx′′ = the sum of the forces in thex-direction

my′′ = the sum of the forces in they-direction

mz′′ = the sum of the forces in thez-direction

We’ll look at motion in a plane withx measuring the horizontal distance andy
measuring the vertical distance up from the ground. We don’t need thez-axis
for our examples because the motion is entirely along a line or in a plane.
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◆ Dunk Tank

Imagine your favorite professor seated over a dunk tank. Let’s construct a
model that will help you find the secret to hitting the target and giving your
teacher a swim!

You hurl a ball at the target from a height of 6 ft with speedv0 ft/sec and
with a launch angle ofθ0 degrees from the horizontal1. The target is cen-
tered 10 ft above the ground and 20 ft away. Let’s suppose that air resistance
doesn’t have much effect on the ball over its short path, so that gravity, acting
downwards, is the only force acting on the ball.

Newton’s second law says that

mR′′ = −mĝj

wherem is the ball’s mass,R(t) is the position of the ball at timet relative to
your hand (which is 6 ft above the ground at the instantt = 0 of launch), and
g = 32 ft/sec2 is the acceleration due to gravity. In coordinate terms,

mx′′ = 0

my′′ = −mg

Sincex′(0)= v0 cosθ0 andy′(0)= v0 sinθ0, one integration of these second-
order ODEs gives us

x′(t) = v0 cosθ0

y′(t) = v0 sinθ0 − gt
(1)

Then becausex(0) = 0 andy(0)= 6, a second integration yields☞ What is the ball doing if
θ0 = 90◦?

x(t) = (v0 cosθ0)t

y(t)= 6+ (v0 sinθ0)t − 1
2

gt2
(2)

To hit the target at some timeT we wantx(T)= 20 andy(T)= 10. So values
of T > 0, θ0, andv0 such that

x(T) = 20= (v0 cosθ0)T

y(T) = 10= 6+ (v0 sinθ0)T − 1
2

gT2 (3)

lead to hitting the target right in the bull’s eye and dunking your professor.
You can try to use system (3), or you can just adjust your launch angle☞ Figure 5.1 was done in the

Tool, whereθ0 is in radians. and pitching speed by intuition and experience. The screen shot in Figure 5.1
shows you how to get started with the latter approach. If you play the dunking
game on Screen 1.3 you’ll find that you can dunk without hitting the target
head-on, but that a little up or a little down from the center works fine.

1The sin, cos and other trig functions in the ODE Architect Tool expect angles to be measured in
radians. Note thatθ0 = 1 radian corresponds to 360/2π ≈ 57.3 degrees. The multimedia modules,
however, will accept angles measured in degrees.
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Figure 5.1: This ODE Architect screen shows paths of a ball thrown at ten
different angles θ0. Which paths lead to dunking the prof?

◆ Longer to Rise or to Fall?

Throw a ball straight up in the air and ask observers whether the ball takes
longer to rise or to fall. You’ll get four answers:

1. Longer to rise
2. Longer to fall
3. Rise-time and fall-time are the same
4. It all depends. . .

What’s your answer?
A mathematical model and ODE Architect suggest the answer. The forces

acting on the ball of massmare gravity and air resistance, so Newton’s second
law states that

mR′′(t) = −mĝj + F

whereR is the position vector of the ball, andF is the drag on the ball caused
by air resistance. In this caseR(t) = y(t)ĵ whereĵ is a unit vector pointing

6ĵ

Earth

y

upward (the positivey direction). If the drag is negligible, we can setF = 0.
For a light ball with an extended surface, like a whiffle ball, the drag, called
viscous drag, exerts a force approximately proportional to the ball’s velocity☞ Drag forces are usually

determined by observation. They
differ widely from one body to
another.

but opposite in direction:

F(v) = −kv = −ky′ĵ
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If the ball is solid and dense, like a baseball or a bowling ball, then we have
Newtonian drag, which acts opposite to the velocity with magnitude propor-
tional to the square of the speed:

F(v) = −k|v|v = −k|y′|y′ ĵ

Summarizing, we have the models

y′′ = −g−




0 no drag
k
m

y′ viscous

k
m

|y′|y′ Newtonian

or, in system form,

☞ ODE Architect only
accepts first-order ODEs, so
that’s why we use the first-order
system form.

y′ = v

v′ = −g−




0 no drag
k
m
v viscous

k
m

|v|v Newtonian

To observe different rise times and fall times, you can sety(0)= 0, v(0)= v0

and see what happens for various positive values ofv0. See Figure 5.2 for
graphs ofy(t) with viscous damping, four different initial velocities,k/m =
2 sec−1, andg = 32 ft/sec2. In this settingv is the rate of change ofy, sov is
positive as the ball rises and negative as it falls.

◆ Indiana Newton

You notice that Indiana Newton is about to jump from a ledge onto a boxcar of
a speeding train. His timing has to be perfect. He also gets to choose his drag:
none, viscous, or Newtonian. If you knew the train’s position at all times, and
how long it takes Indy to drop from the ledge to the top of the boxcar, then
you could give him good advice about which drag to choose.

The initial value problem that models Indy’s situation is

y′ = v y(0)= h

v′ = −g− F(v)/m v(0) = 0

wherem is his mass,F(v) is a drag function,g is the acceleration due to
gravity, andh is the height of the ledge above the boxcar. His life is in your
hands! Figure 5.3 shows Indy’s free-fall solution curvesy(t) from a height of
100 ft with three different drag functions.
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Figure 5.2: Height vs. time of a whiffle ball thrown straight up four times with
viscous damping and different initial velocities. Does the ball take longer to
rise or to fall?
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Figure 5.3: Indiana jumps with no drag (left curve), viscous drag −0.2y′ (mid-
dle), Newtonian drag −0.02|y′|y′ (right).
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◆ Ski Jumping

When a ski jumper is aloft she is subject to gravitational, drag, and lift forces.
She can diminish the drag and increase the lift by her posture, ski angle, and
choice of clothing.Drag acts opposite to velocity and its magnitude is usually
taken to be proportional to the skier’s velocityR′:

Drag force= −δR′ = −δx′ î − δy′ ĵ

The lift force is what makes ski jumping fun. Thelift force is that force
which acts perpendicular to the velocity and enables the jumper to soar. Its
magnitude is usually taken to be proportional to the speed, so☞ Check that this force is

perpendicular to velocity.
Lift force = −λy′î + λx′ ĵ

Newton’s second law in thêi- andĵ -directions gives us

☞ The origin of thexy-plane
is at the edge of the ski jump
(x-horizontal,y-vertical). The
edge is horizontal so
x′(0)= v0 > 0, buty′(0)= 0.

mx′′ = −δx′ − λy′ x′(0) =v0, x(0) = 0

my′′ = −mg+ λx′ − δy′ y′(0) =0, y(0)= 0

wherem is the skier’s mass andδ, λ, andv0 are positive constants. Integration
of each of these ODEs yields

mx′ − mv0 = −δx − λy

my′ = −mgt+ λx− δy

Divide by the mass to get the system IVP

x′ = −ax− by+ v0 x(0) = 0

y′ = −gt + bx− ay y(0)= 0

wherea = δ/m andb = λ/m are the drag and lift coefficients, respectively.
When Newtonian drag and lift occur,δ andλ are not constants, so we

can no longer integrate once to getx′ and y′, and we must treat the original
second-order ODE differently:

x′ = v x(0) = 0

v′ = −δv/m− λw/m v(0) = v0

y′ = w y(0)= 0

w′ = −g+ λv/m− δw/m w(0) = 0

wherev andw are the velocities in thêi- andĵ -directions, respectively.
We have assumed that the bottom edge of the ski jump is horizontal, but

everything can be modified to accommodate a tilt in the launch angle (see the
chapter cover figure and Exploration 5.4, Problem 1).

References Halliday, D., and Resnick, R.,Physics, (1994: John Wiley & Sons, Inc.)

True, Ernest, “The flight of a ski jumper” inC.ODE.E, Spring 1993, pp. 5–8,
http://www.math.hmc.edu/codee
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Exploration 5.1. Dunk Tank

1. How big is the target?
Play the dunk tank game on Screen 1.6 of Module 5 and use various launch
angles and speeds to help you determine the heights and diameters of the Ein-
stein, Leibniz, and Newton targets, given that the ball has a 4-inch diameter.

2. One speed, two angle ranges for success.
Use the ODE Architect tool to find two quite different launch angles that will
dunk Einstein if the launch speed is 40 ft/sec. Repeat for Leibniz and Newton.
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3. Launch angles and speeds that dunk Einstein.
Find the region in theθ0v0 plane for which the ball hits the target and dunks
Einstein.Hint: Start withv0 = 40 ft/sec and determine the ranges forθ0 using
ODE Architect by playing the dunk tank game. Then repeat for other values
of v0.

4. Solution formulas for the dunk tank model.
The position and velocity of the ball at timet is given by formula (2). Find
a formula that relates the launch angle to the initial speed and the timeT
needed to hit the bull’s eye. If you had to choose between using your formula
and using ODE Architect computer simulations to find winning combinations
of speed and launch angle, which would you choose? Why?
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Exploration 5.2. Longer to Rise or to Fall?

1. Throw a ball up in the air.
Do just that, and determine as best you can the time it takes to rise and to
fall. You can use a whiffle ball for slower motion. Explain your results. (No
computers here, and no math, either!)

2. Longer to rise or to fall in a vacuum?
What if there were no air to slow the ball down? Use ODE Architect to de-
termine whether it takes the ball longer to rise or to fall. Try various initial
speeds between 5 and 60 ft/sec. [Suggestion:Use the Sweep feature.]
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3. Longer to rise or to fall with viscous drag?
Suppose that air exerts a viscous drag force on a whiffle ball (a reasonable
assumption). For various initial speeds, use the ODE Architect to determine
whether it takes longer to rise or to fall. Does your answer depend on the
initial speed? What physical explanation can you give for your results?

4. Longer to rise or to fall with your own drag?
Repeat Problem 3, but make up several of your own formulas for the drag
force. Include Newtonian drag as one case. This isn’t as outlandish an idea
as it may seem, since the drag force depends very much on the nature of the
moving body, e.g., rough or smooth surface, holes through the body, and so
on. Discuss your results.



Answer questions in the space provided, or on
attached sheets with carefully labeled graphs. A
notepad report using the Architect is OK, too.

Name/Date

Course/Section

Exploration 5.3. Indiana Newton

1. Indiana Newton lands on the boxcar (no drag).
Indiana Newton jumps from a heighth of 100 ft and intends to land on the
boxcar of a train moving at a speed of 30 ft/sec. Assuming that there is no air
resistance, use Screen 2.6 of Module 5 to find the time window of opportunity
for jumping from the ledge.

2. Indiana Newton lands on the boxcar (Newtonian drag).
Repeat Problem 1 but with Newtonian drag (coefficientk/m = 0.05 ft−1).
Compare fall-times with the no-drag and also with the viscous-drag (k/m =
0.05 sec−1) cases. Find nonzero values of the coefficients so that Indiana
Newton hits the train sooner with Newtonian drag than with viscous drag.
How do the fall-times change as Indy’s jump heighth varies?
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3. How long is the boxcar?
Use computer simulations of Indiana Newton jumping onto the boxcar and
estimate the length of the boxcar.

4. Indiana Newton floats down.
First, explore Indiana’s fall-times in the viscous- and Newtonian-drag cases
where the coefficientk/mhas magnitudes ranging from 0 to 0.5. The units for
the coefficient are sec−1 (viscous damping) and ft−1 (Newtonian damping).
Then find a formula in terms ofh, k/m, and t for Indiana’s position after
he jumps: first in the viscous-drag case, then in the Newtonian-drag case.
Suggestion: In the viscous case, first solvev′ = −32− kv/m, v(0) = 0,
and then integrate and usey(0) = h to get y(t). In the Newtonian-drag case
proceed similarly but withv′ = −32− kv2. (This one is hard!) Choose values
of the parameters in each case, and compare the graphs of the height function
y(t) from your formula with the graphs obtained by the ODE Architect. Any
differences?



Answer questions in the space provided, or on
attached sheets with carefully labeled graphs. A
notepad report using the Architect is OK, too.

Name/Date

Course/Section

Exploration 5.4. Ski Jumping

1. Tilt the edge of the ski jump upward.
Use the first Things-to-Think-About on Screen 3.7 of Module 5 to see what
happens to the ski jumper’s path if the edge of the ski jump structure is tilted
upward at 0.524 radians (about 30◦). Seta = 0.01 sec−1, andv0 = 85 ft/sec,
and sweep on the lift coefficientb from 0 to 1.0 in 20 steps. Compare your
graphs of the jumper’s path with the chapter cover figure. Then animate your
graphs. Now fixb at the value 0.02 sec−1 and sweep onθ (in radians) to see
the effect of the tilt angle on the jumper’s path. Explain your results.

2. Loop-the-loop.
The second Things-to-Think-About on Screen 3.7 of Module 5 asks you to
use the ODE Architect to estimate the smallest value of the viscous damping
coefficientb that will allow the ski jumper to loop-the-loop. Ifa = 0.01 sec−1

andv0 = 85 ft/sec, estimate that value. Then increaseb by increments from
that value upward all the way to the unrealistic value of 5.0 sec−1 and describe
what you see.
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3. Complex eigenvalues and loop-the-loops.
The system matrix of the viscous drag/lift model for ski jumping is☞ You need to know about

matrices and eigenvalues to
complete this part. See also
Chapter 6.

[−a −b
b −a

]

Explain why the eigenvalues of this matrix are complex conjugates with neg-
ative real parts ifa andb are any positive real numbers. Explain why you are
more likely to see loop-the-loops ifa is small andb is large. Do some simula-
tions with the ODE Architect for various values ofa andb that support your
explanation. If you plot a loop-the-loop path over a long enough time interval,
you will see no loops at all near the end of the interval. Any explanation?

4. Newton on skis.
The fourth Things-to-Think-About on Screen 3.7 of Module 5 puts Indiana
Newton on skis with Newtonian drag (of course!). This situation takes you to
the expert solver in the ODE Architect, where you are asked to explore every
scenario you can think of and to explain what you see in the graphs.
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Oscillating displacementsx1(t) andx2(t) of two coupled springs play
off against each other.

Overview This chapter outlines some of the main facts concerning systems of first-order
linear ODEs, especially those with constant coefficients. You’ll have the opportu-
nity to work with physical problems that have two or more dependent variables.
Such problems can be modeled using systems of differential equations, which
can always be written as systems of first-order equations, as can higher-order dif-
ferential equations. The eigenvalues and eigenvectors of a matrix of coefficients
help us understand the behavior of solutions of these systems.

Key words Linear systems; pizza and video; coupled springs; connected tanks; linearized
double pendulum; matrix; system matrix; Jacobian matrix; component; compo-
nent plot; phase space; phase plane; phase portrait; equilibrium point; eigenvalue;
eigenvector; saddle point; node; spiral; center; source; sink

See also Chapter 5 for definitions of vector mathematics.
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◆ Background

Many applications involve a single independent variable (usually time) and
two or more dependent variables. Some examples of dependent variables are:

� the concentrations of a chemical in organs of the body

� the voltage drops across the elements of an electrical network

� the populations of several interacting species

� the profits of businesses in a mall

Applications with more than one dependent variable lead naturally tosys-
temsof ordinary differential equations. Such systems, as well as higher-order
ODEs, can be rewritten as systems of first-order ODEs.

Here’s how to reduce a second-order ODE to a system of first-order ODEs☞ How to convert a
second-order ODE to a system of
first-order ODEs.

(see also Chapter 4). Let’s look at the the second-order ODE

y′′ = f (t, y, y′) (1)

Introduce the variablesx1 = y andx2 = y′. Then we get the first-order system

x′
1 = x2 (2)

x′
2 = f (t, x1, x2) (3)

ODE (2) follows from the definition ofx1 andx2, and ODE (3) is ODE (1)
rewritten in terms ofx1 andx2.

✓ “Check” your understanding now by reducing the second-order ODE
y′′ + 5y′ + 4y = 0 to a system of first-order ODEs.

◆ Examples of Systems: Pizza and Video, Coupled Springs

Module 6 shows how to model the profitsx(t) andy(t) of a pizza parlor and
a video store by a system that looks like this:

x′ = ax+ by+ c

y′ = f x+ gy+ h

wherea, b, c, f , g, andh are constants. Take another look at Screens 1.1–1.4
in Module 6 to see how ODE Architect handles these systems.

Module 6 also presents a model system of second-order ODEs for oscil-
lating springs and masses. A pair of coupled springs with spring constantsk1

m1
k2k1

m2

x2x1

- -

andk2 are connected to massesm1 andm2 that glide back forth on a table. As
shown in the “Coupled Springs” submodule, if damping is negligible then the
second-order linear ODEs that model the displacements of the masses from
equilibria are

m1x′′
1 = −(k1 + k2)x1 + k2x2

m2x′′
2 = k2x1 − k2x2
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Let’s setm1 = 4, m2 = 1, k1 = 3, andk2 = 1. Then, settingx′
1 = v1, x′

2 = v2,☞ A system of first-order
ODEs isautonomousif the terms
on the right-hand sides of the
equations do not explicitly
depend on time.

the corresponding autonomous system of four first-order ODEs is

x′
1 = v1

v′
1 = −x1 + 1

4
x2

x′
2 = v2

v′
2 = x1 − x2

The cover figure of this chapter shows howx1 andx2 play off against each☞ Trajectories of an
autonomous system can’t
intersect because to do so would
violate the uniqueness property
that only one trajectory can pass
through a given point.

other whenx1(0) = 0.4, v1(0) = 1, x2(0) = 0, andv2(0) = 0. The trajecto-
ries for this IVP are defined in the 4-dimensionalx1v1x2v2-space and cannot
intersect themselves. However, the projections of the trajectories onto any
planecan intersect, as we see in the cover figure.

◆ Linear Systems with Constant Coefficients

The model first-order systems of ODEs for pizza and video and for coupled
springs have the special form of linear systems with constant coefficients.
Now we shall see just what linearity means and how it allows us (sometimes)
to construct solution formulas for linear systems.

Let t (time) be the independent variable and letx1, x2, . . . , xn denote the
dependent variables. Then a general system of first-order linearhomogeneous☞ Dependent variables are

also calledstate variables.

☞ Homogeneousmeans that
there are no free terms, that is,
terms that don’t involve anyxi .

ODEs with constant coefficients has the form

x′
1 = a11x1 + a12x2 + · · · + a1nxn

x′
2 = a21x1 + a22x2 + · · · + a2nxn

...

x′
n = an1x1 + an2x2 + · · · + annxn

(4)

wherea11, a12, . . . ,ann are given constants. To find a unique solution, we
need a set of initial conditions, one for each dependent variable:

x1(t0) = α1, . . . , xn(t0) = αn (5)

wheret0 is a specific time andα1, . . . , αn are given constants. The system (4)
and the initial conditions (5) together constitute aninitial value problem(IVP)
for x1, . . . , xn as functions oft. Note thatx1 = · · · = xn = 0 is an equilibrium
point of system (4).

☞ An equilibrium point of an
autonomous system of ODEs is a
point where all the rates are zero;
it corresponds to a constant
solution.

The model on Screen 1.4 of Module 6 for the profits of the pizza and
video stores is the system

☞ If n = 2, we often usex
andy for the dependent variables.

x′ = 0.06x+ 0.01y− 0.013

y′ = 0.04x+ 0.05y− 0.013
(6)

with the initial conditions

x(0) = 0.30, y(0)= 0.20 (7)
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The ODEs (6) are nonhomogeneous due to the presence of the free term
−0.013 in each equation. The coordinates of an equilibrium point of a sys-
tem are values of the dependent variables for which all of the derivatives
x′

1, . . . , x
′
n are zero. For the system (6) the only equilibrium point is(0.2,0.1).

The translationX = x− 0.2, Y = y− 0.1 transforms the system (6) into the
system☞ A change of variables puts

the equilibrium point at the
origin. X′ = 0.06X + 0.01Y

Y′ = 0.04X + 0.05Y
(8)

which is homogeneous and has the same coefficients as the system (6). In
terms ofX andY, the initial conditions (7) become

X(0)= 0.1, Y(0) = 0.1 (9)

Although we have converted a nonhomogeneous system to a homogeneous
system in this particular case, it isn’t always possible to do so.

It is useful here to introduce matrix notation: it saves space and it ex-☞ Vectors and matrices
appear as bold letters. presses system (4) in the form of a single equation. Letx be the vector with

componentsx1, x2, . . . , xn and letA be the matrix of the coefficients, where☞ A is called thelinear
system matrix, or theJacobian
matrix (often denoted byJ).

aij is the element in theith row and jth column ofA. The derivative of the
vectorx, writtendx/dt or x′, is defined to be the vector with the components
dx1/dt, . . . ,dxn/dt. Therefore we can write the system (4) in the compact
form

☞ The vectorx(t) is called
thestateof system (10) at timet.

x =




x1

...
xn


 , x′ =




x′
1
...

x′
n




x′ = Ax, where A =




a11 · · · a1n
...

...
an1 · · · ann


 (10)

In vector notation, the initial conditions (5) become

x(t0) = � (11)

where� is the vector with componentsα1, . . . , αn.

✓ Find the linear system matrix for system (8).

A solution of the initial value problem (10) and (11) is a set of functions

x1 = x1(t)

...

xn = xn(t)

(12)

that satisfy the differential equations and initial conditions. Using our new
notation, if x(t) is the vector whose components arex1(t), . . . , xn(t), then
x = x(t) is a solution of the corresponding vector IVP, (10) and (11). The
systemx′ = Ax is homogeneous, while a nonhomogeneous system would
have the formx′ = Ax + F, whereF is a vector function oft or else a constant
vector.
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◆ Solution Formulas: Eigenvalues and Eigenvectors

To find a solution formula for system (10) let’s look for an exponential solu-
tion of the form

x = veλt (13)

whereλ is a constant andv is a constant vector to be determined. Substituting
x as given by (13) into the ODE (10), we find thatv andλ must satisfy the
algebraic equation

Av = λv (14)

Equation (14) can also be written in the form

(A − λI )v = 0 (15)

where I is the identity matrixand 0 is the zero vectorwith zero for each
component. Equation (15) has nonzero solutions if and only ifλ is a root of
thenth-degree polynomial equation

☞ The determinant of a
matrix is denoted by det.

det(A − λI ) = 0 (16)

called thecharacteristic equationfor the system (10). Such a root is called
aneigenvalueof the matrixA. We will denote the eigenvalues byλ1, . . . , λn.☞ The keys to finding a

solution formula forx′ = Ax are
the eigenvalues and eigenvectors
of A.

For each eigenvalueλi there is a corresponding nonzero solutionv(i), called
aneigenvector. The eigenvectors are not determined uniquely but only up to
an arbitrary multiplicative constant.

For each eigenvalue-eigenvector pair(λi,v(i)) there is a corresponding
vector solutionv(i)eλi t of the ODE (10). If the eigenvaluesλ1, . . . , λn are all
different, then there aren such solutions,

v(1)eλ1t, . . . ,v(n)eλnt

In this case thegeneral solutionof system (10) is the linear combination☞ Formula (17) is called the
general solution formula of
system (10) because every
solution has the form of (17) for
some choice of the constantsCj .
The other way around, every
choice of the constants yields a
solution of system (10).

x = C1v(1)eλ1t + · · · + Cnv(n)eλnt (17)

The arbitrary constantsC1, . . . ,Cn can always be chosen to satisfy the initial
conditions (11). If the eigenvalues are not distinct, then the general solution
takes on a slightly different (but similar) form. The texts listed in the refer-
ences give the formulas for this case. If some of the eigenvalues are complex,
then the solution given by formula (17) is complex-valued. However, if all
of the coefficientsaij are real, then the complex eigenvalues and eigenvec-
tors occur in complex conjugate pairs, and it is always possible to express
the solution formula (17) in terms of real-valued functions. Look ahead to
formulas (20) and (21) for a way to accomplish this feat.
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◆ Calculating Eigenvalues and Eigenvectors

Here’s how to find the eigenvalues and eigenvectors of a 2× 2 real matrix

A =
[

a b
c d

]

First define thetraceof A (denoted by trA) to be the suma+ d of the diagonal
entries, and thedeterminantof A (denoted by detA) to be the numberad− bc.
Then the characteristic equation forA is

det(A − λI ) = det

[
a− λ b

c d− λ

]

= λ2 − (a+ d)λ+ ad− bc

= λ2 − (trA)λ+ detA

= 0

The eigenvalues ofA are the rootsλ1 andλ2 of this quadratic equation. We as-
sumeλ1 �= λ2. For the eigenvalueλ1 we can find a corresponding eigenvector
v(1) by solving the vector equation

Av (1) = λ1v(1)

for v(1). In a similar fashion we can find an eigenvectorv(2) corresponding to
the eigenvalueλ2.

Example: Take a look at the system

x′ = Ax, A =
[

0 1
−2 3

]
, x =

[
x1

x2

]
(18)

Since

trA = 0+ 3 = 3 and detA = 0 · 3− 1 · (−2) = 2

the characteristic equation is

λ2 − (trA)λ+ detA = λ2 − 3λ+ 2 = 0

The eigenvalues areλ1 = 1 andλ2 = 2. To find an eigenvectorv(1) for λ1,
let’s solve [

0 1
−2 3

]
v(1) = λ1v(1) = v(1)

for v(1). Denoting the components ofv(1) by α andβ, we have[
0 1

−2 3

][
α

β

]
=
[

β

−2α+ 3β

]
=
[
α

β

]

This gives two equations forα andβ:

β = α, −2α+ 3β = β
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Figure 6.1: Graphs of five solutions x1(t) (left), x2(t) (right) of system (18).

The second equation is equivalent to the first, so we may as well setα= β= 1,
which gives us an eigenvectorv(1). In a similar way for the eigenvalueλ2, we
can find an eigenvectorv(2) with componentsα = 1, β = 2. So the general
solution ofx′ = Ax in this case is

x = C1v(1)eλ1t + C2v(2)eλ2t

= C1

[
1
1

]
et + C2

[
1
2

]
e2t

or in component form

x1 = C1et + C2e2t

x2 = C1et + 2C2e2t

whereC1 andC2 are arbitrary constants.

✓ Find a formula for the solution of system (18) ifx1(0)= 1, x2(0) = −1.
Figure 6.1 shows graphs ofx1(t) andx2(t)wherex1(0)= 1, x2(0)= 0,±0.5,
±1. Which graphs correspond tox1(0) = 1, x2(0) = −1? What happens as
t → +∞? As t → −∞?

◆ Phase Portraits

We can view solutions graphically in several ways. For example, we can draw
plots of x1(t) vs. t, x2(t) vs. t, and so on. These plots are calledcomponent
plots (see Figure 6.1). Alternatively, we can interpret equations (12) as a set
of parametric equations witht as the parameter. Then each specific value of
t corresponds to a set of values forx1, . . . , xn. We can view this set of val-
ues as coordinates of a point inx1x2 · · · xn-space, called thephase space. (If☞ Another term for phase

space isstate space. n = 2 it’s called thephase plane.) For an interval oft-values, the correspond-
ing points form a curve in phase space. This curve is called aphase plot, a
trajectory, or anorbit.
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Phase plots are particularly useful ifn = 2. In this case it is often worth-
while to draw several trajectories starting at different initial points on the same
set of axes. This produces aphase portrait, which gives us the best possible
overall view of the behavior of solutions. Whatever the value ofn, the trajec-
tories of system (10) can never intersect because system (10) is autonomous.

If A in system (10) is a 2× 2 matrix, then it is useful to examine and
classify the various cases that can arise. There aren’t many cases whenn = 2,
but even so these cases give important information about higher-dimensional
linear systems, as well as nonlinear systems (see Chapter 7). We won’t con-
sider here the cases where the two eigenvalues are equal, or where one or both
of them are zero.

A direction field(or vector field) for an autonomous system whenn = 2 is
a field of line segments. The slope of the segment at the point(x1, x2) is x′

2/x
′
1.

The trajectory through(x1, x2) is tangent to the segment. An arrowhead on the
segment shows the direction of the flow. See Figures 6.2–6.5 for examples.

Real Eigenvalues
If the eigenvaluesλ1 andλ2 are real, the general solution is

x = C1v(1)eλ1t + C2v(2)eλ2t (19)

whereC1 andC2 are arbitrary real constants.
Let’s first look at the case whereλ1 andλ2 have opposite signs, with

λ1 > 0 andλ2 < 0. The term in formula (19) involvingλ1 dominates as
t → +∞, and the term involvingλ2 dominates ast → −∞. Thus ast → +∞☞ Trajectories starting on

either line att = 0 stay on the
line.

the trajectories approach the line that goes through the origin and has the same
slope asv(1), and ast → −∞, they approach the line that goes through the
origin and has the same slope asv(2). A typical phase portrait for this case is
shown in Figure 6.2. The origin is called asaddle point, and it isunstable,☞ Eigenvalues of opposite

signs imply asaddle. since most solutions move away from the point.
Now suppose thatλ1 andλ2 are both negative, withλ2 < λ1 < 0. The

solution is again given by formula (19), but in this case both terms approach
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Figure 6.2: Phase portrait of a sad-
dle: x′

1 = x1 − x2, x′
2 = −x2.

x1-x2

-2 -1 0 1 2

x1

-2

-1

0

1

2

x2

Figure 6.3: Phase portrait of a nodal
sink: x1 = −3x1 + x2, x′

2 = −x2.
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zero ast → +∞. However, for large positivet, the factoreλ2t is much smaller
thaneλ1t, so forC1 �= 0 the trajectories approach the origin tangent to the line
with the same slope asv(1), and ifC1 = 0 the trajectory lies on the line with the
same slope asv(2). For large negativet, the term involvingλ2 is the dominant
one and the trajectories approach asymptotes that have the same slope asv(2).
A typical phase portrait for this case is shown in Figure 6.3. The origin attracts
all solutions and is called anasymptotically stable node. It is also called asink
because all nearby orbits get pulled in ast → +∞.☞ Both eigenvalues negative

imply a nodal sink. If both eigenvalues are positive, the situation is similar to when both
eigenvalues are negative, but in this case the direction of motion on the tra-
jectories is reversed. For example, suppose that 0< λ1 < λ2: then the trajec-
tories are unbounded ast → +∞ and asymptotic to lines parallel tov(2). As
t → −∞ the trajectories approach the origin either tangent to the line through
the origin with the same slope asv(1) or lying on the line through the origin
with the same slope asv(2). A typical phase portrait for this case looks like
Figure 6.3 but with the arrows reversed. The origin is anunstable node. It is
also called asourcebecause all orbits (exceptx = 0 itself) flow out and away☞ Both eigenvalues positive

imply a nodal source. from the origin ast increases from−∞.

✓ Find the eigenvalues and eigenvectors of the systems of Figures 6.2
and 6.3 and interpret them in terms of the phase plane portraits.

Complex Eigenvalues
Now suppose that the eigenvalues are complex conjugatesλ1 = α+ iβ and
λ2 = α− iβ. The exponential form (13) of a solution remains valid, but usu-
ally it is preferable to use Euler’s formula:

eiβt = cos(βt)+ i sin(βt) (20)

This allows us to write the solution in terms of real-valued functions. The
result is

x = C1eαt[acos(βt)− bsin(βt)] + C2eαt[bcos(βt)+ asin(βt)] (21)

wherea andb are the real and imaginary parts of the eigenvectorv(1) associ-
ated withλ1, andC1 andC2 are constants. The trajectories are spirals about
the origin. If α > 0, then the spirals grow in magnitude and the origin is
called aspiral sourceor anunstable spiral point. A typical phase portrait in☞ Complex eigenvalues with

nonzero real parts imply aspiral
sinkor aspiral source.

this case looks like Figure 6.4. Ifα < 0, then the spirals approach the origin
ast → +∞, and the origin is called aspiral sinkor anasymptotically stable
spiral point. In both cases the spirals encircle the origin and may be directed
in either the clockwise or counterclockwise direction (but not both directions
in the same system).

Finally, consider the caseλ = ±iβ, whereβ is real and positive. Now
the exponential factors in solution formula (21) are absent so the trajectory
is bounded ast → ±∞, but it does not approach the origin. In fact, the
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trajectories are ellipses centered on the origin (see Figure 6.5), and the origin
is called acenter. It is stable, but not asymptotically stable.☞ Pure imaginary

eigenvalues imply acenter.

✓ Find the eigenvalues of the systems of Figures 6.4 and 6.5, and interpret
them in terms of the phase plane portraits. Why can’t you “see” the eigenvec-
tors in these portraits?

There is one other graphing technique that is often useful. Ifn = 2, ODE
Architect can draw a plot of the solution intx1x2-space. If we project this
curve onto each of the coordinate planes, we obtain the two component plots
and the phase plot (Figure 6.6).

◆ Using ODE Architect to Find Eigenvalues and Eigenvectors

ODE Architect will find equilibrium points of a system and the eigenvalues
and eigenvectors of the Jacobian matrix of an autonomous system at an equi-
librium point. Here are the steps:

� Enter an autonomous system of first-order ODEs.

� Click on the lower left Equilibrium tab; enter a guess for the coordinates
of an equilibrium point.

� The Equil. tab at the lower right will bring up a window with calculated
coordinates of an equilibrium point close to your guess.

� Double click anywhere on the boxed coordinates of an equilibrium in☞ Use this Architect feature
to calculate the eigenvalues,
eigenvectors.

the window (or click on the window’s editing icon) to see the eigenval-
ues, eigenvectors, and the Jacobian matrix.

If you complete these steps for a system of two first-order, autonomous
ODEs, ODE Architect will insert a symbol at the equilibrium point in the
phase plane: An open square for a saddle, a solid dot for a sink, an open dot
for a source, and a plus sign for a center (Figures 6.2–6.5). The symbols can
be edited using the Equilibrium tab on the edit window.
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Figure 6.4: Phase portrait of a spiral
source: x′

1 = x2, x′
2 = x1 + 0.4x2.
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Figure 6.5: Phase portrait of a cen-
ter: x′

1 = x1 + 2x2, x′
2 = −x1 − x2.
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x1 x2

t

Figure 6.6: Solution curve of x′
1 = x2, x′

2 = −100.25x1 + x2, x1(0) = 1, x2(0) = 1,
the two component curves, and the trajectory in the x1x2-phase plane.

✓ Use ODE Architect to find the eigenvalues and eigenvectors of the sys-
tems in Figures 6.2–6.5.

◆ Separatrices

A trajectory� of a planar autonomous system is aseparatrixif the long-term
behavior of trajectories on one side of� is quite different from the behavior
of those on the other side. Take a look at the foursaddle separatricesin Fig-
ure 6.2, each of which is parallel to an eigenvector of the system matrix. The
two separatrices that approach the saddle point ast increases are thestable
separatrices, and the two that leave are theunstable separatrices.

◆ Parameter Movies

The eigenvalues of a 2× 2 matrixA depend on the values of trA and detA,
and the behavior of the trajectories ofx′ = Ax depends very much on the
eigenvalues. So it makes sense to see what happens to trajectories as we vary
the values of trA and detA. When we do this varying, we can make the
eigenvalues change sign, or move into the complex plane, or become equal.
As the changes occur the behavior of the trajectories has to change as well.
Take a look at the “Parameter Movies” part of Module 6 for some surprising
views of the changing phase plane portraits as we follow along a path in the
parameter plane of trA and detA.
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Exploration 6.1. Eigenvalues, Eigenvectors, and Graphs

1. Each of the phase portraits in the graphs below is associated with a planar
autonomous linear system with equilibrium point at the origin. What can you
say about the eigenvalues of the system matrixA (e.g., are they real, complex,
positive)? Sketch by hand any straight line trajectories. What can you say
about the eigenvectors ofA?
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2. What does the phase portrait ofx′ = Ax look like if A is a 2× 2 matrix with
one eigenvalue zero and the other nonzero? How many equilibrium points are
there? Include portraits of specific examples.

3. Using Figure 6.6 as a guide, make your own gallery of 2D and 3D graphs
to illustrate solution curves, component curves, trajectories, and phase-plane
portraits of the systemsx′ = Ax, whereA is a 2× 2 matrix of constants. List
eigenvalues and eigenvectors ofA. Include examples of the following types
of equilibrium points:

� Saddle

� Nodal sink

� Nodal source

� Spiral sink

� Spiral source

� Center

� Eigenvalues ofA are equal and negative
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Exploration 6.2. Pizza and Video

Sometimes business enterprises are strongly affected by periodic (e.g., sea-
sonal) influences. We can illustrate this in the case of Diffey and Cue.

The model describing Diffey’s and Cue’s profits on Screen 1.4 in Mod-
ule 6 is

x′ = 0.06x + 0.01y− 0.013

y′ = 0.04x + 0.05y− 0.013
(22)

Let’s introduce a periodic fluctuation in the coefficient of x in the first ODE
and in the coefficient of y in the second ODE.

Sine and cosine functions are often used to model periodic phenomena.
We’ll use sin(2πt) so that the fluctuations have a period of one time unit. We
will also include a variable amplitude parameter a so that the intensity of the
fluctuations can be easily controlled. We have the modified system

x′ = 0.06

(
1+ 1

2
asin(2πt)

)
x+ 0.01y− 0.013

y′ = 0.04x + 0.05
(

1+ 3
10

asin(2πt)

)
y− 0.013

(23)

Note that if a = 0, we recover system (22), and that as a increases the ampli-
tude of the fluctuations in the coefficients also increases.

1. Interpret the terms involving sin(2πt) in the context of Diffey’s and Cue’s
businesses. Use ODE Architect to solve the system (23) subject to the initial
conditionsx(0)= 0.3, y(0)= 0.2 for a = 1. Use the time interval 0≤ t ≤ 10,
or an even longer interval. Plotx vs. t, y vs. t, andy vs.x. Compare the plots
with the corresponding plots for the system (22). What is the effect of the
fluctuating coefficients on the solution? Repeat with the same initial data, but
sweepinga from 0 to 5 in 11 steps. What is the effect of increasinga on the
solution?
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2. Use ODE Architect to solve the system (23) subject to the initial conditions
x(0)= 0.25, y(0)= 0 for a = 3. Draw a plot ofy vs.x only. Be sure to use a
sufficiently larget-interval to make clear the ultimate behavior of the solution.
Repeat using the initial conditionsx(0) = 0.2, y(0) = −0.2. Explain what
you see.

3. For the two initial conditions in Problem 2 you should have found solu-
tions that behave quite differently. Consider initial points on the line joining
(0.25,0) and (0.2,−0.2). For a = 3, estimate the coordinates of the point
where the solution changes from one type of behavior to the other.
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Exploration 6.3. Control of Interconnected Water Tanks

Consider two interconnected tanks containing salt water. Initially Tank 1 con-
tains 5 gal of water and 3 oz of salt while Tank 2 contains 4 gal of water and
5 oz of salt.☞ Take a look at

Chapter 8 for a way to
diagram this
“compartment” model.

Water containing p1 oz of salt per gal flows into Tank 1 at a rate of
2 gal/min. The mixture in Tank 1 flows out at a rate of 6 gal/min, of which
half goes into Tank 2 and half leaves the system.

Water containing p2 oz of salt per gal flows into Tank 2 at a rate of
3 gal/min. The mixture in Tank 2 flows out at a rate of 6 gal/min: 4 gal/min
goes to Tank 1, and the rest leaves the system.

1. Draw a diagram showing the tank system. Does the amount of water in each
tank remain the same during this flow process? Explain. Ifq1(t) andq2(t)
are the amounts of salt (in oz) in the respective tanks at timet, show that they
satisfy the system of differential equations:

q′
1 = 2p1 − 6

5q1 + q2

q′
2 = 3p2 + 3

5q1 − 3
2q2

What are the initial conditions associated with this system of ODEs?

2. Suppose thatp1 = 1 oz/gal andp2 = 1 oz/gal. Solve the IVP, plotq1(t) vs. t,
and estimate the limiting valueq∗

1 thatq1(t) approaches after a long time. In
a similar way estimate the limiting valueq∗

2 for q2(t). Repeat for your own
initial conditions, but remember thatq1(0) andq2(0) must be nonnegative.
How areq∗

1 andq∗
2 affected by changes in the initial conditions? Now use

ODE Architect to findq∗
1 andq∗

2. [Hint: Use the Equilibrium tab.] Is the
equilibrium point a source or a sink? A node, saddle, spiral, or center?



110 Exploration 6.3

3. The operator of this system (you) can control it by adjusting the input param-
etersp1 and p2. Note thatq∗

1 andq∗
2 depend onp1 and p2. Find values ofp1

andp2 so thatq∗
1 = q∗

2. Can you find values ofp1 and p2 so thatq∗
1 = 1.5q∗

2?
So thatq∗

2 = 1.5q∗
1?

4. Let c∗
1 andc∗

2 be the limiting concentrations of salt in each tank. Expressc∗
1

andc∗
2 in terms ofq∗

1 andq∗
2, respectively. Findp1 and p2, if possible, so as

to achieve each of the following results:
(a) c∗

1 = c∗
2 (b) c∗

1 = 1.5c∗
2 (c) c∗

2 = 1.5c∗
1

Finally, consider all possible (nonnegative) values ofp1 andp2. Describe
the set of limiting concentrationsc∗

1 andc∗
2 that can be obtained by adjusting

p1 and p2.
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Exploration 6.4. Three Interconnected Tanks

Consider three interconnected tanks containing salt water. Initially Tanks 1
and 2 contain 10 gal of water while Tank 3 contains 15 gal. Each tank initially
contains 6 oz of salt.☞ Take a look at

Chapter 8 for a way to
diagram this
“compartment” model.

Water containing 2 oz of salt per gal flows into Tank 1 at a rate of
1 gal/min. The mixture in Tank 1 flows into Tank 2 at a rate of r gal/min.
Furthermore, the mixture in Tank 1 is discharged into the drain at a rate of
2 gal/min. Water containing 1 oz of salt per gal flows into Tank 2 at a rate of
2 gal/min. The mixture in Tank 2 flows into Tank 3 at a rate of r +1 gal/min and
also flows back into Tank 1 at a rate of 1 gal/min. The mixture in Tank 3 flows
into Tank 1 at a rate of r gal/min, and down the drain at a rate of 1 gal/min.

1. Draw a diagram that depicts the tank system. Does the amount of water in
each tank remain constant during the process? Show that the flow process is
modeled by the following system of equations, whereq1(t), q2(t), andq3(t)
are the amounts of salt (in oz) in the respective tanks at timet:

q′
1 = 2− r + 2

10
q1 + 1

10
q2 + r

15
q3

q′
2 = 2+ r

10
q1 − r + 2

10
q2

q′
3 = r + 1

10
q2 − r + 1

15
q3

What are the corresponding initial conditions?

2. Let r = 1, and use ODE Architect to plotq1 vs. t, q2 vs. t, andq3 vs. t for
the IVP in Problem 1. Estimate the limiting value of the amount of salt in
each tank after a long time. Now suppose that the flow rater is increased to
4 gal/min. What effect do you think this will have on the limiting values for
q1, q2, andq3? Check your intuition with ODE Architect. What do you think
will happen to the limiting values ifr is increased further? For each value of
r use ODE Architect to find the limiting values forq1, q2, andq3.
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3. Although the two sets of graphs in Problem 2 may look similar, they’re ac-

☞ Use ODE Architect to find
the eigenvalues.

tually slightly different. Calculate the eigenvalues of the coefficient matrix
whenr = 1 and whenr = 4. There is a certain “critical” valuer = r0 between
1 and 4 where complex eigenvalues first occur. Determiner0 to two decimal
places.

4. Complex eigenvalues lead to sinusoidal solutions. Explain why the oscilla-
tory behavior characteristic of the sine and cosine functions is not apparent in
your graphs from Problem 2 forr = 4. Devise a plan that will enable you to
construct plots showing the oscillatory part of the solution forr = 4. Then
execute your plan to make sure that it is effective.
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Exploration 6.5. Small Motions of a Double Pendulum; Coupled
Springs

Another physical system with two degrees of freedom is the planar double
pendulum. This consists of two rods of length l1 and l2 and two masses m1

and m2, all attached together so that motions are confined to a vertical plane.
Here we’ll investigate motions for which the pendulum system doesn’t move
too far from its stable equilibrium position in which both rods are hanging
vertically downward. We’ll assume the damping in this system is negligible.

A sketch of the double pendulum system is shown in the margin. A

θ1 m1

m2

l1

l2

θ2

derivation of the nonlinear equations in terms of the angles θ1(t) and θ2(t)
that govern the oscillations of the system is given in Chapter 7 (beginning on
page 126). The equations of interest here are the linearized ODEs in θ1 and θ2

where both of these angles are required to be small:

l1θ′′
1 + m2

m1 + m2
l2θ′′

2 + gθ1 = 0

l2θ
′′
2 + l1θ

′′
1 + gθ2 = 0

For small values of θ1, θ′
1, θ2, and θ′

2 these ODEs are obtained by linearizing
ODEs (19) and (20) on page 127.

1. Consider the special case wherem1 = m2 = m and l1 = l2 = l , and define
g/ l = ω2

0. Write the equations above as a system of four first-order equations.
Use ODE Architect to generate motions for different values ofω0. Experiment
with different initial conditions. Try to visualize the motions of the pendulum
system that correspond to your solutions. Then use the model-based anima-
tion tool in ODE Architect and watch the animated double pendulums gyrate
as your initial value problems are solved.
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2. Assumeω2
0 = 10 in Problem 1. Can you find in-phase and out-of-phase os-

cillations that are analogous to those of the coupled mass-spring system? De-
termine the relationships between the initial conditionsθ1(0) andθ2(0) that
are needed to produce these motions. Plotθ2 againstθ1 for these motions.
Then changeθ1(0) or θ2(0) to get a motion which is neither in-phase nor out-
of-phase. Overlay this graph on the first plot. Explain what you see. Use
the model-based animation feature in ODE Architect to help you “see” the
in-phase and out-of-phase motions, and those that are neither. Describe what
you see.

3. Show that the linearized equations for the double pendulum in Problem 2 are
equivalent to those for a particular coupled mass-spring system. Find the cor-
responding values of (or constraints on) the mass-spring parametersm1, m2,
k1, andk2. Does this connection extend to other double-pendulum parame-
ter values besides those in Problems 1 and 2? If so, find the relationships
between the parameters of the corresponding systems. Use the model-based
animation feature in ODE Architect and watch the springs vibrate and the
double pendulum gyrate. Describe what you see.
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Angular velocity: twenty-four ways to spin a book.

Overview While many natural processes can be modeled by linear systems of ODEs, others
require nonlinear systems. Fortunately, some of the ideas used to understand lin-
ear systems can be modified to apply to nonlinear systems. In particular, state (or
phase) spaces and equilibrium solutions (as well as eigenvalues and eigenvectors)
continue to play a key role in understanding the long-term behavior of solutions.
You will also see some new phenomena that occur only in nonlinear systems. We
restrict our attention to autonomous equations, that is, equations in which time
does not explicitly appear in the rate functions.

Key words Nonlinear systems of differential equations; linearization; direction fields; state
(phase) space; equilibrium points; Jacobian matrices; eigenvalues; separatrices;
Hopf bifurcations; limit cycles; predator-prey; van der Pol system; saxophone;
spinning bodies; conservative systems; integrals of motion; angular velocity; New-
ton’s second law; nonlinear double pendulum

See also Chapter 6 for background on linear systems and Chapters 8–10 and 12 for more
examples of nonlinear systems.
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◆ Linear vs. Nonlinear

In modeling a dynamical process with ODEs we aim for a model that is both
reasonably accurate and solvable. By the latter we mean that there are either
explict solution formulas that reveal how solutions behave, or reliable numeri-
cal solvers for approximating solutions. Constant-coefficient linear ODEs and
linear systems have explicit solution formulas (see Chapters 4 and 6), and that
is one reason linearity is widely assumed in modeling. However, nonlinearity
is an essential feature of many dynamical processes, but explicit solution for-
mulas for nonlinear ODEs are rare. So for nonlinear systems we turn to the
alternative approaches, and that’s what this chapter is about.

◆ The Geometry of Nonlinear Systems

Let’s start with thelinear system of ODEs that models the motion of a cer-
tain viscously damped spring-mass system that obeys Hooke’s Law for the
displacementx of a unit mass from equilibrium:

x′ = y, y′ = −x− 0.1y (1)

In Chapter 4 we saw that the equivalent linear second-order ODE,x′′ +
0.1x′ + x = 0, has an explicit solution formula, which we can use to deter-
mine the behavior of solutions and of trajectories in thexy-phase plane.

Now let’s suppose that the Hooke’s-law spring is replaced by a stiffening
spring, which can be modeled by replacing the Hooke’s-law restoring force
−x in system (1) with the nonlinear restoring force−x − x3. We obtain the
system

x′ = y, y′ = −x− x3 − 0.1y (2)

As in the linear system (1), the nonlinear system (2) defines avector(or di-
rection) field in the xy-state(or phase) plane. The field lines are tangent to
thetrajectories(or orbits) and point in the direction of increasing time.

There are no solution formulas for system (2), so we turn to direction
fields and ODE Architect for visual clues to solution behavior. As you can
see from Figure 7.1, the graphs generated by ODE Architect tell us that the
trajectories of both systems spiral into theequilibrium pointat the origin as☞ The equilibrium points of

a system correspond to the
constant solutions, that is, to the
points where all the rate
functions of the system are zero.

t → +∞, even though the shapes of the trajectories differ. The origin corre-
sponds to the constant solutionx = 0, y = 0, which is called aspiral sinkfor
each system because of the spiraling nature of the trajectories and because the
trajectories, like water in a draining sink, are “pulled” into the origin with the
advance of time. This is an indication oflong-termor asymptoticbehavior.
Note that in this case the nonlinearity does not affect long-term behavior, but
clearly does affect short-term behavior.



Linearization 117

✓ “Check” your understanding by answering these questions: Do the sys-
tems (1) and (2) have any equilibrium points other than the origin? How do
the corresponding springs and masses behave as time increases? Why does
the−x3 term seem to push orbits toward they-axis if |x| ≥ 1, but not have
much effect if|x| is close to zero?

◆ Linearization

If we start with a nonlinear system such as (2), we can often uselinear ap-
proximationsto help us understand some features of its solutions. Our ap-
proximations will give us a corresponding linear system and we can apply
what we know about that linear system to try to understand the nonlinear sys-
tem. In particular, we will be able to verify our earlier conclusions about the
long-term behavior of the nonlinear spring-mass system (2).

The nonlinearity of system (2) comes from the−x3 term in the rate func-
tion g(x, y)= −x − x3 − 0.1y. In calculus you may have seen the following
formula for the linear approximation of the functiong(x, y) near the point
(x0, y0):

☞ This is afinite Taylor
seriesapproximation tog(x, y).

g(x, y)≈ g(x0, y0)+ ∂g
∂x
(x0, y0)(x− x0)+ ∂g

∂y
(x0, y0)(y− y0) (3)

However,g(x0, y0) will always be zero at an equilibrium point (do you see
why?), so formula (3) simplifies in this case to

g(x, y)≈ ∂g
∂x
(x0, y0)(x− x0)+ ∂g

∂y
(x0, y0)(y− y0) (4)

Since we’re interested in long-term behavior and the trajectories of system (2)
seem to be heading toward the origin, we want to use the equilibrium point
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x′ = y, y′ = −x− x3 − 0.1y

Figure 7.1: Trajectories of both systems have the same long-term, spiral-sink
behavior, but behavior differs in the short-term.
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Figure 7.2: Near the equilibrium at the origin trajectories and tx-component
curves of nonlinear system (2) and its linearization (1) are nearly look-alikes.

(x0, y0) = (0,0) in formula (4). Near the origin, the rate function for our
nonlinear spring can be approximated by

g(x, y)≈ −x− 0.1y

since∂g/∂x = −1 and∂g/∂y = −0.1 at x0 = 0, y0 = 0. Therefore the non-
linear system (2) reduces to thelinearized system(1). You can see the ap-
proximation when the phase portraits are overlaid. The trajectories andtx-
component curves of both systems, issuing from a common initial point close
to the origin, are shown in Figure 7.2. The linear approximation is pretty☞ Linear and nonlinear

look-alikes. good because the nonlinearity−x3 is small nearx = 0. Take another look at
Figure 7.1; the linear approximation isnot very good when|x| > 1.

✓ How good an approximation to system (2) is the linearized system (1) if
the initial point of a trajectory is far away from the origin? Explain what you
mean by “good” and “far away.”

In matrix notation, linear system (1) takes the form
[

x
y

]′
=
[

0 1
−1 −0.1

][
x
y

]
(5)

so the characteristic equation of the system matrix isλ2 + 0.1λ+ 1 = 0. The
matrix has eigenvaluesλ = (−0.1± i

√
3.99)/2, making(0,0) a spiral sink

(due to the negative real part of both eigenvalues). This supports our earlier☞ Look back at Chapter 6 for
more on complex eigenvalues
and spiral sinks.

conclusion that was based on the computer-generated pictures in Figure 7.2.
The addition of a nonlinear term to a linear system (in this example, a cubic
nonlinearity) does not change the stability of the equilibrium point (a sink in
this case) or the spiraling nature of the trajectories (suggested by the complex
eigenvalues).
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The linear and nonlinear trajectories and thetx-components shown in Fig-
ure 7.2 look pretty much alike. This is often the case for a system

x′ = F(x) (6)

and itslinearization☞ The pointx0 is an
equilibrium point ofx′ = F(x) if
F(x0) = 0. x′ = A(x − x0) (7)

at an equilibrium pointx0. Let’s assume that the dependent vector variable
x hasn componentsx1, . . . xn, that F1(x), . . . , Fn(x) are the components of
F(x), and that these components are at least twice continuously differentiable
functions. Then then× n constant matrixA in system (7) is the matrix of the
first partial derivatives of the components ofF(x) with respect to the compo-
nents ofx, all evaluated atx0:

A =




∂F1

∂x1
· · · ∂F1

∂xn
...

...
∂Fn

∂x1
· · · ∂Fn

∂xn




x=x0

A is called theJacobian matrixof F atx0, and is often denoted byJ or J(x0).
As an example, look back at system (1) and its linearization, system (2) or
system (5).

It is known that if none of the eigenvalues of the Jacobian matrix at an☞ Here’s why linearization is
so widely used. equilibrium point is zero or pure imaginary, then close to the equilibrium point

the trajectories and component curves of systems (6) and (7) look alike. We
can use ODE Architect to find equilibrium points, calculate Jacobian matrices
and their eigenvalues, and so, check out whether the eigenvalues meet the
conditions just stated. Ifn = 2, we can apply the vocabulary of planar linear
systems from Chapter 6 to nonlinear systems. We can talk about aspiral sink,
anodal source, asaddle point, etc. ODE Architect uses a solid dot for a sink,
an open dot for a source, a plus sign for a center, and an open square for a
saddle.

What happens when, say, the matrixA doeshave pure imaginary eigen-
values? Then all bets are off, as the following example shows.

Start with the linear system

x′ = y

y′ = −x

The system matrix has the pure imaginary eigenvalues±i, making the origin
a center. Now give the system a nonlinear perturbation to get

x′ = y− x3

y′ = −x
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Figure 7.3: Nonlinear terms convert a linear center to a nonlinear sink.

By picturing the direction field defined by this system, we can see that each
vector has been nudged slightly inward, toward the origin. This causes so-☞ The behavior of the

linearized system does not
always accurately predict the
behavior of the nonlinear system.

lutions to spiral inward, making(0,0) a spiral sink. Figure 7.3 shows tra-
jectories from the original linear system on the left, and a trajectory of the
nonlinear system on the right, spiraling inward. Now it should be clear why
we had to exclude pure imaginary eigenvalues!

✓ What happens if you perturb the linear system by adding thex3 term,
instead of subtracting? What about the systemx′ = y− x3, y′ = −x+ y3?

◆ Separatrices and Saddle Points

A linear saddle point has two trajectories that leave the point (as time in-
creases from−∞) along a straight line in the direction of an eigenvector.
Another two trajectories approach the point (as time increases to+∞) along
a straight line in the direction of an eigenvector. These four trajectories are
calledsaddle separatricesbecause they divide the neighborhood of the sad-
dle point into regions of quite different long-term trajectory behavior. The left
plot in Figure 7.4 shows the four separatrices along thex- andy- axes for the
linear system

x′ = x, y′ = −y (8)

with a saddle point at the origin. The two that leave the origin ast increases
are theunstable separatrices, and the two that enter the origin are thestable☞ See Chapters 10 and 12 for

more on separatrices. separatrices.
If we add some higher-order nonlinear terms to a linear saddle-point sys-

tem, the separatrices persist but their shapes may change. They still divide
a neighborhood of the equilibrium point into regions of differing long-term
behavior. And, most importantly, they still leave or approach the equilibrium
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(b) Trajectories of System (9)
Figure 7.4: Saddle separatrices lie along the axes in (a); two of the separatri-
ces are bent to the right by a nonlinearity in (b).

point tangent to eigenvectors of the linearized system. The right plot in Fig-
ure 7.4 suggests all this for the system (8) with a nonlinear term tacked on:

x′ = x− y2, y′ = −y (9)

Note how the nonlinearity bends two of the separatrices.

◆ Behavior of Solutions Away from Equilibrium Points

While we can use linearization in most cases to determine the long-term be-
havior of solutions near an equilibrium point, it may not be a good method
for studying the behavior of solutions “far away” from the equilibrium point.
Consider, for example, the spider-fly system of Module 7:

S′ = −4S+ 2SF, F ′ = 3
(

1− F
5

)
F − 2SF

whereS is a population of spiders preying onF, a population of flies (all
measured in thousands). This nonlinear system has several equilibrium points,
one of which is atp∗ = (0.9,2).

Take a look at the graphics windows in Experiment 2 of “The Spider and
Fly” (Screen 1.4). The trajectories of the linearized system that are close top∗

approximate well those of the nonlinear system. However, trajectories of the
linearized system that are not near the equilibrium point diverge substantially☞ The nonlinear terms are

critical in determining trajectory
behavior far away from an
equilibrium point.

from those of the nonlinear system, and may even venture into a region of the
state space where the population of spiders is negative!

✓ Look at the Library file “Mutualism: Symbiotic Interactions” in the
“Population Models” folder and investigate the long-term behavior of solu-
tion curves by using linear approximations near equilibrium points.
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Figure 7.5: The system, x′ = y+ ax− x3, y′ = −x, undergoes a Hopf bifurcation
to an attracting limit cycle as the parameter transits the value a = 0.

◆ Bifurcation to a Limit Cycle

The model equations for an electrical circuit (thevan der Pol circuit) contain-
ing a nonlinear resistor, an inductor, and a capacitor, all in series, are☞ If you are not “into”

nonlinear electrical circuits,
ignore the modeling here and just
consider ODE (10) as a particular
nonlinear system.

x′ = y+ ax− x3, y′ = −x (10)

wherex is the current in the circuit andy is the voltage drop across the ca-
pacitor. The voltage drop across the nonlinear resistor isax− x3, wherea is a
parameter. The characteristics of the resistor, and thus the performance of the
circuit, change when we change the value of this parameter. Let’s look at the☞ Current, voltages and time

are scaled to dimensionless
quantities in system (10).

phase portrait and the corresponding eigenvalues of the linearization of this
system at the equilibrium point(0,0) for different values ofa.

As a increases from−1 to 1, the eigenvalues of the Jacobian matrix of
system (10) at the origin change from complex numbers with negative real
parts to complex numbers with positive real parts, but ata = 0 they are pure
imaginary. The circuit’s behavior changes asa increases, and it changes in a
qualitative way ata = 0. The phase portrait shows a spiral sink at(0,0) for
a ≤ 0, then a spiral source fora> 0. Further, the trajectories near the source
spiral out to a closed curve that is itself a trajectory. Our electrical circuit
has gone from one where current and voltage die out to one that achieves a
continuing oscillation described by a periodic steady state. A change like this
in the behavior of a model at a particular value of a parameter is called aHopf
bifurcation. Figure 7.5 shows the changes in a trajectory of system (10) due
to the bifurcation that occurs whena is increased through zero.

✓ Find the Jacobian matrix of system (10) at the origin and calculate its
eigenvalues in terms of the parametera. Write out the linearized version of
system (10). Check your work by using ODE Architect’s equilibrium, Jaco-
bian, and eigenvalue capabilities.
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The closed solution curve in Figure 7.5 that represents a periodic steady
state is called anattracting limit cyclebecause all nearby trajectories spiral☞ A limit cycle is

exclusively a nonlinear
phenomenon. Any cycle in a
linear autonomous system is
always part of a family of cycles,
none of which are limit cycles.

into it as time increases. As the parameter value changes in a Hopf bifurcation,
you can observe an equilibrium point that is a spiral sink changing into a
source with nearby orbits spiralling onto the limit cycle. You’ll investigate this
kind of phenomenon when you use ODE Architect to investigate the model
system in the “Saxophone” submodule of Module 7.

◆ Higher Dimensions

So far we have looked at systems of nonlinear ODEs involving only two state
variables. However it is not uncommon for a model to have a system with
more than two state variables. Fortunately our ideas extend in a natural way
to cover these situations. Analysis by linear approximation may still work
in these cases, and ODE Architect can always be used to find equilibrium
points, Jacobian matrices, and eigenvalues in any dimension. See for example
Problem 3 in Exploration 7.3.

The chapter cover figure shows trajectories of a system with three state
variables; this system describes the angular velocity of a spinning body. The
“Spinning Bodies” submodule of Module 7 and Problem 1 in Exploration 7.3
model the rotational motion of an object thrown into space; this model is
described below.

✓ How could you visualize the trajectories of a system of four equations?

◆ Spinning Bodies: Stability of Steady Rotations

Suppose that a rigid body is undergoing a steady rotation about an axisL
through its center of mass. In a plane perpendicular toL let θ be the angle
swept out by a point in the body, but not on the axis. Steady rotations about
L are characterized by the fact thatθ′ = dθ/dt = constant, for all time. In☞ As we shall see, not all

axesL will support steady
rotations.

mechanics, it is useful to describe such steady rotations by a vector! parallel
to L whose magnitude|!| = dθ/dt is constant. Notice that−! in this case
also corresponds to a steady spin aboutL , but in the opposite direction. The
vector! is called theangular velocity, and for steady rotations we see that!

is a constant vector. The angular velocity vector! can also be defined for an
unsteady rotation of the body, but in this case!(t) is not a constant vector.

It turns out that in a uniform force field (such as the gravitational field
near the earth’s surface), the differential equations for the rotational motion of
the body about its center of mass decouple from the ODEs for the translational
motion of the center of mass. How shall we track the rotational motion of the
body? For each rigid body there is a natural triple of orthogonal axesL 1, L2,
andL3 (calledbody axes) which, as it turns out, makes it relatively easy to
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model the rotational motion by a system of ODEs. To define the body axes we
need theinertia tensorI of the body. Given a triple of orthogonal axes through
the body’s center of mass, put an orientation on each axis and label them to
form aright-handed frame(i.e., it follow the right-hand rule). In that frame,I
is represented by a 3× 3 positive definite matrix. Body axes are just the frame☞ A matrix A is positive

definite if it is symmetric (i.e.,
AT = A) and all of its
eigenvalues are positive.

for which the representation ofI is a diagonal matrix with the positive entries
I1, I2, and I3 along the diagonal. These valuesI1, I2, and I3 are called the
principal moments of inertiaof the body. Note thatIk is the moment of inertia
about the principal axisL k, for k = 1, 2, 3. If a body has uniform density and
an axisL such that turning the body 180◦ about that axis brings the body into
coincidence with itself again, then that axisL is a principal axis.

Let’s say that a book has uniform density (not quite true, but nearly so).
Then the three axes of rotational symmetry through the center of mass are
the principal axes:L3, theshort axisthrough the center of the book’s front☞ Described graphically in

Module 7. and back covers;L 2, the long axisparallel to the book’s spine; andL 1, the
intermediate axiswhich is perpendicular toL2 andL3. For a tennis racket,
the body axisL 2 is obvious on geometrical grounds. The other axesL 1 and
L3 are a bit more difficult to discern, but they are given in the margin sketch.

Throw a tennis racket up into the air and watch its gyrations. Wrap a

>

U

y L2

L1

L3

rubber band around a book, toss it into the air, and look at its spinning behav-
ior. Now try to get the racket or the book to spin steadily about each of three
perpendicular body axesL 1, L2, andL3. Not so hard to do about two of the
axes—but nearly impossible about the third. Why is that? Let’s construct a
model for the rotation of the body and answer this question.

Let’s confine our attention to the body’s angular motion while aloft, not its☞ A complete derivation of
the model ODEs can be found in
the first of the listed references.

vertical motion. Let’s ignore air resistance. The key parameters that influence
the angular motion are the principal inertiasI1, I2, I3 about the respective
body axesL 1, L2, L3. Let ω1, ω2, andω3 be the components of the vector
! along the body axesL 1, L2, andL3. There is an analogue of Newton’s
second law applied to the body which involves the angular velocity vector
!. The components of the rotational equation of motion in the body axes
frame are given byI1ω

′
1 = ( I2 − I3)ω2ω3, I2ω

′
2 = ( I3 − I1)ω1ω3, I3ω

′
3 =

( I1 − I2)ω1ω2.
Dividing by the principal inertias, we have the nonlinear system

ω′
1 = I2 − I3

I1
ω2ω3

ω′
2 = I3 − I1

I2
ω1ω3

ω′
3 = I1 − I2

I3
ω1ω2

(11)

Let’s measure angles in radians and time in seconds, so that eachωi has units
of radians per second.

First, we note that for any constantα �= 0, the equilibrium point! =☞ Pure steady rotations are
possible about any body axis. (α,0,0) of system (11) represents a pure steady rotation (or spinning motion)
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about the first body axisL1 with angular velocityα. The equilibrium point
(−α,0,0) represents steady rotation aboutL 1 in the opposite direction. Sim-
ilar statements are true for the equilibrium points! = (0, α,0) and(0,0, α).

Now thekinetic energy of angular rotationis given by

K E(ω1, ω2, ω3) = 1
2

(
I1ω

2
1 + I2ω

2
2 + I3ω

2
3

)
The value ofK E stays fixed on an orbit of system (11) since

d(K E)
dt

= I1ω1ω
′
1 + I2ω2ω

′
2 + I3ω3ω

′
3

= ( I2 − I3)ω1ω2ω3 + ( I3 − I1)ω1ω2ω3 + ( I1 − I2)ω1ω2ω3 = 0

So system (11) isconservativeandK E is anintegral. The ellipsoidal integral☞ A system of autonomous
ODEs isconservativeif there is a
function F of the dependent
variables whose value is constant
along each orbit (i.e., trajectory),
but varies from one orbit to
another.F is said to be an
integral of motionof the system.

surfaceK E = C, whereC is a positive constant, is called aninertial ellipsoid
for system (11). Note that any orbit of (11) that starts on one of the ellipsoids
stays on the ellipsoid, and orbits on that ellipsoid share the same value ofK E.

✓ Show that the functions

K = I3 − I1

I2
ω2

1 − I2 − I3

I1
ω2

2

and

M = I1 − I2

I3
ω2

1 − I2 − I3

I1
ω2

3

are also integrals for system (11). Describe the surfacesK = const., M =
const.

Let’s put in some numbers forI1, I2, and I3 and see what happens. Set
I1 = 2, I2 = 1, I3 = 3. Then system (11) becomes

ω′
1 = −ω2ω3

ω′
2 = ω1ω3

ω′
3 = 1

3
ω1ω2

(12)

With the given values forI1, I2, I3 we have the integral

K E = 1
2

(
2ω2

1 + ω2
2 + 3ω2

3

)
(13)

The left graph in Figure 7.6, which is also the chapter cover figure, shows☞ Body axisL1 is parallel to
theω1-axis,L2 to theω2-axis,
andL3 to theω3-axis in
Figure 7.6.

the inertial ellipsoidK E = 12 and twenty-four orbits on the surface. The
geometry of the orbits indicates that if the body is started spinning about an
axis very near the body axesL 2 or L3, then the body continues to spin almost
steadily about those body axes. Attempting to spin the body about the inter-
mediate body axisL 1 is another matter. Any attempt to spin the body about
theL1 body axis leads to strange gyrations. Note in Figure 7.6 that each of the
four trajectories that starts near the equilibrium point(

√
12,0,0) where the
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Figure 7.6: Twenty-four trajectories on the inertial ellipsoid K E = 12 (left);
head-on view from the ω1-axis (right) shows a saddle point on the ellipsoid.

ω1-axis pierces the ellipsoid goes back near the antipodal point (and reverses
its direction of rotation) then returns in an endlessly repeating periodic path.
This corresponds to unstable gyrations near theω1-axis.

✓ Match up the trajectories in Figure 7.6 with actual book rotations. Put
a rubber band around a book, flip the book into the air, and check out the
rotations. Do the projected trajectories in the right graph of Figure 7.6 really
terminate, or is something else going on?

◆ The Planar Double Pendulum

The planar double pendulum is an interesting physical system with two de-☞ This is pretty advanced
material here, so feel free to skip
the text and go directly to the
“Double Pendulum Movies”. Just
click on the ODE Architect
library, open the “Physical
Models” folder and the “The
Nonlinear Double Pendulum”
file, and create chaos!

grees of freedom. It consists of two rods of lengthsl1 andl2, and two masses,
specified bym1 andm2, attached together so that the rods are constrained to
oscillate in a vertical plane. We’ll neglect effects of damping in this system.

The governing equations are most conveniently written in terms of the
anglesθ1(t) andθ2(t) shown in Figure 7.7. One way to obtain the equations
of motion is by applying Newton’s second law to the motions of the masses.
First we’ll consider massm2 and the component in the direction shown by the
unit vectoru3 in Figure 7.7. Define a coordinate system centered at massm1

and rotating with angular velocityΩ = (dθ1/dt)k, wherek is the unit vector
normal to the plane of motion. If̂a, v̂, andr̂ denote the acceleration, velocity,
and position ofm2 with respect to the rotating coordinate system, then the
accelerationa with respect to a coordinate system at rest is known to be☞ The “×” here denotes the

vector cross product.

a = â+ dΩ
dt

× r̂ + 2Ω × v̂ + Ω × (Ω × r̂ ) (14)

For our configuration it follows that̂r is given by

r̂ = −[l1 sin(θ2 − θ1)]u3 + [l2 + l1 cos(θ2 − θ1)]u4 (15)
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with the unit vectoru4 in the direction shown in Figure 7.7. Since the only
forces acting are gravity and the tensile forces in the rods, theu3-component
of F = m2a in combination with Eqs. (14) and (15) gives

☞ The Library file, “The
Nonlinear Double Pendulum”
uses different symbols forθ1, θ′1,
θ2, andθ′2.

m2l2(θ2 − θ1)
′′ + m2[l2 + l1 cos(θ2 − θ1)]θ

′′
1

+ m2l1(θ
′
1)

2 sin(θ2 − θ1) = −m2gsinθ2 (16)

Similarly, the component of Newton’s law in the direction of the unit vector
u1 is given by

m2l1θ
′′
1 + m2l2 cos(θ2 − θ1)θ

′′
2 − m2l2(θ

′
2)

2 sin(θ2 − θ1)

= −m2gsinθ1 − f2 sin(θ2 − θ1) (17)

where f2 is the magnitude of the tensile force in the rodl2. Equations (16)
and (17) will provide the system governing the motion, once the quantityf2 is
determined. An equation forf2 is found from theu1-component of Newton’s
law applied to the massm1:

m1l1θ
′′
1 = −m1gsinθ1 + f2 sin(θ2 − θ1) (18)

Eliminating f2 between Eqs. (17) and (18) and simplifying Eq. (16) slightly,
we obtain the governing nonlinear system of second-order ODEs for the un-
damped planar double pendulum:

☞ Before equations (19)
and (20) can be solved by the
Tool, they need to be converted to
a normalized system of first order
ODEs.

(m1 + m2)l1θ
′′
1 + m2l2 cos(θ2 − θ1)θ

′′
2

− m2l2(θ
′
2)

2 sin(θ2 − θ1)+ (m1 + m2)gsinθ1 = 0 (19)

m2l2θ
′′
2 + m2l1 cos(θ2 − θ1)θ

′′
1

+ m2l1(θ
′
1)

2 sin(θ2 − θ1)+ m2gsinθ2 = 0 (20)
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Figure 7.7: Geometry and unit vectors for the double pendulum.
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Another way to derive the equations of motion of the double pendulum
system is to use Lagrange’s equations. These are

d
dt

[
∂

∂θ′
1

(T − V)

]
− ∂

∂θ1
(T − V) = 0 (21)

d
dt

[
∂

∂θ′
2

(T − V)

]
− ∂

∂θ2
(T − V) = 0 (22)

whereT is the kinetic energy of the system andV is its potential energy. The
respective kinetic energies of the massesm1 andm2 are

T1 = 1
2

m1l2
1(θ

′
1)

2

T2 = 1
2

m2(l1θ
′
1 sinθ1 + l2θ

′
2 sinθ2)

2 + 1
2

m2(l1θ
′
1 cosθ1 + l2θ

′
2 cosθ2)

2

The corresponding potential energies ofm1 andm2 are

V1 = m1gl1(1− cosθ1)

V2 = m2gl1(1− cosθ1)+ m2gl2(1− cosθ2)

Then we haveT = T1 + T2 andV = V1 + V2. Inserting the expressions forT
andV into Eqs. (21) and (22), we find the equations of motion of the double
pendulum. These equations are equivalent to the ones obtained previously us-
ing Newton’s law. The formalism of Lagrange pays the dividend of producing
the equations with “relatively” shorter calculations.
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proach, Vol. 18 of Texts in Appl. Math. (1995: Springer-Verlag), Sec-
tions 8.2, 8.3

Marion, J.B., and Thornton, S.T.,Classical Dynamics of Particles and Sys-
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Exploration 7.1. Predator and Prey: Linearization and Stability

1. Let F represent the number of flies andS the number of spiders (both in

☞ Take a look at the “Spider
and Fly” submodule of Module 7.

1000s). Assume that the model for their interaction is given by:

S′ = −4S+ 2SF, F ′ = 3F − 2SF (23)

where theSF-term is a measure of the interaction between the two species.

(a) Why is theSF-term negative in the first ODE and positive in the second
when(S, F) is inside the population quadrant?

(b) Show that the system has an equilibrium point at(1.5,2).

(c) Show that the system matrix of the linearization of system (23) about
(1.5,2) has pure imaginary eigenvalues.☞ This makes the point

(1.5,2) a center for the
linearized system. (d) Now plot phase portraits for system (23) and for its linearization about

(1.5,2). What do you see?

2. Suppose that an insecticide reduces the spider population at a rate proportional
to the size of the population.

(a) Modify the predator-prey model of system (23) to account for this.

(b) Model how insecticide can be made more or less effective.

(c) Use the model to predict the long-term behavior of the populations.
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3. In a predator-prey system that models spider-fly interaction

S′ = −4S+ 2SF, F ′ = 3

(
1− F

N

)
F − 2SF

the numberN represents the maximum fly population (in 1000s). Investigate
the effect of changing the value ofN. What’s the largest the spider population
can get? The fly population?

4. Suppose the spider-fly model is modified so that there are two predators, spi-
ders and lizards, competing to eat the flies. One model for just the two preda-
tor populations is

S′ = 4
(

1− S
5

)
S− SL, L′ = 3

(
1− L

2

)
L − SL

(a) What do the numbers 2, 3, 4, and 5 represent?

(b) What does the termSLrepresent? Why is it negative?

(c) What will become of the predator populations in the long run?

5. Take a look at the library file “A Predator-Prey System with Resource Limi-
tation” in the “Biological Models” folder. Compare and contrast the system
you see in that file with that given in Problem 2. Create a system where both
the predator and the prey are subject to resource limitations, and analyze the
behavior of the trajectories.
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Exploration 7.2. Bifurcations and Limit Cycles

1. Alter the model in the “Saxophone” submodule of Module 10 by adding a
parameterc:

u′ = v, v′ = −su+ cv− 1
b
v3

(a) What part of the model does this affect?

(b) How do solutions behave for values ofc between 0 and 2, taking
s= b = 1?

(c) As c increases, what happens to the pitch and amplitude?

2. Suppose the model for asimple harmonic oscillator(a linear model),

x′ = y, y′ = −x

is modified by adding a parameterc:

x′ = cx+ y, y′ = −x+ cy

(a) What happens to the equilibrium point asc goes from−1 to 1?

(b) What happens to the eigenvalues of the matrix of coefficients asc
changes from−1 to 1?
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3. Suppose we further modify the system of Problem 2:

x′ = cx+ y− x(x2 + y2), y′ = −x+ cy− y(x2 + y2)

where−1 ≤ c ≤ 1. Analyze the behavior of the equilibrium point at(0,0)
as c increases from−1 to 1. How does it compare with the behavior you
observed in Problem 2?

4. You can modify the system for a simple, undamped nonlinear pendulum (see
Chapter 10) to produce atorqued pendulum:

x′ = y, y′ = −sin(x)+ a

Herea represents a torque applied about the axis of rotation of the pendulum☞ Use the model-based
pendulum animation in ODE
Architect and watch the
pendulum gyrate.

arm. Investigate the behavior of this torqued pendulum for the values ofa
between 0 and 2 by building the model and animating the phase space asa in-
creases. Explain what kind of behavior the pendulum exhibits asa increases;
explain the behavior of any equilibrium points you see.

5. The motion of a thin, flexible steel beam, affixed to a rigid support over two
magnets, can be modeled byDuffing’s equation:

x′ = y, y′ = ax− x3

wherex represents the horizontal displacement of the beam from the rest po-
sition anda is a parameter that is related to the strength of the magnets. In-☞ Sweep on the parametera,

and then animate. To animate a
graph with multiple trajectories
corresponding to different values
of a, click on the animate icon
below the word “Tools” at the top
left of the tools screen.

vestigate the behavior of this model for−1 ≤ a ≤ 1. In particular:

(a) Find all equilibrium points and classify them as to type (e.g., center, sad-
dle point), verifying your phase plots with eigenvalue calculations (use
ODE Architect for the eigenvalue calculations). Some of your answers
will depend ona.

(b) Give a physical interpretation of your answers to Question (a).

(c) What happens to the equilibrium points as the magnets change from
weak (a ≤ 0) to strong (a> 0)?

(d) What happens if you add a linear damping term to the model? (Say,
y′ = ax− x3 − νy.)
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Exploration 7.3. Higher Dimensions

1. Spinning Bodies.
Use ODE Architect to draw several distinct trajectories on the ellipsoid of
inertia, 0.5(2ω2

1 + ω2
2 + 3ω2

3) = 6, for system (12).
Choose initial data on the ellipsoid so that the trajectories become the☞ For example,ω1 = 0,

ω2 = 3, ω3 = 1 can be taken as
an initial point and so can
ω1 = 1, ω2 = 0,
ω3 = (10/3)0.5.

“visible skeleton” of the invisible ellipsoid. What do the trajectories look like?
What kind of motion does each represent? You should be able to get a picture
that resembles the chapter cover figure and Figure 7.6. Project your 3D graphs
onto theω1ω2-, ω2ω3-, andω1ω3-planes, and describe what you see. Now ap-
ply the equilibrium/eigenvalue/eigenvector calculations from ODE Architect
to equilibrium points on each of theω1-, ω2-, andω3- axes. Describe the re-
sults and their correlation with what you saw on the coordinate planes. Now
go to the Library file “A Conservative System: The Momentum Ellipsoid” in
the folder “Physical Models” and explain what you see in terms of the previ-
ous questions in this problem.

2. Exploration 7.1 (Problem 4) gives a predator-prey model where two species,
spiders and lizards, prey on flies. Construct a system of three differential
equations that includes the prey in the model. You’ll need to represent growth
rates and interactions, and you may want to limit population sizes. Make some
reasonable assumptions about these parameters. What long-term behavior
does your model predict?

3. Take another look at the ODEs of the coupled springs model in Module 6.
Use ODE Architect for the system of four ODEs given in Experiment 1 of that
section (usec = 0.05). Make 3D plots of any three of the five variablesx1, x′

1,
x2, x′

2, andt. What do the plots tell you about the corresponding motions of
the springs? Now use the Tool to find the eigenvalues of the Jacobian matrix
of the system at the equilibrium point. What do the eigenvalues tell you about
the motions?
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4. Modify the coupled springs model from Module 6 (where coupled linear
springs move on a frictionless horizontal surface) by making one of the
springs hard or soft: add a term like±x3 to the restoring force. Does this
change the long-term behavior of the system? Make and interpret graphs as
in Problem 3.

5. Chaos in three dimensions.
Some nonlinear 3D systems seem to behave chaotically. Orbits stay bounded
as time advances, but the slightest change in the initial data leads to an orbit
that eventually seems to be completely uncorrelated with the original orbit.
This is thought to be one feature of chaotic dynamics. Choose one of the
following three Library files located in the folder “Higher Dimensional Sys-
tems”:

� “The Scroll Circuit: Organized Chaos”

� “The Lorenz System: Chaos and Sensitivity”

� “The Roessler System: A Strange Attractor”

Change parameters until you see an example of this kind of chaos. You may
want to look at Chapter 12 for additional insight into the meaning of chaos.
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Oscillating chemical reactions on a wineglass?

Overview A salt solution is pumped through a series of tanks. We’ll use the balance law to
model the rate of change of the amount of salt in each tank:{

Net rate of change of
amount of salt in tank

}
=

{
Rate into

tank

}
−

{
Rate out of

tank

}

If we know the initial amount of salt and the inflow and outflow rates of the
solution in each tank, then we can set up an IVP that models the physical system.
We’ll use this “balance law” approach to model the pollution level in a lake; the
flow of a medication; the movement of lead among the blood, tissues, and bones
of a body; and an autocatalytic chemical reaction.

Key words Compartment model; balance law; lake pollution; pharmacokinetics; chemical re-
actions; chemical law of mass action; autocatalysis; Hopf bifurcation

See also Chapter 9 for the SIR compartment model, and Chapter 6 for linear systems and
flow through interconnected tanks.
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◆ Lake Pollution

Modeling how pollutants move through an environment is important in the
prediction of harmful effects, as well as the formulation of environmental
policies and regulations. The simplest situation has a single source of pollu-
tion that contaminates a well-defined habitat, such as a lake. To build a model
of this system, we picture the lake as acompartment; pollutants in the water
flow into and out of the compartment. The rates of flow determine the amount
of build-up or dissipation of pollutants. It is useful to represent this conceptual
model with acompartment diagram, where a box represents a compartment
and an arrow represents a flow rate. Here is a compartment diagram for a
simple model of lake pollution:

L(t)- -
r in rout

The amount of pollutant in the lake at timet is L(t), while rin is the rate
of flow of pollutant into the lake androut is the rate of flow of pollutant out
of the lake. To obtain the equation for the rate of change of the amount of
pollutant in the lake, we apply thebalance law: the net rate of change of the
amount of a substance in a compartment is the difference between the rate of
flow into the compartment and the rate of flow out of the compartment:

dL
dt

= r in − rout

This ODE is sufficient when we know the ratesr in androut, but these rates
are usually not constant: they depend on the rate of flow of water into the
lake, the rate of flow of water out of the lake, and the pollutant concentration
in the inflowing water. Letsin andsout represent the volume rates of flow of
water into and out of the lake,V the volume of water in the lake, andpin the☞ You can get the volume

V(t) of water in the lake by
solving the IVPV′ = sin − sout,
V(0) = V0.

concentration of pollutant in the incoming water. Now we can calculate the
rates shown in the compartment diagram:

r in = pinsin, rout = L
V

sout

The ODE for the amount of pollutant in the lake is now

dL
dt

= pinsin − L
V

sout (1)

To obtain an IVP, we need to specifyL(0), the initial amount of pollutant in☞ So we need to knowV(0),
L(0), pin , sin, andsout in order to
determineL(t) andV(t).

the lake. The solution to this IVP will reveal how the level of pollution varies
in time. Figure 8.1 shows a solution to the ODE (1) for the pollution level in
the lake if the inflow is contaminated for the first six months of every year and
is clean for the last six months (sopin(t) is a square wave function).

☞ Take a look at Screen 1.4
in Module 8 for on-off inflow
concentrations.
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Figure 8.1: Pollutant level in a lake (on-off inflow rates).

✓ “Check” your understanding by finding the volumeV(t) of water in the
lake at timet if V(0) = 10, sin = 3, andsout = 1, 3, or 5 (all quantities in
suitable units). Does the lake dry up, overflow, or stay at a constant volume?

◆ Allergy Relief

Medications that relieve the symptoms of hay fever often contain an antihis-
tamine and a decongestant bundled into a single capsule. The capsule dis-
solves in the gastrointestinal (or GI) tract and the contents move through the
intestinal walls and into the bloodstream at rates proportional to the amounts
of each medication in the tract. The kidneys clear medications from the blood-
stream at rates proportional to the amounts in the blood.

Here is a compartment diagram for this system:

GI tract
x(t)

Blood
y(t)

- - -
I (t) ax(t) by(t)

The symbols in this diagram have the following meanings:

I (t): The rate at which the dissolving capsule releases a medication (for
example, a decongestant) into the GI tract

x(t): The amount of medication in the GI tract at timet
ax(t): The clearance rate of the medication from the GI tract, which equals

the entrance rate into the blood (a is a positive rate constant)
y(t): The amount of medication in the blood at timet

by(t): The clearance rate of the medication from the blood (b is a positive
rate constant)
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Applying the balance law to each compartment, we have a system of first-
order linear ODEs:

x′ = I − ax

y′ = ax− by
(2)

If we know I (t), the rate constantsa andb, and the initial amountsx(0) and
y(0) of medication in the GI tract and the bloodstream, we can use ODE☞ Medication levels in the

blood (easily measured) indicate
the levels in the tissues (hard to
measure), where the medication
does its good work.

Architect to track the flow of the medication through the body. From a phar-
macological point of view, the goal is to get the medication levels in the blood
into the effective (but safe) zone as quickly as possible and then to keep them
there until the patient recovers.

There are two kinds of medication-release mechanisms: continuous and
on-off. In the first kind, the medication is released continuously at an approx-
imately constant rate, soI (t) is a positive constant. In the on-off case, each
capsule releases the medication at a constant rate over a brief span of time and
then the process repeats when the next capsule is taken. In this case we model
I (t) by a square wave:

I (t)= A SqWave(t,Tper,Ton)

which has amplitudeA, periodTper, and “on” timeTon. For example, if the☞ Screen 2.4 in Module 8
shows what happens if
a = 0.6931 hr−1, Ton = 1 hr, and
b and A are adjustable
parameters.

capsule releases 6 units of medication over a half hour and the dosage is one
capsule every six hours, then

I (t) = 12 SqWave(t,6,0.5) (3)

Note thatA · Ton = 12 (units/hr)×0.5 (hr)= 6 units.
Compartment models described by equations such as (2) are calledcas-

cades. They can be solved explicitly, one equation at a time, by solving the
first ODE, inserting the solution into the second ODE, solving it, and so on
down the cascade. Although this approach theoretically yields explicit solu-
tion formulas, in practice the formulas farther along in the cascade of solutions
get so complicated that they are difficult to interpret. That’s one reason why
it pays to use a numerical solver, like the ODE Architect. Figure 8.2 shows☞ ODE Architect to the

rescue! how the amounts of decongestant in the body change when administered by
the on-off method [equation (3)].

✓ By inspecting Figure 8.2 decide which of the clearance coefficientsa or
b in system (2) is larger.

References Borrelli, R.L., and Coleman, C.S.,Differential Equations: A Modeling Per-
spective, (1998: John Wiley & Sons, Inc.)

Spitznagel, E., “Two-Compartment Phamacokinetic Models” inC.ODE.E,
Fall 1992, pp. 2–4, http://www.math.hmc.edu/codee
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Figure 8.2: Decongestant levels in the GI tract and in the blood.

◆ Lead in the Body

Lead gets into the digestive and respiratory systems of the body via contami-
nated food, air, and water, as well as lead-based paint, glaze, and crystalware.☞ In ancient times lead was

used to sweeten wine. Lead moves into the bloodstream, which then distributes it to the tissues and
bones. From those two body compartments it leaks back into the blood. Lead
does the most damage to the brain and nervous system (treated here as tis-
sues). Hair, nails, and perspiration help to clear lead from the tissues, and the
kidneys clear lead from the blood. The rate at which lead leaves one compart-
ment and enters another has been experimentally observed to be proportional
to the amount that leaves the first compartment. Here is the compartment
diagram that illustrates the flow of lead through the body.

Tissue
y

Blood
x

Bones
z-

� -
�

?

? ?

k1x

k2y
k5y k6x

L
k3x

k4z

In the diagram,L is the inflow rate of lead into the bloodstream (from the
lungs and GI tract);x, y, andzare the respective amounts of lead in the blood,
tissues, and bones; andk1, . . . , k6 are experimentally determined positive rate
constants. The amount of lead is measured in micrograms (1 microgram=
10−6 gram), and time(t) is measured in days.
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Figure 8.3: Five environmental clean-up scenarios for t > 400 days result in
five different steady-state lead levels in the blood.

Applying the balance law to each compartment, we have the linear system

☞ System (4) is a driven
linear system with constant
coefficients, so
eigenvalue/eigenvector
techniques can be used to find
solution formulas ifL is a
constant (see Chapter 6).

of ODEs that models the flow of lead through the body compartments:

x′ = (L + k2y+ k4z)− (k1 + k3 + k6)x

y′ = k1x− (k2 + k5)y

z′ = k3x− k4z

(4)

Unlike the allergy relief system (2), system (4) is not a cascade. Lead moves
back and forth between compartments, so the system cannot be solved one
ODE at a time. ODE Architect can be used to findx(t), y(t), andz(t) if x(0),
y(0), z(0), L(t), andk1, . . . , k6 are known.

If the goal is to reduce the amount of lead in the blood (and therefore in
the tissues and bones), we can clean up the environment (which reduces the
inflow rate) or administer a medication that increases the clearance coefficient
k6. However, such medication carries its own risks, so most efforts today are
aimed at removing lead from the environment. A major step in this direction
was made in the 1970’s and 80’s when oil companies stopped adding lead to☞ It was in the 1970’s and

80’s that most of the
environmental protection laws
were enacted.

gasoline and paint manufacturers began to use other spreading agents in place
of lead. Figure 8.3 shows the effects of changing the lead intake rateL.

The Food and Drug Administration and the National Institutes of Health
have led the fight against lead pollution in the environment. They base their
efforts on data acquired from several controlled studies of lead flow, where the
study groups were made up of human volunteers in urban areas. The numbers
we use in Submodule 3 of Module 8 and in this chapter come from one of☞ See Screen 3.3 in

Module 8 for the rate constants
and the inflow rateL.

those studies. Some references on the lead problem are listed below.
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✓ Write down the systems of ODEs for the two compartment diagrams:

x y- - -

?

2 4x 5y

3x

x
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z
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~

>

?
6

-

1
2x

3x

4z 5y

6z

(a) (b)

References Batschelet, E., Brand, L., and Steiner, A., “On the kinetics of lead in the
human body,”J. Math. Bio., 8 (1979), pp. 15–23

Kessel, I., and O’Conner, J.,Getting the Lead Out(1997: Plenum)

Rabinowitz, M., Wetherill, G., and Kopple, J., “Lead metabolism in the nor-
mal human: Stable isotope studies,”Science, 182(1973), pp. 725–727.

◆ Equilibrium

In many compartment models, if the inflow rates from outside the system are
constant, then the substance levels in each compartment tend to an equilibrium
value as time goes on. Mathematically, we can find the equilibrium values by
setting each rate equal to zero and solving the resulting system of equations
simultaneously. For example, the equilibrium for the system

x′ = 1− 2x

y′ = 2x− 3y
(5)

is x = 1/2, y = 1/3, which is the solution to the algebraic system 1− 2x = 0
and 2x − 3y = 0. If the system is complicated, you can use ODE Architect☞ The Equilibrium tabs in

ODE Architect work for systems
such as (5), where the rate
functions don’t depend explicitly
on time (i.e., the systems are
autonomous).

to find the equilibrium values. Just use the Equilibrium tabs in the lower
left quadrant and in one of the right quadrants, and you will get approximate
values for the equilibrium levels.

✓ Go to Things-to-Think-About 2 on Screen 3.5 of Module 8 for the lead
flow model with constant values forL and the coefficientskj. Use the Equi-
librium tabs in the tool screen to estimate the equilibrium lead levels in the
blood, tissues, and bones for the given data.

✓ Suppose thatx is a column vector withn entries,b is a column vector of☞ You need to know about
matrices to tackle this one. n constants, andA is ann × n invertible matrix of real constants. Can you

explain why the linear systemx′ = Ax− b has a constant equilibriumx∗?
Find a formula forx∗ in terms ofA−1 andb.
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◆ The Autocatalator and a Hopf Bifurcation

So far all the compartments in our models have represented physical spaces
through which substances move. However, there are other ways to think about
compartments. For example, they can represent substances that transform
into one another, such as uranium 238 and all of its seventeen radioactive
decay products, ending with stable lead 206. Or think of a chemical reactor
in which chemicals react with one another and produce other chemicals. The
autocatalatoris a mathematical model for one of these chemical reactions.

In an autocatalytic reaction, a chemical promotes its own production.
For example, suppose that one unit of chemicalX reacts with two units of
chemicalY to produce three units ofY, a net gain of one unit ofY:

X + 2Y
k−→ 3Y

wherek is a positive rate constant. This is an example ofautocatalysis. We’ll
come back to autocatalysis, but first we need to make a quick survey of how
chemical reactions are modeled by ODEs.

Most chemical reactions arefirst-order in the sense that the rate of decay
of each chemical in the reaction is directly proportional to its own concentra-
tion:

dz
dt

= −kz (6)

wherez(t) is the concentration of chemicalZ at timet in the reactor andk is
a positive rate constant.

While a first-order reaction is modeled by alinear ODE, such as (6),
autocatalytic reactions are higher-order and the corresponding rate equations
arenonlinear. In order to build models of higher-order chemical reactions,
we will use a basic principle called theChemical Law of Mass Action:

The Chemical Law of Mass Action. If moleculesX1, . . . , Xn react to
produce moleculesY1, . . . ,Ym in one step of the chemical reaction

X1 + · · · + Xn
k−→ Y1 + · · · + Ym

that occurs with rate constantk, then

x′
i = −kx1x2 · · · xn, 1 ≤ i ≤ n

y′
j = kx1x2 · · · xn, 1 ≤ j ≤ m

wherexi andyj are, respectively, the concentrations ofXi andYj . The
chemical speciesX1, . . . , Xn,Y1, . . . ,Ym need not be distinct from each
other: more than one molecule of a given type may be involved in the
reaction.
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For example, the chemical law of mass action applied to the reaction

X + Y
k−→ Z

gives

x′ = −kxy, y′ = −kxy, and z′ = kxy

wherek is a positive rate constant andx, y, z denote the respective concen-
trations of the chemicalsX, Y, Z in the reactor. The autocatalytic reaction

X + 2Y
k−→ 3Y

is modeled by

x′ = −kxy2

y′ = −2kxy2 + 3kxy2 = kxy2

because the rate of decrease of the reactant concentrationx is kxy2 (think of
X + 2Y as X + Y + Y), the rate of decrease of the reactant concentrationy
is 2kxy2 (because two units ofY are involved), and the rate of increase in the
product concentrationy is 3kxy2 (think of 3Y asY + Y + Y).

✓ If you want to speed up the reaction should you increase the rate constant
k, or lower it? Any guesses about what would happen if you heat up the
reactor? Put the reactor on ice?

With this background, we can model a sequence of reactions that has been

☞ In Figure 8.5, the
multimedia module, and the
Library file, different symbols are
used for the rate constants.

studied in recent years:

X1
k1−→ X2, X2

k2−→ X3, X2 + 2X3
k3−→ 3X3, X3

k4−→ X4

Note the nonlinear autocatalytic step in the midst of the first-order reactions.
A compartment diagram for this reaction is

x1 x2 x3 x4-
-
-

-
k1x1

k2x2

k3x2x2
3

k4x3

wherex1, x2, x3, andx4 denote the respective concentrations of the chemicals
X1, X2, X3, andX4. The corresponding ODEs are:

☞ The termk3x2x2
3 makes

this system nonlinear.

x′
1 = −k1x1

x′
2 = k1x1 − (k2x2 + k3x2x2

3)

x′
3 = (k2x2 + k3x2x2

3)− k4x3

x′
4 = k4x3

(7)

In a reaction like this, we callX1 the reactant,X2 and X3 intermediates, and
X4 the final product of the reaction. For certain ranges of values for the rate☞ See Screen 4.3 of

Module 8 for values of the rate
constants.

constantsk1, k2, k3, k4 and for the initial reactant concentrationx1(0), the
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Figure 8.4: As the reactant falls into the Hopf bifurcation zone, the oscillations
of the intermediates turn on as the product rises. Later the oscillations turn
off and the reaction approaches completion.

intermediate concentrationsx2(t) andx3(t) will suddenly begin to oscillate.
These oscillations eventually stop and the intermediates decay into the final☞ The chapter cover figure

shows how the intermediate
concentrationsx2(t) andx3(t)
play off against each other as
time increases.

reaction product. See Figure 8.4.
The onset of these oscillations is a kind of aHopf bifurcationfor x2(t)

andx3(t). In this context, if we keep the value ofx1 fixed at, sayx∗
1, the rate

termk1x∗
1 in system (7) can be viewed as a parameterc. Then the middle two

rate equations can be decoupled from the other two:

x′
2 = c− k2x2 − k3x2x2

3

x′
3 = k2x2 + k3x2x2

3 − k4x3
(8)

Now let’s fix k2, k3, andk4 and use the parameterc to turn the oscillations in
x2(t) andx3(t) on and off. This is the setting for aHopf bifurcation, so let’s
take a detour and explain what that is.

As a parameter transits a bifurcation value the behavior of the state vari-
ables suddenly changes. A Hopf bifurcation is a particular example of this
kind of behavioral change. Suppose that we have a system that involves a
parameterc,

x′ = f (x, y, c)

y′ = g(x, y, c)
(9)

and that has an equilibrium pointP at x = a, y = b [so that f (a,b, c) = 0
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andg(a,b, c)= 0]. Suppose that the matrix of partial derivatives

☞ This is the Jacobian matrix
of system (9). See Chapter 7. J =



∂ f
∂x

∂ f
∂y

∂g
∂x

∂g
∂y




x=a,y=b

has the complex conjugate eigenvaluesα(c)± i β(c). The Dutch mathemati-
cian Eberhard Hopf showed thatif :

(a) the functionsf andg are twice differentiable,
(b) P is a stable, attracting sink for some valuec0 of the parameterc,
(c) α(c0) = 0,☞ The Hopf conditions.

(d) [dα/dc]c=c0 �= 0,
(e) β(c0) �= 0,

thenas the parameterc varies through the bifurcation valuec0, the attracting☞ Sinceα′(c0) �= 0,α(c)
changes sign asc goes through
c0; this means thatP goes from a
sink to a source, or the other way
around.

equilibrium pointP destabilizes and an attracting limit cycle appears (i.e., an
attracting periodic orbit in thexy-phase plane) that grows in amplitude asc
changes beyond the valuec0.

It isn’t always a simple matter to check the conditions for a Hopf bifurca-
tion (especially condition (b)). It is often easier just to apply the Architect to
the system and watch what happens to solution curves and trajectories when
a parameter is swept over a range of values. For instance, for system (8) with
valuesk2 = 0.08 andk3 = k4 = 1 for the rate constants, we can sweep the
parameterc and observe the results. In particular, we want to find values ofc
for which an attracting limit cycle is either spawned byP, or absorbed byP.
At or near the specialc values we can use the Equilibrium feature of the ODE
Architect tool to locate the equilibrium point, calculate the Jacobian matrix,
and find its eigenvalues. We expect the eigenvalues to be complex conjugates
and the real part to change sign at the bifurcation value ofc.

Figure 8.5 shows a sweep of twenty-one trajectories of system (8) withc
sweeping down from 1.1 to 0.1 and the values ofk1, k2, andk3 as indicated in
the figure. See also Problem 3, Exploration 8.4.

✓ (This is the first part of Problem 3 of Exploration 8.4.) Use ODE Archi-
tect to duplicate Figure 8.5. Animate (the right icon under Tools on the top
menu bar) so that you can see how the trajectories change asc moves down-
ward from 1.1. Then use the Explore feature to determine which values ofc
spawn or absorb a limit cycle. For what range of values ofc does an attracting
limit cycle exist?

This behavior of the system (8) carries over to the autocatalator sys-
tem (7). Notice that the first equation in (7) isx′

1 = −k1x1, which is easily
solved to givex1(t) = x1(0)e−k1t. If k1 is very small, sayk1 = 0.002, the
exponential decay ofx1 is very slow, so that ifx1(0) = 500, the termk1x1(t),
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Figure 8.5: Twenty-one trajectories of system (8) for twenty-one values of c;
initial data is x2(0) = x3(0) = 0, time interval is 100 with 1000 points.

though not constant, has values between 1 and 0.01 for a long time interval.
The behavior of the autocatalator will be similar to that of system (8).

The section “Bifurcations to a Limit Cycle” in Chapter 7 gives another
instance of a Hopf bifurcation. For more on bifurcations, see the references.

References Gray, P., and Scott, S.K.,Chemical Oscillations and Instabilities(1990: Ox-
ford Univ. Press)

Hubbard, J.H., and West, B.H.,Differential Equations: A Dynamical Systems
Approach, Part II: Higher Dimensional Systems, (1995: Springer-Verlag)

Scott, S.K.,Chemical Chaos(1991: Oxford Univ. Press)
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Exploration 8.1. Tracking Pollution in a Lake

1. Suppose that the water flow rates into and out of a lake aresin = sout =
109 m3/yr. The (constant) lake volume isV = 1010 m3, and the concen-
tration of pollutant in the water flowing into the lake ispin = 0.0003 lb/m3.
Solve the IVP withL(0) = 0 (no initial pollution) and describe in words how
pollution builds up in the lake. Estimate the steady-state amount of pollution,
and estimate the amount of time for the pollution level to increase to half of
the asymptotic level.

2. Suppose that the lake in Problem 1 reaches its steady-state level of pollution,
and then the source of pollution is removed. Build a new IVP for this situation,
and estimate how much time it will take for the lake to clear out 50% of the
pollution. How does this time compare to the time you estimated in Problem 1
for the build-up of pollutant?
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3. What would be more effective in controlling pollution in the lake: (i) reducing
the concentration of pollutant in the inflow stream by 50%, (ii ) reducing the
rate of flow of polluted water into the lake by 50%, or (iii ) increasing the
outflow rate from the lake by 50%?
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Exploration 8.2. What Happens When You Take a Medication?

1. Go to the Library in ODE Architect and check out the file “Cold Pills I: A
Model for the Flow of a Single Dose of Medication in the Body” in the folder
“Biological Models.” This model tracks a unit dose of medication as it moves
from the GI tract into the blood and is then cleared from the blood. Read the
file and carry out the explorations suggested there. Record your results below.

2. Go to the Library in ODE Architect and check out “Cold Pills II: A Model
for the Flow of Medication with Periodic Dosage” in the folder “Biological
Models.” Carry out the suggested explorations.
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3. Suppose you take a decongestant pill every four hours to relieve the symp-
toms of a cold. Each pill dissolves slowly and completely over the four-hour
period between doses, releasing 16 units of decongestant at a constant rate.
The decongestant diffuses from the GI tract into the bloodstream at a rate pro-
portional to the amount in the GI tract (rate constant isa = 0.5/ hr) and is
cleared from the bloodstream at a rate proportional to the amount in the blood
(rate constant isb = 0.1/ hr). Assume that initially there is no decongestant
in the body. Write a report in which you address the following points. Be sure
to attach graphs.

(a) Write out ODEs for the amountsx(t) and y(t) in the GI tract and the
blood, respectively, at timet.

(b) Find explicit formulas forx(t) andy(t) in terms ofx(0) andy(0).

(c) Use ODE Architect to plotx(t) andy(t) for 0 ≤ t ≤ 100 hr. What are
the equilibrium levels of decongestant in the GI tract and in the blood
(assuming that you continue to follow the same dosage regimen)?

(d) Graphx(t) andy(t) as given by the formulas you found in part (b) and
overlay these graphs on those produced by ODE Architect. What are
the differences?

(e) Imagine that you are an experimental pharmacologist for Get Well Phar-
maceuticals. Set lower and upper bounds for decongestant in the blood-
stream, bounds that will assure both effectiveness and safety. How long
does it take from the time a patient starts taking the medication before
the decongestant is effective? How long if you double the initial dosage
(the “loading dose”)? How about a triple loading dose?

(f) For the old or the chronically ill, the clearance rate constant from the
blood may be much lower than the average rate for a random sample
of people (because the kidneys don’t function as well). Explore this
situation and make a recommendation about lowering the dosage.

4. Repeat all of Problem 3 but assume the capsule is rapidly dissolving: it deliv-
ers the decongestant at a constant rate to the GI tract in just half an hour, then
the dosage is repeated four hours later.
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Exploration 8.3. Get the Lead Out

1. Check out the ODE Architect Library file “A Model for Lead in the Body” in
the “Biological Models” folder and carry out the explorations suggested there.
(The notation for the rate constants in the library file differs from the notation
used in this chapter.)

2. Use the following rate constants:k1 = 0.0039, k2 = 0.0111, k3 = 0.0124,
k4 = 0.0162, k5 = 0.000035,k6 = 0.0211, and putL = 49.3µg/day in the
lead system (4). These values were derived directly from experiments with
volunteer human subjects living in Los Angeles in the early 1970’s. Using the
data for the lead flow model, describe what happens if the lead inflow rateL
is doubled, halved, or multiplied by a constantα. Illustrate your conclusions
by using the ODE Architect to graph the lead levels in each of the three body
compartments as functions oft. Do the long-term lead levels (i.e., the equilib-
rium levels) depend on the initial values? OnL? Find the equilibrium levels
for each of your values ofL using ODE Architect. Find the eigenvalues of
the Jacobian matrix for each of your values ofL. With the names given in
Chapter 6 to equilibrium points in mind, would you call the equilibrium lead
levels sinks or sources? Nodes, spirals, centers, or saddles?
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3. The bones act as a lead storage system, as you can see from the graphs in
Submodule 3 of Module 8. What happens if the exit rate constantk4 from the
bones back into the blood is increased from 0.000035 to 0.00035? To 0.0035?
Why might an increase ink4 be harmful? See Problem 2 for the values ofL
and the rate constantski .

4. The medication now in use for acute lead poisoning works by improving the
efficiency of the kidneys in clearing lead from the blood (i.e., it increases the
value of the rate constantk6). What if a medication were developed that in-
creased the clearance coefficientk5 from the tissues? Explore this possibility.
See Problem 2 for the values ofL and the rate constantski .

5. In the 1970’s and 80’s, special efforts were made to decrease the amount of
lead in the environment because of newly enacted laws. Do you think this
was a good decision, or do you think it would have been better to direct the
efforts toward the development of a better antilead medication for cases of
lead poisoning? Why? What factors are involved in making such a decision?
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Exploration 8.4. Chemical Reactions: the Autocatalator

1. Check out “The Autocatalator Reaction” in the “Chemical Models” folder in
the ODE Architect Library and graph the concentrations suggested. Describe
how the concentrations of the various chemical species change in time.

2. Here are schematics for chemical reactions. Draw a compartment diagram for
each reaction. Then write out the corresponding sets of ODEs for the indi-
vidual chemical concentrations. [Use lower case letters for the concentrations
(e.g.,x(t) for the concentration of chemicalX at timet).]

(a) X + Y
k−→ Z

(b) X + Y
k1−→ Z

k2−→ W

(c) X + 2Y
k−→ Z

(d) X + 2Y
k−→ 3Y + Z
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3. Explore the behavior ofx2(t) andx3(t) as governed by system (8). Start with
c= 1.1, k2 = 0.08, k3 = k4 = 1, andx(0)= y(0)= 0. Then sweepc from 1.1
down to 0.1 and describe what happens to orbits in thex2x3-plane. Find the
range of values ofc between 1.1 and 0.1 for which attracting limit cycles are
visible. These are Hopf cycles. Fixc at a value that you think is interesting
and sweep one of the parametersk2, k3, or k4. Describe what you observe.
[Suggestion:Take a look at Figure 8.5, and use the Animate feature of ODE
Architect to scroll through the sweep trajectories. Then use the Explore option
to get a data table with information about any of the trajectories you have
selected.]

4. Look at the autocatalator system (7) withx1(0) = 500, x2(0) = x3(0) =
x4(0) = 0 andk1 = 0.002, k2 = 0.08, k3 = k4 = 1. Graphx2(t) andx3(t)
over various time ranges and estimate the times when sustained oscillations
begin and when they finally stop. What are the time intervals between suc-
cessive maxima of the oscillations inx2? Plot a 3D tx2x3-graph over various☞ Use the Explore feature to

estimate the starting and stopping
times of the oscillator.

time intervals ranging fromt = 100 to t = 1000. Describe what you see.
[Suggestion:Look at the chapter cover figure and Figure 8.4.]

Now sweep the values ofx1(0) downward from 500. What is the minimal
value that generates sustained oscillations? Then fixx1(0) at 500 and try to
turn the oscillations off by changing one or more of the rate constantsk1,
k2, k3, k4—this corresponds to heating or chilling the reactor. Describe your
results.
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Overview Population biology is the study of how communities of organisms change. The
structure of a population can be quite intricate, such as species interactions in a
tropical rain forest. Other communities may involve only a few species and are
simpler to describe. There are many aspects of population biology, including ecol-
ogy, demography, population genetics, and epidemiology. In each of these areas,
mathematics plays an important role in modeling how populations change in time
and how the interaction between the environment and the community affects that
change. We’ll explore mathematical models in ecology and epidemiology.

Key words Logistic model; growth rate; carrying capacity; equilibrium; steady state; competi-
tion; coexistence; exclusion; predator-prey; epidemiology; harvesting

See also Chapter 1 for more on the logistic equation, Chapter 7 for predator-prey models,
and Chapter 8 for chemical mass action, Library folder “Population Models.”
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◆ Modeling Population Growth

The increasing awareness of environmental issues is an important develop-
ment in modern society. This awareness ranges from concern about conserv-
ing important natural resources to concern about habitat destruction and the
endangerment of species. Human population pressures are ever-increasing,
and this growth has led to intense exploitation of the environment. To reduce
the negative effects of this exploitation, scientists are seeking to understand
the ecology and biology of natural populations. This understanding can be
used to design management strategies and environmental policies.

The simplest ecological models describe the growth of a single species
living in an environmentor habitat. Characteristics of the habitat—moisture,
temperature, availability of food—will affect how well the species survives
and reproduces. Intrinsic biological characteristics of the species, such as
the basic reproductive rate, also affect the growth of the species. However, a
mathematical model that incorporatesall possible effects on the growth of the
population would be complicated and difficult to interpret.

✓ “Check” your understanding by answering this question: What are some
other characteristics of a species and its environment that can affect the pro-
ductivity of the species?

The most common procedure for modeling population growth is first to
build elementary models with only a few biological or environmental features.
Once the simple models are understood, more complicated models can be
developed. In the next section we’ll start with thelogistic modelfor the growth
of a single species—a model that is both simple and fundamental.

◆ The Logistic Model

The ecological situation that we want to model is that of a single species
growing in an environment with limited resources. Examples of this situation
abound in nature: the fish population of a mountain lake (the limited resource
is food), a population of ferns on a forest floor (the limited resource is light),
or the lichen population on a field of arctic rocks (the limited resource is
space). We won’t attempt to describe the biology or ecology of our popula-
tion in detail: we want to keep the mathematical model simple. Instead, we’ll
summarize a number of such effects using twoparameters. The first parame-
ter is called theintrinsic growth rateof the population. It is often symbolized
using the letterr , and it represents the average number of offspring, per unit
time, that each individual contributes to the growth of the population. The
second parameter is called thecarrying capacity of the environment. Symbol-
ized byK, the carrying capacity is the largest number of individuals that the
environment can support in a steady state. If there are more individuals in the
population than the carrying capacity, the population declines because there



The Logistic Model 157

are too few resources to support them. When there are fewer individuals than
K, the environment has not been overexploited and the population grows.

Our mathematical model must capture these essential characteristics of
the population’s growth pattern. To begin, we define a variable that represents
the size of the population as a function of time; call this sizeN(t) at time t.
Next, we specify how the sizeN(t) changes in time. Creating a specific rule
for the rate of change of population size is the first step inbuilding a mathe-
matical model. In general, a model for changing population size has the form

dN
dt

= f (t, N), N(0) = N0

for some function f and initial populationN0. Once the details off are
given, based on the biological and ecological assumptions, we have a concrete
mathematical model for the growth of the population.

To complete our description of the logistic model, we need to find a rea-
sonable functionf that captures the essential properties described above. We
are looking for a simple function that gives rise to

� population growth when the population is below the carrying capacity
(that is,N′(t) > 0 if N(t) < K);

� population decline if the population exceeds the carrying capacity (that
is, N′(t) < 0 if N(t) > K).

One such function isf (t, N)= rN(1− N/K). Thelogistic modelis the IVP

dN
dt

= rN

(
1− N

K

)
, N(0) = N0

wherer , K and N0 are positive constants. Figure 9.1 shows some typical
solution curves.

t-N
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Figure 9.1: Some solution curves for the logistic equation.
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Let’s observe a few important features of our model. First, the algebraic
sign of N′(t) follows the desired relationship to the population sizeN. Sec-
ond, if eitherN = 0 or N = K, there is no change in the population size:
N′(t) = 0. Thus,N = 0 andN = K areequilibria or steady states. The first
steady state corresponds to the extinction of the species in its environment,
and the second corresponds to a population in perfect balance, living at the
carrying capacity of the habitat.

Notice the effect of the parametersr and K. As the carrying capacity
K increases, the environment supports more individuals at equilibrium. As
the growth rater increases, the population attains its steady state in a faster
time. An important part of understanding a mathematical model is to discover
how changing the parameters affects the behavior of the system that is being
modeled. This knowledge can lead to predictions about the system, and to a
much deeper understanding of population processes. In Exploration 9.1 you
will study the logistic model and variations of it. See also Chapter 1.

✓ Do you think the intrinsic annual growth rater of the earth’s human pop-
ulation is closer to 0.01, 0.03, or 0.05? It’s anyone’s guess as to the carrying
capacity. What is your estimate, given that the current population is about
6 billion?

◆ Two-Species Population Models

The logistic model applies to a single species. Most habitats support a vari-
ety of species; interactions can be bothintraspecific(between individuals of
the same species) orinterspecific(between individuals of different species).
These interactions can take many forms. For example, competition between
individuals of the same species for food resources, nesting sites, mates, and
so on, are intraspecific interactions that lead to regulated population growth.
Important interspecific interactions include predation, competition for food or
other resources, and symbiotic relationships that are mutually beneficial. Such
interactions can be very complex and can involve a large number of species.
Again, the first step in modeling complicated ecologies is to build and ana-
lyze simple models. We’ll present two such models here (involving only two
species) and consider others in the explorations.

✓ Can you think of a mutually beneficial interaction between humans and
another species?
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◆ Predator and Prey

As we noted, an important interaction between species is that of predator and
prey. Such interactions are very common: animals must eat to thrive, and
for every eater there is the eaten! Spiders prey on flies, cows prey on grass,
mosquitoes prey on humans, and humans prey on shiitake mushrooms, truf-
fles, salmon, redwood trees, and just about everything else. We’ll now build a
simple model to describe such interactions.

Consider two species, the prey species (H, because they’re “harvested” or
“hunted”) and the predator species (P), but for the moment, imagine that they
don’t interact. In the absence of the predator, we assume that the prey grows
according to the logistic law, with carrying capacityK and intrinsic growth
ratea> 0. The model for the prey under these conditions is

H ′ = aH(1− H/K)

Now suppose that in the absence of its food source (the prey), the predator
dies out; the model for the predator is

P′ = −bP

whereb> 0. If this situation persists, the prey will grow to fill the habitat and
the predator will become extinct.

Now suppose that the predator does feed upon the prey, and that each
predator consumes, on the average, a fractionc of the prey population, per unit
time. The growth rate of the prey will then be decreased (since they’re being
eaten) by the amountcH P. The predators benefit from having consumed the
prey, so their growth rate will increase. But because a given predator may have
to consume a lot of prey to survive, not all prey produce new predators in a
one-for-one way. Therefore the increase in the growth rate of the predators in☞ When two species interact

at a rate proportional to the
product of the two populations,
it’s calledpopulation mass
action.

this case isdH P, whered is a constant which may be different thanc. Putting
this all together, we obtain our model for the predator-prey system:

dH
dt

= aH

(
1− H

K

)
− cH P

dP
dt

= −bP+ dH P

(1)

Analyzing this model gives insight into a number of important ecological is-
sues, such as the nature of coexistence of predator and prey, and the under-
standing of population cycles. Figure 9.2 on the next page shows a phase plot
for the predator-prey system described by ODE (1). Exploration 9.3 examines
this predator-prey model.

✓ What is the long-term future of the prey species in Figure 9.2? The preda-
tor species?
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Figure 9.2: An orbit of a predator-prey model with logistic prey growth.

◆ Species Competition

Another common interaction between species iscompetition. Species can
compete for space, food, light, or for other resources. In the absence of its
competitor, each species grows logistically to its carrying capacity. However,
the presence of the competitor changes the situation, and the growth rate of
each species is diminished by the presence of the other. LetN1 andN2 repre-
sent the numbers of the two species. We model the competition between these
species with the following equations:

dN1

dt
= r1N1

(
1− N1

K1
− α12N2

)

dN2

dt
= r2N2

(
1− N2

K2
− α21N1

) (2)

The parameterα12 measures the effect of Species 2 on Species 1, andα21

measures the effect of Species 1 on Species 2. Ifα12 > α21, then Species 2
dominates Species 1, because Species 2 reduces the growth rate of Species 1
moreper capitathan the reverse. The analysis of this model gives insight
into how species maintain their diversity in the ecology (coexistence) or how
such diversity might be lost (competitive exclusion). A phase plot for the
competitive system is shown in Figure 9.3. Exploration 9.4 examines a related☞ Could the competition be

so fierce that both species
become extinct?

model for so-called mutualistic interactions.

✓ Does Figure 9.3 show coexistence or competitive exclusion?
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Figure 9.3: Orbits for a model of two competing species.

◆ Mathematical Epidemiology: The SIR Model

An important use of mathematical models is to describe how infectious dis-
eases spread through populations. This field is called epidemiology. Quanti-
tative models can predict the time course of a disease or the effectiveness of
control strategies, such as immunization. Again, the development proceeds
from the simplest model to more complex ones.

The most elementary model for an epidemic is the so-called SIR model
(presented in Module 9): Consider a population of individuals divided into
three groups—those susceptible (S) to a certain disease, those infected (I )
with the disease , and those who have recovered (R) and are immune to rein-
fection, or who otherwise leave the population. The SIR model describes how
the proportions of these groups change in time.

The susceptible population changes size as individuals become infected.
Let’s think of this process as “converting” susceptibles to infecteds. If we as-
sume that each infected individual can infect a proportiona of the susceptible
population per unit time, we obtain the rate equation

☞ Another instance of
population mass action.

dS
dt

= −aSI (3)

The infected population is increased by conversion of susceptibles and is de-
creased when infected individuals recover. Ifb represents the proportion of
infecteds that recover per unit time, then the rate of change of the infected
population satisfies

dI
dt

= aSI− bI (4)
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Figure 9.4: A plot of susceptibles (falling curve), infecteds (the “bump”), re-
covereds (rising curve), and their sum (top line).

Lastly, as infecteds recover they augment the recovered population, so that

dR
dt

= bI (5)

The ODEs (3)–(5) together with the initial valuesS(0), I (0), andR(0) define
the SIR model. A component plot ofS, I , R, andN = S+ I + R appears in
Figure 9.4.

✓ Can you explain whyN(t) stays constant as time changes?

We can learn many important things from this model about the spread
of diseases. For example, analysis of the model can reveal how the rate of
spread of the disease through the population is related to the infectiousness
of the disease. Our common experience suggests that not all diseases become
epidemic: sometimes a few people are afflicted and the disease dies out. Anal-
ysis of the SIR model can also give insight into the conditions under which a
disease will become epidemic. This is an important phenomenon! These and
other matters will be examined in Exploration 9.5.

✓ What factors can you think of that might influence the spread of a disease
in a human population?

References Bailey, N.T.J.,The Mathematical Theory of Infectious Diseases and its Appli-
cations, 2nd ed., (1975: Hafner Press)

Edelstein-Keshet, L.,Mathematical Models in Biology, (1988: McGraw-Hill)
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Exploration 9.1. The Logistic Model

In this exploration you will consider a population that grows according to the
logistic law: N′ = rN(1− N/K), where r is the intrinsic growth rate and K is
the carrying capacity of the environment.

1. Open the ODE Architect Library. In the folder “Population Models,” open☞ Using the ODE
Architect Library. the file “Logistic Model of Population Growth.” The logistic equation will

be automatically entered into the Architect. The graphs show several solu-
tion curves. Set the initial condition for the population size toN0 = 25 and
setK = 100. Plot eight solutions by sweeping the growth rate constant from
r = −0.5 to r = 2; print your graph. Describe the effect ofr on the solutions
of the logistic equation. Your description should address the following ques-
tions: How does the growth rate constant affect the long-term behavior of the
population? How does the rate constant affect the dynamics of the system?

2. Set the IC toN0 = 25 andr = 1.2. Plot eight solution curves by sweeping
the carrying capacityK from 70 to 150; print your graph. Describe the effect
of the parameterK on the solutions of the logistic equation. Your description
should address the following questions: How does the carrying capacity affect
the long-term behavior of the population? How does the carrying capacity
affect the dynamics of the system?
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3. Study the graphs that you produced for Problems 1 and 2. Notice that some-
times the rate of change of population size is increasing (i.e.,N′(t) is increas-
ing and the graph ofN(t) is concave up) and sometimes it is decreasing (N′(t)
is decreasing and the graph ofN(t) is concave down). By analyzing your
graphs, try to predict a relationship betweenr , K, and N that distinguishes
between these two situations. Use ODE Architect to test your prediction by
graphing more solution curves. Lastly, try to confirm your prediction by exact
analysis ofN′′ using the logistic ODE.
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Exploration 9.2. Harvesting a Natural Resource

Human societies use resources from their environments. We harvest animals
and plants for food, construction, fuel, and many other uses. The harvesting
of a biological resource must be done carefully, because overexploitation of
the population can cause severe harm, or even extinction, to the resource. As
a society we have become much more sensitive about the need to balance
the benefits of resource consumption against the impact of that consumption
on the exploited populations and their environment.

Resource management is an important tool for minimizing the negative
effects of harvesting. Mathematical models are tools for understanding the
impact of harvesting on a population, so that we can then design manage-
ment policies, such as quotas on the annual harvest.

In this exploration, you will analyze a simple model for harvesting a sin-
gle species. To be specific, suppose that the habitat is a forest and the re-
source is a species of pine tree. The number of trees grows logistically with
an intrinsic growth rate r , and the forest will support at most K trees (mea-
sured in millions of board feet). You are a consulting ecologist, asked to
model the effect of a lumber company’s harvesting strategy on the pine for-
est. The company harvests the trees proportionally: in a unit of time (a year,
for example), the company removes a fixed fraction h of the trees. Harvest-
ing reduces the net rate of growth of the forest; this leads you to propose the
following model for the effect of harvesting:

N′ = rN

(
1− N

K

)
− hN, N(0) = N0 (6)

The last term, −hN, is the harvesting term. Notice that when h = 0 (i.e., no
trees are harvested), the model reduces to the logistic equation.

1. Open ODE Architect and enter the ODE for the harvesting model given by
equation (6). Set the growth rate tor = 0.1 year−1, the carrying capacity to
K = 1000 million board feet, and the population size IC toN0 = 100 att = 0.
Describe the growth of the forest when there is no harvesting (h = 0). You’ll
have to choose a good time interval to best display your results.
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2. Keepr and K fixed and plot solution curves for various (positive) values of
the harvesting coefficienth. You can do this exploration most efficiently by
sweeping the parameterh. After you have studied a variety of harvest rates,
explain how harvesting affects the pine population. Your explanation should
address the following questions: How does the growth of the pine population
with harvesting compare to its growth without harvesting? What is the long-
term effect of harvesting? How are the time dynamics of the forest growth
affected by harvesting?

3. The annual yieldY of the harvest is the amount of lumber removed per year.
This is justY = hN when there areN units of lumber in the forest. The yield
will vary through time as the amount of lumber (trees) in the forest varies
in time. If the harvest rate is too high, the long-term yield will tend to zero
(Y → 0) and the forest will become overexploited. If the harvest rate is very
low, the yield will also be very low. As the consultant to the company, you are
asked: What should the harvest rate be to give the largestsustainable yieldof
lumber? That is to say, what optimal harvest rate will maximize limt→∞ Y(t)?
Attack the problem graphically using ODE Architect to plot graphs of the
yield function for various values ofh. Assume thatr = 0.1, K = 1000,
and N0 = 100. If you can, provide an analytic solution to the question, and
check your results using the Architect. Suppose that the company follows
your recommendation and harvests pine at the optimal rate. When the size
of the forest reaches equilibrium, how much lumber (trees) will there be, and
how does this amount compare to the size of the forest without harvesting?
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Exploration 9.3. Predator and Prey

Predator-prey interactions are very common in natural populations. These
interactions can be modeled by a system of nonlinear equations:

H ′ = aH

(
1− H

K

)
− cH P, P′ = −bP+ dH P

where H and P are the prey and predator population sizes, respectively.

1. Give a biological interpretation of the parametersa, b, c, d, K of the predator-
prey model.

2. Open ODE Architect and enter the modeling equations for the predator-prey
system above. Assign the following values to the parameters:a = 1.0,
b = 0.25, c = 1.0, d = 0.15, K = 100. After you have entered the equa-
tions and parameters, set the solve interval to 60, and the number of points
plotted to 500. Solve the system forward in time using the initial conditions
H(0) = 1, P(0) = 1. Plot graphs of the orbits in theH P-phase plane, and
plot the individual component graphs for predator and prey. Experiment with
other initial conditions. Describe the nature of the solutions and locate all
equilibrium solutions.
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3. Fix a = 1.0, b = 0.25, c = 1.0, andd = 0.15 as in Problem 2. Plot several
solutions from the fixed initial conditionsH(0) = 1, P(0) = 1, for varying
values ofK. For example, letK range over several values between 100 to
10,000. How does changing the carrying capacity of the prey affect the be-
havior of the system? Make a conjecture about the limiting behavior of the
system asK → ∞.

4. Test the conjecture that you made in Problem 3 in two steps:

(a) Take the limit asK → ∞ in the predator-prey equations and obtain a
new system of equations that describes a predator-prey system where
there is no resource limitation for the prey.

(b) Explore this system using ODE Architect; this new system is often
called theLotka–Volterramodel. Plot several orbits using markers that
are equally spaced in time. Do the cycles have a common period? How☞ Finally, you get a chance

to figure out what is going on in
the chapter cover figure.

do the time markers help you answer that question? Compare your
graphs with the chapter cover figure. Also plot graphs ofH againstt
and P againstt for various values ofH(0) and P(0). What do these
graphs tell you about the periods?

How does the behavior of the Lotka–Volterra model differ from the model
you explored in Problems 1–3?
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Exploration 9.4. Mutualism: Symbiotic Species Interactions

For both predator-prey and species competition, the growth rate of at least
one of the species is reduced by the interaction. Though eating the prey
helps the predator, it certainly harms the prey; for competitors the reduc-
tion in growth rate is reciprocal. Not all species interactions must be neg-
ative: there are many examples where the species cooperate or otherwise
mutually enhance their respective growth rates. A famous example is the
yucca plant–yucca moth system: the yucca plant can be pollinated only by
the yucca moth, and the yucca moth is adapted to eat nectar only from the
yucca plant. Each species benefits the other, and their interaction is positive
for both. Such interactions are called mutualistic or symbiotic by ecologists.
In this exploration we will present and analyze a simple model for mutualism.

Our model will be very similar to the competition model studied in Mod-
ule 9. To obtain a model for mutualism, we just change the signs of the
interaction terms so that they are always positive: each species enhances
the growth rate of the other. We then obtain the following equations:

dN1

dt
= N1 (r1 − e1N1 + α12N2) ,

dN2

dt
= N2 (r2 − e2N2 + α21N1) (7)

The parameters r1, r2, α12, and α21 retain their meanings from ODE (2) in the
competition model. However, the interaction terms α12N1N2 and α21N1N2 have
positive sign and thus enhance the respective growth rates.

Notice that in the absence of interaction, the carrying capacities of the
two species are K1 = r1/e1 and K2 = r2/e2 in this version of the model.

1. Open the ODE Architect Library, go to the “Population Models” folder, and
open the file “Mutualism: Symbiotic Interactions.” This file loads the equa-
tions that model a mutualistic interaction. Fixr1 = 1, r2 = 0.5, e1 = 1,
e2 = 0.75. Vary the values of each of the interaction coefficients from 0 to
2. For each combination of values forα12 andα21 that you try, draw a phase
portrait of the system (7) in the first quadrant. Describe every possible kind☞ You may want to use the

Dual (Matrix) sweep feature here. of behavior of the system; try enough combinations of the parameters to feel
confident that you have covered all the possibilities. Answer the following
questions: Is species coexistence possible? Can competitive exclusion occur?
Will the populations of both species remain bounded as time increases?
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2. Using pencil and paper, deduce the conditions under which a two-species
equilibrium will be present. Check your conditions using the Architect to
solve the model. When a two-species equilibrium is present, does it neces-
sarily have to be stable? Compare two-species equilibria to single-species
equilibria (the carrying capacities): does mutualism increase or decrease the
abundance of the species at equilibrium?

3. Do you think that a mutualistic interaction is always beneficial to an ecosys-
tem? Under what conditions might it be deleterious? Compare the behavior
of mutually interacting species to that of competing species. How are the two
behaviors similar? How are they different?



Answer questions in the space provided, or on
attached sheets with carefully labeled graphs. A
notepad report using the Architect is OK, too.
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Course/Section

Exploration 9.5. Analyzing the SIR model for an Epidemic

We will now explore the SIR model for the spread of an epidemic. Recall the
ODEs for this model: S′ = −aSI, I ′ = aSI− bI, R′ = bI. The parameter a> 0 is
the infection rate constant and b > 0 is the removal (recovery) rate constant
of infecteds. Notice that S′ + I ′ + R′ = 0, i.e., the total number of individuals
N is constant and equals S(0)+ I (0)+ R(0). The ODE Architect Library has an
equation file for the SIR model in the “Population Models” folder. In this file
you will find values of a, b, and N that correspond to an actual epidemic.

1. Set the IC toI (0) = 20 and R(0) = 0. Set the solve interval to 24 time
units, and make ten plots by sweeping the initial number of susceptibles from
S(0) = 100 toS(0) = 500. Now examine the graph panel forI vs. t. Which
of the curves corresponds toS(0) = 100 and which toS(0) = 500? By def-
inition, an epidemic occurs ifI (t) increases from its initial valueI (0). For
which of the curves that you plotted did an epidemic occur?

2. The behavior that you studied in Problem 1 is called athreshold effect. If the
initial number of susceptible individuals is below a threshold value, there will
be no epidemic. If the number of susceptibles exceeds this value, there will
be an epidemic. Use ODE Architect to empirically determine the threshold
value forS(0); use the values ofa andb in the Library file. Now analyze the
equation fordI/dt and determine a sufficient condition forI (t) to initially
increase. Interpret your answer as a threshold effect. Use the values of the
infection and removal rates that appear in the Library file to compare your
analytic calculation of the threshold with that obtained from your empirical
study.
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3. Clear your previous results from the Architect but keep the same values fora
andb. Set the initial conditions forI , R, andS to 10, 0, and 200, respectively.
Solve the equations for a time interval of 24 units. Notice from the plot ofI (t)
that the number of infecteds steadily diminishes from 10 to nearly zero. Also
notice that over this same period of time, the number of susceptibles declines
by almost 50, and the number of recovered individuals increases from zero to
nearly 50. Explain this seemingly contradictory observation.

4. A disease is said to beendemicin a population if at equilibrium the number
of infecteds is positive. Is it possible in the SIR model for the disease to be
endemic at equilibrium? In other words, can limt→∞ I (t) > 0? Explain your
answer.
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The Pendulum and Its Friends
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High-energy trajectories of a damped pendulum ODE swing over the
top and then settle into decaying oscillations about rest points.

Overview The whole range of fixed-length pendulum models—linear, nonlinear, damped,
and forced—are presented in this chapter, and their behaviors are compared us-
ing insights provided by integrals. After discussing fixed-length pendulum ODEs,
the effects of damping, and separatrices, we turn to a variable-length model. A
child pumping a swing alters the length of its associated pendulum as the swing
moves. We present a nontraditional autonomous model and show that phase-
plane analysis leads to a successful description of the effects of the pumping
action. Finding geodesics (the paths of minimum length between points) on a
torus leads to an ODE with a resemblance to the pendulum ODE.

Key words Pendulum; damping; energy; equilibrium; separatrices; pumping (a swing); con-
servation laws; integrals of motion; torus; geodesics; limit cycle; bifurcation

See also Chapter 4 for a spring-mass system which has the same ODE as the linear pendu-
lum; Chapter 11 for a study of damping effects in the Robot and Egg submodule,
and a lengthening pendulum in Exploration 11.4; Chapters 6 and 7 for separatri-
ces and integrals of motion; and Chapter 12 for elaboration on the forced, damped
pendulum resulting in chaos (and control).
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◆ Modeling Pendulum Motion

Let’s find the ODE that models the motion of a pendulum. For a pendulum☞ The volumes by Halliday
and Resnick (refs.) are good
general references for physical
models (including the pendulum).

bob of massm at the end of a rod of negligible weight and fixed lengthL at
an angleθ to the vertical, Newton’s second law gives

mass· acceleration= sum of forces acting on the bob

The bob moves along an arc of a circle of radiusL. The tangential compo-
nent of the bob’s velocity and acceleration at timet are given byLθ′(t) and
Lθ′′(t), respectively. The tangential component,−mgsinθ, of the gravita-☞ Since the tensile force in

the rod and the radial component
of the gravitational force are
equal and opposite, the radial
acceleration is zero and the
pendulum moves along a circular
arc.

tional force acts to restore the pendulum to its downward equilibrium. The
viscous damping force,−bLθ′, is proportional to the velocity and acts in a di-
rection tangential to the motion, but oppositely directed. Other forces such as
repeated pushes on the bob may also have componentsF(t) in the tangential
direction.

Equating the product of the mass and the tangential acceleration to the
sum of the tangential forces, we obtain the pendulum ODE

mLθ′′ = −mgsinθ− bLθ′ + F(t) (1)

The equivalent pendulum system is

θ′ = y

y′ = − g
L

sinθ− b
m

y+ 1
mL

F(t)
(2)

The angleθ is positive if measured counterclockwise from the downward ver-
tical, and is negative otherwise;θ is measured in radians (1 radian is 360/2π
or about 57◦). We allowθ to increase or decrease without bound because we
want to keep track of the number of times that the pendulum swings over the
pivot, and in which direction. For example, ifθ = −5 radians then the pen-
dulum has swung clockwise (the minus sign) once over the top fromθ = 0
because the angle−5 is between−π (at the top clockwise from 0) and−3π
(reaching the top a second time going clockwise).

We will work with theundrivenpendulum ODE (F = 0) in this chapter.
Since sinθ ≈ θ if |θ| is small, we will on occasion replace sinθ by θ to obtain
a linear ODE. We treat both undamped (b = 0) and damped (b> 0) pendulum
ODEs:

☞ The first two ODEs in this
list have the form of the
mass-spring ODEs of Chapter 4.

θ′′ + g
L
θ = 0 (undamped, linear) (3a)

θ′′ + b
m
θ′ + g

L
θ = 0 (damped, linear) (3b)

θ′′ + g
L

sinθ = 0 (undamped, nonlinear) (3c)

θ′′ + b
m
θ′ + g

L
sinθ = 0 (damped, nonlinear) (3d)

θ′′ + b
m
θ′ + g

L
sinθ = 1

mL
F(t) (damped, nonlinear, forced) (3e)
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Figure 10.1: Solution curves of a damped pendulum system. What is the
meaning of the horizontal solution curves?

Although the two linear ODEs are only good models of actual pendulum
motions when|θ| is small, these ODEs have the advantages that their so-
lutions have explicit formulas (see Chapter 4). The nonlinear ODEs model
pendulum motions for all values ofθ, but there are no explicit solution for-
mulas. Figure 10.1 and the chapter cover figure, respectively, show some
solution curves and trajectories of the damped, nonlinear pendulum ODE,
θ′′ + θ′ + 10sinθ = 0.

Now fire up your computer, go to Screen 1.2 of Module 10, and visually
explore the behavior of solution curves and trajectories of linear, nonlinear,
damped, and undamped pendulum ODEs. Pay particular attention to the be-
havior of the animated pendulum at the upper left, and relate its motions to the
trajectories and to the solution curves, and to what you think a real pendulum
would do. Explore all the options in order to understand the differences.

✓ “Check” your understanding by matching solution curves of Figure 10.1
with the corresponding trajectories in the chapter cover figure. Describe the
long-term behavior of the pendulum represented by each curve.

✓ Go to Screen 1.2 of Module 10 and explore what happens to solutions☞ This is also what
Problem 1 of Exploration 10.1 is
about.

of the undamped, linearized ODE,θ′′ + θ = 0, if θ0 is 0 andθ′
0 is large. The

motion of the animated pendulum is crazy, even though it accurately portrays
the behavior of the solutionsθ(t) = θ′

0 sint. Explain what is going on. Is
the linearized ODE a good model here? Repeat with the undamped, nonlinear
ODE,θ′′ + sinθ= 0, and the same initial data as above. Is this a better model?
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There is another way to look at pendulum motion, an approach based
on integrals of motion. This approach goes beyond pendulum motion and
applies to any physical system which can be modeled by a second-order ODE
of a particular type.

◆ Conservative Systems: Integrals of Motion

In this section we will study solutions of the differential equation

☞ V is often called a
potential function.

q′′ = −dV
dq

(4)

for a generic variableq whereV(q) is a given function.

Example 1: The undamped, nonlinear pendulum ODE is the special case
whereq = θ:

θ′′ = − g
L

sinθ, V(θ) = − g
L

cosθ

Example 2: You will see later in this chapter that geodesics on a surface of
revolution lead to the differential equation

u′′ = M2 f ′

f 3
, V(u) = M2 1

2 f 2

where the generic variableq is u in this case,M is a constant, andf is a
function ofu.

ODE (4) is autonomous and equivalent to the system

q′ = y

y′ = −dV
dq

(5)

A solution to system (5) is a pair of functions,q = q(t), y = y(t). One
way to analyze the behavior of these solutions is by a conservation law. A
function K(q, y) that remains constant on each solution [i.e.,K(q(t), y(t))
is a constant for allt], but varies from one solution to another, is said to be
a conserved quantity, or an integral of motionand the system is said to be
conservative. For system (5) one conserved quantity is

K(q, y)= 1
2

y2 + V(q) (6)

Here’s how to prove thatK(q(t), y(t)) stays constant on a solution—use the
chain rule and system (5) to show thatdK/dt is zero:

dK
dt

= y
dy
dt

+ dV
dq

dq
dt

= y

(
−dV

dq

)
+ dV

dq
y = 0

Incidentally, if K is any conserved quantity, so also isαK + β whereα andβ
are constants andα �= 0.
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Example 3: Here’s an example where we useαK + β, rather thanK, as the
integral to show how integrals sometimes correspond to physical quantities.
Look back at the functionV(θ) = −(g/L)cosθ for the undamped, nonlinear
pendulum of Example 1. Using formula (6),E(θ, y) is an integral, where

E(θ, y)= mL2K(θ, y)+ mgL

= mL2

(
1
2

y2 − g
L

cosθ
)

+ mgL

= 1
2

m(Ly)2 + mgL(1− cosθ)

= kinetic energy+ potential energy

This integral is called thetotal mechanical energyof the pendulum. The con-
stantmgL is inserted so that the potential energy is zero when the pendulum
bob is at its lowest point.

✓ Find the conserved quantityE for the undamped, linear pendulum ODE
θ′′ + θ = 0. Draw level curvesE(θ, y) = E0, wherey = θ′, in theθy-plane,
and identify the curves (e.g., ellipses, parabolas, hyperbolas).

Drawing the level curves of a conserved quantityK in the qy-plane for
system (5) gives phase plane trajectories of the system and so serves to de-
scribe the motions. This may be much easier than finding solution formulas,

☞ So we can draw
trajectories of system (5) by
drawing level sets of an integral.

but even so, we can take some steps toward obtaining formulas. To see this,
we have from equation (6) that ifK has the valueK0 on a trajectory of sys-
tem (5), then

1
2

y2 + V(q) = K0, i.e., y = q′ = ±
√

2K0 − 2V(q)

This is a separable first-order differential equation (as discussed in Chapter 2)
that can be solved by separating the variables and integrating:∫

dq√
K0 − V(q)

=
√

2t + C

It is hard to obtain explicit solution formulas because the integral cannot usu-
ally be expressed in terms of elementary functions.

◆ The Effect of Damping

Mechanical systems are usually damped by friction, and it is important to
understand the effect of friction on the motions. Friction is not well described
by the fundamental laws of physics, and any formula we write for it will
be more or lessad-hoc. The system will now be modeled by a differential
equation of the form

q′′ + f (q,q′)+ dV
dq

= 0
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or, rewritten as a system of first-order ODEs,

q′ = y

y′ = − f (q, y)− dV/dq
(7)

where− f (q, y) represents the frictional force; the functionf (q, y) always
has the sign ofy.

At low velocities, f (q, y) = by is a reasonably good approximation of
the friction due to air, but higher powers ofy are necessary at higher veloc-
ities. This latter fact is why reducing the speed limit actually helps reduce
gasoline usage—there is less drag at lower speeds. If friction were only a lin-
ear function of velocity, the effects of a higher speed would be cancelled by
the distance being covered in a shorter time, and the system would expend the
same amount of energy in either case. But if friction depends on the cube of
velocity, for instance, you gain a lot by going more slowly. We will examine
more elaborate friction laws when we study the pumping of a swing, but for
now we will use viscous damping withf = by.

Example 4:Let’s model the motion of a linearized pendulum with and with-
out damping:

θ′ = y

y′ = −10θ− by
(8)

whereb = 0 (no damping), orb = 1 (viscous damping). If there is no damp-
ing, then one conserved quantity is

K = 1
2

y2 + 5θ2 (9)

The left graph in Figure 10.2 displays the integral surface defined by for-
mula (9). The surface is a bowl whose cross-sectionsK = K0 are ellipses.
Projecting the ellipses downward onto theθy-plane gives the trajectories of
system (8) withb = 0.

Once damping is turned on, the functionK in formula (9) no longer is
constant on a trajectory of system (8). But the integral concept still gives a
good geometric picture of the behavior of a system under damping, because
the value of the functionK in equation (6) decreases along trajectories. This
fact follows from the following computation (using system (7)):

d
dt

(
y2

2
+ V(q)

)
= y

dy
dt

+ dV
dq

dq
dt

= y

(
− f (q, y)− dV

dq

)
+ dV

dq
y

= −yf (q, y)≤ 0

where the final inequality follows from the fact thatf (q, y) has the sign ofy.
So if b> 0 in system (8) the value ofK along a solution decreases, and will
either tend to a finite limit, which can only happen if the solution tends to an
equilibrium of the system, or the value ofK will tend to−∞. If V is bounded
from below (as in all our examples), the latter does not happen.
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Figure 10.2: The left graph shows the integral surface K = y2/2+ 5θ2 for the
undamped, linearized system, θ′ = y, y′ = −10θ, and the projections of the
level curves K = K0. The right graph shows a trajectory of the damped, lin-
earized system, θ′ = y, y′ = −10θ − y; as the trajectory cuts across the level
curves of K, the value of K decreases.

Example 5:Let’s turn on viscous damping (takeb = 1 in system (8)) and see
what happens. The right side of Figure 10.2 shows a trajectory of the damped,
linear pendulum system as it cuts across the level curves of the integral func-
tion K = y2/2+ 5θ2. K decreases as the trajectory approaches the spiral sink
at θ = 0, y = 0. [The level curves ofK are drawn by ODE Architect as
trajectories of the undamped system (8) withb = 0.]

Now let’s turn to the more realistic nonlinear pendulum and see how
damping affects its motions.

Example 6:The nonlinear system is

θ′ = y

y′ = −10sinθ− by
(10)

whereb = 0 corresponds to no damping, andb = 1 gives viscous damping.
In the no-damping case we can take the conserved quantityK to be

K = 1
2

y2 − 10(cosθ− 1) (11)

The left side of Figure 10.3 shows part of the surface defined by equation (11).

Example 7: With damping turned on (setb = 1 in system (10)) a trajectory
with a high initial K-value may “swing over the pivot” several times before
settling into a tightening spiral terminating at a sink,θ = 2nπ, y = 0, for
some value ofn. The right side of Figure 10.3 shows one of these trajectories
as it swings over the pivot once, and then heads toward the point,θ = 2π,
y = 0, whereK = 0.
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Figure 10.3: The left graph shows the surface K = y2/2− 10(cosθ− 1)with two
of its bowl-like projections that touch the θy-plane at equilibrium points of
minimal K-value. The nonlinear pendulum system is θ′ = y, y′ = −10sinθ− by

with b = 0. Turn on damping (b = 1) and watch a trajectory cut across the
level sets K = K0, with ever smaller values of K0 (right graph).

✓ Would you increase or decreaseb to cause the trajectory starting atθ =
−3, y = 12 to approachθ = 0, y = 0? How aboutθ = 10π, y = 0? What
would you need to do to get the trajectory to approachθ = −2π, y = 0, or is
this even possible?

◆ Separatrices

A trajectory is aseparatrixif the long-term behavior of trajectories on one side
is quite different from the behavior on the other side. As we saw in Chapters 6
and 7 each saddle comes equipped with four separatrices: two approach the
saddle with increasing time (thestableseparatrices for that saddle point) and
two approach as time decreases (theunstableseparatrices). These separatrices
are of the utmost importance in understanding how solutions behave in the
long term.

Example 8:The undamped system

θ′ = y

y′ = −10sinθ
(12)

has equilibrium points atθ = nπ, y = 0. These points are (nonlinear) centers☞ Use the Tool to find
eigenvalues and eigenvectors of
the Jacobian matrix of
system (12) atθ = nπ, y = 0 for
n = 1, 2, 3.

if n is even, and saddles ifn is odd. Each separatrix at a saddle enters (or
leaves) the saddle tangent to an eigenvector of the Jacobian matrix evaluated
at the point. ODE Architect gives us these eigenvectors after it has located the
saddle.

Example 9:(Plotting a Separatrix:) To find a point approximately on a saddle
separatrix, just take a point close to a saddle and on an eigenvector. Then solve
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Figure 10.4: Saddle separatrices for
the undamped, nonlinear pendulum
system enclose centers.
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Figure 10.5: Basins of attraction of
spiral sinks are bounded by stable
saddle separatrices.

forward and backward to obtain a reasonable approximation to a separatrix.
For example, atθ = π, y = 0, ODE Architect tells us that(0.3015,0.9535)
is an eigenvector corresponding to the eigenvalue 3.162, and so the saddle
separatrix is unstable. To graph the corresponding separatrix we choose as the
initial point θ0 = π+ 0.003015, y = 0.009535 which is in the direction of
the eigenvector and very close to the saddle point. Figure 10.4 shows several
separatrices of system (12). The squares indicate saddle points, and the plus
signs inside the regions bounded by separatrices indicate centers.

✓ Describe the motions that correspond to trajectories inside the regions
bounded by separatrices. Repeat with the region above the separatrices. Can a
separatrix be both stable and unstable when considered as an entire trajectory?

Example 10: Add in viscous damping and the picture completely changes:
Figure 10.5 shows the stable separatrices at the saddle points for the system

θ′ = y

y′ = −10sinθ− y
(13)

The equilibrium points atθ = 2nπ, y = 0 are no longer centers, but attracting
spiral points (the solid dots). Thebasin of attractionof each sink (i.e., the
points on the trajectories attracted to the sink) is bounded by four stable saddle
separatrices.

✓ With a fine-tipped pen, draw theunstableseparatrices at each saddle in
Figure 10.5.

That’s all we have to say about the motions of a constant-length pendulum
for now. More (much more) is discussed in Chapter 12, where we add a
driving termF(t) to the pendulum equations.
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◆ Pumping a Swing

Recall that in anautonomousdifferential equation, the time variablet does
not appear explicitly. The central thing to realize is thatthe ODE that mod-
els pumping a swing must be autonomous:a child pumping the swing does
not consult a watch when deciding how to lean back or sit up; the move-
ments depend only on the position of the swing and its velocity. The swinger
may change pumping strategies, deciding to go higher or to slow down, but
the modeling differential equation for any particular strategy should be au-
tonomous, depending on various parameters which describe the pumping
strategy.

If you observe a child pumping a swing, or do it yourself, you will find☞ If you use a different
pumping strategy, make up a
differential equation of your own!

that one strategy is to lean back on the first half of the forward swing and to
sit up the rest of the time. If you stand on the seat, the strategy is the same:
you crouch during the forward down-swing, and stand up straight the rest of
the time. The work is done when you bring yourself back upright during the
forward up-swing, either by pulling on the ropes (if sitting), or simply by
standing.

The pumping action effectively changes the length of the swing, which
complicates the ODE considerably, for two reasons. Newton’s second law
must be stated differently, as will be shown below, and we must find an ap-
propriate equation to model the changing length.

The question of friction is more subtle. Of course, the air creates a drag,
but that is not the most important component of friction. We believe that
things are quite different for a swing attached to the axle by something flexi-
ble, than if it were attached by rigid rods. Circus acrobats often drive swings
right over the top; they always have rigid swings. We believe that a swing
attached flexibly to the axle cannot be pumped to go over the top. Suppose
the swing were to go beyond the horizontal—then at the end of the forward
motion, the swinger would go into free-fall instead of swinging back; the jolt☞ Do you agree with this

claim about the behavior of
flexibly supported swings?

(heard as “ka-chunk”) when the rope becomes tight again will drastically slow
down the motion. If you get on a swing, you will find that this effect is felt
before the amplitude of the swing reachesπ/2; the ropes become loose near
the top of the forward swing, and you slow down abruptly when they draw
tight again.

We will now turn this description into a differential equation.

◆ Writing the Equations of Motion for Pumping a Swing

Modeling the pendulum with changing length requires a more careful look at
Newton’s second law of motion. The equationF = ma= mq′′ is not correct
when the mass is changing (as when you use a leaky bucket as the bob of a
pendulum), or when the distance variable is changing with respect to position
and velocity (as for the child on the swing). In cases such as this, force is the
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rate of change of themomentum mq′:

Force= (mq′)′ (14)

When the mass and pendulum length are constant, equation (14) indeed re-
duces to the more familiarF = ma.

The analog in rotational mechanics about a pivot, whereq = Lθ, is that
thetorqueequals the rate of change of angular momentum:

Torque= ( I θ′)′

whereI is the moment of inertia (the rotational analog of the mass). If a force
F is applied at a pointp, then the torque about the pivot is the vector product
r × F, wherer is the position vector from the pivot top. For the undamped
and nonlinear pendulum, the gravitational torque can be treated as the scalar
−mgLsinθ, and the moment of inertia isI = mL2. Then Newton’s second
law becomes

(mL2θ′)′ = −mgLsinθ (15)

When L andm are constant, equation (15) is precisely the ODE of the un-
damped, nonlinear pendulum. In the case of the child pumping a swing, the
massm remains constant (and can be divided out of the equation), butL is a
function ofθ andθ′, so we must differentiateL2θ′ in equation (15) using the
chain rule to get

2L

(
∂L
∂θ
θ′ + ∂L

∂θ′ θ
′′
)
θ′ + L2θ′′ = −gLsinθ

or, in system form

θ′ = y

y′ = −2y2∂L/∂θ+ gsinθ
2y∂L/∂y+ L

(16)

The person pumping the swing is changingL as a function ofθ and y.
For the reasons given in Screen 2.3 of Module 10 we will use the following
formula for L:

L = L0 + �L
π2

(π
2

− arctan10θ
)(π

2
+ arctan10y

)
(17)

whereL0 is the distance from the axle to the center of gravity of the swinger
when upright, and�L is the amount by which leaning back (or crouching)
increases this distance. Note that

1
π

(π
2

− arctan10θ
)

is a smoothed-out step function: roughly 1 whenθ < 0 and 0 whenθ > 0.
The jump from one value to the other is fairly rapid because of the factor
10; other values would be appropriate if you were to sit (or stand) up more
or less suddenly. A similar analysis applies to the second arctan factor in
formula (17).



184 Chapter 10

As for friction with the swing, we will use

f (θ, y)= εy+
(
θ

1.4

)6

y

The first term corresponds to some small viscous air resistance. Admit-
tedly, the second term is quite ad-hoc, but it serves to describe some sort
of insurmountable “brick wall,” which somewhat suddenly takes effect when
θ > 3/2 ∼ π/2. So it does seem to reflect our qualitative description.

Writing the differential equation as an autonomous system is now
routine—an unpleasant routine since we need to differentiateL, which leads
to pretty horrific formulas. But with this summary, we have tried to make
the structure clear. Now let’s get real and insert friction into modeling sys-
tem (16):

θ′ = y

y′ = −2y2∂L/∂θ+ gsinθ+ friction term
2y∂L/∂y+ L

(18)

whereL is given by formula (17) and

∂L
∂θ

= −10�L
π
2 + arctan(10y)

π2(1+ 100θ2)

∂L
∂y

= 10�L
π
2 − arctan(10θ)

π2(1+ 100y2)

friction term= εy+
(
θ

1.4

)6

y

(19)

Example 11: Now setg = 32, L0 = 4, �L = 1, and ε = 0 (no viscous
damping), and use ODE Architect to solve system (18). Figure 10.6 shows
that you can pump up a swing from rest at an initial angle of 0.25 radian (about
14◦) within a reasonable time, but not from the tiny angle of 0.01 radian. Do
you see the approach to a stable, periodic, high-amplitude oscillation? This
corresponds to an attracting limit cycle in theθy-plane.

What happens if we put viscous damping back in? See for yourself by
going to Screen 2.4 of Module 10 and clicking on several initial points in the
θy-screen. You should seetwo limit cycles now:

� a large attracting limit cycle representing an oscillation of amplitude
close toπ/2, due to the “brick wall” friction term, and (forε > 0)

� a small repelling limit cycle near the downward equilibrium, due to fric-
tion and viscous air resistance.

In order to get going, the child must move the swing outside the small
limit cycle, either by cajoling someone into pushing her, or backing up with
her feet on the ground. Once outside the small limit cycle, the pumping will
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Figure 10.6: Successful pumping (left graph) starts at a moderately high an-
gle (θ0 = 0.25 radian). If θ0 is small (e.g., θ0 = 0.01 rad), then pumping doesn’t
help much (right graph).

push the trajectory to the attracting limit cycle, where it will stay until the
child decides to slow down.

Please note that this structure of the phase plane, with two limit cycles, is
necessary in order to account for the observed behavior: the origin must be a
sink because of air resistance, and you cannot have an attracting limit cycle
surrounding a sink without another limit cycle in between.

✓ Does the system without viscous damping have a small repelling limit
cycle?

◆ Geodesics

Geodesics on a surface are curves that minimize length between sufficiently
close points on the surface; they may, but need not, minimize length between
distant points.

Example 12: Straight lines are geodesics on planes, and they minimize the
distance between arbitrary points. Great circles are geodesics on the unit
sphere, but they only minimize length between pairs of points if you travel
in the right direction. If you travel along a great circle your path will be short-
est until you get half-way around the world; but further along, you would have
done better to go the other way.

To look for geodesics, we use the fact that parametrization of a curveγ

by its arc lengths results in traversing a curve at constant speed 1, that is,☞ Arc length is denoted byt,
rather thans, in Submodule 10.3. |dγ/ds| is always 1.

On a surface in three-dimensional space, a geodesicγ is a curve for which
the vectord2γ/ds2 is perpendicular to the surface at the pointγ(s). For now,
let’s assume that all curves are parametrized by arc length, soγ ′ meansdγ/ds.
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If any curveγ (not necessarily a geodesic) on the surface is parametrized
at constant speed, we are guaranteed thatγ ′′ is perpendicular toγ ′, but not
necessarily to the surface. To see this, observe thatγ ′ · γ ′ = 1, whereγ ′ is
the velocity vector for the curveγ and the “dot” indicates thedot (or scalar)
product of two vectors. Differentiating the dot product equation, we have
γ ′′ · γ ′ + γ ′ · γ ′′ = 0, soγ ′′ is perpendicular toγ ′ (or else is the zero vector).

The statement thatγ ′′ is perpendicular to thesurfacesays thatγ is going
as “straight” as it can in the surface, and that the surface is exerting no force
which would make the curve bend away from its path. Such a curve is a
geodesic. See the book by Do Carmo for a full explanation of why geodesics
defined as above minimize the distance between nearby points.

Example 13:On a sphere, the parallels of latitudeγ(s) yield vectorsγ ′′(s) in
the plane of the parallel and perpendicular to the parallel (but not in general
perpendicular to the surface), whereas any great circle yields vectorsγ ′′(s)
pointing toward the center of the sphere and hence perpendicular to both the
great circle and to the surface. The great circles are geodesics, but the parallels
(except for the equator) are not.

◆ Geodesics on a Surface of Revolution

Suppose that

x = f (u), z= g(u)

is a parametrization by arc lengthu of a curve in thexz-plane. One conse-
quence of this parametrization is that( f ′(u))2 + (g′(u))2 = 1. Let’s rotate
the curve by an angleθ around thez-axis, to find the surface parametrized by

P(u, θ)=

 f (u)cosθ

f (u)sinθ
g(u)




Let’s suppose that curvesγ on the surface are parametrized by arc length
s and, hence, these curves have the parametric equation

γ(s)=

 f (u(s))cosθ(s)

f (u(s))sinθ(s)
g(u(s))




and we need to differentiate this twice to find

γ ′(s) =

 f ′(u(s))u′(s)cosθ(s)− f (u(s))sinθ(s)θ′(s)

f ′(u(s))u′(s)sinθ(s)+ f (u(s))cosθ(s)θ′(s)
g′(u(s))u′(s)
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γ ′′(s) = u′′


 f ′(u)cosθ

f ′(u)sinθ
g′(u)


+ (u′)2


 f ′′(u)cosθ

f ′′(u)sinθ
g′′(u)


+ 2u′θ′


− f ′(u)sinθ

f ′(u)cosθ
0




−(θ′)2


 f (u)cosθ

f (u)sinθ
0


+ θ′′


− f (u)sinθ

f (u)cosθ
0


 (20)

This array is pretty terrifying, but the two equations

γ ′′ · ∂P
∂u

= 0, and γ ′′ · ∂P
∂θ

= 0 (21)

which express the fact thatγ ′′ is perpendicular to the surface, give

u′′ − (θ′)2 f (u) f ′(u) = 0 and 2u′ f (u) f ′(u)θ′ + θ′′( f (u))2 = 0 (22)

Thatγ ′′ is perpendicular to the surface if formulas (21) hold follows because
the vectors∂P/∂u and ∂P/∂θ span the tangent plane to the surface at the
point (θ,u). Formulas (22) follow from formulas (21), from the fact that
( f ′(u))2 + (g′(u))2 = 1, and from the formulas

∂P
∂u

=

 f ′(u)cosθ

f ′(u)sinθ
g′(u)


 , ∂P

∂θ
=

− f (u)sinθ

f (u)cosθ
0




The quantity

M = ( f (u))2θ′ (23)

is conserved along a trajectory of system (22) since

d
ds

[( f (u))2θ′] = ( f (u))2θ′′ + 2u′θ′ f ′ f = 0

The integralM behaves likeangular momentum(see Exploration 10.5 for
the central force context that first gave rise to this notion).

Substitutingθ′ = M/( f (u))2 into the first ODE of equations (22) gives

u′′ − M2 f ′(u)
( f (u))3

= 0 (24)

Using equations (23) and (24), we obtain a system of first-order ODEs for the
geodesics on a surface of revolution:

θ′ = M
( f (u))2

u′ = w

w′ = M2 f ′(u)
( f (u))3

(25)
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We recognize that ODE (24) is of the form of ODE (4), so

u′′ = − d
du

M2

2( f (u))2

and we can analyze this ODE by the phase plane and conservation methods
used earlier. Let us now specialize to the torus.

◆ Geodesics on a Torus

Rotate a circle of radiusr about a line lying in the plane of the circle to obtain
a torus. IfR is the distance from the line to the center of the circle, then in the
equations on page 186 for a parameterized curve we can set

x = f (u)= R+ r cosu

z= g(u)= r sinu

If we setr = 1, then we have( f ′)2 + (g′)2 = 1 as required in the derivation
of the geodesic ODEs. The system of geodesic ODEs (25) becomes

θ′ = M
(R+ cosu)2

u′ = w

w′ = − M2 sinu
(R+ cosu)3

(26)

whereM is a constant. The variableu measures the angle up from the outer
equator of the torus, andθ measures the angle around the outer equator from
some fixed point. Figure 10.7 shows seventeen geodesics through the point

x

y

z

Figure 10.7: Seventeen geodesics through a point on the outer equator.
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Figure 10.8: The seventeen geodesics of Figure 10.7 drawn in the θu-plane
(left) and in the uu′-plane (right).

θ0 = 0, u0 = 0 withw0 sweeping from−8 to 8. In Figure 10.7 and subsequent
figures we takeR= 3 andM = 16. Figure 10.8 shows the geodesic curves in
theθu-plane (left graph) and in theuu′-plane (right). Note the four outlying
geodesics that coil around the torus, repeatedly cutting both the outer [u =
2nπ] and the inner [u = (2n+ 1)π] equators and periodically going through
the hole of the donut. Twelve geodesics oscillate about the geodesic along the
outer equator.

Figure 10.9 shows the outer and inner equatorial geodesics (the horizontal
lines) in theθu-plane, as well as three curving geodesics starting atθ0 = 0,
u0 = 0. One oscillates about the outer equator six times in one revolution

u=-pi
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u=2pi

u=3pi
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Figure 10.9: Equatorial geodesics (lines), a geodesic that rapidly oscillates
around the outer equator, another that oscillates slowly around the outer
equator, and a third that slowly coils around the torus.
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Figure 10.10: The graphs of the toroidal geodesics in the uu′-plane (left) look
like the trajectories of an undamped, nonlinear pendulum (right).

(i.e., asθ increases from 0 to 2π). The other two start with values ofu′
0

that take them up over the torus and near the inner equator. One of these
geodesics turns back and slowly oscillates about the outer equator. The other
starts with a slightly larger value ofu′

0, cuts across the inner equator, and
slowly coils around the torus. This suggests that the inner equator (u = π)
is aseparatrixgeodesic, dividing the geodesics into those that oscillate about
the outer equator from those that coil around the torus. This separatrix is

☞ Try this and see how hard
it is to stay on the inner equator.

unstable in the sense that if you start a geodesic near the inner equator (say at
θ0 = 3.14, u′

0 = 0) and solve the system (26), then the geodesic moves away
from the separatrix.

Why do we call this geodesic model a “friend of the pendulum”? Take a
look at theu′ andw′ ODEs in system (26). Note that if we delete the term
“cosu” from the denominator of thew′ equation, then we obtain the system

u′ = w

w′ = − M2

R3
sinu

(27)

which is precisely the system for an undamped, nonlinear pendulum with
g/L = M2/R3. This fact suggests that geodesics of (26) plotted in theuu′-
plane will look like trajectories of the pendulum system (27). Figure 10.10
compares the two sets of trajectories and shows how much alike they are. This
illustrates a general principle (which, like most principles, has its exceptions):
If two systems of ODEs resemble one another, so will their trajectories.

References Arnold, V.I., Ordinary Differential Equations(1973: M.I.T.)
Note: Arnold’s book is the classical text. Much of the considerable liter-
ature on modeling swings has been influenced by his description, which
uses a nonautonomous length function,L(t), instead ofL(θ, θ′). In Sec-
tions 27.1 and 27.6, Arnold shows that if the child makes pumping mo-
tions at the right frequency at the bottom position of the swing, the mo-
tion eventually destabilizes, and the swing will start swinging without any
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Answer questions in the space provided, or on
attached sheets with carefully labeled graphs. A
notepad report using the Architect is OK, too.

Name/Date

Course/Section

Exploration 10.1. Explorations of Basic Pendulum Equation

1. If the nonlinear pendulum ODE (3c) is approximated by the linear ODE (3a),
how closely do the trajectories and the component curves of the two ODEs
match up? Screen 1.2 in Module 10 will be a big help here.

2. What would motions of the system,x′ = y, y′ = −V(x), look like under
different potential functions, such asV(x) = x4 − x2? What happens if a
viscous damping term−y is added to the second ODE of the system? Use
graphical images like those in Figures 10.2 and 10.3 to guide your analysis.
Use ODE Architect to draw trajectories in thexy-plane for both the undamped
and damped case. Identify the equilibrium points in each case as saddles,
centers, sinks, or sources. Plot the stable and the unstable saddle separatrices
(if there are any) and identify the basin of attraction of each sink. [Suggestion:
Use the Equilibrium feature of ODE Architect to locate the equilibrium points,
calculate Jacobian matrices, find eigenvalues and eigenvectors, and so help to
determine the nature of those points.]
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3. Find all solutions of the undamped and linearized pendulum ODE,

θ′′ + (g/L)θ = 0

Show that all solutions are periodic of period 2π
√

L/g. Are all solutions of
the corresponding nonlinear pendulum ODE,θ′′ + (g/L)sinθ = 0, periodic?
If the latter ODE has periodic solutions, compare the periods with those of
solutions of the linearized ODE that have the same initial conditions.

4. Use the sweep and the animate features of ODE Architect to make “movies”
of the solution curves and the trajectories of the nonlinear pendulum ODE,
θ′′ + bθ+ sinθ = 0, whereθ0 = 0, θ′

0 = 10, andb is a nonnegative parameter.
Interpret what you see in terms of the motions of a pendulum. In this regard,
you may want to use the model-based pendulum animation feature of ODE
Architect.



Answer questions in the space provided, or on
attached sheets with carefully labeled graphs. A
notepad report using the Architect is OK, too.

Name/Date

Course/Section

Exploration 10.2. Physical Variations for Child on a Swing

1. Module 10 and the text of this chapter describe a swing-pumping strategy
where the swinger changes position only on the first half of the forward swing
(i.e., whereθ is negative butθ′ is positive). Is this the strategy you would use
to pump a swing? Try pumping a swing and then describe in words your most
successful strategy.
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2. Rebuild the model for the length functionL(θ, θ′) of the “swing pendulum”
to model your own pumping scenario. [Suggestion:Change the arguments
of the arctan function used in Module 10 and the text of this chapter.] Use
the ODE Architect to solve your set of ODEs. From plots oftθ-curves and
of θθ′-trajectories, what do you conclude about the success of your modeling
and your pumping strategy?



Answer questions in the space provided, or on
attached sheets with carefully labeled graphs. A
notepad report using the Architect is OK, too.

Name/Date

Course/Section

Exploration 10.3. Bifurcations

In these problems you will study the bifurcations in the swing-pumping
model of Module 10 and this chapter as the viscous damping constant ε or
the incremental pendulum length �L is changed.

1. There is a Hopf bifurcation for the small-amplitude repelling limit cycle at
ε = 0 for the swing-pumping system (18) and (19). Plot lots of trajectories
near the originθ = 0, y = 0 for values ofε above and belowε = 0 and
describe what you see. What does the ODE Architect equilibrium feature tell
you about the nature of the equilibrium point at the origin ifε < 0? If ε = 0?
If ε > 0?
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2. Now sweep�L through a series of values and watch what happens to the
large-amplitude attracting limit cycle. At a certain value of�L you will see
a sudden change (called ahomoclinic, saddle-connection bifurcation). What
is this value of�L? Plot lots of trajectories for various values of�L and
describe what you see.



Answer questions in the space provided, or on
attached sheets with carefully labeled graphs. A
notepad report using the Architect is OK, too.

Name/Date

Course/Section

Exploration 10.4. Geodesics on a Torus

The basic initial value problem for a geodesic starting on the outer equator
of a torus is

θ′ = M
(R+ cosu)2

u′′ = − M2 sinu
(R+ cosu)3

u(0) = 0, u′(0) = α, θ(0) = 0

(28)

where M is a constant.

1. Make up your own “pretty pictures” of geodesic sprays on the surface of the
torus by varyingu′(0). Explain what each geodesic is doing on the torus. If
two geodesics throughu0 = 0, θ0 = 0 intersect at another point, which pro-
vides the shortest path between two points? Is every “meridian”,θ = const.,
a geodesic? Is every “parallel”,u = const., a geodesic?
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2. Repeat Problem 1 at other initial points on the torus, including a point on the
inner equator.

3. Explore different values forR (between 2 and 5) for the torus—what does it
mean for the solutions of the ODEs for the geodesics? To what extent does
the ugly denominator in the ODEs mess up the similarity to the nonlinear
pendulum equation?

Answer by discussing effects onθu-phase portraits.



Answer questions in the space provided, or on
attached sheets with carefully labeled graphs. A
notepad report using the Architect is OK, too.

Name/Date

Course/Section

Exploration 10.5. The Central Force and Kepler’s Laws

An object at position r (t) (relative to a fixed coordinate frame) is moving
under a central force if the force points toward or away from the origin, with
a magnitude which depends only on the distance r from the origin. This is
modeled by the differential equation r ′′ = f (r ) r , where we will take r (t) to be
a vector moving in a fixed plane.

Example 14: (Newton’s law of gravitation) This, as applied to a planet and
the sun, is perhaps the most famous differential equation of all of science.
Newton’s law describes the position of the planet by the differential equation

r ′′ = − AG
r3

r ,

where r is the vector from the center of gravity of the two bodies (located, for
all practical purposes, at the sun) to the planet, G is the universal gravitational
constant, and A = M3/(m+ M)2, where m is the mass of the planet (so for all
practical purposes, A is the mass of the sun).

1. Newton’s law of gravitation is often called the “inverse square law,” not the
“inverse cube law.” Explain.

2. The way to analyze a central force problem is to write it in polar coordinates,

☞ Another way to write the

vectorr is r = î cosθ+ ĵ sinθ,
wherêi andĵ are unit vectors
along the positivex- andy-axes,
respectively.

where

r = r [cosθ,sinθ]

r ′ = r ′[cosθ,sinθ] + rθ′[−sinθ,cosθ]

r ′′ = (r ′′ − r (θ′)2)[cosθ,sinθ] + (2r ′θ′ + rθ′′)[−sinθ,cosθ]

Show that the central force equationr ′′ = f (r )r yields

2r ′θ′ + rθ′′ = 0 (29)

and

r ′′ − r (θ′)2 = r f (r ) (30)
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3. Show that the quantityM = r2θ′ is constant as a function of time during a
motion in a central force system, using equation (29).

The quantityM (now called the angular momentum of the motion) was
singled out centuries ago as a quantity of interest precisely because of the
derivation above. You should see that the constancy ofM is equivalent to
Kepler’s second law: the vectorr sweeps out equal areas in equal times.

4. Substituteθ′ = M/r2 into equation (30) and show that, for each value of the
particular central forcef (r ) and each angular momentumM, the resulting
differential equation is of the expected form.

5. Specialize to Newton’s inverse square law withk = AG and show that the
resulting system becomes

r ′′ = − k
r2

+ M2

r3

or the system

r ′ = y

y′ = − k
r2

+ M2

r3

Make a drawing of the phase plane for this system, and analyze this drawing
using the conserved quantityK, where

K(r, y) = y2

2
+ k

r
− M2

2r2

K is evidently defined only forr > 0, andK has a unique minimum, so the
level curves ofK are simple closed curves forK � 0, corresponding to the
elliptic orbits of Kepler’s first law, an unbounded level curve whenK = 0,
corresponding to a parabolic orbit, and other unbounded curves forK > 0
which correspond to hyperbolic orbits. (For discussion of these three cases
and their relation to conic sections, see Hubbard and West, Part II, Section 6.7
pp. 43–47.)
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An aging spring stretches.

Overview Many phenomena, especially those explained by Newton’s second law, can be
modeled by second-order linear ODEs with variable coefficients, for example:

1. Robot arms, which are modeled by a spring-mass equation with a time-
varying damping coefficient; and

2. Aging springs, which are modeled by a spring-mass equation with a time-
varying spring constant.

These two applications illustrate very different ways in which series solutions can
be used to solve linear ODEs with nonconstant coefficients.

Key words Power series; series solutions; recurrence formula; ordinary point; singular point;
regular singular point; Bessel’s equations; Bessel functions; aging spring; length-
ening pendulum

See also Chapter 4 for second-order linear ODEs with constant coefficients (i.e., without
the time-dependence).



204 Chapter 11

◆ Infinite Series

Certain second-order linear ODEs with nonconstant coefficients have been
studied extensively, so their properties are well-known. We will look at some
of these ODEs in the chapter.

If the general linear homogeneous (undriven) second-order ODE

x′′ + p(t)x′ + q(t)x = 0 (1)

has coefficientsp andq that are not both constants, the methods of Chapter 4
don’t work. However, sometimes we can write a solutionx(t) as a power
series:

x(t) =
∞∑

n=0

an(t − t0)
n (2)

where we use ODE (1) to determine the coefficientsan. Much useful infor-
mation can be deduced about an ODE when its solutions can be expressed as
power series.

If a functionx(t) has a convergent Taylor seriesx(t) = ∑
an(t − t0)n in☞ Look in your calculus

book for Taylor series. The term
“analytic” is frequently used for
functions with convergent Taylor
series. We assume thatp(t) and
q(t) are analytic on a common
interval aboutt0.

some interval aboutt = t0, thenx(t) is said to beanalytic at t0. Since all
derivatives of analytic functions exist, the derivativesx′ and x′′ of x can be
obtained by differentiating that series term by term, producing series with the
same radius of convergence as the series forx. If we substitute these series
into ODE (1), we can determine the coefficientsan. To begin with,a0 anda1

are equal to the initial valuesx(t0) andx′(t0), respectively.

✓ “Check” your understanding by evaluating the series (2) att = t0 to show
thata0 = x(t0). Now differentiate series (2) term by term to obtain a series for
x′(t); evaluate this series att0 to find thata1 = x′(t0). Doesa2 equalx′′(t0)?

◆ Recurrence Formulas

A recurrence formulafor the coefficientsan is a formula that defines each
an in terms of the coefficientsa0, a1, . . . , an−1. To find such a formula, we
have to express each of the terms in ODE (1) [i.e.,x′′, p(t)x′, andq(t)x] as
power series aboutt = t0, which is the point at which the initial conditions are
given. Then we combine these series to obtain a single power series which,
according to ODE (1), must sum to zero for allt neart0. This implies that
the coefficient of each power oft − t0 must be equal to zero, which yields an
equation for eachan in terms of the preceding coefficientsa0, a1, . . . , an−1.
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Example: Finding a recurrence formula
Let’s solve the first-order IVPx′ + tx = 0, x(0) = 1. First we writex(t) in☞ We chose a first-order

ODE for simplicity. the form

x(t) =
∞∑

n=0

antn

where we have chosent0 = 0. The derivative ofx(t) is then

x′(t) =
∞∑

n=1

nantn−1

Substituting this into the given ODE, we get

x′ + tx =
∞∑

n=1

nant
n−1 +

∞∑
n=0

antn+1 = 0

To make the power oft the same in both sums, replacen by n − 2 in the
second sum to obtain

☞ Notice in the second
summation thatn starts at 2,
rather than 0. Do you see why?

∞∑
n=1

nantn−1 +
∞∑

n=2

an−2t
n−1 = a1 +

∞∑
n=2

[nan + an−2]t
n−1 = 0

The last equality is true if and only ifa1 = 0 and, if for everyn ≥ 2, we have
thatnan + an−2 = 0. Therefore, the desired recurrence formula is

an = −an−2

n
, n = 2,3, . . . (3)

Sincea1 = 0, formula (3) shows that the coefficientsa3, a5, . . . , a2k+1, . . .
must all be zero; anda2 = −a0/2, a4 = −a2/4 = a0/(2 · 4), . . . . With a
little algebra you can show that the series forx(t) is

x(t) = a0 − a0

2
t2 + a0

2 · 4
t4 − a0

2 · 4 · 6
t6 + · · ·

which can be simplified to

x(t) = a0

(
1− t2

2
+ 1

2!

(
t2

2

)2

− 1
3!

(
t2

2

)3

+ · · ·
)

If the initial conditiona0 = x(0) = 1 is used, this becomes the Taylor series
for e−t2/2 aboutt0 = 0. Although the series solution to the IVP,x′ + x = 0,
x(0)= 1, can be written in the form of a familiar function, for most IVPs that
is rarely possible and usually the only form we can obtain is the series form
of the solution.

✓ Check thatx(t) = e−t2/2 is a solution of the IVPx′ + tx = 0, x(0) = 1.
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◆ Ordinary Points

If p(t) and q(t) are both analytic att0, then t0 is called anordinary point
for the differential equationx′′(t)+ p(t)x′(t)+ q(t)x(t)= 0. At an ordinary
point, the method illustrated in the preceding example always produces solu-
tions written in series form. The following theorem states this more precisely.

Ordinary Points Theorem. If t0 is an ordinary point of the second-
order differential equation

x′′ + p(t)x′ + q(t)x = 0 (4)

that is, if p(t) andq(t) are both analytic att0, then the general solution
of ODE (4) is given by the series

x(t) =
∞∑

n=0

an(t − t0)
n = a0x1(t)+ a1x2(t) (5)

wherea0 anda1 are arbitrary and, for eachn ≥ 2, an can be written in
terms ofa0 anda1. When this is done, we get the right-hand term in
formula (5), wherex1(t) and x2(t) are linearly independent solutions
of ODE (4) that are analytic att0. Further, the radius of convergence
for each of the series solutionsx1(t) andx2(t) is at least as large as the
smaller of the two radii of convergence for the series forp(t) andq(t).

One goal of Module 11 is to give you a feeling for the interplay between
infinite series and the functions they represent. In the first submodule, the
positionx(t) of a robot arm is modeled by the second-order linear ODE

☞ Note thatp(t)= Ct and
q(t)= k are analytic for allt.

x′′ + Ctx′ + kx= 0 (6)

whereC andk are positive constants. Using the methods of the earlier exam-
ple, we can derive a series solution (witht0 = 0)

x(t) = 1− kt2

2!
+ k(2C+ k)t4

4!
− k(2C + k)(4C+ k)t6

6!
+ · · · (7)

that satisfiesx(0) = 1, x′(0) = 0. We then have to to determine how quickly
the arm can be driven from the positionx = 1 to x = 0.005 without letting
x go below zero. The value ofk is fixed at 9, so that onlyC is free to vary.
WhenC = k, it turns out that series (7) is the Taylor series fore−kt2/2 about
t = 0. It can then be demonstrated numerically, using ODE Architect, that
C = 9 produces a solution that stays positive and is an optimal solution in the
sense of requiring the least time for the value ofx to drop from 1 to 0.005.

In the majority of cases, however, it isnotpossible to recognize the series

☞ Historically, new functions
in engineering, science, and
mathematics have often been
introduced in the form of series
solutions of ODEs. solution as one of the standard functions of calculus. Then the only way to

approximatex(t) at a given value oft is by summing a large number of terms
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Figure 11.1: Solutions of ODE (6) for k = 9, x(0) = 1, x′(0) = 0, and C = 0, 3, 6,
9, 12, 15. Which is the C = 15 curve?.

in the series, or by using a numerical solver to solve the corresponding IVP.
ODE Architect was used to graph solutions of ODE (6) for several values of
C (Figure 11.1).

What if t0 is notan ordinary point for the ODE,x′′ + p(t)x′ + q(t)x = 0,
that is, what if p(t) or q(t) is not analytic att0? For example, in the ODE
x′′ + x/(t − 1) = 0, q(t) is not analytic att0 = 1. Such a point is said to be
a singular pointof the ODE. Thus,t0 = 1 is a singular point for the ODE
x′′ + x/(t − 1) = 0. Next we show how to deal with ODEs with certain kinds
of singular points.

✓ Is t = 0 an ordinary point or a singular point ofx′′ + t2x = 0? What about
x′′ + (sint)x = 0 andx′′ + x/t = 0?

◆ Regular Singular Points

A singular point of the ODEx′′(t)+ p(t)x′(t)+ q(t)x(t) = 0 is a regular
singular pointif both (t − t0)p(t) and(t − t0)2q(t) are analytic att0. In this
case we’ll have to modify the method to find a series solution to the ODE.

✓ Is t = 0 a regular singular point ofx′′ + x′/t + x = 0? What about
x′′ + x′ + x/t2 = 0 andx′′ + x′ + x/t3 = 0?
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Since(t − t0)p(t) and (t − t0)2q(t) are analytic att0, they have power
series expansions centered att0:

(t − t0)p(t)= P0 + P1(t − t0)+ P2(t − t0)
2 + · · ·

(t − t0)
2q(t)= Q0 + Q1(t − t0)+ Q2(t − t0)

2 + · · ·
As we shall soon see, the constant coefficients,P0 andQ0, in these two series
are particularly important. The roots of the quadratic equation (called the
indicial equation)

r (r − 1)+ P0r + Q0 = 0 (8)

are used in solution formula (9) below.☞ Assume that the roots of
the indicial equation are real
numbers.

A theorem due to Frobenius tells us how to modify our original method
of constructing power series solutions so that we can obtain series solutions
near regular singular points.

Frobenius’ Theorem. If t0 is a regular singular point of the second-
order differential equationx′′(t)+ p(t)x′(t)+ q(t)x(t) = 0, then there
is a series solution att0 of the form

x1(t) = (t − t0)
r1

∞∑
n=0

an(t − t0)
n =

∞∑
n=0

an(t − t0)
n+r1 (9)

wherer1 is the larger of the two rootsr1 andr2 of the indicial equation.

☞ The second summation is
called theFrobenius series.

The coefficientsan can be determined in the same way as in the earlier☞ Consult the references for
detailed instructions on how to
find the coefficientsan.

example: differentiate twice, substitute the series forqx1, px′
1, andx′′

1 into the
given differential equation, and then find a recurrence formula.

Here are a few things to keep in mind when finding a Frobenius series.

1. The roots of the indicial equation may not be integers, in which case the
series representation of the solution would not be a power series, but is
still a valid series.

2. If r1 − r2 is not an integer, then the smaller rootr2 of the indicial equa-
tion generates a second solution of the form

x2(t) = (t − t0)
r2

∞∑
n=0

bn(t − t0)
n

which is linearly independent of the first solutionx1(t).
3. Whenr1 − r2 is an integer, a second solution of the form

x2(t) = Cx1(t) ln(t − t0)+
∞∑

n=0

bn(t − t0)
n+r2

exists, where the values of the coefficientsbn are determined by finding
a recurrence formula, andC is a constant. The solutionx2(t) is linearly
independent ofx1(t).
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◆ Bessel Functions

For any nonnegative constantp, the differential equation

t2x′′(t)+ tx′(t)+ (t2 − p2)x(t) = 0

is known asBessel’s equation of order p, and its solutions are theBessel
functions of order p. In normalized form, Bessel’s equation becomes

☞ If t is very large, Bessel’s
equation looks like the harmonic
oscillator equation,x′′ + x = 0.

x′′(t)+ 1
t
x′(t)+

(
t2 − p2

t2

)
x(t) = 0

From this we can see thattp(t) = 1 andt2q(t) = t2 − p2, so thattp(t) and
t2q(t) are analytic att0 = 0. Therefore zero is a regular singular point and,
using equation (8), we find that the indicial equation (withP0 = 1, Q0 = −p2)
is

r (r − 1)+ r − p2 = r2 − p2 = 0

Application of Frobenius’ Theorem yields a solutionJp given by the formula

☞ The roots of the indicial
equation arep and−p.

Jp(t) = t p
∞∑

n=0

(−1)n

22nn!(p+ 1)(p+ 2) · · · (p+ n)
t2n

The functionJp(t) is called theBessel function of order p of the first kind.

☞ Consult the references for
the derivation of the formula for
Jp(t).

The series converges and is bounded for allt. If p is not an integer, it can
be shown that a second solution of Bessel’s equation isJ−p(t) and that the
general solution of Bessel’s equation is a linear combination ofJp(t) and
J−p(t).

For the special casep = 0, we get the functionJ0(t) used in the aging
spring model in the second submodule of Module 11:

J0(t)=
∞∑

n=0

(−1)n

(n!)2

( t
2

)2n
= 1− t2

4
+ t4

64
− t6

2304
+ · · ·

Note that even thought = 0 is a singular point of the Bessel equation of order
zero, the value ofJ0(0) is finite [J0(0) = 1]. See Figure 11.2.

✓ Check thatJ0(t) is a solution of Bessel’s equation of order 0.

When p is an integer we have to work much harder to get a second solu-
tion that is linearly independent ofJp(t). The result is a functionYp(t) called
the Bessel function of order p of the second kind. The general formula for
Yp(t) is extremely complicated. We show only the special caseY0(t), used in
the aging spring model:

Y0(t) = 2
π

[(
γ + ln

∣∣∣ t
2

∣∣∣
)

J0(t)+
∞∑

n=0

(−1)n+1Hn

(n!)2

( t
2

)2n
]

whereHn = 1+ (1/2)+ (1/3)+ · · · + (1/n) andγ is Euler’s constant: γ =
☞ Actually γ is an unending
decimal and non-repeating (or so
most mathematicians believe),
and 0.5772 gives the first four
digits.

limn→∞(Hn − ln n) ≈ 0.5772.
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Figure 11.2: The graph of J0(t) [dark] looks like the graph of the decaying
sinusoid

√
2/πt cos(t − π/4) [light].

The general solution of Bessel’s equation of integer orderp is

x(t) = c1Jp(t)+ c2Yp(t) (10)

for arbitrary constantsc1 andc2. An important thing to note here is that the
value ofYp(t) at t = 0 doesreflect the singularity att = 0; in fact,Yp(t) →
−∞ as t → 0+, so that a solution having the form given in equation (10) is
bounded only ifc2 = 0.

Bessel functions appear frequently in applications involving cylindrical
geometry and have been extensively studied. In fact, except for the functions
you studied in calculus, Bessel functions are the most widely used functions
in science and engineering.

◆ Transforming Bessel’s Equation to the Aging Spring Equation

Bessel’s equation of order zero can be transformed into the aging spring equa-☞ See “Aging Springs” in
Module 11. tion x′′ + e−atx = 0. To do this, we take

t = (2/a) ln(2/as) (11)

where the new independent variables is assumed to be positive. Then we can
use the chain rule to find the first two derivatives of the displacementx of the
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aging spring with respect tos:

dx
ds

= dx
dt

dt
ds

= dx
dt

(
− 2

as

)

d2x
ds2

= d
ds

[
dx
dt

](
− 2

as

)
+ dx

dt
d
ds

(
− 2

as

)

= d2x
dt2

dt
ds

(
− 2

as

)
+ dx

dt
2

as2

= d2x
dt2

(
− 2

as

)(
− 2

as

)
+ dx

dt
2

as2

= d2x
dt2

4
(as)2

+ dx
dt

2
as2

Bessel’s equation of orderp = 0 is given by:☞ We usew in place ofx in
the aging spring section of
Module 11. s2 d2x

ds2 + s
dx
ds

+ s2x = 0

and when we substitute in the derivatives we just found, we obtain

s2

(
d2x
dt2

4
(as)2

+ dx
dt

2
as2

)
+ s

dx
dt

(
− 2

as

)
+ s2x = 0

Using the fact that

s= (2/a)e−at/2 (12)

(found by solving equation (11) fors) in the last term, when we simplify this
monster equation it collapses down to a nice simple one:

d2x
dt2

4
a2

+ 4
a2

e−atx = 0

Finally, if we divide through by 4/a2, we get the aging spring equation,
x′′ + e−atx = 0.

The other way around works as well, that is, a change of variables will
convert the aging spring equation to Bessel’s equation of order zero. That
means that solutions of the aging spring equation can be expressed in terms of
Bessel functions. This can be accomplished by usingx = c1J0(s)+ c2Y0(s)
as the general solution of Bessel’s equation of order zero, and then using
formula (12) to replaces. Take another look at Experiments 3 and 4 on
Screens 2.5 and 2.6 of Module 11. That will give you a graphical sense about
the connection between aging springs and a Bessel’s equation.

References Borrelli, R. L., and Coleman, C. S.,Differential Equations: A Modeling Per-
spective, (1998: John Wiley & Sons, Inc.)

Boyce, W. E., and DiPrima, R. C.,Elementary Differential Equations and
Boundary Value Problems, 6th ed., (1997: John Wiley & Sons, Inc.)
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Figure 11.3: Here are some typical graphs for the solution of x′′ + C2t2x′ +
9x = 0 for various values of C2. The graphs and the data tables are useful in
Problem 1 of Exploration 11.1.

Figure 11.4: Here is a phase-plane portrait for an aging spring ODE, x′′ + e−t x=
−9.8. See Problem 1 in Exploration 11.3.
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Exploration 11.1. Damping a Robot Arm

In each of the following problems it is assumed that the displacement x of a
robot arm satisfies an IVP of the form

x′′ + b(t)x′ + 9x = 0, x(0) = 1, x′(0) = 0

An optimal damping function b(t) is one for which the solution x(t) reaches
0.005 in minimal time t∗ without ever going below zero.

1. Consider damping functions of the formb(t) = Cktk. For a positive integer
k, let C∗

k be the value ofCk that gives the optimal solution, and denote the
corresponding minimal time byt∗k. In Module 11, Screen 1.4 and TTA 3 on
Screen 1.7 you found that the optimal solution fork = 1 is x(t)= e−9t2/2, with
C∗

1 = 9 andt∗1 ≈ 1.0897.

(a) Use ODE Architect to find an approximate optimal solution and values
of C∗

k andt∗k whenk = 2. [Suggestion:Look at Figure 11.3.]

(b) Repeat withk = 3.

(c) Compare the optimal damping functions fork = 1, 2, 3, in the context
of the given physical process.

2. For quadratic damping, b(t) = C2t2, derive a power series solutionx(t) =∑∞
n=0 antn. Show that the recurrence formula for the coefficients is

an+2 = −[9an + C2(n− 1)an−1]
(n+ 1)(n+ 2)

, n ≥ 1

anda2 = −9a0/2. Recall thata0 = x(0) anda1 = x′(0).



214 Exploration 11.1

3. Let P6(t) be the Taylor polynomial
∑6

n=0 antn, where thean are given by the
recurrence formula in Problem 2.

(a) Write out P6(t) with C2 as a parameter; briefly describe how the graph
of P6(t) changes asC2 increases.

(b) Graph the apparently optimal solution from Problem 1(a) over the in-☞ You will need results from
Problem 1(a) here. terval 0≤ t ≤ t∗2 and compare it to the graph ofP6(t) with C2 = C∗

2.

4. If the robot arm is totally undamped, its position at timet is x(t) = cos3t;
therefore the arm cannot reachx = 0 for all t, 0 ≤ t ≤ π/6. In this situation
the undamped arm can’t remain abovex = 0. The optimal damping func-
tions C∗

k tk found in Problem 1 look more like step functions as the degreek
increases. Try to improve the timet∗ by using a step function for damping.

Assume the robot arm is allowed to fall without damping until just before
it reachesx = 0, at which time a constant damping force is applied. This
situation can be modeled by defining

b(t)=
{

0 for 0≤ t < π
6 − ε

Bε for t ≥ π
6 − ε

for ε = 0.2, 0.1, and 0.05. Use ODE Architect to find values ofBε that give
an approximate optimal solution. Include a graph showing your best solution
for eachε and give your best value oft∗ in each case. What happens to the
“optimal” Bε asε→ 0?

5. Find a formula for the solution for the situation in Problem 4. The value ofε

should be treated as a parameter. Assume thatx(t)= cos3t for t < (π/6)− ε.
Then the IVP to be solved is

x′′ + Bεx
′ + 9x = 0

x(π/6− ε) = cos[3( π6 − ε)] = sin3ε

x′(π/6− ε) = −3sin[3( π6 − ε)] = −3cos3ε

The solution will be of the formx(t) = c1er1t + c2er2t, r1 < r2 < 0, but the
optimal solution requires thatc2 = 0. Why? For a fixedε, find the value of
Bε so thatx(t) remains positive and reaches 0.005 in minimum time.
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Exploration 11.2. Bessel Functions

1. Bessel functions resemble decaying sinusoids. Let’s compare the graph of
J0(t) with that of one of these sinusoids.

(a) On the same set of axes, graph the Bessel functionJ0(t) and the function√
2
πt

cos
(

t − π

4

)

over the interval 0≤ t ≤ 10.

(b) Now graph these same two functions over the interval 0≤ t ≤ 50.

(c) Describe what you see.

[Suggestion:You can use ODE Architect to plot a good approximation of
J0(t) by solving an IVP involving Bessel’s equation in system form:

x′ = y, y′ = −x− y/t, x(t0) = 1, x′(t0) = 0

with t0 = 0.0001. Actually,J0(0) = 1 andJ′
0(0) = 0, butt0 = 0 is a singular

point of the system so we must move slightly away from zero. You can plot the

decaying sinusoid on the same axes asJ0(t) by enteringa =
√

2
πt cos(t − π

4 )

in the same equation window as the IVP, selecting a custom 2D plot, and
plotting botha andx vs. t.]
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2. Repeat Problem 1 for the functionsY0(t) and
√

2
πt sin

(
t − π

4

)
. To graph a

good approximation ofY0(t), solve the system equivalent of Bessel’s equation
of order zero (from Problem 1) with initial datat0 = 0.89357, x(t0) = 0,
x′(t0)= 0.87942. As in Problem 1, we have to avoid the singularity att0 = 0,
especially here becauseY0(0) = −∞. The given initial data are taken from
published values of Bessel functions and their derivatives.
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Exploration 11.3. Aging Spring Models

1. Check out the Library file “Modeling an Aging Spring” in the “Physical Mod-
els” folder (see Figure 11.4). The ODE in the file models the motion of a
vertically suspended damped and aging spring that is subject to gravity. Carry
out the suggested explorations.

2. Show that

x(t) =
√

t + 1
3

sin

(√
3

2
ln(t + 1)

)
− √

t + 1cos

(√
3

2
ln(t + 1)

)

is an analytic solution of the initial value problem

x′′(t)+ x(t)
(t + 1)2

= 0, x(0) = −1, x′(0) = 0

Explain why this IVP provides another model for the motion of an aging
spring that is sliding back and forth (without damping) on a support table.
[Suggestion:let s= t + 1, u(s)= x(t). Thenu(s) satisifes the Euler equation
s2u′′(s)+ u(s) = 0. See the references on page 211 for solution formulas for
Euler ODEs.]
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3. Graph the solutionx(t) from Problem 2 over the interval 0≤ t ≤ 300 and
compare the graph to the one for the ODE,x′′ + e−atx = 0, x = 0, x′(0)= 0,
a = 0.04 (see Screen 2.6 in Module 11). Repeat for other values ofa.
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Exploration 11.4. The Incredible Lengthening Pendulum

Suppose that we have an undamped pendulum whose length L = a + bt in-
creases linearly over time. Then the ODE that models the motion of this
pendulum is☞ The ODE for a

pendulum of varying length
is derived in Chapter 10 (see
equation (15)).

(a+ bt)θ′′(t)+ 2bθ′(t)+ gθ(t)= 0 (13)

where θ is small enough that sinθ ≈ θ, the mass of the pendulum bob is 1,
and the value of the acceleration due to gravity is g = 32.1

1. With a = b = 1 and initial conditionsθ(0) = 1 andθ′(0) = 0, use ODE Ar-
chitect to solve ODE (13) numerically. What happens toθ(t) ast → +∞?

2. Under the same conditions, what happens to the oscillation time of the pen-
dulum ast → +∞? (The oscillation time is the time between successive
maxima ofθ(t).)

1See the article “Poe’s Pendulum” by Borrelli, Coleman, and Hobson inMathematics Magazine,
Vol. 58 (1985) No. 2, pp. 78–83. See also “Child on a Swing” in Module 10.
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3. Show that the change of variables

s= (2/b)
√
(a+ bt)g, x = θ

√
a+ bt

transforms Bessel’s equation of order 1

s2 d2x
ds2

+ s
dx
ds

+ (s2 − 1)x = 0

into ODE (13) for the lengthening pendulum. [Suggestion:Take a look at the
section “Transforming Bessel’s Equation to the Aging Spring Equation” in
this chapter to help you get started. Use the change of variables given above
to express the solution of the IVP in Problem 1 using Bessel functions.]
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Poincaré map of a forced damped pendulum superimposed on a tra-
jectory.

Overview In this chapter we’ll look at solutions of a forced damped pendulum ODE. In the lin-
ear approximation of small oscillations, this ODE becomes the standard constant-
coefficient ODE x′′ + cx′ + kx = F(t), which can be solved explicitly in all cases.
Without the linear approximation, the pendulum ODE contains the term ksinx in-
stead of kx. Now the study becomes much more complicated. We’ll focus on the
special case of the nonlinear pendulum ODE

x′′ + cx′ + sinx = Acost (1)

but our results leave a world of further things to be discovered. We’ll show that
appropriate initial conditions will send the pendulum on any desired sequence of
gyrations, and hint at how to control the chaos by finding such an initial condition.

Key words Forced damped pendulum; sensitivity to initial conditions; chaos; control; Poincaré
sections; discrete dynamical systems; Lakes of Wada; control

See also Chapter 10 for background on the pendulum. Chapter 13 for more on discrete dy-
namical systems and other instances of chaos and sensitivity to initial conditions.
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◆ Introduction

How might chaos and control possibly be related? These concepts appear at☞ See the glossary for one
definition of chaos. first to be opposites, but in fact they are two faces of the same coin!

A good way to start discussing this apparent paradox is to think about
learning to ski. The beginning skier tries to be as stable as possible, with
feet firmly planted far enough apart to give confidence that she or he will not
topple over. If you try to ski in such a position, you cannot turn, and the only
way to stop, short of running into a tree, is to fall down. Learning to ski is
largely a matter of giving up on “stability,” bringing your feet together so as
to acquire controllability! You need to allow chaos in order to gain control.

Another example of the relation between chaos and control is the early
aircraft available at the beginning of World War I, carefully designed for great-
est stability. The result was that their course was highly predictable, an easy
target for anti-aircraft fire. Very soon the airplane manufacturers started to
build in enough instability to allow maneuverability!

◆ Solutions as Functions of Time

The methods of analysis we will give can be used for many other differential
equations, such as Duffing’s equation

x′′ + cx′ + x− x3 = Acosωt, (2)

or the differential equation

x′′ + cx′ + x− x2 = Acosωt, (3)

which arises when studying the stability of ships. The explorations at the end
of this chapter suggest some strategies for these problems.

Let’s begin to study ODE (1) withc = 0.1:

x′′ + 0.1x′ + sinx = Acost (4)

Let’s compute some solutions, starting att = 0 with A = 1 and various values
of x(0) andx′(0), and observe the motion out tot = 100, or perhaps longer
(see Figure 12.1). We see that most solutions eventually settle down to an
oscillation with period 2π (the same period as the driving force). Thisxt-plot
actually shows oscillations aboutx-values which differ by multiples of 2π.

This settling down of behaviors at various levels is definitely a feature
of the parameter values chosen: for the amplitudeA = 2.5 in ODE (4), for
instance, there appears to be no steady-state oscillation at all.

Looking at such pictures is quite frustrating: it is very hard to see the
pattern for which initial conditions settle down to which stable oscillations,
and which will not settle down at all.
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Figure 12.1: Solution curves of ODE (4) with x(0) = 0, x′(0) = 2, 2.1.

◆ Poincaré Sections

Poincaré found a way to understand and visualize the behavior of our differ-
ential equation: he sampled solutions of ODE (4) at multiples of the period
2π of the driving function:

0,2π,4π, . . . ,2kπ, . . .

This is much like taking pictures with a strobe light.
An equivalent way of saying this is to say that we will iterate1 the map-

ping P : R2 → R
2 which takes a point(a,b) in R

2, computes the solution
x(t) with x(0) = a, x′(0) = b, and sets☞ Note that the clock starts

at t0 = 0 when generating
Poincaré plots. P(a,b)= (x(2π), x′(2π)) (5)

This mappingP is called aPoincaŕe mapping. If you apply the operatorP to
(a,b) k times in succession, the result isPk(a,b) and we see that

Pk(a,b)= (x(2kπ), x′(2kπ))

In a sense, the Poincar´e section is simply a crutch: every statement about☞ When thexx′-plane is
used to chart the evolution of the
pointsPk(a,b), k = 1,2, . . . , it
is called the Poincar´e plane.

Poincaré sections corresponds to a statement about the original ODE, and vice
versa. But this crutch is invaluable since the orbits of a nonautonomous ODE
such as ODE (4) often intersect each other and themselves in a hopelessly
tangled way.

1Chapter 13 discusses iterating mapsf :R→R; there you will find that the mapf (x)= λx(1− x)
is filled with surprises. Before trying to understand the iteration ofP, which is quite complicated
indeed, the reader should experiment with several easier examples, like linear maps ofR

2 → R
2.
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◆ Periodic Points

A good way to start investigating the Poincar´e mappingP (or for that matter,
the iteration of any map) is to ask: what periodic points does it have? Setting
x′ = y, aperiodic pointis a point(x, y) in R2 such that for some integerk we
havePk(x, y) = (x, y). Fixed points are periodic points withk = 1, and are
particularly important.

Periodic points of periodk for P are associated with periodic solutions of
ODE (4) of period 2kπ. In particular, ifx(t) is a solution which is periodic of
period 2π, then

(x(0), x′(0))= (x(2π), x′(2π))

is a fixed point ofP. If you observe this solution with a strobe which flashes
every 2π, you will always see the solution in the same place.

◆ The Unforced Pendulum

If there is no forcing term in ODE (4), then we have an autonomous ODE like
those treated in Chapter 10.

Example: The ODE

x′′ + x′ + 10sinx = 0

models a damped pendulum without forcing. A phase plane portrait is shown
in Figure 12.2 (θ = x and y = x′ in the figure). Note that the equilibrium
points (of the equivalent system) atx = 2nπ, x′ = 0 are spiral sinks, but the
equilibrium points atx = (2n+ 1)π, x′ = 0 are saddles. Note also that the
phase plane is divided into slanting regions, each of which has the property
that its points are attracted to the equilibrium point inside the region. These
regions are calledbasins of attraction. If a forcing term is supplied, these
basins become all tangled up (Figure 12.4 on page 227).

There is a Poincar´e mappingP for the unforced damped pendulum, which
is fairly easy to understand, and which you should become familiar with be-
fore tackling the forced pendulum. In this case, two solutions of ODE (4)
with A = 0 stand out: the equilibriax(t) = 0 andx(t) = π for all t. Cer-
tainly if the pendulum is at one of these equilibria and you illuminate it
with a strobe which flashes everyT seconds, whereT is a positive num-
ber, you will always see the pendulum in the same place. Thus these points
are fixed points of the corresponding Poincar´e mappingP. In thexx′-plane,
the same thing happens at the other equilibrium points, that is, at the points
. . . , (−2π,0), (0,0)(2π,0), . . . for the “downward” stable equilibria, and at
the points. . . , (−3π,0), (−π,0), (π,0), . . . for the unstable equilibria.

The analysis in Module 10 using an integral of motion should convince
you that for the unforced damped pendulum, these are the only periodic
points: if the pendulum is not at an equilibrium, the value of the integral
decreases with time, and the system cannot return to where it was.
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Figure 12.2: Basins of attraction of the stable downward equilibrium posi-
tions of the unforced damped pendulum are bounded by separatrices.

If you start the pendulum with bothx(0) andx′(0) small, the damping
will simply kill off the motion, and the pendulum will be attracted to the
downward equilibrium. The point(0,0) in state space is called asink.

The behavior is more interesting near an unstable equilibrium. Imagine
imparting an initial velocity to the bob by kicking it. For a small kick, it will
swing back. Now kick it a little harder: it will rise higher, and still swing
back. Kick it harder still, and it will make it over the top, and hit you in the
back if you aren’t careful. Dividing the kicks which don’t make it over from
those that do is a very special kick, where the pendulum rises forever, more
and more slowly, tending to the unstable equilibrium. Thus there are initial
conditions which generate solutions that tend to the unstable equilibrium; in
the Poincar´e plane these solutions form two curves which meet end to end
at the fixed point corresponding to the unstable equilibrium. Together they
form thestable separatrixof the fixed point. There are also curves of initial
conditions which come from the unstable equilibrium; together they form the
unstable separatrixof the equilibrium. See Figure 12.3 (wherey = x′).

As stated earlier, a good first thing to do when iterating a map is to search
for the periodic points; a good second thing to do is to find the periodic points
which correspond to unstable equilibria (saddles, in the case of the pendulum)
and find their separatrices.

For the unforced damped pendulum, the equilibria of the differential
equation and the fixed points of any Poincar´e map coincide; so, too, do the
separatrices of the unstable equilibria (in the phase plane) and the separatri-
ces of the corresponding saddle fixed points in the Poincar´e plane. These
separatrices separate the trajectories which approach a given sink from the
trajectories that approach a different sink.
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Figure 12.3: Stable and unstable separatrices at a saddle for an unforced
damped pendulum. Which are the stable separatrices?

✓ “Check” your understanding by reproducing the plot in Figure 12.3.

◆ The Damped Forced Pendulum

We described above the Poincar´e plane for the unforced pendulum. The same
description holds for the forced pendulum. A figure showing a Poincar´e
map for a forced pendulum appears as the chapter cover figure. Thus, in the
Poincaré plane, we expect to see a collection of fixed points corresponding to
the oscillations to which the pendulum “settles down”, and each has a basin:
the set of initial conditions which will settle down to it. The basins appear to
be extraordinarily tangled and complicated, and they are. The reader should
put up the picture of the basins (Screen 2.6 in Module 12), and practice super-
imposing iterations on the figure, checking that if you start in the blue basin,
the entire orbit remains in the blue basin, perhaps taking a complicated path
to get near the sink, but making it in the end.

◆ Tangled Basins, the Wada Property

In the tangled basins Screen 3.3 of Module 12, each basin appears to be made
of a central piece, and four canals which go off and meander around the plane.
The meandering appears to be completely random and chaotic, and the only
thing the authors really know about the shapes of the basins of our undamped
pendulum is the following fact: The basins have theWada property: every
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Figure 12.4: Tangled basins for a forced damped pendulum.

point of the boundary2 of any basin is in the boundary of all the others. Thus
if you start at a boundary point of any basin, and perturb the initial condition
an arbitrarily small amount, you can land in any of the infinitely many basins.

A careful look at Figure 12.4 should convince you that this stands a good
chance of being true: Each region of a canal boundary point includes pieces
on many curves. It isn’t clear, of course, that there are canals ofall the basins
between any two canals.

It is one thing to think that the Wada property is likely true, and quite
another to prove it. It isn’t clear how you would prove anything whatsoever
about the basins: they do not appear to be amenable to precise study.

To get a grip on these basins, the first step is to understand why they
appear to be bounded by smooth curves, and to figure out what these smooth
curves are. For each sink (solid white squares in Figure 12.4), there are in
fact four periodic points, each of period two, which are saddles, such that for
each saddle one of its two unstable separatrices is entirely contained in the
corresponding basin.

2The boundary∂U of an open setU ⊂ R
2 is a pointx ∈ R2 which is not inU, but such that

there exists a sequence of pointsxn ∈ U which converges tox. Later we will encounter the notion
of accessible boundary: the pointsx ∈ ∂U such that there exists a parametrized curveγ : (0,1] → U
such that limt→0 γ(t)= x. For simple open sets, the boundary and the accessible boundary coincide,
but not for our basins.
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The next step is to show that theaccessible boundaryof the basin is made
up of the stable separatrices of these saddles. This uses the technique ofbasin
cells, as pioneered by Kennedy, Nusse, and Yorke3. To see a fleshed-out
sketch, see theC.ODE.E article referenced at the end of this chapter.

◆ Gaining Control

The statement about the basins having the Wada property is, in some sense, a
negative statement, saying that there is maximum possible disorder. Is there
some positive statement one can make about the forced pendulum (for these
parameter values)? It turns out that there is. The precise statement is as
follows.

During one period of the forcing term, say during

t in the intervalIk = [2kπ,2(k+ 1)π]

the pendulum will do one of the following four things:

� It will cross the bottom position exactly once moving clockwise (count
this possibility as−1);

� It will cross the bottom position exactly once moving counterclockwise
(count this possibility as+1);

� It will not cross the bottom position at all (count this possibility as 0);

� It will do something else (possibility NA).

Note that most solutions appear to be attracted to sinks, and that the stable
oscillation corresponding to a sink crosses the bottom position twice during
eachIk, and hence these oscillations (and most oscillations after they have
settled down) belong to the NA category.

The essential control statement we can make about the pendulum is the
following:

For any biinfinite sequence. . . , ε−1, ε0, ε1, . . . of symbolsεi selected
from the set{−1,0,1}, there exist valuesx(0), x′(0) such that the solu-
tion with this initial condition will doεk during the time intervalIk.

The chaos game in Module 12 suggests why this might be true; the tech-
niques involved in the proof were originally developed by Smale4.

3Judy Kennedy, Helena Nusse, and James Yorke are mathematicians at the Universities of
Delaware, Utrecht, and Maryland, respectively.

4Stephen Smale is a contemporary mathematician who was awarded a Fields medal (the mathe-
matical equivalent of a Nobel prize) in the early 1960’s. See Devaney in the references at the end of
this chapter.
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Figure 12.5: Start in quadrilateral Q0 and reach forward into Q1 and backward
into Q−1.

We start by drawing quadrilateralsQk around thekth saddle, long in the
unstable direction and short in the stable direction, such that they cross a good
part of the tangle. We can now translate our symbolsεi , which refer to the
differential equation, into the Poincar´e mapping language.

If at time t = 2kπ the pendulum is inQk and at time 2(k + 1)π it is in
Qk+εk, then duringIk the pendulum doesεk. So it is the same thing to require
that a trajectory of the pendulum realize a particular symbol sequence, and
to require that an orbit of the Poincar´e map visit a particular sequence of
quadrangles, just so long as successive quadrangles be neighbors or identical.

Draw the forward image of that quadrilateral, and observe that it grows
much longer in the unstable direction and shrinks in the stable direction; we
will refer to P(Qk) as thekth snake, Sk. The entire proof comes down to
understanding howSk intersectsQk−1, Qk, andQk+1.

The thing to be checked is thatSk intersects all three quadrilaterals in
elongated regions going from top to bottom, and that the top and bottom of
Qk map to parts of the boundary ofSk which are outsideQk−1 ∪ Qk ∪ Qk+1.
See Figure 12.5 for an example of a winning strategy for three adjacent quadri-
laterals.

Once you have convinced yourself that this is true, you will see that every
symbolic sequence describing a history of the pendulum is realized by an
intersection of thinner and thinner nested subquadrangles.

A similar argument shows that a symbolic sequence describing a future
of the pendulum corresponds to a sequence of thinner and thinner subquad-
rangles going from left to right. The details are in theC.ODE.E paper by
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J.H. Hubbard in the references.
We have shown how to gain control of the motions of the driven pendu-

lum. In particular, if we want the pendulum “robot” to execute a prescribed
set of rotations, all we have to do is put it in the right initial state and switch
on the driving force. Although everything has been phrased in terms of a
pendulum, the approach extends to almost any kind of chaotic motion. Engi-
neers, scientists, and mathematicians are now designing prototypes of chaotic
control systems based on these ideas. One of the most intriguing applications
uses a chaotic sequence to encode a digital message. The sequence is “added”
to the message, and the intended recipient then subtracts the chaos to read the
message. Chaos is often an undesirable aspect of physical motions. Devices
have recently been built that force a chaotic system to stay focused on a de-
sired response. All of this is new, so we can’t say just how the applications
will evolve. See the books by Kapitaniak, Nayfeh, and Ott for more on chaotic
controls and controlling chaos.
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Answer questions in the space provided, or on
attached sheets with carefully labeled graphs. A
notepad report using the Architect is OK, too.

Name/Date

Course/Section

Exploration 12.1.

In each problem describe what you see and explain what the figures tell you
about the behavior of the pendulum.

1. Choose a value forc �= 0.1, takeA = 1 in ODE (1), and produce graphs like
those in the chapter cover figure and Figure 12.1.

2. Choose a value forA �= 1 andc = 0.1 in ODE (1) and produce graphs like
those in the chapter cover figure and Figure 12.1.

3. Choose a value forω �= 1 in the ODE

x′′ + 0.1x′ + sinx = cosωt

and produce graphs like those in the chapter cover figure and Figure 12.1.
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4. Repeat Problems 1 and 2, but for the Duffing ODE,

x′′ + cx′ + x− x3 = Acost

5. Repeat Problems 1 and 2, but for the ODE with a quadratic nonlinearity,

x′′ + cx′ + x− x2 = Acost
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Supply and demand converge to a stable equilibrium.

Overview Processes such as population dynamics that evolve in discrete time steps are best
modeled using discrete dynamical systems. These take the form xn+1 = f (xn),
where the variable xn is the state of the system at “time” n and xn+1 is the state of
the system at time n+ 1. Discrete dynamical systems are widely used in ecology,
economics, physics and many other disciplines. In this section we present the
basic techniques and phenomena associated with discrete dynamical systems.

Key words Iteration; fixed point; periodic point; cobweb and stairstep diagrams; stability;
sinks; sources; bifurcation diagrams; logisitic maps; chaos; sensitive dependence
on initial conditions; Julia sets; Mandelbrot sets

See also Chapter 6 for more on sinks and sources in differential equations, and Chapter 12
for Poincaré sections and chaotic pendulum motion.
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Discrete dynamical systemsarise in a large variety of applications. For
example, the population of a species that reproduces on an annual basis is
best modeled using discrete systems. Discrete systems also play an impor-
tant role in understanding manycontinuousdynamical systems. For example,
points calculated by a numerical ODE solver form a discrete dynamical sys-
tem that approximates the solution of an initial value problem for an ODE.
The Poincar´e section described in Chapter 12 is another example of a discrete
dynamical system that gives information about a system of ODEs.

A discretedynamical system is defined by theiteration of a function f ,
and takes the form

xn+1 = f (xn), n ≥ 0, x0 given (1)

Here are two examples. In population dynamics, some populations are mod-
eled using aproportional growthmodel

☞ The function f (x)= λx is
denotedLλ, and soLλ(x)= λx.

xn+1 = Lλ(xn) = λxn, n ≥ 0, x0 given (2)

wherexn is the population density at generationn andλ is a positive num-
ber that measures population growth from generation to generation. Another
common model is thelogistic growthmodel:

☞ The functionλx(1− x) is
denoted bygλ(x).

xn+1 = gλ(xn) = λxn(1− xn), n ≥ 0, x0 given

Let’s return to the general discrete system (1). Starting with an initial
conditionx0, we can generate asequenceusing this rule for iteration: Given
x0, we getx1 = f (x0) by evaluating the functionf at x0. We then compute
x2 = f (x1), x3 = f (x2), and so on, generating a sequence of points{xn}.
Eachxn is then-fold compositionof f at x0 since☞ The superscript◦ reminds

us that this is just the
composition of f with itself; f is
not being raised to a power.

x2 = f ( f (x0)) = f ◦2(x0)

x3 = f ( f ( f (x0))) = f ◦3(x0)

...

xn = f ◦n(x0)

(Some authors omit the superscript◦.)
The infinite sequence of iteratesO(x0) = {xn}∞n=0 is called theorbit of x0

under f, and the functionf is often referred to as amap. For example, if
we takeλ = 1/2 and the initial conditionx0 = 1 in the proportional growth
model (2), we get the orbit for the mapL:

x0 = 1, x1 = 1/2, x2 = 1/4, . . .

Refer to Screen 1.2 of Module 13 for four representations of the orbit
of an iteration: as asequence{x0, x1 = f (x0), x2 = f (x1), . . . }; a numerical
list whose columns are labeledn, xn, f (xn); a time serieswherexn is plotted
against “time”n; and astairstep/cobweb diagramfor graphical analysis.

The chapter cover figure shows a stairstep diagram for the modelxn+1 =
0.7xn + 100. Figures 13.1 and 13.2 show cobweb diagrams for the logistic
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model xn+1 = λxn(1 − xn), with λ = 3.51 and 3.9, respectively. In all of
these figures, the diagonal linexn+1 = xn is also plotted. The stairstep and
cobweb diagrams are constructed by selecting a value forx0 on the horizontal
axis, moving up to the graph of the iterated function to obtainx1, horizontally
over to the diagonal then up (or down) to the graph of the function to obtain
x2, and so on. These diagrams are used to guide the eye in moving fromxn to
xn+1.

◆ Equilibrium States

As with autonomous ODEs, it is useful to determine the equilibrium states for
a discrete dynamical system. First we need some definitions:

� A point x∗ is afixed pointof f if f (x∗) = x∗. A fixed point is easy to☞ A fixed point of a discrete
dynamical system is the analogue
of an equilibrium point for a
system of ODEs.

spot in a stairstep or cobweb diagram even before the steps and webs
are plotted: the fixed points off are where the graph off intersects the
diagonal.

� A point x∗ is a periodic point of period nof f if f ◦n(x∗) = x∗ and
f ◦k(x∗) �= x∗ for k< n. A fixed point is a periodic point of period 1.

Both the proportional and logistic growth models have the fixed pointx = 0.
For certain values ofλ the logistic model has periodic points; Figure 13.1
suggests that the model has a period-4 orbit ifλ = 3.51.

✓ “Check” your understanding by showing that the logistic model has a
second fixed pointx∗ = (λ− 1)/λ. Does the proportional growth model for
λ > 0 have any periodic points that are not fixed?

A fixed point x∗ of f is said to bestable(or asink, or anattractor) if every☞ This use of the words
“stable” and “unstable” for points
and orbits of a discrete system
differs from the way the words
are used for equilibrium points of
an ODE. For example, a saddle
point of an ODE is unstable, but a
saddle point of a discrete system
is neither stable nor unstable.

point p in some neighborhood ofx∗ approachesx∗ under iteration byf , that
is, if f ◦n(p)→ x∗ asn → +∞. The set ofall points such thatf ◦n(p)→ x∗

asn → +∞ is thebasin of attractionof p. A fixed pointx∗ is unstable(or
a sourceor repeller) if every point in some neighborhood ofx∗ moves out of
the neighborhood under iteration byf . If x∗ is a period-n point of f , then
the orbit ofx∗ is said to bestableif x∗ is stable as a fixed point of the map
f ◦n. The orbit isunstableif x∗ is unstable as a fixed point off ◦n. Stability is
determined by thederivativeof the mapf , as the following tests show:

� A fixed pointx∗ is stable if| f ′(x∗)| < 1, and unstable if| f ′(x∗)| > 1.

� A period-n point x∗ (and its orbit) is stable if|( f ◦n)′(x∗)| < 1, and
unstable if|( f ◦n)′(x∗)| > 1.

Stable periodic orbits areattracting because nearby orbits approach them,
while unstable periodic orbits arerepellingbecause nearby orbits move away
from them.
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Figure 13.1: The cobweb diagram for the logistic map, xn+1 = 3.51xn(1 − xn),
suggests that iterates of x0 = 0.72 approach a stable orbit of period 4.

✓ Is the fixed point in the chapter cover figure stable? Is the period-4 orbit
in Figure 13.1 stable? How about the two fixed points in that figure? [Sugges-
tion: Use the Discrete Tool as an aid in answering these questions.]

◆ Linear versus Nonlinear Dynamics

The solutions of linear and of nonlinear ODEs are compared and contrasted
in Chapter/Modules 6 and 7. Now we will do the same comparison for linear
and nonlinear maps of the real line into itself.

Let’s look at the iteration of linear functions such as the proportional☞ Refer to the first
submodule of Module 13 for
examples.

growth model (2),xn+1 = Lλ(xn), which has a fixed point atx∗ = 0. This
fixed point is stable if|λ| < 1, so the orbit of every initial population tends to
0 asn → ∞. If λ = 1, thenxn+1 = xn, and hence every point is a fixed point.
The fixed point atx∗ = 0 is unstable if|λ|> 1, and all initial populations tend
to ∞ asn → ∞. If λ= −1 thenx∗ = 0 is the only fixed point and every other
point is of period 2 sincexn+2 = −xn+1 = −(−xn) = xn.

The iteration of any linear functionf (x) = ax+ b (with slopea �= 1)
behaves much like the proportional growth model. Fixed points are found by
solvingax∗ + b = x∗, and their stability is governed by the magnitude ofa.

The iteration of nonlinear functions can be much more complex than that
of linear functions. In particular, nonlinear functions can exhibit chaotic be-
havior, as well as periodic behavior. To illustrate the types of behavior typical
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Figure 13.2: The cobweb diagram of the logistic map xn+1 = 3.9xn(1− xn) sug-
gests that iterates of x0 = 0.8361either approach an attracting periodic orbit
of very high period, or else wander chaotically.

to nonlinear functions we consider, in the second submodule of Module 13,
the one-parameter family oflogistic functions

gλ(x) = λx(1− x)

Figure 13.2 shows how complex an orbit of a logistic map may be for certain
values ofλ.

◆ Stability of a Discrete Dynamical System

Now we turn our attention to the stability of an entire dynamicalsystemrather
than just that of a fixed point. One of the most important ideas of dynamical
systems (discrete or continuous) is that ofhyperbolicity. Hyperbolic points
are stable to small changes in the parameters of a dynamical system. This
does not mean that a perturbation (a small change) of the function leaves a
fixed or periodic point unchanged. It simply means that the perturbed function
will also have a fixed point or periodic point “nearby,” and that this point has
the stability properties of the corresponding point of the unperturbed function.
For example, atλ= 2 the functiong2(x) has an attracting fixed pointx∗ = 0.5.☞ Recall that

g2(x)= 2x(1− x). For values ofλ near 2, the functiongλ(x) also has an attracting fixed point
x∗ = (λ − 1)/λ. For example, ifλ = 2.1 then the attracting fixed point is
x∗ = 0.524. Even though the fixed point moved a little asλ increased, the



238 Chapter 13

fixed point still exists and it is still attracting. The following theorem provides
a way of determining whether fixed points and periodic orbits are hyperbolic.

THEOREM 13.1 Given a discrete dynamical systemxn+1 = fλ(xn),
a fixed pointx∗ of fλ(x) is hyperbolic if| f ′

λ(x
∗)| �= 1. Similarly, a peri-

odic pointx∗ of periodn (and its orbit) is hyperbolic if|( f ◦n
λ )

′(x∗)| �= 1.

Because the number and type of periodic points do not change at pa-
rameter values wherefλ(x) has hyperbolic points, we say that the qualitative
structure of the dynamical system remains unchanged. On the other hand,
this theorem also implies that changes in the qualitative structure of a family
of discrete dynamical systems can occur only when a fixed or periodic point
is not hyperbolic. We see this in the proportional growth modelxn+1 = λxn

whenλ = 1 andλ = −1. Forλ = 1− ε [and henceL′
1−ε(1)= λ = 1− ε] the

fixed pointx = 0 is attracting. But forλ = 1+ ε the fixed point is repelling.
Thus, asλ passes through the value 1, the stability of the fixed point changes
from attracting to repelling and the qualitative structure of the dynamical sys-
tem changes.

◆ Bifurcations

A change in the qualitative structure of a discrete dynamical system, such as
a change in the stability of a fixed point, is known as abifurcation. If fλ
is nonlinear, several types of bifurcations can occur; here are two common
types.

The first, known as asaddle-nodebifurcation, occurs whenx∗ is a peri-
odic point of periodn and( f ◦n

λ )
′(x∗) = 1. In a saddle-node bifurcation, the

periodic pointx∗ splits into a pair of periodic points, both of periodn, one of
which is attracting and the other repelling. A saddle-node bifurcation occurs
in the logistic growth familygλ(x) whenλ = 1. At this value the fixed point
x∗ = 0 (which is attracting forλ < 1) splits into a pair of fixed points,x∗ = 0
(repelling forλ > 1), andx∗ = (λ− 1)/λ (attracting forλ > 1). This type of
bifurcation is sometimes called anexchange of stabilitybifurcation.

The second important type of bifurcation is calledperiod-doublingand☞ See Chapter 7 for
bifurcations of systems of ODEs. occurs whenx∗ is a periodic point of period-n and( f ◦n

λ )
′(x∗) = −1. In this

bifurcation the attracting period-n point becomes repelling and an attracting
period-2n orbit is spawned. (Note that the stability can be reversed.) This
occurs in the logistic familygλ(x) whenλ = 3. At this parameter value, the
attracting fixed pointx∗ = (λ− 1)/λ becomes repelling and a stable period-2
orbit emerges with one point on each side ofx∗ = (λ−1)/λ. Since the logistic
equations model population growth, this says that the population converges to
an equilibrium for growth rate constantsλ less than 3. However, for values of
λ greater than 3, the population oscillates through a sequence of values.

The bifurcations that occur in a one-parameter family of discrete dynam-
ical systems can be summarized in abifurcation diagram. For each value of
the parameter (on the horizontal axis) the diagram shows the long-term be-
havior under iteration of a “typical” initial point. For example, if you see
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Figure 13.3: Part of the bifurcation diagram for the logistic map.

a single point in the diagram above a particular parameter value, that point
corresponds to an attracting fixed point. The spot in the diagram where you
see an arc of attracting fixed points split into two arcs corresponds to a bi-
furcation from an attracting fixed point to an attracting orbit of period 2 (i.e.,
period doubling). If the diagram shows a multitude of points above a given
parameter value, then either you are seeing an attracting periodic orbit of a
very high period, or else you are seeing chaotic wandering. It should be noted
that when constructing the bifurcation diagram for each parameter value and
initial point, the first 50 or so iterates are omitted so that only the long-term
behavior is visible in the diagram. See Figure 13.3 and Screen 2.4 in Mod-
ule 13 for the bifurcation diagram of the logistic map.

The stable arcs in these diagrams are usually straightforward to generate
numerically. We constructed a bifurcation diagram on an interval [λmin, λmax]
for the logistic population modelxn+1 = gλ(xn) using the following proce-
dure.

1. Fix λmin, λmax, λinc, nmin, nmax. Hereλinc is the step size between suc-
cessive values ofλ while nmin andnmax are bounds on the number of
iterates used to construct the diagram; they control the accuracy of the
diagram. Typical values arenmin = 50 andnmax = 150.

2. Letλ = λmin.

3. Takingx0 = 0.5 for example, compute the firstnmin iterates ofgλ with-
out plotting anything. This eliminates transient behavior.
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4. As n increases fromnmin to nmax, plot the points(λ, g◦n
λ (0.5)). If the

orbit of 0.5 converges to a periodic orbit, only points near this orbit are
plotted. If the orbit of 0.5 isn’t periodic, then the points aboveλ seem
to be almost randomly distributed.

5. Letλ = λ+ λinc.

6. If λ < λmax, go back to Step 3 and repeat the process.

✓ Go to the One-dimensional tab of the Discrete Tool. Use the default
values, but set the value ofc at 1 (c in the tool plays the role ofλ in Chap-
ter/Module 13). Turn on the bifurcation diagram. Keep your finger on the
up-arrow forc and describe what is happening. Any attracting periodic or-
bits? For what values ofc do these orbits occur? What are the periods?

◆ Periodic and Chaotic Dynamics

One of the most celebrated theorems of discrete dynamical systems is often
paraphrased “Period 3 Implies Chaos.” This theorem, originally proven by
S̆arkovskii and independently discovered by Li and Yorke1, is a remarkable
result in that it requires little information about the dynamical system and yet
it returns a treasure trove of information.

THEOREM 13.2 If f is a continuous function on the real line and if
there exists a point of period 3, then there exist points of every period.

For the logistic population model there exists an attracting period-3 orbit
at λ = √

8 + 1 ≈ 3.83, and most initial conditions in the unit interval con-
verge to this orbit (see Figure 13.4). In terms of our model, most populations
tend to oscillate between the three different values of the period-3 orbit. The-
orem 13.2 states that even more is going on atλ = √

8 + 1 than meets the
eye. If we pick any positive integern, there exists a pointp such thatn is
the smallest positive integer allowingg◦n

λ (p) = p. Thus, for example, there
exists a point that returns to itself in 963 iterates. The reason we don’t “see”
this periodic orbit (or, indeed, any periodic orbit, except that of period 3) is
that it is unstable, so no iterate can approach it. But orbits of every period are
indeed present ifλ = √

8+ 1.

1James Yorke and T.Y. Li are contemporary mathematicians who published their result in 1975 (see
References). They were the first to apply the word “chaos” to the strange behavior of the iterates of
functions such asgλ. A.N. S̆arkovskii published a stronger result in 1964, in Russian, in theUkrainian
Mathematical Journal, but it remained unknown in the West until after the paper by Yorke and Li had
appeared.
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Figure 13.4: At λ= √
8+ 1 ≈ 3.83 the logistic map gλ = λx(1− x) has an attract-

ing orbit of period 3; the points x0, x1, . . . , x49 have been suppressed in this
graph.

◆ What is Chaos?

So, you’re probably asking, what is chaos? The definition of chaos is a bit
slippery. In fact, mathematicians are still arguing about a proper definition.
But to get the idea across we’ll use one due to Devaney.

Let S be a set such that ifx lies in S, then f ◦n(x) belongs toS for all
positive integersn. The setS is calledinvariant. If you start in an invariant
set, you can’t get out! Now let’s define what we mean by chaos in an invariant
setS.

A map f : S→ S is chaoticif:

1. periodic points are dense inS;

2. f displays sensitive dependence on initial conditions inS; and

3. f is topologically transitive inS.

The first condition of this definition is explained like this: A setA isdense☞ A setU of real numbers is
openif every point p of U has
the property that all points in
some interval(p− a, p+ a) are
also inU.

in another setB if for every pointx in B and every open setU containingx
there exists points ofA that are also inU. Therefore, condition 1 says that
periodic points are almost everywhere inS. This means thatScontains many
periodic points; Theorem 13.2 gives a condition guaranteeing infinitely many
of these points.
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In the second condition,sensitive dependence on initial conditionsmeans☞ Module 13 has examples.

that points that are initially close to one another eventually get moved far apart
under iteration byf .

Finally, f is topologically transitive(or mixing) if given any pair of open
setsU andV in S, some iterate off takes one or more points ofU into V.
This means that points of open sets get spread throughout the setS.

The most significant item on this list for applied problems is sensitive
dependence on initial conditions. Let’s consider the logistic growth model
at a parameter value where the dynamics are chaotic. Sensitive dependence
implies that no matter how close two populations may be today, there will be a
time in the future when the populations differ significantly. So environmental
disturbances that cause small population changes will eventually lead to large
changes, if chaotic dynamics exist.

Chaotic dynamics occur in a wide range of models. Although the defini-
tions above are given in terms of a single scalar dynamical system, everything
extends to higher dimensions, and many of the applications are two- or three-
dimensional. In addition to models of population dynamics, chaos has been
observed in models of the weather, electrical circuits, fluid dynamics, plane-
tary motion, and many other phenomena. The relatively recent understanding
of chaos has shed new light on the complexity and beauty of the world we
inhabit.

◆ Complex Numbers and Functions

Probably the most popular type of discrete dynamical system is acomplex
dynamical systemwhere the variables are complex numbers instead of real
numbers. The intricate fractal structures common to images generated using
complex dynamics have appeared everywhere from calendars to art shows and
have inspired both artists and scientists alike. Many of the fundamental ideas
of complex dynamics are identical to those of real dynamics and have been
discussed in previous sections. In what follows, we will highlight both the
similarities and differences between real and complex dynamics.

Recall that complex numbers arise when factoring quadratic polynomials
with negative discriminant. Because the discriminant is negative we must
take the square root of a negative real number, which we do by definingi to
be

√−1. We then write thecomplex numberasz= x + iy. We say thatx is
the real part of zandy is theimaginary part of z. The complex numberz is
represented graphically on the complex plane by the point having coordinates
(x, y). It is often useful to represent complex numbers in polar coordinates by
letting x = r cosθ andy = r sinθ so that

-

6

3

]

z= x + iy

= reiθ

r
θ

x

y

Imaginary axis

Real axis
z= r (cosθ+ i sinθ) = reiθ

The remarkable relationship cosθ + i sinθ = eiθ between polar coordinates
and exponential functions is known asEuler’s formula. The numberr =☞ Euler’s formula is also

used in Chapter 4.
√

x2 + y2 is the distance from the origin to the pointz in the complex plane
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and is sometimes called themodulusof z, and it is denoted byr = |z|. The
angleθ is called theargumentof z. Note that the usual properties of exponen-
tial functions hold in the complex plane. Thus, given two complex numbers
z= reiθ andw = seiφ, their product is

zw = rsei(θ+φ)

A complex function f(z) takes a complex numberz as its argument and
returns a complex numberw = f (z). Differentiation proceeds as in the real
case; for example,(z3)′ = 3z2. Unlike functions of one real variable, we
cannot graph a complex function since both the domain and range are two-
dimensional.

◆ Iterating a Complex Function

Iteration of a complex function is identical to the iteration of a real function.
Given an initialz-valuez0, iteration generates a sequence of complex numbers
z1 = f (z0), z2 = f (z1), etc. Fixed and periodic points are defined in the same
way as for real functions, as are stability and instability. Here are the previous
criteria for stability, but now applied to complex functions.

� A fixed pointz∗ is stable if| f ′(z∗)| < 1, and unstable if| f ′(z∗)| > 1.

� A period-n point z∗ (and its orbit) is stable if|( f ◦n)′(z∗)| < 1, and un-
stable if|( f ◦n)′(z∗)| > 1.

Let’s consider a simple example to illustrate these ideas. Letf (z) = z2.
Thenz∗ = 0 is an attracting fixed point sincef (0) = 0 and| f ′(0)| = 0. If z
is any point such that|z|< 1, then the sequence{ f ◦n(z)}∞n=0 converges to 0 as
n → ∞. On the other hand, if|z| > 1, then the sequence{ f ◦n(z)}∞n=0 goes to
infinity asn → ∞. To see what happens to values ofz having modulus equal
to 1, let’s writez= eiθ. Then f (z)= e2iθ, which also has modulus 1. Thus all
iterates of points on the unit circle|z| = 1 stay on the unit circle. The point
z∗ = 1 is a repelling fixed point sincef (1)= 1 and| f ′(1)| = 2. The period-2
points are found by solvingf ( f (z)) = z4 = z. We can rewrite this equation
as

z(z3 − 1) = 0

One solution to this equation isz∗ = 0, corresponding to the attracting fixed
point, and another solution isz∗ = 1, corresponding to the repelling fixed
point. Notice that the fixed points off (z) remain fixed points off ( f (z)), or
equivalently, are also period-2 points off (z). To find the other two solutions,☞ Any period-n point is also

a periodic point of all periods
which are positive integer
multiples ofn.

we writez= eiθ in the equationz3 = 1 to get the equation

e3iθ = 1

which we need to solve forθ. Since we are working in polar coordinates, we
note that 1= ei2nπ wheren is an integer. This implies that 3θ = 2nπ and from
this we find a second pair of period-2 points atz= e2πi/3 andz= e4πi/3. Both
of these are repelling.
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Figure 13.5: The filled Julia set for f (z) = z2 + c, where c = 0.4012− 0.3245i

✓ Show thate2πi/3 ande4πi/3 are repelling period-2 points off = z2. Show
that f ◦n(z)→ 0 asn → ∞ if |z|< 1, and that| f ◦n(z)| → ∞ if |z|> 1. What
is the “basin of attraction” of the fixed pointz= 0?

◆ Julia Sets, the Mandelbrot Set, and Cantor Dust

The set of repelling periodic points of the functionf = z2 is dense on the unit
circle, although we don’t show that here. This leads us to the definition of the
Julia set.

☞ Theclosureof a setA
consists of the points ofA
together with all points that are
limits of sequences of points of
A.

DEFINITION Thefilled Julia set Kof a complex-valued functionf is
the set of all points whose iterates remain bounded. TheJulia set Jof
f is the closure of the set of repelling periodic points.

For f = z2, the filled Julia setK of f is the set of all complex numbersz
with |z| ≤ 1, while the Julia setJ of f is the unit circle|z| = 1. This is a very
simple example of a Julia set. In general, Julia sets are highly complicated
objects having a very intricate fractal structure. For example, see Figure 13.5
and Screens 3.3 and 3.4 of Module 13.

In the above example, the Julia setJ divides those points that iterate to
infinity (points outside the unit circle) and those that converge to the attracting
fixed point (points inside the unit circle). This division of the domain by
the Julia set is often the case in complex dynamics and provides a way of
numerically computing the filled Julia set of a given functionf . Assign a
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complex number to each screen pixel. Then use each pixel (i.e., complex
number) as an initial condition and iterate to determine whether the orbit of
that point exceeds some predetermined bound (for example|z| = 50). If it
does, we say the orbit diverges and we color the point black. If not, we color

☞ In the Discrete Tool of
ODE Architect, the coloring is
reversed. Points in the filled Julia
set are colored black and points
whose orbits diverge past the
predetermined bound are colored
with various colors according to
their divergence rates (e.g., red is
the fastest, dark blue the slowest).

the point red to indicate it is in the filled Julia set.
Earlier in this chapter we saw the importance of attracting periodic orbits

in building a bifurcation diagram for a real mapf . Although we didn’t men-
tion it then, we can home in on an attracting periodic orbit off (if there is one)
by starting atx0 = x̃ if f ′(x) is zero atx̃ and nowhere else. Complex functions
f (z) for which f ′(z̃)= 0 at exactly one point̃zhave the same property, as the
following theorem shows.☞ A complex function f is

analytic if its derivatives of every
order exist. A point̃z is acritical
point of f if f ′(z̃) = 0.

THEOREM 13.3 Let f be an analytic complex-valued function with
a unique critical point̃z. If f has an attracting periodic orbit, then the
forward orbit ofz̃ converges to this orbit.

Let’s look at some of the implications of this theorem with the family of func-
tions fc(z)= z2 + c wherec = a+ ib is a complex parameter. For each value
of c the only critical point isz̃ = 0. To find an attracting periodic orbit for a
given value ofc we need to compute the orbit

{0, c, c2 + c, . . . }
and see if the orbit converges or not. If it does, we find the attracting periodic
orbit; if not, there doesn’t exist one. Let’s see what happens when we set
c = 1 to give the functionf1(z) = z2 + 1. The orbit of the critical point is
{0,1,2,5,26, . . .}, which goes to infinity. Thus,f1 hasnoattracting periodic
orbit and the Julia set does not divide points that converge to a periodic orbit
from points that iterate to infinity. In fact, it can be shown that this Julia set is
totally disconnected; it is sometimes referred to asCantor dust. Click on out-
lying points on the edge of the Mandelbrot set (defined below) in Screen 3.5
of Module 13 and you will generate Cantor dust in the upper graphics screen.

This leads to another question. If some functions in the familyfc have
connected Julia sets (such asf0 = z2) and other functions in the family have
totally disconnected Julia sets (such asf1), what set of points in thec plane
separates these distinctive features? This set is theboundaryof the Mandel-
brot set. TheMandelbrot set Mof the functionfc(z)= z2 + c is defined as the
set of all complex numbersc such that the orbit{ f ◦n

c (0)
∞
n=1} remains bounded,

that is,| f ◦n
c (0)| ≤ K for some positive numberK and all integersn ≥ 0.

This definition leads us to an algorithm for computing the Mandelbrot set
M. Assign to each pixel a complex numberc. Choose a maximum number
of iterationsN and determine whether| f ◦n

c (0)| < 2 for all n ≤ N (it can be
proven that if| f ◦n

c (0)| > 2 for somen, then the orbit goes to infinity). If so,
then color this point green to indicate that it is (probably) in the Mandelbrot☞ The colors of the

Mandelbrot set example in the
Discrete Tool are different.

set. Otherwise, color this point black. It is this computation that gives the
wonderfully intricate Mandelbrot set; see Figure 13.6 and Screens 3.4 and 3.5
of Module 13.
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Figure 13.6: The Mandelbrot set; the cross-hairs are set on the point c =
0.4012− 0.3245i, which gives the Julia set shown in Figure 13.5.

The Mandelbrot set actually contains much more information than is de-
scribed here. It is, in fact, the bifurcation diagram for the family of functions
fc(z)= z2 + c. Each “blob” of the set corresponds to an attracting periodic or-
bit of a particular period. Values ofc in the big cardioid shown on Screen 3.4
of Module 13 give attracting period-1 orbits forfc. Values ofc in the circle
immediately to the left of this cardioid give attracting period-2 orbits forfc.
Other “blobs” give other attracting periodic behaviors.

Although we have only defined the Mandelbrot set for the specific family
fc = z2 + c, it can be defined in an analogous way for other families of com-
plex functions (see the Discrete Tool). One final note on Julia sets and the
Mandelbrot set. You’ve probably seen intricately colored versions of these
objects on posters or elsewhere. The coloring is usually determined by how
“fast” orbits tend to infinity. The color scheme is, of course, up to the pro-
grammer.

Module 13 introduces and lets you play with three important discrete dy-
namical systems—linear, logistic, and a third that uses complex numbers. Ex-
plorations 13.1–13.4 extend these ideas and introduce other maps with curious
behavior under iteration.
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Answer questions in the space provided, or on
attached sheets with carefully labeled graphs. A
notepad report using the Architect is OK, too.

Name/Date

Course/Section

Exploration 13.1. One-Dimensional Maps and the Discrete Tool

1. Go to the Discrete Tool and enter the proportional growth modelxn+1 = cxn,
wherec is the parameter. For the range 0≤ n ≤ 30 and the initial condition
x0 = 0.5, explore and describe what happens to the iteration map, time series,
and bifurcation diagram as the parameter is increased from−2 to 2. For
what values ofc is there a sudden change in the behavior of the iterates (the
bifurcation values ofc)? For what values ofc are there 1, 2, or infinitely many
fixed or periodic points? Which of these points are attractors? Repellers?

2. Go to the Discrete Tool and explore and describe what happens to the iteration
map, the time series, and the bifurcation diagram as the parameterc for the
logistic mapgc(x) = cx(1− x) is incremented from 1 to 4. Use the range
50≤ n≤ 150 to avoid any initial wandering, and the initial conditionx0 = 0.5.
Describe what all three graphs on the tool screen look like at values ofc where
there is a periodic orbit. What is the period? Go as far forward as you can
with the period-doubling sequence of values ofc: 3, 3.434,. . . . What are
the corresponding periods? [Suggestion:Zoom on the bifurcation diagram.]
Repeat with the sequence 3.83, 3.842,. . . .
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3. In the Discrete Tool enter the tent mapTc on the interval 0≤ x ≤ 1:

Tc(x) = c(1− 2abs(x− 0.5))=
{

2cx, 0 ≤ x ≤ 0.5

2c(1− x), 0.5 ≤ x ≤ 1

where the parameterc is allowed to range from 0 to 1. Describe and explain
what you see asc is incremented from 0 to 1. [Suggestion:use the Edit option
in the Menu box for the bifurcation diagram and set 200≤ n ≤ 300 in order
to suppress the initial transients.] Any orbits of period 2? Period 3?
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Exploration 13.2. Circle Maps

Another common type of discrete dynamical system is a circle map, which
maps the perimeter of the unit circle onto itself. These functions arise when
modeling coupled oscillators, such as pendulums or neurons. The simplest
types of circle maps are rotations that take the form

Rω(θ)= (θ+ ω) mod 2π

where 0 ≤ θ ≤ 2π and ω is a constant.

1. Show that ifω = (p/q)π with p andq positive integers andp/q in lowest
terms, then every point has periodq.

2. Show that ifω = aπ with a an irrational number, then no point on the circle
is periodic.
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3. What is the long-term behavior of the orbit of a point on the circle ifω = aπ,
wherea is an irrational number?
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Exploration 13.3. Two-Dimensional Maps and the Discrete Tool

A two-dimensional discrete dynamical system looks like this:

xn+1 = f (xn, yn, c)

yn+1 = g(xn, yn, c)
(3)

where f and g are given functions and c is a “place holder” for parameters.
For given values of c, x0, and y0, system (3) defines an orbit of points

(x0, y0), (x1, y1), (x2, y2), . . .

in the xy-plane. The two-dimensional tab in the Discrete Tool allows you to
explore discrete systems of the form of system (3).

1. Open the Discrete Tool and explore the default system (a version of what is
known as theHènon Map):

xn+1 = 1+ yn − ax2
n

yn+1 = bxn
(4)

wherea andb are parameters. For fixed values of the parametersa andb
find the fixed points. Are they sinks, sources, or neither? How sensitive is the
long-term behavior of an orbit to small changes in the initial point(x0, y0)?
What happens if you incrementa through a range of values? If you increment
b? Any period-doubling sequences? In your judgment, is there any long-term
chaotic wandering? [Suggestion:Keep the values ofa andb within small
ranges of their default values to avoid instabilities.]
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2. Repeat Problem 1 with the following version of the H`enon map:

xn+1 = a− x2
n + byn

yn+1 = xn

Start witha = 1.28, b = −0.3, x0 = 0, y0 = 0.
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Exploration 13.4. Julia and Mandelbrot Sets and the Discrete Tool

Note that the color schemes for the Julia and Mandelbrot sets in Module 13
differ from those in the discrete tool.

1. Use the Discrete Tool to explore the Mandelbrot set and Julia sets for the
complex family fc = z2 + c. What happens to the filled Julia sets as you
movec from inside the Mandelbrot set up toward the boundary, then across
the boundary and out beyond the Mandelbrot set? Describe how the Julia sets
change as you “walk” along the edge of the Mandelbrot set.
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2. Repeat Problem 1 for the complex familygc = csinz.

3. Repeat Problem 1 for the familyhc = cez.



GLOSSARY
Acceleration The acceleration of a moving body whose po-

sition at timet is u(t) is given by

d2u
dt2

Air resistance A body moving through air (or some other
medium) is slowed down by a resistive force (also
called a drag or damping force) that acts opposite to
the body’s velocity. See also “Viscous damping” and
“Newtonian damping.”

Amplitude The amplitude of a periodic oscillating function
u(t) is half the difference between its maximum and
minimum values.

Angular momentum The angular momentum vector of a
body rotating about an axis is its moment of inertia
about the axis times its angular velocity vector.

This is the analog in rotational mechanics of momen-
tum (mass times velocity) in linear mechanics.

Angular velocity An angular velocity vector,ω(t), is the
key to the relation between rotating body axes and a
fixed coordinate system of the observer. The compo-
nentω j of the vectorω(t) along thejth body axis de-
scribes the spin rate of the body about that axis.

Autocatalator This is a chemical reaction of several steps,
at least one of which is autocatalytic.

Autocatalytic reaction In an autocatalytic reaction, a
chemical species stimulates more of its own produc-
tion than is destroyed in the process.

Autonomous ODE An autonomous ODE has no explicit
mention of the independent variable (usuallyt) in the
rate equations. For example,x′ = x2 is autonomous,
but x′ = x2 + t is not.

Balance law The balance law states that the net rate of
change of the amount of a substance in a compartment
equals the net rate of flow in minus the net rate of flow
out.

Beats When two sinusoids of nearly equal frequencies are
added the result appears to be a high frequency si-
nusoid modulated by a low frequency sinusoid called
a beat. A simple example is given by the function

(sint)(sin10t), where the first sine produces an “am-
plitude modulation” of the second.

Bessel functions of the 1st kindThe Bessel function of the
first kind of order zero,

J0(s) = 1− 1
4

s2 + · · · + (−1)n
s2n

n!222n
+ · · ·

is a solution of Bessel’s equation of order zero, and is
bounded and convergent for alls.

Bessel functions of the 2nd kindThe Bessel function of
the second kind of order zero,Y0(s), is another so-
lution of Bessel’s equation of order zero. It is much
more complicated thanJ0(s), and

Y0(s)→ −∞ as s→ 0+
See Chapter 11 for a complete formula forY0(s) that
involves a logarithmic term,J0(s), and a complicated
(but convergent) infinite series.

Bessel’s equationBessel’s equation of orderp ≥ 0 is

s2w′′(s)+ sw′(s)+ (s2 − p2)w = 0

wherep is a nonnegative constant. Module 11 consid-
ers onlyp = 0. See Chapter 11 forp> 0.

Bessel’s equation, general solution ofBessel’s equation
of order zero is second-order and linear. The general
solution is the set of all linear combinations ofJ0(s)
andY0(s).

Bifurcation diagram A bifurcation diagram describes how
the behavior of a dynamical system changes as a pa-
rameter varies. It can appear in studies of iteration or
of differential equations.

In the case of a single real parameter, a bifurcation di-
agram plots a parameter versus something indicative
of the behavior, such as the variable being iterated (as
in Module 13, Nonlinear Behavior) or a single variable
marking location and stability of equilibrium points for
a differential equation.

In iteration of a function of a complex variable, two
dimensions are needed just to show the parameter, but
different colors can be used to show different behav-
iors (as in Module 13, Complex Dynamics).
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Cantor set, Cantor dust A Cantor set was first detailed by
Henry Smith in 1875, but was named in honor of
Georg Cantor, the founder of set theory, after he used
this bizarre construction in 1883. Now Cantor sets are
found in many guises in discrete dynamical systems.

A Cantor set is a closed, bounded, and totally discon-
nected set, with uncountably many points. A typical
construction is to delete a band across the middle of
a set, then to delete the middle of both pieces that are
left, and then to repeat this process indefinitely.

Julia sets (see glossary) for parameter values outside
the Mandelbrot set (see glossary) are Cantor dusts,
constructed by a similar algorithm. See Chapter 13
for References.

Carrying capacity The carrying capacityK of an environ-
ment is the maximum number of individuals that the
environment can support at steady state. If there are
fewer individuals than the carrying capacity in the en-
vironment, the population will grow; if there are more
individuals, the population will decline.

A widely used model for population dynamics involv-
ing a carrying capacity is the logisitc ODE

dN
dt

= rN(1− N/K)

wherer is the intrinsic growth rate constant.

Cascade A cascade is a compartment model where the
“flow” through the compartments is all one direction.

Center A center is an equilibrium point of an autonomous
planar linear system for which the eigenvalues are con-
jugate imaginaries±iβ, β �= 0. All nonconstant orbits
of an autonomous planar linear system with a center
are simple closed curves enclosing the equilibrium.

Centering an equilibrium If p∗ is an equilibrium point of
the systemx′ = f (x) (so f (p∗) = 0), then the change
of coordinatesx = y + p∗ moves p∗ to the origin in
the y-coordinate system.

Chain rule The chain rule for differentiating a function
L(θ(t), y(t))with respect tot is

dL
dt

= ∂L
∂θ

dθ
dt

+ ∂L
∂y

dy
dt

= Lθθ
′ + Lyy′

Chaos Mathematical chaos is a technical term that describes
certain nonperiodic behavior of a discrete dynamical
system (Module 13) or solutions to a differential equa-
tion (Module 12). A discrete system is said to be
chaotic on an interval if all of the following are true.

� It exhibits sensitive dependence on initial condi-
tions.

� Periodic unstable orbits occur almost every-
where.

� Iterates of intervals get “mixed up.”

Chaotic behavior never repeats, revisits every neigh-
borhood infinitely often, but is not random. Each step
is completely determined by the previous step.

An equivalent list of requirements appears in Mod-
ule 12, Screen 1.4. Further discussion appears in
Chapter 13.

Characteristic equation The characteristic equation of a
square matrixA is det(λ I − A) = |λ I − A| = 0. For
a 2× 2 matrix, this reduces toλ2 − tr Aλ+ detA = 0
whose solutions, called eigenvalues ofA, are

λ = tr A±
√

tr2 A− 4detA
2

Chemical law of mass actionThe rate of a reaction step is
proportional to the product of the concentrations of the
reactants.

Example: If one unit of speciesX produces one unit of
productY in a reaction step, the rate of the step iskx,
wherek is a positive constant. Thus, we have

x′ = −kx, y′ = kx

Example (Autocatalysis): If one unit of speciesX re-
acts with two units ofY and produces three units ofY
in an autocatalytic step, the reaction rate is

axyy= axy2

wherea is a positive constant. Thus, we have

x′ = −axy2, y′ = 3axy2 − 2axy2 = axy2

because one unit ofX is destroyed, while three units
of Y are created, and two are consumed.

Combustion model The changing concentrationy(t) of a
reactant in a combustion process is modeled by the
IVP

y′ = y2(1− y), y(0) = a, 0 ≤ t ≤ 2/a

where a is a small positive number that represents
a disturbance from the pre-ignition statey = 0.
R. E. O’Malley studied the problem in his book,Sin-
gular Perturbation Methods for Ordinary Differential
Equations, (1991: Springer).

Compartment model A compartment model is a set of
boxes (the compartments) and arrows that show the
flow of a substance into and out of the different boxes.
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Component graphs A component graph of a solution of a
differential system is a graph of one of the dependent
variables as a function oft.

Example: For the ODE system

x′ = F(x, y)

y′ = G(x, y)

the component graphs are the plots of a solutionx =
x(t) andy = y(t) in the respectivetx- andty-planes.

Concentration The concentration of a substance is the
amount of the substance dissolved per unit volume of
solution.

Connected setA connected set is a set with no islands. In
the early 1980’s Adrien Douady (Universit´e Paris XI,
Orsay and Ecole Normale Sup´erieure) and John Hub-
bard (Cornell University) proved that the Mandelbrot
set was connected. They did this by showing that its
exterior could be put in a one-to-one correspondence
with the exterior of a disk. They found in the pro-
cess that all the angles one might note while walking
around the boundary of the disk have special analogs
on the Mandelbrot set. Halfway around the disk from
the rightmost point corresponds to being at the tip of
the Mandelbrot set, while one third or two thirds the
way around the disk corresponds to the “neck” where
the biggest ball attaches to the cardioid.

Conserved quantity A function E(q, y) is conserved along
a trajectoryq = q(t), y = y(t), of a systemq′ =
f (q, y), y′ = g(q, y), if dE(q(t), y(t))/dt= 0.

As time changes, the value ofE stays constant on each
trajectory, although the value will vary from one trajec-
tory to another. The graph of each trajectory in theqy-
phase plane lies on one of the level setsE = constant.

This idea of a conserved quantity can be extended to
any autonomous system of ODEs. An autonomous
system is conservative if there is a functionE that stays
constant along each trajectory, but is nonconstant on
every region (i.e., varies from trajectory to trajectory).

Cycle In a discrete dynamical system, including a Poincar´e
section, a cycle is a sequence of iterates that repeats.
The number of iterates in a cycle is its period.

For an autonomous differential system, a cycle is a
nonconstant solutionx(t) such thatx(t + T) = x(t),
for all t, whereT is a positive constant. The smallest
value ofT for a cycle is its period.

For a cycle in a system of 2 ODEs, see Limit cycle.

Damped pendulum A real pendulum of lengthL is af-
fected by friction or air resistance that is a function

of L, θ, andθ′, and acts opposite to the direction of
motion.

Throughout the Linear and Nonlinear Pendulums sub-
module of Module 10, we assume that, if there is any
damping, it is viscous; i.e., the damping force is given
by −bLθ′. The minus sign tells us that damping acts
opposite to the velocity.

Module 4 makes a more detailed study of the effects of
damping on a linear oscillator, as does Module 11 for
the spring in the Robot and Egg.

Damping Damping can arise from several sources, includ-
ing air resistance and friction. The most common
model of damping is viscous damping—the damping
force is assumed to be proportional to the velocity and
acts opposite to the direction of motion. See also New-
tonian damping.

Dense orbit An orbit x(t) of a system of ODEsx′ = f (t, x)
is dense in a regionR of x-space if the orbit gets arbi-
trarily close to every point ofR as time goes on.

That is, if x1 is any point inR , andε is any positive
number, then, at some timet1, the distance between
x(t1) andx1 is less thanε.

Determinant The determinant of the 2× 2 matrix

A =
[

a b
c d

]

is detA = ad− bc.

Deterministic A system of ODEs is said to be deterministic
if the state of the system at timet is uniquely deter-
mined by the state of the system at the initial time.

For example, the single first-order ODEx′ = f (t, x) is
deterministic if for each set of initial data(t0, x0) there
is exactly one solutionx(t).

Thus, if you were to choose the same initial data a sec-
ond time and watch the solution curve trace out in time
again, you would see exactly the same curve.

Dimensionless variablesSuppose that a variablex is
measured in units of kilograms and thatx varies
from 10 to 500 kilograms. If we sety =
(x kilograms)/(100 kilograms),y is dimensionless,
and 0.1 ≤ y ≤ 5. The smaller range of values is useful
for computing. The fact thaty has no units is useful
because it no longer matters if the units are kilograms,
grams, or some other units.

When variables are scaled to dimensionless quantities,
they are typically divided by a constant somewhere
around the middle of the expected range of values.
For example, by dividing a chemical concentration by
a “typical” concentration, we obtain a dimensionless
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concentration variable. Similarly, dimensionless time
is obtained by dividing ordinary time by a “standard”
time.

Direction field A direction field is a collection of line seg-
ments in thexy-plane which shows the slope of the
trajectories for an autonomous ODE system

dx
dt

= F(x, y)

dy
dt

= G(x, y)

at a representative grid of points. An arrowhead on a
segment shows the direction of motion.

Disconnected Julia setA disconnected Julia set is actually
a Cantor dust. It is composed entirely of totally dis-
connected points, which means that it is almost never
possible to land on a point in the Julia set by clicking
on a pixel. You will probably find that every click you
can make starts an iteration that goes to infinity, only
because you cannot actually land on an exact enough
value to show a stable iteration.

Discrete dynamical systemA discrete dynamical system
takes the formun+1 = f (un), where the variableun

gives the state of the system at “time”n, andun+1 is
the state of the system at timen+ 1. See Module 13.

Eigenvalues The eigenvalues of a matrixA are the numbers
λ for which

Av = λv

for some nonzero vectorv (the vectorv is called an
eigenvector). The eigenvaluesλ of a 2× 2 matrix A
are the solutions to the characteristic equation ofA:

λ2 − tr Aλ+ detA = 0

λ = tr A±
√
(tr A)2 − 4detA

2

where trA is the trace ofA, and detA is the determi-
nant of A. If a linear or linearized system of ODEs is
z′ = A(z− p∗), and if the real parts of the eigenvalues
of A are positive, then trajectories flow away from the
equilibrium point, p∗. If the real parts are negative,
then trajectories flow towardp∗.

Eigenvector An eigenvector of a matrixA is a nonzero vec-
tor, v, that satisfiesAv = λv for some eigenvalueλ.
The ODE Architect Tool calculates eigenvalues and
eigenvectors of Jacobian matrices at any equilibrium
point of an autonomous system (linear or nonlinear).
Eigenvectors play a strong role in the local geometry
of phase portraits at an equilibrium point.

Energy In physics and engineering, energy is defined by

E = kinetic energy+ potential energy

where kinetic energy is interpreted to be the energy of
motion, and the potential energy is the energy due to
some external force, such as gravity, or (in electric-
ity) a battery, or a magnet. If energy is conserved, i.e.,
stays at a constant level, then the system is said to be
conservative.

If we are dealing with the autonomous differential sys-
tem

x′ = y, y′ = −v(x) (5)

we can define an “energy function” by

E = 1
2

y2 + V(x)

where dV/dx = v(x). Note that E is constant
along each trajectory, becausedE/dt = y dy/dt +
(dV/dx)(dx/dt) = y(−v(x))+ v(x)(y) = 0, where
the ODEs in system (5) have been used. The term
(1/2)y2 is the “kinetic energy”. V(x) is the “poten-
tial energy” in this context. See Chapter 10 for more
on these ideas.

Epidemic An epidemic occurs in an epidemiological model
if the number of infectives,I (t), increases above its
initial value, I0. Thus, an epidemic occurs ifI ′(0) > 0.

Equilibrium point An equilibrium point p∗ in phase (or
state) space of an autonomous ODE is a point at which
all derivatives of the state variables are zero; also
known as a stationary point or a steady-state value of
the state variables. For example, for the autonomous
system,

x′ = F(x, y), y′ = G(x, y)

if F(x∗, y∗)= 0, G(x∗, y∗) = 0, thenp∗ = (x∗, y∗) is
an equilibrium point, andx = x∗, y = y∗ (for all t) is
a constant solution.

For a discrete dynamical system, an equilibrium point
p∗ is one for whichf (p∗)= p∗, so thatp∗

n+1 = p∗
n, for

all n; p∗ is also called a fixed point of the system.

Estimated error For the solutionu(t) of the IVP y′ =
f (t, y), y(t0) = y0, the local error at thenth step of
the Euler approximation is given by

en = Taylor series ofu(t)− Euler approximation

= 1
2

h2u′′(tn)+ h3u′′′(tn)+ · · ·
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If the true solution,u(t), is not known, we can approx-
imateen for smallh by

en ≈ Taylor approx.− Euler approx.≈ 1
2

h2u′′(tn)

Euler’s method Look at the IVPy′ = f (t, y), y(t0) = y0.
Euler’s method approximates the solutiony(t) at dis-
cretet values. For step sizeh , put tn+1 = tn + h for
n = 0,1,2, . . . . Euler’s method approximates

y(t1), y(t2), . . .

by the values

y1, y2, . . .

where

yn+1 = yn + hf (tn, yn), for n = 0,1,2, . . .

Existence and uniquenessA basic uniqueness and exis-
tence theorem says that, for the IVP,

x′ = F(x, y, t), y′ = G(x, y, t),

x(t0) = x0, y(t0) = y0

a unique solutionx(t), y(t) exists if F, G, ∂F/∂x,
∂F/∂y, ∂G/∂x, and∂G/∂y are all continuous in some
region containing(x0, y0).

Fixed point A fixed point, p∗, of a discrete dynamical sys-
tem is a point for whichxn+1 = f (xn) = xn. That is,
iteration of such a point simply gives the same point.

A fixed point can also be called an equilibrium or a
steady state. A fixed point may be a sink, a source, or a
saddle, depending on the character of the eigenvalues
of the associated linearization matrix of the iterating
function.

Forced damped pendulum A forced, viscously damped
pendulum has the modeling equation

mx′′ + bx′ + ksinx= F(t)

The beginning of Module 10 explains the terms and
parameters of this equation usingθ instead ofx. Mod-
ule 12 examines a case where chaos can result, with
b = 0.1, m= 1, k = 1, andF(t)= cost. All three sub-
modules of Module 12 are involved in explaining the
behaviors, and the introduction to the Tangled Basins
submodule shows a movie of what happens whenb is
varied from 0 to 0.5.

Forced pendulum Some of the most complex and curious
behavior occurs when the pendulum is driven by an
external force. In Module 10, The Pendulum and Its

Friends, you can experiment with three kinds of forces
in the Linear and Nonlinear Pendulums submodule,
and an internal pumping force in the Child on a Swing
submodule. But, for truly strange behavior, take a look
at Module 12, Chaos and Control.

Fractal dimension Benoit Mandelbrot in the early 1980’s
coined the word “fractal” to apply to objects with di-
mensions between integers. The boundary of the Man-
delbrot set (see glossary) is so complicated that its
dimension is surely greater than one (the dimension
of any “ordinary” curve). Just how much greater re-
mained an open question until 1992 when the Japanese
mathematician Mitsuhiro Shishikura proved it is actu-
ally dimension two!

Frequency The frequency of a function of periodT is 1/T.
Another widely used term is “circular frequency”,
which is defined to be 2π/T. For example, the peri-
odic function sin(3t) has periodT = 2π/3, frequency
3/(2π), and circular frequency 3.

General solution Consider the linear systemx′ = Ax+ u
[where x has 2 components,A is a 2× 2 matrix of
constants, andu is a constant vector or a function only
of t]. Let A have distinct eigenvaluesλ1, λ2 with cor-
responding eigenvectorsv1, v2. All solutions of the
system are given by the so-called general solution:

x(t)= C1eλ1tv1 + C2e
λ2tv2 + x̃

where x̃ is any one particular solution of the system
andC1 andC2 are arbitrary constants.. Ifu is a con-
stant vector, theñx = p∗, the equilibrium of the sys-
tem. If x has more than two dimensions, terms of the
same form are added until all dimensions are covered.
Note that, ifu = 0, p∗ = 0 is an equilibrium.

Geodesic Any smooth curve can be reparametrized to a unit
speed curvex(t), where|x′(t)| = 1. Unit-speed curves
x(t) on a surface are geodesics if the acceleration vec-
tor x′′(t) is perpendicular to the surface at each point
x(t).

It can be shown that a geodesic is locally length-
minimizing, so, between any two points sufficiently
close, the geodesic curve is the shortest path.

GI tract The gastro-intestinal (GI) tract consists of the
stomach and the intestines.

Gravitational force The gravitational force is the force on
a body due to gravity. If the body is near the earth’s
surface, the force has magnitudemg, wherem is the
body’s mass, and the force acts downward. The value
of acceleration due to gravity,g, is 32 ft/sec2 (English
units), 9.8 meters/sec2 (metric units).
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Great circle A great circle on a sphere is an example of
a geodesic. You can test this with a ball and string.
Hold one end of the string fixed on a ball. Choose an-
other point some distance away, and find the geodesic
or shortest path by pulling the string tight between the
two points. You will find that it always is along a circle
centered at the center of the ball, which is the defini-
tion of a great circle.

Hooke’s law Robert Hooke, an English physicist in the sev-
enteenth century, stated the law that a spring exerts a
force, on an attached mass, which is proportional to
the displacement of the mass from the equilibrium po-
sition and points back toward that position.

Initial condition An initial condition specifies the value of
a state variable at some particular time, usually at
t = 0.

Initial value problem An initial value problem (IVP) con-
sists of a differential equation or a system of ODEs
and an initial condition specifying the value of the state
variables at some particular time, usually att = 0.

Integral surfaces The surfaceSdefined byF(x, y, z)= C,
whereC is a constant, is an integral surface of the au-
tonomous system

x′ = f (x, y, z), y′ = g(x, y, z), z′ = h(x, y, z)

if

d
dt

F(x, y, z)= ∂F
∂x

dx
dt

+ ∂F
∂y

dy
dt

+ ∂F
∂z

dz
dt

= ∂F
∂x

f + ∂F
∂y

g+ ∂F
∂z

h = 0

for all x, y, z. We get a family of integral surfaces by
varying the constantC. An orbit of the system that
touches an integral surface stays on it. The functionF
is called an integral of the system.

For example, the family of spheres

F = x2 + y2 + z2 = constant

is a family of integral surfaces for the system

x′ = y, y′ = z− x, z′ = −y

because

2xx′ + 2yy′ + 2zz′ = 2xy+ 2y(z− x)+ 2z(−y) = 0

Each orbit lies on a sphere, and each sphere is covered
with orbits.

Intermediate An intermediate is a chemical produced in the
course of a reaction which then disappears as the reac-
tion comes to an end.

Intrinsic growth rate At low population sizes, the net rate
of growth is essentially proportional to population size,
so thatN′ = rN. The constantr is called the intrinsic
growth rate constant. It gives information about how
fast the population is changing before resources be-
come limited and reduce the growth rate.

Iteration Iteration generates a sequence of numbers by us-
ing a given numberx0 and the rulexn+1 = f (xn) ,
where f (x) is a given function. Sometimes,xn is writ-
ten asx(n).

IVP See initial value problem.

Jacobian matrix The systemx′ = F(x, y), y′ = G(x, y),
has the Jacobian matrix

J =
[
∂F
∂x

∂F
∂y

∂G
∂x

∂G
∂y

]

The eigenvalues and eigenvectors of this matrix at an
equilibrium point p∗ help determine the local geome-
try of the phase portrait.

Jacobian matricesJ can be defined for autonomous
systems of ODEs with any number of state variables.

The ODE Architect Tool will find eigenvalues and
eigenvectors ofJ at any equilibrium point.

Julia Set In complex dynamics, a Julia set for a given func-
tion f (z) separates those points that iterate to infin-
ity from those that do not. See the third submodule
of Module 13, Dynamical Systems. Julia sets were
discovered about 1910 by two French mathematicians,
Pierre Fatou and Gaston Julia. But, without computer
graphics, they were unable to see the details of ragged
structure that today display Cantor sets, self-similarity
and fractal properties.

Kinetic energy of rotation The kinetic energy of rotation
of a gyrating body is

E = 1
2
( I1ω

2
1 + I2ω

2
2 + I3ω

2
3)

whereI j andω j are, respectively, the moment of iner-
tia and the angular velocity about the body axis,j, for
j = 1, 2, 3.

Lift The lift force on a body moving through air is a force
that acts in a direction orthogonal to the motion. Its
magnitude may be modeled by a term which is pro-
portional to the speed or to the square of the speed.
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Limit cycle A cycle is a closed curve orbit of the system

x′ = F(x, y)

y′ = G(x, y)

A cycle is the orbit of a periodic solution.

An attracting limit cycle is a cycle that attracts all
nearby orbits as time increases; a repelling limit cycle
repels all nearby orbits as time increases.

Linearization For a nonlinear ODE, a linearization (or lin-
ear approximation) can be made about an equilibrium,
p∗ = (x∗, y∗), as follows:

For x′ = F(x, y), y′ = G(x, y), the linearized system
is z′ = J(z− p∗), whereJ is the Jacobian matrix eval-
uated atp∗, i.e.,

z′ =
[

x
y

]′
=
[
∂F
∂x

∂F
∂y

∂G
∂x

∂G
∂y

]

p∗

[
x− x∗

y− y∗

]
= J(z− p∗)

The eigenvalues and eigenvectors of the Jacobian ma-
trix, J, at an equilibrium point,p∗, determine the ge-
ometry of the phase portrait close to the equilibrium
point p∗. These ideas can be extended to any au-
tonomous system of ODEs. A parallel definition ap-
plies to a discrete dynamical system.

Linear pendulum Pendulum motion can be modeled by
a nonlinear ODE, but there is an approximating lin-
ear ODE that works well for small anglesθ, where
sinθ ≈ θ. In that case, the mathematics is the same
as that discussed for the mass on a spring in Module 4.

Linear system A linear system of first-order ODEs has
only terms that are linear in the state variables. The
coefficients can be constants or functions (even non-
linear) of t.

Example: Here is a linear system with state variables
x andy, and constant coefficientsa, b, . . . , h:

x′ = ax+ by+ c

y′ = f x+ gy+ h

This can be written in matrix/vector form as:

z′ = Az+ k

z=
[

x
y

]
, A =

[
a b
f g

]
, k =

[
c
h

]

The example can be extended ton state variables and
an n × n matrix A. If z = p∗ is an equilibrium point

of a linear system, thenk = −Ap∗ and the system may
be written as

z′ = A(z− p∗)

Linear algebra can be applied to find the general solu-
tion.

Lissajous figures Jules Antoine Lissajous was a 19th-
century French physicist who devised ingenious ways
to visualizewavemotion that involves more than one
frequency. For example, try plotting the parametric
curve x1 = sin 2t, x2 = sin3t in the x1x2-plane with
0 ≤ t ≤ 320.
The graph of a solutionx1 = x1(t), x2 = x2(t) of
[

x1

x2

]′′
= B

[
x1

x2

]
, for B a 2× 2 constant matrix

in the x1x2-plane is a Lissajous figure if the vector
(x1(0), x2(0)) is not an eigenvector ofB.
See also “Normal modes and frequencies.”

Local IVP One-step methods for approximating solutions
to the IVP

y′ = f (t, y), y(t0) = y0

generate the(n + 1)st approximation,yn+1, from the
nth, yn, by solving the local IVP

u′ = f (t,u), u(tn) = yn

This is exactly the same ODE, but the initial condition
is different at each step.

Logistic model The logistic equation is the fundamental
model for population growth in an environment with
limited resources. Many advanced models in ecology
are based on the logistic equation.
For continuous models, the logistic ODE is

d P
dt

= r P

(
1− P

K

)

wherer is the intrinsic growth rate constant, andK is
the carrying capacity.
For discrete models, the logistic map is

fλ(x) = λx
(
1− x

K

)

whereλ is the intrinsic growth rate constant, andK is
again the carrying capacity (see Module 13).

Mandelbrot Set In complex dynamics, forfc(z) = z2 + c,
the Mandelbrot set is a bifurcation diagram in the com-
plex c-plane, computed by coloring allc-values for
which z0 (usualyz0 = 0) does not iterate to infinity.
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It acts as a catalog of all the Julia sets for individual
values ofc.

The boundary of the Mandelbrot set is even more com-
plicated than the boundary of a given Julia set. More
detail appears at every level of zoom, but no two re-
gions are exactly self-similar.

Two mathematicians at UCLA, R. Brooks and
J. P. Matelsky, published the first picture in 1978. It
is now called the Mandelbrot set, because Benoit Man-
delbrot of the Thomas J. Watson IBM Research Center
made it famous in the early 1980’s.

You can experiment with the Mandelbrot set in Mod-
ule 13 and the Discrete Tool.

Matrix An n × n square matrixA of constants, wheren is
a positive integer, is an array of numbers arranged into
n rows andn columns. The entry where theith row
meets thejth column is denoted byaij .

In ODEs we most often see matricesA as the array of
coefficients of a linear system. For example, here is a
planar linear system with a 2× 2 coefficient matrixA:

x′ = 2x − 3y

y′ = 7x + 4y
A =

[
2 −3
7 4

]

Mixing A function f : R→ R is “mixing” if given any two
intervalsI andJ there exists ann> 0 such that thenth
iterate ofI intersectsJ.

Modeling A mathematical model is a collection of variables
and equations representing some aspect of a physi-
cal system. In our case, the equations are differential
equations. Steps involved in the modeling process are:

1. State the problem.

2. Identify the quantities to which variables are to
be assigned; choose units.

3. State laws which govern the relationships and be-
haviors of the variables.

4. Translate the laws and other data into mathemat-
ical notation.

5. Solve the resulting equations.

6. Apply the mathematical solution to the physical
system.

7. Test to see whether the solution is reasonable.

8. Revise the model and/or restate the problem, if
necessary.

Moment of inertia The moment of inertia,I , of a bodyB
about an axis is given by

I =
∫ ∫ ∫

B
r2ρ(x, y, z)dV(x, y, z)

wherer is the distance from a general point in the body
to the axis andρ is the density function forB. Each
moment of inertia plays the same role as mass does in
nonrotational motion, but, now, the shape of the body
and the position of the axis play a role.

Newtonian damping A body moving through air (or some
other medium) is slowed down by a resistive force that
acts opposite to the body’s velocity,v. In Newtonian
damping (or Newtonian drag), the magnitude of the
force is proportional to the square of the magnitude of
the velocity, i.e., to the square of the speed:

force= −k|v|v for some positive constantk

Newton’s law of cooling The temperature,T , of a warm
body immersed in a cooler outside medium of temper-
atureTout changes at a rate proportional to the temper-
ature difference,

dT
dt

= k(Tout − T)

whereTout is assumed to be unaffected byT (unless
stated otherwise). The same ODE works ifTout is
larger thanT (Newton’s law of warming).

Newton’s second lawNewton’s second law states that, for
a body of constant mass,

mass· acceleration= sum of forces acting on body

This is a differential equation, because acceleration is
the rate of change of velocity, and velocity is the rate
of change of position.

Nodal equilibrium The behavior of the trajectories of an
autonomous system of ODEs is nodal at an equilib-
rium point if all nearby trajectories approach the equi-
librium point with definite tangents ast → +∞ (nodal
sink), or ast → −∞ (nodal source).

If the system is linear with the matrix of coefficientsA,
then the equilibrium is a nodal sink if all eigenvalues
of A are negative, and a nodal source if all eigenvalues
are positive. This also holds at an equilibrium point
of any nonlinear autonomous system, whereA is the
Jacobian matrix at the equilibrium point.

Nonautonomous ODE A system of ODEs witht occurring
explicitly in the expressions for the rates is nonau-
tonomous; e.g.,x′ = tx is nonautonomous.

Nonlinear center point An equilibrium point of a nonlin-
ear system,x′ = F(x, y), y′ = G(x, y), is a center if
all nearby orbits are simple closed curves enclosing the
equilibrium point.
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Nonlinear ODE A nonlinear ODE or system has at least
some dependent variables appearing in nonlinear terms
(e.g., xy, sinx,

√
x). Thus, linear algebra cannot be

applied to the system overall. But, near an equilibrium
(of which there are usually more than one for a non-
linear system of ODEs), a linearization is (usually) a
good approximation, and allows analysis with the im-
portant roles of the eigenvalues and eigenvectors.

Nonlinear pendulum Newton’s laws of motion give us

force= mass× acceleration

In the circular motion of a pendulum of fixed length,
L, at angleθ, acceleration is given byLθ′′. The only
forces acting on the undamped pendulum are those due
to tension in the rod and gravity. The component of
force in the direction of the pendulum bob’s motion is:

F = mLθ′′ = −mgsinθ

wherem is the mass of the pendulum bob, andg is
the acceleration due to gravity. The mass of the rigid
support rod is assumed to be negligible.

Normal modes and frequenciesThe normal modes of a
second-order systemz′′ = Bz(whereB is a 2× 2 ma-
trix with negative eigenvaluesµ1,µ2) are eigenvectors
v1, v2 of B. The general solution is all linear combina-
tions of the periodic oscillationsz1, z2, z3, z4 along the
normal modes:

z1 = v1 cosω1t, z2 = v1 sinω1t,

z3 = v2 cosω2t, z4 = v2 sinω2t

whereω1 = √−µ1, ω2 = √−µ2 are the normal fre-
quencies.

See also “Second-order systems.”

Normalized ODE In a normalized differential equation, the
the highest-order derivative appears alone in a separate
term and has a coefficient equal to one.

ODE See “Ordinary differential equation.”

On-off function See “Squarewave.”

Orbit See “Trajectory.”

Order of the method A method of numerical approxima-
tion to a solution of an IVP is orderp, if there exists a
constantC such that

max(|global error|) < Chp

ash → 0.

Ordinary differential equation An ordinary differential
equation (ODE) is an equation involving an unknown
function and one or more of its derivatives. The order

of the ODE is the order of the highest derivative in the
ODE. Examples:

dy
dt

= 2t, (first-order, unknowny(t))

y2 dy
dt

= 2y + t, (first-order, unknowny(t))

x′′ − 4x′ + 7x = 4sin 2t, (second-order, unknownx(t))

Oscillation times Oscillation times of a solution curvex(t)
of an ODE that oscillates aroundx = 0 are the times
between successive crossings ofx = 0 in the same di-
rection. If the solution is periodic, the oscillation times
all equal the period.

Oscillations A scalar functionx(t) oscillates ifx(t) alter-
nately increases and decreases as time increases. The
oscillation is periodic of periodT if x(t + T) = x(t)
for all t and if T is the smallest positive number for
which this is true.

Parametrization Each coordinate of a point in space may
sometimes be given in terms of other variable(s) or pa-
rameter(s). A single parameter suffices to describe a
curve in space. Two parameters are required to de-
scribe a two-dimensional surface.

Period The period of a periodic functionu(t) is the small-
est time interval after which the graph ofu versust
repeats itself. It can be found by estimating the time
interval between any two corresponding points, e.g.,
successive absolute maxima.

The period of a cycle in a discrete dynamical system is
the minimal number of iterations after which the entire
cycle repeats.

Periodic phase planeThe periodicxx′-phase plane for the
pendulum ODEx′′ +0.1x′ +sinx = cost is plotted pe-
riodically in x. An orbit leaving the screen on the right
comes back on the left. In other words, the horizon-
tal axis representsx mod 2π. This view ignores how
many times the pendulum bob has gone over the top.
See Module 12, Screen 1.4.

Phase angleThe phase angle,δ, of the oscillatory function
u(t)= Acos(ω0t + δ) shifts the the graph ofu(t) from
the position of a standard cosine graphu = cosω0t by
the amountδ/ω0 . The phase angle may have either
sign and must lie in the interval−π/ω0 < δ < π/ω0.

Phase planeThe phase plane, or state plane, is thexy-plane
for the dependent variablesx andy of the system

x′ = F(x, y)

y′ = G(x, y)
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The trajectory, or orbit, of a solution

x = x(t), y = y(t)

of the system is drawn in this plane witht as a param-
eter. A graph of trajectories is called a phase portrait
for the system.

The higher-dimensional analog is called phase space,
or state space.

Pitch The pitch (frequency) of an oscillating functionu(t)
is the number of oscillations per unit of timet.

Poincaré Henri Poincar´e (1854–1912) was one of the
last mathematicians to have a universal grasp of all
branches of the subject. He was also a great popular
writer on mathematics. Poincar´e’s books sold over a
million copies.

Poincaré section A Poincaré section of a second-order
ODE x′′ = f (x, x′, t), where f has periodT in t, is
a strobe picture of thexx′-phase plane that plots only
the points of an orbit that occur at intervals separated
by a period ofT time units, i.e., the sequence of points

P0 = (x(0), x′(0))

P1 = (x(T), x′(T))

...

Pn = (x(nT), x′(nT))

...

For further detail, see the second submodule of Mod-
ule 12, Chaos and Control.

A Poincaré section is a two-dimensional discrete dy-
namical system. Another example of such a system
is discussed in some detail in the third submodule of
Module 13. These ideas can be extended to any sys-
tem of ODEs andT can be any positive number.

Population quadrant In a two-species population model,
the population quadrant of the phase plane is the one
where both dependent variables are non-negative.

Post-image In a discrete dynamical system, a post-image of
a setS0 is the set of points,S1 , where the iterates of
S0 land in one step.

For a Poincar´e section of an ODE,S1 would be the set
of points arriving atS1 when the ODE is solved from
S0 over one time period of the Poincar´e section. See
submodule 3 of Module 12.

Pre-image In a discrete dynamical system, a pre-image of a
setS0 is the set of points,S−1, that iterate toS0 in one
step.

For a Poincar´e section of an ODE,S−1 would be the
set of points arriving atS0 when the ODE is solved
from S−1 over one time period of the Poincar´e section.
See submodule 3 of Module 12.

Products The products of a chemical reaction are the
species produced by a reaction step. The end prod-
ucts are the species that remain after all of the reaction
steps have ended.

Proportional Two quantities are proportional if their ratio
is constant. Thus, the circumference,c, of a circle is
proportional to the diameter, becausec/d = π.

The basic linear differential equation

dy
dt

= ky, k a constant

represents a quantityy whose derivative is propor-
tional to its value.

Random Random motion is the opposite of deterministic
motion. In random motion, there is no way to predict
the future state of a system from knowledge of the ini-
tial state. For example, if you get heads on the first toss
of a coin, you cannot predict the outcome of the fifth
toss.

Rate constant Example: The constant coefficientsa, b, and
c in the rate equation

x′(t)= ax(t)− by(t)− cx2(t)

are often called rate constants.

Rates of chemical reactionsThe rate of a reaction step is
the speed at which a product species is created or
(equivalently) at which a reactant species is destroyed
in the step.

Reactant A chemical reactant produces other chemicals in
a reaction.

ResonanceThis phenomenon occurs when the amplitude of
a solution of a forced second-order ODE becomes ei-
ther unbounded (in an undamped ODE) or relatively
large (in a damped ODE) after long enough times.

Rotation system As Lagrange discovered in the 18th cen-
tury, the equations of motion governing a gyrating
body are

ω′
1 = ( I2 − I3)ω2ω3

I1

ω′
2 = ( I3 − I1)ω1ω3

I2

ω′
3 = ( I1 − I2)ω1ω2

I3
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where I j is the principal moment of inertia, andωj is
the component of angular velocity about thejth body
axis.

Saddle An equilibrium point of a planar autonomous ODE,
or a fixed point of a discrete two-dimensional dynami-
cal system, with the property that, in one direction (the
unstable one), trajectories move away from it, while,
in another direction (the stable one), trajectories move
toward it.

At a saddle of an ODE, one eigenvalue of the associ-
ated linearization matrix must be real and positive, and
at least one eigenvalue must be real and negative.

Scaling Before computing or plotting, variables are often
scaled for convenience.

See also “Dimensionless variables.”

Second-order systemsSecond-order systems of the form
z′′ = Bzoften arise in modeling mechanical structures
with no damping, (and hence, no loss of energy). Here,
z is ann-vector state variable,z′′ denotesd2z/dt2, and
B is ann × n matrix of real constants.

Although numerical solvers usually require that we in-
troducev = z′ and enter the system of 2n first-order
ODEs,z′ = v, v′ = Bz, we can learn a lot about solu-
tions directly from the eigenvalues and eigenvectors of
the matrixB.

See also “Normal modes and frequencies” and
Screen 3.4 in Module 6.

Sensitivity An ODE model contains elements, such as ini-
tial data, environmental parameters, and functions,
whose exact values are experimentally determined.
The effect on the solution of the model ODEs when
these factors are changed is called sensitivity.

Sensitivity to initial conditions A dynamical system has
sensitive dependence on initial conditions if every pair
of nearby points eventually gets mapped to points far
apart.

Separatrix Separatrices are trajectories of a planar au-
tonomous system that enter or leave an equilibrium
point p with definite tangents ast → ±∞, and divide
a neighborhood ofp into distinct regions of quite dif-
ferent long-term trajectory behavior ast increases or
decreases.

For more on separatrices see “Separatrices and Saddle
Points” in Chapter 7.

Sink A sink is an equilibrium point of a system of ODEs, or
a fixed point of a discrete dynamical system, with the
property that all trajectories move toward the equilib-
rium.

If all eigenvalues of the associated linearization matrix
at an equilibrium of a system of ODEs have negative
real parts, then the equilibrium is a sink.

Slope The slope of a line segment in thexy-plane is given
by the formula

m = change iny
change inx

The slope of a functiony = f (x) at a point is the value
of the derivative of the function at that point.

Slope field A slope field for the first-order ODEy′ = f (t, y)
is a collection of line segments whose slopes are deter-
mined by the value off (t, y) on a grid of points in the
ty-plane.

Solution A solution to a differential equation is any func-
tion which gives a true statement when plugged into
the equation. Such a function is called a particular so-
lution. Thus,

y = t2 − 2

is a particular solution to the equation

dy
dt

= 2t

The set of all possible solutions to a differential equa-
tion is called the general solution. Thus,

y = t2 + C

is the general solution to the equation

dy
dt

= 2t

Source A source is an equilibrium of a system of ODEs,
or a fixed point of a discrete dynamical system, with
the property that all trajectories move away from the
equilibrium.

If all eigenvalues of the associated linearization matrix
at an equilibrium of a system of ODEs have positive
real parts, then the equilibrium is a source.

Spiral equilibrium An equilibrium point of a planar au-
tonomous system of ODEs is a spiral point if all nearby
orbits spiral toward it (or away from it) as time in-
creases.

If the system is linear with the matrix of coefficientsA,
then the equilibrium is a spiral sink if the eigenvalues
of A are complex conjugates with negative real part,
a spiral source if the real part is positive. This also
holds at an equilibrium point of any nonlinear planar
autonomous system, whereA is the Jacobian matrix at
the equilibrium.
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Spring A Hooke’s law restoring force (proportional to dis-
placement,x, from equilibrium) and a viscous damp-
ing force (proportional to velocity, but oppositely di-
rected) act on a body of massm at the end of spring.
By Newton’s second law,

mx′′ = −kx − bx′

wherek andb are the constants of proportionality.

Spring force The spring force is often assumed to obey
Hooke’s law—the magnitude of the force in the spring
is proportional to the magnitude of its displacement
from equilibrium, and the force acts in the direction
opposite to the displacement.

The proportionality constant,k, is called the spring
constant. A large value ofk corresponds to a stiff
spring.

Square wave An on-off function (also called a square
wave) is aperiodic function which has a constant
nonzero value for a fraction of each period; otherwise,
it has a value of 0. For example,y = ASqWave(t,6,2)
is a squarewave ofamplitudeA and period 6, which
is “on” for the first 2 units of its period of 6 units, then
is off the next 4 time units.

Stable An equilibrium point p∗ of an autonomous system
of ODEs is stable if trajectories that start nearp∗ stay
near p∗, as time advances. The equilibrium point
p∗ = 0 of the linear systemz′ = Az, whereA is a ma-
trix of real constants, is stable if all eigenvalues ofA
are negative or have negative real parts.

State space The phase plane, or state plane, is thexy-plane
for the dependent variablesx andy of the system

x′ = F(x, y)

y′ = G(x, y)

The trajectory, or orbit, of a solution

x = x(t), y = y(t)

of the system is drawn in this plane witht as a param-
eter. A graph of trajectories is called a phase portrait
for the system.

The higher dimensional analog is called phase space,
or state space.

State variables These are dependent variables whose val-
ues at a given time can be used with the modeling
ODEs to determine the state of the system at any other
time.

Steady state A steady state of a system of ODEs is an equi-
librium position where no state variable changes with

time. Sometimes only an attracting equilibrium point
(or periodic solution) is called a steady state.

Surface A surface of a three-dimensional object is just
its two-dimensional “skin,” and does not include the
space or volume enclosed by the surface.

Taylor remainder For an(n +1)-times differentiable func-
tion u(t), the difference (or Taylor remainder)

u(t)− [u(t0)+ hu′(t0)+ · · · + 1
n!

hnu(n) (t0)]

can be written as

1
(n + 1)!

h(n+1)u(n+1) (c)

for somec in the interval [t0, t0 + h], a fact which gives
useful estimates.

Taylor series expansion For an infinitely differentiable
function u(t), the Taylor series expansion att0 for
u(t0 + h) is

u(t0)+ hu′(t0)+ 1
2

h2u′′(t0)+ · · · + 1
n!

hnu(n) (t0)+ · · ·

Taylor series method Look at the IVP y′ = f (t, y),
y(t0) = y0. For a step sizeh, the three-term Tay-
lor series method approximates the solutiony(t) at
tn+1 = tn + h, for n = 0, 1, 2,. . . , using the algorithm

yn+1 = yn + h f (tn, yn)+ 1
2

h2 ft(tn, yn)

Trace The trace of a square matrix is the sum of its diagonal
entries. So

tr

[
a b
c d

]
= a + d

Trace-determinant parabola The eigenvaluesλ1, λ2 of a
2× 2 matrix A are given by

λ1, λ2 = tr A ±
√

tr2 A − 4detA
2

The trace-determinant parabola, 4detA = tr2 A, di-
vides the trA − detA plane into the upper region
whereA’s eigenvalues are complex conjugates and the
lower region where they are real. The two eigenvalues
are real and equal on the parabola.

Trajectory A trajectory (or orbit, or path) is the paramet-
ric curve drawn in thexy-plane, called the phase plane
or state plane, byx = x(t) and y = y(t) ast changes,
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where x(t), y(t) is a solution of

x′ = F(x, y, t)

y′ = G(x, y, t)

The trajectory shows how x(t) and y(t) play off
against each other as time changes.
For a higher-dimensional system, the definition ex-
tends to parametric curves in higher-dimensional
phase space or state space.

Unstable An equilibrium point p∗ of an autonomous system
of ODEs is unstable if it is not stable. That means there
is a neighborhood N of p∗ with the property that, start-
ing inside each neighborhood M of p∗, there is at least
one trajectory that goes outside N as time advances.

Vector A vector is a directed quantity with length. In two
dimensions, a vector can be written in terms of unit
vectors î and ĵ, directed along the positive x- and y-
axes.

Viscous damping A body moving through air (or some
other medium) is slowed down by a resistive force
that acts opposite to the body’s velocity, v. In viscous

damping (or viscous drag), the force is proportional to
the velocity:

force = −kv

for some positive constant k.

Wada property The Wada property, as described and illus-
trated on Screen 3.2 of Module 12 is the fact that:

Any point on the boundary of any one of the
areas described on Screen 3.2 is also on the
boundary of all the others.

The geometry/topology example constructed by Wada
was the first to have this property; we can now show
that the basins of attraction for our forced, damped
pendulum ODE have the same property. See Mod-
ule 12 and Chapter 12.

All we know about Wada is that a Japanese manuscript
asserts that someone by that name is responsible for
constructing this example, showing that for three ar-
eas in a plane, they can become so utterly tangled that
every boundary point touches all three areas!
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