

THE KLUWER INTERNATIONAL SERIES
IN ENGINEERING AND COMPUTER SCIENCE

IMAGE AND VIDEO
COMPRESSION STANDARDS

Algorithms and Architectures

IMAGE AND VIDEO
COMPRESSION STANDARDS

Algorithms and Architectures

by

Vasudev Bhaskaran
Konstantinos Konstantinides
Hewlett-Packard Laboratories

~.

"
Springer Science+Business Media, LLC

Library of Congress Cataloging-in-Publication Data

A C.I.P. Catalogue record for this book is available
from the Library of Congress.

ISBN 978-1-4757-2360-1 ISBN 978-1-4757-2358-8 (eBook)
DOI 10.1007/978-1-4757-2358-8

Copyright @ 1995 by Springer Science+Business Media New York

Originally published by Kluwer Academic Publishers in 1995.
Softcover reprint ofthe hardcover 1st edition 1995

All rights reserved. No part of this publication may be reproduced, stored in
a retrieval system or transmitted in any form or by any means, mechanical,
photo-copying, recording, or otherwise, without the prior written permission of
the publisher, Springer Science+Business Media, LLC

Printed on acid-free paper.

to Achan, Chechi,

Balu, Kishore, Shanti, Paula,

Anastasia, and Anneta

CONTENTS

PREFACE Xl11

1 COMPRESSION FUNDAMENTALS 1
1.1 Introduction 1
1.2 Background 2
1.3 Compression Taxonomy 5
1.4 Issues in Compression Method Selection 12
1.5 To Probe Further 14

2 METHODS AND STANDARDS FOR LOSSLESS
COMPRESSION 15
2.1 Introduction 15
2.2 Preliminaries 15
2.3 Huffman Encoding 18
2.4 Huffman Decoding 22
2.5 Huffman Codes with Constrained Length 24
2.6 Constrained-Length Huffman Codes - Ad-Hoc Design 31
2.7 Constrained-Length Huffman Codes - The Voorhis Method 33

2.8 Arithmetic Coding 37

2.9 Implementation Issues 42

2.10 Standards for Lossless Compression 43

2.11 To Probe Further 50

3 FUNDAMENTALS OF LOSSY IMAGE COMPRESSION 53

3.1 Introduction 53

viii IMAGE COMPRESSION STANDARDS

3.2 Preliminaries 54

3.3 Basic Coding Schemes for Lossy Compression 60

3.4 DCT -based Coding 65

3.5 Fast Algorithms for the DCT 77

3.6 Rate-Distortion Performance of the DCT 85

3.7 To Probe Further 85

4 FUNDAMENTALS OF LOSSY VIDEO COMPRESSION 87

4.1 Introduction 87

4.2 Video Coding Basics 88

4.3 Rate-Distortion Functions in Video Coding 93

4.4 Motion-Compensated Prediction 105

4.5 Algorithms for Motion Estimation 108

4.6 Sub-pixel-Accurate Motion Estimation 122

4.7 Multipicture Motion Estimation 126

4.8 To Probe Further 127

5 THE JPEG STANDARD 129

5.1 Introduction 129
5.2 DCT -based Coding 130
5.3 Processing of Color Images 133

5.4 Design of Quantization Tables 135
5.5 Entropy Coding 139

5.6 JPEG Modes of Operation 145

5.7 Implementation Issues 150

5.8 JPEG Extensions and Applications 154

5.9 To Probe Further 157

6 THE MPEG VIDEO STANDARDS 161

6.1 Introduction 161

6.2 The MPEG-l Video Standard 162

6.3 MPEG-l Implementation Issues 180

6.4 The MPEG-2 Video Standard 182

6.5 To Probe Further 193

Contents ix

7 THE H.261 VIDEO CODING STANDARD 195
7.1 Introduction 195
7.2 The H.261 Video Coding Standard 198

7.3 Implementation Issues 202

7.4 Future Directions 205
7.5 To Probe Further 206

8 PROCESSING REQUIREMENTS 207

8.1 Introduction 207

8.2 Measuring Complexity 208

8.3 Distributing the Load 211

8.4 To Probe Further 212

9 RISC AND DSP CORES 215

9.1 Introduction 215
9.2 The RISC Core 215

9.3 The DSPCore 218

9.4 RISC versus DSP 221
9.5 To Probe Further 222

10 ARCHITECTURES FOR THE DCT 225
10.1 Introduction 225
10.2 Vector Processing 226
10.3 Distributed Arithmetic for the DCT 228
10.4 Commercially A vailable DCT Processors 234
10.5 To Probe Further 235

11 HARDWARE FOR MOTION ESTIMATION 237

11.1 Introduction 237

11.2 Data Flow Design 238

11.3 Sub-pel Motion Estimation 243

11.4 Implementation Examples 244

11.5 To Probe Further 247

x IMAGE COMPRESSION STANDARDS

12 HARDWARE FOR ENTROPY CODING 249
12.1 Introduction 249
12.2 Encoder Implementation 250
12.3 Decoder Implementation 253
12.4 Variable-Length Coding in JPEG 258
12.5 To Probe Further 259

13 IMPLEMENTATION OF JPEG PROCESSORS 263
13.1 Introduction 263
13.2 Data IIO and Memory Interface 264
13.3 Color Conversion 265
13.4 Commercially A vailable JPEG Processors 266
13.5 To Probe Further 269

14 INTEGRATED CIRCUITS FOR VIDEO CODERS 271
14.1 Introduction 271
14.2 Video Signal Processors 272
14.3 Dedicated Coders 282
14.4 To Probe Further 286

15 MULTIMEDIA ENHANCEMENTS FOR RISC
PROCESSORS 289
15.1 Introduction 289
15.2 Generic Operations in Video Processing 290
15.3 Multimedia Enhancements in the HP-PA 291
15.4 Multimedia Enhancements in the UltraSparc 294
15.5 To Probe Further 296

16 STANDARDS FOR AUDIO COMPRESSION 297
16.l Introduction 297
16.2 MPEG Audio Encoding 300
16.3 MPEG Audio Decoding 304
16.4 Layer Coding Options in MPEG 307
16.5 The AC-3 Coding Standard 308

Contents Xl

16.6 Hardware Implementation of Audio Codecs 312
16.7 To Probe Further 313

17 NONSTANDARD COMPRESSION TECHNIQUES 315
17.1 Introduction 315
17.2 Vector Quantization 316
17.3 Subband Coding 321
17.4 Video Coding Schemes for the Desktop 330
17.5 To Probe Further 331

A ABBREVIATIONS AND SYMBOLS 335

B INTERNET DIRECTORY 341

REFERENCES 345

INDEX 363

PREFACE

This book presents an introduction to the algorithms and architectures that form
the underpinnings of the image and video compression standards, inc1uding
lPEG (compression of still-images), H.261 (video teleconferencing), and
MPEG-l and MPEG-2 (video storage and broadcasting). In addition, the
book covers the MPEG and Dolby AC-3 audio coding standards and emerging
techniques for image and video compression, such as those based on wavelets
and vector quantization.

The emphasis of the book is on the foundations of these standards, namely,
techniques such as predictive coding, transform-based coding, motion esti­
mation, motion compensation, and entropy coding, as wen as how they are
applied in the standards. We avoid the implementation details of each standard.
However, we do provide an the material necessary to understand the workings
of each of the compression standards, inc1uding information that can be used
by the reader to evaluate the efficiency of various software and hardware
implementations conforming to these standards. We place particular emphasis
on those algorithms and architectures that have been found to be useful in
practical software or hardware implementations.

No prior knowledge of image and video compression theory and architectures
is assumed; however, some background in high-level hardware design is
expected for the better understanding of the chapters covering the hardware
implementation of the standards.

Chapters 1 to 4 review the fundamentals of image and video compression. In
Chapter 1 we cover the key principles of image compression and explain the
basic terminology. We present a compression taxonomy and discuss design
issues and tradeoffs in selecting a compression algorithm. In Chapter 2 we
review methods and standards for lossless compression, inc1uding differential,
Huffman, and arithmetic coding. We present several practical algorithms for
the design of Huffman codes, and we describe the lossless lPEG algorithm

XIV IMAGE COMPRESSION STANDARDS

and the standards for lossless facsimile transmission (Group 3, Group 4, and
JBIG). In Chapter 3 we examine techniques for lossy compression. We
review the source-coding theorem and compute the rate-distortion function
for several image models relevant to image compression. We place particular
emphasis on DCT-based coding, and describe several schemes for the efficient
implementation of the DCT. In Chapter 4 we present the fundamentals of
video coding, inc1uding motion estimation and motion compensation.

In Chapter 5 we describe JPEG and its application to the compression of still­
images. We cover recent extensions to JPEG and the JPEG-based standard for
color facsimile. In Chapter 6 we describe the coding algorithms and syntax
for the MPEG-1 and MPEG-2 video compression standards, and in Chapter
7 we provide an overview of the H.261 standard for video teleconferencing.
Similarities and differences among these video compression standards are also
presented and reviewed.

Next, we move to the hardware implementation of the standards. In Chapter
8 we define a measure of computational complexity, and we use it to measure
the complexity of various algorithms used in the standards. Bearing in mind
that most hardware implementations of the standards are based on either RISC
or DSP cores, in Chapter 9 we review the principles of RISC and DSP designs
and describe their main differences and similarities. Even though we present
the latest designs in image and video processors, we place more emphasis
on the designs of the core algorithms; that is, the discrete eosine transform
(Chapter 10), motion estimation (Chapter 11), and entropy coding (Chapter
12). In Chapter 13 we describe architectures for the JPEG standard, and in
Chapter 14 we discuss programmable and dedicated video processors for the
MPEG and the H.261 standards.

In Chapter 15 we review recent developments in the design of multimedia­
enhanced general-purpose RISC processors, such as the PA 71 OOLC from
Hewlett-Packard and the UltraSPARC from Sun Microsystems. In Chapter
16 we present the key standards on audio coding, and we describe in more
detail the MPEG and Dolby AC-3 coding schemes. In Chapter 17 we provide
an overview of techniques based on vector quantization and wavelets. Such
techniques are used in many proprietary image and video compression schemes
and may playa significant role in future standards.

Preface xv

Appendix A provides a summary of abbreviations used in the text and can be
used as a quick reference for the various standard image formats (SIF, CIF,
and CCIR 601). Information about sites with public software implementations
of the standards is included in Appendix B.

The material in this book is partitioned into the following categories: fun­
damentals, video standards, architectures, audio standards, and emerging
techniques. However, most of the chapters are self contained and allow the
reader to easily switch from one category to another.

This book is aimed at the professional who wants to have a basic understanding
of the latest developments and applications of image compression standards. It
is based on tutorials given by the authors at several forums, including the IEEE
International Conference on Acoustics Speech and Signal Processing, the
ACM Multimedia Conference, and Hewlett-Packard. It provides a reference
for any engineer planning to work in this field, either in basic implementation
or in research and development. It is intended for self-study; however, it can
also be used as a companion textbook in any course on data compression,
video coding, computer architecture, signal or image processing, or the design
of signal and video processors.

Acknowledgments. This book would not be possible without the support from
the management at Hewlett-Packard Laboratories, especially Fred L. Kitson,
Daniel T. Lee, and Ho John Lee. We also thank our colleagues at Hewlett­
Packard for many helpful discussions. Balas K. Natarajan has been particularly
helpful from the beginning of this project and we thank hirn for many valuable
discussions, comments, and for reviewing parts of this manuscript. We thank
Bob Rau for his comments on our tutorials and Ruby Lee for providing us
with a different perspective on the hardware implementation of the video
standards. We thank Nariman Farvardin and David Daut for their comments
on the computation of the rate-distortion function. We thank Akio Yamamoto
for his help in the example on wavelet coding, J ose Fridman for many valuable
comments and suggestions, and Elias Manolakos.

We also thank Robert Holland, Jr. and his staff from Kluwer Academic Press
for their support, and Suzanne M. Rumsey for helping with many typesetting
questions. Finally, we dedicate this book to our teachers and to our families,
and especially to Achan, Chechi, Balu, Kishore, Shanti, Paula, Anastasia, and
Anneta.

1
COMPRESSION FUNDAMENTALS

1.1 INTRODUCTION

In recent years, there have been significant advancements in algorithms and
architectures for the processing of image, video, and audio signals. These
advancements have proceeded along several directions. On the algorithm
front, new techniques have led to the development of robust methods to reduce
the size of the image, video, or audio data. Such methods are extremely vital
in many applications that manipulate and store digital data. Informally, we
refer to the process of size reduction as a compression process. We will define
this process in a more formal way later. On the architecture front, it is now
feasible to put sophisticated compression processes on a relatively low-cost
single chip; this has spurred a great deal of activity in developing multimedia
systems for the large consumer market.

One of the excltmg prospects of such advancements is that multimedia
information comprising image, video, and audio has the potential to become
just another data type. This usually implies that multimedia information will
be digitally encoded so that it can be manipulated, stored, and transmitted
along with other digital data types. For such data usage to be pervasive,
it is essential that the data encoding is standard across different platforms
and applications. This will foster widespread development of applications
and will also promote interoperability among systems from different vendors.
Furthermore, standardization can lead to the development of cost-effective
implementations, wh ich in turn will promote the widespread use of multimedia

2 CHAPTER 1

information. This is the primary motivation behind the emergence of image
and video compression standards.

1.2 BACKGROUND

Compression is a process intended to yield a compact digital representation
of a signal. In the literature, the terms source coding, data compression,
bandwidth compression, and signal compression are all used to refer to the
process of compression. In the cases where the signal is defined as an
image, a video stream, or an audio signal, the generic problem of compression
is to minimize the bit rate of their digital representation. There are many
applications that benefit when image, video, and audio signals are available in
compressed form. Without compression, most of these applications would not
be feasible.

Example 1: Let us consider facsimile image transmission. In most facsimile
machines, the document is scanned and digitized. Typically, an 8.5 x 11
inches page is scanned at 200 dpi; thus, resulting in 3.74 Mbits. Transmitting
this data over a low-cost 14.4 kbits/s modem would require 5.62 minutes. With
compression, the transmission time can be reduced to 17 seconds. This results
in substantial savings in transmission costs.

Example 2: Let us consider a video-based CD-ROM application. Full-motion
video, at 30 fps and a 720 x 480 resolution, generates data at 20.736 Mbytes/s.
At this rate, only 31 seconds of video can be stored on a 650 MByte CD-ROM.
Compression technology can increase the storage capacity to 74 minutes, for
VHS-grade video quality.

There are many other applications that benefit from data compression technol­
ogy. Table 1.1lists a representative set of such applications for image, video,
and audio data, as well as typical data rates of the corresponding compressed
bit streams. Typical data rates for the uncompressed bit streams are also
shown.

Image, video, and audio signals are amenable to compression due to these
factors:

Compression Fundamentals 3

Application Data Rate
Uncompressed Compressed

Voice 64 kbps 2 - 4 kbps
8 ksamples/s, 8 bits/sample
Slow-motion video (10 fps) 5.07 Mbps 8 - 16 kbps
jramesize 176 x 120, 8 bits/pixel
Audio conference 64 kbps 16 - 64 kbps
8 ksamples/s, 8 bits/sample
Video conference (15 fps) 30.41 Mbps 64 -768 kbps
jramesize 352 x 240, 8 bits/pixel
Digital audio (stereo) 1.5 Mbps 128 - 1.5 Mbps
44.1 ksamples/s, 16 bits/sample
Video file transfer (15 fps) 30.41 Mbps 384 kbps
jramesize 352 x 240, 8 bits/pixel
Digital video on CD-ROM (30 fps) 60.83 Mbps 1.5 - 4 Mbps
jramesize 352 x 240, 8 bits/pixel
Broadcast video (30 fps) 248.83 Mbps 3 - 8 Mbps
jramesize 720 x 480, 8 bits/pixel
HDTV (59.94 fps) 1.33 Gbps 20 Mbps
jramesize 1280 x 720, 8 bits/pixel

Table 1.1 Applications for image, video, and audio compression.

• There is considerable statistical redundancy in the signal.

1. Within a single image or a single video frame, there exists significant
correlation among neighbor sampies. This correlation is referred to
as spatial correlation.

2. For data acquired from multiple sensors (such as satellite images),
there exists significant correlation amongst sampies from these
sensors. This correlation is referred to as spectral correlation.

3. For temporal data (such as video), there is significant correlation
amongst sampies in different segments of time. This is referred to as
temporal correlation.

• There is considerable information in the signal that is irrelevant from a
perceptual point of view.

4 CHAPTER 1

• Some data tends to have high-level features that are redundant across
space and time; that is, the data is of a fractal nature.

For a given application, compression schemes may exploit any one or all of
the above factors to achieve the desired compression data rate.

A systems view of the compression process is depicted in Figure 1.1. The core

1

Digital Image, Video, 1
--c>I

and Audio

Source

Coder

ENCODER

r-----c=-
Channel

Coder
L
1

L ___________________ I

1

Digital Image, Video, 1
<J--------l

and Audio

Source

Decoder

DECODER

Channel

Decoder
~_I
1

1

1
L ___________________ I

Figure 1.1 Generic compression system.

of the encoder is the source coder. The source coder performs the compression
process by reducing the input data rate to a level that can be supported by the
storage or transmission medium. The bit rate output of the encoder is measured
in bits per sampIe or bits per second. For image or video data, a pixel is the
basic element; thus, bits per sampIe is also referred to as bits per pixel or
bits per pe!. In the literature, the term compression ratio, denoted as Cr. is
also used instead of bit rate to characterize the capability of the compression
system. An intuitive definition of Cr is

source coder input size
Cr = .

source coder output size
(1.1)

This definition is somewhat ambiguous and depends on the data type and the
specific compression method that is employed. For a still-image, size could

Compression Fundamentals 5

refer to the bits needed to represent the entire image. For video, size could refer
to the bits needed to represent one frame of video. Many compression methods
for video do not process each frame of video; hence, a more commonly used
notion for size is the bits needed to represent one second of video.

In a practical system, the source coder is usually followed by a second level
of coding: the channel coder (Figure 1.1). The channel coder translates the
compressed bit stream into a signal suitable for either storage or transmission.
In most systems, source coding and channel coding are distinct processes. In
recent years, methods to perform combined source and channel coding have
also been developed. Note that, in order to reconstruct the image, video, or
audio signal, one needs to reverse the processes of channel coding and source
coding. This is usually performed at the decoder.

From a systems design viewpoint, one can restate the compression problem
as a bit rate minimization problem, where several constraints may have to be
met, including the following:

• Specified levels of signal quality. This constraint is usually applied at the
decoder.

• Implementation complexity. This constraint is often applied at the
decoder, and in some instances at both the encoder and the decoder.

• Communication delay. This constraint refers to the end to end delay, and
is measured from the start of encoding a sampie to the complete decoding
of that sampie.

Note that, these constraints have different importance in different applications.
For example, in a two-way teleconferencing system, the communication delay
might be the major constraint, whereas, in a television broadcasting system,
signal quality and decoder complexity might be the main constraints.

1.3 COMPRESSION TAXONOMY

A typical classification of compression methods is shown in Figure 1.2.

6 CHAPTER 1

Image, Video, and Audio Compression Methods

~
Model-Based Waveform-Based

Lossless ~ Lossy
~ ~

Statistical Universal Spatial Domain, Frequency Domain

Gilbert

Fano

Huffman

Other

Linear-Predictive
Coding (LPC)

AR, ARMA
modeling

Polynomial
Fitting

Fractals

Object-Based

Other

Arithmetic
coding

Lempel-Ziv
(LZ) coding

Pattern matching

Other

Time Domain
Delta
Modulation
PCM

DPCM

Vector­
Quantization

Other

Filter-Based

tSUbband

Wavelet

Other

Transform-Based

Fourier

Karhunen­
Loeve (KL)

Hadamard

DCT

Other

Figure 1.2 A taxonomy of image, video, and audio compression
methods.

1.3.1 Lossless versus Lossy Compression

Lossless compression

In many applications, the decoder has to reconstruct without any loss the
original data. For a lossless compression process, the reconstructed data and
the original data must be identical in value for each and every data sampie.
This is also referred to as a reversible process. In lossless compression, for a
specific application, the choice of a compression method involves a tradeoff

Compression Fundamentals 7

along the three dimensions depicted in Figure 1.3; that is, coding efficiency,
coding complexity, and coding delay.

Coding Efficiency

-Compression Ratio?

Coder Comp/exity

- Memory requirements?
- Power requirements ?
- Operations per second ?

Coding De/ay

Figure 1.3 Tradeoffs in lossless compression.

Coding Efficiency: This is usually measured in bits per sampIe or bits per
second (bps). Coding efficiency is usually limited by the information content
or entropy of the source. In intuitive terms, the entropy of a source X provides
a measure for the "randomness" of X. From a compression theory point of
view, sources with large entropy are more difficult to compress (for example,
randorn noise is very hard to cornpress).

In literature on lossless compression, the coding efficiency is sometimes
characterized by the entropy at the output of a preprocessor within the source
coder; the implication here is that the source coder does not increase this
entropy figure significantly. Note that, in practice, the source is composed
frorn a finite-alphabet; thus, the entropy is finite. For an analog source, the
entropy would be infinite, however, in most compression schemes, digitization
of the analog source leads to a finite-alphabet representation, which limits the
source entropy.

Coding Complexity: The complexity of a compression process is analogous
to the computational effort needed to implement the encoder and decoder
functions. The computational effort is usually measured in terms of memory
requirements and number of arithmetic operations. The operations count
is characterized by the term millions of operations per second and is often
referred to as MOPS. Here, by operation, we imply a basic arithmetic operation

8 CHAPTER 1

that is supported by the computational engine. In the compression literature,
the term MIPS (millions of instructions per second) is sometimes used. This is
specific to a computational engine's architecture; thus, in this text we refer to
coding complexity in terms of MOPS. In some applications, such as portable
devices, coding complexity may be characterized by the power requirements
of a hardware implementation.

Coding Delay: A complex compression process often leads to increased
coding delays at the encoder and the decoder. Coding delays can be alleviated
by increasing the processing power of the computational engine; however,
this may be impractical in environments where there is apower constraint or
when the underlying computational engine cannot be improved. Furthermore,
in many applications, coding delays have to be constrained; for example, in
interactive communications. The need to constrain the coding delay often
forces the compression system designer to use a less sophisticated algorithm
for the compression processes.

From this discussion, it can be conc1uded that these tradeoffs in coding
complexity, delay, and efficiency are usually limited to a small set of choices
along these axes. In a subsequent section, we will briefly describe the tradeoffs
within the context of specific lossless compression methods.

Lossy compression

The majority of the applications in image or video data processing do not
require that the reconstructed data and the original data are identical in
value. Thus, some amount of loss is permitted in the reconstructed data. A
compression process that results in an imperfect reconstruction is referred to
as a lossy compression process. This compression process is irreversible. In
practice, most irreversible compression processes degrade rapidly the signal
quality when they are repeatedly applied on previously decompressed data.

The choice of a specific lossy compression method involves tradeoffs along
the four dimensions shown in Figure 1.4. Due to the additional degree of
freedom, namely, in the signal quality, a lossy compression process can yield
higher compression ratios than a lossless compression scheme.

Signal Quality: This term is often used to characterize the signal at the output
of the decoder. There is no universally accepted measure for signal quality.

Compression Fundamentals 9

Signal Quality

- Bit error probability?

- Signal/Noise?

- Mean opinion score?

Coding Efficiency Coding Oelay
- Compression Ratio?

Coder Complexity

- memory requirements?
- power (mW)?

- Operations per second?

Figure 1.4 Tradeoffs in lossy compression.

One measure that is often cited is the signal to noise ratio (SNR), which can
be expressed as

SN R = 1010g
1

encoder input signal energy
o noise signal energy

(1.2)

The noise signal energy is defined as the energy measured for a hypothetical
signal that is the difference between the encoder input signal and the decoder
output signal. Note that, SNR as defined here is given in decibels (dB). In the
case of images or video, PSNR (peak signal-to-noise ratio) is used instead
of SNR. The calculations are essentially the same as in the case of SNR,
however, in the nominator, instead ofusing the encoder input signal one uses a
hypothetical signal with a signal strength of 255 (the maximum decimal value
of an unsigned 8-bit number, such as in a pixel).

High SNR or PSNR values do not always correspond to signals with percep­
tually high quality. Another measure of signal quality is the mean opinion
score, where the performance of a compression process is characterized by the

10 CHAPTER 1

subjective quality of the decoded signal. For instance, a five point scale such as
very annoying, annoying, slightly annoying, perceptible but not annoying, and
imperceptible might be used to characterize the impairments in the decoder
output.

In either lossless or lossy compression schemes, the quality of the input
data affects the compression ratio. For instance, acquisition noise, data
sampling timing errors, and even the analog-to-digital conversion process
affects the signal quality and reduces the spatial and temporal correlation.
Some compression schemes are quite sensitive to the loss in correlation and
may yield significantly worse compression in the presence of noise.

Both lossless and lossy compression methods fit within the general model
depicted in Figure 1.5. Most of the compression standards that are described

Image. Video. and
----I

Audio Data
Preprocessor

i

Lossless Coding

Lossy Coding

Entropy Coder
x

1 Additio~al 11-------------'
Processlng .

Figure 1.5 Lossless and lossy compression coding framework.

in this book fit within this framework and employ both lossy and lossless
compression schemes to achieve high coding efficiency. These compression
methods will be described in detail in later chapters.

1.3.2 Variable Bit Rate versus Constant Bit Rate

From Figure 1.3, the tradeoffs employed in the selection of a lossless com­
pression method can lead to several types of coder designs. In one approach,
one can envision a coder where the coding delay is fixed. This could lead to a
lossless coder where the coding efficiency fluctuates from sampie to sample,
but the output symbols are delivered at a constant rate. On the other hand,
if coding delay is not critical, one can process multiple sampies at a time to

Compression Fundamentals 11

obtain a higher coding efficiency. In this case, the encoder output datasize
is fixed, but output symbols are delivered at irregular time intervals. Thus,
depending on the application environment, one can obtain either fixed length
symbols at irregular time intervals or variable length symbols at constant time
intervals. Note that, using the generic coder structure shown in Figure 1.1, it is
possible to convert a variable length source-coder output bit stream to a fixed
length channel-coder output bit stream.

In the case of lossy compression, the tradeoffs shown in Figure 1.4 can lead
to several classes of coders. In one approach, the coding efficiency could be
constrained to a fixed value. For such coders, the signal quality would tend to
fluctuate. Such a coder might be required in a communication system where
the transmission rate cannot exceed a specified value. Another application
of such coders is in storage applications with fixed storage capacity . These
coders are referred to as constant bit rate coders. If the transmission or storage
requirements are not fixed and if the user desires specific quality at the output
of the decoder, then the coding efficiency can be allowed to fluctuate. These
coding schemes are referred to as constant quality or variable bit rate coders.

1.3.3 Single- or Multiple-Sample-Based Compression

Within the compression taxonomy shown in Figure 1.2, one can classify the
coding schemes as single- or multiple-sampled-based approaches. Single­
sample-based compression schemes process one input sampie at a time and
generate a compressed representation for each input sampie. In the case of
image or video data, such schemes are referred to as pixel-based or pel-based
schemes. Multiple-sample-based schemes process several input sampies at a
time and generate one or several compressed representations for the entire set
of input sampies. For image or video data, such compression methods are
referred to as block-based schemes. The benefit of block-based compression
over pel-based compression is weIl founded in Shannon's coding theorem,
where it is shown that if the the blocklength increases, then the coding
efficiency can reach its theoreticallimit. However, block-based schemes tend
to have higher complexity than pel-based schemes.

12 CHAPTER 1

1.3.4 Comparison of Compression Domains

Compression processes can exploit redundancies in the data across space, time,
or frequency. Single-sample-based compression schemes are often spatial­
domain or time-domain based; in this case, there are no inherent bit savings if
frequency domain approaches are adopted. Block-based compression schemes
fit into three main categories: spatial-domain-based, time-domain-based or
frequency-domain-based. If a group of sampies is highly correlated in
the spatial domain, then it tends to also have a very compact frequency­
domain representation; thus, a frequency-domain-based compression process
is preferred for such datasets. For multidimensional data, such as video, that
have both spatial and temporal components, a hybrid spatial- and frequency­
domain approach is adopted. Such hybrid techniques are the basis of all the
image and video compression standards wh ich will be discussed in subsequent
chapters of this text.

1.4 ISSUES IN COMPRESSION METHOD
SELECTION

In this chapter, we have introduced some fundamental concepts related to
image, video, and audio compression. When choosing a specific compression
method, one should consider the following issues:

• Lossless or lossy. This is usually dictated by the coding efficiency
requirements.

• Coding efficiency. Even in a lossy compression process, the desirable
coding efficiency might not be achievable. This is especially the case
when there are specific constraints on output signal quality.

• Variability in coding efficiency. In some applications, large variations in
coding efficiency among different data sets may not be acceptable.

• Resilience to transmission errors. Some compression methods are more
robust to transmission errors than others. If retransmissions are not
permitted, then this requirement may impact on the overall encoder­
decoder design.

Compression Fundamentals 13

• Complexity tradeoffs. In most implementations, it is important to keep the
overall encoder-decoder complexity low. However, certain applications
may require only a low decoding complexity.

• Nature of degradations in decoder output. Lossy compression methods
introduce artifacts in the decoded signal. The nature of artifacts depends
on the compression method that is employed. The degree to wh ich
these artifacts are judged objectionable also varies from application to
application. In communication systems, there is often an interplay between
the transmission errors and the coding artifacts introduced by the coder.
Thus, it is important to consider all types of error in a system design.

• Data representation. In many applications, there is a need to support
two decoding phases. In the first phase, decoding is performed to derive
an intelligible signal; this is the case in data browsing. In the second
phase, decoding is performed to derive a higher quality signal. One
can generalize this notion to suggest that some applications require a
hierarchical representation of the data. In the compression context, we
refer to such compression schemes as scalable compression methods. The
notion of scalability has been adopted in the compression standards that
are described later in the text.

• Multiple usage of the encoding-decoding tandem. In many applications,
such as video editing, there is a need to perform multiple encode-decode
operations using results from a previous encode-decode operation. This
is not an issue for lossless compression; however, for lossy schemes,
resilience to multiple encoding-decoding cycles is essential.

• Interplay with other data modalities, such as audio and video. In a system
where several data modalities have to be supported, the compression
methods for each modality should have some common elements. For
instance, in an interactive videophone system, the audio compression
method should have a frame structure that is consistent with the video
frame structure. Otherwise, there will be unnecessary requirements on
buffers at the decoder and a reduced tolerance to timing errors.

• Interworking with other systems. In a mass-market environment, there will
be multiple data modalities and multiple compression systems. In such an
environment, transcoding from one compression method to another may
be needed. For instance, video editing might be done on a frame by
frame basis; hence, a compression method that does not exploit temporal

14 CHAPTER 1

redundancies might be used here. After video editing, there might be a
need to broadcast this video. In this case, temporal redundancies can be
exploited to achieve a higher coding efficiency. In such a scenario, it is
important to select compression methods that support transcoding from
one compressed stream format to another. Interworking is important in
many communications environments as weIl.

1.5 TO PROBE FURTHER

In this chapter, we have briefly reviewed some of the basic concepts associated
with the compression of image, video, and audio signals. Additional details,
including descriptions of specific compression methods, can be found in Jayant
[92]. Some specific applications that are based on the concepts described in
this chapter can be found in Chapter 2 of [146]. These basic concepts will be
refined in subsequent chapters as we describe specific compression methods
for image, video, and audio.

2
METHODS AND STANDARDS FOR

LOSSLESS COMPRESSION

2.1 INTRODUCTION

Lossless compression refers to compression methods for wh ich the original
uncompressed data set can be recovered exactly from the compressed stream.
The need for lossless compression arises from the fact that many applications,
such as the compression of digitized medical data, require that no loss be
introduced from the compression method. Bitonal image transmission via
a facsirnile device also imposes such requirements. In recent years, several
compression standards have been developed for the lossless compression of
such images. We discuss these standards later in this chapter. In general,
even when lossy compression is allowed, the overall compression scheme
may be a combination of a lossy compression process followed by a lossless
compression process as depicted in Figure 1.5. Various image, video, and
audio compression standards follow this model, and several of the lossless
compression schemes used in these standards are described in this chapter.

2.2 PRELIMINARIES

The general model of a lossless compression scheme is as depicted in Figure
2.1. Given an input set of symbols, a mode1er generates an estimate of the
probability distribution of the input symbols. This probability model is then
used to map symbols into codewords. The combination of the modeling and
the symbol-to-codeword mapping functions is usually referred to as entropy

16

Input Symbol

I

S
1

1-
Probability

Model

CHAPTER 2

Symbol- I Codeword
To-

Codeword
Mapping

•

Figure 2.1 A generic model for lossless compression.

coding. The key idea of entropy coding is to use short codewords for symbols
that occur with high probability and long codewords for symbols that occur
with low probability .

The prob ability model can be derived either from the input data or from apriori
assumptions about the data. Note that, for decodability, the same model must
also be generated by the decoder. Thus, if the model is dynarnically estimated
from the input data, causality constraints require a delay function between the
input and the modeler. If the model is derived from apriori assumptions, then
the delay block is not required; furthermore, the model function need not have
access to the input symbols. The probability model does not have to be very
accurate, but the more accurate it is, the better the compression will be. Note
that, compression is not always guaranteed. If the probability model is wildly
inaccurate, then the output size may even expand. However, even then the
original input can be recovered without any loss.

Decompression is performed by reversing the flow of operations shown in
Figure 2.1. This decompression process is usually referred to as entropy
decoding.

Methods and Standards for Lossless Compression 17

2.2.1 Message-to-Symbol Partitioning

As noted before, entropy coding is performed on a symbol by symbol basis.
Appropriate partitioning of the input messages into symbols is very important
for efficient coding. For example, typical images have sizes from 256 x 256
pixels to 64,000 x 64,000 pixels. One could view one instance of, say, the
256 x 256 image as a single message, 64,000 units long; however, it is very
difficult to provide prob ability models for such long symbols. In practice, we
typically view any image as astring of symbols. In the case of a 256 x 256
image, if we assume that each pixel takes values between zero and 255, then
this image can be viewed as a sequence of symbols drawn from the alphabet 0,
1,2, .. ,255. The modeling problem now reduces to finding a good prob ability
model for the 256 symbols in this alphabet.

For some images, one might partition the data set even further. For instance,
if we have an image with 12 bits per pixel, then this image can be viewed as a
sequence of symbols drawn from the alphabet 0, 1, ... ,4,095. Hardware and/or
software imp1ementations of the lossless compression methods may require
that data be processed in 8-, 16-, 32-, or 64-bit units. Thus, one approach might
be to take the stream of 12-bit pixels and artificially view it as a sequence of
8-bit symbols. In this case, we have reduced the alphabet size. This reduction
compromises the achievable compression ratio; however, the data are matched
to the processing capabilities of the computing element.

Other data partitions are also possible; for instance, one may view the data as
a stream of 24-bit symbols. This approach may result in higher compression
since we are combining two pixels into one symbol. In general, the partitioning
of the data into blocks, where a block is composed of several input units, may
result in higher compression ratios, but also increases the coding complexity.

2.2.2 Differential Coding

Another preprocessing technique that improves the compression ratio is
differential coding. Differential coding skews the symbol statistics so that the
resulting distribution is more amenable to compression. Image data tend to
have strong interpixel correlation. If, say, the pixels in the image are in the
order Xl, X2, X3, ... , X N, then instead of compressing these pixels, one might
process the sequence of differentials Yi = Xi - Xi-l, where i = 1, 2, ... , N,

18 CHAPTER 2

and Xo = o. In compression terminology, Yi is referred to as the prediction
residual of Xi. The notion of compressing the prediction residual instead of
Xi is used in all the image and video compression standards. For images, a
typical prob ability distribution for Xi and the resulting distribution for Yi are
shown in Figure 2.2.

o
x. value

I

255 -255 o 255

Y. value
I

Figure 2.2 Typical distribution of pixel values for Xi and Yi.

Here, the pixel values are shown on the horizontal axis and the
corresponding probability of occurrence is shown on the vertical
axis.

Let symbol Si have a probability of occurrence Pi. From coding theory,
the ideal symbol-to-codeword mapping function will produce a codeword
requiring log2 }. bits. A uniform distribution for Pi (Pi ~ 2~5)' such as the
one shown in the left plot of Figure 2.2, will result in codewords that on the
average require eight bits; thus, no compression is achieved. On the other
hand, for a skewed prob ability distribution, such as the one shown in the right
plot of Figure 2.2, the mapping function can on the average yield codewords
requiring less than eight bits per symbol and thereby achieve compression.

2.3 HUFFMAN ENCODING

In 1952, D. A. Huffman developed a code construction method that can be
used to perform lossless compression. In Huffman coding, the modeling
and the symbol-to-codeword mapping functions of Figure 2.1 are combined

Methods and Standards for Lossless Compression 19

into a single process. As discussed earlier, the input data are partitioned
into a sequence of symbols so as to facilitate the modeling process. In most
image and video compression applications, the size of the alphabet composing
these symbols is restricted to at most 64,000 symbols. The Huffman code
construction procedure evolves along the following steps:

1. Order the symbols according to their probabilities.

For Huffman code construction, the frequency of occurrence of each
symbol must be known apriori. In practice, the frequency of occurrence
can be estimated from a training set of data that is representative of the data
to be compressed in a lossless manner. If, say, the alphabet is composed
of N distinct symbols 81, 82, "., 8 N and the probabilities of occurrence are
PI, P2, "., P N, then the symbols are rearranged so that PI ~ P2 ~ P3"· ~ P N .

2. Apply a contraction process to the two symbols with the smallest proba­
bilities.

Suppose the two symbols are 8N-l and 8N. We replace these two
symbols by a hypothetical symbol, say, H N - 1 , that has a probability of
occurrence PN -1 + PN. Thus, the new set of symbols has N - 1 members:
81,82, .", 8N-2, HN-l.

3. We repeat the previous step until the final set has only one member.

The recursive procedure in Step 2 can be viewed as the construction of a
binary tree, since at each step we are merging two symbols. At the end of the
recursion process, all the symbols 81,82, .. , 8 N will be leaf nodes of this tree.
The codeword for each symbol 8i is obtained by traversing the binary tree
from its root to the leaf node corresponding to 8i.

We illustrate the code construction process with the following example
depicted in Figure 2.3. The input data to be compressed is composed of
symbols in the alphabet k, l, U, w, e, r, ? In Step 1, we sort the probabilities. In
Step 2, we merge the two symbols k and W to form the new symbol (k, w). The
probability of occurrence for the new symbol is the sum of the probabilities of
occurrence for k and w. We sort the probabilities again and perform the merger
on the pair of least frequently occurring symbols, as shown in the boxed region
in Step 3 of Figure 2.3. We repeat this process through Step 6. By traversing
this process from right to left and visualizing this as a binary tree as shown in

20 CHAPTER 2

Symbol Probability Codeword

k 0.05 10101

I 0.2 01

U 0.1 100

w 0.05 10100

e 0.3 11

r 0.2 00

? 0.1 1011

! Merge Symbols

Step 1 Step 2 Step3
k 1/16 e 0.3 e 0.3 e 0.3

0.2 I 0.2 0.2 0.2

U 0.1 r 0.2 r 0.2 r 0.2

W k

0.05 U 0.05

(0) {k,w} (1) ?

step 1

step 4 L~, , • .1 step 2

U 0.1~ 0.1
r I {{k,w},?} lJ 1 1 step3 (0) (1)

0.1 ({{k,w},?},u}O.2 e

(0) (1) 1(0) step 5 (1)1

0.2 {I,r} 0.2 0.3 {{{{k,w},?},u},e} 0.3

1 (0) step 6 (1)1

0.4 t 0.6
Generate Codewords

Step 4 Step 5

e 0.3 {I,r} 0.4

{{{k,w},?},u} e 0.3
0.3

I 0.2 {{{k,w},?},u}
0.3

Step 6

{{{(k, w}, ?},u},e}
0.6

(I,r) 0.4

w 1/16 U 0.1 U 0.1 {{k,w}, ?} r 0.2
0.2

e 0.3 ? 0.1 ? 0.1 u 0.1

r 0.2 k 1'16 {k,w} 1/8

? 0.1 w 1/16

Figure 2.3 An example of Huffman codeword construction.

this figure, one can determine the codewords for each symbol. For example,
to reach the symbol u from the root of the tree, one traverses nodes that were
assigned the bits 1, 0, and O. Thus, the codeword for u is 100.

In this example, the average codeword length is 2.6 bits per symbol. In
general, the average codeword length is defined as

lavg = :2:= liPi, (2.1)

Methods and Standardsfor Lossless Compression 21

where li is the codeword length (in bits) for the codeword corresponding to
symbol Si. The average codeword length is a measure of the compression
ratio. Since our alphabet has seven symbols, a fixed-length coder would
require at least three bits per codeword. In this example, we have reduced
the representation from three bits per symbol to 2.6 bits per symbol; thus, the
corresponding compression ratio can be stated as 2~6 = 1.15. For the lossless
compression of typical image or video data, compression ratios in excess of
two are hard to come by.

2.3.1 Properties of Huffman Codes

According to Shannon, the entropy of a source S is defined as

1
H(S) = TJ = LP;log2-'

i Pi
(2.2)

where, as before, Pi denotes the probability that symbol Si from S will occur.
From information theory, if the symbols are distinct, then the average number
ofbits needed to encode them is always bounded by their entropy. For example,
for the alphabet used in the previous section, the average length is bounded
by 2.546439 bits per symbol. It can be shown that Huffman codewords satisfy
the constraints TJ ::; lavg < TJ + 1; that is, the average length is very elose to the
optimum. A tighter bound is 17 :S lavg < P + 0.086, where P is the probability
of the most frequently occurring symbol. The equality is achieved when all
symbol probabilities are inverse powers of two. Thus, the loss in performance
can be viewed as a result of the quantization effect on the symbol probabilities.

The Huffman code table construction process, as was described here, is
referred to as a bottom-up method, since we perform the contraction process
on the two least frequently occurring symbols. In recent years, top-down
construction methods have also been published in the literature.

The code construction process has a complexity of O(N log2 N). With
presorting of the input symbol probabilities, code construction methods with
complexity O(N) are presently known.

In the example, one can observe that no codeword is aprefix for another
codeword. Such a code is referred to as a prefix-condition code. Huffman
codes satisfy always the prefix-condition. If codelengths li satisfy the constraint

22 CHAPTER 2

L 2li ::; 1, then it can be shown that the resulting codewords satisfy the prefix­
condition. Furthermore, the corresponding codewords can be constructed as
the first li bits in the fractional representation of ai,

i-I

ai = L2lj ,i = 1,2, ... ,N.
j=1

(2.3)

Due to the prefix-condition property, Huffman codes are uniquely decodable.
Not every uniquely decodable code satisfies the prefix-condition. A code such
as 0, 01, 011, 0111 does not satisfy the prefix-condition, since zero is aprefix
for an of the codewords; however, every codeword is uniquely decodable,
since a zero signifies the start of a new codeword.

If we have a binary representation for the codewords, the complement of
this representation is also a valid set of Huffman codewords. The choice of
using the codeword set or the corresponding complement set depends on the
application. For instance, if the Huffman codewords are to be transmitted over
a noisy channel where the probability of error of a one being received as a
zero is high er than the prob ability of error of a zero being received as a one,
then one would choose the codeword set for which the bit zero has a higher
probability of occurrence. This will improve the performance of the Huffman
coder in this noisy channel.

In Huffman coding, fixed-Iength input symbols are mapped into variable-Iength
codewords. Since there are no fixed-size boundaries between codewords, if
some of the bits in the compressed stream are received incorrectly or if they
are not received at an due to dropouts, an the data are lost. This potentialloss
can be prevented by using special markers within the compressed bit stream
to designate the start or end of a compressed stream packet.

2.4 HUFFMAN DECODING

The Huffman encoding process is relatively straightforward. The symbol­
to-codeword mapping table provided by the modeler is used to generate the
codewords for each input symbol. On the other hand, the Huffman decoding
process is somewhat more complex.

Methods and Standards for Lossless Compression 23

2.4.1 Bit-Serial Decoding

For the example shown in Figure 2.3, let us assurne that the binary coding tree
is also available to the decoder. In practice, this tree can be reconstructed from
the symbol-to-codeword mapping table that is known to both the encoder and
the decoder. The decoding process consists of the following steps:

1. Read the input compressed stream bit by bit and traverse the tree until a
leaf node is reached.

2. As each bit in the input stream is used, it is discarded. When the leaf node
is reached, the Huffman decoder outputs the symbol at the leaf node. This
completes the decoding for this symbol.

We repeat these steps until all of the input is consumed. For the example
discussed in the previous section, since the Ion gest codeword is five bits and
the shortest codeword is two bits, the decoding bit rate is not the same for all
symbols. Hence, this scheme has a fixed input bit rate but a variable output
symbol rate.

2.4.2 Lookup-Table-Based Decoding

Lookup-table-based methods yield a constant decoding symbol rate. The
lookup table is constructed at the decoder from the symbol-to-codeword
mapping table. If the longest codeword in this table is L bits, then a 2L entry
lookup table is needed. In our example, L = 5. Specifically, the lookup table
construction for each symbol Si is as follows:

• Let Ci be the codeword that corresponds to symbol Si. Assurne that Ci has
Li bits. We form an L-bit address in which the first Li bits are Ci and the
remaining L - Li bits take on all possible combinations of zero and one.
Thus, for the symbol Si, there will be 2L - li addresses.

• At each entry we form the two-tuple (Si, Li).

Decoding using the lookup table approach is relatively easy:

24 CHAPTER 2

1. From the compressed input bit stream, we read in L bits into a buffer.

2. We use the L-bit word in the buffer as an address into the lookup table
and obtain the corresponding symbol, say Sk. Let the codeword length be
lk. We have now decoded one symbol.

3. We discard the first lk bits from the buffer and we append to the buffer,
the next lk bits from the input, so that the buffer has again L bits.

4. We repeat Steps 2 and 3 until all ofthe symbols have been decoded.

The primary advantages of lookup-table-based decoding are that it is fast
and that the decoding rate is constant for all symbols, regardless of the
corresponding codeword length. However, the input bit rate is now variable.
For image or video data, the Ion gest codeword could be around 16 to 20 bits.
Thus, in some applications, the lookup table approach may be impractical due
to space constraints.

Variants on the basic theme of lookup-table-based decoding include using
hierarchical lookup tables and combinations of lookup table and bit-by-bit
decoding. In the next section, we describe codeword construction methods
that facilitate lookup-table-based decoding by constraining the maximum
codeword length to a fixed-size L.

2.5 HUFFMAN CODES WITH CONSTRAINED
LENGTH

In the previous section, we described several decoding procedures for Huffman
decoding. For fast decoding, lookup-table-based approaches are preferable.
In many applications, depending on the symbol probabilities, the Huffman
codebook design may yield codewords that may require a large number of bits.
This outcome is possible when some of the symbol probabilities are extremely
smalI. Thus, lookup-table-based decoding may not be feasible if the memory
requirements are prohibitive. To alleviate this problem, a shortened Huffman
code can be used.

The basic idea of the shortened Huffman code is to view the Huffman code
representation as a hierarchical representation. Suppose, due to lookup table

Methods and Standards for Lossless Compression 25

size constraints, we require that no codeword length exceed L bits. Let S be
the set of N symbols SI, SI, ... , SN for which a Huffman code is to be designed.
Let Pi be the occurrence frequency for symbol Si. We further assume that the
symbols are ordered so that PI ~ P2 ~ P3 ... ~ P N. The design procedure for a
shortened Huffman code is as follows:

1. Partition Sinto two sets SI and S2 as

1
SI = Si !Pi > 2L '

1
S2 = Si!Pi ::; 2L ;

2. Create a special symbol Q such that its frequency of occurrence is

q = L Pi·
iES2

(2.4)

(2.5)

(2.6)

3. Augment SI by Q to form a new set W. The new set has the occurrence
frequencies corresponding to symbols in SI and the special symbol Q. We
then construct an optimal prefix code for W using the design procedure
for unconstrained-Iength Huffman codewords, as explained in a previous
section. This design procedure will yield codewords Cs l for symbols in the
set SI and a codeword Cq for the symbol Q. Cq is the shortened prefix-code
for symbols in S2.

If Li is the length of the i-th codeword of SI, then

maXSi Es,Li = maXSi ES, fl 0 92 Pi l ::; L (2.7)

Thus, all symbols in SI yield codewords that are at most L bits. Codeword
Cq will also not exceed L bits. (I x l denotes the smallest integer larger or
equal to x.)

Huffman encoding of a message string mlm2m3 ... mk is relatively straightfor­
ward.

• For all mi E SI, output the corresponding codeword from Csl.

26 CHAPTER 2

• For all mi E S2, output the codeword Cq followed by an L-bit fixed-Iength
binary representation for mi. (Actually, one can use fewer than L bits,
'since if there are N s2 symbols in S2 and N s2 :::; N, then the fixed-Iength
binary representation for each mi is rl092 N s21 bits).

When the symbol occurrence frequencies are known apriori, one can estimate
the worst-case performance degradation for the shortened Huffman codes as
compared with the unconstrained Huffman code table design.

Let lsh be the average codeword length for the shortened codeword design
approach. Let lw be the average codelengths for W, and let H(W) be the
entropy for W. We have

lsh = lw + qL,

H(W) :::; lsh :::; H(W) + 1.

Furthermore, lsh is bounded by

H(S) :::; lsh :::; H(W) + qL + 1,

where H(S) denotes the entropy of S. However,

and

Hence,

1 1
H(W) = L pd092 - + ql092-'

iESl Pi q

1 1
qL = L Pi L = L Pi 1092 2- L :::; L Pi 1092 --:-'

iES2 iES2 iES2 Pt

1 1
H(S) = L P;l092 - + L Pi 1092 --:-.

Pi, Pt
iESl tE S2

1
H(S) :::; lsh :::; H(S) + 1 + ql092 q'

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

For an optimal unconstrained Huffman code, the average codelength is
bounded by H(S) :::; lavg :::; H(S) + 1. Hence, the worst-case increase in the
average codeword length for the shortened code is q 1092 ~ bits per symbol
(this function attains a maximum value of ~).

Huffman decoding for shortened prefix codes using a lookup-table-based
approach is similar to the procedure described in the previous section. In

Methods and Standards for Lossless Compression 27

this case, a two-Ievel decoding is done when the codeword Cq is decoded.
After Cq is decoded, the next L bits are read from the input bit stream, and the
corresponding symbol mi is then computed. We illustrate the code construction
process with an example.

Example 1: Let S = 80,82, ... ,815' The occurrence frequencies and the
resulting unconstrained Huffman code are as shown in Table 2.1. Here, the
Huffman code table design is based on the approach described in the previous
section. The average codeword length is lavg = 2:~!0 liPi = 2.694 bits per

Symbol8i Pi li Codeword
0 0.28200 2 11
1 0.27860 2 10
2 0.14190 3 011
3 0.13890 3 010
4 0.05140 4 0011
5 0.05130 4 0010
6 0.01530 5 00011
7 0.01530 5 00010
8 0.00720 6 000011
9 0.00680 6 000010
10 0.00380 7 0000011
11 0.00320 7 0000010
12 0.00190 7 0000001
13 0.00130 8 00000001
14 0.00070 9 000000001
15 0.00040 9 000000000

Table 2.1 Unconstrained length Huffman codewords.

symbol. Note that, the longest codeword is nine bits. Thus, a 512-entry table is
needed for lookup-table-based decoding. Let us suppose that only a 128-entry
lookup table can be permitted. Thus, we need to design a seven-bit shortened
Huffman code, that is, all codeword lengths must be less than or equal to seven
bits.

The code table design procedure is as follows:

28 CHAPTER 2

1. We form the two sets SI and S2. Symbols 88 to 815 belong to S2, since
Pi :s 1~8 for i = 8 to 15. The occurrence frequency of the special symbol
Q is E~!8 Pi = 0.0253.

2. The codeword design process for the shortened Huffman codes is il­
lustrated in Figure 2.4. The corresponding Huffman code table for the

11 01 101 100 0011 0010 00011 00010 0000

~ So

0.2820

~ S1

0.2786

~ S2 ~ s3 ~ S4

0.1419 0.1389 0.0514

~ S5

0.0513

~ S6

0.0153

~ S7

0.0153

~Q
0.0253

11 10

11 o

1 0

11 0

1 0

1 0

0

11 0

Figure 2.4 Shortened Huffman code.

shortened Huffman codes is shown in Table 2.2. Note that, for all symbols
in S2 we need aprefix code of four bits followed by a seven-bit represen­
tation for the specific symbol in S2. The average codeword length is now
lsh = EJ=ü liPi + E~!8 llPi = 2.8057 bits per symbol.

During encoding, if the input symbol is in set SI, then the encoder outputs
the corresponding Huffman codeword. If the input symbol is in set S2, then
the encoder outputs a codeword with the prefix 0000 followed by a codeword
which is the seven bit representation of the symbol in the set S2. For instance,
if, say, symbol 89 is to be encoded, then the Huffman code for this symbol
will be made up of two codewords 0000 and 0001001. Note that, the Ion gest
codeword does not exceed the specified length of seven bits.

Methods and Standards Jor Lossless Compression 29

Symbol i Pi li Codeword Additional
0 0.28200 2 11
1 0.27860 2 01
2 0.14190 3 101
3 0.13890 3 100
4 0.05140 4 0011
5 0.05130 4 0010
6 0.01530 5 00011
7 0.01530 5 00010
8 0.00720 11 0000 0001000
9 0.00680 11 0000 0001001
10 0.00380 11 0000 0001010
11 0.00320 11 0000 0001011
12 0.00190 11 0000 0001100
13 0.00130 11 0000 0001101 I

14 0.00070 11 0000 0001110
15 0.00040 11 0000 0001111

Table 2.2 Constrained-Iength (L = 7 bits) Huffman codewords.

Decoding is performed as follows:

1. We first construct a lookup table as explained in the previous section.
Huffman decoding for each output symbol is as follows:

2. From the input bit stream, we fetch bits into a buffer until the buffer has
seven bits. We access the lookup table location, using the seven bits as an
address. This lookup table location contains the symbol for the Huffman
code and the codelengths for the Huffman code. Let mk be the symbol
and lk the codelengths.

3. The first lk bits in the buffer are discarded by shifting the buffer contents
to the left by lk bit positions.

• If mk is not the special symbol Q, mk is one of the symbols
80,81, ... ,87, and thus we have correctly decoded this symbol.

• If mk is the special symbol Q, additional bits from the input bit
stream are needed for decoding. We fetch lk bits from the input

30 CHAPTER 2

bit stream to fill up the buffer. The buffer now contains the binary
representation for one ofthe symbols 88,89, ... ,815, and thus we have
correctly decoded a symbol from S2.

• We repeat Steps 2 and 3 until the complete message has been
decoded.

As illustrated by this example, a shortened prefix code can be decoded with
modest lookup table requirements, and decoding is quite efficient. However,
the average codelengths are worse, compared to the unconstrained Huffman
code table design. Table 2.3 shows the maximum limits for the additional bits
per symbol for a shortened Huffman code versus an unconstrained Huffman
code. The data in this table are computed for the example cited in this section
and use the bounds derived in this section.

Lookup Table Size (entries) Worst case lsh -lavg (bits/symbol)
16 0.4213
32 0.2326
64 0.2326
128 0.l342
256 0.0731
512 0.0338

Table 2.3 Average codeword length lsh degradations compared
to an unconstrained Huffman code for various values of L. Code
table size is 2L entries.

The key dis advantage of two-Ievel decoding is that we cannot guarantee a
constant symbol rate at the Huffman decoder output. This may be a requirement
for many applications. In the next section, we describe other approaches to
constrained-Iength Huffman codeword design. These approaches avoid the
two-Ievel decoding that is needed for the approach developed in this section.
Furthermore, the approaches described in the next section are capable of
yielding an average codeword length which is close to the optimum.

Methods and Standards for Lossless Compression 31

2.6 CONSTRAINED-LENGTH HUFFMAN CODES -
AD-HOC DESIGN

In the previous section, we developed a Huffman code table design in which the
codeword lengths were constrained to be at most L bits. The design entailed
using aprefix code followed by an L-bit representation for infrequently
occurring message symbols. Here, we develop an ad-hoc design methodology
that does not use aprefix code. This methodology has the advantage that with
a lookup-table-based decoder, the output decoding rate will be constant.

The codebook design process is as follows:

Let the N members of the symbol alphabet be S1, S1, ... , SN. We denote this
as the set S. Messages that are to be Huffman encoded are composed of
symbols in S. We assume that the occurrence frequencies (probabilities) for
each symbol in S is known; the i-th symbol Si has the occurrence probability
denoted as Pi.

• For a maximum codeword length of L bits, we define a threshold T = 2- L .

• Sort Si, i = 1,2, ... , N so that Pk ~ PH1.

• For each Pi, if Pi ::; T, set Pi = T.

• Design the codebook using the modified Pi values and the unconstrained­
length Huffman code table design approach.

Since Pi is restricted to at most 2- L , no codeword length will exceed L bits.
However, this ad-hoc design does not guarantee that there will be at least
one codeword that has L bits. Hence, this design approach may be overly
aggressive. In Table 2.4, we show the codewords that result from this ad-hoc
design method. (Ignore for the time being the column labeled Reordered.) The
symbol frequencies are the same as those used in the previous section.

The resulting codewords, shown in the fourth column of this table, have a
maximum codeword length of seven bits and an average codeword length lavg

of 2.7308 bits per symbol. Note that, the unconstrained-length Huffman code
table would have required a maximum code length of nine bits and would yield
an average code length of 2.6904 bits per symbol. As expected, constraining

32 CHAPTER 2

Reordered
Symbol i Pi l Codeword l Codeword

0 0.28200 2 11 2 11
1 0.27860 2 01 2 01
2 0.14190 3 101 3 101
3 0.13890 3 100 3 100
4 0.05140 4 0010 4 0010
5 0.05130 4 0001 4 0001
6 0.01530 6 001100 6 001100
7 0.01530 6 001101 6 001101
8 0.00720 7 0011110 6 000010
9 0.00680 7 0011111 6 000011
10 0.00380 7 0011100 6 000000
11 0.00320 7 0011101 6 000001
12 0.00190 6 000010 7 0011110
13 0.00130 6 000011 7 0011111
14 0.00070 6 000000 7 0011100
15 0.00040 6 000001 7 0011101

lavg I 2.7308 I 2.7141

Table 2.4 Constrained-Iength (L = 7 bits) Huffman codewords­
Ad-hoc design.

the codeword lengths results in a slightly worse average code length. Also
observe that symbols S8 to Sll have codewords with more bits than symbols
S12 to 815, even though they have a higher probability of occurrence. This is
due to the fact that some of the probabilities were set to the threshold T and
hence the ordering among the probabilities is obscured.

Intuitively, we expect symbols with a low probability of occurrence to require
Ion ger codewords. Thus, in our ad-hoc design approach, we can apply this
notion to rearrange the final codewords. Rearranging is done by simply sorting
the codeword lengths in ascending order of magnitude and associating this
sorted list to the corresponding list of codewords. The use of post sorting on
the symbol lengths yields the codeword lengths shown in the fifth column.
The average codeword length has now been reduced to 2.7141 bits per symbol.
This ad-hoc design has a lower average codeword length than the prefix-code

Methods and Standards for Lossless Compression 33

design approach deve10ped in the previous section. The average codeword
length can be lowered further using a method that we describe in the next
section.

2.7 CONSTRAINED-LENGTH HUFFMAN CODES -
THE VOORHIS METHOD

This method yields codewords with an average length that is dose to the
optimum, subject to the constraint that no codeword exceed L bits. The design
process is in three steps.

1. If the message is composed of symbols drawn from a set of symbols
81, 82, ... ,8 N and if the symbol occurrence frequencies are known apriori,
sort the symbols so that PI 2: P2··· 2: P N .

2. Determine codeword lengths h,l2, ... ,zN that minimize I:~lliPi subject
to the constraint 1 ::; li ::; L.

For uniquely decodable codes, we also require that I:~l 2-li ::; 1. The
resulting codeword lengths will be such that 1 ::; h ::; l2 ... ::; lN ::; L.

3. The i-th codeword is the first li bits ofthe fraction computed by I:~-:,ll 2-lk .

The major difficulty in this process is in the second step, namely, in the
calculation ofthe codeword lengths. The algorithm due to Voorhis proposes a
recursive solution. The recursion assurnes that codeword lengths h, l2, .. , lr-l
have been found so far. Hence, the binary representation for the corresponding
codewords, denoted as Cl, C2, ... , Cr-l, is known. Define

k lr-l, (2.15)
r-l

8 2k(1 - L 2- li). (2.16)
i=l

Then 8 k-bit prefixes are available for the codewords Cr, ... , CN. This is referred
to as the [k,r,s] problem, and the goal is to find an optimal way to partition
8 k-bit prefixes of codespace among the codewords Cr, ... , CN, subject to the
condition li E [k, L]Vi E [r, N]. The computational steps for determining the
codelengths h, l2, ... , lN by solving the [k,r,s] problem are as folIows.

34 CHAPTER 2

1. for k E [l,L]
for rE [1, min(N - 1, 2k)]

for sE [N - r + 1, min(2N - 2r, 2k - r + 1)]

'l/Jk,r,s = l:~1 kPi

2. for k = L - 1, ... , 1
for r = min(N - 1, 2k), ... , 1

for s = min(N - r, 2k - r + 1), ... , f(N - r + 1)2k- L l
jf s < f(N - r)2 k - L l + 1

'lfJk,r,s = 'l/Jk+l,r,2s

else

'l/Jk,r,s = min(kpr + 'l/Jk,r+1,s-l, 'l/Jk+1,r,2s)

3. k=1,r=1,s=2

4. jf k = L or N - r + 1 :S s go to step 8

5. jf (N - r)2- L > (s - 1)2-k go to step 7

6. jf kPi + 'l/Jk,r+1,s-1 < 'l/Jk+1,r,2s go to step 8

7. k=k+1,s=2s,gotostep4

8. Zr = k, r = r + 1, s = s - 1

9. jf r :S N go to step 4

At this point, we have computed the codelengths h, Z2, ... , ZN. These codelengths
minimize l:~IZiPi and satisfy the constraint 1 :S h :S Z2 ... :S ZN :S L. The
codewords corresponding to these codelengths can be computed as

lo = 1, (2.17)

al = 2-10 , (2.18)
i-I

ai = L2-lk ,i = 2,3, .. ,N. (2.19)
k=1

The i-th codeword is the binary representation of ai truncated to the first li
bits.

Example 2: We apply the algorithm described here to construct a Huffman
code table using the symbol probabilities of Example 1. For a Huffman

Methods and Standards for Lossless Compression

Symbol i Pi Unconstrained Ad-hoc Voorhis
0 0.28200 11 11 11
1 0.27860 10 01 10
2 0.14190 011 101 011
3 0.13890 010 100 010
4 0.05140 0011 0010 001 1
5 0.05130 0010 0001 0010
6 0.01530 00011 001100 00011
7 0.01530 00010 001101 00010
8 0.00720 000011 000010 0000111
9 0.00680 000010 000011 0000110
10 0.00380 0000011 000000 0000101
11 0.00320 0000010 000001 0000100
12 0.00190 0000001 0011110 0000011
13 0.00130 00000001 0011111 0000010
14 0.00070 000000001 0011100 0000001
15 0.00040 000000000 0011101 0000000

1 1avg-T2.-6940 r2.7141 I 2.7045

Table 2.5 Voorhis method. Constrained-1ength (L = 7 bits)
Huffman codewords.

35

codeword length constraint of L = 7 bits, the resulting codewords are as shown
in Table 2.5. For comparison, we show the codewords for the unconstrained
Huffman code table and the ad-hoc method described earlier. While both the
ad-hoc design method and the Voorhis method satisfy the maximum codeword
length constraint of L = 7 bits, the Voorhis method yields a lower average
codeword length lavg. We further illustrate the performance ofthese two design
methods in Figure 2.5. Here, we have used the symbol probabilities from
Example 1, and we show the average codeword length for various maximum
codeword length settings. In all instances, the Voorhis method outperforms
the ad-hoc method, and the performance gap will widen as the maximum
codeword length is increased.

For a message composed of symbols from an N -symbol alphabet, if L =
log2 N + d, then the Voorhis method has a complexity of O(dN2). The
ad-hoc design has a lower complexity of O(N log2 N); however, the average

36

4 .0

\ 3.9

3 .8

3.7

~3.6
.0

~3.5
Öl
]! 3.4

"E 3.3
0
~ 3.2
"0
8 3.1

~3.0

'" Gi 2.9
>
« 2.8

2.7

2.6

2.5

4

CHAPTER 2

5

.~ __ . Ad-~OC melhod

Voorhis method

6 7 8.

Maximum length of any codeword (bits)

9

Figure 2.5 Huffman codeword design. Comparison of average
code lengths between the ad-hoc and the Voorhis methods.

codeword length is not necessarily minimized among all possible codeword
choices. In image and video compression standards, N is usually large, say,
256 symbols, and the ad-hoc design may be preferred in these instances. Note
that, regardless of the design approach, various implementations may impose
additional constraints. For instance, in the Huffman tables for the JPEG image
compression standard, there should be no Huffman codeword that is all ones;
that is, 11111 ... 1. If the codeword design method yields such a sequence, one
can simply take the complement of such a code table. The complement of a
Huffman code table is also a valid Huffman code table and will satisfy the
unique prefix condition that is characteristic of all Huffman codewords.

Methods and Standards for Lossless Compression 37

2.8 ARITHMETIC CODING

The Huffman coder generates a new codeword for each input symbol. This
implies that the lower limit on compression for a Huffman coder is one bit per
input symbol. As observed earlier, higher compression ratios can be achieved
by combining several symbols into a single unit. However, in the Huffman
coding context, there is a corresponding increase in complexity in codeword
construction.

Another problem with Huffman coding is that the coding and the modeling
steps are combined into a single process, and thus adaptive coding is difficult.
If the probabilities of occurrence of the input symbols change, then one has to
redesign the Huffman tables from scratch. An alternative to Huffman coding
is arithmetic coding.

Arithmetic coding is a lossless compression technique that benefits from
treating multiple symbols as a single data unit but at the same time retains
the incremental symbol-by-symbol coding approach of Huffman coding.
Arithmetic coding separates the coding from the modeling. This process
allows for the dynamic adaptation of the probability model without affecting
the design of the coder. Provisions for substituting Huffman coding with
arithmetic coding are contained in many of the image compression standards.
In this section, we briefly describe the basic concepts in arithmetic coding.

2.8.1 The Encoding Process

In the theory of arithmetic coding, a single codeword is assigned to each
possible data set. Each codeword can be considered a half-open subinterval
in the interval [0,1). By assigning enough precision bits to each of the
codewords, one can distinguish one subinterval from any other subinterval,
and thus uniquely decode the corresponding data set. Like Huffman codewords,
the more probable data sets correspond to larger subintervals and thus require
fewer bits of precision.

We describe the encoding process in arithmetic coding via an example. For a
comparison with Huffman coding, we use the same alphabet (k, l, u, w, e, r,?)
and the same symbol probabilities as in the example shown in Figure 2.3.
The message to be compressed is the string lluure? We use ? as an end-

38 CHAPTER 2

of-message marker to terminate the decoding process. Using the Huffman
coder of Figure 2.3, the corresponding codeword would be the 18-bit string
010110010000111011. For the arithmetic coder, the encoding process is
shown in Figure 2.6.

Input u u e ?

.25 .10 .074 .0714 .07136 .071312 .0713360

? ~ l? ;l? !l? ;l? ,' l? ;- -- - - ~' , . , . . .
- -, , , ,

I r , , •
I , --, l:- ,

•

le
• ,

e , le . Je , Je e • le
I
I ,

~~) ~:
I , ,

jW :
, ,

w' 'f!_' W w' ,: I •
U ' U ' U U U • I

, •
I - -, ,
• I

• •
• • • ,
• i< -, , Ji< -" J k
,

k k k " --.J k
~ --.J k •

0 . 05 .06 .070 .0710 .07128 .071336 .0713336

Figure 2.6 Arithmetic coding. Example ofthe encoding process.

1. At the start of the process, the message is assumed to be in the half­
open interval [0,1). This interval is split into several subintervals,
one subinterval for each symbol in our alphabet. The upper limit of
each subinterval is the cumulative probability up to and including the
corresponding symbol. The lower limit is the cumulative probability up
to but not including the symbol. For our example, the subinterval ranges
are given in Table 2.6.

Methods and Standardsfor Lossless Compression 39

Si Pi Subinterval
k 0.05 [0.00,0.05)
I 0.20 [0.05,0.25)
u 0.10 [0.25,0.35)
w 0.05 [0.35,0.40)
e 0.30 [0.40,0.70)
r 0.20 [0.70,0.90)
? 0.10 [0.90,1.00)

Table 2.6 Symbol subinterval ranges.

2. When the first symbol in OUf message, I, appears, we select the corre­
sponding subinterval and make it the new current interval. The intervals
of the remaining symbols in OUf alphabet are then scaled accordingly.

Intuitively, we take that subinterval and we stretch it out to have the same
length as before; however, the sc ale is now different. In OUf example, the
original [0, 1) interval corresponds now to [0.05,0.25).

Let Previouslow and PreviOUShigh be the lower and the upper limits of
the old interval. In this example, at this stage, Previouslow = 0 and
PreviOUShigh = 1.
Let Range = PreviOUShigh - Previouslow. After input I, the lower limit
for the new interval is Previouslow + Range x subintervallow of symbol
l. From Table 2.6, subintervallow of symbol I = 0.05. Similarly, the upper
limit for the new interval is Previouslow + Range x subintervalhigh of
symboll. From Table 2.6, subintervaltow and subintervalhigh for symbol
I are 0.05 and 0.25. Hence, the limits for the new interval are [0.05,0.25).

3. After the second input, l, we compute the lower and upper limit of the
new interval as 0.05 + (0.25 - 0.05) x 0.05 = 0.06 and 0.05 + (0.25 - 0.05)
x 0.25 = 0.10.

4. For the third input, u, the lower and upper limits for the new interval are
computed as 0.06 + (0.10 - 0.06) x 0.25 = 0.07 and 0.06 + (0.10 - 0.06)
x 0.35 = 0.074.

5. The calculations described in previous steps are repeated using the limits
of the previous interval and the subinterval ranges of the current symbol.
This yields the limits for the new interval. After the last symbol, ?, the

40 CHAPTER 2

Si i cumprobi

k 7 0.00
I 6 0.05
u 5 0.25
w 4 0.35
e 3 0.40
r 2 0.70
? 1 0.90

0 1.00

Table 2.7 Modified decoder table.

final range is computed. In our example, the final range is [0.0713336,
0.0713360).

6. There is no need to transmit both values of the bounds in the last interval.
Instead, we transmit a value that is within the final range. In our example,
any number such as 0.0713336, 0.071334, ... , 0.0713355 could be used.
We use 0.0713348389. The reader can verify that this number can
be represented as 2-4 + 2-7 + 2-10 + 2-15 + 2-16 , and hence it can be
represented with 16 bits.

In conc1usion, the codeword length for the message lluure? is 16 bits with
an arithmetic coder, 18 bits with a Huffman coder, and 7 x 3 = 21 bits with
a fixed-Iength coder. Arithmetic coding yields better compression because it
encodes a message as a whole new symbol instead of as separate symbols.

2.8.2 The Decoding Process

The decoding process can be described using the same example. Let us assurne
that the message lluure? was encoded with 16 bits and that the corresponding
fractional value is 0.0713348389. Given the symbol probabilities, shown in
Table 2.6, to each symbol in our alphabet we assign a unique number (i) and
we associate a cumulative prob ability value cumprok For our example, the
modified decoder table is shown in Table 2.7.

Methods and Standards for Lossless Compression 41

Given the fractional representation ofthe input codeword value, the following
algorithm outputs the corresponding decoded message. In our example, value

= 0.0713348389.

DecodeSymbol (value):

Begin

End

Previouslow = o.
PreviOUShigh = 1.

Range = PreviOUShigh - Previouslow.

repeat
Find i such that

cumprob' < value-PreviouslQw < cumprob·_ . , - Range ' 1

Output symbol corresponding to i from the decoding table.
Update:
PreviOUShigh = Previouslow + Range * cumprobi_ 1 .

Previouslow = Previouslow + Range * cumprobi .

Range = PreviOUShigh - Previouslow .

until symbol decoded is ?

We show a few steps ofthe decoding process in our example.

1. Initially, Previouslow = 0, PreviOUShigh = 1, and Range = 1. For
i = 6 cumprob < value-Previouslow < cumprob. Thus the first de-, 6 _ Range 5,

coded symbol is l. As per the algorithm shown above, we update
PreviOUShigh, Previouslow , and Range to 0.25, 0.05, and 0.2, respec­
tively.

2. We repeat the decoding process and we find that i = 6 satisfies again
the limits cumprob6 :S val~~20o.05 < cumprob5. Thus, the second decoded
symbol is l. The updated PreViOUShigh, Previouslow, and Range values
are 0.10, 0.06, and 0.04, respectively.

3. Repeating the decoding process yields that i = 5 satisfies the limits
cumprob5 :S val~~o2·06 < cumprob4. Thus, the third decoded symbol is
u. As before, we update PreviOUShigh, Previouslow, and Range to 0.074,
0.070, and 0.004, respectively.

42 CHAPTER 2

4. We repeat the decoding process as in previous steps. Finally, we decode
?, which signals the end of the message and terminates the decoding
algorithm.

2.9 IMPLEMENTATION ISSUES

The encoding and decoding processes described in the previous section have
to be modified for a practical implementation of an arithmetic coder. Some of
these design issues are discussed next.

• Incremental Output

The encoding method we have described generates a compressed bit
stream only after reading the entire message. However, in most im­
plementations, and particularly in image compression, we desire an
incremental transmission scheme.

From Figure 2.6, we observe that after encoding u, the subinterval range
is [0.07,0.074). In fact, it will start with the value 0.07; hence, we can
transmit the first two digits 07. After the encoding of the next symbol,
the final representation will begin with 0.071 since both the upper and the
lower limits of this range contain 0.071. Thus, we can transmit the digit
1. We repeat this process for the remaining symbols. Thus, incremental
encoding is achieved by transmitting to the decoder each digit in the
final representation as soon as it is known. The decoder can perform
incremental calculations too.

• High-precision arithmetic

As we have illustrated in the example, most of the computations in arith­
metic coding use floating-point arithmetic; however, most low-cost hard­
ware implementations support only fixed-point arithmetic. Furthermore,
division (used by the decoder) is undesirable in most implementations.
Consider the problem of arithmetic precision in the encoder.

During encoding, the subinterval range is narrowed as each new symbol is
processed. Depending on the symbol probabilities, the precision required
to represent this range may grow; thus, there is a potential for overflow
or underflow. For instance, in an integer implementation, if the fractional
values are not scaled appropriate1y, different symbols may yield the same

Methods and Standardsfor Lossless Compression 43

limits for PreviOUShigh and Previousl ow ; that is, no subdivision of the
previous subinterval takes place. At this point, encoding would have to
be abnormally terminated.

Let subinterval limits Previouslow and PreviOUShigh be represented as
integers with c bits of precision. The length of a subinterval is equal to
the product of the probabilities of the individual events. If we represent
this probability with f bits of precision, to avoid overflow or underflow,
we require f :s c + 2 and f + c :s p, where p is the arithmetic precision for
the computations. For arithmetic coding on a 16-bit computer, p = 16. If c
= 9, then f = 7. If the message is composed of symbols from a k-symbol
alphabet, then 21 :2: k. Thus, a 256-symbol alphabet cannot be correctly
encoded using 16-bit arithmetic.

In recent years there have been many developments in arithmetic coding
that allow fixed-precision arithmetic with simple operations, such as
shifts, additions, and subtractions.

• Probability modeling

Thus far, we have assumed apriori knowledge ofthe symbol probabilities
Pi. In many practical implementations that use the arithmetic coder,
symbol probabilities are estimated as the pixels are processed. This
allows the coder to adapt better to changes in the input stream. A typical
example is a document that includes both text and images. Text and
images have quite different probability models. In this case, an adaptive
arithmetic coder is expected to perform better than a nonadaptive entropy
coder.

Huffman coding and arithmetic coding techniques form the basis of various
lossless image compression standards. In the next section, we give abrief
overview of the techniques used in the compression standards.

2.10 STANDARDS FOR LOSSLESS COMPRESSION

Standards related to the coding and transmiSSlOn of signals over public
telecommunication channels are developed under the auspices of the telecom­
munication standardization sec tor of the International Telecommunication
Union (ITU-T). This sector was formerly known as the CCITT. The first

44 CHAPTER 2

standards for lossless compression were developed for facsimile applications.
Scanned images used in such applications are bitonal; that is, the pixels take
on one of two values, black or white, and these values are represented with
one bit per pixel.

2.10.1 Facsimile Compression Standards

In every bitonal image, there are large regions that are either all white or all
black. For instance, in Figure 2.7, we show a few pixels of a line in abitonal
image. Note that, the six contiguous pixels of the same color can be described

D DIID
Figure 2.7 Sampie scanline of abitonal image.

as a run of six pixels with with value = O. Thus, if each pixel of the image
is remapped from say, its (position, value) to a run and value, then a more
compact description can be obtained. In our example, no more than four bits
are needed to describe the six-pixel run. In general, for many document type
images, significant compression can be achieved using such preprocessing.
Such a mapping scheme is referred to as a run-Iength coding scheme.

The combination of a run-Iength coding scheme followed by a Huffman coder
forms the basis of the image coding standards for facsimile applications. These
standards include the following:

• ITU-T Rec. TA (also known as Group 3). There are two coding
approaches within this standard.

1. Modified Huffman (MH) code. The image is treated as a sequence
of scanlines, and a run-Iength description is first obtained for each
line. A Huffman code is then applied to the (run, value) description.
Aseparate Huffman code is used to distinguish between black and
white runs, since the characteristics of these runs are quite different.
The Huffman code table is static; that is, it does not change from

Methods and Standardsfor Lossless Compression 45

image to image. For error-detection purposes, after each line is
coded, an EOL (end of line) codeword is inserted.

2. Modified Read (MR) code. Here, pixel values in a previous line
are used as predictors for the current line. This is followed by a
run-Iength description and a static Huffman code as in the MH code.
An EOL codeword is also used. To prevent error propagation, MR
coding is mixed with MH coding periodically.

• ITU-T Rec. T.6 (also known as Group 4). The coding technique used here
is referred to as a Modified Modified Read (MMR) code. This code is a
simplification of the MR code, wherein the error-protection mechanisms
in the MR code are removed so as to improve the overall compression
ratio.

These compression standards yield good compression (20: 1 to 50: 1) for
business-type scanned documents. For images composed of natural scenes
and rendered as bitonal images using a halftoning technique, the compression
ratio is severely degraded. In Figure 2.8, the image on the left possesses
characteristics representative of business document images whereas the image
on the right is a typical half tone image. The former is characterized by

o
2 == 111
3 == 111

== 111
5 = 111
6 :111

::111 .
:tB . ::.,

: 111::

111 =
111 =
111 ==
111=
111=
111=

111 =?

Figure 2.8 Typical bitonal images.

long runs of black or white, and the static Huffman code in the facsimile
compression standards is matched to these run-lengths. In the latter image, the

46 CHAPTER 2

JBIG - Baselayer ITU-T Rec. T.6
Complexity Three-line template, 2-D runlength,
Parameters AT-max = 16 Huffman code
Memory 1589 bytes 1024 bytes
Buffer Three scanlines Two scanlines
Operations Add, shift Add, shift, compare

Compression
Half tone Image 5.2:1 1.5:1
Letter Image._ 48:1 33.3:1

Table 2.8 Comparative analysis between JBIG and the ITU-T
Rec. T.6 facsimile compression standards.

run-Iengths are relatively short, spanning only one to two pixels, and the static
Huffman code is not matched to such runs. An adaptive arithmetic coder is
better suited for such images.

2.10.2 The JBIG Compression Standard

Recently, a compression standard was developed to efficiently compress
half tone as weH as business document type images. This is the JBIG
(Joint Binary Image Experts Group) compression standard. Its standards
nomenclature is ISOIIEC IS 11544, ITU-T Rec. T.82. The JBIG compression
standard consists of a modeler and an arithmetic coder. The modeler is used to
estimate the symbol probabilities that are then used by the arithmetic coder, as
we have described in a previous section. Previously encoded pixels are used as
a context for the model, and a probability estimate is derived from this context;
thus, with causal modeling, the decoder can mimic the encoder operations
without any additional information for the modeler. Additional features in the
JBIG standard support various image display and browsing modes. In Table
2.8, we provide a simple complexity analysis between the JBIG coding scheme
and the ITU-T Rec. T.6 facsimile compression standard. We also provide
compression ratios for two typical images: a 202 Kbyte half tone image and a
1 Mbyte image, primarily comprised of text. The latter image is referred to
as letter in the table. For business-type documents, JBIG yields 20 percent to
50 percent more compression than the facsimile compression standards ITU-T

Methods and Standards for Lossless Compression 47

Rec. T.4 and Rec. T.6. For half tone images, compression ratios with JBIG
are two to five times more than those obtained with the facsimile compression
standards. However, software implementations of JBIG compression on a
general purpose computer are two to three times slower than implementations
ofthe ITU-T Rec. T.4 and T.6 standards.

The JBIG standard can also handle grayscale images by processing each plane
of a grayscale image as separate bitonal images.

2.10.3 The Lossless JPEG Standard

Most people know JPEG as a transform-based lossy compression standard.
JPEG (Joint Photographic Experts Group), like JBIG, has been developed
jointly by both the ITU-T and the ISO. We will describe this standard in
greater detail in a subsequent chapter; however, here, we describe briefly the
lossless mode of compression supported within this standard. The lossless
compression method within JPEG is fully independent from transform-based
coding. Instead, it uses differential coding to form prediction residuals that are
then coded with either a Huffman coder or an arithmetic coder. As explained
earlier, the prediction residuals usually have a lower entropy; thus, they are
more amenable to compression than the original image pixels.

In lossless JPEG, one forms aprediction residual using previously encoded
pixels in the current line and/or the previous line. The prediction residual for
pixel X in Figure 2.9 is defined as r = y - X, where y can be any of the
following functions:

y=o (2.20a)

y=a (2.20b)

y=b (2.20c)

y=c (2.20d)

y=a+b+c (2.20e)
b-c

y=a+- (2.20f)
2

a-c
y = b+-- (2.20g)

2
a+b

y=-- (2.20h)
2

48 CHAPTER 2

Note that, pixel values at pixel positions a, b, and c are available to both the

C I b

a IX

Figure 2.9 Lossless IPEG prediction kernel.

encoder and the decoder prior to processing X. The particular choice for the
y function is defined in the scan header of the compressed stream so that both
the encoder and the decoder use identical functions. Divisions by two are
computed by performing a one-bit right shift.

The prediction residual is computed modulo 216 . This residual is not directly
Huffman coded. Instead, it is expressed as a pair of symbols: the category
and the magnitude. The first symbol represents the number of bits needed to
encode the magnitude. Only this value is Huffman coded. Tbe magnitude
categories for all possible values of the prediction residual are shown in Table
2.9. If, say, the prediction residual for X is 42, then from Table 2.9 we
determine that this value belongs to category 6; that is, we need an additional
six bits to uniquely determine the value 42. The prediction residual is then
mapped into the two-tuple (6, 6-bit code for 42). Category 6 is Huffman coded,
and the compressed representation for the prediction residual consists of this
Huffman codeword followed by the 6-bit representation for the magnitude. In
general, if the value of the residual is positive, then the code for the magnitude
is its direct binary representation. If the residual is negative, then the code
for the magnitude is the one's complement of its absolute value. Therefore,
codewords for negative residuals always start with a zero bit.

Example 3: Consider Figure 2.9 with pixel values a = 100, b = 191, c = 100,
and X = 180. Let y = ~; then y = 145, and the prediction residual is r =
145-180 = -35. From Table 2.9, -35 belongs to category 6. The binary number
for 35 is 100011, and its one's complement is 011100. Thus, -35 is represented
as (6, 011100). If the Huffman code for six is 1110, then -35 is coded by the
lO-bit codeword 1110011100. Without entropy coding, -35 would require 16
bits.

Methods and Standards for Lossless Compression

Category Prediction Residual
0 0
1 -1, 1
2 -3, -2, 2, 3
3 -7, __ , -4, 4, __ ,7

4 -15, __ , -8,8, __ , 15

5 -31, __ , -16, 16, __ , 31

6 -63, __ , -32, 32, __ , 63
7 -127, __ , -64, 64, __ , 127

8 -255, __ , -128, 128, __ ,255
9 -511, __ , -256, 256, __ ,511

10 -1023, __ , -512, 512, __ , 1023
11 -2047, __ , -1024, 1024, __ ,2047
12 -4095, __ , -2048, 2048, __ , 4095
13 -8191, __ , -4096, 4096, __ , 8191
14 -16383, __ , -8192, 8192, __ , 16383
15 -32767, __ , -16384,16384, __ , 32767
16 32768

Table 2.9 Prediction residual categories for lossless JPEG com­
pression_

49

In the decoder, the category (that is, 6) is extracted first. Thus, the next six bits,
011100, correspond to the magnitude ofthe residual. Since the most significant
bit is zero, the residual is negative_ After taking the one's complement of
011100, the decoded value of the residual r is -35_ The a and b bits have
already been decoded; thus, y = 145 as before, and X = y + 35 = 180_

This notion of using a category table is a form of context modeling and
simplifies the Huffman coder. Without categorization of the prediction
residuals, we would require a Huffman table for an alphabet of 216 symbols_
Such a large codeword table would complicate both the codeword construction
process and the decoding process_

Lossless JPEG outperforms JBIG for typical grayscale images with more than
six bits per pixel. At six bits per pixel or below, JBIG yields better compression
ratios than JPEG_ For typical images, such as the grayscale version of the

50 CHAPTER 2

half tone image of Figure 2.8, compression ratios in excess of 1.5 to 1 are
quite difficult to achieve. The standards committee is currently working
on developing new lossless compression techniques that can outperform the
simple single-prediction, single-Huffman table coding method currently used
in the lossless JPEG compression standard.

2.11 TO PROBE FURTHER

We have reviewed some ofthe algorithms and standards for lossless compres­
sion. Huffman coding, in particular, is the most widely used entropy coder
in the standards. A general discussion on entropy coders can be found in any
textbook on information theory (e.g. [55]). The original description of the
Huffman coding scheme can be found in [77]. Variations and performance
bounds for Huffman coding are developed in detail in [56]. Most Huffman
coders have a a complexity of order O(N l092 N). In [127], Lu and ehen
present a Huffman code generator with complexity of order O(N). In this text,
we described the bottom-up approach to Huffman codeword construction. A
top-down approach is developed in [108].

In many practical implementations, the maximum codeword length of a
Huffman code needs to be constrained. In this chapter, we described several
approaches for constructing such a code. The Voorhis method [190] provides
a code-construction algorithm that attains the maximum codeword length
constraint and yields an optimum average codeword length. In recent years,
this problem has been revisited, and additional code generation methods are
described in [140], [109], and [126]. Another fast algorithm for optimal
length-limited Huffman codes is described in [110].

Huffman coding methods are amenable to simpler software and hardware
implementations; however, techniques based on arithmetic coding tend to
yield a higher compression ratio. A detailed description of arithmetic coding
can be found in [17]. An introduction to arithmetic coding that also includes
source code is provided in [195]. There are several variants of the arithmetic
co der, such as the Q-coder developed by IBM [135]. The Q-coder is
an extension of the arithmetic coder described in the text. It includes a
probability estimation module for the modeler and replaces time-consuming
multiplications with additions and shifts. In [75], Howard and Vitter present

Methods and Standardsjor Lossless Compression 51

another reduced-precision binary arithmetic coder in which most of the
operations are performed with table lookups.

The ITU-T Rec. T.4 and T.6 standards can be found in [81] and [82]. A
survey paper by Hunter and Robinson [78] provides a detailed description
of the T.4 standard. The JBIG and the JPEG standards are described in
the ISO/ITU-T documents [85] and [83]. In [11], Arps and Truong provide
a detailed comparison of all the standard algorithms for still-image lossless
compression, inciuding Group 3, Group 4, JBIG, and lossless JPEG.

3
FUNDAMENTALS OF LOSSY

IMAGE COMPRESSION

3.1 INTRODUCTION

Lossy compression of images deals with compression processes where decom­
pression yields an imperfect reconstruction of the original image data. A wide
range of lossy compression methods have been developed for compressing
still-image data. These methods fall into one of the categories shown in
Figure 1.2. In this chapter, we describe some of the basic concepts of lossy
compression that have been adopted in practice and that form the basis of the
image and video compression standards.

As discussed in Chapter 1, the selection of a particular compression method
involves many tradeoffs. However, regardless of the compression method that
is being used, given the level of image loss (or distortion), there is always a
bound on the minimum bit rate of the compressed bit stream. We begin this
chapter by briefly describing such abound using results from rate-distortion
theory. Next, we describe some practicallossy compression schemes, and we
compare their performance against the theoretical performance bound. Special
emphasis is given on DCT -based compression schemes, since they form the
basis of all the image and video compression standards. We conclude with a
discussion on the fast implementation of the DCT.

54 CHAPTER 3

3.2 PRELIMINARIES

3.2.1 A Model for Spatial Correlation in Images

Image data tend to have a high degree of spatial redundancy. Furthermore,
image data are eventually presented to a human viewer. Thus, if one views
a lossy still-image compression system from end to end; that is, from the
creation of the visual information to the eventual display of the information
after decompression, then it is prudent to exploit characteristics within each
component of this system so as to generate a compressed stream with the
fewest number of bits. Within such a system, compression is achieved by
exploiting both the spatial redundancies within the image and the perceptual
characteristics of the human visual system so that loss due to compression may
not be discernible to the viewer.

It is also possible to exploit some higher-level image characteristics or, for
color images, to exploit correlation of data among different color components.
For example, compression schemes based on fractals provide an image
representation based on patterns that are repeated at different scales within the
same image. Since the compression standards are not based on the existence
of such features, we do not discuss any of these compression schemes in this
book.

By spatial redundancy, we imply that pixels are correlated across space. For
any image X, the spatial redundancy can be modeled by a two-dimensional
(2-D) covariance function. A typieal isotropie (nonseparable) covariance
function for image data is given by

Covx(i,j) = (j2 e-aJi2+p , (3.1)

where (j2 is the variance of the image and i and j refer to the distance from the
reference pixel about which the covariance function is defined. If we denote
the 2-D image sampies as X(i,j),let

E[X(i,j)X(i - 1,j)]
PI = E[X2(i,j)] , (3.2)

E[X(i,j)X(i,j - 1)]
P2 = E[X2(i,j)] (3.3)

denote the correlation between two pixels in the vertical and horizontal
directions, where E[] is the expectation (or averaging) operator. If we assume

Fundamentals of Lossy Image Compression 55

Pl = P2; that is, there is no difference between the vertical and horizontal
correlation of two neighbor pixels, then e-C> = Pl. For image data, typical
values for Pl and P2 are around 0.95. A simple ca1culation of the covariance
function for various values of i and j indicates that the covariance function
decays rapidly and is quite small beyond i, j > 8. This finding suggests that
compression schemes that exploit spatial redundancy need not to consider
blocks of pixels larger than eight pixels in either the vertical or horizontal
dimension.

Under the compression context, this mathematical model for the spatial
redundancy within an image serves two purposes:

1. It can be used to design components of the image compression system.

2. Given that the distortion between the original and the decompressed
image is D, it can be used to derive a theoretical bound on the lowest bit
rate R(D) that is achievable with any compression scheme. A common
measure for D is the mean square error between the encoded and decoded
images, normalized by the variance of the input signal X (i, j).

In the next section, we discuss in more detail the D versus R(D) relationship.

3.2.2 Rate-Distortion Function for Images

Due to the loss of information, lossy compression yields higher compression
than lossless compression. However, in any practical lossy compression
system there is a tradeoffbetween loss or distortion (say D) and the bit rate of
the compressed bit stream, (say R). Here, R is expressed in bits per encoder
output symbol, and D is normalized by the variance of the encoder input. If the
encoder input data are 8-bit pixels, the compression ratio can be expressed as
-i. Rate-distortion theory establishes the theoretical minimum bit rate Rmin so
that the compressed input can be reconstructed within the allowed distortion
D. For every compression scheme, there is a D versus R relationship. For a
given D, the rate-distortion function R(D) is defined as the minimum possible
rate R necessary to achieve average distortion D or less. R(D) is independent
of the particular compression method and depends only on the undedying
stochastic model for the input images and the distortion measure.

56 CHAPTER 3

As observed in the previous chapter, in lossless compression, the efficacy of
a compression method is determined by the entropy of the source at the input
of the entropy encoder. Furthermore, the entropy of the source depends only
on the underlying statistical model for the source. Similar observations can be
made for lossy compression schemes.

In lossy compression, the source-coding theorem states that it is possible
to design a coding-decoding scheme of rate R > R(D) so that the average
distortion is D or less. The converse ofthe source-coding theorem states that if
a coding-decoding system has rate R < R(D), then it is impossible to achieve
average distortion D or less with this system. These two theorems imply
that R(D) defines the lowest possible bit rate among all lossy compression
methods. When D = 0, R(D) is the source entropy.

Since R(D) defines the lower limit for achievable compression ratio for a
specified distortion D, it would be informative to compute R(D) for an image.
The resulting R(D) can then be used to determine if a desired compression
ratio is achievable in practice.

For the isotropie covariance function defined in (3.1), and (J'2 = 1, the 2-D
power spectral density of an image X has the form

Sx (fx , fy) = _ ,.Jo .",:1 = So(f), (3.4)

where f = J!'1 + f;. We will assume that the power spectrum is bandlimited

such that Sx(fx,fy) = 0 for f > J,r. Let PI = P2 = 0.95, assuming Nyquist

sampling and approximating e-x = 1 - x; then fo = ~:fo'

It has been shown by Berger that the optimal encoder-decoder tandem yields
distortion D(O) and a minimum rate R(O) given by

D(O) I: I: min(O, Sx(fx, fy))dfxdfy, (3.5)

R(O) 100 100 (l Z SX(fx,fy)) dlf dlf -00 -00 max 0, 2" og2 0 x Y' (3.6)

Parameter 0 takes on all positive real values and generates the function R(D),
which we refer to as the rate-distortion function for this source.

Fundamentals 0/ Lossy Image Compression 57

For the bandlimited Sx (fx , fy) of (3.4), by varying B, the funetion R(D) ean
be eomputed using (3.5) and (3.6). Closed form expressions for D(B) and R(B)
ean be obtained as follows:

1 If f (B) :s ,;:rr'

D(B)

R(B) =

and if f(B) > J,r ,
D(B)

R(B)

1fBf2(B) + fo (J J2(~) + f~ - . b,),
31f (2 f6 + f2(B)) ,

4ln 2 fo ln J2(B) + f6

B,

31f (2 f6 1) 1 <P
= 4ln 2 fo ln ~ + f6 +:;;: + 2" l092 e'

where Band <P are defined as

B

<P

fo
21f(J2(B)+f6)~ ,

fo

21f(~ + f6)~

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

Figure 3.1 shows the rate-distortion funetion for various image models. In
this figure, SNR is defined as lOl091O i. For the 2-D isotropie model, we
show the R(D) plot eomputed using (3.7) to (3.10). For eomparison, R(D) is
also plotted for an image modeled using a one-dimensional (1-D) eovarianee
funetion and for an image with uneorrelated data. If the image is uneorrelated
and the sampies have a Gaussian distribution, the eorresponding R(D) funetion
is given by ~ l0921J' From this figure, several observations ean be made:

1. For the same image fidelity, exploiting 2-D eorrelation in the image leads
to lower R(D) (more eompression) than if the image were assumed to be
eorrelated only along one direetion. Speeifieally, for the assumptions on
whieh the R(D) ealculations were based, a doubling of eompression ratio
is aehieved.

2. If the image is uneorrelated or if the eorrelation is weak, then there is a
signifieant degradation in eompression, as seen by eomparing the R(D)

58

Ci)
a.

3.50

3.00

2.50

~ 2.00

~
~
Q) 1.50
1ij
a:

1.00

0.50

0.00

0.00

Uncorrelated

(Gaussian)

, •• 4 ... ___ ----· ... ·,,---r •• '

2-D Correlated

5.00 10.00 15.00 20.00 25.00
SNR (dB)

CHAPTER 3

30.00

Figure 3.1 Rate-distortion performance for various image mod­
els.

plots for the Gaussian source model and the 2-D correlation source model.
A quadrupling of the compression ratio is obtained in the latter case for
the same image fidelity.

3. In regions of low image fidelity (low SNR), exploiting spatial redundancy
in both dimensions of the image does not offer any significant reductions
in the compression ratio. In these regions, the coding gain provided by
the better correlation model is offset by the distortion introduced in the
lossy compression scheme.

The R(D) function has several practical uses:

Fundamentals of Lossy Image Compression 59

• For sources where the corre1ation coefficients Pl and P2 can be estimated,
the equations described above can be used to determine whether the
exploitation of spatial redundancies would be beneficial. In a practical
coder, a compression method that exploits spatial redundancy has a
higher complexity than a coder that simply assumes that the source is
uncorrelated. Thus, the R(D) function can provide some insight into the
R versus D versus complexity tradeoffs discussed in Chapter 1.

• For practical coders, one can measure D and the corresponding rate R
and compare them against the theoreticallimit R(D). This comparison
will determine the efficacy of the practical coder. In general, it is difficult
to compare one coder against another, given the different parameters
used by each coder. However, one can always compare the performance
of each coder against the theoretical limit R(D). These comparisons
can then be used to compare the two coders. Note that, in Figure 3.1,
the SNR is computed for a unit variance source. When comparing the
results of a practical coder against this plot, the SNR axis has to be
scaled appropriately to account for the estimated variance of the source
being compressed. Instead of SNR, peak SNR (PSNR) mayaiso be used,
provided that the horizontal axis in Figure 3.1 is scaled accordingly.

• In a practical setting, the R(D) function can be used to optimize the design
of functional blocks within the encoder and decoder.

For example, assume we want to compress an 8-bit grayscale image with
a maximum distortion of 20 dB. From Figure 3.1, using the 2-D correlated
model, the lowest bit rate is close to 0.9 bits per sampie, which corresponds to
a compression ratio of 8.88 to 1. Sirnilarly, if we want a compression ratio of
20 to 1 (or 0.4 bits per sampie), the best SNR we can achieve is close to 16 dB.

In the calculations for R(D), we have assumed a stochastic image model.
For images, using a perceptual model in addition to the stochastic model is
more appropriate. This can be done quite simply by modifying the power
spectral density Sx(fx, fy) of (3.4) as W(fx, fy)Sx(fx, fy), where W(fx, fy) is
an estimate of the frequency response of the human visual system.

The reader must exercise caution when comparing the R(D) plots in Figure
3.1 with the measured data from a specific coder, since

60 CHAPTER 3

• in deriving the closed-form expressions for D and R, some assumptions
were made regarding the bandwidth of Sx (fx , fy),

• the R(D) function was computed for specific values for the correlation
coefficients PI and P2, and these values may change from image to image,
and

• the distortion metric used in the specific coder may not be the mean­
squared error (MSE) metric wh ich we have used here.

Later in this chapter we consider two of the lossy compression schemes that
are the basis for the image compression standards, and we compare their
performance against the theoretical rate-distortion bound we have described
here. In another chapter, we will revisit the R(D) formulation and extend it to
video coding.

3.3 BASIC CODING SCHEMES FOR LOSSY
COMPRESSION

There are two classes of lossy compression schemes for images: sample-based
coding and block-based coding.

3.3.1 Sample-Based Coding

In sample-based coding, the image sampIes are compressed on a sample­
by-sample basis. The sampIes can be either in the spatial domain or in the
frequency domain. A simple sample-based compression method is a scalar
predictive coder such as the differential pulse code modulation (DPCM)
method shown in Figure 3.2. This scheme is very similar to the one used
in lossless JPEG (described in Chapter 2), except that in lossless JPEG there
is no quantization. For each input sampIe Xij, a residual signal eij is formed
using the prediction signal Pij • Pij is typically a weighted sum of previously
decoded pixels near Xij. If the image is highly correlated, Pij will track Xij, and
eij will consequently be quite small. A typical uniform quantization function
is shown in Figure 3.2b. The quantizer maps several of its inputs into a single
output. This process is irreversible and is the main cause of information loss.

Fundamentals 0/ Lossy Image Compression 61

Xij
+. l--_--!>lr::--::-~----{> L ij

qij

(a) (b)

Figure 3.2 DPCM compression method. (a) Encoding block
diagram; (b) input-output characteristics of a typical quantlzer.

Since the variance of eij is lower than the variance of Xij, quantlzmg e'J

will not introduce significant distortion. Furthermore, the lower variance
corresponds to lower entropy and thus to higher compression. As mentioned
earlier, for typical images, the covariance function decays rapidly at distances
longer than eight pixels. This implies that there is no benefit to using more
than an eight-pixel neighborhood when forming Pij • Practical DPCM systems
use three previously decoded pixels near Xij. For example,

Pij = WIXij-l + W2Xi-lj-l + W3Xi-lj, (3.13)

where Wl , W2, and W3 are constant weights and

Xij = Pij + qij (3.14)

denotes the decoder' s estimate for Xij.

If Xij represents 8-bit pixels, then eij will be in the range [-255, 255]. The
quantizer remaps eij into the quantized data Qij, which may occupy the same
dynamic range as eij but require fewer bits in their representation. For
example, if there are only 16 quantization levels, then the quantized data can
be represented by only four bits.

DPCM coders do not yield performance dose to the R(D) bound that we
described in the previous seetion. Let Pij be given by (3.13). If we assume
an isotropie covariance model with correlation coefficient p and if the effects
of quantization noise are ignored, then the rate-distortion function for DPCM

62

can be expressed as

1
R(D)DPCM = R(D)uncorrelated - 2"log2 Gp ,

where Gp is the gain due to prediction and is given by

Gp = 1 - p2 (2 ,,12).
1 + P 2

CHAPTER 3

(3.15)

(3.16)

For p = 0.95, DPCM coding yields a bit rate that is lower by 1.97 bits per
sampie than the bit rate of the uncorrelated source. To visualize this plot, in
Figure 3.1 simply shift down the R versus D curve labeled Uncorrelated by
1.97. In practice, the effects of quantization noise cannot be ignored, and the
true DPCM performance is nearly 6 to 10 dB worse than the R(D) bound
shown in Figure 3.1 for the 2-D correlated image model. The computational
complexity of DPCM is quite reasonable. For example, if Pij is computed
using three prior sampies, then computing Pij requires three multiplications
and two additions, computing eij requires one subtraction, and forrning Qij

requires one multiplication, for an overall cost of four multiplications and
three additions per pixel. Since most of the multiplications involve small
constants, lookup-table-based multiplication or multiplication using shift and
add operations is sufficient.

3.3.2 Block-Based Coding

From rate-distortion theory, the source-coding theorem shows that as the size
of the coding block increases, we can find a coding scheme of rate R > R(D)
whose distortion is arbitrarily c10se to D. In other words, if a source is coded
as an infinitely large block, then it is possible to find a block-coding scheme
with rate R(D) that can achieve distortion D. This implies that a sample-based
compression method, such as DPCM, cannot attain the R(D) bound and that
block-based coding schemes yield better compression ratios for the same level
of distortion. Many compression techniques have been developed to operate
in a blockwise manner. These techniques fall into one of two c1asses: spatial
domain block coding and transform-domain block coding.

In spatial-domain block coding, the pixels are grouped into blocks and the
blocks are then compressed in the spatial domain. Vector-quantization-based
methods fall into this category. Vector-quantization (VQ) methods require far

Fundamentals of Lossy Image Compression 63

more processing in the encoder than in the decoder and are described in more
detail in a later chapter. From a rate-distortion viewpoint, for the same rate,
such coders yie1d images with at least 3 dB better SNR than DPCM methods.

In transform-domain block coding, the pixels are grouped into blocks and the
blocks are then transformed to another domain, such as the frequency domain.
Let us define two N x N transformation matrices

Te = {te(u,i)},u,i=0,1, .. ,N-1,

Tr {tr(v,j)}, v,j = 0,1, .. , N - 1.

(3.17)

(3.18)

If the 2-D image in the spatial domain is X, then the N x N linear
transformation process can be expressed as Y = TeXT;, where T; denotes
the matrix transpose of Tr. The Tc and Tr matrices are also referred to as
transformation kerneis or basis functions. For symmetric kerneis, Te = Tr = T
and Y = TXTt .

The motivation for transforming X into Y is to obtain in Y a more compact
representation of the data in X. Lossy transform-based compression methods
ac hieve compression by first performing the transformation from X to Y and
then by discarding the less important information in Y.

In any practical system, the compression process is followed at some point by
decompression. Thus, the transformation process has to be reversible so that
X can be reconstructed from Y. It follows that, for a specific T, there should
be a U such that X = UYU t .

Some of the most commonly used basis functions for T inc1ude the basis
functions of the discrete Fourier transform (DFT) , the discrete cosine
trans form (DCT), the discrete sine transform (DST), the discrete Hadamard
transform (DHT), and the Karhunen-Loeve transform (KLT). In Figure 3.3,
we show the output of the transform process for a typical image. Dark regions
indicate less energy.

From this figure, it is seen that the KL T basis is the most efficient in terms
of compaction efficiency, since all the energy is compacted into the top left
corner. The DHT basis has poor compaction efficiency; its basis functions are
rectangular compared to the smoother functions for the DCT or DST basis.
The KL T is considered to be the optimum transform in the sense that

64

~i~
.~, ,·n:,
b~.··' ~~. ~~.~. : L:. . t­

.-i "-"'.,' . ,e'!'" -, .-
~

(a) Test Image

(c) Discrete eosine transform

(e) Discrete Hadamard transform

CHAPTER 3

(b) Discrete Fourier transform

(d) Discrete Si ne transform

(f) Karhunen-Loeve transform

Figure 3.3 Compaction efficiency for various image transforms.

Fundamentals of Lossy Image Compression 65

1. it packs the most energy in the fewest number of elements in Y,

2. it minimizes the total entropy of the sequence, and

3. it completely decorrelates the elements in X.

However, the KL T has several implementation-related deficiencies, induding
the fact that the basis functions are image dependent. The other basis functions
such as DFT, DCT, DST, and DHT are image independent. Among them, the
transform output for the DCT basis is seen to be dose to the output produced
by the KLT; that is, its compaction efficiency is dose to that ofthe KLT. Since
it has a performance very dose to the KL T, the DCT basis is widely used in
image and video compression and is the basis of choice for all the image and
video compression standards. In the next section, we will discuss the basics of
image coding using the DCT basis.

3.4 DCT-BASED CODING

DCT -based image coding is the basis for all the image and video compression
standards. The basic computation in a DCT -based system is the transformation
of an N x N image block from the spatial domain to the DCT domain. For the
image compression standards, N = 8.

An 8 x 8 blocksize is chosen for several reasons. From a hardware or software
implementation viewpoint, an 8 x 8 blocksize does not impose significant
memory requirements; furthermore, the computational complexity of an 8 x
8 DCT is manageable on most computing platforms. From a compaction
efficiency viewpoint, a blocksize larger than 8 x 8 does not offer significantly
better compression; this is attributable to an observation we made earlier with
regard to the dropoff in spatial correlation when a pixel neighborhood is larger
than eight pixels.

The choice of the DCT in the standards is motivated by the many benefits it
offers:

• For highly correlated image data (correlation coefficient Pl > 0.7), the
DCT compaction efficiency is dose to that obtained with the optimum
transform, namely, the KLT.

66 CHAPTER 3

• The DCT is an orthogonal trans form. Thus, if in matrix form the
DCT output is Y = TXTt, then the inverse transform is X = TtYT.

The transformation X 8X~T Y, which is commonly referred to as the
forward DCT or simply the DCT, is expressed as

_ c(k)c(l) ~~.. ((2i+1)k7r) ((2 j +1)l7r) (319)
Ykl - 4 L...J L...J x'J cos 16 cos 16 ' .

i=O j=O

where k, l = 0, 1, ... , 7 and

{
-L if k = °

c(k) = f otherwise (3.20)

The DCT transformation can also be expressed in vector-matrix form as

Y =Tx, (3.21)

where x = {xoo, XOl, ... , X07, XlO, Xll, ... , X17, ... , X70, X71, ... , X77 }, T is a 64
x 64 matrix whose elements are the product of the eosine functions defined
in (3.19), and Y = {Yoo, Yo!, ... , Y07, YlO, Yll, ... , Y17, ... , Y70, Y71, ... , Y77}.

The DCT transformation decomposes each input block into aseries of
waveforms, each with a particular spatial frequency. The 64 waveforms
composing the OCT basis functions are depicted in Figure 3.4. The
OCT transformation can be viewed as the process of finding for each
waveform shown in Figure 3.4 the corresponding weight Ykl so that the
sum of the 64 waveforms scaled by the corresponding weights Ykl yields
the reconstructed version of the original 8 x 8 matrix X.

From (3.19) and the orthogonality property ofthe OCT, the 8 x 8 inverse
OCT transform (commonly referred to as rOCT) can be derived as

.. _~~ c(k)c(l) ((2i+1)k7l") ((2 j +1)l7r) (322)
x'J - L...J L...J Ykl 4 cos 16 cos 16 ' .

k=Ol=O

where i,j = 0,1, ... , 7. Note that, the computations for the forward and
inverse DCT are nearly the same. Thus, from a hardware implementation
viewpoint, the same computation unit can be used for both the forward
and the inverse OCT.

• An important property ofthe 2-0 DCT and rOCT transforms is separabil­
ity. The 1-0 OCT is computed as

c(k) ~ ((2i+1)k7l")
Zk = -2- ~Xi cos 16 ,k = 0,1,"',7. (3.23)

Fundamentals of Lossy Image Compression 67

Figure 3.4 The 64 8 x 8 DCT basis funetions.

This equation ean also be expressed in veetor-matrix form as z = Txt ,

where T is an 8 x 8 matrix whose elements are the eosine funetion values
defined in (3.23), x = [xo, Xl, ... ,X7] is a row veetor, and z is a eolumn
veetor. From (3.19), the output ofthe 2-D DCT ean be expressed as

y" = '~) ~ [c~) ~X"COSC'j~6')lrr) 1 cosC2i~:)krr) (3.24)
Let

Z.l=C(l)~X.COS((2j+1)l1f) i=O 1··· 7
t 2 ~ tJ 16' '"

j=O

(3.25)

denote the output of the 1-D DCTs of the rows of Xij. The above equations
imply that the 2-D DCT ean be obtained by first perforrning 1-D DCTs
ofthe rows of Xij followed by 1-D DCTs of the columns of Zil. In matrix
notation, Y = T XT t and this ean also be expressed as

Z TX t , (3.26)

68 CHAPTER 3

Y = T zt = T XT t . (3.27)

From an implementation viewpoint, this row-column approach mayaiso
simplify the hardware requirements at the expense of a slight increase in
the overall operations count. This issue is covered in more detail in a later
section of this chapter.

• The DCT basis is image independent. This is an important issue in
compression, since an image-dependent basis implies that additional
computations need to be performed to determine the basis. Image
independence, however, will result in some loss of performance.

• As observed earlier, the spatial-domain block is decomposed by the
DCT in terms of the 64 waveforms shown in Figure 3.4. Since each
Ykl represents the contribution of the corresponding kl-th waveform, the
characteristics of the human visual system could be easily incorporated
by suitably modifying Ykl. Compare this with a spatial domain coding
technique such as DPCM. In DPCM, it is not intuitively obvious how the
prediction residual can be modified to account for the characteristics of
the human visual system.

• The DCT computations as expressed in (3.19) or (3.23) can be performed
with fast algorithms that require fewer operations than the computations
performed directly from these equations. Fast algorithms are desirable
from both a hardware and a software implementation viewpoint. These
fast algorithms also tend to be parallelizable and thus can be efficiently
implemented on parallel architectures. We will describe some fast DCT
algorithms later in this chapter.

3.4.1 A Generic DCT -based Image Coding System

Figure 3.5 shows the key functional blocks in a generic DCT -based image
coding system. This diagram represents the core computation pipeline em­
ployed in all the lossy image and video compression standards discussed in
this text. In the encoder, the DCT process transforms each 8 x 8 block X
into a set of DCT coefficients Y. As noted earlier, each of these coefficients
is the weight associated with the corresponding DCT basis waveform. In the
lossy compression mode, some of the weights will be deleted and thus the
corresponding waveforms will not be used during decompression. The process

Fundamentals of Lossy Image Compression 69

Image

Spatial-to-DCT Domain
Transformation

8x8DCT

!
Discard Unimportant

DCT Domain Sam pies

Quantlzatlon

!
Lossless Coding

of DCT Domain Sampies

Entropy Coding

Lossy Compressed Data

Figure 3.5 Generic DCT-based coding system.

of deleting some of the weights is ,referred to as the quantization process
in Figure 3.5. The quantization process is an irreversible process and is the
only source of loss in a DCT coding scheme. Strictly speaking, even with
no quantization, there may be additionallosses related to the implementation
accuracy of the DCT and IDCT. Furthermore, in a transmission application,
there may be additionallosses due to noise in the transmission link.

After quantization, the nonzero quantized Ykl values are then compressed in
a lossless manner using an entropy coder. In most applications, the entropy
coder combines a run-length coder with a Huffman coder. Entropy coding
specifics are discussed in detail in a later chapter on the IPEG still-image
compression standard.

We provide two examples that illustrate the various steps performed during
compression and decompression in a DCT-based coding system.

70 CHAPTER 3

Example 1: The DCT coding for a typical image is shown in Figure 3.6. Here,

Compression I Oecompression

2-D -c> Quanlize ~ Inverse -c> 2-D
ocr I QuanUze Iocr

~
Original

Q
Decompressed

Coding Error

Figure 3.6 DCT coding - an example.

the input 8 x 8 block (labeled original) is taken from a low activity region;
that is, there are very small differences among pixel values in that area. The
pixel values for this block are given by

Fundamentals of Lossy Image Compression 71

168 161 161 150 154 168 164 154
171 154 161 150 157 171 150 164
171 168 147 164 164 161 143 154

X = I 164 171 154 161 157 157 147 132
161 161 157 154 143 161 154 132
164 161 161 154 150 157 154 140
161 168 157 154 161 140 140 132
154 161 157 150 140 132 136 128

Depending on the color space, image pixels of a color component may have
zero or nonzero average values. For example, in the RGB color space, all color
components have a mean value of 128 (assuming 8-bit pixels). However, in
the YCbCr color space, the Y component has an average value of 128, but
the chroma components have an average value of zero. In order to provide
for uniform processing, most standard DCT coders require that image pixels
are preprocessed so that their expected mean value is zero. The subtracted (or
added) bias is then added (or subtracted) back by the decoder after the inverse
DCT. After subtracting 128 from each element of X, the 8 x 8 DCT output
block as computed by (3.19) is given by

214 49 -3 20 -10 -1 1 -6
34 -25 11 13 5 -3 15 -6
-6 -4 8 -9 3 -3 5 10

Y=I
8 -10 4 4 -15 10 6 6

-12 5 -1 -2 -15 9 -5 -1
5 9 -8 3 4 -7 -14 2
2 -2 3 -1 1 3 -3 -4

-1 1 0 2 3 -2 -4 -2

At this point, no compression has been achieved. Note that, compared to
X, the DCT-transformed data Y has large amplitudes dustered dose to Yoo,
commonly referred to as the DC coefficient. In general, for a low-activity
block, most of the high-amplitude data will be in the low-order coefficients,
as is the case in this example.

72 CHAPTER 3

It is the process of quantization which leads to compression in DCT domain
coding. The process of quantization of Ykl is expressed as

Zkl = round (Ykl) = lYkl ± l ~ J J qkl qkl ,k,l = 0,1, ... , 7, (3.28)

where qkl denotes the kl-th element of an 8 x 8 quantization matrix Q. (lx J
denotes the largest integer smaller or equal to x.) In order to ensure that the
same type of clipping is performed for either positive or negative valued Ykl,
in (3.28), if Ykl ~ 0, then the two terms in the nominator are added; otherwise
they are subtracted. For this example, if the 8 x 8 quantization matrix is given
by

Q=

16 11 10 16 24 40 51 61
12 12 14 19
14 13 16 24
14 17 22 29
18 22 37 56

26 58 60
40 57 69
51 87 80
68 109 103

55
56
62
77

24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99

then the quantized DCT output is given by

z=

13 4 0 1 0 0 0 0
3 -2 1 1 0 0 0 0
00100000
1 -1 0 0 0 0 0 0

-1 0 0 0 0 0 0 0
000 0 0 0 0 0
000 0 0 0 0 0
o 0 0 0 0 0 0 0

(3.29)

The process of quantization has resulted in the zeroing out of many of the DCT
coefficients Ykl. The specific design of Q depends on psyehovisual eharaeteris­
ties and eompression-ratio eonsiderations. All eompression standards provide
default values for Q. In a later ehapter, we describe some of the teehniques
used to develop quantization tables.

At this point, the quantized DCT domain representation, Z, has resulted in
significant savings, sinee only 11 values are needed to represent Z compared

Fundamentals 0/ Lossy Image Compression 73

to the 64 values needed to represent X; this represents a compression ratio
of 5.8. The matrix Z can be efficiently represented using a combination of a
run-Iength coding scheme and a Huffman coding scheme; we will describe the
specifics of such an entropy coder in a later chapter.

Decompression begins with the entropy decoding of the coded bitstream. Since
entropy coding is a lossless compression scheme, the decoder should be able
to reconstruct an exact version of Z. Inverse quantization on Z is simply
performed as

Zkl = Zklqkl . (3.30)

In this example, the inverse quantizer output matrix Z is

208 44 0 16 0 0 0 0
36 -24 14 19 0 0 0 0
0 0 16 0 0 0 0 0

Z= 14 -17 0 0 0 0 0 0
-18 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

After the inverse quantization, the decoder computes an 8 x 8 IDCT of Z
using (3.22). The 8 x 8 IDCT output is given by

171 160 149 149 158 166 166 162
174 164 155 154 160 164 161 156
171 164 157 156 158 158 151 145

X= 161 157 154 154 155 151 144 137
156 155 155 156 156 152 145 140
159 160 160 160 157 153 148 145
161 161 160 156 150 144 141 139
159 158 155 148 139 132 129 128

Observe that X "I X and that the only cause of this coding error is the
quantization of the DCT coefficients. However, in this example, as evidenced
in Figure 3.6, the coding error is not perceptually significant.

74 CHAPTER 3

Example 2: To better illustrate the properties of the DCT, we include another
example as depicted in Figure 3.7. Here, we have chosen an 8 x 8 input block

Compression

2·0 --c> QlIantize liilIJIlJT
Original

Decompresslon

~ Inverse --c> 2·0
I QlIantize IDCT
I

Q

Coding Error

Decompressed

Fig.ure 3.7 DCT coding example for a block in a high-activity
regIOn.

from a high-activity region. Zooming into this block, from Figure 3.7, we note
that the block has two edge regions. The pixel values for this block are given
by

Fundamentals of Lossy Image Compression

x=

197 184 144 103 130 133 70 51
200 158 111 141 179 151 70 73
172 110 111 179 192 135 95 144
118 77 139 193 156 102 128 193

73 75 151 163 110 84 154 197 I,
54 84 142 122 73 90 160 162
50 95 130 71 52 101 146 117
68 115 106 55 63 116 118 72

and the corresponding DCT output is

y=

-5 -14 -38
139 -40 103

17 15
102 -41

-60
127
-76 123 22 110 -105 -46

15 7
12 -13

1 -8
-20 -5
-4 4
-3 -10

3 0
-1 -4

29 -53
5 -25
9 -19
1 1
5 -4

-54
-6
-5

4
-2

18 -1
4 2
8 7
o -1

-2 1

11
5
6

-2
4

75

Note that, compared with the Y output of the previous example, the dominant
DCT values are not clustered close to Yoo. This is usually the case when the
spatial-domain block is a high-activity block. For this example, we chose a
quantization matrix that yields the same compression ratio as the one obtained
in the previous example. Repeating the same ca1culations as in the previous
example, the IDCT output is

x=

198 182 153 136 145 145 95 32
182 159 146 153 152 129 98 81
153 124 135 174 159 105 104 150
120 95 125 180 153 86 112 203
88 84 120 159 130 81 121 211
62 93 120 114 92 92 131 173
45 112 123 64 52 110 139 114
37 127 126 31 27 123 143 72

A comparison ofthe coding error images in Figure 3.6 and Figure 3.7 indicates
that, for the same compression ratio, we have incurred more error for the

76 CHAPTER 3

high-activity block. However, from a perceptual viewpoint, the viewer may
find the decompressed image block in Figure 3.7 to be the same as the original
image block; this is because the eye is less sensitive to quantization noise on
edges.

Another way to visualize the DCT coding process for our two examples
is to look at which of the DCT kemeis of Figure 3.4 are retained after
the quantization process. Figure 3.8a shows the main DCT kemeis for the
low-activity block, and Figure 3.8b shows the main DCT kemeis for the
high-activity block. Note that, for the high-activity block of Example 2, some

r.~ill:~t~~~ ,,'~ ... '-~',1
i:!-~;.:::.- .~o::
' -=:HUl "' , " . '" • " B I! . tJ . -1 (
.• J".;-:-" - 0_0

~:::
!".;,. 'X
~
.~ .. ,,,,.~ .

· - !' ... ~i '" .. -':f

il·-J:': ." t:~::-; .-. ,.
··:..:IJt"~f (" .;~'l- '~. i~-'~,

. ~~ . .tv,f;~. ,.~~~~:, ;;~~
~:~ ~ -.\ ~~":>i _.-"~ .. :-~~

t' i,; ;::t:;:-~ 10. ". f" t ,. ~ ~; ... :
• ~.:~.l: .• -..... ,"

a) Low activity block b) High activity block

Figure 3.8 DCT kemeis retained for reconstruction of 8 x 8
block.

ofthe high-frequency information-bearing kemeis need to be retained for good
image fidelity.

Unlike DPCM, in DCT-based coding, high er lossy compression results in
blurred decompressed images. This is because an increase in compression
ratio implies using larger values for the quantization coefficients qkl. Since
most of the larger values are often concentrated in the high frequencies, these
frequencies are zeroed out and cause loss of detail in the reconstructed image.

Fundamentals 0/ Lossy Image Compression 77

In these examples, we have illustrated the basic steps in a DCT -based coding
scheme. From a computational point of view, quantization and inverse
quantization require 64 multiplications each. On the other hand, brote-force
evaluation of an 8 x 8 DCT or IDCT requires close to 4,096 multiply­
accumulate operations. In the next section, we describe several algorithms for
the fast computation of the 8 x 8 DCT or mCT.

3.5 FAST ALGORITHMS FOR THE DCT

From (3.19), computing each DCT coefficient in an 8 x 8 DCT requires 64
multiplications and 64 additions. Thus, 4,096 multiply-accumulate operations
are needed for each 8 x 8 block. This number can easily be reduced if we
use a row-colurnn approach. From (3.23), an eight-point I-D DCT requires 64
multiplications and 64 additions. Using the row-colurnn decomposition, we
need to compute 16 I-D DCTs (eight for the rows and eight for the colurnns)
for a total of 1,024 multiply-accumulate operations. The separability property
has reduced the computational complexity by a factor of four; however, these
numbers are still quite prohibitive and need to be reduced if we require
real-time completion of the DCT process for a whole image. In recent years,
several fast algorithms for the computation of the DCT have been developed.

3.5.1 Comparison of Fast 2-D DCT Algorithms

Most of the fast algorithms for the DCT exploit the properties of the transfor­
mation matrix T. Essentially, it has been shown that the matrix T of either
(3.21) or (3.26) can be factorized so that T = T1T2 ... Tk, where each of the
matrices Tl, T2 , ••. , Tk is sparse. Sparseness implies that most of the elements of
the matrix are zero. Thus, the transform T X can be expressed as Tl T2 ... TkX.
If the ca1culations are performed in a sequential manner; that is, if we compute
Sk = TkX first and then use the result to perform the next matrix product,
Sk-l = Tk-1Sk, then it can be shown that there is an overall reduction of the
number of operations needed to perform the 2-D DCT or IDCT. We avoid the
details of this factorization; instead, we refer the reader to various references
cited in the last section of this chapter. The computational complexity of some
of the most commonly used fast DCT algorithms is shown in Table 3.1. The
first three methods provide a fast algorithm for an eight-point I-D DCT from

78 CHAPTER 3

DCT or IDCT Method Multiplications Additions
1-D 2-D 1-D 2-D

1-0 Chen 16 256 26 416
1-0 Lee 12 192 29 464

1-0 Loeffler, Ligtenberg 11 176 29 464
2-D Kamangar, Rao 128 430

2-D Cho, Lee 96 466

Table 3.1 Computational complexity of various fast OCT algo­
rithms.

which the 2-D OCT can be computed using the separability property of the
OCT. The last two methods were developed exclusively for a 2-D OCT. All
these methods offer a significant reduction in complexity compared with the
naive matrix multiplication approach of the previous section. At this stage, the
reader might conclude that a true 2-D method, such as the Cho approach, yields
lower complexity than the separable extensions of the 1-0 OCT. However,
from an implementation viewpoint, many of the true 2-D OCT methods have
several disadvantages:

1. In a software implementation, storage for up to 128 elements is needed.
In a computer system that is register limited, such storage is not always
feasible.

2. Oata addressing is highly irregular. In a software or hardware implementa­
tion, this irregularity leads to additional overhead for address calculations,
which is not included in the original number of multiplications and
additions.

Most practical software and hardware implementations of OCT-based coders
use the row-colurnn extension of the 1-0 OCT. In some OCT-based coding
schemes, a further reduction in complexity for the 1-0 OCT approach can be
obtained, as we discuss in the next section.

Fundamentals of Lossy Image Compression 79

3.5.2 The Fast Scaled DCT

From Figure 3.5, we observe that the output of the DCT computation unit is
always processed by the quantizer. Excluding clipping effects, the quantization
process of (3.28) can be expressed as Zkl = lill. Let us assume that in the

qkl

matrix factorization of T = Tl T2 ... Tk , the last (in processing order) matrix Tl
can be expressed as Tl = HTI , where H is a diagonal matrix. Then it can been
shown that using Tl instead ofTI will yield a scaled version of Ykl. By suitably
scaling the quantization matrix entries qkl by the entries of the diagonal matrix
H, one can reproduce the true Ykl during the quantization process. Through
this restricted factorization, the resulting Tl is more sparse than Tl and thus
reduces the overall operations count when ca1culating the scaled version of
Ykl.

As an example, consider the following DCT butterfly operations at the last
stage of a DCT algorithm:

Yi

Yj

tjb+tia ,

tib - tja,

(3.31)

(3.32)

where a and bare constants. The above operations require four multiplications
and two additions. If qi and qj denote the quantization coefficients for Yi and
Yj, then after quantization Zi = ~ and Zj = ~. Let C = ~. Then the above
operations can be rewritten as

Yi

Yj

a(tjC + ti),
a(tic - tj).

(3.33)

(3.34)

At first glance, there is no reduction on the number of operations; however,
since Yi and Yj will be quantized, the two multiplications by a can be absorbed
by the quantizer. Let

Yi
Yj

tjC + ti,
tiC-tj,

(3.35)

(3.36)

be the output of the scaled DCT butterfly. The above operations require only
two multiplications and two additions. If qi = 2f and qj = ~ are the scaled
quantization coefficients, then Zi = ~ = 1!.i.

qi qi

If we assume that the elements of the quantization matrix do not change during
the coding process, then the scaling of the quantization matrix has a one-time

80 CHAPTER 3

cost of 64 multiplications, and thus its contribution to the overall operations
count is minimal. In Table 3.2, we show the computation complexity of the
scaled DCT approach.

DCT or IDCT Method Multiplications Additions
I-D 2-D I-D 2-D

I-D Winograd 5 80 29 464
I-D Lee 11 176 29 464

2-D Kamangar, Rao 92 430
2-D Feig, Winograd 54 462

Table 3.2 Computational complexity of scaled DCT algorithms.

The scaled DCT method of Feig and Winograd is the most efficient scheme.
The main disadvantage of the scaled DCT method is that it is efficient
only when the quantization matrix is fixed, which is the case for the still­
image compression standard; however, in the video compression standards
the quantization matrix is typically varying at a rate of nearly 600 times per
second.

3~5.3 DCT on a Multiply-Accumulate-based Architecture

In our discussion of fast DCT methods, we have represented the computational
complexity in terms of the number of multiplications and additions. If
in the underlying computation unit the basic operation is a single-cyc1e
multiply-accumulate operation, expressed as a = bc+ d, then the computational
complexity of a fast DCT can be further reduced. We illustrate the basic ideas
using the DCT computational flowgraph ofFigure 3.9.

The graph shown here is referred to as a flowgraph for the DCT, and each stage
shows the operations required for the transformation of the input data with
the corresponding Ti matrix. Note that, in the flowgraph, cj = cos(N) and
sj = sin(I~\ If we examine this flowgraph, we note that several calculations
can be recast in the multiply-accumulate form. These are shown in Figure
3.10.

Fundamentals of Lossy Image Compression

x[O]

x[1]

x(2)

x[3]

x[4]

x[5]

x(6)

x[7]

.[0:5 y[O]

~'><"'fo'5 y[4]

\ * (---- --- -- ~0.5 y(2)
\\} ~-~ *)(* ---- ------ --c2 - - 0.5 y[6]

-' ~~0'5 y(1)

~~0.5 y(5)
-.~ e1

e4 _ _ _ e5 0.5 y(3)
--~-' ~ ~

~~~ e4 _____ ~-~0.5 y[7] ----- ~ 

Flowgraph notations 

b 

:7a+b :~a-b a ab 
Figure 3.9 Flowgraph for the eight-point I-D Chen DCT. 

81 

For example, in Figure 3.lOa, a multiplication by a constant (c4) followed 
by two additions can be recast as two multiply-accumulate operations, for a 
savings of one operation. In a similar manner, if t2 = ~;, then a calculation 
requiring four multiplications and two additions, as shown in Figure 3. lOb, can 
be remapped into only two scaled multiply-accumulate operations. Since the 
postmultiply by c2 is done in the last stage of the DCT calculations, the notion 
of the scaled DCT, which was discussed earlier, can be used to eliminate 
the postmultiply by c2. We can simply scale the appropriate quantization 
matrix entry qkl by c2 to account for this postmultiply. These flowgraph 
modifications lead to a row-colurnn approach for a 2-D 8 x 8 Chen-based 
DCT that requires only 416 multiply-accumulate operations. A comparison 
with the other transforrns shown in Table 3.1 and Table 3.2 indicates that the 
multiply-accumulate approach is the best scheme. 

A similar exercise can be conducted for all the DCT methods that we have 
listed in Tables 3.1 and 3.2, and in all cases the multiply-accumulate approach 
yields the smallest number of operations. For the IDCT, the operations in the 



82 CHAPTER 3 

. ,.~' b>< ~b~ 
p = b*c4, e = p+a, f = a-p e = b*c4+a, f = -b*c4+a 

(a) 
2 multiply-accumulate operations 1 multiply, 2 additions 

a c2 e a 

~ ~b ><~' 
b c2 

p1 = a*c2, p2 = a*s2, p3 = b*c2, 

p4 = b*s2, e = p4+p1, f = p2-p3 

4 multiplies, 2 additions 

t2 ________ ~ c2 

e = c2[a+b*t2], f = c2[a*t2-b] 

(b) 2 scaled multiply-accumulate operations 

Figure 3.10 Flowgraph remapping for multiply-accumulate op­
erations. 

flowgraph ofFigure 3.9 are simply reversed; that is, operations are performed 
from right to left. In this case, the scaling operations are combined with the 
operations in the inverse quantizer. 

This approach lends itself to very efficient DCT implementations on con­
ventional digital signal processors, since such architectures include a special 
multiply-accumulate unit. Additional implementations for the DCT are de­
scribed in a later chapter. 

3.5.4 Multiplication-Free DCTs 

A careful examination of the flowgraphs associated with the fast algorithms 
for the DCT or IDCT indicates that the multiplications are of the type y = cx, 
where c is a constant and x is image dependent. The c are fractional-valued 
constants, and in an integer implementation of the DCT these constants have 
to be appropriately scaled. Recently, several approximations to the DCT basis 
functions have been developed. The objective ofthese approximations is to use 
very small integer-valued constants and to replace multiplications by simple 



Fundamentals of Lossy Image Compression 83 

shift and add operations. These are the so-called multiplication-free DCT and 
IDCT implementations. Multiplication-free implementation is desirable for 
low-cost processors that do not have a dedicated multiplier. 

We give abrief overview regarding the construction of a set of basis functions 
that approximate the 8 x 8 IDCT and can be implemented without any 
multiplications. A 2-D IDCT can be implemented using the approximate I-D 
IDCT transformation matrix using the usual row-column approach. The I-D 
DCT computation is of the form 

Yk = c~) t, Xi COS C2i ~:)k7r). (3.37) 

We refer to cos (( 2ii!)k1r ) as the true DCT basis functions. For i, k = 0, 1, ... , 

7, the corresponding 8 x 8 matrix, denoted as Tc, has values 

1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
0.981 0.831 0.556 0.195 -0.195 -0.556 -0.831 -0.981 
0.924 0.383 -0.383 -0.924 -0.924 -0.383 0.383 0.924 
0.831 -0.195 -0.981 -0.556 0.556 0.981 0.195 -0.831 
0.707 -0.707 -0.707 0.707 0.707 -0.707 -0.707 0.707 
0.556 -0.981 0.195 0.831 -0.831 -0.195 0.981 -0.556 
0.383 -0.924 0.924 -0.383 -0.383 0.924 -0.924 0.383 
0.195 -0.556 0.831 -0.981 0.981 -0.831 0.556 -0.195 

Gur objective is to express this matrix as a product of a diagonal matrix 
and a matrix with integer weights, wh ich we denote as Tc. As observed in 
the section on scaled DCT, the diagonal matrix can be incorporated into the 
quantization matrix. Thus, the DCT ca1culations can now be performed using 
the integer-valued matrix Tc. 

For the design of Tc, we impose the following constraints: 

1. The row elements of Tc must have sign altemations identical to that of 
Tc. 

2. If we examine Tc, we find that within a scale factor all elements of the 
first row and fifth row are unity. We will preserve this feature in Tc. 



84 CHAPTER 3 

Furthermore, by a suitable choice of a diagonal matrix, Tc has only seven 
unique values. We will preserve this feature in Tc. 

3. If we examine values in, say, the second row of Tc, we see an ordered 
data arrangement. Tc will retain a similar ordering. 

4. DCT is an orthogonal transform. This feature must be preserved in Tc as 
weIl. 

Based on these constraints, Tc can be expressed in terms of seven constants 
a, b, c, d, e, 1, and 9 as 

9 9 9 9 9 9 9 9 
a b c d -d -c -b -a 
e 1 -1 -e -e -1 1 e 

Tc = 
b -d -a -c c a d -b 
9 -g -g 9 9 -g -g 9 
c -a d b -b -d a -c 

1 -e e -1 -1 e -e 1 
d -c b -a a -b c -d 

Without any loss of generality, we require a ~ b ~ c ~ d. Furthermore, we 
set 9 = 1 so as to mimic the first row of Tc. To preserve orthogonality, we 
require ab = ac + bd + cd. The constraints above can be used in a computer 
search procedure to find small integers a, b, ... , 1; however, this will yield many 
feasible sets. In order to find a good choice among these candidate sets, we 
will choose the set or sets that have a high decorrelation efficiency. The 
decorrelation efficiency is calculated as follows: 

• Let Y = TeX be the DCT ofthe I-D vector X. 

• We assume that the 1-D source X is correlated with correlation coefficient 
p and that the corresponding covariance function is the 8 x 8 matrix C OVx 

= pli-jl. 

• We compute the covariance matrix for Y as Covy = TcCovx(Tc)t. 

• 2: diagonal entries 01 COVy 
We define the decorrelation efficiency as "all entries of COVy 



Fundamentals of Lossy Image Compression 85 

We seek the values a, b, ... , f for which the resulting decorrelation efficiency 
approaches one. One set of values is a = 10, b = 9, C = 6, d = 2, e = 3, and f 
= 1. For this set, Tc can be factorized into a product of sparse integer-valued 
matrices, and the corresponding 8 x 8 DCT or IDCT would require 576 
additions and 192 arithmetic shift operations. According to published results, 
a hardware implementation of the above scheme requires far less hardware 
than conventional implementations. The primary disadvantage of the above 
scheme is that the coding error is increased, since Tc is an approximation to 
the true DCT basis. 

3.6 RA TE-DISTORTION PERFORMANCE OF THE 
DCT 

In the previous seetions, we have described the usage of DCT in a image 
compression system. Several computationally efficient approaches for a 
low complexity implementation were also discussed. In an earlier section 
in this chapter, we also provided the rate-distortion function for a typical, 
highly correlated image. Does a DCT -based coding scheme approach the 
rate-distortion function of the source? 

If we neglect the quantization process in a DCT-based coding system, for 
the same SNR, the resulting bit rate is 2.37 bits per sample lower than the 
corresponding rate for the uncorrelated source shown in Figure 3.1. In low 
SNR regions or for a source with correlation coefficient less than 0.75, the 
rate improvement will be around 1 bit per sampIe. From a rate-distortion 
viewpoint, at very low distortions, a DPCM system is 0.4 bits per sampIe 
worse than the DCT system. 

3.7 TO PROBE FURTHER 

In this chapter, we introduced the concept of rate-distortion. In [18], the 
rate-distortion function has been developed for uncorrelated sources and for 
sources with correlation along one dimension. The rate-distortion function 
for images based on a separable covariance function is described in [136]. 
The isotropie model is considered to be a better choice for images, and the 



86 CHAPTER 3 

development of the rate distortion function for the isotropie model is given in 
[144]. Much of the work reported in this chapter on the rate-distortion function 
for 2-D images is based on the developments reported in [187], [60], and [28]. 

Over the years, many lossy compression methods have been developed for 
still-images. Here, we restricted our discussion to DPCM, a sample-based 
coding scheme, and to a DCT-based block coding scheme. Motivation for 
using block-based coding can be found in the source-coding theorem, which 
suggests that block-based coding can approach the rate-distortion bound; a 
recent development of this theorem is in [100]. All the image and video 
compression standards discussed in this book employ both DPCM and DCT 
coding methods. A detailed discussion of the DPCM coding scheme can be 
found in [93]. 

The basis of many block-coding schemes is the transformation of images from 
a spatial domain to the frequency domain. Many transformation methods exist 
and are extensively discussed in [44]. The DCT has received dose attention 
among the transformation methods, due to its use in all the current and 
emerging standards in image and video compression. A detailed discussion 
on the DCT can be obtained from [166]. Among the fast DCT algorithms 
we referred to in this chapter, Chen' s DCT algorithm is described in [166], 
Lee's DCT can be found in [111], Winograd's DCT can be found in [10], the 
2-D Kamangar and Rao DCT is described in [97], and the 2-D Cho DCT is 
described in [34]. The development of fast DCT methods using the concept of 
a scaled DCT is provided in [46]. 

The theory of DCT implementations on a multiply-accumulate architecture 
was developed in [122]. DCT coding systems might be used in the future in low 
power devices and in systems that use fairly simple processors. Multiplication­
free DCT implementations would be quite useful in such cases, and one such 
development can be found in [5]. The development of fast DCT methods for 
software as well as hardware implementations is currently being researched 
extensively. In our discussion on the rate-distortion function for DCT coding, 
we ignored quantization effects. A detailed analysis that takes into account 
the quantization effects as well as the transmission link imperfeetions can be 
found in [137]. A more detailed discussion on the hardware implementation 
of the DCT is presented in a later chapter. 



4 
FUNDAMENT ALS OF LOSSY 

VIDEO COMPRESSION 

4.1 INTRODUCTION 

In the previous chapter, we introduced some of the basic concepts in the 
theory of lossy compression of still-images. These concepts can be readily 
applied to the compression of image sequences (such as video) as well, by 
simply treating each image in the sequence as a still-image. This approach is 
inherently simple; however, it does not provide significant compression. For 
instance, consider an uncompressed image sequence at a data rate of 166 Mbits 
per second. Using a DCT-based coding system on an image-by-image basis, 
for good image fidelity, one can achieve close to 12: 1 data compression. Thus, 
the compressed bit rate is close to 14 Mbits per second, wh ich is too high for 
most practical uses. For instance, the bandwidth for digital TV broadcasting 
is close to 4 to 6 Mbits per second. In this case, we need a compression 
ratio around 41:1. In another example, the typical output rate of a CD-ROM 
drive is close to 1.5 Mbits per second. In this case, we need a compression 
ratio around 110: 1. Hence, in practical applications with image sequences we 
require at least fOUf times better compression ratios than those we can achieve 
with coders for still-images. 

Quadrupling the compression ratio of a still-image coder is non-trivial. In 
this chapter, we introduce some of the basic concepts for the compression of 
image sequences. These are essentially extensions of the DCT-based coding 
techniques employed in still-image coding and form the basis of the video 
coding standards that will be described in the ensuing chapters. 



88 CHAPTER 4 

4.2 VIDEO CODING BASICS 

4.2.1 Image Sequence Model 

In the still-image case, we observed that image data tend to have a high degree 
of spatial redundancy. Consider now the problem of capturing the movements 
of a 3-D object through time (Figure 4.1). In the first image, we capture 
a spatial projection of the object, say, in region A. Since this projection is 
comprised of pixels from the object, we expect correlation within the image. If 
the object is moving, it will yield a spatial projection in the next image as weB, 
say in region X. Thus, we would expect a high degree of temporal redundancy 
between neighbor images as weB; that is, there is a strong correlation between 
pixels in region A in one image and pixels in region X in the next image. The 

r G o 00 GJ 
y 

-----------[> Time 

Figure 4.1 Temporal correlation in an image sequence. 

goal of video compression algorithms is to exploit both the spatial and the 
temporal redundancy within an image sequence for optimum compression. 

In the last chapter, we described how the 2-D DCT can be used to exploit the 
spatial redundancy within an image. In order to exploit both the spatial and the 
temporal redundancy, one might suggest using a 3-D DCT instead of the 2-D 
DCT. This approach has been shown to be quite effective from a compression 
viewpoint; however, the excessive complexity of a 3-D DCT renders this 
approach impractical. Instead, most video coders use a two-stage process to 
achieve good compression. The first stage uses a method that exploits the 
temporal redundancy between frames. The output of this stage is foBowed by 



Fundamentals of Lossy Video Compression 89 

a coding method that exploits spatial redundancy within the frame. The basic 
two-stage process is illustrated in Figure 4.2. 

'''T'-'1 '''T'I 
Stage 1 Processing for reducing temporal redundancy 

Frame difference ~ 

Stage 2 Processing for reducing spatial redundancy 

Figure 4.2 Two-stage video coding process. 

4.2.2 Reducing Temporal Redundancy 

Intuitively, one might expect that the ideal processor for reducing temporal 
redundancy is one that tracks every pixel from frame to frame. This is 



90 CHAPTER 4 

computationally intensive, and such methods do not provide reliable tracking 
due to the presence of noise in the frames. Instead of tracking individual 
pixels from frame to frame, video coding standards only allow tracking 
information for 16 x 16 pixel regions, commonly referred to as macroblocks. 
The macroblock dimension of 16 x 16 is chosen because it provides a good 
compromise between providing efficient temporal redundancy reduction and 
requiring moderate computational requirements. 

Let the two contiguous frames in Figure 4.2 be denoted as frame(t - 1) and 
frame(t). In the first stage, we segment frame(t) into nonoverlapping 16 x 
16 pixel regions (macroblocks), and for each 16 x 16 block we determine a 
corresponding 16 x 16 pixel region in frame(t - 1). (For the time being, we 
ignore how one can find such a region). 

Using the corresponding 16 x 16 pixel region from frame(t -1), the temporal 
redundancy reduction processor generates a representation for frame(t) that 
contains only the changes between the two frames. If the two frames have a 
high degree of temporal redundancy, then the difference frame would have a 
large number of pixels that have values near zero. For example, in Figure 4.2, 
there is a high degree of temporal redundancy, as evidenced by the similarity 
of features in both frames. Thus, the output image of stage 1 has lower energy 
than the original frame and is more amenable to compression. 

On the other hand, if frame(t) were completely different than frame(t - 1), 
then the temporal redundancy reduction processor may fail to find correspond­
ing regions between the two frames. In this case, one would not expect any 
benefit with respect to compression from using the process in stage 1. In video 
compression terminology, a compression method that employs only temporal 
redundancy reduction is referred to as an inteiframe coder. 

4.2.3 Reducing SpatiaI Redundancy 

The output of stage 1 is a difference frame in which the pixels are spatially 
correlated. Thus, one can use a processor that can exploit this spatial 
redundancy and thereby yield a compressed representation for frame(t). This 
is the process performed in stage 2 of Figure 4.2. Video coding standards 
use a DCT coding method for reducing spatial redundancy. This DCT coding 
technique is essentially the same as the one described in the previous chapter. 



Fundamentals of Lossy Video Compression 91 

In video coding terminology, a compression method that employs only spatial 
redundancy reduction is referred to as an intraframe coder. The combination 
of interframe coding and intraframe coding, as depicted in Figure 4.2, is 
referred to as a hybrid (intraframe/interframe) coding method. 

4.2.4 Motion Compensation 

The process of computing changes among frames by establishing correspon­
dence between frames is referred to as temporal prediction with motion 
compensation. We define motion compensation as the process of compen­
sating for the displacement of moving objects from one frame to another. In 
practice, motion compensation is preceded by motion estimation, the process 
of finding corresponding pixels among frames. If the temporal redundancy 
reduction processor employs motion compensation, then we can express its 
output as 

e(x,y,t) = l(x,y,t) - l(x - u,y - v,t -1), (4.1) 

where lex, y, t) are pixel values at spatial location (x, y) in frame(t) and 
l(x-u, y-v, t-1) are corresponding pixel values at spatiallocation (x-u, y-v) 
in frame(t - 1). The output of the motion estimator, the coordinates (u, v), 
defines the relative motion of a block from one frame to another and is 
referred to as the motion vector for block at (x, y). Later we describe various 
schemes for computing (u, v). l(x - u, y - v, t -1) is referred to as the motion­
compensated prediction of lex, y, t), and e(x, y, t) is the prediction residual for 
lex, y, t). 

Note that, the notion of temporal prediction and the formation of the 
difference signal e(x, y, t) is very similar to the differential coding scheme 
(DPCM) described in the previous chapter. The primary difference with 
respect to the previous discussion on DPCM is that here we form the temporal 
prediction using temporally adjacent sampies, which are determined through 
the process of motion estimation. Thus, the hybrid coding scheme for video can 
be viewed as a DPCM method followed by a DCT coding method. A generic 
block diagram of such a hybrid coding scheme is shown in Figure 4.3. Notice 
that motion compensation is performed in both the encoder and the decoder, 
but motion estimation is needed only in the encoder. A practical coder will 
also inc1ude buffer memory and additional preprocessing and postprocessing 
functional blocks, wh ich are not shown in this figure. Detailed schematics of 
video coders and decoders will be provided in subsequent chapters. 



92 CHAPTER 4 

I(x,y,t-l) C>i U"'ö"" Motion vector (u,v) 

I(x,y,t) 

e(x,y,t) = I(x,y,t) -I(x-u,y-v,t-l) 

Generic Encoder 

I(x,y,t) 

Generic Decoder 

Figure 4.3 Generic hybrid video coder and decoder. 

Intuitively, one would expect that interframe coding combined with intraframe 
coding should yield better compression than either interframe or intraframe 
coding alone. In the next section, we attempt to confirm this intuitive 
expectation by applying results from rate-distortion theory to different video 
coding models. This analysis will provide us in a relative sense the efficacy 
of temporal prediction versus direct DCT coding of frames. Even though the 
analysis is not very rigorous, readers that are not interested in the mathematical 
models of video coding may comfortably skip the next section. 



Fundamentals 0/ Lossy Video Compression 

4.3 RA TE-DISTORTION FUNCTIONS IN VIDEO 
CODING 

93 

As in the lossy coding of still-images, in a practicallossy compression scheme 
for video, there is a tradeoff between the distortion D and the rate R at 
the output of the encoder. The D versus R relationship can be measured 
for specific implementations of the compressor and decompressor. Under 
various assumptions for the video signal, it is possible to derive an information 
theoretic bound for the D versus R relationship, wh ich we refer to as the 
rate-distortion function R(D) for the video source. R(D) is independent of the 
particular compression method and depends only on the underlying stochastic 
model for the source. The practical significance of R(D) is that for a given 
distortion D it provides abound on the best compression rate that can be 
achieved, regardless of the compression method. Thus, R(D) can be used as a 
measure of the effectiveness of a particular video coding methodology. 

Our motivation for determining R(D) is to enable us to provide answers to 
these questions: 

• How does intraframe coding compares to interframe coding? 

• How do hybrid coding schemes compare to intraframe or interfarne coding 
alone? Does the added complexity of motion compensation warrant its 
use? 

In particular, we compute the rate-distortion function for three video coding 
models, namely, (1) frame differencing with no motion compensation, (2) 
motion compensation with no intraframe coding, and (3) motion compensation 
followed by intraframe coding. 

4.3.1 Rate-Distortion Function for Frame Differencing 

For the purposes of computing R(D), we simplify the generic encoder-decoder 
tandem of Figure 4.3 as shown in the model of Figure 4.4. The motion­
estimation and motion-compensation blocks are replaced by a single filter 
function h(x, y) and the coding noise n(x, y, t), induced by the DCT coding 
of e(x, y, t), is modeled as an additive and uncorrelated white noise with 



94 CHAPTER 4 

n(x,y,t) 

I(x,y,t) ~,t) _ ~ 

~ 

Figure 4.4 Simplified model for interframe coding. 

constant spectral density D. We further assurne that the blocks I(x, y, t) 
and I(x, y, t - 1) are temporally correlated, and we denote by p the temporal 
correlation coefficient. This is a simplified model in that a single correlation 
coefficient is assumed for the entire frame. 

We will also assurne that the impulse response of h(x, y) is a single impulse at 
x = u and y = v; that is, we assurne that each block I(x, y, t) corresponds to 
a shifted (by (u, v)) block in the prior frame. Note that, in this case (u, v) is 
not atme motion vector but an arbitrary estimate that remains the same for all 
blocks in the frame. We refer to this case asframe differencing without motion 
compensation. Note that, there is no added complexity in evaluating R(D) for 
nonzero values of u and v, even though in practice by frame differencing we 
often imply that u = 0 and v = o. 

Forthis impulse response, the correspondingfrequency response is H(fx, fy) = 
ej2rr(fx u+ Iyv}. From (3.6), R(D) is computed as the integral of the power 
spectral density. From the model in Figure 4.4 and the frequency response 
of h(x, y) we can express the power spectral density of the signal e(x, y, t) + 
n(x, y, t) as 

Se(fx,fy) = 2(1- pcos(27r(fxu + fyV)))SI(fx,fy) + D. (4.2) 

For SI (fx, fy), the spectral density of a frame, we use the isotropie covariance 
model established in (3.1) of the previous chapter. As before, the power 

spectral density is bandlimited such that J r; + f; ::; J;. 

The computation of R(D) for this model follows along the same lines as the 
computations outlined in (3.7) to (3.10) of the last chapter. D( 8) and R( 8) can 
be expressed in terms of Se(fx, fy) by replacing Sx (fx, fy) with Se(fx, fy). Let 
R(D)dil I denote the rate-distortion function for the case of frame differencing 



Fundamentals of Lossy Video Compression 95 

without motion compensation. The integral expression for this function can be 
computed in closed form as 

R(D)diff 1 (a 2 
) "2 Z092 D + 1 ) 

2 2 ae = 2a/(1 - pe-21rfov'u2+v2). 

(4.3) 

(4.4) 

From the previous chapter, the rate-distortion function for an uncorrelated 
source with Gaussian distribution was given by 

1 a 2 

R(D)uncorrelated = "2 Z092 ~ (4.5) 

Thus, for a video compression scheme based on frame differencing to be 
effective, we require R(D)diff < R(D)uncorrelated' Using (4.3) and (4.5), this 
inequality implies a; + D < aJ. If we ignore the coding noise term D and use 
(4.4), the variance inequality reduces to 

2a7(1 - pe-21rfov'u2+v2) < 2 a/ . (4.6) 

With some simple algebra, this inequality is satisfied if v'u2 + v2 < ~ Zn 2p. 

Let 10 = ~;fo and p = 0.95, then the inequality is achieved if v'u2 + v2 < 
11.38. The implication of this result is that temporal prediction with frame 
differencing is effective only if two neighbor frames are displaced by at most 
±2 pixels. In a typical video sequence it is not uncommon to find displacements 
that are ± 7 to ± 15 pixels; thus, frame differencing is not effective in such 
cases. 

In Figure 4.5, we plot the rate-distortion functions of (4.3) for several settings 
of K = v'u2 + v2 • For comparison we also plot the rate-distortion functions 
for an uncorrelated source (4.5) and a 2-D correlated source (as defined in the 
previous chapter). Observe that for frame displacements greater than eight 
pixels, frame differencing offers no compression improvement compared with 
a simplistic compression method that treats the source as a memoryless source. 
Furthermore, even for a displacement that is at most one pixel (that is, K = 1), 
there is only a 25 to 30 percent improvement in the compression ratio compared 
with the memoryless case. In all cases, the 2-D correlated model (that is, 
intraframe coding alone on a frame-by-frame basis) yields better performance 
than frame differencing alone. Thus, one can conclude that temporal prediction 
based on simple frame differencing is not a viable compression method except 
for regions in a scene that have very litde motion. 



96 

6.50 

6.00 

5.50 

5.00 

4.50 

~4.00 
E 
.m 3.50 
.2l 
e3.00 
Ql m 
a: 2.50 

2.00 

1.50 

1.00 

0.50 

0.00 
I 

0.00 10.00 

/ 

/ 

'<0-- 2-D Correlated 
(intraframe cOdingJ 

CHAPTER 4 

Uncorrelated (Gaussian) 

20.00 
SNR (dB) 

30.00 40.00 

Figure 4.5 Rate-distortion functions for frame differencing with 
no motion compensation, a Gaussian source, and a 2-D correlated 
source (intraframe coding). 

In the next section, we develop the rate-distortion functions for video coders 
that track motion of regions across frames and employ a motion-compensated 
prediction to exploit the temporal redundancy. 

4.3.2 Rate-Distortion Function for Motion-Compensated Video 

Let us assume that regions in block I(x, y, t) have corresponding regions in 
block I(x,y,t - 1) at displacement (u ,v); that is, (u,v) is the true motion 



Fundamentals of Lossy Video Compression 97 

vector associated with the pixellocation (x, y). Motion estimation attempts 
to estimate (u, v) and this estimation process will not be error free. The 
reason for the estimation error is that in practice I(x, y, t) and I(x, y, t - 1) are 
available only on integer-sampled positions for (x, y) even though the change 
in position of an object from frame(t - 1) to frame(t) might be less than one 
pixel distance. Thus, due to the sampling grid limitations for the frame, the 
motion vector accuracy may be limited to ± 1 pixel. Methods are known for 
reducing the estimation error, but it has been shown by Girod that for typieal 
video imagery and a frame resolution corresponding to broadcast TV, even 
if the motion-estimation error can be reduced below ±0.1 pixels, there is a 
negligible decrease in the variance of the predietion error, that is, the variance 
of the signal e(x, y, t). Since reduction in predietion-error variance is a good 
measure of the compressibility of e(x, y, t), Girod observed that for broadcast 
TV it is sufficient to attain a motion-estimation error of ±0.25 pixels. 

Procedures for motion estimation will be described in a later section of 
this chapter. For now, let us assume a motion-estimation procedure that 
yields a motion vector (u, v) with estimation errors denoted by du and dv. 
The temporal prediction signal can be expressed as e(x, y, t) = I(x, y, t) -
I(x - u - du,y - v - dv,t -1). Note that, if (u,v) is the true motion vector, 
that is, du = dv = 0, then e(x, y, t) will be zero valued. Referring to Figure 
4.4, the estimation error can be easily incorporated into this model if we view 
h(x, y) as a combination oftwo filters h1(x, y) and h2 (x, y), where h1(x, y) has 
the same impulse response as the h( x, y) in the frame differencing case and the 
frequency response of h2 (x, y) can be written as H 2 (f x, f y) = ej27r(f z du +f v du) • 

Note that, the estimation error vector (du, dv) is random. To compute R(D), 
we need to determine the power spectral density of e(x, y, t). This requires a 
simple modification of (4.2), and the power spectral density is given by 

Se(fx, fy) = 2(1- E[pcos(27r(fxdu + fydv))])SI(fx, fy) + D, (4.7) 

where SI(fx, fy) is bandlimited as noted earlier. The expectation operator is 
needed due to the randomness of (du,dv). Assume an isotropie displacement 
error probability density function for (du,dv) as 

p(du d ) _ 2 (-2Jdf+4) , v _ --e Ud 

7r0"2 d ' 
(4.8) 



98 CHAPTER 4 

where a~ is the variance of the motion-estimation error. The prediction error 
variance for e(x, y, t) is computed as the integral of Se (Jx, 1y) and is given by 

a; = 2aJ (1 - ( P 1;)2 ) , 
1 + 7rad 0 

(4.9) 

where 10 is the same as before. From this equation, we claim that temporal 
prediction with motion compensation is effective if a; < aJ. Applying this 
condition to (4.9) leads to the following requirement: 

J2P-1 
ad< t (4.10) 

7r JO 

Thus, for accurate motion-compensation-based temporal prediction, the vari­
ance of the motion-estimation error needs to satisfy the above inequality. This 
equation suggests that effective motion compensation requires a high degree of 
motion-estimation accuracy relative to spatial variations (Jo) and the temporal 
correlation coefficient p. For typical values of 10 and p, as defined before, 
effective motion compensation requires that a d < 4.26. This suggests that 
motion estimators with inaccuracies in excess of ±4 pixels will render motion 
compensation ineffective. 

If the motion-compensated prediction signal e(x, y, t) is coded as if it were an 
uncorrelated source (that is, with no additional intraframe coding), then its 
rate-distortion function is the same as in (4.5) but with ay replaced by a;: 

1 a2 

R = "2[092 D' (4.11) 

In Figure 4.6, we plot the rate-distortion function of (4.11) for various 
motion-estimation error settings of ad. For comparison, we also show the 
rate-distortion function for a Gaussian uncorrelated source. Observe from this 
figure that even for a high motion-estimation error of ±1 pixel, we get a 40 
percent improvement in the compression ratio when motion compensation is 
employed. We note that reducing the motion-estimation error below ± t pixel 
does not provide noticeable improvement in the compression ratio. In the 
video coding standards for broadcast TV, the motion-estimation error is at 
most ± t pixel. Thus, one can conclude that motion compensation followed by 
a simple coding scheme that considers e(x, y, t) as being uncorrelated can yield 
a lower rate compared to the case where no motion compensation is used. 



Fundamentals of Lossy Video Compression 

3.50 

3.00 

2.50 
Q) 
Ci 
E 
:Jl2.00 
}j 
:0 
~1.50 
cu 
CI: 

1.00 

0.50 

,/ 

,~"t1 pixel 

.f:::;'--"t 0.5 pixel 

0.00 -f-r ---------------------

0.00 10.00 20.00 

SNR (dB) 

30.00 40.00 

Figure 4.6 Rate-distortion performance for motion-compensated 
prediction with no intraframe coding. 

99 

Does this interframe-only coding method outperform an intraframe coding 
method? In Figure 4.7, we plot the rate-distortion function for the motion­
compensated prediction case (interframe-only coding) and a motion-estimation 
error setting of ±! pixel, against the rate-distortion function for 2-D intraframe 
coding that was developed in the previous chapter. From this figure, rate­
distortion theory suggests that a video coding method that uses motion­
compensated prediction and does not exploit the spatial redundancies in 
e(x, y, t) will not outperform an intraframe-only coding technique. 

In practice, e(x, y, t) is spatially correlated, and hence treating it as such can 
lead to a lower rate. For instance, in the video coding standards, the signal 
e(x, y, t) is further processed by a DCT-based coder. We now define the 
rate-distortion function for the case of spatially correlated e(x, y, t). This 
corresponds to the performance achieved by an ideal compression scheme that 



100 

5.00 

4.50 

4.00 

3.50 

:i 3.00 . a. 
E 
ca 
~ 2.50 

e * 2.00 a: 

1.50 . 

1.00 

0.50 

Motion cornpensation only 

+/- 0.5 pixel 

CHAPTER 4 

Intrafrarne coding only 

(2-D correlated) 

0.00 I ~ ,, --/ 

0.00 10.00 20.00 
SNR (dB) 

30.00 40.00 

Figure 4.7 Rate-distortion performance for motion-compensated 
prediction versus intraframe coding. 

uses motion compensated prediction followed by additional processing of the 
prediction residual e(x, y, t). 

4.3.3 Rate-Distortion Function for Motion-Compensated Video 

Followed by Intraframe Coding 

We write (4.7) as 

Se(Jx, fy) = 2(1 - pr/J(Jx, fy))SI(Jx, fy) + D , (4.12) 



Fundamentals of Lossy Video Compression 

where the characteristic function cjJ(fx, Jy) is derived from (4.8) as 

1 
cjJ(fx, Jy) = ((7r(1df)2 + 1)~' 

101 

(4.13) 

and J = j f'; + f';. We denote cjJ(f x, J y) as cjJ(f). U sing the basic expression 

for rate, we can express R(D) in integral form as 

R 

(12 (f) 

7r 1* J 1092 ((12i!) + 1 )dJ, 

2(1- pcjJ(f))So(f), 

(4.14) 

(4.15) 

where So(f) is given by (3.4). Note that, ifthe motion-estimation method yields 
no estimation errors (that is, (1d = 0), we modify (4.15) to (12 (f) = 2(1- p)So(f) 
and compute R(D) as per the integral in (4.14). Computing a closed-form 
expression for R in (4.14) is quite cumbersome; instead, we resort to a 
numerical integration procedure to provide the rate R for a specific choice of 
D. 

In Figure 4.8, we plot this rate-distortion function for various settings of 
the motion-estimation error (1d. This rate-distortion function yields the rate 
that is achievable with a hybrid interframe/intraframe coding method. For 
comparison, we plot the rate-distortion function for the interframe-only case 
as per (4.11); for this plot, we have set the motion-estimation error to 
±t pixel. We note from this figure that exploiting spatial redundancy in 
the motion-compensated prediction residual e(x, y, t) can result in nearly 40 
percent improvement in the compression ratio for a moderate SNR of 20 dB. 

The key question to ask at this point is whether this hybrid interframe and 
intraframe coding method can outperform an intraframe-only coding method. 
To address this question, in Figure 4.9, we depict aseries of rate-distortion 
plots. Here, we plot the rate-distortion function for the hybrid coding method 
by computing (4.14); this plot is for a motion-estimation error of t pixel. For 
comparison, we also show the rate-distortion function for the interframe only 
case as developed earlier in this section; this plot is for a motion-estimation 
error of t pixel. We also show the rate-distortion function for the 2-D 
intraframe-only coding case as developed in the previous chapter. From this 
figure, we observe that exploiting spatial redundancy and temporal redundancy 
lowers the rate by a factor of two compared with the interframe-only case. In 
the literature the factor-of-two improvement has often been cited, but these 



102 

5.00 

4.50 

4.00 

3.50 

Q) 
Ci 3.00 
E 
co 
~ i 2.50 

Q) 

tij 
CI: 2.00 

1.50 

1.00 

0.50 

0.00 

0.00 

"!"1 pixel 

Motion compensation only 

(+1- 0.25 pixel) 

~ 
"!" 0.5 pixel ----;'--- 7 / 
"!" 0.25 pixel 

"!" 0.1 pixel ---I-~/~(_. ~. 

"!" 0 pixel--;'~/.L-/-- / 

10.00 20.00 
SNA (dB) 

30.00 

CHAPTER 4 

40.00 

Figure 4.8 Rate-distortion functions for hybrid video coding. 

observations have been based largely on experiments. It is informative to 
note that rate-distortion theory is able to predict this gain. Furthermore, at 
moderate SNR (say, 25 dB), there is nearly a 30 percent improvement in the 
compression ratio for the interframe/intraframe approach compared with the 
intraframe-only coding method. 



Fundamentals 01 Lossy Video Compression 

5.00 

4.50 

4.00 

3.50 

~ 3.00 
E 
'" ~ 

2.50 .l!l 
B-
Q) 

(;j 2.00 a: 

1.50 

1.00 

0.50 

0.00 

Motion campensation only 

(+/- 0.5 pixel) 

Intraframe coding only " c:,I 

/ 

Motion compensation 
and intraframe coding 

(+/- 0.5 pixel) 

____ .r------:;;;..-:. 

0.00 10.00 20.00 

SNR (dB) 

30.00 40.00 

Figure 4.9 Rate-distortion functions for hybrid, interframe, and 
intraframe video coders. 

4.3.4 Rate-Distortion Functions for Video-A Summary 

103 

We summarize all the rate-distortion functions developed in this chapter in 
Figure 4.10. This plot indicates the relative performance improvements that 
can be obtained through various approaches to video coding, ranging from the 
simple case of treating the video source as a memoryless source, to schemes 
that exploit spatial correlation and finally to schemes that employ both spatial 
and temporal correlation. 



104 

5.50 

5.00 

4.50 

4 .00 

Q) 3.50 
Ci 
E 
<Il 3.00 lJl 

2 e 
2.50 Q) 

(ij 
CI: 

2.00 

1.50 

1.00 

0.50 

0.00 
I 

0.00 

Frame differencing only 

~/ 
/ 

CHAPTER 4 

Motion campensation only / 

~ 
I 

Gaussian uncorrelated 

10.00 

I 

/ 
/ , , 

/ 
/ 

, , 

...0 Intratrame only 

<l Inter/rame and 
intratrame coding 

20.00 

SNR (dB) 

30.00 40.00 

Figure 4.10 Rate-distortion functions for various video coding 
schemes. 

Caution must be exercised in using the data in these plots, since many 
assumptions were used when developing the rate-distortion functions. An 
astute reader might observe that at moderate SNR (say, 25 dB), we only 
obtain a 4- to 5-fold reduction in the rate compared with the memoryless 
coding scheme, while in practice, hybrid coding schemes such as those used 
in the video coding standards report much higher rate-reduction factors. Rate­
distortion theory as we have outlined it here does not take into account various 
additional techniques used in the video coding standards, including spatial 



Fundamentals of Lossy Video Compression 105 

subsampling of frames, skipping of regions in frames, entropy coding, and 
switching between intra- and interframe coding. 

In an information-theoretic sense, these plots provide the motivation for why 
hybrid coding methods have been used for video. In the following sections, we 
provide details on motion compensation and then describe the hybrid coding 
scheme that is the basis for the video coding standards. 

4.4 MOTION-COMPENSATED PREDICTION 

As noted in the previous section, a hybrid (interframe/intraframe) coding 
method is quite effective for video compression. A rudimentary video coding 
scheme based on this method was shown in Figure 4.3. One of the most 
compute-intensive operations in interframe coding is the motion-estimation 
process. In this section we will describe in more detail the motion-estimation 
process and associated algorithms. 

Figure 4.11 illustrates the motion-estimation problem as it is posed in the 
video coding standards. Given a reference picture and an N x M macroblock 
in a current picture, the objective of motion estimation is to deterrnine the 
N x M block in the reference picture that better matches (according to a given 
criterion) the characteristics of the block in the current picture. As current 
picture, we define an image or frame at time t. As reference picture, we define 
an image or frame either at past time t - n, for forward motion estimation, 
or at future time t + k, for backward motion estimation. In the more general 
case of motion estimation, the geometry of the matching block at the reference 
picture need not be the same as the geometry of the block in the current picture, 
since objects in the real world undergo scale changes as well as rotation and 
warping. However, in the video coding standards, only the translatory motion 
model is assumed for objects in the scene, and thus a rectangular geometry is 
sufficient. 

The location of the macroblock regions is given usually by the (x, y) coordinates 
of their left-top corner. Ideally, we would like to search the whole reference 
picture for the best match; however, this is impractical. Instead, we restriet the 
search to a [-p, p] search region around the originallocation of our macroblock 
in the current picture. (Many implementations restrict the search range to 



106 

Current Picture 

(a) 

N ("'10M 

Macroblock 

Reference Picture 

Search region 
--------, 

I I 
I N I (x,y) 
I M~x+t'y+V) I 
I I 
I f-- Best 

I 
I match 

I - -

(b) 
Motion vector (u,v) 

CHAPTER 4 

Reference Picture 

:-~pJ~---~ 
I (X,y)O-p1 
I M I 
I<>---- I 
I -p -I p I 

- -tt- - - 1 - ~ 

-'\ [-p, pI Search region 

v -
-p 

u + 
~ 

-p p 

p 

+ 

(c) 

Figure 4.11 Motion-estimation proeess. 

[-p,p - 1]. Both definitions are equally eommon.) Let (x + u, Y + v) be the 
loeation of the best matching block in the referenee pieture (Figure 4.11b). 
In motion-estimation terminology, the veetor from (x, y) to (x + u, Y + v) is 
referred to as the motion veetor assoeiated with the maerobloek at loeation 
(x, y). Often, the motion veetor is expressed in relative coordinates; that is, 
we assurne that (x, y) is at loeation (0,0), and thus the motion veetor is simply 
expressed as (u, v). 

Note that, our assumption for a eommon displacement (u,v) for all pixels in 
the maerobloek implies that we are essentially imposing a loeal smoothness 
eonstraint on the motion veetor field. The loeal smoothness eonstraint is only 
satisfied for small maerobloek sizes. The ehoice of the dimensions of the 



Fundamentals of Lossy Video Compression 107 

macroblock is the result of tradeoffs among three conflicting requirements. 
Specifically, 

1. small values for N and M (from four to eight) are preferable, since the 
smoothness constraint would be easily met at this resolution; 

2. small values for N and M reduce the reliability ofthe motion vector (u, v), 
since few pixels participate in the matching process; and 

3. fast algorithms for finding motion vectors are more efficient for larger 
values of N and M. 

In the video coding standards, N = M = 16. 

The coordinate system associated with the motion vector is shown in Figure 
4.11c. For the search region shown in Figure 4.11a, -p ::; u ::; p and 
-p ::; v ::; p. For broadcast TV, good performance is obtained at p = 15 for 
head-and-shoulders-type video scenes, and at p = 63 for sporting events (high 
motion). 

4.4.1 The Matching Criterion 

Let the pixels of the macroblock in the current frame be denoted as C (x+k, y+l) 
and the pixels in the reference picture be denoted as R(x + i + k, y + j + l). We 
define a cost function 

1 M-l N-l 

MAE(i,j) = MN L LIC(x+k,y+l)-R(x+i+k,y+j+l)l, (4.16) 
k=O /=0 

where i and j are defined in -p ::; i ::; p and -p ::; j ::; p. This is referred 
to as the mean absolute error (MAE) or mean absolute difference (MAD) 
criterion. We define as the best matching block, the block R(x + i, y + j) for 
wh ich MAE(i,j) is minimized. Thus, the coordinates (i,j) for which MAE 
is minimized define also the motion vector. In (4.16), we use the absolute 
value function due to to its computational simplicity. Squaring the difference 
(mean squared error criterion) or explicitly computing the correlation between 
blocks are other valid choices, but within a typical coding system, the cost 
function of (4.16) performs just as well. In video coding terminology, since 



108 CHAPTER 4 

the match is being performed between rectangular regions, this is referred to 
as a block matching criterion, and search techniques to find the (u, v) that 
yield the smallest MAE are referred to as block matching algorithms (BMA). 
In the next section, we describe several algorithms for block matching motion 
estimation. 

4.5 ALGORITHMS FOR MOTION ESTIMATION 

4.5.1 Full-Search Method 

Given (4.16), the simplest method to find the motion vector for each mac­
roblock is to compute MAE(i,j) at each location in the search space. This 
is referred to as the full-search algorithm. We estimate the computational 
complexity of the full-search (FS) algorithm as folIows. 

For each motion vector there are (2p + 1)2 search locations. At each search 
location (i,j) we compare N x M pixels. Each pixel comparison requires 
three operations, namely, a subtraction, an absolute-value calculation, and 
one addition. We ignore the cost of accessing the pixels C(x + k, y + l) 
and R(x + i + k,y + j + l). Thus, the total complexity per macroblock is 
(2p + 1)2 X MN x 3 operations. For a picture resolution of I x J and a picture 
rate of F pictures per second, the overall complexity is f..f ~ (2p + 1)2 X MN x 3 
operations per second. Let N = M = 16. For typical values for broadcast TV 
(I = 720, J = 480, and F = 30), motion estimation based on the full-search 
algorithm requires 29.89 GOPS (Giga operations per second) for p = 15 and 
6.99 GOPS for p = 7. 

Full-search is computationally expensive but guarantees finding the minimum 
MAE value. Due to the high computational complexity of full-search, alter­
native search methods are desirable. In the next section, we describe several 
heuristic search strategies for motion estimation. These schemes achieve 
suboptimum performance at significantly reduced complexity compared to 
the full-search method. By suboptimum, we imply that the heuristic search 
strategies do not guarantee that we will find the minimum MAE value. The 
complexity is significantly reduced either by decreasing the number of search 
locations or by computing (4.16) using fewer than M x N pixel differences 
per search location. Combinations of these two schemes are also possible. 



Fundamentals of Lossy Video Compression 109 

4.5.2 Two-Dimensional Logarithmic Search 

Two-dimensional logarithmic search is very similar to binary search. In 
the first step, the [-p,p] search rectangle is divided into two areas: one 
inside a [T'~] (at integer pixel resolution) rectangle and one outside of it. 
Furthermore, instead of searching the whole [T, ~] area, we only compute the 
MAE function for nine locations: at (0,0) and at the eight major points in the 
perimeter of the [T' ~] area. That is, if the distance between these points is 
d1, we compute the minimum MAE from the MAE computed at (0,0), (0, d1), 
(O,-dd, (-d1,0), (d1,0), (d1,dt), (d1,-dd, (-dl,d1), and (-d1,-dd. The 
distance d1 is given by 

d1 = 2k -1, (4.17) 

where k = rtog2pl For example, for p = 7, k = 3 and d1 = 4 pixels. Using 
the best match location as the starting point, we then look for the best match 
in the eight perimeter points at distance d2 = ~. We continue this process 
until the k-th search, where the eight perimeter search locations are spaced by 
one point. After these eight locations have been examined, we determine the 
location that yields the smallest MAE. 

Overall, logarithmic search examines 8k + 1 search locations and computes 
the MAE at each search location using (4.16). For pictures at resolution I 
x J at F pictures/s the computational complexity of logarithmic search is 
I JF x (8k + 1) x 3. For I = 720, J = 480, F = 30, and p = 15 (k = 4), 
logarithmic search requires around one GOP. The complexity of logarithmic 
search is only 3.3 percent ofthe complexity of full-search. 

In Figure 4.12, we illustrate the logarithmic search procedure in its more 
popular form, referred to as the three-step search (TSS), where k = 3 and p 

= 7. In videoconferencing applications, p = 7 is found to be sufficient for 
good performance. Search locations corresponding to each of the steps in the 
three-step search procedure are labeled as 1,2, and 3. 

• In the first step, starting from (0,0), we compute the MAE for the the nine 
search locations labeled 1. The spacing between these search locations is 
d1 = 4. Assume that MAE is a minimum for the search location (-4,0). 

• In the second step, using (-4,0) as the center, we search among the eight 
search locations around it labeled 2; the spacing between locations is now 



110 CHAPTER 4 

(-7,-7) (0,-7) ,-, . , (7,-7) 

1 1 1 

3 2 2 

3 1 2 1 

3 3 3~ V V 
(7,0) 

2 3 ~ 3 2 

3 3 3 

1 1 1 

f<J- d 1 

(-7,7) (7,7) 

Figure 4.12 Example of a three-step logarithmic search. 

d2 = ~ = 2 pixels. Let us assume that MAE is a minimum at search 
location (-4,2). 

• In the third step, from (-4,2) as center, we search among the eight search 
locations labeled 3, and as in the previous step, the spacing between 
search locations is halved to d3 = 1. Assume that the MAE is a minimum 
at search location (-3,1). The search process is terminated at this point, 
since no further subdivision of the search space is possible, and the output 
motion vector is defined by the coordinates (-3,1). 

The computation complexity associated with these 25 search locations is 777.6 
MOPS (Million operations per second). 



Fundamentals oj Lossy Video Compression 111 

4.5.3 Parallel Hierarchical One-Dimensional Search (PHODS) 

Unlike the logarithmic search, in this search strategy the search is done 
independently along the two dimensions. The search algorithm is as follows: 

1. For a [-p, p] search region as shown in Figure 4.11, let S = 2 Llo92 P J and 
set the origin of the search space at search location (0, 0). Denote the 
origin as (di, dj). 

2. In parallel, compute the 

• i-axis local minimum: Among the three locations (di - S, dj), (di, dj), 
(di + S, dj), find the location that yields the smallest MAE. Set di to 
the i coordinate of this location. 

• j-axis local minimum: Amongthe three locations (di, dj - S), (di, dj), 
(di, dj + S), find the location that yields the smallest MAE. Set dj to 
the j coordinate of this location. Set S = ~. 

Repeat step 2, until S = O. The final (di, dj) is the motion vector that yields the 
best match for the macroblock in the current picture. 

This procedure is illustrated in Figure 4.13 for the case of p = 7. The reader 
may want to compare this search process against the search process in Figure 
4.12. 

First, S = 4. 

1. In the first step, for the i-axis minimum, we compute MAE for the three 
search locations labeled xl. Assume that the minimum is obtained at i 
= O. In parallel, we compute the j-axis minimum using search locations 
labeled yl. Assume that the MAE minimum is obtained at y = O. Thus the 
new origin is again (0,0). 

2. The spacing is reduced to 2. The i-axis minimum is obtained from the 
search locations centered at the origin obtained in the previous step, and 
these search locations are labe1ed x2. Assume that the MAE minimum 
is attained at i = -2. For the j-axis minimum, as in the i-axis case, we 
compute MAE for the j-axis search locations labeled y2. Assume the 
MAE minimum is attained atj = 2. Thus the new search origin is (-2,2). 



112 CHAPTER 4 

(-7.-7) (0,-7) (7,-7) 

y1 
1---+--+---1--

y2 

, 

x1 x3 x}':3~ y1 >12 x1 

.LYV~ 
I 

y2 i 

y3 

y1 
L---L--+-_.l...-_ 

(-7,7) (0,7) (7,7) 

Figure 4.13 Example ofPHODS strategy. 

3. For this step, S = 1, and the minimum MAE along the i-axis is determined 
from MAE eomputations at seareh loeations labeled x3. We ean determine 
in parallel the minimum MAE along the j-axis by eomputing the MAE 
at loeations labeled y3. Assume that the MAE minimum along the i- and 
j-axis is attained at (-3,1). Sinee S = 1 at the start of this step, no further 
reduetion in spaeing is possible, and this terminates the seareh algorithm. 
We declare (-3,1) as the loeation yielding the smallest MAE and therefore 
the motion veetor for the maerobloek in the eurrent picture. 

For the ease of p = 7, we need to ex amine 13 seareh loeations, whieh for 
frames at 720 x 480 resolution and 30 fps eorresponds to 404.35 MOPS. 



Fundamentals 01 Lossy Video Compression 113 

PHODS has two distinct advantages over TSS: (1) the MAE calculations are 
parallelizable, and (2) it has a regular data flow, since the search locations are 
always along the i-axis and the j-axis. 

Both the logarithmic and the PHODS methods belong to the class of fast 
algorithms that reduce motion-estimation complexity by reducing the number 
of search locations that are used in determining the minimum MAE. For p 
= 7, compared to a fuIl-search method, the complexity is reduced from 6.99 
GOPS to 404.35 MOPS. Fast algorithms that work in the reduced search space 
assume that MAE(i,j) of (4.16) increases monotonically as the search area 
moves away from the best-matched location. Such algorithms perform as weIl 
as the fuIl-search method if this assumption holds; however, in practice the 
assumption often fails, since not all the search locations are visited, and the 
search for a global minimum may get trapped into a local minimum. This is 
illustrated in Figure 4.14, which shows hypothetical MAE values for different 
search points. 

In Figure 4.14a, there is a single global minimum. Thus, the result of the 
fast algorithm coincides with the best solution obtainable with full-search. 
In Figure 4.14b, there is a global minimum and a local minimum. The fast 
algorithm gets trapped in the local minimum and declares X as the location of 
the lowest MAE, even though the fuIl-search method would have found the 
true minimum at location Y. Thus, fast algorithms such as those described 
here may yield a larger motion-compensated prediction error e(x, y, t) than a 
fuIl-search scheme. 

4.5.4 Pixel Subsampling and Pixel Projections for MAE 

Calculations 

An alternative approach to reduce the motion-estimation complexity is to 
reduce the number of pixels that are used in computing block differences in 
(4.16). The motivation for using a reduced number of pixels is this: since 
block matching implies that all pixels within the macroblock have the same 
motion, an estimate of the motion can also be obtained with fe wer pixels. Pixel 
decimation must be done in a careful manner so as not to reduce the motion 
estimation accuracy. A strategy for pixel decimation in the context of motion 
estimation is shown in Figure 4.15. 



114 

MAE 
Result from fast algorithm is 
also the best solution 

I r 
~ I ~ 

X 

(a) 

MAE 

Best solution 

(b) 

match loeation 

The fast algorithm 
is trapped into a loeal minima 

~ 

1 
I 
X 

match loeation 

CHAPTER 4 

Figure 4.14 MAE versus search location. (a) MAE function is 
monotonie; (b) search result is trapped into a local minimum. 

This decimation process is explained as follows. Assume we are using a 
full-search method. For each MAE value, we only use only one fourth of 
the pixels. Pixels labeled 1 are used for computing MAE(i,j) at (0,0) and 
all search locations (2i,2j). Pixels labeled 2 are used at all search locations 
(2i,2j + 1). Pixels labeled 3 are used at search locations (2i + 1, 2j + 1), and 
pixels labeled 4 are used at all search locations (2i + 1, 2j). By alternating the 
pixel patterns and associating a different pattern for each neighboring search 
location, all the pixels within the block are covered within four search locations 
and hence, all pixels in the pieture are used in motion estimation. Furthermore, 
this alternation minimizes the possibility of not considering one-pixel-wide 



Fundamentals of Lossy Video Compression 

1 2 1 2 1 2 1 2 

3 4 3 4 3 4 3 4 

1 2 1 2 1 2 1 2 

3 4 3 4 3 4 3 4 

1 2 1 2 1 2 1 2 

3 4 3 4 3 4 3 4 

1 2 1 2 1 2 1 2 

3 4 3 4 3 4 3 4 
--

Figure 4.15 Pixel decimation for block matching in an 8 x 8 
block. 

115 

horizontal, vertical and diagonallines. With this scheme, the computational 
complexity of a full-search method is reduced by 25 percent. 

Yet another approach to reduce the pixels used in the MAE calculations 
is to form a projection of the macroblock a10ng several directions and use 
the sampies along the projections instead of the pixels themselves. This 
is depicted in Figure 4.16. Each element of the colurnn projection vector 
is the sum of pixels along the corresponding colurnn of the 8 x 8 block. 
The row projection vector is formed in a similar manner. For a 16 x 16 
macroblock, the operations are identical. In the MAE calcu1ations in (4.16), 
we replace the sum of absolute values of N x M pixel differences with the sum 
of absolute values of the differences of the corresponding row and colurnn 
projections. This reduces the complexity by approximately a factor of ~:N' 
For improved motion-estimation accuracy, we can also form projections along 
various diagonals. In practice, for video conferencing applications that require 
a very high compression ratio, two projections have been found to provide 
accuracy only slightly inferior to that of the full-search method. On the other 
hand, this approach requires only 12.5 percent of the computations required in 
the full-search method. Note that, the projection method can be combined with 
any of the fast search strategies discussed above for additional computation 
savings. 



116 

c 
o 
TI 
GI oe 

a.. 
~ o a: 

r--

<) 

i--

<) 

~ 

<) 

~ 

<) 

~ 

<l 
~ 

<l 
~ 

<) 

f--
<) 

'--

CHAPTER 4 

Column Projection 

I ~ ~~- * * t_m~* I 
I I 

r- r ,- -1- -I- r -t- -I 

L- I.. -1 - - 1- -l- I.. ..1_ -I 

I I ..1_ _l- I L I I 
1 - -I I I I I I I 

I I I I I I I I 
-r r -, -1- -I- r 1 -I 

-l- r "1 - 1- -l- I"" -t -I 

_L L ..J -1- _L L ~ 
_I 

I I 

I I I _ l - I I I I 

I 1 -I I I I I I 
I I I I I I T I - - - - - - - - -

Figure 4.16 Row and column projection of pixels in an 8 x 8 
block. 

The main disadvantage in using fewer pixels than 16 x 16 is that the motion 
vector estimate may be unreliable due to noise in the current and reference 
pictures. A summation over 16 x 16 pixel differences has the side benefit of 
masking this noise by noise averaging. This effect is reduced when we use 
fewer pixels in the MAE calculations. 

4.5.5 Hierarchical Motion Estimation 

Several fast motion-estimation schemes use a combination of search strategies 
that use bath fewer search locations and fewer pixels in computing the MAE. 
A scheme that combines these two features is widely referred to as the 
hierarchical search method. There are many variations of this method, but one 
approach is depicted in Figure 4.17. 

The motion vector search proceeds as folIows: 



Fundamentals oi Lossy Video Compression 117 

Reference Picture 

Level 2 

Figure 4.17 A generic hierarchical motion vector search strategy. 

l. We form several low-resolution versions of the current picture and the 
reference picture. In Figure 4.17, we show two low-resolution versions at 
Levelland Level 2 for the reference picture. A similar set of operations 
is performed to obtain low-resolution versions for the current picture. Let 
us assume that the macroblock in the current picture is located at (x, y). In 
Level 1 and Level 2, the corresponding macroblock is at (~, ~) and (~) ~) 
respectively. Let us also assume that the size of the macroblock at Level 
o is 16 x 16 and that the motion vector has adynamie range of ±p pixels. 



118 CHAPTER 4 

2. We start the motion vector search at Level 2. Here, one can view the 
image as a collection of macroblocks of size either 16 x 16 or 4 x 4. In 
many applications, the latter is sufficient. Furthermore, the scaled version 
of the search parameter can also be used; that is, we can use ~ instead of 
p. Hence, at Level 2, we can use any motion vector strategy, such as the 
full-search scheme or the logarithmic search scheme that we described 
earlier, with 4 x 4 macroblocks, a search parameter of ~, and the origin 
of the search located at (~, ~ ). Assume that the MAE is minimized at 
(U2,V2). 

3. At Level 1, we perform the motion vector search on 8 x 8 macroblocks 
with the origin of the search located at (~ + 2 U2, ~ + 2 V2), and a search 
region of [-1, 1] pixel around the origin. As before, we can use any search 
strategy. Assume that the MAE is minimized at (UI, vd. 

4. At Level 0, we locate the search origin at (x+2 UI, y+2 VI), and we search 
in a search region of [-1, 1] pixel around the origin, with a macroblock size 
of 16 x 16. Any search method, inc1uding full-search, can be employed. 
The location that yields the smallest MAE corresponds to the final motion 
vector output. 

Note that, in this hierarchical search scheme, we reduce both the number of 
search locations and the number of pixels used in the MAE calculations. Let 
us assume the parameters for broadcast TV (720 x 480 at 30 fps), a 16 x 16 
macroblock size and a search parameter of p = 15. We will also assume that a 
full-search method is used for motion estimation at each level of the hierarchy. 
We estimate the complexity at each level ofthe hierarchy as follows: 

1. Level 2 

• 
• 

• 
• 
• 

Picture size = 180 x 120, and macroblock size = 4 x 4. 

Number of macroblocks = Picture size = 1 350. At 30 fps we M aeroblock s,ze' , 

have 40,500 macroblocks. 

Search parameter = r~l = 4. 

Number of search locations = (2 x 4 + 1)2 = 81. 

Number of operations per search location = macroblock size x 3 = 
48. 

Complexity for Level 2 = 40,500 x 81 x 48 = 157.46 MOPS. 



Fundamentals of Lossy Video Compression 119 

2. Levell 

• Picture size = 360 x 240, and macroblock size = 8 x 8. 

• Number of macroblocks = 1,350. At 30 fps, we have 40,500 
macroblocks. 

• Search parameter = 1. 

• Number of search locations = 9. 

• Number of operations per search location = macroblock size x 3 = 
192. 

Complexity for Level 1 = 40,500 x 9 x 192 = 69.98 MOPS. 

3. Level 0 

• Picture size = 720 x 480, and macroblock size = 16 x 16. 

• Number of macroblocks = 1,350. At 30 fps, we have 40,500 
macroblocks. 

• Search parameter = 1. 

• Number of search locations = 9. 

• Number of operations per search location = macroblock size x 3 = 
768. 

Complexity for Level 0 = 40,500 x 72 x 48 = 279.9 MOPS. 

The total complexity is the sum of complexities in Levels 0 through 2 and is 
507.38 MOPS. This is a significant reduction overthe 29.89 GOPS needed for 
a full-search method. 

From a complexity viewpoint, the hierarchical search method is very efficient; 
however, such a method requires increased storage due to the need to keep 
pictures at different resolutions. Furthermore, this scheme may yield inaccurate 
motion vectors for regions containing small objects. Since the search method 
starts at the lowest resolution of the hierarchy, regions containing small objects 
may be completely eliminated and thus fail to be tracked. On the other hand, 
the creation of low-resolution pictures does provide some immunity to noise. 



120 CHAPTER 4 

4.5.6 Performance Comparison of Motion-Estimation Methods 

For the MAE criterion, Table 4.1 summarizes the computational requirements 
of the four major motion-estimation techniques we described in this chapter. 
In all cases, we assurne 16 x 16 macroblocks and a search range of [p, -p] 
pixels. 

Search Operations per Operations for pictures 
Method Macroblock 720 x 40 at 30 fps 

p = 15 p=7 
Full-search (2p+ 1)2NM3 29.89 GOPS 6.99 GOPS 
Logarithmic (8flog2pl + I)NM3 1.02 GOPS 777.60 MOPS 
PHODS (4flog2pl + I)NM3 528.76 MOPS 404.35 MOPS 
Hierarchical [(2r~1 + 1)2 + 180] ~~ 3 507.38 MOPS 398.52 MOPS 

Table 4.1 Computational complexity and MOPS requirements 
for various motion-estimation algorithms using the MAE criterion 
and a [-p, p] search range. 

In Figure 4.18, we show the performance of several motion-estimation meth­
ods. In all cases, p = 15, and we use 16 x 16 macroblocks. 

Figures 4.18c to 4.18f, show the motion-compensated prediction error. If 
motion estimation were perfect, then we would expect an error picture that 
would be completely black. Figure 4.18c shows the prediction error for the 
case of a zero-valued motion vector (simple frame differencing). The full­
search method performs the best in that the prediction error is dose to zero in 
most regions of the picture. The logarithmic search scheme is inferior to the 
full-search and the hierarchical methods, probably because the search strategy 
gets trapped into local minima. Due to lowpass filtering, the probability 
of getting trapped into local minima is reduced in the hierarchical scheme, 
and Figure 4.l8f indicates that the performance is nearly as good as using 
full-search. 

All our discussions have considered macroblock sizes of 16 x 16. In practice, 
the performance among the search methods is similar for block sizes of 16 x 
8 or 8 x 8. At smaller block sizes, such as 8 x 4 and 4 x 4, the hierarchical 



Fundamentals of Lossy Video Compression 

(a) 

(c) (d) 

(e) (I) 

Figure 4.18 Performance comparison of motion-estimation 
methods. (a) Reference picture; (b) current picture; (c) simple 
frame differencing; (d) full-search; (e) logarithmic search; (f) 
three-Ievel hierarchical search. 

121 

scheme performs much worse than the logarithmic scheme. This is probably 
due to an insufficient number of pixels within the small blocks to obtain 
accurate estimates of MAE. For the fast search methods, visually, the decrease 



122 CHAPTER 4 

in block size manifests as block flickering in the reconstructed sequence. In 
the case of full-search, the decrease in block size reduces motion artifacts, 
since we assign motion vectors to smaller regions of the picture. This also 
improves the smoothness of the motion vector field and thus makes the vectors 
amenable to compression. 

The video coding standards do not specify wh ich motion-estimation method 
to use. Any of the methods discussed here is applicable. 

4.6 SUB-PIXEL-ACCURATE MOTION 
ESTIMATION 

In all our discussions, we have restricted the motion vector estimation to 
integer pixel grids. Thus, the motion vector would be pixel or pel-accurate. 
The true frame-to-frame displacements are unrelated to the sampling grid, and 
thus, one would expect improved prediction if displacement estimates were 
obtained at a finer resolution. This implies that we need to determine motion 
vectors with fractional or sub-pixel accuracy. The video coding standards 
permit motion vectors to be specified to a half-pixel accuracy. 

Motion vector estimation with, say, half-pixel accuracy can be easily found 
by interpolating the current and reference pictures by a factor of two and then 
using any of the motion-estimation methods described in the previous section. 
Since this method uses excessive storage requirements, the following two-step 
alternate approach is usually prefered. We illustrate the two-step approach in 
Figure 4.19. 

1. In the first step, we find a motion vector with integer-pel accuracy using 
any of the motion-estimation methods described in the previous section. 
The resulting integer-pe I accurate motion vector (u, v) that yields the 
smallest MAE is as shown in Figure 4.19. Let us denote the corresponding 
MAE as M AE(u, v). 

2. In the second step, we refine the results of the first step to obtain the 
motion vector with the desired half-pixel accuracy. To refine the (u, v) 
motion vector to half-pixel accuracy, we do the following: 



Fundamentals of Lossy Video Compression 

Half-pel grid 

'd Q Intege~r-pel gn I I 

I I 
I 

I I ixel values 
I x' Estimated p 'd using t ' t- ~ ! --. on ""-pel '00 'ole,e'-,,' -*" pixel values 0 

~-\ 

Sub-pel accurate 

motion vector (k,l) 

grid 

Figure 4.19 Half-pel accurate motion vector estimation. 

123 

• We form eight new search blocks of 16 x 16 pixels, with the top-Ieft 
corner of each block being at the locations marked X in Figure 4.19, 
These locations are denoted as (u+~, v+ ~), where m, nE [-1,0,1], 
but m and n cannot be both zero at the same time. For each of 
these eight new search blocks, we know only those pixel values with 
coordinates matching our original integer-pel grid. The remaining 
values on the half-pe I grid of Figure 4.19 can be estimated using 
simple bilinear interpolation techniques. 

• We compute new MAE values by comparing each of these eight 
search blocks with the original macroblock. Denote by M AE(m, n) 
the MAE value associated with the search block whose top left corner 
is located at (u + ~, v + ~). 

• Denote by (k, l) the position of the block for which M AE(m, n) 
is minimum. Note that, M AE(u, v) is also included in finding the 
minimum. Thus, (k, I) is the half-pel refinement to the integer-pel 
accurate motion vector (u, v), and the final half-pixel accurate motion 
vector is given by (u + ~,v + ~). Note that, the k, I values do not 
have to be nonzero values. Depending on the nature of the video 
sequence, there will be regions in the picture where M AE(u, v) is 



124 CHAPTER 4 

minimum among the nine MAE values. In such cases, the integer-pel 
accurate motion vector is the right choice. 

A similar procedure can be adopted if motion vectors are needed at, say, 
quarter-pel accuracy. 

The pixel interpolation step is compute intensive. In recent years, fast methods 
that do not perform the interpolation step to determine sub-pixel accurate 
motion vectors have been developed. We briefly describe one such fast 
method. The various steps in the fast method are depicted in Figure 4.20. 

Hall pel grid ,n,·g'f
1 

i LO 

(a) 

m1 

m3 mO m4 

I ,J 
m2 

(b) 

x1 x2 

I 

k 

xO 
(c) 

Location (u,v) - result 
01 integer-pel accurate 
motion estimation melhod 

~Y1 
YO~Y2 

(d) 

Figure 4.20 Fast method for half-pe1 accurate motion vector 
estlmation. (a) Integer-pe1 accurate motion vector estimate; (b) 
computation of MAE at neighboring integer-pel displacements; 
(c) integer-pel locations used in computing the MAE minimum 
along the horizontal direction; (d) integer-pel locations used in 
computing the MAE minimum along the vertical direction. 



Fundamentals oj Lossy Video Compression 125 

• Let us assume that we found the integer-pel accurate motion vector using 
any of the methods described earlier. The location corresponding to this 
motion vector is shown in Figure 4.20a. Let us denote the corresponding 
MAE value as mO. Since pixel values are known on the integer-pel 
grid, we can compute MAE at the neighboring four locations on the 
integer-pel grid as shown in Figure 4.20b. These MAE values are denoted 
as mI, m2, m3, and m4. 

• In (4.16), around the location corresponding to mO, we will model MAE 
as a separable function. 

• A10ng the horizontal (i) direction, this function is of the form p(i) 
a\i - b\ + c. Here, a, b, and c are constants and can be explicitly derived 
using p(O) = mO, p(I) = m4, and pe-I) = m3. Using simple algebra, it 
can be shown that for the motion vector to yie1d the smallest MAE on the 
sub-pixel grid in the i direction, one of the following conditions must be 
met: 

1. If 2(m3 - mO) < (m4 - mO), the i coordinate of the motion vector is 
one ofthe three values on the xIline shown in Figure 4.20c. 

2. If (m3 - mO) > 2(m4 - mO), the i coordinate ofthe motion vector is 
one of the three values on the x2 line shown in Figure 4.20c. 

If neither of these conditions is met, the i coordinate of the motion vector 
is on the xO line shown in Figure 4.20c. Note that, the xIline corresponds 
to a displacement of (u - 0.5), the x2 line corresponds to a displacement 
of (u + 0.5), and the xO line corresponds to a displacement of u. 

• In a similar manner, we model the MAE along the vertical (j) direction as 
a function ofthe formp(j) = a\j - b\ +c. Here, a, b, and c are constants and 
can be explicitly derived using p(O) = mO, p(I) = m2, and p( -1) = ml. 
Using simple algebra, it can be shown that for the motion vector to yie1d 
the smallest MAE on the sub-pixel grid in the j direction, one of the 
following conditions must be met: 

1. If 2(mI - mO) < (m2 - mO), the j coordinate of the motion vector is 
at one of the three locations on the y Iline in Figure 4.20d. 

2. If (mI - mO) > 2(m2 - mO), the j coordinate of the motion vector is 
at one of the three locations on the y2 line in Figure 4.20d. 

If neither of these conditions is met, the j coordinate of the motion vector 
is at one of the three locations on the yO line in Figure 4.20d. 



126 CHAPTER 4 

For example, if after these tests we find that the i coordinate of the motion 
vector is on the x2 line and that the j coordinate is on the yl line, then the 
half-pet accurate motion vector is the vector (u + !' v - !). 

Thus, one can determine the half-pet accurate motion vector without the explicit 
computation of pixel values on the half-pel grid. Note that, such computations 
are not completely avoidable. If the motion estimator yields a motion vector 
with coordinates at the half-pet grid, then we still need to compute pixel values 
at the half-pet grid in order to compute the motion-compensated prediction 
error. 

4.7 MULTIPICTURE MOTION ESTIMATION 

In our discussions on motion estimation and motion-compensated prediction, 
we have restricted attention to the case where the motion estimation is 
performed using only one reference picture. In instants of smooth motion, 
there is a great deal of correlation between the current picture at time instant 
t and pictures prior to and after time instant t. Thus, it is beneficial to 
compute a prediction of a macroblock in the current picture using motion­
compensated regions from the pictures prior to and after time instant t. This 
is called bidirectional prediction. The motion-compensated prediction for the 
macroblock X is simply the average of the the motion-compensated prediction 
between X and A and between X and C. This form of prediction is also 
referred to as interpolative prediction. 

In Figure 4.21, we show the current picture and two pictures denoted as 
reference pictures. The motion vector estimated using the reference picture at 
time t - m is shown as the vector b, and the motion vector estimated using 
the reference picture at time t + n is shown as the vector f. Motion vectors 
b and f can be found using the methods for motion estimation described in 
the previous sections. Since bidirectional prediction doubles the complexity 
of motion vector estimation, several fast methods have been devised; for 
instance, one might use b as a hint to search for f. 

In the video coding standards, for certain types of pictures, two motion vectors 
can be used for a macroblock X. The specific details on when one uses one 



Fundamentals of Lossy Video Compression 

GJ I r f~(0 
y 

Reference picture Current picture 
at time t-m at time t 

Reference picture 
at time t+n 

Figure 4.21 Multiframe motion-compensated prediction. 

127 

motion vector instead of two will be described in the chapter on the video 
coding standards. 

4.8 TO PROBE FURTHER 

In this chapter we introduced the basic concepts associated with the compres­
sion and decompression of image sequences (video). The main difference 
between the spatial-domain coding methods discussed in the previous chapter 
and the video coding techniques discussed in this chapter are the temporal 
extensions, which comprise two functions: motion estimation and motion 
compensation. From an information-theoretic viewpoint, the benefits of tem­
poral extension were determined. through the development of rate-distortion 
functions for video coding. Our approach to computing the rate-distortion 
functions paralleis the developments in [153], [187], and [60]; we have omitted 
many of the details and we direct the reader to these references for further 
details. The modeling of the motion-compensated prediction error, which is 
useful in the ca1culation of the rate-distortion functions, is also discussed in 
[178] and [61]. 

In this chapter, we have focused on motion-estimation methods that find 
the best match between a 16 x 16 macroblock in the current picture and 
a 16 x 16 pixel region in the reference picture. In recent years, it has 
been observed that the translatory-motion model assumption of such motion-



128 CHAPTER 4 

estimation methods may not be appropriate for many video sequences. A 
generalized block-matching method that maps a 16 x 16 macroblock to a 
deformed (quadrilateral-shaped) region in the reference picture is described 
in [175]. This scheme outperforms the square-region-based block matching 
discussed in this chapter. In most motion-estimation methods, for the best 
match, the mean absolute difference (MAE) cost function is used. An 
alternative criterion based on elassifying each pixel is described in [59]. This 
method is elaimed to yield good performance for large search windows. 

Over the years, several heuristic motion-vector search schemes have been 
developed; descriptions of some of these schemes can be found in [166], 
[58], [115], [198], and [163]. Adescription of the 2-D logarithmic search 
discussed in this chapter can be found in [90]. Its more popular variation, 
namely, the three-step search scheme, is described in [98]. The PHODS 
method of motion vector search discussed in this chapter was first presented 
in [30], and comparisons with the three-step search method are provided 
in this paper. Motion vector search methods that employ pixel decimation 
are developed in [123], and the approaches adopted here yield performance 
very elose to the full-search method. There have been several motion vector 
search schemes that employ a hierarchical decomposition of the current and 
the reference pictures, and one of the implementations is discussed in [21]. 
A hierarchical block-matching method with specific emphasis on hardware 
implementation is described in [160]. Additional hardware implementations 
for motion estimation are also described in a later chapter. 

The video coding standards allow motion vectors to be represented with 
sub-pixel (half-pixel) accuracy. In this chapter, we provided a fast method 
for deterrnining such motion vectors using a model for the MAE function. A 
discussion of the performance using this model versus a model that employs 
a squaring function is provided in [95]. There, it is shown that the squaring 
function, though mathematically tractable, is not necessarily a good fit to the 
MAE. 



5 
THE JPEG STANDARD 

5.1 INTRODUCTION 

Until recently, the Group 3 and Group 4 standards for facsimile transmission 
were the only international standard methods for the compression of images. 
However, these standards deal only with bilevel images and do not address the 
problem of compressing continuous-tone color or grayscale images. 

Since the mid-1980s, members from both the International Telecommunication 
Union (lTU) and the International Organization for Standardization (ISO) 
have been working together to establish a joint international standard for the 
compression of multilevel still images. This effort has been known as JPEG, 
the Joint Photographie Experts Group. Officially, JPEG corresponds to the 
ISOIIEC international standard 10918-1, Digital compression and coding of 
continuous-tone still images or to the ITU-T Recommendation T. 81. The text 
in both these ISO and ITU-T documents is identical. 

In recent years, there have been many new developments in the field of image 
compression. These include new compression schemes based on transform 
coding, vector quantization, subband filtering, wavelets, and fractals. The goal 
of JPEG has been to develop a general method for image compression that 
meets a number of diverse requirements, including the following: 

• Be as close as possible to the state of the art in image compression. 

• Allow applications (or auser) to tradeoff easily between desired compres­
sion and image quality. 



130 CHAPTER 5 

• Work independently of the image type. That is, the method should not 
be restricted by the type of image source, image content, color spaces, 
dimensions, pixel resolution, etc. 

• Have modest computational complexity that would allow software-only 
implementations even on low-end computers. Low-complexity hardware 
implementations should also be feasible. 

• Allow both sequential (single scan) and progressive coding (multiple 
scans). 

• Offer the option for hierarchical encoding, in wh ich a low-resolution 
version of the image can be accessed without a need to decompress the 
image at full resolution. 

After evaluating a number of coding schemes, the JPEG members selected a 
DCT -based method in 1988. From 1988 to 1990, the JPEG group continued its 
work by simulating, testing, and documenting the algorithm. JPEG became a 
draft international standard in 1991 and an international standard in 1992. The 
JPEG group has not yet completed its mission. It continues to work on future 
enhancernents. ISO 10918-3, wh ich specifies recent extensions to JPEG, has 
already been approved as a draft international standard. 

JPEG includes two basic cornpression rnethods: a DCT-based lossy corn­
pression rnethod and a predictive method for lossless compression. We have 
already examined the lossless compression method in an earlier chapter. In 
this chapter, we provide an overview of the lossy JPEG method. 

5.2 DCT-BASED CODING 

The JPEG standard specifies four modes of operation: sequential DCT -based, 
progressive DCT-based, lossless, and hierarchical. Under the lossless mode, a 
predictive coder followed by either a Huffman or an arithmetic coder is used 
instead of a DCT-based scheme. The details of operation under the lossless 
mode were discussed in Chapter 2. To better understand the other modes of 
operation, we need first to review the DCT-based coder. 



The lPEG Standard 131 

5.2.1 JPEG Encoding 

Figure 5.1 shows a block diagram of the DCT -based JPEG encoder for an 
image with a single color component (grayscale). For color images, the process 
is repeated for each of the color components. 

~-- - ------I ~ ------- . 

Quantization 

Headers 

Tables 

Data 

Figure 5.1 Block diagram of a JPEG encoder. 

From Figure 5.1, the image is first divided into nonoverlapping blocks. Each 
block has 8 x 8 pixels. If any of the dimensions of the image is not a multiple 
of eight, then the pixels of the last row or the last colurnn in the image are 
duplicated appropriately. 

Each block is transformed into the frequency domain by a 2-D DCT. The 
standard does not specify a unique DCT algorithm. Consequently, users may 
choose the algorithm that is best suited for their applications. The DCT output 
coefficients are quantized and entropy coded. 

The entropy coder consists of two stages. The first stage is either a predictive 
coder for the DC (or [0,0]) coefficients or a run-Iength coder for the AC 
coefficients. The second stage is either a Huffman coder or an arithmetic 
coder. Arithmetic coding provides better compression than Huffman coding; 
however, there are very few JPEG implementations that support arithmetic 
coding. There are three main reasons for this. First, the improvement 
in compression (2 percent to 10 percent) does not justify the additional 
complexity (especially for hardware implementations). Second, many of the 
algorithms on arithmetic coding are covered by patents in the United States 
and Japan. Therefore, most implementors are reluctant to pay license fees for 



132 CHAPTER 5 

minimal gains in performance. Third, the baseline implementation, that is, the 
implementation with the minimum set of requirements for a JPEG compliant 
decoder, uses only Huffman coding. 

In order to facilitate the acceptance of JPEG as an international standard 
and because of the various options available during JPEG encoding, the JPEG 
committee also defined an interchange format. This interchange format embeds 
image and coding parameters (type of compression, coding tables, quantization 
tables, image size, etc.) within the compressed bit stream. This allows JPEG 
compressed bit streams to be interchanged among different platforms and to 
be decompressed without any ambiguity. 

5.2.2 JPEG Decoding. 

Figure 5.2 shows a block diagram of a JPEG decoder. After extracting 
the coding and the quantization tables from the compressed bit stream, the 
compressed data passes through an entropy decoder. The DCT coefficients 

.- --- - ---.- --- - -- - -- ---- ---
" ' 

Quantization 

Headers 

Tables 

Data eS 
Figure 5.2 Block diagram of a JPEG decoder. 

are first dequantized and then translated to the spatial domain via a 2-D inverse 
DCT. After a block-to-raster translation, the image is fully decoded. 



The lPEG Standard 133 

5.3 PROCESSING OF COLOR IMAGES 

Thus far, we have considered JPEG compression of images with a single com­
ponent. In practice, images may be represented by multiple color components, 
each at a different resolution. For example, most color scanners generate 
images with red, green, and blue color components (RGB). 

JPEG sets no restrictions on the type of the input color space. Instead, it views 
each image as a collection of image components. The maximum number of 
color components in JPEG is 255. Each component consists of a rectangular 
array of sampies (pixels). Each sampie may be represented by P-bits of 
precision. In JPEG, P can be either 8 or 12 for DCT-based coders and from 
2 to 16 for lossless coders. Images with other pixel resolutions can still be 
coded using JPEG; however, pixel values have to be shifted to be within the 
resolutions supported by JPEG. 

It is not necessary that all color components have the same dimensions. Let Xi 

and Yi denote the horizontal and vertical dimensions for the i-th component. 
If ~ = * and 1liy i = tt, then the relative horizontal and sampling factors 

J ] J 1 

for the components (that is, H i and Vi) are allowed only the integer values 1 
to 4. Under the JPEG interchange format, a color image is specified by the 
maximum horizontal and vertical dimensions (X = max(xi) and Y = max(Yi», 
the relative sampling factors for each component, and the maximum relative 
sampling factors (Hmax and Vmax ). The maximum dimension supported by 
JPEG is 216 = 65,536 sampies. Given the above information, the decoder 
extracts the dimensions of each component using the following equations: 

Xi = rXx~l, 
H max 

(5.1) 

Yi = fYx~l Vmax 
(5.2) 

Example. We want to compress a color 512 x 512 RGB image. Since 
JPEG requires each color component to be handled separately, one approach 
would be to compress the RGB image by applying the JPEG compression 
method on the R, G, and B components separately. In typical RGB images, 
there is significant correlation between the color components; thus, from a 
compression viewpoint, the RGB space is not an efficient representation for the 
JPEG compression method. The ideal approach would be to transform the RGB 



134 CHAPTER 5 

image into another component representation, where each of the components 
is decorrelated with respect to each other, and then apply the IPEG method. 
In practice, this is done by first transforming the RGB representation into a 
luminance and chrominance (or color difference) representation, such as YUV, 
YCbCr, or CIELAB. Assume that the image is translated from the RGB color 
space into the YCbCr color space. (The reader may want to refer to Appendix 
A for the RGB to YCbCr color transformation matrix). There is very little 
correlation among the components in this representation. Furthermore, since 
most of the spatial information is in the luminance (Y) component, we lose 
little information if we subsampie the Cb and Cr components by a factor of 
two in both dimensions. Thus, even before applying IPEG compression, we 
have reduced the image size in half by this simple color-space transformation. 

After color-space transformation and subsampling, the image color compo­
nents have the following dimensions: for the luminance component, Xo = Yo = 
512; for Cb and Cr, Xl = X2 = YI = Y2 = 256. Thus, X = Y = max(256, 512) = 
512. The relative sampling factors are Ho = Vo = 2 and HI = H2 = VI = V2 = 1. 
Thus, H max = V max = 2. 

5.3.1 Data Interleaving 

Images with multiple components can be stored and processed either with or 
without data interleaving. When there is no data interleaving, each component 
is stored and processed separately. For example, a 512 x 512 noninterleaved 
RGB image would be stored as three separate 512 x 512 8-bit images: one 
with the red pixels, one with the green pixels, and one with the blue pixels. 

For more efficient storage and processing, the color components can be 
interleaved. A data unit is defined as the smallest logical unit of source data 
that can be processed by IPEG. For lossless IPEG, a data unit corresponds to 
a single sampie. For lossy JPEG, a data unit is a single 8 x 8 block of data. 
Under color interleaving, the i-th color component is partitioned into small 
rectangular blocks of dimension H i x Vi data units. If we select one H i x Vi 
data block from each of the color components, then we form what is referred 
to by IPEG as the minimum coded unit (MCU); that is, the smallest group 
of interleaved data. Figure 5.3 shows an example of interleaved data ordering 
for a YCbCr image. In this example, the Y component is divided into blocks 
of 2 x 2 data units, and the Cb and Cr components are divided into blocks of 



The lPEG Standard 

o 

2 

3 

o 1 2 3 4 5 

•• •• •• •• •• •• •• •• 
V plane 

Ho= Vo= 2 

•• •• 
o 
1 
2 

3 

o 1 2 3 

•• • 
, .. 
Cb plane 

H1= V l = 1 

0 

2 

3 

o 1 2 3 

• 
Cr plane 

H2= V 2= 1 

MCU1 = Voo VOl Vl0 Vll Cboo Cr 00 MCU2 = V02 V03 V12 V13 CbOl Cr 01 

Figure 5.3 Example of data interleaving. 

135 

single data units. An MCV is created by taking the four data units from Y, one 
data unit from Cb, and one data unit from Cr. Within one data unit, pixels are 
ordered from 1eft to right, top to bottom. 

In general, the maximum number of interleaved components is four, and the 
maximum number of data units within an MCV is ten. The last restriction is 
expressed as 

N. 

I: H i Vi ::; 10, (5.3) 
i=l 

where N s is the total number of color components. If the above equation is not 
satisfied, the data can still be coded, but in a noninterleaved format. 

5.4 DESIGN OF QUANTIZATION TABLES 

The principle source of compression in DCT-based coders is the quantizer. 
IPEG requires an 8 x 8 quantization matrix for each image component to be 
compressed; however, multiple components can share the same quantization 
matrix. Each element of the quantization matrix can be any integer value 
between 1 and 255 and defines the quantization step for the corresponding 
DCT coefficients. A quantization matrix with all ones will result in nearly 
lossless compression (all the loss will be due to round-off errors). In general, 



136 CHAPTER 5 

the larger the elements, the bigger the loss and better the compression that can 
be achieved. 

Aggressive quantization will increase the compression; however, it mayaiso 
introduce image artifacts (such as blockiness) and cause image distortion in 
the decompressed image. Thus, a good quantization table has to balance the 
need for low bit rates with the need for good image quality. The techniques 
for the design of quantization tables can be divided into two main classes: (l) 
those that are based on human perception and psychovisual experiments, and 
(2) those that are based on rate-distortion theory and bit-rate control. 

5.4.1 Techniques Based on Psychovisual Experiments 

Techniques based on human perception define the elements of the quantization 
matrix from visibility thresholds for the DCT basis functions so that any loss 
due to quantization is perceptually irrelevant. These visibility thresholds are 
determined from aseries of psychovisual experiments that can be described 
analytically as 

Ur = UD + "'(Ut· (5.4) 

Given a viewing image Ur, a uniform background UD' and a stimulant function 
Ut, the test person has to determine the value of the variable "'( that yields a 
just-noticeable difference between UD and Ut. In practice, a DCT basis function 
is superimposed on a uniform background, and the intensity ("'() of the basis 
function is increased until it becomes just noticeable. 

Lohscheller was among the first to determine visibility thresholds for the 2-D 
DCT basis functions. His work led to the definition of the two quantization 
tables listed in Annex K of the standard. One table can be used for either 
grayscale images or for luminance components, and the other can be used 
for chrominance components. For example, the elements of the quantization 
matrix for the luminance component are given in (3.29). Use of these tables 
is optional; however, experience has shown that they are quite robust and 
applicable to a wide range of images and applications. 

As mentioned before, quantization tables based on psychovisual experiments 
will yield decompressed images of very good quality; however, image quality 
or overall compression may not be satisfactory for certain applications. In 



The lPEG Standard 137 

those cases, one can tradeoff between image quality and data compression by 
uniformly scaling the original quantization table by a quality Jactor. 

For the two quantization tables listed in the standard, a quality factor of one 
half will yield decompressed images indistinguishable from the originals. For 
additional compression, quality factors from one to five are typical. Figure 5.4 
shows the effects on image quality and compression ratio for quality factors 
(q) oftwo and four. At q = 4, the compression ratio doubles; however, there is 
significantly more blockiness in the background of the image. 

(a) q = 1, 15.25:1 (b) q = 2, 22.37:1 (c) q = 4,31.24:1 

Figure 5.4 Quality of reconstructed images for different quality 
factors. 

5.4.2 Techniques Based on Bit-Rate Control 

In contrast to the design techniques that are based on general psychovisual 
experiments, techniques based on bit-rate control generate quantization tables 
based on the statistical properties of an image. Results from the theory of 
human perception mayaiso influence the final design; however, the emphasis 
here is on bit-rate control. A simple design technique is described next. 

Let r denote the desired average compressed bit rate. (Note that, this is the 
bit rate before the Huffman coder.) If we allocate bij bits per quantized DCT 



138 CHAPTER 5 

coefficient, then 
1 8 8 

64LL)ij = r. 
i=1 j=1 

(5.5) 

Given an image, let B be the number of 8 x 8 blocks in the image and let 
Yk [i, j] denote the (i, j) output DCT coefficient for the k-th block. Let 

1 B 
J-Li,j = mean(y[i, j]) = B LYk [i, j], (5.6) 

k=1 

and let 
B 

(JL = V ar(y[i, j]) = ~ L [Ydi, j] - J-Li,j]2 , (5.7) 
k=1 

denote the mean and the variance for each of the output DCT coefficients. The 
key idea of the rate-control method is to allocate more bits to the coefficients 
with larger variances. From rate-distortion theory, the optimum bit allocation 
is given by 

2 1 (J .. 
<,J 

b·· = r + -log2 ] 1/64 . 
tJ 2 [ 2 

(J .. ITi,j '1-,) 

(5.8) 

For images with eight bits per pixel, the maximum range of the AC coefficients 
is from -1023 to 1023. Given that this range needs to be divided into 2bij equal 
quantization levels, the elements of the quantization matrix are given by 

Q[i, j] = 2046 
2bi j • 

(5.9) 

For the same perceptual quality, the above procedure generates quantization 
tables that yield higher compression ratios than the quantization tables listed 
in Annex K of the standard. Recent proposals try to combine the two design 
techniques; however, the design of quantization tables is still an open problem. 
In a way, the design of quantization tables is related to the very difficult 
problem of developing a mathematical model for the human visual system. 



The lPEG Standard 139 

5.5 ENTROPY CODING 

The last processing block in JPEG is the entropy coder. This block improves 
overall performance by performing lossless coding on the quantized DCT 
coefficients. The entropy coder employed in the JPEG standard is not a 
straightforward implementation of the Huffman or arithmetic coding methods 
described in Chapter 2; instead, the quantized data are preprocessed by a 
run-Iength coder whose operation will be described later in this section. If the 
entropy coder employs Huffman coding, then one or more sets of Huffman 
tables (the maximum number of Huffman tables is eight) need to be specified 
by the application. There are no default tables, but most applications use the 
Huffman tables listed in the standard. JPEG imposes only two restrictions on 
the Huffman tables: (1) no codeword may exceed 16 bits, and (2) no codeword 
may be the all ones sequence (that is, F F16 ). 

The arithmetic coding option in JPEG requires no external table specifications 
since it is able to adapt to the image characteristics. However, for improved 
performance, optional statistical tables can be used. 

The baseline JPEG implementation uses Huffman coding only. It also restricts 
the number of Huffman tables to four: two for the AC components and two 
for the DC components. This is not a major constraint, since most applications 
operate on luminance-chrorninance data and use one set of Huffman tables 
for the luminance component and one set of tables for the chrominance 
components. This restriction can also be bypassed if one uses noninterleaved 
data. In that case, a new set of tables may be loaded before the decompression 
of each color component. Details for the baseline Huffman coder are presented 
next. 

5.5.1 Huffman Coding of the DC Coefficients 

Figure 5.5 shows a block diagram ofthe Huffman coder in baseline JPEG. Let 
DCi and DCi- 1 denote the DC coefficients of blocks i and i - 1. Due to the 
high correlation of DC values among adjacent blocks, JPEG uses differential 
coding for the DC coefficients. For 8-bit-per-pixel data, DC differentials 
(DCi - DCi-d can take values in the range [-2,047, 2,047]. This range is 
divided into 12 size categories, where the i-th category includes all differentials 
that can be represented by i bits. The entries for these categories are the same 



140 CHAPTER 5 

run 

DCT coefficients in zig-zag order 

Figure S.S Huffman coding in baseline JPEG. 

as the first 12 categories in Table 2.9. Thus, after a table lookup, each DC 
differential can be described by the pair (size, amplitude), where size defines 
the number of bits required to represent the amplitude, and amplitude is simply 
the amplitude of the differential. Given a DC residual value, its amplitude is 
computed as follows: ifthe residual is positive, then the amplitude is simply its 
binary representation with size bits of precision; and if the residual is negative, 
then we take the one's complement of its absolute value. From this pair of 
values, only the first (the size) is Huffman coded. 

For example, if the DC differential has an amplitude of 195, then from Table 
2.9, size = 8. Thus, 195 is described by the pair (8, 11000011). Ifthe Huffman 
codeword for size = 8 is 111110, then 195 is coded as 11111 0 11 0000 11. 
Similarly, -195 would be coded as 11111000111100. Huffman decoding 
is quite simple. From the input bit stream, we first decode the size = 8 
information. Then, the next eight bits in the input bit stream directly give the 
amplitude of the DC differential, which we decode according to the value of 
its most significant bit. 



The lPEG Standard 141 

5.5.2 Huffman Coding of the AC Coefficients 

For 8-bit pixels, AC coefficients make take any value in the range [-1023, 
1023]. As before, this range is divided into 10 size categories, and each AC 
coefficient can be described by the pair (size, amplitude). After quantization, 
most of the AC coefficients will be zero; thus, only the nonzero AC coefficients 
need to be coded. 

AC coefficients are processed in zig-zag order. Figure 5.6 shows the 
conventional and the zig-zag ordering of elements in an 8 x 8 matrix. Zig-zag 
ordering allows for a more efficient operation of the run-Iength coder. 

(a) Conventional order (b) Zig-zag order 

Figure 5.6 Conventional and zig-zag ordering in an 8 x 8 matrix. 

A run-length coder yields the value of the next nonzero AC coefficient and a 
run; that is, the number of zero AC coefficients preceding this one. Hence, each 
nonzero AC coefficient can be described by the pair (run/size, amplitude). The 
value ofrun/size is Huffman coded, and the value ofthe amplitude (computed 
as in the case of the DC differentials) is appended to that code. 

For example, assume an AC coefficient is preceded by six zeros and has a 
value of -18. From Table 2.9, -18 falls into category 5. The one's complement 
of -18 is 01101. Hence, this coefficient is represented by (6/5, 01101). The 



142 CHAPTER 5 

pair (6/5) is Huffman coded, and the 5-bit value of -18 is appended to that 
code. If the Huffman codeword for (6/5) is 1101, then the codeword for -18 is 
110101101. 

There are two special cases in the coding of AC coefficients, as follows: (1) 
The run-Iength value may be larger than 15. In that case, IPEG uses the 
symbol (15/0) to denote a run-Iength of 15 zeros followed by a zero. Such 
symbols can be cascaded as needed; however, the codeword for the last AC 
coefficient must have a non zero amplitude. (2) If after a non zero AC value all 
the remaining coefficients are zero, then the special symbol (0/0) denotes an 
end of block (EOB). 

A Coding Example. Assume that the values of a quantized DCT matrix are 
given (in zig-zag order) by 

42 16 -21 10 -15 0 0 0 
3 -2 0 2 -3 0 0 0 
0 0 2 -1 0 0 0 0 
0 0 0 0 0 0 0 0 

(5.10) 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 

If the DC value of the previous block is 40, then DCi - DCi - 1 = 2. This can 
be expressed as the (size, amplitude) pair (2, 2). If the Huffman codeword for 
size = 2 is Oll, then the codeword for the DC value is 01110. 

Table 5.1 shows the codewords for the AC values. For Huffman codewords, 
we use the tables given in Annex K of the IPEG standard document for 
luminance AC coefficients (Table K.5). For this example, we need 82 bits to 
encode the AC coefficients and five bits to encode the DC coefficient, for a 
total of 87 bits or an average bit rate of ~~ = 1.36 bits per pixel. If the input 
resolution was eight bits per pixel, then the compression ratio is 1.~6 = 5.88. 

5.5.3 Compression Efficiency of Entropy Coding in JPEG 

From the discussion on entropy coding of the DC and AC coefficients, we note 
that the entropy coder employed in the IPEG standard is not a straightforward 



The lPEG Standard 143 

Value Run/Size Huffman Code Amplitude Total Bits 
16 0/5 11010 10000 10 

-21 0/5 11010 01010 10 
10 0/4 1011 1010 8 

-15 0/4 1011 0000 8 
3 3/2 111110111 11 11 

-2 0/2 01 01 4 
2 1/2 11011 10 7 

-3 0/2 01 00 4 
2 5/2 11111110111 10 13 

-1 0/1 00 0 3 
EOB 0/0 1010 4 

----

Table 5.1 Example for the Huffman coding of AC coefficients. 

implementation of the Huffman or arithmetic coding methods described in 
Chapter 2. In JPEG, Huffman or arithmetic coding is preceded by a run-Iength 
coder. Furthermore, entropy coding in the JPEG standard includes these 
features: 

1. The DC and AC coefficients are treated separately. This is motivated 
by the fact that the statistics for the DC and AC coefficients are quite 
dissimilar; hence, better coding efficiencies can be obtained using different 
Huffman tables. 

2. For typical values of the quality factor q, many of the AC coefficients 
within an 8 x 8 block will be zero-valued. Zig-zag scanning of the AC 
coefficients leads to an efficient (run-Iength, value) representation for the 
nonzero AC coefficients. 

3. Values for the DC differentials range between -2047 and 2047, and for 
the AC coefficients range between -1023 and 1023. Direct Huffman 
coding of these values would require code tables with 4,095 and 2,047 
entries, respectively. By Huffman co ding only the size or the (runlsize) 
information, the size of these tables is reduced to 12 and 161 entries, 
respectively. 



144 CHAPTER 5 

information, the size of these tables is reduced to 12 and 161 entries, 
respectively. 

To illustrate the benefits of run-Iength coding, Figure 5.7 shows for a typical 
grayscale image the output bit rate with and without a run-Iength coder. The 

5.50 

5.00 

4.50 

~ 4.00 
Cl> 
x 

~ 3.50 
:ö 
--; 3.00 
~ 
:5 2.50 
:; 
.9- 2.00 
::l o 

1.50 

1.00 

0.50 

Huffman or arithmetic coder only 

'~. Run-Iength coder followed 
---.._~__ bya Huffman cr an arithmetic coder 

0.50 

------.:..--------_ .. _-_ .. _--~ 
1.00 

Quality factor 

1.50 2.00 

Figure 5.7 Effects of run-Iength coding on data compression. 

top plot shows the output bit rate when an ideal Huffman or arithmetic coder is 
applied directly to the output of the DCT quantizer in Figure 5.1. The bottom 
plot shows the output bit rate when the ideal Huffman or arithmetic coder is 
preceded by a run-Iength coder. Bit rates are measured for various settings 
of the quality factor used to scale the quantization table. For a quality factor 
of one, the bit rate with a run-Iength coder is nearly four bits per pixellower 
than the bit rate of an entropy coder alone. This is largely attributable to the 
efficient run-Iength representation of the zig-zag ordered AC coefficients. As 
the quality factor increases, more of the quantized AC values will be zero, and 
as expected, the benefits from a run-Iength coder are even higher. 



The lPEG Standard 145 

5.6 JPEG MODES OF OPERATION 

As mentioned before, in addition to the lossless mode of operation, JPEG 
defines the following other modes: sequential, progressive, and hierarchical. 

5.6.1 Sequential Coding 

Sequential coding is the most common mode of operation. Image blocks are 
coded in a scan-like sequence, from left to right and from top to bottom. 
Transformed and encoded blocks can be transmitted before the end of the 
image. Similarly, the decoder may begin sequential decoding before it 
receives the complete compressed image. Figure 5.8 shows an example of 
sequential coding. 

I
:~·~··, 

~ 

Figure 5.8 Example of sequential coding. 

5.6.2 Progressive Coding 

In progressive mode, image blocks are also processed sequentially, but the 
coding is completed in multiple scans. The first scan yields the full image 
but without all the details, which are provided in successive scans. This mode 
requires that the output of the DCT is buffered so that during each scan only 
partial information from the DCT coefficients is encoded. Progressive coding 
allows a user to preview a rough version of an image and decode the additional 
information only if necessary. There are two procedures that are allowed for 
progressive coding: spectral selection and successive approximation. 



146 CHAPTER 5 

Consider 8 x 8 blocks of quantized DCT coefficients as shown in Figure 5.9. 
We view each block as a three-dimensional (3-D) object, where depth denotes 

• • • • • • • • 
highest 

frequency 

(a) Spectral selection 

scan3 / 

scan2 71 
scan 1 / 

• • • • • • • • 
• • • • • • • • 
• • • • • • • • 
• • • • • • • • 
• • • • • • • • LSB ........ ~ 
• • • • • • • • 
• • • • • • • • 

MSB 

(b) Successive approximation 

Figure 5.9 Description of progressive coding in JPEG. 

the arithmetic precision of the quantized coefficients. Under spectral selection, 
each block is divided into frequency bands, and each band is transmitted during 
a different scan. For example, in Figure 5.9a, the DCT output is divided into 
four scans. Scan 1 includes the DC coefficient and the first two AC coefficients 
(counted in zig-zag order), Scan 2 includes the next seven AC coefficients, 
Scan 3 includes another 11 AC coefficients, and Scan 4 includes the remaining 
AC coefficients. For most images, most of the information is contained in 
the DC and the first few AC coefficients. Thus, encoding and transmission 
of the first scan of coefficients will provide adequate information for a rough 
preview of the image. Encoding and transmission of the remaining scans just 
adds progressively additional detail. 

Figure 5.10 shows an example of progressive coding based on spectral 
selection. Figure 5.lOa shows the output image after decoding only the DC 
coefficients. The image is rather blocky, but we can still get a rough preview 
of the image. Figure 5.lOb shows the output image after decoding the DC 
and the first three AC coefficients. The diagonal edges of the house are still 
blocky. Figure 5.lOc shows the decoded image at full spectral resolution. 

Under successive approximation, given a frequency band, the DCT coefficients 
are divided by apower of two before encoding. This scheme allows the encoder 



The lPEG Standard 

" 

'_.0'>" 
~ 

(al DC only. 

-
~:'" - i--;r-~l\-"r ,~._ .. 

[J 
(bl DC plus first three 

AC components. 

(cl Full resolution 

Figure 5.10 Example of IPEG progressive coding using spectral 
selection. (a) Decoding of the DC coefficient only; (b) decoding 
of the DC and the first three (in zig-zag order) AC coefficients; (c) 
decoded image at fuH spectral resolution. 

147 

to transmit the most significant bits first, for a rough preview, and the least 
significant bits later, for decoding at fuH resolution. For example, in Figure 
5.9b, the DCT output is encoded using three successive approximation scans. 
In the decoder, the coefficients are scaled back by the same power of two 
before computing the IDCT. The two progressive schemes may be combined 
or used separately. 

5.6.3 Hierarchical Coding 

In hierarchical mode, each image component is encoded as a sequence of 
frames. The first frame is usually a low-resolution version ofthe original image 
(possibly downsampled). Subsequent frames are differential frames between 
source components (possibly downsampled) and reference reconstructed com­
ponents (possibly upsampled). Frames can be coded using either lossy IPEG 
or lossless IPEG. The two modes can be mixed only when lossless IPEG 
is used for the last stage of DCT-based hierarchical process. Hierarchical 
coding is useful when there are multiresolution requirements. For example, 
an application may support both high-resolution displays on workstations and 
low resolution displays on personal computers. 



148 CHAPTER 5 

Figure 5.11 shows an example of a three-level hierarchical coder. From the 

X4 X'4 

x 

Encoder Decoder 

Figure 5.11 Three-level hierarchical coder. 

X' 
I 

X' m 

X' 

original image X, we generate two subsampled versions: X 2 , where the image 
is subsampled by a factor of two on both dimensions; and X 4 , where the image 
is subsampled by a factor of four on both dimensions. Note that, subsampling 
mayaiso be preceded by a low-pass filtering operation to reduce aliasing 
effects. JPEG poses no requirements on these preprocessing operations. 

The encoded image consists of three frames: 81,82, and 83. Frame 81 is 
simply the X 4 image compressed. Using only 81, the decoder can extract a 
low-resolution estimate of the original image (XI). 82 (uncompressed) is the 
difference image between X 2 and an estimate of X 2 (X~) after upsampling 
X 4 by a factor of two. Using 81 and 82, the decoder can extract a medium 
resolution estimate of the input X (X:r,). Similarly, 83 (uncompressed) is the 



The lFEG Standard 149 

difference image between X and an estimate of X based on X2 and X 4 • The 
reader can verify that, under lossless compression, X' = X. 

Figure 5.12 shows an examp1e of hierarchical coding. The first image (a) is 
the original image shown at fuH resolution (200 dpi). Images (b) and (c) are 
subsampled vers ions of the original (subsampled by factors of two and four, 
respectively). 

(b) 

(a) 

Figure S.12 Example of hierarchical coding. (a) Original; (b) 
subsampled by a factor of two; (c) subsampled by a factor of four. 

To summarize, the essential characteristics of the main JPEG coding processes 
are given as follows. 

1. Baseline Process 

• Coding: OCT -based, sequential, one to four color components. 

• Resolution: eight bits per pixel. 

• Huffman coding; two AC and two OC tables. 

• Interleaved and noninterleaved scans. 

2. Extended DCT -based Process 

• Coding: OCT-based, sequential or progressive. 



150 CHAPTER 5 

• Resolution: 8 or 12 bits per pixel. 

• Huffman coding or arithmetic coding; four AC and four DC tables. 

• Interleaved and noninterleaved scans. 

3. Lossless Process 

• Coding: Predictive, sequential. 

• Resolution: From two bits per pixel to 16 bits per pixel. 

• Huffman coding or arithmetic coding; four DC tables. 

• Interleaved and noninterleaved scans. 

4. Hierarchical Process 

• Coding: DCT-based or lossless process. 

• Multiple frames (non differential and differential). 

• Interleaved and noninterleaved scans. 

JPEG has been developed for the compression of still-images; however, the 
proliferation of low-cost hardware for JPEG has led to the development of 
an additional mode of operation for video sequences: motion-lPEG. Under 
motion-JPEG, each frame of a video stream is compressed independently 
using the baseline IPEG algorithm. However, there is no standard syntax for 
motion-JPEG coded streams, and encoded data may not be able to be decoded 
across different platforms. 

5.7 IMPLEMENTATIONISSUES 

The specific implementation of the JPEG standard depends on the application 
requirements and whether a software or a hardware implementation is adopted. 
In this section, we will address several issues relevant to the implementation 
of the baseline JPEG standard. 

5.7.1 Hardware versos Software Implementation 

U sing a scaled DCT, such as the one described in Chapter 3, JPEG compression 
of a 640 x 480 RGB image requires close to 23 million operations. Thus, a 



The IPEG Standard 151 

typical general-purpose processor can compress such an image in less than a 
second. 

Computation of the DCT requires dose to 45 percent of the overall time. 
In Chapter 3 we described several algorithms for computing the 8 x 8 
DCT and IDCT. In a software implementation, the scaled DCT method of 
Winograd and Feig, which requires 80 multiplications and 464 additions, is a 
good choice. A scaled DCT method is particularly advantageous for JPEG, 
since the quantization tables are fixed for the entire image. In a hardware 
implementation, a DCT method that has a more regular dataflow, such as the 
Chen DCT, is preferable. 

5.7.2 IDCT Complexity 

An 8 x 8 IDCT requires the same number of operations as the DCT. However, 
for most JPEG compressed images, the 8 x 8 block that is input to the IDCT 
is quite sparse. In a software implementation, the sparseness can be exploited 
to realize a more efficient evaluation of the IDCT. For instance, in a smooth 
region of an image, one would find that the corresponding DCT blocks have 
all AC coefficients set to zero. For such blocks, the mCT is simply a scaled 
version of the DC coefficient that is copied to all the 64 locations in the block. 
Similarly, in regions of low activity, one may only need to compute simpler 2 
x 2 or 4 x 4 IDCTs. The appropriate IDCT can easily be determined from the 
output of the Huffman decoder. 

5.7.3 Arithmetic Precision Requirements 

For eight bits per pixel data, the output of the 8 x 8 DCT will yield DCT 
coefficients that have a dynamic range between -1,023 and 1,023. Determining 
the requirements for arithmetic precision in the DCT requires a careful study 
of the flowgraph associated with the specific DCT method. In general, using 
12 bits of precision for the constants in the DCT flowgraph and 16 bits 
of precision for all arithmetic operations yields the same output quality as 
32-bit floating-point arithmetic. In Chapter 7, we provide a standard testing 
procedure for determining the accuracy of the IDCT, assuming that the DCT 
output is not quantized. 



152 CHAPTER 5 

5.7.4 JPEG Coding Tables 

JPEG specifies no default coding tables; however, most implementations use 
the example tables described in the Annex K of the ISO document. Designing 
custom Huffman tables is relatively easy. One can use either the techniques 
described in Chapter 2 or a similar method described in Annex K of the 
standard. However, the design of custom quantization tables is not trivial. In 
a previous section, we described a design method based on bit-rate control 
before the entropy coder. Recently, Ratnakar and Feig have proposed the 
design of quantization tables that are optimum in a rate-distortion sense; that 
is, if the user specifies the desired rate for a specific image, say, 0.5 bits per 
pixel, then this design method will provide the quantization tables that achieve 
this rate, provided that a custom Huffman table is used. Note that, JPEG does 
not have an explicit rate-control; hence, this design method is a useful tool for 
providing rate-control within JPEG. However, this design method is image 
specific. 

For a typical grayscale image, Figure 5.13 shows the effects of custom coding 
tables on the output bit rate of a JPEG coder. Several observations can be 
made from these plots. 

• Using the example quantization tables at compression ratios around 40: 1 
(0.20 bits per pixel for the 8 bits per pixel grayscale image), custom 
Huffman tables yield nearly 1 dB performance improvement over the 
example Huffman tables. Performance gains greater than 0.5 dB usually 
yield visible differences between the corresponding reconstructed images. 
At compression ratios around 10: 1, custom Huffman tables are not 
beneficial. 

• Using the example Huffman tables, custom quantization tables yield 
better performance only at low compression ratios. At high compression 
ratios, there is significant mismatch between the actual statistics of the 
DCT output and the assumed statistics for the design of the example 
Huffman tables. Hence, at least for grayscale images, it seems that there 
is no benefit using custom quantization tables with the example Huffman 
tables. 

• The best performance is attained when both custom quantization tables 
and custom Huffman tables are used. In this case, there is a 1 dB 
to 2 dB performance improvement compared to using the example 



The JPEG Standard 

1.00 

0.90 

0.80 

0.70 

Q; 
)( 

~ 0.60 

e * 0.50 
a: 

0.40 

0.30 

0.20 

0.10 

24.00 

Example quantization 
and Huffman tables 

Example quantization 
table, custom Huffman 
tables 

26.00 28.00 

R(D) optimized 
y~ quantization table, 

example Huffman tables 

R(D) optimized quantization 
table, custom Huffman 
tables 

30.00 

PSNR (dB) 

32.00 34.00 36.00 

Figure 5.13 JPEG coder performance for example and custom 
coding tables. 

153 

tables. However, this approach requires the redesign of the tables on an 
image-by-image basis. It also requires more than one pass through the 
encoding process, thus, increasing the computational complexity of JPEG 
compression; the decompression complexity is not affected since table 
descriptions are part of the compressed bit stream. 

The above data is for a grayscale image. For color images, SNR or PSNR 
is not necessarily the best measure of perceptual image quality. From our 
experience, using the example Huffman tables, custom quantization tables can 
yield better performance even at high compression ratios. 



154 CHAPTER 5 

5.7.5 Color Conversion and Display Considerations 

For image compression of RGB images, the RGB to YCbCr color transfor­
mation may represent up to 39 percent of the overall compression process. 
Similarly, in many applications, there is a need to decompress a YCbCr 
JPEG image and display it as an RGB image. Furthermore, the Cb and 
Cr components are usually half the resolution of the Y component; hence, 
during the color conversion process, the Cb and Cr components have to be 
upsampled to facilitate the conversion to RGB. Upsampling, color converting, 
and displaying of an image may represent 33 percent of the computational 
complexity of the JPEG decompression process. Color conversion using 
lookup tables can be used to speed up the process. In recent years, there is 
a trend towards implementing the color conversion and upsampling functions 
in the display system hardware, and thus eliminating the overhead associated 
with the display. 

5.7.6 The JPEG Compressed Data File Format 

The JPEG standard specifies an interchange format so that compressed images 
can be reconstructed reliably. However, the interchange format only provides 
information pertaining to the image dimensions, resolution of each of the 
components that make up the image, and the quantization and Huffman code 
tables that are used in the compression process. JPEG does not explicitly 
specify the color space that is used in compression. In recent years, a de 
facta standard, referred to as the JPEG file interchange format (JFIF) , has 
evolved and is supported by many image processing applications. This format 
is a superset of the JPEG interchange format and supports either grayscale or 
YCbCr images. The bit-stream syntax of JFIF also provides for inc1usion of 
a thumbnail RGB representation of the image; this can be used for browsing 
and cataloging purposes. 

5.8 JPEG EXTENSIONS AND APPLICATIONS 

Part 3 of the JPEG standard (ITU -T Recommendation T. 84 or ISOIIEC 10918-
3) specifies requirements and guidelines for encoding and decoding extensions 
to the processes defined in Part 1. It is currently a draft international standard 



The lPEG Standard 155 

and is expected to become an international standard by the end of 1995. There 
are four major extensions defined in this part: variable quantization, selective 
refinement, tiling, and a new image-interchange format. 

5.8.1 Variable Quantization 

In lossy IPEG, the amount of loss or compression is controlled by the elements 
of the quantization tables. IPEG allows quantization tables to be redefined 
prior to the start of a new scan, but not within a scan. The variable quantization 
extension introduces aquantizer scale factor that may be used to scale the 
original quantization matrix on a block-by-block basis. This sc ale factor may 
be coded in the compressed bit stream at the start of any 8 x 8 block. This 
extension does not apply to the baseline IPEG process. 

This extension allows for greater control on image quality and compression 
ratios. For example, in an image with both text and graphics, one may use 
different scale factors for blocks characterized as image and different scale 
factors for blocks characterized as text. Since text regions and image regions 
tend to have different statistical properties, the different scale factors in these 
areas should allow for more efficient coding of the image. 

5.8.2 Selective Refinement 

This extension allows for the selective refinement of parts of an image. The 
three different types of selective refinement are hierarchical, progressive, and 
component. 

Hierarchical selective refinement is used in the hierarchical mode of operation. 
It allows the encoder to specify which areas of the image are coded in greater 
detail than the rest of the image. In the decoder, the differential frames are 
then added only to those specified areas. 

Progressive selective refinement is used in the progressive mode of operation. 
As in hierarchical refinement, the encoder may supply additional DCT data 
only for specific regions in the image. 



156 CHAPTER 5 

Component selective refinement may be used in all modes of operation. It 
allows the encoder to specify that a certain region of the image uses fewer 
color components than the total number of components defined in the frame 
header. This extension could be used for the more efficient representation of 
images that combine both grayscale and full color regions. 

5.8.3 THing 

The tiling extension allows an image to be subdivided into subimages, also 
called tiles. It can be used to represent images larger than 65,535 pixels on 
a side, for random access within parts of an image, or for more efficient 
compression. In simple tiling, the image is divided into an array of non­
overlapping rectangular tiles. All simple tiles have the same size, except 
maybe for the tiles at the right and the bottom sides of the image. These 
tiles must have the same component identifiers, sampling factors, and entropy 
coders; however, each tile may be coded with a different quantization table. 
Pyramidal tiling allows multiple resolution versions of the same image to be 
stored in the same compressed bit stream. This feature allows access to lower 
resolution versions of a larger image. Composite tiling is the most complex 
tiling method. Complex tiles may overlap and have different sizes; however, 
they still need to have the same component identifiers. It is expected that most 
of the future applications will only support simple tiling. 

5.8.4 The Still-Picture Interchange File Format (SPIFF) 

SPIFF is yet another image file format developed for the efficient interchange 
of files containing image data. It is more comprehensive than the JFIF format, 
but still not as complex as some other image file formats, such as TIFF. It is 
backward compatible with JFIF, but in addition to grayscale and color JPEG 
images, it also supports bilevel images and many of the facsimile compression 
algorithms. 



The lPEG Standard 157 

5.8.5 The Color Facsimile Standard 

In November of 1994, ITU formally approved extensions to the Group 3 and 
Group 4 facsimile standards for the transmission of continuous-tone images. 
The new color facsimile standard uses the CIE (1976) L * a* b* (CIELAB) color 
space for the representation of color images and the baseline JPEG algorithm 
for data compression. 

In the baseline implementation of the color facsimile pipeline, a scanned 24-bit 
RGB image (scanned at 200 dpi) is first translated into the CIELAB color 
space using the standard CIE D 50 illuminant. The gamut range is restricted to 

L * = [0, 100], 

a* = [-85,85], 

b* [-75,125]. 

(5.11) 

(5.12) 

(5.l3) 

This color space was chosen because it provides for a more flexible, relatively 
uniform, and device-independent color specification. It also enables the 
receiver to reproduce a hard copy of the original image without ambiguity. 

After color transformation, the chroma components (a* and b*) of the image 
are subsampled by a factor of two in both the horizontal and the vertical 
directions. The subsampled image is coded using the JPEG algorithm (lossy 
or lossless), and the compressed bit-stream is transmitted using the standard 
Group 3 or Group 4 facsimile protocol. At the receiver, after Group 3 or Group 
4 decoding, the image is decompressed, color transformed, and printed on a 
color printer. 

Optional features of the standard allow for higher spatial resolutions, no color 
subsampling, higher precision (12 bits per pixel), and custom color gamut 
range. 

5.9 TO PROBE FURTHER 

The JPEG standard [83] is published in two parts. Part 1 sets requirements and 
guidelines for coding and decoding and describes the interchange format. Part 
2 describes compliance tests for the processes described in Part 1. A new part 



158 CHAPTER 5 

(ISOIIEC 10918-3 or ITU-T Rec. T.84) will provide extensions to the coding 
processes defined in Part 1. 

A good source for the JPEG standard is the book by Pennebaker and Mitchell 
[158]. The book includes a complete copy of the ISO document and provides 
additional implementation details. For a concise overview of the standard, we 
also recommend an excellent tutorial overview by Wallace [191]. 

Experiments for determining visibility thresholds for the DCT basis functions 
using the YCbCr color space are described by Lohscheller and Franke in [124] 
and [125]. Similar experiments for the RGB color space are presented in 
[159]. The optimal bit allocation for quantization tab1es based on rate-contro1 
theory is described in the textbook by Jayant and Noll [93]. An adaptive 
coding scheme based on the same princip1es is also described by Chen and 
Smith [32]. In [37], de Queiroz and Rao weight the image statistics with 
a matrix that contains spatial information about the human visual system 
(HVS). Recently, quantizer design methods optimal in a rate-distortion sense 
have been developed in [168] and [169]. The techniques developed here can 
provide a fixed-rate implementation of JPEG even though the JPEG standard as 
deve10ped does not include explicit rate-control. In many cases, a compressed 
image will be decompressed, halftoned, and printed. Recently, Vander Kam 
et al. [96] were ab1e to improve the compression of grayscale images that will 
be printed by taking into consideration both the sensitivity of the HVS and the 
frequency characteristics of the printer' s ha1ftoning algorithm. 

Many imaging applications currently support the JPEG standard. However, to 
facilitate the interchange of JPEG compressed data across applications, there 
is a need to develop a file format. The TIFF format is widely used in the 
imaging community and has provisions for describing a JPEG bit stream. For 
the simpler JFIF format details can be found in [68]. 

The section on the JPEG extensions is based on arecent article by Lee [112]. 
The details of the color facsimile standard are defined in new Annexes to the 
facsimile standards documents. For Group 3, Annex E to ITU-T T.30 [88] 
specifies new entries in the DIS and DCS frames of the facsimile communica­
tion protocol and Annex I to ITU-T T.4 [89] describes the appropriate JPEG 
syntax and JPEG application markers. 



The lPEG Standard 159 

There are numerous software and hardware implementations of the baseline 
JPEG standard. Sites with public domain JPEG coders are given in Appendix 
B. Hardware implementations of the JPEG standard are discussed in a later 
chapter. 



6 
THE MPEG VIDEO STANDARDS 

6.1 INTRODUCTION 

Advances in digital video technology and storage have made it possible to 
use digital video into a number of multimedia applications. In 1988, in 
response to a growing need for a common format for coding and storing digital 
video, ISO established the Moving Pictures Expert group (MPEG) with the 
mission to develop standards for the coded representation of moving pictures 
and associated audio information on digital storage media. MPEG, formally 
known as group ISO-IEC/JTCl SC29IWGll, completed the first phase of 
its work in 1991 with the development of the ISO standard 11172, Coding 
of moving pictures and associated audio - for digital storage media at up to 
about 1.5 Mbit/s. This standard is also known as MPEG-l. 

In 1990, MPEG started the second phase of its work, namely, to develop 
extensions to MPEG-l that would allow for greater input-format flexibility, 
higher data rates (as needed by high-definition TV), and better error resilience. 
That work led to the ISO standard 13818 (or ITU-T Recommendation H.262), 
Generic coding ofmoving pictures and associated audio. This standard is also 
known as MPEG-2. MPEG has already started working on developing new 
coding standards for very low bit rates. This activity is known as MPEG-4 
and the standard is expected to be defined by 1998. All MPEG standards are 
generic; that is, application independent. They do not specify the operations 
of the encoder. Instead, they specify the syntax of the coded bit stream and the 
decoding process. Thus, they provide enough flexibility in the specifications 
so that different vendors can include specific optimization elements. 



162 CHAPTER 6 

The MPEG standards are published in four parts: systems, video, audio, and 
conformance testing. The systems part specifies the system coding layer of the 
standards and defines how data, audio, and video streams can be multiplexed. 
For example, in MPEG-1, the systems layer provides sufficient information 
for synchronization of multiple video streams, random access to the data, and 
buffer management. In MPEG terminology, the video, audio, and data streams 
are generically referred to as elementary streams. Note that, in a system layer 
stream, more than one audio, video and data stream can be included. A detailed 
discussion of the system stream is beyond the scope of this book. 

The video part specifies the coded representation of video data and a decoding 
process for reconstructing MPEG coded pictures. Audio is an integral part 
of the MPEG standards. The audio part specifies the coded representation 
of audio coded data and a decoding process. Finally, the fourth part of the 
standards provides guidelines for conformance testing. 

In this chapter, we cover only the video part of the MPEG standards. The 
MPEG audio standards are covered in a later chapter, together with other 
algorithms for audio coding and compression. 

6.2 THE MPEG-l VIDEO STANDARD 

6.2.1 Preliminaries 

The MPEG-l video coding algorithm is a lossy compression scheme that can 
be applied to a wide range of input formats and applications; however, it has 
been optimized for applications that support a continuous transfer bit rate of 
about 1.5 Mbits/s (such as a CD-ROM). 

MPEG-1 uses deliberately the term picture and not frame because it does not 
recognize interlaced sources. In interlaced video, each frame is comprised of 
fields, namely, a top field and a bottom field. Within a frame of interlaced 
video, scanlines from the two fields are interleaved (Figure 6.1a). Note that, 
spatially adjacent scanlines are not temporally adjacent. For example, at 30 
fps, the adjacent scanlines are 610 -th of a second apart. In progressive (or 
noninterlaced) video there is no notion of a field. Unlike interlaced video, 
spatially adjacent scanlines are also temporally adjacent. A frame begins from 



The MPEG Video Standards 163 

the top left corner and continues through successive lines to the bottom of the 
frame (Figure 6.1b). In MPEG-1, interlaced video, such as that generated by a 
TV camera, may have to be converted to a noninterlaced coding format before 
coding. This process of scan conversion is not specified within the MPEG-1 
standard. 

Top f' co /f Botlom 

field < : I field 

c::= J 

,-----~ ~ - -, 

Spatial-domain representation 

LineSA 
0 0 

Lines 
0 0 0 0 
0 0 0 0 

0 0 0 0 0 0 
0 0 0 0 

0 0 0 0 0 0 
0 0 0 0 

0 0 0 0 0 0 
0 0 0 0 

----I> 

time time 

Time-domain representation 

(a) Interlaced scanning (b) Progressive scanning 

Figure 6.1 Interlaced and progressive scanning schemes. 

There were two key requirements during the development of the MPEG-l 
standard, need for high compression and need for random-access capability. 
Intraframe coding alone is best suited for random-access but cannot meet the 
requirements for high compression. To meet these conflicting requirements, 
MPEG resorted to a combination of intraframe and interframe coding tech­
niques. Furthermore, to improve the compression ratio, it proposed using both 
predictive and interpolative coding schemes. 

Compression functions within MPEG inc1ude the following: 



164 CHAPTER 6 

1. sampie rate reduction in the spatial and temporal domains of both the 
luminance and chrominance components, 

2. block-based DCT for the intraframes and interframes, 

3. block-based motion compensation for predictive and interpolative inter­
frames, and 

4. Huffman coding for the lossless compression of motion vectors and the 
quantized DCT coefficients. 

For a picture size of 352 x 240 pixels, at 12 bits per pixel and a picture rate 
of 30 pictures per second, MPEG-1 compresses the 30.4 Mbits/s bit stream 
down to 1.15 Mbits/s. For this compression ratio of 26:1, the picture quality 
can be better than that provided with the analog VHS representation. We will 
describe the compression method in detaillater in this chapter. 

The source input format 

The MPEG-1 bit-stream syntax allows for picture sizes of up to 4,095 x 
4,095 pixels; however, many of the applications using MPEG-l compressed 
video have been optimized for the SIF (source input format) video format, 
which is a simple derivative of the CCIR 601 format for video frames in 
digital television. According to CCIR 601, a color video source has three 
color components: a luminance component (Y) and two color-difference or 
chrominance components (Cb and Cr). There are two options for the CCIR 
601 spatial resolutions. The first option (for NTSC television systems) uses 
525 lines per frame at 60 frames per second. The luminance frame has 720 
x 480 active pixels, and each of the chrominance frames has active 360 x 
480 pixels. This is referred to as the 4:2:2 subsampling format. The second 
option (for PAL television systems) uses 625lines per frame at 50 frames per 
second. Here, the luminance frame has 720 x 576 active pixels and each of 
the chrominance components has 360 x 576 active pixels. To accommodate 
compressed rates as low as 1.5 Mbits/s, MPEG-1 defines (but does not require) 
the source input format. SIF sequences have a luminance resolution of 360 
x 240 pixels per picture at 30 pictures per second or 360 x 288 pixels per 
picture at 25 pictures per second. In both cases, the resolution of the chroma 
components is half of the luminance resolution in both the horizontal and the 
vertical dimensions. This is referred to as the 4:2:0 subsampling format. SIF 



The MPEG Video Standards 165 

pictures can easily be derived from a CCIR 601 frame using filtering and 
subsampling. 

In MPEG-l, the YCbCr color components are always interleaved. A mac­
roblock is defined as the minimum coded unit and consists of four 8 x 8 
blocks of luminance, one 8 x 8 block of Cb, and one 8 x 8 block of Cr (Figure 
6.2). The maximum dimension of a macroblock is 16 pixels. Each picture is 

<J---- N -------I> 
y 

16 

Y Cb 

Cr 16E8 
* M/2 

V 
4:2:0 macroblock 

<>-N/2-t> 

Figure 6.2 Definition of a macroblock in MPEG-l. 

divided into aseries of macroblocks, from left to right and from top to bottom. 
This requires that the horizontal and vertical resolutions of each picture are 
multiples of 16. If they are not, then the coder adds padding pixels to the 
right or at the bottom of each picture that are later discarded by the decoder. 
Since the horizontal resolution of 360 pixels in a SIF picture is not divisible 
by 16, one can duplicate the last pixel in each line eight times so that the total 
number of pixels per line is 368. In an alternative implementation, one can 
discard the leftmost four pixels and the rightmost four pixels from each line; 
then the remaining picture has 352 pixels per line and is called the significant 
pixel area. Table 6.1 sumrnarizes the picture characteristics for the CCIR 601, 
the SIF, and the significant pixel area formats. 

MPEG-l provides a great degree of flexibility; however, it would be unrealistic 
to expect that every MPEG decoder could support all coding options. Thus, 
MPEG-l defines the constrained parameters bit stream; that is, the bit stream 
that every MPEG-l compatible decoder should be able to support. Table 6.2 
shows the parameters of a constrained bit stream; however, conforming to 
these sets of parameters is still not a requirement of the standard. From Table 



166 CHAPTER 6 

Picture Rate (Hz) I 30 I 25 I 

CCIR601 
Y 1720 x 480 1720 x 576 
Cb,Cr 360 x 480 360 x 576 
SIF 
Y 1360 x 240 1 360 x 288 
Cb,Cr 180 x 120 180 x 144 
Significant Pixel Area for SIF 
y 1352 x 240 1352 x 288 
Cb,Cr 176 x 120 176 x 144 

Table 6.1 Picture sizes for the CCIR 601, SIF, and significant 
pixel area formats. 

Coding Parameter Maximum Value 
Horizontal picture size 768 pixels 
Vertical picture size 576lines 
Macroblocks 396 
Pixel rate 396 x 25 macroblocks/s 
Picture rate 30 pictures/s 
Range of motion vectors +/- 64 pixels 

(half-pixel resolution) 
Size of input buffer 327,680 bits 
Bit rate 1,856 kbits/s 

__ __ 1- __ . __ 

Table 6.2 Coding constraints for a constrained parameters bit 
stream. 

6.2, the constraint on the pixel rate (396 x 25 macroblocks/s) restriets the 
picture size to approximately 352 x 288 pixels, which is the significant area 
of a SIF image at 25 Hz. 



The MPEG Video Standards 167 

6.2.2 Picture Types 

Some of the common operations on video streams include video editing, 
random access, and searches. Support of these operations often conflicts with 
the requirements for high compression. MPEG-1 defines four different types 
of pictures that offer the flexibility to trade off between coding efficiency and 
random access. 

Intra-pictures (I-pictures) are compressed using intraframe coding; that is, they 
do not reference any other pictures in the coded bit stream. They provide for 
fast random access, but offer only moderate compression. This situation is 
similar to applying lossy IPEG on individual pictures. Predicted pictures (P­
pictures) are coded using motion-compensated prediction from past I-pictures 
or P-pictures. The compression for P-pictures is better than for I-pictures, and 
P-pictures can be used as reference points for additional motion compensation. 
Bidirectionally predicted pictures (B-pictures) provide the highest degree of 
compression. They are coded using motion-compensated prediction from 
either past and/or future I-pictures or P-pictures. Since B-pictures are not 
used in the prediction of other B or P-pictures, such pictures can accommodate 
more distortion and hence yie1d more compression than I- or P-pictures. DC­
coded pictures (D-pictures) are similar to I-pictures; however, only the DC 
coefficients from the DCT output are present. D-pictures cannot be mixed 
with other picture types and are used mainly for fast searches. D-pictures are 
not used in MPEG-2. 

Figure 6.3 shows the relationship among the three main picture types in a 
video sequence with eight pictures. Pictures Pt and Ps are I-pictures, pictures 
P4 and P7 are P-pictures, and the remaining are B-pictures. In this example, 
P3 is coded using motion-compensated prediction from Pt and P4. There is 
no requirement to use either P-pictures or B-pictures in the MPEG bit stream. 
The size of I-, P-, and B-pictures for a typical video sequence coded at SIF 
resolution and at 1.15 Mbits/s is shown in Figure 6.4. Note that, B-pictures 
require significantly fewer bits than either I-pictures or P-pictures. Increasing 
the number of B-pictures between an I- and a P-picture may not lead to better 
compression due to a drop off in temporal correlation as the distance between 
a B-picture and the corresponding I- and P-pictures increases. In the next 
section, we provide abrief overview of the encoding process. 



168 CHAPTER 6 

*Q*~ 
~~~~~~~~ H ~ H----J ~ ~ 

Figure 6.3 Example of inter-dependence among 1-, P-, and B­
pictures in a video sequence.

6.2.3 Video Encoder

The MPEG standards do not define an encoding process. They only specify
the syntax of the coded bit stream and the decoding process. Based on these
requirements, Figure 6.5 shows the functions that need to be executed by a
typical MPEG encoder.

Preprocessing. The encoding proce,ss usually begins with some preprocessing.
This may include color conversion to YCbCr, format translation (interlaced
to progressive), prefiltering, and subsampling. None of these operations is
specified in the standards.

Motion estimation and compensation. After preprocessing, the encoder
selects the coding type for the input picture. I-pictures require no motion
estimation or compensation. Each macroblock is DCT coded, and the DCT
coefficients are quantized, coded using a variable-Iength coder (VLC), and
stored into the output buffer. Within each macroblock, processing is performed
on 8 x 8 blocks. In applications requiring constant bit rate, a buffer regulator
may adjust the quantization matrix so that the rate of the compressed bit stream
is relatively constant. For variable bit-rate applications, the regulator function
may not be needed.

The quantized blocks are also inverse quantized (Q-1) and transformed into
the spatial domain by an inverse DCT. This operation duplicates the behavior
of the decoder and yields a copy of the encoded picture as it will be seen by
the decoder. That copy is then stored into local memory and will be used

The MPEG Video Standards

160

140

120

Vi' 100
~
~
Q)

.~ 80

!!!
:;,
TI
Ci: 60

40

20

0

0.00

Picture Average size

I 156 kbits
P 62 kbils
B 15 kbits

50.00 100.00

I-pictures
P-pictures

- B-pictures

150.00
Piclure number (in encoding order)

Figure 6.4 Example of bit distribution among 1-, P-, and B­
pictures in an MPEG-1 coded bit stream. Pictures are coded in
IPBBPBBPBBPBBPBB sequence.

169

for future predictive coding. In effect, this operation allows the encoder to
monitor the quality of the transmitted image so that it does not diverge from
the original signal. Since the VLC operation is lossless, there is no need to
include the VLC unit in the feedback path.

If the input is coded as a P-picture or a B-picture, then the encoder does not
code the picture macroblocks directly. Instead it codes the prediction errors.
In MPEG terminology, this is referred to as interframe predictive coding. For
P-pictures, this process is explained in Figure 6.6. For each macroblock in the
current picture, the motion estimator yields the coordinates (motion vector)

170

processing

Input

Ql

E
~
~ n

=g t:>I

a:

Estimation

~

fl
~
c: o
~
E

CHAPTER 6

Figure 6.5 Block diagram of an MPEG encoder.

of the macroblock that best matches its characteristics in a search area in the
past picture. The two macroblocks are subtracted, and their difference is then
DCT coded. Any of the block-based motion estimation methods described in
Chapter 4 can be used.

For B-pictures, the motion estimation process is performed twice, once for a
past picture and once for a future picture, so as to yield two motion vectors.
The encoder can form a prediction error macroblock from either of the two
candidate macroblocks or from their average. This process is shown in
detail in Figure 6.7. In MPEG terminology, this is referred to as inteiframe
interpolative coding. The prediction error is then coded using the block-based
DCT. The quantized DCT coefficients of the prediction errors, together with
the motion vectors are then multiplexed and coded using the variable-Iength

The MPEG Video Standards

Current picture

(X.y)

Past picture

(X,y)

Prediclion error

ToDCT

Best malching

macroblock

MV : motion vector

Figure 6.6 Forward motion compensation.

171

coder. Unlike JPEG, MPEG uses only a Huffman coder for variable-Iength
coding.

Because of the bidirectional prediction, some reordering of the input pictures
is needed at the encoder so that they are delivered in the correct order to the
decoder. For example, consider the sequence of pictures in Figure 6.3. Since
picture P2 is a B-picture that depends on pictures Pl and P4, it can be encoded
only after the input of picture P4. After reordering of the input pictures, the
correct encoding sequence is Pl, P4, P2, P3, P7, P5, P6, and PB. This bit stream
provides the decoder with all the information needed to decode each received
picture; however, the decoder will need to reorder these pictures so that they
can be displayed in the correct order.

6.2.4 Video Decoder

Figure 6.8 shows a block diagram of an MPEG video decoder. As expected,
the circuitry of the video decoder is very similar to the circuitry in the feedback
loop of the video encoder. Input pictures are first Huffman decoded and
their type determined from the header information. For each macroblock, the

172

Currenl piclure
I

Future picture
(X,y)

(X,y)

MV-2

Besl matching

macroblock

Backward
prediction error

CHAPTER 6

Pasl piclure
Best matching

macroblock

+
±:J Forward prediclion error
~

Interpolative prediction error

Prediction error

~TODCT

Figure 6.7 Bidirectional motion compensation.

coded coefficients are dequantized and translated into the spatial domain by an
IDCT. Consider the encoded sequence PI,P4,P2,P3,P7,P5,P6, and Ps. For the
purposes of this discussion, we will assume that all macroblocks in a P-picture
are coded as P-macroblocks and all macroblocks in B-picture are coded as
B-macroblocks. MPEG-l offers more flexibility in macroblock coding and we
will discuss this in a later section in this chapter. The decoding process is as
follows:

1. Input PI (I-picture). No motion compensation is performed (the input to
the multiplexor in Figure 6.8 is set to zero). Compute the IDCT and save
the output into a display buffer and in the previous picture store.

2. Input P4 (P-picture). For each macroblock, compute the IDCT and
perform motion compensation; that is, add the area pointed to by the
motion vector in the the previous picture store to the output of the IDCT.
The reconstructed picture is saved in the future picture store.

The MPEG Video Standards

)(
:l
:::!:

slep size

Previous

picture store

Motion compensation

Figure 6.8 Block diagram of an MPEG decoder.

173

3. Input P2 (B-picture). Compute the IDCT and perform bidirectional motion
compensation; that is, using the two motion vectors, access the pixel values
in the corresponding regions in the previous and future picture store areas,
and compute aprediction for P2. Sum the IDCT output and the prediction.
Since P2 is the picture following PI in display order, P2 can be displayed
now. Note that, B-pictures need not be stored in the picture store area
since they are not used in forming the predictions of subsequent pictures.

4. Input P3 (B-picture). Repeat the steps performed for decoding P2. After
displaying P3, P4 (decoded in Step 2) is displayed next.

5. Input P7 (P-picture). Repeat the steps performed for P4. However, the
reconstructed picture needs to be saved in the previous picture store; this
overwrites PI in the previous picture store.

6. Input P5 and P6 (B-pictures): Repeat the steps outlined for P2. Note that,
predictions for P5 and P6 use P4 and P7. After P5 and P6 are decoded, we
first display P4 and then the pictures P5, P6, and P7.

174 CHAPTER 6

This completes the decoding of one group of pictures. For the next group,
starting from Ps, these decoding steps are repeated. Since at most three pictures
have to be kept in store at any given instant, an MPEG-1 decoder needs at
least a half Mbyte of memory for SIF resolution pictures. Note that, the order
of display for the pictures is defined in the presentation time stamp that is
contained in the system layer.

6.2.5 Structure of the Coded Video Bit stream

The MPEG-1 syntax for the coded video bit stream has a hierarchical repre­
sentation with six layers: (1) a sequence layer, (2) a group of pictures layer,
(3) a picture layer, (4) a slice layer, (5) a macroblock layer, and (6) a block
layer.

The sequence layer is the top coding layer. It inc1udes a sequence header and is
followed by one or more groups of pictures. It ends with a sequence-end-code.
Among the information inc1uded in the sequence header are the vertical and
the horizontal size of each picture, the pixel aspect ratio, the picture rate
in pictures per second, the bit rate in units of 400 bits/s, and the minimum
buffer size needed by the decoder (in units of 2,048 bytes). A single bit also
specifies whether the coded stream meets all the requirements of a constrained
parameter bit stream or not. In addition, the he ader mayaIso inc1ude the DCT
quantization matrices for intra- and non intra pictures and optional user data.
The default quantization matrix for intra-pictures is the one specified by the
JPEG standard for luminance components. For nonintra pictures, all values
of the default quantization matrix are equal to 16. The rationale for uniform
quantization might be that nonintra pictures provide error information; hence,
there is no reason to favor any particular set of frequency components. In
contrast, in I-pictures, the frequency components are directly related to the
activity within the picture.

A group of pictures (GOP) is a set of pictures in contiguous display order. It
has to contain at least one I-picture. A GOP can begin with either a B-picture
or an I-picture and must end with either an I-picture or a P-picture. If the first
picture is an I-picture or a B-picture that does not depend on the pictures of the
prior GOP, then this GOP can be coded and displayed independently from any
other group. This is defined as a closed GOP. The header of a GOP inc1udes

The MPEG Video Standards 175

timing information, a closed-GOP flag, extension and user data. Figure 6.3
shows a closed GOP with a GOP size of seven.

The picture 1ayer defines the coding information for each picture. Because
of the possibility of reordering P-pictures and B-pictures, the header provides
a temporal reference number that can be used to define the display order of
a picture. Additional he ader data provide information about the picture type,
synchronization, and the resolution and range of the motion vectors.

Each picture is divided into slices. Slices can be as big as the whole picture and
as small as a single macroblock. In case of data corruption, the information in
the slice headers allows for a smoother recovery by the decoder. For example,
in the case of transmission errors, a decoder can drop a slice and not the whole
picture. A slice he ader contains information for its position within a picture
and a quantizer scale factor, between one and 31, that can be used by the
decoder to dequantize the coded DCT coefficients. Specification of quantizer
scale factor allows the encoder to perform rate regulation at the slice level.

A slice is divided into macroblocks. The header of the macroblock defines the
macroblock type, positional information, codes for the horizontal and vertical
motion vectors, and which blocks within a macroblock are actually coded and
transmitted. Optionally, the encoder may include macroblock stuffing. The
pattern "0000 0001 111" is a stuffing code and can be inserted into the bit
stream wherever the encoder detects the possibility of a buffer underflow.
This stream is ignored by the decoder. Macroblock stuffing is not permitted in
MPEG-2.

Figure 6.9 summarizes the syntax layers in the coded MPEG bit stream.

6.2.6 Macroblock Coding

As mentioned before, there are three main picture types in MPEG: 1-, P-, and
B-pictures. However, even within a single 1-, P- or B-picture, macroblocks can
be coded differently. The decision trees for coding macroblocks is shown in
Figure 6.10. This section summarizes the main options in macroblock coding.

176

I-pictures

slice-l

slice-2

slice-N

Picture layer

CHAPTER 6

GOP-N

Sequencelayer

Group of pictures layer

Imb-l I Imb-2 1 B
Slicelayer

[Qli] YCbCr

[ill] 8] III
Macroblock layer 8 x 8 block

Figure 6.9 Syntax layers in MPEG-l video coding.

I-pictures are coded without motion compensation; however, the MPEG syntax
allows each macroblock to be coded using a different effective quantization
matrix. After the OCT, each OCT coefficient is quantized by dividing it
by the corresponding element of the intra quantization matrix. For the OC
coefficients, the quantization step is always fixed at eight. For the AC
coefficients, the quantization step depends not only on the value of the
corresponding element in the quantization matrix but also on the value of
the quantization scale factor. Given the OCT output Dd[i,j], a quantization
matrix Q[i,j], and a quantization scale factor q, the quantized AC coefficients
(QDct[i,j]) are given by

8Dct[i,j]
QDct[i,j] = qQ[i,j] . (6.1)

Each quantized coefficient is clipped in the range [-255, 255]. The scale factor
q is defined in the header of each slice; however, it can also be redefined in
the header of each macroblock. In MPEG terminology, this scale factor is
referred to as MQUANT. Referring to Figure 6.10, we note that macroblocks

The MPEG Video Standards

~ : No change to MQUANT

Change MQUANT

Change MQUANT
_ I

Inter _I l No change to MQUANT

-I Not Coded

Perform motion Change MQUANT
compensation Intra I

-1 No change to MQUANT

P picture Change MQUANT

Coded J
Inter 1

I No chanQe to MQUANT

1 NotCoded (Skipped)

Set motion vector Change MQUANT
to zero Intra J

I No change to MQUANT _

Forward motion compensation

~ Backward motion compensation

Interpolated motion compensatio~

Change MQUANT

Coded

Inter

o Not Coded

Change MQUANT
Intra

No change to MQUANT

Figure 6.10 Decision trees for coding macroblocks in 1-, P-, and
B-pictures.

177

in I-pictures are of two types, namely, macroblocks that are coded using a new
MQUANT and macroblocks coded using the previous MQUANT.

178 CHAPTER 6

After quantization, the DC coefficients are differentially coded in a way similar
to the method in JPEG. That is, each differential value is coded using a (size,
amplitude) pair. From this pair, the size is Huffman coded and defines the
number of bits used by the amplitude. As in JPEG, the AC coefficients are
scanned in zig-zag order and coded using run-Iength and level (or amplitude)
information. However, the coding details in MPEG-l are somewhat different
from JPEG. In JPEG, each AC coefficient is represented by a (run/size,
amplitude) pair, where the run/size information is coded with a variable-Iength
code. MPEG does not use any size information. Instead it provides Huffman
codes for the most frequent run/amplitude values. Run/amplitude values that
are not listed in the table are coded by an escape code followed by separate
Huffman codes for the run-Iength and the amplitude.

Example. Consider the case of coding the run-Iength/amplitude values of
2/2 and 2/25. Since amplitude = 2 can be represented by two bits (10) and
amplitude = 25 can be represented by five bits (11001), in JPEG we would
have to code the pairs (2/2, 10) and (2/5, 11001). In MPEG, 2/2 can be coded
direct1y as 00001000. The symbol 2/25 is not listed in the coding tables; hence,
one has to use the escape code (000001) followed by the Huffman codes for
run-Iength = 2 (000010) and amplitude = 25 (0001 1001).

Coding of P-pictures

P-pictures are also divided into slices and macroblocks; however, because of
the motion-compensation process, the encoder has far more coding choices
for each macroblock. The coding choices are depicted in Figure 6.10. The
decisions are summarized as follows.

• Decide if you want to set the motion vector to zero. In many cases, the
prediction error using a non zero motion vector may be dose enough to
the prediction error for this macroblock assuming a zero-valued motion
vector. Since nonzero motion vectors require additional coding bits, it
is more efficient to code this macroblock using the zero-valued motion
vector. A simple rule of thumb is to use nonzero motion vectors only if
the minimum prediction error is at least 1.1 times smaller than the error
ca1culated for the zero motion vector.

• Decide if you want to code the macroblock as an intra- or inter-type
macroblock. In many cases, it may require fewer bits to code a macroblock

The MPEG Video Standards 179

as an intra-macroblock (I-macroblock) even though it belongs to a P­
picture. This may happen if motion estimation fails due to a high level of
temporal activity.

• Decide if a macroblock needs to be coded or not. If, after quantization, an
coefficients in the macroblock are zero, then that macroblock is not coded.
Such a macroblock is referred to as a skipped macroblock. Decoding
of such macroblocks requires only a simple copy of corresponding
macroblocks in the previous picture. In an cases, when a macroblock is
coded, not every block within the macroblock needs to be coded. There
may be cases, where after quantization, an coefficients within one or
more blocks in a macroblock will be zero. In such cases, a six-bit pattern,
referred to as the coded block pattern, will indicate to the decoder which
of the six blocks within the macroblock have been coded. Note that,
I-pictures cannot have skipped macroblocks, and an blocks within an
I-macroblock have to be coded.

• Decide if MQUANT needs to be changed or not. The encoder may
decide to change MQUANT if it estimates possible buffer overflows or
underflows.

Coding 0/ B-pictures

The se1ection of the macroblock types in B-pictures is very similar to the
selection of macroblock types in P-pictures. From Figure 6.10, the decisions
can be summarized as fonows.

• Decide if you want to use forward, backward, or interpolated motion
compensation.

• Decide if you want to code the macroblock as an intra-type or as an
inter-type macroblock.

• Decide if a macroblock needs to be coded or not. The entire mac­
roblock can be skipped only if the previous macroblock was an inter-type
macroblock and its motion compensation is good enough.

• Decide if the quantizer scale (MQUANT) needs to be changed or not.

180 CHAPTER 6

As in the P-picture case, even when a macroblock is coded, some of the blocks
within it may be skipped if all the quantized DCT values within these blocks
are zero. The coded block pattern will indicate which of the blocks within a
macroblock are coded. The ISO document provides several guidelines for the
efficient selection of macroblock types; however, none of these is mandatory.

In Table 6.3, we show a distribution of 1-, P- and B-macroblocks for 150
pictures of an MPEG-1 coded video sequence. The MPEG-1 encoder uses a
GOP of 15 pictures with two B-pictures for every P-picture, and the coded bit
rate is 1.15 Mbits/s. Zero MV refers to macroblocks that are coded using a
zero motion vector. Note that, for B-pictures, there is a considerable number

Picture Macroblock Type
Type I P B Zero MV Skipped

I 3,300
P 897 8,587 5,128 568
B 60 7,356 22,845 429

__ L -

Table 6.3 Example of the distribution of different macroblock
types in a video sequence.

of macroblocks that are coded using predictive (P) macroblocks. This usually
occurs when there is a scene change or when objects present (absent) in a
P-picture before a B-picture disappear (appear) in the P-picture following that
B-picture.

As mentioned before, MPEG-1 allows for skipped blocks within a macroblock.
For example, for the data in Table 6.3, Table 6.4 shows the number of the 8
x 8 blocks that are actually coded. If all blocks were coded, then we should
have a block count that is six times the macroblock count shown in Table 6.3.

6.3 MPEG-l IMPLEMENTATION ISSUES

Complexity estimates for the MPEG-1 decoding of SIF resolution pictures,
suggest that software-based decoding is well within the realm of general­
purpose processors. Table 6.5 shows a typical breakdown of the computational

The MPEG Video Standards

Picture Macroblock Type
Type I P B Zero MV

I 19,800
P 5,382 30,730 18,146
B 360 8,176 18,853

Table 6.4 Example of the number of 8 x 8 blocks that are actually
coded in a video sequence.

181

load among the decoding functions in MPEG-l. Note that, the data here is
based on simulations of SIF resolution pictures coded at 1.15 Mbits/s and
having two B-pictures for every P-picture.

Decoding Function Load (%)
Bit stream header parsing 0.44
Huffman decoding and inverse quantization 19.00
Inverse 8 x 8 DCT 22.10
Motion compensation 38.64

_ C910r trangormation~nd display_ 19.82
--- --

Table 6.5 Example of the distribution of the computationalload
in MPEG-l decodmg.

There is a general belief that the IDCT is the most compute-intensive task in
MPEG-l decoding; however, this is not always true. If the encoder performs
motion estimation and rate control effectively, then, as shown in Table 6.4,
IDCT is not required for many of the blocks. In such cases, as shown in Table
6.5, motion compensation may be the most compute-intensive task. Note also
that YCbCr to RGB color transformation and upsampling is as expensive as
the IDCT.

Scaled DCTs could be used in MPEG coders; however, frequent changes of
the quantization scale will decrease their overall computational efficiency. In
MPEG, unlike IPEG, pixel values in one or more pictures are used in the
reconstruction of subsequent pictures; thus, careful attention should be paid to

182 CHAPTER 6

the accuracy of the IDCT, so that noise due to arithmetic precision does not
influence the picture quality.

The MPEG-I constrained parameter set does not deli ver video quality that is
acceptable for broadcast applications. Towards this end, the MPEG-2 standard
has been developed using many of the principles of MPEG-l coding. In the
next section, we provide abrief overview of the MPEG-2 video standard.

6.4 THE MPEG-2 VIDEO STANDARD

MPEG-2 is the outcome of the second phase of work by MPEG. The original
goal of MPEG-2 was to define a generic standard that could be applied to
as wide a dass of applications as possible and to support compressed bit
streams at rates dose to 5 Mbits/s for NTSCIP AL quality or dose to 10
Mbits/s for near studio video quality. Among the original requirements were
(1) compatibility with MPEG-I, (2) good picture quality, (3) flexibility of
input format, (4) random access capability, (5) fast forward, reverse play, and
slow motion capability, (6) bit stream scalability, (7) low delay for two-way
communication, and (7) resilience to bit errors. Bit stream scalability is defined
as the ability to discard portions of the bit stream, but still ren der the encoded
bit stream at reasonable quality.

MPEG so on realized the following: (1) There was no reason to restrict the
maximum coded bit rate to 10 Mbits/s. MPEG could successfully support
higher bit rates; for example, 80 to 100 Mbits/s for HDTV applications.
(2) It would be impossible to define a single standard that could satisfy all
requirements. (3) Most applications would use only a small sub set of the
features offered by the standard. Hence, MPEG decided to adopt a toolkit-like
approach; that is, MPEG-2 is a collection of tools defined in such a way as to
satisfy the requirements of specific major applications.

The range of coding support provided by MPEG is divided into profiles and
levels. For each profileIlevel, MPEG-2 provides the syntax for the coded bit
stream and the decoding requirements.

A profile is a defined subset of the entire bit stream syntax specified by
MPEG-2. The four profiles are Simple, Main, Main+, and Next. Within a

The MPEG Video Standards 183

profile, a level is defined as a set of constraints imposed on the parameters of
the bit stream, such as picture resolution or maximum bit rate. For each profile,
the four levels are Low (for SIF resolution pictures), Main (for CCIR 601
resolution pictures), and High-1440 and High (for HDTV resolution pictures).
Before we discuss the specific constraints for each profile-level pair, we need
to describe some of the coding extensions in MPEG-2.

The MPEG-2 syntax has two categories: (1) Nonscalable syntax which is a
superset of the coding syntax for MPEG-l, with additional extensions that
support the coding of interlaced signals; and, (2) scalable syntax, wh ich allows
for a layered coding of the video stream. Decoders can either decode the basic
stand-alone layer for a signal of lower quality or use the additionallayers to
increase the quality of the decoded signal.

Like MPEG-l, MPEG-2 is a lossy video compression scheme, based on
DCT coding, block-based motion compensation, predictive and interpolative
interframe coding, and Huffman coding. Many of these functions are similar
to the ones in MPEG-l and we refer the reader to the previous section for the
coding details. In the following sections, we highlight the functions that are
either new to MPEG-2 or are extensions of those found in MPEG-l.

MPEG-2 is backward compatible with MPEG-l; that is, an MPEG-2 decoder
should be able to decode an MPEG-l coded stream. Using the scalable
syntax, the lower layer of an MPEG-2 signal could also be decoded by an
MPEG-l decoder, but this is not required. Here, we will primarily focus on
the nonscalable syntax. Some of the new features supported by MPEG-2 are
discussed in the fOllowing sections.

6.4.1 Interlaced Pictures

MPEG-2 supports both interlaced and noninterlaced pictures. Fields in an
interlaced picture can be coded separately (field pictures) or they can be
interleaved and coded as one picture (frame pictures). Like MPEG-l, all input
pictures can be coded as 1-, P- or B-pictures. If the first picture of a coded
frame is an I-field picture, then the second picture can be either an I-field
picture or a P-field picture; that is, the first field can be used as a predictor for
the second field. If the first picture is a P-field or a B-field picture, then the
second field-picture has to be of the same type as the first field-picture.

184 CHAPTER 6

6.4.2 Color Subsampling

As in MPEG-l, input pictures are coded in the YCbCr color space; however,
in addition to the 4:2:0 format used in MPEG-l, MPEG-2 also supports the
4:2:2 and 4:4:4 color subsambling formats. In the 4:2:2 format (also known
as CCIR 601 format), the chrominance components have the same vertical
resolution as the luminance component, but the horizontal resolution is halved.
In the 4:4:4 format, all components have identical horizontal and vertical
resolutions. Table 6.6 shows picture sizes for a 60-Hz CCIR 601 signal
using three different subsampling formats. From Table 6.6, a CCIR 601 input

Color Pixels per line x Iines
Component 4:2:0 4:2:2 4:4:4

Y 720 x 480 720 x 480 720 x 480
Cb 360 x 240 360 x 480 720 x 480
Cr 360 x 240 360 x 480 720 x 480

---- -

Table 6.6 Active pixels for a 60-Hz CCIR 601 signal using
various subsampling formats.

signal has 720 active pixels per line. In practice, a preprocessor to the coder
removes the eight leftmost pixels and the eight rightmost pixels to generate
a picture with 704 pixels per line so that an integral number of macroblocks
are obtained for each row. The informative section of the MPEG documents
inc1ude various filtering and picture conversion techniques.

Figure 6.11 shows the macroblocks used in the 4:2:2 and 4:4:4 formats.
Macroblocks in the 4:2:0 format are identical to that of MPEG-l. A 4:2:2
macroblock has four blocks of Y, two blocks of Cb, and two blocks of Cr. A
4:4:4 macroblock has four blocks of Y, four blocks of Cb, and four blocks
of Cr. When the coded bit stream has no scalable extensions, then all blocks
within a macroblock are 8 x 8. With scalable extensions, macroblocks may
contain scaled blocks with lower resolutions, such as 1 xl, 2 x 2, or 4 x 4.
The structure of the luminance macroblocks is different for frame DCT coding
and field DCT coding, as shown in Figure 6.12. In frame DCT coding, all
blocks contain data from both the top field and the bottom field. In field DCT
coding, the top two blocks have data from the top field and the bottom two

The MPEG Video Standards 185

EE B B EEEEEE
y Cb Cr y Cb Cr

4:2:2 macroblock 4:4:4 macroblock

Figure 6.11 The 4:2:2 and 4:4:4 macroblocks in MPEG-2.

blocks have data from the bottom fieId. For chrominance blocks, all blocks
are interlaced (as in frame DCT coding).

8 8 8 8

8 8

8 8

Frame DCT coding Field DCT coding

Figure 6.12 Structure of luminance macroblocks in frame and
field DCT coding.

6.4.3 Prediction Modes and Motion Compensation

In MPEG-2, the picture sequence can be either a collection of frame pictures
or a collection of field pictures. Two classes of prediction are supported,
namely, frame prediction and fieId prediction.

186 CHAPTER 6

Field and frame prediction

For field pietures, predictions are made independently for each field from
reference fields. This is similar to what is done in MPEG-l, with each field
considered an independent pieture.

In frame prediction, predictions are formed from reference frames, which may
have been coded using frame or field prediction. If a frame picture is assumed
to have originated from two fields, then both fields must have the same coding
type, except for the case when the first field is an I-picture, in which case the
second field of this frame can be an 1- or P-picture.

Figure 6.13 shows examples of the different prediction modes for frame
pietures. Frame pictures may use both field and frame predictions. In frame
prediction (Figure 6.13a), the whole (usually interlaced) frame is considered a
single picture. In field prediction, each frame is treated as two separate fields.

Top & Top&

Bottom Bottom
Fields Fields

Reference frame Current frame

(a) Frame prediction

(TOP')
~

Reference frame

(b) Field prediction

(Top!
~

Reference frame

(c) Field prediction

Figure 6.13 Examples of prediction modes for frame pictures.

A motion vector can point either to a field in another reference frame or to a
field in the current frame. For example, in Figure 6.l3b, the first field (which
can be either the top or the bottom field) can be predicted either from the top

The MPEG Video Standards 187

or the bottom fields in a reference frame. In Figure 6.13c, the second field (the
bottom field in this example) can be predicted either from the bottom field of
another frame or from the top field of the current frame. The above examples
can easily be extended to other cases. Field prediction modes are beneficial in
coding interlaced scan video. For progressive scan video, frame prediction is
sufficient.

In MPEG-2, unlike MPEG-1, all motion vectors are specified at half-pixel
resolution. Let (u, v) denote the motion vector of the luminance components
in a macroblock. Due to subsampling of the chroma components, their motion
vectors are given by (~,~) for the 4:2:0 format and by (~,v) for the 4:2:2
format. For the 4:4:4 sampling format, the chroma components use the motion
vectors of the luminance component without any scaling.

Since MPEG-2 video may be used in harsh broadcast environments, some
immunity to transmission errors is needed. In a compressed video bit
stream, erroneous reception of motion vectors can be catastrophic, unlike, say,
erroneous reception of some of the high frequency DCT coefficients within
an 8 x 8 block. Thus, the MPEG-2 syntax has provisions for including
specially coded motion vectors, referred to as concealment motion vectors,
within intra-macroblocks. The assumption here is that the transmission of intra
macroblocks is done in a more reliable manner.

To improve prediction efficiency, MPEG-2 provides two additional motion
compensation modes. The 16 x 8 motion-compensation mode allows a 16 x
16 macroblock to be treated as an upper 16 x 8 region and a lower 16 x 8
region. Each of the 16 x 8 regions is then independently motion-compensated.
Thus, a 16 x 16 P-macroblock will have two motion vectors; likewise, a B­
macroblock will have four motion vectors. The 16 x 8 motion-compensation
mode is only allowed for field pictures.

Dual-prime motion compensation

Another motion-compensation mode provided in MPEG-2 is the dual-prime
mode. The dual-prime mode is applicable only to P-pictures and to GOPs that
have no B-pictures between these P-pictures and the reference pictures. This
motion-compensation mode for frame and field type pictures is illustrated in
Figure 6.14. For frame pictures, two motion vectors are associated with each
field. For instance, in Figure 6.14a, motion vectors Vl and PVl are associated

188

Reference
Frame

Curren!
Frame

(a) Field prediction in frame picture

(ToP]
~

Reference
Frame

CHAPTER 6

vl ~(TOP'J
~

,," Curren!
"pvl Picture

(b) Field prediction in field picture

Figure 6.14 Dual-prime prediction mode in frame and field
pictures.

with the top field and motion vectors V2 and PV2 are associated with the bottom
field of the current frame. Let Vi (x), PVi (x), V2 (x), and PV2 (x) denote the
horizontal components of the motion vectors Vi, PVi, V2, and PV2. The vertical
(y) components are denoted in a similar manner. In dual-prime prediction,
motion vectors PVi and PV2 are derived from Vi and V2 as folIows.

Consider the derivation of PVi. Since PVi is a motion vector from an opposite
parity field, namely, from the bottom field in the reference frame to the top
field in the current frame, the existing motion vector Vi is scaled to reflect the
temporal distance between the fields. First, a correction is made to the vertical
component of the motion vector to reflect the vertical shift between lines of the
top and bottom fields. Second, a small differential motion vector J is added.
The appropriate choice of J is determined by the encoder. In a sirnilar manner,
we can derive PV2. From the MPEG-2 document, the relevant equations for
frame picture prediction, as depicted in Figure 6.14, are given by

PVi(X) = Vi (x) J()
2 + x, (6.2)

PVi (y) = Vi ~y) _ 1 + J (y), (6.3)

PV2(X) = 3XV2(X) J()
2 + x, (6.4)

PV2(y) = 3 x V2 (y) + 1 + J () 2 y, (6.5)

where J(x) and J(y) can take the values in -1, Oor 1. Note that, PVi and PV2
are not included in the encoded bit stream; instead, along with Vi and V2, the

The MPEG Video Standards 189

corresponding 8 is included in the bit stream so that the decoder can derive PVI

andpv2'

For the field picture shown in Figure 6.14(b), the relevant equations for PVI

are

PVI (x)

PVI (Y)

6.4.4 DCT and Quantization

VI(X) + 8(x),
2

VI (y) _ 1 + 8 (y).
2

(6.6)

(6.7)

MPEG-l uses only two quantization matrices for the DCT coefficients: one
for intra blocks and one for nonintra blocks. In MPEG-l, the quantization
matrices can be changed only at the sequence level of the hierarchy, whereas,
in MPEG-2, the matrices can be changed at the picture level. For the 4:2:2 and
the 4:4:4 formats, MPEG-2 allows for more efficient coding by supporting
the use of different quantization matrices for the luminance and chrominance
components. Thus, one can use two matrices for luminance blocks (intra
and nonintra) and two matrices for chrominance blocks (intra and nonintra).
Quantization ofthe AC coefficients is similar to the process in (6.1). In MPEG-
1 and MPEG-2, the quantizer scale factor can be changed on a macroblock
basis in order to achieve a constant bit rate at the encoder output. The method
to change the quantizer scale factor is not part of the MPEG-l and MPEG-2
standard.

6.4.5 Profiles and Levels

Table 6.7 summarizes the key characteristics of the profiles and levels defined
by MPEG-2. Picture resolution is given as pixels per line multiplied by the
number of lines. The Bit rate data refer to the maximum compressed bit rate
supported by the input buffers of a decoder. Areas with "NI A" indicate that
there are no conformance restrictions for these variables. It is expected that
early implementation of the standard will only support the Main profile at the
Main level. The Main profile provides the basic functionality of MPEG-2 and
is expected to be supported by most of the initial applications. The Next profile
includes hierarchical representation and is suitable for terrestrial broadcasting.

190 CHAPTER 6

Profiles

Levels Nonscalable Scalable

Simple Main Main+ Ncx(
4:2:0 4:2:0 4:2:0 4:2:2

Max resolutionl N/A 1920 x 1152160 N/A 1920 x 1152160
rate (Hz)

Min. resolutionl N/A N/A N/A 960 x 576130
High rate (Hz)

100 (all layers)
Bitrate (Mbitsls) N/A 80 N/A

80 (base+mid)
25 (base layer)

Max resolutionl N/A 1440 x 1152160 1440 x 1152160 1440 x 1152160 rate (Hz)
High-

Min. resolutionl N/A N/A 720 x 576130 720 x 576130 1440 rate (Hz)

60 (alllayers) 80 (alllayers)
BiLrate (Mbitsls) N/A 60 40 (base+mid) 60 (base+mid)

15 (base layer) 20 (base layer)

Max resolutionl 720 x 576130 720 x 576130 720 x 576130 720 x 576130
rate (Hz)

Min. resolutionl N/A NfA N/A 352 x 288/30 Main rate (Hz)

15 (a!llayers) 20 (a! I layers)
Bitrate (Mbitsls) 15 15

10 (base layer)
15 (base+mid)
4 (base layer)

Max resolutionl
N/A 352 x 288/30 352 x 288/30 N/A

rate (Hz)

Low Min. resolutionl N/A N/A N/A N/A rate (Hz)

N/A 4 4 (all layers) N/A
Bitrate (Mbitsls) 3 (base layer)

Table 6.7 Profiles and levels in MPEG-2 video coding.

The Main+ profile is a superset of the Main profile but a sub set of the Next
profile. It allows for a gradual move from the Main profile into the Next
profile. The Simple profile is a low-cost version of the Main profile. Coding
is similar as in the Main, but without any bidirectional prediction.

The MPEG Video Standards 191

Levels are related to picture resolution. The upper bound on the Main level
resolutions corresponds to the CCIR 601 picture format. The High-1440 and
High level resolutions correspond to picture resolutions for HDTV. The Low
level resolutions correspond to the SIF format.

A decoder that can decode bit streams at a certain profile/level should be
able to decode also all bit streams of lower profiles/levels than its own. The
only exception is that decoders of the Simple profile at Main level are also
required to decode Main profile at Low-level bit streams, that is, MPEG-1
coded streams.

6.4.6 Scalable Bit streams

A new feature ofMPEG-2 is bit stream scalability, which allows for a layered
representation of the coded bit stream. The MPEG-2 syntax allows for four
basic modes ofbit stream scalability: data partitioning, SNR scalability, spatial
scalability, and temporal scalability. These basic scalability schemes can be
combined to form a hybrid scalability scheme.

Data partitioning

With data partitioning, the bit stream is split into two layers, called partitions.
For example, the first partition may include all critical header information
(such as headers and motion vectors), and the second partition may include
the remaining bit stream. This mode is intended for use in applications that
can allocate two channels for a single bit stream.

SNR scalability

SNR scalability can be used in applications that support video transmission at
multiple quality levels. Al1layers have the same spatial resolution but different
video qualities. The lower layer is coded by itself and provides the basic video
quality. The enhancement layers are coded as to enhance the basic quality by
providing refinement data for the DCT coefficients of the lower layer. SNR
scalability provides for better resilience to transmission errors. For example,
the enhancement layers can be sent over a channel with poor performance, and
the lower layer can be sent over a channel with better error performance.

192 CHAPTER 6

Spatial scalability

With spatial scalability, the bit stream is divided into layers of different spatial
resolution (this is similar to the hierarchical coding in JPEG). The lower layer
is coded by itself to provide the basic spatial resolution. The enhancement
layers can use the spatially interpolated lower layer to provide a video stream
at the full spatial resolution. Layers may have different frame sizes, frame
rates, or chrominance formats. In a typical application, the lower layer may be
MPEG-l compliant at SIF resolution, whereas the enhancement layer might
be used to generate CCIR 601 resolution video.

Temporal scalability

Temporal scalability allows the migration from systems with low temporal
resolution to systems with higher temporal resolution. In this case, the
lower layer is coded by itself and provides the basic temporal rate, and the
enhancement layers are coded with temporal prediction with respect to the
lower layer. The lower layer and the enhancement layers can be combined to
generate a stream at full temporal resolution. Alllayers have the same frame
size and chrominance formats hut different frame rates.

In summary, MPEG-2 is a superset of MPEG-l and some of the features in
MPEG-2 that are not found in MPEG-l are shown below:

• Support for both interlaced and noninterlaced pictures.

• Support for 4:2:0, 4:2:2, and 4:4:4 subsampling schemes.

• Motion compensation based either on interlaced frames or noninterlaced
fields and frames.

• Improved picture quality through new options for the quantization of the
DCT coefficients and alternate zig-zag ordering.

• New syntax for scalable bit streams.

The MPEG-2 standarization process is still evolving. It is now proceeding
along two directions:

The MPEG Video Standards 193

• Extensions to MPEG-2. These extensions inc1ude video coding with 10
bits per pixel, higher quality audio coding, and specifications for interact­
ing in real-time, as weIl as specifications that will allow applications to
interact directly with MPEG compressed bit streams.

• Development of a coding standard for very low bit-rate applications
(MPEG-4). It is a common belief that the techniques that have been the
basis for MPEG-l and MPEG-2 may be inadequate for MPEG-4, since the
bit-rate targets for MPEG-4 will be around 8 to 64 kbits/s. The MPEG-4
standard is expected to be completed by November of 1998.

6.5 TO PROBE FURTHER

The MPEG-l and MPEG-2 standards are described in the ISO documents [84]
and [86]. In addition to the systems, video, audio, and conformance testing
parts, MPEG-2 will also inc1ude a fifth part (13818-5 software) that will
provide software-based coding models for the first three parts in the standard.
The video portion of MPEG-2 has also the nomenc1ature Recommendation
ITU-T H.262. The standardization process itself is described by Chiariglione
[33]. Early descriptions ofMPEG-l can be found in [54] and [138]. A good
overview of the systems part in MPEG-l is given by MacInnis [128].

For MPEG-2, an early overview of the standardization process and the coding
requirements is given by Wells [192]. The data in Table 6.7 are based on
a similar Table given in [148]. MPEG-l and MPEG-2 support constant
bit-rate and variable bit-rate encoding. Bit-rate control is primarily achieved
by changing the quantizer scale factor. However, the specific mechanism by
which the quantizer scale factor is changed is not specified in the MPEG-l
and MPEG-2 standards. The MPEG-2 test model document [87] provides one
approach for bit-rate control. Abrief description of the test model can be found
in [43]. Bit-rate control is an area of active research. Various approaches
suitable for MPEG-l and MPEG-2 can be found in [99], [40], [29], [162],
[48], and [62]. Most of these techniques are based either on concepts from
control system theory or on image c1assification. Various researchers have
also attempted to develop functional models that relate bit rate to the quantizer
scale factor, much like the rate-distortion functions we described in previous
chapters. Recently, MPEG-2 was chosen for the video coder of the Grand

194 CHAPTER 6

Alliance HDTV system for North America. A general overview of this system
is given by Hopkins [74].

Video generation, preprocessing, post processing, and display are not defined
by the standards, but are integral parts of any video coding system. There are
many fine textbooks on color and digital television, inc1uding [79] and [173].
The CCIR 601 standard for digital TV is described in [1].

Software implementations of MPEG coders have been reported in [20], [42],
and [19]. Sites with public-domain MPEG encoders and decoders are given in
Appendix B. Hardware implementations of MPEG coders are described later
in this book.

7
THE H.261 VIDEO CODING

STANDARD

7.1 INTRODUCTION

In recent years, there have been significant developments in videoconferencing
and audiovisual services. First, data rates in digital telecommunication services
have been constantly improving. For example, integrated services digital
networks (ISDNs) may provide switched transmission services at data rates
dose to 2 Mbits/s. Second, the latest technology for the coding of video
signals allows videoconferencing signals to be compressed down to 64 kbits/s,
the equivalent of a single telephone voice channel.

In the late 1970s, the telecommunications industry realized that continuous
growth of audiovisual services was possible only through international stan­
dards. Customers expected and demanded video terminal equipment to have
the same level of compatibility as other telecommunication equipment, such
as modems and facsimile machines. In the early 1980s, the CCITI Rec­
ommendations H.120 and H.130 were the first international standards for
videoconferencing. The two standards provided guidelines for transrnitting
PAL or NTSC television signals at data rates dose to 2 Mbits/s. The
conversion between P AL and NTSC was integrated into the coding process.

However, these standards found acceptance only in Europe. Manufacturers
in the United States and Japan continued to develop and market proprietary
video coding techniques that offered better signal quality at data rates lower
than 2 Mbits/s. In the late 1980s, a new collaboration among telecommunica­
tion operators and manufacturers of videoconferencing equipment led to the

196 CHAPTER 7

development ofthe H.261 video coding standard. This is also known as the P
x 64 standard because it describes video coding and decoding methods at the
rates p x 64 kbits/s, where pis an integer from 1 to 30. H.261 was ratified in
Geneva in December of 1990.

A video teleconferencing system processes not only video but also audio and
ancillary digital data. Thus, additional considerations have to be made for audio
compression, data multiplexing, and overall system control. Recommendation
H.320 is a complete family of standards, and defines the technical requirements
for narrow-band visual telephone systems and terminal equipment.

Figure 7.1 shows the block diagram of a generic, H.320 compliant, visual
telephone system and which Recommendations are relevant for each one of the
blocks. Video equipment inc1udes cameras, monitors, and video processing

H.261 H.221

,--

Video
I--

Video Frame

Equipment Codec Structure

H.200/AV.250-Series
Q)
(,)

Audio Audio al

I-- - Delay - I-- 't:
.2l

Equipment Codec .s
MUXlDMUX ~

T-Series, H.200/AV.270-Series 0

!
I Q)

Telematic Equipment z
I

H.242, H.230, H.221

I System I I End-to-end I Control
Network Signaling I .. - -

H.320

Figure 7.1 Block diagram of a generic visual telephone system,
and associated Recommendations.

units. Audio equipment inc1udes microphones, speakers, and audio processing
units. Telematic equipment inc1udes data terminals and visual aids such
as electronic blackboards or a still-picture transceiver. The system control

The H.261 Video Coding Standard 197

unit performs end-to-network signaling and end-to-end control to establish
a common mode of operation among terminals. The video and the audio
codecs perform video and audio compression and decompression. A delay
in the audio path compensates for the video coding delay and allows the
system to maintain audio and video synchronization. The mux/dmux unit
multiplexes audio, video, and data into a single bit stream during encoding
and demultiplexes them during decoding. Finally, the network interface
provides the interface between the networks and the terminal as defined in the
I.400-series Recommendations.

H.320 refers to a number of Recommendations, inc1uding:

• H.261: A video coding algorithm for compressing signals at data rates
from 64 kbits/s to 1,920 kbits/s.

• G.722, G.726, and G.728: Aseries of algorithms for the compression
of audio signals at data rates from 16 kbits/s to 64 kbits/s. These
Recommendations are examined in more detail in Chapter 16.

• H.221: This Recommendation specifies the frame structure for multiplex­
ing video, audio, and data into a single bit stream.

• H.230 and H.242: These Recommendations specify the handshaking
protocols between H.320 compliant equipment.

• H.233: This Recommendation allows manufacturers to select from three
methods of encryption in their H.320 compliant equipment: DES, used in
the United States; SEAL used in Japan; and BCRYPT, used in the United
Kingdom. The H.233 Recommendation has not yet resolved the issue of
how to pass the encryption keys from one location to another.

In the remainder of this chapter, we examine in more detail the H.261
Recommendation.

198 CHAPTER 7

7.2 THE H.261 VIDEO CODING STANDARD

7.2.1 The Common Intermediate Format

One of the major problems in defining an international standard for video­
conferencing was the fact that there exist two different line and picture rate
television standards. NTSC, used in North America and Japan, uses 525lines
per interlaced picture at 30 pictures per second. On the other hand, most of the
other countries use 625 lines per interlaced picture at 25 pictures per second.
To eliminate the problem of interoperability among systems with different
formats, a new common intermediate format (CIF) was adopted. Both the 625
and the 525 line systems need to include pre- and postprocessing modules to
convert to and from CIF.

CIF is a noninterlaced format. It is based on 352 pixels per line, 288
noninterlaced lines per picture at 30 pictures per second. These values
represent half the active lines of a 625/25 television signal and the picture rate
of a 525/30 (NTSC) signal. Therefore, 625/25 systems need only to perform a
picture rate conversion and NTSC systems need to perform only a line-number
conversion.

Color pictures are coded using one lurninance and two color-difference
components (YCbCr) as specified by the CCIR 601 standard. The Cb and
Cr components are subsambled by a factor of two on both the horizontal and
vertical directions and have 176 pixels per line and 144 lines per frame. The
picture area covered by these numbers of pixels and lines has an aspect ratio
of 4:3. Table 7.1 summarizes the characteristics of a CIF frame.

Color Image size
component (pixels x lines)

Y 352 x 288
Cb 176 x 144
Cr 176 x 144

Table 7.1 Picture characteristics of the common intermediate
format (CIF).

The H.261 Video Coding Standard 199

For low bit-rate applications, in addition to CIF, video coders mayaiso use
a quarter-CIF (QCIF) format, which has half the number of pixels and lines
required for CIF. Support for CIF coding and decoding is optional; however,
all coders must be able to operate using QCIF.

7.2.2 H.261 Encoding

Like MPEG, the H.261 encoding algorithm uses acombination ofDCTcoding
and differential coding. Figure 7.2 shows a block diagram of an H.261
video encoder. The main elements are frame prediction, DCT transformation,

to

CIF

Input

CD
E

,g1
!l!
n
'6
~
a.

Coding Control

Output

Estimation

Figure 7.2 Block diagram of an H.261 video encoder.

quantization (Q), and variable length coding (VLC).

200 CHAPTER 7

The DCT coding path is similar to the one used in IPEG and MPEG. A video
frame is first translated into a CIF frame and then stored into frame memory.
Noise filtering or other signal preprocessing can also be performed at this
stage. Similarly to the operations in IPEG, the DCT operates on 8 x 8 picture
blocks. Four luminance (Y) blocks and one Cb and one Cr color difference
block are combined to form a macroblock.

Note that, frame prediction is done in a manner similar to that in MPEG-l, with
the exception that only I-pictures and P-pictures are used. The macroblock
organization and the classification of a macroblock as an intra-type or inter­
type follows the approach in MPEG-l. Differential coding allows the DCT
coder to operate on either input macroblocks (INTRA mode) or the differential
macroblocks between the current frame and the prior frame (INTER mode).
Not all macroblocks need to be coded and transmitted. For example, at low bit
rates, macroblocks (and up to three full frames) can be skipped. The criteria
for choosing either to transmit or skip a macroblock or the control mechanism
for intra- or interframe coding are not part of the standard and may vary
dynamically, depending on the complexity of the input signal and the output
data rate constraints.

Following the DCT, the output DCT coefficients are quantized, coded using a
variable length coder (a Huffman coder in this case), and stored into an output
buffer. By monitoring the capacity of the buffer, the coder can perform data
rate control dynamically. The rate control strategy is not specified in the H.261
standard; here, approaches similar to that adopted for MPEG-l can be used.
A proposal for rate-control is included in the informative part of the H.261
document.

Since H.261 is a predictive coder and since transmission errors may cause
significant image quality problems, a BCH(511 ,493) coder is used to add parity
bits for error detection and correction. However, the use of error detection and
correction is optional for an H.261 decoder.

Because of the use of predictive coding, the encoder needs to monitor the
quality of the transmitted image so that it does not diverge from the original
signal. After an inverse quantization (Q-l) and an inverse DCT (IDCT), the
encoder is able to reconstruct a frame as it will be seen by the decoder. The
reconstructed frame is stored into frame memory. Note that, since the VLC

The H.261 Video Coding Standard 201

operation is lossless, there is no need to include the VLC unit into the feedback
path that generates the prediction frames.

As shown in Figure 7.2, the prediction path mayaiso include optional circuitry
for motion estimation and compensation, and a spatial loop filter. The role of
the loop filter is to minimize the prediction error by smoothing the pixels in
the previous frame. The loop filter is a separable 2-D filter that operates on 8
x 8 blocks. The corresponding I-D filter is a three-tap finite impulse response
filter. At block edges, the filter coefficients are 0, 1, and O. Otherwise, they
are t, ~,and t. Recent studies suggest thattap weights of0.1248, 0.7495, and
0.1248 yield nearly a 1 dB improvement in signal quality when an accurate
motion-estimation technique is used. On the other hand, for a less accurate
motion-estimation method, the H.261 recommended tap weights may be more
appropriate.

The compressed data stream is arranged hierarchically into four layers: picture,
group ofblocks (GOB), macroblock (MB), and block.

• A picture is the top layer.

• Each picture is divided into groups of blocks (GOBs). A GOB is either
one-twelfth of a CIF picture or one-third of a QCIF picture.

• Each GOB is divided into 33 macroblocks.

• Each macroblock consists of six 8 x 8 blocks, that is, four blocks of
luminance (Y), one block of Cb, and one block of Cr.

7.2.3 The H.261 Video Decoder

Figure 7.3 shows a block diagram of the H.261 video decoder. After optional
error correction, the compressed input is buffered and processed by the variable
length decoder. The decoded data are parsed and then processed by an inverse
quantizer and an inverse DCT. Depending on the transmission mode (INTRA
or INTER), macroblocks from a prior frame mayaiso be added to the current
data to form the reconstructed data. The decoded CIF data may then be
converted to the appropriate display format.

202

Inter/lntra I

mode

slep size

CHAPTER 7

Decoded data

Figure 7.3 Block diagram of an H.261 video decoder.

7.3 IMPLEMENTATIONISSUES

Not all implementation details are specified by H.261. This gives manu­
facturers the opportunity to tailor their implementations to suit their target
applications and to provide for product differentiation. Among the details
that are open to variations are rate-control mechanisms, motion-estimation
algorithms, and preprocessing and postprocessing algorithms.

In early field trials of H.261 codecs, it was noted that small variations in the
implementation of the inverse DCT between two coders may yield noticeable
picture artifacts. To resolve this problem, the H.261 Recommendation provides
guidelines for measuring the accuracy of a particular implementation of the
inverse DCT. The procedure to test the accuracy of an IDCT is outlined in
Annex A ofthe H.261 standard and consists ofthe following steps: (1) generate
random data in a specified range, and form 8 x 8 data blocks, (2) perform a
DCT on each block, (3) perform an IDCT, and (4) measure peak, mean, and
mean square error between the original data and the output of the IDCT. To
be H.261 compliant, the following conditions must be met:

• For any pixel, the peak error should be less than 1.0, the average error
(over 10,000 blocks) should be less than 0.015, and the mean square error
should be less than 0.06.

The H.261 Video Coding Standard 203

• Overall, the average error should be less than 0.0015, and the mean square
error should be less than 0.02.

• All zeros in must produce all zeros out.

In addition to the above conditions, the standard requires that there is at least one
intraframe coded macroblock for every 132 interframe coded macroblocks.
This number corresponds to four GOBs or to one-third of a elF picture.
Intraframe coded macroblocks flush out any errors that defeat the error­
correction circuitry and allow for the errors in the frame prediction to be
reset. For better coding efficiency, most implementations of H.261 prefer not
to perform intraframe coding on all the macroblocks of a picture. Instead,
they perform intraframe coding on a few macroblocks in every picture using a
rotational scheme.

H.261 shares much functionality with the MPEG video coding standards.
However, even though the key coding algorithms are the same, the two
standards target different applications with different requirements in data
rates, picture quality, and end-to-end coding delay. Table 7.2 shows the main
differences between H.261 and MPEG.

Presently, there is a great deal of interest in developing software implementa­
tions for H.261 on general-purpose processors. Due to the motion estimation
process, encoding is significantly more complex than decoding. In fact, motion
estimation may be dose to 60 percent of the overall computationalload. One
way to reduce the computationalload is by reducing the search-range in motion
estimation.

In H.261, the maximum range for a motion estimation vector is [-15, 15]
pixels. U sing the maximum range in all H.261 applications will not necessarily
improve the quality of the compressed signal. H.261 applications can operate
at various bit rates, ranging from 64 kbits/s to 1,984 kbits/s. At high frame
rates, the temporal distance between frames is smaller; thus, one can afford to
have smaller search ranges. At low frame rates, the situation is reversed, and
one needs larger search ranges for better image quality.

Furthermore, videoconferencing primarily deals with scenes where most of
the movement is in the head and the shoulders. Experiments show that one
can use a smaller, diamond-shaped, search region, instead of the conventional

204 CHAPTER 7

MPEG H.261
Uses CIF, SIF, or higher U ses QCIF or CIF
spatial resolutions. spatial resolutions.
Variable image aspect Fixed 4:3 aspect ratio.
ratio (defined in the header).
Uses groups of pictures. No notion of GOPs.
I, P, and B macroblocks. No B macroblocks.
Typical bit rates are Typical bit rates are
around 1.1 Mbits/s. around 384 kbits/s.

Max. bit rate is 2 Mbits/s.
No restrictions on Only 1, 2, or 3 skipped
skipped pictures. pictures allowed.
Sub-pixel accurate Pixel accurate
motion vectors. motion vectors.
Typical motion vector Typical motion vector .

range is +/- 15 pixels. range is +/- 7 pixels.
The end-to-end coding Used mostly in interactive
delay is not critical. applications. End-to-end

delay is very critical.

Table 7.2 Main differences between the MPEG and the H.261
standards.

rectangular-search region, with no noticeable loss in video quality. Several
search regions are depicted in Figure 7.4a. From Figure 7.4b, at very low
bit rates (64 kbits/s), and frame rates below 10 fps, motion estimation using
the diamond-shaped search region b ([-8, 8] pixels) yields virtually the same
video quality as motion estimation using the square-search region a ([-15, 15]
pixels). At high bit rates (1.5 Mbits/s), for typical videoconferencing scenes,
there appears to be no benefit using a large search range. The shaded squares
in Figure 7.4b, show the best motion-estimation schemes for various cases of
practical interest. For these search ranges, the computational complexity of
motion estimation can be reduced by at least eighty percent.

The H.261 Video Coding Standard

d ([-4, 4) pixels)
I (No motion compensation)

(a) Search regions

1.5 Mbits/s, 30 los

41 .00 : 384 kbits~s, 15 I~S : --:., ,

40.50

40.00

39.50 128 kbits/s, 10 tps
CD
3:!. 39.00
a:

64 kbitsls, 7.5 fps z
38.50 (f)

38.00

37.50 o Best operating point
37.00

a b c d e
Search region

(b)

Figure 7.4 Search regions and video quality for typical H.261
encoding. (a) Diamond-shaped search regions; (b) vIdeo quality
for the corresponding search regions.

7.4 FUTURE DlRECTIONS

205

lTU is presently developing a video conferencing standard for the general
switched telephone network (GSTN) and mobile radio. This standardization
effort is referred to as H.324 and is expected to be approved later in 1995.
The H.324 suite is a recommendation for real-time voice, data, and video over
V.34 modems on the GSTN telephone network. It consists offive documents:

206 CHAPTER 7

(I) H.324 systems, (2) H.223 multiplex, (3) H.245 control, (4) H.263 video
codec, and (5) G.723 speech codec. H.261 provides coded video at bit rates
64 kbits/s and above, whereas the H.263 video coding standard proposed for
H.324 will provide coded video around 26 kbits/s.

ISO is working on MPEG-4 and will develop standards for audiovisual services
that can operate below 64 kbits/s. The !TU effort is intended to be a near-term
solution, whereas the long-term solution for very low bit-rate audiovisual
services might be a merger of the !TU and ISO efforts.

7.5 TO PROBE FURTHER

The H.320 and H.261 Recommendations are described in the!TU documents
[67] and [66]. In [25], Carr provides additional details on the early efforts
for the development and testing of a video teleconferencing standard. The
methodology adopted for the development of H.261 and the evolution of the
standard is discussed in [147]. Brief descriptions of the H.261 standard and
comparisons with JPEG and MPEG are also presented in [138] and [7]. The
role of the loop filter in H.261 is investigated in detail in [153]. The status of
H.324 is summarized in [174].

8
PROCESSING REQUIREMENTS

8.1 INTRODUCTION

In Chapters 1 to 7, we have examined the core algorithms of the image and
video compression standards without regard to their hardware implementation.
However, ease of implementation and low processing requirements are among
the key factors that influenced the final recommendations of the standards
committees. In the past, the computational needs of intensive image-processing
tasks were satisfied with expensive custom multiprocessor systems. However,
the standards committees believed that it would be easier for the industry to
accept the new standards if low-cost implementations were possible.

The latest RISC (reduced instruction set computers) architectures have enough
compute power for the implementation of some of the video standards. For
example, workstations from DEC and Hewlett-Packard can perform MPEG-l
decompression at 30 frames/s (fps) now and real-time MPEG-2 decompression
perhaps in the near future. For video teleconferencing using the H.261 standard,
general-purpose processors can already encode and decode 8 to 10 QCIF frames
per second. However, even the latest designs cannot adequately address the
processing requirements of some of the standards, such as real-time MPEG
encoding. In such cases, custom hardware may be necessary. In the next eight
Chapters, emphasis will be on the hardware implementation of the image and
video compression standards. Specifically, in this chapter we examine their
processing requirements. In later chapters we discuss design tradeoffs, the
most common hardware designs for the core algorithms (like the DCT, motion
estimation, and entropy coding), and IC designs of various video processors.

208 CHAPTER 8

8.2 MEASURING COMPLEXITY

There are many different measures of algorithmic complexity. For example,
in digital signal processing, one measure is the number of multiplications and
additions. For the video compression standards, a good measure of complexity
is the number of required RISC-like operations. For example, the evaluation
of r 1 = a + b, where a and bare data stored in external memory, and r 1 is a
processor register, requires two data loads and one addition, for a total of three
operations. For signal and video processing algorithms, the total number of
operations is usually expressed in MOPS (million operations per second) or
in GOPS (giga operations per second).

Example. Consider the MOPS requirements for computing a two-dimensional
(2-D) DCT on a QCIF frame. Using row-column decompositions on 8 x 8
blocks, a 2-D DCT can be computed by performing 1-D DCTs on the rows of
the input data matrix followed by I-D DCTs on the columns. An eight-point
l-D DCT is given by

8

Yi = LCikXk,i = 1,2, ... ,8,
k=l

(8.1)

where Yi denotes the output elements, x k denotes the input data, and Cik denotes
the DCT coefficients. From the above, this implementation requires at least:
eight image data loads, eight coefficient data loads, eight multiply-accumulate
operations, and one data store operation, for a total of 25 operations per pixel.
Because of the row-column decomposition, an 8 x 8 DCT will require 2 x 25
x 64 = 3,200 operations. In a YCbCr QCIF frame, with a 4:2:0 sampling ratio,
Y has 176 x 144 pixels and Cb and Cr have 88 x 72 pixels each. A complete
frame has 594 8 x 8 blocks. At 15 fps, the total number of operations is 15 x
594 x 3,200 = 28.5 MOPS. For a CIF frame, a similar implementation would
require 114 MOPS.

Following the same approach, one can estimate the processing requirements
of the various compression algorithms for different frame sizes and data rates.
Table 8.1 shows the MOPS requirements for compression and decompression
using H.261 on CIF resolution sequences at 30 fps. These estimates were
computed assuming fast implementations of the DCT or IDCT algorithms and
logarithmic (instead of exhaustive) searches for motion estimation.

Processing Requirements

1--·-Compression----- -TMOPsl
- ----

RGB to YCbCr 27
Motion estimation 608
(25 searches in a 16 x 16 region)
Inter-lIntraframe coding 40
Loop filtering 55
Pixel prediction 18
2-DDCT 60
Quantization, zig-zag scanning 44
Entropy coding 17
Frame reconstruction 99
Total 968

I Decompression -I
Entropy decoder 17
Inverse quantization 91
Inverse DCT 60
Loop filter 55
Prediction 30
YCbCrto RGB 27
Total L- _ 198

- ---- _ .. _----

Table 8.1 MOPS requirements for H.261 compression and de­
compression.

209

From Table 8.1, decompression requires approximately 200 MOPS and that is
now easily achievable by several general-purpose RISC or DSP (digital signal
processing) processors. However, an encoder requires more than 1,000 MOPS
of processing power, wh ich is outside the capabilities of a general-purpose
processor at this time.

Table 8.2 shows MOPS estimates for the baseline implementation of MPEG,
for different frame sizes, and different percentages of frames computed with
bidirectional motion estimation (B-frames). These estimates are for 30 fps,
assuming no preprocessing or postprocessing (that is, color transformations),
no audio, and no other system-related operations. We assurne that a HDTV
frame is 1440 x 1152 pixels (MPEG-2, Main profile, High-1440 level). For

210 CHAPTER 8

Compression SIF CCIR601 HDTV
No B-frames 738 3,020 14,498
20% B-frames 847 3,467 16,645
50% B-frames 1,011 4,138 19,865
70% B-frames 1,120 4,585 22,012

Decompression
No B-frames 96 395 1,898
20% B-frames 101 415 1,996
50% B-frames 108 446 2,143
70% B-frames 113 466 2,241

Table 8.2 MOPS requirements for MPEG compression and de­
compression at 30 fps.

comparison, Figure 8.1 shows the trends in computing power for general­
purpose DSPs, RIse processors, and programmable image processors. From

10000

CI)

~ 1000

::2:

100

1989 1991 1993

General Purpose
Microprocessors

1995 1997 1999

Figure 8.1 Trends in the performance of programmable proces­
sors.

the data in Figure 8.1, it is clear that general-purpose processors will need

Processing Requirements 211

to integrate additional features before they can be used for real-time video
encoding and decoding.

8.3 DISTRIBUTING THE LOAD

In Figure 8.2, we show the main processing flow in JPEG, MPEG, and H.261
encoding. Note that, there is considerable functionality that is common among
these three compression standards. They all include three key functions: (1)

Raster
10

block

JPEG Coding Funclions

Motion
Compensation

,-----,,,

Figure 8.2 Main processing flow in JPEG, MPEG, and H.261
encoding.

the computation of the DCT, (2) quantization of the DCT coefficients, and
(3) entropy coding. MPEG and H.261 share additional functions, namely,
motion estimation and motion compensation. In addition to these key
operations, any implementation must also allocate significant computational
power for data preprocessing and postprocessing, audio processing, data IIO,
and host and display interface. For example, data preprocessing may include
noise filtering, deinterlacing, color transformations (RGB to YCbCr), and
subsampling. Postprocessing may include raster-to-interlaced transformations,

212 CHAPTER 8

color transformations, and audio-video synchronization. Since no single
programmable processor has enough processing power for all these operations,
parallel processing architectures are not uncommon for video processors.

Until recently, there were few commercially available video processing ICs.
Furthermore, their functionality was limited to low-Ievel operations, such
as filtering. This was due to the limitations in circuit integration and that
only low-Ievel imaging functions had a large enough range of applications
that could justify the development of special hardware. The emergence of
standards for image and video compression opened new market areas, such
as multimedia computing, video set-top units for interactive television, and
HDTV. It is now commercially viable for IC manufacturers to invest in the
design and development of a new generation of image and video processing
ICs.

Designs of video processors range from fully custom architectures with
minimal programmability to fully programmable multiprocessor architectures.
Their architecture depends on the speed requirements of the target application
and the constraints on circuit integration, performance, power requirements,
and cost. Regardless of the implementation details, the general design theme
is to use either a DSP or a RISC core processor for main control and special
hardware accelerators for the DCT, quantization, entropy coding, and motion
estimation.

8.4 TO PROBE FURTHER

The main scope of this chapter was to present some estimates of processing
complexity for the image and video compression standards. In related work,
Fujiwara et al. [49] and Guttag et al. [65] present similar results for the
real-time implementation of the H.261 standard. Guttag et al. estimate the
total number of operations to be dose to 1,200 MOPS, very dose to our
estimate. Fujiwara et al. use a more conservative RISC model and thus provide
much higher MOPS estimates. For example, they estimate that a single
multiply-accumulate operation will require five (instead ofthree in our model)
instructions. Without using fast algorithms for the DCT, and by assuming
full search (instead of logarithmic search) for motion estimation, their total
estimated number of operations is approximately 3,400 MOPS. However, in

Processing Requirements 213

relative numbers, there is general agreement that motion estimation is the most
compute-intensive operation, requiring nearly 60 percent of the processing
power of a H.261 or MPEG encoder.

In [201], Zhou et al. provide a detailed analysis of the MOPS requirements
for MPEG video decompression on a general purpose' RISC-like processor.
For a 4 Mbits/s, CCIR 601 input stream, they estimate that real-time MPEG-2
decoding requires close to 400 MOPS. The authors count one multiplication as
four generic operations and assurne that each group of pictures (GOP) has one
I-frame, four P-frames, and 10 B-frames. The above estimate does not include
the computational requirements for the final color conversion from YUV to
RGB.

9
RISC AND DSP CORES

9.1 INTRODUCTION

As noted in the previous chapter, most video compression ICs utilize either a
RISC or a DSP core as their central controller and processing unit. By RISC or
DSP core we imply a standard programmable processor, without the IIO pads,
buffers, and associated circuitry. These parts are replaced by custom circuits
that interface to the rest of the architecture. The main goal in using a processing
core is to take advantage of existing hardware and software resources (such as
arithmetic processing units, memory, operating system support, and language
compilers) and to minimize the design time of a more complex and dedicated
Ie. In this chapter we describe the basic architectures of a RISC core and a
DSP core and some of their similarities and differences.

9.2 THE RISC CORE

9.2.1 Architecture

The fundamental principle of reduced-instruction-set computers is to achieve
high performance with the minimum amount of complexity. As a result,
instructions are very simple and perform mostly register-based operations.
Register-to-register operations allow most of the instructions to take place
inside the chip. This allows for faster implementation (shorter dock cydes)
and simpler control. A RISC core decodes and executes load, store, arithmetic,

216 CHAPTER 9

MEMORY DATA BUS

Cl)a: <a:

J~ ~ Ipel I CI) ~ !;;(w
REGISTER I wCl) o~

FILE
a:_

~a o(!)
ow Ww <a: ::2:a:

MEMORY ADDRESS BUS

Figure 9.1 Block diagram of a RISC core.

and control transfer operations. The only instructions that access extemal data
are the load and store operations. During arithmetic operations, the processor
will read two registers, perform an operation, and store back the result into the
register file.

Figure 9.1 shows a typical data path of a RISC architecture. It inc1udes a
register file with source and destination latches, an ALU (arithmetic and logic
unit) and a pro gram counter (PC). A RISC processor mayaIso have additional
registers for data and instruction addressing or other control related functions.
Most RISC designs use the same ALU to compute both algebraic operations
and memory addresses for load and store operations. The justification for such
a design is that because during load and store operations the ALU is not busy,
such an implementation does not cause any performance penalty.

Table 9.1 shows three typical RISC instructions from the Berkeley RISC-I
processor: an integer add, a memory read, and a conditional jump. Their
corresponding instruction formats are shown in Table 9.2. For register-to­
register instructions, an operation (specified by OPCODE) is performed on
the registers specified by SRC1 and SRC2, and the result is stored in the

RISC and DSP Cores 217

Instruction Operands Operation Comments i

ADD Rs, S2, Rd Rd=Rs + S2 Integer addition
LDL (Rx)S2, Rd Rd = M[Rx + S2] Memory load I

JMP CON,S2(Rx) PC =Rx +S2 _ C~nditional jump
- --- .. _- -- -- .. _-

Table 9.1 Examples of RISC instructions.

OPCODE DEST SRCI I SRC2 I
OPCODE DEST SRCI I IMMEDIATE OPERAND I
OPCODE DEST IMMEDIA TE OPERAND

I

Table 9.2 Examples of RISC instruction formats.

register specified by DEST. In some instructions, the last field may denote an
immediate operand instead of a register source. For memory accesses, SRCI
specifies the index register and SRC2 specifies the offset. Data is exchanged
by the register specified in DEST. For program control instructions, like
branches, multiple operand fields may be combined to generate a PC-relative
address.

Typical RISC processors execute on the average only one instruction per cyc1e.
Superscalar designs may execute multiple instructions per cyc1e by utilizing
in parallel the ALU and the floating-point unit.

9.2.2 The Processing Unit

The original RISC machines had a very simple ALU and no on-chip multiplier.
Multiplication was performed using shift-and-add instructions or extern al
math coprocessors. Now, many designs inc1ude dual fix-point ALUs and
an additional on-chip floating-point unit that can operate in parallel with the
ALUs.

RISC architectures were developed as general-purpose compute engines.
As such, they provide support for virtual memory addressing. Because of

218

RISC

Core

Instruction

Cache

Data

Cache

Floating
Point
Unit

~ Q)
o ~
E 't:
Q) Q)

~ E

CHAPTER 9

Data Bus

Address Bus

Figure 9.2 Typical RISC-core based architecture.

their high-speed internal clock, it is not cost effective to connect external
memory directly to a RISC core. Instead, a RISC core communicates
with external memory via data and instruction caches. Figure 9.2 shows a
typical configuration of a RISC-core based architecture. It includes the core
processor, an instruction cache, a data cache, and a memory-management unit.
The memory interface unit usually includes a translation look-aside buffer
(TLB) that translates the virtual addresses to physical memory space.

9.3 THE DSP CORE

9.3.1 Architecture

In contrast to RISC architectures that were developed for general-purpose
computing, DSP designs are optimized for the efficient implementation of
digital signal-processing applications. The core operation of most DSP
algorithms is the multiply-accumulate operation r = b + ax. Hence, it is
not surprising that DSP architectures are optimized for this operation. For
example, to execute the operation r = r + a x, where r denotes an accumulator
register, a typical general-purpose processor would require two memory loads

RISC and DSP Cores

Program Address Bus

Program I Data I RAM/ROM RAM-A

~ Program Data Bus

Program AGU-A ~ Control AGU-B

Address
Generation

I Data I
RAM-B

~

Data Bus-A

~ Data Bus-B

~

~ G S
Multiplier

ALU

Registers

Accumulators

Processing
Unit

Figure 9.3 Block diagram of a typical DSP core.

219

(for reading a and x into local registers), one multiplication, and one addition,
for a total of four instructions. A programmable DSP can execute the same
operation using a single instruction by using multiple data and instruction
buses and by exercising in parallel all the internal function units.

Figure 9.3 shows the block diagram of a typical DSP core. It has a Harvard
architecture, i.e., separate data and instruction buses and separate instruction
and data memories, a processing unit, two data memories with their own
address generation units (AGUs), a pro gram controller, and program memory.
The processing unit includes a parallel multiplier, an ALU, accumulators, and
registers.

9.3.2 Instruction Format

Most DSPs have a very long instruction width (VLIW) format. All instructions
are of the same size and execute in a single cycle. Bach field of an instruction

220 CHAPTER 9

ALU
OPCODE

AGU-I I AGU-2 I PC
OPCODE OPCODE OPCODE

IMMEDIATE
OPERANDS

Figure 9.4 Typical DSP instruction format.

Instruction Operands Operation Comments
RPTB S RE=S Repeat a block

RS = PG+l of instructions
MPYF3 SI,S2,Dl Dl = SI x S2 Multiply-
11 ADDF3 S3,S4,D2 D2 = S3+S4 Accumulate

- ---- --

Table 9.3 Examples of DSP instructions.

controls aseparate unit of the architecture. For some instructions, multiple
fields may be combined or shared for immediate operands (Figure 9.4). In
a typical cyc1e, a DSP will fetch the next instruction, do two simultaneous
data reads and one data write, perform a multiply-accumulate and an ALU
operation, and update all data address generation units.

To demonstrate the special nature of DSP instructions, Table 9.3 shows
two instructions from the TMS320C30 processor. Other DSPs have similar
instructions. The first entry (RPTB) is a repeat-block instruction. It allows
a block of instructions to be executed repeatedly without any loop penalty.
RE is the repeat-end register and is loaded with the address of the end of the
block (S). RS is the repeat-start address register and is loaded with the next
value of the pro gram counter. The number of times the loop will be repeated
is determined by the value of a separate repeat-counter register (RG).

The second entry in the table shows a multiply-accumulate instruction. The
two vertical lines next to ADDF3 show that addition will be executed in
parallel with the multiplication. The source operands (SI - S4) can be either
register values or pointers to memory locations. If they are address pointers,
then addressing operations can be performed in parallel with the multiply­
accumulate operation. For example, the value of an address pointer could be
incremented or decremented by a specified value.

RISC and DSP Cores 221

Efficient data- address generation is very important for DSPs. Hence DSPs
are the only processors to incorporate modulo-like arithmetic in data-address
generation or hardwired support for bit-reverse address generation. These
features are essential for the efficient implementation of filtering or FFf
algorithms.

Since most of the DSP algorithms have short processing loops, most of the
time-critical data, and usually all the instructions, fit on-chip. Thus, most DSPs
have simple memory interface circuitry and no data or instruction caches. For
I/O intensive operations they rely on internal or external DMA (direct memory
access) units. Architectures with limited internal instruction memory and data
paths mayaiso have a loop-instruction cache for storing instructions for a loop
operation.

9.4 RISC VERSUS DSP

Both RISC and DSP processors share the same philosophy: simpler is
faster. Hence, both have simple addressing schemes and a limited number
of instructions. Both rely on fast access to the on-chip data, either in local
memory (DSPs) or registers and caches (RISC). In general, DSP cores can
provide better performance than RISC cores, specially for signal-processing
applications. However, RISC architectures have better support in operating
systems and compiler design and they can be used in a larger range of
applications. The VLIW structure of a typical DSP makes it very difficult to
program them and to fully utilize their processing power. DSPs have more
efficient loop control (zero overhead loops) and data addressing but lirnited
data-space addressing power. In general, companies with long history in
DSP design prefer to use and expand their DSP cores for the design of video
processors. On the other hand, new developers of video ICs tend to use RISC
cores, most probably because they provide better programming flexibility and
faster time to market.

222 CHAPTER 9

9.5 TO PROBE FURTHER

Both RISC and DSP architectures are relative1y new. In the rnid-1970s, G.
Radin led the development of the first RISC-like processor, the IBM 801
minicomputer [165]. However, RISC designs did not find their way into
low-cost workstations until the late 1980s, after the success of the RISC and
MIPS projects at the Universities of Berkeley [176] and Stanford [71]. The
book on computer architecture by Patterson and Hennesy [156], the leaders
of the Berkeley and Stanford projects, covers in depth all the hardware and
software design issues in the development of a modern RISC processor. For
a detailed description and evaluation of specific RISC architectures, a book
edited by Slater [180] has articles on most ofthe commercially available RISC
processors.

In related work, Patel and Douglas [155] describe the architectural features of
the Intel i860, and Shacham et al. [177] present the series 32000lEP processor
from National Semiconductors. Both of these processors merge DSP-like
functionality into a RISC core. The 32000lEP is a 100 MIPS/50 MFLOPS
superscalar RISC processor with two integer units, a floating-point unit, and
a DSP unit with a 16 x 16 fix-point multiplier. Special instructions allow
the efficient implementation of complex-arithmetic operations, a feature very
useful in DSP algorithms like the FFT.

Programmable digital signal processors became very popular after the success­
ful introduction of the first TMS320 processor (the TMS3201O) from Texas
Instruments (TI) in 1982. Since then, TI continues to lead in the DSP market
with a complete family of fix-point and floating-point processors [184]. Other
major developers of DSPs are AT &T, Motorola, Analog Devices, LSI Logic,
Zoran, and SGS-Thomson. Many of them are expanding now in the video
processing market.

A detailed description of the design of a typical DSP processor is given by
Fellman et al. [47]. Arecent book edited by Bayoumi and Swartzlander
[16] covers the current developments in the design of programmable DSPs,
DSP cores, and image processors. For a more detailed description of specific
designs, Michalina [134] presents a very good overview of the DSP cores
available from SGS-Thomson. The Motorola and TI DSP cores are described
in [113] and [103]. For a short description of most commercially available

RISC and DSP Cores 223

DSPs, EDN, a trade magazine published by Cahners Publishing, publishes
annually a DSP-chip directory [118].

10
ARCHITECTURES FOR THE DCT

10.1 INTRODUCTION

Due to the importance of the two-dimensional (2-D) DCT in digital image
processing, particularly in video compression, various algorithms and archi­
tectures have been proposed for its implementation. These methods can be
divided into two main categories. The first category includes techniques
from linear matrix analysis and decomposition. Lee's fast DCT is a typical
example of this category. The second category includes algorithms from
polynomial and number theory. For example, Winograd's algorithm fits into
this class. Both categories can be further partitioned into algorithms that either
use or do not use row-column decompositions. For example, with a row­
column decomposition, the 2-D DCT can be computed using one-dimensional
DCTs, allowing for simpler implementations. Algorithms that do not use
row-column decompositions are more computationally efficient but require
complex hardware.

In general, a basis of comparison of the various DCT algorithms is the number
of multiplications and additions they require. However, for a VLSI imple­
mentation other factors are also important. These factors include complexity
of control logic, requirements for memory, size, and power, complexity of
interconnect, and efficient implementation of the inverse transform using the
same hardware. Polynomial transforms require fewer multiplications but have
irregular structure and complex interconnection schemes among processing
elements. Furthermore, they are not as computationally efficient for small-size
transforms. Hence, these algorithms may be used for a software implementa-

226 CHAPTER 10

tion on a general purpose processor, but they are seldom the basis for dedicated
DCT processors in video codecs.

Single-chip video codecs need to integrate the DCT-IDCT hardware with a
core processor, an entropy coder, and other circuitry. For such strict size
requirements for the implementation of the DCT, two techniques seem to
be widely used: (l) vector processing using four parallel multipliers and (2)
parallel processing using distributed arithmetic. These designs have a regular
structure, have simple control and interconnect, and achieve a good balance
between performance and complexity of implementation.

10.2 VECTOR PROCESSING

Using matrix notation, let F denote the output of an N x N DCT for input f.
Then

F = CfCt , (l0.1)

where C is a matrix with the cosine basis functions, and C t is the transpose of
C. Using a row-column decomposition, F can be computed using I-D DCT
transforms as

Y=Cp, (l0.2a)

F = Cyt = CfCt , (1O.2b)

where Y is an intermediate product matrix. (The columns of y correspond to
the output of the I-D DCTs of the rows of f.) A 2-D transform can thus be
computed by applying I-D transforms, first on each row of fand then on the
transpose of Y. Figure 10.1 shows a block diagram of such an architecture.

For N=8, (10.2) can be written as
8

Yi -""'c f k,l - L...J m,l k,m,

m=l

l,k=1,2, ... ,8. (10.3)

From (10.3), the evaluation of each row of Y requires eight eight-point inner
products. However, due to the special properties of the DCT coefficient
matrix, it can be shown that

4

Yk,l = 2: Cm,lUk,m, l = 1,3,5,7,
m=l

(IOAa)

Architectures for the DCT

.... Transposition

Memory

~ HH 1-00CT ~ H Qutpu

Figure 10.1 Architecture for two-dimensional DCT using row­
column transformation.

4

227

Yk,l = L Cm,IVk,m, l = 2,4,6,8,
m=l

(lO.4b)

where Uk,m = /k,m + fk,8-m+1 and Vk,m = fk,m - fk,8-m+1, for m = I to
4. The above equations imply that an eight-point DCT can be computed
using two four-point DCTs, provided that one preprocess the original data to
generate the U and v sequences. (This is usually the first stage in most of
the butterfly-based fast DCT algorithms). Using the above formulation, the
number of multiplications is reduced by a factor of two and each row of Y can
now be computed using eight four-point inner products.

Figure 10.2 shows a block diagram for the implementation of the I-D DCT
using an array of four multipliers. The preprocessor computes the U and v data.
Each column-multiplier is a parallel multiplier based on the modified Booth
algorithm. The four products from the multipliers, after appropriate scaling,
are summed into the output accumulator. A Wallace tree-adder is usually used
at this stage. In pipelined mode, this architecture aHows a four-input inner
product to be computed each cyc1e, and an eight-point DCT to be computed in
eight cyc1es.

228 CHAPTER 10

Pre-Processor

.~ ct .~ ct .~ ct .~

~I
c.. 'ai g 'ai c.. 'ai c..
:;::: 0 0 :;::: 0 :;:::
"3 () "3 () "3 () "3
~ ~ ~ ~

Accumulator

~

Figure 10.2 Eight-point DCT using four parallel multipliers.

10.3 DISTRIBUTED ARITHMETIC FOR THE DCT

Distributed arithmetic is a technique that allows the hardware implementation
of a sum of products without using multipliers. By storing first a finite number
of intermediate results, a sum of products can be obtained through repeated
additions and shifting operations and without the use of any multiplications.
The technique allows the design of signal processors with a reduced gate count
and a very regular structure. Hence, it is ideally suited for integrating a DCT
processor into a video codec.

10.3.1 Technical Overview

Consider the evaluation of the following sum of products:

N

Y = L amxm,
m=l

(10.5)

Architectures for the DCT 229

where X m denotes the input data and am are fixed coefficients. Assuming
(mostly for convenience and without loss of generality) that each X m is a two's
complement binary number with B-bits of precision and that Ixml < 1, then
X m can be expressed as

B-1

X = _x(O) +" (j)2- j
m m L...J x m , (10.6)

j=1

where x~) is the jth bit of X m and has a value of either 0 or 1. (The above
formulation implies a decimal point next to the most significant bit (x~»)). For
example, 1001 = -1 + ~ = -0.875.

Substituting (10.6) into (10.5) yields

N [B-1 1
y = ~ am -x~) + ~ x!~,>Tj .

After an interchange of the order of summations,

Let

B-1 [N 1 N
Y = ~ ~ amx~) 2- j - ~ amX~).

N

FN(a,x(j») = L amX~).
m=1

(10.7)

(10.8)

(10.9)

Since x~) may only be either 0 or 1, FN (a, x(j») can take only 2N possible
values. These values can be precomputed and stored in a lookup-table (or
ROM). Substituting (10.9) into (10.8), yields

B-1

Y = L FN(a,x(j»)Tj - FN(a,x(O»). (10.10)
j=1

This is the key expression for the implementation of a sum of products using
distributed arithmetic. Multiplication by 2-1 corresponds to a right shift by
one bit, hence, y in (10.10) can be computed using repeated table look-ups,
additions, and shifts.

Figure 10.3 shows a block diagram for the implementation of (10.10). Data
is processed bit-serially, the least significant bit first. After each cyc1e, the

230 CHAPTER 10

(j) 1 -1
xl A ~ B 2

-'""" ROM

(j) N Accumulator xN 2 - bits
--'"'"

I y

Figure 10.3 Block diagram of a ROM-accumulator unit for the
implementation of sum of products using distributed arithmetic.

output of the accumulator is shifted by one bit. The final sum is computed in B
cyc1es. This circuit is commonly referred to as a ROM-accumulator (RAC).

As an example, let N = 2, B = 4, al = 0.125, a2 = -0.75, Xl = -0.625 (l011), and
X2 = 0.25 (0010). Table 10.1 shows the values of F2(a,x(j)) = alx~j) + a2x~j)
for j = 0, 1,2, and 3. For convenience, the decimal point is shown explicitly.
From (10.10) and B = 4, the summation can be expanded as

x~j)
1

x~j)
2 F2(a, x(j))

0 0 0
0 1 a2 = 1.010
1 0 al = 0.001
1 1 al + a2 = 1.011

--- -

Table 10.1 Lookup table data - Example.

y = [[[F2(a,x(3))] Tl + F2(a,x(2))] 2-1 + F2(a,x(1))] Tl - F2(a,x(ü)).

(10.11)
Given (10.11), Table 10.2 shows the input and output data flow in the ROM­
accumulator unit for this example. After four cyc1es, the final sum is y =
-0.265625 (1.101111).

Architectures for the DCT 231

Bit Input Data Adder
J x~j) x~j) Input-A Input-B Output
3 1 0 0.001 0.000 0.001
2 1 1 1.011 0.0001 1.0111
1 0 0 0.000 1.10111 1.10111
o 1 O ___ :O.001 ___ ll!0111 1.101111

Table 10.2 Example of data flow using distributed arithmetic.

10.3.2 Implementation of the DCT

The design methodology of the previous section can now be direcdy applied
to the hardware implementation of the DCT using distributed arithmetic. For
B bits of data precision, let

B-1

j = _j(O) + " jU) Tj
k,m k,m ~ k,m , (10.12)

j=l

and
S

D (jU)) " jU) rs Cl, k = ~ Cm,l k,m' (10.13)
m=l

where j~:~ denotes the jth bit of jk,m. From (10.3), using distributed
arithmetic, an eight-point DCT can be computed as

B-1

Yk,l = L FS(Cl, j~j))Tj - FS(Cl, j~O)), k, l = 1,2,···,8.
j=l

(10.14)

As before, each Yk,l can be computed using the ROM-accumulator unit shown
in Figure 10.3, where the size of the ROM is 256 words. The size of the
ROM can be reduced to only 16 words if we take into consideration that an
eight-point DCT can be computed using two four-point inner-products (see
equation (10.4)). In either case, an output will be available after B cycles.
However, since each row ofY (Yk,l, Yk,2, ... , Yk,s) utilizes the same jk,m data,
all row elements can be computed in parallel.

232 CHAPTER 10

Figure 10.4 shows a parallel implementation of the eight-point DCT-IDCT
using distributed arithmetic. For each row, first, the fk data vector is loaded

f k Bus Uk Bus Vk Bus Yk Bus

Figure 10.4 Parallel implementation of an eight-point DCT using
distributed arithmetic.

into the input registers (denoted by D). Then, data are processed bit-serially
by the bit-serial adders or subtractors to generate the u and v data. Two data
buses distribute the bits into eight ROM-accumulator units. Each RAC has 16
words of memory for the forward DCT and 16 words for the inverse DCT.
Mter B cycles, the outputs from the RAC units are loaded into the output
registers and then transferred sequentially to memory.

Architectures for the DCT 233

10.3.3 Doubling the Speed of Distributed Arithmetic

In most video applications, the bit-Iength of the input data is usually eight bits;
however, to comply with the accuracy requirements specified by the standards,
DCT architectures employ a higher internal dynamic range. For 16 bits of
precision, an array of eight RAC units can complete an eight-point DCT in
16 cycles. This is half of the input data rate into the DCT unit. The output
rate can be increased by either doubling the c10ck of the DCT unit (not always
possible or desirable) or by increasing the processing rate of a RAC unit.

To increase the processing rate in distributed arithmetic, the RAC unit can
be modified to process two bits at a time from each operand. For example,
(10.11) can be rewritten as

y = [F2(a, x(3))r1 + F2(a,x(2))j2-2 + [F2(a, x(1))2- 1 - F2(a,x(O))]. (10.15)

If we can access two F() values simultaneously, then operations within a pair
of brackets ([]) can be performed in one cyc1e and y can be computed in two
cyc1es. Similarly, an N-point sum of products (see (10.10)) can be expressed
as

B/2

Y l: FN(a, X(2k-l))r(2k-l)

k=l
B/2-1

+ l: F N(a,x(2k))r 2k - FN(a,x(O)).

k=l
(10.16)

The above formulation allows odd-numbered and even-numbered bits to be
processed in parallel.

Figure 10.5 shows the architecture for a modified RAC unit that process data
at double the speed. Data is still processed bit-serially, but two bits at a time.
This design requires an additional adder and twice the ROM size of the original
design. For 16-bit data, an array of eight modified RAC units can compute an
eight-point DCT in eight cyc1es; that is, at the same speed as an array of four
parallel multipliers.

234

(2k-l)
xl

(2k-l)
x N

(2k)
xl

(2k)
x N

CHAPTER 10

Figure 10.5 Block diagram of a modified RAC unit.

10.4 COMMERCIALLY AVAILABLEDCT
PROCESSORS

SGS-Thomson makes three DCT (IDCT) 1Cs. The STV3200 operates at a
maximum pixel rate of 15 MHz and supports block sizes from 4 x 4 to 16
x 16. The STV3208 is a dedicated 8 x 8 DCT 1C and operates at pixel rates
up to 20 MHz for double precision or up to 27 MHz for single precision.
Both rcs use nine bits (two's complement) for input pixel data and 12 bits
for coefficient and output data. The IMSA121 can perform 8 x 8 DCTs, 8
x 8 1DCTs, or low-pass filtering. It supports pixel rates up to 20 MHz. 1ts
dynamic range is 12 bits for input and output data and 14 bits for the fixed
coefficients. 1nternally, it uses distributed arithmetic with 16 bits of precision.

The Zoran ZR36020 is an 8 x 8 DCT-IDCT 1e. 1t supports data rates of
15 and 21 Mbytes/sec. The Zoran processor complies with the normative
requirements of the IPEG standard regarding DCT or 1DCT accuracy. It uses
16 bits of precision (two' s complement) for the coefficients and either eight or
nine bits of precision for the data (unsigned, with or without internal shift by
128, or in two's complement).

From LS1 Logic, the L64735 is a DCT processor for 8 x 8 data blocks. 1t uses
12-bit signed DCT coefficients and supports a maximum data rate of 30 MHz.
For higher data rates, the L64730 DCT processor can operate at 40 MHz. A
separate DCT quantization processor, the L64740, is also available.

Architectures for the DCT 235

10.5 TO PROBE FURTHER

The efficient implementation ofthe 2-D DCT is still an area of active research.
Wolter et al. [196] provided the basis of our classification of 2-D DCT
algorithms. A detailed description of an architecture that uses two four­
multiplier arrays is given in [91]. The authors also provide extensive details
on the design and configuration of the transposition memory. A similar
four-processor architecture is also used by Ruetz et al. [172] for the DCT
processor in a multichip H.261 coder from LSI Logic. The SGS-Thomson
chip-set for image compression is described in [12].

The first wide1y known description of distributed architecture was published
in the early 1970s by A. Peled and B. Liu [157]. A tutorial by White [194]
provides additional examples and optimization techniques. M. T. Sun et al.
were among the first to present a DCT implementation based on distributed
architecture [182]. A design that uses the modified RAC unit is presented in
[189]. Distributed arithmetic can also be used in butterfly-based data flows.
Such a design is described in [36]. The integration efficiency of distributed
arithmetic is best demonstrated in the work by K. Aono et al. [9], where a
DCT core is part of a single-chip video codec.

11
HARDWARE FOR MOTION

ESTIMATION

11.1 INTRODUCTION

Typically, two consecutive frames of a video sequence are very similar. This
observation is the basis of block-based motion-compensated coding, where a
frame is coded based on its difference from another frame. In practice, frames
are divided into blocks. For a block in the current frame (called the reference
block), motion estimation is the process of finding a block in the prior frame
that matches best (according to a given criterion) its characteristics. A motion
vector identifies the position of the best block relatively to the reference block.
The search for the best matching block is done in a rectangular area (calIed
the search window) around the relative position ofthe reference block. Figure
11.1 shows a search window that extends p pixels to the left and top and p - 1
pixels to the right and bottom of an M x N reference block. This is usually
referred to as a [-p, p - 1] search window. In most video applications, the
reference block is 16 x 16 pixels and the search window is 31 x 31 pixels (p
= 8).

There are many criteria and techniques for finding a motion vector. The mean
absolute error (MAE) criterion offers a good tradeoff between accuracy and
complexity. Under the MAE criterion, for a displacement vector (i,j), the
distortion between two blocks is defined as

M-l N-l

D(i,j) = L L Irm,n - sm+i,n+jl, i,j E [-p,p - 1], (11.1)
m=O n=O

238

-p

o

M-1

r--__ r-.:.-_-.-__ ..,~+p-2 o N-1

Candidale Btock

(from another frame)

Search window
[-p,p-1]

M+p-2 1 / \ 15
(

Motion Vector (i,D

CHAPTER 11

Figure 11.1 Search window in motion estimation with range
[-p,p-t].

where r is the reference block and s is a candidate block. The motion vector
is the displacement vector for which D(i,j) is minimum. When the reference
block is compared with all possible candidate blocks in the search area, the
process is calledfull-search block matching.

Suppose the evaluation of r = r + la - bl requires five operations (two data
loads, one addition, one subtraction, and one absolute value), using full-search,
at least 5M N(2p)2 operations are required for one motion vector. For video­
conferencing at 15 fps (using elF frames, 16 x 16 blocks, and p = 8), close
to two GOPS are required for motion estimation. Since no single processor
can achieve such high throughput, a variety of parallel architectures have been
used for the hardware implementation of motion estimators.

11.2 DATAFLOWDESIGN

Without loss of generality, let us consider the problem of motion estimation
for blocks of 16 x 16 pixels and a search range of [-8,7] pixels. If we shift
the coordinate system so that there are only positive pixel indexes, Figure

Hardwarefor Motion Estimation 239

11.2 shows the pixel coordinates for a 16 x 16 reference block and the
corresponding 31 x 31 search window. During the block-matching search, the

(0,0) (0,15) (0,30) (0,0) ,
I D s

(15,15)

sI s2 Reference Block

(30,0) (30,30)

Search Window

Figure 11.2 Modified pixel coordinates for a 16 x 16 reference
block and its 31 x 31 search window.

four corner pixels of the search window are used only once, however, all other
pixels are used in multiple search positions. For example, pixel SO,15 is used in
the evaluation of 16 different distortions: D(O, 0), D(O, 1), ... , D(O, 15). If the
pixels from the search window memory are distributed to multiple processors,
then one can compute multiple distortions in parallel.

Figure 11.3 shows such an implementation of a motion estimator using a
one-dimensional array processor with 16 elements. Each element in the array
can compute aseparate distortion value, and 16 distortion values can be
computed in parallel. To compute all 256 distortions, the reference block has
to be repeatedly scanned and processed 16 times. Since the width ofthe search
window is double the width of the reference block, improved performance can
be achieved by using two data ports for the search memory. Port sI receives
data from the left half of the search window and port s2 receives data from
the right half (see also Figure 11.2). Data from both ports are distributed to all
processing elements that select the appropriate input through a multiplexer.

Table 11.1 shows in more detail the pixel data flow for the parallel computation
of the first 16 distortion values. Pixels from the reference block and the
search window are processed sequentially, row by row. For a given vertical
displacement i (i = 0, 1, ... , 15), PE-O computes D(i,O), PE-1 computes
D(i, 1), and PE-15 computes D(i, 15). Pixels from the reference block move

240

Reference
Block Memory

Search Window
Memory

r si 0 I s2

CHAPTER 11

PE-O ,J, PE-1 ,l, PE-15

COMPARATOR UNIT
MV

-!>

Figure 11.3 Architecture for motion estimation using a 16-
processor array.

among processors through aseries of delay latches. Hence, a pixel that is
available to one processor at time t, it will be available to the next processor
at time t+ 1. Referring to Figure 11.3 and Table 11.1, the operation of this
motion estimator can be described as folIows.

Let aCCj denote the accumulator register for processor j. At time t = 0, PE-O
computes acco = I'ro,o - 80,01. No data is available to the other processors.

At t = 1, PE-O computes acco = acco + Iro,l - 80,11. Pixel ro,O is now available
to PE-I, which computes aCCl = Iro,o - 80,11.

At t = 15, pixel ro,O reaches the last processor and from this time on all
processors will be utilized 100 percent.

Hardware for Motion Estimation 241

Cycle Input Data Processor Inputs
Time r I 81 I 82 PE-O PE-l PE-15

0 ro,O 80,0 rO,0,80,0

1 rO,l 80,1 rO,1,80,1 rO,0,80,1

2 rO,2 80,2 rO,2,80,2 rO,1,80,2

14 rO,14 80,14 rO,14,80,14 rO,13,80,14

15 rO,15 80,15 rO,15,80,15 rO,14,80,15 rO,0,80,15

16 r1,0 81,0 80,16 r1,0,81,0 rO,15, 80,16 rO,1,80,16

17 r1,1 81,1 80,17 r1,0,81,1 r1,0,81,1 rO,2,80,17

30 r1,14 81,14 80,30 r1,14,81,14 r1,13,81,14 rO,15,80,30

31 r1,15 81,15 80,31 r1,15,81,15 r1,14,81,15 r1,0,81,15

240 r15,0 815,0 814,16 r15,0, 815,0 r14,15,814,16 r14,1, 814,16

255 r15,15 815,15 814,31 r15,15,815,15 r15,14,815,15 rI5,0,815,15

256 815,16 r15,15,815,16 r15,1,815,16

257 815,17 rI5,2,815,17

270 815,30 rI5,15,815,30

Table 11.1 Pixel flow for computing the first 16 distortions using
a 16-processor array.

At t = 16 all three input ports are active. Port r receives the second row of
the reference block, port 81 receives the second row of the left half of the
search window, and port 82 receives the first row of the right half of the search
window. PE-O computes acco = acCo + h ,0 - 81,01 and PE-1 to PE-15 compute
aCCj = aCCj + Iro,16-j - 80,161, j = 1,2, ... , 15.

At t = 255, PE-O processes the last pixel from the reference block and D(O, 0)
will be available to the comparator unit at the beginning of the next clock
cycle. Processing will continue in processors PE-l to PE-15 and at each of the

242 CHAPTER 11

next 15 cyc1es a new distortion value will be generated. Since the distortion
values are generated sequentially, the evaluation of their minimum can be
computed with a single comparator.

From Table 11.1, the first 16 distortion values will be computed in 271 c10ck
cyc1es. However, as shown in Table 11.2, processing for the next set of
distortions (D(I,O), D(I,I), ... , D(I,15)) can begin at t = 256, as soon as
D(O,O) is computed. To compute the ith set of 16 distortion values, the

Cycle Input Data Processor Inputs
Time T I 81 I 82 PE·O PE·1 PE·15

256 TO,O 81,0 815,16 TO,0,81,0 TI5,15,815,16 TI5,1,815,16

257 TO,1 81,1 815,17 TO,I,81,1 TO,0,81,1 TI5,2,815,17

270 TO,14 81,14 815,30 TO,14,81,14 TO,13, 81,14 TI5,15, 815,30

271 TO,15 81,15 815,31 TO,15,81,15 TO,14,81,15 TO,0,81,15

Table 11.2 Modified pixel flow for fully pipelined motion esti­
mation.

reference block is scanned as before, but input from the search window starts
at the ith row, with pixel 8i,0' Following this computational pipeline, all 256
distortion values will be computed in 16(16 x 16) + 15 = 4,111 cyc1es.

Consider now block sizes of 8 x 8 pixels. For the same search range, full­
search motion estimation requires one-fourth of the operations required for
block sizes of 16 x 16, but a frame has four times more 8 x 8 blocks than
16 x 16 blocks. Even though the computational requirements for each frame
are independent of the block size, this may not be true for the I10, specially
in muItiprocessor implementations. For example, for an 8 x 8 block and a
[-8,7] search range, the width of the search window is three times larger than
the width of the reference block. Hence, for 100 percent processor efficiency,
the architecture of Figure 11.3 will require three (instead of two) parallel data
ports for the search window.

Hardware for Motion Estimation 243

11.3 SUB-PEL MOTION ESTIMATION

Many video applications require motion estimation with half-pel or quarter-pe I
resolution. Sub-pel motion estimation can be performed in two stages. The first
stage computes a motion vector with integer pixel resolution. The second stage
refines the resolution to a sub-pe I level. For example, for half-pel resolution,
the second stage needs to perform 16 additional searches, corresponding to all
possible horizontal and vertical displacements by -I, -0.5, 0, and 0.5 pixels.
For quarter-pel resolution, 64 additional searches are required per motion
vector. Since input data blocks have integer only pixel resolution, sub-pe I
motion estimation requires additional circuitry for pixel interpolation.

Figure 11.4 shows a block diagram of a sub-pel motion estimator. Both the

Reference Integer

Block Memory - --c;::. Motion Estimation

~(i ,i)
Search Window Pixel Interpolation

Memory
Fractional

Motion Estimation

Figure 11.4 Architecture for sub-pe I motion estimation.

integer-resolution and the fractional-resolution blocks can be designed using
linear array processors, similar to the one we described in the previous section.
For pixel interpolation, Figure 11.5 shows a block diagram of a circuit that
can be used for quarter-pel interpolation. In a motion estimator, two of
these circuits should be used, one for interpolating between rows and one for
interpolating between columns.

244 CHAPTER 11

x

(3x+y)/4

x

y (x+y)/2

(x+3y)/4

Figure 11.5 Circuit for quarter-pe I interpolation.

11.4 IMPLEMENTATION EXAMPLES

The computational power of a multiprocessor motion estimator depends on
the number of processors and the number of 1/0 ports. As the next three design
examples demonstrate, the architecture of Figure 11.3 can easily be modified
to support higher data rates and different coding requirements.

11.4.1 A 32-processor Array from LSI Logic

The L64720 from LS1 Logic is a general-purpose motion estimation 1e. 1t
supports either 16 x 16 blocks and a [-8,7] search range or 8 x 8 blocks and a
[-4,3] range. Multiple 1Cs can be used to increase either the block size or the
search range.

The core of the L64720 is a linear processor array similar to the one shown in
Figure 11.3, except that it includes 32 processors instead of 16. The L64720
has three input ports: one for the reference data and two for the search window
data. On-chip memories double buffer the input and output data to minimize
the main memory bandwidth requirements.

A motion vector is computed in 229 cycles for 8 x 8 blocks and in 2,237
cycles for 16 x 16 blocks. At 30 MHz, a single 1C can process CIF frames and
16 x 16 blocks at 30 fps.

Hardware for Motion Estimation 245

11.4.2 A 2-D Processor Array from SGS-Thomson

Like the IC from LSI Logic, the STI3220 from SGS-Thomson is a general­
purpose motion estimator. The block height can be either eight or 16 pixels
and the block width can be any number that is a multiple of four. However,
for eight-bit pixels, internal precision considerations restrict the maximum
practical block size to 16 x 16. The maximum search range is [-8,7] pixels.

The STI3220 computes distortion values using a 2-D processing array with
256 elements. Each processing element computes a single distortion. The
motion vector is computed using 16 comparators that operate in parallel. The
processing array has four data ports: one for the reference block and three for
the search window. As shown in Figure 11.6, the search window is divided
into six blocks. The three left-most subwindows have a width of 15 pixels. The

o 14 22

SW1 SW4

7
SW2 SW5

15
SW3 SW6

22 ------ ------

Search Window

Figure 11.6 Subdivision of the search window for 8 x 8 blocks.

right-most subwindows are as wide as the reference block. Motion estimation
is performed in two operation al cyc1es. In the first cyc1e (initialization), the
three left-most subwindows are loaded, but no computations are performed.
In the second cyc1e (block sequence), the remaining three subwindows are
loaded in parallel with the reference block. During this cyc1e, the processor
computes the 256 distortions and their minimum.

In video-frame processing, two consecutive (and on the same scan line) blocks
share half of their search window pixels. For such blocks, only half of the
search window memory needs to be updated for each motion vector. After a

246 CHAPTER 11

single initialization cycle in the beginning of each scan line, a motion vector
can be computed every M x N cycles, the time required to load each reference
block. The STI3220 supports pixel rates ofup to 18 MHz.

11.4.3 A Half-pel Motion Estimation JC from NEC

Figure 11.7 shows a block diagram of the NEC interframe prediction Ie. This

SRAM
Port

Frame Conlroller and

Figure 11.7 Block diagram of a sub-pel motion-estimation IC
fromNEe.

IC is part of a three-chip set for MPEG-l video coding. The motion estimator
part of the IC computes motion vector searches in a [-15,15] search window
and supports predictive coding for both P-frames and B-frames. For half-pel
motion estimation, this design uses a two-step search strategy. The first step
is performed on a ~ subsampled area and provides a motion vector with 2-pel
accuracy. This stage uses a 16-processor array and a 24 x 24 local register
array. Using the 18 x 18 window obtained from the first step, the second
step generates a motion vector with half-pel accuracy. This stage uses another
16-processor array and a 18 x 18 local register array. Frames for I-pictures

Hardwarefor Motion Estimation 247

and P-pictures are stored on extern al SRAM, which is accessed via an on-chip
frame controller and a local address generator.

11.5 TO PROBE FURTHER

Algorithms for full-search motion estimation are ideally suited for parallel
implementations due to the regularity and the concurrency of operations.
The architecture of Figure 11.3 was first described by Yang et al. from
Bel1core [200]. U sing a formal methodology for mapping the full-search
motion-estimation algorithm into systolic arrays, Komarek and Pirsch [106]
propose several 1-D and 2-D architectures. For example, for N x N blocks
and displacement area [-p, p - 1], an N x N processor array with N data
ports can compute a motion vector in (2p)(N + 2p - 1) cycles. Low-cost
implementations require the minimum possible number of 1/0 ports. An N 2

systolic array by Hsieh and Lin [76] requires only two input data ports and can
compute a motion vector in (N + 2p - 1)2 + 2 + lOg2N cycles. For HDTV rates,
J.H. Lee et al. [114] present the design of a motion-estimation IC using a 2-D
processing and register array. This IC has 16 input ports (eight ports for the
reference frame and eight ports for the search window) and eight output ports.
For 8 x 8 blocks, a horizontal search range of [-32,31], and a vertical search
range of [-8,7], the authors use 16 chips. The maximum operating speed of
each IC is 80 MHz.

The motion estimator from LSI Logic is described in [172]. A detailed
description of the SGS-Thomson motion estimator is given by Artieri et al.
[12], [35]. In [35], the 2-D array has only 128 processors; however, each
processor computes two distortions and operates at double the input pixel rate.
The NEC chip-set is described in [183].

The principles of designing full-search motion estimators can also be applied
to the design of motion estimators that use different search algorithms. For
example, Jehng et al. [94] derive systolic architectures for the three-step
hierarchical search algorithm. For 16 x 16 blocks and a [-7, +7] search range,
each of the three stages of the hierarchical algorithm requires eight processors.

12
HARDWARE FOR ENTROPY

CODING

12.1 INTRODUCTION

The entropy coder is the last stage in the encoding pipeline of JPEG,
H.261, and MPEG. Unlike transform-based coding, where compression is
lossy, entropy coding is lossless. The entropy coder consists of two main
data compression/decompression units: a run-Iength coder (RLC) and a
variable-Iength coder (VLC).

The RLC encoder compresses an input stream by representing consecutive
zeros by their run length. When a zero run is present, the RLC counts the
number of consecutive zeros until it reaches the last zero or the maximum
zero run length. The RLC decoder reverses the process by generating the
appropriate number of zeros between two nonzero data. An RLC coder can
easily be implemented using a counter, registers, and a few logic gates.

The VLC encoder maps the input source data into codewords of variable
length, concatenates them together, and segments them into 16-bit words.
Compression is achieved by assigning short codewords to input symbols of
high probability and long codewords to input symbols of low probability . The
expectation is that the average size of a codeword will be shorter than the size
of the source input. For a given source-probability distribution, a Huffman
entropy coder is optimal; that is, the average length of a codeword approaches
the theoretical minimum, the entropy of the source.

250 CHAPTER 12

Among the standards, H.261, MPEG and the baseline implementation of
the JPEG specify only Huffman coding for the VLC coder. For improved
compression, at a higher computational cost, JPEG also supports an arithmetic
coder that is based on IBM' s Q-Coder. Arithmetic coding may yield better
compression ratios, but due to its complexity and the patent related issues most
of the hardware JPEG variable-Iength coders are based on Huffman coding.

In Huffman coding, encoding can be done simply via lookup-tables. The
coding tables are designed based on the statistics of the input source. The
sizes and the contents of these tables are application dependent. For example,
H.261 uses five VLC tables. In baseline JPEG, only the DCT coefficients are
coded and up to four tables can be used: two for the DC coefficients (one for
luminance and one for chrorninance data) and two for the AC coefficients.

Decoding is much harder, because codewords have variable length and the
receiver has no prior knowledge of the boundaries between two consecutive
codewords. Huffman coding has the property that no codeword is aprefix
of another code, thus each source symbol corresponds to a unique leaf in
a binary decoding tree. For n symbols, a Huffman tree has n - 1 nodes.
Decoding can be performed by tracing the decoding tree until a leaf of the
tree is reached. Figure 12.1 shows an example of a VLC coding table with the
corresponding decoding tree. The nodes of the tree are numbered from 0 to 6.
From Figure 12.1, given the input sequence bga, the output ofthe VLC coder
will be 011111000. In the decoder, given the encoded stream 110001110, the
corresponding output will be the sequence eaf

Both the encoding and the decoding processes can be implemented using finite­
state machines that process one bit at a time. However, bit-serial architectures
may not provide adequate throughput for real-time video applications. Both
bit-serial and parallel implementations of VLC coders will be examined next.

12.2 ENCODERIMPLEMENTATION

As mentioned before, a variable-Iength encoder maps input data of fixed length
into codewords of variable length. Consecutive codewords are concatenated
together and the output is segmented again into words of fixed length (usually
16-bits). The mapping process can be performed either through table look-

Hardwarefor Entropy Coding

o
a -{> 00 0 a

b -{> 01 I ® L- b
o

c -{> 100 ®1 0 r--- C
@

d -{> 101 ~o @L-d

e -{> 110 CD I e
-{> 1110 1 0

®~1 ,0
9 -{> 11110 ® ~r-1-- 9

h -{> 11111@L-.--h

Encoding Table Decoding Tree

Figure 12.1 Example of a Huffman encoding table with the
corresponding decodmg tree.

251

ups or bit-serially by tracing a Huffman encoding tree. Recently, Lei and
Sun proposed a VLC encoder implementation that uses parallel operations to
perform the encoding, the concatenation, and the codeword segmentation in
one cycle, regardless of the length of a codeword.

Figure 12.2 shows a simplified block diagram of the Lei-Sun VLC encoder.
A set of programmable logic arrays (PLAs) stores the Huffman tables and
the length of each codeword. Instead of PLAs, one can also use ROM, RAM,
or content-addressable (CAM) memories. The reason content-addressable
memories work is related to the fact that no Huffman codeword is aprefix of
another codeword. Two 16-bit registers (the upper and lower registers) are
used to buffer the output data. The length of each codeword is accumulated
in a fOUf-bit adder whose output controls the operation of a barrel shifter.
The barrel shifter places the output from the PLA next to the end of the
current bit stream. An OR-Iogic operation then cascades the codeword with
the existing bit stream. When the sum of the code lengths is larger than 15, the
adder overflows and the carry-out bit is set to one. This indicates that a new
16-bit output is ready. The VLC encoder outputs the contents of the upper
register, the content of the lower register is moved into the upper register, and
operations continue as before.

252

Data Input

Uncoded

Word

AND-Plane

Data Output

Codeword I Code-Iength

Table Table

OR-Plane I OR-Plane

VLC TABLES

CHAPTER 12

11-------'

Code-Iength

Figure 12.2 Block diagram of the Lei-Sun VLC encoder.

Table 12.1 shows an example of the operation of the VLC coder for the
codebook of Figure 12.1 and the input sequence g, b, a, c, b, f, d. The output
of the barrel shifter is shown underlined. After the first input, g, the adder is

Input Upper Lower Sum Carry
Register Register Out

g 1111000000000000 0000000000000000 5 0
b 1111001000000000 0000000000000000 7 0
a 1111001000000000 0000000000000000 9 0
c 1111001001000000 0000000000000000 12 0
b 1111001001000100 0000000000000000 14 0
f 1111001001000111 1000000000000000 2 1
d 1010100000000000 0000000000000000 5 0

-_.- -~ --

Table 12.1 Example of operation of the VLC encoder.

incremented by five, the length of the corresponding codeword output (11110).

Hardware for Entropy Coding 253

For b, the output of the VLC table, 01, is shifted by five bits and is appended to
the prior codeword. The adder is incremented by two. After the input symbol
J, the adder overflows. Tbe carry-out bit is set to one and triggers an output
ofthe data stored in the upper register (1111001001000111). Note that part of
the output of the barrel shifter is stored in the lower register. After the output
of the data in the upper register, the lower register is loaded into the upper
register and the operation continues as before.

12.3 DECODER IMPLEMENTATION

Tbe decoding of VLC codes is far more challenging than the encoding because
there are not predefined boundaries between codewords in the received stream.
In this section we present two classes of VLC decoders: constant-input-rate
decoders and constant-output-rate decoders. Tbe constant-input-rate decoder
processes input bits at a fixed rate, but codewords are decoded at a variable
output rate. The constant-output-rate decoders have a variable input bit rate,
but they decode a fixed number of codewords per cycle.

12.3.1 Constant-Input-Rate Decoders

The simplest constant-input-rate decoder processes the input bit-serially, ODe
bit a time. Starting from the root, it traverses the branches of the decoding
tree until it reaches a terminal node. At a terminal node, the codeword is
fully decoded, and the corresponding symbol can be read at the output of the
decoder. Tbe process then re starts from the root of the tree.

This process can also be described by a model of a finite-state machine (FSM).
Each node of the tree corresponds to astate in the FSM. Tbe output of astate is
either a decoded symbol or apointer to another state. A single bit can indicate
whether astate is a terminal node or not. The total number of states is one
less than the number of the nodes. If the processing delay for decoding one
bit is td seconds, then the maximum throughput of such an implementation is
t bits/so For a tree with n symbols, the average decoding time per codeword
will be lOg2n cycles.

254 CHAPTER 12

Figure 12.3 shows a block diagram of a Huffman decoder using a ROM-based
implementation of a FSM. The throughput of this architecture depends on the

.-- Source r---

00 Symbol
---c:> oo<ll

<ll(;j
- ::J <ll

-c'0l f---c. ROM
c.

'C<ll Termination
'5:;

<Ca:: OCO

Input Flag

bit-stream '---

Clear

Figure 12.3 Block diagram of a bit-serial Huffman decoder.

read cycle of the memory. Each ROM entry has two fields. The first field
is either the next state or a decoded symbol. The second, one-bit, field (or
termination flag) distinguishes between the two cases. The address of the
ROM consists of two fields: the present state and the current input bit. When
a codeword is decoded, the termination flag is 1, and it resets the input state
address to zero. As an example of such a ROM, Table 12.2 shows the ROM
entries for the decoding tree shown in Figure 12.1. In this example, a codeword
will be decoded in l0928 = 3 cycles on average.

For improved performance, the above implementation can be modified so that
the decodertraces multiple bits at a time. Figure 12.4 shows a modified version
of the decoding tree of Figure 12.1 that allows the input to be processed two
bits a time. On the average, a codeword will now be decoded in lO~28 = 1.5
cycles. Since the decoder processes two bits per cycle and not all codewords
have code-Iengths that are a multiple oftwo, the model of our FSM requires an
additional output field to indicate the number of bits decoded at each cycle. For
example, Table 12.3 shows the entries for a ROM-based FSM implementation
of the Huffman tree shown in Figure 12.4. In this example, the extra field
(Next Shift) requires only one bit that indicates whether one (Next Shift = 0)
or two bits were decoded. After a codeword is decoded, the input buffer is
shifted by either one or two bits, depending on the value of this field.

Hardware for Entropy Coding

Address Output
Node Input Next-Node/ Termination

Codeword Plag
0 0 5 0
0 1 1 0
1 0 6 0
1 1 2 0
2 0 e 1
2 1 3 0
3 0 f 1
3 1 4 0
4 0 g 1
4 1 h 1
5 0 a 1
5 I b I
6 0 c 1
6 1 d 1

Table 12.2 Example of ROM entries for bit-serial Huffman
decoding; input is one bit at a time.

12.3.2 Constant-Output-Rate Decoders

255

Constant-input-rate decoders are very simple; however, they don't provide a
fixed symbol decoding rate. Furthermore, when multiple bits are processed
at a time, the Huffman tree has to be reconfigured and an efficient mapping
of the decoding tree into memory is required. Lei and Sun proposed a PLA
based decoder implementation that decodes each codeword in a single cyc1e,
regardless of its length.

Figure 12.5 shows a block diagram of the Lei-Sun VLC decoder. Like the
VLC encoder of Figure 12.2, the decoder inc1udes a set of the VLC tables, a
barrel shifter, two data registers, and an adder. The upper register is 16-bits;
that is, as long as the assumed maximum code-Iength. This guarantees that
one codeword will be decoded in each cyc1e. Since a codeword can be spread
into two consecutive input segments, the decoder operates on two segments
at a time, stored in the upper and lower registers. The barrel shifter operates

256 CHAPTER 12

00
a

01
b

10 0
c i

@I ®,.
d

0
e

10
11

~O 9 CD~
® h

Figure 12.4 Example of a modified Huffman tree for decoding
two bits at a time.

Address Output
Node Input Next-Node/ Term. Next

Codeword Flag Shift
0 00 a 1 1
0 01 b 1 1
0 10 2 0 1
0 11 1 0 1
1 OX e 1 0
1 10 f 1 1 I

1 11 3 0 1
I

2 OX c 1 0
I

2 IX d 1 0
3 OX g 1 0
3 IX h 1 0

I

Table 12.3 Example of ROM entries for bit-serial Huffman
decoding; input is two bits at a time.

like a sliding window on the contents of the two registers. The amount of

Hardwarefor Entropy Coding

Codeword

Table

AND-Plane

VLC TABLES

Data Input

Load

Code-Iength
1-1 ----'

word Table I Table
Code-Iength

OR-Plane OR-Plane

Data Output

Carry-out

Figure 12.5 Block diagram of the Lei-Sun VLC decoder.

257

shift is controlled by the adder, wh ich accumulates the lengths of the decoded
codewords.

At each cycle, the output of the barrel shifter is matched, in parallel, with all the
entries in the PLA. This is analogous to the operation in a content-addressable
memory. When a match is found, the PLA outputs the corresponding source
symbol and the length of the decoded codeword, and the barrel shifter is
shifted to the beginning of the next codeword. When the adder overflows, this
indicates that the upper register has been fully decoded. The content of the
lower register is transferred into the upper register, the VLC encoder loads a
new 16-bit segment into the lower register, and operations continue.

Table 12.4 shows an example of the operation of the VLC decoder for the
same codebook and encoded sequence described before. In Table 12.4, the
output of the barrel shifter is shown underlined. Starting from the top, a search
for a match of the upper register with a codeword in the codebook yields a
match with "11110," wh ich corresponds to the source symbol g. The adder is
incremented by five, the window of the barrel shifter is shifted by five bits and
a new search yields a match with b. The procedure is repeated until the adder

258 CHAPTER 12

Upper Lower Sum Carry Output
Register Register Out

1111 00 100 1000 111 1011101111000111 5 0 g
1111001001000111 1011101111000111 7 0 b
1111001001000111 1011101111000111 9 0 a
1111001001000111 1011101111000111 12 0 c
1111001001000111 1011101111000111 14 0 b
1111001001000111 1011101111000111 2 1 f
1010101111000111 1110111110010000 6 0 d

Table 12.4 Example of operation of the VLC decoder.

overflows (after j). Then the content of the lower register is moved into the
upper register, and a new input is loaded into the lower register.

12.4 V ARIABLE-LENGTH CODING IN JPEG

A case of special interest is the variable-Iength coding of the DCT coefficients
in JPEG. In baseline JPEG, entropy coding is performed in two steps: (1) the
quantized DCT coefficients are converted into pairs of symbols, and (2) these
symbols are variable-Iength coded.

In the first step, after the run-Iength coder, each AC coefficient is represented
by two symbols:

symboll = (run-Iength, size)
symbol2 = (amplitude)

where size is the number of bits required to encode the amplitude of the
coefficient. Both run-length and size are four-bit numbers. The DC coefficients
are also represented by two symbols, but symbol! has only size information.
In the second step, symboll is encoded using a variable-Iength code from a
specified Huffman table and symbol2 is encoded with a variable length integer
(VLI). Both codes have variable length, but the VLIs are not Huffman codes

Hardware jor Entropy Coding 259

and cannot be changed. For example, an AC coefficient with a run-Iength of
I and amplitude -2 is represented by the pair of symbols (1,2) (-2). Using the
default Huffman tables, the corresponding VLC and VLI codes are (11011)
and (01). An important difference between the two codes is that the length of
the VLC is not known until it is decoded, but the length of a VLI is specified
in the size field of the preceding VLC.

Like encoding, VLC decoding in JPEG is a two-step process. First, symbol!
is decoded; the four least significant bits of the decoded symbol! specify the
number of bits used to encode symbol2. If the most significant bit (MSB)
of symbol2 is 1, then the amplitude is positive and the value of the extracted
codeword represents the actual value of a DCT coefficient. If the MSB of
symbol2 is 0, then the amplitude is negative, and its magnitude of the DCT
coefficient is given by the one's complement of the extracted codeword. For
example, if symbol2 = 101, then amplitude = 5. If symbol2 = 011, then
amplitude = -4.

Figure 12.6 shows a modified version of the Lei-Sun decoder for VLC
decoding in JPEG. The front end is the same as before, and the VLC tables
store the codewords and their corresponding run-Iength, scale, and code-Iength
information. Additional circuitry uses the output scale value to extract the
VLI code from the barrel shifter. The MSB of the VLI code is used to select
between the inverted and non-inverted VLI values. In parallel, the scale value
is added to the code-length so that the barrel-shifter is shifted to the beginning
of the next VLC code.

12.5 TO PROBE FURTHER

A key problem in the design of any variable-Iength coder is how to map
efficiently a coding tree into memory. In [139], Mukherjee et al. present such
a mapping algorithm and describe its implementation in MARVLE, a single
chip VLC coder. MARVLE has a 512 x 12 RAM, a comparator, an adder, and
data and control registers. For eight-bit ascii data and at 83.3 MHz, it yields a
95.2 Mbits/s compression rate and a 60.6 Mbits/s decompression rate. This is
under the assumption of a two to one data compression ratio.

260 CHAPTER 12

Data Input

Load

Carry-out

VLC TABLES

code-Iength

scale

run-Iength amplitude sign

Figure 12.6 A modified Lei-Sun VLC decoder for JPEG.

Efficient mapping techniques and architectures are also described by Park and
Prasanna [154] and Hashemian [70]. Park and Prasanna continue to use a
single-bit decoder, but their implementation requires less memory. Hashernian
applies his mapping algorithm to the design of a decoder that can process four
bits at a time. Recently, Ooi et a1. [149] presented a mapping scheme and an
IC for the VLC decoding of MPEG-1 streams. Their architecture processes
three bits at a time and DCT coefficients can be decoded in four cyc1es or less.
This IC is part of a three-chip set MPEG-1 codec from NEC [183]. At 27
MHz, it can process 162 Mbits/s.

The Lei and Sun architectures are described in [117]. The same designs are
also used by Fujiwara et a1. [49] in a chip-set for H.261, and by Yang
et a1. [199] in a multistandard VLC decoder IC with special hardware for
JPEG VLC decoding. In [27], Chang and Messerschmitt describe parallel

Hardware for Entropy Coding 261

implementations of tree-based and PLA-based designs for VLC decoders.
They also propose various PLA design optimization techniques and show how
the Lei-Sun decoder can be modified to decode multiple codewords per cycle.

13
IMPLEMENTATION OF JPEG

PROCESSORS

13.1 INTRODUCTION

Among the image compression standards, the baseline JPEG is the easiest to
implement in hardware. The first single-chip JPEG processor was introduced
by C-Cube Microsystems in 1990. JPEG processors can be found now
in a variety of image and video processing systems, such as video editing
equipment and digital cameras.

Figure 13.1 shows the block diagram of a typical JPEG implementation. The
core of the design implements the baseline IPEG using a DCT unit, the
quantizer, and the entropy coder. Up to four DCT quantization tables and
four Huffman tables can be stored in local memory. In addition to the core
processor, a IPEG IC inc1udes memory and host interface units and local
buffers for pipelined processing and IIO. Depending on the target applications,
a JPEG processor mayaIso inc1ude a color converter, a subsampier, and a level
shifter. The processor supports a bidirectional data and processing pipeline for
both compression and decompression.

The implementation details for DCT processors and entropy coders have
already been covered in Chapter 10 and Chapter 12. In the next two sections
we will discuss a few of the design issues for data IIO and color conversion.
We will conc1ude this chapter with a short description of the commercially
available JPEG processors from C-Cube Microsystems, LSI Logic, and Zoran.

264 CHAPTER 13

Additional features baseline JPEG

sub-

sampier

Gi WL~I-

W
Gi

= = :l :l
ro shifter ro
'5 S
a. a.
E Color '5

0
converter

Figure 13.1 Block diagram of a typical single-chip JPEG pro­
cessor.

13.2 DATA 110 AND MEMORY INTERFACE

From Figure 13.1, a typical JPEG processor supports at least two data buses,
one for the uncompressed data stream and one for the compressed data stream.
In many designs, an additional data/control bus may be used for interfacing
and control with a local host.

Processing is usually performed on minimum coded units (MCVs). An MCV
can be either an 8 x 8 block for grayscale images or a set of interleaved 8
x 8 blocks for color images. For example, for 4:2:0 YCbCr data, an MCV
consists of two blocks of Y, one block of Cb, and one block of Cr. An MCV
can contain up to ten 8 x 8 blocks made up from up to four components. For
compression, the input buffer needs to store at least one MCV. For improved
performance, most designs use double (or ping-pong) buffering. This allows
one buffer to be loaded with new data while the data in the other buffer is
processed by the JPEG unit. Since the output of the Huffman encoder has a
variable rate, an output buffer is also needed to smooth the compressed data
flow. The size of the output buffer depends on the worst-case compression
ratio and the response time of the extemal memory.

Implementation of lPEG Processors 265

In most applications pixels are stored in a raster-scan format, however, JPEG
processes the data in 8 x 8 blocks. The raster to block conversion can be
performed either by the host processor, an external dedicated unit or by the
on-chip memory interface unit, using a special address generator. During
decompression, the data has to be reformatted again from 8 x 8 blocks into a
raster-scan format.

13.3 COLOR CONVERSION

The JPEG standard makes no assumptions about the color representation of
the input data. Color planes are treated as independent components and each
component is processed separately. Video sequences are usually stored in
YCbCr format, but color still-images are usually scanned and stored in RGB
format. Since the human visual system is more sensitive to the luminance
rather than the chrominance component of an image, better compression is
achieved if the image is first translated to a different color space, like YCbCr.
Color translation requires the multiplication of the original data with a 3 x 3
color transformation matrix. For example, given three RGB values R, G, and
B, the RGB to YCbCr conversion is given by

[Y] [0.299 0.587 0.114] [R]
Cb = -0.169 -0.331 0.500 G.
Cr 0.500 -0.419 -0.081 B

(13.1)

Using a parallel multiply-accumulate unit, color transformation can be com­
pleted in nine cycles per pixel. Figure 13.2 shows an alternative implementation
using a barrel shifter and four adders. All operations in (13.1) are executed
using shifts and additions. For example, 0.299 can be approximated by the
sum 2-2 + 2-5 + 2-6 + 2-8 . Hence, 0.299R can be approximated by the sum
R(2)+ R(5)+ R(6)+ R(8), where R(n) denotes a right shift of R by n bits.
Following the same procedure, Y can be obtained from

Y = R(2) + R(5) + R(6) + R(8) +
G(l) + G(4) + G(6) + G(7) +
B(4) + B(5) + B(6) + B(8).

(13.2)

266

Input

Ci> :::
1:
CI)

~
~

latch

laIch

o

latch

CHAPTER 13

latch

Figure 13.2 Block diagram of an adder-based color converter.

Data are loaded from the barrel shifter foUf at a time. [R(2), R(5) , R(6), R(8)] in
the first cyc1e, [G(l), G(4), G(6), G(7)] in the second cycle, etc. A Y value will
be available after three cyc1es. Using pipelining, a color transformation can
also be completed in nine cyc1es per pixel. The same circuitry can also be used
for the reverse color transformation; that is, from YCbCr to RGB. For the same
performance, the above implementation requires less hardware than a parallel
multiplier-accumulator, but more complex control. Furthermore, a change in
the color transformation matrix will require changes in the microcode that
controls the barrel shifter.

13.4 COMMERCIALLY A V AILABLE JPEG
PROCESSORS

13.4.1 ICs from C-Cube Microsystems

C-Cube offers two JPEG processors: the CL550 and the CL560. The CL550
is designed for PC multimedia and still-image based systems. 1t runs at 30 or

Implementation of JPEG Processors 267

35 MHz and can sustain a 2 Mbyte/s compressed data rate. CIF images can
be compressed or decompressed in real time (30 fields/s). The chip has an
on-chip raster to block converter and can also perform color conversion with
a user defined 3 x 3 transformation matrix. It supports eight-bit grayscale,
RGB, YVV, or CMYK and 4:4:4:4 input and output.

The CL560 is a superset of the CL550 and is designed for video applications.
It has an improved Huffman coder that allows codewords to be encoded and
decoded in a single cycle regardless of their length. The CL560 can sustain
a 60 Mbytes/s compressed data rate and can compress and decompress CCIR
601 frames in real time. It has a improved interrupt control and can support an
external DMA processor.

13.4.2 ICs from LSI Logic

LSl Logic offers two IPEG processors: the L64745 and the L64702. The low­
cost L64745 requires an external DCT processor, the L64735, and an extern al
color and raster to block converter, the L64765. The L64745 can perform both
lossy and lossless compression and decompression. At a clock rate of 20 to 30
MHz it can process data at full-motion video rates (27 Mbytes/s). It contains
two AC and two DC code tables and four quantization tables, and it can be
used to generate event statistics for the creation of custom Huffman tables.

The L64702 is a single-chip IPEG processor and very similar to the CL560.
Like the CL560, it can perform format conversion (that is, raster to block)
and color conversion. Subsamp1ing mayaIso be user programmable. During
compression, the processor buffers image data in one of two MCV buffers that
operate in ping-pong fashion. Each buffer is 256 bytes deep. The output buffer
is 32 x 16 bits. The processor provides direct support for VRAM and DRAM
and an asynchronous system interface that gives it the capability to operate
either as a slave device to an extern al host or as a peripheral device with an
external DMA.

At 33 MHz, the L64702 can process up to 8.25 Mpixels/s for component
sequential (CMYK) or 4.125 Mpixels/s for 2:1:1 RGB and 2.75 Mpixels/s for
1: 1: 1 RGB. For designs based on the L64702, LSl Logic provides the CW702
core in the CoreWare celllibrary. This is a reduced version of the L64702.

268 CHAPTER 13

Designers can use the core with other libraries to design JPEG related ICs,
customized for a particular application.

13.4.3 ICs from Zoran

Zoran offers two JPEG processors: the ZR36040 and the ZR36050. The
ZR36040 is a DCT based coder/decoder and requires an external DCT
processor (the ZR36020) and an external controller (the ZR36045). It fully
supports JPEG markers and can process CCIR 601 frames in real time. Data
processing rates can range from 15 to 21 Mbytes/s.

The ZR36050 is a superset of the ZR36040 and is a single-chip JPEG encoder
and decoder. It is one of the few processors that supports lossless JPEG using
one dimensional differential prediction followed by variable-Iength encoding.
It supports data rates of 21 to 27 Mpixels/s and like the LSI IC it has a
slave/DMA bus interface. Unlike the ICs from C-Cube and LSI Logic, the
Zoran processors requires an external raster to block converter and an external
color converter. However, they are the only JPEG processors that allow for
bit-rate control and fast preview (thumbnail images).

Bit-rate control is very useful for systems that due to constraints in memory
sizes require predictable file sizes (i.e., a digital camera). Bit-rate control
mayaiso be required in networking applications where the time allocated
to transmit a compressed image is fixed. Under bit-rate control, the Zoran
ICs perform two computational passes. In the first pass, they collect image
statistics and update the quantization tables. In the second pass, the image is
compressed based on the size constraints and the statistics that were collected
from the first pass.

The Zoran ICs also allow for fast image preview. By decoding only the DC
coefficient in each block, they can generate a thumbnail image, 614 the size of
the original. Generation of thumbnail images can be up to 25 times faster than
full image decompression. This feature can be very useful when previewing
files in an image data base.

Table 13.1 summarizes the key features of the commercially available single­
chip JPEG processors.

Implementation of lPEG Processors

Processor Clock Bit Rate Key Features
(MHz) (Mbytes/s)

CL550 33-35 10.00 CIF at 30 fps, 2 Mbytes/s
sustained output compressed
rate, raster to block and color
conversion.

CL560 33 16.50 CCIR 601 at 30 fps.
66 Mbytes/s sustained output
compressed rate, raster
to block and color conversion.

L64702 33 8.25 SIF at 30 fps, raster to block
and color conversion.

ZR36050 21-27 21-27 CCIR 601 at 30 fps, bit rate
control, lossy and lossless
JPEG, fast preview.

-

Table 13.1 Key features of commercially available single-chip
JPEG processors.

13.5 TO PROBE FURTHER

269

Ogawa et al. [145] provide an excellent report on the implementation of a
single-chip JPEG processor from Sanyo Electric. The authors provide many
details on JPEG marker code processing, the host interface, color conversion
(their design was described in detail in section 30fthis chapter), and core JPEG
processing. In the Sanyo processor, the DCT is computed using row-colurnn
transformations and two 14-bit parallel multipliers.

Another single-chip JPEG codec is described by Chen et al. [31]. In
this implementation, the DCT is computed using distributed arithmetic and
quantization is performed using a parallel multiplier and lookup-tables. A
similar implementation for the DCT and the quantizer is also described by
Bolton et al. [22] for a JPEG processor from SGS-Thomson.

For the commercially available processors, most of the information in this
chapter was taken from their corresponding data books. For the CL550,
additional implementation details are described in [161] and a full description

270 CHAPTER 13

is given in [15]. The JPEG chip-set from LSI Logic is also described in [13].
The Zoran bit-rate control algorithm is presented in [170]. Another JPEG
chip-set with bit-rate control capabilities was also developed by Nakagawa et
al. [143] from Toshiba Corporation. The four-chip set (an encoder, a decoder,
a memory controller, and a card controller) was developed for a digital camera.
Like the Zoran processor, the authors use a two-pass approach to determine
the scaling factors for the quantization tables.

14
INTEGRATED CIRCUITS

FOR VIDEO CODERS

14.1 INTRODUCTION

Oue the computational requirements of the video standards (H.261 and MPEG),
early hardware implementations were multichip designs, where each major
component such as the OCT processor and the variable-length coder was a
separate chip. For example, in 1992, NEC introduced a three-chip set for
MPEG-l video encoding and decoding. The three ICs were an interframe coder
(required only for video encoding), a transform and quantization processor,
and a variab1e-length coder. Operating at 27 MHz, the chip set could process
SIF resolution frames at 30 frames/s.

In recent years, advances in circuit integration allow single-chip implemen­
tations of video coders. Recent hardware implementations of the video
compression standards fall into two main design categories: video signal pro­
cessors or dedicated coders. Video signal processor designs are programmable
processors with a OSP or RISC core and coprocessing units for compute
intensive operations, such as motion estimation. Oedicated coder implemen­
tations are video encoders or decoders that are hardwired for the data flow of
a specific standard.

Programmable processors offer the highest flexibility in code design and
implementation; however, for equivalent levels of performance, they require
larger silicon area and dissipate more power than dedicated processors.
Programmable processors also incur significant costs in software developments
tools and system integration. In the remainder of this chapter we examine in

272 CHAPTER 14

some detail various programmable and nonprogrammable video coders, and
we present the key features of some of the commercially available processors.

14.2 VIDEO SIGNAL PROCESSORS

Programmable video signal processors are extensions of general-purpose
digital signal processors (DSPs). They include either a RISC or DSP core
for general purpose processing and control and dedicated coprocessing units
for the efficient implementation of the DCT, motion estimation, and variable­
length coding. The implementation of the DCT, motion estimation, and
entropy coding has already been covered in Chapters 10 to 12. In this section,
we present a system-level design of various video codecs, along with their key
design and performance characteristics.

14.2.1 VSP3

The design of the third-generation video signal processor (VSP3) from NEC
is typical of video codecs with an enhanced DSP core. Figure 14.1 shows a
block diagram ofthe VSP3 processor. This is a 300-MHz, 1500 MOPS, 16-bit
processor for H.261 video teleconferencing. It includes two subprocessors: the
pipelined arithmetic unit (PAU) and the pipelined convolver unit (PCU). The
PAU includes an accumulator, an ALU, and a min-max value-detector unit.
The PCU includes a register file (REG. F), a convolver (CONV), an adder, and
a limiter (LMT). The convolver is a parallel 16 x 16-bit multiply-accumulate
unit. Intemally, it uses redundant binary arithmetic (that is, it uses the digit
set [-I, 0, 1]) to reduce the delay in the critical path to only 25 gates. (A
conventional binary multiply-accumulate unit would have a critical path delay
of 60 gates.) For improved performance, both the PAU and the PCU use
variable pipelining (six-stage and seven-stage respectively).

Operations for the H.261 standard are divided between these two units
as follows. The PCU performs data conversions, the DCT and IDCT,
loop filtering, and quantization. The PAU performs interframe processing
(differences and additions) and motion vector estimation for which it uses the
min-max unit. VSP3 has four single-port data memories (RAM-A, RAM-B,
RAM-F, and FIFO) and three dual-port data memories (RAM-C, RAM-D,

lntegrated Circuits for Video Coders 273

DATAIN DATAIN

G·BUS

Figure 14.1 Block d4tgram of the VSP3 processor from NEC.

and RAM-E), for a total of 114 Kbits of data SRAM and 32 Kbits for
instruction RAM. Bach memory has its own address-generation unit (AGU).
The processor also has a sequence-control unit, a host interface unit with
20-bit I10 ports, and a timing control unit that generates internal clocks at two
to 16 times the extern al clock frequency. VSP3 has two 20-bit address output
ports, two 16-bit input data ports, and one 16-bit output data port. VSP3 was
fabricated in 0.5 f..Lm BiCMOS and has approximately 1.2 million transistors.

14.2.2 VDSP2

VDSP2 is a second-generation video signal processor from Matsushita Electric.
Figure 14.2 shows a block diagram of the VDSP2 processor. VDSP2 was
designed for MPEG-1 and MPEG-2 (Main profile at Main level) encoding
and decoding applications. From a programmer' s point of view, processing of
data is performed on pipelined macroblocks (16 x 16). Inside the processor,

274 CHAPTER 14

Macro-Block Input DRAM Video Out

Figure 14.2 Block diagram ofMatsushita's VDSP2 processor.

processing is done using a SIMD configuration at the block (8 x 8) level. From
Figure 14.2, the SIMD array has four DSP processors (VPUO-3), controlled by
a DSP-core controller. The DSP-core controller ineludes instruction and data
RAM, a register file, an ALU, a barrel shifter, and a 16 x 16-bit multiplier.
Each of the VPU processors has an enhanced ALU, a 24-bit adder, a 16 x
16-bit multiplier, and five memories (SBM, RBM, DBM, WBM, and CBM)
comprising elose to 23 Kbits of RAM per VPU processor. In addition to the
SIMD array, VDSP2 has special circuitry for DCTIIDCT and variable-Iength
coding/decoding. The DCTIIDCT unit is designed using distributed arithmetic.

For MPEG-2 encoding, one needs two VDSP2 ICs and an extemal motion
estimator. MPEG-2 decoding requires only one VDSP2. The VDSP2 was

lntegrated Circuits for Video Coders 275

fabricated using 0.5 J.Lm CMOS. It has approximately 2.5 million transistors
and runs at 100 MHz. It supports a maximum bit-rate of 497 Mbits/s.

14.2.3 VideoRISC

The VideoRISC processor (VRP or CL4000) is a 32-bit RISC-based processor
from C-Cube Microsystems and is used in a variety of video encoding and
decoding products. Figure 14.3 shows a block diagram of the VideoRISC
processor. The heart of the processor is a 32-bit RISC processor with 4 Kbytes

AISC Core

Video 1/0 Host 1/0 DMA 1/0

DAAM

Video In Host Bus

Figure 14.3 Block diagram of C-Cube' s VideoRISC processor.

of instruction cache and 4 Kbytes of data cache. The videoRISC processor also
has a variable-Iength coder and decoder (VLC) and a motion estimator. There
is no special DCT processor; however, special instructions in the RISC core
allow efficient implementation of the DCT and other video-related operations.

The motion estimation unit has 16 subprocessors in a 4 x 4 array, and the
specific motion estimation algorithm is programmable by the user. The chip
has also video and host interfaces, 2 Mbytes of local DRAM, and a seven­
channe1 DMA controller. For MPEG-l SIF quality video, two processors are

276 CHAPTER 14

required. For MPEG-2 (in the Main profile at the Main level), eight (NTSC)
to 10 (PAL) processors are required. In multiprocessing applications, each
video frame is divided into horizontal stripes, and each stripe is processed in
a different processor. C-Cube provides a software development environment
and multiprocessor boards to assist developers in testing and development of
video processing systems.

The VideoRISC processor runs at 60 MHz and has 1.2 million transistors. C­
Cube recently announced a newer version of the VRP, the VRP2 or CL41 00. It
has the same architecture but improved circuitry for variable-Iength encoding
and decoding of MPEG-2 data streams. A single CL4100 can perform MPEG-
1 encoding or decoding with downloadable code. For real-time MPEG-2
encoding, C-Cube offers the CLM47xx family of products. These are parallel
designs with eight to 13 C-Cube VRP2 processors.

14.2.4 VCP

Figure 14.4 shows a block diagram of the VCP processor from Integrated
Information Technology (IIT). Like the C-Cube processor, the VCP processor

~ Huffman Codec

Bus Bypass

H.261 BCH

H.221 Assisl

SRAM OMA

ORAM OMA

Figure 14.4 Block diagram of the VCP processor from IIT.

has a RISC-like core (32 bits) and is fully user programmable. The processor
has two main buses: (1) the SRAM bus, which handles instructions and data

Integrated Circuits tor Video Coders 277

for the RISC processor, and (2) the ORAM bus, wh ich handles uncompressed
data or intermediate data. The two buses typically communicate via the
Huffman coding-decoding unit; however, a special bus-interface unit allows
direct communication too.

Oata traffic is controlled by two OMA controllers under the supervision of
the RISC core. The SRAM OMA is a ten-channel OMA controller, and the
ORAM OMA is a five-channel OMA controller. The VCP has separate audio,
host, ORAM, and video input and output buses with dedicated bus controllers.
Audio is processed externally (via aseparate OSP); however, the audio bus
allows the mixing (or separation) of video and audio streams.

The VCP is a superset of an earlier chip set from IIT: the Vision processor
(VP) and the Vision controller (VC). The VCP has no instruction cache, but
it has a full 32-bit interface to external SRAM and on-chip boot ROM. The
H.261 and H.221 assist units allow for frame alignment and bit handling in
video conferencing applications. The core math processing of the VCP is
performed in the VP+ processing unit.

The VP+ has functionality similar to that of the earlier VP processor. Figure
14.5 shows a block diagram of the VP processing core. Even though the VCP
has no special circuitry for the OCT and motion estimation, the VP+ core
(Figure 14.5) inc1udes enough processing power to efficiently handle both of
these operations. An array of 16 eight-bit ALUs (which can also be configured
as eight 16-bit ALUs) together with the tree adder can be used for motion
estimation. Oirect access to two memories allows one of them to be used for
the reference block and one for the search window.

The VP+ core also inc1udes an array of four parallel 16 x 16-bit multipliers
(MAC array) , a register file, and a transposition unit. As we have seen in
Chapter 10, the MAC array in combination with the transposition unit is ideally
suited for computing the OCT. The VP+ can be programmed to do a variety
of operations, inc1uding filtering, color conversion, and frame scaling.

The VCP runs at either 66 MHz or 80 MHz. A single 66-MHz VCP can
perform MPEG-l video encoding (SIF at 30 fps), or implement an H.261
codec (CIF/QCIF at 30 fps). An 80-MHz VCP can perform real-time MPEG-2
decoding (CCIR 601 at 60 fields/s).

278

Memory-A

Register File

64 x 64-bit
Q)
U>

Memory-B

8. OE
~ ::>
~
I-

168-bit

ALU Array
I

Accu"mulator

MAC Array

CHAPTER 14

Figure 14.5 Block diagram of the core processor in the VP IC
fromIIT.

14.2.5 The VideoFlow Chip set

The VideoFlow chip set from Array MiCrosystems is the only data-driven
architecture. Unlike traditional processors, which are controlled based on
the instructions fetched by a program counter, in the VideoFlow architec­
ture program instructions are executed based on a processing data-flow and
operand availability. The chip set has two processors; the image compression
coprocessor (lCC) and the motion estimation coprocessor (MEC). The chip
set requires an extern al (user-defined) control processor for Huffman encod­
ing/decoding and bit-stream management. Array Microsystems provides a
graphical user interface for its data-flow programming tools. This allows ease
of programming without a need to interact with the internal architecture.

Figure 14.6 shows a block diagram of the ICC processor. The core ofthe ICC (or
a77100) is the data-flow control unit. This unit passes control and data tokens
to the other subprocessors, which operate in parallel. Special function units are
used for arithmetic operations, run-length coding, DCTIIDCT, quantization,
and memory interfacing. All instructions are vector-type. Communication
among units is done via control and data tokens. A data token has a header

Integrated Circuits for Video Coders

DATA FLOW CONTROL UNIT

X-Bus

V-Bus
<J-

Video

Interface

Unit

Token
Interface

Uni!

Run·length
Uni!

DCT&
Quantization

Units

Host
Interface

Host

Unij I Bus
-..

Arithmetic

Pprocessor

Figure 14.6 Block diagram of the VideoFlow image compression
processor from Array Mlcrosystems.

279

and can inc1ude up to four 8 x 8 data blocks. The architecture supports
user-defined instroctions for external assist units (like the MEC IC) and can
be customized by adding or removing subprocessor units .

From Figure 14.6, the ICC has three external data buses. In a typical system,
it uses the V-bus to connect to either DRAM or VRAM, the X-bus to connect
to the motion estimation chip, and the host bus to communicate with the host
processor and additional memory.

The MEC companion IC (a77300) has a 12-bit CPU with its own register
file (32 x 12-bit) and barrel shifter. In addition, it inc1udes token and video
buffers. The MEC allows two levels of hierarchical motion estimation for pel
and quarter-pel precision.

Both ICs ron at 50 MHz. For H.261, the videflow chip set allows in real time
one ClF encode and two ClF decodes or one QClF encode and seven QClF
decodes. For MPEG, it can perform one SlF encode or one CCIR 601 decode
or two SlF decodes. The ICC executes 1 GOPS with 1.8 million transistors.
The MEC uses 1 million transistors for 7 GOPS.

280 CHAPTER 14

14.2.6 The Multimedia Video Processor

The Multimedia Video Processor (MVP) or TMS320C80 is the latest entry
from Texas Instruments in the DSP market. Unlike other video processors,
the MVP was not designed specifically for the implementation of the video
standards. For example, it does not have any special function units for the
DCT, motion estimation, or Huffman coding. It is a single-chip parallel
processor that can be used in a variety of applications in graphics, signal, and
video processing.

Fig 14.7 shows a block diagram of the MVP. It includes a master processor

DSP1 DSP2 DSP3 DSP4

LG I LG I LG I LG I
I I I I I I I I I I I I

I
I I I I

GLOBAL CROSSBAR

I I I I

D-RAM D-RAM D-RAM D-RAM
and and and and

I-Cache I-Cache I-Cache I-Cache

RISC
Core

MP

D I

I

~
I

MP's

Datal

I-Cache

Video <I- --<>
Control <I- --<>

dl Qj

~ e
tU -~ c r- 0

U

~
:;)

ä.

~
'" Ci

'" Ci

~
o
E
Q)

::i:

Figure 14.7 Block diagram of the MVP from Texas Instruments.

(MP) with a 100-MFLOP IEEE floating-point unit, four parallel digital signal
processors (DSPI-DSP4), a transfer controller for data transfers and memory
control, local memory, and two video controllers for data capture and display.
MP is a general-purpose RISC processor with an internal floating-point unit.
It uses a 32-bit instruction word and can load or store eight-bit to 64-bit data
sizes. It has a 4 Kbyte instruction cache and a 4 Kbyte data cache. The MP
can be used for control, floating-point operations, audio processing, or 3D
graphics transformations.

Integrated Circuits for Video Coders 281

Each DSP unit performs all the typical operations of a general-purpose DSP
and can also perform bit-field and multiple-pixel manipulations. Internally,
it has a splittable (one 16 x 16 or two 8 x 8) multiplier and ALU, 44 local
registers, a barrel shifter, two address generators, and a program-flow control
unit, all controlled by very long 64-bit instruction words. Each DSP has three
parallel data ports for local data, global data, and instructions (L, G, and I).
Aglobai cross bar switch allows data transfers among the DSP processors and
the RISC core. All processors share 50 Kbytes of SRAM that is divided into
data RAM and instruction caches.

The transfer controller manages the hardware interface between the on­
chip and the off-chip memories. The two frame-buffer controllers support
programmable video timing to control both display and capture.

At 50 MHz, the MVP executes more than 2 GOPS. It is fabricated in 0.5
J.Lm CMOS and inc1udes more than 4 million transistors. A single MVP can
perform real-time MPEG-l encoding or decoding (SIF resolution). Since the
MVP has an architecture very similar to that of the VDSP2 and no special
hardware for motion estimation, we estimate that multiple MVPs are needed
for real-time MPEG-2 encoding.

In summary, programmable video processors now allow real-time H.261 or
MPEG encoding. However, for MPEG-2 encoding no single-chip solutions are
presently available. Programmable processors integrate more than 1.2 million
transistors and can execute 1-2.5 billion operations per second. (In comparison,
a general purpose 64-bit RISC processor has more than 3 million transistors.)
Table 14.1 shows the key features of the programmable video processors we
described in this section. Except for the VSP3 and the VDSP2, all other
processors are commercially available. All processors can be programmed to
implement any of the image and video compression standards. The colurnn on
key features describes only real-time performance. In colurnn four, MPEG-l
and MPEG-2 refer to processing of 30 fps video at SIF or CCIR 601 resolution,
respectively.

282 CHAPTER 14

Processor Clock GOPS Key Features
(MHz)

VSP3 300 1.5 H.261 coder.
VDSP2 100 MPEG-2 coder. Encoder

requires two ICs and ex-
ternal motion estimator.

VideoRISC 60 2.5 Two ICs for MPEG-l
and 8-10 ICs for MPEG-2
encoding.

VideoRISC-2 MPEG-I coder.
VCP 80 MPEG-l coder or MPEG-

2 decoder.
VideoFlow 50 1.0 MPEG-l encoder requires

external motion estima-
tor and Huffman coder.
MPEG-2 decoder.

MVP 50 2.0 MPEG-l coder, MPEG-2
decoder.

Table 14.1 Key features of programmable video signal proces­
sors.

14.3 DEDICATED CODERS

Dedicated coders provide limited, if any, programmability and have a dedicated
architecture or controllogic for a specific video encoding or decoding standard.
There is an expectation that applications using video compression (such as set­
top boxes for interactive TV, high-definition TV, digital cameras and VCRs,
and desk-top video teleconferencing) will see a huge growth in the next few
years. As a consequence, there is a proliferation of announcements of products
and partnerships related to video compression and decompression. Table
14.2 shows a representative list of commercially available video processing
ICs and their key features. In addition to these processors, related product
announcements have been made by Texas Instruments, Zoran, and others.
For example, CompCore Multimedia has announced that it is developing an
MPEG-l/2 megacell core that IC developers can integrate into video related

lntegrated Circuits for Video Coders 283

products. Japanese companies like Toshiba and NEC are also developing new
generations of video coders.

Company Part No. Key Features
AT&T AV4310 H.261, MPEG-1 (no B frames)

encoder (CIF 30 fps).
AV4220A H.261 decoder.
AV4120A Controller.
AV6101 MPEG-2 decoder (no B frames),

30 Mbits/s.
AV6110 MPEG-2 decoder, 50 Mbits/s.

C-Cube CL450 MPEG-1 decoder (SIF).
CL480VCD MPEG-1 audio and

video decoder.
CL9100 MPEG-2 decoder.

IBM IBM39- MPEG-2 decoder ((15 Mbits/s). !

MPEGSD1
LSI Logic L64112 MPEG-1 decoder.

L64000 MPEG-2 decoder,
set-top box support.

L64002 MPEG-2 video and audio
decoder.

SGS-Thomson STi3400 H.261, MPEG-l decoder.
STi3500 MPEG-2 decoder.

Table 14.2 Key features of commercially available dedicated
video processors.

From Table 14.2, with the exception of the A V 4310 H.261 encoder from
AT&T, all other ICs are video decoders. This is not surprising, since real-time
video decoders are easier to implement (they don't require motion estimation)
and will be in higher demand than real-time video encoders. Figure 14.8 shows
a block diagram of a typical video decoder. In addition to the MPEGIH.261
decompression core, it also inc1udes a memory controller for glueless interface
to external data RAM, input and output buffers (FIFOs), input and output
buses, and a display controller. The display controller performs operations
like color conversion (YCbCr to RGB), vertical and horizontal filtering, and

284

Video

Input

Header

DRAM

P-Frames

B-Frames

Huffman

Reconstructed
Frame

CHAPTER 14

Inverse

Figure 14.8 Block diagram of a typical video decoder Ie.

frame rate conversion (NTSC, PAL, and film). Note that until recently,
audio decompression required aseparate processor. However, the CU80VCD
from C-Cube and the L64002 from LSI Logic integrate both video and audio
decoding in a single IC.

Among the processors listed in Table 14.2, the design of the video encoder
from AT &T is of particular interest. The A VP Video Codec chip set
from AT &T was designed for the implementation of low-cost audiovisual
te1econferencing systems that comply with the ITU-T H.320 (Px64) standard.
The three ICs are the A V 4310 video encoder, the A V 4220 video decoder,
and the AV4120A video controller. Both the encoder and the decoder include
programmable and nonprogrammable subunits and thus can be considered
hybrids of programmable processors and dedicated processors.

Fig 14.9 shows a block diagram ofthe encoder. This is a 10.5 GOPS processor
with five main processing units: the memory management processor, the
quantization processor, the DCTIIDCT processor, the entropy coder (VLC),
and the motion estimator. In addition, there is a main controller and video and
host-CPU interface units.

Integrated Circuits for Video Coders 285

q

B~ Memory Quantization DCT,IOCT Out

Management P"""~~ Pro,",ooc VLC 2
Unit

< Buses: System Data, Address, InterNpt > <l-

RAM

r---

Control Motion
Video Bus Host Out

Processor Estimator
Interface i<'- Bus IIF FIFO

FIFOs 2
'-----

VIDEO BUS SERIAL HOST 1/0

Figure 14.9 Block diagram ofthe AT&T video encoder,

The memory management and algorithm flow control unit includes a 16-bit
processor with an ALU and three multipliers, two 128 x 16 register arrays and
DRAM interface. The three multipliers are used for color conversion with a
user programmable 3 x 3 matrix. This unit deli vers data to and from the rest
of the processor and controls all DMA operations. The quantization processor
implements user-defined algorithms to determine the quantization step to be
used in the encoding process for each macroblock. This is a 16-bit processor
with an ALU, a multiplier, a 512 x 16 cache, and a 144 x 16 register array.

The DCT processor performs the DCT, quantization, zig-zag scan, inverse
quantization, and inverse DCT. This is a SIMD (single-instruction multiple­
data) array of six 16-bit processors, each with an ALU, multiplier-accumulator,
dual memories (for coefficients and data), local registers, and data cache. The
motion estimator is a dedicated array processor of 256 elements, 15 delay
lines, and a 1280 x 16 cache. For motion estimation, the full-search algorithm
with the MAE match criterion described in Chapter 4 is used. Finally, the
variable-length coder (VLC) includes a 16-bit ALU, a register array, 128 x 16
RAM, and alK ROM.

286 CHAPTER 14

The processor runs at 45 MHz and has 1.63 million transistors. It can encode
H.261 ClF resolution frames in real time or MPEG-l (at ClF resolution)
without any B frames. The companion decoder chip includes many of
the functional units of the encoder (e.g., the color converter, and the DCT
processor). It can support a 4 Mbits/s compressed input rate, and thus it
can decode CIF frames in real time. These two ICs are controlled by the
system controller, which also multiplexes and demultiplexes video streams
and performs error correction.

14.4 TO PROBE FURTHER

Digital video processors have evolved from simple extensions of digital
signal processors to powerful multiprocessing architectures. For example,
Enomoto and Yamashina [45] describe the evolution ofthe NEC video signal
processors: from the 14.5-MHz P-VSP, introduced in 1987, to the 300-MHz
VSP3, introduced in 1993 [80]. Aseparate MPEG chip set from NEC is
described by Tamitani et al. [183].

The VDSP processor from Matsushita [9] was among the first video pro­
cessors with an on-chip DCT unit and an extended instruction set for video
compression and decompression. The VDSP2, a second-generation processor
from Matsushita, is described in [186] and [4].

For commercially available processors, most of the information in this chapter
is based on data sheets and product catalogs. Trade magazines, like EDN,
Computer Design, and Electronic Design [24] also provide timely overviews
and performance characteristics. Descriptions of the Vision processor and
Vision controller from IIT can also be found in [14]. In [65], Guttag
et al. describe the design philosophy and implementation details for TI' s
MVP processor. Performance characteristics of the MVP in areal imaging
and graphics system (the UWGSP from the University of Washington) are
presented by Kim et al. [101]. In [2], Ackland provides a general description
of the A VP chip set. Additional implementation details for the encoder and
the decoder can be found in [167] and [23]. IBM's MPEG-2 video decoder
is described in [181]. An MPEG-l audio and video decoder IC from C-Cube
and JVC is described in [53]. The chip integrates 305,000 logic transistors and

Integrated Circuits tor Video Coders 287

485,000 memory transistors. At 40 MHz, it can decode two channels of 48
kHz audio and one SIF video stream at 30 fps.

Recently, SGS-Thomson presented a single-chip H.261 codec [69] suitable
for the implementation of video telephone terminals. The chip encodes and
decodes simultaneously 15 QCIF frames per second and can also encode and
decode still CIF images. The chip integrates 573,000 transistors in a 1.56cm2

area. Arecent survey paper by Pirsch et al. [160] presents an overview of
VLSI implementations for video decoders and compares them in terms of
speed and silicon area.

15
MULTIMEDIA ENHANCEMENTS

FOR RISC PROCESSORS

15.1 INTRODUCTION

The lPEG and MPEG standards make it easier now to encode and exchange
images and video streams across different computing platforms and networks.
Video in particular has the potential to become just another data type. Real­
time video processing on PCs and workstations is now handled with special
video boards and custom circuits. This is similar to the way most of the
advanced graphics processing was performed in the 1980s. Special hardware
may yield the highest performance but at a considerable cost to the end user.

General-purpose RISC and CISC processors have significant computing
power but are not weB suited for a software-only solution. For example,
some of their main features, such as 32-bit or 64-bit data paths and on-chip
floating-point processing, are not needed in video processing. Therefore,
there is a strong des ire among computer manufacturers to enhance existing
architectures so that video processing is integrated into the next generation
general-purpose processors just as graphics processing has been integrated
into today' s architectures.

Two workstation manufacturers that have introduced multimedia-enhanced
processors are Hewlett-Packard and Sun Microsystems. The specific features
of these two processors are examined next.

290 CHAPTER 15

15.2 GENERIC OPERATIONS IN VIDEO
PROCESSING

It is always tempting to enhance a general-purpose processor by adding
special function units. However, this approach violates the fundamental
design principle of a RISC architecture, which states that only the most
commonly used operations are implemented in hardware. Hence, integration
of multimedia enhancements requires first an analysis and understanding of
the generic operations in the video-processing pipeline. Table 15.1 shows the
arithmetic operations required for the main functional blocks of the image
and video compression standards. From Table 15.1 and an analysis of the

Function Operations
Color transformation, E CiXi, clipO
preprocessing, and (Xi + xj)/2, (1/4) Et=l Xi
postprocessing
DCT,IDCT ax + b, ECiXi
Quantization xi/Ci
Dequantization XiCi
Huffman coding data shifts, comparisons
Motion estimationl E lXi - Yd or E(Xi - Yi)2,
compensation min(a,b), Xi + CXj

I

Table 15.1 Generic operations in video compression.

processing pipeline in video compression one can conc1ude the following:

• Input data and coefficients have usually eight to 16 bits of precision.

• There is no need for floating-point operations.

• The multiply-accumulate operation is very common; however, most of
the multiplications are with constants.

• Saturation arithmetic, where a result is c1ipped (clip()) to the maximum
or minimum value of a predefined range, is common in many operations
(such as, color transformation).

Multimedia Enhancements for RISC Processors 291

In addition to these arithmetic operations, video processing requires efficient
data addressing and IIO. The above analysis indicates that RISC processors
need to handle more efficiently fixed-point arithmetic (specially multiplication)
and to support a more efficient utilization of their Ion ger than necessary
data paths. The two new RISC processors from Hewlett-Packard and Sun
Microsystems attempt to do exactly that.

15.3 MULTIMEDIA ENHANCEMENTS IN THE
HP-PA

In early 1994, Hewlett-Packard introduced the first general-purpose RISC
processor with built-in multimedia instructions. The new processor (the
PA 71 OOLC) and algorithmic enhancements in the decoding algorithms allowed
for the first time real-time MPEG-l video and audio decoding on a desktop
computer without using any special hardware.

The 7100LC is a 32-bit superscalar RISC processor with two fixed-point
ALUs, a floating point unit, and a memory and IIO controller integrated into
a single chip. This is a low-cost processor with off-chip instruction and data
caches and only a small on-chip instruction buffer. Since video operations
never require more than 16 bits of precision, the key approach for multimedia
enhancements in the HP design was to allow for parallel operations at the
half-word (16-bit) level. For instance, each 32-bit integer ALU was partitioned
so that it could execute a pair of 16-bit arithmetic operations in a single
cycle with a single instruction. Arithmetic operations that were accelerated
using this strategy include add, subtract, average, shift-left-and-add, and
shift-right-and-add.

Consider the standard ADD instruction:

ADD Ra, Rb, Rt ,

where the ALU performs a 32-bit addition on the contents of registers Ra and
Rb and places the result into register Rt. Assume now that two 16-bit operands
(al and a2) are stored into the left and right halves of register Ra and another
two 16-bit operands (bI and b2) are stored in register Rb. Figure 15.1 shows an

292 CHAPTER 15

example of how a 32-bit adder can be used to perform either a 32-bit addition
or two 16-bit additions. The 32-bit adder is divided into two 16-bit halves.
When the output carry (c-out) of the lower half is blocked (cjn = 0) then two
16-bit additions can be performed in parallel. Two 16-bit additions can be

ADDor HADD

Figure 15.1 Half-word addition using a 32-bit ALU.

invoked with the new half-word-add instruction:

HADD Ra, Rb, Rt,

where if Ra = [al, a2) and Rb = [bI, b2), then Rt = [cl, c2) = [(al+bl), (a2+b2)).

This instruction can also be invoked with a signed or unsigned saturation
option. This option clips the 16-bit results so that they do not exceed apreset
maximum and minimum value. This can be expressed as

if cl> max then cl = max,
if cl< min then cl = min, (15.1)
if c2 > max then c2 = max,
if c2 < min then c2 = min.

For signed saturation, max = 215 -1 and min = _215 . Forunsigned saturation,
max = 216 -1 and min = O. This operation is particularly useful in pixel-related
operations and replaces 10 conventional add and shift operations. Similarly to

Multimedia Enhancements for RISC Processors 293

the HADD instruction, there is also a half-word subtract instruction (HSUB)
that allows two pairs of 16-bit values to be subtracted in parallel.

Another new instruction is the half-word average instruction:

HA VE Ra, Rb, Rt,

where Rt = [cl, c2] = [(al + bl}/2, (a2 + b2}/2]. This instruction is particularly
useful for half-pixel interpolation, since two new pixel values can be computed
in a single cycle. Without this multimedia instruction, this operation would
require four cycles.

The PA 71 OOLC CPU has no integer multiplier, hence it is very hard to support
parallel multiplication on half-words. However, in video coding most of the
multiplications involve small constants, and thus they can be performed by
simple combinations of shifts and adds. The original PA-RISC architecture
already had shift-Ieft-and-add operations. These operations perform a left
shift of one operand by 1, 2, or 3 bits before adding the other operand. To
implement this operation on half-words required a simple blocking ofthe shifts
and the carries between two halves of the integer ALU. The new half-word
left-shift-and-add operation is defined as

HSHLADD Ra, Rb, Rt, k,

where Rt = [cl,c2] = [(al « k) + bl, (a2 « k) + b2]. The symbol "« k"
denotes a left shift by k bits, where k is either 1, 2, or 3. A similar half­
word shift-right-and-add (HSHRADD) instruction was also added. Table 15.2
summarizes the key operations ofthe new PA-RISC multimedia instructions.

15.3.1 110 and Postprocessing Enhancements

In video decoding, a major percentage of the computations is spent in
postprocessing, which includes color transformations and display 1/0. A new
graphics IC allowed HP to move many of these display-related operations into
the graphics controller and thus reduce the CPU load. The main processor
connects directly to the graphics controller via a high-speed system bus. With

294 CHAPTER 15

Instruction Operation
(Ra = [al,a2], Rb = [bl,b2]) (Rt = [c1,c2])
HADD Ra, Rb, Rt Rt = [(al+bl),(a2+b2)]
HSUB Ra, Rb, Rt Rt = [(al-bl),(a2-b2)]
HA VE Ra, Rb, Rt Rt = [(al+bl)/2,(a2+b2)/2]
HSHLADD Ra, Rb, Rt, k Rt = [(al «k)+bl,(a2« k)+b2]
HSHRADD Ra, Rb, Rt, k Rt = [(al »k)+bl,(a2» k)+b2] !

Table 15.2 New PA-RISC multimedia instructions.

a peak available bandwidth of 100 Mbytes/s, this direct connection allows for
fast data transfers between the processor and the display.

The new graphics IC can handle yeber data, perform the up-sampling of the
chrominance components eb, er, and convert yeber data to RGB. A special
color-compression unit translates and stores 24-bit RGB pixels into eight-bit
values. Before the final display, the eight-bit values are translated back into
true-color 24-bit values. This allows real-time decompressed video to be
displayed in true-color even on entry level systems that have only eight-bit
frame buffers.

15.4 MULTIMEDIA ENHANCEMENTS IN THE
ULTRASPARC

In late 1994, Sun Microsystems provided the first details on the architecture
of its new 64-bit processor, the UltraSPARC. Like the HP processor, the
new Sun microprocessor will also incorporate architectural enhancements for
multimedia processing. Sun estimates that a 200-MHz UltraSPARC-based
workstation will be able to decode at least one MPEG-2 video stream in real
time.

The UltraSP ARC is a 64-bit superscalar RISC processor with two integer
ALUs, an address-generation unit, and a special floating-point and graphics
unit. The processor can issue up to four instructions per cycle, but there is a limit
of only two integer operations and two floating-point or graphics operations

Multimedia Enhancements for RISC Processors 295

per cyc1e. Most of the multimedia enhancements in the UltraSPARC are in the
floating-point and graphics unit. The floating-point execution unit integrates a
floating-point adder, a floating-point multiplier, and a floating-point divider.
The graphics execution unit inc1udes a graphics adder and a graphics multiplier.

The graphics adder consists of four 16-bit adders and a custom shifter that can
be used to perform single cyc1e additions, subtractions, merge, expand, and
logical operations. By controlling the carry propagation among the adders one
can compute either four 16-bit additions or two 32-bit additions in a single
cyc1e. This technique is identical to the one used in the HP-PA, except that in
the HP-PA the partitioning of the data path is performed in the integer ALU.
The core of the graphics multiplier is an array of four 8 x 16-bit multipliers.
They perform three-cyc1e partitioned multiplications, comparisons, and pixel
distance operations. For graphics applications, the four parallel multiplications
allow the Sun processor to manipulate in parallel the three color components
and the alpha value of a color pixel.

The new SPARC instructions can be c1assified into five categories: data­
conversion instructions, arithmetic and logical instructions, address-manipula­
tion instructions, memory-access instructions, and the motion estimation
instruction. The data-conversion instructions convert between the various
data types used in the graphics unit. The arithmetic and logical instructions
allow partitioned add, subtract, multiply, and logical operations using either
single or double precision. A 16 x 16-bit multiplication requires two of these
instructions and an extra addition. The address-manipulation instructions
operate on the register files and can be used to concatenate data or extract
data fields. Memory-access instructions allow for partial or block load and
store operations. For example, a block load causes the transfer of 64 bytes
from memory to a group of eight consecutive double-precision floating-point
registers. The new block instructions allow data to be transferred from the
processor directly to the screen at peak rates of up to 600 Mbytes/s.

Of special interest is a new instruction for motion estimation. For eight-bit
data, this instruction computes eight subtractions, eight absolute values, and
eight additions in a single cyde. Thus, computing the minimum absolute error
between two 16 x 16 blocks requires only 32 such instructions, compared to
dose to 1,500 conventional instructions.

296 CHAPTER 15

15.5 TO PROBE FURTHER

Designers of programmable video processors were the first to analyze the
video compression pipeline for generic operations [141]. Of particular interest
are the architectural enhancements and the instruction set of the vector pipeline
digital signal processor (VDSP) from Matsushita [9]. Based on a DSP core,
the VDSP is a programmable video processor suitable for JPEG and H.261
coding applications. A special vector-pipeline controller allows the VDSP to
execute arithmetic operations on vector data with a single instruction.

RISC cores are used extensively in video codecs. In [72], Herrmann et al.
present the design of a RISC core with special architectural features for video
processing. For the same dock frequency, their new architecture can process
H.261 coded video twice as fast as a generic SPARC (CY7C601) processor.

The HP PA7100LC chip-set is described in [102] and [188]. Additional
details regarding the software-based MPEG-l decoder from Hewlett-Packard
can be found in [116] and [19]. Sun's UltraSPARC architecture and the new
instruction set are described in [64] and [104].

16
STANDARDS FOR AUDIO

COMPRESSION

16.1 INTRODUCTION

Digital audio is an integral part of any video or multimedia application and may
consume a considerable portion of the overall bandwidth. Therefore, efficient
compression of the audio data is as important as the efficient compression of
the video data. There are two main parameters that control the quality and
the bit rate of digital audio: the sampling resolution (that is, bits per audio
sampie) and the sampling frequency.

The sampling resolution determines the dynamic range of a signal. For
example, audio compact discs (CDs) use 16-bit sampies and provide 96 dB
of dynamic range (96 = 20 lOg10216). The sampling frequency determines how
much of the frequency spectrum of the original analog signal can be faithfully
reproduced. According to the Nyquist theorem, the sampling frequency has
to be twice as large as the maximum frequency component. For example,
CD recordings use a 44.1 kHz sampling frequency, approximately twice the
maximum frequency response of the human auditory system (22 kHz). In
digital telephony, where high audio fidelity is not as important, signals are
bandlimited to approximately 3.5 kHz and the sampling frequency is 8 kHz.
Table 16.1 shows some typical audio applications and the corresponding
sampling rates.

According to the CCIR recommendations, digital audio in broadcast studio
format requires a sampling resolution of 16 bits and a sampling frequency of
48 kHz. For stereo signals, the corresponding bit rate is 2 x 768 = 1.54 Mbits/s.

298 CHAPTER 16

Sampling Frequency Application
(kHz)
8.00 Digital Telephony

22.05 Personal Computers
32.00 Digital audio and TV
44.10 Compact Discs
48.00 Digital Audio Tapes, HDTV

Table 16.1 Sampling frequencies for typical audio applications.

Similarly, the bit rate from a stereo CD is elose to 1.4 Mbits/s, and a 10-minute
stereo audio elip requires elose to 105 Mbytes of storage. The above data
indicate that efficient storage and transmission of digital audio require some
form of data compression. There are two main compression techniques for
high-fidelity audio: the MPEG audio standard and the AC audio compression
algorithms developed by Dolby Laboratories. Both techniques can ac hieve
CD-like quality at 128 kbits/s per audio channel (5.5:1 compression).

The MPEG audio compression algorithm is part of the MPEG-l standard
that addresses not only the compression of video and audio but also their
synchronization. Audio can be compressed down to 32 kbits/s for a single
channel.

The AC-3 algorithm is part of the Grand Alliance HDTV system for North
America. Interestingly enough, the Grand Alliance system uses the MPEG-2
standard for video compression. In HDTV, the sampling resolution is 18 bits
and the sampling frequency is 48 kHz. For six channels, AC-3 compresses the
original 5 Mbits/s bit stream down to 384 kbits/s (13: 1 compression). An AC-3
standard is currently under development by the FCC advisory committee on
advanced television services (ATSC).

Both MPEG and AC-3 make no assumptions about the source of the input
signal, and they can be applied to both speech and high-fidelity audio.
Compression is achieved by transforming the input signal into the frequency
domain and by removing information that is perceptually irrelevant. A
different coding approach is used by the G.72x standards. These standards
have been developed by the International Telecommunications Union (ITU)

Standards for Audio Compression 299

specifically for the efficient coding of speech over band-limited telephone
channels. They can be applied in a variety of telecommunication applications,
including tele-conferencing (e.g., together with the H.261 video compression
standard) and voice-data modems. These standards achieve compression by
using predictive coding.

G.721 was the first standard for the coding of speech at 32 kbits/s on channels
with a 300 to 3400 Hz bandwidth. In 1990, G.721 was replaced by the G.726
standard, which allows for compressed data rates at 16,24,32, and 40 kbits/s.
Both G.721 and G.726 encode the input data using adaptive differential pulse
code modulation (ADPCM).

For broadband telephone channels (0 to 8 kHz), ITU has developed the G.722
standard on "7 kHz audio coding with 64 kbitls." This is an enhanced version
of the G.726 standard and uses a subband filter as a front end to two separate
ADPCM coders. The input is sampled at 16 kHz, and the subband filter
separates the input stream into the two subbands of 0 to 4 kHz and 4 to 8 kHz.
The higher subband is coded at 16 kbits/s, and the lower subband is coded at
48 kbits/s. The two streams are multiplexed for a total bit rate of 64 kbits/s.

For lower bit rates, the G.728 standard achieves speech quality at least as
good as the G.721 but at 16 kbits/s. The improved performance is achieved
by replacing the ADPCM coder in G.721 with a low-delay code excited linear
predictor (LD-CELP). The main principle of a CELP coder is to match a
group of speech sampies with a codeword from a code book. Compression
is achieved by transmitting only the index of the optimum codeword. The
optimum codeword is selected so that the mean square error between the input
speech and the synthesized speech is minimized.

In the next sections we describe in more detail the MPEG-1 and the AC-3
audio standards. Some fast algorithms for the implementation of MPEG audio
are also discussed. We conclude with a short description of commercially
available audio decoders.

Presentiy, within ITU, a videoconferencing standard referred to as H.324 is
being developed for videoconferencing at bit rates lower than 64 kbits/s. A
speech coding method referred to as G.723 has been proposed as part of the
H.324 standard suite. The 6.3 kbits/s mode of G.723 provides speech quality
equivalent to that provided by the 32 kbits/s G.726 standard.

300 CHAPTER 16

16.2 MPEG AUDIO ENCODING

The MPEG audio coding algorithm is the first international standard for
the compression of digital audio signals. It can be applied to streams that
combine both audio and video information or to audio-only streams. Like
the MPEG video standard, the MPEG audio standard specifies the syntax of
the coded bit stream, defines the decoding process, and provides compliance
tests. This allows for different encoding algorithms, provided that the
encoded data can be decoded by an MPEG compliant decoder. The MPEG
audio compression standard achieves compression by exploiting the spectral
and temporal masking effects of the ear. It uses subband coding and a
psychoacoustic model to eliminate information that is irrelevant from a human
sound-perception viewpoint.

Figure 16.1 shows a block diagram of the MPEG encoder for a single audio
channel. In multichannel systems, the process is repeated independently for
each channel. Input pulse code modulated (PCM) sampies have 16 to 20 bits

Input

(PCM)

subband filtering

Gi
(ij
o
tJl

Masking threshold and

bit allocation calculator

Psycho-acoustic Model

Quantizer. Coder

Quanlizer, Coder

sca.le factors

bit allocation

Gi x
Q)

C.
:0::
:;
~

Figure 16.1 Block diagram of the MPEG audio encoder.

:;
B-
::l
o

of precision and are sampled at 32, 44.1, or 48 kHz. The first stage of the
encoder is a subband analysis filter that can be viewed as filter bank with 32
band-pass filters. The frequency response of each 512-tap band-pass filter is
derived by frequency shifting the response of a prototype low-pass filter. The

Standards for Audio Compression 301

output of each filter is decimated by a factor of 32 so that for every 32 input
sampies the subband filter generates 32 output sampies.

In the next stage (the scaler), the output of each subband filter is normalized
by scale factors that will be transmitted together with the compressed bit
stream as side information. Scale factors correspond to the maximum absolute
value of every 12 consecutive output values in each subband. Based on the
frequency characteristics of the input signal and the desired bit rate of the
compressed signal, a psychoacoustic model computes masking thresholds and
bit allocations. This information is used by the quantizer and coder units.
Fina1ly, the quantized subband sampies, the scale factors, and the bit-allocation
information are multiplexed to form the compressed bit stream.

16.2.1 Subband Analysis

As mentioned before, the subband analysis filter can be viewed as a filter
bank with 32 filters. Let x(t) denote an audio sampie at time t and Hi(t) denote
the impulse response of the i-th filter. Then the output of each filter can be
expressed as

511

sei) = L x(t - n)Hi(n), (16.1)
n=O

where
Hi(n) = h(n)cos [(2i + l)(n - 16)1f]

64 '
(16.2)

and h(n) is the impulse response of the prototype low-pass filter. For
each block of 32 sampies, a direct implementation of (16.1) requires 32 x
512 = 16,384 multiply-accumulate operations. MPEG uses a more efficient
implementation derived from the theory of polyphase networks. Polyphase
filters are more efficient because with an appropriate transformation they allow
one to decimate the input of the filter bank rather than the output. Figure 16.2
shows a block diagram of such an implementation. The corresponding flow of
operations as defined by the MPEG standard is as follows:

• Input: 32 new sampies x(i) are shifted into the FIFO buffer.

• Windowing:
z(i) = C[i]x(i), i = 0,1,···,511, (16.3)

302 CHAPTER 16

<l 512 sam pie FIFO I>

x(i)

32 sampies L---,._---L_,-----1_---._-'-______ .l..---,._....l

Figure 16.2 MPEG implementation of the subband analysis
filter.

where C[i] is one of 512 coefficients defined in the standard.

• Partial calculation:
7

y(i) = Lz(i + 64j), i = 0,1,," ,63. (16.4)
j=O

• Matrixing operation:

63

sei) = Ly(k)M[i, k], i = 0,1, ... ,31, (16.5)
k=O

where M[i, k] = cas [(2i+1)g~-16)7r] .

• Output: Output 32 subband sampies s(i).

From Figure 16.2 and the above flow of operations one can derive the following
equation for the output of the i-th filter.

63 7

sei) = L L M[i, k] (C[k + 64j]x(k + 64j)) , i = 0,1,"',31, (16.6)
k=Oj=O

Standards for Audio Compression 303

The above implementation requires 512 + 32 x 64 = 2,560 multiplications
(512 for the windowing operation and 2,048 for the matrixing operation) and
64 x 7 + 32 x 63 = 2,464 additions. The matrixing operation (16.5) is the
most time consurning with 2,048 multiply-accumulate operations.

16.2.2 Fast Matrixing Computation

The computational complexity of the matrixing operation can be reduced
further using a fast inverse DCT (IDCT) transform. Let y(k) be the output of
the partial calculation step (16.4). If

{
y(16) k = 0

y'(k) = y(k + 16) + y(16 - k) k: 1,2, ... , 16
y(k+16)-y(80-k) k-17,18, ... ,31

(16.7)

then, it can be shown that the output of the matrixing operation can be
computed as

31

sei) = Ly'(k)cos [~ (2i + l)k] ,i = 0, 1,···,31,
k=O

(16.8)

where sei) is (within a scale factor) the 32-point IDCT of y'. Using a fast
IDCT algorithm, such as Lee' s, the IDCT can be computed with only 80
multiplications and 209 additions.

16.2.3 The Psychoacoustical Model

A key, and computationaly intensive, component of the MPEG encoding
standard is the psychoacoustic analysis of the input signal. This analysis
is performed in parallel with the subband filtering operation. The first step
in this process is the computation of the masking curve according to the
frequency-masking properties of the human ear. From the masking curve, a set
of masking thresholds is derived for each subband. Each of them deterrnines
the maximum energy acceptable for the quantization noise in each subband
(that is, below this level the noise will not be perceived). The computation of
the masking curve requires a very accurate spectral analysis of the input signal.
In MPEG, the spectrum of the input signal is computed using a 1,024-point
fast Fourier transform (FFT) of the input sampies. From the spectral lines,

304 CHAPTER 16

the psychoacoustic model determines tonal and non tonal components and
determines the final masking curve. Figure 16.3 shows a plot of a typical
masking curve.

Masking Curve

\

frequency

Figure 16.3 Plot of a typical audio masking curve.

For a given bit rate and perceptually lossless compression, all of the quanti­
zation noise should be below the masking thresholds. However, for low bit
rates this is usually not the case. In such cases, the psychoacoustic model uses
an iterative algorithm that allocates more bits to the subbands where increased
resolution will provide the greatest benefit.

Note that MPEG is not enforcing the use of a psychoacoustic model. For
example, applications that can afford high bit rates can use simpler bit
allocation schemes, such as assigning more bits to the subbands with the lower
signal to noise ratios.

16.3 MPEG AUDIO DECODING

Figure 16.4 shows a block diagram of an MPEG audio decoder. The MPEG
audio decoder reverses the encoding operation by performing the following
steps.

1. Frame unpacking and parsing: The bit stream is parsed, and the various
pieces of coding information are demultiplexed.

Standards for Audio Compression 305

En
Inverse

coded
Frame

Reconstruction
mapping Unpacking

stream ut bit

Figure 16.4 Block diagram of the MPEG audio decoder.

2. Reconstruction: The bit allocation information is decoded, and the scale
factors are extracted.

3. Inverse mapping: Data sampies are dequantized and denormalized and
then processed by a subband synthesis filter.

4. Output: The output of the subband filter is translated into PCM audio
sampies.

Among these steps, subband synthesis is the most compute intensive. Figure
16.5 shows a block diagram of the subband synthesis filter as defined by
the MPEG standard. From Figure 16.5, there are three main operations in
subband synthesis: (1) the matrixing operation, (2) data shifting, and (3)
the windowing operation. In most implementations, the shifting and the
windowing operations are combined into a single step.

16.3.1 Fast Matrixing Operation

From Figure 16.5, the matrixing operation in subband synthesis is defined as

31 31

V(i) = 2: N[i, k]s(k) = 2: cos [;4 (2k + 1)(i + 16)] s(k), i = 0,1,···,63,
k=O k=O

(16.9)
where s(k), k = 0 to 31 denote input encoded audio sampies. Brute force
evaluation of V(i) requires 32 x 64 = 2,048 multiply-accumulate operations.
Let S denote the 32-point DCT of s, defined as

31

S(i) = 2: cos [;4 (2k + 1)i] s(k), i = 0,1,···,31.
k=O

(16.10)

306

Input stil

32 sampies

matrixing

31

L N[i, k] s(k)
k~O

i=O to 63

CHAPTER 16

1 024 sampies V buffer
i = 0 to 63

U(64 i +j) =V(128 i + j)

Nli, k] I U(64 i +32 +1) = V(128i + 96 + j)

32 PCM

output sampies

512 sampies U buffer

15

L wo + 32i)
i=<l

O[i)

W(i) = U(i) O[i)
i=<l 10 31

windowing

Figure 16.5 MPEG implementation of the subband synthesis
filter.

It can be proven that all elements of V in (16.9) can be derived from the values
of S as folIows:

V(i) =

S(i + 16)
o
-V(32 - i)
-S(48 - i)
-S(O)
-S(i - 48)

i = 0,1,"',15
i = 16
i = 17, 18, ... ,32
i = 33, 34, ... , 47

i = 48
i = 49,50, ... ,63

(16.11)

Figure 16.6 shows a graphical representation of the above equation. If S(i),
the output of the 32-point DCT, is divided in two parts A(i) and B(i), then
V can be composed by the appropriate shifting and manipulation of these
parts. Shapes of data in Figure 16.6 were chosen arbitrary to better show the
symmetries within V.

Standards for Audio Compression

s
~ A(i) V B(i)

D
v
/r--B-(i) ---,

-B(-i) /[A0j-I- -;(1)-- ·1

Figure 16.6 Graphical representation of data dependencies in the
output of the matnxing operation in subband synthesis.

16.4 LA YER CODING OPTIONS IN MPEG

307

The MPEG audio compression standard defines three layers of compression.
Each successive layer offers better compression performance but at a higher
complexity and computational cost. All three layers support bit rates as low as
32 kbits/s for a single channel.

Layer I is the simplest of all and provides good quality audio at 192 kbits/s.
The highest supported bit rate for Layer I is 448 kbits/s. Layer II codes data
in larger groups, uses a more complex psychoacoustic model, and provides
CD-audio quality at 128 kbits/s per channel. The highest supported bit rate for
Layer II is 384 kbits/s.

Layer III is the most complex of the three and can be used in low-bandwidth
or noisy channels. Like Layers land II, it uses a subband filter, but the
output of the filter bank is processed further by a modified DCT. Other distinct
features of Layer III include nonuniform quantization, adaptive segmentation,
and entropy coding. Layer III is also performing a better compression of stereo
signals by exploiting the cross-correlation between the left and right channels.
The highest supported bit rate for Layer III is 320 kbits/s. Due to the additional
complexity of Layer III, most of the existing applications use either Layer I or
Layer II.

308 CHAPTER 16

16.4.1 MPEG-2 Audio Coding

The MPEG-2 audio compression standard is an extension of MPEG-1 with
the following added features.

• Multichannel input: MPEG-2 supports up to five high-fidelity audio
channels plus a low frequency enhancement channel (these six channels
are also known as 5.1 channels). Thus it is suitable for the compression of
audio in HDTV or digital movies.

• Multilingual audio support: Up to eight commentary channels are sup­
ported.

• Lower bit rates: Compressed bit rates down to 8 kbits/s are now supported.

• Additional sampling rates: In addition to the original sampling rates of
32,44.1, and 48 kHz, MPEG-2 accommodates sampling rates at 16, 22.05
and 24kHz.

In many ways, the MPEG-2 audio standard is compatible with the MPEG-1
audio standard. For instance, MPEG-2 audio decoders can decode MPEG-1
audio bit streams and MPEG-1 audio decoders can decode the two main
channels of the MPEG-2 audio bit streams.

16.5 THE AC-3 CODING STANDARD

The AC-3 audio coding scheme from Dolby Laboratories was developed
in response to a need to provide high-quality, multichannel, digital audio for
HDTV and film. For example, a digital film sound system has 5.1 channels
(left, center, right, left and right surround, and a subwoofer.) This audio
information has to be placed in the film without interfering with either the
picture or the analog sound area. It was determined that one could use the
film area between the spocket hole perforations to place a 320 kbits/s error
corrected audio stream. In 1991, Star Trek VI was the first film coded with the
AC-3 system. In 1993, after successful field tests, an FCC advisory committee
recommended the use of Dolby AC-3 for the Grand Alliance HDTV system.

Standards jor Audio Compression 309

The MPEG-2 cOInmittee is presently considering a non-backward compatible
(NBC) extension to the current MPEG-2 audio coding standard. AC-3 is being
considered as a candidate coder that may be supported by the NBC extension.

16.5.1 The AC-3 Encoder

Like MPEG, the AC-3 system uses transform-based coding and a psy­
choacoustic model to eliminate information that is irrelevant to the human
hearing system. A block diagram of an AC-3 encoder is shown in Figure
16.7. The audio input, sampled at 48 kHz, is first transformed from the time

Side

Ideal bit Bit allocation Informatic
r---

allocator controller

Mantissas

~ Filter bank : J Quantizer : c: Mux f I
In ut ! Exponents ? Bit-allocation Coded

ream

Spectral Core bit

envelope allocator

encoder ?
I Spectral envelope

Spectral

I
decoder

envelope

Figure 16.7 Block diagram ofthe AC-3 audio encoder.

domain into the frequency domain using a filter bank. The block size is
512 points and overlapping blocks of 512 windowed sampies are transformed
into 256 frequency domain points. According to Dolby, critical sampling
and efflcient algorithms allow this operation to be performed with only 13
multiply-accumulate operations.

Each output point of the filter bank is represented by an exponent and a
mantissa. Coding of the exponent allows for a wide dynamic range, while

310 CHAPTER 16

quantization of the mantissa results in quantization noise. The exponents from
each channel represent the overall signal spectrum and are referred to as the
spectral envelope. Exponents from each block are encoded using one of three
differential coding schemes. The coding efficiency of these schemes ranges
from 2.33 bits per exponent to 0.58 bits per exponent. The AC-3 encoder
selects the appropriate scheme based on the signal characteristics. However, it
is common for multiple blocks to use the same exponent set. In a typical case,
the spectral envelope is sent every six audio blocks (32 milliseconds) for an
average bit rate of less than 0.39 bits per exponent. After the transformation
of the input sampies, the encoder determines the optimum bit allocation
and quantizes the mantissas. There are two main bit-allocation strategies
for psychoacoustic based coders: forward-adaptive or backward-adaptive bit
allocation.

In forward-adaptive bit allocation the encoder uses only the input signal to
determine the bit allocation, which is later explicitly coded in the output bit
stream. For example, this is the strategy used by the MPEG audio coder. This
is the most accurate method; however, it consumes significant portion of the
available bandwidth. For example, MPEG (Layer II) may allocate dose to 4
kbits/s for this side information. Another advantage of forward bit allocation
is that the decoder requires no prior knowledge of the psychoacoustic model.
This allows the encoder to be updated as needed without affecting the design
of the decoder.

In backward-adaptive bit allocation, the decoder can determine the bit
allocation directly from the encoded data without any side information from
the encoder. This requires that both the encoder and the decoder have
identical copies of the bit allocation scheme. This technique is not as accurate
as forward-adaptive bit allocation, and the psychoacoustic model cannot be
updated after the decoders are built.

AC-3 uses a hybrid forwardlbackward model. There is a core backward­
adaptive bit allocator that resides on both the encoder and the decoder.
However, the encoder can use any other psychoacoustic model to determine
the optimum bit-allocation. If a comparison between the outputs of the
optimum and the core allocator shows that the default bit-allocation needs to
be improved, then the encoder tries first to modify some of the parameters
used in the core model. If no further improvement is possible with the core
model, then the encoder can explicitly transmit some additional bit-allocation

Standards for Audio Compression 311

information. Since the core algorithm performs weIl in most cases, only small
changes in bit-allocation need to be transmitted. For multiple channels, bits
are allocated from a common pool of bits.

16.5.2 The AC-3 Decoder

A block diagram of the AC-3 decoder is shown in Figure 16.8. The coded

Mantissas

Core bit Inverse filter I PCM

Demultiplexor f----!>l
a"ocator bank

Audio
bitstream

r-
Spectral envelope

decoder Exponents

Figure 16.8 Block diagram of the AC-3 audio decoder.

stream is first demultiplexed to generate the spectral envelope, the quantized
mantissas, and any bit-allocation side information. The spectral envelope is
decoded and the mantissas are dequantized using the core bit allocator and
the side bit allocation information. The decoded mantissas and exponents
are combined to form the frequency coefficients and an inverse filter bank
translates the frequency data into PCM audio signals.

The AC-3 bit stream syntax supports the coding of one main audio service
with one to 5.1 channels. Other services, such as information for visually
and hearing impaired, may also be embedded into the AC-3 bit stream.
Single channels may be coded at bit rates as low as 32 kbits/s. The maximum
supported bit rate is 640 kbits/s. The higher bit rate allows for the incorporation
of additional services without compromising the audio quality of the main
service.

312 CHAPTER 16

16.6 HARDWARE IMPLEMENTATION
OF AUDIO CODECS

Most of the commercially available video processors require an external audio
coder or a programmable signal processor for processing the audio. Note
that the amount of audio data in a video stream is by no means insignificant.
Consider the case of recording a movie on a compact disc using a compression
rate of 1.41 Mbits/s (the maximum data rate of a CD). Using a stereo soundtrack
with 128 kbits/s per channel, this rate is divided into 1.15 Mbits/s for the video
and 0.256 Mbits/s for the audio. Thus audio represents 18 percent of the
overall data rate. Timing profiles of an MPEG-1 decoder on a general purpose
RISC processor showed that audio decoding and audio-video synchronization
may represent up to 30 percent of the overall decoding time.

Table 16.2 shows the most common arithmetic operations in Layer II MPEG
audio decoding (the symbol % denotes modulo operation). A sirnilar analysis

Function Operations
Degrouping y=c%a,c=c/d
Dequantization y = (x + a)b
Denormalization y = ax
Matrixing y = ax + b, y = 2:i XiCi

Windowing y = xa, y = 2:i Wi

Table 16.2 Arithmetic operations in MPEG audio decoding.

of the operations in other audio coding algorithms shows that multiplication
and addition are the most common operations. Hence, general-purpose DSPs
are ideally suited for audio processing.

16.6.1 Commercially Available Audio Decoders

Commercially available audio processing ICs provide a low-cost solution to
the decoding of compressed audio. They are either dedicated or programmable
DSPs and provide a glueless interface to memory and a host controller (if
needed).

Standards jor Audio Compression 313

The CS4920 from Crystal Semiconductors is a programmable DSP for either
MPEG-I or AC-2 (precursor to AC-3) audio decoding. It has a 24-bit
architecture and is the only audio decoder with an on-chip programmable PLL
c10ck generator and dual 16-bit digital to analog converters (DACs) for the
direct generation of stereo audio from a compressed digital stream. Its audio
transmitter is compatible with the Sony/Philips digital interchange format
(SPDIF).

The L64111 from LSI Logic is a two-channel MPEG audio decoder. It can
decompress both MPEG-l and MPEG-2 (two channels) streams (Layers I
and II). It supports bit rates from 32 (mono) to 384 kbits/s (stereo). Data
can be loaded either bit-serially or in parallel. The L64111 has a 24-bit
architecture and runs at 25 to 30 MHz. The processor uses aserial divider for
the degrouping operation and a two-cyc1e 24-bit multiplier-accumulator for all
other decoding operations.

Most of the DSPs from Texas Instruments could be used for audio coding
or decoding; however, TI also provides a dedicated MPEG-l audio decoder
(Layers I and II), the TMS320A VIlO. At 33 MHz it can execute 16.5 MIPS.

Another audio decoder is the ZR38000 programmable DSP from Zoran. This
is a 20-bit processor with a 20 x 20-bit multiplier, a barrel shifter, and a 48-bit
accumulator. The processor has a 16-word instruction cache and supports
block floating-point operations. The ZR38000 can execute a radix-2 FFI
butterfly in four cyc1es. This allows it to compute a 1,024-point radix-2 FFr
in 0.877 ms (using a 25-MHz c1ock). Using the ZR38000 core, Zoran plans to
introduce dedicated processors for six channel AC-3 decoding (the ZR38500),
two channel AC-3 decoding (the ZR38501), and two-channel MPEG audio
decoding (the ZR38511). According to Zoran, the ZR38500 is the only IC that
can decode in real-time a six channel AC-3 stream.

16.7 TO PROBE FURTHER

The G.72x speech coding standards are described in the ITU publications [51],
[50], and [52]. In addition, for the G.722 standard, an extended summary is
given in [130] and a custom hardware implementation is described in [193]. A

314 CHAPTER 16

hardware implementation of the G.728 on a general-purpose DSP is reported
in [6].

The MPEG audio standard is based on the MUSICAM subband coder with
some elements (in Layer III) from the ASPEC transform coder. Musmann
[142] provides details on the early efforts by the International Standards
Organization (ISO) to define an audio compression standard and discusses
similarities and differences between the MUSICAM and ASPEC coding
algorithms. Another description of the MUSICAM algorithm can be found in
[38].

The MPEG-1 and MPEG-2 audio standards are described in the third part
of the ISO documents [84] and [86]. In [150] and [179], Pan and Shlien
provide additional references and details on the polyp hase filter bank, the
psychoacoustics models, and the bit-allocation algorithms. Proofs for the
DCT-based matrixing operations in subband coding are given in [151] and
[107]. Lee's fast DCT algorithm is described in [111]. An excellent tutorial on
MPEG audio compression is presented in [152]. For additional details on the
hardware implementation of an MPEG audio decoder, Maturi [133] provides
adescription of the architecture of the MPEG decoder from LSI Logic. The
final AC-3 standard is still under development; however, Todd et al. from
Dolby give a good overview of the AC-3 system in [185]. For those interested
in how AC-3 is integrated into the Grand Alliance HDTV system, a general
overview of that system is given by Hopkins in [74]. A discussion of the
proposed speech coding standard G.723 can be found in [174].

17
NONSTANDARD COMPRESSION

TECHNIQUES

17.1 INTRODUCTION

Standard compression schemes, such as JPEG and MPEG, have been widely
supported by the industry; however, this has not stopped the development
and marketing of several proprietary image and video compression schemes.
Examples of such schemes include the Kodak Photo-CD compression and
storage format, the QuickTime environment from Apple, and DVI technology
from Intel. There are various reasons for the introduction of proprietary
compression schemes:

• Certain applications are self-contained, and there is no need to exchange
their data with other platforms (such as a stand-alone image data-base
system).

• Computational requirements of the standard algorithms are beyond the
capabilities of a particular platform (such as the software-based video
playback on low-end personal computers).

• New market areas open (such as digital photography).

• There is dissatisfaction with the capabilities of the standard algorithms
(such as video teleconferencing).

• There is concem about royalties (such as arithmetic coding in JPEG).

Even though details on proprietary schemes are seldom published, most of
the nonstandard techniques seem to be based either on vector quantization

316 CHAPTER 17

(VQ) or wavelet-based subband coding. After a short overview of VQ and
subband coding, we briefly present a few of the commercially available and
nonstandard compression techniques.

17.2 VECTOR QUANTIZATION

In transform-based coders, such as JPEG and MPEG, blocks of spatial data are
first transformed into the frequency domain. The image energy is now packed
into a few of the frequency components that are carefully quantized to remove
information that is irrelevant to the human visual system. Decompression is
performed by reversing the encoding process. After an inverse quantization,
the dequantized frequency components are translated back to spatial data by
an inverse transform.

A main characteristic of such transform-based algorithms is that both the
encoder and the decoder have similar levels of computational complexity.
However, most multimedia applications are CD-ROM based and require
only real-time decoding of the embedded video clips. Unfortunately, even
with fast transform algorithms, real-time decompression may be beyond the
capabilities of low-end machines. An alternative compression scheme is
vector quantization (VQ) coding. VQ processes image blocks directly in
the spatial domain. It has a far more complex encoder than transform-based
coders, but it allows for very fast decoding.

Figure 17.1 shows a block diagram of a VQ coder for image compression.
An input image is first segmented into nonoverlapping blocks. Each block is
regarded as an M -dimensional vector, where M is the number of pixels in the
block. For example, a 4 x 4 block corresponds to a vector of dimension 16. The
principle of VQ is to match each input vector to a codeword (or reproduction
vector) from a codebook so that the distortion between them is minimized. The
codebook is generated apriori from a collection of representative images and
should be a good representation of all possible image vectors. Compression
is achieved by transmitting the index of the best codeword. For example, if
the input vector has 16 x 8 bits and the codebook has 28 = 256 entries, then
the corresponding compression ratio is 16: 1 since each 4 x 4 block can be
represented by a eight bit codeword index.

Nonstandard Compression Techniques 317

In~ Rasier 10

Vector

Distortion Vector l~utPut
to Raster

VQencoder VQ decoder

Figure 17.1 Block diagram of a VQ image coder.

Decoding in VQ is much simpler than encoding. The decoder, which has
an identical codebook, uses the codeword index and a simple table look-up
operation to reconstruct the original image. The simplicity of the VQ decoder
is the principle reason that VQ is the method of choice for image and video
coding on computing platforms with limited resources, such as pes and
portable electronic note pads. The complexity of the VQ encoder depends on
the distortion measure and the search algorithm used for determining the best
codeword.

17.2.1 Codebook Search Algorithms

Given an input vector x = Xl, X2, ••• , X M and a set of NM-dimensional
codewords {Cl, c2 , ... , cN }, a commonly used distortion measure in VQ is the
mean square error

M

MSE(x,c i) = ~)Xk -C1)2,i = 1,2, .. ·,N. (17.1)
k=l

From (17.1), each evaluation of the MSE requires M data loads, M subtractions,
M multiplications, and M - 1 additions, for a total of 4M - 1 operations.

An alternative measure is the mean absolute error

M

MAE(x,c i) = L IXk - c~l,i = 1,2, .. · ,N. (17.2)
k=l

318 CHAPTER 17

The MAE criterion requires fewer computations; however, it may compromise
the fide1ity of the reproduced images.

The most straightforward search technique is to compare each input vector
with every entry in the codebook and select the codeword for which the
distortion is minimum. This form of codebook searching is referred to as
full-search and the encoding method is often referred to as full-search VQ.
However, this method can be prohibitively expensive even for coders with
small block sizes and codebooks. For example, using the MSE criterion and a
codebook with 256 entries, this approach requires at least 256 x 63 = 16,128
operations per 4 x 4 block.

The amount of processing can be significantly reduced if one uses a binary tree­
search vector quantizer (TSVQ). In binary TSVQ, the codebook is organized
in a tree structure. Figure 17.2 shows such a tree with two levels. Starting

Figure 17.2 Block diagram of a VQ image coder.

from the root, at each level of the tree the input vector is compared with only
two codewords. Based on the comparison, one of the branches is chosen and
an index bit of either 0 or 1 is transmitted, The process continues until a leaf of
the tree is reached. For N codewords, this approach requires the evaluation of
only 2 x lOg2N distortions. For a codebook with 256 entries, a TSVQ requires
only 2 x 8 x 63 = 1,008 operations per 4 x 4 block.

TSVQ encoding is much faster than full-search, however, it mayaiso result
in lower image quality. TSVQ is suboptimal because it may lead into a
local minima in the search space, whereas full-search VQ finds the global
minima. These techniques can be further refined or improved by using adaptive
codebooks or pruned tree-search algorithms.

Nonstandard Compression Techniques 319

17.2.2 Hardware Considerations

Consider now the hardware implementation of a TSVQ coder. Given an input
vector x, at each level of the tree we need to compute the difference

dij = MSE(x, Ci) - MSE(x, cl). (17.3)

From (17.1) and (17.3), after expanding the quadratics and some simplifica-
tions,

M M

dij = L [(C1)2 - (d,Y] + L 2xk(ci - cf.). (17.4)
k=l k=l

From (17.4), the first summation is a constant that is independent of x and
it can be precomputed and stored in memory. The differences in the second
summation can also be precomputed. Thus, if aij denotes the first summation
in (17.4) and eij = 2(ci - cj), then dij can be expressed as

M

d - ""' ij ij - aij + ~xkek' (17.5)
k=l

Evaluation of (17.5) on a general-purpose RISC-like processor requires M + 1
data loads, M multiplications, and M additions, for a total of 3M + 1 operations
per level of the tree. For M=16 (such as 4 x 4 blocks), 49 operations are
required per level of the code tree. Table 17.1 shows the MOPS requirements
for real-time TSVQ (30 fps), 4 x 4 blocks, various frame sizes (4:2:2 color
images), and two codebooks: one with 256 entries and one with 1,024 entries.
For comparison, a DSP processor with a multiply-accumu1ate unit can perform
a data load and a multiply-accumulate operation in one cyc1e, thus (17.5)
can be computed in M + 1 c10ck cyc1es. Assuming again 4 x 4 blocks and
a codebook of only 256 entries, real-time TSVQ encoding of CIF images
on a DSP requires a c10ck frequency of at least 51 MHz. This assumes no
delays in accessing the memory (approximately 4 Kbytes) and does not take
into consideration any other computations, such as color transformations or
lossless compression of the VQ output using an entropy coder.

One approach to reducing the c10ck speed is to use multiple processors and
pipelined processing. In TSVQ, only one node is active at each level of the
coding tree. Furthermore, computations at one level do not require codewords
from another level. This localization of operations allows the codeword
memory to be partitioned into separate memories for each level of the tree.

320 CHAPTER 17

Codebook size = 256
Frame Size MOPS
QCIF 37.25
CIF 149.02
SIF 124.19
CCIR 508.03

Codebook size = 1024
Frame Size MOPS
QCIF 46.57
CIF 186.28
SIF 155.23
CCIR 635.04

-

Table 17.1 MOPS requirements for TSVQ encoding at 30 fps
for 4 x 4 blocks and different codebook and frame sizes.

Figure 17.3 shows the imp1ementation of a TSVQ encoder using a linear
array of L = l092N processors, where each processor is mapped to a level
of the coding tree. An output "Ready" signal from processor Pi resets the

x x

Start Ready

Index
2 L-1 L

Figure 17.3 Block diagram of a pipelined TSVQ image coder.

accumulator of Pi+! and initiates processing at the next level. Each processor
adds the result of its computation to the index data path. The last processor
returns the index of the best codeword. Note that each processor requires
different sizes of memory. Since each level i (i = 0, 1, ... , L - 1) of the tree

Nonstandard Compression Techniques 321

has 2i nodes, and each level is mapped into a single processor, from (17.5),
processor Pi requires (M + 1)2i words of memory. This pipelined scheme
allows the dock frequency of each processor to be reduced by L.

17.3 SUBBAND CODING

The main principle behind transform based coding is that data in the transform
domain have a more compact representation than data in the spatial domain.
The transformation between the two domains can be performed either on a
block by block basis (as in IPEG) or as in the case of a subband coder using a
filter bank.

Figure 17.4 shows a block diagram of a subband coder. In the encoder, the

Subband

Filtering

and Decimation

Subband encoder Subband decoder

Interpolation

and Subband

Synthesis

Figure 17.4 Block diagram of a subband coder.

image is first divided into multiple frequency bands using a combination of
low-pass and high-pass filters. For example, Figure 17.5 shows a four-band
filter bank and the corresponding partition of the image spectrum in octave
bands. Filtering is followed by a 2 x 2 decimation operation where each
subband output is subsampled by a factor of two in each dimension. In effect,
decimation translates each subband back into a baseband image but with only
one-fourth of the original pixels. Thus, even though there are four output
channels, the output bit rate is the same as the input bit rate. The process of
frequency subdivision can be iterated on each of these four subbands.

Subband filtering by itself is a lossless operation. The input data is simply
decomposed into multiple data streams, without any loss of information. Data

322

x

CHAPTER 17

Yll (02

7t

22 1 12 122
Y12 - + - - - -I--

I 1
211 11121 17t

1 1
1 1 -T----I- -

22 1 12 122

(0 1 Y21

Y22

a) b)

Figure 17.5 (a) Block diagram of a four-band filter bank. (b)
Partition of the image spectrum.

compression is achieved by discarding subbands that are irrelevant for an
application and by the efficient encoding of the remaining data sampIes in
each subband. Coding schemes that have been applied to subband coding
include predictive coding and quantization (DPCM), vector quantization,
entropy coding, and arithmetic coding.

The block diagram of a subband synthesis filter is shown in Figure 17.6. After

Yl1

Y12

Y21

Y22

Figure 17.6 Block diagram of a four-band synthesis filter bank.

the decoding of the subband data, each subband is upsampled by a 2 x 2

Nonstandard Compression Techniques 323

interpolator and then filtered by a band-pass filter that eliminates aliasing
produced by the upsampling. The subbands are finally summed to reconstruct
the original image.

As an example, Figure 17.7 shows the spectrum of a signal at the various
stages of a two-band subband coder. The input signal is first decomposed
into two bands using a low-pass and a high-pass filter. The bandwidth of
these signals is half of the original bandwidth; hence, according to the Nyquist
theorem their sampling rate can also be reduced by half. This is accomplished
by downsampling each signal by a factor of two (in other words by throwing
away every other sampie). With downsampling, the aliased output of the
high-pass filter is shifted back into the baseband.

In the receiver, upsampling (a zero is inserted between every two sampies)
causes alias spectral signals (shown in gray) that can be suitably filtered with
a 100y-pass and a band-pass filter. The filtered signals are then added to form
the reconstructed signal.

~ hI Input

Spectrum
Qj
:::
'E h I 11

Low and High
Cf)
c Frequencies
~
I-

t
h h Downsampling

by2

V I V I \ r---r--r-fl
Upsampling

by2

Qj

h I
Band-pass .~ Il CD

() Filtering
CD
a:

t hI Output

Figure 17.7 Signal spectrum in subband coding.

324 CHAPTER 17

Subband coding is more computationally expensive than block-based coding;
however, it has many other advantages, including the following:

• Since the subband filters operate on the whole image, subband coded
images display fewer artifacts (such as blockiness) than block-coded
images.

• Subband coding is more robust under transmission or decoding errors
because errors on a particular subband may be masked by the information
on the other subbands.

• Subband coders allow for better data rate control during encoding or
decoding by the selective transmission or decompression of subbands. For
example, to reduce the data rate in a video teleconferencing application,
the image of the active speaker may be encoded at full resolution, while
the images of the other participants may be encoded and decoded at lower
resolutions.

Since the coding part of a subband coder uses compression techniques that we
have already discussed in earlier chapters, in the remaining of this chapter we
ex amine some of the subband filter design and implementation issues.

17.3.1 Subband Filter Design

The analysis and design of the subband filter bank can be simplified if we
assume that all two-dimensional (2-D) filters are separable. A 2-D filter with
impulse response h(m, n) is defined as separable if

h(m, n) = h1 (m)h2 (n), (17.6)

where h1(m) and h2(n) are the impulse responses of I-D filters. Using
separable filters, a 2-D filtering operation can be performed by filtering first
each row and then each column of the image using the 1-D filters. Following
this approach, the four-band subband filter of Figure 17.5 can be implemented
using a combination of low-pass (h) and high-pass (9) 1-D filters, as shown in
Figure 17.8. Using a similar approach, the corresponding synthesis filter bank
is shown in Figure 17.9.

Nonstandard Compression Techniques

x

<l- row processing ---c><:!- cOlum~ -t>
processlng

Yll

Y12

Y21

Y22

Figure 17.8 Analysis filter bank using row-colurnn filtering.

Y 11

Y12

Y21

Y22

Figure 17.9 Synthesis filter bank using row-colurnn filtering.

325

Ignoring the effects of coding and decoding on the input signal, we want the
synthesis filters h' and g' to cancel the aliasing effects of the interpolation.
Let h be an L-tap (L is even) finite impulse response (FIR) filter, then the
aliasing can be canceled if hand 9 form a quadratic mirror filter (QMF) pair.
By definition, hand 9 form a QMF pair if in the time domain

g(n) = (-lt+1h(L -1- n), (17.7)

and in the frequency domain

IH(wW + IG(wW = 1. (17.8)

326

The corresponding synthesis filters are then given by

h'(n) = heL - 1 - n)

g'en) = geL - 1 - n)

CHAPTER 17

(17.9a)

(17.9b)

There are many filters that can satisfy the above conditions. In a prac­
tical implementation we want the filters to have good frequency sepa­
ration and as few taps as possible. Johnston's QMF filters are used
quite often in the literature. Johnston's eight-tap QMF filter is given by
h(n) = {0.00938715, -0.07065183, 0.06942827, 0.48998080, 0.48998080,
0.06942827, -0.07065183, 0.00938715}.

17.3.2 Subband Coding and Wavelets

A case of particular interest in subband coding is the implementation of the
subband filters using wavelets. Wavelets are families of functions that are
generated from a single function using dilations and translations. They have
been proven to be a useful tool in many different fields, inc1uding image
coding. For example, wavelet based coders have been applied successfully for
the compression of still-images and video at very low rates and are now being
proposed for consideration for the MPEG-4 standard.

For discrete signals analysis, if ao > 1 and bo -:j:. 0 denote the dilation and
translation steps respectively, given a basis (or "mother") wavelet function
'I/J (t), the family of wavelets of interest is represented by

'l/Jmn(t) = a-;;m/2'I/J(a-;;mt - nbo). (17.10)

For ao = 2 and bo = 1 one can find mother wavelets so that 'l/Jmn(t) constitute
an orthonormal basis, which allows a given signal J(t) to have a wavelet
decomposition given by

J(t) = L L cmn'I/Jmn(t) , (17.11)
m n

where

Cmn = J J(t)'l/Jmn(t)dt. (17.12)

In intuitive terms, the decomposition of a signal using orthonormal wavelets
yields a representation that lies in-between the spatial and the Fourier repre­
sentations.

Nonstandard Compression Techniques 327

Wavelet analysis is also related to multiresolution representation. Under that
context, one can consider that the a;;m term of a wavelet function corresponds
to magnification and that the nbo term corresponds to location. If ao = 2, then
the analysis of a signal is performed octave by octave. In that case, given a
fixed magnification (or scale) m, one can find a "mother" scaling function qy(t)
such that the farnily of functions

qymn(t) = T m/2qy(Tmt - n) (17.13)

forms an orthonormal basis. If fm(t) denotes the value of f(t) at resolution
level m, then fm(t) can be expressed as

fm(t) = L d(m+l)nqy(m+l)n + L C(m+l)n.,p(m+l)n' (17.14)
n n

In other words, if qy(t) is considered a low-pass function, and the wavelet
.,p(t) is considered a band-pass function, then at a given resolution level m the
function can be expressed as the sum of low and high frequency components.

In 1989, Mallat showed that this multiresolution representation of a signal can
be computed using a pyramidal filter structure of QMF filter pairs, as shown
in Figure 17.10. The filters hand 9 form again a QMF pair and are related to

d
3,n

C 3 ,n

Figure 17.10 Filter bank for wavelet-based signal decomposition.

the scaling and wavelet functions as follows

<P(2w)

Ilt(w)

= H(w)<p(w),
w

G(w)<p("2),

(17.15)

(17.16)

where <p(w) and Ilt(w) are the Fourier transforms of qy(t) and .,p(t). As an
example, using the Daubechies four-tap wavelet, h(n) = g~, ~~, 352' - ;2}

328 CHAPTER 17

) { 3 5 19 11} and g(n = 32' 32' - 32' 32 • In the synthesis band, h'(n) = h(3 - n) and
g'(n) = g(3 - n).

The above wavelet decomposition of one-dimensional signals can be general­
ized for 2-D signals. Using row-column filtering, a 2-D wavelet decomposition
of an image can be computed using the filter structure of Figure 17.8. The
2-D wavelet decomposition can be interpreted as an image decomposition in
a set of independent spatially oriented frequency representations: horizontal,
vertical, and diagonal. For a four-band wavelet decomposition, the four output
bands in Figure 17 .5(b) can be interpreted as follows. Band 1,1 corresponds to
the lower horizontal and vertical frequencies of the image, band 2,1 gives the
vertical high frequencies and horizontal low frequencies (horizontal edges),
band 1,2 gives the vertical edges, and band 2,2 gives the high frequencies in
both directions (corners).

Figure 17.11 shows the wavelet decomposition of an image into seven
subbands. After the original image was divided into four bands, the lower
subband was further subdivided into four bands. The hand 9 filters are the
seven-tap QMF filters with h(n) = {0.00525, -0.05178, -0.25525, 0.60355,
-0.25525, -0.05178, 0.00525} and g(n) = {-0.00525, -0.05178, 0.25525,
0.60355,0.25525, -0.05178, -0.00525}.

In summary, from an implementation viewpoint, wavelet decomposition can
be considered as a special case of subband filtering. In a subband coder,
compression efficiency and overall performance depend not only on the
choice of the analysis/synthesis filters but also on the compression method
that will be used on the subband filtered data. Similar considerations apply to
image and video compression methods based on wavelet decompositions.

17.3.3 Computational Requirements for Subband Filtering

The computational requirements of a subband coder may vary widely, depend­
ing on the complexity of the filter bank (number of bands, filter types, and so
on) and the complexity ofthe coder(such as VQ, DPCM, andHuffman). As an
example, we estimate the number of multiply-accumulate (MAC) operations
in a filter bank where all filters are L-tap FIR filters.

Nonstandard Compression Techniques

Figure 17.11 Example of wavelet decomposition into seven
subbands.

329

Consider an M x N image and the subband filter shown in Figure 17.8. In
the first stage, each of the two filters requires ~ L MAC operations per row of
data for a total of NM L MAC operations for the whole image. The second
stage has twice as many filters; however, the columns are also half as many.
Hence, the number of operations remain the same and the total number of
MAC operations for a four band 2-D filter is 2M N L or 2L operations per
pixel. Assuming we iterate this scheme on the lower band, the number of
MAC operations is still 2L per pixel; however, the input image at this stage has
one-fourth of the pixels in the original image. Hence, for multiple iterations,
the total number of MAC operations is bounded by

1 1 8MNL
MACtotal = 2NML(1 + 22 + 24 + ...) < . (17.17)

330 CHAPTER 17

For example, if L = 6, then the total number of MAC operations is bounded
by 16 operations per pixel. In comparison, in the 8 x 8 fast DCT, the
number of operations can be less than seven operations/pixel. The number of
multiplications can be reduced if the filter coefficients are powers of two or if
the filters are symmetrie. When h is symmetrie, g(n) = (-l)nh(n). Therefore,
a multiplication with a filter coefficient needs to be performed only once,
and the product can be added or subtracted to the appropriate partial sum of
products.

17.4 VIDEO CODING SCHEMES FOR THE
DESKTOP

One of the first commercially available techniques for the compression and
storage of digital video is Intel's DVI (Digital Video Interleaved). DVI has two
formats: real-time video (DVI-RTV) and production-Ievel video (DVI-PLV).
Both DVI-RTV and DVI-PLV are based on image color subsampling and
vector quantization. RGB images are first divided into 4 x 4 blocks and
are translated into the YUV color space. The U and V components are then
subsampled by a factor of two in each direction, and the original 24 bits/pixel
image is now compressed down to 9 bits/pixel. The subsampled YUV data are
then further compressed to 1 to 2 bits/pixel using VQ followed by a lossless
coder.

DVI-RTV operates typicallyon 128 x 120 pixel images and uses only
intraframe coding. These images are usually scaled up to 256 x 240 during
display. DVI-PLV uses some form of interframe coding and may operate
on larger images (typically 256 x 240 pixels which are scaled up to 512 x
480 during display). DVI processing may be accelerated using Intel's i750
processor.

Indeo is another video coding scheme from Intel. It is based on color
subsampling, pixel differentiation, run-Iength coding, VQ, and lossless coding.
A typical compression ratio from Indeo is 11: 1. Using frame sizes of 320 x
240 pixels, Indeo allows software playback on PCs at 15 fps.

In 1991, Apple Computer introduced QuickTime. This is a multimedia
extension to the Macintosh operating system and allows for the manipulation

Nonstandard Compression Techniques 331

of dynamic data types, such as sound, video, and animation. QuickTime
supports a variety of compression schemes, inc1uding lPEG and a proprietary
(VQ based) algorithm from SuperMac Technology. SuperMac later introduced
Cinepak, a QuickTime compatible algorithm that supports software-only
decompression of 320 x 240 pixels at 15 fps.

Within a year, Apple introduced QuickTime for Windows and Microsoft
introduced Video for Windows. Video for Windows supports both Intel' s
Indeo and the Motive algorithm from Media Vision. The Motive algorithm
uses a combination of run-Iength coding and vector quantization and can be
acce1erated using Media Vision's chip set: the MVV251 image-capture IC and
the MVV351 compression IC.

Wavelets have been used in compression schemes offered by Media Vision
(the Captain Crunch algorithm) and Aware Inc.

Another popular video compression scheme is motion-1PEG (M-1PEG). Under
M-JPEG, each frame of the video is compressed independently using the
standard lPEG algorithm. Real-time compression and decompression is
possible using low-cost video boards with any of the commercially available
lPEG processing ICs. However, there is no standard syntax for M-1PEG coded
streams, and encoded data may not be able to be decoded across different
platforms.

Table 17.2 summarizes the main coding schemes currently available for
desktop multimedia applications. The column under SIW indicates if software
playback is possible at the given rate, and the WV method denotes a wavelets
based coder.

17.5 TO PROBE FURTHER

Vector quantization for signal compression was first popularized in the 1980s
by Gersho and Gray. Their textbook [57] describes the fundamentals of VQ
theory and various codebook design and search techniques.

A multiprocessorimplementation of a VQ coderis described in [39]. It consists
of a linear array of multiplier-accumulator ICs terminated by a next-address-

332 CHAPTER 17

Coder Method Frame RateIs SIW
DVI-RTV VQ 256 x 240@15 No
DVI-PLV VQ 512 x 480@30 No
Indeo VQ 320 x 240@15 Yes
QuickTime VQ 160 x 120@15 Yes
Cinepak VQ 320 x 240@15 Yes
Video for Windows VQ 160 x 120@12 Yes
M-JPEG DCT 640 x 480@30 No

(60 fields/s)
Captain Crunch WV 320 x 240@30 No
VideoCube WV 640 x 480@30 No

- -_ ~ .. _---
(60 fields/s)

Table 17.2 Video coders for the desktop.

selector processor. A single-chip VQ encoder for pruned tree search was
presented in [129]. This 80-MOPS chip can compute one eight-dimensional
inner product in four clock cycles. The pipelined architecture of the TSVQ
encoder was first introduced by Kolagotla et al. in [105]. A low-power
implementation of the same design is also described in [121]. Another
hardware implementation of a very low-power VQ decoder for real-time
decompression on a portable terminal is presented in [26].

Subband coding was first introduced in 1976 for the efficient coding of speech
signals. Woods and O'Neil [197] were among the first to combine subband
filtering and a DPCM coder for compressing images. A good overview of
wavelet theory and its application to signal processing is given by Rioul and
Vetterli [171]. Mallat [131] was the first to show the relationship between
subband filtering and wavelet decomposition. The book on multiresolution and
signal decomposition by Akansu and Haddad [3] provides a unified coverage
of subband filtering and wavelet transforms and many examples on filter
design for image coding.

There is a variety of wavelet-based coders. In [120], Lewis and Knowles
use the four-tap Daubechies wavelets and a quantization model based on the
human visual system. The subband-filtering operation for this system can
easily be implemented using a multiplier-free architecture [119]. A coding

Nonstandard Compression Techniques 333

scheme that combines wavelet decomposition and VQ is described in [8]. In
[119], Lewis et al. describe a low-bit video coder using wavelet transforms
and differential coding. Another architecture for a low-power subband video
decoder using 4-tap wavelet-based filters is described in [63]. At 20 MHz, the
chip can process 10 million color pixels per second while dissipating only 16
mW. A single IC can process images up to 352 pixels wide and performs both
subband decoding and YUV to ROB color transformations.

Trade magazines are a good source of information for commercially available
video coders. Most of the information on video coders for the desktop appeared
first in various articles in Newmedia [41] and EDN [164]. Intel's i750 system
inc1udes two ICs: the 82750PB pixel processor and the 82750DB display
processor. Both processors are described in [132]. A general overview of
QuickTime is given in [73].

A
ABBREVßTIONSANDSYMBOLS

r x 1 The smallest integer larger or equal to x.

lxJ The largest integer smaller or equal to x.

l-D One-dimensional.

2-D Two-dimensional.

4:2:0 A color subsampling format in which the chrominance components are
subsampled by a factor of two in both dimensions. Example: If Y is 720
x 480, then Cb and Cr are 360 x 240.

4:2:0 macroblock A 4:2:0 macroblock has four 8 x 8 blocks of luminance
and two 8 x 8 blocks of chrominance. For example, a 4:2:0 YCbCr
macroblock has four blocks of Y, one block of Cb, and one block of Cr.

4:2:2 A color subsampling format in which the chrominance components are
subsampled by a factor oftwo in the horizontal only dimension. Example:
If Y is 720 x 480, then Cb and Cr are 360 x 480.

AC component ofthe DCT Any component of the DCT output except the
(0,0) (or DC) component.

ADPCM Adaptive differential pulse code modulation.

AGU Address generation unit.

ALU Arithmetic and logic unit.

ANS I American National Standards Institute.

336 ApPENDIX A

CAM Content-addressable memory.

CCIR The International Radio Consultative Committee of the International
Telecommunications Union (now ITU-R).

CCIR 601 CCIR recommendation 601 is a specification for digital TV. A
CCIR 601 image is defined as 720 pixels x 480 lines at 60-Hz interlaced
(NTSC) or 720 pixels x 576 lines at 50-Hz interlaced (pAL). This
recommendation is now called ITU-R Recommendation BT.601-4.

CCITT The telecommunication standardization sector of the ITU. It is now
called ITU-T.

CD Compact disco

CELP Code excited linear prediction.

CISC Complex instruction set computer.

CIF Common intermediate format. In a YCbCr CIF frame, Y is 352 pixels x
288lines, and Cb and Cr are 176 pixels x 144lines.

CPU Central processing unit.

DC component of the DCT The (0,0) component of the DCT output.

DCT,IDCT Discrete cosine transform or inverse discrete cosine transform.

DFT Discrete Fourier transform.

DHT Discrete Hadamard transform.

DMA Direct memory access.

DST Discrete sine transform.

DPCM Differential pulse code modulation.

dpi Dots per inch.

DSP Digital signal processing or digital signal processor.

DVI Digital video interleave.

DVI-PLV DVI production-Ievel video.

DVI-RTV DVI real-time video.

Abbreviations and Symbols

EOß End of block.

FFT Fast Fourier transform.

fps Frames per second.

FSM Finite state machine.

GOß Group of blocks.

GOP Group of pictures.

337

GOPS Giga operations per second. Same as billion operations per second
(BOPS).

HDTV High-definition TV. Several formats have been chosen for HDTV. For
instance, MPEG-2 considers two HDTV formats, namely, 1440 pixels x
1152lines and 1920 pixels x 1152lines.

HVS Human visual system.

110 Input--output.

IC Integrated circuit.

ISDN Integrated services digital network.

ISO International Organization for Standardisation.

ISOIIEC The international Electrotechnical Commission of the ISO.

ITU International Telecommunications Union.

ITU· T The telecommunication standardization sector of lTU, formerly the
CCITT.

JBIG Joint Binary Image Experts Group.

JFIF JPEG file interchange format.

JPEG Joint Photographic Experts Group.

KLT Karhunen--Loeve transform.

MAC Multiply--accumulate.

MAD Mean absolute difference. Same as MAE.

338

MAE Mean absolute error.

MCV Minimum coded unit.

MOPS Million operations per second.

MPEG Moving Pictures Expert Group.

mux Multiplexor.

ApPENDIX A

NTSC A 525-line, 60-Hz television system developed by the National Tele­
vision Systems Committee of the USA. NTSC is used in North America
and Japan.

PAL A 625-line, 50-Hz television system developed in Germany. NTSC,
P AL, and SECAM (from France) are the three main television transmission
systems in the world.

PCM Pulse code modulation.

PHODS Parallel hierarchical one-dimensional search.

PLA Programmable logic array.

PSNR Peak signal-to-noise ratio.

Px64 Another name for the H.261 video teleconferencing standard.

QCIF Quarter CIF. A QCIF image is defined as 176 pixels x 144lines.

QMF Quadrature mirror filter.

RAC ROM accumulator.

RISC Reduced instruction set computer.

RLC Run-length coder.

SIF Source input format. In a SIF image the luminance component is defined
as 352 pixels x 240 lines at 30 Hz or 352 pixels x 288 lines at 25 Hz.

SIMD Single input multiple data.

SNR Signal-to-noise ratio.

SPIFF The still-picture interchange file format.

Abbreviations and Symbols

TI Texas Instruments.

TLB Translation look-aside buffer.

TSS Three-step-search.

TSVQ Tree-search vector quantization.

VLC Variable length coder.

VLI Variable length integer.

VLIW Very large instruction word.

VLSI Very large scale integration.

VQ Vector quantization.

339

YCbCr A color coordinate system used for the transmission and storage of
image and video signals. Given the primary RGB inputs (R,G, and B in
[0,1]),

Altematively,

y = 0.299(R - G) + G + 0.114(B - G),

Cb = 0.564(B - y),

Cr = 0.713(R - Y).

[Y] [0.299 0.587 0.114] [R 1
Cb = -0.169 -0.331 0.500 G.
Cr 0.500 -0.419 -0.081 B

YUV A color coordinate system used in the PAL TV system. Given the
primary RGB inputs (R,G, and Bin [0,1]),

Y = 0.299(R - G) + G + 0.114(B - G),

U 0.493(B - Y),

V 0.877(R - Y).

Altematively,

[
Y] [0.299 0.587 0.114] [R]
U = -0.148 -0.289 0.437 G.
V 0.615 -0.515 -0.100 B

B
INTERNET DIRECTORY

The Internet is a rich source of materials on the image and video com­
pression standards and their implementation. One can find standards doc­
uments, literature, and software implementations. Most of the discussions
on data compression take place in the news groups comp.compression and
comp.compression.research. A good start to a search for information is
the monthly posted F AQ in these newsgroups. This monthly posting pro­
vides answers to the most frequently asked questions (FAQ). You can find
this posting by searching for "comp.compression Frequently Asked Ques­
tions" in the subject lines. This posting is also available via anonymous
ftp from r t fm . mi t . edu in the directory us ene t / news. answer s / -
eompression-faq or from other archive sites, such as ftp. uu. net.

In this appendix we provide internet addresses for some of the sites where
literature and software implementations of the compression standards are
currently available. Internet sites are constantly changing, so be sure to consult
the latest "FAQ" postings for the most updated information.

• ITU and ISO Documents.

The ITU provides most of the ITU Recommendations in postscript
format in gopher . i tu. eh. Y ou can access the ITU server using the
command telnet gopher. i tu. eh 2000. If you use a graphics­
based internet browser, such as Mosaic or Netscape, the site location is
gopher: I I gopher . i tu. eh/. For document searches, it is always
helpful to know the exact ITU number for a specific standard. For
example, JPEG is T.81.

342

ISO also has a world-wide web site at

http://www.iso.ch/welcome.html

ApPENDIX B

The site allows you to search for ISO documents and provides useful
information on the ISO activities and ISO members.

The documents for the proposed ITU-T H.324 standard that will enable
real-time voice, data, and video over V.34 modems on the general switched
telephone network (GSTN) can be obtained from the site ftp. std. com
and the relevant files are in /vendors /PictureTel /h324 /. This
directory contains files related to the draft version of the ITU-T H.324
(formerly known as H.32P) protocol suite.

If you do not have Internet access, the mailing addresses and telephone
numbers for the international organizations are given below:

ITU
Palais des Nations
CH-1211
Geneva 10, Switzerland
Tel: (22) 730-5111,

ISO
1 Rue de Varembe
Case Postale 56
CH-1211
Geneva 20, Switzerland
Tel: (22) 749-0111.

In the United States, standards documents are also available from the
American National Standards Institute (ANSI):

ANSI
11 West 42nd St.
New Y ork, NY 10036
Tel: (212) 642-4900.

• Sources for JPEG.

Source code for a IPEG coder from the Independent IPEG Group is
available from

Internet Directory 343

ftp.uu.net:/graphics/jpeg/

Ce.g., version 5 ofthe program is in the archive file jpegsrc.v5.tar.gz). For
additional information contact j peg- inf o@uunet . uu. net .

Other sources for JPEG are available from Stanford University at

havefun.stanford.edu:pub/jpeg.

This version also supports lossless JPEG. Another program for lossless
JPEG is available from Comell University at

ftp.cs.comell.edu:/pub/multimed/ljpg.tar.Z.

• Sources for H.261.

The IVS video conferencing system from the French research institute
INRIA is available from

zenon. inria. fr: /rodeo/ivs/last-version/.

This is X-windows based and runs on most Unix workstations. Another
H.261 coder is available from Stanford University at

havefun.stanford.edu:pub/p64/.

• Sources for MPEG.

For MPEG-l, sources are available from Stanford University at

havefun.stanford.edu:/pub/mpeg/

and from the University of Califomia Berkeley at

s2k-ftp.cs.berkeley.edu:/pub/multimedia/mpeg/.

The Berkeley and Stanford sites inc1ude implentations for MPEG-l
encoder and decoder.

For Windows and Windows NT, a very fast MPEG player from Stephen
Eckart is available from

ftp.netcom.com:/pub/cf/cfogg/mpeg/vmpeg12a.zip.

For MPEG-2, the best place to look is

ftp.netcom.com:/pub/cf/cfogg/mpeg2/.

It inc1udes both an MPEG-2 encoder and an MPEG-2 decoder. The
MPEG-2 encoder and decoder can also encode and decode MPEG-l
bit streams. The software has been developed by the MPEG Software
Simulation Group, which you can contact at MPEG-L@netcom. com.
This site also inc1udes files with pointers to other locations where sources

344 ApPENDIX B

or executables for image and video compression programs that are in the
public-domain.

REFERENCES

[1] CCIR Recornmendation 601-1. Encoding parameters of digital televi­
sion for studios.

[2] B. Ackland. The role of VLSI in multimedia. IEEE Journal of Solid­
State Circuits, 29(4):381--388, April 1994.

[3] AN. Akansu and R.A Haddad. Multiresolution Signal Decomposition.
Transforms, Subbands, and Wavelets. Academic Press, San Diego,
CA,1992.

[4] T. Akiyama et al. MPEG2 video codec using image compression DSP.
IEEE Transactions on Consumer Electronics, 3(40):466--472, Aug.
1994.

[5] J.D. Allen and S.M. Blonstein. The multiply-free Chen transform - a
rational approach to JPEG. In Picture Coding Symposium, Japan, pages
237--240, 1991.

[6] S. Arnmon and C. Erskine. Low-delay CELP speech compression and its
implementation on a fixed-point DSP. DSP & Multimedia Technology,
May 1994.

[7] P.H. Ang, P.A Ruetz, and D. Auld. Video compression makes big
gains. IEEE Spectrum, pages 16--19, Oct. 1991.

[8] M. Antonini, M. Barlaud, P. Mathieu, and 1. Daubechies. Image
coding using vector quantization in the wavelet transform domain. In
Proceedings IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP), pages 2297--2300, 1990.

[9] K. Aono et al. A video digital signal processor with a vector-pipeline
architecture. IEEE Journal Solid-State Circuits, 27(12):1886--1894,
Dec.1992.

346 IMAGE COMPRESSION STANDARDS

[10] Y. Arai, T. Agui, and M. Nakajima. A fast DCT-SQ scheme for images.
Transactions ofthe JEICE, E-71(ll):1095--1097, Nov. 1988.

[11] R.B. Arps and T.K. Truong. Comparison of international standards for
lossless still image compression. Proceedings ofthe IEEE, 82(6):889--
899, June 1994.

[12] A. Artieri and O. Colavin. A chip set core for image compression. IEEE
Transactions on Consumer Electronics, 36(3):395--402, August 1990.

[13] D. Auld. A flexible chip set for intra frame video compression. In
Digest of Papers, COMCON, pages 330--332, 1991.

[14] D. Bailey et al. Programmable vision processor/controller for flexible
implementation of current and future image compression standards.
IEEE Micro, pages 33--39, Oct. 1992.

[15] A. Balkanski, S. Purcell, and J. Kirkpatrick. System for compression
and decompression of video data using discrete cosine transform and
coding techniques. U.S. Patent 5341318, Aug. 1994.

[16] M.A. Bayoumi. VLSI Signal Processing Technology. Kluwer Academic
Publishers, Boston, 1994.

[17] T.C. Bell, J.G. Cleary, and LH. Witten. Text Compression. Prentice
Hall, Englewood Cliffs, New Jersey, 1990.

[18] T. Berger. Rate Distortion Theory - A Mathematical Basis for Data
Compression. Prentice-Hall, Englewood Cliffs, New Jersey, 1971.

[19] V. Bhaskaran, K. Konstantinides, and R. Lee. Real-time MPEG-1
software decoding on HP workstations. In Proceedings IS&TISPIE
Symp. on Electronic Imaging, Vol. 2419, pages 466--473, Feb. 1995.

[20] H. Bheda and P. Srinivasan. A high-performance cross-platform MPEG
decoder. In Proceedings SPIE, vol. 2187, pages 241--248, San Jose,
CA,1994.

[21] M. Bierling. Displacementestimation by hierarchical blockmatching. In
SPIE Vol. 1001 Visual Communications and Image Processing, pages
942--951, May 1988.

[22] M. Bolton et al. A complete single-chip implementation of the JPEG
image compression standard. In Proceedings IEEE Custom Integrated
Circuits Conference, pages 12.2.1--12.2.4, 1991.

REFERENCES 347

[23] D. Brinthaupt et al. A video decoder for H.261 video teleconferencing
and MPEG stored interactive video applications. In Proceedings IEEE
International Solid-State Circuits Con/erence, pages 34--35, 1993.

[24] D. Bursky. MPEG silicon puts quality video on PCs. Electronic Design,
Penton Publishing Inc., Oct. 141994.

[25] M.D. Carr. New video coding standard for the 1990s. Electronics and
Communication Engineering Journal, pages 119--124, June 1990.

[26] A. Chandrakasan, A. Burstein, and R.W. Brodersen. A low-power
chip set for a portable multimedia IIO terminal. IEEE Journal 0/ Solid­
State Circuits, 29(12):1415--1428, Dec. 1994.

[27] S-F. Chang and D.G. Messerschmitt. Designing high-throughput VLC
decoder, Part I-concurrent VLSI architectures. IEEE Transactions on
Circuits and Systems/or Video Technology, 2(2):187--196, June 1992.

[28] Chi-Fa Chen and KK Pang. Hybrid coders with motion compensation.
Multidimensional Systems and Signal Processing, 3(12):241--266, Dec.
1992.

[29] c.T. Chen and A. Wong. A self-goveming rate buffer control strategy
for pseudoconstant bit rate video coding. IEEE Transactions on Image
Processing, 2(1):50--59, Jan. 1993.

[30] L-G. Chen, W.T. Chen, Y.S. Jehng, and T.D. Chiueh. An efficient
parallel motion estimation algorithm for digital image processing. IEEE
Transactions on Circuits and Systems/or Video Technology, 1(4):378-
-385, Dec. 1991.

[31] M-H Chen et al. VLSI implementation of single chip JPEG codec. In
Proceedings International Symp. on VLSI Technology, Systems, and
Applications, pages 189--193, 1993.

[32] W -H. Chen and C.H. Smith. Adaptive coding of monochrome and color
images. IEEE Transactions on Communications, COM-25(11):1285--
1292, Nov. 1977.

[33] L. Chiariglione. Development of multi-industry information technology
standards. the MPEG case. In Proceedings International workshop on
HDTV '93, Octob. 1993.

348 IMAGE COMPRESSION STANDARDS

[34] N.!. Cho and S.U. Lee. Fast algorithm and implementation of 2-D
discrete eosine transform. IEEE Transactions on Circuits and Systems,
38(3):297--305, Mar. 1991.

[35] O. Colavin, A. Artieri, J-F. Naviner, and R Pacalet. A dedicated circuit
for real-time motion estimation. In Proceedings Euro ASIC '91, Paris,
France, pages 96--99, 1991.

[36] S. Cucchi and M. Fratti. A novel architecture for VLSI implementation
ofthe 2-D DCTIIDCT. In Proceedings ICASSP, pages V--693--V--696.
IEEE,1992.

[37] RL. de Queiroz and K.R Rao. Human visual sensitivity-weighted
progressive image transmission using the lapped orthogonal transform.
Journal of Electronic Imaging, 1(3):328--338, July 1992.

[38] Y.F. Dehery, M. Lever, and P. Urcun. A MUSICAM source codec
for digital audio broadcasting and storage. In Proceedings IEEE
International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), pages 3605--3608. IEEE, 1991.

[39] R Dianysian and RL. Baker. A VLSI chip set for real time vector
quantization of image sequences. In Proceedings IEEE International
Symposium on Circuits and Systems (ISCAS), pages 221--224, 1987.

[40] W. Ding and B. Liu. Rate-quantization modelling for rate control of
MPEG video coding and recording. In Proceedings SPIE Vol. 2419,
pages 139--150, Feb. 1995.

[41] B. Doyle. Crunch time for digital video. Newmedia, pages 47--50,
March 1994.

[42] S. Eckart. High performance software MPEG video player for PCs. In
Proceedings SPIE, vol. 2419, pages 446--454, San Jose, CA, 1995.

[43] S. Eckhart and C. Fogg. ISOIIEC MPEG-2 software video codec. In
Proceedings SPIE, volume 2419, pages 100--109, Feb. 1995.

[44] D.F. Elliot and K.R Rao. Fast Transforms - Algorithms, Analyses,
Applications. Acadernic Press, New Y ork, 1982.

[45] T. Enomoto and M. Yamashina. Video signal processor (VSP) ULSIs
for video data coding. In Proceedings VLSI Technology, Systems, and
Applications, pages 184--188, 1993.

REFERENCES 349

[46] E. Feig and S. Winograd. Fast algorithms for the discrete cosine
transform. IEEE Transactions on Signal Processing, 40(9):2174--2193,
Sept. 1992.

[47] R.D. Fellman, R.T. Kaneshiro, and K. Konstantinides. Design and
evaluation of an architecture for a digital signal processor for instru­
mentation applications. IEEE Transactions on ASSP, 38(3):537--546,
March 1990.

[48] E.D. Frimout, J. Biemond, and R.L. Lagendijk. Forward rate control for
MPEG recording. In SPIE Visual Commun. Image Processing, pages
184--194, May 1993.

[49] H. Fujiwara et al. An all-ASIC implementation of a low bit-rate
video codec. IEEE Transactions on Circuits and Systems for Video
Technology, 2(2):123--134, June 1992.

[50] ITU-T Recommendation G.722. 7 kHz audio-coding within 64 kbitls.

[51] CCITT Recommendation G.726. 40,32,24, 16 kbitls adaptive differ­
ential pulse code modulation (ADPCM), 1990.

[52] CCITT Recommendation G.728. Coding of speech at 16 kbitls using
low-delay code excited linear prediction, Sept. 1992.

[53] D. Galbi et al. An MPEG-l audio/video decoder with run-Iength com­
pressed antialiased video overlays. In Proceedings IEEE International
Solid-State Circuits Conference, pages 286--287, Feb. 1995.

[54] D. Le Gall. MPEG: A video compression standard for multimedia
applications. Communications ofthe ACM, 34(4), April 1991.

[55] R.G. Gallager. Information Theory and Reliable Communication. John
Wiley and Sons, NewYork, 1968.

[56] R.G. Gallager. Variations on a theme by Huffman. IEEE Transactions
on Information Theory, 24(6):668--674, Nov. 1978.

[57] A. Gersho and R.M. Gray. Vector Quantization and Signal Compres­
sion. Kluwer Academic Publishers, Boston, 1992.

[58] M. Ghanbari. The cross-search algorithm for motion-estimation. IEEE
Transactions on Communications, 38(7):950--953, July 1990.

350 IMAGE COMPRESSION STANDARDS

[59] H. Gharavi and M. Mills. Blockmatching motion estimation algorithms
- new results. IEEE Transactions on Circuits and Systems, 37(5):649--
651, May 1990.

[60] B. Girod. The efficiency of motion-compensating prediction for hybrid
coding of video sequences. IEEE Journal on Selected Articles in
Communications, SAC-5(7):1140--1154, Aug. 1987.

[61] B. Girod. Motion-compensatingprediction with fractional-pel accuracy.
IEEE Transactions on Communications, 41(4):604--612, Apr. 1993.

[62] c.A. Gonzales and E. Viscito. Motion video adaptive quantization in
the transform domain. IEEE Transactions on Circuits and Systems for
Video Technology, 1(4):374--378, Dec. 1991.

[63] B.M. Gordon and T.H.Y. Meng. A low power subband video decoder
architecture. In Proceedings IEEE International Conference on Acous­
tics, Speech, and Signal Processing (ICASSP), pages II--409--412,
1994.

[64] D. Greenley et al. UltraSPARC: the next generation superscalar 64-bit
SPARe. In Digest of Papers COMPCON Spring 1995, pages 442--451.
IEEE, March 1995.

[65] K. Guttag, RJ. Gove, and J.R. Van Aken. A single-chip multiprocessor
for multimedia: the MVP. IEEE Computer Graphics and Applications,
12(6):53--64, November 1992.

[66] ITU-T Recommendation H.261. Line transmission of non-telephone
signals. Video codec for audiovisual services at p x 64 kbits, March
1993.

[67] ITU-T Recommendation H.320. Line transmission of non-telephone
signals. Narrow-band visual telephone systems and terminal equipment,
03/93.

[68] E. Harnilton. JPEG file interchange format, Version 1.02. C-Cube
Microsystems, Literature Department, Sept. 1992.

[69] M. Harrand et al. A single chip videophone video encoder/decoder. In
Proceedings IEEE International Solid-State Circuits Conference, pages
292--293, Feb. 1995.

REFERENCES 351

[70] R. Hashemian. Design and hardware implementation of a memory effi­
cient Huffman decoding. IEEE Transactions on Consumer Electronics,
40(3):345--352, Aug. 1994.

[71] J. Hennessy, N. J ouppi, F. Baskett, and 1. Gill. MIPS: A VLSI processor
architecture. In Proceedings CMU Conference on VLSI Systems and
Computations, pages 337--346, Pittsburgh, PA, 1981.

[72] K. Herrmann et al. Architecture and VLSI implementation of a RISC
core for a monolithic video signal processor. In 1. Rabaey, P.M. Chau,
and J. Eldon, editors, VLSI Signal Processing VII, pages 368--377.
IEEE, New York, 1994.

[73] E. Hoffert et al. QuickTime: an extensible standard for digital multime­
dia. In Digest of Papers COMPCON Spring 1992, pages 15--20, Feb.
1992.

[74] R. Hopkins. Digital terrestrial HDTV for North America: the Grand
Alliance HDTV system. IEEE Transactions on Consumer Electronics,
40(3):185--198, Aug. 1994.

[75] P.G. Howard and J.S. Vitter. Arithmetic coding for data compression.
Proceedings ofthe IEEE, 82(6):857--865, June 1994.

[76] C-H. Hsieh and T-P. Lin. VLSI architecture for block-matching motion
estimation algorithm. IEEE Transactions on Circuits and Systems for
Video Technology, 2(2):169--175, June 1992.

[77] D.A. Huffman. A method for the construction of minimum-redundancy
codes. Proceedings Institute of Electrical and Radio Engineers,
40(9):1098--1101, Sept. 1952.

[78] R. Hunter and A.H. Robinson. International digital facsimile coding
standards. Proceedings ofthe IEEE, 68(7):854--867, Jul. 1980.

[79] G. Hutson, P. Shepherd, and 1. Brice. Colour Television. System
Principles, Engineering Practice, and Applied Technology. McGraw­
Hill, London, second edition, 1990.

[80] T. Inoue et al. A 300 MHz 16b BiCMOS video signal processor. In
Proceedings IEEE International Solid-State Circuits Conference, pages
36--37, 1993.

352 IMAGE COMPRESSION STANDARDS

[81] International Telegraph and Telephone Consulative Committee. Stan­
dardization of Group 3 facsimile apparatus for document transmission,
Recommendation TA. ISO, 1980.

[82] International Telegraph and Telephone Consulative Committee. Facsim­
ile coding schemes and coding control functions for Group 4 facsimile
apparatus, Recommendation T.6. ISO, 1984.

[83] ISO/IEC JTC1 CD 10918. Digital compression and coding of
continuous-tone still images - part 1: Requirements and guidelines.
ISO,1993.

[84] ISO/IEC JTC1 CD 11172. Coding of moving pictures and associ­
ated audio for digital storage media up to 1.5 Mbits/s. International
Organization for Standardization (ISO), 1992.

[85] ISO/IEC JTC1 CD 11544. Coded representation of picture and audio
information - progressive bi-level image compression. ISO, 1993.

[86] ISO/lEC JTC1 CD 13818. Generic coding of moving pictures and
associated audio. International Organization for Standardization (ISO),
1994.

[87] ISO/IEC JTClISC291WGll1N0400. Test model 5: version 2. ISO,
1993.

[88] ITU (Q.5/8 Rapporteur). Amendments to ITU-T Rec. T.30 for enabling
continuous-tone colour and grayscale mode for Group 3, COM 8-43-E.

[89] ITU (Q.5/8 Rapporteur). Amendments to ITU-T Rec. TA to enable
continuous-tone colour and grayscale mode for Group 3, COM 8-44-E.

[90] J.R. Jain and A.K. Jain. Displacement measurement and its application in
interframe coding. IEEE Transactions on Comunications, 29(12):1799-
-1808, Dec. 1981.

[91] Y. Jang et al. A 0.81L 100-MHz 2-D DCT core processor. IEEE
Transactions on Consumer Electronics, 40(3):703--710, August 1994.

[92] N. Jayant. Signal compression: Technology targets and research
directions. IEEE Journal on Selected Articles in Communications,
10(5):796--818, June 1992.

REFERENCES 353

[93] N.S. Jayant and P. NoH. Digital Coding of Waveforms, Principles and
Applications to Speech and Video. Prentice-HaH, Englewood Cliffs,
New Jersey, 1984.

[94] Y-S. Jehng, L-G. Chen, and T-D. Chiueh. A motion estimator for low
bit-rate codec. IEEE Transactions on Consumer Electronics, 38(2):60-
-69, May 1992.

[95] J. Jeong and W. Ahn. Subpixel accuracy motion estimation using a
model for motion-compensated errors. In Picture coding symposium,
Lausanne, Switzerland, pages 13.4--13.6, 1993.

[96] RA. Vander Kam, P.W. Wong, and RM. Gray. JPEG compression for
a grayscale printing pipeline. In Proceedings SPIE Vol. 2418, pages
229--240, Feb. 1995.

[97] F.A. Kamangar and K.R Rao. Fast algorithms for the 2-D discrete cosine
transform. IEEE Transactions On Computers, C-31(9):899--906, Sept.
1982.

[98] S. Kappagantula and K.R Rao. Motion compensated interframe image
prediction. IEEE Transactions on Communications, 33(9):1011--1015,
Sept. 1985.

[99] G. Keesman, 1. Shah, and RK. Gunnewiek. Bit-rate control for MPEG
encoders. Signal Processing: Image Communication, 6(1):545--560,
March 1995.

[100] J.c. Kieffer. Strong converses in source coding relative to a fidelity
criterion. IEEE Transactions on Information Theory, IT-37(2):697--
707, 1991.

[101] D. Kim et al. Areal-time MPEG encoder using a programmable
processor. IEEE Transactions on Consumer Electronics, 40(2):161--
170, May 1994.

[102] P. Knebel et al. HP's PA7100LC: A low-cost superscalar PA-RISC
processor. In Digest of Papers COMPCON Spring 1993, pages 441--
447. IEEE, Feb. 1993.

[103] U. Ko et al. DSP core with parallel module testability. In IEEE ASIC
'89: 2nd Annual Seminar, pages P6--3.1 -- P6--3.5, 1989.

354 IMAGE COMPRESSION STANDARDS

[104] L. Kohn et al. The visual instruction set (VIS) in UltraSPARC. In
Digest of Papers COMPCON Spring 1995, pages 462--469. IEEE,
March 1995.

[105] R.K. Kolagotla, S-S Yu, and J.F. Jei13 .. VLSI implementation of a tree
searched vector quantizer. IEEE Transactions on Signal Processing,
41(2):901--905, Feb. 1993.

[106] T. Komarek and P. Pirsch. Array architectures for block matching
algorithms. IEEE Transactions on Circuits and Systems, 36(10): 1301--
1308, October 1989.

[107] K. Konstantinides. Fast subband filtering in MPEG audio coding. IEEE
Signal Processing Letters, 1(2):26--28, Feb. 1994.

[108] Jan L.P. De Lameillieure. A heuristic algorithm for the construction of
a code with limited word length. IEEE Transactions on Information
Theory, 33(5):438--443, July 1988.

[109] Jan L.P. De Lameillieure and 1. Bruyland. Comment on algorithm
for construction of variable length code with limited maximum word
length. IEEE Transactions on Communications, 34(12):893--894, Dec.
1986.

[110] L.L. Larmore and D.S. Hirschberg. A fast algorithm for optimallength­
limited Huffman codes. Journal of the Association for Computing
Machinery JACM, 37(3):464--473, July 1990.

[111] B.G. Lee. A new algorithm to compute the discrete eosine transform.
IEEE Transactions on ASSP, ASSP-32(6):1243--45, Dec. 1984.

[112] D.T. Lee. JPEG: New enhancements and future prospects. In Proceed­
ings IS&T 48-th Annual Conference, pages 58--62, May 1995.

[113] J.c. Lee, E. Cheval, and J. Gergen. The Motorola 16-bit DSP ASIC
core. In IEEE Proceedings of ICASSP, pages 973--976,1990.

[114] J.H. Lee, M.K. Doh, and C.W. Lee. A VLSI chip for motion estima­
tion of HDTV signals. IEEE Transactions on Consumer Electronics,
40(2):154--160, May 1994.

[115] L-W. Lee, J.F. Wang, J.Y. Lee, and J.D. Shie. Dynamic search window
adjustment and interlaced search for block-matching algorithm. IEEE
Transactions on Circuits and Systems, 3(1):85--87, Feb. 1993.

REFERENCES 355

[116] R.B. Lee. Realtime MPEG video via software decompression on a
PA-RISC processor. In Digest of Papers COMPCON Spring 1995,
pages 186--192, March 1995.

[117] S-M. Lei and M-T. Sun. An entropy coding system for digital HDTV
applications. IEEE Transactions on Circuits and Systems for Video
Technology, 1(1):147--155, March 1991.

[118] M. Levy and J.P. Leonard. EDN's DSP-chip directory. EDN,40(10):40-
-95, May 111995.

[119] A.S. Lewis and G. Knowles. VLSI architecture for 2-D Daubechies
wavelet transform without multipliers. Electronic Letters, 27(2):171--
173,Jan.199l.

[120] A.S. Lewis and G. Knowles. Image compression using the 2-D wavelet
transform. IEEE Transactions on Image Processing, 1(2):244--250,
April 1992.

[121] D.B. Lidsky and J.M. Rabaey. Low power design of memory intensive
functions. case study: vector quantization. In J. Rabaey, P.M. Chau, and
J. Eldon, editors, VLSI Signal Processing VII, pages 378--387. IEEE,
New York, 1994.

[122] E. Linzer and E. Feig. New DCT and scaled-DCT algorithms for
fused multiply/add architectures. In Proceedings IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP) ,
pages 80--91, 1991.

[123] B. Liu and A. Zaccarin. New fast algorithms for the estimation of
block motion vectors. IEEE Transactions on Circuits and Systems,
3(2):148--157, Apr. 1993.

[124] H. Lohscheller. A subjectively adapted image communication sys­
tem. IEEE Transactions on Communications, COM-32(12):1316--1322,
Dec.1984.

[125] H. Lohscheller and U. Franke. Colour picture coding - algorithm
optimization and technical realization. Frequenz, 41:291--299, 11/12
1987.

[126] C.H. Lu. Comment on algorithm for construction of variable length
code with limited maximum word length. IEEE Transactions on
Communications, 34(2):373--375, Mar. 1988.

356 IMAGE COMPRESSION STANDARDS

[127] M-I. Lu and C-F. Chen. A Huffman-type code generator with order­
N complexity. IEEE Transactions on Acoustics, Speech, and Signal
Processing, 38(9):1619--1626, Sept. 1990.

[128] A.G. MacInnis. MPEG systems committee draft, ISO/IEC JTCl/SC2/
WGl1. In Digest of Papers COMPCON, Spring '91, pages 338--339.
IEEE,1991.

[129] A. Madisetti, R Jain, RL. Baker, and R Dianysian. Architecture
and integrated circuits for real time vector quantization of images. In
Proceedings IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP), pages V--677--680, 1992.

[130] X. Maitre. 7 kHz audio coding with 64 kbitls. IEEE Journal on Selected
Areas in Communications, 6(2):283--298, Feb. 1988.

[131] S.G. Mallat. A theory for multiresolution signal decomposition: the
wavelet representation. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 11(7):674--693, July 1989.

[132] R Manepally and D. Sprague. Intel's i750 video processor - the
programmable solution. In Digest of Papers COMPCON Spring 1991,
pages 324--329, 1991.

[133] G. Maturi. Single chip MPEG audio decoder. IEEE Transactions on
Consumer Electronics, 38(3):348--356, Aug. 1992.

[134] J.c. Michalina. Application specific DSP at SGS-Thomson. In IEEE
Proceedings of International Symposium on Circuits and Systems (IS­
CAS), pages 627--630, 1989.

[135] J.L. Mitchell and W.B. Pennebaker. Optimal hardware and software
arithmetic coding procedures for the Q-coder. IBM Journal of Research
and Development, 32(6):727--736, Nov. 1988.

[136] J.W. Modestino and D.G. Daut. Combined source channel coding of
images. IEEE Transactions on Communications, COM -27: 1644--1659,
Nov.1979.

[137] J.W. Modestino, D.G. Daut, and A.L. Vickers. Combined source channel
coding of images using the block eosine transform. IEEE Transactions
on Communications, COM-29(9):1261--1274, Sept. 1981.

REFERENCES 357

[138] G. Morrison. Video coding standards for multimedia: JPEG, H.261,
MPEG. In lEE Colloquium on Technology Support of Multimedia
(Digest No. 088), pages 2.1--2.4, April 1992.

[139] A. Mukherjee, N. Ranganathan, J.W. Flieder, and T. Acharya. MAR­
VLE: a VLSI chip for data compression using tree-based codes. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 1(2):203-
-214, June 1993.

[140] H. Murakami, S. Matsumoto, and H. Yamamoto. Algorithm for con­
struction of variable length code with limited maximum word length.
IEEE Transactions on Communications, 32(10):1157--1159, Oct. 1984.

[141] T. Murakami et al. A DSP architecture for 64Kbs motion video codec. In
Proceedings International Conference on Circuits and Systems (ISCAS),
pages 227--230. IEEE, 1988.

[142] H.G. Musmann. The ISO audio coding standard. In Proceedings
GLOBECOM '90, pages 511--517. IEEE, 1990.

[143] M. Nakagawaet al. DCT-based still image compression ICs with bit-rate
control. IEEE Transactions on Consumer Electronics, 38(3):711--717,
Aug.1992.

[144] J.B.O. Neal, Jr. and T.R. Natarajan. Coding isotropie images. IEEE
Transactions on Information Theory, IT-23:697--707, 1977.

[145] K. Ogawa et al. A single chip compression/decompression LSI based on
IPEG. IEEE Transactions on Consumer Electronics, 38(3):703--710,
Aug.1992.

[146] N. Ohta. Packet Video - Modeling and Signal Processing. Artech
House, Norwood, Massachussetts, 1994.

[147] S.Okuba. Reference model methodology - a tool for the collaborative
creation of video coding standards. Proceedings of the IEEE, 83(2): 139-
-150, Feb. 1995.

[148] S. Okubo, K. McCann, and A. Lippman. MPEG-2 requirements,
profiles, and performance verification. In Proceedings International
Workshop on HDTV'93, Oct. 1993.

358 IMAGE COMPRESSION STANDARDS

[149] Y. Ooi, A. Taniguchi, and S. Demura. A 162 Mbitls variable length
decoding circuit using an adaptive tree search technique. In IEEE 1994
Custom Integrated Circuits Conference, pages 6.5.1--6.5.4,1994.

[150] D. Pan. An overview of the MPEG/Audio compression algorithm. In
Proceedings SPIE, Vol. 2187, San Jose, CA, pages 260--273. SPIE,
Feb.1994.

[151] D. Pan. Digital audio compression. Digital Technical Journal, 5(2):28-
-40, Spring 1993.

[152] D. Pan. A tutorial on MPEG/Audio compression. IEEE Multimedia,
2(2):60--74, Summer 1995.

[153] K.K. Pang and T.K. Tan. Optimum loop filter in hybrid coders. IEEE
Circuits and Systemsfor Video Technology, 4(2):158, April 1994.

[154] H. Park and V.K. Prasanna. Area efficient VLSI architectures for
Huffman coding. IEEE Transactions on Circuits and Systems-lI:
Analog and Digital Signal Processing, 40(9):568--575, Sept. 1993.

[155] P. Patel and D. Douglass. Architectural features of the i860 - micropro­
cessor RISC core and on-chip caches. In IEEE Proceedings of ICCD,
pages 385--390, 1989.

[156] D.A. Patterson and J.L. Hennessy. Computer Architecture: a Quantita­
tive Approach. Morgan Kaufmann, San Mateo, Califomia, 1990.

[157] A. Peled and B. Liu. A new hardware realization of digital filters. IEEE
Transactions on ASSP, ASSP-22(6):456--462, December 1974.

[158] W.B. Pennebaker and J.L. MitchelI. JPEG Still Image Data Compres­
sion Standard. Van Nostrand Reinhold, New York, 1993.

[159] H.A. Peterson, H. Peng, J.H. Morgan, and W.B. Pennebaker. Quanti­
zation of color image components in the DCT domain. In SPIE Vol.
1453 Human Vision, Visual Processing, and Digital Display lI, pages
210--222, Feb. 1991.

[160] P. Pirsch, N. Demassieux, and W. Gehrke. VLSI architectures for video
compression - a survey. Proceedings ofthe IEEE, 83(2):220--246, Feb.
1995.

REFERENCES 359

[161] S.c. Purcell. The C-Cube CL550 JPEG image compression pracessor.
In Digest of Papers COMCON, pages 318--323, 1991.

[162] A. Puri and R. Aravind. Motion-compensated video coding with
adpative perceptual quantization. IEEE Transactions on Circuits and
Systemsfor Video Technology, 1(4):351--361, Dec. 1991.

[163] A. Puri, H.M. Hang, and D.L. Schilling. An efficient block-matching
algorithm for motion compensated coding. In Proceedings IEEE In­
ternational Conference on Acoustics, Speech, and Signal Processing
(ICASSP), pages 25.4.1--25.4.4,1987.

[164] R.A. Quinnell. Image compression, part 3. EDN, Cahners Publishing,
pages 114--120, May 13 1993.

[165] G. Radin. The 801 minicomputer. In Proceedings Symp. on Architec­
tural Supportfor Prog. Lang. and Oper. Systems, pages 39--47, Palo
Alto, CA, 1982.

[166] K.R. Rao and P. Yip. Discrete Cosine Transform - Algorithms, Advan­
tages, Applications. Academic Press, San Diego, Califomia, 1990.

[167] S.K. Rao et al. Areal-time P*64IMPEG video encoder chip. In
Proceedings IEEE International Solid-State Circuits Conference, pages
32--33, 1993.

[168] V. Ratnakar, E. Feig, E. Viscito, and S. Kalluri. Runlength encoding of
quantized DCT coefficients. In Proceedings SPIE, volume 2419, pages
398--406, Feb. 1995.

[169] V. Ratnakar and M. Livny. RD-OPT: an efficient algorithm for op­
timizing DCT quantization tables. In Data Compression Conference,
Snowbird, Utah, pages 333--339, March 1995.

[170] A. Razavi et al. VLSI implementation of an image compression
algorithm with a new bit rate contral capability. In Proceedings IEEE
International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), pages V:669--672, 1992.

[171] O. Rioul and M. Vetterli. Wavelets and signal processing. IEEE Signal
Processing Magazine, 8:14--38, Oct. 1991.

360 IMAGE COMPRESSION STANDARDS

[172] P.A. Ruetz et al. A high-performance fuH-motion video compres­
sion chip set. IEEE Transactions on Circuits and Systems for Video
Technology, 2(2):111--121, June 1992.

[173] c.P. Sandbank, editor. Digital Television. John Wiley and Sons,
Chichester, England, 1990.

[174] R. Schaphorst. Status of H.324 - the videoconferencing standard for
GSTN and mobile radio. In Desktop Video Conference DVC West,
pages 457--462, May 1995.

[175] V. Seferidis and M. Ghanbari. Generalized block matching motion
estimation. In Proceedings of SPIE: Visual communications and Image
Processing, pages 80--91, 1992.

[176] C.H. Sequin and D.A. Patterson. Design and implementation of RISC­
I. Technical Report UCB/CSD 821106, Computer Science Division
(EECS), Univ. ofCalifomia, Berkeley, October 1982.

[177] A. Shacham et al. Architectural considerations for SF-core based
microprocessor. In IEEE Proceedings of ICCD, pages 21--24, 1991.

[178] Y. Shishikui. A study on modeling of the motion compensation
prediction error signal. IEICE Transactions on Communications, Japan,
E75-B(5):368--376, May 1992.

[179] S. Shlien. Guide to MPEG-l audio standard. IEEE Transactions on
Broadcasting, 40(4):206--218, Dec. 1994.

[180] M. Slater, editor. A Guide to RISC Microprocessors. Academic Press,
San Diego, Califomia, 1992.

[181] M.M. Stojancic and C. Ngai. Architecture and VLSI implementation of
the MPEG-2:MP,ML video decoding process. SMPTE Journal, pages
62--72, Feb. 1995.

[182] M.T. Sun, L. Wu, and M.L. Liou. A concurrent architecture for VLSI
implementation of discrete eosine transform. IEEE Transactions on
Circuits and Systems, CAS-34(8):992--994, August 1987.

[183] I. Tamitani et al. An encoder/decoder chip set for the MPEG video
standard. In Proceedings IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), pages V--661--664, 1992.

REFERENCES 361

[184] Texas Instruments. TMS320 DSP, Product Overview, 1994.

[185] e.e. Todd et al. AC-3: Flexible perceptual coding for audio transmission
and storage. In Proceedings AES 96th Convention, Amsterdam, page
preprint 3796, 1994.

[186] M. Toyokura et al. A video DSP with macroblock-Ievel-pipeline
and a SIMD type vector-pipeline architecture for MPEG2 codec. In
Proceedings IEEE International Solid-State Circuits Conference, pages
74--75, 1994.

[187] G. Tziritas and C. Labit. Motion Analysisfor Image Sequence Coding.
Elsevier Science b. V., Amsterdam, The Netherlands, 1994.

[188] S. Undy et al. A low-cost graphics and multimedia workstation chip-set.
IEEE Micro, 14(2):10--22, April 1994.

[189] S. Uramoto et al. A IOO-MHz 2-D discrete cosine transforrn core
processor. IEEE Journal of Solid-State Circuits, 27(4):492--499, April
1992.

[190] D. e. Van Voorhis. Constructing codes with bounded codeword lengths.
IEEE Transactions Information Theory, 20(2):288--290, Feb. 1974.

[191] G.K. WaHace. The JPEG still picture compression standard. IEEE
Transactions on Consumer Electronics, 38(1):xviii--xxxiv, Feb. 1992.

[192] N.D. WeHs. MPEG: Status of digital coding standardization. In lEE Col­
loquium on Digital satellite technology and electronic newsgathering,
Digest No. 006, 1993.

[193] P.T. Whitcomb and H.M. Ahmed. A VLSI architecture for the CCITT
G.722 codec. In Proceedings IEEE GLOBECOM '89, pages 1262--
1266. IEEE, 1989.

[194] S.A. White. Applications of distributed arithmetic to digital signal
processing: A tutorial review. IEEE ASSP Magazine, 6(3):4--19, July
1989.

[195] I.H. Witten, R.M. Neal, and J.G. Cleary. Arithmetic coding for data
compression. Communications of the Association for Computing Ma­
chinery ACM, 30(6):520--540, June 1987.

362 IMAGE COMPRESSION STANDARDS

[196] S. Wolter, D. Birreck, and R. Laur. Classification for 2D-DCTs and
a new architecture with distributed arithmetic. In Proceedings IEEE
International Symposium on Circuits and Systems, pages 2204--2207,
June 1991.

[197] J.W. Woods and S.D. O'Neil. Subband coding of images. IEEE
Transactions on Acoustics, Speech, and Signal Processing, 34(5): 1278-
-1288, Oct. 1986.

[198] K. Xie, L.V. Eycken, and A. Oosterlinck. A new block-based motion
estimation algorithm. Signal Processing: Image Communication, 4:507-
-517, May 1992.

[199] K-M. Yang, H. Fujiwara, T. Sakaguchi, and A. Shimazu. VLSI
architecture of a versatile variable length decoding chip for real-time
video codecs. In Proceedings IEEE Region 10 Conference on Computer
and Communication Systems (TENCON '90), Hong Kong, pages 551--
554, Sept. 1990.

[200] K-M. Yang, M-T. Sun, and L. Wu. A family of VLSI designs for the
motion compensation block-matching algorithm. IEEE Transactions on
Circuits and Systems, 36(10):1317--1325, October 1989.

[201] C-G. Zhou et al. MPEG video decoding with the UltraSPARC visual
instruction set. In Digest of Papers COMPCON Spring 1995, pages
470--475. IEEE, March 1995.

AC-3 algorithm, 298
AC-3 audio coding, 308
AC-3 decoder, 311
AC-3 decoding, 313
AC-3 encoder, 310
Address generation, 221
ADPCM,299
Algorithmic complexity, 208
Aliasing, 323
Apple Computer, 330
Arithmetic coder, 250
Arithmetic coding, 37

decoding, 40
encoding, 37
implementation issues, 42

Array Microsystems, 278
Array processor, 239
ASPEC transform coder, 314
AT&T,284
Audio compact discs, 297
Audio compression standards, 197
Audio

5.1 channels, 308
AV4120A video controller, 284
A V 4220 video decoder, 284
A V 4310 video encoder, 284
Average codeword length, 20, 26
A VP Video Codec, 284
B-pictures, 167

coding, 179
Backward motion estimation, 105

INDEX

Backward-adaptive bit allocation,
310

Barrel shifter, 251, 255
Baseline JPEG, 139,258,263
Basis functions, 63
Bidirectional prediction, 126, 171
Binary tree, 19
Binary tree-search vector

quantizer, 318
Bit stream scalability, 182, 191
Bit-rate control, 268
Bitonal,44
Block coding, 62
Block matching algorithms, 108
Block matching criterion, 108
Block matching

full-search, 238
C-Cube, 263, 284

CL550 and CL560, 266
VideoRISC, 275

Captain Crunch, 331
CCIR 601, 164, 184, 198
CD-ROM,2
CELP coder, 299
Channel coder, 5
CIF,198,208,238
Cinepak, 331
CISC, 289
Closed GOP, 175
Coding complexity, 8
Coding delay, 8
Coding efficiency, 7

364

Color conversion, 265, 285
Color facsimile, 157
Compression ratio, 4, 21, 55
Compression, 1

block-based, 11
issues, 12
tradeoffs, 7--8

Computing power
DSP, 211
RISC,211

Concealment motion vectors, 187
Constant bit rate coders, 11
Constrained bit stream, 165
Constrained parameter bit stream,

174
Content-addressable memory,

251,257
Context modeling, 49
Covariance function, 54, 84
Covariance matrix, 84
CS4920, 313
Data interleaving, 134
Data partitioning, 191
Data-driven architecture, 278
Daubechies four-tap wavelet, 327
Daubechies wavelets, 332
DC-coded pictures, 167
DCT basis functions, 66
DCT, 208, 226, 330

3-D,88
accuracy, 202
benefits, 65
complexity, 77, 80
definition, 66
fast algorithms, 77
implementation, 231
MOPS requirements, 208
multiplication-free, 83

IMAGE COMPRESSION STANDARDS

row-colurnn decomposition, 68,
226

scaled,79
Decimation, 113
Decorrelation efficiency, 84
Differential coding, 17, 47
Digital audio, 297
Digital film, 308
Digital telephony, 297
Discrete eosine transforrn, 63
Discrete Fourier transforrn, 63
Discrete Hadamard transforrn, 63
Discrete sine transforrn, 63
Distributed arithmetic, 226--227
DMA,221
Dolby Laboratories, 298, 308
Downsampling, 323
DPCM vs. DCT-based systems, 85
DPCM, 61, 322
DSP unit, 281
DSP

core, 215, 219, 271
instruction format, 220

Dual-prime mode, 187
End of block, 142
Entropy coder, 249
Entropy coding, 16,211
Entropy decoder, 253
Entropy decoding, 16
Entropy, 7, 21
Facsimile, 2, 44

standards, 44
FFT, 221, 303
Field pictures, 185
Field prediction, 185
Filter bank, 300
Finite-state machine, 253
Floating-point, 290
Forward motion estimation, 105

Index

Forward-adaptive bit allocation,
310

Fractals, 54
Frame differencing, 94

performance, 95
Frame pictures, 185
Frame prediction, 185
Full-search algorithm, 108
G.721,299
G.722,197,299,313
G.726, 197,299
G.728,197,299,314
GaPS, 238
Grand Alliance HDTV system,

298,314
Grayscale, 47
Group of pictures, 174
H.120, 195
H.130, 195
H.221,197
H.230, 197
H.233,197
H.242,197
H.261,196,211,235,260,272,

279
GOB,201
INTER mode, 200
INTRA mode, 200
MOPS requirements, 208

H.262,161
H.320, 196
Harvard architecture, 219
HDTV, 182,209,247,308
Hewlett-Packard, 289, 291
Hierarchical mode, 147
Huffman coder, 171
Huffman coding, 18, 250

ad-hoc table design, 31
bounds,26

constrained length, 24
H.261,200
JPEG,48
properties, 21
Voorhis method, 33

Huffman decoder, 254
Huffman decoding, 22, 26, 29
Huffman tables, 251
Human perception, 136
Human visual system, 59
Hybrid coding, 91
Hybrid video coding

performance, 10 1
I-pictures, 167

coding, 176
IBM,222,284
IDCT, 66, 81
Integrated Information

Technology, 276
Intel, 222, 330

DVI,330
Indeo, 330

Interframe coding, 90, 330
performance, 98

Interframe processing, 272
Interlaced video, 162
Interpolation, 243
Intraframe coding, 91, 330
Inverse DCT, 66, 303
Inverse quantization, 73
ISDN,195
ISO standard 11172, 161
ISO standard 13818, 161
ITU-T Rec. T.4, 44
ITU-T Rec. T.6, 45--46
JBIG,46
JFIF, 154
JPEG processor, 263
JPEG versus JBIG, 50

365

366

JPEG, 129, 178, 192,211,258
baseline, 132, 150
decoder, 132
encoder, 131
entropy coding, 138
extensions, 155
hierarchical, 147
Huffman coding, 139
Huffman tables, 36
implementation issues, 151
interchange format, 132
lossless, 47, 60
progressive, 145
sequential, 145
SPIFF,156

Karhunen-Loeve transform, 63
Lei-Sun VLC decoder, 255
Lei-Sun VLC encoder, 251
Logarithmic search, 109
Loop filter, 201
Lossless compression, 6, 15
Lossy compression, 8, 11,53

video, 87
LSI Logic, 235, 247, 284

L64111,313
L64702,267
L64720,244
L64730,234
L64735,234
L64745 and L64702, 267

Macroblock stuffing, 175
Macroblock, 90, 175, 184,200

MPEG,165
Mallat, 327
Masking curve, 303
Matrixing operation, 302, 305
Matsushita, 286, 296

VDSP2,274
Mean absolute difference, 107

IMAGE COMPRESSION STANDARDS

Mean absolute error, 107, 237, 317
Mean opinion score, 9
Media Vision

Motive, 331
Microsoft, 331
Minimum coded unit, 134, 264
Modified Huffman, 44
Modified Read, 45
MOPS requirements

subband filtering, 328
H.261,213
motion estimation, 238
MPEG,209
TSVQ,319

MOPS, 8, 208
Motion compensation, 91, 170,

211,237
Motion estimation, 91, 211, 237,

295
comparisons, 120
full-search, 108, 242
hierarchical, 116
logarithmic search, 109
PHODS, 111
pixel projections, 115
pixel subsampling, 113
sub-pel, 243
sub-pixel-accurate, 122

Motion estimator, 239--240
half-pel, 246

Motion vector, 106, 237
Motion-estimation error, 97
Motion-JPEG, 150,331
Motive, 331
Motorola, 222
MPEG audio coding, 300
MPEG audio standard, 298
MPEG audio

Layers, 307

Index

MPEG encoder, 168
MPEG vs H.261, 203
MPEG,211

entropy coding, 177
hardware, 271
layers, 174
motion estimation, 168
video decoder, 171

MPEG-l, 161,207
MPEG-2 audio compression, 308
MPEG-2, 161, 182,298

hardware, 274
levels, 182
Main profile, 190
profiles and levels, 189
profiles, 182

MPEG-4, 161,326
Multimedia enhancements, 290,

295
Multimedia instructions, 291, 293
Multimedia Video Processor, 280
Multimedia-enhanced processors,

289
Multiresolution representation,

327
MUSICAM subband coder, 314
National Semiconductors, 222
NEC, 246--247, 260, 286

VSP3,272
NTSC, 164, 195, 198,276
Nyquist theorem, 297, 323
Orthogonal transform, 66
Orthonormal basis, 326
P x 64, 196
P-pictures, 167

coding,l78
PA7100LC, 291
PAL, 164, 195,276
PCM,300

Perceptual model, 59
Picture layer, 175
Pixel interpolation, 243
Polyphase networks, 301
Power spectral density, 56, 59
Prediction residual, 18,47,91
Predictive coder, 60, 130,200
Predictive coding, 299, 322
Prefix-condition code, 21
Prob ability model, 15,43
Processing requirements, 208
Processor array, 244
Progressive video, 163
PSNR,9
Psychoacoustic model, 309
Pulse code modulated, 300
Pyramidal filter, 327
QCIF, 199,208
QMF filters, 325, 327
Quality factor, 137
Quantization function, 60
Quantization matrix, 135, 174
Quantization scale factor, 176
Quantization table, 136
Quantization, 69, 72, 189,211
QuickTime, 330

367

Rate-distortion function, 55--56,
93--94

Rate-distortion theory, 92
Reference block, 237
Reference picture, 105
Relative sampling factors, 133
RGB to YCbCr, 265
RISC vs DSP, 221
RISC, 207, 289

architecture, 216
core, 215, 271, 296
instructions, 216

ROM-accumulator, 230

368

modified, 233
Row-column decomposition, 208,

225
Run-length coder, 249
Run-length coding, 44

benefits, 144
Sample-based coding, 60
Sampling frequency, 297
Sampling resolution, 297
Sanyo Electric, 269
Saturation arithmetic, 290
Scalable compression, 13
Scalable extensions, 184
Search window, 237
Selective refinement, 155
Separable filters, 324
Sequencelayer, 174
SGS-Thomson, 222, 247, 284

IMSA121,234
STI3220, 245
STV3200, 234
STV3208, 234

Shortened Huffman code, 24
SIF,I64

definition, 164
Signal quality, 8
Signal to noise ratio, 9
Significant pixel area, 165
SIMD, 274, 285
SNR scalability, 191
SNR,57
Source coder, 4
Source-coding theorem, 56, 62
Spatial correlation, 3
Spatial redundancy, 54
Spatial scalability, 192
Spectral correlation, 3
Spectral envelope, 310
Spectral selection, 146

IMAGE COMPRESSION STANDARDS

SPIFF,156
Subband analysis filter, 301
Subband coding, 321
Subsampling, 134

4:2:0, 164,208,264
4:2:2,164
4:4:4,184

Successive approximation, 146
Sun Microsystems, 289, 294
Temporal correlation, 3
Temporal prediction, 91
Temporal redundancy, 88
Temporal scalability, 192
Texas Instruments, 222

TMS320AVllO,313
MVP, 280
TMS3201 0, 222
TMS32080,280
TMS320C30, 220

Three-step search, 109
Tiling, 156
TLB,218
Toshiba, 270
Transformation kemels, 63
Two's complement, 229
UltraSPARC, 294
Uniquely decodable code, 22
Upsampling, 323
Variable bit rate coders, 11
Variable length integer, 258
Variable quantization, 155
Variable-length coder, 170, 249
VCP processor, 276
VDSP, 296
VDSP2,273
Vector quantization, 63, 316, 322
Video coders, 271
Video coding

model,94

Video editing, 13
Video for Windows, 331
Videoconferencing, 109, 195
VideoFlow,278
VideoRISC,275
Videoconferencing, 238
Vision controller, 277
Vision processor, 277
VLIW, 219, 221
VP+,277
Wallace tree-adder, 227
Wavelet decomposition, 326
Wavelets,326
Windowing operation, 305
Windowing, 301
YCbCr, 165, 184, 198
Zig-zag order, 141
Zoran

ZR36040 and ZR36050, 268
ZR36020, 234
ZR38000,313

369

