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Editorial

Welcome to the New Book Series Structures and Infrastructures.
Our knowledge to model, analyze, design, maintain, manage and predict the life-

cycle performance of structures and infrastructures is continually growing. However,
the complexity of these systems continues to increase and an integrated approach
is necessary to understand the effect of technological, environmental, economical,
social and political interactions on the life-cycle performance of engineering structures
and infrastructures. In order to accomplish this, methods have to be developed to
systematically analyze structure and infrastructure systems, and models have to be
formulated for evaluating and comparing the risks and benefits associated with various
alternatives. We must maximize the life-cycle benefits of these systems to serve the needs
of our society by selecting the best balance of the safety, economy and sustainability
requirements despite imperfect information and knowledge.

In recognition of the need for such methods and models, the aim of this Book Series
is to present research, developments, and applications written by experts on the most
advanced technologies for analyzing, predicting and optimizing the performance of
structures and infrastructures such as buildings, bridges, dams, underground con-
struction, offshore platforms, pipelines, naval vessels, ocean structures, nuclear power
plants, and also airplanes, aerospace and automotive structures.

The scope of this Book Series covers the entire spectrum of structures and infrastruc-
tures. Thus it includes, but is not restricted to, mathematical modeling, computer and
experimental methods, practical applications in the areas of assessment and evalua-
tion, construction and design for durability, decision making, deterioration modeling
and aging, failure analysis, field testing, structural health monitoring, financial plan-
ning, inspection and diagnostics, life-cycle analysis and prediction, loads, maintenance
strategies, management systems, nondestructive testing, optimization of maintenance
and management, specifications and codes, structural safety and reliability, system
analysis, time-dependent performance, rehabilitation, repair, replacement, reliability
and risk management, service life prediction, strengthening and whole life costing.

This Book Series is intended for an audience of researchers, practitioners, and
students world-wide with a background in civil, aerospace, mechanical, marine and
automotive engineering, as well as people working in infrastructure maintenance,
monitoring, management and cost analysis of structures and infrastructures. Some vol-
umes are monographs defining the current state of the art and/or practice in the field,
and some are textbooks to be used in undergraduate (mostly seniors), graduate and
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postgraduate courses. This Book Series is affiliated to Structure and Infrastructure
Engineering (http://www.informaworld.com/sie), an international peer-reviewed jour-
nal which is included in the Science Citation Index.

It is now up to you, authors, editors, and readers, to make Structures and
Infrastructures a success.

Dan M. Frangopol
Book Series Editor
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Foreword

Computational Analysis of Randomness in Structural Mechanics aims at detailing the
computational aspects of stochastic analysis within the field of structural mechanics.
This book is an excellent guide to the numerical analysis of random phenomena.

Chapter 1 describes the organization of the book’s contents and presents a collec-
tion of simple examples dealing with the quantification of stochastic uncertainty in
structural analysis. Chapter 2 develops a background in probability and statistical
concepts. Chapter 3 introduces basic techniques for regression and response surfaces.
Chapter 4 describes random processes in both time and frequency domains, presents
methods to compute the response statistics in stationary and non-stationary situations
discusses Markov process and Monte Carlo simulation, and concludes with a section
on stochastic stability. Chapter 5 deals with response analysis of spatially random
structures by describing random fields and implementation of discrete models in the
context of finite element analysis. Finally, Chapter 6 presents a representative selection
of methods aiming at providing better computational tools for reliability analysis.

The Book Series Editor would like to express his appreciation to the Author. It is
his hope that this third volume in the Structures and Infrastructures Book Series will
generate a lot of interest in the numerical analysis of random phenomena with emphasis
on structural mechanics.

Dan M. Frangopol
Book Series Editor

Bethlehem, Pennsylvania
January 20, 2009





Preface

As many phenomena encountered in engineering cannot be captured precisely in terms
of suitable models and associated characteristic parameters, it has become a long-
standing practice to treat these phenomena as being random in nature. While this
may actually not be quite correct (in the sense that the underlying physical processes
might be very complex—even chaotic—but essentially deterministic), the application
of probability theory and statistics to these phenomena, in many cases, leads to the
correct engineering decisions.

It may be postulated that a description of how these phenomena occur is essentially
more important to engineers than why they occur. Taking a quote from Toni Morrison’s
“The Bluest Eye’’ (admittedly, slightly out of context), one might say:

But since why is difficult to handle, one must take refuge in how.1

This book comprises lectures and course material put together over a span of about
20 years, covering tenures in Structural Mechanics at the University of Innsbruck,
Bauhaus-University Weimar, and Vienna University of Technology. While there is a
substantial body of excellent literature on the fascinating topic of the modelling and
analysis of random phenomena in the engineering sciences, an additional volume on
“how to actually do it’’ may help to facilitate the cognitive process in students and
practitioners alike.

The book aims at detailing the computational aspects of stochastic analysis within
the field of structural mechanics. The audience is required to already have acquired
some background knowledge in probability theory/statistics as well as structural
mechanics. It is expected that the book will be suitable for graduate students at the
master and doctoral levels and for structural analysts wishing to explore the potential
benefits of stochastic analysis. Also, the book should provide researchers and decision
makers in the area of structural and infrastructure systems with the required proba-
bilistic background as needed for strategic developments in construction, inspection,
and maintenance.

In this sense I hope that the material presented will be able to convey the message
that even the most complicated things can be dealt with by tackling them step by step.

Vienna, December 2008
Christian Bucher

1 Toni Morrison, The Bluest Eye, Plume, New York, 1994, p 6.
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Chapter 1

Introduction

ABSTRACT: This chapter first describes the organization of the book’s contents. Then it
presents a collection of simple examples demonstrating the foundation of the book in structural
mechanics. All of the simple problems deal with the question of quantifying stochastic uncer-
tainty in structural analysis. These problems include static analysis, linear buckling analysis and
dynamic analysis.

1.1 Outline

The introductory section starts with a motivating example demonstrating various ran-
dom effects within the context of a simple structural analysis model. Subsequently,
fundamental concepts from continuum mechanics are briefly reviewed and put into
the perspective of modern numerical tools such as the finite element method.

A chapter on probability theory, specifically on probabilistic models for structural
analysis, follows. This chapter 2 deals with the models for single random variables
and random vectors. That includes joint probability density models with prescribed
correlation. A discussion of elementary statistical methods – in particular estimation
procedures – complements the treatment.

Dependencies of computed response statistics on the input random variables can
be represented in terms of regression models. These models can then be utilized to
reduce the number of variables involved and, moreover, to replace the – possibly
very complicated – input-output-relations in terms of simple mathematical functions.
Chapter 3 is devoted to the application of regression and response surface methods in
the context of stochastic structural analysis.

In Chapter 4, dynamic effects are treated in conjunction with excitation of structures
by random processes. After a section on the description of random processes in the time
and frequency domains, emphasis is put on the quantitative analysis of the random
structural response. This includes first and second moment analysis in the time and
frequency domains.

Chapter 5 on the analysis of spatially random structures starts with a discussion
of random field models. In view of the numerical tools to be used, emphasis is put
on efficient discrete representation and dimensional reduction. The implementation
within the stochastic finite element method is then discussed.

The final chapter 6 is devoted to estimation of small probabilities which are typically
found in structural reliability problems. This includes static and dynamic problems as
well as linear and nonlinear structural models. In dynamics, the quantification of
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first passage probabilities over response thresholds plays an important role. Prior-
ity is given to Monte-Carlo based methods such as importance sampling. Analytical
approximations are discussed nonetheless.

Throughout the book, the presented concepts are illustrated by means of numerical
examples. The solution procedure is given in detail, and is based on two freely available
software packages. One is a symbolic maths package called maxima (Maxima 2008)
which in this book is mostly employed for integrations and linear algebra operations.
And the other software tool is a numerical package called octave (Eaton 2008) which
is suitable for a large range of analyses including random number generation and
statistics. Both packages have commercial equivalents which, of course, may be applied
in a similar fashion.

Readers who want to expand their view on the topic of stochastic analysis are encour-
aged to refer to the rich literature available. Here only a few selected monographs are
mentioned. An excellent reference on probability theory is Papoulis (1984). Response
surface models are treated in Myers and Montgomery (2002). For the modeling and
numerical analysis of random fields as well as stochastic finite elements it is referred to
VanMarcke (1983) and Ghanem and Spanos (1991). Random vibrations are treated
extensively in Lin (1976), Lin and Cai (1995), and Roberts and Spanos (2003). Many
topics of structural reliability are covered in Madsen, Krenk, and Lind (1986) as well as
Ditlevsen and Madsen (2007).

1.2 Introductory examples

1.2.1 Outl ine of analysis

The basic principles of stochastic structural analysis are fairly common across different
fields of application and can be summarized as follows:

• Analyze the physical phenomenon
• Formulate an appropriate mathematical model
• Understand the solution process
• Randomize model parameters and input variables
• Solve the model equations taking into account randomness
• Apply statistical methods

In many cases, the solution of the model equations, including randomness, is
based on a repeated deterministic solution on a sample basis. This is usually called
a Monte-Carlo-based process. Typically, this type of solution is readily implemented
but computationally expensive. Nevertheless, it is used for illustrative purposes in the
subsequent examples. These examples intentionally discuss both the modeling as well
as the solution process starting from fundamental equations in structural mechanics
leading to the mathematical algorithm that carries out the numerical treatment of
randomness.

1.2.2 Static analysis

Consider a cantilever beam with constant bending stiffness EI, span length L subjected
to a concentrated load F located the end of the beam.
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Figure 1.1 Cantilever under static transversal load.

First, we want to compute the end deflection of the beam. The differential equation
for the bending of an Euler-Bernoulli beam is:

EIw′′′′ = 0 → w′′′ = C1; w′′ = C1x + C2; w′ = C1
x2

2
+ C2x + C3

w = C1
x3

6
+ C2

x2

2
+ C3x + C4 (1.1)

Using the appropriate boundary conditions we obtain for the deflection and the
slope of the deflection

w(0) = 0 = C4; w′(0) = 0 = C3; (1.2)

and for the bending moment M and the shear force V

M(L) = 0 = −EIw′′(L) = −EI(C1L + C2)
(1.3)

V(L) = F = −EIw′′′(L) = −EIC1

So we get

C1 = − F
EI

; C2 = −C1L = FL
EI

(1.4)

and from that

w(x) = − F
EI

x3

6
+ FL

EI
x2

2
(1.5)

The vertical end deflection under the load is then given by

w = FL3

3EI
(1.6)

Assume L = 1 and that the load F and the bending stiffness EI are random variables
with mean values of 1 and standard deviations of 0.1. What is the mean value and the
standard deviation of w?

One can attempt to compute the mean value of w by inserting the mean values of
F and EI into the above equation. This results in w̄ = 1

3 . Alternately, we might try
to solve the problem by Monte-Carlo simulation, i.e. by generating random numbers
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representing samples for F and EI, compute the deflection for each sample and estimate
the statistics of w from those values.

This octave script does just that.

1 M=1000000;
2 F=1+.1*randn(M,1);
3 EI=1+.1*randn(M,1);
4 w=F./EI/3.;
5 wm=mean(w)
6 ws=std(w)
7 cov=ws/wm

Running this script three times, we obtain (note that the results do slightly differ in
each run)

1 wm=0.33676
2 ws=0.048502
3 cov=0.14403
4
5 wm=0.33673
6 ws=0.048488
7 cov=0.14399
8
9 wm=0.33679

10 ws=0.048569
11 cov=0.14421

In these results, wm denotes the mean value, ws the standard deviation, and cov the
coefficient of variation (the standard deviation divided by the mean). It can be seen
that the mean value is somewhat larger than 1

3 . Also, the coefficient of variation of the
deflection is considerably larger than the coefficient of variation of either F or EI.

Exercise 1.1 (Static Deflection)
Consider a cantilever beam as discussed in the example above, but now with a varying
bending stiffness EI(x) = EI0

1− x
2L

. Repeat the deflection analysis like shown in the example

a) for deterministic values of F, L and EI0

b) for random values of F, L and EI0. Assume that these variables have a mean
value of 1 and a standard deviation of 0.05. Compute the mean value and the
standard deviation of the end deflection using Monte Carlo simulation.

Solution: The deterministic end deflection is wd = 5FL3

12EI0
. A Monte Carlo simulation

with 1000000 samples yields a mean value of wm = 0.421 and a standard deviation of
ws = 0.070.
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Figure 1.2 Cantilever under axial load.

1.2.3 Buckl ing analysis

Now consider the same cantilever beam with an axial load N located at the end of the
beam.

This is a stability problem governed by the differential equation:

d4w
dx4

+ N
EI

d2w
dx2

= 0 (1.7)

Introducing the parameter λ in terms of

λ2 = N
EI

(1.8)

we can solve this equation by

w(x) = A cos λx + B sin λx + Cx + D (1.9)

Here, the coefficients A, B, C, D have yet to be determined At least one of them should
be non-zero in order to obtain a non-trivial solution. From the support conditions on
the left end x = 0 we easily get:

w(0) = 0 → A + D = 0
(1.10)

w′(0) = 0 → λB + C = 0

The dynamic boundary conditions are given in terms of the bending moment M at both
ends (remember that we need to formulate the equilibrium conditions in the deformed
state in order to obtain meaningful results):

M(L) = 0 → w′′(L) = 0 → −Aλ2 cos λL − Bλ2 sin λL = 0

M(0) = −N · w(L) → w′′(0) − N
EI

w(L) =
−Aλ2 − λ2(A cos λL + B sin λL + CL + D) = 0

→ −Aλ2(1 + cos λL) − Bλ2 sin λL − λ2CL − λ2D = 0 (1.11)
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Satisfying these four conditions, with at least one of the coefficients being different
from zero, requires a singular coefficient matrix, i.e.

det




1 0 0 1
0 λ L 1 0

−λ2 cos λL −λ2 sin λL 0 0
λ2 (− cos λL − 1) −λ2 sin λL −λ2 L −λ2




= λ5L2 cos λL = 0 → λL = (2k − 1)π
2

; k = 1, . . . ∞ (1.12)

Hence the smallest critical load Ncr, for which a non-zero equilibrium configuration
is possible, is given in terms of λ1 as

Ncr = λ2
1EI = π2EI

4L2
(1.13)

The magnitude of the corresponding deflection remains undetermined. Now assume
that L = 1 and the load N is a Gaussian random variable with a mean value of 2 and
standard deviation of 0.2, and the bending stiffness EI is a Gaussian random variable
with a mean value of 1 and standard deviation of 0.1. What is the probability that the
actual load N is larger than the critical load Ncr?

This octave script solves the problem using Monte Carlo simulation.

1 M=1000000;
2 N3=2+.2*randn(M,1);
3 EI=1+.1*randn(M,1);
4 Ncr=piˆ2*EI/4.;
5 indicator = N>Ncr;
6 pf=mean(indicator)

Running this script three times, we obtain (note that again the results do slightly
differ in each run)

1 pf = 0.070543
2 pf = 0.070638
3 pf = 0.070834

In these results, pf denotes the mean value of the estimated probability. This prob-
lem has an exact solution which can be computed analytically: pf = 0.0705673. The
methods required to arrive at this analytical solution are discussed in chapter 6.

Exercise 1.2 (Buckling)
Consider the same stability problem as above, but now assume that the random vari-
ables involved are N, L and EI0. Presume that these variables have a mean value
of 1 and a standard deviation of 0.05. Compute the mean value and the standard
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Figure 1.3 Cantilever under dynamic load.

deviation of the critical load applying Monte Carlo simulation using one million
samples. Compute the probability that the critical load is less than 2.

Solution: Monte Carlo simulation results in mn = 2.4675, sn = 0.12324 and
pf = 9.3000e-05. The last result is not very stable, i.e. it varies quite considerably
in different runs. Reasons for this are discussed in chapter 6.

1.2.4 Dynamic analysis

Now, we consider the same simple cantilever under a dynamic loading F(t).
For this beam with constant density ρ, cross sectional area A and bending stiffness

EI under distributed transverse loading p(x, t), the dynamic equation of motion is

ρA
∂2w
∂t2

+ EI
∂4w
∂x4

= p(x, t) (1.14)

together with a set of appropriate initial and boundary conditions.
In the following, we would like to compute the probability that the load as given

is close to a resonance situation, i.e. the ratio of the excitation frequency ω and the
first natural frequency ω1 of the system is close to 1. The fundamental frequency of
the system can be computed from the homogeneous equation of motion:

ρA
∂2w
∂t2

+ EI
∂4w
∂x4

= 0 (1.15)

by applying the method of separation of variables:

w(x, t) = φ(x) · T(t) (1.16)

Inserting this into the differential equation results in

T̈(t)
T(t)

= − EI
ρA

φIV (x)
φ(x)

= −ω2 (1.17)

Here the first term is a function only of t, the second term is a function only of x.
Obviously, this is only possible if these terms are constants (= −ω2). Using the right
hand side part of Eq. (1.17) we obtain

φIV (x) − ρA
EI

ω2φ(x) = 0 (1.18)
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Introducing the symbol λ defined as

λ4 = ρA
EI

ω2 (1.19)

we can write the general solution of Eq. (1.18) as:

φ(x) = B1 sinh λx + B2 cosh λx + B3 sin λx + B4 cos λx (1.20)

Here, the constants Bi have to be determined in such a way as to satisfy the kinematic
and dynamic boundary conditions at x = 0 and x = L.

For the cantilever under investigation (fixed end at x = 0, free end at x = L) the
boundary conditions are

φ(0) = 0; φ′(0) = 0; φ′′(L) = 0; φ′′′(L) = 0 (1.21)

Introducing this into (1.20) yields the equations

B2 + B4 = 0; λB1 + λB3 = 0; (1.22)

as well as

λ2B1( sinh λL + sin λL) + λ2B2( cosh λL + cos λL) = 0

λ3B1( cosh λL + cos λL) + λ3B2( sinh λL − sin λL) = 0 (1.23)

Non-trivial solutions exist for

cosh λL cos λL + 1 = 0 (1.24)

which has infinitely many positive solutions λk; k = 1 . . . ∞. The smallest positive
solution is λ1 = 1.875104

L .
Returning to Eq. 1.17 and considering the first part, we obtain

T̈k + ω2
kTk = 0 (1.25)

This is the well-known differential equation of a single-degree-of-freedom oscillator
with the solution

Tk(t) = Ck,1 cos ωkt + Ck,2 sin ωkt (1.26)

In this equation, the constants Ck,1 and Ck,2 have to be determined from the initial
conditions. The fundamental natural circular frequency ω1 is therefore given by

ω2 = λ4
1EI
ρA

= 12.362EI
ρAL4

(1.27)

Now we assume that the excitation frequency ω is a random variable with a mean
value of 0.3 and a standard deviation of 0.03. The bending stiffness is a random



In troduct ion 9

variable with mean value 0.1 and standard deviation 0.01, the cross sectional area
is random with a mean value of 1 and a standard deviation of 0.05. The density is
deterministic ρ = 1, so is the length L = 1. We want to compute the probability that the
ratio ω

ω1
lies between 0.99 and 1.01. This is achieved by the following octave script:

1 M=1000000;
2 om=1+0.1*randn(M,1);
3 EI=0.1+0.01*randn(M,1);
4 A=1+0.05*randn(M,1);
5 om1=sqrt(EI./A*12.362);
6 ind1 = om./om1>0.99;
7 ind2 = om./om1<1.01;
8 indicator = ind1.*ind2;
9 pr=mean(indicator)

Running this script three times, we get

1 pr = 0.046719
2 pr = 0.046946
3 pr = 0.046766

In these results, pr denotes the mean value of the estimated probability.

Exercise 1.3 (Dynamic deflection)
Now assume that the random variables involved in the above example are A, L and
EI. Let these variables have a mean value of 1 and a standard deviation of 0.05. Com-
pute the mean value and the standard deviation of the fundamental natural circular
frequency ω1 using Monte Carlo simulation with one million samples. Compute the
probability that ω1 is between 2 and 2.5.

Solution: Monte Carlo simulation results in the mean value mo = 3.55, the standard
deviation so = 0.38 and the probability is of the order of pf = 2.8e-4.

1.2.5 Structural analysis

A four-story stucture as sketched in Fig. 1.4 is subjected to four static loads
Fi, i = 1, 2, 3, 4. The floor slabs are assumed to be rigid and the columns have identical
length H = 4 m and different bending stiffnesses EIk, k = 1 . . . 8. Loads and stiffnesses
are random variables. The loads are normally distributed with a mean value of 20 kN
and a COV of 0.4, the stiffnesses are normally distributed with a mean value of
10 MNm2 and a COV of 0.2. All variables are pairwise independent.
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Figure 1.4 Four-story structure under static loads.

We want to compute

• the mean value and standard deviation as well as the coefficient of variation of the
horizontal displacement u of the top story,

• the probability pF that u exceeds a value of 0.1 m.

The analysis is to be based on linear elastic behavior of the structure excluding effects
of gravity.

The top story deflection can be calculated by adding the interstory relative
displacements (cf. Fig. 1.4):

u4 = F4H3

12(EI7 + EI8)

u3 = (F3 + F4)H3

12(EI5 + EI6)

(1.28)
u2 = (F2 + F3 + F4)H3

12(EI3 + EI4)

u1 = (F1 + F2 + F3 + F4)H3

12(EI1 + EI2)

u = u1 + u2 + u3 + u4

An octave-script carrying out the analysis is shown in Listing 1.1.
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1 Fbar=20;
2 sigmaF = Fbar*0.4;
3 EIbar=10000;
4 sigmaEI = EIbar*0.2;
5
6 NSIM=1000000;
7 ULIM=0.1;
8 UU=zeros(NSIM,1);
9

10 F1=Fbar + sigmaF*randn(NSIM,1);
11 F2=Fbar + sigmaF*randn(NSIM,1);
12 F3=Fbar + sigmaF*randn(NSIM,1);
13 F4=Fbar + sigmaF*randn(NSIM,1);
14
15 EI1 = EIbar + sigmaEI*randn(NSIM,1);
16 EI2 = EIbar + sigmaEI*randn(NSIM,1);
17 EI3 = EIbar + sigmaEI*randn(NSIM,1);
18 EI4 = EIbar + sigmaEI*randn(NSIM,1);
19 EI5 = EIbar + sigmaEI*randn(NSIM,1);
20 EI6 = EIbar + sigmaEI*randn(NSIM,1);
21 EI7 = EIbar + sigmaEI*randn(NSIM,1);
22 EI8 = EIbar + sigmaEI*randn(NSIM,1);
23
24 H=4;
25
26 u4=F4./(EI7+EI8)/12*Hˆ3;
27 u3=(F3+F4)./(EI5+EI6)/12*Hˆ3;
28 u2=(F2+F3+F4)./(EI3+EI4)/12*Hˆ3;
29 u1=(F1+F2+F3+F4)./(EI1+EI2)/12*Hˆ3;
30 u=u1+u2+u3+u4;
31
32 UM=mean(u)
33 US=std(u)
34 COV=US/UM
35 indic=u>ULIM;
36 PF=mean(indic)

Listing 1.1 Monte Carlo simulation of structural analysis.

The results are:

1 UM = 0.054483
2 US = 0.012792
3 COV = 0.23478
4 PF = 7.1500e-04





Chapter 2

Preliminaries in probability theory
and statistics

ABSTRACT: This chapter introduces elementary concepts of probability theory such as con-
ditional probabilities and Bayes’ theorem. Random variables and random vectors are discussed
together with mathematical models. Some emphasis is given to the modelling of the joint
probability density of correlated non-Gaussian random variables using the so-called Nataf -
model. Statistical concepts and methods are introduced as they are required for sample-based
computational methods.

2.1 Definitions

Probability is a measure for the frequency of occurrence of an event. Intuitively, in
an experiment this can be explained as the ratio of the number of favorable events to
the number of possible outcomes. However, a somewhat more stringent definiton is
helpful for a rigorous mathematical foundation (Kolmogorov, see e.g. Papoulis 1984).
Axiomatically, this is described by events related to sets A, B, . . . contained in the set �,
which is the set of all possible events, and a non-negative measure Prob(i.e. Probability)
defined on these sets following three axioms:

I : 0 ≤ Prob[A] ≤ 1

II : Prob[�] = 1 (2.1)

III : Prob[A ∪ B] = Prob[A] + Prob[B]

Axiom III holds if A and B are mutually exclusive, i.e. A ∩ B = ∅.
N.B: The probability associated with the union of two non mutually exclusive events

(cf. the example of A and C shown in Fig. 2.1) is not equal to the sum of the individual
probabilities, Prob[A ∪ C] 	= Prob[A] + Prob[C]. In this example there is an apparent
overlap of the two events defined by A ∩ C. By removing this overlap, we again obtain
mutually exclusive events. From this argument we obtain:

Prob[A ∪ C] = Prob[A] + Prob[C] − Prob[A ∩ C] (2.2)

Given an event A within the set � of all possible events we can define the comple-
mentary Event Ā = �\A (see Fig. 2.2). Obviously, A and Ā are mutually exclusive,
hence:

Prob[A] + Prob[Ā] = Prob[�] = 1 (2.3)
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Figure 2.1 Set representation of events in sample space.

Figure 2.2 Event A and complementary event Ā.

because of Prob[A ∩ Ā] = Prob[∅] = 0. It can be noted that an impossible event has
zero probability but the reverse is not necessarily true.

→ Prob[Ā] = 1 − Prob[A] (2.4)

The conditional probability of an event A conditional on the occurrence of event B
describes the occurrence probability of A once we know that B has already occurred.
It can be defined as:

Prob[A|B] = Prob[A ∩ B]
Prob[B]

(2.5)

Two events A and B are called stochastically independent if the conditional probability
is not affected by the conditioning event, i.e. Prob[A|B] = Prob[A]. In this case we
have

Prob[A ∩ B] = Prob[A] · Prob[B] (2.6)

If � is partitioned into disjoint sets A1 . . . An and B is an arbitrary event (cf. Fig. 2.3),
then

Prob[B] = Prob[B|A1] · Prob[A1] + . . . + Prob[B|An] · Prob[An] (2.7)

This is known as the total probability theorem. Based on Eq.(2.7) we obtain the
so-called Bayes’ theorem

Prob[Ai|B] = Prob[B|Ai] · Prob[Ai]
Prob[B|A1] · Prob[A1] + . . . + Prob[B|An] · Prob[An]

(2.8)

In this context, the terms a priori and a posteriori are often used for the probabilities
Prob[Ai] and Prob[Ai|B] respectively.
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Figure 2.3 Event B in disjoint partitioning Ai of �.

Example 2.1 (Conditional probabilities)
Consider a non-destructive structural testing procedure to indicate severe structural
damage which would lead to imminent structural failure. Assume that the test has
the probability Ptd = 0.9 of true detection (i.e. of indicating damage when damage is
actually present). Also assume that the test has a probability of Pfd = 0.05 of false
detection (i.e. of indicating damage when damage is actually not present). Further
assume that the unconditional structural damage probability is PD = 0.01 (i.e. without
any test). What is the probability of structural damage if the test indicates positive for
damage?

The problem is solved by computing the conditional probability of structural damage
given the test is positive. Let structural damage be denoted by the event A and the
positive test result by the event B. A positive test result will occur if

a) the test correctly indicates damage (damage is present)
b) the test falsely indicates damage (damage is not present)

The probabilities associated with these mutually exclusive cases are readily com-
puted as

Pa = Prob[A ∩ B] = Prob[B|A] · Prob[A] = Ptd · PD = 0.009

Pb = Prob[Ā ∩ B] = Prob[B|Ā] · Prob[Ā] = Pfd · (1 − PD) = 0.0495

Hence the probability of a positive test result is

Prob[B] = Prob[A ∩ B] + Prob[Ā ∩ B] =
= Ptd · PD + Pfn · (1 − PD) = 0.009 + 0.0495 = 0.0585 (2.9)

From this we easily obtain the desired probability according to Bayes’ theorem:

Prob[A|B] = Prob[A ∩ B]/Prob[B] = Ptd · PD

Ptd · PD + Pfn · (1 − PD)

= 0.009/0.0585 = 0.154 (2.10)

This indicates that the test does not perform too well. It is interesting to note that this
performance deteriorates significantly with decreasing damage probability PD, which
can easily be seen from the above equation.
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Exercise 2.1 (Conditional probability)
Assume that there is a newly developed test to detect extraterrestrial intelligence. This
test indicates positively for true intelligence with a probability of Ptd = 0.9999. Unfor-
tunately, the test may also indicate positively in the absence of intelligence with a
probability of Pfd. Assume that the probability Prob[I] = PI of a randomly picked
planet carrying intelligence in the entire universe is 0.00001. Compute the limit on the
false detection probability Pfd so as the conditional probability of intelligence on the
condition that the test has a positive result, Prob[I|D], is larger than 0.5.

Solution: This is to be solved using the relations from the previous example. We get
the very small value of Pfd < 9.9991 · 10−6 ≈ 10−5.

2.2 Probabilistic models

2.2.1 Random variables

For most physical phenomena, random events A can be suitably defined by the occur-
rence of a real-valued random value X, which is smaller than a prescribed, deterministic
value x.

A = {X|X < x} (2.11)

The probability Prob[A] associated with this event obviously depends on the mag-
nitude of the prescribed value x, i.e. Prob[A] = F(x) For real valued X and x, this
function FX(x) is called probability distribution function (or equivalently, cumulative
distribution function, cdf)

FX(x) = Prob[X < x] (2.12)

In this notation, the index X refers to the random variable X and the argument x
refers to a deterministic value against which the random variable is compared. Since
real-valued variables must always be larger than −∞ and can never reach or exceed
+∞, we obviously have

lim
x→−∞ FX(x) = 0; lim

x→+∞ FX(x) = 1 (2.13)

Differentiation of FX(x) with respect to x yields the so-called probability density
function (pdf)

fX(x) = d
dx

FX(x) (2.14)

From the above relations it follows that the area under the pdf-curve must be equal to
unity:

∞∫
−∞

fX(x)dx = 1 (2.15)
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Figure 2.4 Schematic sketch of probability distribution and probability density functions.

A qualitative representation of these relations is given in Fig. 2.4.
In many cases it is more convenient to characterize random variables in terms of

expected values rather than probability density functions. The expected value (or
ensemble average) of a random quantity Y = g(X) can be defined in terms of the
probability density function of X as

E[Y] = E[g(X)] =
∞∫

−∞
g(x)fX(x)dx (2.16)

From this definition, it is obvious that the expectation operator is linear, i.e.

E[λY] = λE[X]; E[Y + Z] = E[Y] + E[Z] (2.17)

Special cases of expected values are the mean value X̄

X̄ = E[X] =
∞∫

−∞
xfX(x)dx (2.18)

and the variance σ2
X of a random variable

σ2
X = E[(X − X̄)2] =

∞∫
−∞

(x − X̄)2fX(x)dx (2.19)

The positive square root of the variance σX is called standard deviation. For variables
with non-zero mean value (X̄ 	= 0) it is useful to define the dimensionless coefficient of
variation

VX = σX

X̄
(2.20)



18 Computat iona l ana lys i s o f randomness in s tructura l mechan ics

A description of random variables in terms of mean value and standard deviation
is sometimes called “second moment representation’’. Note that the mathematical
expectations as defined here are so-called ensemble averages, i.e. averages over all
possible realizations.

A generalization of these relations is given by the definition of statistical moments
of k-th order

µk = E[Xk] =
∞∫

−∞
xkfX(x)dx (2.21)

and the centralized statistical moments of k-th order

µ̂k = E[(X − X̄)k] =
∞∫

−∞
(x − X̄)kfX(x)dx (2.22)

In some applications, two specific normalized statistical moments are of interest. These
dimensionless quantities are the skewness s defined by

s = µ̂3

σ3
X

(2.23)

and the kurtosis (or excess) κ defined by

κ = µ̂4

σ4
X

− 3 (2.24)

Note that for a Gaussian distribution both skewness and kurtosis are zero.

Theorem: (Chebyshev’s inequality)
Assume X to be a random variable with a mean value of X̄ and finite variance σ2

X < ∞.
Then:

Prob[|X − X̄| > ε] ≤ σ2
X

ε2
∀ε > 0 (2.25)

For many practical applications (such as, e.g. in structural reliability analysis) this
bound is not sufficiently narrow. For example, consider the case in which ε = σX.
From Chebyshev’s inequality we obtain the result Prob[|X − X̄| ≥ σX] ≤ 1. This result
is not really helpful.

Standard izat ion

This is a linear transformation of the original variable X to a new variable Y which
has zero mean and unit standard deviation.

Y = X − X̄
σX

(2.26)
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Based on the linearity of the expectation operator (cf. Eq. 2.17) it is readily shown that
the mean value of Y is zero

E[Y] = 1
σX

(E[X] − E[X̄]) = 0 (2.27)

and that the standard deviation is equal to unity

E[Y2] = 1

σ2
X

E[(X − X̄)2] = σ2
X

σ2
X

= 1 (2.28)

Y is called a standardized random variable.

2.2.2 Some types of distr ibutions

Gauss ian d is t r ibut ion

Due to its simplicity, the so-called Gaussian or normal distribution is frequently used.
A random variable X is normally distributed if its probability density function is:

fX(x) = 1√
2πσX

exp

[
− (x − X̄)2

2σ2
X

]
; −∞ < x < ∞ (2.29)

Here, X̄ is the mean value and σX is the standard deviation. The distribution function
FX(x) is described by the normal integral �(.):

FX(x) = �

(
x − X̄

σX

)
(2.30)

in which

�(z) = 1√
2π

z∫
−∞

exp
(

−u2

2

)
du (2.31)

This integral is not solvable in closed form, however, tables and convenient numerical
approximations exist. The use of the Gaussian distribution is frequently motivated by
the central limit theorem, which states that an additive superposition of independent
random effects of similar importance tends asymptotically to the Gaussian distribution.

For the Gaussian distribution, we can easily derive expressions for the higher-order
statistical moments in terms of the mean value and the standard deviation. For the
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third-order moment we get

E[X3] =
∞∫

−∞
x3 1√

2πσX
exp

[
− (x − X̄)2

2σ2
X

]
dx

=
∞∫

−∞
(uσx + X̄)3 1√

2π
exp

(
−u2

2

)
du = 3σ3

X + X̄3 (2.32)

and for the fourth-order moment

E[X4] =
∞∫

−∞
(uσx + X̄)4 1√

2π
exp

(
−u2

2

)
du

= 3σ4
X + 6σ2

XX̄2 + X̄4 (2.33)

Log-normal d i s t r ibut ion

A random variable X is log-normally distributed if its probability density function is

fX(x) = 1

x
√

2πs
exp

[
− ( log x

µ
)2

2s2

]
; x ≥ 0 (2.34)

and its distribution function is given by

FX(x) = �

(
log x

µ

s

)
(2.35)

In these equations, the parameters µ and s are related to the mean value and the
standard deviation as follows:

s =
√

ln
(

σ2
X

X̄2
+ 1

)
; µ = X̄ exp

(
− s2

2

)
= X̄2√

X̄2 + σ2
X

(2.36)

Two random variables with X̄ = 1.0 and σX = 0.5 that have different distribution
types are shown in Fig. 2.5. It can clearly be seen that the log-normal density function
is non-symmetric.

The difference becomes significant especially in the tail regions. The log-normal
distribution does not allow any negative values, whereas the Gaussian distribution,
in this case, allows negative values with a probability of 2.2%. In the upper tail, the
probabilities of exceeding different threshold values ξ, i.e. Prob[X > ξ], are shown
in Table 2.1. The difference is quite dramatic what underlines the importance of the
appropriate distribution model.
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Figure 2.5 Normal and log-normal probability density functions.

Table 2.1 Exceedance probabilities for different distribution models.

Level ξ 0 1 2 3 4 5

Normal 0.97725 0.5 0.0228 3.17e-05 9.90e-10 6.28e-16
Lognormal 1.0 0.40664 0.0442 0.052 0.00076 0.00013

Exponent ia l and Gamma dis t r ibut ions

The family of Gamma distributions is characterized by the probability density function

fX(x) = 1
aν�(ν)

xν−1 exp
(
−x

a

)
; x ≥ 0 (2.37)

Here ν is a shape parameter, a is a scale parameter, and �(.) is the complete Gamma
function. The mean value is X̄ = νa and the standard deviation is given by σX = √

νa.
For the special case ν = 1 we obtain the exponential density function

fX(x) = 1
a

exp
(
−x

a

)
; x ≥ 0 (2.38)

This density function can also be shifted by an amount ε so that

fX(x) = 1
a

exp
(

−x − ε

a

)
; x ≥ ε (2.39)

Gumbel d i s t r ibut ion

The Gumbel (or Type I largest) distribution is frequently used to model extreme
events such as annual maximum wind speeds or flood heights. Its probability density
function is

fX(x) = α exp{−(x − µ)α − exp[−(x − µ)α]} (2.40)

and its probability distribution function is given by

FX(x) = exp{− exp[−(x − µ)α]} (2.41)
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Figure 2.6 Various probability density functions with X̄ = 1 and σX = 0.5 (Ranges of mean
value ± standard deviation are indicated as shaded areas).

The mean value and the standard deviation of a Gumbel-distributed random variable
X are related to the distribution parameters by

X̄ = µ + γ

α
; σX = π

α
√

6
(2.42)

in which γ = 0.5772156649 . . . is the Euler-Mascheroni constant (Abramowitz and
Stegun 1970).

Weibu l l d i s t r ibut ion

The Weibull (or Type III smallest) distribution is often used in the modeling of material
defects related to fatigue and similar problems. Its probability density function is

fX(x) = k
µ

(
x
µ

)k−1

exp

[
−

(
x
µ

)k
]

; x ≥ 0 (2.43)
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Here µ > 0 is a scale parameter and k > 0 a shape parameter. The probability
distribution function is

FX(x) = 1 − exp

[
−

(
x
µ

)k
]

; x ≥ 0 (2.44)

The mean value and the standard deviation of a Weibull-distributed random variable
X are related to the distribution parameters µ and k by

X̄ = µ · �

(
1 + 1

k

)
; σ2

X = µ2
[
�

(
1 + 2

k

)
− �2

(
1 + 1

k

)]
(2.45)

Here �(.) denotes the Gamma function. The limiting case k = 1 defines an exponential
distribution, the case k = 2 is called Rayleigh-distribution. The computation of k and
µ given X̄ and σX requires a numerical procedure. Eqs. 2.45 can be reformulated such
that µ is eliminated:

σ2
X

X̄2
= �

(
1 + 2

k

) − �2
(
1 + 1

k

)
�2

(
1 + 1

k

) → 1 + σ2
X

X̄2
= �

(
1 + 2

k

)
�2

(
1 + 1

k

) (2.46)

This can easily be solved, e.g. by bisection. Then µ is given by

µ = X̄

�
(
1 + 1

k

) (2.47)

Example 2.2 (Computation of Weibull parameters)
Let X be a Weibull-distributed random variable with mean value X = 1 and standard
deviation σX = 0.5. Compute the parameters k and µ of the Weibull distribution. The
equation to be solved is

�
(
1 + 2

k

)
�2

(
1 + 1

k

) − 1.25 = 0 (2.48)

The octave script solving the example by bisection is shown in Listing 2.1.

It produces the result

1 k = 2.1013
2 mu = 1.1291

There is also a shifted Weibull (or three-parameter) distribution with an additional
parameter ε defining a lower limit. In this case, the probability distribution function is

FX(x) = 1 − exp

[
−

(
x − ε

µ

)k
]

; x ≥ ε (2.49)

The probability density function follows from differentiation.
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1 xbar = 1;
2 sigma = 0.5;
3 cc = 1+sigma ˆ2/xbar ˆ2;
4
5 k=100;
6 dk=100;
7 while (dk>1e-5)
8 h = gamma(1+2/k)/gamma(1+1/k) ˆ2 - cc;
9 dk = dk/2;

10 if (h<0) k = k - dk;
11 else k = k + dk;
12 end
13 end
14 k
15 mu=xbar/gamma(1+1/k)

Listing 2.1 Computation of Weibull distribution parameters using bisection.

Cauchy d is t r ibut ion

An interesting class of probability density functions is given by rational functions
(i.e. fractions of polynomials in x). One classical example is the Cauchy distribution
with the probability distribution function

FX(x) = 1
2

+ 1
π

arctan(x) (2.50)

and the probability density function

fX(x) = 1
π(1 + x2)

(2.51)

All distributions based on a rational density function only have a finite number of
moments (cf. Eq. 2.21). Probability density functions with such properties occur in
the analysis of dynamic systems with random parametric excitation (see e.g. Arnold
and Imkeller 1994). The Cauchy distribution may be assigned a mean value of zero,
although, strictly speaking, the integral

X̄ =
∞∫

−∞

x dx
π(1 + x2)

= lim
v→∞

0∫
−v

x dx
π(1 + x2)

+ lim
u→∞

u∫
0

x dx
π(1 + x2)

= − lim
v→∞

1
2π

log(1 + v2) + lim
u→∞

1
2π

log(1 + u2) (2.52)
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Figure 2.7 Schematic sketch of conditional probability distribution function.

does not exist. Its so-called principal value (which is obtained by letting u = v before
taking the limit in the above equation), however, is zero. The variance σ2

X is clearly
unbounded.

2.2.3 Condit ional distr ibution

The concept of conditional probabilities as outlined earlier can readily be extended
to the case of random variables. Let A be the event X < x and B be the event X < a.
The probability of X < x, given that we already know X < a, is then a conditional
distribution, i.e.

Prob[X < x|X < a] = FX|X<a(x) (2.53)

Since this is a probability measure, we obviously have the limits

lim
x→−∞ FX|X<a(x) = 0; lim

x→+∞ FX|X<a(x) = 1 (2.54)

If we assume that the number a is chosen such that FX(a) 	= 0 we can then use the
definition of conditional probabilities to compute

FX|X<a(x) = Prob[X < x|X < a] = Prob[(X < x) ∧ (X < a)]
Prob[X < a]

(2.55)

Here we need to distinguish two cases. First, if x ≥ a then the set of all X with X < a
is a subset of the set of all X with X < x. Hence

FX|X<a(x) = Prob[(X < x) ∧ (X < a)]
Prob[X < a]

= Prob[X < a]
Prob[X < a]

= 1 (2.56)

Second, if x < a then the set of all X with X < x is a subset of the set of all X with
X < a. In this case, we obtain (cf. Fig. 2.7)

FX|X<a(x) = Prob[(X < x) ∧ (X < a)]
Prob[X < a]

= Prob[X < x]
Prob[X < a]

= FX(x)
FX(a)

(2.57)
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Figure 2.8 Schematic sketch of conditional probability density function.

Figure 2.9 Nonlinear function of a random variable.

This can easily be extended to the definition of conditional probability density functions
(cf. Fig. 2.8)

fX|X<a = d
dx

FX|X<a = fX(x)
FX(a)

(2.58)

2.2.4 Functions of random variables

Let y = g(x) be a strictly monotonic function of x. Then g can be uniquely inverted and
the inverse function x = g−1(y) is strictly monotonic too. Then the probability density
function of the random variable Y = g(X) is given by

fY (y) = fX[g−1(y)]
∣∣∣∣d[g−1(y)]

dy

∣∣∣∣ (2.59)

The proof is based on the consideration that the probability of obtaining a value of
Y in the interval [y = g(x), y + dy = g(x + dx)] is equal to the probability of obtaining
a value of X in the interval [x, x + dx] (cf. Fig. 2.9) For monotonically increasing g(.)
we have

Prob[y ≤ Y ≤ y + dy] = Prob[x ≤ X ≤ x + dx] = fY (y)dy = fX(x)dx

→ fY (y) = fX(x)
dx
dy

(2.60)
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whereas for monotonically decreasing g(.) we get

Prob[y ≤ Y ≤ y + dy] = Prob[x + dx ≤ X ≤ x] = fY (y)dy = −fX(x)dx

→ fY (y) = −fX(x)
dx
dy

(2.61)

Putting these two equations together and inverting g(x) = y yields the result in Eq. 2.59.
If the function g(.) is not monotonic, then the same type of argument can be applied
by considering pieces of the function over which it is monotonic.

Example 2.3 (Quadratic function)
Consider the function g(x) = x2. This function is monotonic in the intervals (−∞, 0]
and [0, ∞). We have two possible and mutually exclusive inversions of g(.), namely
x = √

y and x = −√
y. The probability density function of Y can then be expressed as

fY (y) = fX(
√

y)
1

2
√

y
+ fX(−√

y)
∣∣∣∣− 1

2
√

y

∣∣∣∣ = 1
2
√

y
[fX(

√
y) + fX( − √

y)] (2.62)

For a Gaussian variable X with mean value of 1 and a standard deviation of 0.1, we
get the probability density function of Y = X2 as

fY (y) = 1
2
√

y
1

0.1 · √
2π

[
exp

(
− (

√
y − 1)2

0.02

)
+ exp

(
− (−√

y − 1)2

0.02

)]
(2.63)

This function is shown in Fig. 2.10. This figure shows that the mean value Ȳ is close
to X̄ = 1 and that the standard deviation σY is significantly larger than the standard
deviation σX = 0.1. Elementary computation shows that

Ȳ = E[Y] = E[X2] = X̄2 + σ2
X = 1 + 0.01 = 1.01

σ2
Y = E[Y2] − E[Y]2 = E[X4] − (X̄2 + σ2

X)2

= X̄4 + 6X̄2σ2
X + 3σ4

X − X̄4 − 2X̄2σ2
X − σ4

X (2.64)

= 4X̄2σ2
X + 2σ4

X = 0.04 + 0.0002 = 0.0402

σY = 0.2005 ≈ 2σX

For these relations, cf. Eqs. 2.32 and 2.33.
Actually, the probability density function of Y has a singularity at y = 0 due to the

singularity of the derivative of the inverse transformation dx
dy = 1

2
√

y at y = 0. However,
this singularity (clipped in Fig. 2.10) is insignificant since it does not lead to a finite
probability of Y becoming zero.
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Figure 2.10 PDF of a Gaussian variable X and its squareY = X2.

2.2.5 Random vectors

In many applications, a large number of random variables occur together. It is con-
ceptually helpful to assemble all these random variables Xk; k = 1 . . . n into a random
vector X:

X = [X1, X2, . . . Xn]T (2.65)

For this vector, the expected value can be defined in terms of the expected values of all
its components:

Mean va lue vector

X̄ = E[X] = [X̄1, X̄2, . . . X̄n]T (2.66)

This definition applies the expectation operator (ensemble average) to each component
of X individually.

Covar iance matr ix

E[(X − X̄)(X − X̄)T ] = CXX (2.67)

This definition means that the expectation operator is applied to all possible mixed
products of the zero mean components (Xi − X̄i)(Xk − X̄k). As a consequence of this
definition, the covariance matrix CXX is obviously symmetric. In addition, it is non-
negative definite (i.e. it does not have any negative eigenvalues). Therefore, it can be
factored by a Cholesky-decomposition

CXX = LLT (2.68)
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in which L is a non-singular lower triangular matrix. The Cholesky factor L can be uti-
lized for a representation of the random variables Xi in terms of zero-mean uncorrelated
random variables Yi by applying a linear transfomation:

Y = L−1(X − X̄); X = LY + X̄ (2.69)

We can easily prove that the mean value vector of Y is zero

E[Y] = E[L−1(X − X̄)] = L−1E[X − X̄] = 0 (2.70)

and that the components of Y are uncorrelated:

E[YYT ] = CYY = E[L−1(X − X̄)(X − X̄)TL−1T]

= L−1LLTL−1T = I (2.71)

→ E[Y2
i ] = 1 ∀i; E[YiYk] = 0 ∀i 	= k

The dimensionless quantity

ρik = E[(Xi − X̄i)(Xk − X̄k)]
σXiσXk

(2.72)

is called coefficient of correlation. Its value is bounded in the interval [−1, 1]. Note
that the matrix of correlation coefficients must be positive definite as well. This poses
certain restrictions on the numerical values of ρik depending on the dimension of the
random vector X.

Example 2.4 (Simulation of correlated random variables)
Assume that the area of a rectangle is given in terms of two correlated Gaussian random
variables X1 and X2, A = X1X2. Both variables have mean values of 1 and standard
deviations of 0.5. Assume that they are correlated with ρ12 = 0.7.

a) Derive a linear transformation to generate samples of X1 and X2. This is done by
performing a Cholesky decomposition on the covariance matrix.

b) Compute the mean value and the standard deviation of the rectangle area A.
This is done by carrying out a Monte Carlo simulation using correlated variables
as input and repeated computation of the area A. The correlated variables are
generate from zero mean, standardized uncorrelated variables by multiplying with
the Cholesky factor of the covariance matrix and finally adding the mean value.

The octave script solving the example is shown in Listing 2.2.



30 Computat iona l ana lys i s o f randomness in s tructura l mechan ics

1 M=1000000;
2 rho=0.7;
3 Cxx=[0.25, rho*0.25;
4 rho*0.25, 0.25];
5 L=chol(Cxx)';
6 y1=randn(M,1);
7 y2=randn(M,1);
8 x=L*[y1,y2];
9 x1=x(1,:) +1;

10 x2=x(2,:) +1;
11 area=x1.*x2;
12 ma=mean(area)
13 sa=std(area)

Listing 2.2 Simulation of correlated random variables.

Running this script we obtain

1 ma = 1.1755
2 sa = 0.97135

In these results, ma denotes the mean value and sa the standard deviation.

Exercise 2.2 (Random vectors)
Consider a random vector X containing the three correlated Gaussian random variables
X1, X2, and X3. All three variables have a mean value of X̄ = 1 and a standard devi-
ation of σX = 0.2. The coefficients of correlation are ρ12 = 0.5, ρ13 = 0.2, ρ23 = −0.4.
Derive a transformation to zero-mean uncorrelated random variables Yk. Utilize
this transformation to perform a Monte Carlo simulation of the random vector X.
Assume that the components of X define the side lengths of a cuboid. Compute
the mean value and the standard deviation of the volume V of the cuboid. Fur-
thermore, compute the probability that the volume exceeds that value 2.0. Finally,
change one coefficient of correlation ρ13 = 0.6. What do you observe? How can you
explain this?

Solution: The mean value of the volume is vm = 1.013, the standard deviation is
vs = 0.387. The probability of having a volume larger than 2 is pf = 0.0163. For
ρ13 = 0.6 the correlation matrix is not positive definite.

2.2.6 Joint probabi l i ty density function models

Mult i-d imens iona l Gauss ian d is t r ibut ion

The pdf of jointly normally (Gaussian) distributed random variables (components of
a random vector X is given by

fX(x) = 1

(2π)
n
2
√

det CXX

exp
[
−1

2
(x − X̄)TC−1

XX(x − X̄)
]

; x ∈ R
n (2.73)
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Independent random var iab les

If all random variables Xi are mutually independent, then the joint probability density
function is given by the product of the individual probability density functions.

fX(x) =
n∏

i=1

fXi (xi) (2.74)

This follows from the multiplication rule for independent events.

Remarks:

1. Independent random variables are always uncorrelated. The reverse is not
necessarily true.

2. If the random variables Xi, i = 1 . . . n are jointly normally distributed and they are
pairwise uncorrelated, then they are pairwise independent.

Proof: From Cik = 0; i 	= k we have

→ (x − X̄)TC−1
XX(x − X̄) =

n∑
i=1

(
xi − X̄i

σXi

)2

; det CXX =
n∏

i=1

σ2
Xi

(2.75)

Due to a fundamental property of the exponential function we have

fX(x) = 1

(2π)
n
2

1
n∏

i=1
σXi

exp


−1

2

n∑
i=1

(
xi − X̄i

σXi

)2



=
n∏

i=1

1√
2πσXi

exp


−1

2

(
xi − X̄i

σXi

)2

 =

n∏
i=1

fXi (xi) (2.76)

which concludes the proof.

Nataf-mode l

The so-called Nataf -model (Nataf 1962, Liu and DerKiureghian 1986) describes the
joint probability density function of random variables Xi based on their individual
(marginal) distributions and the covariances or coefficients of correlation ρik. The
concept of this Gaussian copula (Noh, Choi, and Du 2008) is to transform the original
variables Xi to Gaussian variables Yi whose joint density is assumed to be multi-
dimensional Gaussian. This model can be realized in three steps:

1. Map all random variables Xi individually to normally distributed random
variables Vi with zero mean and unit standard deviation

{Xi; fXi (xi)} ↔ {Vi; ϕ(vi)} (2.77)
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which is accomplished by means of

Vi = �−1[FXi (Xi)] (2.78)

2. Assume a jointly normal distribution for all random variables Vi with the
statistical moments

E[Vi] = 0; E[V2
i ] = 1; E[ViVk] = ρ′

ik (2.79)

Note that at this point, the correlation coefficient ρ′
ik (which generally will be

different from ρik) is not yet known. The joint pdf for the components of the
random vector V is then

fV(v) = 1

(2π)
n
2
√

det RVV

exp
(

−1
2

vTR−1
VVv

)
(2.80)

in which RVV denotes the matrix of all correlations ρ′
ik. From this relation, it

follows that

fX(x) = fV[v(x)]
n∏

i=1

∣∣∣∣dxi

dvi

∣∣∣∣ = fV[v(x)]
n∏

i=1

fXi (xi)
ϕ[vi(xi)]

(2.81)

3. Compute the correlation coefficients ρ′
ik by solving

σxiσxjρik =
∞∫

−∞

∞∫
−∞

(xi − X̄i)(xk − X̄k)fXiXk (xi, xk, ρ′
ik)dxi dxk (2.82)

This is usually achieved by iteration.

A known problem of the Nataf-model is that this iteration may lead to a non-positive-
definite matrix of correlation coefficients. In this case, this model is not applicable.
A set of semi-empirical formulas relating ρ and ρ′ based on numerical studies for
various types of random variables is given by Liu and DerKiureghian 1986.

Example 2.5 (Nataf model for two log-normally distributed random variables)
Consider two log-normally distributed random variables X1, X2 with identical means
X̄1 = X̄2 = X̄ = 1 and identical standard deviations σ1 = σ2 = σ = 0.4. Assume further
that the two variables are correlated with a coefficient of correlation ρ. The individual
variables are readily mapped to standard Gaussian variables V1, V2 by means of

Vi = �−1[FXi (Xi)] = �−1�

(
log Xi

µ

s

)
= 1

s
log

Xi

µ
= 1

s
log

(
Xi

√
X̄2 + σ2

X̄2

)
(2.83)

For the numerical values as given, this reduces to

Vi = 2.5957 · log(1.077 · Xi); Xi = 0.92848 · exp(0.38525Vi) (2.84)
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Figure 2.11 Relation between original and adjusted correlation for two correlated log-normal
variables using the Nataf model.

The joint pdf can be derived as shown, e.g. in Noh, Choi, and Du 2008:

fX1,X2 (x1, x2) = 1

2πs1s2

√
1 − ρ′2x1x2

· exp
[
−v2

1 − 2ρ′v1v2 + v2
2

2(1 − ρ′2)

]
(2.85)

in which

vi = log xi − log µi

si
; i = 1, 2 (2.86)

The coefficient of correlation ρ′ in v-space according to Eq. 2.82 is to be determined
from

0.16 · ρ =
∞∫

−∞

∞∫
−∞

(x1 − 1)(x2 − 1)fX1X2 (x1, x2)dx1 dx2 (2.87)

An explicit solution is given by Noh, Choi, and Du 2008

ρ′ = log(1 + ρs1s2)√
log(1 + s2

1) log(1 + s2
2)

(2.88)

This relation is shown in Fig. 2.11 for σ = 0.4 and σ = 1. It can be seen that the dif-
ference between ρ and ρ′ is very small for positive values. However, when ρ approaches
the lower limit of -1, there is no acceptable solution for ρ′ leading to a positive definite
correlation matrix. This effect is further increased by larger values of σ. Hence, the
Nataf model ceases to function properly in this range. For a more specific example,
assume a coefficient of correlation ρ = 0.3. In this case, the correlation coefficient in
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Figure 2.12 Contour lines of joint probability density function for correlated lognormally random
variables based on the Nataf model.

1 xlo=1e-4
2 xhi=2
3 N=60
4 dx=(xhi-xlo)/(N-1)
5 s=sqrt(log(1.16))
6 rho = 0.8
7 rhop=log(1+rho*s ˆ2)/log(1+s ˆ2)
8 mu=exp(-s ˆ2/2)
9 fid=fopen('joint08.txt', 'w');

10 for i=1:N
11 x1 = xlo+(i-1)*dx;
12 y1=(log(x1)-log(mu))/s;
13 for k=1:N
14 x2 = xlo+(k-1)*dx;
15 y2 = (log(x2)-log(mu))/s;
16 arg=(y1 ˆ2-2*rhop*y1*y2+y2 ˆ2)/2/(1-rhop ˆ2);
17 deno = 2*pi*s ˆ2*sqrt(1-rhop ˆ2)*x1*x2;
18 pdf = 1/deno*exp(-arg);
19 fprintf(fid, '%g', pdf);
20 end
21 fprintf(fid, '\n');
22 end
23 fclose(fid);

Listing 2.3 Joint probability density function for two correlated lognormally distributed random
variables.

Gaussian space according to Eq. 2.88 becomes ρ′ = 0.315. For a different case with
ρ = 0.8 we get ρ′ = 0.811. For both cases, the contour lines of the joint probability
density function are shown in Fig. 2.12. The octave-script generating the data for
the contour plots is shown in Listing 2.3.
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Figure 2.13 Mapping between exponential and Gaussian random variables as required for the
Nataf model.

Figure 2.14 Contour lines of joint probability density function for correlated exponential random
variables based on the Nataf model.

Example 2.6 (Nataf model for two exponentially distributed random variables)
Let X1 and X2 be two exponentially distributed random variables with mean values
X̄1 = X̄2 = 1 and a coefficient of correlation ρ = 0.4. In this case, the correlation coef-
ficient in Gaussian space becomes ρ′ = 0.4463. The transformation from original to
Gaussian space is given by

vi = �−1[ exp(−xi)]; xi ≥ 0 (2.89)

This is relation is shown in Fig. 2.13. It can be observed that the transformation
becomes singular as vi → 0. As a consequence, the joint probability density function
of V1 and V2 is singular at the origin. A contour plot of this joint pdf is shown in
Fig. 2.14. An detailed discussion concerning two correlated random variables with
exponential marginal distributions can be found in Nadarajah and Kotz 2006.

2.2.7 Marginal and condit ional distr ibution

Given the joint density function fXY (x, y) of two random variables, the conditional
density functions are obtained by treating one of the variables as a fixed parame-
ter. Visually, this corresponds to slicing through the “probability hill’’ as indicated in
Fig. 2.15
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Figure 2.15 Joint density, conditional densities, and marginal densities.

According to the definition of conditional probability we have

fX|Y (x, y) = fXY (x, y)
fY (y)

(2.90)

and, by reversing the roles of X and Y

fY|X(x, y) = fXY (x, y)
fX(x)

(2.91)

The marginal density functions fX(x) and fY (y) are obtained by integrating over one
variable:

fX(x) =
∞∫

−∞
fXY (x, y)dy; fY (y) =

∞∫
−∞

fXY (x, y)dx (2.92)

For jointly Gaussian random variables X and Y all conditional and marginal density
functions are Gaussian.

2.3 Estimation

2.3.1 Basic propert ies

In order to connect the above mentioned concepts of probability theory to observations
in reality (e.g. measurements) we need to be able to estimate statistical properties such
as mean values or standard deviations from a set of available samples. In order to be
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useful, the estimators (which are usually implemented in terms of a specific type of
algorithm) must meet certain requirements.

Assume we want to estimate a parameter γ from m independent samples
X(1), . . . X(m) using the estimator �: �m = �(X(1), . . . X(m)).
Definition: The estimator � is called consistent if

∀ε > 0 : lim
m→∞ Prob[|�m − γ| < ε] = 1 (2.93)

This means that the difference between the true value γ of the statistical parameter and
its estimate �m approaches zero in terms of a probability measure (i.e. convergence in
probability) as the sample size m approaches infinity.
Definition: The estimator � is called unbiased if:

E[�m] = γ (2.94)

This property implies that even in the case of finite sample size, at least “on average’’,
we get the correct value.

Example 2.7 (Estimators for mean value and variance)
The arithmetic mean

Mm = 1
m

m∑
k=1

X(k) (2.95)

is a consistent and unbiased estimator for the mean value E[X] = X̄ if the variance σ2
X

of X is finite. Unbiasedness is readily shown as follows

E[Mm] = E

[
1
m

m∑
k=1

X(k)

]
= 1

m

m∑
k=1

E[X(k)] = 1
m

m∑
k=1

X̄ = X̄ (2.96)

The proof of consistency is based on Chebyshev’s inequality. For this we need to
compute the variance for the arithmetic mean which is

σ2
Mm

= E[(Mm − X̄)2] = E


(

1
m

m∑
k=1

X(k) − X̄

)2



= E

[
1
n2

m∑
k=1

m∑
�=1

X(k)X(�) − 2
m

X̄
m∑

k=1

X(k) + X̄2

]
(2.97)

= 1
m2

(mσ2
X + m2X̄2) − 2

m
mX̄2 + X̄2 = σ2

X

m

Hence, the variance of the arithmetic mean approaches zero as the sample size m
approaches ∞, and from Chebyshev’s inequality we have

lim
m→∞ Prob[|Mm − X̄| > ε] ≤ lim

m→∞
σ2

Mm

ε2
= lim

m→∞
σ2

X

mε2
= 0 ∀ε > 0 (2.98)

which means that we have convergence in probability.
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The sample variance

Sm = 1
m − 1

m∑
k=1

(X(k) − Mm)2 (2.99)

is a consistent and unbiased estimator for σ2
X. The latter property can be shown as

follows. We begin by defining an estimator �m as

�m = 1
m

m∑
k=1

(X(k) − Mm)2 (2.100)

Taking expectation results in

E[�m] = 1
m

m∑
k=1

E[(X(k) − Mm)2]

= E


 1

m

m∑
k=1

{
X(k) − 1

m

m∑
�=1

X(�)

}2



= 1
m

E

[
m∑

k=1

{
(X(k))

2 − 2
m

X(k)
m∑

�=1

X(�) + 1
m2

m∑
�=1

m∑
r=1

X(�)X(r)

}]

= 1
m

{
m∑

k=1

E[(X(k))
2
] − 2

m

m∑
k=1

m∑
k=1

E[X(k)X(�)] + 1
m2

m∑
k=1

m∑
�=1

m∑
r=1

E[X(�)X(r)]

}

= 1
m

{
mσ2

X + mX̄2 − 2
m

(mσ2
X + m2X̄2) + 1

m2
(m2σ2

X + m3X̄2)
}

= m − 1
m

σ2
X (2.101)

From that result it can be concluded that

Sm = m
m − 1

· �m = 1
m − 1

m∑
k=1

(X(k) − Mm)2 (2.102)

is an unbiased estimator for σ2
X.

Maximum l ike l ihood est imat ion

Assume that we want to estimate the parameter γ of the probability density func-
tion fX(x) of the random variable X. This implies that we already know the type of
distribution of X. For a particular value of the parameter γ, we can consider the
probability density function using this parameter as a conditional probability density
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function fX(x|γ). Given m realizations X(k), k = 1 . . . m of the random variable X we
can compute the so-called Likelihood Function

L =
m∏

k=1

fX(X(k)|γ) (2.103)

The maximum likelihood estimator of γ is chosen such as to maximize L. Frequently,
it is computationally more convenient to maximize the natural logarithm of L, the
so-called Loglikelihood function so that the condition for determining γ becomes

∂

∂γ
log L = ∂

∂γ

m∑
k=1

log fX(X(k)|γ) = 0 (2.104)

Example 2.8 (Estimation of the parameter of an exponential distribution)
Assume X to be a random variable with the exponential probability density function
fX(x) = 1

λ
exp

(− x
λ

)
, x ≥ 0. Given five samples of X (i.e. 12, 14, 9, 7, 10), estimate λ

using the maximum likelihood method.
The loglikelihood function is

log L = −5 log λ +
5∑

k=1

(
−x(k)

λ

)
(2.105)

From this we immediately get

∂

∂λ
log L = −5

λ
+

5∑
k=1

x(k)

λ2
= 0 (2.106)

with the solution

λ = 1
5

5∑
k=1

x(k) = 12 + 14 + 9 + 7 + 10
5

= 10.4 (2.107)

It turns out that this matches the arithmetic mean of the samples.

Exercise 2.3 (Simple statistics)
Assume that repeated measurements of a physical quantity had the outcomes X(k) as
shown in Table 2.2. Assume that these outcomes are statistically independent samples
of a random variable X. Carry out the following steps:

1. Estimate the mean value X̄ and the standard deviation σX from the given samples
2. Derive a linear transformation which transforms X into a random variable Y with

zero mean and unit standard deviation.
3. Compute the corresponding samples of Y from the samples of X.
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Table 2.2 Random samples.

k X(k) Y (k)

1 10 0.104
2 11 0.416
2 8 −1.144
4 13 1.456
5 9 −0.624

Solution: The estimated statistical parameters are X̄ = 10.2, σX = 1.92 and the
samples of Y are given in Table 2.2 (use the relation Y = (X − X̄)/σX).

2.3.2 Confidence intervals

When estimating some statistical property γ of a random variable from m independent
samples using an unbiased estimator �m, it is helpful to characterize the precision of
the estimator by providing a range in which the true value γ is enclosed with high
probability so that

Prob[�m − ε ≤ γ ≤ �m + δ] ≥ 1 − α (2.108)

for a suitable defined triple of real numbers α, δ, ε > 0. In most cases, the level of
significance α is prescribed (say at α = 0.05 or α = 0.01) and the quantities ε and δ are
computed such that equality in Eq. 2.108 is satisfied. The interval

Ic = [�m − ε, �m + δ] (2.109)

is called confidence interval for the confidence level 1 − α. For simplicity, we assume
ε = δ in the following. A first bound for the magnitude of the confidence interval can
be computed from Chebyshev’s inequality (2.25):

Prob[|�m − γ| > ε] ≤ σ2
�m

ε2
= α (2.110)

From this we can easily get

ε ≤ σ�m√
α

= fC · σ�m (2.111)

Unfortunately, this bound is very (usually too) wide for practical purposes.
If the distribution of the unbiased estimator �m (or at least its asymptotic distribution

for m → ∞) is known to be Gaussian, then a much narrower interval can be readily
computed from the standard deviation σ�m of the estimator. If we assume ε = δ (i.e. we
are interested in deviations to larger and smaller values) then we can easily get

ε = δ = �−1
(
1 − α

2

)
· σ�m = fG · σ�m (2.112)
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Table 2.3 Width of confidence interval depending on significance
level.

α 0.1 0.05 0.02 0.01

f C 3.16 4.47 7.07 10.00
f G 1.65 1.96 2.33 2.58

Typical values for fC and fG depending on α are given in Table 2.3. The choice of α

depends on two factors. The first one is obviously the desire to make the probability
of covering the true value within the confidence interval large. This leads to choosing
small values for α. Not covering the true value by the confidence interval is called a
Type II error. However, by choosing excessively small values of α we are in danger of
making the interval too large, thus including too many values which are likely to be
far off the true value (Type I error). Obviously, there is a trade-off between the two
error possibilities involved.

Example 2.9 (Confidence interval for mean value estimator)
Consider again the arithmetic mean Mm defined in Eq. 2.95 as an estimator for the
expected value of a random variable X. It is unbiased and its standard deviation
depends on the standard deviation σX of the random variable and on the number
of samples m, i.e. σMm = σX

m . One interesting question in statistics is, how large to
choose the sample size m in order to obtain the mean within an interval of ±10%
about the true value with a confidence level of 95%. Presuming an asymptotically
Gaussian distribution for the estimator, we can compute the required sample size if we
know the standard deviation of the random variable X. For this example, we assume
that σX = 0.2 · X̄. Then we have

ε = fG · σX√
m

≤ 0.1X̄ → m ≥
(

fG · 0.2X̄

0.1X̄

)2

=
(

1.96 · 0.2
0.1

)2

= 15.37 (2.113)

in which fG from Table 2.3 with α = 0.95 has been used. If we are using the wider
bound as obtained from Chebyshev’s inequality, we get

m ≥
(

fC · 0.2X̄

0.1X̄

)2

= 79.92 (2.114)

2.3.3 Chi-square test

In many cases, we have some prior knowledge (e.g. from experience based on many
prior observations) about the probability distribution of a random variable X. Let this
prior knowledge be described in terms of the hypothetical distribution function F0(x).
Furthermore, assume that we have samples X(k), k = 1 . . . m of the random variable X.
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Figure 2.16 Class definition for χ2-test.

Let the true distribution function of X be denoted as FX(x). We would like to test the
hypothesis

H0 : FX(x) ≡ F0(x) (2.115)

by means of the available samples using the chi-square test (Bronstein and
Semendjajev 1983).

In order to carry out the χ2-Test, the range of the variable X is divided into a finite
number of disjoint sets (intervals) �j; j = 1 . . . nc. The probabilities of a random sample
lying in the interval �j as computed from F0(x) is pj. Here, the interval sizes should be
chosen such that the the product m ·pj ≥ 5. Then the sample data are collected into the
intervals �j. The number of samples within each interval is denoted by mj. Obviously,
we have the relations

nc∑
j=1

pj = 1;
nc∑

j=1

mj = m (2.116)

Then we compute the test statistic

χ2 =
nc∑

j=1

(mj − m · pj)2

m · pj
(2.117)

If the hypothesis H0 is true, then the test quantity is asymptotically χ2-distributed
with N = nc − 1 degrees of freedom. Hence the hypothesis H0 should be rejected if
the test value χ2 exceeds a certain critical value. The critical value χ2

α depends on the
significance level α as well as on the degree of freedom. This can be seen from Fig. 2.17.

Example 2.10 (Test of uniformity)
Let the outcomes of a rolling dice experiment with 60 trials be as shown in Table 2.4.
We want to test the hypothesis that the outcomes are uniformly distributed (the game
of dice is fair). Here that classes �j are simply defined in terms of the possible out-
comes. The degree of freedom is N = 6 − 1 = 5. For a significance level α = 0.05 we
get χ2

a = 11.07. The test value is much smaller, hence we accept the hypothesis of a
fair game. The octave-command to get the value of χ2

α is (note that 1 − α and N are
passed as parameters)
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Figure 2.17 χ2 probability density function.

Table 2.4 Test of uniformity for dice experiment.

j mj m·pj
(mj − m·p2

j)
m·pj

1 9 10 0.1
2 11 10 0.1
3 12 10 0.4
4 13 10 0.9
5 8 10 0.4
6 7 10 0.9∑

60 60 2.8

1 chi_a = chisquare_inv(0.95, 5)

Dist r ibut ion parameters es t imated from the same data set

Frequently, the hypothesis H0 needs to be based on the same sample which is used for
the test. A typical situation is that the type of distribution is known, but the describing
parameters θ�, � = 1 . . . nθ (e.g. mean value and standard deviation) have to be estimated
from the sample. This case can be incorporated into the χ2-test. In the first step, the
parameters θ� are estimated using maximum likelihood estimators θ̂�. Based on these
parameters, the hypothetical distribution is F0(x) = F0(x, θ̂1, . . . θ̂nθ

). The classification
the proceeds as described above. The critical value χ2

α is now computed from a χ2-
distribution with a smaller degree of freedom, i.e. N = nc − 1 − nθ.

Exercise 2.4 (Test of exponential distribution)
Let the hypothesis to be tested be

F0(x, λ) = 1 − exp
(
−x

λ

)
(2.118)

We assume to have a data set of 50 samples as given in Table 2.5.
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Table 2.5 Data set for test of exponential distribution

4.00 0.46 1.24 0.21 0.41
1.73 0.23 4.35 0.87 0.12
1.76 0.96 3.46 1.21 2.20
0.69 0.49 0.28 0.23 1.02
1.30 0.49 0.67 0.07 0.55
0.42 0.76 0.34 1.28 0.06
0.22 0.41 0.16 0.04 1.22
0.30 0.06 0.93 1.58 0.23
1.57 0.40 0.03 0.71 0.34
1.69 0.31 0.11 2.27 6.43

Figure 2.18 Confidence interval for estimated coefficients of correlation ρ.

Test the null hypothesis using 8 classes with widths chosen such that the theoretical
probabilities within each class are identical (i.e. pj = 1

8 , j = 1 . . . 8).

Solution: In the first step we need to estimate the distribution parameter λ. The
maximum likelihood estimator is λ = 1.017. We then compute the classes defined by
the intervals [cj−1, cj] in which cj = −λ log (1 − j

8 ), j = 1 . . . 8. Thus we get a value
of χ2 = 3.12. The degree of freedom is 6, hence the critical value is χ2

a = 12.59 for
α = 0.05. As χ2 < χ2

a , there is no reason to reject null hypothesis.

2.3.4 Correlation statist ics

Assume that we want to estimate a matrix of correlation coefficients of m variables
from N samples. This matrix has M = m · (m − 1)/2 different entries in addition to
m unit elements on the main diagonal. The confidence intervals for the estimated
coefficients of correlation ρij are computed based on Fisher’s z-transformation. The
interval for a significance level of α (i.e. a confidence level of 1 − α) is given by[

tanh (zij − zc√
N − 3

), tanh (zij + zc√
N − 3

)
]

(2.119)

In this equation, N is the number of samples used for the estimation of ρij. The critical
value zc is computed by using the Bonferroni-corrected value for the significance level
α′ = α/M with M being the number of correlation coefficients to be estimated (see
above). The transformed variable z is computed from

zij = 1
2

log
1 + ρij

1 − ρij
(2.120)
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and the critical value zc is given by

zc = �−1(1 − α′/2) (2.121)

where �−1(.) is the inverse cumulative Gaussian distribution function.

2.3.5 Bayesian updating

In many areas of science and engineering predictions about the behavior of systems or
structures rely on mathematical models involving a number of uncertain parameters.
Frequently, we are facing the situation where a set of statistical parameters θ1, . . . θ�

describing the probability distribution fX|θ1,...θ�
(x) = fX(x, θ1, . . . θ�) of a random vari-

able X is known a priori in terms of a probability distribution f�1,...��
(θ1, . . . θ�). This

will occur, e.g., if the set of parameters has been estimated from a number of indepen-
dent samples of X and the process involves some sampling uncertainty (cf. Viertl 2003).

For reasons of clarity, we will focus on the case of one single parameter � in the
subsequent developments. The theorem of total probability can be utilized to construct
the (prior) probability density function of X, i.e.

fX(x) =
∞∫

−∞
fX|�=ϑ(x)f�(ϑ)dϑ =

∞∫
−∞

fX(x, ϑ)f�(ϑ)dϑ (2.122)

Assume now that we have made additional measurements X(k), k = 1 . . . m which
allows us to perform a new estimate of the parameter set, say θ′

1, . . . θ′
�. The question

now is, how should we change the probability distribution of those parameters and,
furthermore, what is the consequence on the probability distribution of X. For the
following developments we need to utilize the continuous version of Bayes’ theorem
(Papoulis 1984):

f�|A(ϑ) = Prob[A|� = ϑ]
Prob[A]

f�(ϑ) = Prob[A|� = ϑ] · f�(ϑ)
∞∫

−∞
Prob[A|� = ϑ] · f�(ϑ)ϑ

(2.123)

In our case, the event A is the occurrence of an observed value �′ in the interval
[ϑ, ϑ + dϑ] so that

f�′′ (ϑ) = f�|ϑ≤�′≤ϑ+dϑ(ϑ) = Prob[ϑ ≤ �′ ≤ ϑ + dϑ|� = ϑ]
Prob[ϑ ≤ �′ ≤ ϑ + dϑ]

f�(ϑ)

= f�′|�=ϑ(ϑ)dϑ · f�(ϑ)
∞∫

−∞
f�′|�=ϑ(ϑ)dϑ · f�(ϑ)dϑ

= f�′|�=ϑ(ϑ) · f�(ϑ)
∞∫

−∞
f�′|�=ϑ(ϑ) · f�(ϑ)dϑ

(2.124)

The function f�′|�=ϑ(ϑ) is the likelihood of the occurrence of an observation �′ given
the prior information that � = ϑ. f�′′ (ϑ) denotes the so-called posterior probability
density function of the parameter ϑ.
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Figure 2.19 Bayesian updating of the probability density of the mean value.

Figure 2.20 Bayesian predictive probability density of a log-normal random variable.

In the next step, we construct the so-called predictive probability density for the
random variable X which takes into account the updated probability density for the
parameter set. This, again, is based on the total probability theorem resulting in

fX′′ (x) =
∞∫

−∞
fX|�=ϑ(x)f�′′ (ϑ)dϑ =

∞∫
−∞

fX(x, ϑ)f�′′ (ϑ)dϑ (2.125)

Example 2.11 (Updating of a Log-normal distribution)
Assume that we know the distribution of a random variable X to be log-normal.
We are given the prior information that its standard deviation is σX = 3 and that
its expected value � = X̄ is a random variable with a mean value of �̄ = 10 and a
standard deviation of σ� = 2 (cf. Fig. 2.19). Now we carry out three independent
measurements with X(1) = 8.0, X(2) = 7.2, and X(3) = 8.9. From this we estimate
E[�′] = 8.03.

We carry out the updating for � as given by Eq. 2.124. Using numerical integration,
we obtain the posterior distribution of � as shown in Fig. 2.19. Fig. 2.20 shows that
the probability density function of X shifts towards smaller values due to the updating
process. This is in agreement with the shift of the probability density of the mean value
towards smaller values as shown in Fig. 2.19. The entire updating process is given in
the octave-code shown in Listing 2.4.
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1 samples=[8,7.2,8.9];
2 m=mean(samples);
3 s=std(samples);
4
5 sigma = 3;
6
7 nt=200;
8 tu=0.001;
9 to=20;

10 dt = (to-tu)/nt;
11 t=linspace(tu, to,nt);
12
13 nx=200;
14 xu=0;
15 xo=30;
16 dx=(xo-xu)/nx;
17 x=linspace(xu,xo,nx);
18
19 fx=normpdf(t, 10, 2);
20 fy=normpdf(t, m, 2);
21 fxfy=fx.*fy;
22 sum=sum(fxfy)*dt;
23 fxfy=fxfy/sum;
24 plot(t,fx,t,fy,t,fxfy)
25 pause
26
27 fnew=zeros(1,nx);
28 fold=zeros(1,nx);
29 for i=1:nt
30 theta=t(i);
31 mu = log(theta ˆ2/sqrt(theta ˆ2+sigma ˆ2));
32 s = sqrt(log(sigma ˆ2/theta ˆ2 + 1));
33 help=lognpdf(x,mu,s)*fx(i)*dt;
34 fold = fold + help;
35 help=lognpdf(x,mu,s)*fxfy(i)*dt;
36 fnew = fnew + help;
37 end
38 plot(x,fold,x,fnew)
39 pause

Listing 2.4 Bayesian updating.

Exercise 2.5 (Updating of an exponential distribution)
Consider a case in which the statistical parameter A under consideration is the mean
value of a random variable and is exponentially distributed with mean value 1.



48 Computat iona l ana lys i s o f randomness in s tructura l mechan ics

Now we have 4 additional measurements of X, i.e. X(1) = 1.1, X(2) = 1.2, X(3) = 0.9,
and X(4) = 1.3. Perform a Bayesian updating of the distribution parameter and
compute fA′′ (a).

Solution: The updated probability density function of the parameter A is

fA′′ (a) = 5.0915
a

exp
(

−a2 + 1.125
a

)
(2.126)

2.3.6 Entropy concepts

The term entropy in the context of probability theory refers to the degree of uncer-
tainty associated with a random variable. In that sense, it is a measure of (missing)
information. Formally, the entropy H of a random variable X (associated with a
probability density function fX(x)) is defined as (Papoulis 1984)

H(X) = −
D∫

C

fX(x) log fX(x)dx (2.127)

in which the limits of integration C and D have to be chosen so that they represent
the support of the density function, i.e. so that fX(x) 	= 0, ∀x ∈ [C, D]. As an example,
consider a Gaussian random variable X with mean value X̄ and standard deviation
σX. Using the substitution u = x−X̄

σX
its entropy is easily computed as

H(X) = −
∞∫

−∞
σXfX(u) log fX(u)du

= −
∞∫

−∞

σX√
2πσX

exp
(

−u2

2

)[
log

1√
2πσX

− u2

2

]
du

= 1√
2π


log

√
2πσX

∞∫
−∞

exp
(

−u2

2

)
du + 1

2

∞∫
−∞

u2 exp
(

−u2

2

)
du




= log
√

2πσX + 1
2

(2.128)

This shows that the entropy H of a Gaussian random variable X increases with the
standard deviation σX but does not depend on the mean value X̄.

In the context of probabilistic modeling, the so-called maximum entropy method
makes use of the idea that by maximizing the entropy subject to the available statistical
information we leave as much uncertainty as possible without introducing subjective
information. A thorough discussion of information theory in a statistical context can
be found in Kullback 1997.

A typical application is the case that we know some expected values E[g�(X)]
of known functions g�(.), � = 1 . . . m of the random variable X (such as, e.g.,
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statistical moments or centralized statistical moments, cf. Eq. 2.21) and that we
want to infer the probability density function fX(x) using this information only. As
shown in Papoulis 1984, this leads to a probability density function in exponential
form

fX(x) = A exp

[
−

m∑
�=1

λ�g�(x)

]
(2.129)

in which A is a normalizing constant and λ�, � = 1, m are Lagrange multipliers to be
determined in a way that the given expectations are satisfied:

E[g�(X)] =
∞∫

−∞
g�(x)fX(x)dx

=
∞∫

−∞
g�(x)A exp

[
−

m∑
�=1

λ�g�(x)

]
dx; � = 1, m (2.130)

In most cases, these equations cannot be solved in closed form so that a numerical
scheme is required. It should be noted that in the case of given statistical moments,
i.e. g�(x) = x�; � = 1 . . . m, it is important to be aware of the fact that either m must
be even, or that the support of the random variable is not extending to both −∞ and
+∞. Otherwise, the integrals in Eq. 2.130 will not exist.

Example 2.12 (Maximum entropy distribution given the mean value)
Consider the case of a random variable X which is known to be positive. We also
know the mean value X̄. From this information we want to construct the maximum
entropy probability density function fX(x). Here, the prescribed expected value is
E[g1(X)] = E[X]

E[X] =
∞∫

0

g1(x)fX(x)dx =
∞∫

0

xfX(x)dx (2.131)

and the probability density function is

fX(x) = A exp(−λ1g1(x)) = A exp(−λx) (2.132)

From the normalization condition (i.e. from the condition that the probability density
function integrates to 1) we get

1 =
∞∫

0

fX(x)dx =
∞∫

0

A exp(−λx)dx = A
λ

→ A = λ (2.133)
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From the mean value condition we get

X̄ =
∞∫

0

xfX(x)dx = λ

∞∫
0

x exp(−λx)dx = 1
λ

→ λ = 1

X̄
(2.134)

So we get an exponential distribution with the density function

fX(X) = 1

X̄
exp

(
− x

X̄

)
(2.135)

Exercise 2.6 (Maximum entropy given the mean and the standard deviation)
Consider the case of an unbounded random variable X with given mean value X̄ and
standard deviation σX. Show that the maximum entropy distribution is a Gaussian
with given mean and standard deviation.

2.4 Simulation techniques

2.4.1 General remarks

As already demonstrated in chapter 1, there are many problems in stochastic structural
analysis which can be treated by means of random number generators in combination
with statistical methods. In order to provide some background information on the
available methods, this section deals with some methods to generate samples of ran-
dom variables and random vectors by means of digital computation. The purpose of
the entire process is to obtain probabilistic information through the application of sta-
tistical methods to these samples. In order to fulfill the requirements, the samples need
to follow the prescribed distribution functions closely. An additional requirement is
that the generated samples are essentially statistically independent of each other. This
is a prerequisite for the applicability of the available statistical methods. Finally, statis-
tical methods are utilized to estimate expected values or probabilities of the structural
response quantities of interest.

Typically, the analysis process is then structured according to the flow chart as given
in Fig. 2.21.

From a mathematical perspective, the process of computing expected values is equiv-
alent to an integration process. Hence sample-based simulation techniques may be
viewed as specific types of integration methods. One of the major problems encoun-
tered in classical numerical integration methods (such as e.g. Gauss-integration) is the
so-called curse of dimensionality, i.e. the number of integration points required grows
exponentially with the number of variables. Such a growth cannot be accepted for
high-dimensional problems involving several hundreds of random variables.

2.4.2 Crude Monte Carlo simulation

This is a frequently used method to deal with the effect of random uncertainties. Typ-
ically its application aims at integrations such as the computation of expected values
(e.g. mean or standard deviation).
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Figure 2.21 Flow of computation for sample-based stochastic structural analysis.

In order to illustrate the close relationship between the computation of probabilities
and integration, consider the determination of the area of a quarter circle of unit
radius. As we know, the area is π

4 , which can be computed using analytical integration.
Using the Monte Carlo Method we can obtain approximations to this result based on
elementary function evaluations. When we use 1000 uniformly distributed random
numbers x and y (cf. Fig. 2.22), and count the number Nc of pairs (x, y) for which
x2 + y2 < 1, we get an estimate π

4 ≈ Nc
1000 = 791

1000 = 0.791. This differs from the exact
result π

4 = 0.7854 by about 1%. The octave-script generating the data is given in
Listing 2.5.

Running this script we obtain

1 M = 1000
2 NC = 791
3 area = 0.79100

Of course, the result will be different in each run and will be stabilized by increasing
the number of samples.

2.4.3 Latin Hypercube sampling

In order to reduce the statistical uncertainty associated with Monte Carlo estimation
of expected values, alternative methods have been developed. One such strategy is
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Figure 2.22 Estimating π

4 by Monte Carlo simulation.

1 M=1000
2 x=rand(M,1);
3 y=rand(M,1);
4 r2=x.ˆ2+y.ˆ2;
5 indic = r2<1;
6 NC=sum(indic)
7 area=NC/M
8 fid=fopen('circle.txt','w');
9 for i=1:size(x)

10 fprintf(fid, '%g %g\n', x(i), y(i));
11 end
12 fclose(fid);

Listing 2.5 Estimating π

4 by Monte Carlo simulation.

the Latin Hypercube sampling method (Imam and Conover 1982). Essentially, this
method aims at ensuring a good coverage of the random variable space. For simplicity,
we discuss the procedure as formulated in the space of independently and identically
uniformly distributed random variables Xi, i = 1 . . . n. We assume that m samples of
these random variables are to be generated. In the first step, the range of the vari-
ables is divided into m intervals of equal size 1

m . Then one value in each interval is
chosen as a representative value, e.g. the value in the center of the interval. For the
one-dimensional case n = 1, the sampling procedure simply consists of drawing these
representative values one by one in random order. In this way, the range of the variable
is automatically covered. For higher-dimensional cases n > 1, however, the situation
becomes more complex. This is due to fact that covering all possible combinations leads
to an exponential growth of the number of required samples. Hence the restrictions on
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Figure 2.23 Crude Monte Carlo (left) vs. Latin hypercube (right) sampling.

Table 2.6 95% confidence interval of correlation coefficient, plain
Monte Carlo.

N ρ

0 0.3 0.5 0.7 0.9

10 1.261 1.231 1.054 0.757 0.299
30 0.712 0.682 0.557 0.381 0.149
100 0.409 0.374 0.306 0.199 0.079
300 0.230 0.209 0.170 0.116 0.045
1000 0.124 0.115 0.093 0.062 0.023

the computational effort require keeping the number of samples small. However, in this
case the random drawing may introduce unwanted patterns in the sample distribution
which may lead to undesired correlations between the random variables. A strategy
to reduce this correlation has been presented in Florian 1992. Fig. 2.23 compares the
samples obtained from crude Monte Carlo sampling with those obtained by Latin
Hypercube sampling with reduction of the correlations. The coefficient of correlation
in the left figure is ρ = 0.272, whereas the coefficient of correlation in the right figure
is only ρ = −0.008, i.e., it is virtually zero. Although the correlation is significantly
improved, it remains be noticed that the samples do not really fill the random variable
space evenly.

In order to obtain meaningful correlations between the input and output (i.e. the
structural response) variables, it is essential to precisely capture the input correlations
in the simulated values. For demonstration purposes, a numerical study performing a
comparison of the estimation errors of the correlation coefficients expressed in terms of
the confidence interval, is carried out. Samples with a prescribed coefficient of correla-
tion ρ are generated using both crude Monte Carlo sampling and Latin hypercube sam-
pling, then the correlation coefficient is statistically estimated from these samples. The
simulation and statistical analysis is repeated 1000 times. Tables 2.6 and 2.7 show the
confidence intervals for the correlation coefficients for a confidence level of 95% as a
function of the correlation coefficient ρ and the number of samples N used for each esti-
mation obtained from crude Monte Carlo and Latin Hypercube sampling respectively.
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Table 2.7 95% confidence interval of correlation coefficient, Latin
Hypercube sampling.

N ρ

0 0.3 0.5 0.7 0.9

10 0.420 0.382 0.260 0.158 0.035
30 0.197 0.194 0.139 0.073 0.018
100 0.111 0.101 0.071 0.042 0.009
300 0.065 0.057 0.042 0.024 0.006
1000 0.038 0.033 0.025 0.014 0.003

Figure 2.24 Confidence intervals for coefficients of correlation.

In summary, it turns out that the net effect of LHS is an effective reduction of the
sample size by a factor of more than 10. For example, as shown in Tables 2.6 and 2.7,
it is possible to estimate a coefficient of correlation of ρ = 0.3 using 1000 samples
of MCS with a 95%-confidence interval of 0.11, while the same confidence interval
(actually 0.1) is achieved with only 100 samples using LHS. On the other hand, 1000
LHS samples would reduce the respective 95%-confidence interval to 0.03, which is
an enormous improvement.

2.4.4 Quasirandom sequences

As shown above, Latin Hypercube samples are quite suitable to represent the cor-
relation structure of the random variables but they are not necessarily very good in
covering the entire range of the variables for large dimensionality. Several approaches
to generate samples have been developed with the purpose to provide better properties
in covering the range of the variables. As a consequence, they reduce the estimation
errors (or, in the mathematical interpretation, the integration error). An extensive
discussion of such quasi-random sequences can be found in Niederreiter 1992. The
main purpose of these sequences is an improved space filling which eventually leads
to smaller errors in the integration results. For instance, Sobol sequences (Sobol and
Asotsky 2003) can be utilized. Algorithms for generating Sobol seqences are described,
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Figure 2.25 Crude Monte Carlo (left) vs. Sobol (right) sampling.

Table 2.8 Estimation quality for crude Monte Carlo (MC), Latin
Hypercube (LH), and Randomized Sobol (RS) samples.

m MC LH RS

A σA A σA A σA

10 0.785 0.129 0.786 0.073 0.784 0.086
20 0.787 0.092 0.789 0.050 0.787 0.048
50 0.786 0.056 0.784 0.032 0.783 0.025

Figure 2.26 Probability density function of uniformly distributed random variable.

e.g., by Bratley and Fox 1988 and for a randomized version allowing statistical error
estimates, by Hong and Hickernell 2003.

As a final example, consider again the determination of π
4 by sampling. Fixing the

number of samples of X and Y at a value m, computing the area estimate A for these
samples and repeating the analysis 1000 times we can get a measure for the estimation
error in terms of the standard deviation σA. Table 2.8 shows the mean value Ā and
the standard deviation σA for crude Monte Carlo, Latin Hypercube, and randomized
Sobol samples respectively. It can be seen that the performance of Latin Hypercube
and randomized Sobol samples is comparably good in this case and that crude Monte
Carlo is clearly worse.
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Figure 2.27 Digital generation of samples of random variable.

2.4.5 Transformation of random samples

An interesting application of Eq. 2.59 is the digital generation of realizations of a ran-
dom variable X with prescribed distribution function FX(x) from samples of a random
variable Y which is uniformly distributed in (0, 1). This means that the probability
density function of Y is

fY (y) =
{

1 for 0 ≤ y ≤ 1
0 else

(2.136)

so that the transformation between x and y space is governed by the differential
equation

1 = fX(x)
dx
dy

→ dy
dx

= fX(x) (2.137)

which is readily solved and inverted:

y = FX(x) → x = F−1
X (y) (2.138)

So samples y(k) are digitally generated and transformed into samples x(k) by means
of Eq. 2.138.

2.4.6 Simulation of correlated variables

Widely used random number generators are optimized at producing sequences of num-
ber which appear to be uncorrelated. Hence the simulation of correlated random
variables requires suitable transformations. The details of the transformation depend
on the joint probability density function of these variables. If the joint density function
is based on the Nataf model (cf. section 2.2.6), then the marginal density function
fXi (xi), i = 1, . . . n and the correlation coefficients ρij, i, j = 1, . . . n have to be known.
The simulation can then be performed in a loop for k = 1, . . . m using these steps:

1. Generate one sample u(k) of a vector of n uncorrelated standardized Gaussian
random variables.
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Figure 2.28 Monte Carlo samples of correlated lognormally distributed random variables (left:
ρ = 0.3, right: ρ = 0.8).

2. Transform the sample into correlated standard Gaussian space by means of

v(k) = Lu(k) (2.139)

Here, L is the Cholesky factor of the matrix of correlation coefficients ρ′ as
discussed in section 2.2.6.

3. Transform each variable separately into non-Gaussian space using

x(k)
i = F−1

Xi

[
�(v(k)

i )
]

(2.140)

Example 2.13 (Simulation of correlated lognormally distributed variables)
Consider two log-normally distributed random variables X1, X2 with identical means
X̄1 = X̄2 = X̄ = 1 and identical standard deviations σ1 = σ2 = σ = 0.4. Assume further
that the two variables are correlated with a coefficient of correlation ρ and that their
joint probability density function is given by the Nataf-model. The transformation
to Gaussian space and the computation of the adjusted coefficient of correlation is
described in Example 2.5. The octave script for this example is given in Listing 2.6.
The resulting samples are shown in Fig. 2.28 for ρ = 0.3 (left) and ρ = 0.8 (right).

Summary

This chapter presented the basic elements of probability theory as required for the
modeling of random phenomena in terms of random variables and random vectors.
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1 s=sqrt(log(1.16))
2 rho = 0.80
3 rhop=log(1+rho*s ˆ2)/log(1+s ˆ2)
4 mu=exp(-s ˆ2/2)
5 fid=fopen(''simul08.txt'', ''w'');
6 M=5000
7 R=[1,rhop;rhop,1];
8 L=chol(R)'
9 X1=zeros(M,1);

10 X2=zeros(M,1);
11 for i=1:M
12 u=randn(2,1);
13 v=L*u;
14 x1=mu*exp(v(1)*s);
15 x2=mu*exp(v(2)*s);
16 if (x1<2 && x2<2) fprintf(fid, ''%g %g\n'', x1,x2); end
17 X1(i)=x1;
18 X2(i)=x2;
19 end
20 fclose(fid);
21 plot(X1,X2,'o');
22 axis([0,2,0,2])
23 pause

Listing 2.6 Simulation of corrleated lognormally distributed random variables.

The definitions of expected values and probability distribution functions were intro-
duced and related to each other. Various types of probability density function models
were presented and compared to each other. The concept of conditional probability
was presented and applied to conditional probability densities. The transformation
rules for probability density functions of random variables related to each other by
nonlinear mappings were derived. Multi-dimensional probability density models for
random vectors were presented. The relationship between probabilistic models and
real data was established in terms of estimation procedures with suitable properties.
Confidence intervals and statistical test procedures enable the assessment of the model
quality. A section on simulation techniques discussed various computational methods
for generating random samples with prescribed statistical properties.



Chapter 3

Regression and response surfaces

ABSTRACT: The representation of complex physical or mathematical systems in terms of
simple functional relations is an important issue in many areas. In an engineering context,
it is desirable to describe the effect of uncertainty on the system’s behavior in terms of the
contributions due to individual random influences. This requires a statistically justified approxi-
mation model which is typically obtained by using regression techniques. This chapter introduces
basic techniques for regression and for identification of important random variables alike. This
is then complemented by a section on the appropriate choice of support points (“design of
experiments’’).

3.1 Regression

It is frequently required to fit the parameters of a simple mathematical model describing
a physical input-output relation to measured or computed sample data. The general
concept of regression is to minimize the error in the sense of an expected value. Assume
that the output quantity z is related to the n input quantities x1 . . . xn that are assembled
into a vector x by a functional relation f (.) with the formal representation

z = f (p, x) (3.1)

in which the function f depends on a parameter vector p = [p1, p2, . . . , pν]T whose
values have yet to be determined. We assume that the available samples contain pairs
(x(k), z(k)), k = 1 . . . m of corresponding inputs and outputs. It is important to realize
that these samples may contain random variability which is not described by the func-
tional relation given in Eq. 3.1. Regression is carried out by minimizing the mean
square difference (residual) S between the observed values z(k) and the predicted values
f (p; x(k)) by choosing an appropriate parameter vector p∗.

S(p) =
m∑

k=1

[
z(k) − f (x(k), p)

]2
; p∗ = argmin S(p) (3.2)

For a linear regression in which the function f can be written as

f (p, x) =
ν∑

i=1

pigi(x) (3.3)



60 Computat iona l ana lys i s o f randomness in s tructura l mechan ics

the problem can be solved directly. The necessary conditions for the existence of a local
minimum are:

∂S
∂pj

= 0; j = 1 . . . ν (3.4)

which, together with Eqs. 3.2 and 3.3, results in

m∑
k=1

{
gj(x(k))

[
z(k) −

ν∑
i=1

pigi(x(k))

]}
= 0; j = 1 . . . ν (3.5)

This is a system of linear equations for the parameter vector p

Qp = q (3.6)

in which the matrix Q and the vector q are defined by their elements

Qij =
m∑

k=1

gi(x(k))gj(x(k)); qj =
m∑

k=1

z(k)gj(x(k)); i, j = 1 . . . ν (3.7)

One may raise the question whether the model (here the linear regression model) is
actually appropriate. One possibility for checking the adequacy of a model is the
so-called coefficient of determination R2. This is a statistical measure describing the
correlation between the outputs as predicted by the regression model and the actual
data. According to the definition of the correlation coefficient, this is

R2 = ρ2
YZ =

(
E[Y · Z]
σYσZ

)2

; y =
ν∑

i=1

pigi(x) (3.8)

For a good model the value of R2 should be close to 1. An alternate way of defining
R2 is given by

R2 = 1 − S
Stot

= Stot − S
Stot

(3.9)

Here, S denotes the residual as defined in Eq. 3.2 and Stot denotes the total sum of
squares of the data:

Stot =
m∑

k=1

[z(k)]2 (3.10)

The residual S can also be expressed in terms of the coefficient of determination R2

and the total sum of squares Stot

S = Stot(1 − R2) (3.11)

When considering a situation where the number of data samples is (almost) equal to
the number of regression parameters, it becomes clear that the R2 values tend to be
over-optimistic in the sense that the model fits a small data sample including possibly
present random disturbances. This will limit the predictive capabilities of the model
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since the random disturbances will then be different. Hence it is generally accepted to
adjust the R2 values such as to take into account the limited sample size (Wherry 1931)

R2
adj = R2 − ν − 1

m − ν

(
1 − R2) (3.12)

Here, m is the sample size and ν is the number of unknown parameters in the regression
model. The adjusting correction term vanishes as the sample size m increases.

Example 3.1 (Fitting a polynomial function)
As an example, consider fitting a polynomial function

f (x) =
ν−1∑
i=0

pixi (3.13)

to a given set of 6 data points as shown in Fig. 3.1. The value of ν varies from 2 (linear
regression) to 5 (quartic regression). The sets of coefficients for these regressions are
given in Table 3.1. A quintic regression fits perfectly through all data points since the
number of sample points is equal to the number of regression parameters. However,
the adjusted coefficient of determination R2

adj cannot be computed. Comparing the

values for R2
adj in Table 3.1, it appears that a cubic model is best suited to represent

the sample data.

Example 3.2 (Oscillator with random properties)
Consider a simple linear oscillator as shown in Fig. 3.2 with mass m, stiffness k and
viscous damping c. It is subjected to a harmonic excitation with amplitude F0 and
circular frequency ω. The stationary response x(t) is given by

x(t) = x0 sin(ωt + ϕ) (3.14)

with the phase angle ϕ and the amplitude

x0 = F0

(k − mω2)2 + c2ω2
(3.15)

If we assume random properties for the system and load parameters, then the response
amplitude obviously will be random as well. Assume that k, m, and c are log-normally
distributed with mean values k̄ = 2, m̄ = 1, c̄ = 0.01 and ω is Gaussian with mean value
ω̄ = 1. The loading amplitude is assumed to be deterministic F0 = 1. When carrying
out a Monte-Carlo simulation with a coefficient of variation COV = 0.05 for the
input variables, we obtain the regression results as shown in Fig. 3.3. It can be seen
that the full quadratic model performs best, yet also the quadratic model without
interaction terms and the linear model are quite satisfactory. Upon increasing the COV
to 0.09, the changes are significant, as shown in Fig. 3.4. Now the randomness of the
variables becomes significant in the sense that the regression model cannot represent
the nonlinear relationship between input and output very well. Of course, here this is
a consequence of the inadequacy of the regression model.
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Figure 3.1 Set of data points with polynomial functions fitted by linear regression.

Table 3.1 Regression coefficients and R2-values for polynomial regression.

ν p0 p1 p2 p3 p4 R2 R2
adj

2 1.857 0.629 – – – 0.69 0.61
3 0.429 1.700 −0.107 – – 0.86 0.77
4 1.151 0.051 0.344 −0.030 – 0.96 0.89
5 1.079 0.646 0.024 0.022 −0.0026 0.96 0.80

3.2 Ranking of variables

Since the number of sample points should be significantly larger than the number
of regression coefficients, it is quite important not to include irrelevant variables in
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Figure 3.2 Simple oscillator.

Figure 3.3 Regression for simple oscillator, COV of input = 0.05.

Figure 3.4 Regression for simple oscillator, COV of input = 0.09.

the regression model. A rather straightforward approach for ranking variables with
respect to their importance in a regression model is to utilize the (adjusted) coefficient
of determination. This is done by computing the coefficient of determination R2 for
the full model and compare it to the corresponding value R2

e , which we obtain when
when one variable xe is removed from the regression one at a time. This removal will
result in a drop

�R2
e = R2 − R2

e (3.16)



64 Computat iona l ana lys i s o f randomness in s tructura l mechan ics

Figure 3.5 Simple sine function.

When we compare the values of �R2
e for all variables, we obtain an indicator of

importance. Here it is helpful to normalize the values of �R2
k such that the maximum

value is limited by 1. This defines a coefficient of importance

Ie = �R2
e

R2
= 1 − R2

e

R2
(3.17)

A similar comparison can be made on the basis of the adjusted values of the coefficient
of determination. Also, the importance of individual coefficients pe associated with
one or more variables can be assessed in a similar manner.

Example 3.3 (Deterministic analytical function)
Consider the function z = cos x1 · sin 2x2 on the square [0, 1] ⊗ [0, 1]. Let the function
be defined in 16 support points (x(k)

1 , x(k)
2 ) as indicated in Fig. 3.5. The coefficients

of correlation between the variables x1, x2 and the function z are ρx1z = −0.32 and
ρx2z = 0.83. A quadratic model is fitted to these 16 data points

f = b1 + b2x1 + b3x2 + b4x2
1 + b5x1x2 + b6x2

2 (3.18)

With this model, regression yields the coefficient vector

b = [0.0016, 0.1928, 2.2224, −0.2679, −0.4266, −1.2531]T (3.19)

The coefficient of determination is R2 = 0.99 and the adjusted value is R2
adj = 0.988.

So this is indeed a very good representation of the data.
Carrying out a regression on a reduced model containing x1 only, i.e.

f = b1 + b2x1 + b4x2
1 (3.20)
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Figure 3.6 Importance measure based on coefficient of determination.

results in a coefficient of determination R2 = 0.11 and a negative value of R2
adj = −0.03.

This indicates that the model is not useful. Performing a similar regression on a model
containing x2 only

f = b1 + b3x2 + b6x2
2 (3.21)

results in R2 = 0.85 and R2
adj = 0.83. This can still be considered acceptable. The big

drop in the value of R2 or R2
adj when removing the variable x2 from the regression is

a good indicator of its relative importance compared to x1 (cf. Fig. 3.3). If using a
regression model containing linear terms in x1 and x2 only

f = b1 + b2x1 + b3x2 (3.22)

we obtain a coefficient of determination R2 = 0.78 and R2
adj = 0.75. So a linear model

is not quite satisfactory.
As an alternative, we can apply Analysis of variance (ANOVA) techniques (Fisher

1921). The ANOVA procedure basically tests whether the mean values obtained from
different sample sets are identical. In this context, it is applied in such a way that the
predictions obtained from two different models, e.g. by the full model (3.3) and by a
reduced model eliminating one coefficient pe (3.23), are compared

f (p; x) =
ν∑

i=1,i 	=e

pigi(x) (3.23)

This will lead to a residual sum of squares S2
e , which will be larger than the minimum

obtained from Eq. 3.2. The quantity

Fe = 1
m − ν

S2
e − S2

S2
(3.24)

is a random variable whose distribution follows an F distribution. The hypothesis to be
tested in this context is whether F 	= 0 with statistical significance. In order to perform
the test, F is compared with the critical value, the F-statistic Fc = Fα,1,m−ν, so that
if Fe > Fα,1,m−ν, pe we may conclude that it is non-zero with confidence 1 − α. Also,
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the F-values can be used to identify important coefficients (those which have non-zero
values with a larger confidence). Alternatively, the magnitude of the confidence in the
hypothesis pe 	= 0 can be obtained by computing α from F = Fα,1,m−ν. For the previous
example, we have m − ν = 10. If we set α = 0.05 we have Fc = F0.05,1,10 = 4.96. For the
full quadratic model we get a residual sum of squares S2 = 0.02, for the model without
the variable x1 we have S2

1 = 0.28 and for the model without the variable x2 we get
S2

2 = 1.66. The test values are F1 = 1.14 and F2 = 7.33. This way, at the given level of
significance we have to conclude that the variable x1 should be omitted (F1 < Fc) and
the variable x2 should be included (F2 > Fc).

When we rewrite Eq. 3.24 in terms of the relations (3.9), we can see that

Fe = 1
m − ν

Stot(1 − R2
e ) − Stot(1 − R2)

Stot(1 − R2)
= 1

m − ν

R2 − R2
e

1 − R2
= 1

m − ν

�R2
e

1 − R2
(3.25)

From this, it can be noted that the F-values, when normalized suitably, match the
corresponding results obtained from the coefficient of determination as given in
Eq. 3.16.

Example 3.4 (Oscillator with random properties)
Consider the linear oscillator as discussed in Example 3.2. Based on the full quadratic
regression models, the influence of the random variables on the structural response
(for different values of their coefficients of variation) can be found as indicated in
Table 3.2.

This example shows that using the adjusted value of the coefficient of determination
may lead to slightly negative values of the coefficient of importance. This is caused by
the way R2

adj is constructed and should be interpreted as an indicator that the variable
in question may safely be omitted from the analysis. In this case, the damping constant
c is irrelevant. This is due to the fact that the natural circular frequency, as computed

from the mean values of m and k, is located at ω0 =
√

k
m = 1.414 rad/s, which is

relatively far away from the mean value of the excitation frequency at 1 rad/s. So
resonance effects (in which case the value of the damping constant would be very
influential) are unlikely to occur.

Table 3.2 Ranking of input variables for random
oscillator based on R2

adj.

Variable Ie

COV = 0.05 COV = 0.09

m 0.1344 0.2363
c 0.0000 −0.0003
k 0.4358 0.3886
ω 0.4825 0.6116
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3.3 Response surface models

3.3.1 Basic formulation

Response surface models are more or less simple mathematical models which are
designed to describe the possible experimental outcome (e.g., the structural response in
terms of displacements, stresses, etc.) of a more or less complex structural system as a
function of variable factors (e.g., loads or system conditions), which can be controlled
by an experimenter. Obviously, the chosen response surface model should give the best
possible fit to any collected data. In general, we can distinguish two different types of
response surface models:

• regression models (e.g., polynomials of varying degree or non-linear functions such
as exponentials)

• interpolation models (e.g., polyhedra, radial basis functions).

Let us denote the response of any structural system to n experimental factors or
input variables xi; i = 1 . . . n, which are assembled into a vector x = (x1 . . . xn)T , by
z(x). In most applications it is quite likely that the exact response function will not be
known. Therefore, it has to be replaced by a sufficiently versatile function η( · ) which
will express the relation between the response z and the input variables x satisfactorily.
If we take into account a zero-mean random error term ε, then the response can be
written over the region of experimentation as

z = η(p1 . . . pν; x1 . . . xn) + ε (3.26)

in which pj; j = 1 . . . p are the parameters of the approximating function η( · ). We now
apply the expectation operator, i.e.,

η = E[z] (3.27)

Then the surface represented by

η(p1 . . . pν; x1 . . . xn) = η(p; x) (3.28)

is called a response surface (cf. Fig. 3.7). The vector of parameters p = (p1 . . . pν)T has
to be estimated from the experimental data in such a way that Eq. (3.27) is fulfilled.
In the following, we will investigate the most common response surface models and
methods to estimate their respective parameters.

Figure 3.7 Response surface and data points.
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3.3.2 Linear models and regress ion

Let us assume that an appropriate response surface model η(·) has been chosen to
represent the experimental data. Then, for estimating the values of the parameters θ in
the model, the method of maximum likelihood can be utilized. Under the assumptions
of a Gaussian distribution of the random error terms ε, the method of maximum
likelihood can be replaced by the more common method of least squares (Box and
Draper 1987). In the latter case the parameters p are determined in such a way that the
sum of squares of the differences between the value of the response surface η(p; x(k))
and the measured response z(k) at the m points of experiment

x(k) = [x(k)
1 , . . . , x(k)

n ]T , k = 1 . . . m (3.29)

becomes as small as possible. In other words, the sum of squares function

S2 =
m∑

k=1

[
z(k) − η(p; x(k))

]2
(3.30)

has to be minimized (cf. Eq. 3.2). This corresponds to a minimization of the variance of
the random error terms ε. The minimizing choice of p is called a least-squares estimate
and is denoted by p∗.

The above regression problem becomes quite simple if the response surface model
is linear in its parameters p as defined in Eq. 3.3. Then, the least squares estimate p∗
of the parameter vector is determined by the linear system of equations (3.6). This
estimator is unbiased, i.e.,

E[p∗] = p (3.31)

Assuming that the covariance of the observations z(k) is given by

Czz = [z] = E[(z − E[z])(z − E[z])T ] = σ2I (3.32)

then the covariance matrix of the parameters is

Cpp = E[(p∗ − p)(p∗ − p)T ] = σ2(QTQ)−1 (3.33)

in which Q has been defined in Eq. 3.7. Since a response surface is only an approx-
imation of the functional relationship between the structural response and the basic
variables, it should be evident that, in general, there is always some lack of fit present.
Therefore, a crucial point when utilizing response surfaces is to check whether the
achieved fit of the response surface model to the experimental data suffices or if the
response surface model has to be replaced by a more appropriate one. This follows
the discussion given in section 3.2. Further, and more advanced, measures or checking
procedures can be found, e.g., in Box and Draper 1987; Khuri and Cornell 1996;
Myers and Montgomery 2002; Böhm and Brückner-Foit 1992. A detailed discussion
is given by Bucher and Macke 2005; Bucher and Most 2008.

It should be pointed out that the estimated parameters p∗ are least square estimates,
i.e., there is a certain likelihood that the true parameter p has a different value than
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the estimated one. Therefore, it is sometimes quite advisable to determine confidence
intervals for the parameters (cf. section 2.3.2). Joint confidence regions for several
regression coefficients are given, e.g., in Myers and Montgomery 2002. Consequently,
when utilizing response surfaces in reliability assessment, we should be aware that
all predictions—may it be the structural response for a certain design or a reliability
measure—show respective prediction uncertainty as reflected in confidence intervals.

3.3.3 First- and second-order polynomials

As already mentioned above, response surfaces are designed in a way that a complex
functional relation between the structural response and the basic variables is described
by an appropriate, but—preferably—as simple as possible mathematical model. In the
context of response surfaces, the term “simple" means that the model should be contin-
uous in the basic variables and have a small number of terms whose coefficients can be
easily estimated. Polynomial models of low-order fulfill such demands. Therefore, in
the area of stochastic structural analysis (e.g. for reliability assessment) the most com-
mon response surface models are first- and second-order polynomials (cf. Rackwitz
1982, Bucher and Bourgund 1990; Kim and Na 1997; Zheng and Das 2000).

The general form of a first-order model of a response surface η which is linear in its
n basic variables xi is

η = p0 +
n∑

i=1

pixi (3.34)

with pi; i = 0, 1 . . . n as the unknown parameters to be estimated from the experimental
data. This model has a total of ν = n + 1 parameters. The parameter p0 is the value of
the response surface at the origin or the center of the experimental design, whereas the
coefficients pi can be interpreted as the gradients of the response surface in the direction
of the respective basic variables xi. As can be seen in Eq. (3.34), the first-order model
is not able to represent even the simplest interaction between the input variables.

If it becomes evident that the experimental data can not be represented by a model
whose basic variables do not have mutually independent effects, then the first-order
model can be enriched with (simple) interaction terms, so that

η = θ0 +
n∑

i=1

pixi +
n−1∑
i=1

n∑
j=i+1

pijxixj (3.35)

The total number of parameters to be estimated is given by ν = 1 + n(n + 1)/2. In the
response surface model of Eq. (3.35) there is some curvature present but that only
results from the twisting of the planes of the respective input variables. If a substantial
curvature is required as well, then the above model can be further enhanced by n
quadratic terms to a complete second-order model in the form of

η = θ0 +
n∑

i=1

pixi +
n∑

i=1

n∑
j=i

pijxixj (3.36)
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The total number of parameters to be estimated is ν = 1 + n + n(n + 1)/2.
In most common cases either the first-order or the complete second-order model are

utilized as response surface functions.

3.3.4 Weighted interpolation

Besides the above mentioned regression models, interpolation models are also available
for describing response surfaces.

A useful Shepard-type (Shepard 1968) interpolation strategy (particularly for reli-
ability problems with convex limit state functions) has been described by Bucher,
Hintze, and Roos 2000. It appears to be helpful to carry out the interpolation in non-
dimensional space (e.g., standard Gaussian space u). Shepard interpolation requires a
distance measure d which is most suitably defined in terms of the Euclidian distance
between two vectors u� and uk:

d(u�, uk) = ‖u� − uk‖ (3.37)

For a given vector U, the function g(U) is approximated by

η(U) =
∑m

i=1 wig(ui)∑m
i=1 wi

(3.38)

in which the weights wi are computed from

wi = [d(U, ui) + ε]−p (3.39)

Here, ε is a small positive number regularizing this expression and p is a suitably chosen
positive number (e.g. p = 2).

All these Shepard type models allow, by including additional points, an adaptive
refinement of the approximating response surface.

Example 3.5 (Shepard interpolation of 2D function over irregular set of support
points)
Consider a function g : R

2 → R defined in 5 points as given in Table 3.3. We want to
construct a Shepard interpolation function over the square [0, 1]⊗ [0, 1]. The location
of the 5 support points as well as the contour lines of the interpolated function η are
shown in Fig. 3.8.

Table 3.3 Data for Shepard interpolation in R
2.

u1 u2 g

0.21307 0.87950 0.164813
0.84100 0.71685 0.432167
0.63773 0.24935 0.039652
0.54003 0.37962 0.077823
0.73806 0.64272 0.304883
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3.3.5 Moving least squares regress ion

An arbitrary function u is interpolated at a point xk by a polynomial as

uk = u(xk) = [1 xk yk . . . x2
k xkyk y2

k . . . ]


a1k

:
aνk


 = pT (xk)ak = pT

k ak (3.40)

where p(xk) is the vector of base monomials evaluated at the point xk and ak contains
the coefficients of the polynomial. These coefficients are usually assumed to be constant
in the interpolation domain and can be determined directly if the number of supporting
points m used for the interpolation is equal to the number of coefficients ν.

Within the “Moving Least Squares’’ (MLS) interpolation method (Lancaster and
Salkauskas 1981) the number of supporting points m exceeds the number of coefficients
n, which leads to an overdetermined system of equations. This can be formulated as
an optimization problem to be solved by using a least squares approach

Pu = PPTa(x) (3.41)

with changing (“moving’’) coefficients a(x). Here u denotes the assembly of all function
values uk into a vector, and P denotes the assembly of all vectors pk into a matrix. If an
interpolation technique should by used in a numerical method the compact support of
the interpolation is essential for an efficient implementation. This was realized for the
MLS-interpolation by introducing a distance depending weighting function w = w(s),
where s is the standardized distance between the interpolation point and the considered
supporting point

si = ‖x − xi‖
D

(3.42)

and D is the influence radius, which is defined as a numerical parameter. All types of
functions can be used as weighting functions w(s) which have their maximum in s = 0
and vanish outside of the influence domain specified by s = 1.

Figure 3.8 Shepard interpolation in R
2.
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The final approximation scheme then becomes

η(x) = �MLS(x)u

�MLS(x) = pT (x)A(x)−1B(x)
(3.43)

with

A(x) = PW(x)PT

B(x) = PW(x)
(3.44)

In Most and Bucher 2005 a new weighting function was presented which enables the
fulfillment of the MLS interpolation condition with very high accuracy without any
additional numerical effort

�MLS
i (xj) ≈ δij (3.45)

This can only be reached if Eq. (3.46) holds

wi(xj) ≈ δij (3.46)

The weighting function value of a node i at an interpolation point x is introduced by
the following regularized formulation

wR(si) = w̃R(si)∑m
j=1 w̃R(sj)

(3.47)

with

w̃R(s) = (s2 + ε)−2; ε � 1 (3.48)

The regularization parameter ε has to be chosen small enough to fulfill Eq. (3.46)
with high accuracy but large enough to obtain a regular, differentiable function at s = 0
within the machine precision. This approach allows for a very good representation of
given support points which is crucial for the accuracy of reliability estimates.

3.3.6 Radial basis functions

Radial basis function interpolation constructs interpolating functions of the form

η(x) =
m∑

j=1

pjϕ(‖x − x(j)‖) (3.49)

in which ‖.‖ denotes the Euclidian norm of the vector argument and ϕ(.) are usually
taken to be simple functions of their arguments, e.g. linear: ϕ(r) = cr, “thin plate spline’’:
ϕ(r) = cr2 log r, or Gaussian: ϕ(r) = exp(−cr2) (Buhmann 2004). The vectors xj denote
the support points in which the function is given, and the coefficients aj have to be
adjusted such as to fulfil the interpolation condition. Since this is an interpolation
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method, there are exactly as many coefficients as there are data points. The coefficients
are then to be determined from a system of linear equations

z(k) = z(x(k)) =
m∑

j=1

pjϕ(||x(k) − x(j)||); k = 1 . . . m (3.50)

A major advantage of the radial basis function interpolation is that the matrix in
Eq. 3.50 is always non-singular. This implies that there is always a unique solution
(Buhmann 2004). Due to the radial symmetry of the basis functions it is advantageous
to introduce a scaling of the independent variables such that they all are in the same
range of values, e.g. in the interval [0, 1]. A detailed discussion of this methodology
is given by Buhmann 2004. Shepard interpolation (cf. section 3.3.4) is a special, very
simple case of radial basis function interpolation.

Another point of relevance for some applications is the fact that radial basis functions
are unable to represent simple but important functions such as constants or linear
functions exactly. One way of including these types of functions into the analysis is to
“stack’’ the radial basis function interpolation on top of a linear regression with n + 1
coefficients p′

k; k = 0 . . . n so that

z(k) = p′
0 +

n∑
k=1

p′
kx(j)

k +
m∑

j=1

pjϕ(‖x − x(j)‖) (3.51)

in which the regression model is determined beforehand, and then the coefficients pj

are computed from the difference between the actual data and linear the regression
model.

Example 3.6 [Radial basis function interpolation]
Consider a function defined in 6 data points as shown in Table 3.4. We use the thin
plate spline function ϕ(r) = cr2 log r as basis function. For the linear regression we need
to solve the system of equations (cf. Eq. 3.6)


6.000 3.000 3.000

3.000 2.265 1.625
3.000 1.625 2.265


 ·


p′

0
p′

1
p′

2


 =


9.000

5.250
6.050


 (3.52)

Table 3.4 Sample data for radial basis function.

j x(j)
1 x(j)

2 z(j)

1 0.1 0.1 1
2 0.9 0.1 1
3 0.9 0.9 2
4 0.1 0.9 2
5 0.25 0.25 0
6 0.75 0.75 3
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with the solution
p′

0
p′

1
p′

2


 =


0.208

0.667
1.917


 (3.53)

The system of equations to be solved for the radial basis function part is then


0.000 −0.143 0.158 −0.143 −0.070 −0.071
−0.143 0.000 −0.143 0.158 −0.180 −0.180

0.158 −0.143 0.000 −0.143 −0.071 −0.070
−0.143 0.158 −0.143 0.000 −0.180 −0.180
−0.070 −0.180 −0.071 −0.180 0.000 −0.173
−0.071 −0.180 −0.070 −0.180 −0.173 0.000




·




p1

p2

p3

p4

p5

p6




=




0.534
−0.000
−0.534

0.000
−0.854

0.854




(3.54)
with the solution


p1

p2

p3

p4

p5

p6




=




−3.421
0.000
3.421

−0.000
−4.901

4.901




(3.55)

Applying these coefficients for interpolation of the function over the square [0, 1] ⊗
[0, 1], results in a smooth surface as indicated in Fig. 3.9.

The octave script solving the example is shown in Listing 3.1.

Exercise 3.1 (Interpolation of trigonometric function)
Perform a radial basis function interpolation η(x1, x2) of the trigonometric function
z(x1, x2) = sin πx1 · sin 2πx2 over the square [0, 1] ⊗ [0, 1] using the support points as
shown in Fig. 3.10. Compute the function values of η at the point xr = [0.1, 0.1]T .

Solution: The coefficients for the linear regression part are
p′

0
p′

1
p′

2


 =


 0.283

0.000
−0.566


 (3.56)

and the coefficients for the radial basis functions, numbered according to the support
points fiven in Fig. 3.10, are



p1

p2

p3

p4

p5

p6

p7

p8

p9




=




−0.391
−0.391

2.822
2.822
0.000

−2.822
−2.822

0.391
0.391




(3.57)
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1 xyz=[0.1,0.1,1;
2 .9,0.1,1;
3 .9,.9,2;
4 .1,.9,2;
5 .25,.25,0;
6 .75,.75,3];
7 xy = xyz(:,1:2);
8 z = xyz(:,3);
9 p=[ones(6,1),xy];

10 mat1=p’*p;
11 rhs1=p’*z;
12 coeff1=mat1\rhs1
13 z1=p*coeff1;
14 z=z-z1;
15 mat=zeros(6,6);
16 for i=1:6
17 for k=1:6
18 x=xy(i,:)’;
19 y=xy(k,:)’;
20 r = sqrt((x(1)-y(1))ˆ2+(x(2)-y(2))ˆ2);
21 l = 0;
22 if (r>0) l = rˆ2*log(r); end
23 mat(i,k) = l;
24 end
25 end
26 coeff=mat\z

Listing 3.1 Computation of coefficients for radial basis function interpolation.

Figure 3.9 Radial basis function interpolation.
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Figure 3.10 Support points for Exercise 3.1.

Figure 3.11 RBF interpolation for Exercise 3.1, interpolation (left) vs. original function (right).

and the interpolated function value at the requested point is η(xr) = 0.398. Note that
the true value is z(xr) = 0.1816. Closer inspection reveals that in some locations the
difference is even considerably larger although the overall behavior of the interpolated
function is quite reasonable. This can be seen from Fig. 3.11 which compares the radial
basis function interpolation to the original function.

3.4 Design of experiments

3.4.1 Transformations

Depending on the selected response surface model, support points x(k), k = 1, . . . , m
have to be chosen to estimate the unkown parameters of the response surface in a
sufficient way. A set of samples of the basic variables is generated for this purpose. In
general, this is done by applying predefined schemes, so called designs of experiments.
The schemes shown in the following are saturated designs for first- and second-order
polynomials, as well as full factorial and central composite designs. As is quite well
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Figure 3.12 Saturated linear experimental scheme (left) and quadratic design scheme for
n = 3 (right).

known from experiments regarding physical phenomena, it is most helpful to set up
the experimental scheme in a space of dimensionless variables. The schemes, as they
are described in the following, perform experimental designs in a space of dimension
n, where n is equal to the number of relevant basic variables.

The selected design of experiments provides us with a grid of points defined by the
dimensionless vectors ξ(k) = [ξ(k)

1 , ξ(k)
2 , . . . , ξ(k)

n ]T . This grid has to be centered around a
vector c = [c1, c2, . . . , cn]T . In the absence of further knowledge, this center point can be
chosen equal to the vector of mean values µ = [µ1, µ2, . . . , µn]T of the basic random
variables Xi, i = 1, . . . , n. As further knowledge about the actual problem becomes
available other choices of the center point are, in general, more appropriate. The
distances from the center are controlled by the scaling vector s = [s1, s2, . . . , sn]T . In
many cases it is useful to choose the elements si of this scaling vector equal to the
standard deviations σi of the random variables Xi. So, in general, a support point
x(k), k = 1, . . . , m is defined as

x(k) =




x(k)
1

x(k)
2
...

x(k)
n


 =




c1 + ξ
(k)
1 s1

c2 + ξ
(k)
2 s2

...

cn + ξ
(k)
n sn


 (3.58)

The number m of generated support points depends on the selected method. For the
specific needs of reliability analysis (cf. section 6.3) it turns out to be very important
to choose the scaling factors s = [s1, s2, . . . , sn]T in such a way that the support points
lie on the limit state surface, i.e. g(x(k)) = 0.

3.4.2 Saturated designs

Saturated designs provide a number of support points that just suffice to represent a
certain class of response functions exactly. Hence for a linear saturated design, a linear
function will be uniquely defined. Obviously, m = n + 1 samples are required for this
purpose (cf. Fig. 3.12), and there is some arbitrariness in the design scheme which
can usually be resolved only by introducing additional knowledge about the system
behavior.
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Figure 3.13 Full factorial design scheme for q = 3 and n = 3 (left), central composite design scheme
for n = 3 (right).

A saturated quadratic design (Fig. 3.12) generates m = n(n + 1)/2 + n + 1 support
points x(k). Any change of sign in the pairwise combinations would also lead to a
saturated design, so that the final choice is somewhat arbitrary and should be based
on additional problem-specific information.

3.4.3 Redundant designs

Redundant experimental design methods provide more support points than required
to define the response surface, and thus enable error checking procedures as outlined
in the preceding section. Typically, regression is used to determine the coefficients of
the basis function. Here, linear and quadratic functions are also utilized.

The full factorial method (Fig. 3.13) generates q sample values for each coordinate,
thus produces a total of m = qn support points x(k) (k = 1, 2, . . . , m). Note that even
for moderate values of q and n this may become prohibitively expensive. Therefore,
subsets are frequently chosen, which leads to fractional factorial designs.

The central composite design method (Fig. 3.13) superimposes a full factorial design
with q = 2 and a collection of all center points on the faces of an n-dimensional
hypercube. Thus it generates m = (2n + 2n) support points x(k).

D-optimal designs attempt to maximize the information content if only a small
subset of the, otherwise preferable, full factorial design can be utilized, e.g., due to
restrictions on computer capacity. Given a set of candidate factors ξ(k) a subset of size
m′ is chosen in order to maximize the determinant of the Fisher information matrix IF

D = det IF = det (GTG) (3.59)

In this equation, G denotes a matrix containing values of the basis functions gi(x) for
the response surface evaluated at the selected support points. Typically, the number m′
is chosen to be 1.5-times the corresponding number of a saturated design.

Example 3.7 [D-optimal design in 2D]
Assume that we want to set up an experimental design for a linear response surface
involving two variables x1 and x2 over the square [0, 1] ⊗ [0, 1]. We have the basis
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functions 1, x1, and x2. Hence the saturated design needs m = 3 support points. A
D-optimal design with m′ = 5 is defined in terms of

G =

 1 1 1 1 1

x(1)
1 x(2)

1 x(3)
1 x(4)

1 x(5)
1

x(1)
2 x(2)

2 x(3)
2 x(4)

2 x(5)
2




T

=

 1 1 1 1 1

x11 x12 x13 x14 x15

x21 x22 x23 x24 x25




T

(3.60)

obtained from maximizing

D = det GTG =
= (

x15
2 + x14

2 + x13
2 + x12

2 + x11
2) (

x25
2 + x24

2 + x23
2 + x22

2 + x21
2)

− (x15 x25 + x14 x24 + x13 x23 + x12 x22 + x11 x21)
2 (3.61)

Choosing 4 support points at the corners of the square, we are left with the reduced
problem

D = 4 x25
2 − 4 x25 + 4 x15

2 − 4 x15 + 7 → Max.! (3.62)

from which we get the conditions

∂D
∂x1

= 8 x15 − 4 = 0

∂D
∂x2

= 8 x25 − 4 = 0 (3.63)

This system of equations has the solution x(5)
1 = x(5)

2 = 0.5.

Summary

This chapter presented techniques for deriving models based on observed or computed
data. Linear regression analysis was discussed and quality measures were introduced.
Based on regression, ranking schemes for identifying important parameters or variables
were discussed. Response surface models based on both regression and interpola-
tion were given. In order to set up response surfaces, support points must be chosen
appropriately. Suitable methods for the design of experiments were shown.





Chapter 4

Mechanical vibrations due to
random excitations

ABSTRACT: Typical actions on mechanical systems and structures have a considerable tem-
poral variation. This leads to time-dependent dynamic responses. The mathematical framework
to describe actions and reactions is based on random process theory.

This chapter starts with the basic description of random processes in both time and frequency
domains, including the mechanical transfer functions. Methods to compute the response statis-
tics in stationary and non-stationary situations are described and applied to several problem
classes. Analytical methods based on Markov process theory are discussed as well a numerical
methods based on Monte Carlo simulation. The chapter concludes with a section on stochastic
stability.

4.1 Basic definitions

A random process X(t) is the ensemble of all possible realizations (sample functions)
X(t, σ) as shown in Fig. 4.1. Here t denotes the independent variable (usually identified
with time) and σ denotes chance (randomness).

For any given value of t, X(t) is a random variable. By taking ensemble averages at
a fixed value of t, we can define expected values of the random process X(t). These
expectations are first of all the mean value function

X̄(t) = E[X(t)] (4.1)

and the auto-covariance function

RXX(t, s) = E[(X(t) − X̄(t))(X(s) − X̄(s))] (4.2)

From Eq. (4.2) we obtain as a special case for t = s

RXX(t, t) = E[(X(t) − X̄(t))2] = σ2
X(t) (4.3)

Figure 4.1 Ensemble of realizations of a random process.
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Figure 4.2 Auto-covariance function of a weakly stationary random process.

An enhanced description of a random process involves the probability distribution
functions. This includes the one-time distribution function

FX(x, t) = Prob[X(t) < x] (4.4)

and, moreover, all multi-time distribution functions

FX(x1, t1; x2, t2; . . . ; xn, tn)

= Prob[(X(t1) < x1) ∧ (X(t2) < x2) ∧ . . . ∧ (X(tn) < xn)] (4.5)

for arbitrary n ∈ N. If all these distribution functions are (multidimensional) Gaussian
distributions, then the process X(t) is called Gaussian process. This class of random
processes has received particular attention in stochastic dynamics since its proper-
ties are easily described in terms of the mean value function and the auto-covariance
function only.

A random process is called weakly stationary if its mean value function X̄(t) and
auto-covariance function RXX(t, s) satisfy the relations

X̄(t) = X̄ = const.

RXX(t, s) = RXX(s − t) = RXX(τ) (4.6)

For weakly stationary processes we have

RXX(τ) = RXX(−τ)

max
τ∈R

|RXX(τ)| = RXX(0) = σ2
X (4.7)

Intuitively, one may expect that for large time separation (i.e. for τ → ±∞) the auto-
covariance function should approach zero. If this is actually the case, then the Fourier
transform of the auto-covariance functions exists, and we define the auto-power
spectral density SXX(ω) of the weakly stationary random process X(t) in terms of

SXX(ω) = 1
2π

∞∫
−∞

RXX(τ)eiωτdτ (4.8)
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Figure 4.3 Qualitative relation beween PSD and auto-covariance functions for wide band and
narrow band random processes.

By inverting this transformation we can recover the auto-covariance function in
terms of

RXX(τ) =
∞∫

−∞
SXX(ω)e−iωτdω (4.9)

These equations are frequently called Wiener-Khintchine-relations. Specifically, for
ω = 0 we obtain from the previous equation

σ2
X = RXX(0) =

∞∫
−∞

SXX(ω)dω (4.10)

This leads to the interpretation of the power spectral density (PSD) as the distribution
of the variance of a process over the frequency axis. It forms the basis of the so-called
power spectral method of random vibration analysis.

According to the range of frequencies covered by the PSD, the extreme cases of
wide-band and narrow band random processes may be distinguished. The qualitative
relation between the PSD and the respective auto-covariance functions is shown in
Fig. 4.3.

4.2 Markov processes

A continuous Markov process is defined in terms of conditional probability density
functions, i.e.

fX(xn, tn|xn−1, tn−1; . . . x1, t1) = fX(xn, tn|xn−1, tn−1); tn > tn−1 > · · · > t1 (4.11)
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This states that the probability density function of a Markov process at time tn, given
its state at previous times tn, tn−1 . . . t1, depends only on the value xn−1 at time tn−1, i.e.
only on the immediate past. As such, a Markov process is called a “one-step-memory
random process’’ (Lin 1976). Using properties of the correlation coefficient function

ρXX(t, s) = RXX(t, s)
σX(t)σX(s)

(4.12)

there is a weaker form of defining a Markov process (Markov process in the wide
sense) by

ρXX(t, s) = ρXX(t, u) · ρXX(u, s); t ≤ u ≤ s (4.13)

If a random process is both wide-sense Markovian and weakly stationary, then

ρXX(t − s) = ρXX(t − u) · ρXX(u − s); t ≤ u ≤ s (4.14)

or equivalently

ρXX(τ) = ρXX(ϕ)ρXX(τ − ϕ) (4.15)

Taking derivatives with respect to τ we get

ρ̇XX(τ) = ρXX(ϕ)ρ̇XX(τ − ϕ) (4.16)

and upon setting τ = ϕ

ρ̇XX(τ) = ρXX(τ)ρ̇XX(0) = −βρXX(τ) (4.17)

which due to ρXX(0) = 1 has the unique solution

ρXX(τ) = exp (−βτ); β > 0 (4.18)

Hence the auto-covariance function of a weakly stationary wide-sense Markov process
is of the exponential type:

RXX(τ) = σ2
X exp (−βτ) (4.19)

This can easily be Fourier-transformed to give the power spectral density as a rational
function

SXX(ω) = β σ2
X

π(β2 + ω2)
(4.20)

The maxima-code carrying out the integration is given in Listing 4.1.
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1 assume(beta>0);
2 assume(omega>0);
3 r(t):=S*exp(-beta*t);
4 h:1/2/%pi*2*integrate(r(u)*exp(-%i*omega*u),u,0,inf);
5 s:realpart(h);
6 tex(%);

Listing 4.1 Computation of spectral density for Markov process.

Figure 4.4 Correlation function and power spectral density function of Markov process.

The relation between these functions is shown in Fig. 4.4 for σ2
X = 1 and for different

numerical values of β.
The concept of Markov processes can be extended to vector-valued random processes

X(t). In this case, the defining equation becomes

fX(xn, tn|xn−1, tn−1; . . . x1, t1) = fX(xn, tn|xn−1, tn−1); tn > tn−1 > · · · > t1 (4.21)

The matrix of correlation coefficients ρ(τ) consequently has the property

ρ(t − s) = ρ(t − u)ρ(u − s) (4.22)

which implies (cf. the argumentation following Eq. 4.14, Lin 1976)

ρ(τ) =
{

exp (−Qτ); τ > 0
exp (QTτ); τ < 0

(4.23)

in which Q is a constant matrix whose eigenvalues have positive real parts. Note
that the matrix exponential typically contains both exponential and trigonometric
functions, thus the correlation coefficients of Markov vector processes will usually be
oscillating functions of the time lag τ.

4.2.1 Upcrossing rates

For the design of a structure or structural element it is essential to deal with extreme
responses to dynamic loading. This means that the probability of exceeding large,
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Figure 4.5 Upcrossing event of a random process process.

possibly dangerous levels ξ of the response X(t) should be kept small. Different types
of failure can be associated with the exceedance of the threshold value. One possible
failure mechanism is sudden failure once the threshold is crossed (ultimate load failure),
another possibility is the accumulation of damage due to repeated exceedance of the
threshold (fatigue failure). For both types of failure it is essential to investigate the
average number of crossings over the threshold per unit time (the upcrossing rate νξ).
Upcrossing is an event at time t in which the value of the random process X is below
the threshold immediately before t and above the threshold immediately after t. The
event occurs while the time-derivative Ẋ is positive (cf. Fig. 4.5). In order to derive an
expression for νξ it is necessary to know the joint probability density function of the
random process and its time derivative at any time t, i.e. fX,Ẋ(x, ẋ, t). If Ẋ exists in the
mean square sense, then its mean value is zero

E[Ẋ] = lim
�t→0

1
�t

E[X(t + �t) − X(t)] = ˙̄X = 0 (4.24)

and its covariance function is given by

RẊẊ = E[Ẋ(t)Ẋ(s)] = lim
u→0

lim
v→0

E
[

X(t + u) − X(t)
u

X(s + v) − X(s)
v

]

= lim
v→0

1
v

lim
u→0

RXX(t + u − s − v) − RXX(t − s − v)
u

− lim
v→0

1
v

lim
u→0

RXX(t + u − s) + RXX(t − s)
u

= lim
v→0

1
v

[
R′

XX(t − s − v) − R′
XX(t − s)

] = −R′′
XX(t − s) (4.25)

This means that the differentiability of a random process in the mean square sense
requires that its auto-covariance function is twice differentiable. This shows that a
scalar Markov process is not mean-square differentiable. However, individual compo-
nents of a vector Markov process may be mean-square differentiable. In a stationary
process, the process itself and its time derivative are uncorrelated if taken at the same
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time t. This is readily shown by taking

E[X(t)Ẋ(t)] = lim
�t→0

1
�t

E[X(t) (X(t + �t) − X(t)) ]

= lim
�t→0

1
�t

(RXX(�t) − RXX(0)) = R′
XX(0) (4.26)

Due to the required symmetry of the auto-covariance function RXX(τ) with respect to
the time separation argument τ, its derivative R′

XX is either zero or it does not exist.
However, since the existence of the derivative requires the differentiability of RXX we
conclude that X(t) and Ẋ(t) are uncorrelated.

In the case of a Gaussian random process this implies that X(t) and Ẋ(t) are inde-
pendent when evaluated at the same time. The joint probability density function of the
process and its time derivative is then simply

fXẊ(x, ẋ) = 1
2π

1
σXσẊ

exp

[
− (x − X̄)2

2σ2
X

]
exp

[
− ẋ2

2σ2
Ẋ

]
(4.27)

The upcrossing rate νξ of a random process X(t) over a threshold ξ from below can be
computed as (Lin 1976):

νξ =
∞∫

0

ẋfXẊ(ξ, ẋ)dẋ (4.28)

For a Gaussian process as defined in Eq. 4.27, this evaluates to

νξ = 1
2π

σẊ

σX
exp

[
− (x − X̄)2

2σ2
X

]
(4.29)

By studying the joint probability density function of the process X(t) and its first and
second derivatives Ẋ(t) and Ẍ(t), an expression for the probability density function
fA(a) of the peaks A of a random process can be obtained (Lin 1976). For the limiting
case of a narrow-band process, fA(a) becomes

fA(a) = a

σ2
X

exp

[
− (a − X̄)2

2σ2
X

]
, a ≥ X̄ (4.30)

4.3 Single-degree-of-freedom system response

4.3.1 Mean and variance of response

Consider a mechanical system consisting of a mass m, a viscous damper c and an elastic
spring k as shown in Fig. 4.6. The equation of motion (dynamic equilibrium condition)
for this system is

mẌ + cẊ + kX = F(t) (4.31)
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Figure 4.6 Single-degree-of-freedom oscillator.

For this system, we can derive the natural circular frequency ω0 and the damping ratio
ζ as

ω0 =
√

k
m

; ζ = c

2
√

mk
(4.32)

We assume that the load F(t) acting on the system is a random process. At present we
specifically assume that F(t) is a weakly stationary process with a given mean value
F̄ and a given autocovariance function RFF(τ). We want to compute the statistical
properties of the displacement response X(t), which will be a random process, too.
From structural dynamics, we can apply the so-called Duhamel’s integral:

X(t) =
t∫

0

h(t − w)F(w)dw (4.33)

In this equation, h(u) denotes the impulse response function given by

h(u) =



1
mω′ exp (−ζω0u) sin ω′u u ≥ 0

0 u < 0
(4.34)

with ω′ = ω0

√
1 − ζ2. Applying the expectation operator on Eq. (4.33), we obtain

E[X(t)] = X̄(t) = E


 t∫

0

h(t − w)F(w)dw




=
t∫

0

h(t − w)E[F(w)]dw = F̄

t∫
0

h(t − w)dw (4.35)

By substituting the variable u = t − w we immediately get

X̄(t) = F̄

t∫
0

h(u)du = F̄

mω2
0

[
1 − exp (−ζω0t)

(
ζ sin ω′t +

√
1 − ζ2 cos ω′t

)]
(4.36)

From this it is easily seen that in the limit as t → ∞, we obtain the static solution as
the stationary solution

lim
t→∞ X̄(t) = F̄

k
= X̄∞ (4.37)

If the damping ratio is not too small, the limit is approached quite rapidly. For numeri-
cal values of ω0 = 1 and ζ = 0.05, this is shown in Fig. 4.7. There is an initial overshoot
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Figure 4.7 Expected displacement response for SDOF systems.

which in structural analysis is commonly called dynamic load factor. It is less or equal
to 2. For processes with a sufficiently long duration, the stationary limit X̄∞ is of
main interest. This so-called stationary mean response can also be obtained for finite
values of t by assuming that the excitation started in the infinite past. Based on this,
Duhamel’s integral can be written as

X(t) =
t∫

−∞
h(t − w)F(w)dw (4.38)

Actually, due to the fact that h(u) = 0 for u < 0, we can write just as well

X(t) =
∞∫

−∞
h(t − w)F(w)dw (4.39)

From this, we can easily get

E[X(t)] = X̄(t) = E


 ∞∫

−∞
h(t − w)F(w)dw


 = F̄

∞∫
0

h(u)du = F̄
k

(4.40)

In the following, we assume that the excitation has been acting since the infinite
past. The autocovariance function RXX(t, s) of the response X(t) can then also be
computed from Eq. (4.39):

E[X(t)X(s)] = E


 ∞∫

−∞
h(t − w)F(w)dw ·

∞∫
−∞

h(s − z)F(z)dz




= E


 ∞∫

−∞

∞∫
−∞

h(t − w)h(s − z)F(w)F(z)dwdz


 (4.41)

=
∞∫

−∞

∞∫
−∞

h(t − w)h(s − z)E[F(w)F(z)]dwdz
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Subtracting the expected values F̄ and X̄, respectively, this becomes

RXX(t, s) =
∞∫

−∞

∞∫
−∞

h(t − w)h(s − z)RFF(w, z)dwdz (4.42)

With the application of the Wiener-Khintchine-relations Eq. (4.8) we obtain the power
spectral density function SXX(ω) of the response

SXX(ω) = 1
2π

∞∫
−∞

∞∫
−∞

∞∫
−∞

h(t − w)h(t + τ − z)RFF(z − w)eiωτdwdzdω (4.43)

Using the substitutions

u1 = z − w; u2 = t − w; u3 = t + τ − z (4.44)

with the absolute Jacobian determinant |J| of the coordinate transformation

| J| =
∣∣∣∣∂(u1, u2, u3)

∂(z, w, τ)

∣∣∣∣ =
∣∣∣∣∣∣

1 −1 0
0 −1 0

−1 0 1

∣∣∣∣∣∣ = |−1| = 1 (4.45)

this can be rewritten as

SXX(ω) = 1
2π

∞∫
−∞

RFF(u1)eiωu1du1

·
∞∫

−∞
h(u2)e−iωu2du2 ·

∞∫
−∞

h(u3)eiωu3du3 (4.46)

The first line on the right hand side of this equation apparently represents the power
spectral density SFF(ω) of the excitation. The remaining two integrals are the complex
transfer function H(ω) and its complex conjugate H∗(ω):

H(ω) =
∞∫

−∞
h(u)e−iωudu (4.47)

So we may conclude that the power spectral density of the response is given by the
simple relation

SXX(ω) = SFF(ω)H(ω)H∗(ω) = SFF(ω)|H(ω)|2 (4.48)

Evaluation of Eq. (4.47) yields

H(ω) = 1
k − mω2 + icω

(4.49)
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so that

SXX(ω) = SFF(ω)
1

k2 + (c2 − 2km)ω2 + m2ω4
(4.50)

Using Eq. (4.10), the variance σ2
X of the displacement response can be computed from

σ2
X =

∞∫
−∞

SFF(ω)|H(ω)|2dω (4.51)

Example 4.1 (Cantilever subjected to lateral loading)
As an example, consider a simple cantilever structure subjected to random lateral
loading (cf. Fig. 4.8). Structural data is H = 4 m, EI = 3600 kN/m2, m = 1 t. From
this, the lateral stiffness is k = 3EI

H3 = 400 kN/m. The load model uses a constant mean
value F̄ and power spectral density

SFF(ω) = σ2
Fa

π(a2 + ω2)
(4.52)

We assume that σF = 0.2F̄ and a = 12 rad/s. The mean response X̄ is readily computed
to be

X̄ = F̄
k

= 0.0025F̄ (4.53)

The power spectral densites (on the positive frequency axis) of load and response
are shown in Fig. 4.9. Integration over ω from −∞ to ∞ yields the variance of the
displacement response

σ2
X = 13

5560000
F̄2 = 2.338 · 10−6F̄2; → σX = 1.529 · 10−3F̄ (4.54)

The coefficient of variation of the response is 0.61. This clearly indicates the
magnification of the randomness due to dynamic effects.

The result for σ2
X as shown above is a closed-form solution obtained by maxima

using the script as shown in Listing 4.2.

Figure 4.8 Cantilever structure subjected to lateral loading.
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Figure 4.9 Power spectral densities of load and response for cantilever structure.

1 sff:1/25*12/%pi/(12ˆ2+omˆ2);
2 k:400;
3 m:1;
4 c:0.05*sqrt(k*m);
5 hh:1/(kˆ2+(cˆ2-2*k*m)*omˆ2+mˆ2*omˆ4);
6 var:integrate(hh*sff,om,-inf,inf);

Listing 4.2 Integration for variance of response.

4.3.2 White noise approximation

In view of the integral, as given in Eq. (4.51), it is quite obvious that the major contribu-
tion to the value of σ2

X will most likely come from the frequency range near the natural
circular frequency ω0. Based on this observation, the integral can be approximated by

σ2
x ≈

∞∫
−∞

SFF(ω0)|H(ω)|2dω = SFF(ω0)

∞∫
−∞

|H(ω)|2dω (4.55)

The integral over the squared magnitude of the complex transfer function can be
evaluated in closed form:

∞∫
−∞

|H(ω)|2dω =
∞∫

−∞

1
k2 + (c2 − 2km)ω2 + m2ω4

dω = π

kc
(4.56)

This approximation procedure can be interpreted as replacing the actual loading pro-
cess F(t) by another process W(t) which has a constant power spectral density function
SWW (ω) = const. = SFF(ω0). Applying this to the previous example with the cantilever
under lateral loading, we obtain the approximate result

σ2
X = 3

1360000
F̄2 = 2.206 · 10−6F̄2 → σX = 1.485 · 10−3F̄ (4.57)

(see the maxima-code in Listing 4.3).
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1 sff(om):=1/25*12/%pi/(12ˆ2+omˆ2);
2 k:400;
3 m:1;
4 c:0.05*sqrt(k*m);
5 hh:1/(kˆ2+(cˆ2-2*k*m)*omˆ2+mˆ2*omˆ4);
6 white:integrate(hh,om,-inf,inf);
7 om0:20;
8 varapprox:white*sff(om0);

Listing 4.3 Integration for white noise.

Figure 4.10 Dirac Delta function as limit of rectangular function.

It should be noted, however, that such a process with constant power spectral density
cannot exist in reality since according to Eq. (4.10) its variance σ2

W should be infinite.
Due to the equally distributed frequency components, such a fictitious process is called
“white noise’’ (in analogy to white light containing all visible frequencies in equal
intensity). Formally, the autocorrelation function RWW (τ) of a process with constant
power spectral density S0 can be constructed from Eq. (4.9):

RWW (τ) =
∞∫

−∞
S0(ω)e−iωτdω = 2πS0δ(τ) (4.58)

Here, δ(.) denotes the so-called Dirac’s Delta function with the properties

δ(u) = 0 ∀u 	= 0;

∞∫
−∞

δ(u)g(u)du = g(0) (4.59)

The latter property is true for all functions g(u) which are continuous in a vicinity
of u = 0. The Delta function can be interpreted for example as the limiting case of a
rectangular function δε(u) (cf. Fig. 4.10). We define δε as

δε(u) =
{

1
ε

0 ≤ u ≤ ε

0 else
(4.60)

The function g can be expanded in a Taylor series about u = 0

g(u) = g(0) + g′(0)u + 1
2

g′′(0)u2 + · · · (4.61)
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1 h(t):=1/m/omp*exp(-zeta*omega*t)*sin(omp*t);
2 assume(t>0);
3 x:2*pi*S0*integrate(h(u) ˆ2,u,0,t);
4 x,omp=omega*sqrt(1-zeta ˆ2);
5 factor(%);
6 ratsimp(%);
7 tex(%);

Listing 4.4 Integration for transient stochastic response.

so that

∞∫
−∞

δε(u)g(u)du =
∞∫

−∞
δε(u)

[
g(0) + g′(0)u + . . .

]
du

=
ε∫

0

1
ε

[
g(0) + g′(0)u + . . .

]
du = 1

ε

[
g(0)ε + g′(0)

ε2

2
+ . . .

]
(4.62)

In the limit as ε → 0 we obtain

lim
ε→0

∞∫
−∞

δε(u)g(u)du = g(0) (4.63)

Returning to the expression for the autocovariance function of the response as given
in Eq. (4.41), the above property of the Delta function allows the computation of
an expression for the time-dependent variance σ2

X(t) of the response to white noise
excitation

σ2
X(t) = RXX(t, t) =

∫ t

0

∫ t

0
h(t − w)h(t − z)2πS0δ(z − w)dwdz

= 2πS0

∫ t

0
h(t − z)2dz (4.64)

By substituting the variable u = t − z we obtain (see the maxima-script in Listing 4.4)

σ2
X(t) = 2πS0

∫ t

0
h(u)2du

= πS0

kc

[
1 − exp(−2ζω0t)

(
ω2

0

ω′2 − ζ2ω2
0

ω′2 cos 2ω′t + ζ sin 2ω′t
)]

(4.65)

For numerical values of k = 1 N/m, m = 1 kg, ζ = 0.05, S0 = 1 N2s, the result of Eq. 4.65
is shown with the label “exact’’ in Fig. 4.11. From Eq. 4.65 it can be seen that the
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Figure 4.11 Variance of response to white noise excitation.

contributions from the trigonometric functions are of the order of the damping ratio
ζ or smaller. Therefore, omitting these terms yields a simple approximation in the
form of

σ2
X(t) ≈ πS0

kc
[1 − exp(−2ζω0t)] (4.66)

The result from this equation is shown with the label “approximate’’ in Fig. 4.11. We
will return to this result in section 4.4.2 on covariance analysis.

4.4 Multi-degree-of-freedom response

4.4.1 Equations of motion

For a linear multi-degree-of-freedom system the equations of motion can be written in
matrix-vector form as

MẌ + CẊ + KX = F(t) (4.67)

together with appropriate initial conditions for X and Ẋ. Here, the vectors X and Ẋ
have the dimension n, the symmetric and non-negative matrices M, C and K have the
size n × n, and F(t) is an n-dimensional vector valued random process. We assume that
at least the second order statistics of F are known. For an important class of nonlinear
structural systems, the equations of motion can be written as

MẌ + g(X, Ẋ) = F(t) (4.68)

The nonlinearity in Eq. 4.68 is present in the function g involving both restoring forces
and damping.
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4.4.2 Covariance analysis

In the case of delta-correlated excitation processes, there is a direct way of deriving
equations for the covariance matrix of the response vector components. This is espe-
cially advantageous for multi-degree-of-freedom systems. We assume that the matrix
of auto- and cross-covariance functions of the components of the excitation vector F(t)
are given in the form of

RFF(t, t + τ) = D(t)δ(τ) (4.69)

Here, D is an arbitrary cross intensity matrix of the size n × n, possibly depending on
time t. This means that the excitation process F(t) is a multi-dimensional white noise
process. Now the equation of motion is represented in phase space, i.e. the response is
described in terms of a state vector Y containing the displacements X and the velocities
Ẋ. In phase space, the equation of motion becomes (cf. Eq. 4.67):

Ẏ − GY = g(t) (4.70)

The 2n × 2n-matrix G is assembled from the mass, stiffness and damping matrices as

G =
[

0 I
−M−1K −M−1C

]
(4.71)

The covariance matrix RYY also has the size of 2n × 2n. This matrix satisfies the
differential equation (see e.g. Lin 1976)

ṘYY = GRYY + RYYGT + B(t) (4.72)

Here, the matrix B is defined by

B =
[
0 0
0 M−1D(t)M−1

]
(4.73)

This equation can be solved, for instance, by arranging the elements of RYY into a
vector r. Hereby, the symmetry of RYY can be utilized to reduce the problem size. The
vector r then contains n(n+1)

2 elements. Correspondingly, the coefficients of the matrix
G are then arranged into another matrix H, and the matrix B is put into a vector b.
Thus we obtain the system of linear equations

ṙ = Hr + b(t) (4.74)

which can be solved using standard methods. The covariance matrix RXX of the
displacements is a sub-matrix of the size n × n.

An important special case is the stationary state, i.e. the case in which B = const.
and ṘYY = 0. The excitation process in this case possesses a constant power spectral
density matrix S0 = 1

2π
B. If we write the matrix RYY for this case in block notation

RYY =
[
RXX RXẊ
RẊX RẊẊ

]
; RẊX = RT

XẊ (4.75)
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we obtain for the stationary state

RXẊ + RẊX = 0

KRXX + CRẊX − MRẊẊ = 0

RXXK + RXẊC − RẊẊM = 0

K(RXẊ + RẊX) + 2CRẊẊ = MB

(4.76)

From this we can immediately get the covariance matrix of the displacements

RXX = 1
2

K−1MC−1MB (4.77)

Note: For a SDOF-system this reduces to

σ2
X = πS0

kc
; σ2

Ẋ
= πS0

mc
(4.78)

The effort required for the numerical solution can be reduced substantially if modal
damping is assumed and approximate validity of some of the relations in Eq. 4.76 is
assumed as well (Bucher 1988b). For this case, we can obtain decoupled approximate
equations for the elements Rij of the modal covariance matrix

aijṘij + bijRij = Bij(t) (4.79)

in which the constants aij and bij are given by

aij = ωiωj
ζiωj + ζjωi

ζiωi + ζjωj
+ ω2

i + ω2
j

2

bij = ωiωjζiωj + ζjωiζiωi + ζjωj

( ωi

4ζi
+ ωj

4ζj
− ω2

i

4ζjωj
− ω2

j

4ζiωi
− 2ζiωi − 2ζjωj

)

+ ω2
i ωj

4ζj
+ ωiω

2
j

4ζi
− ω3

i

4ζi
− ω3

j

4ζj
(4.80)

This leads directly to the modal covariance matrix. For the case i = j, Eq. 4.79
reduces to

Ṙii + 2ζiωiRii = Bii

2ω2
i

(4.81)

F i l te red whi te no i se exc i ta t ion

The limitation to delta-correlated processes (i.e. generalized white noise) can be lifted
by introducing filters. In this approach, the output responses of linear filters to white
noise are applied as loads to the structure. A well-known example from earthquake
engineering is the Kanai-Tajimi filter. Here, the ground acceleration a(t) is defined as a
linear combination of the displacement and velocity of a system with a single degree of
freedom. This SDOF system is characterized by its natural circular frequency ωg and
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Figure 4.12 Power spectral density of ground acceleration using the Kanai/Tajimi model.

the damping ratio ζg. The input w(t) to this filter system is white noise with a power
spectral density S0. The equation of motion for the filter system is

z̈ + 2ζgωgż + ω2
gz = w(t) (4.82)

The ground acceleration process a(t) is then defined as

a(t) = 2ζgωgż + ω2
gz (4.83)

It can be seen that the power spectral density Saa(ω) has a significant frequency
dependence

Saa(ω) = S0
4ζ2

gω2
gω

2 + ω4
g

(ω2
g − ω2)2 + 4ζ2

gω2
gω

2
(4.84)

In Fig. 4.12 this function is plotted for numerical values of S0 = 1 m2/s, ωg = 17 rad/s
and ζg = 0.3. Fig. 4.12 clearly shows that significant contributions are present from the
frequency range near ω = 0. In a nonlinear analysis these low-frequency components
may lead to excessively large plastic drift. In order to avoid this, the Kanai-Tajimi
model can be modified such that low-frequency components are reduced (Clough and
Penzien 1993).

Example 4.2 (Covariance analysis for SDOF-system)
For such a system the covariance matrix of the state vector contains only four (three
mutually different) entries

RYY =
[

rXX rXẊ
rXẊ rẊẊ

]
; G =

[
0 1

− k
m − c

m

]
(4.85)

We assume that the excitation is a non-stationary (amplitude modulated) white noise
excitation with a power spectral density S0 and a time envelope e(t). Then, the matrix
B is defined by

B =
[
0 0
0 2πS0

m

]
e2(t) (4.86)
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The differential equation 4.72 according to (4.74) can be written as

d
dt




rXX

rXẊ

rẊẊ


 =




0 2 0

− k
m − c

m 1

0 − 2k
m − 2c

m






rXX

rXẊ

rẊẊ


 +




0

0
2πS0

m e2(t)


 (4.87)

which can be written in the symbolic form

ṙ = Hr + h(t) (4.88)

with the initial condition r(0) = 0. The general solution to this equation can be obtained
by quadrature

r(t) = exp(Ht)r(0) +
t∫

0

exp[H(t − τ)]h(τ)dτ (4.89)

which, for h constant in a time interval �t, evaluates to

r(�t) = exp(H�t)r(0) + [exp(H�t) − I]H−1h (4.90)

Note that the matrix exponential exp (A) is readily computed by means of diagonalizing
the matrix A such that

A = T�T−1 (4.91)

in which � is a diagonal matrix containing the (possibly complex) eigenvalues λi of A
and T is the matrix of corresponding right eigenvectors. This step is always possible if
the eigenvalues are distinct. Using Eq. 4.91, the matrix exponential can be computed
using the standard series expansion for exp (.), i.e.

exp(A) =
∞∑

k=0

1
k!A

k = I + T�T−1 + 1
2

T�T−1T�T−1 + · · ·

= TT−1 + T�T−1 + 1
2

T�2T−1 + · · ·

= T
(

I + � + 1
2

�2 + · · ·
)

T−1 = T exp(�)T−1 (4.92)

The matrix exponential of the diagonal matrix � is simply a diagonal matrix containing
the exponentials of the eigenvalues λi.

The time-dependent intensity (envelope) is assumed to be

e(t) = 4 · [exp(−0.25t) −exp(−0.50t)] (4.93)
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Figure 4.13 Time-dependent amplitude-modulating function (envelope).

(cf. Fig. 4.13). The exact solution from the differential equation (4.72) is obtained
using the octave-script as shown in Listing 4.5. The numerical results for σX(t) are
shown in Fig. 4.14.

Upon application of the approximations as mentioned above we obtain the first-
order differential equation

d
dt

σ2
X = − c

m
σ2

X + S0πm
k

e2(t) (4.94)

The solution to this equation is also shown in Fig. 4.14. It can be seen that the approx-
imate solution does not contain oscillations. However, apart from that it matches the
exact solution quite well.

Exercise 4.1 (Transient stochastic response)
Compute the variance of the displacement response for a system as defined in the
previous example to a nonstationary white noise with an amplitude-modulating
function

e(t) =
{

1; 0 ≤ t ≤ T
0; else

(4.95)

for the time interval [0, 3T] with T = 20.

Solution: The resulting standard deviation σX(t) is shown in Fig. 4.15.

Example 4.3 (Stationary response of SDOF oscillator to Kanai-Tajimi excitation)
Consider an SDOF-system with mass m, viscous damping c and stiffness k subjected
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1 function env=env(t)
2 env=4*(exp(-t/4)-exp(-t/2));
3 endfunction
4 %
5
6 k = 1;
7 m = 1;
8 c = 0.02;
9 S0 = 0.003;

10
11 h=[0;0;2*pi*S0/m];
12 H=[0,2,0;
13 -k/m,-c/m,1;
14 0,-2*k/m,-2*c/m];
15
16 tu = 0;
17 to = 60;
18 NT = 300;
19 dt = (to-tu)/NT;
20
21 [T,L] = eig(H);
22 ee=zeros(3,3);
23 for k=1:3
24 ee(k,k) = exp(L(k,k)*dt);
25 endfor
26 expt = T*ee*inv(T);
27 mat2 = (expt - eye(3))*inv(H);
28 r0=[0;0;0];
29
30 fid = fopen("instat2.txt", "w");
31 fprintf(fid, "%g %g\n", tu, 0);
32 for i=1:NT
33 r1=expt*r0 + mat2*h*env((i-.5)*dt)ˆ2;
34 fprintf(fid, "%g %g\n", dt*i, sqrt(r1(1)));
35 r0 = r1;
36 endfor
37 fclose(fid);

Listing 4.5 Computation of transient stochastic response.

to a ground acceleration of the Kanai-Tajimi type. The linear filter representing the
ground is driven by stationary white noise with spectral density S0 = 1

2π
. The coupled

system of filter and oscillator is described by four state variables, i.e. the oscillator
displacement X and velocity Ẋ as well as the filter displacement Z and velocity Ż
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Figure 4.14 Transient standard deviation of the displacement response.

Figure 4.15 Transient standard deviation of the displacement response to pulse modulated white
noise.

(cf. Eq. 4.82). The state vector is then Y = [X, Ẋ, Z, Ż]T . It is governed by the system
of differential equations

d
dt




Z

Ż

X

Ẋ


 =




0 1 0 0

−ω2
g −2ζgωg 0 0

0 0 0 1

ω2
g 2ζgωg −ω2

0 −2ζω0







Z

Ż

X

Ẋ


 +




0

W(t)

0

0


 (4.96)

in which ω2
0 = k

m and 2ζω0 = c
m . This equation is of the form of Eq. 4.70

Ẏ − GY = gW(t) (4.97)

Here, W(t) is white noise with a spectral density S0. The covariance matrix RYY is
governed by Eq. 4.72 which in the case of stationarity reduces to

GRYY + RYYGT + B = 0 (4.98)
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A direct analytical solution for the variances of the response is given by Wall and Bucher
1987. Kronecker products provide an alternative way of rearranging this system of
linear equations to solve for the elements of RYY (see e.g. Di Paola and Elishakoff
1996). The Kronecker product K of two matrices A and B (for clarity and ease of
presentation, we assume here that both matrices have the same size n × n) is defined as

K = A ⊗ B =



a11B . . . a1nB
...

. . .
...

an1B . . . annB


 (4.99)

Arranging the elements of a regular matrix product AXB of three matrices into a vector
can be accomplished by

vec(AXB) = [BT ⊗ A]vec(X) (4.100)

Here vec(.) denotes arranging the elements of an n × n-matrix into a column vector of
size n2. In this way, Eq. 4.98 can be rewritten as

[I ⊗ G + G ⊗ I]vec(RYY) = −vec(B) (4.101)

which can be solved immediately for vec(RYY). Numerical values chosen for this
example are S0 = 1 m2/s, ωg = 17 rad/s and ζg = 0.3 together with structural param-
eters ω0 = 6 rad/s and ζ = 0.1. The octave-code to carry out this solution is given in
Listing 4.6.

1 omg=17
2 zetag=0.3
3 om=6
4 zeta=0.1
5 S0=1
6 G=[0,1,0,0;
7 -omgˆ2, -2*zetag*omg, 0, 0;
8 0,0,0,1;
9 omgˆ2,2*zetag*omg,-omˆ2, -2*zeta*om];

10 n=rows(G)
11 I=eye(n,n);
12 GI=kron(I,G)+kron(G,I)
13 B=zeros(n,n);
14 B(2,2) = 2*pi*S0;
15 b=-vec(B)
16 c=GI\b
17 C=[c(1:4),c(5:8),c(9:12),c(13:16)]

Listing 4.6 Computation of stationary response using Kronecker products.
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The result is

1 C =
2 0.00107 -0.00000 -0.00009 0.02508
3 -0.00000 0.30800 -0.02508 -0.28104
4 -0.00009 -0.02508 0.09362 0.00000
5 0.02508 -0.28104 -0.00000 3.65147

4.4.3 First passage probabi l i ty

In the probability-based design of structures there frequently is a limiting threshold
of response quantities such as displacements or stresses which should not be exceeded
within a given time period T. Of course, these non-exceedance events have to be
characterized in probabilistic terms. There is extensive literature on the topic of “first
passage probability’’. For an overview, see e.g. Macke and Bucher 2003.

For structures with low damping the response to stochastic excitation is typically
narrow-banded and contains significant contributions to the variance mainly in the
vicinity of the fundamental natural frequency. Thus considerations may be limited to
the response in the fundamental mode of vibration. Let the critical magnitude of the
response X(t) (e.g. of a displacement) be defined by a threshold value ξ (c. Fig. 4.16).
If the threshold is exceeded then we expect a critical or unsafe state of the structure.
The structural design must guarantee that this critical state is reached only with a small
probability. This probability obviously depends on the magnitude of he threshold ξ.
In addition to that, the statistical properties of X and the observation interval T play
an important role. We will now derive a simple approximation fo the first passage
probability PE(ξ, T).

First passage failure occurs if X(t) exceeds the threshold ξ at least once within the
time interval [0, T]

PE(ξ, T) = Prob[ max
t∈[0,T]

X(t) ≥ ξ] (4.102)

Figure 4.16 Narrow-banded stochastic response.
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Since X(t) a continuous process this condition can be replaced by the condition that
the largest maximum exceeds the threshold

PE(ξ, T) = Prob[ max
i=1,...N

ai ≥ ξ] (4.103)

This, in turn, is equivalent to the condition that at least one local maximum exceeds
the threshold, i.e. the first, or the second, or . . .

PE(ξ, T) = Prob[(a1 ≥ ξ) ∨ (a2 ≥ ξ) ∨ . . . (aN ≥ ξ)] (4.104)

The complementary event, the non-exceedance of the threshold, has the probability

1 − PE(ξ, T) = Prob[(a1 < ξ) ∧ (a2 < ξ) ∧ . . . (aN < ξ)] (4.105)

At this point we postulated that the individual events ai < ξ are statistically independent
of each other. It can be shown that this assumption is at least asymptotically correct
as ξ → ∞. This assumption is usually justified because the structural design aims at
reaching very small failure probabilities. In the case of independence, the probabilities
can simply be multiplied

1 − PE(ξ, T) = Prob[a1 < ξ] · Prob[a2 < ξ] · . . . · Prob[aN < ξ] (4.106)

If the response process X(t) is stationary then the individual event probabilities are
identical and we get

1 − PE(ξ, T) = Prob[ai < ξ]N (4.107)

Finally, we can compute the first passage probability from this

PE(ξ, T) = 1 − Prob[ai < ξ]N (4.108)

For the remaining computation of the exceedance probability of a single maximum
ai we assume that the process X(t) is Gaussian with a mean value X̄ and a standard
deviation σX. Assuming narrow-bandedness we have (Lin 1976, cf. section 4.2.1)

Prob[ai ≥ ξ] = Pξ = exp

[
− (ξ − X̄)2

2σ2
X

]
; ξ > X̄ (4.109)

and from this

Prob[ai < ξ] = 1 − Pξ = 1 − exp

[
− (ξ − X̄)2

2σ2
X

]
; ξ > X̄ (4.110)

The random number N of local maxima in the time interval [0, T] is replaced by its
expected value N̄. For narrow-band random processes with a central circular frequency
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Figure 4.17 SDOF system subjected to random load F(t).

ω0 (this is typically the fundamental natural circular frequency of the structure) N̄ is
determined by

N̄ = ω0T
2π

(4.111)

Example 4.4 (Design of a damper)
A single-degree-of-freedom system (cf. Fig. 4.17) is loaded by a stationary ran-
dom process F(t) with mean value F̄ = 0.25 N and constant power spectral density
SFF(ω) = 0.0003 N2s. The damper c is to be designed such that the probability PE(ξ, T)
of exceeding the threshold ξ = 0.5 m within a time interval of length T = 60 s is
smaller than 10−4. The mean value of the displacement is readily computed as
X̄ = F̄/k = 0.25 m. The natural circular frequency of the system is ω0 =√

k/m = 1 rad/s.
Hence the expected number of maxima in the time interval [0, T] is N̄ = 9.5 ≈ 10. From
Eqs. 4.108 and 4.109 we obtain

PE = 1 − (1 − Pξ)10 ≤ 10−4 (4.112)

and from that

Pξ ≤ 10−5 (4.113)

This leads to

Pξ = exp
[
− (0.50 − 0.25)2

2σ2
X

]
≤ 10−5 (4.114)

and by rearranging to

σ2
X ≤ 0.00271 m2 (4.115)

If we finally consider Eq. 4.78, we obtain

c ≥ πSFF(ω0)

kσ2
X

= 0.347 Ns/m (4.116)

This corresponds to a damping ratio of ζ = 0.174.
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Figure 4.18 Kinematic assumption of central difference method.

4.5 Monte-Carlo simulation

4.5.1 General remarks

The analysis of nonlinear effects on random vibrations is very difficult. A possible ana-
lytical approach is based on linearization methods which aim at describing the mean
value and covariance function of the response as good as possible. In most cases, this
so-called Equivalent Linearization (see e.g. Roberts and Spanos 2003) cannot repre-
sent the distribution function of the response accurately. Hence in many cases, methods
which are more general and also require more computational effort based on Monte
Carlo simulation are utilized. In this approach, artificial realizations of the excitation
process F(t) are digitally generated and for each excitation the response X(t) is com-
puted using a numerical scheme suitable for nonlinear dynamic structural analysis.
This produces an ensemble of response sample functions which can be analyzed using
statistical methods with respect to mean value, variance, first passage probability, etc.
The procedure follows the diagram sketched previously in Fig. 2.21.

4.5.2 Central difference method

Direct integration methods attempt to approximate the response x(t) directly in terms
of simple mathematical functions. One very popular method is the central difference
method. Within this approach, the response x(t) is approximated by a quadratic func-
tion of t within a small time interval of length s�t. This is shown schematically in
Fig. 4.18. The velocity and acceleration at time t can be expressend in terms of the
displacements

ẋ(t) = x(t + �t) − x(t − �t)
2�t

ẍ(t) = x(t + �t) − 2x(t) + x(t − �t)
�t2

(4.117)

Taking into account the equations of motion (4.67) at the time instant t, we obtain(
1

�t2
M + 1

2�t
C
)

x(t + �t) = f(t) −
(

K − 2
�t2

M
)

x(t)

−
(

1
�t2

M + 1
2�t

C
)

x(t − �t) (4.118)
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For given values of x(t) and x(t − �t) the value of x(t + �t) can be computed by solving
a system of linear equations. In order to start the procedure it is necessary to compute
the value of x(−�t). For this, the initial values x0 und v0 at time t = 0 are utilized.
From Eq. 4.117 we immediately get

x(−�t) = x0 − v0�t + �t2

2
ẍ(0) (4.119)

Here the acceleration ẍ(0) is computed from the equations of motion (4.67) at time
t = 0:

ẍ(0) = −M−1 [Cv0 + Kx0 − f(0)
]

(4.120)

The central difference method is very simple and easy to use. It is, however, only
conditionally stable. This means that choosing a time step larger than a critical value,
i.e. �t > �tcrit, leads to an exponential divergence of the numerical solution. It can be
shown that the central difference method has a critical time step which is defined in
terms of the largest natural circular frequency ω0 of the system

�t ≤ �tcrit = 2
ω0

(4.121)

This can be proved by reformulating the solution of the free vibration of an oscillator
in terms of a recursive equation

[
x(t + 2�t)

x(t + �t)

]
=

[
2 − k

m�t2 −1

1 0

][
x(t + �t)

x(t)

]
= Z

[
x(t + �t)

x(t)

]
(4.122)

For the computation of multiple time steps this scheme is applied repeatedly. As a
consequence, the matrix Z is repeatedly multiplied by itself. That leads to exponential
growth of the solution if at least one eigenvalue λmax of Z has a magnitude |λmax| > 1.
The eigenvalues λ1,2 are given by

λ1,2 = 1 − a
2

±
√

−a + a2

4
; a = k

m
�t2 (4.123)

In the case a < 4 the eigenvalues are complex and we have

|λ1,2|2 =
(
1 − a

2

)2 + a − a2

4
= 1 (4.124)

In the case a ≥ 4 the eigenvalues are real. Then λ2 is the one with the larger magnitude
and from

|λ2| =
∣∣∣∣∣1 − a

2
−

√
−a + a2

4

∣∣∣∣∣ = a
2

+
√

−a + a2

4
− 1 > 1 (4.125)
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Figure 4.19 Central difference solution, system data m = 1 kg, k = 1 N/m, c = 0 and initial
conditions x0 = 1 mm, v0 = 0.

we derive the condition for instability

a
2

+
√

−a + a2

4
> 2 → a > 4 (4.126)

Hence the results from this method diverge exponentially if a > 4 or �t > 2
√m

k = 2
ω0

.

Example 4.5 (Free vibration of an undamped oscillator – Central difference method)
For a single-degree-of-freedom undamped oscillator the approximate solution accord-
ing to the central difference method is computed. The results are shown in Fig. 4.19
for different values of the time step �t and compared to the exact solution. It can be
seen that the amplitude of the vibration is computed correctly for all values of the time
step. The frequency of the oscillation is overestimated with increasing time step size.

4.5.3 Euler method

This simplest method for the integration of differential equations is based on a linear
approximation of the solutions over a time interval of length �t. Since this method
is suitable for systems of first-order differential equations only, structural vibration
problems are recast into the phase space of displacements and velocities.

The displacement and velocity at time t + � are

x(t + �t) = x(t) + ẋ(t)�t

ẋ(t + �t) = ẋ(t) + ẍ(t)�t (4.127)

The acceleration ẍ(t) is computed from the equation of motion (4.67) at time t.

Example 4.6 (Free vibration of an undamped oscillator – Euler method)
For a single-degree-of-freedom undamped oscillator the approximate solution accord-
ing to the Euler method is computed. The results are shown in Fig. 4.21 for different
values of the time step �t and compared to the exact solution. It can be seen that the
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Figure 4.20 Kinematic assumption of explicit Euler method.

Figure 4.21 Explicit Euler solution, system data m = 1 kg, k = 1 N/m, c = 0 and initial conditions
x0 = 1 mm, v0 = 0.

errors are significantly larger compared to the central difference solutions. Also, there
is a continuous increase of the total energy of the system.

4.5.4 Newmark method

As an alternative to explicit methods discussed in sections 4.5.2 und 4.5.3 there are also
implicit methods. One specific example is Newmark’s method (Bathe 1996). The basic
assumptions regarding the kinematics are comparable to the central difference method

ẋ(t + �t) = ẋ(t) + �t
2

[ẍ(t) + ẍ(t + �t)] (4.128)

x(t + �t) = x(t) + ẋ(t)�t + �t2

4
[ẍ(t) + ẍ(t + �t)] (4.129)

In addition, Eq. 4.67 is applied for the future time t + �t

Mẍ(t + �t) + Cẋ(t + �t) + Kx(t + �t) = f(t + �t) (4.130)

Together, this leads to[
K + 4

�t2
M + 2

�t
C
]

x(t + �t) = f(t + �t) + M
[

4
�t2

x(t) + 4
�t

ẋ(t) + ẍ(t)
]

+ C
[

2
�t

x(t) + ẋ(t)
]

(4.131)
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This procedure is unconditionally stable, i.e. it produces numerically stable results for
arbitrarily large time steps �t. If the time step is chosen to be very large, the method
yields a static solution which can be seen by inspecting Eq. 4.131. The unconditional
stability of Newmark’s method can be shown by investigating the free vibration of an
undamped oscillator with mass m and stiffness k and writing the solution procedure
in terms of a recursion formula

[
x(t + �t)
ẋ(t + �t)

]
= 1

4m + �t2

[
4m − k�t2 4m�t

−4k�t 4m − k�t2

] [
x(t)
ẋ(t)

]
= Z

[
x(t)
ẋ(t)

]
(4.132)

The eigenvalues of the matrix Z are

λ1,2 = 1
4m + k�t2

(4m − k�t2 ± i4
√

km�t) (4.133)

The absolute values of these eigenvalues are

|λ1,2| = 1
4m + k�t2

√
(4m − k�t2)2 + 16km�t2

= 1
4m + k�t2

√(
4m + k�t2

)2 = 1 (4.134)

independent of the time interval �t. The mathematical operations required to carry
out this proof are given in the maxima-code shown in Listing 4.7.

1 assume(m>0,k>0);
2 s:solve([(k+4*m/dtˆ2)*x1=4*m/dtˆ2*x0+4*m/dt*y0-k*x0,

y1=y0-dt/2*k/m*x0 - dt/2*k/m*x1],[x1,y1]);
3 xx1:rhs(s[1][1]);
4 z11:coeff(expand(xx1),x0);
5 z12:coeff(expand(xx1),y0);
6 xx2:rhs(s[1][2]);
7 z21:coeff(expand(xx2),x0);
8 z22:coeff(expand(xx2),y0);
9 z:matrix([z11,z12],[z21,z22]);

10 e:eigenvalues(z);
11 a:abs(e);
12 tex(%);
13 ratsimp(%);

Listing 4.7 Proof of unconditional stability of Newmark’s method.
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Figure 4.22 Implicit Newmark solution, system data m = 1 kg, k = 1 N/m, c = 0 and initial
conditions x0 = 1 mm, v0 = 0.

Figure 4.23 Discrete representation of white noise.

Example 4.7 (Free vibration of an undamped oscillator – Newmark method)
For a single-degree-of-freedom undamped oscillator the approximate solutions accord-
ing to Newmark’s method is computed. The results are shown in Fig. 4.22 for different
values of the time step �t and compared to the exact solution. It can be seen that the
errors are rather small and that the frequency of the oscillator is underestimated.

4.5.5 Digital s imulation of white noise

In order to apply this approach in digital simulation, the continuous time white noise
excitation driving the Kanai-Tajimi filter needs to be discretized. This is achieved by
representing the white noise w(t) by a sequence of i.i.d. random variables Wk assumed
to have constant values spaced at time intervals �t (cf. Fig. 4.23). The variables Wk

have zero mean and a variance σ2
Wk

which is related to the intensity D0 of the white
noise (or its spectral density S0) and the time interval �t by

σ2
Wk

= D0

�t
= 2πS0

�t
(4.135)

For purposes of the subsequent reliability analysis, the white noise is conveniently
represented by a sequence of i.i.d. random variables Uk with unit standard deviation.
The variables Wk are then generated by

Wk =
√

D0

�t
Uk =

√
2πS0

�t
Uk (4.136)
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Figure 4.24 Statistics of response of Duffing oscillator to white noise excitation (1000 samples).

Example 4.8 (Duffing oscillator)
As an example, consider a well-studied simple nonlinear oscillator defined by the
equation of motion

mẌ + cẊ + k(X + αX3) = F(t) (4.137)

The system parameters k and m must be positive and c and α must be non-negative.
We assume that the excitation F(t) is zero-mean white noise with spectral density S0.
Solving the equation of motion numerically using the central difference method we can
obtain statistics of the response X(t). The numerical values for system and excitation
parameters are k = 1, m = 1, c = 0.1, α = 0.05 and S0 = 1.

The procedure leading to the results as shown in Fig. 4.24 is described in the octave-
code below

1 NSIM=1000;
2 tu = 0;
3 to = 30;
4 NT = 100;
5 dt = (to-tu)/NT;
6 t = linspace(tu,to,NT+1);
7 S0=1
8
9 m = 1;

10 k = 1;
11 c = 0.1;
12 alpha = 0.05;
13 sim=[];
14
15 for i=1:NSIM
16 x=0;
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17 x0 = 0;
18 f = randn()*sqrt(2*pi*S0/dt);
19 xm1 = f/m*dtˆ2/2;
20 for j=1:NT
21 a = (f+c*xm1/2/dt-k*(x0+alpha*x0ˆ3))/m;
22 x1 = a*dtˆ2 + 2*x0 - xm1;
23 x1 = x1/(1+c/2/m*dt);
24 f = randn()*sqrt(2*pi*S0/dt);
25 xm1 = x0;
26 x0 = x1;
27 x=[x,x0];
28 end
29 sim=[sim;x];
30 end
31 m = mean(sim);
32 s = std(sim);
33 plot(t,m,t,s);
34 pause;
35 res=[t’,m’,s’];
36 save(’-ascii’, ’duffstat.txt’, ’res’);

It can be seen that the mean value X̄ fluctuates about zero whereas the standard
deviation σX after initial increase from zero approaches a stationary value of about 3.5.

Example 4.9 (Elasto-plastic system)
As the next example, consider a simple elasto-plastic oscillator as shown in Fig. 4.25.
The elasto-plastic behavior is modeled by two springs k1 and k2 and a friction element
with a limiting friction force s. This friction element is activated (and with it the plastic
displacement z) if the force in the spring k2 exceeds the friction limit s. The total
restoring force r of the spring-friction assembly is given by

r = k1x + k2(x − z) (4.138)

The effect of plasticity is described by the rate of change of z. This rate can be
expressed as

ż = h(x, ẋ, z)ẋ (4.139)

Here, several cases must be considered for the function h, i.e.

h =




0 |k2(x − z)| < s
0 k2(x − z) > s ∧ ẋ < 0
0 k2(x − z) < −s ∧ ẋ > 0
1 else

(4.140)
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Figure 4.25 Elasto-plastic oscillator.

Figure 4.26 Sample functions of displacement response X.

The tangential stiffness kT of the systems depends on h

kT = k1 + [1 − h(x, ẋ, z)]k2 (4.141)

The excitation F(t) is assumed to be amplitude-modulated white noise, i.e.

F(t) = e(t) · W(t) (4.142)

in which

e(t) = 4 · [exp(−0.25t) − exp(−0.5t)] (4.143)

and W(t) is a white noise with spectral density S0 = 1
2π

. Here, the equations of motion
are reformulated in first-order form which facilitates the treatment of the internal
plastic variable z.

Fig. 4.26 shows some generated sample functions of the displacement response X(t).
The results for the mean value and standard deviation of the displacement X and
the internal plastic displacement Z are shown in Figs. 4.27 and 4.28. The results
were obtained by averaging over 1000 samples and therefore are affected by statistical
uncertainty. This can easily be seen by considering the mean value functions X̄(t) and
Z̄(t) which theoretically should be zero. The octave-code generating these samples
and carrying out the statistical analysis is given in Listing 4.8. This computation is
based on the explicit Euler time integration scheme.
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Figure 4.27 Mean value and standard deviation of displacement X.

Figure 4.28 Mean value and standard deviation of plastic displacement Z.

1 function env=env(t)
2 env=4*(exp(-t/4)-exp(-t/2));
3 endfunction
4
5 function ydot=ydot(y,f)
6 global k1 k2 c;
7 x=y(1);
8 v=y(2);
9 z=y(3);

10 s=3;
11 fr=k2*(x-z);
12 ft=k1*x+fr;
13 ft+=c*v;
14 vd=f-ft;
15 xd = v;
16 if (abs(fr)<s || (fr>s && v<0) || (fr<-s && v>0))
17 zd=0;
18 else
19 zd = v;
20 endif
21 ydot(1) = xd;
22 ydot(2) = vd;

Listing 4.8 Compute Monte Carlo samples for oscillator with dry friction.
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23 ydot(3) = zd;
24 endfunction
25
26 dt = .1;
27 T=30;
28 N=T/dt;
29 M=1000;
30 t=0; force=0;
31 global k1 k2 c;
32 k1=1;
33 k2=9;
34 c=.4;
35
36 x1=zeros(M,N+1);
37 x2=x1; x3=x1;
38 ff=x1;
39 tt = linspace(0,N*dt,N+1);
40 for j=1:M
41 x=[0,0,0];
42 j
43 for i=1:N
44 t = tt(i);
45 force = randn()*env(t)/sqrt(dt);
46 xd = ydot(x,force);
47 x(1) += xd(1)*dt;
48 x(2) += xd(2)*dt;
49 x(3) += xd(3)*dt;
50 x1(j,i+1) = x(1);
51 x2(j,i+1) = x(2);
52 x3(j,i+1) = x(3);
53 ff(i) = force;
54 endfor
55 endfor
56 m1 = mean(x1);
57 s1 = std(x1);
58 m3 = mean(x3);
59 s3 = std(x3);
60
61 fid = fopen(" mc_plast_stat.txt","w");
62 for i=1:N+1
63 fprintf(fid, "%g %g %g %g %g\n", tt(i),m1(i),s1(i),

m3(i),s3(i));
64 endfor
65 fclose(fid);
66 plot(tt,m1,tt,s1,tt,m3,tt,s3);
67 pause

Listing 4.8 Continued
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4.6 Fokker-Planck equation

For systems under white noise excitation (stationary or non-stationary), the equa-
tions of motion (4.67) can be written in Itô form (Itô 2004; Lin 1976; Lin and
Cai 1995)

dY = µ dt + σdB(t) (4.144)

Here, Y = [Y1, . . . , Yn]T is the random state vector, µ is the drift, and σ is the diffusion.
B(t) denotes a process with independent increments, a so-called Wiener process. The
second-order statistical properties of B(t) are given by

E[B(t)] = 0; E[B(t1)B(t2)] = min (t1, t2) (4.145)

As a consequence, the statistical properties of the increments dB(t) = B(t + dt)− B(t) are

E[dB(t)] = 0; E[dB(t)2] = dt (4.146)

The latter property indicates that dB(t) grows with
√

dt in the mean square sense. This
implies that standard differential calculus cannot be applied, since this requires growth
with dt. In order to derive the Itô equation for functions g(Y) of a random process Y
governed by an Itô equation such as Eq. 4.144, more than the first-order terms must
be considered in the Taylor expansion.

The solution of an Itô equation forms a Markov vector process, which implies
that the joint probability density function of its components is described by an initial
density function at time t0 and the transition probability density function defining the
conditional probability density function at time t given the values at time t0.

fY(y, t) = fY(z, t0)pY(y, t|z, t0) (4.147)

The transition probability density function is governed by the Fokker-Planck equation,
a partial differential equation

∂p
∂t

+
n∑

i=1

∂

∂yi
(µip) − 1

2

n∑
i=1

n∑
k=1

∂2

∂yi∂yk

(
n∑

�=1

σi�σk� p

)
= 0 (4.148)

Consider the special case that a SDOF-oscillator is governed by the differential equation

mẌ + h(E)Ẋ + g(X) = W(t) (4.149)
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in which

E(X, Ẋ) = 1
2

mẊ2 +
∫ X

0
g(ξ)dξ (4.150)

denotes the sum of kinetic and deformation energy of the oscillator and W(t) is white
noise with spectral density S0. The state vector in this case is

Y =
[
X
Ẋ

]
(4.151)

and the drift and diffusion terms become

µ =
[ −Ẋ
− 1

m g(X) − h(E)
m Ẋ

]
; σ =

[
0

1
m

√
2πS0

]
(4.152)

For this case, the Fokker-Planck equation becomes

∂p
∂t

+ ẋ
∂p
∂x

+ ∂

∂ẋ

[(
−g(x)

m
− h(E)ẋ

m

)
p
]

− πS0

m2

∂2p
∂ẋ2

= 0 (4.153)

For the so-called stationary state (which occurs when t → ∞) there exists a closed-form
solution of the Fokker-Planck-equation (Lin 1976)

fX,Ẋ = C exp
(
− 1

πS0

∫ E

0
h(η)dη

)
(4.154)

Here, C is a normalizing constant. Other special solutions involving both external and
parametric random excitations are given in Dimentberg 1982.

Example 4.10 (Stationary probability density of Duffing oscillator)
For the Duffing oscillator as described by Eq. 4.137 the total energy is given by

E = 1
2

mẊ2 + k
(

X2

2
+ α

X4

4

)
(4.155)

Since the damping force does not depend on the energy, we simply have H(E) = c.
Therefore the joint probability density function of the response and its time derivative
is given by

fX,Ẋ(x, ẋ) = C exp
(

− c
πS0

E
)

= C exp
(

− c
πS0

[
k
(

x2

2
+ α

x4

4

)
+ 1

2
mẋ2

])
(4.156)

Obviously, this can be separated into a product of a function of x and another function
of ẋ. Hence the response X and its time derivative Ẋ are independent (rather than being
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merely uncorrelated) when evaluated at the same time. Also, it can be seen that the
marginal probability density function of the velocity is Gaussian:

fẊ = C2 exp
(

− cm
πS0

ẋ2

2

)
(4.157)

From this it can be seen that (compare this to Eq. 4.78)

σ2
Ẋ

= πS0

cm
(4.158)

and therefore

C2 = 1√
2πσẊ

(4.159)

The probability density function is then given by

fX(x) = C1 exp
[
− kc

πS0

(
x2

2
+ α

x4

4

)]
(4.160)

in which C1 has to be determined by integration

1
C1

=
∞∫

−∞
exp

[
− kc

πS0

(
x2

2
+ α

x4

4

)]
dx (4.161)

The variance can then be obtained by integration as well

σ2
X = C1

∞∫
−∞

x2 exp
[
− kc

πS0

(
x2

2
+ α

x4

4

)]
dx (4.162)

For the numerical values k = 1, m = 1, c = 0.1, α = 0.05 and S0 = 1 we obtain a stan-
dard deviation σX = 3.54 m. This compares quite well to the Monte Carlo result as
shown in Fig. 4.24. The values of the kurtosis which is an indicator of the deviation
from a Gaussian distribution is κ = −0.61. For an increased value of α = 0.2 the stan-
dard deviation drops to 2.69 and the kurtosis becomes −0.71. The probability density
functions fX(x) are shown in Fig. 4.29 for both values of α. The octave-code for these
computations is given in Listing 4.9.

4.7 Statistical l inearization

4.7.1 General concept

Due to the complexity of nonlinear system analysis even in the deterministic case, it
has frequently been suggested to replace the actual nonlinear system by an equivalent
linear system. Of course, one of the major problems lies in the appropriate definition
of equivalence. In stochastic analysis, a first goal for the analysis is the computation
of second-order statistics. This means, an equivalent system for this purpose should
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Figure 4.29 Probability density function of response of Duffing oscillator.

1 k=1;
2 m=1;
3 c=0.1;
4 alfa = 0.05;
5 S0=1;
6
7 xu=-30;
8 xo=30;
9 NX=401;

10 x=linspace(xu,xo,NX);
11 dx=(xo-xu)/NX;
12 f=k*(x.ˆ2/2+alfa*x.ˆ4/4);
13 f=f*c/pi/S0;
14 f=exp(-f);
15 C1=sum(f)*dx;
16 var=sum(x.ˆ2.*f/C1)*dx;
17 sig=sqrt(var)
18 kurt=sum(x.ˆ4.*f/C1)*dx/varˆ2 - 3
19 pdf = [x’,f’/C1];
20 save(’-ascii’, ’dufpdf05.txt’, ’pdf’);

Listing 4.9 Normalize probability density function for Duffing oscillator and compute standard
deviation and kurtosis.

reproduce the correct mean value and covariance functions of the system response.
The statistical linearization method is extensively treated in Roberts and Spanos 2003,
and the subsequent representation follows this reference.

Assume that the system under consideration has a governing equation of motion in
the form of Eq. 4.68. In an equivalent linear system, the function g is replaced by the
linear function

ĝ(x, ẋ) = Ceẋ + Kex (4.163)
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Here, Ce denotes the equivalent damping matrix and Ke is the equivalent stiffness
matrix. The objective is to determine Ce and Ke such that the response of the equivalent
linear system matches the response of the nonlinear system in a second-moment sense.
Since the difference between the two systems lies in the representation of g by ĝ, it is
fairly natural to introduce an error measure ε by

ε = g − ĝ = g(x, ẋ) − Ceẋ − Kex (4.164)

and to attempt to make this error small in an appropriate way. For stochastic analysis
it is useful to minimize the expected value of the squared Euclidian norm of ε:

E = E[εTε] → Min.! (4.165)

When inserting (4.164) into this equation, we obtain

E = E
[
(g − ĝ)T (g − ĝ)

]
= E

[
(g − Ceẋ − Kex)T (g − Ceẋ − Kex)

]
= E

[
gTg + ẋTCT

e Ceẋ + xTKT
e Kex − 2gTCeẋ − 2gTKex + 2ẋTCT

e Kex
]

(4.166)

Formally the elements Cik and Kik of the equivalent damping and stiffness matrices can
be obtained by taking partial derivatives and setting these derivatives equal to zero.
Practically, however, this poses a major difficulty since the expected values required to
solve the resulting equations are usually not known. In fact, the whole purpose of the
linearization procedure is to compute some of these expectations.

It is therefore helpful to make certain assumptions on the probability density function
of the response components. The assumption of jointly Gaussian distributed response
vector components is made frequently. This reduces the problem of computing expected
values to the mean vector and the covariance matrix.

In order to illustrate the difficulties, we will discuss a SDOF system with a cubic
nonlinearity, the so-called Duffing oscillator.

Example 4.11 (Linearization of the Duffing oscillator)
Consider again a single-degree-of-freedom system with the equation of motion given
in (4.137). This system has linear damping, hence it is reasonable to assume the equiv-
alent linear system has the same damping. This means that the nonlinear function
g(X) = k(X + αX3) is to be replaced by the equivalent linear function

ĝ(X) = keX (4.167)

The error term to be minimized then becomes

E = E[(kX + kαX3 − keX)2]

= E[k2X2 + k2α2X6 + k2
e X2 + 2k2αX4 − 2kkeX2 − 2kkeαX4]

= k2α2E[X6] + 2k(k − ke)αE[X4] + (k − ke)2E[X2] (4.168)
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Taking the derivative w.r.t. ke we get

−2αkE[X4] − 2(k − ke)E[X2] = 0 (4.169)

resulting in

ke = k
(

1 + α
E[X4]
E[X2]

)
(4.170)

In order to use this result, the second and fourth moments of the response must be
known at each point in time.

Assuming that the mean value of the load F̄ is zero, it can be shown that the mean
value of the response X̄ is zero as well. We can then assume the probability density
function

fX(x) = 1√
2πσX

exp
[
− x2

2σ2
X

]
(4.171)

in which the variance σ2
X is not yet known. Based on this assumption we get (cf.

Eq. 2.33)

E[X2] = σ2
X; E[X4] = 3σ4

X (4.172)

With this result we can solve for the equivalent linear stiffness in terms of the response
variance

ke = k(1 + 3ασ2
X) (4.173)

If in addition we assume F to be white noise with power spectral density S0 (cf.
Eq. 4.58), then the variance of the response of the equivalent linear system can be
computed according to Eq. 4.78

σ2
X = πS0

cke
= πS0

ck(1 + 3ασ2
X)

(4.174)

Finally, this can be solved for the response variance

σ2
X = 1

6α

(
−1 +

√
1 + 12α

πS0

ck

)
(4.175)

Note that the term σ2
0 = πS0

ck is the variance of the response of a linear system with
stiffness k (i.e. without cubic nonlinearity). Therefore we can write the variance of the
response of the equivalent linear system as

σ2
X = 1

6α

(
−1 +

√
1 + 12ασ2

0

)
(4.176)
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Figure 4.30 Variance of response of equivalent linear system by statistical linearization.

Figure 4.31 Stiffness of equivalent linear system by statistical linearization.

The dependence of σ2
X on the nonlinearity parameter α is shown in Fig. 4.30 for the

case σ2
0 = 1. From the variance, the equivalent stiffness ke can be explicitly computed.

The ratio ke
k is shown in Fig. 4.31 as a function of the nonlinearity parameter α.

For comparison, using numerical values k = 1, m = 1, c = 0.1, α = 0.05 and S0 = 1

we obtain a standard deviation σX =
√

1
6·0.05

(−1 + √
1 + 12 · 0.05 π

0.1

)= 3.39. For the
value of α = 0.20, the result is σX = 2.54. Both results are reasonably close to the exact
solution given in section 4.6 with errors of 4% and 6%, respectively.

Example 4.12 (Equivalent linearization of oscillator with nonlinear damping)
Consider an oscillator with dry friction described by the equation of motion

mẌ + rsign(Ẋ) + kX = W(t) (4.177)

Compute the variance of the response using equivalent linearization assuming a
Gaussian distribution for the response and its time derivative.
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Here it is appropriate to minimize the mean square difference between the exact
damping force due to dry friction and the linearized damping

E = E[(rsign(Ẋ) − ceẊ)2] = r2E[sign(Ẋ)2] − 2rceE[sign(Ẋ)Ẋ] + c2
e E[Ẋ2] (4.178)

The expectations in this equation are readily computed as

E[sign(Ẋ)2] = 1

E[sign(Ẋ)Ẋ] = 2

∞∫
0

ẋ√
2πσẊ

exp
(
− ẋ2

2σ2
ẋ

)
dẋ =

√
2
π

σẊ

E[Ẋ2] = σ2
ẋ (4.179)

so that

E = r2 − 2rce

√
2
π

σẊ + c2
e σ

2
Ẋ

(4.180)

Minimizing this error term with respect to ce results in

−2r

√
2
π

σẊ + 2ceσ
2
Ẋ

= 0 (4.181)

which gives the equivalent viscous damping constant as

ce =
√

2
π

r
σẊ

(4.182)

Inserting this into the expression for the variances of the displacement and velocity
responses we get

σ2
X = πS0

cek
=

√
2
π

πS0σẊ

rk
; σ2

Ẋ
= πS0

cem
= k

m
σ2

X (4.183)

Solving this for σX we finally obtain

σX =
√

2
π

πS0

rk

√
k
m

=
√

2π

km
S0

r
(4.184)

4.8 Dynamic stability analysis

4.8.1 Basics

Stability analysis investigates the long-term behavior of motion under the influence
of perturbations, e.g. Eller 1988. For a stable motion, perturbations are insignificant,
the perturbed motion stays close to the unperturbed motion. In the unstable case an
infinitesimal perturbation causes a considerable change of the motion. Depending on
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Figure 4.32 Stability in Lyapunov sense.

the type of perturbation, the stability analysis is sub-classified in structural stability
and stability in Lyapunov sense. The stability concept in Lyapunov sense analyses the
effect of perturbations of the initial conditions.

An unperturbed motion X1 is called stable in the Lyapunov sense if for any given
ε > 0 there is a δ(ε) > 0 so that for any perturbed motion X2(t) with

‖X1(t0) − X2(t0)‖ < δ (4.185)

we have

‖X1(t) − X2(t)‖ < ε (4.186)

for all t, t0 ∈ R
+ (Eller 1988). In Fig.4.32 both solutions are displayed. A motion

satisfying Eq. (4.186) is asymptotically stable if the condition

lim
t→∞ ‖X1(t) − X2(t)‖ = 0 (4.187)

is fulfilled. For the stability analysis it is useful to investigate the behavior of the
perturbed neighboring motion x2(t). It is only necessary to describe the long-term
behavior of

Y(t) = X2(t) − X1(t) (4.188)

The asymptotic stability condition Eq. (4.187) gets the form

lim
t→∞ ‖Y(t)‖ = 0 (4.189)

In the case of random processes X(t) the stability definition as given here must be
augmented by an appropriate definition of convergence. There are three generally
accepted suitable definitions for convergence in a stochastic context. These definitions
for extending the deterministic statement

lim
t→t0

X(t) = X0 (4.190)

into a stochastic context are given in the following.
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Convergence in probability

lim
t→t0

Prob[‖X(t) − X0‖ > ε] = 0; ∀ε > 0 (4.191)

This means that the probability of getting deviations from the limit approaches zero.

Convergence in mean square

lim
t→t0

E[‖X(t) − X0‖2] = 0 (4.192)

This means that the variance of the difference from the limit approaches zero.

Almost sure convergence

Prob[ lim
t→t0

[‖X(t) − X0‖ = 0] = 1 (4.193)

This criterion applies the limiting operation to the sample functions, and hence repre-
sents an “observable’’ convergence criterion. Of course, the statement that each sample
converges with probability 1 does in reversal not necessarily imply that divergence
is impossible. Generally, these three convergence criteria are not in agreement. One
notable exception are Gaussian processes for which all three definitions give coinciding
results (Lin and Cai 1995).

4.8.2 Nonlinear stabi l i ty analysis

This section follows the presentation given by Most, Bucher, and Schorling 2004. The
equation of motion of a geometrically nonlinear structural model is given by

MẌ + r(X, Ẋ) = F(t) (4.194)

For neighboring trajectories, the tangential equation of motion may be utilized to
describe temporal evolution of the difference Y(t)

MŸ + CẎ + KY = 0 (4.195)

To analyze the dynamic stability behaviour of nonlinear systems an integration of
Eq. 4.194 is necessary until stochastic stationarity is reached. In each time step, the
tangential stiffness matrix K has to be determined. With this kind of analysis a crite-
rion for sample stability is developed. In order to speed up explicit time integration,
this equation can be projected into a subspace of dimension m << n as spanned
by the eigenvectors of the undamped system corresponding to the m smallest natural
frequencies (Bucher 2001). These eigenvectors are the solutions to

(K(Xstat) − ω2
i M)� = 0; i = 1 . . . m (4.196)

In this equation, Xstat is chosen to be the displacement solution of Eq. 4.194 under
static loading conditions. The mode shapes are assumed to be mass normalized.
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A transformation x = �v and a multiplication of Eq.4.194 with �T represents a
projection of the differential equation of motion for the reference solution into the
subspace of dimension m as spanned by the eigenvectors

v̈ + �Tr(X, Ẋ) = �T f (4.197)

The integration of Eq. 4.197 by the central difference method (Bathe 1996) requires
keeping a critical time step (cf. section 4.5.2).

The time integration in the subspace and the computing of the restoring forces on the
full system causes the following problem: If the start displacement or velocity vector of
the time integration is not zero, for example by static loading, the projection of these
vectors into the subspace is an optimiziation problem caused by the larger number of
variables in the full space. By using a least square approach

v = �−1X; �−1 = (
�T�

)
�T (4.198)

this projection is optimally approximated but not suitable for a subspace spanned
by a small number of eigenvectors. A possibility to handle this, is to start the time
integration in the subspace with a displacement and velocity vector equal to zero. The
start vectors have to be saved in the full system and the restoring force vector has to
be computed by addition of the start and the time integration vectors (Most, Bucher,
and Schorling 2004)

r(X, Ẋ) = r(Xstart + �v, Ẋstart + �v̇);

v(t = 0) = v̇(t = 0) = 0 (4.199)

In the investigated cases the start vector xstart is the static displacement vector, the start
velocities are assumed to be zero. To analyze the stability behaviour of the reference
solution x0(t), the long-term behavior of the neighboring motion (Eq. 4.195) is investi-
gated. To reduce the dimension of the equation system, this equation can be projected
into the same or a smaller subspace as compared to Eq. 4.197. Transformed into the
state space description we obtain

ż =
[

0 I
−�TK� −�TC�

]
z = A[x0(t)]z (4.200)

From this equation, the Lyapunov exponent λ can be determined by a limiting process

λ(X0, s) = lim
t→∞

1
t

log ||�(X0, t)s|| (4.201)

in which s is an arbitrary unit vector. In Eq. 4.201, �(x0, t) is the transition matrix
from time 0 to t associated with Eq. 4.200. Based on the multiplicative ergodic theorem
(e.g. Arnold and Imkeller 1994) the Lyapunov exponent can also be calculated as an
expected value

λ(X0, s) = E
[

d
dt

log ||�(X0, t)s||
]

(4.202)
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For the further analysis it is convenient to express the norm ||�(x0, t)s|| in terms of

‖�(x0, t)s‖ ≤ ‖�(X0, t)‖ · ‖s‖ = ‖�(X0, t)‖ (4.203)

Finally, this result is used in calculating the Lyapunov exponent according to
Eq. 4.201 by using a matrix norm equal to the eigenvalue µmax of �(X0, t) with the
maximum absolute value. The time domain t has to be taken large enough that the
Lyapunov exponent convergences to a stationary value. For the statistical estimation
of the convergence of the Lyapunov exponent, Eq. 4.202 is suitable.

4.8.3 Linear stabi l i ty analysis

The Lyapunov exponent for the stability of the second moments of a linearized refer-
ence solution can be determined by the Itô analysis. The nonlinear stiffness matrix in
Eq. 4.195 can be expanded into an asymptotic series with respect to a static loading
condition. Under the assumption that the loading vector F(t) can be expressed in terms
of a single scalar load process f (t), i.e. F(t) = F0f (t) and that the fluctuating part is
small, this series can be truncated after the linear term

MŸ + CẎ + [K(Xstat) + f (t)K1]Y = 0 (4.204)

This equation of motion is projected into a subspace of dimension m and then
transformed into its state space description analogous to Eq. 4.200

ż = [A + Bf (t)]z (4.205)

where the coefficient matrices A and B are constant. The fluctuating part of the loading
function is assumed to be Gaussian white noise. Then the Eq. 4.205 can be written as
a first order stochastic differential equation Lin and Cai 1995

dz = (A + πSff B)zdt +
√

2πSff Bz dB(t) (4.206)

For this system the Lyapunov exponent λ2 for the second moments can be easily derived
by applying the Itô calculus (e.g. Lin and Cai 1995). A somewhat heuristic derivation of
the differential equation of the second moments is given below. We start by expanding
the increment of the matrix product zzT into a Taylor series of order O(dt)

d(zzT ) = (dz)zT + z(dzT ) + (dz)(dzT ) (4.207)

The second order term is necessary because dz contains terms of the order
√

dt.
Inserting the Itô equation (4.206) we get

d(zzT ) = (A + πSff B)zzTdt +
√

2πSff BzzT dB(t)

+ zzT (
AT + πSff BT) dt +

√
2πSff zzTBTdB(t)

+ 2πSff BzzTBTdW(t)2 + O(
√

dt3) (4.208)
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Upon taking expectation and omitting higher-order terms, the terms containing
dW(t) vanish and we retain

E[d(zzT )] = (A + πSff B)E[zzT ]dt + E[zzT ](AT + πSff BT )dt

+ 2πSff BE[zzT ]BTdt (4.209)

in which the property (4.146) of the standard Wiener process B(t) has been utilized.
Introducing the covariance matrix

Czz = E[zzT ] (4.210)

and the abbreviation F = A + πSff B we obtain the ordinary linear differential equation

Ċzz = FCzz + CzzFT + 2πSff BCzzBT (4.211)

Example 4.13 (Second moment stability of a SDOF-system with parametric stiffness
excitation)

Consider a simple oscillator with an equation of motion in the form

mẍ + cẋ + k[1 + f (t)]x = 0 (4.212)

in which f (t) is white noise with spectral density Sff . Obviously, this system has the
trivial solution x(t) ≡ 0. Rewriting this in state vector form we get

d
dt

[
x
ẋ

]
=

[
0 1

− k
m − c

m

] [
x
ẋ

]
+

[
0 0

− k
m 0

] [
x
ẋ

]
f (t) (4.213)

The matrices A and B as utilized in the notation of Eq. 4.205 are

A =
[

0 1
− k

m − c
m

]
; B =

[
0 0

− k
m 0

]
(4.214)

and from this the Itô equation

d
[
x
ẋ

]
=

[
0 1

− k
m − c

m

] [
x
ẋ

]
dt +

√
2πSff

[
0 0

− k
m 0

]
dB(t) (4.215)

The differential equation for the second moments become

d
dt

[
σ2

X σXẊ
σXẊ σ2

Ẋ

]
=

[
0 1

− k
m − c

m

] [
σ2

X σXẊ
σXẊ σ2

Ẋ

]
+

[
σ2

X σXẊ
σXẊ σ2

Ẋ

] [
0 − k

m
1 − c

m

]

+ 2πSff

[
0 0

− k
m 0

] [
σ2

X σXẊ
σXẊ σ2

Ẋ

] [
0 − k

m
0 0

]
(4.216)
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Assembling the elements of the covariance matrix into a vector and omitting the
duplicate entry σXẊ, we get

d
dt




σ2
X

σXẊ

σ2
Ẋ


 =




0 2 0
− k

m − c
m 1

2πSff
k2

m2 − 2k
m − 2c

m




 σ2

X
σXẊ
σ2

Ẋ


 = H


 σ2

X
σXẊ
σ2

Ẋ


 (4.217)

It is well-known that the stability of the trivial solution of this equation is guaranteed
if the real parts of all eigenvalues of H are negative. The eigenvalue µ of H with
largest real value is actually real. Hence the stability limit is defined by this eigenvalue
becoming zero which can easily seen from the determinant of H

det (H) = 4k
m

(
k2

m2
πSff − c

m

)
(4.218)

Setting this to zero we obtain the critical spectral density as

Sff ,cr = cm
πk2

= 2ζ

πω3
0

(4.219)

which corresponds to a critical noise intensity

Dcr = 2cm
k2

= 4ζ

ω3
0

(4.220)

Example 4.14 (Second moment stability of a SDOF-system with parametric damping
excitation)

Now consider a simple oscillator with an equation of motion in the form

mẍ + c
[
1 + f (t)

]
ẋ + kx = 0 (4.221)

in which f (t) again is white noise with spectral density Sff . Obviously, this system also
has the trivial solution x(t) ≡ 0. Rewriting this in state vector form we get

d
dt

[
x
ẋ

]
=

[
0 1

− k
m − c

m

] [
x
ẋ

]
+

[
0 0
0 − c

m

] [
x
ẋ

]
f (t) (4.222)

The matrices A and B as utilized in the notation of Eq. 4.205 are

A =
[

0 1
− k

m − c
m

]
; B =

[
0 0
0 − c

m

]
(4.223)

and from this the Itô equation

d

[
x

ẋ

]
=

[
0 1

− k
m − c

m + πSff
c2

m2

][
x

ẋ

]
dt +

√
2πSff

[
0 0

0 − c
m

]
dB(t) (4.224)
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The differential equation for the second moments become

d
dt

[
σ2

X σXẊ

σXẊ σ2
Ẋ

]
=

[
0 1

− k
m − c

m + πSff
c2

m2

][
σ2

X σXẊ

σXẊ σ2
Ẋ

]

+
[

σ2
X σXẊ

σXẊ σ2
Ẋ

][
0 − k

m

1 − c
m + πSff

c2

m2

]

+ 2πSff

[
0 0

0 − c
m

][
σ2

X σXẊ

σXẊ σ2
Ẋ

][
0 0

0 − c
m

]
(4.225)

Assembling the elements of the covariance matrix into a vector we get

d
dt




σ2
X

σXẊ

σ2
Ẋ


 =




0 2 0
− k

m − c
m + 2πSff

c2

m2 1
0 − 2k

m − 2c
m + 4πSff

c2

m2






σ2
X

σXẊ

σ2
Ẋ




= H




σ2
X

σXẊ

σ2
Ẋ


 (4.226)

The determinant of H is

det (H) = 4k
m

(
2c2

m2
πSff − c

m

)
(4.227)

and from this we obtain the critical spectral density as

Sff ,cr = m
2πc

= 1
4πζω0

(4.228)

The sample stability (almost sure stability) of linear systems can be investigated by
studying the logarithm of a suitably defined norm ‖z‖. One possible definition for
such a norm is

‖z‖ =
√

zTMz (4.229)

in which M is a positive definite matrix. For the logarithm of norm, the Itô equation
is (Bucher 1990)

d log ‖z‖ = 1
2‖z‖2

zT (FTM + MF + 2πSff BTMB)zdt

− 1
4‖z‖4

2πSff [zT (BTM + MB)z]2dt

+ 1
2‖z‖2

√
2πSff zT (BTM + MB)zdB(t) (4.230)
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The Lyapunov exponent λ deciding on stability is obtained by taking expectation

λ = E
[

d log ‖z‖
dt

]
= 1

2
E

[
zT (FTM + MF + 2πSff BTMB)z

zTMz

]

− πSff

2
E

[(
zT (BTM + MB)z

zTMz

)2
]

(4.231)

The first expectation can be computed easily if the matrix M defining the norm is
chosen to be a solution to the matrix eigenvalue problem

FTM + MF + 2πSff BTMB − µM = 0 (4.232)

with a real-valued eigenvalue µ. Then we obtain

λ = µ

2
− πSff

2
E

[(
zT (BTM + MB)z

zTMz

)2
]

(4.233)

Since the last term to be subtracted is positive, the quantity µ

2 provides an upper bound
for the Lyapunov exponent. In order to compute the second expectation, it is necessary
to know the joint probability density function of the components of z. In Bucher 1990
it has been suggested to follow a second-moment-based approach. The covariance
matrix is governed by the differential equation (4.211) which is associated with the
eigenvalue problem

FC + CFT + 2πSff BCBT − µC = 0 (4.234)

in which we choose the eigenvalue µ that has the largest real part (incidentally, this
eigenvalue is identical to the one given by Eq. 4.232). As time tends to infinity, the
covariance matrix will be dominated by this eigenvalue and the associated eigenmatrix
C. In the next step, the Cholesky decomposition of C

C = LLT (4.235)

is used to construct a linear transformation into the space of uncorrelated variables u

z = Lu (4.236)

Finally, it is assumed that the probability density function of the components of u is
rotationally symmetric such that

fU(u) = g(uTu) (4.237)

It can easily be seen that the specific type of function g(.) is immaterial for the second
expectation in Eq. 4.233, hence for the sake of simplicity, a Gaussian distribution can
be chosen. The expected value can then be computed using a simple Monte Carlo
simulation scheme.
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Figure 4.33 Lyapunov exponent for SDOF oscillator with random stiffness.

Example 4.15 (Sample stability of a SDOF-system with parametric stiffness
excitation)
Consider again a simple oscillator with an equation of motion in the form

mẍ + cẋ + k[1 + f (t)]x = 0 (4.238)

in which m = 1, k = 1, and f (t) is white noise with spectral density Sff . The resulting
Lyapunov exponent as a function of c and Sff is shown in Fig. 4.33.

Stochast i c averag ing

The stochastic averaging method has been extensively investigated in the literature,
e.g. in Lin and Cai 1995. The assumptions regarding the probability distribution are
such that the joint probability density function of the displacement and the velocity
is rotationally symmetric after applying a transformation of the form of Eq. 4.235.
Specific to the stochastic averaging method, L is computed as Cholesky factor of the
matrix

C =
[

k
m 0

0 1

]
=

[
ω2

0 0

0 1

]
(4.239)

This is equivalent to the assumption

z1 = x = A cos ϕ; z2 = ẋ = ω0A sin ϕ (4.240)

with ϕ being uniformly distributed over the unit sphere and A having an arbitrary
distribution. Actually, this assumption coincides with the covariance matrix C obtained
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from the solution of Eq. 4.234 for the case of zero damping, i.e. c = 0. The norm ‖z‖
to be used is chosen according to Eq. 4.229 with the specific matrix M given by

M = C =
[
ω2

0 0

0 1

]
(4.241)

With this norm, we have

‖z‖2 = z2
1ω

2
0 + z2

2 = A2ω2
0( cos2 ϕ + sin2 ϕ) = A2ω2

0 (4.242)

For the case of the oscillator with random stiffness as described in Example 4.13, we
have the matrix products

FTM + MF + 2πSff BTMB =
[

2πSff
k2

m2 0

0 − 2c
m

]
(4.243)

and

BTM + MB =
[

0 − k
m

− k
m 0

]
(4.244)

The expression for the Lyapunov exponent then becomes

λ = 1
2

E

[
2πSff ω

4
0A2 cos2 ϕ − 2c

m A2ω2
0 sin2 ϕ

A2ω2
0

]

− πSff

2
E

[(
2ω2

0A cos ϕ ω0A sin ϕ

A2ω2
0

)2]
(4.245)

For a random variable ϕ which is uniformly distributed in the interval [0, 2π) we can
easily compute the expected values as required above

E[ cos2 ϕ] =
2π∫

0

cos2 ϕ

2π
dϕ = 1

2
; E[ sin2 ϕ] =

2π∫
0

sin2 ϕ

2π
dϕ = 1

2

E[ cos2 ϕ sin2 ϕ] =
2π∫

0

cos2 ϕ sin2 ϕ

2π
dϕ = 1

8
(4.246)

Hence the Lyapunov exponent becomes

λ = 1
2

2πSff ω
2
0 − 2c

m

2
− πSff

2
4
8

= − c
2m

+ πSff k

4m
(4.247)
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From this, the critical level of noise leading to Lyapunov exponent of zero becomes

Dcr = 2πSff ,cr = 4c
k

= 8ζ

ω0
(4.248)

The critical noise intensity Dcr depending on the damping ratio ζ as obtained from
this equation is shown as dashed line in Fig. 4.33.

Summary

In this chapter, the properties of random processes were defined in terms of mean
values, auto-covariance functions and power spectral densities. As a special case,
Markov processes were discussed in some detail. The response of structural systems
to random excitation was presented in terms of single- and multi-degree of freedom
systems. The power spectral method was derived. As a simplification of the response
analysis, the notion of white noise excitation was introduced. For multi-degree of free-
dom systems this allows the application of covariance analysis which was presented
for both white and filtered white noise. The first passage problem was treated using
approximations obtained from upcrossing rate. Monte Carlo simulation procedures
was discussed together with numerical time integration methods suitable for nonlinear
systems. Direct determination of the response probability density based on the solu-
tion of the Fokker-Plank-equation was presented. As an approximation method, the
concept of statistical linearization was presented. The basic concepts for stochastic
stability were introduced and applied to linear and nonlinear systems.



Chapter 5

Response analysis of spatially random
structures

ABSTRACT: Environmental loads (e.g. wind loads) on structures exhibit random spatial
and temporal fluctuations. While the temporal fluctuations can be suitably described in terms
of random processes (as shown in Chapter 4), the spatial fluctuations are better described by
random fields. The same type of description is useful for spatially correlated structural properties
such as strength or geometry data.

This chapter deals with the description of random fields, their representation in terms of dis-
crete random variables and methods to reduce the complexity of their description. Subsequently,
the implementation of the discrete models in the context of finite element analysis is discussed
and explained.

Finally, several approaches to compute statistical descriptions of the random structural
response are shown and applied to several numerical examples.

5.1 Representation of random fields

5.1.1 Basic definit ions

Let us denote by x = (x1, x2, . . . , xn) the structural location (e.g., distance from one
support) at which we measure the value of a structural parameter (e.g., the value of
the beam cross section A(x)). If we perform such a measurement for different beams
(i.e., different realizations of the beam) we will observe that the value of the cross
section A at location x will randomly vary from one measurement to the next. In other
words, the cross section A(x) at x is a random variable. If we additionally measure
the beam cross section A(y) at a second location y = (y1, y2, . . . , yn) we will observe a
similar situation, i.e., the measurements will again vary randomly from one realization
to the next. The cross section A(y) at y is also a random variable. If we measure the
values of the cross sections at both locations x and y we observe, in general, that
their values will be different and that this difference will also vary randomly from one
realization of the beam to the next. However, we can also observe that values from
adjacent loacations do not differ as much as values that are measured at locations

Figure 5.1 Sample function of one-dimensional random field.
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Figure 5.2 Ensemble of realizations of one-dimensional random field.

further apart. Such a behavior is an example of a covariance structure, many different
types of which may be modeled by random fields.

Now let us define more precisely what we mean by random fields. A random field
H(x) is a real-valued random variable whose statistics (mean value, standard deviation,
etc.) may be different for each value of x (Matthies, Brenner, Bucher, and Soares 1997;
Matthies and Bucher 1999), i.e.,

H ∈ R; x = [x1, x2, . . . xn]T ∈ D ⊂ R
n (5.1)

The mean value function is defined as

H̄(x) = E[H(x)] (5.2)

whereby the expectation operator E is to be taken at a fixed location x across the
ensemble, i.e., over all possible realizations H(x, ω) of the random field (see Fig. 5.2).

The spatial correlation, i.e. the fact that we observe a specific dependency structure
of random field values H(x) and H(y) taken at different locations x and y is described
by the auto-covariance function

CHH(x, y) = E[{H(x) − H̄(x)}{H(y) − H̄(y)}] (5.3)

With respect to the form of the auto-covariance function we can classify the random
fields. A random field H(x) is called weakly homogeneous if

H̄(x) = const. ∀x ∈ D; CHH(x, x + ξ) = CHH(ξ) ∀x ∈ D (5.4)

This property is equivalent to the stationarity of a random process. If the covariance
function depends on the distance only (not on the direction), i.e.

CHH(x, x + ξ) = CHH(‖ξ‖) ∀x ∈ D (5.5)

then a homogeneous random field H(x) is called isotropic. As an example, fiber-
reinforced materials with a predominant orientation of the fibers are non-isotropic in
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Figure 5.3 Isotropic and non-isotropic correlation contours.

their mechanical properties. This carries over to the statistical properties as well. In
such a case, the contour-lines of constant correlation are elongated in one direction
(cf. Fig. 5.3).

5.1.2 Propert ies of the auto-covariance function

The auto-covariance function has some mathematical properties which are important
for the applicability of certain numerical methods.

Symmetry

CHH(x, y) = CHH(y, x) (5.6)

This property is obvious from the definition of the auto-covariance function due to the
commutative property of the multiplication.

Positive Definiteness

This property can be described by

∫∫
D⊗D

w(x)CHH(x, y)w(y) dx dy ≥ 0 (5.7)

which must be true for arbitrary (also non-positive) functions w(.). This is equivalent
to the condition

m∑
k=1

m∑
j=1

akCHH(xk, xj)aj ≥ 0 ∀ak ∈ R, ∀m ∈ N (5.8)

An interesting property of the autocovariance function of homogeneous, isotropic
fields can be derived from positive definiteness (VanMarcke 1983). Let us assume
that in n-dimensional space we have m = n + 1 points located at the vertices of an
equilateral simplex (e.g. a triangle in 2D-space, cf. Fig. 5.4). All the mutual distances
of these points will then be equal to, say, r. If we choose all coefficients ak in (5.8)
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Figure 5.4 Lower Limit for Covariance Function in 2D.

Figure 5.5 Covariance function and correlation length.

equal to 1, then we get

m∑
k=1

m∑
j=1

akajCHH(xk, xj) = mCHH(0) + (m2 − m)CHH(r) > 0

→ CHH(r) > −CHH(0)
n

(5.9)

This means that in 2D, the autocovariance function cannot have negative values less

than − σ2
H
2 and in 3D it cannot be less than − σ2

H
3 .

Correlation Length (isotropic case)

Define the separation distance r between two points by r = ||x − y||. Then the
correlation length Lc is given by

Lc =

∞∫
0

r|CHH(r)| dr

∞∫
0

|CHH(r)| dr
(5.10)

The limit Lc → ∞ produces a random field which is fully correlated in the entire
domain of definition thus actually describes a single random variable. The opposite
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limit Lc → 0 produces a “finite-power white noise’’, i.e. a random field without any
spatial correlation.

Example 5.1 (Exponential Correlation)
Let a covariance function be defined by

CHH(r) = σ2
H exp ( − r

b
) (5.11)

Compute the correlation length.
The integrals required, according to (5.10), are computed as

∞∫
0

r exp ( − r
b

)dr = −br exp ( − r
b

)
∣∣∣∞
0

+ b

∞∫
0

exp ( − r
b

)dr =

= −b2 exp ( − r
b

)
∣∣∣∞
0

= b2 (5.12)

∞∫
0

exp ( − r
b

)dr = b (5.13)

So we have Lc = b.

5.1.3 Spectral decomposit ion

For numerical computations it is useful to represent a continuous random field H(x) in
terms of discrete random variables ck; k = 1 . . . ∞ (Ghanem and Spanos 1991; Brenner
and Bucher 1995)

H(x) =
∞∑

k=1

ckφk(x), x ∈ D ⊂ R
n; ck, φk ∈ R (5.14)

The functions φk(x) are deterministic spatial shape functions which are usually chosen
to represent an orthonormal basis on D. The random coefficients ck can be made
uncorrelated, which is an extension of orthogonality into the random variable case.

This representation is usually called Karhunen-Loéve expansion. It is based on the
following decomposition of the covariance function

CHH(x, y) =
∞∑

k=1

λkφk(x)φk(y) (5.15)

in which λk and φk(x) are the eigenvalues and eigenfunctions respectively. These are
solutions to the integral equation∫

D

CHH(x, y)φk(x)dx = λkφk(y) (5.16)
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Mathematically, Eq. (5.16) is a Fredholm integral equation of the second kind.
In most Finite-Element applications the random field H(x) is discretized right from

the start as

Hi = H(xi); i = 1 . . . N (5.17)

A spectral representation for the discretized random field is then obtained by

Hi =
N∑

k=1

φk(xi)ck =
N∑

k=1

φikck (5.18)

Obviously, this is a matrix-vector multiplication

H = �c (5.19)

The orthogonality condition for the columns of � becomes

�T� = I (5.20)

and the covariance matrix of the components of the coefficient vector c is

Ccc = diag(σ2
ck

) (5.21)

Both conditions can be met if the columns φk of the matrix � solve the following
eigenvalue problem

CHHφk = σ2
ck

φk; k = 1 . . . N (5.22)

Statistically, the Karhunen-Loeve expansion is equivalent to a representation of the
random field by means of a Principal Component Analysis (PCA).

Example 5.2 (One-dimensional random field)
Consider a one-dimensional random field H(x) defined on the interval I = [0, 1]

with an exponential correlation function RHH = exp (−|x − y|/0.5), i.e. the correlation
length is half of the interval length. The interval is discretized in 100 equally spaced
points for which the covariance matrix is computed. The eigenvalues σ2

ck
, sorted by

decreasing magnitude, are shown in Fig. 5.6. It is clearly seen that the magnitude drops
rapidly with increasing k. The eigenvectors φ1 to φ5 are also shown. Here it can be
seen that the eigenvectors become more oscillatory as k increases.

5.1.4 Condit ional random fields

There are engineering applications in which the values of a structural property are
known (e.g. from measurements) in certain selected locations. In geotechnical applica-
tions this may be a specific soil property which can be determined through bore holes.
Between these locations, however, a random variability is assumed.
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Figure 5.6 Discrete Karhunen-Loeve expansion, eigenvalues λk (left) and eigenvectors φk (right).

Figure 5.7 Conditional random field.

The strategy to deal with this relies on a regression approach (Ditlevsen 1991). First
we assume that the structural property under consideration (without any measure-
ments) can be modeled by a zero mean random field H(x). This field is modified into
Ĥ(x) by taking into account the additional knowledge.

Assume that the values of the random field H(x) are known at the locations xk,
k = 1 . . . m. We then write a stochastic interpolation for the conditional random field

Ĥ(xi) = a(x) +
m∑

k=1

bk(x)H(xk) (5.23)

in which a(x) and bk(x) are random interpolating functions whose statistics have yet to
be determined. They are chosen to make the mean value of the difference between the
random field and the conditional field zero, i.e. E[Ĥ(x) − H(x)] = 0 and to minimize
the variance of the difference, i.e. E[(Ĥ(x) − H(x))2] → Min.

Carrying out the analysis we obtain an expression for the mean value of the
conditional random field.

¯̂H(x) = [CHH(x, x1)CHH(x, x2) . . . CHH(x, xm)]C−1
HH




H(x1)
H(x2)

...

H(xm)


 (5.24)
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Figure 5.8 Discrete Karhunen-Loeve expansion for conditional field, eigenvalues λk (left) and
eigenvectors φk (right).

In this equation, the matrix CHH denotes the covariance matrix of the random field
H(x) at the locations of the measurements. The covariance matrix of the conditional
random field is given by

Ĉ(x, y) = C(x, y) − [CHH(x, x1) . . . CHH(x, xm)]C−1
HH




CHH(x1, y)
...

CHH(xm, y)


 (5.25)

Example 5.3 (Conditional field on an interval)
Consider the random field like before but with the condition that the values of the

field at the end of the interval should be zero. Carrying out the numerical analysis, it
can be seen that now all eigenvectors, as obtained from the Karhunen-Loeve expansion,
have zero values at the ends of the interval (cf. Fig. 5.8).

Example 5.4 (Conditional random field in the plane)
A zero mean random field H(x1, x2) in the plane is described by the autocovariance

function

CHH(x1, x2, y1, y2) = σ2
H exp

(
−|x1 − y1]

a
− |x2 − y2|

2a

)

Show that this field is homogeneous but not isotropic.
Introduce the condition that the random field should be zero at the boundaries of the

square S = [0, 4a] ⊗ [0, 4a] and compute the KL-expansion for a discrete representation
of the field inside the square on a grid of size a. Plot the first three eigenvectors.

The solution is carried out by arranging the discrete values of the random field in
the plane into a vector. The position index is computed from the scheme as outlined
in Fig. 5.9. The octave script is given below
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Figure 5.9 Discrete Karhunen-Loeve expansion for conditional field.

1 function [v,d] = eigsort (x)
2 length = issquare (x);
3 [v,d] = eig (x);
4 [dd,ix] = sort (-diag (d));
5 for i=1:length
6 d(i,i) = - dd(i);
7 end;
8 v = v(:,ix);
9 endfunction

10 %
11 a=1;
12 ss=0.01;
13 border=[1,2,3,4,5,6,10,11,15,16,20,21,22,23,24,25];
14 inside=[7,8,9,12,13,14,17,18,19,22,23,24];
15 for i=1:25
16 x1(i)=a*floor((i-1)/5);
17 x2(i)=a*mod(i-1,5);
18 endfor
19 c=zeros(25);
20 for i=1:25
21 for k=1:25
22 c(i,k)=ss*exp(-abs(x1(i)-x1(k))/a
23 -abs(x2(i)-x2(k))/2/a);
24 endfor
25 endfor
26 chh=zeros(16);
27 for i=1:16
28 for k=1:16
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29 chh(i,k)=c(border(i), border(k));
30 endfor
31 endfor
32 chhi=inv(chh);
33 cc=zeros(9);
34 for i=1:9
35 for k=1:9
36 ci=[];
37 ck=[];
38 for l=1:16
39 ci=[ci,c(inside(i),border(l))];
40 ck=[ck,c(inside(k),border(l))];
41 endfor
42 cc(i,k)=c(inside(i),inside(k))-ci*chhi*ck’;
43 endfor
44 endfor
45
46 [v,l]=eigsort(cc);
47 [fid,msg]=fopen("karhunen_plate.dat", "w");
48 z=zeros(25);
49 for i=1:9
50 z(inside(i))=v(i,5);
51 endfor
52 for i=1:25
53 fprintf(fid," %g %g %g\n", x1(i), x2(i), z(i));
54 endfor
55 fclose(fid);

5.1.5 Local averages of random fields

In reality, it is usually very difficult (or, actually, conceptionally impossible) to observe
structural properties in one point. Any measuring device typically gives information
about averages over a certain finite domain �.

Figure 5.10 Averaging Domains for a Random Field.
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Given a homogeneous random field H(x), we define a local average of this field by

G�(z) = 1
A�z

∫
�z

H(x)dA (5.26)

Here, z is a suitable chosen center point of �z, and A�z is the area content of �z.
It is obvious that G will be smoother (less random) than H. In fact, as � becomes

large and tends to R
2, G will become deterministic, i.e. equal to the expected value H̄.

The mean value of the locally averaged field can be computed from

E[G�(z)] = Ḡ�(z) = 1
A�z

∫
�z

E[H(x)]dA = H̄ (5.27)

Its covariance function is given by

CGG(z, t) = 1
A�z A�t

∫
�z

∫
�t

CHH(x, y)dxdy (5.28)

Example 5.5 (Local Average of a White Noise Field)
Consider a one-dimensional zero-mean random field H(x) with a covariance

function

CHH(x − y) = D0δ(x − y) (5.29)

Define the averaging domain to be an interval of length 2R symmetric about z

�z = [ − R + z, R + z] (5.30)

We then compute the covariance function for the local average

CGG(z, t) = D0

4R2

R+z∫
−R+z

R+t∫
−R+t

δ(x − y) dxdy (5.31)

Figure 5.11 Integration for local average of white noise random field.
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The location of the singularity in the x − y-plane is shown in the figure. The integral
then evaluates to the length s of the intersection of the first median with the square.
This depends on z and t. The length of a is easily found as a = t − z + 2R if z > t and
t − z < 2R; and zero otherwise. From that we obtain

CGG(z, t) =
{√

2D0
2R

(
1 − |z−t|

2R

)
|z − t| < 2R

0 else
(5.32)

Taking z = t in this equation we obtain the variance of local average as

σ2
G =

√
2D0

2R
(5.33)

which tends to zero as the averaging length R grows.

5.2 Geometrical imperfections

In structural applications the influence of manufacturing tolerances leads to deviations
of the actual geometrical shapes from those designed. Since the structural analysis is
typically based on the target geometry as designed it may be unsafe to neglect the
random deviations in geometry (Bucher 2006). The differences between the target
geometry and the actual random geometry can be conveniently expressed as a random
field involving the structural coordinates (cf. Fig. 5.12). A certain regularity or “wavi-
ness’’ of the geometrical imperfections can be modeled by choosing a suitable spatial
correlation function. The possible effect of geometrical imperfections on the behavior
of structures which are very slender and prone to stability failure will be illustrated by
the following example.

Example 5.6 (Loss of stability due to geometrical imperfections)
Consider a shallow shell-like spatial structure as sketched in Fig. 5.13. This struc-

ture consists of slender beams connected rigidly, forming a doubly curved dome. The
beams have a circular cross section with a diameter of 56 mm. The material is structural
steel with a modulus of elasticity E = 210 GPa and a mass density of ρ = 7800 kg/m3.
The structure is simply supported at all nodes on the circumference. Assuming perfect
geometry, the critical load multiplier λc for the dead load of the structure can be com-
puted. Its numerical value is λc = 2.17. This indicates that the geometrically perfect
structure can carry more than twice its own weight. The random geometrical imper-
fections are represented in terms of random deviations ẑ of the vertical coordinates z

Figure 5.12 Geometrical imperfections.
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of the nodes at which the beams are connected. The spatial autocovariance function
for these random deviations is assumed to be of the exponential type

Cẑẑ = σ2
ẑ exp

(
− r

Lc

)
(5.34)

in which r denotes the spatial sparation distance between two considered nodes,
Lc = 20 m is the correlation length and the standard deviation σẑ of the imperfections
is varied in the analysis. The Karhunen-Loeve spectral decomposition of the random
field is carried out utilizing the eigensolution of the discrete covariance matrix of the
field evaluated at the nodes. The eigenvectors that belong to the four largest eigenval-
ues of the covariance matrix are shown in Fig. 5.14. Based on these eigenvectors, a
Monte-Carlo simulation is carried out. This simulation is repeated for different mag-
nitudes of the geometrical imperfections as expressed by σẑ. In this simulation, the

Figure 5.13 Sketch of geometrically perfect structure.

Figure 5.14 Eigenvectors of covariance matrix.
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Figure 5.15 Influence of geometrical imperfections.

critical load factor is computed through linearized stability analysis using a geometri-
cally nonlinear finite element model of the structure. The results, given in Fig. 5.15,
show that imperfections of a few centimeters can reduce the load carrying capacity so
significantly that even collapse of the structure under its own weight becomes highly
probable.

5.3 Stochastic finite element formulation

5.3.1 Elast ic ity (Plane stress)

We consider a two-dimensional domain � as shown in Fig. 5.16. The boundary ∂�

is the union of two disjoint sets G1 and G2. On G1 the forces (tractions) f are given,
on G2 the displacements u are given. For simplicity, we assume that there are no body
forces in the interior of �.

The equilibrium conditions in � are

∂σxx

∂x
+ ∂τxy

∂y
= 0

∂τxy

∂x
+ ∂σyy

∂y
= 0 (5.35)

Assuming linear elasticity with elastic modulus E and Poisson’s ratio ν, the stresses can
be related to the strains by

σxx = E
(1 + ν)(1 − 2ν)

[(1 − ν)εxx + νεyy]

σyy = E
(1 + ν)(1 − 2ν)

[νεxx + (1 − ν)εyy]

τxy = E
2(1 + ν)

γxy (5.36)
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Figure 5.16 Elastic Domain with Load and Displacement Boundaries.

For convenience this is frequently written in vector-matrix notation

s =

σxx

σxx

τxy


 = E

1 + ν




1−ν
1−2ν

ν
1−2ν

0

ν
1−2ν

1−ν
1−2ν

0

0 0 1
2




 εxx

εyy

γxy


 = De (5.37)

The strains are related to the displacements by

εxx = ∂u
∂x

εyy = ∂v
∂y

γxy = ∂u
∂y

+ ∂v
∂x

(5.38)

Note that this definition is useful for small strains only. For moderate to large strains,
the definition must be augmented to include at least quadratic terms in ∂u

∂x etc.
The differential operators in (5.35) and (5.38) can be written as matrices

L1 =
[

∂
∂x 0 ∂

∂y

0 ∂
∂y

∂
∂x

]
; L2 =




∂
∂x 0
0 ∂

∂y
∂
∂y

∂
∂x


 (5.39)

so that

L1s = 0; L2

[
u
v

]
= L2u = e (5.40)

Putting this together with (5.37) we obtain

L1DL2u = 0 (5.41)

as the equilibrium condition for the interior of �.
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For structural analysis, we are frequently interested in the relationship between the
applied loads (and/or the reaction forces) f and the internal stresses s.

5.3.2 Principle of virtual work

In an equilibrium configuration, the virtual work done by the external forces f is equal
to the virtual work done by the internal stresses s. Hence

δW =
∫
V

sTδe dV −
∫

G1

fTδu1 dA = 0 (5.42)

Here, δW is the total virtual work, δu1 is the virtual displacement field on G1 and δe
is a compatible virtual strain field in �.

Example 5.7 (Cantilever Rod)
Given F1, E, A and L, compute u1 using the principle of virtual work.
We apply a virtual displacement δu1 at the right end of the rod and compute a

compatible (linearly distributed) virtual displacement field δu(x) in the rod. From that
we obtain virtual strains by means of

δεxx = dδu(x)
dx

= 1
L

δu1 (5.43)

The internal stress σxx is related to the strain εxx by

σxx = Eεxx (5.44)

So we obtain

δW =
L∫

0

AEεxx
1
L

δu1dx − F1δu1 = 0 (5.45)

and since this equation must be true for arbitrary δu1

F1 =
L∫

0

AEεxx
1
L

dx = EA
L

L∫
0

du
dx

dx = EA
L

[u(L) − u(0)]

= EA
L

u1 → u1 = F1L
EA

(5.46)

Figure 5.17 Cantilever rod.
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5.3.3 Finite element formulation

The displacement field u(x) in a domain �e is represented in terms of a finite number
of nodal displacements assembled into a vector Ue of size ne. The field is described by
a set of interpolating functions (shape functions) Hij(x).

The interpolation is done by

ui(x, y) =
ne∑

j=1

Hij(x, y)Ue
j (5.47)

Typically, polynomials are chosen as the interpolation functions. They have to be
normalized to match the conditions

Hij(xk, yk) = δjk; i = 1, 2 (5.48)

Here, δjk denotes the Kronecker Delta symbol.
The element strains are computed by taking the appropriate derivatives of (5.47)

εxx = ∂u
∂x

= ∂

∂x


 ne∑

j=1

H1j(x, y)Ue
j


 =

ne∑
j=1

∂H1j

∂x
Ue

j

εyy = ∂v
∂y

= ∂

∂y


 ne∑

j=1

H2j(x, y)Ue
j


 =

ne∑
j=1

∂H2j

∂y
Ue

j

γxy = ∂u
∂y

+ ∂v
∂x

=
ne∑

j=1

(
∂H1j

∂y
+ ∂H2j

∂x

)
Ue

j (5.49)

which can be compactly written as (assuming small strains)

e = B(x, y)Ue (5.50)

Figure 5.18 Discrete Forces and Displacements.
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From this, virtual strains are easily generated

δe = ∂e
∂Ue

δUe = B(x, y)δUe (5.51)

Using the principle of virtual work we can derive a relation between the element nodal
displacements Ue and the element nodal forces Fe

δW =
∫
�e

sTδe dV − FeTδUe = 0 (5.52)

Together with (5.50) this becomes

∫
�e

sTBδUe dV − FeTδUe = 0 (5.53)

so that

Fe =
∫
�e

BTs dV =
∫
�e

BTDe dV =
∫
�e

BTDBUe dV

=
∫
�e

BTDB dV Ue = KeUe (5.54)

The matrix Ke is called element stiffness matrix. The integrals appearing in this matrix
are usually computed numerically, e.g. by Gauss integration.

Example 5.8 (Shape Functions and Stiffness Matrix for a Rod Element)
Consider the case of a three-node rod element as shown in Fig. 5.19.
In order to be able to satisfy the normalization conditions at three nodes, the shape

functions have to be quadratic in x

H1j = Aj + Bjx + Cjx2 (5.55)

Figure 5.19 Three-node rod element and shape functions.
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The coordinates of the nodes are x1 = 0; x2 = L; x3 = 2L. The normalization
conditions for the first shape function are

H11(x1) = 1 = A1

H12(x2) = 0 = A1 + B1L + C1L2

H13(x3) = 0 = A1 + 2B1L + 4C1L2 (5.56)

The solution to this system of equations is

A1 = 1; B1 = − 3
2L

; C1 = 1
2L2

(5.57)

so that

H11 = 1 − 3x
2L

+ x2

2L2
(5.58)

The remaining shape functions are found analogously

H12 = 2x
L

− x2

L2
; H13 = − x

2L
+ x2

2L2
(5.59)

A plot of these functions is shown in Fig. 5.19.
Since there is only uniaxial strain along the rod axis, the B-matrix can be reduced

to a simple vector

B(x) = [− 3
2L + x

L2
2
L − 2x

L2 − 1
2L + x

L2

]
(5.60)

and the elasticity matrix reduces to a scalar containing the modulus of elasticity E so
that

BTDB = E·




( x
L2 − 3

2 L

)2 ( 2
L − 2 x

L2

) ( x
L2 − 3

2 L

) ( x
L2 − 3

2 L

) ( x
L2 − 1

2 L

)
( 2

L − 2 x
L2

) ( x
L2 − 3

2 L

) ( 2
L − 2 x

L2

)2 ( 2
L − 2 x

L2

) ( x
L2 − 1

2 L

)
( x

L2 − 3
2 L

) ( x
L2 − 1

2 L

) ( 2
L − 2 x

L2

) ( x
L2 − 1

2 L

) ( x
L2 − 1

2 L

)2


(5.61)

Integration over the element volume results in

Ke = A

2L∫
0

BTDB dx = EA
6L


 7 −8 1

−8 16 −8
1 −8 7


 (5.62)

Exercise 5.1 (Stiffness matrix of triangular (CST) element)
Consider an equilateral triangle made of an elastic material (modulus of elasticity

E, Poisson’s ratio ν = 0) as shown in Fig. 5.20.
The thickness of the element is t. Compute the element stiffness matrix for

deformations in the x − y-plane.
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Figure 5.20 Constant strain triangle finite element.

Solution: The element stiffness matrix is given by

Ke = Et
a2




7
6 − 1

2
√

3
− 7

6
1

2
√

3
1
3 0

− 1
2

√
3

5
6

1
2

√
3

− 5
6 − 1√

3
2
3

− 7
6

1
2

√
3

7
6 − 1

2
√

3
− 1

3 0
1

2
√

3
− 5

6 − 1
2

√
3

5
6

1√
3

− 2
3

1
3 − 1√

3
− 1

3
1√
3

2
3 0

0 2
3 0 − 2

3 0 4
3




5.3.4 Structural response

If a structure is discretized into several finite elements, the element forces caused by
the displacements are then assembled into a global restoring force vector F and the
element nodal displacements are assembled into a global displacement vector U. In a
static analysis, the equilibrium conditions at the nodes require that the applied load
vector P should be equal to the restoring force vector F. Since all element forces Fe are
linearly related to the respective displacements Ue, the global vectors F and U have a
linear relation as well. So the equilibrium conditions are

KU = P (5.63)

This is a system of linear equations for the elements of the global displacement vector U.
Especially for the case of multiple load cases (multiple right hand sides) it is

advantageous to factor the global stiffness matrix K into

K = L�LT (5.64)

in which L is a lower triangular matrix and � is a diagonal matrix. In this way, the
explicit computation of the inverse stiffness matrix K−1 can be avoided.

In case of structural dynamics, the element assembly leads to a system of second
order differential equations

M
d2

dt2
U + KU = P(t) (5.65)

Here, M is the system mass matrix which can be obtained in a way analogous to
the stiffness matrix. When applying modal analysis, first of all an eigenvalue problem
needs to be solved

(K − ω2M)� = 0 (5.66)
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Figure 5.21 Volume element with nodal displacements.

in which the eigenvalues ωk are the squares of the natural frequencies of the system and
the eigenvectors �k are the modes of vibration. These modes satisfy the orthogonality
relations

�iM�k = δik; �iK�k = ω2
kδik (5.67)

5.3.5 Stochastic st i f fness matrix

As discussed earlier, the element stiffness matrix Ke relates the nodal forces Fe to the
nodal displacements Ue

Fe = KeUe (5.68)

in which, for the element with me nodes (j); j = 1 . . . me as sketched in Fig. 5.21

Fe = [(fxj, fyj, fzj); j = 1 . . . me]T ; Ue = [(uj, vj, wj); j = 1 . . . me]T (5.69)

Based on the principle of virtual work, the element stiffness matrix for a linear material
law (assuming geometrical linearity as well) is obtained as

Ke =
∫
Ve

BT (x, y)D(x, y)B(x, y)dVe (5.70)

Typically, the strain interpolation matrix B(x, y) is chosen in polynomial form, i.e.

B(x, y) =
∑∑

k+l≤r

Bklx
kyl; k, l, r ≥ 0 (5.71)

In this equation, Bkl are constant matrices. In fact, for the CST element shown in
Fig. 5.20 there is only one such matrix, i.e. B00. Assuming that the system randomness
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is described by a random elastic modulus E(x, y), the elasticity matrix D(x, y) can be
written as

D(x, y) = D0E(x, y) (5.72)

Using the polynomial form of B(x, y), the element stiffness matrix finally becomes

Ke =
∑∑

k+l≤r

∑∑
m+n≤r

BT
klD0Bmn

∫
Ve

E(x, y)xkylxmyn dVe (5.73)

The last term in this equation is a so-called weighted integral of the random field
E(x, y).

Xe
klmn =

∫
Ve

E(x, y)xkylxmyn dVe (5.74)

Using this representation, it is possible to achieve a description of the random variation
of the element stiffness matrix in terms of the mean values and the covariance matrix
of the weighted integrals.

Example 5.9 (Three-Node Rod Element)
Consider again a three node rod element as discussed previously. The elastic modulus

is assumed to be a homogeneous randon field with mean value Ē and an autocovariance
function

CEE(x, y) = σ2
E

1

1 + (x−y)2

2L2

(5.75)

We will compute the weighted integral representation of the element stiffness matrix.
The B-matrix as derived in (5.60) is split according to (5.71) into

B = [− 3
2L

2
L − 1

2L

] + [ 1
L2 − 2

L2
1

L2

]
x (5.76)

The individual contributions to the element stiffness matrix are determined by the
matrices

K0 = 1
L2


 9

4 −3 3
4−3 4 −1

3
4 −1 1

4


; K1 = 1

L3


−3 5 −2

5 −8 3
−2 3 −1


; K2 = 1

L4


 1 −2 1

−2 4 −2
1 −2 1


 (5.77)

so that

Ke = K0X0 + K1X1 + K2X2 (5.78)
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in which the weighted integrals Xk are defined by

Xk = A

2L∫
0

E(x)xk dx (5.79)

Using this definition, the mean values of the weighted integrals are easily computed as

X̄k = E


A

2L∫
0

E(x)xk dx


 = A

2L∫
0

E[E(x)]xk dx = ĒA
(2L)k+1

k + 1
(5.80)

and the covariance Cik between two weighted integrals is computed from

Cik = A2

2L∫
0

2L∫
0

CEE(x, y)xiyk dxdy (5.81)

Using maxima these integrals are evaluated in closed form as

C00 = σ2
E · (4

√
2 arctan

√
2 − log 9)L2A2 = 3.20686L2A2σ2

E

C10 = C01 = σ2
E · (4

√
2 arctan

√
2 − log 9)L3A2 = 3.20686L3σ2

EA2

C20 = C02 = σ2
E · 4

√
2 arctan

√
2 − log 6561 + 16
3

L4A2 = 4.20506L4σ2
EA2

C11 = σ2
E · 16

√
2 arctan

√
2 − log 4782969 + 4

3
L4A2 = 3.41192L4A2σ2

E

C21 = C12 = σ2
E · (4

√
2 arctan

√
2 − log 6561 + 8)L5A2 = 4.61519L5A2σ2

E

C22 = σ2
E · (

16
√

2 arctan
√

2 + 88 log 12 − 210 log 6 + 2 log 2
15

+16
√

2 arctan
√

2 − 122 log 6 − 88 log 4 + 330 log 2 + 320
15

)L6A2

= 6.34475L6A2σ2
E (5.82)

so that the covariance matrix of the 3 weighted integrals becomes

C = σ2
E ·


3.20686 L2 3.20686 L3 4.20506 L4

3.20686 L3 3.41192 L4 4.61519 L5

4.20506 L4 4.61519 L5 6.34475 L6


A2 (5.83)

The Cholesky factor of the covariance matrix of the weighted integrals becomes

L = σE ·

 1.79077 L 0 0

1.79077 L2 0.45284 L2 0
2.34818 L3 0.90569 L3 0.10247 L3


A (5.84)

The maxima code for C21 is given in Listing 5.1.
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1 c:(1/(1+(x-y)ˆ2/2/Lˆ2))*x*yˆ2;
2 d:integrate(c,x,0,2*L);
3 e:integrate(d,y,0,2*L);
4 f:logcontract(e);
5 bfloat(f);

Listing 5.1 Computation of covariance for weighted integrals

Figure 5.22 CST element subdivided into 16 subtriangles.

Example 5.10 (Weighted integral for CST element)
Consider the triangular element as discussed in Exercise 5.1. Compute the variance

of the only weighted integral for this element if the covariance function of the modulus
of elasticity is given by

CEE(x, y) = σ2
E exp ( − ||x − y||2

0.25L2
) (5.85)

Note: ||.|| denotes Euclidian norm.
We choose a numerical scheme in which we subdivide the triangle in 16 smaller

triangles. The integrand is represented by its values in the center points of the triangles.
The octave script is given below

1 function cee=cee(x,y)
2 dist=(x(1)-y(1))ˆ2+(x(2)-y(2))ˆ2;
3 cee=exp(-dist/.25);
4 endfunction
5 #
6 a=1;
7 b=a/8.
8 h=a*sqrt(3)/2/12
9 x1=[b,2*b, 3*b,4*b,5*b,6*b,7*b,\

10 2*b,3*b,4*b,5*b,6*b,\
11 3*b,4*b,5*b,\
12 4*b]
13 x2=[h,2*h,h,2*h,h,2*h,h,\
14 4*h,5*h,4*h,5*h,4*h,\
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15 7*h,8*h,7*h,\
16 10*h]
17 tr1=[0;1;.5;0];
18 tr2=[0;0;sqrt(3)/2;0];
19 plot(x1, x2, "k+", tr1, tr2, "k—");
20 axis square
21 print(’cstweight.eps’,’-deps’)
22 cxx=0;
23 for i=1:16
24 for k=1:16
25 x=[x1(i),x2(i)];
26 y=[x1(k),x2(k)];
27 cxx+=cee(x,y)/256;
28 endfor
29 endfor
30 cxx
31 pause;

with the result

0
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0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.2 0.4 0.6 0.8 1

1 cxx = 0.60607
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5.3.6 Integration point method

It turns out that the weighted integral representation, although rather elegant, is
not particularly suitable for numerical solution procedures. The reasons may by
summarized as follows:

• In general the element integrations are carried out numerically using Gaussian inte-
gration. This means that the number of integration points is smaller than the order
of the polynomials to be integrated. As a consequence, there are more weighted
integrals than there are random variables. This implies that the covariance matrix
of the weighted integrals is singular (actually, the rank defect can be rather large).

• For non-Gaussian random fields it is almost impossible to derive the probability
density functions of the weighted integrals. As a consequence it will not be possible
to derive a full probabilistic description of the response.

As an alternative, the random field is represented pointwise, and in the context of
Finite Element analysis, these points are optimally chosen to be the integration points
of the element matrices. This leads to a representation of the element stiffness matrix
in the form (Brenner 1995; Brenner and Bucher 1995)

Ke =
Ng∑
g=1

Ke
gE(xe

g) (5.86)

Here xe
g denotes the integration points in element e. All integration weights are included

in the matrices Ke
g. Then the global stiffness matrix is

K =
Ne⊕
e=1

Ng∑
g=1

Ke
gE(xe

g) (5.87)

In this representation, only the values of discretized random field are needed.
Example 5.11 (Rod Element) We discuss the three-node rod element mentioned
before. Now we want to apply Gauss integration to obtain the element stiffness matrix.
In order to integrate a polynomial of order 2 m − 1 exactly, we need m integration
points. So for the second order polynomials of the BBT matrix we need 2 integration
points. In this way, we represent the integrals as∫ 2L

0
p(x)dx = 2L[w1p(x1) + w2p(x2)] (5.88)

in which w1 = w2 = 1
2 and x1 = L(1 − 1√

3
), x2 = L(1 + 1√

3
). In this representation, the

element stiffness matrix becomes

Ke =
(

E(x1)
2

B(x1)B(x1)T + E(x2)
2

B(x2)B(x2)T
)

2LA (5.89)

in which (cf (5.60))

B(x1) =
[
−

√
3+2

2
√

3 L
2√
3 L

√
3−2

2
√

3 L

]
; B(x2) =

[
−

√
3−2

2
√

3 L
− 2√

3 L

√
3+2

2
√

3 L

]
(5.90)
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so that

Ke = E(x1)A
12L

·

 4

√
3 + 7 −4

√
3 − 8 1

−4
√

3 − 8 16 4
√

3 − 8
1 4

√
3 − 8 7 − 4

√
3




+E(x2)A
12L

·

7 − 4

√
3 4

√
3 − 8 1

4
√

3 − 8 16 −4
√

3 − 8
1 −4

√
3 − 8 4

√
3 + 7


 (5.91)

5.3.7 Static response – perturbation method

Based on a perturbation approach, e.g. for random elastic modulus in the form

E(x, y) = E0(x, y) + εE1(x, y) (5.92)

in which E0 is the deterministic mean, ε is a “small’’ quantity, and E1 describes the
random deviation from the mean, the assembly of element stiffness matrices leads to
a global stiffness matrix K which has random perturbations as well

K = K0 + εK1 (5.93)

Given the (deterministic) global load vector P, the (random) global displacement vector
U is determined from the solution of the following system of linear equations

KU = P (5.94)

Expanding U into a power series with respect to ε

U = U0 + εU1 + ε2U2 . . . (5.95)

an approximate solution can be obtained in terms of powers of ε

ε0 : K0U0 = F

ε1 : K0U1 = −K1U0

ε2 : K0U2 = −K1U1

ε3 : . . . (5.96)

Usually, this is truncated after the linear terms in ε. From this first order perturbation
result U = U0 + εU1 the mean value Ū of the displacement vector becomes

Ū = U0 (5.97)

and the zero-mean random perturbation of the displacement vector is given by

εU1 = −εK−1
0 K1U0 (5.98)
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From this, the covariance matrix of its components is

CUU = ε2E[U1UT
1 ] = ε2E[K−1

0 K1U0UT
0 KT

1 K−1T
0 ] = ε2K−1

0 E[K1U0UT
0 KT

1 ]K−1T
0 (5.99)

The actual computation can be based on the weighted integral representation (cf.
Eq. 5.74). Let the global stiffness matrix be represented by

K1 =
Ne⊕
e=1

∑∑
k+l≤r

∑∑
m+n≤r

BT
klD0BmnXe

klmn (5.100)

Here, the first summation symbol indicates appropriate placement of the element stiff-
ness matrices in the global stiffness matrix. After rearranging all weighted integrals
into a vector X this can be rewritten as

K1 =
Nw∑

w=1

KwXw (5.101)

in which the matrices Kw are deterministic. The product of K1 and U0 becomes

K1U0 =
Nw∑

w=1

KwU0Xw =
Nw∑

w=1

rwXw (5.102)

Assembling all vectors rw into a matrix R and all weighted integrals into a vector X,
we obtain

K1U0 = RX (5.103)

so that the covariance matrix of the displacement response becomes

CUU = ε2K−1
0 RE[XXT ]RTK−1T

0 (5.104)

Using a second order expansion we can compute the additional perturbation term

ε2U2 = −εK−1
0 K1U1 = ε2K−1

0 K1K−1
0 K1U0 (5.105)

It can be seen that the expected value E[U] then contains an additional term so that
we get

E[U] = (
I + ε2E[K−1

0 K1K−1
0 K1]

)
U0 (5.106)

Example 5.12 (Cantilever Rod)
A rod is modeled by two two-node elements as shown in Fig. 5.23. We assume that

the modulus of elasticity E(x) is a homogeneous random field with mean value Ē, a
coefficient of variation of 0.1 and a covariance function of CEE(x, y) = σ2

E
1

1 + (x−y)2

2L2

. We

want to compute the mean values and the covariance matrix of the nodal displacements
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Figure 5.23 Cantilever rod with two elements.

using the weighted integral approach. The element stiffness matrices are easily found
to be

K(1) = A
L2

[
1 −1

−1 1

] L∫
0

E(x)dx; K(2) = A
L2

[
1 −1

−1 1

] 2L∫
L

E(x)dx (5.107)

Defining the weighted integrals by

X1 =
L∫

0

(E(x) − Ē)dx, X2 =
2L∫

L

(E(x) − Ē)dx (5.108)

we can write the global stiffness matrix of the unsupported structure as

Ku = ĒA
L


 1 −1 0

−1 2 −1
0 −1 1


 + A

L2


 1 −1 0

−1 1 0
0 0 0


X1 + A

L2


0 0 0

0 1 −1
0 −1 1


X2 (5.109)

Due to the boundary condition U1 = 0, the first row and column of K has to be
eliminated, so that

K = ĒA
L

[
2 −1

−1 1

]
+ A

L2

[
1 0
0 0

]
X1 + A

L2

[
1 −1

−1 1

]
X2 (5.110)

The load vector P is given by

P =
[

0
f

]
(5.111)

So we have

U0 =
(

ĒA
L

[
2 −1

−1 1

])−1 [
0
f

]
= L

ĒA

[
1 1
1 2

] [
0
f

]
= fL

ĒA

[
1
2

]
(5.112)
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Figure 5.24 Cantilever rod with one three-node element.

The covariance matrix of the weighed integrals is computed using maxima as

CXX = σ2
EL2

[
2
√

2 arctan
√

2
2 + log 4

9 2
√

2( arctan
√

2 − arctan
√

2
2 ) + log 3

4

sym. 2
√

2 arctan
√

2
2 + log 4

9

]

= σ2
EL2

[
0.92991 0.67352
0.67352 0.92991

]

Inserting these results into (5.104) we finally obtain

CUU =
(

fL

ĒA

)2 [
0.0092991 0.0160343
0.0160343 0.0320686

]

which leads to coefficients of variation for U2 and U3

COV2 =
√

0.0092991
1

= 0.0964; COV3 =
√

0.0320686
2

= 0.0895

5.3.8 Monte Carlo simulation

The integration point method is easily incorporated into a Monte Carlo method. In this
process, it is required to apply a suitable joint probability density model for the random
variables X representing the discretized random field. In most situations, the Nataf-
model as described in section 2.2.6 is appropriate. In order to apply the Nataf-model,
the modified coefficients of correlation in the space of Gaussian variables V must be
computed using Eq. 2.82. Based on this, the covariance matrix CVV can be formed
and Cholesky-decomposed. Finally, samples of uncorrelated standardized Gaussian
variables U are generated, transformed to the space V, and finally using the inverse
relation of (2.78)

Xi = F−1
Xi

[�(Vi)] (5.113)

transformed back to physical space. Once samples of the discretized random field
have been generated, the element matrices are assembled in straightforward manner
according to (5.86), and solutions for the displacements can be computed.

Example 5.13 (Cantilever Rod)
Consider a beam modeled by one three-node rod element as shown in Fig. 5.24.

The elastic modulus is assumed to be a log-normally distributed random field with
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a mean value of Ē, a coefficient of variation of 0.2, and a covariance function
CEE(x, y) = σ2

E
1

1 + (x − y)2

2L2

. We want to compute the mean and standard deviation of the

end displacement. The global stiffness matrix is easily obtained from the previous
example by eliminating the first row and column out of (5.91)

K = E(x1)A
12L

·
[

16 4
√

3 − 8
4

√
3 − 8 7 − 4

√
3

]
+ E(x2)A

12L
·
[

16 −4
√

3 − 8
−4

√
3 − 8 4

√
3 + 7

]

The distance between the integration points is x2 − x1 = 2L√
3

so that the covariance

between E(x1) and E(x2) becomes σ2
EE

1
1 + 4

3·2
= 0.6σ2

EE. So the coefficient of correla-

tion between the two random variables is ρX1X2 = 0.6. The modified coefficients of
correlation in the space of Gaussian variables V1, V2 as required by the Nataf-model
(cf. section 2.2.6) are computed as ρV1V2 = 0.606. Based on (2.35) and (2.36) the
transformation from V to X space becomes

Xk = µ exp [s · Vk]; k = 1, 2

in which s = 0.198 and µ = 0.9806Ē.
The octave-script for the solution of the problem is given in Listing 5.2

1 k1=[16,4*sqrt(3)-8;4*sqrt(3)-8,7-4*sqrt(3)]/12;
2 k2=[16,-4*sqrt(3)-8;-4*sqrt(3)-8,4*sqrt(3)+7]/12;
3 cvv=[1,.606;.606,1];
4 l=chol(cvv)’;
5 mu=0.9806;
6 s=0.198;
7 N=10000
8 del=[];
9 f=[0;1];

10 for i=1:N
11 u=randn(2,1);
12 v=l*u;
13 x=mu*exp(s*v);
14 k=x(1)*k1+x(2)*k2;
15 disp=inv(k)*f;
16 del=[del;disp(2)];
17 endfor
18 dm=mean(del)
19 ds=std(del)
20 cov=ds/dm

Listing 5.2 Computation of statistics of cantilever rod displacement
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Figure 5.25 Spherical Shell Structure.

The result is

1 N = 10000
2 dm = 2.0843
3 ds = 0.37264
4 cov = 0.17878

which means that the mean value is computed as Ū3 = 2.08L
ĒA

and the coefficient of
variation is 0.18, slightly smaller than the coefficient of variation of the modulus of
elasticity.

5.3.9 Natural frequencies of a structure with randomly
distr ibuted elast ic modulus

A spherical shell structure (cf. Fig. 5.25) in free vibration is considered. The shell is
modeled by 288 triangular elements of the type SHELL3N (Schorling 1997). The shell
is assumed to be simply supported along the edge. The material of the shell is assumed
to be elastic (in plain stress) and the elastic modulus E(x) is modeled as a log-normally
distributed, homogeneous, and isotropic random field. Its auto-covariance function
CEE(x, y) is assumed to be of the form

CEE(x, y) = σ2
EE exp ( − ||x − y||

Lc
) (5.114)

In the above equations, the 3D vectors x and y are the coordinates of points within
the shell structure. The basis diameter of the shell is 20 m, and the correlation length
Lc is assumed to be 10 m. The coefficient of variation of the random field is assumed
to be 0.2.

The question to be answered is what magnitude of randomness may be expected in
the calculated natural frequencies? Quite clearly, this is very important for structural
elements designed to carry, e.g., rotating machinery which produces almost harmonic
excitation, and possibly resonance. Hence the probability of obtaining high deviations
from the mean natural frequency needs to be calculated. This example shows, quite
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Figure 5.26 Selected mode shapes of the covariance function.

Figure 5.27 Histogram of the fundamental natural frequency.

typically, the close connection which is required between the stochastic analyses and
the finite element analysis. Within the finite element model, the random field E(x) is
represented by its values in the integration points of the elements. The shell elements
as utilized here have two layers of each 13 integration points, so there is a total of
26 × 288 = 7488 integration points. In order to reduce this rather high number of
random variables, the following strategy is applied. First, the elastic modulus is rep-
resented by one value per element (given the correlation length of 10 m this is not a
severe simplification). Second, the remaining random field is represented in terms of
independent random variables and corresponding space dependent shape functions.
These independent variables are obtained by applying the Nataf joint density model
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along with an eigenvalue decomposition of the covariance matrix of the random field,
i.e. by the spectral representations outlined earlier in this chapter.

Fig. 5.26 shows selected space dependent shape functions. They are ordered accord-
ing to decreasing magnitude of the corresponding eigenvalues. A Monte Carlo
simulation is then carried out to generate sample functions of the random field. For
each sample, the lowest natural frequency is computed. The simulation results obtained
from 1000 samples in terms of histograms are given in Fig. 5.27.

The results indicate a relatively large scatter of the fundamental frequency (the deter-
ministic system has two identical lowest natural frequencies at 42 Hz). The coefficient
of variation is approximately 11%.

Summary

This chapter introduced the definitions and basic properties of random fields. The spec-
tral representation of random fields was discussed in the continuous and discrete cases.
Conditional random fields were presented in order to introduce deterministic values
at predefined locations. Properties of local averages of random fields were described.
The random field modeling of geometrical imperfections was introduced. The basic
concepts of stochastic finite elements were derived from the principle of virtual work
and standard finite element technology. Expressions for the structural response were
derived in terms of weighted integrals of the random fields. As an alternative, per-
turbation methods were discussed. Finally, Monte Carlo methods were presented and
applied.



Chapter 6

Computation of failure probabilities

ABSTRACT: Structural safety requires the design of structures in a way that the probability
of failure becomes extremely small. Although the computation of the failure probability basi-
cally only requires numerical integration, standard computational techniques are not capable
of handling this task efficiently. Hence, methods were developed which aim at providing bet-
ter computational tools for reliability analysis. A representative selection of these methods is
presented in this chapter together with numerical applications.

6.1 Structural reliabil ity

6.1.1 Definit ions

Generally, failure (i.e. an undesired or unsafe state of the structure) is defined in terms
of a limit state function g(.), i.e. by the set F = {X : g(X) ≤ 0}. Frequently, Z = g(X) is
called safety margin.

For the simple problem as shown in Fig. 6.1, the definition of the limit state function
is not unique, i.e. there are several ways of expressing the failure condition

F = {(F, L, Mpl) : FL ≥ Mpl} =
{

(F, L, Mpl) : 1 − FL
Mpl

≤ 0
}

(6.1)

The failure probability is defined as the probability of the occurrence of F :

pf = Prob[{X : g(X) ≤ 0}] (6.2)

This quantity is unique, i.e. not depending on the particular choice of the limit state
function.

Figure 6.1 Simple structural system.
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Figure 6.2 Integrand for calculating the probability of failure for g(x1, x2) = 3 − x1−x2.

The failure probability can be written in the form of a multi-dimensional integral

pf = Prob[g(X1, X2, . . . Xn) ≤ 0] =
∫

· · ·
∫

g(X)≤0

fX(x)dx (6.3)

The computational challenge in determining the integral of Eq. 6.3 lies in evaluating
the limit state function g(x), which for non-linear systems usually requires an incre-
mental/iterative numerical approach. In this context, it is essential to realize that the
limit state function g(x) serves the sole purpose of defining the bounds of integration
in Eq. (6.3). As an example, consider a 2-dimensional problem with standard nor-
mal random variables X1 and X2, and a limit state function g(x1, x2) = 3 − x1 + x2. In
Fig. 6.2 the integrand of Eq. 6.3 in the failure domain is displayed. It is clearly visible
that only a very narrow region around the so-called design point x∗ really contributes
to the value of the integral, i.e., the probability of failure P(F). This makes is difficult
to locate integration points for numerical integration procedures appropriately.

6.1.2 First order – second moment concept

The first-order second moment method aims at a representation of the limit state
function g(.) by a Taylor series and subsequent calculation of the statistical moments
of the safety margin Z.

g(x) = g(x0) +
n∑

i=1

∂g
∂xi

∣∣∣∣
x=x0

(xi − xi0)

+ 1
2

n∑
i=1

n∑
k=1

∂2g
∂xi∂xk

∣∣∣∣
x=x0

(xi − xi0)(xk − xk0) + . . . (6.4)
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Terminating the series after the quadratic terms yields

E[Z] = E[g(X)] = g(x0) +
n∑

i=1

∂g
∂xi

E[xi − xi0]

+ 1
2

n∑
i=1

n∑
k=1

∂2g
∂xi∂xk

E[(xi − xi0)(xk − xk0)] (6.5)

Terminating the Taylor series after the linear terms yields

E[Z] = E[g(X)] = g(x0) +
n∑

i=1

∂g
∂xi

E[xi − xi0] (6.6)

If the mean value vector X̄ is chosen as expansion point x0 for the Taylor series, then
E[Z] = g(x0) and the variance becomes

σ2
Z = E[(Z − Z̄)2] = E


(

n∑
i=1

∂g
∂xi

(Xi − X̄i)

)2



=
n∑

i=1

n∑
k=1

∂g
∂xi

∂g
∂xk

E[(Xi − X̄i)(Xk − X̄k)] (6.7)

Finally the distribution function FZ(z) is approximated by a normal distribution

FZ(z) = �

(
z − Z̄
σZ

)
(6.8)

Then we obtain the approximate result

pf = FZ(0) = �

(
− Z̄

σZ

)
(6.9)

Note that this result does not take into account the types of distributions of the basic
variables. It also depends significantly on the choice of the expansion point for the
Taylor-series.

Example 6.1 (FOSM – quadratic problem)
Consider a reliability problem involving two uncorrelated random variables X1 and X2.
Assume that both variables have mean values of 1 and standard deviations of 0.5. The
limit state function is

g(x1, x2) = 4 − x2
1 − x2 (6.10)

Linearizing about the mean values we get the first-order approximation

ĝ(x1, x2) = 2 − 2(x1 − 1) − (x2 − 1) (6.11)



174 Computat iona l ana lys i s o f randomness in s tructura l mechan ics

which leads to

E[Z] = 2; σ2
Z = 4 · 0.25 + 0.25 = 1.25 (6.12)

resulting in

pf = �

(
− 2√

1.25

)
= �(1.7889) = 0.0368 (6.13)

Choosing a different expansion point, we obtain a different result. For example, we
might choose an expansion point such that its limit state function value is zero, e.g.
the point (2,2). In this case we get

ĝ(x1, x2) = −4(x1 − 2) − (x2 − 2) = 5 − 4(x1 − 1) − (x2 − 1) (6.14)

which results in

E[Z] = 5; σ2
Z = 16 · 0.25 + 0.25 = 4.25 (6.15)

and thus

pf = �

(
− 5√

4.25

)
= �(2.4254) = 0.00765 (6.16)

It can be seen that the choice of the expansion point significantly influences the resulting
failure probability.

6.1.3 FORM – first order rel iabi l i ty method

The FORM-Concept (Hasofer and Lind 1974) is based on a description of the reliability
problem in standard Gaussian space. Hence transformations from correlated non-
Gaussian variables X to uncorrelated Gaussian variables U with zero mean and unit
variance are required. This step is called Rosenblatt-transformation. Then a lineariza-
tion in performed in u-space. The expansion point u∗ is chosen such as to maximize the
pdf within the failure domain. Geometrically, this coincides with the point in the failure
domain, having the minimum distance β from the origin. From a safety engineering
point of view, the point x∗ corresponding to u∗ is called design point.

This concept is especially useful in conjunction with the Nataf-model for the joint
pdf of X. In this case the Rosenblatt-transformation consists of the following steps:

1. Transform from correlated non-Gaussian variables Xi to correlated Gaussian
variables Yi

Yi = �−1[FXi (Xi)]; i = 1 . . . n (6.17)

These transformations can be carried out independently. The covariance matrix
CYY is calculated from CXX according to the rules of the Nataf-model (cf.
section 2.2.6).

2. Transform from correlated Gaussian space to standard Gaussian space by means of

U = L−1Y (6.18)
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in which L is calculated from the Cholesky-decomposition of CYY

CYY = LLT (6.19)

In total, this leads to a representation of the limit state function g(.) in terms of the
standardized Gaussian variables Ui

g(X) = g(X1, X2, . . . Xn) = g[X1(U1, . . . Un) . . . Xn(U1, . . . Un)] (6.20)

with

Xi = F−1
Xi

[
�

(
n∑

k=1

LikUk

)]
(6.21)

From the geometrical interpretation of the expansion point u∗ in standard Gaussian
space it becomes quite clear that the calculation of the design point can be reduced to
an optimization problem

u∗ = argmin
(

1
2

uTu
)

; subject to: g[x(u)] = 0 (6.22)

This leads to the Lagrange-function

L = 1
2

uTu + λg(u) → Min. (6.23)

Standard optimization procedures can be utilized to solve for the location of u∗. One
of the earliest methods is the so-called Rackwith-Fiessler algorithm (Rackwitz and
Fiessler 1978). This algorithm is a simple version of the SQP optimization procedure.
In this procedure, the objective function is replaced by a quadratic approximation and
the constrain conditions are linearized. In view of Lagrangian as given by Eq. 6.23 this
means that the objective function is unchanged whereas the constraint is replaced by
the linearized version using u = u0 + v

ĝ(u) = g(u0) + ∇g(u0)T (u − u0) = g(u0) + ∇g(u0)Tv (6.24)

In this equation, u0 is an expansion point, usually chosen to be the current iterate. The
approximate Lagrangian

L̂ = 1
2

uTu + λĝ(u)

= 1
2

vTv + uT
0 v + 1

2
uT

0 u0 + λ
[
g(u0) + ∇g(u0)Tv

]
(6.25)

is associated with the Kuhn-Tucker conditions

v + u0 + λ∇g(u0) = 0

g(u0) + ∇g(u0)Tv = 0 (6.26)
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This system of equations is solved by

λ = g(u0) − ∇g(u0)Tu0

∇g(u0)T∇g(u0)
(6.27)

and

u0 + v = −λ∇g(u0) (6.28)

Then u0 is replaced by u = u0 + v and the iteration proceeds from Eq. 6.24 until con-
vergence of u0 to u∗. It is known that this simple version of the algorithm does not
always converge, hence more sophisticated optimization methods may be appropriate
(e.g. NLPQL, Schittkowski 1986).

Once the point u∗ is located, the exact limit state function g(u) is replaced by a linear
approximation ĝ(u) as shown in Fig. 6.3. Geometrically, it can easily be seen that ĝ(u)
is determined from

ĝ : −
n∑

i=1

ui

si
+ 1 = 0;

n∑
i=1

1

s2
i

= 1
β2

(6.29)

The safety margin Z = −∑n
i=1

Ui
si

+ 1 is normally distributed with the following
statistical moments

E[Z] = 1; σ2
Z =

n∑
i=1

n∑
k=1

E[UiUk]
sisk

=
n∑

i=1

E[U2
i ]

s2
i

=
n∑

i=1

1

s2
i

= 1
β2

(6.30)

→ σZ = 1
β

(6.31)

From this, the probability of failure is easily determined to be

pf = �

(
− 1

1
β

)
= �(−β) (6.32)

This result is exact, if g(u) is actually linear.

Figure 6.3 Linearization required for first order reliability method.
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Example 6.2 (Application of FORM)
Consider a simple reliability problem with g(X1, X2) = X1 − X2 and let X1 be Gaussian
with X̄1 = 1, σX1 = 0.4 and X2 be exponentially distributed with X̄2 = σX2 = 0.2. X1

and X2 are assumed to be stochastically independent. We want to calculate pf based
on FORM and compare the result to the exact solution (based on integration).

The unit random variables U1 and U2 can be obtained from

u1 = x1 − X̄1

σX1

; u2 = �−1
[
1 − exp

(
− x2

X̄2

)]
(6.33)

The inverse relations are

x1 = σX1u1 + X̄1; x2 = −X̄2 log [1 − �(u2)] (6.34)

The limit state function g(.) is defined by

g(u1, u2) = {σX1u1 + X̄1 + X̄2 log [1 − �(u2)]} (6.35)

which defines the boundary between safe and failure domains by the condition x1 = x2,
i.e. by

u1 = − 1
σX1

{
X̄1 + X̄2 log [1 − �(u2)]

}
(6.36)

The gradient of the limit state function with respect to the variables u1, u2 in standard
Gaussian space is given by

∇g(u1, u2) =



σX1

− X̄2√
2π

exp
(

−u2
2

2

)
1

1 − �(u2)


 (6.37)

The Rackwitz-Fiessler iteration sequence starting from the origin in u-space is shown
in Fig. 6.4. It can be clearly seen that convergence is very fast.

Figure 6.4 Rackwitz-Fiessler iteration sequence to design point.
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The design point u∗ has the coordinates u∗
1 = −1.4204 and u∗

2 = 1.1982. The safety
index is found to be β = 1.858, and from that an approximation of the failure probabil-
ity as pf = �(−1.858) = 0.0316. The exact failure probability (obtained by numerical
integration) is pf = 0.0359.

Transformation back into original space yields the design point x∗ with the coordi-
nates x∗

1 = x∗
2 = 0.4318 which, of course, satisfies the limit state condition in original

space, i.e. g(x∗
1, x∗

2) = x∗
1 − x∗

2 = 0.
The octave-code for the Rackwitz-Fiessler iteration is given in Listing 6.1.

1 function grad=grad(u)
2 global s1;
3 global m1;
4 global m2;
5 grad=[s1;-m2/sqrt(2*pi)*exp(-u(2)̂ 2/2)/(1-normcdf(u(2)))];
6 endfunction
7
8 function func=func(u)
9 global s1;

10 global m1;
11 global m2;
12 func = m1+s1*u(1)+ m2*log(1-normcdf(u(2)))
13 endfunction
14
15 global s1 = 0.4;
16 global m1 = 1;
17 global m2 = 0.2;
18
19 u=[0;0];
20 uall=u’;
21 for i=1:5
22 g = grad(u);
23 gtg = g’*g;
24 gtu = g’*u;
25 f = func(u);
26 lambda = (f-gtu)/gtg;
27 v = g*(-lambda) - u;
28 u = u+v;
29 uall=[uall;u’];
30 beta = sqrt(u’*u)
31 del = sqrt(v’*v);
32 endfor
33 save("-ascii","uall.txt","uall")

Listing 6.1 Rackwitz-Fiessler iteration.
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6.2 Monte Carlo simulation

6.2.1 Definit ions and basics

The definition of the failure probability as given in Eq. 6.3 can be written as an expected
value

pf =
∫ ∞

−∞

∫ ∞

−∞
. . .

∫ ∞

−∞
Ig(x1 . . . xn)fX1...Xn (x1 . . . xn)dx1 . . . dxn (6.38)

in which Ig(x1 . . . xn) = 1 if g(x1 . . . xn) ≤ 0 and Ig(.) = 0 else.
In order to determine pf in principle all available statistical methods for estimation

of expected values are applicable. If m independent samples x(k) of the random vector
X are available then the estimator

p̄f = 1
m

m∑
k=1

Ig(x(k)) (6.39)

yields a consistent and unbiased estimate for pf .
The problem associated with this approach is this: For small values of pf and small

values of m the confidence of the estimate is very low. The variance σ2
p̄f

of the estimate

p̄f can be determined from

σ2
p̄f

= pf

m
− p2

f

m
≈ pf

m
→ σp̄f

=
√

pf

m
(6.40)

It is to be noted that the required number m of simulations is independent of the
dimension n of the problem.

6.2.2 Importance sampling (weighted simulation)

Genera l concept

In order to reduce the standard deviation σp̄f
of the estimator to the order of magnitude

of the probability of failure itself m must be in the range of m = 1
pf

. For values of pf in

the range of 10−6 this cannot be achieved if each evaluation of the limit state function
requires a complex structural analysis. Alternatively, strategies are employed which
increase the “hit-rate’’ by artificially producing more samples in the failure domain
than should occur according to the distribution functions. One way to approach this
solution is the introduction of a positive weighting function hY(x) which can be inter-
preted as density function of a random vector Y. Samples are taken according to
hY(x).

The probability of failure is then estimated from

p̄f = 1
m

m∑
k=1

fX(x)
hY(x)

Ig(x) = E
[

fX(x)
hY(x)

Ig(x)
]

(6.41)
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From the estimation procedure as outlined in section 2.3 it can be seen that the variance
of the estimator p̄f becomes

σ2
p̄f

= 1
m

E
[

fX(x)2

hY(x)2
Ig(x)

]
(6.42)

A useful choice of hY(x) should be based on minimizing σ2
p̄f

. Ideally, the weighting

function should reduce the sampling error to zero. However, this cannot be achieved
in reality since such a function must have the property

hY(x) =
{

1
pf

fX(x) g(x) ≤ 0

0 g(x) > 0
(6.43)

This property requires the knowledge of pf which, of course, is unknown. Special
updating procedures such as adaptive sampling (Bucher 1988a) can help to alleviate
this problem.

Example 6.3 (1-Dimensional problem)

Let X be normally distributed with fX(x) = 1√
2π

exp
(
− x2

2

)
. Assume that the limit state

function is given by g(x) = β − x. We will try to find an optimal sampling density

function in the form hY (x) = 1√
2π

exp
(
− (x−Ȳ)2

2

)
. In this form, Ȳ will be chosen to

minimize the variance of the estimated failure probability.
This variance can be calculated directly by evaluating the expectations given above

σ2
p̄f

= 1
m

∫ ∞

β

fX(x)2

hY (x)2
hY (x)dx

= 1
m

∫ ∞

β

1√
2π

exp

(
−2x2

2
+ (x − Ȳ)2

2

)
dx

= 1
m

exp (Ȳ2)�[ − (β + Ȳ)] (6.44)

Differentiation with respect to Ȳ yields

∂

∂Ȳ
(σ2

p̄f
) = 0

→ 2Ȳ�[ − (β + Ȳ)] − 1√
2π

exp

(
− (β + Ȳ)2

2

)
= 0 (6.45)

Using the following asymptotic (as z → ∞) approximation for �(.) (Mill’s ratio, see
e.g. Abramowitz and Stegun 1970)

�(−z) ≈ 1

z
√

2π
exp

(
−z2

2

)
(6.46)
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an asymptotic solution to the minimization problem is given by

2Ȳ

β + Ȳ
− 1 = 0 → Ȳ = β (6.47)

This means that centering the weighting function at the design point will yield the
smallest variance for the estimated failure probability. For a value of β = 3.0 the vari-
ance is reduced by a factor of 164 as compared to plain Monte Carlo simulation which
means that the computational effort to obtain a certain level of confidence is reduced
substantially.

Importance sampl ing at the des ign po int

Based on the previous FORM analysis it may be attempted to obtain a general
importance sampling concept. This can be accomplished in two steps:

1. Determine the design point x∗ as shown in the context of the FORM-procedure.
2. Choose a weighting function (sampling density) hY(x) with the statistical moments

E[Y] = x∗ and CYY = CXX in the following form (multi-dimensional Gaussian
distribution, cf. Fig. 6.5)

hY(x) = 1

(2π)
n
2
√

det CXX

exp
[
−1

2
(x − x∗)TC−1

XX(x − x∗)
]

(6.48)

3. Perform random sampling and statistical estimation according to Eq. 6.41.

The efficiency of this concept depends on the geometrical shape of the limit state
function. In particular, limit state functions with high curvatures or almost circular
shapes cannot be covered very well.

It is also interesting to note that the concept of importance sampling can very well
be extended for application in the context of dynamic problems (first passage failure,
Macke and Bucher 2003).

Figure 6.5 Original and importance sampling probability density functions.
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Example 6.4 (Linear limit state function)
Consider a reliability problem described by two independent standardized Gaussian
random variables X1 and X2. Let failure be defined by the limit state function

g(X1, X2) = 3 − X1 − X2 (6.49)

The design point for this problem is located at x∗ = [1.5, 1.5]T . An octave-script
carrying out both crude Monte Carlo and importance sampling at the design point is
given in Listing 6.2.

1 function limit=limit(x1,x2)
2 limit = 3-x1-x2;
3 endfunction
4 function weight=weight(x1,x2,shift)
5 weight=exp(-x1*shift(1)+shift(1)̂ 2/2-x2*shift(2)+

shift(2)ˆ2/2);
6 endfunction
7 NSIM=200
8 despo=[1.5,1.5]
9 x1=randn(NSIM,1);

10 x2=randn(NSIM,1);
11 f=limit(x1,x2);
12 fail=sum(f<0)/NSIM
13 y1=x1+despo(1);
14 y2=x2+despo(2);
15 g=limit(y1,y2);
16 ifail=(g<0).*weight(y1,y2,despo);
17 ifail=sum(ifail)/NSIM
18 fid1=fopen("plainsafe.txt","w")
19 fid2=fopen("plainfail.txt","w")
20 fid3=fopen("impsafe.txt","w")
21 fid4=fopen("impfail.txt","w")
22 for i=1:NSIM
23 if (f(i)>0) fprintf(fid1,"%g %g\n", x1(i),x2(i));
24 else fprintf(fid2,"%g %g\n", x1(i),x2(i));
25 endif
26 if (g(i)>0) fprintf(fid3,"%g %g\n", y1(i),y2(i));
27 else fprintf(fid4,"%g %g\n", y1(i),y2(i));
28 endif
29 endfor
30 fclose(fid1);
31 fclose(fid2);
32 fclose(fid3);
33 fclose(fid4);

Listing 6.2 Importance sampling at the design point.
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Running this code yields the results

1 fail = 0.015000
2 ifail = 0.017493

The corresponding 200 sample points are shown in Fig. 6.6 for crude Monte
Carlo as well as for importance sampling. The exact result for this problem is
pf = �(−1.5

√
2) = 0.01695

Exercise 6.1 (Reliability problem with one Gaussian and one non-Gaussian variable)
Consider a simple reliability problem with g(X1, X2) = X1 − X2 and let X1 be Gaussian
with X̄1 = 1, σX1 = 0.4 and X2 be exponentially distributed with X̄2 = σX2 = 0.2. X1

and X2 are assumed to be stochastically independent. Calculate pf based on importance
sampling using the design point.

Result: The resulting failure probability is pf = 0.0359 as given in Example 6.2.

Adapt i ve sampl ing

As mentioned earlier, the “optimal’’ sampling density should satisfy the requirement

hY(x) = fX(x|x ∈ Df ) (6.50)

Here the failure domain Df is the set in which the limit state function is negative

Df = {x|g(x) ≤ 0} (6.51)

This ideal condition cannot be met strictly. Yet it is possible to meet it in a second
moment sense, i.e. hY(x) can be chosen such that (Bucher 1988a)

E[Y] = E[X|X ∈ Df ] (6.52)

E[YYT ] = E[XXT |X ∈ Df ] (6.53)

In terms of these statistical moments, a multi-dimensional Gaussian distribution is
uniquely determined.

Figure 6.6 Crude Monte Carlo sampling (left) and importance sampling (right).
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Example 6.5 (1-Dimensional problem)
Consider the 1-dimensional problem discussed above in which X is a Gaussian random
variable with zero mean and unit variance, and the limit state functions is g(x) = β − x.
It can easily be seen that

pf = �(−β) (6.54)

The conditional mean of X in the failure domain is

E[Y] = E[X|X ∈ Df ] = 1
pf

∫ ∞

β

x√
2π

exp
(

−x2

2

)
dx

= 1√
2π

1
�(−β)

exp
(

−β2

2

)
(6.55)

For large values of β this approaches the value of β. The conditional second moment
in the failure domain becomes

E[Y2] = E[X2|X ∈ Df ]

= 1
pf

∫ ∞

β

x2

√
2π

exp
(

−x2

2

)
dx = 1 + βE[Y] (6.56)

and the corresponding variance is

σ2
Y = 1 + βE[Y] − E[Y]2 (6.57)

We now perform a series expansion for large values of β. According to Abramowitz
and Stegun 1970 we have

�(−β) = 1√
2π

1
β

exp
(

−β2

2

)[
1 − 1

β2
. . .

]
(6.58)

so that

Ȳ ≈ exp
(

−β2

2

)
β

β2

β2 − 1
exp

(
β2

2

)
= β3

β2 − 1
(6.59)

which tends to Ȳ = β as β → ∞. Using the same asymptotic expansion for �(−β) we get

σ2
Y ≈ 1 + β

β3

β2 − 1
− β6

(β2 − 1)2
= 1 − β4

(β2 − 1)2
(6.60)

which tends to 0 as β → ∞. Again, this confirms that the major contribution to the
failure probability comes from the immediate vicinity of the design point. Table 6.1
shows numerical values of Ȳ and σY for different values of β.

While, of course, this approach cannot be applied from the beginning without prior
knowledge, it is fairly easy to estimate E[X|X ∈ Df ] and E[X2|X ∈ Df ] from a pilot
simulation (based on e.g. the knowledge of the design point or by using an increased
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Table 6.1 Conditional mean and standard deviation in
the failure domain.

β Ȳ σY

0 0.798 0.603
1 1.525 0.447
2 2.368 0.358
3 3.283 0.266
4 4.222 0.254

sampling standard deviation to increase the number of samples in the failure domain),
and then to adapt the sampling density according to these results.

Although this adaptive approach has been found to be quite efficient in numer-
ous applications, a closer inspection of the variance of the estimator for pf reveals
a substantial theoretical problem. In order to demonstrate this problem by means of
a one-dimensional example, consider the case β = 3 in Table 6.8. For this case, the
Gaussian sampling density constructed from Ȳ and σY has the form

hY (x) = 1√
2π · 0.266

exp
[
− (x − 3.282)2

2 · 0.2662

]
(6.61)

The standard deviation of the estimated failure probability can then be computed from

m · σ2
p̄f

=
∞∫

3

[
fX(x)
hY (x)

]2

hY (x)dx = 0.2662

∞∫
3

exp
[
−x2 + (x − 3.282)2

2 · 0.2662

]
dx

= 0.2662

∞∫
3

exp (6.0665x2 − 17.4151x + 76.1174)dx = ∞ (6.62)

Hence the variance is clearly unbounded. Nevertheless, the method works in practice.
How can this be explained? The reason is due to numerical limitations. Random
number generators for Gaussian variables cannot produce infinite values. Hence the
numbers will be bounded in some interval about the mean, say Y ∈ [Ȳ −ασY , Ȳ +ασY ].
If we assume a symmetrically truncated Gaussian distribution over this interval for
hY (y), then the expected value of the estimator will be

E[p̄f ] =
Ȳ+ασY∫

max (3,Ȳ−ασY )

fX(x)
hY (x)

hY (x)dx =
Ȳ+ασY∫

max (3,Ȳ−ασY )

fX(x)dx

= �( max (3, Ȳ − ασY )) − �(Ȳ + ασY ) (6.63)

Clearly, this will not be equal to the true value of pf = �(−3), i.e. the estimator is
biased. The dependence of the bias on α is shown in Fig. 6.7. It can be seen that for
values of α > 3 there is no substantial bias.



186 Computat iona l ana lys i s o f randomness in s tructura l mechan ics

Figure 6.7 Expected value and standard error (for m = 1000) of estimated failure probability vs.
truncation interval width α.

The variance of the estimator can be computed from

m · σ2
p̄f

=
Ȳ+ασY∫

max (3,Ȳ−ασY )

[
fX(x)
hY (x)

]2

hY (x)dx =
Ȳ+ασY∫

max (3,Ȳ−ασY )

fX(x)2

hY (x)
dx (6.64)

Results are given in Fig. 6.7. In this figure, for better comparison the standard error
has been computed according to

SE =
√

σ2
p̄f

m
(6.65)

in which m = 1000 has been chosen for the number of samples. It can be observed that
for values α < 5 the standard error is very small. So considering the expected value
(related to bias) and the standard error (related to consistency), a good choice for α

would be in the range 3 < α < 5. Actually, using α = 4, the coefficient of variation for
the estimation of the failure probability with 1000 samples is 0.042. Compared to
plain Monte Carlo with a coefficient of variation of 0.861 this is a very substantial
improvement. For Monte Carlo, the number of samples required to achieve the same
coefficient of variation as with adaptive sampling is m = 420.000.

Example 6.6 (Linear limit state function)
Consider a reliability problem described by two independent standardized Gaussian
random variables X1 and X2. Let failure be defined by the limit state function

g(X1, X2) = 3 − X1 − X2 (6.66)
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Figure 6.8 Crude Monte Carlo sampling with increased standard deviation (left) and sampling
with adapted sampling density (right).

In order to achieve sufficient confidence in estimating the mean and covariance condi-
tional on the failure domain as required for adapting the sampling density, it is useful
to initially increase the standard deviation of the sampling density as compared to the
original density. In this example, an initial factor of 1.5 was chosen. The corresponding
200 sample points are shown in the left part of Fig. 6.8. Estimation of the conditional
mean and covariance matrix in the failure domain yields

E[Y|Y ∈ Df ] =
[

1.588
1.792

]
; E[YYT |Y ∈ Df ] =

[
0.466 −0.434

−0.434 0.568

]
(6.67)

in which the covariance matrix implies a coefficient of correlation for the sampling
density of ρ = −0.84. After carrying out the adaptation, the next set of samples is
significantly closer to the limit state function. These samples are shown in the right
part of Fig. 6.8. The resulting failure probability for this run is pF = 0.0168 which is
very close to the exact result of 0.01695. Further adaptations do not change the result
significantly.

6.2.3 Directional sampling

The basic idea is to simulate directions instead of points, and to solve analytically for
the probability of failure conditional on a certain direction. The formulation is based
on a representation of the limit state function in standard normal space (denoted by
the random vector U). Each point u in this space is written in the form of

u = ra (6.68)

in which r is the distance from the origin and a is a unit vector indicating the direction.
This implies transformation to n-dimensional spherical coordinates.
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Dens i ty funct ion in spher ica l coord inates

From fU(u) = 1

(2π)
n
2

exp
(− 1

2 uTu
)

we want to find the joint density fR,A(r, a) of distance

R and direction vector A.

1) fU(u) is rotationally symmetric, i.e. independent of a. This follows from

uTu = (ra)T (ra) = r2aTa = r2 (6.69)

and implies

fR|A(r|a) = fR(r) (6.70)

This in turn yields independence of R and A

fR,A(r, a) = fR|A(r|a)fA(a) = fR(r)fA(a) (6.71)

2) Due to rotational symmetry, fA(a) must have identical values for any a. Hence this
density is constant. Its value is the inverse of the surface area of the n-dimensional
unit sphere

fA(a) = 1
Sn

= �( n
2 )

2π
n
2

(6.72)

For n = 2 we have fA(a) = �(1)
2π

= 1
2π

and for n = 3 we get fA(a) = �(1.5)

2π
3
2

= 1
4π

3) The density of r = √
uTu is determined from integrating the joint density of the

components of u over a sphere with radius r leading to

fR(r) = Snrn−1 1

π
n
2

exp
(

− r2

2

)
(6.73)

For the case n = 2 we obtain the density function

fR(r) = r exp
(

− r2

2

)
(6.74)

which describes a Rayleigh distribution.

Probab i l i t y o f fa i lu re

The failure probability P(F |a) conditional on a realization of the direction a can be
determined analytically

P(F |a) =
∫ ∞

R∗(a)
fR|A(r|a)dr

= Snrn−1 1

π
n
2

exp
(

− r2

2

)
dr = 1 − χ2

n[R∗(a)2] (6.75)
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Figure 6.9 Directional sampling.

This is the cumulative Chi-Square-Distribution with n degrees of freedom.

S imulat ion procedure

The directional sampling procedure can be summarized as follows:

1. Generate a sample uk according to an n-dimensional standard normal distribution.
2. Calculate the direction vector ak = uk

||uk|| .
3. Calculate critical distance R∗(ak) by solving g[R∗(ak)a] = 0. This step may involve

substantial computational effort since here the limit state function must be
evaluated several time, e.g. within a bisection procedure.

4. Determine conditional failure probability P(F |a) = 1 − χ2
n[R∗(ak)2].

5. Repeat above steps with k → k + 1.

The method works optimally if the limit state function is circular. In this special case,
one single sample yields the exact result.

Example 6.7 (Two-dimensional problem)
Consider again a reliability problem described by two independent standardized
Gaussian random variables X1 and X2. Let failure be defined by the limit state function

g(X1, X2) = 3 − X1 − X2 (6.76)

For this limit state function, the critical distance R∗ can be easily computed. Given a
sample unit vector a with components a1 and a2 we immediately get

R∗ = 3
a1 + a2

(6.77)

A directional simulation run with 200 samples is shown in Fig. 6.10. Only those points
which resulted in a critical distance R∗ less than 5 are shown in the figure. Also, all
directions which result in a negative value of R∗ have been omitted. This leaves a
total of 63 directions. From this run, we obtain an estimated probability of failure of
pf = 0.0153. This is reasonably close to the exact result of pf = 0.01695.
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Figure 6.10 Directional sampling, points on the limit state.

1 NSIM=200
2 pf=0;
3 fid=fopen(’dirsamp.txt’, ’w’);
4 for i=1:NSIM
5 a=randn(2,1);
6 anorm = sqrt(a(1)ˆ2+a(2)ˆ2);
7 a = a/anorm;
8 Rstar = 3/(a(1)+a(2));
9 if (Rstar>0)

10 pf = pf + (1-chisquare_cdf(Rstarˆ2, 2))/NSIM;
11 if (Rstar < 5)
12 fprintf(fid, ’%g %g\n’, a(1)*Rstar, a(2)*Rstar);
13 end
14 end
15 end
16 fclose(fid);
17 pf

Listing 6.3 Directional sampling for two-dimensional linear problem.

The octave-script carrying out the directional sampling is shown in Listing 6.3.

6.2.4 Asymptotic sampling

Genera l concept

The following approach has been presented in (Bucher 2008). It relies on the asymptotic
behavior of the failure probability in n-dimensional i.i.d Gaussian space as the standard
deviation σ of the variables and hence the failure probability PF approaches zero (see
Breitung 1984). Consider a (possibly highly nonlinear) limit state function g(X) in
which g < 0 denotes failure. Let σ be the standard deviation of the i.i.d. Gaussian
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Figure 6.11 Relation between safety index and standard deviation of basic variables for hyper-
circular limit state.

variables Xk, k = 1 . . . n. We are going to determine the functional dependence of the
generalized safety index β on the standard deviation σ by using an appropriate sampling
technique. This is aided by some analytical considerations involving limit cases.

First, we study the case of a linear limit state function. This problem can always be
reduced to a single variable by an appropriate coordinate transformation. Hence the
safety index β(σ) is simply given by

β(σ) = β(1)
σ

(6.78)

in which β(1) is the safety index evaluated for σ = 1. Introducing the scale variable
f = 1

σ
we obtain the linear relation

β(f ) = f · β(1) (6.79)

This means that in order to obtain a good estimate for β(1), we can compute the safety
index for a larger value of σ (corresponding to a smaller value of the scale f ) using
Monte Carlo simulation and then simply extrapolate by multiplying the obtained result
with f (i.e. divide by σ).

As the second analytical case, consider the other extreme case of a (hyper)circular
limit state function in n-dimensional Gaussian space in which failure is given by
g(X) = R2 − XTX ≤ 0. In this case, the probability of failure depending on the scale f
is given in terms of the χ2-distribution with n degrees of freedom

PF = 1 − χ2(f 2R2, n) → β = �−1 [1 − χ2(f 2R2, n)
]

(6.80)

This relationship between β and f is shown in Fig. 6.11 for R = 5 and for various
values of n. It can be seen that the relation approaches a linear one with increasing n
and increasing β. The latter is in agreement with the well-established result that the
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Figure 6.12 Basic concept of asymptotic sampling.

second order reliability method yields asymptotically exact results as β → ∞ (Breitung
1984).

The concept of asymptotic sampling utilizes the asymptotic behavior of the safety
index β by applying an extrapolation technique. Here the (assumed) functional
dependence for β is chosen as

β = A · f + B
f

(6.81)

This choice is motivated in order to ensure asymptotically linear behavior as f → ∞
(which is equivalent to σ → 0). The coefficients A and B are conveniently determined
from a least-squares fit using Monte Carlo estimates of β for different values of f
(typically for values of f < 1) as support points. For this fitting process, Eq. 6.81 is
rewritten in terms of a scaled safety index as

β

f
= A + B

f 2
(6.82)

This is illustrated qualitatively in Fig. 6.12. One major advantage of this approach is
its independence of the dimensionality. The accuracy is governed only by the relation
between the number of samples and the probability of failure as well as the particular
geometry of the limit state surface g(u) = 0.

In this context it is essential to use a sampling method which provides very stable
results. One obvious choice is Latin Hypercube Sampling (LHS) (Imam and Conover
1982; Florian 1992). Alternatively, pseudo-random sequences with low discrepancy
(Niederreiter 1992; Sobol and Asotsky 2003) can be utilized. In the following examples
randomized Sobol sequences using an algorithm as discussed in Bratley and Fox 1988
and Hong and Hickernell 2003 are used.

Example 6.8 (Simple limit state function, subtraction of random variables)
As a first example, consider a simple two-dimensional limit state function g = X1 − X2

in which X1 is lognormally distributed with a mean value X̄1 = 2, a standard deviation
σ1 = 0.2 and X2 normal with mean value X̄2 = 1 and standard deviation σ2 = 0.15. The
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Table 6.2 Statistics of asymptotic sampling results for different number of sample
points, 1000 repetitions.

m LHS Sobol

β σβ β σβ

128 4.269 0.448 4.347 0.316
256 4.283 0.339 4.363 0.177
1024 4.344 0.233 4.365 0.088

Figure 6.13 Histogram of asymptotic sampling results based on randomized Sobol sequence.

exact failure probability as obtained from Monte Carlo simulation with 10 million
samples is PF = 5.5 · 10−6(β = 4.397).

The safety indices as determined from asymptotic sampling using 5 support points
each of which is based on m samples are given in Table 6.2. These results were obtained
using Latin Hypercube samples as support points as well as using support points gen-
erated by randomized Sobol sequences. It can be seen that the Sobol sequences yield
smaller estimation errors as expressed in terms of the standard deviation of the safety
indices.

A visual impression of the sampling scatter is provided by the corresponding
histograms in Fig. 6.13.

The results of one run using Sobol sequences with m support points is shown in
Fig. 6.14. Here it becomes quite clear that with increasing number of support points
m on the one hand the dispersion of the estimated for the scaled safety index β/f is
reduced and on the other hand the support points lie closer to the limit f = 1. The
latter is due to the well-known fact that smaller failure probabilities can be estimated
reliably only with a larger number of support points.

Example 6.9 (Simple limit state function, multiplication of random variables)
This example is taken from Shinozuka 1983. It involves two random variables, X1

lognormal with mean 38 and standard deviation 3.8, and X2 normal with mean 54
and standard deviation 2.7. The limit state function is g(X1, X2) = X1 · X2 − 1140. The
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Figure 6.14 Asymptotic sampling results for example 1 based on randomized Sobol sequence.

Table 6.3 Statistics of asymptotic sampling results for
different number of sample points, example 2.

m Sobol

β σβ

128 4.997 0.311
256 5.044 0.210
512 5.123 0.177
1024 5.094 0.112
2048 5.118 0.072

results from asymptotic sampling using randomized Sobol sequences with different
numbers m of support points are given in Table 6.3.

The exact result as reported in Shinozuka 1983 is β = 5.151, which is a result
obtained from the First-Order Reliability Method (FORM).

Example 6.10 (High-dimensional linear problem)
This example serves as a test case to demonstrate the independence of the dimension-
ality. The limit state function is

g(X) = 5
√

n −
n∑

k=1

Xk (6.83)

in which n is the number of random variables. All random variables are i.i.d. standard
Gaussian. The problem has a safety index of β = 5 or PF = 3 · 10−7, independent of n.
Table 6.4 shows the mean values and standard deviations of the safety index as com-
puted from asymptotic sampling (20 repetitions with 1000 Monte Carlo samples each)
for different dimension n. The octave-script performing this simulation is shown in
Listing 6.4.
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Table 6.4 Statistics of estimated safety index for
high-dimensional linear problem.

n β̄ σβ

10 4.95 0.26
100 4.94 0.22
1000 4.95 0.24
10000 4.94 0.22
100000 5.00 0.23

1 nvar=100000
2 nsim=1000
3 nrep=20
4 pf=0
5 f = 0.2
6 beta = []
7 for k=1:nrep
8 for i=1:nsim
9 x=randn(nvar,1)/f;

10 xlimit = 5*sqrt(nvar) - sum(x);
11 if (xlimit<0)
12 pf = pf+1;
13 endif
14 endfor
15 pf = pf/nsim
16 beta = [beta;normal_inv(1-pf)/f]
17 endfor
18 bm = mean(beta)
19 bs = std(beta)

Listing 6.4 Asymptotic sampling for high-dimensional problem.

6.3 Application of response surface techniques to
structural reliabil ity

6.3.1 Basic concept

The response surface method has been a topic of extensive research in many differ-
ent application areas since the influential paper by Box and Wilson in 1951 (Box and
Wilson 1951). Whereas in the initial phase the general interest was on experimental
designs for polynomial models (see, e.g., Box and Wilson 1951; Box and Draper 1959),
in the following years non-linear models, optimal design plans, robust designs and
multi-response experiments—to name just a few—came into focus. A fairly complete
review on existing techniques and research directions of the response surface method-
ology can be found in Hill and Hunter 1966; Mead and Pike 1975; Myers, Khuri, and
W. H. Carter 1989; Myers 1999. However, traditionally the application area of the
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Figure 6.15 Response surface approximation for reliability analysis.

response surface method is not structural engineering, but, e.g., chemical or industrial
engineering. Consequently, the above mentioned special requirement for structural reli-
ability analysis—i.e., the high degree of accuracy required in a very narrow region—is
usually not reflected upon in the standard literature on the response surface method
(Box and Draper 1987; Khuri and Cornell 1996; Myers and Montgomery 2002).

One of the earliest suggestions to utilize the response surface method for structural
reliability assessment was made in Rackwitz 1982. Therein, Lagrangian interpolation
surfaces and second-order polynomials are rated as useful response surfaces. More-
over, the importance of reducing the number of basic variables and error checking
is emphasized. Support points for estimating the parameters of the response surface
are determined by spherical design. In Wong 1985 first-order polynomials with inter-
action terms are utilized as response surfaces to analyze the reliability of soil slopes.
The design plan for the support points is saturated—either by full or by fractional
factorial design. Another analysis with a saturated design scheme is given in Bucher
and Bourgund 1990, where quadratic polynomials without interaction terms are uti-
lized to solve problems from structural engineering. Polynomials of different order in
combination with regression analysis are proposed in Faravelli 1989, whereby frac-
tional factorial designs are utilized to obtain a sufficient number of support points.
The validation of the chosen response surface model is done by means of analysis of
variance. In Ouypornprasert, Bucher, and Schuëller 1989 it has been pointed out that,
for reliability analysis, it is most important to obtain support points for the response
surface very close to or exactly at the limit state g(x) = 0 (cf. Fig. 6.15). This finding
has been further extended in Kim and Na 1997; Zheng and Das 2000.

Apart from polynomials of different order, piecewise continuous functions such
as hyperplanes or simplices can also be utilized as response surface models. For the
class of reliability problems defined by a convex safe domain, secantial hyperplane
approximations such as presented by Guan and Melchers 1997; Roos, Bucher, and
Bayer 2000 yield conservative estimates for the probability of failure. Several numerical
studies indicate, however, that in these cases the interpolation method converges slowly
from above to the exact result with increasing number of support points. The effort
required for this approach is thereby comparable to Monte Carlo simulation based on
directional sampling (Bjerager 1988).

Using a representation of random variables and limit state function in the stan-
dard Gaussian space, it can easily bee seen that there is a significant similarity
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Figure 6.16 Interpolation of critical distance from origin to limit state.

between response surface method using support points at the limit state and direc-
tional sampling. The difference lies in the choice of the search directions and the way
of interpolating the distance R∗ from the limit state to the origin (cf. Fig. 6.16) For
a useful interpolation strategy (particularly for reliability problems with convex limit
state functions) we need a distance measure d which in polar coordinates is most
suitable defined in terms of the angle between two vectors ai and ak:

d(ai, ak) = 1 − aT
i ak

||ai|| · ||ak|| (6.84)

which is actually one minus the cosine of the angle ϕ between the two vectors
(cf. Fig. 6.16).

For a given direction vector A, the distance R∗ to the surface g(u) = 0 is approximated
using

R =
m∑

k=1

bkφk[d(A, ak)] (6.85)

in which φk(.) are basis functions and bk suitable defined coefficients.
For the special case of Shepard interpolation (i.e. constant basis functions) as

outlined in section 3.3.4, R∗ is approximated by

R∗ =
∑m

k=1 wk · R∗
k∑m

k=1 wk
(6.86)

in which the weights wk are computed from

wk = [
d(A, ak) + ε

]−p (6.87)

Here, ε is a small positive number regularizing this expression and p is a suitably chosen
positive number (e.g. p = 2). For reliability problems involving non-closed limit state
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Table 6.5 Support points for Shepard interpolation.

i ai1 ai2 R∗
i 1/R∗

i

1 1.000 0.000 3.000 0.333
2 0.000 1.000 3.000 0.333
3 −1.000 0.000 ∞ 0.000
4 0.000 −1.000 ∞ 0.000
5 0.707 0.707 2.121 0.471

Figure 6.17 Support points and interpolating function for Shepard interpolation.

functions (i.e. problems in which R∗ may become unbounded for certain directions) it
may be advantageous to approximate 1/R∗ rather than R∗:

1
R∗ =

∑m
k=1 wk · 1/R∗

k∑m
k=1 wk

(6.88)

with weights wk as above.

Example 6.11 (Linear limit state function – Shepard interpolation)
Consider the previously discussed example of a linear limit state function in standard
Gaussian space

g(X1, X2) = 3 − X1 − X2 (6.89)

Using the set of direction vectors given in Table 6.5 to obtain support points we get
critical distances R∗

i as shown in the same table. The octave-code generating the
Shepard interpolation for this example is shown in Listing 6.5.

Carrying out a Monte-Carlo simulation run with 10000 samples based on the
Shepard interpolation yields a probability of failure of pf = 0.0147 which is reasonably
close to the exact result pf pf = 0.01695. It should be mentioned that the high quality
of the approximation in this example is due to the fact that one support point for the
interpolation lies exactly at the design point u∗. This cannot be expected to happen in
a more general setting.
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1 points=[
2 1,0,1/3;
3 0,1,1/3;
4 -1,0,0;
5 0,-1,0;
6 1/sqrt(2),1/sqrt(2),1/sqrt(2*1.5ˆ2)]
7 M=size(points)(1)
8 eps=1e-5;
9 p=2;

10 N=100
11 dphi=2*pi/(N-1)
12 fid=fopen(’shep_linear_dir.txt’,’w’);
13 for k=1:M
14 fprintf(fid, ’%g %g \n’, points(k,1), points(k,2));
15 end
16 fclose(fid);
17 fid=fopen(’shep_linear_sup.txt’,’w’);
18 for k=1:M
19 Rk=points(k,3);
20 if (Rk>0.15) fprintf(fid, ’%g %g\n’, points(k,1)/Rk,

points (k,2)/Rk); end
21 end
22 fclose(fid);
23 %
24 fid=fopen(’shep_linear.txt’,’w’);
25 for i=1:N
26 phi=-pi+(i-1)*dphi;
27 A=[cos(phi);sin(phi)];
28 w=0;
29 R=0;
30 for k=1:M
31 ak=[points(k,1);points(k,2)];
32 Rk=points(k,3);
33 dk=1-A(1)*ak(1)-A(2)*ak(2);
34 wk = (dk+eps)ˆ(-p);
35 R= R + Rk*wk;
36 w = w + wk;
37 end
38 R = R/w
39 if (R>0.15) fprintf(fid, ’%g %g \n’, A(1)/R, A(2)/R); end
40 end
41 fclose(fid);

Listing 6.5 Shepard interpolation for linear limit state function.
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Figure 6.18 Support points and interpolating function for radial basis function interpolation.

Example 6.12 (Linear limit state function – radial basis function interpolation)
Consider the previously discussed problem (cf. Example 6.11) of a linear limit state
function in standard Gaussian space. Based on the same set of direction vectors and
support points (cf. Table 6.5) we obtain the radial basis function interpolation as shown
in Fig. 6.18. Note that the interpolation results in a second branch (“ghost’’ branch)
of the limit state function in the third quadrant. This is an artefact of the interpolation
procedure, and can be eliminated by appropriate modifications of the interpolation
procedure or by including more support points. The octave-code generating the
radial basis function (thin plate spline) interpolation (i.e. the relevant branch) for this
example is shown in Listing 6.6.

Carrying out a Monte-Carlo simulation run with 10000 samples based on the radial
basis interpolation yields a probability of failure of pf = 0.023 which is somewhat
larger than the exact result pf pf = 0.01695.

6.3.2 Structural examples

One-bay one-s torey f rame

This is a simple analytical example representing the failure of a one-bay one-storey
frame. The failure is assumed to be described by first-order rigid-plastic hinge theory.
Due to the presence of horizontal and vertical loads (cf. Fig. 6.19) there are three
relevant collapse mechanisms as shown in Fig. 6.20. The three failure modes as shown
are defined by the relations

g1(X) = 4
Mpl

L
− H;

g2(X) = 4
Mpl

L
− V ; (6.90)

g3(X) = 6
Mpl

L
− H − V ;

X = [H, V]T
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1 points=[
2 1,0,1/3;
3 0,1,1/3;
4 -1,0,0;
5 0,-1,0;
6 1/sqrt(2),1/sqrt(2),1/sqrt(2*1.5ˆ2)]
7 M=size(points)(1)
8 eps=1e-5;
9 p=2;

10 N=100
11 dphi=2*pi/(N-1)
12 WIK=zeros(M,M);
13 for i=1:M
14 ai=[points(i,1);points(i,2)];
15 for k=1:M
16 ak=[points(k,1);points(k,2)];
17 Rk=points(k,3);
18 dik=abs(1-ai(1)*ak(1)-ai(2)*ak(2))
19 i,k,dik
20 wik=0;
21 if (dik>0) wik = dikˆ2*log(dik); end;
22 WIK(i,k)=wik;
23 end
24 end
25 z=points(:,3)
26 coeff=WIK\z
27 fid=fopen(’radial_linear1.txt’,’w’);
28 for i=1:N/2
29 phi=-0.25*pi+(i-1)*dphi;
30 A=[cos(phi);sin(phi)]
31 R=0;
32 for k=1:M
33 ak=[points(k,1);points(k,2)];
34 Rk=points(k,3);
35 dk=abs(1-A(1)*ak(1)-A(2)*ak(2));
36 wk = 0;
37 if (dk>0) wk = dkˆ2*log(dk); end;
38 R=R + wk*coeff(k);
39 end
40 R
41 if (R>0.2) fprintf(fid, ’%g %g\n’, A(1)/R, A(2)/R); end
42 end
43 fclose(fid);

Listing 6.6 Radial basis function interpolation for linear limit state function.
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Figure 6.19 Simple frame.

Figure 6.20 Collapse mechanisms.

Figure 6.21 Limit state function for collapse of one-bay one-story frame in original space (left)
and in standard Gaussian space (right).

The limit state function describing all possible failure modes including symmetries
of the structure is shown in Fig. 6.21 (left). We assume that the plastic moment Mpl is
deterministic, and the loads are independent Gaussian random variables with mean val-
ues of H̄ = V̄ = 1.7

Mpl

L and a coefficient of variation of 0.5. Hence we obtain standard
Gaussian variables u1 and u2 by means of

U1 = H − 1.7
Mpl

L

0.5
Mpl

L

; U2 = V − 1.7
Mpl

L

0.5
Mpl

L

(6.91)

The representation of the limit state function in standard Gaussian space is shown in
Fig. 6.21 (right). It can be observed that only a small region of the limit state function



Computat ion of fa i lure probab i l i t i es 203

Figure 6.22 Approximate limit state using Shepard interpolation with 8 support points (left) and
with 32 support points (right).

Table 6.6 Probability of failure using different approximations (simple frame).

Method m pf · 10−5 β Error in β (%)

Shepard 8 1.27 4.21 2.2
32 1.85 4.13 0.2

RBF 8 3.50 3.98 1.3
32 2.07 4.10 −0.5

is in the vicinity of the origin. Hence it will be most important to approximate this
part well in terms of a response surface.

Using directional sampling with 10000 samples, the failure probability is determined
as pf = 1.883 · 10−5 corresponding to a value of the safety index β = 4.12. This value
is used as a reference for comparison to the results based on various response surface
approaches. The application of approximations to the limit state function using dif-
ferent approaches is compared in terms of choice of method and number of support
points. The response surfaces for a different number of support points are shown in
Fig. 6.22 (Shepard interpolation) and Fig. 6.23 (radial basis function interpolation). In
Table 6.6, the results are shown for Shepard interpolation (Eq. 3.38) and radial basis
functions (RBF, Eq. 3.49). Comparing the results for pf it can be seen that there is not
a fundamental difference in accuracy for a given number of support points, i.e. for a
specific level of numerical effort. Although the geometrical representation of the limit
state function differs (e.g. in the curvature), the computed probability of failure pf —
and even more so the safety index β — is not severely affected by this difference.

The octave-code for the directional sampling simulation based on the RBF
interpolation is given in Listing 6.7.

Appl i cat ion to non- l inear f in i te e lement s t ructure

A simple 3-dimensional steel frame subjected to three random loadings is considered
as shown in Fig. 6.24. This model has been studied previously in Bucher 1998 and
Bucher and Most 2008.
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1 M=32
2 eps=1e-5;
3 points=zeros(M,3);
4 p=2;
5 N=1000
6 WIK=zeros(M,M);
7 dphi=2*pi/M
8 SIGMA=0.5;
9 R=zeros(8,1);

10 for i=1:M
11 phi=dphi/2+(i-1)*dphi;
12 A=[cos(phi);sin(phi)];
13 R(1)=2.3/SIGMA/A(1);
14 R(2)=2.3/SIGMA/A(2);
15 R(3)=-5.7/SIGMA/A(1);
16 R(4)=-5.7/SIGMA/A(2);
17 R(5)=2.6/SIGMA/(A(1)+A(2));
18 R(6)=6/SIGMA/(A(1)-A(2));
19 R(7)=6/SIGMA/(-A(1)+A(2));
20 R(8)=-9.4/SIGMA/(A(1)+A(2));
21 R=R+(R<0)*1500
22 Rstar=min(R)
23 points(i,1)=A(1);
24 points(i,2)=A(2);
25 points(i,3)=1/Rstar;
26 end
27 for i=1:M
28 ai=[points(i,1);points(i,2)];
29 for k=1:M
30 ak=[points(k,1);points(k,2)];
31 Rk=points(k,3);
32 dik=abs(1-ai(1)*ak(1)-ai(2)*ak(2));
33 wik=0;
34 if (dik>0) wik = dikˆ2*log(dik); end;
35 WIK(i,k)=wik;
36 end
37 end
38 z=points(:,3)
39 coeff=WIK z
40 dphi=2*pi/(N-1)
41 pf=0
42 Sn=2*pi;
43 for i=1:N
44 u=randn(2,1);

Listing 6.7 Directional sampling based on RBF interpolation.
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45 un=sqrt(u(1)ˆ2+u(2)ˆ2);
46 A=u/un;
47 R=0;
48 for k=1:M
49 ak=[points(k,1);points(k,2)];
50 Rk=points(k,3);
51 dk=abs(1-A(1)*ak(1)-A(2)*ak(2));
52 wk = 0;
53 if (dk>0) wk = dkˆ2*log(dk); end;
54 R= R + wk*coeff(k);
55 end
56 Rstar = 1/R;
57 if (Rstar>0)
58 pf = pf + (1-chisquare_cdf(Rstarˆ2, 2))/Sn/N;
59 end
60 end
61 pf
62 beta=normal_inv(1-pf)

Listing 6.7 Continued

Figure 6.23 Approximate limit state using radial basis function interpolation with 8 support points
(left) and with 32 support points (right).

The 3-dimensional frame is modeled by 24 physically non-linear beam elements
(linear elastic-ideally plastic material law, elasticity modulus E = 2.1 · 1011N/m2, yield
stress σY = 2.4 · 108N/m2). For numerical stabilization, a post-yielding stiffness with
a magnitude equal to 10−5-times the initial value is chosen. The cross section for
the girder is a box (width 0.2 m, height 0.15 m, wall thickness 0.005 m) and the
columns are I-sections (flange width 0.2 m, web height 0.2 m, thickness 0.005 m).
The columns are fully clamped at the supports. The static loads acting on the system
pz, Fx, and Fy are assumed to be Gaussian random variables. Their respective statisti-
cal properties are given in Table 6.7. The failure condition is given by total or partial
collapse of the structure. Numerically, this is checked either by tracking the smallest
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Figure 6.24 3-Dimensional steel frame structure.

Table 6.7 Random variables used in 3-dimensional
frame analysis.

RV Mean Std. Dev.

pz [kN/m] 12.0 1.2
Fx [kN] 30.0 3.6
Fy [kN] 40.0 4.8

eigenvalue of the global tangent stiffness matrix (it becomes zero at the collapse load)
or by failure in the global Newton iteration indicating loss of equilibrium. Since this
type of collapse analysis is typically based on a discontinuous function (convergence vs.
non-convergence), it is imperative for the support points of the response surface to be
located exactly at the limit state. A bisection procedure is utilized to determine collapse
loads with high precision (to the accuracy of 1% of the respective standard deviation).

The geometry of the limit state separating the safe from the failure domain is shown
in Fig. 6.25. The limit points were obtained from directional sampling using 10000
samples. It can be easily seen that there is considerable interaction between the random
variables Fx and Fy at certain levels. Near the region of most importance for the
probability of failure (this is where most of the points from the directional sampling
are located) is essentially flat, and mainly governed by the value of pz. The probability
of failure obtained from directional sampling (10000 samples) is pf = 4.3 · 10−5 with
a standard estimation error of 3%. This corresponds to a safety index of β = 3.93.

Table 6.8 compares the results from Shepard and radial basis function interpola-
tions using 150 and 1000 support points for each. These results were obtained using
directional sampling with 10000 samples. All results are very close to the exact result
obtained from directional sampling. The response surface for the Shepard model is
visualized in Fig. 6.26, the response surface for the RBF model is shown in Fig. 6.27.
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Figure 6.25 Visualization of limit state function g(x) (directional sampling, 10.000 points).

Table 6.8 Probability of failure using different approximations
(nonlinear 3D frame).

Method m pf · 10−5 β Error in β (%)

Shepard 150 2.15 4.01 2.0
1000 3.30 3.99 1.5

RBF 150 3.84 3.95 0.5
1000 3.36 3.99 1.5

For comparison, a saturated quadratic scheme including pairwise interactions is
utilized for the layout of the experimental design scheme. The support points thus
generated are interpreted as direction vectors along which all loads are incremented.
Starting from the mean values and incrementing along this directions lead to a set of
9 support points on the limit state function. These support points (cf. Table 6.9) have
a function value of g(x) = 0. By adding the mean value as first support point with a
function value of g(x) = 1, a quadratic response surface can be defined. Considering
lines 2–7 in Table 6.9 it has been decided to consider combination terms in which
all variables are incremented up from the mean. This leads to the final three support
points given in lines 8–10 of Table 6.9.

A Monte Carlo simulation based on this quadratic surface is carried out. The result-
ing probability of failure from plain Monte Carlo using one million samples was found
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Figure 6.26 Visualization of limit state function g(x), Shepard interpolation based on 150 points
(top) and on 1000 points (bottom).
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Figure 6.27 Visualization of limit state function g(x), radial basis function interpolation based on
150 points (top) and on 1000 points (bottom).
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Table 6.9 Support points for quadratic response surface.

i pz [kN/m] Fx [kN] Fy [kN] g(x(i))

1 12.000 30.000 40.000 1
2 21.513 30.000 40.000 0
3 −21.516 30.000 40.000 0
4 12.000 113.180 40.000 0
5 12.000 −81.094 40.000 0
6 12.000 30.000 59.082 0
7 12.000 30.000 −59.087 0
8 19.979 109.790 40.000 0
9 13.527 30.000 59.084 0
10 12.000 45.275 59.094 0

to be pf = 7.7 · 10−5 corresponding to a value of the safety index β = 3.81. In view of the
small number of only 10 support points, this result matches the exact value quite well.

6.4 First passage failure

6.4.1 Problem formulation

In dynamic structural analysis, it is usually necessary to apply numerical methods based
on a time discretization of the loads and responses (cf. section 4.5). The discretization
of the loading process F(t) in time by means of discrete random variables Fk; k = 1 . . . n
at time values t� typically leads to a large number n of random variables. The response
X(t) is then automatically discretized as well, i.e. in terms of its values X�; � = 1, m at
time points t�. In the following, we assume n = m = N. The first passage problem can
then be formulated as the probability that the largest of the response variables becomes
larger than a predefined threshold level ξ

PE = Prob
[

max
�=1,...m

X� > ξ

]
(6.92)

in which it is to be noted that X� depends on all load variables Fk with a time tk ≤ t�,
but not those with tk > t� (principle of causality).

For the sake of notational simplicity, the subsequent derivations will be limited to
the case where the vector F can be represented by one scalar excitation F(t) only. Again,
this is an assumption most frequently made in the earthquake analysis of structures

F = PF(t) (6.93)

The process F(t) has a given auto-covariance function RFF(t1, t2)

RFF(t1, t2) = E[F(t1)F(t2)] (6.94)
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For quiescent initial conditions, the response of the system (4.64) at any time t can be
calculated from Duhamel’s integral

x(t) =
∫ t

0
h(t − τ)PF(τ) dτ (6.95)

in which h(u) is the impulse response function matrix of the system. One particular
component xi of the vector x can be calculated from

xi(t) =
n∑

k=1

∫ t

0
hik(t − τ)PkF(τ) dτ (6.96)

From this equation, linear combinations y(t) of the xi(t) (such as required e.g. for the
analysis of internal forces) can be calculated quite easily

y(t) =
M∑

i=1

cixi(t) (6.97)

Utilizing a time-discrete representation (frequently called lumped-impulse procedure),
the excitation F(t) can be represented by a random pulse train (Lin 1976)

F(t) =
N∑

j=1

F(τj) �t δ(t − τj) (6.98)

in which �t is the time step and δ(.) denotes Dirac’s Delta function. Consequently, the
response xi(t) for t ∈ [0, TE] can be written as (cf. eq. 6.96)

xi(t) =
n∑

k=1

N∑
j=1

hik(t − τj) Pk F(τj) �t (6.99)

Here, an equidistant spacing with N subdivisions of the interval [0, TE] is assumed.
Obviously, eq. (6.99) represents the response xi as a linear combination of N Gaussian
random variables F(τj); j = 1 . . . N. Based on this observation, it is clear that the proba-
bility of reaching or of exceeding the threshold ξ at time t can be directly and accurately
calculated by applying the First-Order-Reliability-Method (FORM, Hasofer and Lind
1974). Thus, the limit state condition at time tr becomes

ξ = y(tr) =
M∑

i=1

ci

N∑
k=1

N∑
j=1

hik(tr − τj) PkF(τj)�t =
N∑

j=1

Arjfj; fj = F(τj) (6.100)

The most probable combination of the fj’s leading to the limit state is then readily cal-
culated by applying FORM. From the auto-covariance function as defined in eq.(6.94)
a discrete covariance matrix for the sequence fj; j = 1 . . . N can be obtained

Cff = E[ffT ] (6.101)
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which can be Cholesky-decomposed into

Cff = LLT (6.102)

Here, L is a lower triangular matrix and f is a vector containing the sequence fj; j =
1 . . . N. The transformation

f = Lu; u = L−1f (6.103)

yields a representation of eq. (6.100) in terms of uncorrelated standardized Gaussian
variables us

ξ = y(tr) =
N∑

j=1

N∑
s=1

Arj Ljs us =
N∑

s=1

brs us (6.104)

The safety index βr is easily found from (see e.g. Madsen, Krenk, and Lind 1986)

1
β2

r
=

N∑
s=1

(
brs

ξ

)2

(6.105)

The design point ur
∗ (the most likely combination of uncorrelated variables leading to

failure at time tr) is then calculated from

u∗
rs = brs

ξ
β2

r ; s = 1 . . . N (6.106)

Due to the linearity of the limit state function, the probability Ptr that the response
reaches or exceeds the threshold at time tr is given by

Ptr = �(−βr) (6.107)

It should be emphasized that Li and DerKiureghian 1995 obtained similar results for
the mean outcrossing rate assuming filtered white noise as input. A numerical study
performed by Vijalapura, Conte, and Meghella 2000 gave an analogous result for a
nonlinear SDOF-system.

The above results are exploited in order to construct a useful importance sampling
scheme. In complete analogy to the importance sampling method for static problems,
the above design point excitations can be used as “importance sampling mean’’ exci-
tations. This mean excitation is simply added to the random excitation process as
simulated in the usual way. As there are N possible locations for “design points’’
(cf. eq. 6.106) it becomes necessary to weight these points appropriately. It is sug-
gested to use the values of �(−βk) as weights (Stix 1983; Macke and Bucher 2003),
so that the multi-modal importance sampling density hU(u) in standard normal space
becomes

hU(u) = 1∑N
r=1 �(−βr)

N∑
r=1

�(−βr)
(2π)N/2

exp

(
−1

2

N∑
s=1

(u∗
rs − us)2

)
(6.108)
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The ratio of original density fU(u) to importance sampling density hU(u) for a sample
function f m

k as obtained from the uncorrelated variables um
k needs to be calculated

based on eq. (6.108). This implies that there will be considerable interaction between
the N design points as well as the N limit state conditions.

6.4.2 Extension to non-l inear problems

The extension to non-linear problems is straightforward. In a first step, the design
point excitations have to be determined. This is generally achieved by the application
of nonlinear programming tools (Shinozuka 1983). However, a study covering several
numerical examples has indicated that in many cases the so-called Rackwitz-Fiessler-
Algorithm (Rackwitz and Fiessler 1978) provides a simple and computationally
effective method to obtain these design point excitations. For the application of this
method it is important to obtain the gradients of the limit-state function in “closed-
form’’. For the special case of the Newmark-solution procedure this has been shown
in Li and DerKiureghian 1995.

In the following, this is shown on a somewhat more general basis for systems with
arbitrary nonlinearity in the restoring forces. In fact, the calculation of the sensitivities
can be reduced to a linear dynamics problem. Starting from the equation of motion of
a non-linear system

Mẍ + Cẋ + r(x) = F(t) (6.109)

it can easily be seen that the partial derivatives of the response vector components x(t)
at time t with respect to the excitation F(τj) at time τj are given by

M
∂ẍ

∂F(τj)
+ C

∂ẋ
∂F(τj)

+ ∂r(x)
∂F(τj)

= ∂F(t)
∂F(τj)

(6.110)

It is convenient to introduce a vector of sensitivities sj defined by

sj = ∂x(t)
∂F(τj)

(6.111)

By using the chain-rule of differentiation

∂r(x)
∂F(τj)

= ∂r(x)
∂x

∂x
∂F(τj)

= Kt
∂x

∂F(τj)
(6.112)

in which Kt denotes the tangential stiffness matrix of the system at time t, we finally
obtain

Ms̈j + Cṡj + Ktsj = P�tδ(t − τj) (6.113)

The last term in Eq. 6.113 arises from the pulse train representation of the excitation as
given in Eq. 6.98 together with the assumption made in Eq .6.93. Based on these results,
the sensitivities of the limit state y(t), as given by Eq. 6.97, can easily be calculated.
Eq. 6.113 shows that the required gradients can be obtained from the impulse response
function of a time-variant linear system. The tangential stiffness matrix Kt of this linear
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Figure 6.28 Design point excitation for threshold crossing at time t = 10π (white excitation).

system is obtained by linearization around the response to the current iterate of the
design point excitation. It should be mentioned that for the case of hysteretic systems
with internal variables an augmented state-space representation provides a suitable
generalization of this approach. However, if the dynamic analysis is to be based on
a commercially available FE code, then it will generally not be possible to access all
internal variables required. In such a case, numerical gradients may be the last resort.
For a detailed review on the topic, see e.g. Macke and Bucher 2003.

Example 6.13 (Linear SDOF-System under stationary white noise excitation)
This example mainly serves the purpose of interpretation of the above mentioned design
point excitation. It is a SDOF-system with a natural frequency ω0 = 1 and a damping
ratio of 5% (Naess and Skaug 2000). A time duration TE = 20π is considered. This
duration is divided into N = 200 time steps, so that �t = π

10 . Let f (t) be a station-
ary white noise with a two-sided power spectral density S0 = 0.1

π
. Its auto-covariance

function is given by

Rff (t1, t2) = 2πS0δ(t1 − t2) (6.114)

A discrete representation is given in terms of uncorrelated random variables fj with
zero mean and variances σ2

fj
= 2πS0�t. Following the above derivations, the design

point excitation is given by

rs = h(t − τs)

√
�t

2πS0

β2

ξ
(6.115)

This is a sequence which is basically a time-reversed impulse response function. For
t = 100�t this is shown in Fig. 6.28. The corresponding sample trajectory of x(t)
reaches the threshold ξ exactly at time t which is shown in Fig. 6.29. Upon inspection
of eq.(6.105) it can easily be seen that in transition to continuous time for white noise
excitation we obtain

β2 = ξ2∫ t
0 h2(t − τ) dτ

= ξ2

σ2
x (t)

→ β = ξ

σx
(6.116)
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Figure 6.29 Response to design point excitation for threshold crossing at time t = 10π
(white excitation).

Figure 6.30 First passage probability vs. threshold level for white noise input (500 samples).

The first passage probabilities are evaluated based on the above outlined importance
sampling scheme. The threshold level ξ is varied from 0 to 10σx. For a sample size
of 500 the resulting first passage probabilities are shown in Fig. 6.30. This figure
also shows comparative results from an approximation based on the upcrossing rate
(Corotis, Vanmarcke, and Cornell 1972). It can be seen that down to the very low
probability level of 10−15 the coefficient of variation of the estimated probabilities
remains at approximately 10%.

Example 6.14 (Non-white excitation) For non-white excitations the picture becomes
somewhat more complicated. As an example, consider a stationary excitation with an
exponential autocorrelation function (Orenstein-Uhlenbeck process)

Rf f (t1, t2) = σ2
f exp

(
−|t1 − t2|

τc

)
(6.117)

with a correlation time τc = 2 and a variance σ2
f = 0.02. This corresponds to a power

spectral density Sf f (0) = π
0.1 as in the previous example. In this case, the design point

excitation extends into the future as shown in Fig. 6.32 which is a consequence of
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Figure 6.31 Design point excitation for threshold crossing at time t = 10π (non-white excitation).

Figure 6.32 Response to design point excitation for threshold crossing at time t = 10π (non-white
excitation).

Figure 6.33 First passage probability vs. threshold level for non-white noise input (500 samples).

the temporal correlation. The corresponding response trajectory is given in Fig. 6.32.
Again, a time interval �t = π

10 is chosen for time discretization.
From a sample size of 500 the first passage probabilities as shown in Fig. 6.33 are

obtained. Again the c.o.v. remains in the range of 10%, even for probabilities as low
as 10−15.
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Summary

This chapter started with the definition of the failure probability in terms of a limit state
function. First order concepts for the simplified reliability analysis were introduced
and applied to various examples. A thorough discussion of Monte-Carlo simulation
methods followed. In this context, advanced methods such as importance sampling,
adaptive sampling, directional sampling, and asymptotic sampling were extensively
investigated. The application of response surface techniques to structural reliabil-
ity analysis was then presented. Several numerical examples of different complexity
were designed to illustrate the potential benefits or shortcomings of these approaches.
Finally, the first passage problem of stochastic structural dynamics was re-cast as a
reliability problem allowing for the application of the first-order reliability method
and importance sampling.





Concluding remarks

The material as presented in this book covers the range from essential basics in prob-
ability theory to advanced numerical methods for the treatment of randomness in
structural mechanics.

Starting with chapter 2 on probability theory and probabilistic modeling, the
required tools for estimation and simulation of random variables were presented.
Chapter 3 on regression and response surfaces provided possibilities for approxima-
tion relations between random variables in terms of simple functions and methods to
eliminate less important variables from the analysis.

Chapter 4 on stochastic structural dynamics discussed the effect of random exci-
tations on the dynamic structural response. Emphasis was put on the treatment
of Markov processes which allow for an analytical treatment (e.g. by solving the
Fokker-Planck-equation) or a simplified numerical treatment (e.g. by applying covari-
ance analysis). Approximations based on equivalent linearization were discussed.
For arbitrarily nonlinear systems, numerical time integration procedures as required
for a Monte-Carlo approach were presented. Possible qualitative changes of system
behavior due to random excitations was covered in the final section on stochastic
stability.

Random fields and stochastic finite elements were discussed in chapter 5. The numer-
ical tools are based on the spectral decomposition of the random fields and their
discretization in terms of stochastic finite elements. Semi-analytical approaches based
on perturbation theory as well as purely numerical methods based on Monte-Carlo
techniques were presented.

Computational methods to determine small probabilities as required for structural
reliability analysis were presented in chapter 6. Here the simplifications inherent in first
order approximations were discussed in detail. Advanced Monte-Carlo simulation
methods suitable for the computation of small probabilities were in the main focus
of this chapter. Various methods allowing for sampling the regions of relevance are
presented and applied to a variety of structural problems including the first-passage
problem in stochastic dynamics.

It is quite obvious that many important topics in stochastic structural analysis could
not be covered in this book. One such topic is optimization including randomness
such as robust optimization (Bucher 2007). Further steps would lead into the direction
of reliability-based optimal structural design and maintenance (e.g. Frangopol and
Maute 2003; Bucher and Frangopol 2006; Macke and Higuchi 2007). Another area
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of importance is system identification and damage detection using non-destructive
techniques. Here randomness may also play a significant role concerning the quality
of the identified results (Bucher, Huth, and Macke 2003).

Nevertheless, it is believed that the contents of this book provides useful tools which
can be successfully applied also in the areas not explicitly covered here.



Notations

The following list explains the most frequently used symbols in this book:

A, B, C Events (sets)
CXX Covariance matrix
Df Failure domain
E Expectation operator
e Strain tensor in vector notation
F Failure event
fX(x) Probability density function
FX(x) Probability distribution function
fX|Y (x, y) Conditional probability density function
fX′′ (x) Predictive probability density function
fX(x) Joint probability density function of X
Fe F-statistic
Fe Element force vector
h(t) Impulse response function
H(X) Entropy of random variable X
Ie Coefficient of importance
Ke Element stiffness matrix
L Likelihood function
Lc Correlation length
Prob Probability
PE First passage probability
pf Probability of failure
R2 Coefficient of determination
R2

adj Adjusted coefficient of determination
RXX Auto-covariance function
S Residual sum of squares
SXX Auto-power spectral density
s Stress tensor in vector notation
Ue Element displacement vector
X Random variable
X̄ Expected value of random variable X
σ2

X Variance of random variable X
X Random vector
X̄ Mean value vector
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Xk k-th weighted integral
x(k) k-th sample point
α level of significance
β Reliability index
γ Euler-Mascheroni constant
δ(t) Dirac delta function
δW Virtual work
�m Estimator from m samples
�(x) Gamma-function
ζ Damping ratio
η Response surface
µk Statistical moment of k-th order
µ Drift vector
ρ Coefficient of correlation
σ Diffusion vector
ξ Exceedance threshold
ϕ(x) Standard Gaussian density
�(x) Standard Gaussian distribution
�−1(x) Inverse standard Gaussian distribution
φk k-th eigenvector of covariance function
ω0 Natural circular frequency
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