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Preface

 

This book is dedicated to flexure hinges, which are the main constituents of
compliant mechanisms. The flexure hinge, alternatively called flexural pivot,
consists of a flexible, slender region between two rigid parts that must
undergo limited relative rotation in a mechanism (which will be called 

 

com-
pliant

 

) due to the presence of at least one flexure hinge. Under the combined
action of external loading and actuation, the flexure hinge bends and thus
produces the relative rotation between the adjacent members. Being mono-
lithic with the rest of the mechanism for the vast majority of applications, a
flexure hinge offers several advantages over classical rotation joints, such as
no friction losses, no need for lubrication, no hysteresis, compactness, capac-
ity to be utilized in small-scale applications, ease of fabrication, virtually no
assembly, and no required maintenance.

The flexure hinges are incorporated in a large number of applications, both
civil and military, including translation micropositioning stages, piezoelectric
actuators and motors, high-accuracy alignment devices for optical fibers,
missile-control devices, displacement and force amplifiers/deamplifiers,
orthotic prostheses, antennas, valves, scanning tunneling microscopes, accel-
erometers, gyroscopes, high-precision cameras, nanolithography, robotic
microdisplacement mechanisms, nanoscale bioengineering, small-scale insect-
like walking robots, actuation devices for unmanned micro aerial vehicles, or
nano-imprint technology. One of the rapidly growing areas where flexure
hinges are massively applied is the microelectromechanical system (MEMS)
sector, where the very nature of the microscale structure of such mechanisms,
together with their fabrication technology, demands almost exclusive utiliza-
tion of flexure hinges as connecting joints between quasi-rigid members.

The book is primarily intended for industrial practitioners, researchers,
and academics involved in designing and developing flexure-based compli-
ant mechanisms in such areas as mechanical engineering, aerospace engi-
neering, robotics, MEMS, and biomedical engineering. It can also serve as a
supplemental text for graduate students in universities where compliant
mechanisms are a curriculum subject.

The book originated from the perceived need for an information source
dedicated to current problems in the design of flexure hinges and flexure-
based compliant mechanisms in both macroscale and MEMS applications in
a manner that would resonate with the reality of a multitude of practical
engineering cases. Two main directions have been taken in this book. The
first targets the design pool of flexure hinges through a systematic approach
and the introduction of several new flexure configurations in the hope that
the interested designer might opt for a specific flexure solution if presented
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with an ample variety of choices. This aspect is all but trivial, as minor
changes in the geometry of a flexure hinge might result in substantial mod-
ifications at the output port of a compliant mechanism. The second direction
of the book addresses the modeling tier by recognizing that in most cases
the flexure hinges will operate under small displacements. The reader
acquainted with flexure modeling and design would probably agree that,
except for the finite-element analysis available through commercially avail-
able software (which is predominantly the variant of choice in a large number
of applications), the accepted modeling paradigm currently in operation is
based on two main hypotheses: (1) the flexure hinges are flexible 

 

constant

 

cross-section members, and (2) they are subject to 

 

large deformations

 

. Conse-
quently, the modeling procedure substitutes a flexure hinge with a purely
rotational joint equipped with a torsional-spring stiffness. The resulting
model of the flexure hinge is subsequently incorporated into a classical rigid-
link mechanism model of the specific device being studied, and further static
and dynamic calculations are performed according to standard procedures. 

The reality is that only in a few occasions are the two fundamental premises
mentioned above (constant cross-section and large deformations) concomi-
tantly met. In the vast majority of practical situations, the flexure hinges are
actually and deliberately designed to function within a small-displacement
environment. The supporting rationale is twofold, as either the application
itself requires this type of condition (for instance, in precision mechanisms
where the output displacements are inherently small) or the physical dimen-
sions of the flexure hinge do not permit large deformations that would
automatically generate stresses over the allowable limits. Moreover, the flex-
ure hinge geometry is seldom of constant cross-section because the fabrica-
tion technology currently in use might not allow this particular geometry to
be produced in either macroscale or MEMS monolithic applications. The
radius of the wire tool in electrodischarge machining, for instance, has a
finite, nonzero value and, as a result, the corner of a flexure hinge fabricated
by this procedure will always be filleted. Similarly, the design process itself
attempts to avoid the type of geometry that would induce undesirable stress
concentration in the corner areas.

Previous work supports the approach followed in this book. A very solid
paper written by Paros and Weisbord in the 1960s convincingly demonstrated
that a circular flexure hinge is a complex spring that not only produces the
desired relative rotation between two adjacent rigid links but is also deforming
axially and out of plane. The vision expressed by the authors in this funda-
mental paper is compelling, and present-day flexure-based applications reveal
that all deformational facets of a flexure hinge have to be accounted for if an
accurate assessment of the performance of a compliant mechanism is to be
achieved. The path followed by Paros and Weisbord has been revisited only
recently, and the present work is a modest addition to this work.

This book attempts to provide practical answers to the problems of efficiently
modeling, analyzing, deciding on, and designing devices that include flexure
hinges. It contains many ready-to-use plots and simple equations describing
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several flexure types for professionals who need speedy solutions to their
current applications. For the researcher who would prefer to find specific
answers to a particular design configuration (which is probably not covered
here), the book contains self-contained, easy-to-apply mathematical tools that
provide guidance for real-time problem solving of further applications.

Several original features are included in this book:

• The book introduces new types of single-axis flexure hinge config-
urations (e.g., parabolic, hyperbolic, inverse-parabolic, secant) that
supplement such classic geometries as circular, corner-filleted,
and elliptical and are designed for planar compliant mechanism
applications.

• The same configurations are addressed for multiple-axis (revolute)
flexure hinges for spatial compliant mechanism applications.

• Newly introduced are the two-axis flexure hinges that are capable
of displaying a selective response over two different compliance
ranges in spatial applications.

• For all the single-axis flexure hinges, both longitudinally symmetric
and nonsymmetric configurations are analyzed, and their corre-
sponding spring rates are explicitly given.

• Short flexures and the associated shearing effects are also modeled
for all flexure configurations in terms of their compliance.

• Flexure hinges are studied from a performance-oriented viewpoint
in a unitary manner: flexibility, precision of rotation, stress limita-
tions, and energy consumption are factors defined and analyzed
by means of closed-form compliance equations.

• Inertia and damping properties are also derived, consistent with
the compliance formulation, so that a flexure hinge can be fully
characterized and included in the dynamic model of a flexure-
based compliant mechanism that can be solved to evaluate its free
or forced response. The inertia and damping properties of a flexure
hinge are modeled by following either the long (Euler–Bernoulli)
or short (Timoshenko) member hypotheses.

• An original finite-element approach is developed whereby the flex-
ure hinges are assimilated to line elements; this approach reduces
the problem dimensionality and allows us to perform static and
modal/time-history analyses in a simple fashion.

• Also treated are more advanced topics related to flexure hinges,
such as shape optimization, buckling, torsion of noncircular vari-
able cross-section members, nonhomogeneous flexures, thermal
effects, and large deformations.

• The book includes a list of novel industrial applications, both macro-
and microscale (MEMS), for which flexure hinges are instrumental.
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The book is formally organized into seven chapters. The first chapter
presents the basic characteristics, scope and applications, and advantages
and limitations of using flexure hinges and flexure-based compliant mech-
anisms instead of mechanisms based on classical rotation joints. An argu-
ment is developed regarding the importance of flexure hinges in the overall
design of compliant mechanisms. Also discussed is the approach taken here
of modeling and analyzing the flexure hinges by considering their variable
cross-sections and small-displacement conditions.

Chapter 2 develops the generic mathematical model resulting in the com-
pliance closed-form equations for all the flexure types that are presented in
this work. The nature of the presentation in this chapter is primarily math-
ematical and equation based. This chapter gives an alternative to the time-
consuming classical finite-element analysis (by using commercially available
software) through utilizing an approach of closed-form compliance equa-
tions to evaluate the performance of flexure hinges. Specifically, a flexure
hinge is characterized by quantifying its rotation capacity, sensitivity to
parasitic motions, precision of rotation, level of stress (fatigue failure con-
siderations), and energy consumption. The generic mathematical model pre-
viously formulated is applied to be specific to several flexure configurations
(the majority are new types). Included are flexure hinges for such two-
dimensional applications as constant rectangular cross-section and conic
sections (circular, elliptical, parabolic, hyperbolic), as well as inverse para-
bolic and secant profiles. The validity of the closed-form compliance equa-
tions for the various flexure types is checked out by finite-element
simulation, experimental measurements, and verifying that the limit case of
a constant rectangular cross-section flexure can be retrieved from each indi-
vidual variable cross-section flexure. The configurations mentioned previ-
ously are also considered in deriving closed-form compliance equations for
multiple-axis flexure hinges in three-dimensional applications (with rota-
tional symmetry), as well as for two-axis configurations. Conclusions and
design recommendations are thus derived regarding the adequacy of
employing a specific flexure in a particular application where certain per-
formance functions are required. Graphs, plots, and tables are given for
handy selection of flexures in terms of design performance criteria.

Chapter 3 is dedicated to the static modeling and analysis of flexure-based
compliant mechanisms (mechanisms that incorporate only rigid links, con-
nected by flexure hinges). A methodology is presented that enables design-
ing serial, parallel, and hybrid (serial/parallel) flexure-based compliant
mechanisms for two- and three-dimensional applications. The procedure
integrates the various compliance factors into a force–displacement model
for the entire mechanism. Output performance qualifiers, such as mechanical
advantage, bloc load, stiffness, energy efficiency, and precision of motion,
are defined and discussed here.

Chapter 4 studies the dynamic aspects of flexure-based compliant mech-
anisms. Based on an approach that utilizes Lagrange’s equations, inertia and
damping properties are derived for the different types of flexure hinges
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presented so far to allow formulation of the corresponding lumped-parameter
dynamic equations of flexure-based compliant mechanisms. Both the inertia
and damping properties are formulated in a manner that is consistent with
the modality of deriving the compliance (stiffness) characteristics in such a
way that a particular flexure hinge is unitarily represented as having finite
degrees of freedom. Modal and time-history analyses are thus possible by
integrating the flexure properties into the ensemble of rigid components.

Chapter 5 presents an original finite-element approach to flexure hinges
and flexure-based compliant mechanisms, as an alternative modeling and
analysis instrument. Instead of treating the flexure hinge with its full two-
or three-dimensional geometry details (by using two- or three-dimensional
finite elements), which is how the commercially available finite-element
software solves these cases, this approach reduces the problem of dimen-
sionality by defining the flexure hinge as a three-node line element. Elemen-
tal stiffness and mass matrices are formulated for the various flexure types
that were previously introduced. It is thus possible to study the finite-element
static and modal response of two- and three-dimensional flexure hinges.

Chapter 6 presents several miscellaneous topics that are important in accu-
rately characterizing the flexure hinges. Addressed are topics that apply to
both macroscale and MEMS applications, such as shape optimization, buck-
ling, torsion of noncircular variable cross-section members, flexures fabri-
cated of several materials, thermal effects, and large deformations. Presented
also are aspects of actuation, materials, and fabrication procedures for both
macro- and MEMS-scale applications.

Chapter 7 presents several classical and up-to-date examples of flexure-
based applications and illustrates both macro- and microscale (MEMS) engi-
neering designs.

As previously mentioned, the book is dedicated to flexure hinges that are
indispensable construction bricks for miniature compliant mechanisms that
are highly energy efficient and are capable of providing very finely tuned
output in high-end industrial applications such as those in the photonics,
laser optics, or telecommunications industries. Nano-engineering and nano-
biomechanical engineering, as parts of the aggressively growing MEMS
domain, are areas that benefit from incorporating specifically designed flex-
ure hinges into their miniature compliant devices and mechanisms. 

The major reason for writing this book is to offer a core of modeling tools
that would enable the designer to play around a bit with different flexure
hinge configurations in terms of their spring, inertia, and (possibly) damping
characteristics and to make a more informed choice before (inevitably, per-
haps) resorting to the classical finite-element software in order to fully solve
a flexure-based compliant mechanism problem. Despite all efforts, the book
probably is not error free, and I would welcome feedback from the interested
reader.
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1

 

Introduction

 

This introductory chapter gives a brief presentation of flexure hinges and
flexure-based compliant mechanisms for macro- and microscale applications
by highlighting the main traits defining these mechanical members/devices.
An outline of the treated subjects and of the associated approach in this book
is also sketched here in order to identify and possibly locate the work in the
context of similar dedicated information that has already been published.

A flexure hinge is a thin member that provides the relative rotation
between two adjacent rigid members through flexing (bending), as shown
in Figure 1.1, where a conventional rotational joint is compared to a flexure
hinge.

 

 

 

In terms of this rotary function, a flexure hinge can be considered the
structural correspondent of a bearing with limited rotation capability, as
illustrated in Figure 1.2.

In a classical rotary bearing, the relative rotation takes place between a shaft
and its housing, these mating parts being concentrically located, and the
rotation can be limited to a specific angular sector, as indicated in Figure 1.2a.
A flexure hinge can provide a similar rotary output, the only difference
consisting in the fact that the “centers” of the two adjacent members under-
going the relative rotation are no longer collocated, as shown in Figure 1.2b.

Physically, a flexure hinge can be realized in two different ways:

• Use an independently fabricated member (such as a strip or shim
in two-dimensional applications or a cylinder-like part in three-
dimensional applications) to connect two rigid members that are
designed to undergo relative rotation.

• Machine a blank piece of material so that a relatively slender por-
tion is obtained that will be the flexure hinge. In this case, the
flexure is integral (or monolithic) with the parts it joins together.

As already mentioned, the flexure hinge consists of an elastically flexible,
slender region between two rigid parts that must undergo relative limited
rotation in a mechanism (which we will call 

 

compliant

 

 due to the presence
of at least one flexure hinge) that is supposed to achieve a specific task. The
flexure hinge is monolithic with the rest of the mechanism for the vast
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majority of applications, and this is the source of its advantages over classical
rotation joints. Among the benefits provided by flexure hinges, the most
notable are:

• No friction losses
• No need for lubrication
• No hysteresis
• Compactness
• Capacity to be utilized in small-scale applications
• Ease of fabrication
• Virtually no maintenance needed

Flexure hinges that are monolithic with the mechanisms they are part of
do not require repair, as the mechanisms will operate until something fails
(usually the flexures) due to fatigue or overloading. They definitely require

 

FIGURE 1.1

 

Joints enabling relative rotation in mechanisms:
(a) classical rotation joint; (b) flexure hinge.

 

FIGURE 1.2

 

Functional similarity between rotary bearings and flexure hinges: (a) collocated (concentric)
rotation produced by a classical rotary bearing; (b) noncollocated rotation produced by a flexure
hinge.

Rotation joint

Flexure hinge

Rigid links

(a)

(b)

Flexure hinge

Fixed link

(b)

Mobile link

Fixed shaft

Rotating housingStops
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inspection, which is particularly true immediately after fabrication, when it
is necessary to check the errors induced in the ideal geometry by machining.

Flexure hinges do have limitations, however, and a few examples of such
drawbacks are:

• The flexure hinges are capable of providing relatively low levels
of rotations.

• The rotation is not pure because the deformation of a flexure is
complex, as it is produced by axial shearing and possibly torsion
loading, in addition to bending.

• The 

 

rotation center

 

 (for short flexure hinges, this role is assumed by
the symmetry center of the flexure) is not fixed during the relative
rotation produced by a flexure hinge as it displaces under the action
of the combined load.

• The flexure hinge is usually sensitive to temperature variations;
therefore, its dimensions change as a result of thermal expansion
and contraction, which leads to modifications in the original com-
pliance values.

For two-dimensional applications in which the flexure hinge is fabricated
by removing material from a blank piece, the manufacturing processes that
are being utilized for this purpose include end-milling, electrodischarge
machining (EDM), laser cutting, metal stamping, or photolithographic tech-
niques for microelectromechanical systems (MEMS). In two-dimensional
applications, the flexure is supposed to be compliant only about one axis
(the 

 

input

 

, 

 

compliant

 

, or 

 

sensitive

 

 

 

axis

 

), along which the relative rotation
between the adjacent rigid parts is taking place, and stiff (as much as pos-
sible) about all other axes and motions. The two-dimensional flexure hinges
are usually symmetric about both the longitudinal and middle transverse
axes. There are cases in which the longitudinal-axis symmetry is violated
(only one side of the flexure is machined whereas the other side is flat, for
instance), but these cases are less frequent. 

In three-dimensional applications, the flexure hinge can be machined by
lathe-turning or precision casting. Two-axis flexure hinges, for instance, enable
bending and the resulting relative rotation about two mutually perpendicular
compliant axes generally at different spring rates. For other flexure hinge
configurations that have rotational symmetry (they are revolute), bending is
nonspecifically possible about any axis that is perpendicular to the axial direc-
tion; therefore, the compliant axis can instantaneously be set by the loading/
boundary conditions of the three-dimensional compliant mechanism applica-
tion. In order to be consistent with the terminology that has already been
utilized so far, such flexure hinges are called 

 

multi-axis

 

. Figure 1.3 illustrates
single-, multi-, and two-axis flexure hinges. It is obvious that a reciprocal
dependence exists between the geometry of a specific flexure hinge and the
type of application in which it is incorporated, as illustrated in Figure 1.4.
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Single-axis flexure hinges are designed for two-dimensional compliant mech-
anisms that have a planar motion, whereas two- and multi-axis flexures are
implemented in three-dimensional applications in order to take advantage of
the capacity to producing relative rotation about two or more compliant axes.

 

FIGURE 1.3

 

Three main categories of flexure hinge configurations: (a) single-axis; (b) multiple-axis (revo-
lute); (c) two-axis.

 

FIGURE 1.4

 

Relationship between the flexure hinge configuration and the type of application.

(a)

(b)

(c)

Compliant axis

Compliant axis
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compliant axis Primary
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Three-dimensional
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Two-dimensional
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Flexure hinges are largely utilized in the automobile and aviation indus-
tries in such applications as acceleration/speed/position sensors, adaptable
seats, air bags, fault-tolerant connectors, single-surface independent aircraft
control devices, actuators for configurable-geometry foils, steering columns,
antifriction bearings, suspension systems, satellite small-angle tilting mech-
anisms, laser-beam communication systems between spacecraft, or flexible
couplings. The biomedical industry is also a beneficiary of mechanisms that
are based on flexure hinges, and applications in this category include devices
for vascular catheters, urethral compression devices, intravascular endopros-
theses, cardiac massage apparatuses, orthotic devices, and biopsy devices.
Other areas such as the computers and fiberoptics industries also have appli-
cations that incorporate flexure hinges; examples here include disc drive
suspensions, laser systems, optical mirrors, optical discs, microscopes, cam-
eras, print heads, optical scanning equipment, vibrating beam accelerome-
ters, keyboard assemblies, kinematic lens mountings, and rotary actuators
for disc drives. Designs found in various other fields are based on flexure
hinges; a few application examples are coin packaging systems, systems for
remotely playing percussion musical instruments, collapsible fishing net
mechanisms, table-tennis ball retrieving systems, snow blade attachments,
foot propulsion devices for float tube users, bicycle seats, steerable wheels
for roller and ice skates, respiratory masks, grinding/polishing machines,
fluid jet cutting machines, and flywheels. The compliant MEMS are almost
entirely based on microdevices that generate their motions by means of
flexure-like members; examples in this industry include optical switches,
miniature load cells, flexible mounts for imaging masks, load-sensitive res-
onators, gyroscopes, gravity gradiometers, disc memory head positioners,
wire bonding heads, microfluidic devices, accelerometers, scan modules for
bar code readers, and cantilevers for microscopy.

A compliant (or flexible) mechanism is a mechanism that is composed of
at least one component (member) that is sensibly deformable (flexible or
compliant) compared to the other rigid links. The compliant mechanisms,
therefore, gain their mobility by transforming an input form of energy
(mechanical, electric, thermal, magnetic, etc.) into output motion, as illustrated
in Figure 1.5.

 

FIGURE 1.5

 

Schematic representation of a compliant mechanism in terms of its energy trade.
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Large numbers of compliant mechanisms are constructed of rigid links
that are interconnected by flexure hinges designed to undergo relatively low
levels of rotation. Because of the advantages that were previously enumer-
ated, the flexure hinges and the rigid links are most preferably built in a
monolithic configuration (this is particularly valid for two-dimensional
applications). The present work intends to cover this predominant category
of compliant mechanisms that incorporate flexure hinges. A relatively
reduced number of compliant mechanisms have compliant links, in addition
to, or other than, the flexure hinges which are specifically designed to
undergo large deformations; applications include snap-trough devices with
compliant members that can substantially bend or buckle. Figure 1.6 illus-
trates the two different categories of flexible connectors mentioned earlier.

A brief discussion on terminology would be useful at this stage in order
to clarify the two main denominations used in this book: 

 

flexure hinges

 

 and

 

compliant mechanisms

 

. In a paper published in 1965, Paros and Weisbord

 

1

 

gave a thorough analytical presentation of single-axis and two-axis circular
flexure hinges. The authors of this paper interchangeably utilized the terms

 

flexure hinge

 

 and 

 

flexure

 

 to denote a mechanical member that is “compliant
in bending about one axis but rigid about the cross axes” and mentioned
that flexure hinges are incorporated in applications where angular motion
is required about an axis—the compliant axis. The key merit of this seminal
work consisted in the clear mathematical definition of a flexure hinge as a
spring element that displays two distinct behaviors: It is compliant about
one axis, in order to produce the desired rotation, and stiff (as much as
possible) in all other motions about the other axes, in order to prevent or
minimize the respective motions. Paros and Weisbord

 

1

 

 provided analytical
equations, both exact and approximate, for the spring rates (reciprocal to
compliances) of single-axis and two-axis circular symmetric flexures in terms
of the motions generated through consideration of bending and axial effects.
The alternative terminology of 

 

flexural pivot

 

 has also been utilized over the
years in referring to the same mechanical member, but the term has also
been applied to designate a special application design that will be presented
in Chapter 7. The 

 

notch hinge

 

 terminology is also being employed by several
authors (for instance, see Smith

 

2

 

), especially for single-axis flexure hinges,
in order to emphasize the prevalent fabrication procedure of such flexures,

 

FIGURE 1.6

 

Compliant mechanisms base their motion on two types of flexible connectors: (a) flexure hinge;
(b) long flexible link.

Flexure hinge
Long flexible link

(a) (b)

 

1367_Frame_C01  Page 6  Friday, October 18, 2002  2:41 PM



 

Introduction

 

7

which mainly removes material from a blank piece in order to obtain the
final flexure configuration. The intention of preserving the original termi-
nology introduced by Paros and Weisbord

 

1

 

 will be evident within this book,
however. The terms 

 

flexure hinge

 

 or simply 

 

flexure

 

 will be used to denote the
flexible member that produces relative and limited rotation between two
rigid links through its bending. Also employed will be the notions of 

 

single-
axis

 

, 

 

two-axis

 

, and 

 

multi-axis

 

 flexures to address the capability of producing
rotation about one axis or about two or many different axes, respectively, as
well as the term of 

 

compliant 

 

(

 

sensitive

 

)

 

 axis

 

 to denote the rotation axis. The
term 

 

compliance

 

 will also be employed in the original definition given by
Paros and Weisbord

 

1

 

 such that the term will refer to the quantity that is the
reciprocal of one flexure’s spring rate (or stiffness).

Whereas there is relatively little dispute over the accepted terminology of
flexure hinges, the other term, 

 

compliant

 

, which is key to this book, deserves a
bit of discussion. In a book written in 1993, Midha

 

3

 

 employs the qualifiers

 

elastic

 

 or 

 

flexible

 

 for all the mechanisms that are subject to elastic deformations,
whereas 

 

compliant

 

 mechanisms are considered to be the subclass of flexible
mechanisms that undergo 

 

large

 

 deformations. A closer consideration of
this separation between elastic, as a larger group, and compliant, as a com-
ponent subgroup, would suggest that the distinction is primarily situational/
functional and not structural. It can easily lead to the interpretation or inference
that a mechanism undergoing large deformations is compliant, whereas the
same mechanism, subject to small deformations, is elastic. On the other hand,
the literature dedicated to this topic currently utilizes the term 

 

compliant

 

 (see,
for instance, Howell

 

4

 

) to denote mechanisms that gain mobility through
deformations of their elastic components without any specific mention of
the distinction between small and large displacements. Historically speak-
ing, the term 

 

compliance

 

 is rather new, compared to 

 

elastic

 

 or 

 

flexible

 

, but
appears to be a convenient and therefore preferred qualifier in the vast
majority of titles that cover research dedicated to large- and/or small-scale
mechanisms. Based on these considerations, the term 

 

compliant

 

 will consis-
tently be utilized throughout this book to denote and encompass those
mechanisms that produce their output motion through the elastic deforma-
tion of their flexible connectors (the flexure hinges in the present case). Such
usage is by no means a departure from the distinction promoted by Midha,

 

3

 

and 

 

compliant

 

, in the sense utilized here, implies no specific and therefore
substantial differences compared to the semantically equivalent terms of

 

elastic

 

 and 

 

flexible

 

. It is also consistent with the early denominations intro-
duced by Paros and Weisbord,

 

1

 

 who utilized the term 

 

compliant

 

 to denote
the capacity of deformation in bending about an axis of a flexure hinge. 

Another disputable topic is whether these devices that are based on flexure
hinges are mechanisms or just plain structures. The problem is not trivial,
at least from a formal standpoint, because, on one hand, the compliant
devices are monolithic (and can therefore be considered as being structures),
but, on the other hand, they are mobile and transform a form of energy into
output motion (and as a consequence can be considered mechanisms). As also

 

1367_Frame_C01  Page 7  Friday, October 18, 2002  2:41 PM



 

8

 

Compliant Mechanisms: Design of Flexure Hinges

 

pointed out by Howell,

 

4

 

 the functional role of these devices of producing
output motion should outweigh the structural reality of their construction,
and 

 

mechanism

 

 appears to be a term that is suitable for these applications.
The similarity between flexure hinges and rotary bearings, as previously
discussed, can also be invoked in favor of using the term 

 

mechanism

 

 in
conjunction with 

 

compliant

 

.
This book comes at a time when two excellent monographs dedicated to

flexures and compliant mechanisms have already made their impact in this
field. Specifically, the books of Smith

 

2

 

 and Howell

 

4

 

 bring a wealth of infor-
mation that is particularly useful to the designer/researcher involved with
flexure mechanisms. The two above-mentioned monographs are also instru-
mental to introducing the main notions, as well as the more subtle aspects
of these topics, into the domain of graduate study. This book attempts to
treat a few novel aspects, however, and a few explanations will be given
next in this respect.

It is a matter of evidence that an overwhelming number of compliant
mechanisms utilize a reduced pool of flexure hinge configurations. Apart
from the constant (either rectangular or cylindrical, wire-like) cross-section
designs that present the inconvenience of high stress concentration at the
areas joining the rigid links, two other geometries—the circular and corner-
filleted ones (the configurations are shown in Figure 1.7)—almost exclu-
sively occupy the space of choices for flexure hinges.

 

 

 

The simplicity of their
geometry and the relative ease of fabrication are the main reasons for the
widespread use of these two types of flexures, especially in two-dimensional,
compliant mechanism applications. In addition, both configurations come
with the advantage of being able to reduce the stress levels through the
filleted regions at their corners (ends). Closed-form compliance equations
giving the spring rates for circular flexure hinges were produced by Paros
and Weisbord,

 

1

 

 while the corner-filleted flexure hinges were defined more
recently in terms of closed-form compliances by Lobontiu et al.

 

5

 

 
In chronological sequence, some other new flexure configurations have made

their debut lately, including the elliptic flexures, introduced by Smith et al.

 

6

 

and further modeled and characterized by Lobontiu et al.,

 

7

 

 or the parabolic

 

FIGURE 1.7

 

Two commonly utilized flexure hinge configurations for two-dimensional applications: (a)
circular; (b) corner-filleted.

(a) (b)
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and hyperbolic flexures, introduced by Lobontiu et al.

 

8

 

 All these flexure
hinges are single axis and therefore are designed to cover two-dimensional
compliant mechanism applications. The book of Smith

 

2

 

 includes presentation
of and gives the simplified spring rates (based on an extrapolation of the
results derived by Paros and Weisbord

 

1

 

) for a few revolute flexure configu-
rations. Lobontiu and Paine

 

9

 

 derived closed-form equations that fully define
the compliant behavior of revolute corner-filleted flexure hinges. This book
introduces several new configurations for both two- and three-dimensional
applications by giving closed-form compliance equations in a unitary man-
ner. In addition to the flexure types mentioned above, the inverse-parabolic
and secant profiles are treated here as both single-axis constant-thickness
members and multiple-axis revolute configurations. The inverse parabolic
profile is also utilized to define the two-axis flexure hinge in terms of its
compliances. 

Newly introduced two-dimensional applications include flexure hinges
that have a mixed and nonsymmetric longitudinal profile made up of a
straight segment line and one of the curves that were already mentioned for
the longitudinally symmetric flexure hinges. The matter of having an
extended domain with several options for flexure configurations is not the
result of a mere mathematical exercise and is not at all unnecessary, as it
might first appear. The compliant behavior of flexure hinges and, therefore,
the overall response of a flexure-based compliant mechanism largely depend
on the specific geometry of the flexure for a given material. Slight alterations
or variations in geometry can produce results that are sensible at the response
level. This aspect is particularly important in mechanisms where precision
is a key performance parameter or where a finely tuned output is expected
in terms of displacement, force, or frequency (resonant) response. The book
not only gives full compliance equations for a large variety of flexure hinge
configurations but also qualifies and compares the flexures in terms of per-
formance criteria such as:

• Capacity of rotation
• Precision of rotation (sensitivity to parasitic effects)
• Stress levels
• Energy consumption/storage

This complete (full) compliance approach is utilized to naturally model the
quasi-static response of flexure-based compliant mechanisms in terms of
performance criteria such as:

• Output displacement/force (mechanical advantage)
• Stiffness
• Energy consumption
• Precision of output motion

 

1367_Frame_C01  Page 9  Friday, October 18, 2002  2:41 PM



 

10

 

Compliant Mechanisms: Design of Flexure Hinges

 

All compliances for every flexure hinge discussed in this book, as well as
the subsequent quasi-static analysis of flexure-based compliant mechanisms,
are developed by utilizing Castigliano’s displacement theorem, which is
formulated based on the strain energy stored through elastic deformations.
This book essentially develops a process of discretization through which the
compliance (stiffness), inertia, and damping characteristics are derived for
a large variety of flexure hinges, both analytically and by means of the finite
element technique, as suggested in Figure 1.8.

By this modeling process, a flexure hinge is transformed into a complex
mass-dashpot system defined individually and independently about its
defining degrees of freedom (DOFs). For a three-dimensional flexure hinge,
one of its ends can move with respect to the other one (presumed fixed) by
three translations and three rotations as sketched in Figure 1.9. Consequently,
a three-dimensional flexure hinge can be modeled as a six-DOF member
when only the position of one end relative to the opposite one is of interest.
As mentioned previously, this book will model and analyze an entire class
of three-dimensional flexures (all flexure configurations possessing revolute
symmetry), the so-called multiple-axis category. 

Another class of three-dimensional flexure hinges comprises two-axis con-
figurations that can accommodate bending about two perpendicular axes,

 

FIGURE 1.8

 

Discretization process for flexure hinges.

 

FIGURE 1.9

 

Three-dimensional flexure hinge with six degrees of freedom when the motion of one end is
related to the opposite end.
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axial and shearing loads, but are not designed to handle torsion (in general)
and therefore possess five DOFs (all displacements/rotations indicated in
Figure 1.9, except the torsional rotation angle 

 

θ

 

1

 

x

 

). The three-DOF category
is composed of flexure hinges that have a two-dimensional motion and are
single axis. Bending, axial, and shearing effects can be modeled for this type
of flexure so that only 

 

u

 

1

 

x

 

, 

 

u

 

1

 

y

 

, and 

 

θ

 

1

 

z

 

 are valid displacements at point 1 in
Figure 1.9. By defining the lumped-parameter compliance, inertia, and
damping properties of a specific flexure hinge, modal and dynamic modeling
and analysis of flexure-based compliant mechanisms become possible in a
standard way.

In modeling and analyzing compliant mechanisms, the pseudo-rigid-body
model approach is the almost-exclusive tool that is currently utilized. This
concept has been introduced and then developed and extensively described
in terms of applications by Midha et al.

 

10

 

 and Howell and Midha

 

11–13

 

 for
macroscale compliant mechanisms, while Jensen et al.,

 

14

 

 for instance, pre-
sented its implementation at the microscale level of MEMS applications.
Essentially, the pseudo-rigid-body model treats a flexible link (a flexure
hinge) as a torsional spring, in terms of its compliant behavior. The large-
deformation assumption is utilized to derive an approximate expression for
the flexure’s torsional spring rate, and classical methods of rigid-body mech-
anisms are further used to study the compliant mechanism motion. Complete
details of this modeling approach can be found in the recently published
monograph of Howell.

 

4

 

 Remarkable results from applying this concept to com-
pliant mechanisms have been obtained and reported by Anathasuresh and
Kota,

 

15

 

 Murphy et al.,

 

16

 

 Brockett and Stokes,

 

17

 

 Saggere and Kota,

 

18

 

 and Kota
et al.,

 

19

 

 to name just a few examples.
A few remarks will be made in the following regarding the application of

the pseudo-rigid-body model to compliant mechanisms that incorporate
flexure hinges of the types discussed in this book. A first question that arises
is whether a flexure hinge can be comprehensively represented as a purely
rotational joint equipped with a torsional spring. Figure 1.10 illustrates a
single-axis flexure hinge with a bending moment, shearing force, and axial
load acting at one end, as well as the corresponding torsional spring model
that results from the pseudo-rigid-body approach. It is evident that the effect
of the axial loading (which is almost always present in a flexure-based
compliant mechanism) cannot be modeled through a torsional spring. Sim-
ilarly, the effect of the force 

 

F

 

1

 

y

 

 in Figure 1.10 produces shearing in addition
to creating bending with respect to the opposite fixed end, but a torsional
spring cannot model/capture the effect of compliance in the vertical trans-
lation, as generated by this force. The capacity of incorporating shearing
effects in a spring-like model is particularly important for short beam-like
members (and many flexure hinges in compliant mechanism applications
are short). As a consequence, at least two other springs would have to
accompany the regular (and single) torsional spring that defines the compli-
ant behavior of a flexible connector according to the pseudo-rigid-body
model approach.
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Another aspect that requires clarification is the large-displacement assump-
tion that stands at the core of deriving the torsional spring stiffness according
to the pseudo-rigid-body model approach. Several cases exist where the
flexible connectors in compliant mechanisms are specifically designed to
undergo large deformations and, generally, such components are built as
long and slender members capable of being subjected to large deformations
without exceeding the allowable stress limits. Applications of compliant
mechanisms with flexible links that are operating under buckling conditions
as snap-through components or return springs are in operation at both
the macro- and MEMS-scale. A considerable number of flexure-based com-
pliant mechanisms, however, are intended to produce small levels of output
motion; therefore, the flexure hinges (often short) are experiencing only small
deformations that confine them within acceptable levels of stress and the
large-displacement theory does not have to apply. The main theoretical dif-
ference between the small- and large-displacement theories consists in the
fact that for large-displacement problems the curvature produced through
bending is taken in its exact form, namely:

(1.1)

whereas the small-displacement theory assumes that the slope is small and,
as a consequence, the second power of the slope is negligible. Therefore, the
curvature can be approximated to:

(1.2)

 

FIGURE 1.10

 

Two-dimensional flexure hinge modeled as a torsionally compliant spring by means of the
pseudo-rigid-body model approach.
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It should be noted that the flexure hinges are approached in this book pri-
marily as members that are subjected to small-displacements. This assump-
tion stems from the reality that in so many engineering applications the
flexure hinges really behave according to this model, which enables utiliza-
tion of the linear (or first-order) bending theory and derivation of the spring
rates for various flexure configurations. A special subsection in Chapter 6 is,
however, dedicated to flexure hinges that undergo large deformations.

Figure 1.11 shows the force-displacement characteristics for a ductile
(metallic) material and for a brittle one. The characteristics are just qualita-
tive, but they highlight two plausible material scenarios. Ductile materials
are extensively utilized in macro compliant mechanisms, whereas silicon or
other silicon-based materials that are quasi-exclusively applied in MEMS are
recognized to be brittle.

For ductile materials, the deformations generally must be low in order to
keep the operation point shown in Figure 1.11 on the linear portion of the
characteristic, which automatically ensures small strains and stresses. In the
case of the brittle material in the same figure, it fails at levels of deformations
that can be considerably larger than the ones of a ductile material; therefore,
components built of such materials can endure large deformations more
easily and without the danger of fracture.

It should be mentioned that the large-displacement provision has been
applied so far in all published research by following the pseudo-rigid-body
model approach only for constant cross-section flexible members. The usual
flexure hinges, however, are found in many cases of variable geometry, and
the existing body of theory that treats the problem of large displacements
of flexible connectors can hardly be applied to real-life flexures. Chapter 2
provides specific comments and a large amount of plots to indicate the

 

FIGURE 1.11

 

Force-deflection characteristics in the linear and nonlinear ranges for a ductile and a brittle
material, respectively.
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dispersion in compliance that can be expected when a variable-geometry
flexure hinge is simplified to a constant cross-section counterpart.

The book also contains a chapter that is entirely dedicated to modeling
the flexure hinges by means of the finite-element technique. A flexure hinge
is modeled as a three-node beam element with three DOFs per node in the
case of single-axis configurations, five DOFs per node for two-axis flexures,
and six DOFs per node for multiple-axis (revolute) flexure hinges. A generic
finite-element formulation is given for the three categories of flexure hinges
mentioned above in terms of defining the elemental stiffness, mass, and
damping matrices. Explicit forms of these elemental matrices are derived for
single-axis corner-filleted and constant cross-section flexure hinges. These
equations can simply be implemented in commercially available finite-element
software and further utilized to perform static/dynamic analyses.

Another chapter is dedicated to more advanced problems involving the
behavior of flexure hinges. Included are topics such as the torsion of prismatic
flexures (single and multiple axis), thermal effects, flexures composed of sev-
eral materials, actuation of flexure-based compliant mechanisms, buckling
of flexure hinges, large deformations of flexure hinges, and fabrication pro-
cedures and materials for macro- and microsystem applications. Applications
of flexure hinges and flexure-based compliant mechanisms that are taken
from both the macroscale and microscale (MEMS) worlds are presented and
discussed in yet another chapter.
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Compliance-Based Design of Flexure Hinges

 

2.1 Introduction

 

This chapter is dedicated to defining a range of flexure hinge configurations
based on their compliant characteristics. Several new flexure geometries are
introduced here alongside the presentation of other known types; all of them
are characterized by closed-form compliance equations that are derived ana-
lytically in a generic form and then specific expressions are given for all
individual flexures.

A flexure hinge is actually a complex spring element that can respond to
and transmit both rotation and translation, each individual flexure hinge
being accompanied by a complete set of compliances (or, conversely, spring
rates) that define its mechanical response to quasi-static loading. The rigor-
ously derived closed-form compliance equations are instrumental in char-
acterizing a flexure hinge in terms of its capacity of rotation, precision of
rotation, sensitivity to parasitic input, and maximum stress levels. Function-
ally, a flexure hinge can be modeled as a member that is capable of flexible
reaction to bending, axial loading, and, in the case of configurations for three-
dimensional applications, torsion. The shearing forces and their effects must
also be taken into consideration, especially for short flexure hinges. All these
different loading effects will be separately analyzed and the respective com-
pliances will be derived for each degree of freedom (DOF) describing a
possible motion (either translation or rotation) by the flexures.

Paros and Weisbord

 

1

 

 introduced the compliance-based approach to flexure
hinges in 1965 by giving the exact compliance equations, as well as the
approximate engineering formulas for symmetric circular and right circular
flexure hinges with one and two sensitive axes. Only decades later were
other flexure configurations presented using the analytical approach. Smith
et al.,

 

2

 

 for instance, introduced the elliptical flexure hinges by extrapolating
the results of Paros and Weisbord

 

1

 

 from circular to elliptical geometry.
The same procedure of applying and conditioning the approach and equa-
tions given in Paros and Weisbord

 

1

 

 was applied by Smith

 

3

 

 to present the
circular toroidal flexure hinge. Lobontiu et al.

 

4

 

 gave the exact compliance
equations for symmetric corner-filleted flexure hinges and introduced a more
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complete form of the compliance-based approach to flexure hinges by quan-
tifying and characterizing the capacity of rotation, precision of rotation, and
stress levels. A similar approach was followed by Lobontiu et al.,

 

5

 

 where the
symmetric parabolic and hyperbolic flexure configurations were introduced,
and by Lobontiu et al.,

 

6

 

 who developed a unitary approach to circular,
elliptical, parabolic, and hyperbolic flexure hinges as members of the conic-
section family. The compliance-based approach was also utilized by Lobon-
tiu and Paine

 

7

 

 in order to characterize the revolute corner-filleted flexure
hinge for three-dimensional applications. A three-dimensional application
was also presented by Canfield et al.,

 

8

 

 who formulated the compliances that
characterize a cylindrical (wire-like) flexure hinge that is constructed of a
superelastic shape memory alloy (Nitinol).

The vast majority of the specific research reported to date focuses on
applications that utilize circular and/or corner-filleted flexure hinges for
which the analysis is performed by means of commercial finite element
software. All of these finite-element results, together with the few exceptions
that pursued direct finite-element formulation without resorting to commer-
cially available software, will be presented in the chapter dedicated to
approaching the flexure hinges by means of the finite element technique.

A brief discussion will explore the taxonomy of flexure hinges, based on
their functional principles and associated geometric configuration. At a gen-
eral level, the flexure hinges can be separated into three main categories:

 

single-axis

 

 (generally of constant width), 

 

multiple-axis

 

 (of revolute geometry),
and 

 

two-axis

 

, as indicated in Figure 2.1.
The sensitive axis, as discussed in Chapter 1, defines the operational

motion and the main function of a flexure hinge, which is designed to
produce limited relative rotation between two adjacent rigid members. The
flexure hinges that pertain to the single-axis category must be sensitive only
in rotation about one axis and, therefore, to bending that generates this type
of motion. Figure 2.2 illustrates the geometry of a flexure hinge that possesses
one sensitive axis.

 

FIGURE 2.1 

 

Main classes of flexure hinges.
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Generally, such a flexure hinge has a rectangular cross-section with con-
stant width and variable thickness. The sensitive or compliant axis, as indi-
cated in Figure 2.2, lies in the cross-section of minimum thickness where
maximum bending compliance is present and is perpendicular to the plane
formed by the longitudinal and transverse axes. This flexure configuration
is designed for planar applications where the two adjacent rigid members
are expected to experience relative rotation about the sensitive axis. Although
not desired, translations along the flexure’s longitudinal and transverse axes
and/or out-of-plane motions accompany the bending about the sensitivity
axis.

The flexure hinges with multiple sensitive axes have a revolute geometry,
as illustrated in Figure 2.3.

 

 

 

The sensitive axis still lies in the cross-section of
minimum thickness but has no preferential orientation as permitted by the
circular symmetry of the cross-section. This type of flexure hinge can thus
be employed in three-dimensional applications where the direction of the
rotation (sensitive) axis is not 

 

a priori

 

 specified, such as in cases where the
two adjacent rigid members undergo nonpreferential relative rotation.

 

FIGURE 2.2 

 

Single-axis flexure hinge of constant-width and rectangular cross-section.

 

FIGURE 2.3 

 

Multiple-axis flexure hinge of circular cross-section.
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A flexure hinge that belongs to the two-axis category is sketched in Figure 2.4.
Similar to a single-axis configuration, this flexure hinge will preferentially
bend about an axis of minimum bending compliance, called the primary
sensitive axis, that lies in the cross-section of minimum thickness 

 

t

 

. Also
positioned in the same cross-section, and most often perpendicular on the
primary sensitive axis, is a secondary sensitive axis. Compared to the pri-
mary sensitive axis, the compliance of the secondary axis is slightly smaller,
in order to capture and be able to react to higher bending loading that might
act about this direction. Although not absolutely necessary, the cross-section
of this flexure hinge is rectangular. Applications include cases where two
adjacent rigid members must perform the relative rotation about the primary
sensitive axis on a regular basis, while preserving the capacity of relative
rotation about the secondary axis in exceptional situations such as when they
have to react to higher loading. While the two-axis design that is presented
in this book arranges the two flexures in a collocated manner, another pos-
sibility is also possible. Two-axis flexure hinges designed in a serial config-
uration and presented by Paros and Weisbord

 

1

 

 for circular configurations
preserve the convenience of having each flexure hinge produced according
to the standard design (that gives the closed-form spring rates) but require
the extra length necessary to locate the two flexures in a serial manner.

Another criterion of classifying the flexure hinges refers to their geometric
symmetry. The flexure hinges can be identified by their symmetry about the
longitudinal and/or transverse axis, as indicated in Figure 2.5, where several
configurations are mentioned as the result of various possible symmetry
combinations.

 

 

 

For the sake of simplifying both explanation and understand-
ing, the flexure hinges of Figures 2.2 to 2.4 are fully symmetric, although
this is not a necessary requirement.

For single-axis flexures, four different cases are possible with respect to
symmetry, ranging from a full-symmetry configuration (case 1 in Figure 2.5a)
to a nonsymmetric one (case 4 in Figure 2.5a). The multiple-axis flexures are
always symmetric about the longitudinal axis. As a direct result, only the
two situations presented in Figure 2.5b are possible.

 

FIGURE 2.4 

 

Two-axis flexure hinge of rectangular cross-section.
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The two-axis flexure hinge configurations can be derived from the single-
sensitive-axis cases by combining the four possible situations defined in
terms of the primary axis with four more independent and similar situations
that occur from symmetry about the secondary axis. The overall palette will
therefore consist of 16 individual configurations ranging within the domain
bounded by the case of full-symmetry about both compliant axes to the
design of no symmetry about both sensitive axes. Figure 2.6 illustrates flex-
ure configurations that present longitudinal, transverse, and full or complete
symmetry.

An important assumption that is basic to all further compliance derivation
regards the boundary conditions of the flexure hinges. It is with tacit and
common acceptance that a flexure hinge is assumed to be fixed–free, and
this has been the case with all analytical approaches to flexure hinges ever
since the work of Paros and Weisbord.

 

1

 

 Figure 2.7 indicates this boundary
condition for a generic flexure hinge.

 

 

 

The boundary condition of Figure 2.7
is obviously valid when one rigid link is actually fixed, but it also stands
when both adjoining rigid links are mobile, as the relative motion between
the members can be replicated by considering that one link is fixed.

Another aspect related to the discussed boundary condition addresses the
degrees of freedom provided by a flexure hinge, a subject that was briefly

 

FIGURE 2.5 

 

Flexure hinge typology defined in terms of symmetry: (a) constant-width, rectangular cross-
section, single-axis flexure hinge; (b) multiple-axis revolute flexure hinge with circular cross-
section.
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introduced in Chapter 1. Figure 2.8 illustrates a fixed–free generic flexure
hinge member subjected to three-dimensional loading at its free end.

 

 

 

In this
generic configuration, the free end has six DOFs: three translations, 

 

u

 

1

 

x

 

, 

 

u

 

1

 

y

 

,

 

u

 

1

 

z

 

, and three rotations, 

 

θ

 

1

 

x

 

, 

 

θ

 

1

 

y

 

, 

 

θ

 

1

 

z

 

, with respect to the reference frame that

 

FIGURE 2.6 

 

Symmetry in flexure hinges: (a) longitudinal;
(b) transverse; (c) longitudinal and transverse
(complete).

 

FIGURE 2.7 

 

Boundary conditions for a generic flexure hinge: (a) link-flexure hinge-link sequence; (b)
fixed–free boundary conditions.
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is positioned at this point. These degrees of freedom can be transferred to
the rigid link that is physically attached at this point in a real application.
Characterizing the motion of the free end of the flexure with respect to the
six DOFs will provide important information with respect to the capacity of
rotation and sensitivity to parasitic motion, as well. Also important are the
translations at midpoint 2 of the flexure hinge shown in Figure 2.8. This
point will be referred to in the following discussion as the 

 

center of

 

 

 

rotation

 

,
and its motion (the three translations, 

 

u

 

2

 

x

 

, 

 

u

 

2

 

y

 

, and 

 

u

 

2

 

z

 

) is very important in
defining the precision of rotation.

As mentioned earlier in this chapter, a flexure hinge can functionally be
considered as a compound spring that is capable of linear elastic reaction
about the degrees of freedom that are subjected to external input motion. By
considering that the bending-produced rotation is paramount to the flexural
functionality, a flexure hinge can be modeled and represented as a pseudo-
rigid body, according to the research of Howell and Midha,

 

9

 

 Murphy et al.,

 

10

 

and Howell,

 

11

 

 by attaching torsional stiffness to a classical rotation joint. It
should be mentioned, however, that a single-axis flexure hinge, for instance,
enables two-dimensional (plane) relative motion of one rigid link with respect
to another about three DOFs. As indicated in Figure 2.9a, two translations
about the 

 

x

 

 and 

 

y

 

 axes and one rotation about the sensitive axis of the hinge
are generally possible.

 

 

 

Each of these motions possesses the characteristics of
a spring, and each corresponding stiffness plays a role in the overall defor-
mation of the flexure in a realistic compliant mechanism where the loading
is general and comprises forces that are directed along the 

 

x

 

 and 

 

y

 

 axes, in
addition to a pure bending moment (that would produce the desired rotation
about the sensitive axis and will activate the torsional stiffness of the flexure). 

A model of the single-axis flexure hinge that captures the spring response
corresponding to the three DOFs is represented in Figure 2.9b. The situation
becomes even more complicated when additional degrees of freedom must
be taken into consideration in cases where other motions become important
and their effect cannot be overlooked. This aspect will be covered thoroughly
in this chapter, as closed-form compliance equations will be derived to
describe the spring behavior about every degree of freedom for all flexure
hinges that will be presented.

 

FIGURE 2.8 

 

Main free-end and midpoint degrees of freedom in a generic flexure hinge.
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The generic mathematical formulation will be developed by first present-
ing the tools that are used in deriving the various compliance closed-form
equations of a flexure hinge. These compliances are subsequently used to
fully study a flexure hinge by defining and analyzing its capacity of rotation,
sensitivity to parasitic motion, precision of rotation, and stress levels.

The single-axis class will include several flexure hinges for two-dimensional
applications such as circular, corner-filleted, elliptical, parabolic, hyperbolic,
inverse parabolic, and secant. The multiple-axis category will present revo-
lute flexures for three-dimensional applications such as the ones named for
the previous class. Closed-form compliance equations will be derived for
the inverse parabolic flexure hinge with two sensitive axes. A comprehensive
set of numerical simulations concluding this chapter will concentrate exten-
sively on each flexure and will highlight the main individual features by
comparisons that are based on several performance criteria.

 

2.2 Generic Mathematical Formulation

 

2.2.1 Introduction

 

This part of the work will briefly review some fundamental topics that are
utilized in the subsequent closed-form compliance equation derivation and
characterization of the flexure hinges presented here. The reciprocity prin-
ciple will be presented first. The principle permits rigorous treatment of the
compliance and stiffness notions and is particularly useful in situations
where load-deformation aspects of elastic bodies are of interest. Castigliano’s

 

FIGURE 2.9 

 

Model of the rectangular cross-section flexure hinge with a single axis: (a) degrees of freedom
of one flexure end with respect to the other end (
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, rotation); (b) spring-based
model highlighting the three DOFs.
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displacement theorem will be reviewed next. This theorem represents the
key tool for deriving all closed-form compliance equations that will follow.
An example will accompany the theoretic presentation to better reinforce
the main points of the theorem.

In flexure-based compliant mechanisms, the flexure hinges are the first
components to be failure prone, as they have the foremost exposure to
loading, given their smaller dimensions. A presentation of the theories and
associated criteria of material failure will follow; the discussion is specifically
dedicated to ductile materials and includes coverage of related topics such
as fatigue and stress concentration.

 

2.2.2 The Reciprocity Principle

 

With a few exceptions, the majority of the topics in this book will focus on
linear elastic materials and systems whose main properties are:

• The deformations (deflections or angular rotations) are small (infin-
itesimal).

• The bodies are elastic and therefore the deformations are propor-
tional to the applied loads, according to Hooke’s law.

• The bodies are homogeneous (their properties are the same at all
locations within) and isotropic (their properties are identical irre-
spective of direction).

Although it can independently be utilized for direct calculation purposes,
the reciprocity principle is better known to be useful in developing and
demonstrating various energy principles and theorems in the area of elastic
bodies, such as the virtual work theorem or Castigliano’s theorems, as indi-
cated by Den Hartog

 

12

 

 or Barber,

 

13

 

 for instance. In its most basic form, the
reciprocity principle was first described and demonstrated by Maxwell in
1864, as mentioned by Den Hartog,

 

12

 

 Volterra and Gaines,

 

14

 

 and Timoshenko.

 

15

 

The principle states that for a linearly elastic system, the deformation
produced at a location 

 

i

 

 by a unit load that is being applied at a different
location 

 

j

 

 is equal to the deformation produced at location 

 

j 

 

by a unit load
that acts at 

 

i

 

. In 1872, Maxwell’s reciprocity principle was given a broader
scope through the variant proposed by Betti, who introduced the notion
of “indirect” or “mutual” work to represent the work done by a load at a
specific location through the action of a newly applied load at a different
location. The definition of the reciprocity principle in Betti’s interpretation
was that the indirect or mutual work done by a loading system 

 

i

 

 during
the application of a new loading system 

 

j

 

 is equal to the work done by
the loading system 

 

j

 

 during the application of the loading system 

 

i

 

. The
proof of either Maxwell’s or Betti’s reciprocity principle formulations can
be found in Den Hartog,

 

12

 

 Timoshenko,

 

15

 

 or Ugural and Fenster,

 

16

 

 for
instance.
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A simple example is only discussed here to help in better visualizing the
fundamental features of the principle. Figure 2.10 shows an elastic body that
is kinematically restrained. A force,

 

 F

 

i

 

, is first applied, as indicated in
Figure 2.10a. The force stands for a more generic load consisting of forces
and/or moments that can act on the elastic body at several locations. The
force will generate an elastic deflection at point

 

 i

 

, directed along 

 

F

 

i

 

,

 

 

 

that will
be symbolized by 

 

u

 

ii

 

 

 

(the first subscript denotes the application point and
direction while the second one points out the load that generates it). Assume
now that, while the force 

 

F

 

i

 

 

 

continues to load the body, another load, the
moment 

 

M

 

j

 

,

 

 

 

is applied at location 

 

j

 

, as illustrated in Figure 2.10b. The action
of this newly applied load will generate an additional deflection at 

 

i

 

 that can
be denoted by 

 

u

 

ij

 

 according to the subscript notation that has previously
been introduced. Over this two-phase process, denoted by a superscript 

 

i–j

 

to indicate the time sequence of applying the loads, the force 

 

F

 

i

 

 will perform
a total work that is equal to:

(2.1)

The first term in Eq. (2.1) shows that the work was done quasi-statically, as
the force 

 

F

 

i

 

 is applied gradually from zero to its nominal value 

 

F

 

i

 

. The second
term of Eq. (2.1) indicates that this work was performed statically by a fully
applied

 

 

 

force 

 

F

 

i

 

. During the same process, the moment 

 

M

 

j

 

 also produces a
work that is equal to:

(2.2)

The total work done during this loading sequence will sum up the contri-
butions from 

 

F

 

i

 

 

 

and 

 

M

 

j

 

, namely:

(2.3)

 

FIGURE 2.10 

 

Illustration of the reciprocity principle as applied to a spatially constrained elastic body: (a)
first loading system and its deformations; (b) first and second loading systems and their
deformations.
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Assume now that the order of applying the two loads is reversed, namely
that Mj will first load the elastic body, followed by the force Fi. Applying a
reasoning that is similar to the one previously developed will show that the
total work performed during this reversed loading sequence is equal to:

(2.4)

Because the work done on an elastic structure by a load vector composed
of at least two components should not depend on the order of applying the
individual load components, the works expressed in Eqs. (2.3) and (2.4)
should be equal:

(2.5)

Combining Eqs. (2.3), (2.4), and (2.5) results in:

(2.6)

Equation (2.6) is actually the mathematical expression of Betti’s reciprocity
principle for a particular case where the load vector consists of only two
components. It is worth mentioning that Eq. (2.6) relates two distinct types
of work: one component that is done by a force (a translatory work) and
another component that is produced by a moment (a rotary work). The
principle is obviously valid for connecting the same types of works (trans-
latory to translatory or rotary to rotary), as well.

There were other developments of the reciprocity principle over the years.
The Land–Colonnetti principle (1887 and 1912), for instance, proposed a
model reflecting the reciprocity between the elastic deformations produced
by constraints and those generated by external loading. Volterra (1905) stated
the reciprocity of two elastic dislocations in multiconnected elastic bodies.
In 1928, Volterra presented a generalized theorem of reciprocity that included
all of the above-mentioned formulations as particular cases. More details on
the reciprocity principles can be found in Volterra and Gaines.14 The reci-
procity principle is extremely useful in proving some properties of the load-
deformation relationships for linearly elastic systems. A direct consequence
of the characteristics that govern the behavior of linearly elastic bodies (as
mentioned earlier) is the so-called principle of linear superposition. Accord-
ing to this principle, the deformation at any point in an elastic body under
the action of a load system is equal to the sum of deformations produced
by each load when acting separately. Assuming that n loads act on an elastic
body, the deformation at a specific location i can be found as:

(2.7)

  
W M M Fuj i

j jj j ji i ii
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2
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θ θ
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where Cij are termed influence or weight coefficients that together make up
the compliance or flexibility matrix [C] when the deformations at several
locations of the elastic body are under investigation. The compliance matrix
will connect the deformation vector {u} to the load vector {L} according to
the matrix equation:

(2.8)

Generally, the number of components of the deformation vector {u} is not
equal to the number of loads in the load vector {L}, which means that the
compliance matrix [C] is not square. It is, however, relatively easy to trans-
form [C] into a square matrix, as it is always advantageous for subsequent
matrix manipulation and calculation. It is always possible to relate a defor-
mation at a specific point with the corresponding load applied at the same
point, as shown later in this chapter and, in doing so, the compliance matrix
will become square.

Equation (2.7) clearly indicates that the individual influence coefficient Cij

represents the deformation produced at i by a unit load applied at j. Similarly,
a coefficient Cji will denote the deformation measured at j as produced by a
unit load applied at i. However, according to Maxwell’s reciprocity principle,
these two deformations are always equal; therefore,

(2.9)

which indicates that the square compliance matrix [C] is symmetric. On the
other hand, the superposition principle that was mathematically expressed
in Eq. (2.7) can be formulated in a reverse manner for a linearly elastic system.
Specifically, the load that is applied at a given location of the body is
expressed as the sum of the loads that correspond to each individual dis-
placement, according to the equation:

(2.10)

where the influence coefficients Kij are stiffness coefficients. Equations similar
to Eq. (2.10) can be written for any of the other locations of interest on the
elastic body. They can be collected in a generic equation of the form:

(2.11)

where [K] is the stiffness matrix.
Comparison of Eqs. (2.8) and (2.11) indicates that the stiffness matrix [K]

is the inverse of the compliance matrix [C]:

(2.12)

which is indeed possible because, as previously shown, the compliance
matrix [C] is square and symmetric. In addition, it can be shown that the

  { } [ ]{ }u C L=

  
C Cij ji=

    
L K ui ij j

j

n

=
=

∑
1

{ } [ ]{ }L K u=

[ ] [ ]K C= −1
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compliance matrix [C] is nonsingular. Therefore, the compliance matrix [C]
always has an inverse, which is the stiffness matrix [K], as also demonstrated
by the reasoning of Eqs. (2.8), (2.11), and (2.12).

2.2.3 Castigliano’s Displacement Theorem

Several mathematical tools allow us to determine the deformations of elastic
bodies. While some of them, such as the direct integration method, the
superposition principle (Myosotis method), or the area–moment method, are
specifically tailored for beam-like structures, other techniques based on
energy or variational formulations are more generic and cover a larger area
of mechanical part configuration. Well-known methods in the latter category
include the principle of minimum potential energy (Rayleigh–Ritz), the prin-
ciple of virtual work, Catigliano’s second theorem, the Kantorovitch method,
the Galerkin method, the Trefftz method, the Euler finite-difference method,
and the finite-element method. The interested reader can find more details
and additional data on energy- or variational-based methods in the excellent
monographs of Timoshenko,15 Richards,17 Harker,18 and Langhaar.19

Castigliano’s second theorem (also known as Castigliano’s displacement
theorem) is a very useful technique that allows calculation of the deforma-
tions of elastic bodies under the action of external loading and support
reactions. The theorem is restricted to materials that are linearly elastic and
therefore obey Hooke’s law for stress and strain or, equivalently, load and
deformation. Essentially, the theorem gives a simple and yet elegant math-
ematical tool to calculate a local deformation (either linear or angular) that
is produced by a corresponding external load/support reaction (either force
or moment) acting at that specific location. Specifically, the local deformation
of an elastic body is expressed as the partial derivative of the total strain
energy stored in that body in terms of the force or moment acting at that
location and along the direction of the specified deformation. A prerequisite
of the theorem is that the elastic body under study is sufficiently supported,
meaning that any rigid-body motions (motions allowed by the lax supports
and not produced by elastic deformation) are prohibited. This precondition
is, however, applicable to any other similar method. A second requirement,
specific to Castigliano’s second theorem, is that the strain energy must be
expressed in terms of loads and, consequently, should contain no displace-
ments. As shown in the following, this requirement is easy to comply with,
by the very nature of formulating the strain energy.

The elastic body represented in Figure 2.11 undergoes both linear and
angular deformations under the action of external loading and support reac-
tions. According to Castigliano’s second theorem, the linear displacement at
point i is expressed in terms of the force Fi acting at that location as:

(2.13)u
U
Fi

i

= ∂
∂
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Similarly, the angular deformation is expressed in terms of the moment Mj

acting at point j as:

(2.14)

When the deformation must be evaluated at a point where there is no
external load/reaction, a fictitious load, corresponding to the type of defor-
mation being sought, is artificially applied and the linear or angular defor-
mation is determined by using equations similar to Eqs. (2.13) and (2.14).
The deflection at point k in Figure 2.11 can be found by introducing the
fictitious load  in the form:

(2.15)

Similarly, the rotation at another point l on the elastic body when there is
no actual moment at that location (see Figure 2.11) is given by:

(2.16)

where  is a fictitious moment.
As an undergraduate, Castigliano formulated his versatile theorem in 1879

in his engineering degree’s thesis. Another formulation, known as Cast-
gliano’s first theorem, reverses the causality of the second theorem by
expressing the load that is necessary to produce a specific deformation of
an elastic body based on the strain energy. It is worth noting that Catigliano’s
theorems are also valid for nonlinear elastic materials if the strain energy is
substituted by the complementary energy, as demonstrated by Engesser in
1889. Figure 2.12 indicates the stress–strain curves and the related strain and

FIGURE 2.11 
Schematic representation of Castigliano’s second theorem as applied to a spatially constrained
elastic body.
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complementary energies for linear and nonlinear elastic materials. More
insight into Castigliano’s work, his second theorem, and related energy
methods can be found in dedicated references such as Den Hartog,12 Volterra
and Gaines,14 and Timoshenko.15

For a long, slender member that is generally subjected to bending, shear-
ing, axial load, and torsion, the strain energy is expressed as:

(2.17)

with:

(2.18)

(2.19)

where α is a coefficient that depends on the shape of the cross-section.

(2.20)

(2.21)

All of the above formulations can be concentrated in the following generic
equation that expresses the deformations at a generic point i:

(2.22)

FIGURE 2.12 
Strain energy and complementary energy in strain–stress curves: (a) linearly elastic material;
(b) generally elastic material.
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where {ui} is the deformation vector at point i made up of linear and angular
terms, namely:

(2.23)

{Li} is the load vector comprised of all forces and moments (couples) acting
on the mechanical component as summed up on the interval defined by one
end of the component and the point of interest; [Ci] is the compliance (flex-
ibility) matrix that connects the two vectors defined above.

An example is presented in the following that attempts to clarify the details
of applying Castigliano’s second theorem.

Example
Consider the circular cross-section member that is subjected to a load vector,
as illustrated in Figure 2.13. Assuming that all geometry parameters (cross-
sectional diameter d and length l) and material properties (Young’s modulus
E and shear modulus G) are known, find the following deformations in
algebraic form:

(a) u1y, θ1x

(b) u2x, θ2y

Solution
Figure 2.13 indicates that the deformations required by (a) can directly be
expressed by using Castigliano’s second theorem as given in Eqs. (2.13) and
(2.14), as each can be related to a corresponding load, namely:

(2.24)

(2.25)

Because no external loads or reactions are acting at point 2, two fictitious
loads,  and  must be applied at that point in order to calculate the
deformations required by (b) by means of Eqs. (2.15) and (2.16):

(2.26)

(2.27)

    { } { , }u ui i i
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By taking the partial derivatives of Eqs. (2.17) through (2.21), the deflection
at point 1 becomes:

(2.28)

The other deformations, θ1x, u2x, and θ2y, are expressed similarly by simply
substituting F1y with M1x,  and  respectively, in Eq. (2.28).

The equations for bending moment, shearing force, axial force, and torque
are taken with respect to a generic position on the two distinct intervals, 1–2
and 2–3, positioned at a distance x from the reference system origin. The
equations are:

(2.29)

FIGURE 2.13 
Fixed–free member of constant circular cross-section with free-end loading.
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for the 1–2 interval. The equations for the 2–3 interval are identical to those
of the 1–2 interval, except for:

(2.30)

Equations (2.17) and (2.18) are used to determine the partial derivatives
of Eq. (2.16), and the only nonzero partial derivatives are:

 (2.31)

Equations (2.29) through (2.31) are substituted into Eq. (2.28), which yields:

(2.32)

Carrying out the integrations in Eq. (2.32) produces:

(2.33)

The other required displacement can be expressed in a similar manner as:

(2.34)

(2.35)

(2.36)

2.2.4 Theories and Criteria of Material Failure

It is recognized that mechanical components usually do fail due to one of
the following principal mechanisms: yield failure, fracture failure, or fatigue
failure. The failure phenomenon is currently seen as an irreversible process
that develops locally and through which the macrostructure and operational
performance of the component are negatively altered. Ductile materials
(especially metals) fail by yielding, whereby the deformations exceed the
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proportionality limit and go into the nonrecoverable plastic region. Ductile
materials (e.g., typical metals such as mild steel, aluminum, titanium, copper,
and magnesium and some of their alloys, as well as non-metals such as
Teflon) are capable of undergoing large plastic deformations before fracture.
Brittle materials fail by fracture as they incur only small deformations before
breaking apart, compared to ductile materials. Example of brittle materials
include cast iron, concrete, glass or ceramic compounds, silicon, and silicon-
based compounds. Fatigue failure applies to both ductile and brittle mate-
rials and is caused by stresses less than the ultimate strength. Such stresses
might occur statically on a less frequent basis, when the loads are not applied
repeatedly, but failure manifests itself in time, because cracks, for instance,
develop to critical sizes. More frequently though, the fatigue failure is gen-
erated by cyclic loading, whereby loads and deformations are applied to the
mechanical component more than once in a repetitive manner, as mentioned
by Sandor.20

Other mechanisms of failure, in addition to the ones already mentioned,
are excessive elastic (recoverable) deformation, low stiffness and operation
at resonant frequencies, time deformation under unchanged loading condi-
tions (creep), and unstable response at critical loads (buckling). Because the
vast majority of flexure hinges and flexure-based compliant mechanisms are
fabricated out of metallic or ductile materials, the brief discussion that fol-
lows will focus on yielding and fatigue failure theories only.

2.2.4.1 Yielding Failure Theories and Criteria

As previously mentioned, ductile materials are capable of undergoing large
deformations and entering the plastic domain before fracture occurs. The
large plastic deformations are, in most occasions, unacceptable compared to
the operational and precision requirements; as a consequence, in such cir-
cumstances it is considered that the respective component has failed.
Figure 2.14 shows the stress–strain curve in a uniaxial (tension/compression)
test for a typical metallic (ductile) material. It can be seen that, up to a limit
(called the proportionality limit, σp), the stress–strain relationship is linear
(complying with Hook’s law), and the body is in the elastic domain where
all of the deformation is recoverable. After that point, the loading enters into
the partially plastic region, where the body will suffer unrecoverable defor-
mation. The failure condition, therefore, is considered to take place when
the proportionality limit is exceeded in the uniaxial state of stress.

For a more complex state of stress, as is often encountered in real-life
applications, the failure can be predicted by means of theories of failures.

FIGURE 2.14 
Stress–strain curve in uniaxial loading of a
metallic member.
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Fundamentally, any theory of failure attempts to establish an equivalence
between the real complex state of stress and a simple, uniaxial state of stress
condition by applying a specific prediction criterion, as shown by Barber,13

Ugural and Fenster,16 or Muvdi and McNabb.21

For ductile and isotropic materials, three failure theories can be utilized
to predict the critical condition in a member under a complex state of stress:
the maximum energy of deformation theory (von Mises), the maximum shear
stress theory (Tresca), and the maximum total strain energy theory (Beltrami–
Haigh). Other theories and criteria that better apply to brittle materials
include the maximum principal stress theory (Rankine), the maximum prin-
cipal strain theory (Saint Venant), and the maximum internal friction theory
(Coulomb–Mohr), as indicated by Volterra and Gaines,14 Ugural and Fen-
ster,16 or Muvdi and McNabb.21 Also not discussed here are the failure the-
ories for orthotropic materials, such as the Norris criterion (see Cook and
Young22 for more details) or the criteria dedicated to composite materials,
such as those of Halpin–Tsai or Greszczuk (as shown by Kobayashi23).

According to Ugural16 and Muvdi and McNabb,21 for instance, experimen-
tal results have indicated that the maximum energy of deformation theory
(von Mises) and the maximum shear stress theory (Tresca) provide the best
predictions for ductile material members under a complex state of stress.
They will be addressed in the following text with more emphasis being
placed upon the von Mises failure criterion because this theory, in addition
to being slightly more accurate than the Tresca theory, has an elegant math-
ematical formulation that is extensively employed in tools of engineering
calculation, such as the finite-element technique.

Figure 2.15 illustrates the normal and shear stresses on the positive faces
of an infinitesimal cube that has been removed from an elastic body which
is subjected to a complex state of stress. As known from basic mechanics of
materials (see, for example, Muvdi and McNabb21 or Cook and Young22),
given the particular orientation of the reference frame Oxyz, where the refer-
ence axes are aligned with the principal directions 1, 2, and 3 (as indicated
in Figure 2.15), one can find the principal stresses (that have extreme values)
as roots of the three-degree equation in σ :

(2.37)

where I1, I2, and I3 are the stress invariants (they do not depend on the way
the reference frame is directed) defined in terms of the normal and shear
stresses acting on the faces of the elemental cube (Figure 2.15) as:

(2.38)
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The Tresca theory (first mentioned by Coulomb) specifies that a ductile
material will yield when the maximum shear stress in the body reaches the
critical shear stress in the simple tension/compression test. According to this
theory, the equivalent yield stress is given by:

(2.39)

where the principal stresses σ1, σ2, and σ3, are given in Eq. (2.37). Equation
(2.39) indicates that three expressions must be utilized and compared in
order to determine the equivalent stress by the Tresca criterion.

The von Mises criterion (also known as the Huber–von Mises–Hencki
criterion, after the researchers that have formulated it) states that the failure
of a member under a complex state of stress occurs when its energy of
distortion equals the critical energy of distortion in the uniaxial tension/
compression test. Generally, the strain energy of an elastic body can be
conceptually decomposed into two parts: one part produces the volume
deformation without modifying the shape of the loaded body and is gener-
ated by a so-called hydrostatic load (actually an average stress). The other
energy component does not affect the volume but alters the shape. This latter
component is known as distortion or deviatoric energy and is generated by
deviatoric stresses that represent the difference between the normal stresses
and the average stress. Several experiments have been carried out (see Bar-
ber,13 Ugural and Fenster,16 Muvdi and McNabb,21 or Cook and Young22) that
have proven that elastic bodies usually do not fail under a hydrostatic state
of stress alone. Therefore, a criterion that would predict failure based on the
total strain energy (volumetric strain energy included), such as the Beltrami–
Haigh theory, would be too loose.

FIGURE 2.15 
Stresses on an infinitesimal cube.
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The equivalent von Mises yield stress is given by the equation:

(2.40)

Substituting I1 and I2 of Eq. (2.38) into Eq. (2.40) results in:

(2.41)

A condition encountered in many engineering applications is that of plane
stress where:

(2.42)

In a plane stress condition, the generic von Mises criterion of Eq. (2.41)
becomes:

(2.43)

Moreover, for a state of plane stress where σy is zero, Eq. (2.43) simplifies to:

(2.44)

which is a well-known equation that applies in a variety of cases, including
the bending–torsion of shafts.

2.2.4.2 Fatigue Failure

In cases of fatigue failure, a mechanical part that is subjected to cyclic loading
becomes unoperational for service either by yielding or due to fracture under
loads that are smaller than the critical static values. In other words, fatigue
failure occurs when a load is applied and removed a very large number of
times (cycles) in a repetitive manner. The scientific investigation of the
fatigue phenomenon began around 1850 with rigorous experimental research
conducted by a German scientist, A. Wohler, who investigated the fracture
of axles in railway equipment and stress raisers in machine components and
designed a series of fatigue tests. An excellent account of the fatigue phe-
nomenon can be found in Timoshenko.15
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Classic examples of fatigue testing are the cyclic tension and compression
and the rotating bending. The results of usually laborious and extensive
fatigue tests are the so-called S–N curves that are plots of the fracture stress
(S), the amplitude of purely alternating stress, actually, in terms of the number
of cycles (N) necessary to produce the fracture for a given stress level. An
S–N curve provides the values of two main parameters that characterize
fatigue. The first amount is the fatigue life, which gives the number of cycles
necessary to result in fracture for a given stress value. The second amount
is the fatigue strength, which quantifies the stress required to produce frac-
ture in a specified number of load cycles. Figure 2.16 illustrates the simplified
S–N curve for a typical steel alloy. For a small number of cycles (less than
Ns in Figure 2.16), the loading is considered to be static. A reasonable value
for Ns that is often employed in practical calculations (see Barber13 for more
details) is 103. As the load that generates fracture is reduced (the stress
decreases), the fatigue life N increases, as illustrated in Figure 2.16. For some
materials (mild steel included), the fracture stress reaches a limit value after
a certain number of cycles and remains constant thereafter. This stress limit
is called the endurance limit and is denoted by σl while Nl stands for the
corresponding number of cycles. Other materials, such as several aluminum
alloys, do not display a firm value of this strength as the fracture continues
to decrease when increasing the number of cycles. Practically, the fatigue
testing is stopped after 108 cycles if fracture does not occur.

As is the case for static failure, it is impossible to perform exhaustive
experiments in order to determine the S–N curves for each specific practical
situation; therefore, fatigue criteria, expressed in equation form, are neces-
sary to assess the fatigue parameters in various instances. Several criteria
cover both the ductile and brittle materials for uniaxial loading. Figure 2.17
indicates the stress parameters that define a cyclic loading.

FIGURE 2.16 
Generic representation of an S–N curve for a
typical steel.

FIGURE 2.17 
Normal stresses under cyclic loading.
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Mention should be made that the notation σ is generic, as it stands for
either normal or shear stresses. Assuming that the maximum and minimum
values of the loading stress are known, the amplitude (or range) stress σa

and the mean stress σm can be calculated as:

(2.45)

The Goodman criterion is proven to be efficient for ductile materials, as
mentioned by Ugural and Fenster,16 for instance. Its corresponding equation
is:

(2.46)

The unknown of Eq. (2.46) is the fatigue stress, σN, that can be determined
in terms of the loading history (σa and σm), the ultimate strength of the
material σu, and a safety factor (SF ≥ 1). Another theory regarding ductile
materials is the Soderberg criterion, which is more conservative than Good-
man’s criterion as it uses the yield strength σY instead of the ultimate strength
σu, as given by the equation:

(2.47)

The vast majority of fatigue applications for ductile materials, however,
involve combined (multi-axial) loading. In such cases, either the Goodman
or Soderberg fatigue criterion is used in conjunction with a failure theory,
such as von Mises or Tresca. The Goodman criterion will have to incorporate
the equivalent range σea and equivalent mean σem stresses in the case of a
mechanical part that is subjected to fatigue through combined loading:

(2.48)

The equivalent stresses of Eq. 2.48 can be found by utilizing the von Mises
failure criterion, for instance, in the form:

(2.49)
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Another related aspect pertains to the fatigue life corresponding to a given
fatigue strength under specific loading conditions. The S–N curve of Figure
2.16 is simplified to better convey the main trends, and the portion comprised
between Ns and Nl is nonlinear, unfortunately. A better approximation to
that region is provided by the following equation given initially by Sullivan:24

(2.50)

where the exponent c is defined as:

(2.51)

Directly connected to the fatigue phenomenon is the problem of stress
raisers or concentrators, which are geometric discontinuities or irregularities
in a mechanical part. Their presence alters the elementary stress formulas
that are valid for members having a constant section or a section with only
a gradual change in its defining contour. As a consequence, high localized
stresses are set at points where stress raisers are present. The stress concen-
trators can act at microscopic scale in the form of cracks, inclusions, or voids,
but they are also macroscopic in configurations such as holes, notches,
grooves, threads, fillets, stepped sections, or sharp reentrant corners. The net
effect of stress raisers is shortened lifetimes of both ductile and brittle mate-
rials. The stress concentrators are particularly important in flexure hinges
that are in actuality discontinuities in the originally blank material. The sharp
corners of a machined flexure hinge with either constant or variable cross-
section are generally avoided by applying fillets at the respective areas. The
stress raisers are mathematically characterized by a stress concentration
factor, Kt, which is defined as the ratio of the maximum or peak stress to the
nominal stress. For normal stresses that are produced through bending or
axial loading, the stress concentration factor is:

(2.52)

while, for shear stresses that are generated through shearing or torsion, the
stress concentration factor is:

(2.53)
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The first subscript of the stress concentration factor indicates that its value
is theoretical, while the second one, oftentimes ignored, denotes the type of
stress that is referred.

The stress concentration factor (also termed form factor, in order to empha-
size that it is mainly determined by the geometry of a particular raiser) can
be evaluated analytically by means of the theory of elasticity. Finite-element
techniques permit direct evaluation of the peak stresses at regions with stress
concentrators and therefore enable indirect calculation of the stress concen-
tration factor. Experimental laboratory methods for stress analysis such as
photoelasticity, other optomechanical techniques, or strain gauges can be
employed in fatigue or impact tests as alternative means of assessing the
stress concentration factor. Figure 2.18 illustrates the stress profile of a sym-
metrically notched specimen under axial load.

The nominal stress is calculated by taking the net cross-sectional area as:

(2.54)

where w is the constant cross-sectional width.
For a ductile material, as shown in Figure 2.18b, the plastic flow and stress

redistribution at areas of stress concentration reduce the maximum stresses,
compared to brittle materials, such that:

(2.55)

Under fatigue or dynamic conditions, the maximum stress that would
normally be present under static loading conditions at a stress raiser is
reduced through a similar process of stress redistribution in the presence of
partially plastic deformations. Therefore, the actual strength of that member

FIGURE 2.18 
Symmetrically notched specimen made of ductile material under axial loading: (a) initial stresses;
(b) redistributed stresses.
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is different from the value obtained by using the stress concentration factor
procedure. A notch sensitivity factor q, as indicated by Peterson25 and
Pilkey,26 is usually introduced that can range from 0 to 1 in order to define
an effective stress concentration factor, Ke:

(2.56)

Equations (2.52) and (2.53) can be reformulated by using Ke instead of Kt as:

(2.57)

(2.58)

The notch sensitivity factor (introduced by Boresi et al.27) is usually deter-
mined experimentally. When q = 0, the stress concentration is considered to
have no effect on the strength of a member; however, if q = 1, then Ke = Kt,
and, as a consequence, the theoretical stress concentration factor acts at its
maximum weight. A value of 1 can be used for the notch sensitivity factor
q in conservative designs that require higher safety factors.

2.3 Single-Axis Flexure Hinges for Two-Dimensional 
Applications

2.3.1 Introduction

This section presents the flexure hinges categorized earlier as single-axis
flexures and shown to have a constant width. These flexure configurations
are largely utilized in two-dimensional applications where the flexure-based
compliant mechanism performs a plane motion. Several closed-form com-
pliance equations (or spring rates) will first be derived by using Castigliano’s
displacement theorem (as previously discussed) in a generic manner, in order
to qualify the performance of a flexure hinge. Both long- and short-beam
theory will be investigated, and the differences in the corresponding com-
pliances will be expressed for each individual flexure. Various flexure geo-
metric configurations will subsequently be analyzed and specific compliance
equations given in explicit form for circular, corner-filleted, parabolic, hyper-
bolic, elliptical, inverse parabolic, and secant designs. In the vast majority
of practical applications, the flexure hinges have transverse symmetry and,
as a consequence, all configurations presented here will be transversely
symmetric (this topic was previously discussed in the introduction to this
chapter). For each individual flexure type, two related configurations will
be presented: one that has longitudinal symmetry and a second one that
does not present this symmetry feature. Figure 2.19 illustrates a longitudinally

    K q Ke t= + −1 1( )

  σ σmax nom= − +[ ( ) ]q Kt 1 1

    τ τmax nom= − +[ ( ) ]q Kt 1 1
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symmetric configuration and its corresponding nonsymmetric counterpart.
Both flexure geometric configurations have identical lengths l and minimum
thickness t.

The reason for covering longitudinally nonsymmetric flexure configura-
tions formed by two different profiles, each of which is a line segment parallel
to the longitudinal axis of the flexure (as shown in Figure 2.19), is the large
number of applications that must position the flexures on the outer boundary
of the compliant mechanism. In such cases, the center of the flexure and the
longitudinal axis cannot be moved toward the interior of the mechanism
and longitudinal symmetry cannot be provided.

As shown in Figure 2.19, the relationship between the variable thicknesses
of the two flexures can be written in terms of the common minimum thick-
ness t as:

(2.59)

Equation (2.59) is valuable, as it allows us to simply relate the compliance
derivation of longitudinally nonsymmetric flexure hinges (simply called
nonsymmetric in the following text) to derivation of the longitudinally sym-
metric flexures.

A comprehensive numerical simulation phase will take the closed-form
compliance equations and use several criteria to compare the performance
of the flexure hinges that were introduced here. A large number of plots will

FIGURE 2.19 
Variable thickness for two equal-length, constant-width flexure hinges: (a) flexure hinge of full
symmetry (symmetric flexure); (b) flexure hinge presenting only transverse symmetry (non-
symmetric flexure).
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enable deriving conclusions with respect to specific features of each individ-
ual flexure.

2.3.2 Generic Formulation and Performance Criteria

The flexure hinges can be designed and analyzed based on their effectiveness
during operation according to the following criteria:

• Capacity of producing the desired limited rotation
• Sensitivity to parasitic loading
• Precision of rotation
• Stress levels under fatigue conditions

The above-mentioned criteria will be discussed in the following in more
detail for several flexure configurations that are designed to operate in two-
and three-dimensional applications. It will be shown that the analysis can
be carried out and quantified in a unitary manner, by utilizing several com-
pliances (spring rates) to assess the behavior of one flexure.

2.3.2.1 Capacity of Rotation

For a single-axis, constant-width flexure hinge, as illustrated in Figure 2.2,
for which the generic loading and deformations can be visualized in Figure
2.8, the loading at end 1 has six components: two bending moments, M1y,
M1z; two shearing forces, F1y, F1z; one axial load, F1x; and one torsional
moment, M1x. For two-dimensional applications, where all active and resis-
tive loads are planar, only the in-plane components M1z, F1y, and F1x have
substantive effects on the flexure operation. The other components specified
(M1y, F1z,  and M1x) are out-of-plane agents that usually have a lesser mag-
nitude, and therefore impact, on the flexure. They mainly produce parasitic
effects and occur as a result of errors caused by defective actuation or posi-
tioning of external loads or manufacturing and assembly. Because torsion is
quite rare in a two-dimensional, flexure-based compliant mechanism, the
effect of M1x will be neglected in all following derivations within this chapter
but will be approached later. The shear and bending action of F1z and M1y

might occasionally amount to sensible effects that cannot be overlooked.
Equation (2.8) can be reformulated as:

(2.60)

where the displacement vectors {u} and load  vectors {L} have been formally
divided into one in-plane (superscript ip) and one out-of-plane (superscript op)
subvectors. Accordingly, the symmetric compliance matrix will comprise the
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corresponding in-plane and out-of-plane submatrices. The subvectors intro-
duced in Eq. (2.60) are:

(2.61)

(2.62)

(2.63)

(2.64)

The in- and out-of-plane submatrices of Eq. (2.60) are:

(2.65)

(2.66)

In Eqs. (2.65) and (2.66):

(2.67)

and:

(2.68)

according to the principle of reciprocity presented in the introductory part
of this chapter. The in-plane generic compliance equations are:

(2.69)

(2.70)

(2.71)

(2.72)
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The out-of-plane compliance equations are:

(2.73)

(2.74)

(2.75)

The I1 through I6 integrals that appear in the compliance equations presented
above are:

(2.76)

(2.77)

(2.78)

(2.79)

(2.80)

(2.81)

The compliance formulation so far was concerned with flexure hinges that
are relatively long, compared to their cross-sectional dimensions, and are
usually treated as Euler–Bernoulli-beam-type members. For such a model,
the planar cross-section remains perpendicular to the neutral axis after the
external bending has been applied. This model also ignores the shearing
stresses and associated deformations. However, for relatively short beams,
the shearing effects need to be taken into account together with their corre-
sponding additional deformation. A model that accounts for such additional
shearing effects is the Timoshenko short-beam model, which also incorpo-
rates rotary inertia effects to better describe the dynamic response of such
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members, as will be shown later in Chapter 3. Figure 2.20 illustrates two
elementary portions that have been isolated from deformed Euler–Bernoulli
and Timoshenko beams, respectively.

The line (L′) for a Euler–Bernoulli beam element is both tangent to the
neutral axis and perpendicular on the right face, whereas the line (L) for a
Timoshenko beam element, while perpendicular to the right face of the
element, is no longer tangent to the deformed neutral axis, as indicated in
Figure 2.20. It is clear that for a Timoshenko model the extra deflection and
slope generated through shearing add up to the respective deformations that
are normally produced through bending effects such that the total deforma-
tions become:

(2.82)

and:

(2.83)

where the * superscript denotes addition due to consideration of the shearing
effects.

The extra shearing-produced strain energy into an elastic beam-like com-
ponent along the y-axis, as shown by Young,28 for instance, is expressed as:

(2.84)

where Fy is the shearing force and α is a correction factor that depends on
the shape of the cross-section. By applying Castigliano’s displacement

FIGURE 2.20
Deflection and slope for bent elements that are isolated from: (a) Euler–Bernoulli beams; (b)
Timoshenko beams.
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theorem, the shearing-generated extra deformations are calculated as:

(2.85)

and:

(2.86)

Eq. (2.86) actually reflects the fact that the angle between the tangent to
the deformed neutral axis and horizontal direction is not affected by shearing
effects.

After performing the required calculations indicated in Eqs. (2.84) and
(2.85), the additional deformations of Eq. (2.85) can be put in the form:

(2.87)

A brief inspection of Eqs. (2.86) and (2.87) shows that only the shearing
force 
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1
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 influences the extra deflection produced through considering the
shearing effects of relatively short flexure hinges. As a consequence, the
compliances 
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 should be zero. It can easily be demonstrated
that the compliance of Eq. (2.87) is:

(2.88)

As a consequence, the total compliances (that sum up bending and shearing
effects) will be:

(2.89)

and:

(2.90)

By applying a similar reasoning, it can be shown that the out-of-plane
compliances that are considering by shearing effects are:

(2.91)
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and:

(2.92)

In regard to shearing deflections with respect to long (Euler–Bernoulli) vs.
short (Timoshenko) beam theory, it has become somewhat of an undisputed
truism that a long beam is one whose length is “sufficiently long” compared
to its cross-sectional dimensions. The threshold length-to-thickness ratio that
separates long from short beams is assigned values ranging from 3 to 5 in
most of the dedicated literature (a value of 3 is given in Young,28 while Den
Hartog29 assumes a limit value of 5). It is also recognized that the deflection
produced by shearing in a short beam becomes comparable to the regular
deflection produced by bending. The criterion, therefore, that discriminates
between short and long beams evaluates the shearing-to-bending deflection
ratio and compares it to a limit value (called “error”). The situation where
this ratio exceeds the error limit for a particular geometry will place that
particular beam into the “short” category; otherwise, it will be placed in the
“long” class. As shown in the following discussion, deciding the short or
long character of a beam directly from the error limit set by a specific length-
to-thickness ratio is a bit more involved, and aspects regarding the cross-
section type and material properties must be taken into account. 

A constant cross-section (rectangular and circular) cantilevered beam con-
structed of homogeneous metallic material (steel or aluminum) will be ana-
lyzed first. A more generalized approach is presented afterwards that applies
to variable cross-section members such as flexure hinges.

The shear deflection and bending deflection for a cantilever beam under
the action of a tip force are:

(2.93)

and:

(2.94)

By considering the relationship between the shear modulus G and the
Young’s modulus E:

(2.95)
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where µ is the Poisson’s ratio, the ratio of shear deflection to bending deflec-
tion can be expressed by combining Eqs. (2.93) and (2.94) as:

(2.96)

Equation (2.96) gives the relationship between the shearing-to-bending
deflection ratio and the beam geometry (cross-section and length) as well as
the material properties. Equation (2.96) has been used to run some simple
calculations for two different cross-sections (rectangular and circular) and
two different materials (mild steel and an aluminum alloy). The cross-sec-
tional parameters of Eq. (2.96) for a rectangular cross-section of dimensions
w and t are:

(2.97)

Substitution of Eq. (2.97) into Eq. (2.96) produces the deflection ratio for a
constant rectangular cross-section cantilever beam:

(2.98)

For a circular cross-section, the geometric parameters of Eq. (2.96) are:

(2.99)

The deflection ratio for a circular cross-section can be obtained by substitut-
ing Eq. (2.99) into Eq. (2.96):
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Equations (2.99) and (2.100) were utilized to calculate length-to-thickness
ratios in terms of an error threshold defined as:

(2.101)

For values smaller than a specified value of the error, the shearing deflection
is small compared to the bending deflection and, therefore, the shearing
effects can be neglected.

Table 2.1 provides several values of the length-to-thickness ratio as a func-
tion of the threshold error for rectangular or circular cross-section cantilevers
that are built of mild steel (µ = 0.3) or aluminum alloy (µ = 0.25). As indicated
by Table 2.1, circular cross-section cantilevers can be considered long beams
for length-to-thickness ratios that are slightly smaller than those correspond-
ing to rectangular cross-section beams at the same error limit. Also, alumi-
num alloy beams pass into the long-beam domain for lower length-to-
thickness ratios than steel beams.

For variable cross-section beams (such as the flexure hinge configurations
that will be analyzed in the following text), Eqs. (2.93) and (2.94) are no
longer valid and one must use the more generic Eq. (2.87) as well as the
equation:

(2.102)

The compliances of Eqs. (2.87) and (2.102) were previously given. By using
them and by only considering the loading produced by the tip force F1y, the
generic length-to-thickness ratio becomes:

(2.103)

TABLE 2.1

Length-to-Thickness Ratios and Error Limits for Rectangular and Circular 
Constant Cross-Section Cantilevers

Error (%)
Cantilever 1 2 3 4 5 6 7 8
‘

Mild steel
r 9.87 6.98 5.70 4.94 4.42 4.03 3.73 3.49
c 8.06 5.70 4.65 4.03 3.60 3.29 3.05 2.85
Aluminum alloy
r 9.68 6.85 5.59 4.84 4.33 3.95 3.66 3.43
c 7.91 5.59 4.56 3.95 3.53 3.23 2.99 2.79
‘

Note: r = rectangular, c = circular.

    

u

u
errory

y

1

1

*

=

  
u C F C My y F y y M zy z1 1 1 1 1= +− −, ,

    

u

u

C

C
I
I

y y

yy

y F

y F

1

1

1

1

1

2

1
6

*
,

*

,

( )= = +−

−

α µ

1367_Frame_C02  Page 52  Friday, October 18, 2002  1:49 PM



Compliance-Based Design of Flexure Hinges 53

where integrals I1 and I2 are defined as in Eqs. (2.76) and (2.77). Similarly,
when only the bending produced by tip moment M1z is taken into consid-
eration, the ratio of Eq. (2.103) becomes:

(2.104)

where integral I3 is defined as in Eq. (2.78).
It is therefore obvious that deciding whether a flexure hinge responds like

a long or short beam with respect to bending depends on the specific geom-
etry of the analyzed configuration as well as on the material of the flexure.
A brief discussion will be carried out with respect to long vs. short behavior
when each flexure type is presented in more detail, supported by the corre-
sponding numerical simulation results.

2.3.2.2 Precision of Rotation

The relative rotation of two mechanical members connected by a conven-
tional rotation joint is produced along an axis that passes through the geo-
metric center of the joint, which is fixed provided one member is also fixed.
In the case of a symmetric flexure hinge, the center of rotation (the geometric
symmetry center of the flexure) is no longer fixed because the forces and
moments acting on the flexure produce elastic deformations that alter its
position.

The displacement of the rotation center of a flexure hinge (point 2 in
Figure 2.8) can be assessed by applying three fictitious loads, 
in addition to the load vector applied at point 1. Castigliano’s second
theorem is again utilized to find the displacements of the rotation center
in the form:

(2.105)

(2.106)

(2.107)

where the strain energy U′ is:

(2.108)

where Ubending, Ushearing, and Uaxial are as given in Eqs. (2.18), (2.19), and (2.20),
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be taken on the 2–3 interval, as and (the “variables” of the
partial derivatives in Eqs. (2.105) through (2.107)) only intervene over that
load segment. They are:

(2.109)

Application of Castigliano’s second theorem results in the following equation:

(2.110)

which can be reformulated by separating its components into in-plane and
out-of-plane subcomponents, as:

(2.111)

The displacement subvectors at the center of the flexure are:

(2.112)

and:

(2.113)

As indicated by Eq. (2.110), the load vector is the one also utilized in Eqs.
(2.63) and (2.64), as there is no additional loading.

The compliance submatrices of Eq. (2.110) are:

(2.114)
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and:

(2.115)

The in-plane compliances of Eq. (2.115) are calculated as follows:

(2.116)

(2.117)

(2.118)

Equation (2.118) is valid for relatively short beams when shearing is taken
into account. Again, this equation can be reformulated in compliance form
by combining it with Eqs. (2.116) and (2.117) as:

(2.119)

The other in-plane compliance is:

(2.120)

The out-of-plane compliances of Eq. (2.115) are:
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for relatively short beams where shearing is taken into account. In a manner
similar to the procedure previously applied, Eq. (2.122) can be written in
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compliance form by combining it with Eqs. (2.116) and (2.121) as:

(2.123)

The other out-of-plane compliance is:

(2.124)

The  through  integrals that enter the compliance equations previously
introduced are:

(2.125)

(2.126)

(2.127)

(2.128)

(2.129)

(2.130)

In regard to compliances describing the capacity of rotation vs. the preci-
sion of rotation, it was seen that the compliances defining the capacity of
rotation, as well as those quantifying the precision of rotation, are given in
terms of several integrals. In a few cases, for similar compliances in the two
distinct problem groups, the only difference consisted in taking the corre-
sponding integrals over the full length of the flexure (in the case of studying
the capacity of rotation) vs. integrating over half the length—the second
half, actually—when analyzing the precision of rotation. The temptation
would be to look to the possibility that the value of an integral calculated
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over the full-length interval is twice the value of the same integral when
taken over only half the interval. Unfortunately, this is only true when the
integrand is an even function, and this will briefly be demonstrated in the
following.

Consider the generic integrals defined as:

(2.131)

and:

(2.132)

It can easily be seen that Eq. (2.131) defines a compliance that is related to
the capacity of rotation, while Eq. (2.132) defines a compliance that describes
the precision of rotation in the case where the y reference axis is translated
with a positive quantity equal to l/2. Equation (2.131) can be rewritten as:

(2.133)

By inspecting Eq. (2.133), it becomes clear that the only case where:

(2.134)

occurs when:

(2.135)

which indicates that the function must be even (or symmetric with respect
to the y axis). As illustrated by the many compliances that will be formulated
next for several particular flexure hinges, only in a few occasions is the
integrand symmetric, thus permitting us to directly express a compliance
defining the precision of rotation as half its corresponding compliance related
to the capacity of rotation.
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2.3.2.3 Stress Considerations

The cutout areas of a two-dimensional flexure hinge are actually stress con-
centrators that augment the cross-sectional nominal stresses. When the out-
of-plane and shearing load effects are ignored, the stresses are only normal,
as they are produced solely through axial and bending loading. The maxi-
mum stress will occur at one of the outer fibers, according to the equation:

(2.136)

where the subscripts a and b denote axial and bending, respectively.
The stresses generated through axial loading are constant over the cross-

section and are expressed as:

(2.137)

where Kta is the theoretical stress concentration factor in axial loading (either
tension or compression). The normal bending stresses are maximum on
either of the outer fibers as given by:

(2.138)

where Ktb is the theoretical stress concentration factor in bending. Both Kta

and Ktb can be found in the works of Peterson25 or Young,28 for instance, for
a series of different stress concentration geometries. Substituting Eqs. (2.137)
and (2.138) into Eq. (2.136) gives:

(2.139)

Equation (2.139) is useful when the loading on a flexure can be estimated.
Other cases exist where evaluating the loading is difficult but assessing

the linear or angular displacements (deformations) at the end of a flexure
can be achieved with relative ease. Therefore, Eq. (2.139) must be altered
accordingly to include deformations instead of loads. The compliance-based
deformation-load equation can be expressed in the reverse manner as a
stiffness-based load-deformation equation:

(2.140)

where the stiffness matrix [K1] is simply the inverse of the compliance matrix
[C1]:

(2.141)
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Because only in-plane compliances have been retained for the purpose of
discussing stress issues, the explicit form of the compliance matrix is:

(2.142)

Therefore the stiffness matrix will be:

(2.143)

where the stiffness terms are expressed in terms of compliance terms by the
inversion indicated in Eq. (2.141) as:

(2.144)

Equation (2.140) is written explicitly as:

(2.145)

The load components of Eq. (2.145) are substituted into Eq. (2.139), which
transforms into:

(2.146)
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Equation (2.146) enables evaluation of the maximum stress levels in a single-
axis flexure hinge when the relative displacements (deformations) are known
(or can be predicted/measured) at one end.

2.3.2.4 Strain-Energy-Based Efficiency

The criteria utilized so far to compare the performance of various flexure
hinges were the capacity of rotation, the precision of rotation (including the
sensitivity to parasitic loading), and stress levels. Another criterion of ana-
lyzing the performance of different flexure hinges introduced here is based
on an energy approach. For a single-axis flexure hinge that is part of a two-
dimensional compliant mechanism, for instance, the loading at the free end
is composed of F1y, F1x, and M1z, as previously shown. When this load vector
is applied, the free end is displaced by the in-plane quantities u1x and u1y,
while the corresponding tip slope is θ1z. The equations connecting displace-
ments and load are:

(2.147)

Assuming that the loads are applied quasi-statically, the total work per-
formed can be expressed as:

(2.148)

The useful work is the one that directly produces the rotation of the flexure,
and for an ideal flexural joint without length (point-like) that possesses only
torsional stiffness, the output work is:

(2.149)

The energy-related efficiency of a flexure hinge can therefore be defined as:

(2.150)

Utilizing Eq. (2.147) in conjunction with Eqs. (2.148) and (2.149) and then
substituting them into Eq. (2.150) results in:

(2.151)
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In order to make Eq. (2.151) non-dependent on the loading, unit values
can be taken for the three loads, which simplifies Eq. (2.151) to:

(2.152)

For short flexure hinges, where shearing effects must be taken into account,
the compliance factor C1,y–Fy is substituted by the corresponding factor Cs

1,y–Fy,
according to the previous discussion related to this subject.

2.3.3 Constant Rectangular Cross-Section Flexure Hinge

The constant rectangular cross-section flexure hinge analyzed first presents
the simplest geometry because, in addition to its width being constant (pro-
vision which applies to all single-axis flexure configurations), the thickness is
also constant and equal to the minimum thickness of all other flexures, namely:

(2.153)

The compliances given for a constant rectangular cross-section flexure hinge
will be utilized at a later stage to compare various other flexures to this
simple configuration.

2.3.3.1 Capacity of Rotation

The in-plane compliances are obtained by solving the generic integrals given
in Eqs. (2.76) through (2.79) and substituting the results into the corresponding
Eqs. (2.69) through (2.72) and (2.91). The final equations are:

(2.154)

(2.155)

and:

(2.156)

for relatively short beam theory, where shearing is accounted for. The other
compliances are:

(2.157)

(2.158)

    
η θ

θ

=
+ + +

−

− − − −

C

C C C C
z z

x y z z z

M

x F y F M y M

1

1 1 1 12
,

, , , ,

  t x t( ) =

    
C

l
Ewtx Fx1, − =

  
C

l
Ewty Fy1

3

3

4
, − =

  
C

l
wt

l
Et Gy F

s
y1

2

2

4
, − = +







α

    
C

l
Ewty Mz1

2

3

6
, − =

C
l

Ewtz zM1 3

12
,θ − =

1367_Frame_C02  Page 61  Friday, October 18, 2002  1:49 PM



62 Compliant Mechanisms: Design of Flexure Hinges

The out-of-plane compliances are obtained by solving first the generic inte-
grals of Eqs. (2.80) and (2.81) and then substituting the results into the
corresponding Eqs. (2.73) through (2.75) and (2.93). The final equations are:

(2.159)

(2.160)

(for relatively short beam theory, where shearing is taken into account)

(2.161)

(2.162)

2.3.3.2 Precision of Rotation

The in-plane compliances that describe the precision of rotation are expressed
by first solving the generic integrals of Eqs. (2.125) through (2.128) and then
substituting the results into the corresponding compliance Eqs. (2.116)
through (2.120). The final equations are:

(2.163)
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(for relatively short beam theory, where shearing is taken into account)
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Similarly, the out-of-plane compliances are obtained by first solving the
generic integrals of Eqs. (2.129) and (2.130) and then substituting the results
into the corresponding Eqs. (2.115), (2.117), and (2.118). The final equations
are:

(2.167)

(2.168)

(for relatively short beam theory, where shearing is taken into account)

(2.169)

2.3.4 Circular Flexure Hinge

A circular flexure hinge will be now analyzed, following the path presented
for the constant rectangular flexure hinge. The generic equations indicated
as being the ones to be utilized to obtain the specific compliance equations
for the constant cross-section beam are the same and will not be indicated
again; this will also apply for all subsequent flexure configurations that will
be treated. Because the compliance equations that apply when shearing is
taken into consideration can be obtained as a linear combination of two basic
compliances, as shown in Eqs. (2.89) and (2.91), these equations also will not
be rewritten. A longitudinally symmetric circular flexure hinge will be first
analyzed and then similar results will be given for a nonsymmetric one
(details about the longitudinal nonsymmetry were provided at the beginning
of this section).

2.3.4.1 Symmetric Circular Flexure Hinge

The longitudinal section of a symmetric circular flexure hinge is illustrated
in Figure 2.21. The variable thickness, t(x), can be expressed in terms of the
flexure geometry as:

(2.170)

The closed-form compliance equations describing the capacity of rotation
and the precision of rotation are given next.
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2.3.4.1.1 Capacity of Rotation

The in-plane compliances are:

(2.171)

(2.172)

(2.173)

(2.174)

FIGURE 2.21 
Cross-sectional profile of a symmetric right-circular flexure hinge.
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The out-of-plane compliances are:

(2.175)

(2.176)

(2.177)

It is simple to check that the particular form of Eq. (2.177) satisfies the
condition expressed by Eq. (2.75).

2.3.4.1.2 Precision of Rotation

The axial compliance is:

(2.178)

This situation where the axial compliance corresponding to the symmetry
center of a flexure is half the value of the full axial compliance was previously
discussed in the context of the general formulation of compliances in terms
of their defining integrals, and it was shown that this particular situation
occurs only in a few cases. The axial compliance is one such occurrence, and
this situation will apply for many of the flexure configurations that will be
presented later in this chapter. Equation (2.178) will be repeated at times
when it applies or will be expressed per se when another relationship applies.

The in-plane compliances are:
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The out-of-plane compliances are:

(2.181)
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(2.182)

2.3.4.2 Nonsymmetric Circular Flexure Hinge

2.3.4.2.1 Capacity of Rotation

The in-plane compliances are:

(2.183)

(2.184)

(2.185)

(2.186)

The out-of-plane compliances are:
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2.3.4.2.2 Precision of Rotation

The in-plane compliances are:

(2.189)

(2.190)

(2.191)

The out-of-plane compliances are:

(2.192)

(2.193)

2.3.5 Corner-Filleted Flexure Hinge

Closed-form compliance equations are presented here for longitudinally
symmetric and nonsymmetric corner-filleted flexure hinges in order to char-
acterize their capacity of rotation and precision of rotation.

2.3.5.1 Symmetric Corner-Filleted Flexure Hinge

A longitudinally symmetric flexure hinge and its defining geometric param-
eters are shown in Figure 2.22. The variable thickness, t(x), is expressed in
terms of the fillet radius, r, and flexure length, l, as:

(2.194)
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2.3.5.1.1 Capacity of Rotation

The in-plane compliances are:

(2.195)

(2.196)

FIGURE 2.22 
Cross-sectional profile of a symmetric corner-filleted flexure hinge.
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(2.197)

(2.198)

The out-of-plane compliances are:

(2.199)

(2.200)

(2.201)

Equation (2.201) confirms again the more generic Eq. (2.75) and therefore,
the corresponding compliance will no longer be given in explicit form for
the other flexure hinge configurations.

2.3.5.1.2 Precision of Rotation

The in-plane compliance equations that describe the precision of rotation are:

(2.202)

(2.203)
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(2.204)

The out-of-plane compliance equations that describe the precision of rotation
are:

(2.205)

(2.206)

2.3.5.2 Nonsymmetric Corner-Filleted Flexure Hinge

2.3.5.2.1 Capacity of Rotation

The in-plane compliances are:

(2.207)

(2.208)
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(2.209)

(2.210)

The out-of-plane compliances are:

(2.211)

(2.212)

2.3.5.2.2 Precision of Rotation

The in-plane compliances are:

(2.213)

(2.214)
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(2.215)

The out-of-plane compliances are:

(2.216)

(2.217)

Several flexures are presented in the following text that share a common
trait, namely that the longitudinal sections for all of them can be expressed
in terms of a new parameter, denoted by c, in addition to the ones already
defined: flexure length l and minimum thickness t. Figure 2.23 shows the
longitudinal section of a symmetric elliptical flexure hinge, but the figure is
also representative for other profiles, such as: the parabola, hyperbola,
inverse parabola, and secant. Parameter c enables us to alter the value of the
variable thickness. By increasing c, the thickness, t(x), also increases, as
indicated in Figure 2.24, where several plots are presented for the profiles
that were previously mentioned and for three different values of c (c1 < c2 < c3).

2.3.6 Parabolic Flexure Hinge

Closed-form compliance equations will be presented here for longitudinally
symmetric and nonsymmetric parabolic flexure hinges. The geometric pro-
files of three different parabolas are shown in Figure 2.24a. Similar to other
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flexure configurations that have been presented, the compliances will serve
to characterize the capacity of rotation and precision of rotation of these
flexure hinges.

2.3.6.1 Symmetric Parabolic Flexure Hinge

The variable thickness, t(x), is:

(2.218)

2.3.6.1.1 Capacity of Rotation

The in-plane compliances are:

(2.219)

(2.220)

(2.221)

(2.222)

Equation (2.222) is valid for all following flexure configurations, except for
the secant. As a consequence, this equation will not be repeated for the cases
where it is valid.

FIGURE 2.23 
Cross-sectional profile of a symmetric elliptical flexure hinge.
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The out-of-plane compliances are:

(2.223)

(2.224)

(2.225)

FIGURE 2.24 
Profiles of other flexure hinges: (a) parabolic; (b) hyperbolic; (c) elliptical; (d) inverse parabolic;
(e) secant.
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Equation (2.225) is also valid for all following flexure configurations, except
for the secant. This equation, therefore, will not be repeated for the cases
where it is valid.

2.3.6.1.2 Precision of Rotation

The in-plane compliance equations that describe the precision of rotation are:

(2.226)

(2.227)

(2.228)

The out-of-plane compliance equations that describe the precision of rotation
are:

(2.229)

(2.230)

2.3.6.2 Nonsymmetric Parabolic Flexure Hinge

2.3.6.2.1 Capacity of Rotation

The in-plane compliances are:

(2.231)

(2.232)

(2.233)
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The out-of-plane compliances are:

(2.234)

(2.235)

2.3.6.2.2 Precision of Rotation

The in-plane compliances are:

(2.236)

(2.237)

(2.238)

The out-of-plane compliances are:

(2.239)

(2.240)

2.3.7 Hyperbolic Flexure Hinge

Longitudinally symmetric and then nonsymmetric flexure hinges of hyper-
bolic profile, as plotted in Figure 2.24b, are analyzed in this section by
formulating closed-form compliance equations that allow us to qualify them
in terms of their capacity of rotation and precision of rotation, as well.

2.3.7.1 Symmetric Hyperbolic Flexure Hinge

The variable thickness, t(x), is:

(2.241)
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2.3.7.1.1 Capacity of Rotation

The in-plane compliances are:

(2.242)

(2.243)

(2.244)

The out-of-plane compliances are:

(2.245)

(2.246)

2.3.7.1.2 Precision of Rotation

The in-plane compliance equations that describe the precision of rotation are:

(2.247)

(2.248)
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(2.249)

The out-of-plane compliance equations that describe the precision of rotation
are:

(2.250)

(2.251)

2.3.7.2 Nonsymmetric Hyperbolic Flexure Hinge

2.3.7.2.1 Capacity of Rotation

The in-plane compliances are:

(2.252)

(2.253)

(2.254)

The out-of-plane compliances are:

(2.255)

(2.256)

    
C

l
Ewtc c ty Mz2

23
2 2, ( )− =

+

C
l

Ew c c t
c t c t t c c t

t

t c
z Fz t

c

2

3

3 2

3
16

6

2 1 1
, ( )

( )( ) ( ) log− =
+

+ + + +
+ + +



























  
C

l
Ew c tz My2

2

3

3
2, ( )− =

+

    
C

l
Ew c c t

c t c c t
c t c c tx Fx1 2 2

2
2, ( )

log
( )
( )− =

+
+ + +
+ − +











C
l

Ewt
c ct t

c c t c t

t

c c t

c t c c t
c t c c t

y Fy1

3

2

2 2

2

3 3

3
2

2 2
2

2

2
2

,
( )
( )( )

  
( )

log
( )
( )

− = + −
+ +





+
+

+ + +
+ − +
















    
C

l
Ewt c ty Mz1

2

2

6
, ( )− =

+

C
l

Ew
c t

c c t
c ct t

c c t

c t c c t
c t c c tz Fz1

3

3

2 2

3 3

3
4

2
2

2 4

2

2
2,

( )
( ) ( )

log
( )
( )− = +

+
+ + −

+
+ + +
+ − +























C
l

Ew c c t
c t c c t
c t c c tz My1

2

3

3
2

2
2, ( )

log
( )
( )− =

+
+ + +
+ − +











1367_Frame_C02  Page 78  Friday, October 18, 2002  1:49 PM



Compliance-Based Design of Flexure Hinges 79

2.3.7.2.2 Precision of Rotation

The in-plane compliances are:

(2.257)

(2.258)

(2.259)

The out-of-plane compliances are:

(2.260)

(2.261)

2.3.8 Elliptical Flexure Hinge

The flexure hinges of elliptic profile, as shown in Figure 2.24c, are analyzed
here. Closed-form compliance equations will be formulated for longitudi-
nally symmetric and nonsymmetric elliptical flexure hinges in order to qual-
ify their capacity of rotation and precision of rotation.

2.3.8.1 Symmetric Elliptical Flexure Hinge

The variable thickness of a longitudinally symmetric flexure hinge is:

(2.262)

2.3.8.1.1 Capacity of Rotation

The in-plane compliances are:

(2.263)
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(2.264)

(2.265)

The out-of-plane compliances are:

(2.266)

(2.267)

2.3.8.1.2 Precision of Rotation

The in-plane compliances are:

(2.268)

(2.269)
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The out-of-plane compliances are:

(2.270)

(2.271)

2.3.8.2 Nonsymmetric Elliptical Flexure Hinge

2.3.8.2.1 Capacity of Rotation

The in-plane compliances are:

(2.272)

(2.273)

(2.274)
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The out-of-plane compliances are:

(2.275)

(2.276)

2.3.8.2.2 Precision of Rotation

The in-plane compliances are:

(2.277)

(2.278)

(2.279)

The out-of-plane compliances are:

(2.280)

(2.281)

2.3.9 Inverse Parabolic Flexure Hinge

The flexure hinges of inverse parabolic profile (see three plots provided in
Figure 2.24d) are analyzed here by their closed-form compliance equations.
The capacity of rotation and precision of rotation will be discussed for
longitudinally symmetric and nonsymmetric flexure hinges.
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2.3.9.1 Symmetric Inverse Parabolic Flexure Hinge

The variable thickness of a symmetric inverse parabolic flexure hinge can
be expressed as:

(2.282)

where geometric parameters a1 and b1 are:

(2.283)

2.3.9.1.1 Capacity of Rotation

The in-plane compliances are:

(2.284)

 (2.285)

(2.286)

The out-of-plane compliances are:

(2.287)

(2.288)

2.3.9.1.2 Precision of Rotation

The in-plane compliances are:

(2.289)

(2.290)
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The out-of-plane compliances are:

(2.291)

(2.292)

2.3.9.2 Nonsymmetric Inverse Parabolic Flexure Hinge

2.3.9.2.1 Capacity of Rotation

The in-plane compliances are:

(2.293)

(2.294)

(2.295)

The out-of-plane compliances are:

(2.296)

(2.297)

2.3.9.2.2 Precision of Rotation

The in-plane compliances are:

(2.298)
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(2.299)

The out-of-plane compliances are:

(2.300)

(2.301)

2.3.10 Secant Flexure Hinge

Longitudinally symmetric and nonsymmetric flexure hinges of secant profile
(as plotted in Figure 2.24e) are discussed in this section. The capacity of
rotation and precision of rotation will be expressed by the closed-form com-
pliance equations pertaining to this type of flexure hinge.

2.3.10.1 Symmetric Secant Flexure Hinge

The variable thickness, t(x), of a longitudinally symmetric flexure hinge is
expressed as:

(2.302)

2.3.10.1.1 Capacity of Rotation

The in-plane compliances are:

(2.303)
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(2.305)

(2.306)

where:

(2.307)

The out-of-plane compliances are:

(2.308)

(2.309)

2.3.10.1.2 Precision of Rotation

The in-plane compliances are:
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The out-of-plane compliances are:

(2.312)

(2.313)

2.3.10.2 Nonsymmetric Secant Flexure Hinge

2.3.10.2.1 Capacity of Rotation

The in-plane compliances are:

(2.314)
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(2.316)
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where:
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The out-of-plane compliances are:
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2.3.10.2.2 Precision of Rotation

The in-plane compliances are:

(2.321)

where:

(2.322)

(2.323)

(2.324)

The out-of-plane compliances are:

(2.325)

(2.326)

2.3.11 Verification of the Closed-Form Compliance Equations

Several checks have been performed in order to ensure that the closed-form
compliance equations derived for the different flexure types are accurate.
The results will be presented briefly in the following discussion.

2.3.11.1 Limit Verification

An overall limit check was performed for all the closed-form compliance
equations of all the flexure hinges presented in this chapter. Specifically, the
purpose was to verify whether or not, by forcing the geometry of a given
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flexure configuration to be identical to that of a constant rectangular cross-
section flexure, the corresponding closed-form compliance equations will also
be identical to the those of the constant rectangular cross-section flexure
configuration. Other limit checks were also carried out, as well. It should be
mentioned that the limit calculations were performed for both longitudinally
symmetric and nonsymmetric flexure hinges, and they proved the correctness
of the closed-form compliance equations of the various flexure configurations.

2.3.11.1.1 Circular Flexure Hinges

A circle becomes a straight line when the radius of the circle goes to infinity.
As a consequence, it was considered that r → ∞ in all the compliance equa-
tions defining the symmetric circular flexure hinges and the nonsymmetric
circular flexure hinges. For both sets of equations, the limit results retrieved
the corresponding equations of the constant cross-section flexure hinge.

2.3.11.1.2 Corner-Filleted Flexure Hinges

Two types of limit checks were performed for both symmetric and nonsym-
metric flexure hinges. As Figure 2.22 shows, a corner-filleted flexure hinge
spans a domain bounded by the straight, constant cross-section flexure when
the fillet radius is minimum and therefore goes to zero (r → 0), and the right
circular flexure hinge when the fillet radius is maximum and therefore is
equal to half the length of the flexure (r → l/2). The first set of checks revealed
that, indeed, when r → 0, the compliance equations that describe the sym-
metric corner-filleted flexure hinges, as well as the compliance equations
that define the nonsymmetric corner-filleted flexure hinges, are identical to
the corresponding equations of a constant cross-section flexure hinge. The
second set of checks indicated that when r → l/2, the compliance equations
for both symmetric and nonsymmetric flexure hinges transform into the
corresponding compliance equations of symmetric/nonsymmetric circular
flexure hinges.

2.3.11.1.3 All Other Flexure Hinges

The geometries of all the other flexure configurations (namely, the parabolic,
hyperbolic, elliptic, inverse parabolic, and secant) were unitarily defined by
means of the parameter c. Figure 2.23 indicates that when c → 0 each of these
flexure hinges becomes a constant cross-section straight flexure. Indeed, by
taking c → 0 in all the compliance equations defining the above-mentioned
flexures (both symmetric and nonsymmetric), it was found that they are
identical to the corresponding compliance equations that define a straight
constant cross-section flexure. Because an ellipse becomes a circle when its
two semi-axes are equal, another check was performed to check the elliptical
flexure hinges. It was found that when c → l/2 (when, geometrically, an
ellipse changes into a circle; see Figure 2.22), the compliance equations of
symmetric/nonsymmetric flexure hinges are identical to the corresponding
compliance equations of right circular flexure hinges.
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2.3.11.2 Experimental and Finite Element Verification

In addition to the limit checks that have been performed for all the flexure
hinges, as previously detailed, several additional experimental and finite-
element verifications were carried out for a few flexure configurations. The
experiments were performed according to the schematic illustrated in
Figure 2.25. By applying an axial load to a flexure hinge and by measuring
the axial displacements at the free end and at the midpoint it was possible to
determine the compliances C1,x–Fx and C2,x–Fx according to the load-measuring
scheme indicated in Figure 2.25a. When the force was applied along the
transverse axis (y) of the flexure, the compliances C1,y–Fy and C2,y–Fy were
determined by means of measured displacements u1y and u2y, as suggested
in Figure 2.25b. A similar procedure was utilized to evaluate the out-of-plane
compliances C1,z–Fz and C2,z–Fz, as shown in Figure 2.25c. When a couple
formed by two equal and opposite forces, F1x, was applied at the free end
of the flexures, the compliances C1,y–Mz and C2,y–Mz were determined by means
of measured displacements u1y and u2y, as indicated in Figure 2.25d.

Finite-element simulations were also performed following the load-
measuring experimental schemes of Figure 2.25. The ANSYS finite-element
software was employed to run the simulations with two-dimensional ele-
ments. In both the experimental measurements and finite-element simula-
tions, the flexure samples were made or considered being made of aluminum
alloy. For corner-filleted flexure hinges, the experimental measurements were
within 6% error margins of the theoretical predictions while the finite element
results were within 10% of model results. More details of the experimental
setup, finite-element simulation, and results can be found in Lobontiu et al.4

Similar tests were performed for parabolic and hyperbolic flexure hinges,

FIGURE 2.25 
Schematic representation of experimental settings for evaluation of the following flexure hinge
compliances: (a) C1,x–Fx and C2,x–Fx; (b) C1,y–Fy and C2,y–Fy; (c) C1,z–Fz and C2,z–Fz; (d) C1,y–Mz and C2,y–Mz.
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as detailed in Lobontiu et al.5 Compared to experimental data and finite-
element results, the closed-form compliance equation predictions produced
relative errors that were less than 8%. Smith et al.2 reported experimental
measurements presenting errors of less than 10% when compared to the
theoretical results given by approximate compliance equations for elliptical
flexure hinges. The error differences between experimental measurements
and finite-element simulations were less than 12% error margins for the same
elliptical flexure hinges.

2.3.12 Numerical Simulations

The closed-form compliance equations are utilized in this section to evaluate
the performance of each flexure type that has previously been presented in
terms of the geometry defining it. The task is performed by conducting a
thorough numerical simulation that follows several criteria in order to cap-
ture either the individual response of flexures or the relative behavior of two
different flexure types. Specifically, four different categories of numerical
simulation are performed by focusing on the following objectives:

• Individual trends in flexure compliances
• “Internal” comparison of the compliances of one flexure
• Compliance comparison to a constant cross-section flexure hinge
• Compliance comparison between longitudinally nonsymmetric

and symmetric flexure hinges

Details of each class of numerical testing will be presented next, together
with results in the form of plots and tables.

2.3.12.1 Individual Trends

This group of numerical simulations is intended to evaluate the way in which
the defining geometric parameters influence the absolute values of compli-
ances. Combining all the geometric parameters with individual compliances
and flexure types results in a large number of functions that must be studied,
and presenting all the results in a graphical form would be unfeasible.
Fortunately, the trends in compliances as a function of geometry were quite
consistent for all flexure hinges, thus it is possible to present just a few sample
results.

2.3.12.1.1 Symmetric Circular Flexure Hinges

Figure 2.26, for instance, displays the three-dimensional plot of C1,θz,Mz for a
symmetric circular flexure hinge in terms of its radius r and minimum
thickness t. Not shown here are similar plots for all the other compliances
that have been defined for a symmetric circular flexure hinge, but they
displayed remarkably consistent trend similarities with those pictured in
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Figure 2.26. By also inspecting the compliance equations, it became clear
how the width, w, enters into play. Therefore, either compliance of a sym-
metric circular flexure hinge will increase when:

• r increases quasi-linearly.
• t decreases highly nonlinearly.
• w varies inversely proportional for in-plane compliances and

inversely proportional with the third power for out-of-plane com-
pliances.

The parameters t and w presented the same features as highlighted above
for all other flexures and compliances and therefore they will not be men-
tioned again.

2.3.12.1.2 Symmetric Corner-Filleted Flexure Hinges

A procedure similar to the one previously described has been applied for
symmetric corner-filleted flexure hinges. The defining parameters are the
fillet radius, r; flexure length, l; minimum thickness, t; and width, w.
Figure 2.27 illustrates the same compliance, C1,θz,Mz, that is plotted as a func-
tion of the geometric parameters defining its longitudinal profile.

The following conclusions, which are valid for any other compliance, are
derived. Either compliance of a symmetric corner-filleted flexure hinge
increases when:

• Fillet radius r decreases quasi-linearly.
• Flexure length l increases quasi-linearly.

2.3.12.1.3 All Other Flexure Types

As previously discussed, all other flexure configurations (parabolic, hyper-
bolic, elliptic, inverse parabolic, and secant) are longitudinally defined in
terms of a geometric parameter c, in addition to l and t. Figure 2.28 displays
plots of the compliance factor C1,θz,Mz for a symmetric elliptical flexure hinge

FIGURE 2.26 
Variation trends of C1,θz–Mz for a symmetric circular flexure hinge in terms of notch radius r and
minimum thickness t.
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in terms of the parameter c, minimum thickness t, and length l. Similar trends
were obtained for all other compliances and flexures. The conclusions
derived here were almost identical with those related to corner-filleted flex-
ure hinges, with the amendment that the new parameter c substituted for
the fillet radius r.

All the conclusions presented within this section are also valid for longi-
tudinally nonsymmetric flexure hinges; however, a more complete picture
of the actual compliance values for each flexure type is given in Table 2.2
(for symmetric flexure hinges) and Table 2.3 (for nonsymmetric flexure
hinges). The data in these tables capitalize on the monothonic trend in every
compliance in terms of all defining geometric parameters. This way, by
knowing, for instance, that C1,θz,Mz increases with r increasing, t decreasing,
and w decreasing for a symmetric circular flexure hinge, it was possible to
calculate the extreme boundaries of that compliance when the geometric
parameters were allowed to vary within a given (and feasible) interval.

The data in Tables 2.2 and 2.3 were obtained when the geometric param-
eters ranged within the intervals:

FIGURE 2.27 
Variation trends of C1,θz–Mz for a symmetric corner-filleted flexure hinge in terms of: (a) fillet
radius r and minimum thickness t; (b) fillet radius r and length l.

FIGURE 2.28 
Variation trends of C1,θz–Mz for a symmetric elliptical flexure hinge in terms of: (a) the parameter c
and minimum thickness t; (b) the c parameter and length l.
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• r → [0.0005 m, 0.001 m] (for circular flexure hinges)
• r → [0.0001 m, 0.0005 m] (for corner-filleted flexure hinges)
• c → [0.0001 m, 0.0005 m] (for parabolic, hyperbolic, elliptic, inverse

parabolic, and secant flexure hinges)
• t → [0.0005 m, 0.001 m]
• l → [0.0015 m, 0.002 m]
• r → [0.002 m, 0.005 m]

2.3.12.2 Internal Comparison

This numerical simulation attempted to detect the compliant response of
each flexure hinge type internally. In other words, the objective here was
to compare the different compliances for one flexure hinge at a time. The
analysis is important, as it can reveal the relative strengths or weaknesses
of a flexure in terms of its performance relative to the capacity of rotation,
sensitivity to parasitic effects, and precision of rotation. Again, just a few
plots are included here that are representative for all other covered situa-
tions.

From a formal viewpoint, the compliances that define any flexure hinge
can be grouped into the following categories:

• Direct compliances that relate similar loads and deformations,
namely:
• Deflection–force, connecting the deflection to the corresponding

force (called deflection compliances here and consisting of C1,x–Fx,
C1,y–Fy, and C1,z–Fz when the capacity of rotation is analyzed)

• Rotation–moment, connecting the rotation to the corresponding
moment (called rotation compliances here and consisting of
C1,θz–Mz and C1,θy–My for this class of flexure hinges)

• Cross-compliances that relate unsimilar loads and deformations,
namely a linear deflection to a moment and a rotation (angle) to a
force; they are C1,y–Mz and C1,z–My.

The following compliance ratios are formulated:

• Deflection compliance ratios:

(2.327)

(2.328)
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• Rotation compliance ratio:

(2.329)

• Cross compliance ratio:

(2.330)

The above-defined compliance ratios were formulated in a convenient
manner by placing in the numerator compliances that are proportional to
the capacity of rotation of a flexure hinge and should have large values, while
selecting compliances in the denominator that must be small, as they describe
unwanted effects, such as axial or out-of-plane. In this way, the compli-
ance ratios are directly indicative of the rotation capacity of one flexure because
the ratio will increase, for instance, when either the numerator increases
(which is desired) or the denominator decreases (which is also desired).

The plots presented in the following were drawn for symmetric flexure
hinges but they are also representative for nonsymmetric configurations.

2.3.12.2.1 Circular Flexure Hinges

Figure 2.29 displays several plots illustrating the way in which the compli-
ance ratios that were defined in Eqs. (2.327) through (2.330) vary when the
geometric parameters range within feasible intervals. As shown in Figure 2.29,
all compliance ratios present similar trends with respect to the geometric
parameters r, t, and w; therefore, the following conclusions have an overall
validity. An internal compliance ratio increases and, therefore, the rotation
performance of a flexure hinge is enhanced when:

• Radius r increases.
• Minimum thickness t decreases.
• Cross-section width w decreases.

2.3.12.2.2 Corner-Filleted Flexure Hinges

Symmetric corner-filleted flexure hinges were analyzed in a similar way by
inspecting the plots of the corresponding compliance ratios as a function of
the geometric parameters r, t, l, and w, as shown in Figure 2.30. The following
conclusions that can be derived are also valid for nonsymmetric flexure
hinges:

• The compliance ratios increase when the radius r is larger; an
exception is the compliance ratio C1d,yx, which slightly decreases,
indicating a relative axial stiffening for larger values of r.

• All compliance ratios decrease when the minimum thickness t
increases.
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• The deflection compliances increase when the flexure length, l,
increases, while the rotation and cross compliance ratios decrease
with l increasing.

• All the compliance ratios increase when the cross-section width, w,
increases.

FIGURE 2.29 
Characterization of a symmetric circular flexure hinge by internal compliance ratios: (a–g)
deflection, rotation, and cross compliance ratios in terms of notch radius r, minimum thickness
t, and width w.
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FIGURE 2.30 
Characterization of a symmetric corner-filleted flexure hinge by internal compliance ratios: (a–g)
Deflection, rotation, and cross compliance ratios in terms of fillet radius r, minimum thickness
t, and width w.
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2.3.12.2.3 All Other Flexure Hinges

Although plots are only presented here for a symmetric elliptical flexure
hinge, all other flexure types (parabolic, hyperbolic, inverse parabolic, and
secant) displayed similar trends. Figure 2.31 illustrates the plots of the internal
compliance ratios as functions of c, t, and w. It must be noted that the length
of the flexure, l, does not enter into any of the compliance ratios.

FIGURE 2.31 
Characterization of a symmetric elliptical flexure hinge by internal compliance ratios: (a–g)
deflection, rotation, and cross compliance ratios in terms of the parameter c, minimum thickness
t, and width w.
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The following conclusions correspond to symmetric flexure hinges but are
also valid for nonsymmetric flexure hinges:

• All the internal compliance ratios decrease when the parameter c
increases; the most affected is the cross compliance ratio C1c,yz

which, for several of the flexure types, drops around a value of
approximately 50; out of all the flexures, the elliptic ones appear
to be most sensitive to the variation of c.

• Similarly, all the internal compliance ratios decrease when the min-
imum thickness t increases; the elliptic, inverse parabolic, and
secant appear to be most sensitive to the change in this parameter.

• All the internal compliance ratios increase with increasing w but
only slightly and quasi-linearly.

2.3.12.3 Constant Cross-Section Flexure Hinge Comparison 
and Shearing Effects

The seven different flexure hinge configurations are also compared to the
constant cross-section flexure hinge by means of their similar compliances.
In doing so, several compliance ratios are formulated that do not depend on
the cross-section width. Formally, these compliance ratios are defined as:

(2.331)

where the subscript ccsfh means “constant cross-section flexure hinge” and
fh denotes a generic flexure hinge standing for either of the seven different
types. Similar compliance ratios are formulated for the other compliances
that describe either the capacity of rotation (1 is in the subscript notation)
or the precision of rotation (2 is in the subscript notation). In formulating
the compliance ratios described above, it is considered that the thickness of
the constant cross-section flexure hinge is equal to the minimum thickness
of the compared flexure hinge. As a consequence, the compliance ratios will
always be greater than 1.

The influence of taking into account the shearing effects is also discussed
within this group of numerical simulations by means of the ratios:

(2.332)

where the superscript sh indicates that shearing is included in the compli-
ance. This compliance ratio, too, will be greater than 1 because the compliance
including shearing effects is always larger than the one not including those
effects. Again, plots and corresponding conclusions will be presented in
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direct mode only for symmetric flexure hinges, but their validity extends to
nonsymmetric flexures, as well.

2.3.12.3.1 Circular Flexure Hinges

Figure 2.32 presents several plots that describe the comparative response of
a circular flexure hinge with respect to a constant cross-section flexure hinge,
as well as the effects of considering shearing in the compliance of a circular
flexure hinge. The following conclusions can be derived when comparing
the circular flexure hinge to the constant cross-section flexure hinge:

FIGURE 2.32 
Characterization of a symmetric circular flexure hinge in terms of notch radius r and minimum
thickness t: (a–e) beam-referenced compliance ratios; (f) shear-referenced compliance ratio.
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• All compliance ratios increase with increasing r and decreasing t.
• A circular flexure hinge can be up to 2.5 times less compliant in

rotation than its corresponding constant cross-section counterpart
(Figure 2.32a).

• A circular flexure hinge is up to 1.5 times less axially compliant
compared to its corresponding constant cross-section flexure hinge
(Figure 2.32b).

• The circular flexure can be up to 2.5 times less sensitive to out-of-
plane effects (Figure 2.32c) than a constant cross-section flexure
hinge in terms of the rotation capacity.

• The circular flexure hinge can be 5 times better than a correspond-
ing constant cross-section flexure hinge, in terms of its precision of
rotation (Figure 2.32d).

• When the shearing effects are taken into consideration, the short
flexure hinge can be up to 5 times more compliant than a corre-
sponding flexure when shearing is not accounted for (Figure 2.32f).
It is therefore extremely important that shearing be included in
compliance evaluations for short flexure members.

2.3.12.3.2 Corner-Filleted Flexure Hinges

Figure 2.33 shows the plots that define the relative response of a corner-
filleted flexure hinge in comparison to its constant cross-section counterpart,
as well as the effects of shearing. The following remarks can be formulated
from inspection of the compliance ratios:

• All the compliance ratios increase with increasing r, decreasing t,
and decreasing l.

• The rotation capacity of a corner-filleted flexure hinge can be up
to 1.4 times larger than the corresponding constant flexure hinge
(Figure 2.33b).

• A corner-filleted flexure can be 30% less sensitive to axial effects
(Figure 2.33d) and up to 50% less sensitive to out-of-plane effects
with respect to its precision of rotation (Figure 2.33f).

• Shearing effects are, again, important factors in correctly assessing
the compliance of a corner-filleted flexure for shorter lengths, as
illustrated in Figure 2.33g and h.

2.3.13.3.3 All Other Flexure Hinges

Figure 2.34 shows the plots that correspond to an elliptical flexure hinge.
They are similar in trends with plots for parabolic, hyperbolic, inverse par-
abolic, and secant flexure hinges—plots that are not included here. In the
ratios that compare the different flexure hinges to a constant cross-section
flexure hinge, the length, l, does not enter explicitly, so no plots in terms of
l are shown in Figure 2.34. The following conclusions can be extracted:
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• All the compliance ratios, for all the mentioned flexure hinges,
increase when c increases and when t decreases.

• In terms of the rotation capacity, the best performer is the inverse
parabolic flexure (1.4 compliance ratio), followed by the secant, elliptic
(2.5 ratio, as shown in Figure 2.33a), parabolic, and hyperbolic (5 ratio).

FIGURE 2.33 
Characterization of a symmetric corner-filleted flexure hinge in terms of fillet radius r, minimum
thickness t, and length l: (a–f) beam-referenced compliance ratios; (g–h) shear-referenced com-
pliance ratio.
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• The least axially sensitive is the hyperbolic flexure hinge (2 ratio),
followed in order by the parabolic, elliptic (1.5 ratio, as shown in
Figure 2.33b), secant, and inverse parabolic (1.35 ratio).

• The best performance in terms of rotation precision is recorded by
the parabolic flexure hinge (3 ratio), followed by the secant, elliptic
(5 ratio, as indicated in Figure 2.33c), hyperbolic (7.5 ratio), and
parabolic (8 ratio).

FIGURE 2.34 
Characterization of a symmetric elliptical flexure hinge in terms of the parameter c, minimum
thickness t, and length l: (a–d) beam-referenced compliance ratios; (e–f) shear-referenced com-
pliance ratio.
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• In terms of the shearing effects, all the flexures in this category
behave remarkably similarly as all present a shearing-to-nonshear-
ing compliance ratio with a maximum value of approximately 3
for short flexure hinges.

2.3.12.4 Nonsymmetric/Symmetric Flexure Hinges Comparison

The last set of numerical simulations aims at quantitatively relating the
longitudinally nonsymmetric flexure hinges to their symmetric counterparts
that have been directly analyzed so far. Compliance ratios are formulated
by taking any compliance of a nonsymmetric flexure hinge into the numer-
ator and the same compliance of the corresponding (equal minimum thick-
ness) symmetric flexure hinge into the denominator. Evidently, these ratios
are greater than 1 as a nonsymmetric flexure hinge is always more compliant
than its symmetric counterpart.

2.3.12.4.1 Circular Flexure Hinges

Figure 3.35 presents several plots illustrating the nonsymmetric-to-symmet-
ric compliance ratios as a function of r and t. The following conclusions can
be formulated:

• All compliance ratios increase with increasing r and decreasing t.
• A nonsymmetric flexure hinge can be up to 30% more compliant

compared to the symmetric one in terms of the rotation capacity
(Figure 2.35a).

• The nonsymmetric flexure hinge is also up to only 16% more axially
sensitive than its symmetric counterpart (Figure 2.35b).

• The nonsymmetric flexure, at the same time, may be up to 80%
more exposed to out-of-plane effects (Figure 2.35c) and up to 60%
less precise in keeping the position of the rotation center (Figure
2.35d).

• The shearing effects show an increase in the corresponding com-
pliance of up to 25% for the nonsymmetric flexure hinge, compared
to the symmetric hinge, for short lengths.

2.3.12.4.2 Corner-Filleted Flexure Hinges

Similar numerical simulations were performed for corner-filleted flexure
hinges, and several results are presented in the plots of Figure 2.36. The
following conclusions are noted:

• All compliance ratios increase when r increases, t decreases, and l
decreases.
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• The differences between nonsymmetric corner-filleted flexure
hinges and their symmetric variants are not so marked in terms of
capacity of rotation (20% maximum, as shown in Figure 2.36b) and
axial sensitivity (10%, as shown in Figure 2.36d); however, the
differences become sensible when analyzing the capacity of rota-
tion (the nonsymmetric flexure can be up to 3.5 times larger than
the symmetric one; see Figure 2.36f).

• A nonsymmetric flexure hinge is up to 75% more compliant than
a symmetric one (see Figure 2.36g) when the shearing effects are
taken into consideration for relatively short lengths.

FIGURE 2.35 
Nonsymmetric vs. symmetric circular flexure hinges in terms of notch radius r and minimum
thickness t: (a–e) compliance ratios.

(a) (b)

(c) (d)

(e)

0.001

0.001

0.0005

0.0005

1.3

1.2
t [m]

r [m]

rCs
1,θz–Mz

0.001

0.001

0.0005

0.0005

1.8

1.4
t [m]

r [m]

rCs
1,z–My

0.001

0.001

0.0005

0.0005

1.16

1.08
t [m]

r [m]

rCs
1,x–Fx

0.001

0.001

0.0005

0.0005

1.6

1.4
t [m]

r [m]

rCs
2,y–Mz

0.001

0.001

0.0005

0.0005

1.25

1.14
t [m]

r [m]

rCs
2,z–My

1367_Frame_C02  Page 107  Friday, October 18, 2002  1:49 PM



108 Compliant Mechanisms: Design of Flexure Hinges

2.3.12.4.3 All Other Flexure Hinges

Based on plots that were drawn for elliptical flexure hinges (see Figure 2.37),
the results and discussion that follow are also valid for parabolic, hyperbolic,
inverse parabolic, and secant flexure hinges. In all compliance ratios, the
flexure length, l, and width, w, do not enter into the formulations; as a
consequence, these two geometric variables are not accounted for in any of
the plots. The following conclusions are noted:

FIGURE 2.36 
Nonsymmetric vs. symmetric corner-filleted flexure hinges in terms of fillet radius r, minimum
thickness t, and length l: (a–h) compliance ratios.
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• All the compliance ratios increase when c increases and t decreases,
for all mentioned flexure configurations.

• The nonsymmetric parabolic flexure hinge can be up to 85% more
efficient in terms of rotation capacity when compared to the corre-
sponding symmetric configuration; next in this classification is the
hyperbolic flexure hinge (60% more efficiency), followed by the
elliptic one (30% more efficiency, see Figure 3.37a), inverse para-
bolic (about 20% more efficiency), and secant (with approximately
15% efficiency increase).

FIGURE 2.37 
Nonsymmetric vs. symmetric elliptical flexure hinges in terms of the parameter c and minimum
thickness t: (a–e) compliance ratios.
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• In terms of sensitivity to axial effects, the above-mentioned hierar-
chy remains unaltered, in the sense that nonsymmetric flexures are
more sensitive to axial loading than their symmetric counterparts
with margins ranging from 30% (hyperbolic), to 16% (elliptic, as
illustrated in Figure 3.37b), and down to 8% (secant).

• The flexure hinge types analyzed here perform similarly in terms
of reaction to out-of-plane input; the nonsymmetric configuration
is again more sensitive to these effects; leading the standings are
the elliptic (see Figure 3.37c), hyperbolic, and secant with 30% more
compliance, followed by parabolic (20% more compliance) and
secant (only 12% additional compliance).

• When ranking the precision of rotation of nonsymmetric vs. sym-
metric flexure hinges, the worst performance is recorded by the
parabolic flexure configuration (80% more sensitivity in motion
about the transverse axis at the center of the flexure), followed by
the elliptic hinge (60% more compliance, as seen in Figure 3.37d),
hyperbolic (50% more compliance), inverse parabolic (45% addi-
tional compliance), and secant (35% more compliance).

2.4 Multiple-Axis Flexure Hinges
for Three-Dimensional Applications

2.4.1 Introduction

The multiple-axis flexure hinges will be studied in this section of the work in
terms of their compliant behavior. As mentioned in Section 2.1, these flexures
have rotary symmetry because all configurations are revolute; therefore, their
cross-section is circular, as illustrated in Figure 2.3. Due to their innate circular
symmetry, the revolute flexure hinges will also possess longitudinal symme-
try. In addition, as previously mentioned, only configurations with transverse
symmetry are analyzed in this work, thus the revolute flexure hinges will
have full (complete) symmetry. These flexure hinges are implemented in three-
dimensional applications where the flexure-based compliant mechanism per-
forms a space motion and the flexure hinges are not required to have specific
sensitivity about any particular cross-sectional direction.

Closed-form compliance equations (or spring rates) will again be formu-
lated by applying Castigliano’s displacement theorem. As in the previous
section, the formulation will first be generic. Both long- and short-beam
theory will be investigated, and the differences arising by including/except-
ing shearing effects will be expressed and discussed for each individual
flexure. The configurations that were analyzed for one-sensitivity-axis flex-
ure hinges will also be approached here. Specific compliance equations will
explicitly be derived for circular, corner-filleted, elliptic, parabolic, hyper-
bolic, inverse parabolic, and secant designs.
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A numerical simulation section will thoroughly analyze trends and com-
pare flexures in terms of their rotation performance and sensitivity to para-
sitic effects, in a manner similar to the one already applied. Several three-
dimensional plots will be utilized again to enable formulating conclusions
with respect to specific features of each flexure.

2.4.2 Generic Formulation and Performance Criteria

2.4.2.1 Capacity of Rotation

For a three-dimensional revolute-geometry flexure hinge, as illustrated in
Figure 2.3, the loading at the free end, point 1, consists of a maximum of six
components: two bending moments, M1y and M1z; two shearing forces, F1y,
F1z; one axial load, F1x; and one torsional moment, M1x (as indicated in
Figure 2.8). Unlike the single-axis flexure hinges for two-dimensional appli-
cations, where the loads and corresponding displacements are planar, in the
case of three-dimensional flexures all loads must be considered, as there is
no geometrically preferential direction. The notion of parasitic loads and
effects becomes therefore unusable from a geometry viewpoint. It no longer
makes sense to distinguish between in-plane and out-of-plane compliant
behavior; therefore, Eq. (2.22) is valid in its original form without any discrim-
ination between in- and out-of-plane components. The vectors of Eq. (2.22)
are comprised of the following members when the free end (point 1 in
Figure 2.8) is referred:

(2.333)

(2.334)

The expanded form of the compliance matrix of Eq. (2.22) is:

(2.335)

According to the principle of reciprocity the following identities apply:

(2.336)
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The following compliances are also identical because of the circular symme-
try of the cross-section:

(2.337)

The compliance equations are:

(2.338)

(2.339)

(2.340)

(for relatively short beam-theory, where shearing is taken into account).
Combining Eqs. (2.338) and (2.340) gives:

(2.341)

The other compliances are:

(2.342)

(2.343)

(2.344)

Equation (2.344) can be rewritten by considering Eq. (2.343) as:

(2.345)
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The I1 through I4 integrals are:

(2.346)

(2.347)

(2.348)

(2.349)

2.4.2.2 Precision of Rotation

The precision of rotation for a revolute flexure hinge is again quantified by
means of the translations of the geometric center (point 2 in Figure 2.8) along
the x, y, and z directions. The translatory offset of the rotation center of a
flexure hinge is assessed in a similar manner by applying three fictitious
loads and in addition to the load vector applied at point 1.
Castigliano’s second theorem is again utilized to find the displacements of
the rotation center by means of the equations, which were previously for-
mulated for single-axis flexure hinge. The strain energy U′ will also include
torsion; therefore, Eq. (2.17) is valid in this situation, as well.

The bending and torsion moments, shearing, and axial forces are again
evaluated only on the 2–3 interval, as F2x, F2y, and F2z only intervene in that
load segment. They were formulated in Eq. (2.109). The torsion moment that
enters the compliance formulation for revolute joints is:

(2.350)

Castigliano’s second theorem is applied again and produces the generic
Eqs. (2.105) through (2.107).

The displacement vector at the center of the flexure is:

(2.351)

The load vector is the one applied at extremity point 1 and is comprised
of all the components shown in Eq. (2.334) less torsion (which produces no
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translation of the flexure center). The expanded form of the compliance
matrix in this case is:

(2.352)

The in-plane compliances of Eq. (2.352) are:

(2.353)

(2.354)

(2.355)

(for relatively short beams, where shearing is taken into account).
Combining Eqs. (2.353) and (2.355) gives:

(2.356)

The last compliance of Eq.(2.352) is:

(2.357)

The I1′ through I4′ integrals are:
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2.4.2.3 Stress Considerations

Similar to the single-axis flexure hinges, the revolute cutouts that form the
multiple-sensitive-axis flexure configurations constitute stress concentrators
that increase the nominal stresses over the cross-section. A three-dimensional
state of stress is set up in this case consisting of normal and shearing com-
ponents. The normal stresses are produced through axial and double (two-
axis) bending, while the shear stresses are generated through torsion and
shearing (for relatively short flexures). The maximum normal stress will occur
at an outer fiber, according to Eq. (2.136). The stresses generated through
axial loading are constant over the cross-section and are expressed as:

(2.362)

where Kta is the theoretical stress concentration factor in axial loading (either
tension or compression). The normal bending stresses are maximum on an
outer fiber and are the result of combining the effects of the two bending
moments, My and Mz, as given by:

(2.363)

where Ktb is the theoretical stress concentration factor in bending and My

and Mz are bending moments about the y and z axes, respectively. In the
worst-case scenario, the maximum bending (which occurs at the root of the
flexure) gathers similar contributions from the tip moment and force that act
at the flexure’s free end; therefore, Eq. (2.363) can be reformulated as:

(2.364)

Substituting Eqs. (2.362) and (2.364) into Eq. (2.136) gives:

(2.365)

The effects of shearing are usually neglected (for long flexures) such that the
shearing stresses are only produced through torsion. The maximum shear
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stress, in this case, is:

(2.366)

The von Mises criterion is applied for this plane state of stress in order to
find the maximum equivalent stress:

(2.367)

Substituting σmax and τmax of Eqs. (2.365) and (2.366) into Eq. (2.367) produces:

(2.368)

Equation (2.368) can be utilized in cases where the loading on a flexure can
be estimated. In situations where deformations are more readily available,
Eq. (2.368) can be modified by expressing it in terms of deformations instead
of loads. Similar to the procedure that has been detailed for single-axis flexure
hinges, stiffness-based, load-deflection Eq. (2.368) will be transformed into
a compliance-based, deflection-load equation. The stiffness matrix, which is
the inverse of the compliance matrix, is of the form:

(2.369)

where the stiffness factors can be expressed in terms of compliance terms
by the inversion indicated in Eq. (2.141). They are precisely the stiffness
factors given in Eq. (2.144) plus the new torsional stiffness, which is:

(2.370)
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The explicit form of the stiffness in Eq. (2.140) is:

(2.371)

The stiffness factors are first expressed in terms of compliances according
to Eqs. (2.144) and (2.370) and then are utilized in Eq. (2.371) to evaluate the
loading components. These load components are eventually substituted back
into Eq. (2.368), which gives the maximum equivalent von Mises stress in
terms of deformations.

2.4.2.4 Strain Energy-Based Efficiency

In the case of a multiple-axis flexure hinge, an evaluation of its efficiency can
be made based on the strain energy stored during deformation by the overall
load vector. The development here is similar to the one performed previously
for single-axis flexure hinges; therefore, more details can be found in that
section. In the present case, the loading at the free end of the flexure consists
of bending on two perpendicular planes (planes of axial symmetry), axial
tension/compression, and torsion. The deformation-loading equations are:

(2.372)

The work done by the loads is:

(2.373)
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By successive substitution of Eq. (2.372) into Eq. (2.373), the energy efficiency
can be expressed as:

(2.374)

In case of overall unit loading, Eq. (3.374) transforms into:

(2.375)

In the case of short flexure hinges that take into consideration the shearing
effects, the compliance factor C1,y–Fy is substituted by the corresponding factor

Based on the generic formulation that was presented here, the following
discussion will detail the compliances that describe the capacity of rotation
and precision of rotation for multiple-axis flexures (cylindrical, circular, cor-
ner-filleted, parabolic, hyperbolic, elliptic, inverse parabolic, and secant).

2.4.3 Cylindrical Flexure Hinge

The cylindrical flexure hinge is included here because further numerical
simulation will utilize its simpler compliance equations as a reference for
several comparisons to be performed. The cylindrical flexure has a constant
diameter, so that:

(2.376)

2.4.3.1 Capacity of Rotation

The compliances that describe the capacity of rotation are:
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2.4.3.2 Precision of Rotation

The compliances that describe the precision of rotation are:

(2.381)
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(2.383)

2.4.4 Circular Flexure Hinge

The variable thickness/diameter t(x) is given in Eq. (2.170). Actually, for all
the other flexure configurations, the diameter will be equal to the thickness
t(x) that was given for the corresponding single-axis profile.

2.4.4.1 Capacity of Rotation

The compliances that describe the capacity of rotation are:
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2.4.4.2 Precision of Rotation

The equations that describe the precision of rotation are:

(2.388)

(2.389)

2.4.5 Corner-Filleted Flexure Hinge

2.4.5.1 Capacity of Rotation

The compliances describing the capacity of rotation are:
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(2.393)

2.4.5.2 Precision of Rotation

The compliances describing the precision of rotation are:

(2.394)

(2.395)

2.4.6 Parabolic Flexure Hinge

2.4.6.1 Capacity of Rotation

The compliances describing the capacity of rotation are:

(2.396)
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(2.397)

(2.398)

(2.399)

Note that all similar torsional compliances for the next flexure configurations
are given by Eq. (2.399); therefore, this equation will not be mentioned again.

2.4.6.2 Precision of Rotation

The compliances describing the precision of rotation are:

(2.400)

(2.401)

2.4.7 Hyperbolic Flexure Hinge

2.4.7.1 Capacity of Rotation

The compliances describing the capacity of rotation are:

(2.402)
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(2.403)

(2.404)

2.4.7.2 Precision of Rotation

The compliances describing the precision of rotation are:

(2.405)

(2.406)

2.4.8 Elliptical Flexure Hinge

2.4.8.1 Capacity of Rotation

The compliances defining the capacity of rotation are:

(2.407)

(2.408)

    

C
l

Et c t c c t
t c c t c ct t

c t
c c t

t

y Fy1

3

3 2 3 3

2 2

4

2
2 4 4

2
2

,
( ) ( )

( )( )

  ( ) arctan
( )

− =
+ +

+ + −





+ + +














π

    

C
l

Et
t

c t

c c t
t

c c ty Mz1

2

3 2

8 2
2

2

, ( )

arctan
( )

( )− =
+

+

+









+





















π

    

C
l

Et c t c t c
c c ct t

t c t
c t

c c t
t

y Fy2

3

2 2 3

2 2

2

2 2
2 4 4

2 2

,
( ) ( )

( )

  
( )

arctan
( )

− =
+ +

+ −





+ +
+

+














π

  
C

l
Et c ty Mz2

2

2 2

8
2, ( )− =

+π

  

C
Et c t c t

l t c
cl c t
t c t

c
t c t

x Fx1
4

2 4
2

2 2
4

2
4 2

, ( )( )
( )

( )
( )

   arctan
( )

− =
+ +

+ + +
+






+








 −













π

π

    

C
l

Et c t
c c t c t ct t

c t

c c t
t c t

c
t c t

y Fy1

3

3 3

4 3 2 2 3 4

2

2

16
4

2 60 100 57 16 2
3 2

5 2
4

2
4 2

, ( )
( )

( )

  
( )
( )

arctan
( )

− =
+

+ + + +
+






+ +
+ +









 −













π

π

1367_Frame_C02  Page 123  Friday, October 18, 2002  1:49 PM



124 Compliant Mechanisms: Design of Flexure Hinges

(2.409)

2.4.8.2 Precision of Rotation

The compliances describing the precision of rotation are:

(2.410)

(2.411)

(2.412)

2.4.9 Inverse Parabolic Flexure Hinge

2.4.9.1 Capacity of Rotation

The compliances describing the capacity of rotation are:

(2.413)

(2.414)

(2.415)
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2.4.9.2 Precision of Rotation

The compliances describing the precision of rotation are:

(2.416)

(2.417)

2.4.10 Secant Flexure Hinge

2.4.10.1 Capacity of Rotation

The compliances describing the capacity of rotation are:

(2.418)

(2.419)

(2.420)

with:

(2.421)

2.4.10.2 Precision of Rotation

The compliances describing the precision of rotation are:

(2.422)

(2.423)
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2.4.11 Limit Verification of Closed-Form Compliance Equations

The correctness of the closed-form compliance equations for multiple-sensitive-
axis flexure hinges has been verified by using the limit procedure, in a
manner similar to the one employed in limit-checking the single-axis sym-
metric flexure hinge. Because two corresponding flexure configurations from
the one- and multiple-sensitive-axis flexures, respectively, have identical lon-
gitudinal sections, a planar constant cross-section flexure hinge can easily be
mapped onto a cylindrical hinge, a planar circular flexure hinge onto a
revolute circular hinge, and so on. As a consequence, all the checks that have
been performed for single-axis flexure hinges and have been presented in
detail in previous sections have also been applied here. All the confirmation
necessary was obtained with respect to limit calculations.

2.4.12 Numerical Simulations

The performance of multiple-sensitive-axis flexure hinges is assessed
through numerical simulation, similar to the procedure that has been utilized
for single-axis flexure hinges. The closed-form compliance equations are
analyzed in terms of the geometric parameters that define the various rev-
olute flexure configurations. Compared to the single-axis flexure hinges,
where four criteria were taken into consideration, only two different groups
of numerical simulation are carried out here that target the following
objectives:

• Internal compliance comparison
• Compliance comparison to constant cross-section flexure hinge

Analyzing the trend in the absolute values of compliances in terms of the
geometric parameters that define a revolute flexure reveals the same patterns
noted for single-axis flexure hinges, so these results have not been replicated
here. At the same time, the nonsymmetric vs. symmetric comparison is not
applicable because the revolute flexure hinges are always longitudinally
symmetric. Table 2.4 illustrates the minimum and maximum limits reached
by the compliances of revolute flexure hinges when the geometric parame-
ters that define them range within the feasible domains that were specified
for the corresponding simulation of single-axis flexure hinges (see parameter
values for Tables 2.2 and 2.3).

2.4.12.1 Internal Comparison

Similar to the procedure utilized for single-axis flexure hinges, the focus here
falls on analyzing the performance of each flexure type internally, by compar-
ing different compliances that are similar in nature. As previously shown, three
compliance ratios can be defined: direct deflection, direct rotation, and crossed,
as defined in the equations that defined similar amounts for single-axis
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flexure hinges. Details will be given for the results corresponding to different
types of flexure hinges.

2.4.12.1.1 Circular Flexure Hinges 

Figure 2.38 shows the three-dimensional plot of the single direct compliance
ratio as a function of the geometric parameters r and t. The deflection com-
pliance ratio, as shown in Figure 2.38, increases when r increases and t
decreases.

2.4.12.1.2 Corner-Filleted Flexure Hinges

Two plots of the same deflection compliance ratio are illustrated in Figure 2.39
for revolute corner-filleted flexure hinges in terms of the fillet radius, r, and
flexure length, l. The width cancels out and therefore is not accounted for in
the compliance ratio plots. The deflection compliance ratio increases with
decreasing r and increasing l, as indicated in Figure 2.39.

2.4.12.1.3 All Other Flexure Hinges

Plots are shown only for elliptical flexure hinges, but they are representative
for all other flexure types (parabolic, hyperbolic, inverse parabolic, and
secant). Figure 2.40 illustrates the plots of the same deflection compliance

FIGURE 2.38 
Characterization of a revolute circular flexure hinge by the internal direct compliance ratio
defined in terms of notch radius r and minimum thickness t.

FIGURE 2.39 
Characterization of a revolute corner-filleted flexure hinge by the internal direct compliance
ratio defined in terms of fillet radius r, minimum thickness t, and length l.
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ratio that was analyzed for previously considered flexure configurations.
The width of the flexure, w, does not enter into the compliance ratio equation;
therefore, the variables in the plots of Figure 2.40 are c, t, and l only. The
deflection compliance ratio decreases when the parameter c increases, the
minimum thickness t decreases, and the length l decreases. The parabolic
and hyperbolic flexure hinges reveal higher maximum values of this ratio
(up to 50), while the elliptical (see Figure 2.40), inverse parabolic, and secant
flexure hinges display a lower maximum value (up to 40).

2.4.12.2 Constant Cross-Section Flexure Hinge Comparison
and Shearing Effects

The seven different flexure hinge configurations are also compared to the
constant cross-section (cylindrical) flexure hinge by means of the correspond-
ing compliances. The compliance ratios that were previously defined are also
used here. The shearing effects, which are extremely important for smaller
flexure lengths, are also analyzed by means of the previously formulated
compliance ratios.

2.4.12.2.1 Circular Flexure Hinges

Figure 2.41 shows several plots that illustrate the comparative response of
circular flexure hinges with respect to cylindrical flexure hinges. Also pre-
sented is the plot of the compliance ratio, which reflects the influence of the
shearing effects for circular flexure configurations. The following conclusions
can be derived when comparing the circular flexure hinge to the correspond-
ing cylindrical flexure hinge:

• All compliance ratios increase when r increases and t decreases.
• A circular flexure hinge can be up to 7 times less compliant in rotation

than its corresponding cylindrical counterpart (Figure 2.41b).

FIGURE 2.40 
Characterization of a revolute elliptical flexure hinge by the internal direct compliance ratio
defined in terms of the parameter c, minimum thickness t, and length l.
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• A circular flexure hinge is up to 2 times less axially compliant, com-
pared to its corresponding cylindrical flexure hinge (Figure 2.41a).

• The circular flexure hinge can be up to 3 times less compliant in
torsion than a cylindrical flexure (Figure 2.41a).

• The circular flexure hinge can be 40% more efficient than a corre-
sponding cylindrical flexure hinge, in terms of its precision of rota-
tion (Figure 2.41d).

• With respect to shearing effects, the circular flexure hinge can be
up to 15 times more compliant than a corresponding circular flex-
ure where shearing is not taken into account (Figure 2.41e).

FIGURE 2.41 
Characterization of a revolute circular flexure hinge in terms of notch radius r and minimum
thickness t: (a–d) cylindrical beam-referenced compliance ratios; (e) shear-referenced compli-
ance ratio.
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2.4.12.2.2 Corner-Filleted Flexure Hinges

Figure 2.42 displays the plots describing the relative response of a corner-
filleted flexure hinge in comparison to its cylindrical counterpart, as well
as the effects of shearing when the defining geometric parameters are

FIGURE 2.42 
Characterization of a revolute corner-filleted flexure hinge in terms of fillet radius r, minimum
thickness t, and length l: (a–f) cylindrical beam-referenced compliance ratios; (g–h) shear-
referenced compliance ratio.
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ranging within feasible intervals. The following observations can be
formulated:

• All the compliance ratios increase with increasing r, decreasing t,
and decreasing l.

• The rotation capacity of a corner-filleted flexure hinge can be up
to 3 times larger than the corresponding constant flexure hinge
(plot not shown here, but similar in trend to Figure 2.42a and b).

• A corner-filleted flexure can be 60% less sensitive to axial effects
(Figure 2.42b).

• The corner-filleted flexure configuration can also be up to 6 times
less sensitive to effects perturbing its precision of rotation (Figure
2.42e).

• Shearing effects are, again, important factors in correctly assessing
a corner-filleted flexure’s compliance for shorter lengths, as illus-
trated in Figure 2.42g and h, and a flexure that incorporates the
shearing effects can be 3.5 times more compliant than a flexure not
including these effects.

2.4.12.2.3 All Other Flexures

Figure 2.43 illustrates the compliance ratio plots for an elliptical flexure
hinge. They are again similar in trends with the plots for parabolic, hyper-
bolic, inverse parabolic, and secant flexure hinges, plots that are not pre-
sented here. In the ratios that compare the different flexure hinges to a
cylindrical flexure hinge, the length, l, and width, w, do not appear explicitly;
therefore, the plots are drawn only in terms of the geometric parameters c
and t. The following trends can be outlined:

• All compliance ratios for all the mentioned flexure hinges increase
with c increasing and t decreasing.

• The least axially sensitive are the inverse parabolic and secant
flexure hinges (2.2 ratio), followed, in order, by the elliptical (3 ratio,
as shown in Figure 2.43b), parabolic (4 ratio), and hyperbolic
(6 ratio).

• The best performing in terms of rotation precision are the inverse
parabolic and secant flexure hinges (4 ratio), followed by the elliptic
(6 ratio, as indicated in Figure 2.43c), parabolic (12 ratio), and
hyperbolic (20 ratio).

• The shearing effects condition all the flexures in this category very
similarly (both in trends and amount) as indicated by shearing-to-
nonshearing compliance ratio maximum values of around 2.5 for
short flexure hinges.
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2.5 Two-Axis Flexure Hinges for Three-Dimensional 
Applications

2.5.1 Introduction

Several practical applications require a compliant mechanism to produce
rotation locally about specified axes—for instance, about two perpendic-
ular directions. Such cases were pointed out by Paros and Weisbord,1 who also

FIGURE 2.43 
Characterization of a revolute elliptical flexure hinge in terms of the parameter c and minimum
thickness t: (a–c) cylindrical beam-referenced compliance ratios; (d,e) shear-referenced compli-
ance ratio.
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provided the solution of disposing two mutually perpendicular flexural
cutouts in series. The solution works satisfactorily as long as the two rotation
centers do not have to be collocated. An alternative solution is proposed
here for designs where collocation of the two perpendicular flexures is nec-
essary. Such a configuration acts as a two-DOF flexure that provides relative
rotation between two rigid links around either of two perpendicular direc-
tions passing trough the flexure center of rotation. This flexure type has a
rectangular cross-section with both defining dimensions varying continu-
ously as a function of the in-plane profile of each. A generic illustration of
this design is presented in Figure 2.4.

2.5.2 Generic Formulation and Performance Criteria

A generic formulation is derived here using a procedure similar to that
utilized to present the one- and multiple-sensitive-axis flexure hinges,
whereby compliances are introduced to describe the performance of this
flexure type by analyzing them from the viewpoints of capacity of rotation
and precision of rotation. Stress considerations are also discussed.

2.5.2.1 Capacity of Rotation

The loading at the free end point 1 (see Figure 2.8) consists of five compo-
nents in this case: two bending moments, M1y, M1z; two shearing forces, F1y,
F1z; and one axial load, F1x. The torsional effects are generally small compared
to the bending and axial ones, and will be neglected in the following.

Similar to the single-axis flexure hinges for two-dimensional applications,
where the loads and corresponding displacements are planar and formally
disposed in two perpendicular planes by separating them into in-plane and
out-of-plane components, two perpendicular planes will also be utilized here
to locate the loading agents mentioned above. Therefore, the formulation
developed for single-axis, constant-width flexure hinges is formally valid
for this case as well and can be maintained with only minor modifications,
as indicated next.

The in-plane generic compliance equations are:

(2.424)

(2.425)

(2.426)
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(for relatively short beam-theory, where shearing is taken into account)

(2.427)

(2.428)

The out-of-plane compliance equations are:

(2.429)

(2.430)

(for relatively short beam theory, where shearing is taken into account)

(2.431)

(2.432)

The I1 through I7 integrals that define the compliances previously formulated
are:
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2.5.2.2 Precision of Rotation

The precision of rotation for a three-dimensional, two-axis flexure hinge is
characterized in a manner similar to that for the other main flexure types
that have been presented—by translations of the geometric centers along
the x, y, and z directions. The formulation here is formally identical to the
one presented for single-axis, constant-width flexure hinges.

The compliances in the xy plane are:

(2.440)

(2.441)

(2.442)

(for relatively short beams, where shearing is taken into account)

(2.443)

The compliances in the zx plane are:

(2.444)

(2.445)

(for relatively short beams, where shearing is taken into account)

(2.446)

The  through  integrals that appear in the compliance equations are:

(2.447)

(2.448)

  
C

E
Ix Fx2 1

1
, − = ′

  
C

E
I

l
Iy Fy2 2 3

12
2, − = ′ − ′





C
E

I
l

I
G

Iy F
s

y2 2 3 1
12

2, − = ′ − ′ + ′





α

C
E

I
l

Iy Mz2 3 4
12

2, − = ′ − ′





    
C

E
I

l
Iz Fz2 5 6

12
2, − = ′ − ′





C
E

I
l

I
G

Iz F
s

z2 5 6 1
12

2, − = ′ − ′



 + ′α

    
C

E
I

l
Iz My2 6 7

12
2, − = ′ − ′





′I1 ′I7

′ = ∫I
dx

t x w xl

l

1
2 ( ) ( )/

′ = ∫I
x dx

t x w xl

l

2

2

3
2 ( ) ( )/

1367_Frame_C02  Page 136  Friday, October 18, 2002  1:49 PM



Compliance-Based Design of Flexure Hinges 137

(2.449)

(2.450)

(2.451)

(2.452)

(2.453)

2.5.2.3 Stress Considerations

When neglecting the effects produced through direct shearing forces and
torsion, the stresses will only be normal to the cross-section because they
are produced through bending and axial effects. The stresses produced by
axial loading are constant over the cross-section while the stresses generated
through bending on each of the two perpendicular planes vary linearly over
the cross-section. As a consequence, the maximum stress will occur at one
vertex of the rectangular cross-section where both stresses coming from the
double bending are maximum. Reasoning similar to that used for the single-
axis, constant-width flexure hinges gives the maximum stress as:

(2.454)

where Ktb,z and Ktb,y denote stress concentration factors for bending about the
z and y axes, respectively. Equation (2.454) is useful when the loading on a
flexure hinge is known. For cases where the displacement is rather available,
a formulation similar to the one developed for single-axis, constant-width
flexures produces the following equation:
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2.5.3 Inverse Parabolic Flexure Hinge

A design is analyzed consisting of two pairs of symmetrical inverse parabolic
cutouts placed in two perpendicular planes with their rotation centers col-
located. The variable thickness and width are:

(2.456)

with:

(2.457)

and:

(2.458)

with:

(2.459)

The parameters ct and cw are similar to the parameter c that defines the
maximum thickness of parabolic, hyperbolic, elliptical, inverse parabolic,
and secant flexure hinges, as shown in Figure 2.23. These two parameters
are located in the planes of the minimum dimensions t and w and their
subscripts indicate this relationship.

2.5.3.1 Capacity of Rotation

The in-plane compliances that characterize the capacity of rotation are:
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(2.461)

(2.462)

(2.463)

The out-of-plane compliances are:

(2.464)

(2.465)

(2.466)

2.5.3.2 Precision of Rotation

The in-plane compliances are:
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The out-of-plane compliances are:

(2.469)

(2.470)

A limit check was applied to all the compliances that have been derived for
a two-axis inverse parabolic flexure hinge in order to verify their correctness.
As Figure 2.4 indicates, a double inverse parabolic flexure hinge becomes a
constant cross-section flexure when the symmetric profiles in the two mutu-
ally perpendicular sensitive planes are forced to lines. Mathematically, this
condition requires that the two parameters c1 and c2 go to zero. These limits
have been applied to all the compliances derived here, and the results are
the corresponding compliance equations for a constant rectangular cross-
section flexure hinge.

2.5.3.3 Numerical Simulation

The compliance equations previously developed for a two-axis inverse par-
abolic flexure hinge are utilized to perform numerical simulation, as illus-
trated in Figure 2.44. Specifically, the comparison to constant cross-section
flexure hinges was one objective (Figure 2.44a–c). Also studied were the
shearing effects (Figure 2.44g). The following conclusions can be derived:

• A two-axis flexure hinge can be up to 2.1 times less compliant in
terms of its capacity of rotation, compared to its constant cross-
section counterpart (Figure 2.44b).

• The two-axis flexure hinge is up to 60% less sensitive to axial effects
than a constant cross-section configuration (Figure 2.44a) and can
be up to 2 times less sensitive to out-of-plane effects (Figure 2.44c).

• Its precision of rotation can be up to 3 times better compared to a
constant cross-section flexure hinge (Figure 2.44d).

• The shearing effects are important factors in correctly assessing the
compliant behavior of this flexure type, as they can amount to ratios
of 2.5, as shown in Figure 2.44e.
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2.6 Conclusions

This chapter has presented a large set of flexure hinge configurations for
both two- and three-dimensional applications. Three different classes of
flexure hinges are analyzed: constant-width, single-axis flexure designs; rev-
olute multiple-sensitive-axis flexure hinges; and variable-width, two-axis
flexures. Several configurations are new and add to the ones that have

FIGURE 2.44
Characterization of an inverse parabolic flexure hinge with two axes in terms of the parameter
c1, which denotes either ct or cw and minimum thickness t: (a–d) beam-referenced compliance ratios;
(e) shear-referenced compliance ratio.
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already been introduced in the dedicated literature. The flexure hinge can
be compared to a complex spring element that is sensitive to both rotation
and translation. As a direct result of this interpretation, each individual
flexure hinge is presented with its complete set of compliances (or spring
rates) that define its behavior. A flexure hinge responds in a compliant
fashion to bending, axial loading, and, in the case of revolute configurations
for three-dimensional applications, torsion. The shearing effects are also
taken into considerations for short flexures. Closed-form compliance equa-
tions are derived in a rigorous manner in order to characterize the perfor-
mance of the various flexure hinges in terms of their capacity of rotation,
precision of rotation, and maximum stress levels.
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3

 

Statics of Flexure-Based Compliant 

 

Mechanisms

 

3.1 Introduction

 

The aim of this chapter is to incorporate the flexure hinges that were intro-
duced and modeled by means of their compliances within the previous
chapter into various mechanisms, either planar or spatial, in order to derive
static (quasi-static) models that can naturally include, develop, and take
advantage of the compliance-defined flexures. Such mechanisms that are
formed by connecting rigid links and flexure hinges will be called flexure-
based compliant mechanisms. Each individual component of these compli-
ant mechanisms, either flexible or rigid, will be considered as a separate 

 

link

 

,
and generically it can be considered that any compliant mechanism is com-
posed of flexure hinges solely because a rigid link is virtually a flexure hinge
with zero compliance. Formally, the links will be connected at 

 

nodes

 

 that are
only graphical representations of the junctions between adjacent links (or
between links and supports).

The flexure-based compliant mechanisms can formally be divided into two
main categories: planar (or two-dimensional) and spatial (or three-dimen-
sional), depending on the design and the overall motion of the mechanism.
Single-axis flexure hinges, which were shown to mainly perform a two-
dimensional motion, are included in planar mechanisms, whereas two- and
multiple-axis flexures are practical solutions to spatial compliant mecha-
nisms, because, by their geometry, these flexure configurations are designed
to perform three-dimensional motion. Each category can further be subdi-
vided into serial, parallel, and hybrid (serial/parallel) mechanisms. In a
serial mechanism, all links (at least one being a flexure hinge) are connected
serially in such a manner that the resulting configuration is an open chain
consisting of at least one input port (where the incoming energy is fed into
the system) and one output port (where the resulting motion is delivered
outside the system). The input and output ports (or platforms) are generally
rigid links that can be located anywhere within the serial mechanism. A
parallel mechanism is formed of two or more flexure hinges that are connected
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in parallel to a rigid link, which plays the role of output port/platform. In
a hybrid mechanism, several legs in the form of serial open chains (actually
serial mechanisms, according to their recently introduced definition) are
placed in a parallel fashion, and they all connect to a rigid link (the output
platform).

As the title of this chapter indicates, the response of flexure-based compli-
ant mechanisms will be studied when the external loads are applied statically
(or quasi-statically). The serial mechanisms are treated first, and it is subse-
quently demonstrated that either a parallel or a hybrid flexure-based com-
pliant mechanism can be regarded as being statically equivalent to a specific
“source” serial mechanism composed of a rigid link (the output platform)
that is interposed between either two serial open chains (in the case of hybrid
mechanisms) or two flexure hinges (in the case of parallel mechanisms).

Also discussed in this chapter are several specific aspects of the static
modeling of flexure-based compliant mechanisms, which allows us to ana-
lyze their performance in terms of a few criteria that are of practical impor-
tance. All of these specific subproblems are treated by formulating
mathematical models that, in essence, reflect the load-deformation behavior
of a compliant mechanism based on the various compliances that define the
flexure hinges composing the studied compliant mechanism. One subgroup
in the static modeling focuses on expressing the output displacement of a
compliant mechanism in terms of the external load, boundary conditions,
and topology (structure) and geometry of the mechanism. Two methods are
discussed here together with their corresponding mathematical models: the
loop-closure method and Castigliano’s displacement theorem. Both methods
give the equations that relate the displacement vector at a given port to the
input load vector, in the form:

(3.1)

Another topic in the static modeling/analysis of flexure-based compliant
mechanisms is assessing the stiffness of the mechanism by analyzing differ-
ent ports and loads about various directions. Basically, the following generic
equation is solved within this subproblem and gives a composed (overall)
stiffness 

 

k

 

ij

 

:

(3.2)

where the load 

 

L

 

 (either force or moment) is being applied at a location 

 

i

 

along a direction 

 

d

 

i

 

, whereas the displacement 

 

u

 

 (either linear or angular) is
determined at a location 

 

j

 

 about a direction 

 

d

 

j

 

. This generic approach allows
for necessary flexibility by not requiring the load and displacement to be

    u f L= ( )

k
L

u
ij

i d

j d

i

j

=
,

,
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either collocated or parallel, such as in cases where the force is applied at
the input port and the displacement is determined at the output port. An
important problem in many flexure-based compliant mechanisms is to eval-
uate the output-to-input amplification (or deamplification) ratio, also called

 

mechanical advantage

 

, which is mathematically defined as:

(3.3)

In amplification mechanisms, the mechanical advantage is greater than one,
whereas in deamplification mechanisms the mechanical advantage is less
than one. The performance of a specific flexure-based compliant mechanism
can also be assessed by calculating the block load, which is the force and/or
moment that, being generally applied at the output port, completely annihi-
lates the (output) motion of the mechanism. The block load will be expressed
in terms of the external load acting on the mechanism as:

(3.4)

Another topic of interest in studying the static response of flexure-based
compliant mechanisms is evaluating their energy efficiency. This aspect is
approached in this chapter by utilizing the equations giving the energy
efficiency of individual flexure hinges, as derived within the previous chap-
ter. In flexure-based compliant mechanisms that are designed to deliver high-
precision output motion, predicting the precision of motion with a high
degree of accuracy is paramount. A model is developed in this chapter that
compares the output displacement of a given mechanism when considering
that the flexure hinges are either purely rotational or rotational with torsional
springs (stiffnesses) with the model that considers the flexures as fully com-
pliant members, according to the compliance equations derived within the
previous chapter.

Tremendous work has been performed and reported in the field of compliant
mechanisms. The accomplishments in theoretical modeling and analysis/
synthesis, as well as in engineering applications, of A. Midha, A.G. Erdman,
L.L. Howell, S.T. Smith, S. Kota, N. Kikuchi, G.K. Ananthasuresh, and
M. Frecker, to name just a few of the researchers that have a sustained interest
in this field, are well known and highly appreciated. The contributions that
have been published over the years cover a large spectrum of the contempo-
rary fundamental and application research of compliant mechanisms rang-
ing from small-scale microelectromechanical systems (MEMS)-type devices
to macroscale ones. 

Modeling the static response of compliant mechanisms involves establish-
ing the mobility of such mechanisms as studied in direct relation with the

    
m a

u

u
out

in

. . =

    
L f Lb uout

= =( ) 0
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degrees of freedom (DOFs) brought in by the flexible members in a compliant
system. Smith,

 

1

 

 for instance, considers that a flexure hinge is a one-DOF
member described by the rotation it produces or enables and then discusses
the mobility of a flexure-based mechanism in terms of the total number of
links, constraints, and the so-called “freedoms” at joints. A similar approach
is followed by Howell,

 

2

 

 who treats a flexure as a pseudo-joint equipped with
a single DOF, the rotational one. This approach of considering that a flexure
is a one-DOF member is actually embraced by almost all the researchers who
analyzed this subject. It should be mentioned that in doing so, the modeling
scope is limited to those flexures that are incorporated in two-dimensional
(planar) compliant mechanisms, where the main function (and the only one
being recognized, according to this modeling approach) is the relative rotation
between adjacent links. Flexure hinges that have a different geometry and
functionality, such as the two- or multiple-axis flexure configurations that
have been described in the previous chapter or even single-axis flexures that
are subject to out-of-plane (parasitic) loading/motion, can simply not be
modeled as single DOF members because they do transfer different types of
motions in addition to rotation. 

As mentioned in Chapter 2, a single-axis flexure hinge will be modeled
here as a three-DOF component, a two-axis flexure will be considered as a
five-DOF link, and a multiple-axis (revolute) flexure hinge will be modeled
as a (full) six-DOF link. As a consequence, the total number of degrees of
freedom of a specific compliant mechanism will be imposed entirely by the
flexure hinges that are incorporated in it and the constraints imposed by
boundary conditions. The rigid links will only act as simple followers, and
they will have no effect on the total number of degrees of freedom because
their position/orientation is determined completely by the degrees of free-
dom introduced by the flexures. A similar approach to considering the degrees
of freedom of a flexure hinge was proposed by Murphy et al.,

 

3

 

 who charac-
terized a link by the so-called 

 

compliance content

 

, a qualifier that attaches a
number to a specific link according to its capacity of creating different relative
and distinct motions between adjacent joints. By this concept, a rigid link
has zero compliance content, whereas a planar elastica (a relatively long
member that can be subject to large deformations) possesses a compliance
content of three, very similar to the single-axis flexure hinges presented in
this book. 

The degrees of freedom of compliant mechanisms are also approached by
Howell and Midha,

 

4,5

 

 who discuss the classical Grubler formula (which is
valid with rigid-link mechanisms) as applied to compliant mechanisms. An
interesting concept is presented by Howell

 

2

 

 whereby a flexure can be divided
in several segments delimited by points where the external loads are applied.
Unlike the present approach, where each member (either rigid or elastic) in
a compliant mechanism is considered as being an individual link, Howell

 

2

 

treats a serial chain composed, for instance, of two flexures bordering a rigid
part as a one-link mechanism. It should be mentioned that, in the same field
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of denominations, the nomenclature introduced by Saggere and Kota

 

6

 

 dis-
criminates between relatively short flexures (modeled or treated as lumped-
compliance members) and long flexures (distributed-compliance members).

A large amount of the specialized literature is dedicated to studying com-
pliant mechanisms that include flexures, according to the pseudo-rigid-body
model that was presented in more detail in the introductory chapter of this
book. Essentially, the pseudo-rigid-body model transforms a real flexure into
a one-DOF rotation joint equipped with torsional stiffness, under the assump-
tion of large deformations. In doing so, this flexure model can be utilized in
subsequent modeling of compliant mechanisms according to the classical prin-
ciples of rigid-body mechanics/mechanisms. The concept of the pseudo-rigid-
body model is presented in detail by Howell

 

2

 

 and a few examples of the
papers treating this subject in conjunction with the topic of large displacement,
as applied to macroscale compliant mechanisms, include those reported by
Midha et al.,

 

7

 

 Howell and Midha,

 

8–10

 

 Saxena and Kramer,

 

11

 

 Midha et al.,

 

12

 

 and
Dado.

 

13

 

 More recently, the area of MEMS has also been approached by means
of the same model and concept. The papers by Ananthasuresh et al.,

 

14

 

 Anantha-
suresh and Kota,

 

15

 

 Jensen et al.,

 

16

 

 Salmon et al.,

 

17

 

 and Kota et al.

 

18

 

 are just a
few examples illustrating the application of the pseudo-rigid-body model to
small or microscale systems.

A few topics approached in this chapter have also received attention from
similar research reported in the dedicated literature. Howell and Midha,

 

19

 

for instance, utilized the pseudo-rigid-body approach to develop a general-
ized loop-closure theory for the analysis and synthesis of compliant mech-
anisms. Kota et al.

 

20

 

 proposed a generalized method for designing compliant
mechanisms that includes topology generation and shape/size optimization
for various types of conventional and unconventional means of actuation.
More recently, Hsiao and Lin

 

21

 

 studied a planar serial chain composed of
two rigid links and five flexure hinges (of which two are fully circular, two
are nonsymmetric circular, and one is a curved flexure in the form of a
quarter circle). By fixing one end, Hsiao and Lin

 

21

 

 formulated implicit inte-
gral load-displacement equations that express the motions about the three
DOFs of the opposite free end. Carricato et al.

 

22

 

 studied the inverse kinemat-
ics of a planar compliant mechanism with flexural pivots by expressing the
input displacements that are needed to create a given output position. Kim
et al.

 

23

 

 analyzed the position of the so-called remote center of compliance
for a three-DOF compliant mechanism.

In terms of dedicated software that is currently being utilized for the static
(quasi-static) analysis of compliant mechanisms, the finite-element tech-
nique, through various commercially available packages, appears to be the
favored tool, for both macro- and microscale applications. More recently,
specialized software for MEMS applications has been designed, and the
results of a research group at the University of California–Berkeley in this
area were incorporated into a software code that performs nodal analysis
for microsystems (see, for example, the paper by Clark et al.

 

24

 

).
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3.2 Planar Compliant Mechanisms

 

A static analysis will be first performed for planar flexure-based compliant
mechanisms that are subject to different boundary conditions. The basic
boundary configuration is fixed–free, but other boundary conditions will be
discussed as well. The static analysis will focus on aspects such as force and
displacement relationships, amplification and deamplification of displace-
ment or force (mechanical advantage), block load, stiffness, energy efficiency,
and precision.

 

3.2.1 Planar Serial Compliant Mechanisms

 

A fixed–free planar open chain that is composed of flexure hinges con-
necting rigid links is studied in the following text. Figure 3.1a gives a sche-
matic representation of the planar mechanism that is referenced to a global
frame, 

 

xy

 

. A generic link is sketched in Figure 3.1b, together with its local
frame 

 

x

 

j

 

y

 

j

 

, its position in the global frame, the assumed boundary conditions,

 

FIGURE 3.1

 

Planar serial mechanism: (a) fixed–free open-chain compliant mechanism shown in the global
reference frame; (b) generic flexure hinge with geometry, position, loading, and its local reference
frame.
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and the loading at the free end 

 

j

 

.

 

 

 

The links represented in Fig. 3.1a can be
either compliant (specifically, flexure hinges) or rigid.

The rigid links are assumed to be perfect in the sense that they have zero
compliance. All the compliances that have been discussed in Chapter 2 were
of the form:

(3.5)

where 

 

E

 

 is the Young’s modulus of elasticity and 

 

f

 

j

 

 is a function formulated
in terms of the geometric configuration of one flexure. Equation (3.5) is also
valid for a rigid link; enforcing 

 

E

 

 

 

→

 

 

 

∞

 

 results in the respective compliance
tending toward zero, 

 

C

 

j

 

 

 

→

 

 0. This aspect is particularly convenient in allow-
ing a unitary formulation for both compliant and rigid links.

As detailed in Chapter 2, the three deformations at the free end of the
single-axis flexure hinge illustrated in Figure 3.1b are related to the corre-
sponding loading by means of the following equations:

(3.6)

As previously discussed, Eq. (3.6) is valid for both compliant members
(flexure hinges, actually) that are long (under the conditions that were
detailed in Chapter 2 with respect to the long/short separation) and rigid
links. For flexure hinges that are relatively short, the only affected equation
in Eq. (3.6) is the second one, where the compliance 

 

C

 

j

 

,

 

y–Fy

 

 needs to be
substituted with its counterpart 

 

C

 

s
j

 

,

 

y–Fy

 

, which incorporates the short-beam
theory effects. In order to simplify all further derivation and to make it more
uniform, it is assumed that every node of the planar compliant mechanism
is loaded with a point load and moment (that can be either external or
reaction).

 

3.2.1.1 Displacement-Load Equations

 

The aim of this section is to calculate the displacement components in the
global reference frame at a given node of the planar structure under the
action of the static loading mentioned above. Two methods will be utilized
to solve the problem. The loop-closure method will be developed first to
determine the displacement components at a generic node of the planar
fixed–free compliant mechanism and then Castigliano’s second theorem will
be utilized for the same purpose.
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3.2.1.1.1 The Loop-Closure Method

 

The loading at the free end, 

 

j

 

, of the generic flexure hinge of Figure 3.1b
represents the sum of all external forces or moments applied on the planar
fixed–free open-chain compliant mechanism between point 1 and the current
node 

 

j

 

. The corresponding load components on the axes of the local frame are:

(3.7)

The first two equations in Eq. (3.7) simply express the local frame force
components as the sum of all forces (a total of 

 

j

 

 forces from point 1 through
the current point 

 

j

 

) projected on the 

 

x

 

j

 

 and 

 

y

 

j

 

 axes, respectively. The moment
equation in Eq. (3.7) sums up all point moments that are perpendicular on
the plane of the compliant mechanism (a total of 

 

j

 

 moments acting from
point 1 through the current point 

 

j

 

). In addition, it also includes the contri-
butions to the bending moment produced by all the forces that act on the
mechanism between point 1 and 

 

j

 

 having a component that is perpendicular
on the direction of 

 

l

 

j

 

.
Equations (3.6) and (3.7) give the deformations of a compliant member in

local coordinates at its free end as they are produced through bending, axial
loading, and shearing (if applicable). These deformations displace the free
end from its initial position to a different one determined by the local coor-
dinates  and  (expressed in Eq. (3.6)). At the same time, the free-end
slope, also measured in the local reference frame, becomes  (given in the
last equation of Eq. (3.6)).

Each subsequent flexure hinge, when covering the remaining links from
the current 

 

j

 

th member to the 

 

n

 

th member (which has a physically fixed end,
as illustrated in Figure 3.1), deforms locally according to the equations pre-
sented previously for the generic free end of the 

 

j

 

th flexure hinge. As a result,
the actual displacements of point 

 

j

 

 must take into account the displacements
of point 

 

j 

 

+

 

 1 and the slope of member 

 

j 

 

+

 

 1 (which rotates the 

 

j

 

th member
and, therefore, adds complementary displacements to node 

 

j

 

) measured in
the 

 

j 

 

+

 

 1 local reference frame, because the node 

 

j

 

 

 

+

 

 1 is considered free in
its local frame. The sequence continues by connecting the node 

 

j 

 

+

 

 1 to its
neighbor 

 

j

 

 

 

+

 

 2 and, similarly, travels through all subsequent endpoints to the
last one, the fixed point 

 

n

 

. Figure 3.2 illustrates two adjacent flexure hinges,

 

k

 

 and 

 

k

 

 

 

+

 

 1, which are part of the sequence previously described. The corre-
sponding loop-closure diagram is superimposed on the drawing to highlight
the deformations and displacements that occur in this case.
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The following vector equation can be written, based on the loop-closure
diagram:

(3.8)

where  is the total vector displacement of point 

 

k

 

.
The primed symbols in Eq. (3.8) denote the amounts that have been rotated

in the 

 

k

 

 reference frame due to a change in slope produced at node 

 

k

 

 

 

+

 

 1 in
the 

 

k

 

 

 

+

 

 1 local frame, as also shown in Figure 3.2; therefore:

(3.9)

When all the links from 

 

j

 

 to 

 

n

 

 are considered, Eq. (3.8) can be extended to
include all deformations/displacements from the other links in order to
determine the real displacement of point 

 

j

 

, namely:

(3.10)

 

FIGURE 3.2

 

Loop-closure diagram indicating the deformations and displacements of two adjacent flexure
hinges.
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where  represents the total rotated displacement of generic point 

 

k

 

 and is
given by the vector equation:

(3.11)

while  is the total displacement of point ‘

 

j

 

’ which can be expressed vecto-
rially in terms of its components in the global reference frame as:

(3.12)

An important aspect in evaluating the displacements of various points of a
planar compliant mechanism is expressing the scalar components that define
the position of a given point in the global reference frame, after the mecha-
nism has deformed. As previously indicated, three parameters completely
define this point. In addition to the 

 

x

 

 and 

 

y

 

 coordinates, the slope 

 

θ

 

 at that
specific point needs to also be known since the respective point belongs to
a member that can bend and therefore present a slope at its tip. Expressing
the 

 

x

 

 and 

 

y

 

 coordinates reduces, in essence, to projecting the vector Eq. (3.10)
onto the axes of the global frame. It is well known from vector calculus that
the projection of a vector along another direction is equal to the dot product
of that vector and the unit vector of the other direction. Given the unit vectors
that correspond to the global axes 

 

x

 

 and y (as shown in Figure 3.1a) of the
generic point j, the components of the total displacement vector at that
generic point j are:

(3.13)

The explicit components of Eqs. (3.13) are obtained by projecting Eq. (3.10)
on the x and y global axes, namely:

(3.14)

The total rotation angle θj at the tip j of the generic link j → j + 1 is the
sum of all rotation angles (slopes) at the tip of all links covering the compliant
mechanism from the current link to the last one (with its end actually fixed).
The equation for θj is:

(3.15)
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3.2.1.1.2  Castigliano’s Displacement Theorem Method

An alternative to evaluating the displacement components at a generic node
of a planar serial fixed–free compliant mechanism is Castigliano’s second
theorem, which was utilized for all core derivation in Chapter 2. The three
displacement components at a generic node l (located anywhere between
the first and the last node and not shown in Figure 3.1) in the global reference
frame can be found by means of Castigliano’s second theorem equations:

(3.16)

According to the assumption stated at the beginning of this paragraph, node
l is loaded by the forces Flx and Fly , as well as the moment Mlz. As previously
noted, the displacements at node l are the result of adding up all elastic
deformations and rigid-body motions of all subsequent members (when
covering the links of the mechanism from node l to node n + 1). When only
bending (as produced by both the point forces and point moments) and axial
effects are taken into account, Eq. (3.16) can be formulated as:

(3.17)

Equation (3.17) indicates that regular Casigliano’s second theorem calcula-
tions have to be performed over each individual link starting from the link
of interest (link l) and ending with the last fixed-end link (link n). In other
words, the displacement at a specific node of the planar serial mechanisms
is the sum of all corresponding deformations and rigid-body motions calcu-
lated over each individual interval (link) from the link of interest (which
comprises the node of interest) to the last one, which is bounded by the fixed
node. The three load components are first expressed at a generic node i in
the local coordinate frame xiyi by statically adding up all corresponding loads
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that act on the serial system and are located between the free node, 1, of the
mechanism and the current node, 

 

i

 

. They are:

(3.18)

In the equation above, the point moment acting at node 

 

l

 

 is included in the
moment sum, and also included in the respective terms are the nodal forces

 

F

 

lx

 

 and 

 

F

 

ly

 

, so that the partial differentiation required by Castigliano’s second
theorem is possible. The 

 

x

 

i

 

 load component that acts at node 

 

i

 

 is:

(3.19)

and the 

 

y

 

i

 

 force component is:

(3.20)

The bending moment and axial force at a generic point located at a distance

 

x

 

i

 

 from node 

 

i

 

 on the flexure that is bounded by the nodes 

 

i

 

 and 

 

i

 

 

 

+

 

 1 are:

(3.21)

The partial derivatives that are connected to bending moment 

 

M

 

bi

 

 

 

can simply
be calculated by combining Eqs. (3.18), (3.20), and (3.21):

(3.22)
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Similarly, the nontrivial partial derivatives of Ni can be obtained from Eqs.
(3.19) and (3.21) as:

(3.23)

Equations (3.18) through (3.23) are now substituted back into Eq. (3.17) and,
after performing calculations and conveniently rearranging terms, the three
displacement components at node l can be formulated explicitly. The dis-
placement component along the global axis x is:

(3.24)

where the coefficients that multiply the compliance factors are:

(3.25)

The displacement component along the global axis y is:

(3.26)
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where the new coefficients of Eq. (3.26) are:

(3.27)

The rotation angle of the link l is:

(3.28)

where the new coefficients are:

(3.29)

Equations (3.24) through (3.29) have been checked by applying them to a
simpler compliant mechanism that comprises only one (compliant) link, as
shown in Figure 3.3. The input node, in this case, is node 1 (as there are no
other links and node 2 is fixed). In this case, Eq. (3.25) becomes:

(3.30)
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Substitution of Eq. (3.30) into Eq. (3.24) results in:

(3.31)

Equation (3.27) simplifies for this particular case to:

(3.32)

Substituting Eq. (3.32) into Eq. (3.26) gives:

(3.33)

Equation (3.29) simplifies to:

(3.34)

therefore, the corresponding end rotation angle is:

(3.35)

Equations (3.31), (3.33), and (3.35) can simply be obtained by expressing in
standard form the displacements of the single flexure hinge of Figure 3.3 in
the local reference frame (by using Eq. (3.6)) and then projecting them on
the global reference axes.

FIGURE 3.3
Single-axis flexure hinge with relevant loading,
geometry, and local/global reference frames.
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3.2.1.2 Displacement Amplification/Deamplification 
(Mechanical Advantage)

A compliant mechanism needs to fulfill at least one of the following tasks,
according to its main functional objective:

• It should provide a specified output displacement.
• It should provide a specified output force.

Either task has to be solved in terms of output level (a predesigned displace-
ment or force has to be provided) or output orientation (a predesigned path
or load pose history are the requisite performance criteria). Fundamentally,
a compliant mechanism is designed to either amplify or deamplify (reduce)
the output displacement or force. Figure 3.4 attempts to represent these two
antagonistic functions. Because of work conservation reasons, a mechanism
that amplifies the output displacement, for instance, will necessarily reduce
the force that it can deliver at its output port. Conversely, a mechanism that
is designed to amplify the output force will have to produce less output
displacement.

The current terminology utilizes the notions of amplification and deam-
plification (reduction) quasi-unanimously with reference to displacement;
therefore, an amplification mechanism is one that amplifies the output dis-
placement. The objective in this section is to relate the output displacement
to the input displacement by formulating the so-called mechanical advantage
of the compliant mechanism in the form defined by Eq. (3.3)

Figure 3.5 illustrates in a schematic fashion a planar compliant mechanism
highlighting the input and output links together with their defining nodes,
denoted by in1 and in2 for the input link and out1 and out2 for the output link.
Because the emphasis in this particular case falls on the displacement ampli-
fication capability of a generic planar compliant mechanism, the assumption
will be used that there are no load components, except the input force, Fin,
which is necessary to produce the input displacement uin (see Figure 3.5).

FIGURE 3.4
Amplification/deamplification in terms of displacement and force levels for compliant mech-
anisms.
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In order to express the generically defined mechanical advantage of Eq. (3.3),
a two-phase sequence will be applied. The first phase will give the relation-
ship between the input force Fin and the input displacement uin, as well as
the connection between the input force Fin and the output displacement uout.
The second phase will produce the transition between the two relationships
previously mentioned and will establish a direct relationship between output
and input displacement components in the form of Eq. (3.3). The results of
the previous section, which gave the explicit connection between the overall
load and a specific displacement for a given configuration of a planar com-
pliant mechanism, will directly be applied here by means of Castigliano’s
displacement theorem approach.

The input force/input displacement equation is formulated by expressing
first the coefficients of Eq. (3.25), which, in the case of the loading of Figure 3.5,
becomes:

(3.36)

FIGURE 3.5
Schematic representation of the input and output links of a planar serial compliant mechanism
for Castigliano’s second theorem approach.
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Substituting the required equations of Eq. (3.36) into Eq. (3.24) gives the
horizontal component (on the x global reference axis) at the input node:

(3.37)

where:

(3.38)

The vertical input displacement (the y global reference axis component) is
determined in a similar manner by first simplifying the coefficient equations,
Eq. (3.27), and then substituting them into Eq. (3.26); the result is:

(3.39)

with:

(3.40)

Similarly, the rotation at the input node can be determined by means of Eqs.
(3.28) and (3.29) and is expressed as:

(3.41)
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with:

(3.42)

The total input displacement can be expressed in terms of its global compo-
nents as:

(3.43)

which, by using Eqs. (3.37) and (3.39), can also be written as:

(3.44)

The input compliance of Eq. (3.44) is:

(3.45)

and the x and y compliance terms are given in Eqs. (3.38) and (3.40).
Similar reasoning and calculations based on the equations that were used

while solving the first phase will give the output displacement components
at the node out1 in Figure 3.5 when the planar compliant mechanism is loaded
by the input force Fin at the node in1. The output horizontal displacement is:

(3.46)

with:

(3.47)
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The output vertical displacement is:

(3.48)

with:

(3.49)

The deformation angle at the output node, o, is of the form:

(3.50)

with:

(3.51)

The total output displacement is:

(3.52)

which can be expressed in the alternate form by means of Eqs. (3.46) and
(3.48):

(3.53)

where the output compliance Cout is:

(3.54)
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Combining Eqs. (3.44) and (3.53) and substituting them into Eq. (3.3) give
the mechanical advantage of the planar serial mechanism as:

(3.55)

where Cout and Cin are given in Eqs. (3.54) and (3.45), respectively. As Figure 3.5
shows it, the output node is located before the input node in the node
sequence, when the serial mechanism is covered starting from the free node
to the fixed one. It is also possible that the output and input nodes switch
their positions in the serial mechanism topology but it is simple to check that
the equations defining the input and output displacements for the particular
disposition shown in Figure 3.5 are also valid for the reversed situation.

In many instances it is useful to express the equations that give the mechan-
ical advantage of a planar serial fixed–free compliant mechanism in terms
of stiffness instead of compliance. Equation (3.44), for instance, can be refor-
mulated as:

(3.56)

where kin is the input stiffness of the entire mechanism and, by means of Eq.
(3.44), is defined as:

(3.57)

Another global way of qualifying a compliant mechanism is by expressing
the input force in terms of the displacement at the output port, which yields
the output stiffness of the compliant mechanism as:

(3.58)

The output stiffness, kout, can be obtained from Eq. (3.53) as:

(3.59)

As a result of these reformulations, the mechanical advantage of Eqs. (3.3)
and (3.55) can alternatively be expressed as:

(3.60)

As mentioned, the output stiffness defined in Eq. (3.58) relates the input
force to the output displacement; therefore, it is not the “true” stiffness, in
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the original sense that would relate load to displacement in a collocated
manner. The true output stiffness is therefore defined as:

(3.61)

and can easily be determined in a manner similar to that for expressing the
input compliance (and corresponding stiffness), as previously done, but it
will not be detailed here.

The mechanical advantage of a planar serial compliant mechanism was
discussed exclusively in terms of displacement, but it can be defined equally
well in terms of the input and output rotation angles, in case these amounts
are of interest:

(3.62)

By utilizing Eqs. (3.41) and (3.50), the rotational mechanical advantage (the
subscript r denotes rotation in Eq. (3.62)) can be put into the alternative form:

(3.63)

where Cout,θz and Cin,θz are given in Eqs. (3.51) and (3.42), respectively.

3.2.1.3 Bloc Output Load

Another qualifier of a compliant mechanism, especially of force-amplification
ones, is the so-called bloc load, which represents the load (force and/or
moment) that must be applied, generally at the output port, in order to
completely deny the output displacement under a given input load. The
problem is actually the inverse formulation of the mechanical advantage aspect
because the aim is finding the relationship between the input force and the
corresponding zero-displacement output force. The load on the planar serial
fixed–free compliant mechanism of Figure 3.5 consists of the input force, Fin,
which is considered known, both in magnitude and direction, and the output
force, Fout, and moment, Mout, which are the amounts that must be determined
in terms of the input load. The constraint equations that will be utilized in
this case refer to the node out1 in Figure 3.5 (where Fin, Fout, and Mout are not
represented):

(3.64)
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Equation (3.64) must be solved for the unknown bloc load at the output
port. In order to simplify calculation, the output force is projected on the global
reference frame axes x and y such that its components are Fout,x and Fout,y. The
output displacement components of Eq. (3.64) are now expressed in terms of
the load acting on the entire mechanism and which consists of the output and
input forces. The specific loading conditions that have just been mentioned
are applied accordingly to express the coefficients of Eq. (3.25) as:

(3.65)
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(3.68)
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Similar calculations must be performed in order to determine the coefficients
that define the y- and θz components of the output displacement by consid-
ering again that the load consists of force and moment components at the
input and output nodes only, but the explicit derivation of those coefficients
is not given here. Equation (3.64) can be rearranged in the matrix form:

(3.69)

where {Lout} is the unknown load output vector defined as:

(3.70)

The matrix [a] of Eq. (3.69) is a 3 × 3 symmetric matrix of the form:

(3.71)

The components of matrix [a] of Eq. (3.71) are:
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(3.76)

(3.77)

The vector {b} of Eq. (3.69) is defined as:

(3.78)

where its components are given in Eqs. (3.38), (3.40), and (3.42), respectively.
The solution to Eq. (3.69) that gives the three components of output load is:

(3.79)

which shows that the bloc load components are functions of the input force
Fin.

3.2.1.4 Energy Efficiency

The energy efficiency of an individual flexure hinge was discussed in Chapter
2 by defining the energy necessary to produce the desired rotation of the
flexure vs. the total energy that has to be spent overall with all types of
elastic deformation during loading of a flexure hinge. A similar approach
can be applied to quantify the energy efficiency of a planar serial compliant
mechanism comprised of several single-axis flexure hinges by simply sum-
ming up the energy terms that were defined for a single flexure hinge. It
will be assumed that the generic flexure-based compliant mechanism is
composed of n links, of which nf are flexure hinges. In doing so Eqs. (2.156)
and (2.157), which express the energy efficiency for a single flexure hinge,
are now extended to the nf flexure hinges of the planar compliant mechanism.
In the case where the point bending moments and point forces that are
normal to the longitudinal axis of one flexure produce opposite effects, the
efficiency of the whole mechanism is minimum and is given by:
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Conversely, when the point bending moment and point force that is normal
to the longitudinal axis of one flexure generate the same effect (namely, they
both help the flexure hinge rotation), the energy efficiency is maximum and
is expressed as:

(3.81)

To make the energy efficiency expressions independent of loading, unit
values must be taken in both Eqs. (3.80) and (3.81), which leaves only the
compliances of all flexure hinges in the equations:

(3.82)

(3.83)

For short flexure hinges, where shearing effects have to be taken into account,
the compliance factors Cj,y–Fy need to be replaced by the corresponding factors
Cs

j,y–Fy that incorporate the influence of shearing and that were formulated in
Chapter 2.

3.2.1.5 Precision of Motion

It was previously shown that the output displacement can be calculated by
multiplying the input displacement and the mechanical advantage, which
was expressed in terms of the compliant mechanism geometric configuration
and the various compliances of the flexure hinges that composed the mech-
anism. Because the output displacement is a function of the compliant prop-
erties of the flexure hinges, the way in which one choses to model a flexure
hinge in terms of its compliances is crucial to the accuracy of evaluating the
displacement response of the compliant mechanism; therefore, it has direct
implications for the precision of motion.

The pseudo-rigid-body model, as previously mentioned, considers that a
flexure hinge is a purely rotational, lengthless joint that has one DOF and
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only torsional stiffness (compliance). It was also shown that a flexure hinge
for planar applications has, in actuality, three DOFs (two translations and one
rotation) and, as a direct consequence, must be defined as a complex spring
by using four compliance factors, namely: C1,x–Fx, C1,y–Fy, C1,y–Mz, and C1,θz–Mz.
It is interesting to compare the differences in output displacement of two
identical compliant mechanisms that have flexure hinges being defined as
either purely torsional (the pseudo-rigid-body approach) or fully compliant
(conditioned by the four compliance factors mentioned above). Both mech-
anisms will be subject to the same input displacement, and the corresponding
displacement will be calculated for each. For a planar mechanism that com-
prises fully compliant flexure hinges, the output displacement can be deter-
mined by means of generic Eqs. (3.46), (3.48), and (3.50). In the case of the
same mechanism that has purely rotational flexure hinges and torsional
compliance only, the output displacement components can be formulated
by making zero all compliance factors, except for the torsional one that
connects angular rotation to bending moment. They can be expressed as:

(3.84)

The input compliance factors of Eq. (3.84) are:

(3.85)
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Similarly, the output compliance factors of Eq. (3.84) are:

(3.86)

The following relative error functions are introduced:

(3.87)

Substituting Eq. (3.84) into Eq. (3.87) results in:

(3.88)

The error functions of Eq. (3.88) can be calculated by utilizing Eqs. (3.85)
and (3.86).
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3.2.1.6 Planar Serial Compliant Mechanisms with Other 
Boundary Conditions

It was assumed so far in this section that the serial compliant mechanism
has the following boundary conditions: The terminal node of the first link
is free while the terminal node of the last link is fixed. Other boundary
conditions are, of course, possible, and Figure 3.6 illustrates several bound-
ary conditions and corresponding reactions that can apply to the first and
last links of the serial mechanism.

Boundary conditions that are different from the fixed–free situation some-
what complicate the overall situation because additional reaction forces/
moments are added and these are generally unknown amounts. In the
fixed–free configuration the tacit procedure was to always start from the free
end of the first link and proceed toward the last link, which was the fixed one.

FIGURE 3.6
Various boundary conditions for the terminal nodes of the first and last link of a planar serial
compliant mechanism: (a) pinned–fixed; (b) slide–slide; (c) fixed–pinned.
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In doing so, it was possible to avoid the physically fixed node and its three
reactions (two forces and one moment). When other boundary conditions
are present, this approach is no longer possible because, irrespective of the
order in which one covers the serial chain, at least one reaction load (that is
unknown) will always exist at one terminal node. Fortunately, these reaction
loads are accompanied by corresponding displacement constraints, which
enable formulating additional equations to solve for the unknown reactions.
Once the reaction loads are determined for one terminal node, that node can
be considered as the free node of the basic configuration discussed so far,
and the corresponding already-determined reaction loads can be treated as
external loads.

It is important, however, to apply a procedure that would minimize cal-
culations, and this depends on the specific combination of boundary condi-
tions. Figure 3.7 shows a flowchart that explains the directions that are
applicable for various boundary conditions in order to make a given situa-
tion equivalent to the fixed–free problem.

FIGURE 3.7
Flowchart with directions for calculating reaction loads under various boundary conditions.

Determine number of
blocked DOFs, nr

The mechanism
has a fixed

terminal node

nr > 3

Formulate nr – 3
displacement

constraint equations

Formulate nr – 3
displacement

constraint equations 

Formulate 3 static
equilibrium
equations

Solve for nr
unknown load

reactions 

Formulate 3 static
equilibrium
equations

Solve for 3
unknown load

reactions 

nr = 3

Solve for nr - 3
unknown load

reactions 

Further calculations for
fixed-free chain

yes

no

no

yes

yes

no

nr = 3

nr > 3

1367_Frame_C03  Page 174  Friday, October 18, 2002  1:53 PM



Statics of Flexure-Based Compliant Mechanisms 175

The first step consists of counting the number of degrees of freedom that
are blocked by the boundary constraints being applied to the planar serial
mechanism. Let us assume that nr denotes the number of blocked degrees
of freedom, which is identical to the number of unknown reaction loads.
Two distinct paths can be followed, depending on whether the mechanism
has a physically fixed node (either the first one or the last one, according to
the convention of considering that constraints are applied at the terminal
nodes of the mechanism). In the cases where there is a fixed node, the
problem branches out into two subproblems as well. The simplest one is
when nr = 3, which means that no other boundary constraints exist apart
from the ones introduced by the fixed node; this case is the fixed–free one
that has been discussed so far within this section. When nr is greater than 3,
we need to formulate nr – 3 displacement constraint equations and solve for
the nr – 3 unknown reaction loads introduced at the other constrained node.
When a simple support is located at this node (see Figure 3.6a), one unknown
force needs to be determined, say Fr

1,x1. The related displacement constraint
measured in the local frame is:

(3.89)

The displacement of Eq. (3.89) can be expressed in terms of the global
displacements at the same node, namely:

(3.90)

The global components u1,x and u1,y are given in Eqs. (3.24) and (3.26);
therefore, combining Eqs. (3.89) and (3.90) will result in one equation that
can be solved for the unknown force Fr

1,x1.
When a support of the type shown in Figure 3.6b is located at node 1, two

unknown forces must be determined; therefore, two displacement constraint
equations have to be formulated. In this case, the boundary conditions at
node 1 require that:

(3.91)

As previously indicated, Eq. (3.91) must be expressed in terms of the global
displacement components. In addition to Eq. (3.90), which remains valid,
the second equation in Eq. (3.91) can be expressed by means of Eq. (3.28),
which gives θ1z. Eqs. (3.90), (3.91), and (3.28) must be combined again to
solve for the unknown reaction loads Fr

1,x1 and Mr
1,z.

When node 1 is fixed (as shown in Figure 3.6c), three unknown reaction
loads have to be determined by utilizing three displacement constraint equa-
tions. Equation (3.91) is still valid because the node is denied translation
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about the local axis x1 and rotation about the axis z. In addition, the trans-
lation about the axis y1 at this node is also blocked; therefore:

(3.92)

The displacement of Eq. (3.92) can be expressed in terms of the global
coordinates in the form:

(3.93)

Equation (3.93) is utilized in conjunction with Eqs. (3.91) and (3.92), result-
ing in three algebraic equations that can be solved for the three reaction
loads shown in Figure 3.6c. A note should be mentioned here regarding the
possibility that several other displacement constraints (and the correspond-
ing reaction loads) might be present at intermediate nodes. The problem can
simply be solved by formulating a number of displacement constraint equa-
tions that will solve for the reactions introduced by the additional blocked
degree of freedom.

For the cases where there is no fixed terminal node, the number of reaction
loads (or blocked degrees of freedom) must be compared again with 3. When
nr = 3 (as indicated in Figure 3.7), the three unknown loads can be determined
by formulating three static equilibrium equations, and this is always possible
because the mechanism is planar. When nr > 3 (see Figure 3.7), one needs to
formulate nr – 3 equations based on displacement constraints, in addition to
the 3 static equilibrium equations, and then solve for the nr unknown reaction
loads. The additional displacement constraint equations are similar to the
ones presented previously.

It is thus possible to always convert a given boundary conditions situation
into the equivalent fixed–free one by solving for the additional reaction loads
and treating them, after being determined, as external loads that act on the
fixed–free planar serial compliant mechanism. In order to better understand
all the concepts discussed in this section an example will be analyzed next.

Example
Consider the five-link planar serial mechanism shown in Figure 3.8, where
three links are rigid and two are flexure hinges, one corner-filleted and the
other one elliptic. Figure 3.8a shows the physical model of the structure,
while Figure 3.8b and c provide schematic (line) representations of the phys-
ical model. Assume that the mechanism is constructed of steel with a Young’s
modulus of E = 200 GPa and Poisson’s ratio = 0.3. Also assume that the
geometry of the structures is given as: l1 = 0.01 m, l3 = 0.01 m, l5 = 0.005 m,
l2 = 0.002 m, t2 = 0.0005 m, r2 = 0.00025 m, l4 = 0.00175 m, t4 = 0.0005 m, c4 =
0.0005 m, and β = 10°. Also given is the constant width of the whole structure,

    u y1 1
0, =

  u u uy x y1 1 1 1 11, , ,sin cos= +ϕ ϕ
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namely w = 0.004 m. The load on the structure consists of a single force F =
50 N, as indicated in Figure 3.8. Find the following:

(a) Output displacement at point 6
(b) Mechanical advantage
(c) Input and output stiffness
(d) Bloc force

FIGURE 3.8
Five-link compliant mechanism in planar serial configuration: (a) physical model with flexure
hinges representation; (b) schematic representation with main geometric parameters and exter-
nal and reaction loads; (c) schematic representation with zero-length flexure hinges and dis-
placed position.
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(e) Energy efficiency
(f) Precision of motion, by comparing the real flexure mechanism with

a mechanism that has only rotary flexure hinges with torsional
compliance and also by comparison with the same mechanism that
possesses purely rotational joints

Solution for (a)

The structure of Figure 3.8 introduces four reactions at its end nodes 1 and
6; therefore, one additional displacement equation is needed to render the
system determinate. Because the rotation angle at point 1 is zero, Eq. (3.28)
can be utilized as the additional displacement condition in order to directly
find the reaction moment at node 1. The two compliant members are the
flexure hinges 2 and 4; therefore, the rotation angle at 1 is:

(3.94)

where the coefficients of the sum in Eq. (3.94) are, in this case, according to
Eqs (3.29):

(3.95)

and:

(3.96)

Substituting Eqs. (3.95) and (3.96) into Eq. (3.94) gives the zero rotation angle
at 1, resulting in the reaction moment M1:

(3.97)

The unknown reactions at node 6 can now be determined by writing two
equilibrium equations at that node about the x and z axes, which results in:

(3.98)

A change of the global reference frame is now applied so that the new
reference frame is moved at point 6. In addition to this, both reference axes
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are mirrored so that the positive x axis goes from point 6 to the left and
the positive y axis goes from node 6 downward. It should be noted that the
positive direction for angles is clockwise whereas for bending moments the
positive direction is counterclockwise. These changes are necessary here, as
the aim is to find the y displacement at node 6, which is a terminal node;
therefore, one needs to start the calculations from this node. The coefficients
that enable evaluating the y displacement at node 6 are given in Eq. (3.27),
and by applying the specific geometry and loading conditions of this appli-
cation the u6y displacement (as expressed in Eq. (3.27)) becomes:

(3.99)

By substituting all numerical values in Eq. (3.99) and by utilizing the
corresponding equations that give the corresponding compliances for the
corner-filleted flexure hinge and the elliptic one, the searched vertical dis-
placement is 0.00007 m.

Solution for (b)

The input (horizontal) displacement at node 1 must be determined in order
to find the mechanical amplification because the output displacement was
already calculated. Because node 1 is also a terminal one, all evaluations
have to be related to a global reference frame that is attached at this point.
Correspondingly, a reference frame that is positioned at node 1 will be used
with its positive x axis extending to the right and the positive y axis going
upward. The direction of measuring angles is counterclockwise (the direction
that superimposes x over y), while the positive direction for bending
moments is clockwise. By applying the specific geometry and loading of this
case to generic Eqs. (3.24) and (3.25), the x displacement at node 1 can be
expressed as:

(3.100)

The numerical value given by Eq. (3.100) by substituting all numerical values
in it is 0.00001135 m. As a consequence, the mechanical advantage, which in
the case of this application is expressed as:

(3.101)

will have a value of 6.18.
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Solution for (c)

The input stiffness in this case is:

(3.102)

and has a value of 4404000 N/m. Similarly, the output stiffness with respect
to input force F, as defined in Eq. (3.58), becomes:

(3.103)

and has a value of 712300 N/m.

Solution for (d)

The output node 6 can only displace vertically so its motion is denied by
blocking it with a vertical force F6y , which is also the unknown bloc force.
The three-unknowns equation system, Eq. (3.64), must be solved in order to
find F6y . The problem can be further simplified as the other two reactions at
node 6 are known, which means that solving one single equation for the
unknown F6y is sufficient. For instance, the first equation of the generic matrix
Eq. (3.69) will result in:

(3.104)

The coefficients a11, a12, and a13 of the equation above are given by Eqs.
(3.72), (3.73), and (3.74), respectively, and they must be calculated by posi-
tioning the global reference frame at the end node 6, as previously described.
These coefficients are:

(3.105)

(3.106)

(3.107)

The coefficient Cin,x of Eq. (3.104) is given by the original Eq. (3.38), and the
global reference frame has to be positioned at node 1. The coefficient’s actual
expression becomes in this case:

(3.108)
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By utilizing the numerical values of all the amounts in Eqs (3.104) through
(3.108), the calculated value of the bloc force F6y is 8.33 N.

Solution for (e)

The energy efficiency quantifiers can simply be calculated by means of Eqs.
(3.82) and (3.83) and by utilizing the given numerical values and considering
that there are two flexure members that contribute with their stored energy.
The maximum and minimum energy output ratios are:

ηmin = 99.7% and ηmax = 99.9%

Solution for (f)

The precision of rotation is first discussed by comparing the mechanism with
fully compliant flexure hinges (see Figure 3.8a) and the same mechanism
equipped with flexure hinges that has only torsional compliance (see
Figure 3.8b). By using Eqs. (3.85), (3.86), and (3.88), the numerical value of
the error at the output port 6 is e6,uy = 12.1.

Another comparison is performed with the mechanism that is comprised
of point-like ideal joints instead of the real flexure hinges 2 and 4. In this
case (see Figure 3.8c), the output displacement at node 6 can simply be
calculated as:

(3.109)

where the superscript i denotes the “ideal” situation where the flexure hinges
are point-like and purely rotational without any stiffness. By assuming that
an input displacement of u1x = 0.00002 m is utilized, the output displacement
given by Eq. (3.109) is 0.00012366 m. By comparing it with the output dis-
placement when the flexure hinges are assumed to be fully compliant, which
is 0.000147 m, the relative error in output displacement is:

(3.110)

and its numerical value is 19%.

3.2.2 Planar Parallel Compliant Mechanisms

A generic flexure-based planar parallel mechanism will be discussed next
that is composed of n independent flexure hinges and a rigid link, which is
the output platform, as shown in Figure 3.9a. Each flexure hinge is fixed at
one end (for a generic configuration) and rigidly connected to the output
platform at the other end, as illustrated in Figure 3.9b. The external load
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acting on the structure consists of forces  (inclined at an angle ) and
moments  that are applied at the flexures-output platform connection
points. Without reducing the generality of the problem, it is assumed that
the output platform is horizontal and therefore parallel to the x axis of the
global reference frame. The first task in such a case is to determine as many

FIGURE 3.9
Schematic representation of a planar parallel compliant structure: (a) components; (b) defining
geometry and external and reaction loading for a generic flexure hinge component; (c) statically
equivalent planar serial structure.
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reaction loads at the fixed ends of the flexures as possible, in order to render
the model determinate. The n fixed ends of the flexure hinges introduce 3n
unknowns: two forces and one moment. For the convenience of further
solving the problem, it will be considered that the two force components are
directed along the x and y axes of the local reference frames. This will
simplify expressing the normal force and bending moment for each individ-
ual flexure hinge. Because the problem is analyzed from a quasi-static view-
point, three equilibrium equations can be written involving both external
and reaction loading. It is therefore necessary to formulate 3(n – 1) additional
equations to enable solving for the unknown reaction loads. The additional
equations will result in imposing three zero-displacement conditions at each
of the fixed ends for n – 1 successive flexures. The determined reaction loads
will be superimposed to the known external ones, so that the real mechanism
will be equivalent to a fixed–free planar serial compliant mechanism made
up of two flexure hinges (the first one and the last one of the real mechanism)
and one rigid link (the output platform) that is interposed between the two
flexures, as indicated in Figure 3.9c.

The zero-displacement conditions can be again formulated by means of
Castigliano’s displacement theorem as:

(3.111)

The equations above are valid for j = 1 → (n – 1). The strain energy, U, will
include again the normal forces and bending moments on all corresponding
flexure members, so Eq. (3.111) will be used in the form:

(3.112)
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Both the axial force and bending moment of Eq. (3.112) can be expressed
on either one of the 1 to n – 1 flexure hinges as:

(3.113)

(3.114)

The last equations in both Eqns. (3.113) and (3.114) are written for the last
flexure hinge of the 1 to n parallel set. Equations (3.113) and (3.114) also allow
determination of the partial derivatives of Eq. (3.112):
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(3.118)
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(3.119)

Substituting Eqs. (3.112) through (3.119) into Eq. (3.111) results in 3(n – 1)
equations with 3(n – 1) unknowns that can be written in matrix form as:

(3.120)

where {R} is the unknown reaction load vector, {L} is the known external
load vector, and [CR] and [CL] are compliance-based matrices that will be
formulated next. The {R} vector is:

(3.121)

The {L} vector gathers all known external loads at the points where the
flexure hinges connect to the rigid output platform in the form:

(3.122)

The [CR] matrix has a dimension of 3(n – 1) × 3(n – 1) and can be expressed
in terms of the following generic 3 × 3 submatrix:

(3.123)

The terms composing the submatrix of Eq. (3.123) are:
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(3.125)

(3.126)
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(3.131)

(3.132)

It can easily be checked by interchanging the subscripts i and j that the matrix
[CR,ji] of Eq. (3.123) is symmetric. The [CL] matrix has a dimension of 3(n – 1)
× 2n and can be expressed in terms of the following generic 3 × 2 submatrix:

(3.133)

The terms entering the submatrix of Eq. (3.133) are:
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(3.138)

(3.139)

The unknown load vector {R} can be found by solving Eq. (3.120) as:

(3.140)

where all the quantities entering the right-hand side were previously defined
in Eqs. (3.121) through (3.139) and are assumed known.

It is possible that some boundary conditions, other than the assumed fixed
condition, apply for the end of the flexure that opposes the end connected
to the output platform. By recalling the original problem that was formulated
here—namely, that 3(n – 1) equations were utilized to express zero displace-
ments for the fixed ends of the first (n – 1) flexure hinges—it is simple to
just erase a line in the original matrix equation that corresponds to an actual
nonzero displacement boundary condition and then take a zero instead of
the external load component that is related to the respective boundary
condition.

All the reactions that were determined by means of Eq. (3.140) can now
be transferred to the corresponding flexure-output platform junction points
2′ through (n – 1)′. In doing so, the original parallel mechanism that is
composed of n flexure hinges and a rigid output platform can be transformed
into an equivalent serial fixed–free mechanism composed of two terminal
flexure hinges, 1 and n, and an intermediate rigid link (the output platform),
as illustrated in Figure 3.9c.

The procedure described above is extremely useful, as it allows the static
transformation of a generic purely parallel mechanism composed of n indi-
vidual flexure hinges and an output rigid link into an equivalent fixed–free
serial mechanism consisting of only two flexure hinges and the rigid plat-
form. It is thus possible to qualify a planar parallel mechanism by revisiting
all the problems that were dealt with in detail when discussing the planar
serial mechanisms.

Due to the action of transferring the newly determined reaction loads of
{R} from their original location to corresponding ones on the output platform,
the resulting load components can be expressed as:
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The prime superscript in Eq. (3.141) indicates that the respective forces
and moments are applied to the nodes on the output platform. The load
components on the last node, n′, on the output platform are the original ones
as no additional load is being transferred to that node.

3.2.3 Planar Hybrid Compliant Mechanisms

A hybrid mechanism has links that are connected serially and links that are
connected in parallel. We will now analyze a generic planar hybrid mecha-
nism that is composed of n independent serial chains, each connected to a
rigid output platform. Each chain is built by ni flexure hinges that are rigidly
and serially interconnected so that one end of the chain (or leg) is fixed,
while the other one attaches to the platform. A sketch of this structure is
presented in Figure 3.10a.

Similar to the case of a parallel compliant structure, it is assumed here that
the output platform is parallel to the x axis of the global reference frame.
The load on the platform consists of the same point forces and moments
located at the flexures-platform junctions (see Figure 3.10d). In addition, it
is assumed that one point force, arbitrarily oriented in the plane of the
structure, acts on each of the n serial legs, as shown in Figure 3.10c. All of
these forces mimic the motive forces that would set the structure into motion
while the forces and moments acting on the platform represent the external
loads that must be counteracted. The main problem with this type of struc-
ture is again determining the unknown reaction loads that are set at the fixed
ends of the serial chains (as illustrated in Figure 3.10b). From this point of
view the problem is identical to the case of a planar parallel mechanism
constrained by the same boundary conditions. In actuality, no fundamental
difference exists between a parallel and a hybrid mechanism; the procedure
of calculating the reaction loads is exactly the same and will not be repeated
again in detail. The real planar hybrid mechanism can be transformed into
a statically equivalent serial mechanism composed of the output platform
and two serial chains, one chain having its external flexure fixed at one end
and the other chain being free at its end opposing the junction to the plat-
form. This transformation can be achieved by going through the following
steps:

• Select the n – 1 neighboring serial chains that have 3(n – 1) unknown
reactions to be determined by formulating the 3(n – 1) equations
for the corresponding zero displacements at the respective fixed
ends.

• Use Castigliano’s displacement theorem to formulate the 3(n – 1)
zero-displacement equations by defining the normal force and
bending moments over the flexible links (the flexure hinges) in the
following order:
• Start from the fixed end of the first serial chain.
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FIGURE 3.10
Schematic representation of a hybrid (serial-parallel) compliant structure: (a) components; (b)
defining geometry and reaction loading for a generic fixed flexure hinge component; (c) defining
geometry and external loading for a generic intermediate member in a serial chain; (d) defining
geometry and external loading for a generic connecting member in a serial chain; (e) statically
equivalent planar serial structure.
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• Continue over all subsequent flexure hinges and rigid links,
including the last one that connects the serial chain to the output
platform.

• Repeat these two phases independently for all subsequent n – 2
serial chains.

• Go to the nth (last) serial chain and start from the point that
connects the chain to the output platform and again formulate
the normal forces, bending moments, and necessary derivatives
for all flexure hinges down to the last one. Make sure that the
normal forces and bending moments on all separate intervals of
this last serial chain include all other external and reaction loads.

• Formulate the [CR] and [CL] matrices and the load vector {L} and
solve for the unknown reaction load vector {R}, by utilizing Eq.
(3.140).

• Transport all reaction loads and intermediate external forces from
their original application points to the corresponding points that
connect the respective serial chains to the rigid platform for chain
number 2 through chain number n – 1. In doing so, calculate all
necessary moments that must be taken into account when statically
moving the forces to their new locations.

The end result of all the above-mentioned steps is a fixed–free serial mech-
anism that is statically equivalent to the original hybrid mechanism and is
composed of the output rigid platform interposed between the first serial
chain (that has a free end) and the last one (that has a fixed end). All aspects
that were analyzed and solved for serial mechanisms can thus be dealt with
for hybrid structures. Next, an example of a planar hybrid flexure-based
compliant mechanism will be presented and solved algebraically.

Example
Find the equivalent serial mechanism of the tilt-type planar hybrid mecha-
nism shown in Figure 3.11.

Solution
It can be seen that the mechanism pictured in Figure 3.11 consists of three
different serial chains that are mutually parallel; therefore, the mechanism
is a hybrid one. As indicated in the brief presentation of hybrid structures,
it is necessary to cover the structure by starting from the external end of one
serial chain and then continue over the output platform by adding up exter-
nal and reaction loads from all subsequent serial chains. The trip ends after
reaching the outer end of the last flexure hinge. If the mechanism is covered
by starting from the two-link serial chain, five unknown reaction loads will
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192 Compliant Mechanisms: Design of Flexure Hinges

have to be determined in order to transform the given structure into its
equivalent serial one, so five displacement equations must be formulated:

(3.142)

(3.143)

(3.144)

(3.145)

(3.146)

FIGURE 3.11
Example of a planar hybrid compliant structure.
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The axial force is:

(3.147)

The bending moment is:

(3.148)

It is simple now to calculate the partial derivatives of Eqs. (3.142) through
(3.146) by using Eqs. (3.147) and (3.148).

Generic Eq. (3.140) is utilized to solve for the unknown reaction loads. The
relevant terms of the 5 × 5 symmetric [CR] matrix are:
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(3.155)

(3.156)

(3.157)

(3.158)

(3.159)
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(3.161)
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(3.163)

The [CL] matrix is actually a vector defined as:

(3.164)

and its components are:
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(3.168)

(3.169)

The load vector consists of only one component in this case; therefore:

(3.170)

Equation (1.140) is now utilized to solve for the five unknown reaction loads:
F1x1, M1z, F4x4, F4y4, and Mz4. As mentioned in the presentation of the generic
algorithm pertaining to a planar hybrid mechanism, the next step in the
solving sequence is to transfer the forces and/or moments of all inner serial
chains to the corresponding endpoint that connects the respective chain to
the output platform. In the specific case of this example, there is a single
inner chain, namely the second one that is formed of one flexure hinge, so
the reactions F4x4, F4y4, and Mz4 must be relocated from node 4 to node 5,
according to Figure 3.11. The corresponding equivalent load components in
the global reference system, xy, at node 5 are, according to Eq. (3.141):

(3.171)

The original planar hybrid mechanism shown in Figure 3.11 is therefore
transformed into a statically equivalent serial mechanism that is composed
of the first serial chain 1–2–3, the rigid platform 3–6, and the last flexure 6–7
subjected to the external plus reaction loading at node 1 and the equivalent
load applied at node 5.

3.3 Spatial Compliant Mechanisms

3.3.1 Spatial Serial Compliant Mechanisms

A three-dimensional serial mechanism is composed of flexure hinges and
rigid links that are disposed in the three-dimensional space and rigidly inter-
connected to form one serial chain, which is generically considered free at
one end and fixed at the other, similar to the planar serial mechanisms that
were analyzed at the beginning of this chapter. Because both the structure
and loading are now three dimensional, revolute flexure hinges can be utilized

    

C C C

l l l l l C

l l l l l C

L x F y F

y M

M

x y

z

z z

4 1 3 1 3 31 3 1 3 31

11 12 1 2 1 3 21 3 1 31

11 12 1 2 1 21 31

, , ,

,

,

sin( )cos cos( )sin

[ ( )cos sin cos( )]

[ ( )cos ]

= − − − −

+ + ′ + ′ − − −

+ + ′ + ′

− −

−

−

ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

ϕ θ

    C C l l l l CL y M Mz z z5 1 3 1 31 11 12 1 2 1 31, , ,cos( ) [ ( )cos= − − + + ′ + ′− −ϕ ϕ ϕ θ

{ } { }L F=

    

′ = −

′ =

′ = +













F F

F F

M M F l

x
e

y

y
e

x

z
e

z y

5 4

5 4

5 4 4 21

4

4

4

1367_Frame_C03  Page 195  Friday, October 18, 2002  1:53 PM



196 Compliant Mechanisms: Design of Flexure Hinges

that, as shown in Chapter 2, have the capacity of accommodating bending
about any instantaneous axis and torsion in addition to the bending and axial
effects. All the detailed study that was performed for planar serial mecha-
nisms is also valid in its principles for spatial mechanisms, too, and it will
not be explicitly given for all the aspects that have been discussed there.
Figure 3.12 shows the configuration of a spatial serial mechanism together
with the defining geometry and the loading on a generic flexure hinge. It is
again considered, in order to keep the problem tractable, that the loading to
the mechanism is applied at one single node (the input node, denoted by i).

Castigliano’s displacement theorem will again be the tool selected to solve
the main problem in a fixed–free serial structure (i.e., the displacement-load
equations). For the planar case, Eqs. (3.24), (3.26), and (3.28) reflected this
relationship explicitly by highlighting the contributions brought about by
the various compliances of the flexure hinges that had to be taken into
consideration. As indicated in Figure 3.12b, the load at a node of a generic
flexure hinge resulting from transferring the actual load onto the input node
i consists of six components, three forces and three moments, directed about

FIGURE 3.12
Schematic representation of a three-dimensional serial compliant structure: (a) components; (b)
defining geometry and external loading for a generic flexure hinge component.
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the axes of the local reference frame xjyyzj. In order to define the axes of a
local reference frame, the projection of node j + 1 is taken onto a plane that
passes through node j and is parallel to global plane xOy. The plane formed
by the flexure, j – j + 1, and its projection on the above-mentioned plane will
be the local xjyj plane with the xj axis directed along the longitudinal axis of
the revolute flexure. The third local axis, zj, will be perpendicular to the plane
of the first two local axes and directed according to the right-hand rule, as
shown in Figure 3.12. By applying Castigliano’s displacement theorem, the
displacement and rotations at node i can be calculated as:

(3.172)

Similar equations can be written for the other displacement components uiy,
uiz, θix, θiy, and θiz by taking the partial derivatives of the previous equation
with respect to Fiy, Fiz, Mix, Miy, and Miz, respectively. The final equations that
express the displacement-load relationships at the input node can simply be
obtained by performing the calculations of Eq. (3.172) and by recognizing
the following compliance terms:

(3.173)

The aspects of mechanical advantage and bloc output load can be solved by
utilizing the previous differences within the reasoning framework presented
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at planar serial mechanisms. The same remarks are also valid when quanti-
fying the energy efficiency of a three-dimensional serial mechanism. The
differences arise again due to the three-dimensional nature of the loading
and geometry of such a configuration. Similar to Eq. (3.80), the minimum
energy efficiency can be calculated as:

(3.174)

while the maximum output, similar to the one expressed in Eq. (3.81) for
planar serial mechanism, is given by:

(3.175)

with:

(3.176)

(3.177)

(3.178)

Equations similar to Eqs. (3.82) and (3.83) can be obtained from the equations
above by taking unit loads and thus keeping only the influence of the flexures
geometry.

3.3.2 Spatial Parallel and Hybrid Compliant Mechanisms

The three-dimensional parallel and hybrid mechanisms will be analyzed in
this subchapter in a manner similar to the one developed when discussing
their planar counterparts. The three-dimensional parallel mechanisms will
be studied first, and it will be shown that the scenario followed in solving
for a planar parallel mechanism can safely be replicated for the present case
with only minor alterations. As for the situation with planar hybrid mech-
anisms, which were shown to have their solution in the static regime by a
simple extension from a corresponding parallel mechanism, the pattern will
repeat itself in the case of three-dimensional hybrid and parallel structures,
and only a brief discussion of the few differences will be given for three-
dimensional hybrid mechanisms.
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3.3.2.1 Spatial Parallel Compliant Mechanisms

A three-dimensional parallel mechanism is now introduced and studied that
is formed of a rigid plate and n revolute (three-dimensional) flexure hinges
that have one end fixed and the other rigidly attached to the output platform.
As illustrated in Figure 3.13, the flexure hinges are arbitrarily oriented in the
three-dimensional space. A global reference frame is defined that has its xy
plane parallel to the plane of the rigid platform. Point loads and moments,
arbitrarily oriented and representing either active or load agents, act at the
flexures–platform junction nodes. It will be shown next that this type of
mechanism can be studied by following the same path that was defined
when discussing a planar parallel mechanism. The primary concern here again
is finding a sufficient number of unknown reaction loads at the fixed ends of
the flexures so that the problem becomes statically determined. By inspecting

FIGURE 3.13
Schematic representation of a three-dimensional parallel compliant structure: (a) components;
(b) defining geometry and external and reaction loading for a generic flexure hinge component.
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Figure 3.13, it is clear that the same procedure that was utilized for planar
parallel mechanisms can be employed in this case, too. Moreover, by conve-
niently defining the local frames, it is possible to keep the dimension of the
problem unchanged and therefore to solve the same 3(n – 1) equations system
as in the case for planar structures. The following steps must be performed
in order to solve for 3(n – 1) reaction loads:

• Select a sequence that will cover all the flexures–platform junction
nodes in such a way that by starting from an arbitrary node (the
first one) a broken line will connect all subsequent nodes in a
continuous manner until a last node is reached (see the arrow
sequence connecting points 1′, 2′, …, n′ on the platform of
Figure 3.13a).

• Define the axial force, the bending moment, and their correspond-
ing partial derivatives for use of Castigliano’s displacement theo-
rem over all flexure hinges by carrying out the following steps:
• Define the plane formed by li and li′ for a generic flexure hinge

(Figure 3.13). 
• Define the local reference frame for this flexure so that the xi

axis coincide with the li direction, yi is perpendicular on the
plane of li – li′, and zi is located in the li – li′ plane in a direction
perpendicular to li (see Figure 3.13b).

• Locate the reactions at node i so that Fixi is directed along the xi

axis, Fiyi along the yi axis, and Mizi along the local zi axis.
• Express the normal force and bending moment together with

the corresponding partial derivatives for the current flexure
hinge by starting from its fixed end and therefore by only taking
into considerations the contributions from the local reaction
forces and moment.

• Repeat these three steps for all flexure hinges from the first one
to the (n – 1)th one.

• Use the same definition to determine the local frame for the last
flexure by positioning it on the end that is connected to the rigid
output platform.

• Express the normal force and bending moment together with
the corresponding partial derivatives for the last flexure hinge
by starting from its node connected to the output platform and
by taking into account all contributions from the previous n – 1
flexure hinges as well as the external loads on the n – 1 points
on the platform.

• Formulate the 3(n – 1) equations that comprise the 3(n – 1)
unknown reactions and solve for them by using the [CR] and [CL]
matrices and the external load vector {L} as indicated in Eq. (3.140).
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Transfer the reaction loads from their original location i to i′ (see Figure 3.13a
and b) for nodes 2 through n – 1 and calculate the equivalent loads (expressed
in the global reference frame) at the new locations as:

(3.179)

The equations above are valid for i = 2, …, n – 1. As shown in Figure 3.13,
the angle αι′ positions the line li′ with respect to the global x axis, while li is
positioned by the angles ϕiz with respect to the xy global plane and ϕiz with
respect to the global x axis. The other loads consist of the reaction loads on
fixed node 1, already calculated at this step, and are expressed in global
coordinates as:

(3.180)

The loads at node 1′ are purely external. The moment components were
directly given in the global reference frame while the global components of
the point force are:

(3.181)

The external loads at node n′ can be expressed in a similar manner.
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It is thus possible to transform a three-dimensional parallel structure into
a statically equivalent serial one that is composed of the output platform,
loaded at the nodes 1′ through n′, by the forces and moments mentioned in
the equations above and connected by two flexure hinges. The procedure
described above is formal and was developed following the lines indicated
when solving the problem of a planar parallel mechanism, in order to empha-
size the absolute similitude in solving for the unknown reaction loads.
Although it might seem at least a bit odd that a plate-like component (as the
output rigid platform) is supported out of its plane by two legs (flexure
hinges) only, the solution is indeed correct, as the other displacement con-
straints, imposed by the other flexure hinges, are still in place. In addition,
it should be remembered that the assumption has been used so far that all
junctions (link–link or link–support/platform) are rigid.

It should also be noted, however, that the number of applications that are
purely parallel in three dimensions is quite reduced, as supporting an output
platform directly on several flexure hinges that are mounted in parallel
would serve little purpose from the viewpoint of either displacement or force
modification. Many practical applications are designed having serial com-
pliant chains that are placed in parallel instead of the single flexures, as is
the case for three-dimensional hybrid mechanisms, which will be discussed
next.

3.3.2.2 Spatial Hybrid Compliant Mechanisms

As mentioned previously, a hybrid mechanism can be analyzed for the three-
dimensional case by extending the conclusions derived from a corresponding
spatial parallel mechanism in the same manner that was explained for planar
mechanisms. Figure 3.14 represents the schematic of a three-dimensional
hybrid mechanism that is composed of n serial chains, each fixed at one end
and rigidly connected to a rigid output platform at the other end. Each chain
is composed of several flexure hinges and rigid links that are rigidly and
serially connected. Similar to the planar case, a point load, mimicking the
motive agent, acts on each of the serial links, while the loads acting on the
flexures–output platform junctions are the same as the one utilized for three-
dimensional parallel mechanisms. 

The first task, again, is to determine a number of unknown reaction loads
at the fixed ends of the serial chains that would render the problem deter-
minate. It is obvious that the solving procedure used for parallel structures
is also valid here. The only difference is that the serial chains are multiple
and not singular, as in the situation with a purely parallel structure, which
brings about the additional task of expressing normal forces, bending
moments, and the partial derivatives that are required by Castigliano’s dis-
placement theorem for several flexure hinges instead of a single hinge per
chain. It would be untractable and probably of only questionable usefulness
to develop a formal mathematical algorithm that would explicitly give the
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matrices and load vector necessary to solve for the 3(n – 1) component
reaction load vector {R} of Eq. (3.140).

Of real importance in many three-dimensional applications that are either
parallel or hybrid is the position of the output platform as a function of the
input. Determining the final position of the output plate is not at all difficult
after solving for the reaction loads of the first n – 1 chains as previously
detailed. The position of a plane (the output plate) is determined by three
points that belong to that plane, as is well known, and finding the final
positions of three points of the plane would solve the problem. The following
algorithm can be applied:

FIGURE 3.14
Schematic representation of three-dimensional hybrid compliant structure: (a) components; (b)
defining geometry and reaction loading for a generic fixed flexure hinge component; (c) defining
geometry and external loading for a generic intermediate member in a serial chain.
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• Take three points on the output plate (for instance, the points where
three serial chains intersect the plate).

• Calculate their final position by applying Castigliano’s displace-
ment theorem and solving for a system made up of nine equations
where the unknowns are the coordinates of the selected points: xi,
yi, and zi (i = 1, 2, 3).

• Make any other related calculations that would determine amounts
of interest such as the displacement components of the center of the
output plate (or of any other point that is relevant to the output) or
angles determining the position of the output plate such as the roll,
yaw, and pitch angles, which are generally used to specify the angu-
lar position of the output platform in three-dimensional applications.
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4

 

Dynamics of Flexure-Based Compliant 

 

Mechanisms

 

4.1 Introduction

 

The dynamics of mechanisms that include flexible links has received a lot
of consideration in the last years, directly reflecting the increase in both the
number and scope of applications for which the dynamic response must be
accurately modeled in order to ensure that the mechanisms operate properly
in the dynamic range. 

 

Flexible multibody systems

 

 is a general term that refers
to and includes the formulation, solution, and analysis of rigid–flexible
mechanical systems (the compliant mechanisms are part of this group) in
terms of their dynamic response. Basic and more evolved topics of multibody
flexible systems are detailed in specialty monographs, such as the one of
Shabana.

 

1

 

 The dynamics of multibody systems can be approached by means
of two main categories of methods: distributed parameter and finite element.
For distributed-parameter methods, the elastically deformable links are
modeled as continuous members and the resulting mathematical formula-
tion (that also includes the contributions of the rigid links) is a boundary-
value problem described by a system of partial differential equations, as
mentioned by Meirovitch.

 

2

 

 Such a complex system of equations seldom
yields easy-to-find closed-form solutions; therefore, approximate methods
are further employed that generally use spatial discretization (the continuous
spatial dependence of the unknowns of the problem are concentrated at
several stations, according to assumed distribution laws) in order to simplify
the problem. The procedure actually transforms a distributed-parameter
system into an equivalent lumped-parameter one for which the equations
can be solved with less effort and oftentimes produce closed-form solutions.

The works of Gao

 

3

 

 and Bagci and Streit

 

4

 

 provide a concise and valuable
overview of the relevant literature that treats the research of the dynamic
response of flexible mechanisms and manipulators. A key aspect in formu-
lating the dynamic model of a compliant mechanism is selecting the modality
in which the deformations of the elastic members are expressed. The majority
of such formulations, as noted by Boutaghou and Erdman,

 

5

 

 start the
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modeling by formulating the elastic deformations in terms of local reference
frames, which is rather straightforward initially but imposes further trans-
formation of the mathematical model in terms of the global frame, which
generally leads to highly nonlinear problems. The other option is to directly
formulate the dynamic model with respect to the global frame, as performed
by Simo and Vu-Quoc,

 

6

 

 who analyzed mechanical systems that include flex-
ible beams with large deformation capabilities. This approach is more diffi-
cult to tackle in its original phase but produces systems of differential
equations that are simpler. Because of the importance of adequately selecting
the reference frames, a great part of the research focus in this area is directed
toward defining reference frames that would simplify the mathematical
formulation and solution of the dynamic problem. McPhee,

 

7

 

 for instance,
utilized the concept of “branch coordinates” in order to develop an algorithm
that automatically generates a minimum number of differential equations,
whereas Liew et al.

 

8

 

 developed a procedure that is aimed at reducing the
number of elastic coordinates through the direct inclusion of the free- and
fixed-interface boundary conditions into the main formulation. 

Utilizing symbolic calculation appears to be another route for simplifying
the mathematical complexity posed by the dynamic modeling of compliant
mechanisms. Examples of this approach include the works of Engstler and
Kaps,

 

9

 

 who formulated a dynamic model in descriptor form by means of
differential algebraic equations; Cui and Haque,

 

10

 

 who gave a symbolic vector–
matrix formulation resulting in improved simulation efficiency; and Boyer
and Coiffet,

 

11

 

 who reduced the number of dynamic equations by applying
a symbolic variant of d’Alembert’s principle. Other methods for formulating
the dynamic model of compliant (flexible) mechanisms utilize Lagrange’s
equations, such as applied by Vibet

 

12

 

 to multibody systems without loops or
Surdilovic and Vukobratovic,

 

13

 

 who developed a generalized method in
order to model several types of flexible links. 

Other methods of dynamic model formulation are Hamilton’s variational
principle, as mentioned by Yu

 

14

 

 in studying a class of flexible robots with
two rigid links and three flexible joints, and Lyapunov analysis, as exempli-
fied by Indri and Tornambe.

 

15

 

 Generally, the dynamic modeling of compliant
mechanisms addresses the modal, steady-state, and transient responses of
such mechanisms. In a recent paper, Lyon et al.

 

16

 

 utilized the pseudo-rigid-
body model to predict the natural frequency of four different compliant
mechanisms, and the results differed by less than 9% from the finite-element
simulation results.

Except for the recent monograph by Smith,

 

17

 

 information regarding the
dynamic modeling of flexure-based compliant mechanisms (the flexure
hinges being of variable geometry, as discussed in this book) is rather scarce.
Smith

 

17

 

 discussed the dynamic modeling and corresponding modal responses
of several planar flexible mechanisms, including a four-bar mechanism with
two flexures and a similar mechanism having four flexure hinges. The flexure
hinges were modeled in these examples as one-degree-of-freedom (DOF)
members, so only their direct-bending stiffness was taken into consideration.
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A first generalization was also formulated to enable modeling a single-axis
flexure hinge as a three-DOF subsystem by applying Lagrange’s equations.
The kinetic energy was considered as being strictly produced by the motion
of the rigid links, whereas the elastic potential energy was given by the elastic
deformations of the flexures. The stiffness matrix of a single-axis flexure
hinge was expressed as a diagonal matrix that is reformulated here by using
the notations that were introduced in Chapter 2, namely:

(4.1)

With regard to symbolism, it should be remembered that the subscript 1
indicates that the displacement (translatory or rotary) is determined at the
end 1 of the flexure hinge with respect to the other fixed end (denoted by
2), whereas the 

 

a–b

 

 subscript that follows the number 1 represents the dis-
placement–load relationship. The formulation mentioned above as given by
Smith

 

17

 

 differs slightly from the one developed in this book, which basically
formulates the stiffness matrix of a single-axis flexure hinge as:

(4.2)

As can be seen by comparing Eqs. (4.1) and (4.2), the formulation developed
by Smith

 

17

 

 neglects the cross-bending term 

 

K

 

1,

 

y–Mz

 

 (which is equal to 

 

K

 

1,

 

θ

 

z–Fy

 

,
as shown in Chapter 2; this equality has been used in Eq. (4.2) for the
corresponding stiffness term on the third row), which connects the tip deflec-
tion to a moment applied at the same point or, equivalently, the tip slope to
the tip force that produces bending. Smith

 

17

 

 also presents the matrix equa-
tions that enable transformation of the dynamic equations between different
reference frames for both planar and spatial compliant mechanism applica-
tions. Also discussed in Smith

 

17

 

 is the influence of the drive elements (piezo-
electric or feed screws), which are treated as additional linear springs that
add axial stiffness (and the corresponding potential elastic energy) into the
compliant mechanism system.

The modeling procedure presented in this chapter aims to extend the
formulation that so far has concentrated on thoroughly defining the single-,
multiple-, and two-axis flexure hinges in terms of their compliances (or,
conversely, stiffnesses, as detailed in Chapter 2) and in qualifying the static
(quasi-static) response of flexure-based compliant mechanisms in either a
planar or spatial configuration for serial, parallel, and hybrid structures, as
discussed in Chapter 3. The extension here targets the response of flexure-based
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compliant mechanisms in the dynamic range; namely, it focuses on formulat-
ing the dynamic equations that would enable studying the modal (free)
response or the forced response (under steady-state or transitory excitation)
by possibly considering the internal and external damping.

It was shown in Chapter 2 that single-axis flexure hinges can be modeled
as three-DOF members, whereas multiple- and two-axis flexures can be
represented as six- and five-DOF members, respectively, and this definition
will be kept unaltered. Inertia and damping fractions will be derived corre-
sponding to each individual degree of freedom for single-, multiple-, and
two-axis flexure hinges so that these properties consistently add to the
already-defined stiffness (compliance) characteristics and, together, thor-
oughly define a given flexure. The Rayleigh principle is utilized for deriving
both inertia and damping lumped fractions, but the resulting solutions are
generally not closed form because of the complexity induced by the generally
variable cross-section of the flexures. 

Providing a tool that is capable of formulating inertia and damping prop-
erties corresponding to each separate degree of freedom of a flexure hinge is
particularly important in systems that must be precisely designed in order to
provide a finely tuned dynamic response. In many MEMS applications, for
instance, the influence of the inertia and/or damping owing to flexure hinges
is key to their operation, especially when such flexures are not attached to
other links that are substantially larger (heavier). The inertia and damping
properties are derived for both long (Euler–Bernoulli) flexure hinges and short
(Timoshenko) flexures, where rotary inertia and shearing effects have to be
taken into consideration. By adding the contribution of the rigid links, prima-
rily in terms of inertia, Lagrange’s equations are utilized to derive and discuss
in a generic manner the dynamic equations of motions for planar/spatial
serial, parallel, and hybrid flexure-based compliant mechanisms, and corre-
sponding numerical solution techniques are subsequently presented.

The dynamics of flexure-based compliant mechanisms will be approached
by means of Lagrange’s equations formulated based on the scalar quantities
of kinetic energy, potential energy, and dissipation energy. In its general form
and for an undamped dynamic system, the Lagrange’s equations are:

(4.3)

where 

 

T

 

 is the kinetic energy, 

 

U

 

 is the potential energy, and 

 

Q

 

i

 

 is the gener-
alized force (can be either a force or a moment derivable from the corre-
sponding work done by the respective agent). In the case of the free response
(modal analysis), the generalized force is zero. For a dynamic system where
the damping is present, the corresponding Lagrange’s equations are:

(4.4)
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where 

 

U

 

d

 

 is the dissipation energy lost by a system through internal viscous
damping.

The quantities 

 

q

 

i

 

 are the generalized coordinates or degrees of freedom
that uniquely define the position of the system under dynamic excitation. It
should be noted that the generalized coordinates are not always identical to
the physical coordinates that apparently represent the minimum number of
parameters fully determining the state of a dynamic system. In order to
qualify as generalized coordinates, the candidate coordinates must be inde-
pendent. Most of the time, however, the motion of a system is such that the
coordinates are related through constraint equations, which bring about sev-
eral dependence relationships and therefore eliminate some of the coordinates
that were considered as possible generalized coordinates. The general rule
is (see Thomson,

 

18

 

 for instance) that the number of generalized coordinates
is equal to the total number of candidate-generalized coordinates minus the
number of superfluous coordinates (coordinates that are not necessary to
completely define the state of a dynamic system). When the number of
superfluous coordinates is equal to the number of constraint equations that
can be formulated, such a system is called 

 

holonomic

 

, and the flexure-based
compliant mechanisms that are analyzed here are all holonomic. Establishing
the number of generalized coordinates or degrees of freedom for a given
flexure-based compliant mechanism is of primary importance, as Lagrange’s
equations are formulated in terms of such coordinates. As a consequence,
for each type of mechanism that will be studied, an initial analysis will be
carried out first in order to establish the correct number of degrees of freedom
for that specific mechanism.

The potential and kinetic energy will be first formulated for the three types
of flexure hinges that have been discussed so far: single-, multiple-, and two-
axis configurations. Subsequently, the potential and kinetic energy terms will
be expressed for planar and spatial flexure-based compliant mechanisms,
and Lagrange’s equations will be formulated and then solved for several
applications by studying the free and forced response of the respective
systems. The damping in flexure hinges, both internal and external, will
further be discussed, and the dynamic equations for flexure-based compliant
mechanisms will be completed by adding the corresponding damping con-
tributions.

 

4.2 Elastic Potential Energy for Individual Flexure Hinges

 

4.2.1 Single-Axis Flexure Hinges

 

For a planar serial compliant mechanism that is composed of only single-
axis flexure hinges, each flexure hinge can be treated as a three-DOF com-
ponent, where the said degrees of freedom are the axial displacement, deflec-
tion, and slope (rotation angle) of one end in terms of the other fixed end,
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as previously mentioned. As a consequence, a system that is composed of 

 

n

 

links (generally treated as flexure hinges, as a rigid link is a flexure hinge
with zero compliance) will possess a maximum of 3

 

n

 

 DOFs (in the absence
of constraints), so the dimension of the differential equations system, Eq.
(4.2), will be 3

 

n

 

 as well.
By utilizing the assumption that the work done by the external load on a

planar flexure hinge converts into internal strain energy:

(4.5)

one can start by expressing the work performed quasi-statically by the load
vector formed by 

 

F

 

1

 

x

 

, 

 

F

 

1

 

y

 

, and 

 

M

 

1

 

z

 

 as:

(4.6)

where the loads and displacements are noted according to their definitions
introduced in Chapter 2. As also shown in Chapter 2, the force–deformation
relationship for this type of three-DOF flexure hinge can be put in matrix
form in terms of stiffness as:

(4.7)

By expressing the load components of Eq. (4.7), substituting them into Eq.
(4.6), and by considering the equality of Eq. (4.5), the strain energy of one
planar single-axis flexure hinge becomes:

(4.8)

where 

 

U

 

a

 

 is the axial strain energy and is given by:

(4.9)

 

U

 

db,z

 

 represents the 

 

z

 

-axis direct-bending strain energy and is given by:

(4.10)

while 

 

U

 

cb,z

 

 is the 

 

z

 

-axis cross-bending strain energy, formulated as:

(4.11)
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4.2.2 Multiple-Axis Flexure Hinges

 

The multiple-axis (or revolute) flexure hinges were shown to possess six
DOFs through discretization of their elastic (compliant) and inertia proper-
ties. As a consequence, a compliant mechanism that incorporates such mem-
bers can be described by a maximum number of 6

 

n

 

 DOFs. The force–
displacement matrix equation for this type of flexure hinge is:

(4.12)

Following a reasoning that is similar to the one applied for single-axis
flexure hinges, the potential energy of a generic revolute flexure hinge is of
the form:

(4.13)

where it has been acknowledged that the bending takes place about two
perpendicular directions 

 

z

 

 and

 

 y

 

, and the torsion (indicated by the subscript 

 

t

 

)
is also present. The terms that are new in Eq. (4.13) are:

(4.14)

(4.15)

(4.16)

 

4.2.3 Two-Axis Flexure Hinges

 

It was demonstrated in Chapter 2 that a two-axis flexure hinge can be dis-
cretized by utilizing five DOFs to describe the free-end motion capabilities in
terms of the fixed end. As a consequence, a system that is composed of 
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members will have a maximum number of 5

 

n

 

 DOFs. The force–displacement
stiffness-based matrix equation is, in this case:

(4.17)

The total strain energy stored in this type of flexure is:

(4.18)

and it shows the contributions brought by the axial and mixed bending
effects. The terms that are different compared to the ones that were already
introduced are:

(4.19)

(4.20)

 

4.3 Kinetic Energy for Individual Flexure Hinges

 

4.3.1 Introduction and the Rayleigh Principle

 

The aim of Chapter 2 was to define various configurations of flexure hinges
in terms of their compliances (or stiffnesses) by expressing the displacements
or rotations of either one end (the one considered free) or the midpoint with
respect to the other (fixed) end. In doing so it was possible to choose a finite
number of degrees of freedom to fully describe the compliant behavior of a
given flexure hinge. In a nutshell, this process is actually a discretization
one, as it transforms the distributed elastic properties of a member into a
finite number of degrees of freedom that are equivalent to the original
properties. A similar discretization process is applied now in order to trans-
form the distributed mass properties of a flexure hinge into lumped inertia
fractions that are equivalent to the original system about the degrees of
freedom that were already defined by the elastic properties discretization.
The criterion of realizing this equivalence will be an energy one; specifically,
it will define a discrete inertia system whose kinetic energy is equal to the
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kinetic energy of the original distributed-inertia flexure hinge. The purpose
of discretizing the inertia of a flexure hinge is to permit further development
of the dynamic equations that all involve inertia properties in either the
undamped free response (modal analysis) where the governing linearized
matrix equation is:

(4.21)

or the undamped forced response for which the dynamic equation is of the
form:

(4.22)

In both Eqs. (4.21) and (4.22), [

 

K

 

] is the stiffness matrix that is the inverse of
the compliance matrix [

 

C

 

] whose components have been derived for various
flexure hinge configurations in Chapter 2, while [

 

M

 

] is the mass matrix that
will be derived here. Discussion will include the process of inertia discreti-
zation for single-, multiple-, and two-axis flexure hinges. It should be pointed
out that axial, bending, and torsional effects will be considered as acting
independently and therefore will be decoupled, as this assumption is con-
sistent with the customary first-order beam theory, where such effects are
considered separately. It is beyond the scope of this work to attack the
problem of deriving lumped-parameter inertia fractions based on the second-
order beam theory where bending is coupled to axial and/or torsional
effects.

It is well known that two models are most often utilized when analyzing
the vibratory response of beam-type members. The Euler–Bernoulli model
is applied with accurate results in the majority of engineering applications
that contain beam-like elements, which can be considered long as discussed
in Chapter 2. The free response of a Euler–Bernoulli beam in bending
consists of a fourth-order partial differential equation, the unknown, and the
deflection, depending on two variables, one spatial (the position on the beam
of a current point) and the other time. Details on solving this partial differential
equation are given, for example, in Thomson,

 

18

 

 Inman,

 

19

 

 and Weaver et al.

 

20

 

A more precise description of the vibratory response of a beam is given by
the Timoshenko model (again, details can be found in the references cited
above), which accounts for two additional effects: shearing effects (which are
present in short components that are subjected to bending, as analyzed in
Chapter 2) and rotary inertia. The vibratory model of a Timoshenko beam
consists of two coupled fourth-order partial differential equations (again,
details can be found in the references mentioned above). It was shown
in Chapter 2 how the compliant nature of a flexure hinge modifies when
the shearing effects are considered vs. the situations where such aspects
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are neglected. The two models mentioned above will be utilized here to
derive the inertia properties of flexure hinges that vibrate in bending.

The effective inertia or Rayleigh method, as indicated by Thomson,

 

18

 

 pro-
vides the means for taking into account the contribution of a distributed-
mass member, such as a bar or a beam, that is connected to other massive
members whose masses are customarily the only ones considered in modal
(natural frequency) calculation, for instance. The method basically trans-
forms the distributed inertia of such a light, flexible member into an equiv-
alent (effective) inertia property that is lumped at a given location by
equating the kinetic energies of the actual and equivalent systems. In this
equivalence process, the velocity distribution is assumed to be identical to
that of the source displacement. In other words, a linear velocity will have
a distribution that is identical to that of the corresponding linear displace-
ment, while an angular velocity is assumed to be distributed in a fashion
that is identical to that of the corresponding angular displacement.

 

4.3.2 Inertia Properties of Flexure Hinges as Long
(Euler–Bernoulli) Members

 

The assumptions under which the Euler–Bernoulli beam model is opera-
tional were mentioned at the beginning of Chapter 2, but, in a nutshell, two
assumptions are basic to this model:

1. Plane sections remain plane and perpendicular to the deformed
neutral axis, after the bending/loading has been applied (Bernoulli
hypothesis).

2. The beam-like members are considered long; therefore, no shearing
effects are taken into consideration.

The distributed-inertia system of a flexure hinge will be transformed into
equivalent discrete inertia properties that are located at the end of the flexure
hinge, which is considered free. As shown next, the model is not a pure
Euler-beam model as it will generate a rotary inertia fraction to account for
a rotational degree of freedom that characterizes the compliant behavior of
any flexure hinge. A simpler approach for a Euler–Bernoulli beam was
followed by Lobontiu et al.,

 

21

 

 where the rotary inertia was ignored in deriv-
ing the lumped-parameter mass corresponding to the bending vibrations of
a piezoelectrically actuated cantilevered beam. Lee et al.

 

22,23

 

 investigated the
transverse vibrations of nonuniform beams that have either fixed (homoge-
neous) or elastic nonhomogeneous boundary conditions in terms of both
material properties and cross-sectional area by solving the fourth-order par-
tial differential equation that was formulated through using several nondi-
mensional parameters and approximation polynomials. An approach that
includes the rotary effects can be found in Weaver et al.,

 

20

 

 where the importance
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of including the rotary inertia in the dynamic model of a vibrating beam is
highlighted, especially when attempting to accurately model the high-
frequency response of such systems.

 

4.3.2.1 Single-Axis Flexure Hinges

 

As previously mentioned in this chapter, a single-axis flexure hinge can be
described in terms of inertia by a diagonal 3 

 

×

 

 3 inertia matrix that corre-
sponds to the three DOFs of such a flexure hinge according to the compli-
ance/stiffness discretization. The three inertia fractions (namely, 

 

m

 

x

 

, my, and
Jz) denote three entities that are inertia decoupled and, therefore, can be
considered as capable of independent motion. Because mx and my are mass
fractions that translate along the local axes x and y , respectively, of one
flexure, they will possess kinetic energy of the form:

(4.23)

where vx and vy are the velocities of the translation mass fractions mx and
my , respectively, recorded with respect to a fixed reference frame. More
details will be given when analyzing the dynamics of specific flexure-based
compliant mechanisms. Discretization of the inertia for a single-axis flexure
hinge also includes a rotary inertia term, for which the kinetic energy is:

(4.24)

The angular velocity ωz is again calculated with respect to a fixed frame;
more details will be given when studying different examples of specific
compliant mechanisms. The total kinetic energy is, of course, the sum of the
translatory and rotary kinetic energy terms:

(4.25)

It was shown in Chapter 2 that a single-axis flexure hinge can basically be
defined in terms of its in-plane compliant behavior by four compliance
factors: C1,x–Fx (describing axial effects), C1,y–Fy and C1,θz–Mz (quantifying direct-
bending effects), and C1,y–Mz (denoting cross-bending effects). These four
distinct compliance parameters can be arranged into a 3 × 3 compliance
matrix that is associated with a dimension-3 displacement vector {u} that is
formed of the free-end axial displacement u1x, deflection u1y , and rotation
angle (slope) θ1z. It is clear that this type of discretization is based on three
DOFs, which are the above-mentioned nodal displacements. It is therefore
necessary that the mass matrix also be a 3 × 3 matrix, as the dynamic
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equation (corresponding to the force response, for instance) must be com-
patible and of the general form:

(4.26)

It has been assumed in Eq. (4.26) that the nodal load vector components are
applied at node 1. The mass matrix in Eq. (4.26) is formulated in a diagonal
form as it can be assumed that the three-DOFs are inertia decoupled. Such
a hypothesis has a physical background, as we can imagine a solid that is
fixed at the end of a massless flexible member which can deform both axially
and in bending, as illustrated in Figure 4.1, and which is bound to have a
plane motion.

The solid can translate along the x axis due to axial deformation of the
flexible member and the y-axis due to deflection of the same member and
can rotate around its central axis due to the end slope of the flexible link. A
similar problem is posed when attempting to transform the distributed-
inertia flexure hinge into a discretized (lumped) mass equivalent system.
The only difference consists in the fact that different inertia fractions (m1x,
m1y , and J1z, as shown in Eq. (4.26)) have to result from the equivalence
process corresponding to the three-DOF system.

The assumption that stands at the basis of Rayleigh’s principle can be
justified simply by analyzing the free response of a flexible member with
distributed properties. The solution in such cases can be expressed as the
product between a space-dependent solution and a time-dependent one, as
shown in Inman,19 for instance, in the form:

(4.27)

Because the velocity at a given point on the flexible member and at a given
time is the time derivative of the displacement function, it follows from Eq.
(4.27) that:

(4.28)

FIGURE 4.1
Mass attached to a flexible member and having a three-DOF plane motion.
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which demonstrates that the velocity field has the same space distribution
as the source displacement field.

The axial loading and bending of a flexure hinge will be analyzed sepa-
rately in terms of mass discretization based on Figure 4.2. The two-dimensional
flexure hinge will be discretized into three distinct and mechanically decou-
pled inertia fractions, as previously mentioned: one mass fraction, denoted
by mx, which corresponds to the axial vibrations of the flexure hinge; one
mass fraction, my , resulting from the distributed mass that vibrates in bend-
ing and has a translatory motion; and one body that rotates and therefore is
defined by a mass moment of inertia Jz and which is also produced through
bending. The last two inertia properties will be determined through a cou-
pled process as they are produced by causes that are also connected (as is
the case for the deflection and rotation angle of a flexing beam). An illustra-
tion of this situation is shown in Figure 4.3, where the equivalent mass–stiff-
ness model of a flex–tensional member is indicated.

FIGURE 4.2
Vibrating flexure hinge and infinitesimal element for effective inertia derivation.

FIGURE 4.3
Alternative representation of a single-axis flexure hinge with discretized stiffness and inertia.
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4.3.2.1.1 Axial Vibration

The kinetic energy of the element shown in Figure 4.2 about the x axis can
be generically expressed as:

(4.29)

where ρ is the material density, A(x) is the cross-sectional area, and vx(x) is
the velocity at a distance x measured from the free end of the flexure. It has
been shown in Chapter 2 that the axial displacement of free end 1 can be
expressed in terms of an axial force acting at that point in terms of the axial
compliance C1,x–Fx as:

(4.30)

and the axial compliance has explicitly been given for several flexure hinge
configurations. A similar relationship is valid when expressing the displace-
ment of the generic point situated at a distance x from the free end as
produced by the same force F1x:

(4.31)

where the axial compliance is formulated by taking into consideration the
elastic properties of the segment between the free end and the current point
as:

(4.32)

Combining Eqs. (4.30) and (4.31) gives:

(4.33)

with:

(4.34)

By applying the assumption that the velocity field distribution is identical
to that of the displacement field, it follows that:

(4.35)
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Substituting Eq. (4.35) into Eq. (4.29) and integrating over the entire length
of the flexure hinge gives the total kinetic energy when the flexure vibrates
axially:

(4.36)

The kinetic energy of an equivalent mass that vibrates axially with a velocity
v1x and is attached at the free end of the flexure is simply:

(4.37)

Because the actual and equivalent systems must have the same kinetic energy
(which means that Eqs. (4.36) and (4.37) give the same quantity), the effective
mass, mx, is:

(4.38)

Obviously, the effective mass corresponding to the axial vibration is depen-
dent on the geometry of the specific flexure under consideration, and,
unfortunately, the integral of Eq. (4.38) cannot be solved analytically to yield
a closed-form expression for mx in the form of the compliances that were
given in Chapter 2.

A check has been performed to verify that the generic formulation devel-
oped here, of the effective mass for variable cross-section bars (as the flexure
hinges are) in axial vibration, reduces to the known corresponding expres-
sion of a similar constant cross-section fixed–free bar. Thomson18 demonstrates
that for such a bar the effective mass (the mass that must be placed at the
free end) is one third of the total mass. Equations (4.34) and (4.38) have been
solved for all the single-axis flexure hinges that were introduced in Chapter
2 by imposing the corresponding geometric conditions that would render a
specific variable cross-section flexure into a constant cross-section one. For
instance, as also mentioned in Chapter 2, for the corner-filleted flexure hinge,
the condition that the fillet radius tends to zero has been applied, whereas
for all the other flexure configurations (except the circular one) the condition
that the parameter c tends to zero has been enforced. In all cases, the value
of the effective mass mentioned above was retrieved.

4.3.2.1.2 Bending Vibration

A similar approach will be taken in order to find the equivalent (effective)
inertia properties of a flexure hinge that vibrates in bending. As shown in
Chapter 2, because coupling effects between forces and moments are present
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when analyzing bending, a few details must be mentioned to develop a
formulation that would go along the path taken for axial vibration effective
mass determination. The free-end slope and deflection of a flexure hinge can
be expressed, as shown in Chapter 2, as:

(4.39)

Similar relationships are valid when expressing the slope and deflection at
a generic point, as produced by the same endpoint load, namely:

(4.40)

The variable compliance factors in Eq. (4.40) are:

(4.41)

It is known that the slope function is the derivative of the deflection function
in terms of the space variable, according to the small-displacement beam
theory, namely:

(4.42)

and, as a consequence, the slope function can be formulated by taking the
space derivative of uy(x) as shown in the second expression of Eq. (4.40):

(4.43)
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Combining the first expression in Eq. (4.40) with Eq. (4.43) gives M1z in terms
of F1y:

(4.44)

with:

(4.45)

Equations (4.44) and (4.45) permit expression of the slope and deflection at
a generic position in terms of only one load component which renders the
problem tractable for the axial vibration-related mass fraction.

The elemental kinetic energy pertaining to bending-related translation
vibration about the y axis can be expressed as:

(4.46)

The Rayleigh hypothesis, according to which the space-dependent velocity
distribution is identical to the space-dependent deflection distribution, is
again utilized, which means that the velocity at a current position on the
flexure hinge relates to the velocity of the free endpoint by the equation:

(4.47)

where:

(4.48)

The total kinetic energy related to the bending vibrations and corresponding
to the y axis translation is found by integrating the elemental kinetic energy
of Eq. (4.46) as:

(4.49)

The kinetic energy of an equivalent (effective) mass that vibrates along a
direction perpendicular to the longitudinal axis of a flexure hinge with a
velocity v1x and is attached at the free end of the flexure is:

(4.50)
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Because Eqs. (4.49) and (4.50) express the same amount, it follows that the
equivalent mass in the y-axis direction is:

(4.51)

A limit check was again performed to verify that, by forcing the appro-
priate geometric parameters and thus transforming the variable cross-section
flexures into constant cross-section flexures, the equations that were previ-
ously formulated with respect to the effective mass pertaining to bending
vibrations will indeed reduce to the corresponding equation of the effective
mass for the constant cross-section beam. As shown in Lobontiu,24 the dis-
tribution function for a fixed–free constant cross-section cantilever is:

(4.52)

Combining Eqs. (4.52), (4.49), and (4.50) gives the effective mass of the
constant cross-section cantilever as:

(4.53)

where m is the total mass of the beam. By applying the same geometric limit
conditions that were used when determining the effective mass in axial
vibration—namely, zero fillet radius for corner-filleted flexure hinges and
zero for parameter c in the case of all other single-axis flexures (except for
the circular one)—Eqs. (4.48) and (4.51) give the value indicated in Eq. (4.53)
for all flexure hinges.

Quite similarly, the rotary effects generated through bending produce a
kinetic energy, which, for the element of Figure 2.20a in Chapter 2, is:

(4.54)

where ωz(x) is the angular velocity of the elemental portion under consider-
ation. Again, the Rayleigh principle allows us to consider that the angular
velocity due to bending has the same distribution as the source angular
distribution; therefore:

(4.55)

as well as:

(4.56)
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Similar considerations that were utilized for deriving the axial and y-translation
bending mass fractions are applied here, and the equivalent polar mass
moment of inertia is:

(4.57)

where:

(4.58)

4.3.2.2 Multiple-Axis Flexure Hinges

For a multiple-axis flexure hinge, the discretization process pertaining to the
elastic properties results in a six-DOF lumped-parameter equivalent member.
In this case, the kinetic energy owing to translation is:

(4.59)

while the rotary kinetic energy is:

(4.60)

The multiple-axis (revolute and therefore three-dimensional) flexure
hinges were defined in Chapter 2 in terms of their flexibility by five compli-
ance factors: C1,x–Fx (connected to axial effects), C1,y–Fy and C1,θz–Mz (describing
direct-bending effects, respectively), C1,y–Mz (denoting cross-bending effects),
and C1,θ x–Mx. These five compliance parameters are the components of a 6 × 6
compliance matrix that corresponds to a displacement vector {u} that is of
the form:

(4.61)

Similar to the process explained when deriving the mass–inertia matrix for
single-axis flexure hinges, a 6 × 6 diagonal mass–inertia matrix can be for-
mulated for multiple-axis flexures with the following nonzero components:
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The inertia fractions mx, my , and Jy are the ones that were derived when
dealing with the one-sensitivity flexure hinges. The polar moment of mass,
Jx, is related to torsion and can be calculated in a way similar to the mass
fraction related to axial effects. The torsional kinetic energy of an infinitesi-
mal element of the flexure hinge can be expressed as:

(4.63)

where ωx(x) is the angular velocity of the infinitesimal element produced by
torsional vibration and Ip(x) is the polar moment of area of the variable
circular cross-section. The torsional rotation angle at the free end of the
revolute flexure hinge is given by:

(4.64)

as shown in Chapter 2. Similarly, the rotation angle of the infinitesimal
element is:

(4.65)

where:

(4.66)

Combining Eqs. (4.64) and (4.65) gives:

(4.67)

with:

(4.68)

According to Rayleigh’s principle, the angular velocity about the longitudi-
nal axis of the flexure hinge will have the same spatial distribution as the
one of the axial angular deformation; therefore:

(4.69)

The total kinetic energy related to torsion will be:
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An equivalent disc that would be attached at the free end of the revolute
flexure hinge would have a kinetic energy of:

(4.71)

Because Eqs. (4.70) and (4.71) denote the same kinetic energy, it follows that
the effective polar moment of mass is:

(4.72)

It can easily be shown that the distribution function for the angular (tor-
sional) deformation of a fixed–free constant circular cross-section bar that is
subjected to torsion is of the form:

(4.73)

where, again, l is the total length of the bar and x is the variable distance
measured from the free end. By utilizing Eq. (4.73) in combination with Eqs.
(4.68) and (4.72), the effective polar moment of mass of the constant cross-
section bar is found to be:

(4.74)

where J is the polar moment of mass of the entire bar with respect to its
longitudinal axis. Equation (4.74) was retrieved when Eqs. (4.68) and (4.72)
were used by imposing the geometry limit conditions previously applied—
that is, by considering that the fillet radius tends to zero for corner-filleted
flexure hinges and that parameter c tends to zero for all other flexures (except,
again, for the circular one), which gave a validation of the generic equations
derived for the effective polar moment of mass for the multiple-axis flexure
hinges.

4.3.2.3 Two-Axis Flexure Hinges

A two-axis flexure hinge was discretized with respect to both mass and
stiffness as an equivalent five-DOF member. The translation kinetic energy
will be provided by the three independent masses as:

(4.75)
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whereas the rotary kinetic energy is:

(4.76)

The three-dimensional two-axis flexure hinges were introduced and dealt
with in Chapter 2. They were defined by the following compliances: C1,x–Fx

(connected to axial effects); C1,z–Fz, C1,θ y–My , C1,y–Fy , and C1,θ z–Mz (describing
direct-bending effects); and C1,y–Mz and C1,z–My (denoting cross-bending
effects). These compliance parameters form together a 5 × 5 compliance
matrix because the displacement vector {u} has a dimension of 5 and is
defined as:

(4.77)

The corresponding lumped mass matrix is a 5 × 5 diagonal matrix having
the following nonzero components:

(4.78)

The procedure of formulating the inertia fractions of Eq. (4.78) is exactly the
same as the one developed for single-axis flexure hinges, and it will not be
exposed in detail here. In actuality, the axial mass, mx, the y-bending mass,
my , and the z rotary inertia, Jz, are given in Eqs. (4.38), (4.51), and (4.57),
respectively. The derivation of mz and Jy follows along the lines presented
when deriving my and Jz. It is straightforward to formulate them as:
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and:

(4.81)

A check was performed for an inverse-parabolic flexure hinge of the type
presented in Chapter 2 for which the compliances were explicitly derived.
By making c1 and c2 zero in all the compliances that are involved in Eqs.
(4.79), (4.80), and (4.81)—which actually means forcing the double-profile
inverse parabolic flexure to become a constant cross-section cantilever—Eq.
(4.53) can again be retrieved to confirm the validity of the effective mass as
expressed in Eq. (4.79).

In a similar fashion, the rotary inertia about the y axis is:

(4.82)

where:

(4.83)

4.3.3 Inertia Properties of Flexure Hinges as Short 
(Timoshenko) Members

Earlier it was mentioned that the Timoshenko approach to the bending
vibrations of beam-type elements constitutes a better description for short
elements where the shearing effects must be taken into account. Intrinsically,
the Timoshenko beam model also includes effects induced by rotary inertia,
but it was shown previously that the Euler–Bernoulli model can also accom-
modate such effects in order to generate the inertia fraction that corresponds
to a rotational degree of freedom. Based on the details given in Chapter 2,
when treating the flexure hinges as short elements that incorporate shearing
effects, the Timoshenko approach will be used here to determine the corre-
sponding discretized inertia properties. The inertia properties that are gen-
erated through axial vibrations are obviously identical to those derived for
Euler–Bernoulli flexure hinges, as there is no difference between the two
models in terms of axial vibrations; therefore, the axial mass fraction subject
will not be dealt with again.

The procedure and equations for inertia discretization in the case of single-
axis flexure hinges are detailed next. It was discussed in Chapter 2 that short
flexure hinges change their compliance in bending, as additional shearing
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effects that generate corresponding strains must be taken into account. As a
result, the equation that gives the deflection at the free end of such a flexure
hinge is:

(4.84)

where the superscript s indicates the total deformation that results from both
bending and shearing while the superscript * denotes the compliance that
is changed through consideration of the shearing effects and was formulated
in Chapter 2.

As already shown in the portion treating the mass discretization process
Euler-Bernoulli flexure hinges, an equation similar to Eq. (4.84) can be for-
mulated when analyzing the deflection of a point situated at a distance x
from the free end of the flexure, in the form:

(4.85)

where the x-dependent compliances Cx,y−Fy(x) and Cx,y−Mz(x) are given in
Eqs. (4.41) and the compliance bearing a * superscript is similar to the corre-
sponding one of Eq. (4.84). Based on the development presented in Chapter 2,
the shear-related compliances can be calculated as:

(4.86)

with Cx,x−Fx(x) defined as in Eq. (4.32). By combining Eq. (4.84) with the first
Eq. (4.86) results in:
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In a similar fashion, by combining Eq. (4.85) and the second Eq. (4.86)
produces:

(4.88)

By following a calculation similar to the one detailed when deriving the
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deflection is distributed following the law:

(4.89)

where the corresponding distribution function is:

(4.90)

The Rayleigh’s assumption is applied again, according to which the velocity
field for the translatory bending-generated vibrations is distributed in a
manner that is analogous to the distribution of the corresponding deflection.
Following again the reasoning that was detailed in the case of Euler-Bernoulli
beams, the equivalent discrete inertia fraction that corresponds to the trans-
latory vibrations of a Timoshenko single-axis flexure hinge is:

(4.91)

It requires only straightforward mathematics to derive the inertia fractions
in the case of Timoshenko multi- and two-axis flexure hinges; therefore, the
corresponding equations will not be developed here, as only mimimal
changes are necessary to write them, following the indications given previ-
ously when analyzing similar Euler–Bernoulli flexure hinges. It is worth
mentioning, however, that closed-form solutions to the inertia fractions
whose equations were derived here in a generic format are not available for
the configurations that were presented in Chapter 2, and, as a consequence,
numerical solution procedures are necessary to solve this problem.

4.4 Free and Forced Response of Flexure-Based 
Compliant Mechanisms

4.4.1 Introduction

Through the mathematical modeling developed so far in this book it is
possible to characterize the different types of flexure hinges that are analyzed
in terms of their compliance (or stiffness) and inertia properties. This would
be sufficient to further approach a specific flexure-based compliant mechanism
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by formulation of its total elastic potential energy and kinetic energy, which
are the main instruments for applying Lagrange’s equations. The elastic
potential energy in a flexure-based compliant mechanism represents the sum
of all elastic contributions from the flexure hinges that were modeled as
complex springs equipped with individual spring rates corresponding to
different degrees of freedom. The overall kinetic energy, on the other hand,
is produced by the motion of both the rigid links and the flexure hinges, and
this chapter has given a detailed presentation of the effective inertia prop-
erties of flexures. Utilization of the Lagrange’s equations procedure in the
form of Eq. (4.3) generally produces a system of nonlinear partial differential
equations that cannot easily be solved in their original form. It is therefore
necessary to apply a linearization of the differential equations system con-
sisting of measures such as neglecting powers higher than 1 for all the
variables (generalized coordinates) and for all of their derivatives, as well
as neglecting the products of variables and the products of derivatives of
variables. After applying all the necessary steps that would remove the
nonlinearities in the variables, the result of employing Lagarange’s equations
is generally of the form shown in Eq. (4.22).

Equation (4.22) represents the mathematical model that describes the
forced undamped response of a mechanical system and is, of course, valid
for a flexure-based compliant mechanism. The same equation serves as the
basis for a different set of problems that analyze the situation where there is
no external load acting on the compliant mechanism and therefore the gov-
erning matrix equation is of the form shown in Eq. (4.21).

Equation (4.21) describes the free undamped response of a dynamic system
and is the source of determining the modal response of a given mechanism,
which basically consists of the modal frequencies and eigenvectors/eigen-
forms that offer a description of the resonant behavior of a mechanical
system. The aspect of correctly evaluating the modal frequencies and espe-
cially the natural frequency (the first one in an ascending series of values)
is particularly important because a compliant mechanism might be designed
in such a way that it operates by either matching a specific modal frequency
(when the entire device resonates and achieves maximum performance) or
by completely avoiding a given resonant frequency that would harm the
overall performance of the system.

Figure 4.4 attempts to give a visualization of a few modes (the first ones)
that are possible in a fixed–free beam with a mass attached at its free end
that is restricted to a planar motion. A simple simulation by means of a
commercially available finite-element code would reveal these modes plus
a plethora of other higher order ones. Visualizing these first modes is impor-
tant, as it shows how the inertia and stiffness interplay can reflect individual
behavior about the different degrees of freedom that define a specific flexure
hinge. In the case illustrated in Figure 4.4, it is perfectly possible to capture
these three modes by the lumped-parameter (discretized) models that were
developed so far for flexure hinges in terms of both stiffness (compliance)
and inertia.
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Equation (4.21) describes the free response of a dynamic system and is
usually brought to the following form:

(4.92)

where [A] is called the dynamic (or system) matrix and is calculated as:

(4.93)

The eigenvalue, λ, is defined in terms of a specific circular frequency, ω, of
the analyzed system as:

(4.94)

FIGURE 4.4
In-plane modes of a flexible cantilever with a tip mass: (a) original (undeformed) shape; (b)
axial mode; (c) translatory mode produced through bending; (d) rotary mode produced through
bending.
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whereas {Φ} is the eigenvector that corresponds to a certain eigenvalue λ.
The matrix in Eq. (4.92) is related to the so-called characteristic equation:

(4.95)

which is solved for the eigenvalues λ ([I] is the unit matrix in Eq. (4.95)).
After determining the eigenvalues from Eq. (4.95), the corresponding eigen-
vectors can be formed by substituting the newly found eigenvalues into Eq.
(4.92). Several versions of mathematical software, such as Matlab, Mathe-
matica, Mathcad, or Maple, offer routines that solve for the free response of
a system and therefore give the modal solution in the form of eigenvalues
and eigenvectors, in either numerical or symbolic (when possible) form.

As pointed out previously, Eq. (4.22) defines the forced undamped
response of a dynamic system and can be used to determine the steady-state
response of a system to long transients or the full time-history response of
a system to short transients. The long transient situation implies that the
excitation {F} is applied over a relatively long time and in a manner that
allows us to make a reduction in the problem, generally in the form of
selecting just part of the total number of degrees of freedom to describe the
response of the entire system. Representative of this approach is the method
of modal synthesis that selects a vector subspace from the eigenvectors
(already determined) of a dynamic system. A vector subspace {S} can be
formed as:

(4.96)

where vi are weight coefficients that accompany the known eigenvector {Φi}.
By substituting Eq. (4.96) into Eq. (4.22) and after making the necessary
calculations and simplifications pertaining to the properties of eigenvectors
(for more details on this topic, see the works of Meirovitch,2 Thomson,18 or
Inman19), the resulting equation will be:

(4.97)

where Fi is a reduced-form component that is calculated as:

(4.98)

whereas the reduced eigenvalue ωi is defined as:

(4.99)

[ ] [ ]A I− =λ 0

{ } { }S vi i
i

m

=
=

∑ Φ
1

d v
dt

v Fi
i i i

2

2
2+ =ω

F Fi i
T= { } { }Φ

ω i i
T

iK2 = { } [ ]{ }Φ Φ

1367_Frame_C04  Page 234  Friday, October 18, 2002  1:55 PM



Dynamics of Flexure-Based Compliant Mechanisms 235

Equation (4.97) represents a system of m similar differential equations that
can be solved for the weight coefficients vi (i = 1 → m); therefore, after
determining the weight coefficients, they are substituted back into Eq. (4.96),
which defines the response of the reduced dynamic system.

For short transients where the external loading is applied over a short time
and might often have an impulsive character, Eq. (4.22) must be directly
integrated in the time domain, in order to find a reliable solution that would
not skip important aspects in the dynamic response of a mechanical system.
The mathematical software just mentioned offers, again, routines that per-
form direct time integration by means of various time-stepping schemes.
Essentially, a time-stepping scheme applies a time discretization of the total
time by defining time stations that are separated by means of time steps that
connect the known and unknown amounts in a dynamic equation. Two
consecutive time intervals are time related by means of the time step ∆t
(which can be constant or may vary), according to:

(4.100)

Several dedicated procedures allow time discretization and integration of
Eq. (4.22) (for more details, see the monograph of Wood25), including situations
where the matrices that define the equation are nonlinear. The Runge–Kutta
algorithm is a well-known tool, and other algorithms such as predictor–
corrector are also available to solve Eq. (4.22). The Newmark scheme will
briefly be presented here as it offers a fast and reliable tool to solve for the
unknown displacement vector {u}. The Newmark scheme is unconditionally
stable and is based on the following two equations:

(4.101)

Equation (4.101) must be utilized in conjunction with the dynamic equation
describing the forced response, Eq. (4.22), and the initial conditions (gener-
ally, initial values of displacement and velocity) in order to solve for the
displacement vector {u}.

Similar to the topics covered in Chapter 3 when discussing the static (quasi-
static) response of flexure-based compliant mechanisms, this section analyzes
the main features of formulating the potential elastic energy and kinetic
energy for planar and spatial flexure-based compliant mechanisms of serial,
parallel, or hybrid configuration in order to enable application of Lagrange’s
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equations and to solve for the generalized coordinates (DOFs) that describe
a specific mechanism. The final form of the dynamic equations for either
the free or forced response, in the generic form, is not approached here because
this is a task that exceeds the scope of the present work and whose complex
mathematical form would probably blur the physical significance of a prob-
lem at hand through unnecessary symbolism.

4.4.2 Planar Flexure-Based Compliant Mechanisms

The kinetic and potential energy terms, which are the main ingredients in
formulating and solving Lagrange’s equations, will be derived next, in
generic form, for planar serial, parallel, and hybrid (serial–parallel) flexure-
based compliant mechanisms. Also discussed will be the number of gener-
alized coordinates that have to be accounted for in each specific case.

4.4.2.1 Serial Compliant Mechanisms

The potential and kinetic energy terms will be formulated now for a planar
serial compliant mechanism that contains n single-axis flexure hinges (as
shown in Figure 3.1) in order to enable formulation of Lagrange’s equations
as given in Eq. (4.3). Developing the dynamic equations in a generic fashion,
as mentioned previously, would be cumbersome (although tractable) and
therefore will not be developed to the last detail here. Because every flexure
hinge can be described as a three-DOF subsystem and a fixed–free chain (as
the one pictured in Figure 4.5) has no constraints, the number of generalized
coordinates is:

(4.102)

The potential energy of such a system will sum up contributions from all
single-axis flexure hinges in the form of two translation terms and one rotary,
namely:

(4.103)

where the stiffness terms of Eq. (4.103) can be determined by means of the
formulation presented in Chapter 2. It should be noted that the axial, deflec-
tion, and rotary deformations of a flexure hinge are expressed in local
coordinates.

The total kinetic energy of a planar serial compliant mechanism is formed
of two translation terms and one rotary term for each single-axis flexure
hinge. The translation kinetic energy is:

(4.104)

DOF n= 3

U K u K u K K ui x F ix i y F iy i M iz i y M ix iz
i

n

x i y i z z z i
= + + +− − − −

=
∑1

2
22 2 2

1

( ), , , ,θ θ θ

T m v m vtr ix ix iy iy
i

n

i i
= +

=
∑1

2
2 2

1

( )

1367_Frame_C04  Page 236  Friday, October 18, 2002  1:55 PM



Dynamics of Flexure-Based Compliant Mechanisms 237

where the mass fractions are calculated according to the procedure devel-
oped within this chapter. The velocity components in Eq. (4.104) are absolute
values that are afterwards projected on the local axes of each individual
flexure. It is necessary to proceed that way because the mass discretization
process resulted in two independent translation masses, mx and my . Although
kinematically independent, the two masses reflect the unique position of the
free end of a flexure hinge that is capable of simultaneous axial and deflection
deformation, which enables calculation of one single-velocity vector vi in the
form:

(4.105)

where Ri is the position vector of the tip i of the flexure hinge bounded by
the nodes i – 1 and i (not represented in Figure 4.5) and is expressed as:

(4.106)

As Eq. (4.106) indicates, the position vector of the node I is defined based
on the deformed state of the compliant mechanism. The unit vectors exj and

 that appear in Eq. (4.106) belong to the local reference frame that is
attached to the analyzed generic flexure hinge. In taking the time derivative

FIGURE 4.5
Geometry and symbolic representation of inertia discretization for a planar serial compliant
mechanism with single-axis flexure hinges.
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of the position vector given in Eq. (4.106), it should be remembered that the
local reference frame of the flexure hinge (i – 1, i) is a rotating one. Its rotation
is produced by the sum of rotations of all flexure hinges from 1 to i – 1 as
quantified by their tip slope angles θz. In such cases, the time derivative of
a vector with respect to a fixed reference frame can be calculated (see Beer
and Johnston,26 for instance) in terms of the time derivative of the same
vector taken with respect to a mobile reference frame that rotates with the
absolute angular velocity ω as:

(4.107)

The angular velocity in this case is:

(4.108)

where ez is the unit vector of the fixed z axis. Eventually, the velocity vector
vi becomes:

(4.109)

The components of the velocity vector of Eq. (4.109) are found by projecting
this vector onto the local axes xi and yi as:

(4.110)
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and:

(4.111)

where:

(4.112)

By inspecting the equations that give the translation kinetic energy, it can be
noticed that they do not explicitly depend on the generalized coordinates

, , and θiz and, as a consequence, the partial derivatives that involve
them in Lagrange’s equations, Eq. (4.3), are zero. The partial derivatives that
are taken with respect to the rate of the above-mentioned generalized coor-
dinates can formally be computed as:

(4.113)

The rotary kinetic energy is:

(4.114)

and it can be seen that, as in the case with translation kinetic energy, none
of the generalized coordinates explicitly enters this equation. As a conse-
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coordinates are zero in Lagrange’s equations, Eq. (4.3). The partial derivatives
taken with respect to the rate of change of the generalized coordinates are:

(4.115)

The total potential energy of a planar serial compliant mechanism that is
based on one-sensitivity axis flexure hinges is given in Eq. (4.103). The partial
derivatives of Lagrange’s equations are:

(4.116)

Combining all the derivatives involved in Lagrange’s equations, Eq. (4.3),
results in a system of 3 × n second-order nonlinear differential equations in

 and θiz. Because the assumption of small displacements/deforma-
tion applies here, the terms containing the unknowns (deformations) in their
second powers and terms based on products of the unknowns can be
neglected. In doing so, the differential equations system becomes linear and
can be solved through the regular procedure.

One might encounter the case where a serial chain also includes one or
several rigid links that will add kinetic energy to the system of flexure hinges.
Unless the planar serial mechanism is operating in a horizontal plane, the
rigid links will also bring in gravitational potential energy that will add up
to the elastic potential energy stored in flexure hinges. However, this aspect
will be neglected here, and it will be considered that the contribution of a
rigid link will only consist of kinetic energy. Because the motion of a rigid
link in the serial chain is essentially planar, its kinetic energy contains trans-
latory and rotary terms in the form:

(4.117)
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mass moment of inertia of the same rigid body with respect to a z axis passing
through its center of mass. Clearly, the coordinates defining the position of
the rigid link can be expressed in terms of the generalized coordinates of the
whole system to enable formulation of Lagrange’s equations.

To facilitate a better understanding of the general algorithm presented
above, a practical example of a simple planar serial compliant mechanism
is analyzed next.

Example
Find the natural frequencies of the two-member planar serial compliant
mechanism shown in Figure 4.6. Also find the corresponding eigenvectors.
The single-axis flexure hinge is hyperbolic and the mechanism is constructed
of a steel plate of constant width w = 0.004 m. The Young’s modulus is E =
200 GPa. The other geometric parameters are l1 = 0.006 m, t1 = 0.001 m, c1 =
0.001 m, l2 = 0.015 m, and t2 = 0.015 m.

Solution
The analytical model presented in this chapter has been applied as well as
a finite-element simulation by means of the ANSYS software, in order to
check the results. The analytical model simulation started by calculating the
stiffness matrix of the single-axis hyperbolic flexure hinge, according to the
procedure developed in Chapter 2. The overall mass matrix of the two-link
planar serial compliant mechanism was numerically calculated and the
modal frequencies were then determined by means of the algorithm pre-
sented in this chapter (the Mathematica code has been used for both inertia
and modal frequencies calculations). The results of the two types of analysis
are given next:

• First mode (bending of the flexure hinge with the rigid link follow-
ing the flexure without any rotation):
• 1100-Hz resonant frequency by means of the analytical/numerical

procedure

FIGURE 4.6
Two-member, constant-width planar serial compliant mechanism with a single-axis flexure
hinge of hyperbolic configuration.
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• 1315 Hz by means of the ANSYS software

• Second mode (bending of the flexure hinge with the rigid link
independently rotating):
• 12,023-Hz resonant frequency by means of the dedicated finite-

element procedure
• 12,436 Hz by means of the ANSYS software

• Third mode (pure axial vibration of the entire system due to axial
deformation of the flexure hinge element)
• 25,030-Hz resonant frequency by means of the dedicated finite-

element procedure
• 26,368 Hz by means of the ANSYS software

The errors between the two procedures were less than 6%. The finite-element
predictions are always higher than the results yielded by the analytical/
numerical technique developed in this chapter because the finite-element
code produces a mesh, which introduces more internal constraints at its
nodes; therefore, the entire model is stiffer.

4.4.2.2 Parallel Compliant Mechanisms

As previously shown, a purely parallel planar flexure-based compliant
mechanism is composed of one rigid output link (or platform) and, in the
most general case, of n flexure hinges, each attached to the output platform
at one end and fixed (or otherwise attached) to the ground at the other end.
Deriving Lagrange’s equations, based on the potential and kinetic energy of
the system, is formally identical to the path followed and described in the
case of planar serial flexure-based compliant mechanisms; therefore, it will
not be analyzed here in its entirety. The major difference, however, consists
in the constraints that the output platform planar motion imposes on the
deformation and displacement of the attached flexure hinges. These con-
straints, which we discuss next, reduce the number of degrees of freedom
of the entire mechanism. Figure 4.7 shows the output platform in two posi-
tions: one initial (which has an orientation that makes the longer dimension
of the platform parallel to the x axis of the global reference frame Oxy), corre-
sponding to a state where all the flexure hinges are undeformed, and another
position, which is displaced, as produced by deformations in the flexure
hinges. The center of mass of the output platform moves in the plane by the
quantities uCx and uCy , whereas the entire platform rotates around the center
of mass by an angle θCz, as suggested in Figure 4.7.

The motion of the output platform is related to the deformations of the
flexure hinges that are connected in parallel to it. Figure 4.8 shows the main
geometric parameters defining the deformations and displacements of the end
attached to the rigid output platform for a generic flexure hinge denoted by i.
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The generic flexure that has a length li and is inclined at an initial angle ϕi

is situated at a distance di from its immediate neighboring flexure hinge and
at a distance si from the center of mass of the output platform, as sketched
in Figure 4.8. It is clear that the coordinates of any two points on the output
platform where two flexure hinges are attached must be connected at any
moment during the motion of the mechanism. It is straightforward to express
the following relationships between the coordinates of two attachment points
corresponding to two adjacent flexure hinges:

(4.118)

FIGURE 4.7
Initial and displaced position of the output platform for a planar parallel/hybrid flexure-based
compliant mechanism.

FIGURE 4.8
Deformations and displacements of two adjacent flexure hinges in relation to the displacements
of the output platform from a planar parallel/hybrid compliant mechanism.
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Equation (4.118) can be written, in a transitional manner, for a total of n – 1
times in order to cover the n flexure hinges. At the same time, the coordinates
of Eq. (4.118) will be functions of the elastic deformations of the single-axis
flexure hinges, as the following relationships can be written, based on
Figure 4.8:

(4.119)

(4.120)

where the superscript 0 is formally employed to denote the initial value of
a coordinate (either x or y) measured in the (fixed) global reference frame.
It is obvious now that substituting Eqs. (4.119) and (4.120) into the first two
expressions in Eq. (4.118) results in the above-mentioned relationships
between the would-be degrees of freedom of the entire system. It has already
been shown that the state of deformation of a given flexure hinge can be
expressed in terms of its axial deformation, as well as bending-produced
deflection and slope at its free end (in the present case, the point attached
to the output platform). As a result, the 3(n – 1) constraints that can be
formulated by means of Eqs. (4.118), (4.119), and (4.120) will reduce the total
number of degrees of freedom from 3n (each flexure is a 3-DOF element,
and there are n flexure hinges overall) to 3n – 3(n – 1) = 3. Therefore, the
number of generalized coordinates of a planar flexure-based parallel com-
pliant mechanism is:

(4.121)

The conclusion is that three generalized coordinates will suffice to charac-
terize a planar parallel compliant mechanism that is made up of n flexure
hinges and a rigid output platform. By inspecting Figure 4.8 and by taking
the projections of deformations and other distances on the x and y axes, it
is simple to notice the following relationships exhibited among the geometric
parameters:

(4.122)
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Rearranging Eq. (4.122) results in:

(4.123)

The last expression in Eq. (4.123) shows that the slope of each flexure hinge
at its endpoint that is attached to the output platform is equal to the rotation
angle of the output platform. Equation (4.123) is valid for all n flexure hinges
that compose the planar parallel compliant mechanism, and, basically, Eq.
(4.123) indicates that it is convenient to select the parameters uCx, uCy , and
θCz in order to define the position of the output platform as the three gener-
alized coordinates that allow formulation of Lagrange’s equations:

(4.124)

The potential and kinetic energy corresponding to all the flexure hinges must
be formulated, as discussed in the segment dedicated to planar serial flexure-
based compliant mechanisms, by utilizing connection Eq. (4.123) to express
all energy terms in terms of the three generalized coordinates uCx, uCy , and
θCz. It should be noted that the total kinetic energy must include the contri-
bution from the output platform, namely:

(4.125)

4.4.2.3 Hybrid Compliant Mechanisms

A planar hybrid mechanism, as previously discussed and illustrated in Figure
3.10, is composed of n parallel chains, each comprising ni single-axis flexure
hinges. In each serial chain, the external end of a terminal flexure is fixed,
whereas the external end of the opposite terminal flexure is fixed to a rigid
output platform. Because a flexure hinge of this type has three DOFs, the total
number of physical coordinates that would define the hybrid mechanism is
3nin. It has been demonstrated, however, that the n points where the flexure
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hinges connect to the output platform pose 3(n − 1) constraint equations in
the case of a planar parallel mechanism. The same condition is valid for a
hybrid mechanism; therefore, the number of generalized coordinates or real
degrees of freedom will be reduced to:

(4.126)

A quick check of Eq. (4.126) indicates that when ni = 1, the number of degrees
of freedom is three, which confirms the previous suggestion that a planar
parallel mechanism (which is a particular case of a hybrid mechanism with
one flexure hinge in each serial leg) has three DOFs. Eq. (4.126) can be formally
rearranged to better outline the physical quantities that must be treated as
generalized coordinates. It is clear that one can select three generalized
coordinates as the displacement components of the output platform’s center
of mass uCx, uCy, and θCz, as well as the three elastic deformations of the first
ni – 1 flexure hinges (starting from the fixed one) for each of the n serial
chains. As a consequence, Eq. (4.126) can be written as:

(4.127)

Lagrange’s equations must be formulated in a number equal to the above-
mentioned number of generalized coordinates in order to eventually solve
for the said coordinates. When formulating the kinetic and potential energy
terms, as indicated in the discussion dealing with planar serial flexure-based
compliant mechanisms, the 3(n – 1) constraint equations given for planar
parallel mechanisms have to be employed as well.

4.4.3 Spatial Compliant Mechanisms

4.4.3.1 Serial Compliant Mechanisms

A spatial serial compliant mechanism that is composed of n multi-axis (rev-
olute) flexure hinges is analyzed next. Similar to the case of the planar serial
flexure-based compliant mechanism, the three-dimensional chain has a fixed
end while the opposite end is free. This type of boundary condition imposes
no constraints on the physical coordinates that define the system, such that
the number of generalized coordinates is:

(4.128)

because each of the n revolute flexure hinges possesses six DOFs, according
to the manner in which the stiffness and inertia properties were lumped.
The generic expression of the total potential and kinetic energy pertaining
to the components of a spatial flexure-based chain are derived in the follow-
ing to allow formulation of the 6n Lagrange’s equations that are necessary
to solve for the 6n unknown elastic deformations of the flexure hinges.

DOF n ni= − +3 1 1[( ) ]

DOF n ni= + −3 3 1( )

DOF n= 6
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The total potential energy stored in the flexure hinges is:

(4.129)

In Eq. (4.129) axial, double direct, and cross bending, as well as torsion
effects, have been taken into account. The total kinetic energy has, again, a
translatory and a rotary component. The total translatory kinetic energy
produced by the motion of the n revolute flexure hinges is:

(4.130)

where mix and miy are the lumped masses placed at the end of one flexure
which were calculated by means previously detailed within this chapter. It
should be noted that three lumped masses are in fact located at the end of
one flexure, but because of the rotation symmetry of the cross-section the
mass fractions that are produced through bending vibrations along the local
y and z reference axes are identical. The velocity vector at one flexure end
will be first calculated and then projected on the local reference frame axes
of the generic node i in order to enable utilization of Eq. (4.130). The position
vector corresponding to the ith flexure hinge is:

(4.131)

where three unit vectors have been used for the local reference frames, in a
manner similar to the one utilized when expressing the kinetic energy of
planar serial flexure-based compliant mechanisms. The velocity at node i,
recorded in terms of the global (fixed) reference frame, is defined according
to Eq. (4.105) and can be calculated by following the rule of differentiation
given in Eq. (4.107). Through simple vector calculations, the velocity at node
i can be expressed as:

(4.132)
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The components of this velocity vector in its local reference frame can be
found simply by taking the dot product of the velocity vector and the
respective unit vectors of the local axes, namely:

(4.133)

The unit vectors in Eqs. (4.133) are given a superscript prime in order to signal
that they correspond to the rotated positions of their corresponding reference
frames as produced through the rotations of all reference frames that are placed
before the ith reference frame. Equation (4.133) suggests that the position of
the rotated reference frame in terms of its initial position must be determined.

The total rotary kinetic energy for a three-dimensional serial flexure-based
compliant chain is:

(4.134)

therefore, the total kinetic energy that enters Lagrange’s equations can be
expressed by summing up the translatory kinetic energy, as given in Eq.
(4.130), and the rotational energy of Eq. (4.134). The kinetic energy of any
rigid link that may be part of the spatial serial chain can be expressed as:

(4.135)

and should be added to the total kinetic energy produced by the flexure hinges.

4.4.3.2 Parallel Compliant Mechanisms

The planar parallel flexure-based compliant mechanism that was just studied
had n flexural members that were disposed in parallel, with one end fixed
and the other attached to a rigid output platform. Such a mechanism was
demonstrated to possess three DOFs, which were conveniently chosen as
the three coordinates defining the planar motion of the output plate. Simi-
larly, the spatial variant of a flexure-based compliant mechanism will have
the same composition, the only differences being the three-dimensional dis-
position of the flexure hinges and the revolute configuration of the flexures.
The total number of physical coordinates that would describe the motion of
the system is 6n, as each of the n parallel flexures was discretized as a 6-DOF
subsystem. As for the case with the planar variant of the parallel mechanism,
here, too, constraints between the physical coordinates will reduce the num-
ber of generalized coordinates. Figure 4.9 illustrates a projection onto the
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(horizontal) plane xy of the output platform of two adjacent connection points
in undisplaced and displaced conditions.

A similar projection could be imagined in the zx plane with the corre-
sponding index modifications (actually, z will replace y). The following con-
nection equations can be formulated:

(4.136)

where  and  represent the cosines of the unit vectors defining the
displaced position of the segment di, whereas the similar quantities with the
subscript C denote a segment line that passes through the center of mass of
the output platform and is parallel to the segment di. It is clear that the
displacements x, y, and z in the first three expressions of Eq. (4.136) are
produced through the elastic deformations of the respective flexure hinges;
therefore, they depend on those deformations. The main point here is not
specifically to define precise relationships between elastic deformations and
displacement, but to acknowledge the above-mentioned dependency. It is
clear now that Eq. (4.136) can iteratively be written n − 1 times, which
amounts to 6(n – 1) constraint equations between the physical coordinates
of the whole system. As a consequence, the number of generalized coordinates
that completely define the motion of the spatial parallel mechanism will be
the difference between 6n and 6(n – 1):

(4.137)

FIGURE 4.9
Projection of the output platform of a spatial parallel compliant mechanism (a) onto the xy
plane; (b) onto the xz plane.
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It would again be convenient to select the displacement components of the
center of mass of the output platform as generalized coordinates, on the
condition that all other physical coordinates can be expressed in terms of
the generalized coordinates. Based on Figure 4.9 and on the reasoning pre-
sented when analyzing the planar parallel case, the following relationships
can be formulated:

(4.138)

where the last three equations indicate that the angle of rotations of each
flexure hinge (at their tip which is attached to the output platform) is equal
to the rotation angles of the platform, in terms of the global reference frame.
Eq. (4.138) offers the transformation relationship that enables expressing the
individual physical coordinates of the flexure hinges as functions of the
displacement components of the output platform center of mass. As a con-
sequence, only six Lagrange’s equations are necessary, namely:

(4.139)

u u u s

u u u s

u u u s

ix Cx ixy Cy ixy Cxy ixy Cxy ixy ixy

iy Cx ixy Cy ixy Cxy ixy Cxy ixy ixy

iz Cx izxy Cz izx Czx izx Czx izx izx

ix

i

i

i

= + + − −

= − + − +

= − + − +

=

sin cos [( cos )sin sin cos ]

cos sin [( cos )cos sin sin ]

cos sin [( cos )cos sin sin ]

ϕ ϕ θ ϕ θ ϕ

ϕ ϕ θ ϕ θ ϕ

ϕ ϕ θ ϕ θ ϕ

θ θ

1

1

1

CxCx

iy Cz

iz Cz

θ θ

θ θ

=

=



















d
dt

T
u

T
u

U
u

d
dt

T
u

T
u

U
u

d
dt

T
u

T
u

U
u

d
dt

T T U

d
dt

T

Cx Cx Cx

Cy Cy Cy

Cz Cz Cz

Cx Cx Cx

∂
∂







− ∂

∂
+ ∂

∂
=

∂
∂









 − ∂

∂
+ ∂

∂
=

∂
∂







− ∂

∂
+ ∂

∂
=

∂
∂







− ∂

∂
+ ∂

∂
=

∂

˙

˙

˙

˙

0

0

0

0
θ θ θ

∂∂









 − ∂

∂
+ ∂

∂
=

∂
∂







− ∂

∂
+ ∂

∂
=































˙

˙

θ θ θ

θ θ θ

Cy Cy Cy

Cz Cz Cz

T U

d
dt

T T U

0

0

1367_Frame_C04  Page 250  Friday, October 18, 2002  1:55 PM



Dynamics of Flexure-Based Compliant Mechanisms 251

Lagrange’s equations, Eq. (4.139), must be used in conjunction with Eq.
(4.138), which provides the necessary connections between the individual
deformations of the flexure hinges (which input terms of potential and kinetic
energy, as detailed previously) and the six generalized coordinates. As pre-
viously mentioned, the nonlinear terms resulted by applying the partial der-
ivations required by Lagrange’s equations process will be neglected.

4.4.3.3 Hybrid Compliant Mechanisms

The spatial hybrid flexure-based compliant mechanism is a serial–parallel
combination, as such a mechanism is formed by connecting n serial chains
in parallel to an output platform at one end and fixed at the opposite end.
Each serial chain contains ni three-dimensional (revolute) flexure hinges. The
same argument that was developed when discussing planar hybrid mecha-
nisms applies in this case also; therefore, it can be shown that a spatial hybrid
mechanism in the configuration mentioned here possesses a total number
of degrees of freedom of:

(4.140)

because the 6nin physical coordinates (equal to the total number of defor-
mations collected from all flexure hinges) are subject to 6(n – 1) constraint
equations (due to the parallel side of such a mechanism), so the number of
generalized coordinates that completely define the state of the mechanism
is the difference of these two numbers:

(4.141)

Equation (4.141) highlights the fact that the generalized coordinates can be
selected from two different categories: 6n(ni – 1) DOFs represent the elastic
deformations (deflections and slopes) of the first (ni – 1) flexure hinges from
each of the n serial chains (when counting starts from the fixed flexure hinge
and continues towards the output platform), and the remaining six DOFs,
which are individualized in Eq. (4.141), are the translational and rotary
displacements of the output plate. It would definitely be a serious under-
taking and well beyond the scope of this work to explicitly formulate
Lagrange’s equations for a generic spatial hybrid flexure-based compliant
mechanism, and such an elaboration will be not approached here.

4.5 Damping Effects

4.5.1 Introduction

Damping is generally defined as energy dissipation under cyclic loading and
the resulting stress. During vibration, damping might add in factors that
seriously alter the dynamic response of a flexure-based compliant mecha-
nism through either internal or external friction effects. The dynamics of

DOF n n ni= − −6 6 1( )

DOF n ni= − +6 1 6( )
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such compliant mechanisms has been studied so far in this chapter without
including damping in the mathematical model, as this topic might not have
been of specific interest for a first-hand evaluation of such a system response
in either the static or dynamic ranges (through undamped models), but now
the damping is taken into consideration and discussed. Details regarding
specific damping aspects can be found in the specialty textbooks of Nashif
et al.,27 Lazan,28 and Rivin,29 or in the works by Goodman30 and Jones.31 Very
good incorporation of the damping phenomenon into the general treatment
of vibrations can be found in the books of Thomson18 and Inman.19

Internal (also called structural or material) damping can be a very impor-
tant issue, especially when vibrations occur in the vicinity of a resonant
frequency, and at least two major factors impede the accurate evaluation of
structural damping, as mentioned by Kareem and Gurley.32 One factor per-
tains to the nonreplicating nature of several parameters involved in damping,
such as material properties, manufacturing processes, or the experimental
environment. The other factor refers to an intrinsic conflict of scales because
material damping is incepted at a molecular level and structural dynamics
focuses on the macroscale behavior of systems. 

Other important considerations also complicate the process of theoretical
modeling of the damping phenomenon. The damping process might be
desirable when issues related to the resonant behavior of mechanisms or
structures are important, such as reducing the peak stresses or prolonging
the fatigue life of a system. Damping is, however, a hampering factor in
structures and systems where the associated heat generated through energy
dissipation impedes the functional precision of a given device. For a large
category of mechanical components constructed of metallic or nonmetallic
materials, damping is usually attributed to the phenomenon of hysteresis,
through which the loading and unloading curves do not coincide over time,
due to energy losses, as pictured in Figure 4.10.

The area enclosed by the loading–relieving curves of Figure 4.10 is propor-
tional to the energy lost through material damping during one excitation cycle.

FIGURE 4.10
Hysteresis loop for a generic nonlinear material with damping.
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It should be mentioned here that the so-called passive damping, named in
such a way to contrast with the active damping that accounts for the energy
that dissipates through external devices (such as actuators, for instance),
corresponds to losses in structural joints and supports and internal losses
and can also be produced by isolator-type devices. Of those three macro-
scopic sources, internal (material) damping amounts to no more than 10%,
as shown by Jones.31 This aspect is particularly important in flexure-based
compliant mechanisms that are built in a monolithic manner, as such devices
present virtually no losses though joints. 

Lazan28 enumerated several microscopic sources that contribute to damp-
ing, such as constituent defects, grain boundary viscosity, microthermal cur-
rents due to internal friction, or eddy currents produced through coupled
mechanical–magnetic internal interactions. Among the most important fac-
tors that generate damping in beam-type structures, Lazan28 mentioned a
macrothermoelastic phenomenon that manifests itself as a relaxation process
of alternative heat generation and conduction through the beam thickness.
This process is treated in more detail by Crandall,33 who analyzed the vibra-
tion and vibration damping of an aluminum beam suspended by two wires
at its ends. Besides the energy that is dissipated through acoustic radiation
and radiation through the supporting strings, most of the losses are due to
internal dissipation by a thermoelastic phenomenon. Lobontiu et al.21 fol-
lowed a similar approach in assessing the equivalent internal damping
present in a thin cantilever beam with piezoelectric patches attached to it.
The theoretical damping model was verified experimentally, and the results
of the two procedures were in good agreement.

One of the most commonly utilized damping models that apply to both
metallic and nonmetallic materials assumes that the process of losing energy
through internal dissipation is essentially viscous and that the force gener-
ated through this type of damping is proportional to velocity, in the form:

(4.142)

where c is a proportionality coefficient.
Similar to the manner of allocating stiffness and inertia properties to the

degrees of freedom defining the lumped-parameter dynamic model of the
three different categories of flexure hinges (single-, multiple-, and two-axis
configurations), an attempt will be made here to discretize the internal (and
then external) damping characteristics of those flexure hinges about the same
degrees of freedom to allow consistent formulation of a damped dynamic
model. The reason for proceeding this way is that formulation of the follow-
ing dynamic equations becomes possible for the one-DOF translatory motion:

(4.143)

F cvd =

m
d u
dt

c
du
dt

k u Ftr tr

2

2 + + =
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For rotary degrees of freedom, the corresponding dynamic equation for a
damped system is:

(4.144)

Figure 4.11 shows the schematic representation of a translation and rotation
mass–dashpot elements with viscous damping (also called Voigt model
damping). The lumped stiffness k and inertia m and J properties in the
equations above were already dealt with in Chapters 2 and 3, respectively.
Variable c, also called the damping coefficient or dashpot parameter, corre-
sponds to the damped motion of the respective degrees of freedom. Equa-
tions (4.143) and (4.144) give the mathematical model of a forced one-DOF
dynamic system but also depicts the free response of the same system when
F = 0 or M = 0. The damping coefficient is usually related to the critical damp-
ing coefficient cc by means of the damping ratio ζ, as shown by Thomson18

or Inman,19 according to:

(4.145)

where the critical damping coefficient is defined as:

(4.146)

so that, clearly, the critical damping coefficient can be evaluated when the
discretized inertia and stiffness of the motion about the analyzed DOF are
already determined, which is perfectly possible, as shown in Chapters 2 and
3. Another important parameter that defines damping is the loss factor η,
which represents the energy fraction lost during one vibration cycle and
relates to the damping ratio according to:

(4.147)

FIGURE 4.11
One-DOF mass–dashpot systems with viscous (Voigt model) damping: (a) translatory system;
(b) rotary system.

fixed center of rotation
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An experimental procedure of evaluating the damping ratio ζ, and therefore
the damping coefficient c, is to determine the so-called logarithmic decre-
ment that represents the logarithm of the ratio of two consecutive amplitudes,
as measured in a damped vibration (see, for example, Thomson18 or Inman19).
The logarithmic decrement, denoted by δ, is connected to the damping ratio
by means of the relation:

(4.148)

As previously mentioned, the damping ratio about a particular DOF can be
determined according to a procedure first mentioned by Crandall,33 who
made the assumption, later confirmed by experimental test results, that a
linear relaxation process that involves a transverse heat flow from the
warmer in-compression fibers to the cooler in-tension fibers of a beam is
mainly responsible for the vibration energy that is being lost through damp-
ing at room temperature. Crandall33 showed that the loss factor can therefore
be expressed in terms of thermal material properties in the form:

(4.149)

where f is the undamped resonant frequency, calculated as:

(4.150)

and fr is the so-called relaxation frequency, defined as:

(4.151)

The above formulation is applicable to the bending of beams where the upper
and lower fibers are permanently in opposed conditions, either being in
tension or compression, a situation that accounts for the thermal radiation,
resulting in internal damping, between the warmer compressed fibers and
the cooler tensioned fibers.

A quantifier that evaluates the energy lost during one oscillation cycle is
the specific damping energy, which for translation is defined as:

(4.152)

δ πς
ς

=
−

2

1 2

η α=

+







2

2

1

E
c

T
v

f

f

f

f

r

r

f
k
m

= 1
2π

f
c tr

v

= π κ
2 2

D F v dts d
w= ∫0

2π

1367_Frame_C04  Page 255  Friday, October 18, 2002  1:55 PM



256 Compliant Mechanisms: Design of Flexure Hinges

In the case of rotary degrees of freedom, Eq. (4.152) will utilize moment Md

instead of damping force Fd and angular velocity ω instead of the linear
velocity, v. Lazan28 showed that this damping energy can be expressed as:

(4.153)

where σa is the stress amplitude and J and n are material-dependent coeffi-
cients. The linear damping model specified by Lazan28 takes a value of n =
2 and considers that the shape of the hysteresis loop of Figure 4.10 is an
ellipse. Given this set of conditions, Lazan28 derived the following expression
for the loss factor of a viscous material:

(4.154)

In several occasions, the external damping can also have an important con-
tribution to the overall energy dissipation. Backer et al.34 conducted research
on the contribution of the external damping as generated by friction of a
mechanical member with the surrounding air. They concluded that the
damping force applicable to this situation is also proportional to the velocity
of that member in the form:

(4.155)

Again, Eq. (4.155) is valid, with the corresponding modifications in load and
type of deformation, for rotary degrees of freedom, as well. In the equation
above, the damping coefficient can be expressed, according to Baker et al.34

as:

(4.156)

where ρ is the density of the external friction environment (air, in the majority
of cases), A is the area of the mechanical member that is normally exposed
to friction, and Cdrag is a drag coefficient.

By analyzing both the internal and external damping it can be seen that
the damping forces produced by the two different sources add up to yield
in an overall (resultant) damping force whose damping coefficient is:

(4.157)

so that cr can be utilized in the dynamic equation of a single DOF system
instead of the internal damping coefficient c of Eq. (4.143), for instance.

D J a
n= σ

η
π

= JE

F c vd ext ext, =

c ACext drag= 1
2

ρ

c c cr ext= +
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The damping properties will be now discretized for single-, multiple-, and
two-axis flexure hinges in order to enable formulation of the following
lumped-parameter dynamic equations expressing either the free response:

(4.158)

or the forced response:

(4.159)

where [c] is a diagonal damping matrix, defined specifically for each of the
previously mentioned flexure hinge types. The criterion of deriving the
discretized damping properties is based on equalizing the energy lost
through damping by the real distributed-parameter flexure hinge during a
particular type of vibration (axial, bending, or torsional) and the equivalent
damping energy of a lumped-parameter system subject to the same type of
vibration. This derivation will closely follow the path set when determining
the equivalent lumped-parameter inertia properties for the three types of
flexure hinges, as previously shown in this chapter. Again, the axial, bending,
and torsional effects are considered as taking place independently, according
to the small-displacement theory provisions. Because the energy lost through
damping is defined in terms of the velocity field, the Rayleigh method is
again utilized in a fashion similar to that for deriving the lumped inertia
properties—by formulating damping properties for both Euler–Bernoulli
and Timoshenko beam models.

4.5.2 Damping Properties of Flexure Hinges as Long 
(Euler–Bernoulli) Members

The main assumptions of the Euler–Bernoulli beam model were mentioned
in both Chapters 2 and 3. The distributed damping properties of a vibrating
flexure hinge are transformed into equivalent lumped damping properties
corresponding to the discretized elastic and inertia properties that were
already derived and located at one end of the respective flexure hinge.

4.5.2.1 Single-Axis Flexure Hinges

As shown when treating the problem of discretizing stiffness (compliance)
and inertia properties, a single-axis flexure hinge has mainly three DOFs: two
translations (one axial and the other deflectional) and one rotation at its
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free end. The damping matrix will also need to be three dimensional, and a
simple way to define it is in a diagonal form, as:

(4.160)

where the damping coefficient  corresponds to axial vibrations,  is
generated through deflectional bending, and  is connected to rotational
bending. As previously mentioned, the Rayleigh method assumes that the
velocity distribution of a vibrating system is identical to the corresponding
displacement (deformation) field of the same system, and this principle was
mathematically expressed by Eqs. (3.4) and (3.5).

For axial vibrations, the specific energy lost in one second through damp-
ing of an elemental portion, as pictured in Figure 4.2 and based on combining
Eqs. (4.145) and (4.155), can be expressed as:

(4.161)

where the subscript a denotes the axial degrees of freedom. If the damping
properties are assumed to be constant over the entire flexure hinge, which
means that:

(4.162)

it follows that the total energy lost through damping in the axial vibration
in 1 second will be:

(4.163)

The Rayleigh hypothesis gives the velocity vx (at a given abscissa) in terms
of the velocity at the tip of the flexure v1x, according to Eq. (4.35), so that Eq.
(4.163) can be transformed into:

(4.164)

The corresponding damping energy of the equivalent system in axial vibra-
tion is:

(4.165)
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and, because the assumption has been made that the real and equivalent
lumped-parameter systems should dissipate the same amount of energy
through damping, it follows from Eqs. (4.163) and (4.165) that the equivalent
damping coefficient in axial vibration is:

(4.166)

A similar reasoning will allow expressing the equivalent lumped-parameter
damping properties generated through bending, and the corresponding
damping coefficients are:

(4.167)

and:

(4.168)

where the subscript b indicates the bending degrees of freedom. The distri-
bution function fby(x) was given in Eqs. (4.45) and (4.48), whereas the distri-
bution function (x) is expressed in Eq. (4.58).

4.5.2.2 Multiple-Axis Flexure Hinges

For multiple-axis flexure hinge configurations (with revolute geometry) that
have been discretized as six-DOF systems in terms of their stiffness (com-
pliance) and inertia properties, the corresponding lumped-parameter damp-
ing matrix will be a diagonal matrix of dimension 6 with the following
nonzero components:

(4.169)

The damping fractions , , and are formally identical to the ones that
were already determined for single-axis flexure hinges in the previous dis-
cussion. The damping parameter  of Eq. (4.169) is produced through
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torsion effects and can be derived similarly to other damping coefficients
as:

(4.170)

where the subscript t denotes the torsional degrees of freedom and the
distribution function ft(x) is given in Eq. (4.68).

4.5.2.3 Two-Axis Flexure Hinges

It was shown in Chapter 3 that the displacement vector of a two-axis flexure
hinge has the dimension five; therefore, the diagonal lumped-parameter
damping matrix will be of 5 × 5 dimension in order to enable dynamic
modeling that is consistent with the dimensions of the stiffness and inertia
matrices corresponding to this type of flexure hinge. The nonzero compo-
nents of the damping matrix are:

(4.171)

The newly introduced damping coefficients of Eq. (4.171) can be calculated
similarly to the procedure developed when analyzing the bending of single-
axis flexure hinges and the efficient (equivalent) damping coefficients in this
case are:

(4.172)

and:

(4.173)

where the distribution functions fbz and  of Eqs. (4.172) and (4.173) are
calculated according to Eqs. (4.80), (4.81), and (4.83), respectively.
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4.5.3 Damping Properties of Flexure Hinges as Short
(Timoshenko) Members

As previously discussed, the Timoshenko beam model offers a better descrip-
tion for short beams, compared to the Euler–Bernoulli beam model, because
the former takes into account shearing and rotary effects that are manifest
in short members. The corrections that have to be introduced when utilizing
the Timoshenko model will only affect the damping coefficients that are
bending connected and will leave unaffected the damping properties that
are generated through either axial or torsional vibration. As a consequence,
following the reasoning presented within this section and coupling it with
the remarks made when deriving the inertia properties, the lumped-parameter
damping coefficient for a single-axis flexure hinge that is modified by work-
ing under the Timoshenko beam model assumptions is expressed as:

(4.174)

The superscript s in the above equation denotes again the presence of shear-
ing effects in a Timoshenko model. The distribution function of Eq. (4.174)
has originally been introduced in Eq. (4.88). Simple changes in the subscript
notation will enable calculating the other lumped-parameter damping coef-
ficients that define the multiple- and two-sensitive-axis flexure hinge
designs.
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5

 

Finite-Element Formulation for Flexure 
Hinges and Flexure-Based Compliant 

 

Mechanisms

 

5.1 Introduction

 

The finite-element technique, through several commercially available soft-
ware programs, is a favorite tool for modeling and analyzing the behavior
of compliant mechanisms. A few reasons for the preference given to the
finite-element procedure in both industry and research or academia include
the speed of analysis, wide choice of analysis types (static, modal, dynamic,
thermal, and mixed/coupled-field are the basic modules currently incorpo-
rated in professional finite-element software), and direct interaction with
related CAD tools that provide the geometry of oftentimes complex shapes
or the relative (at least apparent) ease of use. Several levels of complexity
for modeling and analyzing flexure-based compliant mechanisms are pro-
vided by the finite-element software codes. The most basic approach to a
given application starts with a specified geometry that is utilized to perform
the desired analysis in order to find the state of stress and deformation or
the modal response, for instance. Because all the parameters are predeter-
mined, the insight that can be gained by running a finite-element analysis
is limited to the particular geometry that has originally been selected. Several
CAD programs are currently designed to connect interactively with a finite-
element module and enable the parametric design or drawing of a part or
subassembly. As a consequence, it is possible to quickly model and analyze
more geometry configurations by simply changing the numerical values of
the geometric parameters of interest, and the procedure this way actually
becomes an optimization tool that performs a sequential search over the
design subspace of interest. Most of the finite-element programs also have
the capability of running a real optimization module based on a start design
whose parameters are subsequently varied through algorithms that are inter-
nal to the software until the local optimum response is reached.
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Compliant Mechanisms: Design of Flexure Hinges

 

Whereas general-use finite-element software programs are involved in
solving compliant mechanism applications (especially at the microelectro-
mechanical system [MEMS] level) through their normal routines and element
libraries, approaching the flexure hinges and the flexure-based compliant
mechanisms by means of dedicated finite-element software with a minimal
library containing special elements represents a direction that will probably
receive more attention in the future. In a recent monograph, Gerardin and
Cardona

 

1

 

 treated the subject of dynamics of flexible multibody systems by
utilizing a finite-element approach whereby the total motion of such systems
is modeled in a unitary fashion by referring both the elastic deformation and
rigid body motion to an inertial frame. Their book also presents dedicated
software and a corresponding element library that includes models for both
elastic and rigid members, with provisions for handling large deformations
in dynamic applications from aircraft, vehicle, and other mechanical systems.
Although the book mentions flexible hinges, the topic of flexure hinges and
their modeling aspects are not specifically addressed. 

In their finite-element monograph, Zienkiewicz and Taylor

 

2

 

 offer a com-
prehensive set of data, at both the theoretical and application levels, of the
finite-element method for a vast array of engineering applications, with
many detailed insights into advanced topics such as material, deformation,
and contact nonlinearities or mixed problems. Probably the work that best
approaches the problem of modeling a flexure (notch) hinge through the
finite-element technique is a recent paper written by Zhang and Fasse,

 

3

 

 in
which six nondimensional stiffness parameters (in terms of three translations
and three rotations) are derived for the so-called center of stiffness (actually
the centroid) of a circular notch hinge of constant width. A similar work is the
monograph of Koster,

 

4

 

 which, among other discussed topics, analyzes a circular
flexure hinge by means of only five such nondimensional stiffness parame-
ters. More recently, Murin and Kutis

 

5

 

 have formulated a three-dimensional
beam element for which the cross-section dimensions varied continuously.
The stiffness matrix and nodal forces are formulated and their components
solved numerically. 

In another recent work, Wang and Wang

 

6

 

 have developed a finite-element
scheme for the dynamic analysis of mechanisms that include elastic joints.
Specifically, the elastic joints were modeled as linear contact springs that
connect the pin and the journal of the joint by formulating a set of constitutive
equations that couple the differential equations for the rigid links. Saxena and
Ananthasuresh

 

7

 

 approach the nonlinearities introduced by large displace-
ments in compliant mechanism members and analyze them by means of the
finite-element approach. The effect of the geometric parameters of a rectan-
gular cross-section flexible link on the frequency response planar mechanisms
is investigated by Yu and Smith,

 

8

 

 who studied several modalities of reducing
the inertia forces without changing the mass of the respective flexible link. 

An excellent account of the state of the art in the domain of finite-element
analysis of mechanisms is given by Thompson and Sung

 

9

 

 for the situation
that existed in 1985. The paper presents a list of all relevant research dedicated
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to highlighting the main phenomena, design functions, element selection,
and formulation, as well as solution procedures employed in studying planar
mechanisms by means of the finite-element approach. A summary of the
factors involved in designing and analyzing flexible linkages, especially
those operating at high speeds, is provided by Sung and Thompson,

 

10

 

 who
present various aspects of material selection. Specifically, the authors per-
formed a parametric study based on finite-element modeling by analyzing
the dynamic response of four-bar linkages constructed on high-strength,
fiber-reinforced composites. Hac and Osinski

 

11

 

 developed a finite-element
model that is capable of capturing the rigid-body motion of flexible mem-
bers. A special shape function is integrated within the stiffness and mass
matrices of a bar element to account for rigid-body displacements. The
results of this procedure are validated by comparison to classical analyses
of rigid bodies, based on discussion of several applications. In a continuation
of this approach, Hac

 

12

 

 developed a finite-element model for flexible planar
linkages by deriving the elemental properties of truss-type elements that
combine axial elastic deformation and rigid-body displacement capabilities
to model large mechanism displacement. 

The finite-element dynamic response of flexible-link mechanisms was for-
mulated by Sriram and Mruthyunjaya,

 

13

 

 who proposed a modeling and
solution scheme whereby the elastic deformations and rigid body motions
are integrally captured by utilizing planar beam elements in a co-rotational
formulation and an incremental iterative solution procedure based on the
Newmark integration scheme and the Newton–Raphson method. Al-Bedoor
and Khulief

 

14

 

 formulated the finite-element model of a translating and rotat-
ing flexible link by also introducing a transition element with variable stiff-
ness to model the time-dependent boundary conditions at the prismatic joint.
Liew et al.

 

15

 

 analyzed elastic structures as flexible multibody systems by
following a mixed-interface substructuring technique, capable of modeling
both the free and fixed interfaces between adjoining flexible/rigid bodies
and to reduce the number of elastic coordinates of the entire system. 

Transforming the elemental properties from local to global coordinates is
a necessary but costly step in the finite-element analysis. To circumvent this
drawback, Fallahi

 

16

 

 developed a finite-element approach based on implicitly
eliminating the dependent generalized coordinates in Lagrange’s equations
for flexible Bernoulli beam elements. The frequency response is fundamental
in assessing the dynamic behavior of flexible-link mechanisms. Closed flex-
ible mechanisms and their frequency response were analyzed by Xianmin
et al.

 

17

 

 by means of a finite-element procedure centered on substructuring
the entire system, developing a modal basis, and producing the required
coupling equations for planar and spatial multibar structures. The resonant
response of flexible linkages was studied by Wang,

 

18

 

 who proposed a finite-
element technique designed to model geometric nonlinearities produced by
large deformations of links and thus to detect multifrequency resonances
such as superharmonic and combination resonances that are shown to be
intimately related to the critical speeds of the mechanism. 
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The classical approach of superimposing rigid-body motion (possibly non-
linear) on small elastic deformations was followed by Chen,

 

19

 

 who analyzed
the finite-element dynamic response of multilink flexible manipulators
through a Lagrange procedure whereby the rigid-body and elastic deforma-
tion components are decoupled by linearization of the motion equations
around the so-called rigid-body reference trajectory. Wang and Wang

 

6

 

 intro-
duced the finite-element model of elastic joints to describe the link intercon-
nection in elastic mechanisms. They formulated the governing equations of
motion of individual links in local coordinates and then coupled these equa-
tions with those corresponding to the elastic joints in order to characterize
the steady-state solutions of vibrating elastic mechanisms. Besseling and
Gong

 

20

 

 presented a finite-element method for simulating the kinematic or
dynamic response of spatial elastic mechanisms by relating the nodal coor-
dinates to element deformation and relative motion through a technique
based on the principle of virtual power. Fallahi

 

21

 

 has proposed a finite-
element formulation of Timoshenko beam elements that incorporates the
nonlinear effect of geometric stiffening by introducing a tensor to replace
the customary elemental matrices, thus generalizing the finite-element
approach. 

Li

 

22

 

 has provided the formulation of a two-dimensional beam element that
is capable of overpowering restrictions generally posed through the regular
assumptions of the linear finite-element theory such as: small displacements,
small strains, and small loading steps. A large list of the finite-element
approaches to flexible mechanisms is given by Gao.

 

23

 

 Included are research
results treating modal analysis of flexible mechanisms, including those of
Imam et al.,

 

24

 

 Midha et al.,

 

25,26

 

 and Turcic and Midha,

 

27

 

 who developed
various finite-element modal schemes. The dynamic response of flexible
mechanisms, either steady state or transient, has been studied through finite-
element techniques by Gear,

 

28

 

 Chu and Pan,

 

29

 

 Song and Haug,

 

30

 

 and Gao et al.,

 

31

 

among others. Sekulovic and Salatic

 

32

 

 have analyzed the plane frames with
flexible connections and proposed the stiffness matrix for a beam element
with flexible eccentric connections by means of a derivation that utilized the
analytical solution of second-order equations.

This chapter approaches the flexure hinges and the flexure-based compli-
ant mechanisms from the viewpoint of the finite-element method (in the
stiffness approach) by developing a formulation whereby the flexure hinges
are modeled as three-node line elements. It is thus possible to reduce by one
the dimensionality of a compliant mechanism problem that is usually solved
through existing finite-element software, as it is known that classical model-
ing through commercially available finite-element software of a single-axis
flexure hinge, for instance, requires at least two-dimensional elements
because of the geometry variation. Elemental stiffness and mass matrices are
formulated in generic (integral) form for single-, multiple-, and two-axis
flexure hinges by considering them to be long Euler–Bernoulli members
subject to small deformations. Two-node elements are also formulated to
model the rigid links for both planar and spatial quasi-rigid links by providing
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them with a number of nodal degrees of freedom equal to the number of
degrees of freedom of the flexure hinge to which they are connected in a
practical application. Explicit formulas are given for the elemental stiffness
and mass matrices of single-axis, corner-filleted flexure hinges. These for-
mulas are checked against the corresponding formulas for constant cross-
section flexure hinges by considering that the fillet radius reaches the zero
limit value. An example is solved by means of the formulation developed
in this chapter, by performing both static and modal analysis, and the results
are in agreement with those obtained when solving the same problem by a
commercially available finite-element code.

The elements presented within this chapter are basic and therefore mini-
mal, as they do not include more advanced topics such as material or large-
deformation nonlinearities, shearing, and rotary inertia or stress stiffening
effects. The aim here is to give a brief introduction to analyzing the flexure
hinges by means of the classical finite-element method and to outline the
algorithmic fundamentals that allow formulation of the elemental matrices
for other flexure hinge configurations not covered here. The interested reader
could attempt to directly employ the explicit formulas that are given in this
chapter for single-axis flexure hinges of corner-filleted profile and implement
them in finite-element software that permits external addition of elemental
matrices in order to further test the formulations.

 

5.2 Generic Formulation

 

The finite-element modeling analysis is a tool utilized to determine an
approximate solution to a continuum-type field differential problem. In
structural statics, for instance, the finite-element technique goes over the
following generic steps in a regular stiffness formulation:

• Discretization of the continuum problem into a finite-element
mesh—The real geometry of the continuum is divided through
surfaces or lines into several conveniently shaped subregions,
called finite elements, which are connected at nodes (their adjoin-
ing points); this step constitutes the first approximation introduced
by the finite-element procedure.

• Formulation of a displacement model—It is assumed that the dis-
tribution of the unknown quantity (which is also the main depen-
dent variable) is relatively simple inside each finite element and is
determined by interpolating the nodal values of that unknown
(also called coordinates or generalized coordinates) through some
shape or distribution function (usually of polynomial form); this
step constitutes the second approximation introduced by the finite-
element method.
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• Transformation of the original continuous problem into a discrete
one (possessing a finite number of degrees of freedom) by utilizing
the two approximations mentioned previously and by applying a
principle or statement that is adequate for the studied problem (for
instance, the minimization of the total potential energy in static
situations).

• Solution of the resulting algebraic equations (which may be derived
directly or as a result of additional conditioning, such as lineariza-
tion or condensation) for the nodal unknowns and further calcu-
lation of other quantities related to the already-determined
principal unknowns that are either nodal or reside inside the finite
elements.

All the steps mentioned above also permit solving modal and frequency-
response problems in structural dynamics, where time does not explicitly
enter the mathematical formulation. These problems are inscribed into the
space-domain discretization class, as illustrated in Figure 5.1.

Another distinct class of problems must account for time dependency;
therefore, an additional division, time discretization, which is independent
of the previous space discretization, has to be used. Problems of steady-state
and transient response are usually treated by solution techniques that com-
bine space and time discretization algorithms, as indicated in Figure 5.1.
Details will be given in the following discussion of the space and time
semidiscretization processes involved in a dynamic finite-element analysis
of structures.

Technically, the space-discretization process, which is common to all types
of finite-element analyses, is composed of two main subphases:

• Formulation of the elemental matrix equation and its correspond-
ing matrix and vectors

 

FIGURE 5.1

 

Main problems and features in the finite-element analysis of flexure-based compliant mechanisms.
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• Formulation of the global matrix equation that encompasses all
elements of the discretized structure, by means of the assembling
process

These steps that are necessary in formulating the elemental matrices and in
assembling the global finite-element equations will be discussed next.

 

5.2.1 Elemental Matrix Equation

 

Approaches to determine the elemental matrix equation of a structural
dynamics problem include Lagrange’s equations, Hamilton’s principle, the
kinetostatic method, and virtual work. The elemental equation is of the
form:

(5.1)

where the superscript 

 

e

 

 denotes an element and  is the element nodal
displacement vector.

Details of the derivation of this equation can be found in specialized finite-
element work, such as that of Zienkiewicz and Taylor.

 

2

 

 As mentioned pre-
viously, the first approximation in a finite-element problem is involved with
space discretization and assumes a given distribution of the problem’s
unknown (displacement in this case) inside the element in terms of the nodal
unknown (nodal displacement here) by means of shape functions, in the
form:

(5.2)

In Eq. (5.1), {

 

r

 

e

 

} is the elemental nodal reaction vector, and:

• [

 

M

 

e

 

] is the mass matrix, defined as:

(5.3)

where [

 

ρ

 

] is the density matrix.
• [

 

C

 

e

 

] is the damping matrix, defined as:

(5.4)
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dt
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where [

 

µ

 

] is the viscosity matrix.
• [

 

K

 

e

 

] is the stiffness matrix, defined as:

(5.5)

where [

 

D

 

] is the elastic matrix. 

The accepted definition of the strain vector, according to any classical
finite-element textbook, assumes a linear relationship between the strain and
nodal displacement vectors:

(5.6)

and a similar linear relationship can be cast between the same strain vector
and the overall elemental displacement vector:

(5.7)

where [

 

S

 

] is a differential operator that will be explicitly formulated at the
element level based on the theory of elasticity considerations. 

Combining Eqs. (5.6) and (5.7) results in the following expression for the
matrix [

 

B

 

]:

(5.8)

• {

 

f

 

 e

 

} is a forcing vector generically defined as:

(5.9)

The first term in the right-hand side of Eq. (5.9) represents the initial strain
force vector, the second term is the initial stress force vector, the next term
takes into consideration volume or body forces, and the last term is a force
vector generated by surface effects. More details on elemental matrices will
be given when deriving the required terms for different types of elements.

 

5.2.2 Global Matrix Equation (Assembly Process)

 

As evident in all the elemental equations presented, no external loading has
been introduced so far. However, external loading is likely to act on a struc-
ture, and the finite-element procedure usually introduces an external force

    
[ ] [ ] [ ][ ]K B D B dVe T

Ve
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  { } [ ]{ }ε e
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or moment vector at a generic node 

 

i

 

 (of the 

 

n

 

-node finite-element mesh), in
the form:

(5.10)

The sum in the right-hand side of Eq. (5.10) represents all nodal reactions that
are adjacent to the generic node 

 

i

 

 (it is assumed that 

 

m

 

 such adjacent nodes
do exist). By combining Eq. (5.10) with Eq. (5.1) (written for all the elements
of the structure) and after performing simple calculations, the following
equation is produced:

(5.11)

In the equation above, several global matrices and vectors were introduced
as explained next:

• [

 

M

 

] is the 

 

n

 

 

 

×

 

 

 

n

 

 mass matrix with its generic 

 

ij

 

 term defined as:

(5.12)

• [

 

C

 

] is the

 

 n 

 

×

 

 n 

 

damping matrix with its generic 

 

ij

 

 term defined as:

(5.13)

• [

 

K

 

] is the

 

 n 

 

×

 

 n 

 

stiffness matrix with its generic 

 

ij

 

 term defined as:

(5.14)

• {

 

 f

 

 } is the 

 

n

 

-dimension internal force vector with its generic 

 

i

 

 term
defined as:

(5.15)

The displacement vector {

 

u

 

n

 

} comprises the displacements (degrees of free-
dom) of all the

 

 n 

 

nodes of the discretized structure. Following are a few
general remarks regarding the global matrices of Eq. (5.11):
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• The mass matrix [

 

M

 

] is:
• Symmetric and positive definite.
• Known under the name of consistent mass matrix when calcu-

lated by means of Eq. (5.12). Another variant of formulating the
mass matrix lumps the total mass of one element at nodes ac-
cording to a predefined criterion, which leads to a diagonal
lumped matrix. In the case of a two-node line element, for
instance, the mass can be divided into two parts, each placed
at one node; for a three-node plane triangular element, the total
mass can be partitioned into three equal nodal submasses, and
so forth. Utilizing a lumped mass matrix instead of a consistent
one greatly simplifies any further calculations.

• The stiffness matrix [

 

K

 

] is:
• Symmetric and positive definite.
• A band matrix, because the finite-element method connects one

element with only its neighboring elements (thus the method is
a “piecewise” one); therefore, its nonzero elements are located
in a region that includes the main diagonal. All efforts directed
at simplifying the implementation of and further calculations
based on the stiffness matrix attempt to minimize the width of
the semi-band (because the stiffness matrix is symmetric), and
this is generally achieved by minimizing the numeric difference
between neighboring nodes and by an adequate rearranging/
renumbering algorithm.

• The damping matrix [

 

C

 

] is:
• Generally cumbersome based on the definition Eq. (5.13).
• Introduced often-times as a Rayleigh-type linear combination

between the mass and stiffness matrices, in the form:

(5.16)

Full-form Eq. (5.11) is utilized to evaluate the forced transient response of a
dynamic system in cases where the initial conditions must be taken into
account or when the forcing terms are not periodic. In such situations, various
time-stepping integration schemes have to be applied to solve the said equation
in the time domain. Essentially, the time is fractioned into

 

 n 

 

subintervals, and
two successive time stations, 

 

k

 

 and 

 

k

 

 + 1, are connected by means of a time
step 

 

∆

 

t

 

k

 

 (which can vary to allow for increased solving accuracy) as:

(5.17)

An integration method is iteratively applied for each time step that connects
two successive time stations, coupled with the initial conditions of the analyzed
problem, in order to solve for the unknown nodal displacements of Eq. (5.11).

  [ ] [ ] [ ]C M K= +α β

  t t tk k k+ = +1 ∆
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Such an application makes use of both the space and time semidiscretizations,
and more details will be provided when dealing with this issue at a later stage.

For long-transient dynamic problems, simpler time integration schemes
are developed to solve for the forced response, as also mentioned in Chapter
4. The modal decomposition technique is most often used due to its relative
simplicity and to the fact that the modal response is sought. An alternative
procedure for economically solving long-transient problems is to utilize a
Ritz vector instead of the modal vector.

The modal response that was just mentioned seeks to solve for either the
undamped free response expressed by the equation:

(5.18)

or the free damped response given by the equation:

(5.19)

Problems that are described by either Eq. (5.18) or (5.19) are solved without
it being necessary to use time-stepping schemes, usually by applying the
substitution:

(5.20)

Through this substitution, Eq. (5.19), for instance, will transform into:

(5.21)

which is a typical eigenvalue formulation corresponding to a damped free
dynamic response situation. When the free response is undamped, the eigen-
value formulation will be:

(5.22)

For both Eqs. (5.21) and (5.22), {

 

Φ

 

n

 

} is the eigenvector and 

 

ω

 

 is the natural
frequency of the system. The solution to a free-response dynamic application
involves evaluation of the eigenvalues defined as:

(5.23)

through specific techniques, followed by solution to determine the eigenvectors.
A static finite-element problem is governed by the equation:

(5.24)

whose solution is:

(5.25)
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5.3 Elemental Matrices for Flexure Hinges

 

Instead of treating the flexure hinge with its full two- or three-dimensional
geometric details (by using two- or three-dimensional finite elements), as
the commercially available finite-element software would do, the approach
presented here reduces the problem dimensionality by defining the flexure
hinge as a three-node line element. Elemental stiffness and mass matrices
are presented for single-, multiple-, and two-axis flexure types in a generic
(integral) form that enables specific solutions to be found for different flexure
hinge geometries. Explicit formulas are given for the elemental stiffness and
mass matrices of single-axis, corner-filleted flexure hinges. Special elements
will also be formulated to model the rigid links that are connected by flexure
hinges in both two- and three-dimensional applications, as detailed next, in
order to enable studying the finite-element static, modal, and dynamic
responses of flexure-based compliant mechanisms.

Figure 5.2 shows the basic function of modeling a flexure hinge as a three-
node finite element as compared to the classical approach of a commercially
available finite-element code of meshing the geometric region of an actual
flexure hinge with many two- or three-dimensional finite elements. The choice
of having an extra node at the midpoint of a flexure hinge element, in addition
to the two end nodes, enhances the capacity of these elements to better
describe the behavior of a real flexure where, as seen in Chapter 2, the mid-
point (or center of rotation of the flexure hinge) is extremely important in
terms of quantifying the precision of motion and sensitivity to parasitic effects.

The elemental matrices will be formulated next for single-axis flexure hinges
(for two-dimensional applications, as defined in Chapter 2), multiple-axis

 

FIGURE 5.2

 

Flexure hinge as a single, three-node, finite element replacing the multiple-element classical
meshing produced through commercial finite-element software.
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flexure hinges (revolute), and two-axis flexure hinges (for three-dimensional
applications, according to the same definition of Chapter 2).

 

5.3.1 Single-Axis Flexure Hinge Finite Element for 
Two-Dimensional Applications

 

The elemental stiffness and mass matrices will be formulated first for single-
axis flexure hinges that are geometrically constant-width members.
Figure 5.3 illustrates a three-node line element with three degrees of freedom
(DOFs) per node that can serve as a model for any single-axis flexure hinge.
The elemental stiffness matrix is calculated according to Eq. (5.5), as dis-
cussed in the general presentation of this chapter. For a three-DOF-per-node
element, the elastic matrix introduced in Eq. (5.5) is defined as:

(5.26)

where the variable cross-section area 

 

A

 

(

 

x

 

) and moment of inertia about the

 

z

 

-axis 

 

I

 

z

 

(

 

x

 

) are:

(5.27)

The strain-displacement of a finite element that is sensitive to axial loading
and bending can be put in the following differential form:

(5.28)

 

FIGURE 5.3

 

Three-node, three-DOF-per-node beam element modeling a single-axis flexure hinge.
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where the subscripts 

 

a

 

 and 

 

b

 

 stand for axial and bending, respectively. It follows
that the [

 

S

 

] matrix defined in Eq. (5.7) and relating strain to deformation is:

(5.29)

As shown earlier in this chapter, the internal displacements of a finite element
are related to the nodal displacements of the same element by means of shape
functions, and in the case of the element shown in Figure 5.3 this relationship is:

(5.30)

In order to ensure that the three-node finite element is conformal, which
means that it provides continuity of axial displacements as well as continuity
of deflection and slope for bending effects, a second-degree polynomial meets
this requirements for the intra-elemental axial displacements, and a fifth-
degree polynomial fits the respective bending conditions, as defined below:

(5.31)

An explanation for the minimum degrees of the polynomials introduced by
Eq. (5.30) is quite simple. Because the flexure hinge finite element has three
nodes, one would have to be able to express three different boundary con-
ditions for the axial displacement at each of the nodes (and this will be done
in the following); as a consequence, a polynomial with a minimum of three
coefficients (therefore of second degree, according to the first expression in
Eq. (5.30)) is necessary. Similarly, six boundary conditions must be enforce-
able at each of the three element nodes in terms of bending effects (one for
deflection and the other for the slope), so at least six coefficients in a fifth-
degree polynomial would satisfy this condition, as shown in the second
expression of Eq. (5.31). At the same time, it is well known from the study
of the basic strength of materials that the slope of a beam-like member is the
derivative of the deflection in terms of the local coordinate 

 

x

 

, and the second
expression in Eq. (5.31), which gives the deflection, will also give the slope as:

(5.32)

For a three-node line element, as the one discussed here, the nodal displace-
ment vector is:

(5.33)
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whereas the shape function matrix is:

(5.34)

By using the following boundary conditions for axial deformation, deflec-
tion, and slope at the three nodes of the finite element:

(5.35)

the shape functions of Eq. (5.30) can be determined by utilizing Eqs. (5.31)
in the form:

(5.36)
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5.3.1.1 Stiffness Matrix

The nonzero stiffness terms in the symmetric 9 × 9 stiffness matrix are given
next. The terms that are connected to axial deformation are located on lines
1, 4, and 7, according to the manner of allocating the degrees of freedom of
the three nodes of the line element shown in Figure 5.3, and their generic
equations are given as:
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(5.41)

(5.42)

The direct-bending stiffness terms (connecting either force to deflection or
moment to slope) are:
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(5.47)

(5.48)

(5.49)
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The cross-bending stiffness terms (that connect either force to slope or
moment to deflection) are:
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(5.58)

(5.59)

(5.60)

(5.61)

(5.62)

(5.63)

In the equations above, the geometry of the cross-section of the flexure is
defined by means of the constant width w and variable thickness t(x) as
given in Eq. (5.27).

5.3.1.2 Mass Matrix

The elemental mass matrix was generically introduced in Eq. (5.3). For a
homogeneous and isotropic material, the density is constant, and the stiffness
matrix defining the mass matrix that is symmetric simplifies. The nonzero
components of the diagonal mass matrix that are attributed to axial effects are:
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(5.67)

(5.68)

(5.69)

The similar components of the elemental mass matrix that are produced
through direct bending are:
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(5.80)

(5.81)

The cross-bending mass terms can be determined by means of the following
equations:
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At the end of this chapter, in the appendix, the elemental stiffness and mass
matrices are explicitly given for a three-node, three-DOF-per-node finite
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element corresponding to a single-axis, corner-filleted flexure hinge, as well
as for a similar constant cross-section element.

5.3.2 Multiple-Axis Flexure Hinge Finite Element 
for Three-Dimensional Applications

Revolute multiple-axis finite elements are given a generic formulation, sim-
ilar to the development described for single-axis flexure hinges. Figure 5.4
illustrates a three-node, six-DOF-per-node finite element that models a
generic revolute flexure hinge.

5.3.2.1 Stiffness Matrix

The elemental stiffness matrix is formulated first for a three-dimensional
finite element that also possesses torsion capability, in addition to being
sensitive to axial and bending effects. The bending, as shown in Figure 5.4,
is now double, as independent actions can be handled in bending about
either the y or z principal axes of the finite element. The only new aspect is
therefore the torsion and the shape function associated with it. Torsion is
formally similar to axial loading, which allows introducing the correspond-
ing shape function as a second-degree polynomial, because three nodal
boundary conditions must be complied with. However, the newly intro-
duced shape functions are expressed in terms of the nodal coordinates as:

(5.91)

FIGURE 5.4
Three-node, six-DOF-per-node beam element modeling a multiple-axis flexure hinge.
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The shape function matrix [N] in this case is a 4 × 18 matrix with nontrivial
terms:

(5.92)

Obviously, the shape functions of this equation are the ones already intro-
duced when dealing with the generic formulation of single-axis flexure hinge
finite elements. The generalized strain–deformation relationship for a multiple-
axis flexure hinge finite element is of the form:

(5.93)

which, according to the definition of Eq. (5.7), suggests that the [S] matrix is:

(5.94)
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The generalized stress–strain relationship for an element that captures axial,
double bending, and torsion can be written as:

(5.95)

This generic formulation suggests that the elasticity matrix introduced in Eq.
(5.5) is:

(5.96)

In the equations above, the geometry of the cross-section of the flexure is
defined by means of the area, A(x); the moment of inertia about either the
y or z axis, I(x); and the polar moment of inertia, Ip(x) as:

(5.97)

All the elements that are necessary to calculate the components of the ele-
mental symmetric stiffness matrix, according to Eq. (5.5), are now available.
The stiffness components that are related to axial effects can be calculated as:
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(5.101)

(5.102)

(5.103)

The direct-bending stiffness terms are given by the following equations:
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(5.111)

(5.112)

(5.113)

(5.114)

(5.115)

The cross-bending stiffness terms can be calculated for a given longitudinal
profile of a revolute flexure hinge by means of the equations:

(5.116)
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(5.118)

(5.119)

(5.120)
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(5.121)

(5.122)

(5.123)

(5.124)

The stiffness terms that are torsion related can be calculated as:

(5.125)

(5.126)

(5.127)

(5.128)

(5.129)

(5.130)

5.3.2.2 Mass Matrix

The elemental matrix of Eq. (5.3) can be rewritten in the following form:

(5.131)
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where it has been taken into account that the flexure hinge is constructed of
homogeneous material, thus the density matrix of generic Eq. (5.3) reduces
to the constant factor ρ. By carrying on the matrix multiplication of the pre-
vious equation, the components of the symmetric elemental mass matrix of
a generic revolute flexure hinge whose variable diameter is t(x) can be found.
The nonzero mass terms that are related to axial and torsional effects are:

(5.132)

(5.133)

(5.134)

(5.135)

(5.136)

(5.137)

The components of the elemental mass matrix that are associated with direct-
bending effects are:
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(5.142)

(5.143)
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(5.145)
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(5.148)

The components of the elemental mass matrix that are produced by cross-
bending effects are:
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(5.154)

(5.155)

(5.156)

(5.157)

5.3.3 Two-Axis Flexure Hinge Finite Element 
for Three-Dimensional Applications

Developed here are the stiffness and mass matrices of a generic two-axis
finite element for three-dimensional applications. Such a flexure hinge con-
figuration was introduced in Chapter 2, where the full set of compliances
was formulated based the parameters defining the geometry of this flexure
configuration. Figure 5.5 illustrates a generic three-node, five-DOF-per-node
generic finite element that represents a two-axis flexure hinge. As mentioned
in Chapter 2, this flexure type is expected to be capable of responding to
bending about two perpendicular axes and axial loading, but not to torsion,
and this is the reason for the finite element being described by five DOFs
per node.

FIGURE 5.5
Three-node, five-DOF-per-node beam element modeling a two-axis flexure hinge.
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5.3.3.1 Stiffness Matrix

Considerations similar to the ones discussed for a multiple-axis flexure hinge
finite element allow us to formulate the shape functions and corresponding
3 × 15 shape function matrix with the following nonzero components:

(5.158)

The [S] matrix is similar to that of a multiple-axis flexure hinge finite element
and is derived following similar reasoning in the form:

(5.159)

The elasticity matrix [D] is similarly formulated as:

(5.160)

where the variable cross-section area A(x) and moments of inertia Iy(x) and
Iz(x) are:

 (5.161)
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Having defined the matrices [N], [S], and [D], the elemental symmetric stiff-
ness matrix can be calculated by utilizing generic Eq. (5.5). The axial stiffness
components are:

 (5.162)

 (5.163)
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 (5.166)

 (5.167)

The stiffness terms that express the direct bending are:
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(5.173)
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The cross-bending stiffness terms are:
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(5.184)

(5.185)

(5.186)

(5.187)

(5.188)

5.3.3.2 Mass Matrix

The nonzero components of the symmetric mass matrix are derived similarly
to the ones corresponding to a revolute flexure finite element. The axial-
related components are:
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The mass components that are related to direct bending are:

(5.195)

(5.196)

(5.197)

(5.198)

(5.199)

(5.200)

(5.201)

(5.202)

(5.203)

(5.204)

(5.205)

(5.206)

The cross-bending mass components are:

(5.207)
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(5.208)

(5.209)

(5.210)

(5.211)

(5.212)

(5.213)

(5.214)

5.4 Elemental Matrices for Rigid Links

5.4.1 Two-Dimensional Rigid Link Modeled 
as a Two-Node Line Element

In a compliant mechanism, the flexure hinges connect several links that are
quasi-rigid and carry out the effective motion the mechanism was designed
to produce. Although it would be attractive to treat these quasi-rigid links
as completely rigid, as was the case in Chapter 3, the fact that they are
compliant to some degree is advantageous for their modeling by means of
the finite-element technique, which qualifies the stiffness of a finite element
by means of its stiffness matrix [Ke]. Each component of [Ke] is basically of
the form:

(5.215)

when only axial and bending effects are considered. 
Therefore, to achieve an infinite stiffness component, it is necessary that

either the Young’s modulus (or the transverse modulus, for shearing and
torsion) or some dimensions of the physical component go to infinity, which
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is practically impossible. In principle, there might be three different
approaches of realistically modeling such a quasi-rigid link through finite
elements.

If the assumption is made that the element is technically rigid (and there-
fore the compliance of a mechanism resides entirely in its flexible joints—the
flexure hinges), one can select as simple an element as possible—for instance,
a line element with only two nodes. It is then possible to artificially increase
the material elastic moduli such that the corresponding stiffness is consid-
erably large and the finite element practically acts as a quasi-rigid member.

The shape functions of a finite element can be designed or selected con-
veniently such that they incorporate the rigid-body motion capability in a
direct manner, as mentioned by Hac and Osinski11 or Hac.12

A third variant would enable utilizing a finite element that sensibly cap-
tures the real deformations of a quasi-rigid link by defining elements that
better model the real geometry and loading of that specific link as needed.
If the compliant mechanism is planar, a plate element with in-plane defor-
mation capabilities (Kirchhoff plate element, as indicated in Zienkiewicz and
Taylor,2 for instance) would be an appropriate selection. In the case of three-
dimensional compliant mechanisms, a plate element with in- and out-of-
plane deformation capabilities (a Reissner–Mindlin plate element, as also
mentioned by Zienkiewicz and Taylor2) would have the necessary features.
Such elements come, of course, with a higher number of nodes, and the
dimensionality and complexity of the problem would increase unnecessarily.
However, in mechanisms where ignoring the compliance of members that
are customarily considered rigid might affect the overall precision or other
key output parameters, this avenue might be the correct one to chose.

Our discussion here, however, will take the simpler route as indicated
in the first approach outlined previously, whereby a two-node line element
is considered for modeling a quasi-rigid member, a choice that covers the
vast majority of flexure-based compliant mechanisms. In a serial mecha-
nism (or in the serial leg of a hybrid one), such an element matches the
geometry pattern by connecting with adjacent members at its terminal
nodes, but the element is also amenable to parallel applications. A situation
of a quasi-rigid link that connects to three adjacent flexure hinges is pictured
in Figure 5.6a.

As shown in Figure 5.6b, it is possible to divide the real quasi-rigid member
into two line elements by following the directions between the end nodes
of the flexure elements. Figure 5.6 illustrates a planar situation, but the
discussion is also valid for the three-dimensional case. It is, however, neces-
sary for each of these two nodes of the quasi-rigid element to possess the
same degrees of freedom as the flexure hinge finite element it connects to,
in order to ensure inter-element compatibility. Because a single-axis flexure
hinge finite element was already defined with three DOFs per node, a similar
assumption is introduced for the two-node line element illustrated in
Figure 5.7.
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In order to keep the development simple, the assumption is also made
that the cross-section of this element is constant; therefore, the cross-sectional
area A and moment of inertia Iz are also constant. The stiffness and mass
matrices are formulated next.

5.4.1.1 Stiffness Matrix

The derivation is similar to the several derivations that have already been
presented within this chapter; such an element is quite standard and can be
found in any finite-element textbook. The shape functions for the axial defor-
mation are first-degrees polynomials, while the shape functions for the bend-
ing deflections must be third-degree polynomials in order to allow expressing

FIGURE 5.6
Rigid link connected to several flexure hinges in a two-dimensional compliant mechanism:
(a) geometry of connection; (b) finite-element model.

FIGURE 5.7
Two-node, three-DOF-per-node element modeling a quasi-rigid link for planar compliant mech-
anism applications.
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the necessary boundary conditions at the two end nodes of the element. The
shape functions are:

(5.216)

The 2 × 6 shape function matrix [N] is:

(5.217)

The [S] matrix, in this case, is a 2 × 2 matrix defined as:

(5.218)

while the elasticity matrix [D] can similarly be formulated as:

(5.219)

where A and Iz denote the cross-sectional area and moment of inertia that
are considered constant.

By following the standard definitions, the elemental stiffness matrix can
be found. The axial-connected terms of the stiffness matrix are:

(5.220)
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(5.221)

(5.222)

The stiffness components that are connected to direct-bending effects are:

(5.223)
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(5.228)

The stiffness components that are related to cross-bending effects are:
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(5.231)

(5.232)

5.4.1.2 Mass Matrix

The mass matrix components that are produced through axial effects are:

(5.233)

(5.234)

(5.235)

The mass terms that are connected to direct-bending effects are:
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The cross-bending mass terms are:

(5.242)

(5.243)

(5.244)

(5.245)

5.4.2 Three-Dimensional Rigid Link Modeled 
as a Two-Node Line Element

The stiffness and mass matrices are now formulated for a similar two-
node line element as a model for quasi-rigid links that are part of com-
pliant mechanisms in three-dimensional applications. Figure 5.8 illustrates
the element and its six DOFs per node. Because the flexure hinge finite
elements that have been developed so far have had six DOFs, the same
feature is transferred to this element in order to provide for inter-element
compatibility.

FIGURE 5.8
Two-node, six-DOF-per-node element modeling a quasi-rigid link for spatial compliant mech-
anism applications.
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5.4.2.1 Stiffness Matrix

The shape function matrix [N] is a 4 × 12 matrix with the nonzero components:

(5.246)

where the shape functions in Eq. (5.246) are identical to the ones already
introduced for the two-dimensional quasi-rigid finite element. The [S] matrix
is the 4 × 4 one defined in Eq. (5.94) for a multiple-axis flexure hinge finite
element. The elasticity matrix is also 4 × 4 and, similar to the corresponding
three-dimensional revolute flexure hinge element, is defined as:

(5.247)

As indicated in Eq. (5.247), it is assumed again that the rectangular cross-
section of the quasi-rigid finite element is constant and therefore also con-
stant are its cross-sectional area A, moments of inertia Iy and Iz, and the
conventional moment of inertia in torsion, It.

The elemental stiffness components that are related to axial effects are:
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The stiffness terms that are produced through direct-bending effects can be
calculated as:
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(5.261)

(5.262)

The stiffness components that are related to cross-bending effects are:
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The elemental stiffness components that are torsion generated can be calcu-
lated by means of the following equations:

(5.271)

(5.272)

(5.273)

5.4.2.2 Mass Matrix

The axial- and torsional-related mass matrix components are:

(5.274)

(5.275)

(5.276)

The mass components that are related to direct-bending effects are:

(5.277)

(5.278)

(5.279)

(5.280)
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(5.281)

(5.282)

The cross-bending mass terms are:

(5.283)

(5.284)

(5.285)

5.5 Application Example

In order to further test the finite-element formulation that has been devel-
oped within this chapter, a simple example was analyzed in the form of a
two-link planar serial compliant mechanism, as pictured in Figure 5.9. The
flexible link is a single-axis flexure hinge that is connected to a massive quasi-
rigid link with the flexure hinge being fixed at its end, as shown in
Figure 5.9a. According to the procedure developed here, each link can be
represented as a three-DOF-per-node line element; that is, the flexure hinge
is defined as a three-node element, whereas the quasi-rigid link is repre-
sented by a two-node quasi-rigid element, as shown in Figure 5.9b. The
mechanism is considered to be constructed monolithically from steel with a
Young’s modulus of E = 200 GPa and a Poisson’s ratio of 0.3. The width of
the mechanism is constant and equal to 0.004 m. The other geometric param-
eters are, according to the variables provided in Figure 5.9a, l1 = 0.006 m, t1 =
0.001 m, and r = 0.0005 m (all these parameters define the longitudinal profile
of the flexure hinge); also, l2 = t2 = 0.015 m (for the end bloc).

Solution
Finite-element simulations have studied the static response of mechanisms
under various externally applied loads and the modal response, as well. The
results obtained by applying the simple derivation presented in this chapter
were checked by running the corresponding simulations on an identical
physical model aided by the ANSYS finite-element software.
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The first set of tests, as mentioned, was static and consisted of applying
different loads and determining the produced displacements at points of
interest. Utilizing the ANSYS finite-element code makes this a straightfor-
ward task but, when approaching a simulation by means of the procedure
presented here all the steps that were hidden in the commercial code must
be tackled explicitly. Equation (5.25) indicates that the displacement field in
a static finite-element problem can be determined by multiplying the inverse
of the global stiffness matrix by the load vector. Although not detailed here,
the subject of assembling the global matrices and vectors will briefly be
discussed.

In a raw, standard finite-element procedure, the first steps are defining the
finite elements by means of their matrices and numbering the nodes, which,
as mentioned in the introduction to this chapter, reduces the bandwidth of
the global stiffness matrix and therefore the number of equations that ulti-
mately have to be solved. In the present example, the elemental stiffness and
mass matrices have been defined for both the single-axis, corner-filleted
flexure element and the quasi-rigid element utilized in two-dimensional
applications. Numbering the nodes is a straightforward procedure because
the two elements are serially connected and, as a consequence, the mecha-
nism will be defined by four nodes, as indicated in Figure 5.9b. The next
step following node numbering transforms the elemental matrices and vectors
from the local reference frame to the global one by means of transformation

FIGURE 5.9
Finite-element models of a two-link, serial, compliant mechanism including a single-axis, corner-
filleted flexure hinge: (a) classical two-dimensional finite-element model; (b) model based on
line elements.
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matrices that account for the relative position of the two reference frames.
This step is unnecessary with this example because the local reference frames
of the two elements and the global frame xy (as illustrated in Figure 5.9b) are
parallel.

The last preparatory step is assembling the global matrices and vectors
from the corresponding elemental counterparts. In solving this problem, the
principle of superposition is employed, which basically states that the total
reaction load at a node where two or more elements meet is the sum of the
partial reaction loads pertaining to each of the concurrent elements. This
principle enables defining the stiffness or mass terms in their corresponding
assembled matrices as the sum of stiffness or mass terms corresponding to
the adjoining elements. In our case, the displacement vector of the entire
structure has the following form:

(5.286)

and the load vector will have a similar expression. As a consequence, both the
overall (assembled) stiffness and mass matrices will be of dimension 12 × 12.
Because node 3 is the junction node that connects the flexure element to the
quasi-rigid element, the summation previously mentioned will apply to its
three DOFs. Figure 5.10 is a graphical representation of the assembling process
for the particular problem of either global stiffness or the global mass matrix.

The light-gray shade designates the 9 × 9 elemental matrix of the flexure
hinge element, and the slightly darker gray shade indicates the 6 × 6 ele-
mental matrix of the quasi-rigid finite element. The letter T stands for either

FIGURE 5.10
Matrix representation of the assembling process.

    { } { , , , , , , , , , , , }u u u u u u u u un x y z x y z x y z x y z
T= 1 1 1 2 2 2 3 3 3 4 4 4θ θ θ θ

Matrix of flexure hinge finite element

Matrix of quasi-rigid finite element

T11       T12        T13        T14        T15       T16        T17       T18        T19
         T22      T23      T24      T25     T26      T27      T28      T29
                         T33      T34      T35      T36     T37      T38      T39
                                      T44      T45      T46      T47     T48      T49
                                                   T55      T56      T57      T58     T59
                                                                T66      T67      T68      T69
                                                                            T77      T78      T79      T14       T15      T16
   T88      T89      T24       T25      T26

T99      T34       T35      T36
T44       T45      T46

T55      T56
T66
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stiffness or mass terms and, because the referred matrices are symmetric,
only the terms in the upper diagonal sector have been input. The dark gray
intersection area and the white lettering symbolize the terms that have to be
calculated by adding up the individual contributions from both elements.
The terms of the flexure finite element that are denoted on the light-gray
shaded area are also the real terms of the assembled matrix (going with the
same subscript notation), but for the terms of the quasi-rigid finite element
the elemental order notation has been used in order to indicate the original
significance of those terms. In the assembled form, their subscripts will
change to reflect the position in the 12 × 12 overall matrix. The mixed terms
in the assembled stiffness matrix, for instance, are calculated as:

(5.287)

and the corresponding superimposed terms of the assembled mass matrix
are calculated similarly. The superscripts 1 and 2 have been used in
Eq. (5.287) to indicate the first element (the flexure hinge) and the second
one (the quasi-rigid link), respectively.

The static finite-element simulation consists of two different subsets. In
the first simulation, a force of 10 N has been applied along the x direction
at node 3, and the corresponding x displacements were calculated by means
of the finite-element procedure presented here and also determined by
means of the ANSYS code at nodes 2 and 3. The results follow:

• For x displacement at node 2:
• 3.4 × 10−8 m, by means of the dedicated finite-element procedure
• 3.2 × 10−8 m, by means of the ANSYS software

• For x displacement at node 3:
• 6.8 × 10−8 m, by means of the dedicated finite-element procedure
• 6.4 × 10−8 m, by means of the ANSYS software

The second subset of numerical simulations consists of applying a force of
10 N at the same node 3 about the y direction and calculating the deflections

    

K K K

K K K

K K K

K K K

K K K

K K K

77 77
1

11
2

78 78
1

12
2

79 79
1

13
2

88 88
1

22
2

89 89
1

23
2

99 99
1

33
2

= +

= +

= +

= +

= +

= +



















1367_Frame_C05  Page 313  Friday, October 18, 2002  3:00 PM



314 Compliant Mechanisms: Design of Flexure Hinges

at points 2 and 3 about the same direction by means of the above-mentioned
procedures. The results follow:

• For y displacement at node 2:
• 1.7 × 10−8 m, by means of the dedicated finite-element procedure
• 1.6 × 10−8 m, by means of the ANSYS software

• For y displacement at node 3:
• 5.1 × 10−8 m, by means of the dedicated finite-element procedure
• 4.9 × 10−8 m, by means of the ANSYS software

The errors between the results produced by the two finite-element proce-
dures were less than 6%, with the displacements determined by means of
the ANSYS code being always smaller than the ones predicted by the model
developed in this chapter, as the model generated by the commercially
available code is stiffer due to the larger number of finite elements that
introduce additional internal constraints.

A modal analysis was also performed by both finite-element procedures
and the first three modal frequencies were determined for the planar serial
compliant mechanism of Figure 5.9. In Chapter 4, which treated the dynamic
response of flexure-based compliant mechanisms, the algorithm that is gen-
erally used to determine the modal frequencies was detailed and will not be
explained again here. Briefly, the dynamic matrix for the system of Figure 5.9
was calculated, according to this algorithm, based on the assembled stiffness
and mass matrices, which enabled calculation of the eigenvalues λ1, λ2, and
λ3. The modal frequencies were then calculated from the corresponding
eigenvalues by means of the definition equation:

(5.288)

The results of the two groups of finite-element simulations are noted below:

• For the first mode (regular bending of the flexure element with the
rigid link following the flexure without any rotation):
• 920-Hz resonant frequency by means of the dedicated finite-

element procedure
• 946-Hz resonant frequency by means of the ANSYS software

• For the second mode (bending of the flexure element with the rigid
link having its own rotation relative to the flexure hinge element):
• 10,350-Hz resonant frequency by means of the dedicated finite-

element procedure
• 10,583-Hz resonant frequency by means of the ANSYS software

    
f ii

i= =
λ
π2

1 2 3, , ,
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• For the third mode (pure axial vibration of the entire system due
to axial deformation of the flexure hinge element):
• 23,260-Hz resonant frequency by means of the dedicated finite-

element procedure
• 23,512-Hz resonant frequency by means of the ANSYS software

As the results of the modal finite-element simulations indicate, the errors
between the two procedures were less than 3% and the higher resonant
frequencies predicted by the ANSYS code are, again, normal because of the
denser mesh that introduces more constraints (model is stiffer), compared
to the procedure of this chapter where, for the analyzed problem, only two
elements were utilized.
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Appendix: Stiffness and Mass Matrices for Single-Axis, 
Corner-Filleted Flexure Hinge Finite Elements

The stiffness and mass matrices are explicitly given here for a three-node,
three-DOF-per-node finite element that models single-axis, corner-filleted
flexure hinges. The geometry of such a flexure was defined in Chapter 2,
where it was shown that the longitudinal geometry of such a flexure is
characterized by the following parameters: the total length of the flexure, l;
its minimum thickness, t, the fillet radius, r; and the constant width, w, of
the flexure.

Elemental Stiffness Matrix

The components of the elemental stiffness matrix are given here explicitly.
It is clear that by taking r = 0 in all subsequent equations, the corresponding
stiffness components of a simple nonfilleted strip flexure hinge can be
obtained simply. The * superscript indicates the stiffness components of such
a flexure hinge. The stiffness terms of a constant cross-section flexure hinge
of minimum thickness t were also calculated separately in order to check
the results derived by taking r → 0 in the stiffness components of a generic
flexure hinge, and the limit results confirmed the stiffness equations for the
constant cross-section flexures. Similar verifications were also performed
successfully for the mass terms of a corner-filleted flexure hinge.

The terms corresponding to axial effects (located on lines 1, 4, and 7 of the
elemental stiffness matrix) are presented first:
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(A.6)

(A.7)

The terms that are located on the other lines of the elemental stiffness matrix
are produced through bending, either direct or crossed:
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(A.17)

with:
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, ( ) ( ) [

( ) ] ( )

= − − + − +

+ − + +

π π

π

K K23 6 22 6, ,=

    
K

t
Ewl23

3

2

1428696
18515

* =

    

K
Ewl

l t l r K l K l r K

l r K l r K lr K r K

25 10
7 3 6 2

25 1
5

25 2
4 3

25 3

3 4
25 4

2 5
25 5

6
25 6

7
22 7

768
55545

7608 210 336 21

18 12 200 51200

= − + + +

− + − +

(

)

, , ,

, , , ,

    K r rt t25 1
2 215 479 256 4 1437 800 3 479 320, ( ) ( ) ( )= − + − + −π π π

    

K r r t r

r t r t

25 2
5 4

3

5 8835 1372 2 2352 2695 17670

5 784 490 1767

, ( ) [ ( ) ]

[ ( ) ]

= − − + + −

+ + −

π π

π
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(A.28)

(A.29)

(A.30)

(A.31)

(A.32)

(A.33)

with:

(A.34)

(A.35)

(A.36)

(A.37)

K r r t r

t rt r t r

25 3
3 2

2 2

74 41355 4544 12 206775 21584 15 36352

4544 41355 27264 24 5

, ( ) ( ) [

( ) ] ( )

= + + + +

+ + + +

π π

π

    

K r r t r

t rt r t r

25 4
3 2

2 2

14 215232 608345 28 250495 82128 7 1540608

84960 250495 22656 568 119

, ( ) ( ) [

( ) ] ( )

= + + + +

+ + + +

π π

π

K r r t r

t rt r t r

25 5
3 2

2 2

27 644875 323968 8 830168 1819125 14 4535552

121488 259875 323968 232 49

, ( ) ( ) [

( ) ] ( )

= + + + +

+ + + +

π π

π

    

K r r t r

t rt r t r

25 6
3 2

2 2

15 27904 43197 792 693 400 18 330752

480 7632 512 13640 2907

, ( ) ( ) [

( ) ] ( )

= + + + +

+ + + +

π π

π

    
K

t
Ewl25

3

3

162304
18515

* = −

    

K
Ewl

l t l r K l K l r K

l r K l r K lr K r K

26 9
7 3 6 2

26 1
5

26 2
4 3

26 3

3 4
26 4

2 5
26 5

6
26 6

7
22 7

768
55545

408 420 84 42

36 21 50 32000

= − + − +

− + − +

(

)

, , ,

, , , ,

K r rt t26 1
2 212 20 107 2 96 535 3 16 107, ( ) ( ) ( )= + + + + +π π π

    

K r r t r

r t r t

26 2
5 4

3

10 435 6979 47856 54835 3480

5 7976 4985 174

, ( ) [ ( ) ]

[ ( ) ]

= + + + +

+ + +

π π

π

    

K r r t r

t rt r t r

26 3
3 2

2 2

74 855 8044 228 225 2011 15 64352

8044 855 48264 24 5

, ( ) ( ) [

( ) ] ( )

= − − − − +

+ − + +

π π

π

K r r t r

t rt r t r

26 4
3 2

2 2

1602384 484330 28 14245 43674 7 819264

45180 14245 12048 568 119

, ( ) ( ) [

( ) ] ( )

= − − − +

+ − + +

π π

π
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(A.38)

(A.39)

(A.40)

(A.41)

with:

(A.42)

(A.43)

(A.44)

(A.45)

(A.46)

(A.47)

K r r t r

t rt r t r

26 5
3 2

2 2

27 58625 132736 8 340136 165375 14 1858304

49776 23625 132736 232 49

, ( ) ( ) [

( ) ] ( )

= − − + − +

+ − + +

π π

π

K r r t r

t rt r t r

26 6
3 2

2 2

15 69760 27489 792 441 1000 18 826880

11200 4851 1280 13640 2907

, ( ) ( ) [

( ) ] ( )

= − − − +

+ − + +

π π

π

K
t
Ewl26

3

2

870
18515

* = −

    

K
Ewl

l t l r K l K l r K

l r K l r K lr K r K

28 10
7 3 6 2

28 1
5

28 2
4 3

28 3

3 4
28 4

2 5
28 5

6
28 6

7
22 7

48
55545

80763 420 168 84

72 48 800 1280000

= − + − +

− + − +

(

)

, , ,

, , , ,

    K r rt t28 1
2 230 1079 2954 2 12948 36925 3 2158 7385, ( ) ( ) ( )= + + + + +π π π

K r r t r

r t r t

28 2
5 4

3

10 74940 143927 986928 1130855 599520

5 164488 102805 29976

, ( ) [ ( ) ]

[ ( ) ]

= + + + +

+ + +

π π

π

    

K r r t r

t rt r t r

28 3
3 2

2 2

74 79155 144044 12 395775 684209 15 1152352

144044 79155 864264 24 5

, ( ) ( ) [

( ) ] ( )

= + + + +

+ + + +

π π

π

K r r t r

t rt r t r

28 4
3 2

2 2

14 2121312 1026545 28 422695 809448 7 15184128

837360 422695 223296 568 119

, ( ) ( ) [

( ) ] ( )

= + + + +

+ + + +

π π

π

    

K r r t

r t rt r t r

28 5
3 2

2 2

27 996625 2269888 8 5816588 2811375

14 31778432 851208 401625 2269888 232 49

, ( ) ( )

[ ( ) ] ( )

= + + +

+ + + + +

π π

π

K r r t r

t rt r t r

28 6
3 2

2 2

15 174400 66759 792 1071 2500 18 2067200

28000 11781 3200 13640 2907

, ( ) ( ) [

( ) ] ( )

= + + + +

+ + + +

π π

π
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(A.48)

(A.49)

with:

(A.50)

(A.51)

(A.52)

(A.53)

(A.54)

(A.55)

(A.56)

(A.57)

K
t

Ewl28

3

3

107684
18515

* = −

    

K
Ewl

l t l r K l K l r K

l r K l r K lr K r K

29 9
7 3 6 2

29 1
5

29 2
4 3

29 3

3 4
29 4

2 5
29 5

6
29 6

7
22 7

24
55545

117723 525 42 84

72 48 8800 563200

= − + − +

− + − +

(

  )

, , ,

, , , ,

    K r rt t29 1
2 23 5915 17552 4 3459 10970 3 1183 4388, ( ) ( ) ( )= + + + + +π π π

K r r t r

r t r t

29 2
5 4

3

5 362445 679112 4 582096 666985 362445

5 388064 242540 72489

, ( ) [ ( ) ]

  [ ( ) ]

= + + + +

+ + +

π π

π

K r r t r

t rt r t r

29 3
3 2

2 2

74 49815 73492 12 249075 349087 15 587936

73492 49815 440952 24 5

, ( ) ( ) [

  ( ) ] ( )

= + + + +

+ + + +

π π

π

    

K r r t r

t rt r t r

29 4
3 2

2 2

14 990432 724285 28 298235 377928 7 7089408

390960 298235 104256 568 119

, ( ) ( ) [

  ( ) ] ( )

= + + + +

+ + + +

π π

π

K r r t

r t rt r

29 5
3 2

2

27 762125 1016768 8 2605468 2149875

14 14234752 381288 307125 1016768 232

, ( ) ( )

  [ ( ) ] (

= + + +

+ + + +

π π

π

    

K r r t r

t rt r t r

29 6
3 2

2 2

15 6976 4641 72 819 1100 18 82688

1120 819 128 13640 2907

, ( ) ( ) [

  ( ) ] ( )

= + + + +

+ + + +

π π

π

K
t

Ewl29

3

2

74482
18515

* = −

K
Ewl

l t l r K l K l r K

l r K l r K lr K r K

33 8
7 3 6 2

33 1
5

33 2
4 3

33 3

3 4
33 4

2 5
33 5

6
22 6

7
22 7

24
55545

113082 5145 2646 210

12 216 400 25600

= − − +

− + − +

(

  )

, , ,

, , , ,
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with:

(A.58)

(A.59)

(A.60)

(A.61)

(A.62)

(A.63)

(A.64)

with:

(A.65)

(A.66)

    K r rt t33 1
2 23 275 1168 20 33 146 3 55 292, ( ) ( ) ( )= − + − + −π π π

    

K r r t r

r t r t

33 2
5 4

3

22820 8175 2 7824 8965 3270

5 2608 1630 327

, ( ) [ ( ) ]

  [ ( ) ]

= − + + −

+ + −

π π

π

K r r t r

t rt r t r

33 3
3 2

2 2

74 3849 6796 12 19245 32281 15 54368

6796 3849 40776 24 5

, ( ) ( ) [

  ( ) ] ( )

= − − − − +

+ − + +

π π

π

K r r t r

t rt r t r

33 4
3 2

2 2

9797312 8864310 28 260715 267032 7 5009152

276240 260715 73664 568 119

, ( ) ( ) [

  ( ) ] ( )

= − − − +

+ − + +

π π

π

K r r t r

t rt r t r

33 5
3 2

2 2

412992 527625 8 39196 55125 14 214144

5736 7875 15296 232 49

, ( ) ( ) [

  ( ) ] ( )

= − + − +

+ − + +

π π

π

    
K

t
Ewl33

375388
18515

* =

    

K
Ewl

l t l r K l K l r K

l r K l r K lr K r K

35 9
7 3 6 2

35 1
5

35 2
4 3

35 3

3 4
35 4

2 5
35 5

6
35 6

7
22 7

384
166635

7608 1470 4536 21

6 36 200 25600

= − + + +

− + − +

(

  )

, , ,

, , , ,

    K r rt t35 1
2 22505 1968 4 501 410 3 167 164, ( ) ( ) ( )= − + − + −π π π

    

K r r t r

r t r t

35 2
5 4

3

210 6850 144 165 5480

5 24 15 274

, ( ) [ ( ) ]

  [ ( ) ]

= − + + −

+ + −

π π

π
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(A.67)

(A.68)

(A.69)

(A.70)

(A.71)

(A.72)

with:

(A.73)

(A.74)

(A.75)

(A.76)

K r r t r

t rt r t r

35 3
3 2

2 2

74 69645 24784 12 348225 117724 15 198272

24784 69645 148704 24 5

, ( ) ( ) [

  ( ) ] ( )

= + + + +

+ + + +

π π

π

    

K r r t r

t rt r t r

35 4
3 2

2 2

14 1205056 2305965 28 949515 459824 7 8625664

475680 949515 126848 568 119

, ( ) ( ) [

  ( ) ] ( )

= + + + +

+ + + +

π π

π

    

K r r t r

t rt r t r

35 5
3 2

2 2

9 382848 644875 8 327016 606375 14 1786624

47856 86625 127616 232 49

, ( ) ( ) [

  ( ) ] ( )

= + + + +

+ + + +

π π

π

K r r t r

t rt r t r

35 6
3 2

2 2

15 27904 43197 792 693 400 18 330752

4480 7623 512 13640 2907

, ( ) ( ) [

  ( ) ] ( )

= + + + +

+ − + +

π π

π

    
K

t
Ewl35

381152
55545

* = −

K
Ewl

l t l r K l K l r K

l r K l r K lr K r K

36 8
7 3 6 2

36 1
5

36 2
4 3

36 3

3 4
36 4

2 5
36 5

6
36 6

7
22 7

192
166635

816 1470 1512 21

42 18 100 64000

= − + − +

− + − +

(

  )

, , ,

, , , ,

    K r rt t36 1
2 215 19 112 4 57 350 3 19 140, ( ) ( ) ( )= + + + + +π π π

K r r t r

r t r t

36 2
5 4

3

5 3626 135 12432 14245 540

5 2072 1295 27

, ( ) [ ( ) ]

  [ ( ) ]

= + + + +

+ + +

π π

π

K r r t r

t rt r t r

36 3
3 2

2 2

74 3765 63824 12 18825 303164 15 510592

63824 3765 382944 24 5

, ( ) ( ) [

  ( ) ] ( )

= − − + − + +

+ − + +

π π

π

K r r t r

t rt r t r

36 4
3 2

2 2

4145344 842010 28 24765 112984 7 2119424

116880 24765 31168 568 119

, ( ) ( ) [

  ( ) ] ( )

= − − − +

+ − + +

π π

π
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(A.77)

(A.78)

(A.79)

(A.80)

with:

(A.81)

(A.82)

(A.83)

(A.84)

(A.85)

(A.86)

K r r t r

t rt r t r

36 5
3 2

2 2

9687168 3693375 8 919384 385875 14 5022976

134544 55125 358784 232 49

, ( ) ( ) [

  ( ) ] ( )

= − + − +

+ − + +

π π

π

    

K r r t r

t rt r t r

36 6
3 2

2 2

15 69760 27489 792 441 1000 18 826880

11200 4851 1280 13640 2907

, ( ) ( ) [

  ( ) ] ( )

= − − − +

+ − + +

π π

π

    
K

t
Ewl36

34352
55545

* = −

K
Ewl

l t l r K l K l r K

l r K l r K lr K r K

38 9
7 3 6 2

38 1
5

38 2
4 3

38 3

3 4
38 4

2 5
38 5

6
38 6

7
22 7

24
166635

4140331 735 378 84

24 144 800 1280000

= − + − +

− + − +

(

  )

, , ,

, , , ,

    K r rt t38 1
2 23 13805 36752 4 8283 22970 3 2761 9188, ( ) ( ) ( )= + + + + +π π π

    

K r r t r

r t r t

38 2
5 4

3

5 293944 146385 4 251952 288695 146385

5 167968 104980 29277

, ( ) [ ( ) ]

  [ ( ) ]

= + + + +

+ + +

π π

π

K r r t r

t rt r t r

38 3
3 2

2

74 148845 302284 12 744225 1435849 15 2418272

302284 148845 1813704 24 5

, ( ) ( ) [

  ( ) ] ( )

= + + + +

+ + + +

π π

π

    

K r r t

r t rt r t r

38 4
3 2

2 2

14 9859936 4264365 28 1755915 3762344

7 70576384 3892080 1755915 1037888 568 119

, ( ) ( )

  [ ( ) ] ( )

= + + +

+ + + + +

π π

π

    

K r r t r

t rt r t r

38 5
3 2

2 2

9 2637888 996625 8 2253196 937125 14 12310144

329736 133875 879296 232 49

, ( ) ( ) [

  ( ) ] ( )

= + + + +

+ + + +

π π

π

K r r t r

t rt r t r

38 6
3 2

2 2

15 174400 66759 792 1071 2500 18 2067200

28000 11781 3200 13640 2907

, ( ) ( ) [

  ( ) ] ( )

= + + + +

+ + + +

π π

π
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(A.87)

(A.88)

with:

(A.89)

(A.90)

(A.91)

(A.92)

(A.93)

(A.94)

(A.95)

K
t

Ewl38

3

2

276022
55545

* = −

    

K
Ewl

l t l r K l K

l r K l r K l r K lr K r

39 8
7 3 6 2

39 1
5

39 2

4 3
39 3

3 4
39 4

2 5
39 5

6
39 6

24
166635

142179 14700 11340

42 12 504 4400 281600

= + −

+ − + − +

(

  

, ,

, , , ,

    K r rt t39 1
2 23 235 688 4 141 430 3 47 172, ( ) ( ) ( )= + + + + +π π π

K r r t r

r t r t

39 2
5 4

3

10 1435 748 9840 11275 5984

8200 6125 1496

, ( ) [ ( ) ]

  [ ( ) ]

= + + + +

+ + +

π π

π

K r r t r

t rt r t r

39 3
3 2

2

74 91905 148196 12 459525 703931 15 1185568

148196 91925 889176 24 5

, ( ) ( ) [

  ( ) ] ( )

= + + + +

+ + + +

π π

π

    

K r r t

r t rt r t r

39 4
3 2

2 2

14 4509536 2888385 28 1189335 1720744

7 32278784 1780080 1189335 474688 568 119

, ( ) ( )

  [ ( ) ] ( )

= + + +

+ + + + +

π π

π

K r r t r

t rt r t r

39 5
3 2

2 2

9 168384 108875 8 143828 102375 14 785792

21048 14625 56128 232 49

, ( ) ( ) [

  ( ) ] ( )

= + + + +

+ + + +

π π

π

K r r t r

t rt r t r

39 6
3 2

2 2

15 6976 4641 72 819 1100 18 82688

1120 819 128 13640 2907

, ( ) ( ) [

  ( ) ] ( )

= + + + +

+ + + +

π π

π

    
K

t
Ewl39

394786
55545

* =
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(A.96)

with:

(A.97)

(A.98)

(A.99)

(A.100)

(A.101)

(A.102)

(A.103)

    

K
Ewl

l l r K r r K

lr K l r K l r K l r K

l rK l K r l K

l rK

55 15
5

55 1
6

55 2

5
55 3

2 4
55 4

3 3
55 5

4 2
55 6

5
55 7

6
55 8

9
55 9

8
55 10

73728
4932562635

9867 24 2 400

240 6237 12072 17136

117936 70980 32 1112431320

4767562800

= − − +

− − + +

− + +

− +

{ [ ( ) (

  

  )] (

  

, ,

, , , ,

, , ,

, 34258344123425834412 6586557120

4204605834 710604180 488492433

23900760 1154400 3200

7 2
55 11

6 3
55 12

5 4
55 13

4 5
55 14

3 6
55 15

2 7
55 16

8
55 17

9
55 18

l r K l r K

l r K l r K l r K

l r K lr K r K

, ,

, , ,

, , ,

  

  )}

−

+ − +

− + −

K l l r l r l r l r

lr r

55 1
6 5 4 2 3 3 2 4

5 6

2103 17144 100532 198776 179388

96000 32000

,

  

= − + − +

− +

    

K r r t

rt t

55 2
3 2

2 3

1981184 630630 4 424544 135135

21 20224 6435 1920

, ( ) ( )

  ( )

= − + + − +

+ − + −

π π

π

    

K r r t

rt t

55 3
3 2

2 3

5 185056 58905 72 10886 3465

54 3632 1155 1680

, ( ) ( )

  ( )

= − + + − +

+ − + −

π π

π

  

K r r t

rt t

55 4
3 2

2 3

7 9472 3015 8 6928 2205

14 992 315 224

, ( ) [ )

  ( )

= − + + − +

+ − + −

π π

π

K r r t

rt t

55 5
3 2

2 3

11216 3570 420 22 7

7 332 105 70

, ( ) [ )

  ( )

= − + + − +

+ − + −

π π

π

K r r t

rt t

55 6
3 2

2 3

3488 1110 12 236 75

45 16 5 40

, ( ) ( )

  ( )

= − + + − +

+ − + −

π π

π

K r r t

rt t

55 7
3 2

2 3

236 75 10 19 6

5 10 3 5

, ( ) ( )

  ( )

= − + + − +

+ − + −

π π

π

1367_Frame_C05  Page 327  Friday, October 18, 2002  3:00 PM



328 Compliant Mechanisms: Design of Flexure Hinges

(A.104)

(A.105)

(A.106)

(A.107)

(A.108)

(A.109)

(A.110)

(A.111)

(A.112)

(A.113)

(A.114)

(A.115)

(A.116)

    K r r t rt t55 8
3 2 2 33 16 5 4 10 3 3 4 2, ( ) ( ) ( )= − + + − + + − + −π π π

    K r r t rt t55 9
3 2 2 33 16 5 4 10 3 3 4 2, ( ) ( ) ( )= + + + + + +π π π

    K r r t rt t55 10
3 2 2 3236 75 10 19 6 5 10 3 5, ( ) ( ) ( )= + + + + + +π π π

    K r r t rt t55 11
3 2 2 33488 1110 12 236 75 45 16 5 40, ( ) ( ) ( )= + + + + + +π π π

K r r t rt t55 12
3 2 2 311216 3570 420 22 7 7 332 105 70, ( ) ( ) ( )= + + + + + +π π π

K r r t rt t55 13
3 2 2 37 9472 3015 8 6928 2205 14 992 315 224, ( ) ( ) ( )= + + + + + +π π π

K r r t

rt t

55 14
3 2

2 3

5 185056 58905 72 10886 3465 54 3632

1155 1680

, ( ) ( ) (

  )

= + + + +

+ +

π π

π

    

K r r t

rt t

55 15
3 2

2 3

1981184 630630 4 424544 135135

21 20224 6435 1920

, ( ) ( )

( )

= + + +

+ + +

π π

π

    

K r r t

rt t

55 16
3 2

2 3

30 1198144 381381 132 235856 75075

55 141536 45045 18480

, ( ) ( )

  ( )

= + + +

+ + +

π π

π

    

K r r t

rt t

55 17
3 2

2 3

165 2201600 700791 36 8820992 2807805

33 2405888 765765 98560

, ( ) ( )

  ( )

= + + +

+ + +

π π

π

    

K r r t

rt t

55 18
3 2

2 3

5 539362816 171684513 52 45708736 14549535

845 703232 223839 384384

, ( ) ( )

  ( )

= + + +

+ + +

π π

π

K
t

Ewl55

3

3

2871296
55545

* =

    

K
Ewl

l t l r K l K l r K

l r K l r K lr K r K

56 9
7 3 6 2

56 1
5

56 2
4 3

56 3

3 4
56 4

2 5
56 5

6
56 6

7
22 7

6144
499905

6912 420 4536 756

48 94 50 64000

= + − +

− + − +

(

  )

, , ,

, , , ,
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with:

(A.117)

(A.118)

(A.119)

(A.120)

(A.121)

(A.122)

(A.123)

(A.124)

with:

(A.125)

(A.126)

    K r rt t56 1
2 23 505 1408 4 303 880 3 101 352, ( ) ( ) ( )= + + + + +π π π

    

K r r t r

r t r t

56 2
5 4

3

5 672 505 4 576 660 505

5 384 240 101

, ( ) [ ( ) ]

  [ ( ) ]

= + + + +

+ + +

π π

π

    

K r r t r

t rt r t r

56 3
3 2

2

74 1515 1088 12 7575 5168 15 8704

1088 1515 6528 24 5

, ( ) ( ) [

  ( ) ] ( )

= + + + +

+ + + +

π π

π

K r r t r

t rt r t r

56 4
3 2

2 2

14 190912 437835 28 180285 72848 7 1366528

75360 180285 20096 568 119

, ( ) ( ) [

  ( ) ] ( )

= + + + +

+ + + +

π π

π

    

K r r t

r t rt r t r

56 5
3 2

2 2

9 1923072 5921125 8 1642624 5567625

14 8974336 240384 795375 641024 232 49

, ( ) ( )

  [ ( ) ] ( )

= + + +

+ + + + +

π π

π

K r r t r

t rt r t r

56 6
3 2

2 2

15 139520 396627 792 6363 2000 18 1653760

22400 69993 2560 13640 2907

, ( ) ( ) [

  ( ) ] ( )

= + + + +

+ + + +

π π

π

    
K

t
Ewl56

3

2

131072
18515

* =

    

K
Ewl

l t l r K l K

l r K l r K l r K lr K r K

58 10
7 3 6 2

58 1
5

58 2

4 3
58 3

3 4
58 4

2 5
58 5

6
58 6

7
22 7

768
499905

335304 210 3024

63 6 36 200 1280000

= − + −

+ − + − +

(

  )

, ,

, , , , ,

    K r rt t58 1
2 215 8663 28928 4 25989 90400 3 8663 36160, ( ) ( ) ( )= + + + + +π π π

    

K r r t r

r t r t

58 2
5 4

3

5 46564 25155 159648 182930 100620

5 26608 16630 5031

, ( ) [ ( ) ]

  [ ( ) ]

= + + + +

+ + +

π π

π
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(A.127)

(A.128)

(A.129)

(A.130)

(A.131)

(A.132)

with:

(A.133)

(A.134)

(A.135)

(A.136)

K r r t

r t rt r t r

58 3
3 2

2

74 515745 501056 12 2578725 2380016

15 4008448 501056 515745 3006336 24 5

, ( ) ( )

  [ ( ) ] ( )

= + + +

+ + + + +

π π

π

K r r t

r t rt r t r

58 4
3 2

2 2

14 45900352 91888995 28 37836645 17514608

7 328549888 18118560 37836645 4831616 568 119

, ( ) ( )

  [ ( ) ] ( )

= + + +

+ + + + +

π π

π

K r r t

r t rt r t r

58 5
3 2

2 2

9 11231616 37695875 8 9593672 35445375

14 52414208 1403952 5063625 3743872 232 49

, ( ) ( )

  [ ( ) ] ( )

= + + +

+ + + + +

π π

π

K r r t

r t rt r t r

58 6
3 2

2 2

15 697600 2525061 792 40509 10000

18 8268800 112000 445599 12800 13640 2907

, ( ) ( )

  [ ( ) ] ( )

= + + +

+ + + + +

π π

π

    
K

t
Ewl58

3

3

2384384
55545

* = −

K
Ewl

l t l r K l K l r K

l r K l r K lr K r K

59 9
7 3 6 2

59 1
5

59 2
4 3

59 3

3 4
59 4

2 5
59 5

6
59 6

7
22 7

384
499905

179064 1050 4536 63

6 36 2200 563200

= + − +

− + − +

(

  )

, , ,

, , , ,

K r rt t59 1
2 23 6235 20368 4 3741 12730 3 1247 5092, ( ) ( ) ( )= + + + + +π π π

    

K r r t r

r t r t

59 2
5 4

3

10 9751 5235 66864 76615 41880

5 11144 6965 2094

, ( ) [ ( ) ]

  [ ( ) ]

= + + + +

+ + +

π π

π

    

K r r t

r t rt r t r

59 3
3 2

2

74 279285 281008 12 1396425 1334788

15 2248064 281008 279285 1686048 24 5

, ( ) ( )

  [ ( ) ] ( )

= + + +

+ + + + +

π π

π

  

K r r t

r t rt r t r

59 4
3 2

2 2

14 23659712 45353535 812 643965 311312

7 169353728 9339360 18674985 2490496 568 119

, ( ) ( )

  [ ( ) ] ( )

= + + +

+ + + + +

π π

π
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(A.137)

(A.138)

(A.139)

(A.140)

with:

(A.141)

(A.142)

(A.143)

(A.144)

(A.145)

(A.146)

(A.147)

K r r t

r t rt r t r

59 5
3 2

2 2

9 5306496 17880625 8 4532632 16813125 14

24763648 663312 2401875 1768832 232 49

, ( ) ( )

[ ( ) ] ( )

= + + + +

+ + + +

π π

π

    

K r r t

r t rt r t r

59 6
3 2

2 2

15 27904 108885 360 3843 880 18

330752 4480 19215 512 13640 2907
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= + + + +

+ + + +

π π

π

    
K

t
Ewl59

3

2
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18515
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K
Ewl

l t l r K l K l r K

l r K l r K lr K r K

66 8
7 3 6 2

66 1
5

66 2
4 3

66 3

3 4
66 4

2 5
66 5

6
66 6

7
22 7
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499905
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24 18 500 20000
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  )
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, , , ,

    K r rt t66 1
2 26 25 82 10 12 41 3 10 41, ( ) ( ) ( )= + + + + +π π π

    

K r r t r

r t r t

66 2
5 4

3

5 154 75 528 605 300

5 88 55 15

, ( ) [ ( ) ]

  [ ( ) ]

= + + + +

+ + +

π π

π

  

K r r t

r t rt r t r

66 3
3 2

2

74 225 326 6 2250 3097 15

2608 326 225 1956 24 5

, ( ) ( )

  [ ( ) ] ( )

= + + + +

× + + + +

π π

π

K r r t

r t rt r t r

66 4
3 2

2 2

28 47861 43350 14 71400 73051

7 685168 37785 35700 10076 568 119

, ( ) ( )

  [ ( ) ] ( )

= + + +

+ + + + +

π π

π

    

K r r t

r t rt r t r

66 5
3 2

2 2

9 280608 293125 8 239686 275625

14 1309504 35076 39375 93536 232 49

, ( ) ( )

  [ ( ) ] ( )

= + + +

+ + + + +

π π

π

    

K r r t

r t rt r t r

66 6
3 2

2 2

15 4360 3927 396 126 125

18 51680 700 693 80 13640 2907

, ( ) ( )

  [ ( ) ] ( )

= + + +

+ + + + +

π π

π

  
K

t
Ewl66
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55545

* =
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(A.148)

with:

(A.149)

(A.150)

(A.151)

(A.152)

(A.153)

(A.154)

(A.155)

(A.156)

with:

(A.157)

K
Ewl

l t l r K l K

l r K l r K l r K lr K r K

68 9
7 3 6 2

68 1
5

68 2

4 3
68 3

3 4
68 4

2 5
68 5

6
68 6

7
22 7
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499905

51624 420 756

1134 12 9 250 800000
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K r rt t68 1
2 212 1190 3779 2 5712 18895 3 952 3779, ( ) ( ) ( )= + + + + +π π π

    

K r r t r

r t r t

68 2
5 4

3

10 23107 12555 158448 181555 100440
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  [ ( ) ]

= + + + +
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π π

π

    

K r r t

r t rt r t r

68 3
3 2

2

74 7795 8484 12 38975 40299 15

67872 8484 7795 50904 24 5

, ( ) ( )

  [ ( ) ] ( )

= + + + +

+ + + +

π π

π

    

K r r t

r t rt r t r

68 4
3 2

2 2

266 484184 688245 28 5384505 3510334

7 65849024 3631380 5384505 968368 568 119

, ( ) ( )

  [ ( ) ] ( )

= + + +

+ + + + +

π π

π

K r r t

r t rt r t r

68 5
3 2

2 2

603 354432 651875 8 20283848 41068125 14

110819072 2968368 5866875 7915648 232 49

, ( ) ( )

[ ( ) ] ( )

= + + + +

+ + + +

π π

π

    

K r r t

r t rt r t r

68 6
3 2

2 2

15 348800 585123 792 9387 5000 18

4134400 56000 103257 6400 13640 2907

, ( ) ( )

[ ( ) ] ( )

= + + + +

+ + + +

π π

π

K
t

Ewl68

3

2

122368
18515

* = −

    

K
Ewl

l t l r K l r K

l r K l r K l r K lr K r K

69 8
7 3 6 2

69 1
5 3

69 2

4 4
69 3

3 5
69 4

2 6
69 5

7
69 6

8
69 7

192
499905

52848 1050 1512

189 6 126 1100 704000

= + −

+ − + − +

(

  )

, ,

, , , , ,

K r rt t69 1
2 23 8624 2705 4 5390 1623 3 2156 541, ( ) ( ) ( )= + + + + +π π π
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(A.158)

(A.159)

(A.160)

(A.161)

(A.162)

(A.163)

(A.164)

(A.165)

with:

(A.166)

(A.167)

    K r rt t69 2
2 2249334 79875 5 40147 12780 25 2113 639, ( ) ( ) ( )= + + + + +π π π

    

K r rt

t

69 3
2

2

2 6220848 1960075 12 841812 264875

15 171216 52975

, ( ) ( )

  ( )

= + + +

+ +

π π

π

K r rt

t

69 4
2

2

2 680205536 193467225 420 2668424 758695

7 40268944 11380425

, ( ) ( )

( )

= + + +

+ +

π π

π

    

K r rt

t

69 5
2

2

134696576 28868625 8 14074232 3016125

14 2015248 430875

, ( ) ( )

  ( )
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+ +

π π

π

    

K r rt

t

69 6
2

2

5 3701120 410193 72 217720 24129

54 72640 8043

, ( ) ( )

  ( )

= + + +

+ +

π π

π

    K r rt t69 7
2 215478 13267 3318, = + +

  
K

t
Ewl69

31127424
55545

* =

    

K
Ewl

l t l r K l K l r

K l r K l r K lr K r K

88 10
7 3 6 2

88 1
5

88 2
4 3

88 3
3 4

88 4
2 5

88 5
6

88 6
7

22 7

48
499905

6091731 420 4536 252

168 144 20000 32000000

= + − +

− + − +

(

)

, ,

, , , , ,

    

K r rt

t

88 1
2

2

30 44363 142298 2 532356 1778725

3 88726 355745

, ( ) ( )

  ( )

= + + +

+ +

π π

π

    

K r r t r

r t r t

88 2
5 4

3

10 296317 159140 2031888 2328205 127312

5 338648 211655 63656

, ( ) [ ( ) ]

  [ ( ) ]

= + + + +

+ + +

π π

π
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(A.168)

(A.169)

(A.170)

(A.171)

(A.172)

(A.173)

with:

(A.174)

(A.175)

(A.176)

K r r t

r t rt r t r

88 3
3 2

2

74 2300445 2436356 12 11502225 11572691 15

19490848 2436356 2300445 14618136 24 5

, ( ) ( )

[ ( ) ] ( )

= + + + +

+ + + +

π π

π

    

K r r t

r t rt

r t r

88 4
3 2

2 2

481753664 790545390 28 23251335 13130504

7 246310144 13583280 23251335

3622208 568 119

, ( ) ( )

  [ ( ) ]

  ( )

= + + +

+ + +

+ +

π π

π

K r r t

r t rt

r t r

88 5
3 2

2 2

9 6535456 159753125 8 55824452 150215625

14 304992128 8169432 21459375

21785152 232 49

, ( ) ( )

  [ ( ) ]

  ( )

= + + +

+ + +

+ +

π π

π

K r r t

r t rt r t r

88 6
3 2

2 2

1635 1600 3927 792 6867 2500 18

2067200 28000 75537 3200 13640 2907

, ( ) ( )

[ ( ) ] ( )

= + + + +

+ + + +

π π

π

    
K

t
Ewl88

3

3

2707436
55545

* =

    

K
Ewl

l t l r K l K l r K

l r K l r K lr K r K

89 9
7 3 6 2

89 1
5

89 2
4 3

89 3

3 4
89 4

2 5
89 5

6
89 6

7
22 7

24
499905

3924531 525 378 252

264 144 8800 14080000

= − + − +

− + − +

(

  )

, , ,

, , , ,

    

K r rt

t

89 1
2

2

3 252755 809744 4 151653 506090

3 50551 202436

, ( ) ( )

  ( )

= + + +

+ +

π π

π

K r r t r

r t r t

89 2
5 4

3

35 631928 338955 4 3791568 4344505 2372685

5 2527712 1579820 474537

, ( ) [ ( ) ]

  [ ( ) ]

= + + + +

+ + +

π π

π

    

K r r t

r t rt r t r

89 3
3 2

2 2

74 1266585 1344508 12 6332925 6386413 15

10756064 1344508 1266585 8067048 24 5

, ( ) ( )

  [ ( ) ] ( )

= + + + +

+ + + +

π π

π
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(A.177)

(A.178)

(A.179)

(A.180)

(A.181)

with:

(A.182)

(A.183)

(A.184)

(A.185)

K r r t

r t rt r t r

89 4
3 2

2 2

14 11034592 18269985 28 7522935 4210568

7 78984448 4355760 7522935 1161536 568 119

, ( ) ( )

  [ ( ) ] ( )

= + + +

+ + + + +

π π

π

 

K r r t

r t rt r t r

89 5
3 2

2 2

9 30376896 78381625 8 25946932 73702125

14 141758848 3797112 10528875 10125632 232 49

, ( ) ( )

  [ ( ) ] ( )

= + + +

+ + + + +

π π

π

    

K r r t

r t rt r t r

89 6
3 2

2 2

15 174400 477309 72 84231 27500 18

2067200 28000 84231 3200 13640 2907

, ( ) ( )

[ ( ) ] ( )

= + + + +

+ + + +

π π

π
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t
Ewl89

3
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290706
18515

* = −

    

K
Ewl

l t l r K l K l r

K l r K l r K lr K r K

99 8
7 3 6 2

99 1
5

99 2
4 3

99 3
3 4

99 4
2 5

99 5
6

99 6
7

22 7

24
499905

16426981 2625 1890 126

84 72 48400 3097600

= + − +

− + − +

(

  )

, ,

, , , , ,

    K r rt t99 1
2 23 17995 57616 4 10797 36010 3 3599 14404, ( ) ( ) ( )= + + + + +π π π

K r r t r

r t r t

99 2
5 4

3

5 269276 144345 923232 1057870 577380

5 153872 96170 28869

, ( ) [ ( ) ]

  [ ( ) ]

= + + + +

+ + +

π π

π

K r r t

r t rt r t r

99 3
3 2

2 2

74 688425 731924 12 3442125 3476639 15

5855392 731924 688425 4391544 24 5

, ( ) ( )

  [ ( ) ] ( )

= + + + +

+ + + +

π π

π

K r r t

r t rt r t r

99 4
3 2

2 2

238 511328 851325 28 5959275 3316904

7 62220544 3431280 5959275 915008 568 119

, ( ) ( )

  [ ( ) ] ( )

= + + +

+ + + + +

π π

π
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(A.186)

(A.187)

(A.188)

Elemental Mass Matrix

The mass terms that correspond to the axial-deformation degrees of freedom
are:

(A.189)

(A.190)

(A.191)

(A.192)

(A.193)

(A.194)

K r r t

r t rt r t r

99 5
3 2

2 2

9 14149056 38047625 8 12085652 35776125

14 66028928 1768632 5110875 4716352 232 49

, ( ) ( )

  [ ( ) ] ( )

= + + +

+ + + + +

π π

π

K r r t

r t rt r t r

99 6
3 2

2 2

15 6976 21063 72 3717 1100 18

82688 1120 3717 128 13640 2907

, ( ) ( )

[ ( ) ] ( )

= + + + +

+ + + +

π π

π
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t
Ewl99

3365044
55545
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m m
w
l

r r l r l

r l r l l t

11 77 4
6 5 4 2

3 3 2 4 5

60
2 992 315 8 332 105 35 48 15

60 10 3 30 4 8

= = − − − + −
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ρ π π π

π π
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m m11

2
15
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m m m
w
l

r r l

r l r l l t

14 17 47 4
6 5

4 2 3 3 5

2
30

2 992 315 8 332 105

25 48 15 20 10 3 2

= − = − = − − + −
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ρ π π

π π

[ ( ) ( )
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m m14
1

15
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m

w
l

r r l r l l t44 4
6 5 4 2 52

15
992 315 4 332 105 10 48 15 4= − − − + − +

ρ π π π[ ( ) ( ) ( ) ]

  
m m44

8
15

* =
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The bending-related mass terms are:

(A.195)

(A.196)

(A.197)

(A.198)

(A.199)

    

m
w

l
r r l l l r l r

l r l r l r lr r

r l l r l r

l r

22 10
4 7 6 5 2

4 3 3 4 2 5 6 7

2 10 8 2 7 3

6 4

9775920
128 2 1142295 936859 8726564
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+ − + − − −

− − +
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π π π

π

{ ( )[

]

[ ( ) ( ) ( )

( ) (( ) ( )

( ) ( ) ( )

( ) ] }

99 16 296175 3003 256

1987920 715 32 67210 21789 512 47520 20995 256
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π π π
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l r l r l r l r
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23 9
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7 2
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32 2 610995 1753290 10551618

61331424 143556336 219941568 218128064
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6

 

Topics Beyond the Minimal Modeling 

 

Approach to Flexure Hinges

 

This chapter presents a few topics that are important in analyzing the behav-
ior of flexure hinges under circumstances that extend over the minimal set
of conditions studied previously. Discussed will be aspects connected to large
deformations, buckling, torsion of noncircular cross-section flexures, com-
posite flexure hinges, thermal effects, shape optimization, materials and
fabrication technologies for macro- and MEMS applications.

 

6.1 Large Deformations

 

The classic theory of deformations assumes that all deformations within an
elastic body are small. This hypothesis is consistent, on one hand, with the
real-world character of deformations or strains sustained by the vast majority
of mechanical components that are subject to loads below levels that would
cause failure. On the other hand, the small displacement theory allows us
to develop and apply a relatively simple mathematical apparatus, whose
main virtue stems from its linear character, which further enables convenient
calculations to be carried out. Mathematically speaking, the distinction
between small and large displacement theory lies in the way in which the
strains are expressed in terms of displacements. It is known from the theory
of elasticity that strains can be formulated as functions of the partial deriv-
atives of the displacement functions, and that higher-order partial derivatives
are usually involved. When neglecting partial derivatives that have an order
or power greater than one, the corresponding simplification leads to the so-
called small displacement theory (see, for instance, Freudenthal

 

1

 

). When
these simplifications are not applied, the resulting theory is a large displace-
ment one. More specifically, in the case of members that are subject to
bending, the small displacement theory assumes that a bent element of
length 

 

ds

 

 is approximately equal to its projection on the 

 

x

 

 axis, as shown in
Figure 6.1.

 

1367_Frame_C06  Page 345  Friday, October 18, 2002  1:59 PM



 

346

 

Compliant Mechanisms: Design of Flexure Hinges

 

In actuality, according to basic differential geometry, the length of a curved
element taken from the bent beam is expressed as:

(6.1)

At the same time, the exact equation that gives the curvature of a beam is:

(6.2)

However, when neglecting powers higher than one, as mentioned previously
(which, in the bending case, pertains to the second power of the slope), Eq.
(6.1) is simplified for the small displacement case to:

(6.3)

which also simplifies Eq. (6.2) to:

(6.4)

Equation (6.4) is the basis for all subsequent linear or small deformation
modeling for beam members because the bending moment, for instance, is
connected to curvature according to:

(6.5)

 

FIGURE 6.1

 

Real and projected bending deformations as sources for small vs. large displacement theory.
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Shanley

 

2

 

 mentions that, for beams where the deflection-to-length ratio is less
than 0.2, the errors induced by applying the approximation of Eq. (6.4) are
less than 6%, but at such deformation levels the appreciable bending stresses
could cause failure of the mechanical member, or, in the best-case scenario,
a situation is created where the elastic limit is exceeded. As a consequence,
as underscored by Shanley,

 

2

 

 the large deflection theory is of only academic
interest, unless the member has specifically been designed to operate as a
large deflection one.

Wang et al.

 

3

 

 focus on an end-supported beam that is subject to a midpoint
load under the assumption of large deformations. The solution to the prob-
lem is provided by both elliptical integrals and the shooting-optimization
technique. Dado

 

4

 

 treats the problem of large deflection beams with end loads
by using the pseudo-rigid-body model as connectors in compliant mecha-
nisms by developing a parameterized model. Lee

 

5

 

 studied cantilever beams
constructed of nonlinear materials and simultaneously subjected to a uni-
formly distributed load and a tip load. The governing equations of the
deflected member were derived by using a shearing-force-based formulation
and were further solved by a Runge–Kutta type of numerical algorithm.
Ohtsuki and Ellyn

 

6

 

 studied frames where large deformations must be
accounted for. Elliptical integrals are utilized to obtain the solution to the
problem, and the results are compared to similar experimental data.
Hamdouni

 

7

 

 presents a decomposition technique that allows derivation of
the compatibility equations corresponding to large deformations of elastic
members. 

Pai and Palazotto

 

8

 

 utilized a multiple-shooting technique to solve the
problem of flexible beams undergoing large three-dimensional deformations,
such that the resulting nonlinear model gives exact solutions. In an extension
of this work, Gummadi and Palazotto

 

9

 

 address the problem of laminated com-
posite beams and arches that are subject to large strains. The large strain–load
characteristics are studied for both isotropic and laminated structures. Wriggers
and Reese

 

10

 

 have investigated the strain-enhanced elements and their suit-
ability of representing large deformations in both bending and compressive
situations by means of the finite element method. Zelenina and Zubov

 

11

 

analyzed the bending of prismatic beams that are subject to large deforma-
tions by using a semi-inverse method whereby a two-dimensional, nonlinear,
boundary-value model is obtained. The solution is produced in both dis-
placements and stresses by using the Ritz method. 

Oguibe and Webb

 

12

 

 have developed an approximate theoretical model for
the analysis of large deflections of multilayer cantilever beams that are sub-
ject to impulse loading. The numerical results of this model are in agreement
with the corresponding experimental data. Fortune and Vallee

 

13

 

 detail the
Bianchi identities for three-dimensional continua undergoing large deforma-
tions, which are explicit formulations of the compatibility equations. Howell
and Midha

 

14

 

 introduce the pseudo-rigid-body method of describing compli-
ant mechanisms that include small-length flexural pivots capable of large
displacements whereby the flexible members are modeled as discrete torsional
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springs attached to the rigid links. An extension of this approach is pursued
by Howell and Midha,

 

15

 

 who utilize the pivot-as-torsional-spring concept
within the rigid-body modeling of compliant mechanisms that incorporate
initially curved, large deflection beams.

Described next are several applications where flexible members of com-
pliant mechanisms are specifically designed to sustain large deformations
in order to fulfill their functional role. In a survey paper, Shoup and
McLarnan

 

16

 

 presented the methodologies utilized for deriving flexible-link
mechanisms from their rigid-link counterparts, and, specifically, they focus
on single-loop, closed-loop plane flexible mechanisms with lower pairs.
Shoup and McLarnan

 

17

 

 and Shoup

 

18

 

 investigated the problems related to
undulating and nodal elastica curves, which denote shapes that can be taken
by flexible members (strips) undergoing large deformations. Models are
derived for both cases and approximate solutions are given that allow eval-
uation of several parameters useful in the design of such members. Saggere
and Kota,

 

19

 

 in the context of analyzing the motions produced by planar,
compliant, four-bar mechanisms, approach the inverse elastica problem by
determining the shape that a flexible component which is capable of large
deformations must take in terms of its prescribed end displacements and
when the loading acting on it is known. 

Shoup and McLarnan

 

20

 

 present the main equations that govern the static
response of a doubly clamped flexible strip that can be utilized as a nonlinear
spring in flexible mechanisms. Jensen et al.

 

21

 

 investigated a Young-type
bistable mechanism that includes two compliant members capable of large
deformations. The pseudo-rigid-body approach is again employed to model
this mechanism. Edwards et al.

 

22

 

 utilized the same concept of pseudo-rigid-
body to model an initially curved pinned–pinned flexible member capable
of large deflections and that behaves almost like a translatory spring in
compliant mechanisms. Saxena and Anathasuresh

 

23

 

 applied the large defor-
mation capability of flexural members that are part of compliant mechanisms
to commercially available finite-element software and analyzed several
frame-type applications.

From a practical standpoint, it would be of interest to establish how much
error is introduced by carrying out calculations according to the small dis-
placement (linear) theory instead of the nonlinear large displacement theory.
Consider a constant cross-section (dimensions 

 

w

 

 and 

 

t

 

) cantilever beam of
length 

 

l

 

 that is constructed of homogeneous, isotropic material with a Young’s
modulus of 

 

E 

 

that is subject to bending moment 

 

M

 

 at its free end. The goal
is to express the tip slope in terms of the applied bending moment in the case
of large displacements. The differential equation that takes into account large
deformations and is given in Eqs. (6.2) and (6.5) can be put into the form:

(6.6)
    

d y
dx

k
dy
dx

2

2

2 3

1 0− + 
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which is a nonlinear homogeneous equation in 

 

y

 

. In the equation above:

(6.7)

By applying the substitution:

(6.8)

where 

 

z

 

 is an unknown function depending on 

 

x

 

, the following solution is
obtained after basic calculations, back substitution for the original unknown
function 

 

y

 

, and consideration of the zero-slope boundary condition for 

 

x

 

 = l
(see Figure 6.1):

(6.9)

The maximum slope is found at the free end, so by taking 

 

x

 

 = 0 in Eq. (6.9),
the maximum slope for large displacements is:

(6.10)

However, it is known that the maximum slope of the same cantilever beam,
when the deformations are assumed small, is given by the equation:

(6.11)

By comparing Eqs. (6.10) and (6.11), the following relationship can be
formulated:

(6.12)

Through simple inspection of Eq. (6.12) it can be seen that the end slope for
large displacements is always greater than the one corresponding to small
displacements. The relative error between large and small displacement end
slopes is defined as:

(6.13)

  
k

M
EI

=

    

dy
dx

z= tan

dy
dx

k
x l

k x l
= −

− −
( )

( )1 2 2

θ1 2 21
l kl

k l
=

−

θ1 = kl

  
θ

θ
θ

1
1

1
21

l =
−

    
error =

−
= − −

θ θ
θ

θ1 1

1
1
21 1

l

l

 

1367_Frame_C06  Page 349  Friday, October 18, 2002  1:59 PM



 

350

 

Compliant Mechanisms: Design of Flexure Hinges

 

In allowing large displacement to take place, it is of primary importance that
the stresses set in the mechanical component do not exceed a maximum
limit, say 

 

σ

 

max

 

. For a constant rectangular cross-section beam, the maximum
stress occurs on the outer fibers of the cantilever beam and is given by the
equation:

(6.14)

Combining Eqs. (6.7), (6.11), and (6.14) yields:

(6.15)

Clearly, Eq. (6.15) shows that for a given length-to-thickness ratio 

 

l

 

/

 

t

 

, the
maximum tip slope is limited by material properties. Equation (6.15) was
utilized to plot the relative error functions, as given in Eq. (6.13), for three
different materials: regular steel, aluminum, and titanium alloys, as illustrated
in Figure 6.2. Some average and conservative values were taken for the
maximum strength and Young’s modulus of the three materials, namely: for
steel, 

 

σ

 

max

 

 

 

=

 

 3 

 

×

 

 10

 

8

 

 N/m

 

2

 

 and 

 

E

 

 

 

=

 

 2 

 

×

 

 10

 

11

 

 N/m

 

2

 

; for aluminum, 

 

σ

 

max

 

 

 

=

 

 1.5 

 

×

 

10

 

8

 

 N/m

 

2

 

 and 

 

E

 

 

 

=

 

 0.7 

 

×

 

 10

 

11

 

 N/m

 

2

 

; and, for titanium, 

 

σ

 

max

 

 

 

=

 

 4.5 

 

×

 

 10

 

8

 

 N/m

 

2

 

and 

 

E

 

 

 

=

 

 1.1 

 

×

 

 10

 

11

 

 N/m

 

2

 

. Figure 6.2 is quite indicative of the differences
between large and small deformations in calculating the tip slope of a cantilever

 

FIGURE 6.2

 

Relative errors of large vs. small displacement theory slope at the free end of a cantilever beam
subjected to a tip bending moment.
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beam under a tip moment load. For length-to-thickness ratios less than 10,
for instance, the relative errors are less than 0.3% for all three materials that
were investigated (for steel and aluminum the errors are less than 0.1%), as
shown in Figure 6.2. In the great majority of engineering applications that
utilize regular flexure hinges for displacement amplification or force reduc-
tion (in precision mechanisms or microelectromechanical systems, or MEMS,
for instance), the length-to-thickness ratio is kept well under the threshold
value of 10, so the errors implied by assuming small displacements are neg-
ligible, as also pointed out by Shanley

 

2

 

 after analyzing the tip deflection of a
cantilever beam. The exercise that was just carried out is a simple one, as it
took into consideration only a tip moment. When axial and shearing forces
are also present, the formulation is further complicated and the solution to
the resulting differential equation can be obtained by means of elliptical
integrals. The works of Shoup and McLarnan

 

16

 

 and Shoup,

 

18

 

 for instance,
provide details on the respective derivation and solution. The displacement
(deformation)–load relationships, however, are highly nonlinear, and, as
underscored by the simple example presented earlier, it is impossible to find
out a solution to the differential equation of equilibrium of the form:

(6.16)

where 

 

u

 

 and 

 

L

 

 denote generic displacement (deformation) and load compo-
nents, respectively, and 

 

C

 

 stands for the corresponding compliance factor.
Applications exist, however, where the flexible members that are expected

to undergo large deformations must be accordingly designed and where the
small-deformation model definitely might not be a suitable tool. The example
of the constant cross-section cantilever beam shown in Figure 6.1 will be
analyzed when its free tip is under the action of two forces, 

 

F

 

1

 

x

 

 and 

 

F

 

1

 

y

 

, and
a moment, 

 

M

 

1

 

z

 

. The aim is to determine the tip displacements 

 

u

 

1

 

x

 

, 

 

u

 

1

 

y

 

, and
rotation 

 

θ

 

1

 

z

 

 in terms of the load. The path followed in the corresponding
derivation is the one proposed by Shoup and McLarnan

 

17

 

 to solve a similar
problem. The large deformation aspect in this case is included by taking into
consideration the combined bending effect of the three end loads, as it is
well known that the small displacement theory disregards the contribution
of the axial force to bending. The bending moment about the z-axis a generic
point of abscissa 

 

x

 

 is:

(6.17)

where 

 

u

 

y

 

 represents the deflection at the generic point under consideration.
The Euler–Bernoulli theory (for long beam-like members) gives the following
basic differential equation:

(6.18)

u CL=

M M F x F u uz y x y y= + + −1 1 1 1( )

M EI
d
dsz

z=
θ

 

1367_Frame_C06  Page 351  Friday, October 18, 2002  1:59 PM



 

352

 

Compliant Mechanisms: Design of Flexure Hinges

 

By combining Eqs. (6.17) and (6.18) and differentiating the resulting equation
in terms of 

 

s

 

, we obtain:

(6.19)

Because the following identities are valid for an element of the deflected
cantilever beam:

(6.20)

Eq. (6.19) can then be reformulated as:

(6.21)

for which the solution is:

(6.22)

which is, of course, the solution indicated by Shoup and McLarnan.

 

17

 

 Com-
bining Eqs. (6.17), (6.18), and (6.22) produces the following relationship:

(6.23)

By utilizing the following boundary conditions in Eq. (6.23):

(6.24)

the following two equations can be written:

(6.25)
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Two more equations can be formulated to express the horizontal and vertical
displacement of the free end 1, again according to Shoup and McLarnan,

 

17

 

 as:

(6.26)

Equation (6.26) can be transformed, by taking into account Eq. (6.22), into
the equivalent form:

(6.27)

Equations (6.25) and (6.27) form a system of four equations with four
unknowns, namely: the integration constant, 

 

C

 

, and the free end displace-
ments, 

 

u

 

1

 

x

 

, 

 

u

 

1

 

y

 

, and 

 

θ

 

1

 

z

 

. If one of the two expressions in Eq. (6.25) is used to
express 

 

C

 

, and the resulting expression for 

 

C

 

 is substituted into the other
expression of Eq. (6.25), as well as into Eq. (6.27), a system of three equations
is formed, with the unknowns being the free end displacements of the
cantilever. There is no solution through elementary functions to this system
because the integrals composing it are elliptical integrals of the first and
second kind. These integrals can either be solved by using a numerical
integration technique or, alternatively, can be series-expanded and therefore
approximated through a sufficient number of elementary function terms.
Whatever the course taken to solve the above-mentioned integrals, the solu-
tion to the resulting equation system is of the form:

(6.28)

where the functions of Eq. (6.28) are nonlinear in the load components 
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,

 

F
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, and 

 

M

 

1

 

z

 

, and, as a consequence, no factors express each displacement as
a linear combination of the corresponding loads, so no compliances can be
individualized in this large displacement case.
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The case previously analyzed was relatively simple because the large
deformation capability was reflected only through the inclusion of the axial
force into the bending effects. Further complications are expected for the
case where the axial deformation of the member is taken into account and
combined with the bending-produced deformations. Moreover, when shear-
ing has to be taken into consideration for relatively short flexures, the
Euler–Bernoulli model must be dropped in favor of the Timoshenko model,
which can accommodate such shearing effects, as detailed in the discussion
dedicated to short flexures in Chapters 2 and 4. Adding to the complexity
of the problem is the fact that, for flexure hinges with non-constant cross-
section dimensions (as in the case for the configurations that have been
studied throughout this work), solving for the unknown tip displacements
in terms of loads must progress through the step of solving nonlinear dif-
ferential equations, because the inertia moment is no longer constant. How-
ever, all these aspects are probably beyond the scope of the majority of
current engineering applications and will not be addressed further in this
work.

 

6.2 Buckling

In a broad sense, the buckling is defined as a phenomenon of structural
instability characterized by a loss of the equilibrium state when the external
loading reaches a critical stage. The flexure hinges in compliant mechanisms
can experience buckling, especially when their configuration is slender (rel-
atively high ratio for length to cross-section dimensions), and the axial load-
ing is compressive. In such cases, the flexure hinge can be treated as a
column, which is defined as a member that can carry axial compressive
forces. Figure 6.3 shows a fixed–free column-type flexure hinge that is under
compressive load.

Several excellent monographs on buckling are available, such as those of
Timoshenko and Gere,24 Allen and Bulson,25 or Chen and Lui,26 to name just
a few. Historically, the elastic (or reversible) buckling of columns (or struts)
was the first buckling topic, and Euler, as early as 1757 (see, for example,

FIGURE 6.3
Schematic of buckling for a fixed–free column.
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Timoshenko and Gere,24 Shanley,2 or Timoshenko27), proposed the mathe-
matical model of the elastic buckling of columns that is still valid today.
According to this model, the minimum axial load, or critical force, that would
cause a constant cross-section column to bend (or buckle) is given by the
following equation:

(6.29)

In this equation, it is acknowledged that a minimum moment of inertia for
the column cross-section must be taken in order to calculate the critical force.
The critical length, lcr, in the same equation takes into account the different
types of end support. Classical strength of materials textbooks give details and
values of those lengths in terms of the real length l of a column with a specific
set of boundary conditions. Generically, the critical length is calculated by
multiplying the physical length of a column by a specific coefficient, namely:

(6.30)

where the coefficient k takes values ranging from 0.5 (for a fixed–fixed
column) to 2 (for a fixed–free column, which is also the case of the assumed
boundary conditions for a flexure hinge). It is clear that the fixed–free con-
ditions will generate the lowest critical force when compared to all boundary
condition situations. The stress that is generated through buckling in the
moment immediately before the lateral deformation (bending) generated by
the axial load occurs is:

(6.31)

where λ is the slenderness ratio and is defined as:

(6.32)

with imin being the minimum radius of gyration, given by:

(6.33)

Apart from the elastic situation, there is another buckling type, where the bend-
ing produced through axial loading enters the inelastic (plastic) domain. In
such cases, the critical stresses (and associated critical force) cannot be calcu-
lated by the Euler model. Several models treat the problem of inelastic buckling
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and, again, the monographs of Timoshenko and Gere,24 Allen and Bulson,25

Chen and Lui,26 or Shanley2 are excellent sources for information in this area.
The earliest explanation of the inelastic buckling phenomenon was provided
by Engesser in 1889, when he proposed a slight modification of the Euler
equations by utilizing the tangent modulus Et instead of the Young’s mod-
ulus E. The tangent modulus is defined as the ratio:

(6.34)

and can be calculated from the experimental compression tests that allow
plotting the respective stress–strain curves. The work of Engesser, who cal-
culated critical stresses for several materials that either do not obey Hooke’s
law or are loaded beyond their elastic limit, was continued, among other
researchers, by Tetmajer and Jasinsky. Tetmajer, for instance, conducted a large
number of experiments on short columns and concluded that Euler’s formula
is valid for slenderness ratios larger than 110 (see Timoshenko27 for an
interesting account of the buckling research and also Den Hartog28,29 and
Boresi et al.30). Jasinsky continued the experimental work of Tetmajer and
provided sets of tabular data with critical stresses corresponding to various
slender ratios. The work of the two researchers is concentrated in an equation
that bears their name and that gives the approximate equation of the critical
stress in terms of the slenderness ratio in the inelastic domain as:

(6.35)

with a and b being functions of the column material. In such cases, the critical
force that produces inelastic buckling is:

(6.36)

It is apparent that longer columns are prone to elastic buckling while shorter
columns might still buckle but more probably it will occur in the inelastic
domain. Very short columns, though, do not buckle and, as expected, they
can only fail through regular compression, and the corresponding stresses
are simply:

(6.37)

Figure 6.4 illustrates a plot that provides a visual representation of the three
possible situations just mentioned: elastic (Euler) buckling, inelastic (plastic)
buckling, and pure compression by representing the critical stress σcr as a
function of the slenderness ratio λ. It can be seen that, for values larger than
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a limit value of the slenderness ratio λe, the buckling is elastic, while for
value less than λe but larger than λp (the subscript e stands for elastic and p
for plastic) the buckling is inelastic (or plastic). For slenderness ratios smaller
than λp, there is no buckling and the column is subject only to simple com-
pression. In problems where the flexure hinges of a compliant mechanism
have already been designed, it is useful to check the type of bending the
flexures might be subject to, if any, by calculating the effective (actual) slen-
derness ratio λ of the specific flexure configuration and comparing it with
the flag values λe and λp of Figure 6.4.

As for any problem regarding strength of materials, buckling is three
faceted, as any of the following aspects can be addressed: verifying (check-
ing), dimensioning, or calculation of the maximum safe load. Figure 6.5
provides a flowchart with the main steps involved in calculating a flexure
hinge that might be subject to buckling. The verifying or checking step looks
at an already existing flexure design with a defined geometry and material
properties. After calculating the slenderness ratio by means of Eq. (6.32), the
critical force can be determined through the equation that applies for elastic
or inelastic buckling or pure compression, as given in Eqs. (6.31), (6.35), and
(6.37), respectively. It is customary to calculate an effective (or actual) safety
coefficient, ceff, and compare it to a maximum allowable safety coefficient, ca,
according to:

(6.38)

where Peff is the axial compressive load that acts on the flexure hinge. In the
case:

(6.39)

the flexure will not be subject to the type of buckling it qualified for by virtue
of its corresponding slenderness ratio.

FIGURE 6.4
Critical stress–slenderness ratio plot as a decision tool for buckling/compression load.
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The dimensioning problem in buckling is not so straightforward as it
would be necessary to first decide which of the three possible categories
apply for the analyzed case. This, however, is not possible to do because the
slenderness ratio is not known in advance (determining some or all of the
geometric parameters that define a flexure hinge is the very subject of dimen-
sioning). The practical procedure usually assumes that in the worst-case
scenario the flexure will be subject only to elastic buckling (which will at
least preserve the physical integrity of the flexure after the load is removed).
As a consequence, the minimum moment of inertia Imin can be calculated from
Eqs. (6.31) through (6.33), under the assumption that the elastic properties
of the flexure material are known, and proper cross-sectional dimensions
can subsequently be selected to give the calculated minimum moment of
inertia. The effective geometry is then used to actually check if buckling does
occur, under the effective axial compressive load, according to the procedure
previously exposed.

A third problem in buckling, as mentioned, is determining the maximum
safety load, which is the axial load that can be carried by a particular flexure
hinge without the peril of subjecting the flexure to buckling. Because the
flexure hinge is already designed, it is known what type of loading it might

FIGURE 6.5
Flowchart of antibuckling approach to flexure hinges treated as columns.
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be subject to. As a consequence, the corresponding critical force can easily
be calculated, and the maximum safety load under a specified maximum
safety coefficient is given by:

(6.40)

In deriving the critical force for a given constant cross-section column, the
following steps have to be followed:

• Formulate the column deflection differential equation.
• Solve the differential equation (finding the function uy(x)).
• Apply the boundary conditions and determine the critical force as

the minimum-valued axial compressive force which is capable of
preserving the shape of the first-order deflected curve, as given by
the solution found according to the previous point.

The derivation of the critical force is briefly presented next for a fixed–free
column under an axial load, as shown in Figure 6.3. It is well known from
basic strength of materials principles that the bending-generated deflected
curve uy(x) is solution to the differential equation:

(6.41)

In the case shown in Figure 6.3, the bending moment, Mb, is produced
through the action of the axial force, F1x, and, at a current position x, this
moment is:

(6.42)

By substituting Eq. (6.42) into Eq. (6.41) and after rearranging factors, the
differential equation of the deflected column becomes:

(6.43)

with:

(6.44)

Equation (6.43) is a nonhomogeneous second-order differential equation
with constant coefficients, and its solution is expressed as the sum of the
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solution of the homogeneous equation (zero in the right-hand side of
Eq. (6.43)) and a particular solution of the nonhomogeneous equation. This
solution, in this case, can be taken as:

(6.45)

where the constants A and B are determined, while the particular solution
part is the deflection at the free end of the column u1y. By applying the
following boundary conditions:

(6.46)

we obtain the buckling condition:

(6.47)

Equation (6.47) combined with Eq. (6.44) will give the critical force as:

(6.48)

which, of course, coincides with the critical force of a fixed–free column as
previously given. Taking into consideration the definition of the moment of
inertia, the critical force for a constant rectangular cross-section, one-sensitivity-
axis flexure hinge is:

(6.49)

whereas for a multiple-axis (cylindrical) flexure hinge of diameter t the critical
force is:

(6.50)

For all the other flexure hinge configurations dealt with so far in this book, the
cross-section is not constant, and as a consequence the moment of inertia is
not constant, so that the differential equation, Eq. (6.43), is of the general form:

(6.51)
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where:

(6.52)

The solution to the homogeneous part of this second-order differential equa-
tion with non-constant coefficients is of the form (as indicated, for example,
by Tenenbaum and Pollard31):

(6.53)

where C1 and C2 are constants and uy1(x) and uy2(x) are two solutions. Pro-
vided that one solution is known (say, uy1(x)), the theory shows that the other
one can be found by means of the equation:

(6.54)

The double integration that is part of Eq. (6.54) can rarely be carried out
through elementary functions so that the problem of finding the solutions
of Eq. (6.51) has to be solved by means of approximate numerical procedures.
A brief account of the methods that can be utilized to find the critical force
in buckling for the case of variable cross-section columns is given by
Timoshenko,27 while a more detailed presentation can be found in the works
of Timoshenko and Gere,24 Allen and Bulson,25 or Chen and Lui.26 Fundamen-
tally, two method categories are dedicated to solving this problem: the energy
category and the numerical integration category. Energy methods, such as
the Rayleigh–Ritz method developed and implemented by Timoshenko, the
Galerkin method, or the Trefftz method, start by assuming a deflection curve
that satisfies certain constraints (the boundary conditions of the real problem,
most often) and then proceed by equating the strain energy that is stored
through buckling and the work done through axial compression. It is thus
possible to determine a critical force that is always greater than the real one
because, by assuming a deflection curve, additional constraints are intro-
duced to ensure that no other shape is taken by the deformed column, other
than the assumed one. A relaxation of this procedure that reduces the value
of the approximate critical force, as shown by Timoshenko,27 can be achieved
by selecting various assumed deflection curves in terms of several parame-
ters that can conveniently be adjusted to minimize the critical load. 

The second category of methods, which includes the Newmark procedure
and the step-by-step numerical integration technique, is specifically suited
to buckling applications where the cross-section is variable. In addition, as
detailed by Allen and Bulson,25 the Newmark method, for instance, can be
utilized for inelastic buckling situations. This category of methods also
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assumes a deflected shape of the column and then divides the length of the
column into several partitions, bounded by so-called stations. Two numerical
integrations are subsequently performed that permit evaluating the critical
force. In the methods where an assumed deflection curve is considered a
priori, of the generic form:

(6.55)

twice integrating the differential equations of the deflected column leads to
a solution whereby the critical force is of the form:

(6.56)

Usually, assumed deflection functions are sine, parabolic, or cubic polyno-
mials, as indicated by Allen and Bulson25 or Chen and Li,26 but even so,
performing the integrations of Eq. (6.56) cannot be achieved by means of
elementary functions so numerical integration is necessary in the majority
of cases. Numerical integration can be carried out through several algo-
rithms, and the work of Demidovich and Maron32 (among the many other
available monographs dedicated to this topic) is a very good source in this
sense. Current-day mathematical software such as Mathematica, Matlab,
Mathcad, or Mapple will easily solve numerical integration problems
through dedicated routines; however, it is instructive and relatively easy to
implement an existing numerical algorithm to solve this specific buckling
application. The numerical integration can be stated as follows: Given the
values of a function yi at several locations xi within its definition domain,
find the numerical value of the integral:

 (6.57)

subject to the condition:

(6.58)

where the values yi are known on the n distinct locations of the definition
domain. The best known integration methods, also known as quadrature
formulas, include the Newton–Cotes’, trapezoidal, Simpson’s, Chebyshev’s,
Gauss’, and Richardson’s methods. A numerical integration algorithm based
on Simpson’s rule is developed and utilized here, in order to perform the
double integration that is part of Eq. (6.56). Simpson’s rule, as indicated by
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Demodovich and Maron,32 for example, assumes a parabolic interpolation
polynomial is connecting a group of three consecutive values of a function,
yi–1, yi, and yi+1, according to the equation:

(6.59)

Simpson’s integration rule is quite accurate for a relatively small number of
division points, as its remainder, R, defined as:

(6.60)

is proportional to h5, with h being the step distance (distance between any two
consecutive division points). Because the numerical integration that will be
used here requires calculation of n consecutive areas (integrals) by means of
Eq. (6.59), it is clear that 2n – 1 division points will be necessary, given the fact
that Simpson’s rule requires three consecutive points to evaluate one integral.

A Newmark-type algorithm is presented next, based on Eq. (6.56), together
with a numerical integration procedure, and an example of a specific flexure
hinge configuration is then detailed. The following steps are involved in
finding the critical force by means of this numerical procedure:

• Divide the length of the fixed–free flexure hinge into n equally
spaced subintervals by means of 2n – 1 points (station), as
explained previously, with the integration step (distance between
two consecutive points) being h.

• Select an assumed-shape function f(x) to approximate the unknown
deflection curve of the fixed–free flexure hinge.

• Calculate the ratio f(x)/I(x) of Eq. (28) for the given geometry of
the analyzed flexure hinge (I(x)) and the assumed-shape function,
f(x).

• Calculate the discrete values of this ratio function at the 2n – 1
stations.

• Apply Simpson’s numerical integration rule twice, as necessary, in
Eq. (28) and calculate the corresponding critical (buckling) force,
according to the same equation, for each of the n consecutive
divisions.

• Calculate the average critical force Pcr.

An example of calculating the buckling force is presented and solved next
for a better understanding of the steps that were presented generically above.
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Example
Determine the critical buckling force that corresponds to a single-axis flexure
hinge of symmetric parabolic profile that is constructed of steel (E = 200 GPa)
and is defined by the geometric parameters l = 0.01 m, t = 0.001 m, c = 0.002 m,
and w = 0.003 m by using 10 integration divisions.

Solution
Because the number of integration divisions is n = 10, the total number of
stations that are necessary to apply Simpson’s rule will be 2n – 1 = 19, which
means that the value of the step is:

(6.61)

In order to check how the final result is affected by the type of the assumed-
deflection function f(x), two different functions will be analyzed, one sinu-
soidal and the other parabolic. Both functions must comply with the
fixed–free boundary condition of the flexure hinge. The equation of the
sinusoidal assumed-shape function is:

(6.62)

where an amplitude of 1 was taken arbitrarily, as this will not affect the
deflection distribution over the length of the flexure hinge. The equation of
the parabolic assumed-deflection function is selected as:

(6.63)

where, again, a value of 1/10 was arbitrarily chosen for the coefficient of x2.
For a parabolic flexure hinge, the variable moment of inertia is:

(6.64)

The f(x)/I(x) ratio that enters Eq. (6.56) can now simply be formulated by
combining Eq. (6.64) with either Eq. (6.62) or Eq. (6.63), which enables cal-
culation of the real values of this ratio at the 19 stations in this problem. This
makes it possible to apply Simpson’s numerical integration rule, according
to Eq. (6.59), two times consecutively and to find the corresponding critical
force of Eq. (6.56) at each of the 10 consecutive divisions for the sinusoidal or
the parabolic assumed-deflection functions. In the case of the sinusoidal
function of Eq. (6.62), the average value of the critical force was 3694 N,
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whereas for the parabolic function defined in Eq. (6.63) the average value of
the critical force was 3712 N.

6.3 Torsion of Noncircular Cross-Section Flexure Hinges

In Chapter 2, the torsional loading was considered and quantified only for
flexure hinges of rotational symmetry (multiple-axis or revolute flexures)
because these members are designed to be implemented in three-dimensional
applications where, due to spatial loading, torsion is expected to be applied.
In such cases, deriving the corresponding compliance factor, C1,θx–Mx, that
connects the torsion angle to the corresponding torque was relatively simple
because of the formulation pertaining to circular cross-sections. No torsion
compliance was derived for one- and two-axis flexure hinges because these
types are assumed to work through bending, about either one or two axes
in such way that torsion is not involved. For noncircular cross-sections such
as for these two types of flexure hinges, the torsion phenomenon does yield
load-deformation solutions that, for most of the cases, are not straightfor-
ward; therefore, approximations must be applied in order to obtain formulas
that can be used in engineering applications within acceptable error limits.
One such case is the rectangular cross-section, which does not produce a
load-deformation solution that can be expressed by means of an exact closed-
form equation. The situation applies to both single- and two-axis flexure
hinges, as presented in Chapter 2, where the rectangular cross-section con-
tains one or two dimensions that vary continuously over the length of the
flexure hinge. More details on the torsion of noncircular cross-section mem-
bers, in general, and on rectangular cross-section members, in particular, can
be found in Shanley,2 Timoshenko,27 Den Hartog,29 or Boresi et al.,30 to cite
just a few references.

Young33 gives an approximate equation (with errors less than 4%) that
connects the deformation angle to the torsion moment for a constant rect-
angular cross-section shaft that is fixed at one end, while the torsion moment
is applied at the opposite free end. The respective equation is of the form:

(6.65)

where It is the approximate torsional moment of inertia. Equation (6.65) is
also valid for a member whose length is infinitesimal, say dx, in which case
it transforms into:

(6.66)
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where It(x) for a single-axis flexure hinge and when t(x) > w is defined
(according to the approximation mentioned by Young33) as:

(6.67)

with the constants a and b defined as:

(6.68)

For a two-axis flexure hinge, the equation for It(x) is similar to Eq. (6.67), the
only difference being in the width, w, which is a function of x and so will
be denoted as w(x). The total angle of torsion of a variable rectangular cross-
section can be found by adding up all angular deformations of the infinitesimal-
length constant cross-section portions:

(6.69)

By combining Eqs. (6.66), (6.67), and (6.69), the compliance factor that cor-
responds to the torsion is defined as:

(6.70)

and is of the form:

(6.71)

for a single-axis flexure hinge and of the form:

(6.72)

for a two-axis flexure hinge where I1 and I2 are integrals defined as:
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and:

(6.74)

Equations (6.71) through (6.74) were utilized to formulate the approximate
equations of the compliance factor for the various single-axis flexure config-
urations introduced in Chapter 2, as well as for the specific two-axis flexure
hinge also presented in Chapter 2.

For a constant rectangular cross-section flexure hinge, the torsional com-
pliance is:

(6.75)

6.3.1 Symmetric Single-Axis Flexure Hinges

The torsional compliance factors are given first for symmetric single-axis
flexure hinges. The torsional compliance of a circular flexure hinge is:

(6.76)

For a corner-filleted flexure hinge, the torsional compliance is:

(6.77)

The torsional compliance for an elliptic flexure hinge is:

(6.78)
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The torsional compliance of a parabolic flexure hinge is:

(6.79)

The torsional compliance for a hyperbolic flexure hinge is:

(6.80)

The torsional compliance of a flexure hinge with symmetric inverse parabolic
profile is:

(6.81)

where a1 and b1 were introduced in Eq. (2.283) of Chapter 2.
The torsional compliance of a secant-profile flexure hinge is:

(6.82)

Several limit calculations were also performed to check whether the torsional
compliance equations of the different symmetric one-sensitivity-axis flexure
hinges that were derived here reach certain particular expressions when the
geometry is conveniently altered. For instance, for all the c flexures (as intro-
duced in Chapter 2, where this denomination covered the elliptic, parabolic,
hyperbolic, inverse parabolic, and secant configurations) the particular
expressions taken by the corresponding torsional compliances were checked
when the parameter c was forced to converge to zero. It was seen that
Eqs. (6.78) through (6.82) became identical to Eq. (6.75), which describes the
torsional compliance of a constant rectangular cross-section flexure hinge for
c → 0, as is normal. A similar limit was performed for the torsional compliance
of a corner-filleted flexure hinge by taking r → 0 in Eq. (6.77), and again the
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torsional compliance of a constant rectangular cross-section flexure (Eq. (6.75))
was retrieved. Additionally, l 

 

Æ

 

 2

 

r

 

 was also taken in the same equation of
the corner-filleted flexure hinge to check whether, indeed, the torsional com-
pliance would become that of a circular flexure hinge. The calculations
showed that, indeed, by taking the limit mentioned above, Eq. (6.76), which
describes the torsional characteristics of a circular flexure hinge, was retrieved.

 

6.3.2 Nonsymmetric Single-Axis Flexure Hinges

 

Similar expressions are now given for single-axis flexure hinges that are
axially nonsymmetric, of the types discussed in Chapter 2. Their axial cross-
section is formed by a straight line on one side of the longitudinal axis and
a specific curve (circle, ellipse, parabola, hyperbola, etc.) on the other. The
torsional compliance of a circular flexure hinge is:

(6.83)

The torsional compliance of a corner-filleted flexure hinge is:

(6.84)

The torsional compliance of an elliptical flexure hinge is:

(6.85)

The torsional compliance of a parabolic flexure hinge is:

(6.86)
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The torsional compliance of a hyperbolic flexure hinge is:

(6.87)

The torsional compliance of an inverse parabolic flexure hinge is:

(6.88)

The torsional compliance of a secant flexure hinge is:

(6.89)

Just as for symmetric configurations, the same checks were performed for
the torsional compliances of the nonsymmetric flexure hinges discussed here.
The torsional compliance equation of a constant rectangular cross-section
flexure was retrieved for c flexures when taking c → 0, as well for corner-
filleted flexures for r → 0. In addition, the corner-filleted flexure hinge gave
a torsional stiffness that was identical to that of a circular flexure hinge when
l → 2r.

6.3.3 Parabolic-Profile Two-Axis Flexure Hinges

For a two-axis flexure hinge, both cross-sectional dimensions vary in a con-
tinuous fashion as a function of x. In Chapter 2 the closed-form compliance
equations were derived for a two-axis flexure hinge of double inverse par-
abolic profile which meant that both t(x) and w(x) were in the form of inverse
parabolic functions as defined in Chapter 2. The torsional compliance of a
two-axis flexure hinge with double parabolic profile is derived here follow-
ing the procedure that was already outlined and applied for single-axis
flexures. As previously done, it is assumed that the two symmetric profiles
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are extending over the same length, l. The torsional compliance of this
particular type of flexure hinge is:

(6.90)

Equation (6.90) was checked for the limit case when both ct → 0 and cw →
0. Equation (6.75) was obtained, which gives the torsional compliance of a
constant rectangular cross-section flexure hinge.

6.4 Composite Flexure Hinges

All the modeling effort so far in terms of stiffness (compliance), inertia, and
damping discretization for different types of flexure hinges has focused on
flexure members constructed of isotropic materials. In some situations, how-
ever, the flexure hinges are built of several materials and of members with
possibly nonidentical geometries that are attached together to form a com-
posite flexure hinge. The MEMS domain, particularly, offers examples of
composite flexure hinges. In his excellent monograph on MEMS, Maluf34

provides examples of several such flexure designs, including radiofrequency
(RF) switches that are realized from silicon and aluminum sandwiched
together, piezoresistive write/read cantilevers that contain a piezoresistive
layer glued atop a silicon substrate, or the special-configuration flexures that
compose the so-called grating light valve device and are made up of two
layers of aluminum and silicon nitride. All of these configurations and several
others that can be found in MEMS applications are essentially single-axis
flexure hinges that are built of at least two different materials. In our discus-
sion here, we approach the problem of deriving adequate compliance, inertia,
and damping properties of composite single-axis flexure hinges. This problem
is extremely important as such applications are usually intended to function
in a resonant regime, oftentimes in a narrow and very well-defined resonant
frequency range. As a consequence, being able to correctly predict the stiffness
(compliance), inertia, and damping properties of such systems is crucial.
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Figure 6.6 is an illustration of a composite flexure hinge that is built of two
components having different lengths and thicknesses but which are identical
in width. The two components are constructed of different materials that,
for the sake of tractability, are assumed to be isotropic.

A procedure is explained in the following text that allows transformation of
the composite flexure hinge in an equivalent flexure that is uniquely defined
by unique compliance (stiffness), inertia, and damping properties that will
permit, ultimately, analysis of the static and dynamic behavior of a single-axis
flexure hinge with three degrees of freedom (DOFs). A somewhat similar
procedure was followed by Lobontiu et al.36 who transformed a composite
beam of a sandwich configuration composed of two piezoelectric patches and
a metallic substrate into an equivalent one-DOF beam in terms of mass, stiff-
ness, damping, and forcing agents. From a connection viewpoint, it can be
considered that we have two flexure segments attached in series: (1) one seg-
ment that extends over the length (l1 – l2) between points 1 and 2 in Figure 6.6
and consists of the material and geometry denoted by 2, and (2) another mixed
segment that lies between points 2 and 3 over the length l2, as also shown in
Figure 6.6. This second part is made up of two members that are geometrically
identical but fabricated of different materials, and it can be considered that
these two flexure segments are connected in parallel. As a consequence, all
subsequent equivalence calculations will go through two steps:

• Calculation of the partial equivalent properties over length l2 by
considering that the two sandwiched geometrically identical flex-
ure portions are connected in parallel

• Calculation of the final equivalent properties of the composite flex-
ure by taking the series combination of the flexure segment which
lies between points 1 and 2 in Figure 6.6 (material 1) and the
composite flexure segment extending over length l2 and whose
properties were already determined at the previous step

FIGURE 6.6
Composite flexure hinge made up of two members of different materials and geometry.

l1

l2w2

w1

t
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(b)

1 2 3
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6.4.1 Compliance Properties

The equivalent axial compliance will be derived first, and then the other
three equivalent compliances that define the in-plane flexible behavior of a
single-axis flexure hinge will similarly be formulated. As a reminder, the
number in the subscript notation of a compliance factor denotes the point
that is considered free and actually gives a specific compliance of that point
with respect to the opposite fixed point of the analyzed flexure segment. As
a consequence, the number 2 in the subscript of the compliance indicates,
in the case pictured in Figure 6.6, that segment 2–3 is targeted (with point 2
considered free and point 3 fixed), while the number 1 signals that homo-
geneous segment 1–2 is under scrutiny (point 1 is free and point 2 is con-
sidered fixed). The axial compliance of composite segment 2–3 can be found
according to the parallel-connection formula:

(6.90)

where the superscripts indicate the material. The equivalent axial compliance
corresponding to the entire composite flexure combines the compliance of
Eq. (6.90) with that of segment 1–2 by means of a series-connection situation,
and the final compliance value is:

(6.91)

where the superscript e has been utilized to denote the equivalent value. The
other compliances that are meaningful to the in-plane behavior of the com-
posite single-axis flexure hinge are calculated similarly, and their equations are:

(6.92)

All individual compliances that appear in Eqs. (6.91) and (6.92) can be cal-
culated by the explicit formulations that were given in Chapter 2 for the flexure
geometry that is of interest. If torsion is also important, as is the situation
with many MEMS applications, the equivalent torsional compliance of the
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composite flexure can be computed following the same format, according to
the equation:

(6.93)

where the individual torsional compliances were approximately calculated
within this chapter.

6.4.2 Inertia Properties

The discretized inertia properties of the composite flexure of Figure 6.6 are
calculated in a similar manner. It was shown previously that a three-DOF
single-axis flexure hinge is associated with a basic diagonal 3 × 3 inertia
matrix that accounts for axial and bending effects. If torsion is also taken
into account, the basic 3 × 3 matrix can be extended to a 4 × 4 configuration
by diagonally adding the torsion inertia on the last row and column. The
details given within Chapter 4 with regard to inertia calculations that were
aimed at transforming the original distributed-inertia flexure hinge into a
lumped-parameter one highlighted the point that, for each of the main
vibrations of the fixed–free element, an inertia parameter can be calculated
and located at the free end. Applied to the specific problem of Figure 6.6,
this general statement amounts to initially finding three inertia properties
for each type of vibrational motion corresponding to the three different
segments: material 1 over length l1 – l2, the same material over length l2, and
material 2 over length l2. The total kinetic energy produced by, say, their
axial (along the x axis) vibration should be equal to the kinetic energy of an
equivalent (unknown as yet) mass that is located at free end 1 and also
vibrates axially. The equation that corresponds to this statement is:

(6.94)

It was shown that the velocity field in a vibrating beam is distributed accord-
ing to a specific law so the velocities at points 1 and 2 are connected, accord-
ing to:

(6.95)

where the distribution function fa(x) was given in Chapter 4 in generic form but
is also valid in this situation when calculated for segment 1–2. By substituting
Eq. (6.95) into Eq. (6.94), the unknown equivalent mass that represents the axial
vibration inertia properties of the entire composite flexure hinge can be calcu-
lated as:

(6.96)
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The individual masses involved in Eq. (6.96) can be calculated by means of
the equations that have been given in Chapter 4. Similarly, the distribution
function fa(x) can be calculated by means of the formulation also given in
Chapter 4 by making the modifications required for its specific application
to segment 1–2 of Figure 6.6. Similar reasoning and calculation result in the
following equivalent inertia properties for the remaining degrees of freedom:

(6.97)

Again, all individual inertia properties, together with the corresponding
distribution functions fby and fbθz, were given in Chapter 4, and they only
have to be calculated for the specific intervals and corresponding geometry.
When torsion is taken into account, a similar equation can be written to
express the equivalent torsional inertia of the composite beam, in the form:

(6.98)

However, calculating the individual torsional moment of inertias and corre-
sponding distribution function ft(x) of Eq. (6.98) is beyond the scope of this
work.

6.4.3 Damping Properties

Establishing the discretized damping properties of the composite flexure
hinge pictured in Figure 6.6 follows the path taken in deriving the similar
inertia properties, as done previously. The damping matrix is also diagonal
and has a dimension of 3 × 3 when the regular in-plane vibratory motions
are considered but it can only be a 4 × 4 diagonal matrix when torsion is
added to the regular axial and bending motions. The similarity with the
inertia properties also resides in the fact that viscous damping, as described
so far, depends on velocity, in the sense that the energy dissipated through
damping is proportional to the square of the velocity corresponding to a
given motion. The original composite beam is made up of three individual
homogeneous segments, as explained when treating inertia equivalence;
therefore, they will all contribute to the equivalent overall damping energy
produced by an equivalent dashpot. The equation giving the damping
energy equality between the original and the equivalent systems is of the
form:

(6.99)
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The velocities of Eq. (6.99) are connected according to Eq. (6.95); therefore,
the equivalent dashpot parameter corresponding to axial vibrations is:

(6.100)

where the individual dashpot parameters can be calculated by means of the
formulation given in Chapter 4. The equivalent dashpot parameters corre-
sponding to bending can similarly be formulated as:

(6.101)

where again the individual damping coefficients can be calculated by means
of the corresponding equations developed in Chapter 4. When torsion is
taken into consideration, its equivalent dashpot parameter can be calculated
similarly as:

(6.102)

where again the individual damping coefficients and corresponding distri-
bution function are not explicitly given here.

6.5 Thermal Effects

For the vast majority of isotropic materials, linear dimensions of mechanical
members expand with increasing temperature according to the well-known
formula:

(6.103)

where d is the initial value of a given dimension, while α is the coefficient
of thermal expansion, and ∆T is the temperature increase.

6.5.1 Errors in Compliance Factors Induced through Thermal Effects

An interesting problem would be to determine how compliance properties
change for the different flexure hinge configurations that have been treated
so far with changes in the temperature in the fixed–free boundary condition.
Directly related to this aspect is evaluation of the displacement errors that
are induced by temperature variations. This issue is discussed here for
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one-, multiple-, and two-axis flexure hinges by considering the Euler–Ber-
noulli (long-beam) model and then the Timoshenko (short-beam) model. It
will be also assumed that the change in temperature is quasi-static and
constant for the entire flexure hinge.

6.5.1.1 Euler–Bernoulli Beams

6.5.1.1.1 Single-Axis Flexure Hinges

For a constant-width single-axis flexure hinge, the final dimensions, after a
temperature increase of ∆T, are:

(6.104)

According to its definition, the axial compliance is calculated by means of
the equations given in Chapter 2 and, in the case of thermal expansion, will
be given by:

(6.105)

It can easily be shown that the compliance that takes into consideration the
thermal effects is related to the regular corresponding compliance as:

(6.106)

In a similar manner, the other compliances that define the in-plane flexible
behavior of single-axis flexure hinges are:
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Relative errors can now be defined to check how temperature effects account
for changes in the compliant response of this type of flexure hinges. The
error in the axial compliance can be defined simply as:

(6.110)

where the temperature-corrected axial compliance is given in Eq. (6.106) and
the regular one is expressed in Chapter 2. Similar error functions can be
defined for the other three in-plane compliance factors.

6.5.1.1.2 Multiple-Axis Flexure Hinges

An approach similar to the one just detailed yields the following temperature-
corrected compliance factors for multiple-axis (revolute) flexure hinges:

(6.111)

(6.112)

(6.113)

(6.114)

(6.115)

The regular compliance factors that go into Eqs. (6.111) through (6.115) are
given for specific flexure geometries in Chapter 2. Errors that are present
when thermal effects are considered with respect to the situation when they
are ignored can be evaluated by means of error functions that can be formu-
lated similarly to Eq. (6.110).

6.5.1.1.3 Two-Axis Flexure Hinges

As defined in Chapter 2, two-axis flexure hinge configurations have a rect-
angular cross-section that is variable in terms of both parameters t and w.
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In this case, the relevant compliance factors are:

(6.116)

(6.117)

(6.118)

(6.119)

(6.120)

(6.121)

(6.122)

As a reminder, Eqs. (6.117) through (6.119) give the direct- and cross-bending
compliances about the primary bending axis, while Eqs. (6.120) through
(6.122) give the direct- and cross-bending compliances about the secondary
bending axis. Again, error functions can be formulated following the exam-
ple with single-axis flexure hinges, Eq. (6.110), in order to assess the errors
introduced through consideration of the thermal effects.

6.5.1.2 Timoshenko Beams

Chapter 2 treated the problem of short beams by introducing corrections to
the corresponding compliance factors, according to the Timoshenko (short
beam) model that takes into account the shearing effects. It was demon-
strated in Chapter 2 that the only changes that need to be operated in order
to account for shearing effects are in the direct-bending compliance factors
that are related to deflection. As a consequence, the same change has to be
implemented when analyzing the thermal effects on short flexure hinges.
Formally, it is necessary to utilize  as expressed in Chapter 2 for one-,
multiple-, and two-axis flexures, instead of C1,y–Fy in the equations corresponding
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to the Euler–Bernoulli model. The same modification has to be operated for
the secondary bending axis z and its corresponding direct-bending deflection
compliance, C1,z–Fz, for two-axis flexure hinge configurations. Error functions
can again be constructed on the model developed for Euler–Bernoulli one-
axis flexures.

6.5.2 Compliance Aspects for Nonuniform Temperature Change: 
Castigliano’s Displacement Theorem for Thermal Effects

It was relatively simple to determine the alterations in the compliance factors
of various flexure hinge configurations when they were subjected to a change
in temperature that was constant for the entire flexure hinge. Things change
slightly when the temperature varies, potentially both over the flexure’s length
and thickness or width. In such instances, an extension of Castigliano’s
displacement theorem to include thermal effects (as detailed by Burgreen,37

for instance) can successfully be utilized to determine load–deflection rela-
tionships. The method presented by Burgreen37 essentially adds a strain-
equivalent thermal energy to the regular strain energy being produced
through elastic deformations of a mechanical member. The total strain energy
can be expressed, in the case of a single-axis flexure hinge where only in-
plane deformations are considered, as:

(6.123)

where the subscript t indicates total. The total bending moment, Mb,t, of
Eq. (6.123) is expressed as follows:

(6.124)

where Mb is the regular elastic bending moment and Mb,th is an equivalent
bending moment that is generated through thermal effects and is calculated as:

(6.125)

In the equation above, the temperature is assumed to vary both with x (over
the flexure length) and y (over the flexure thickness); y also represents the
distance measured parallel with the thickness (the y axis) from the neutral
axis. Likewise, the total axial load Nt of Eq. (6.123) sums up the actual normal
elastic load N and a normal component formulated based upon a factor Nth

that is generated through thermal effects, namely:
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where:

(6.127)

By substituting Eqs. (6.124) through (6.127) into Eq. (6.123) it is possible to
calculate axial deformation, deflection, and slope at the free end of the flexure
hinge by the regular procedure implied by the regular Castigliano’s displace-
ment theorem.

Example
Discussing all the variable-temperature aspects regarding each flexure con-
figuration that has been presented so far is beyond the scope of this work,
but an example is briefly discussed here to outline the main features of
applying the extended form of Castigliano’s displacement theorem. Consider
that a given variable temperature T(x,y) is applied to a single-axis flexure
hinge. The axial displacement, deflection, and slope at the free end of the
flexure must be determined when a static load composed of two tip forces,
F1x and F1y, and a moment, M1z, are also applied. 

Solution
The axial displacement can be found, according to Castigliano’s displace-
ment theorem, as:

(6.128)

By following the calculation procedure exposed in Eqs. (6.124) through
(6.127) it follows that the tip axial displacement can be expressed as:

(6.129)

The minus sign in Eq. (6.129) shows that the thermal expansion opposes the
elastic deformation according to the convention utilized so far that considers
the compressive axial force is positive. Similar calculations can be made to
determine the deflection u1y and slope θ1z. The free-end deflection is calcu-
lated as:

(6.130)
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and it can be shown that its final expression is:

(6.131)

Similarly, the free-end slope is given by Castigliano’s displacement theorem
in the generic form:

(6.132)

and its final equation is:

(6.133)

6.6 Shape Optimization

Optimizing the shape of mechanical or structural components has been a
topic of great interest over the last several decades, and the research results
of either analytical or finite-element analysis (or other numerical techniques)
have been presented in numerous works. The monographs of Kirsch,38 Roz-
vany,39 and Haftka et al.40 are just a few examples that systematically present
aspects of shape optimization of structural members and the associated
modeling and solving methods that appeal to analytical procedures, while
the work edited by Bennett and Botkin41 gathers significant papers that treat
the shape optimization topic by means of finite-element techniques. Another
classical textbook that treats problems of optimization tailored to mechan-
ical members and systems is that of Vanderplaats.42 Relatively few works
deal directly with shape optimization of flexure hinges; representative of
this area, however, is the paper by Takaaki and Toshihiko,43 which applies
finite-element modeling and analysis to study the optimum profile of flex-
ure hinges. The objective of this approach is to identify those configurations
that present high bending flexibility (compliance) and high axial stiffness
concomitantly. 

Optimum profiles have been identified that are capable of taking a uni-
formly distributed stress whose performance was compared to circular, elliptic,
and flat flexure hinges. In a paper by Silva et al.,44 the homogenization
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method is utilized to design the optimum configuration of so-called flexten-
sional transducers, which are actually devices aimed at amplifying the out-
put displacement of a piezoelectric actuator by means of a compliant flexure-
based frame. The problem is treated in the dynamic domain by considering
inertia properties, in addition to those for stiffness, and the result consists
of an optimized piezoelectric-coupled structure whose specified mode shape
is located in a predefined resonant frequency range. The work of Bendsoe45

is dedicated entirely to optimizing structural material, shape, and topology
by means of the homogenization method, which fundamentally assumes a
structure to be composed of a mosaic of material regions with nonzero
dimensions interspersed with voids. Alternatively, the density might be uti-
lized to discriminate between material regions and voids. The optimum
structure in terms of an objective function can thus be obtained by applica-
tion of a so-called homogenization relationship. Haftka and Grandhi46

present a collection of the most relevant research results in the domain of
structural shape optimization. Belegundu47 provides an excellent primer in
shape optimization problems as approached by finite elements. 

Several recently published papers approach various optimization tech-
niques as applied to compliant mechanisms. Frecker et al.,48 for instance,
deal with the topological synthesis of compliant mechanisms through mul-
ticriteria optimization and by utilizing the concept of “design for required
deflection.” Several other research papers report results of optimizing com-
pliant mechanisms in a fully blown procedure by analyzing the entire com-
pliant mechanism in terms of both design variables and topology.
Representative to this approach are the papers of Nishiwaki et al.,49–51 in
which multi-objective functions are formulated based on the mutual energy
and a homogenization procedure to study the optimum configuration of
several compliant mechanism applications. Hetrick et al.52 study the robust-
ness of several optimization formulations that are dedicated to compliant
mechanisms, while Hetrick and Kota53 propose an optimization technique
that is energy based and designed to maximize the energy throughput for
linear compliant mechanisms in the static domain. Sigmund54 develops a
methodology for the optimal design of compliant mechanism topologies by
means of a continuum-type technique that constrains the input displacement
and determines the mechanism configurations, which are able to maintain
the stress levels within controlled limits. Tai and Chee55 approach the topol-
ogy and shape optimization of compliant structures by means of genetic
algorithms, whereby geometric characteristics are transmitted across gener-
ations in an evolutionary process. Saxena and Anathasuresh56 propose an
optimization scheme for compliant mechanisms by formulating a nonlinear
finite-element model capable of incorporating large deformation effects and
that allows calculation of the design sensitivities analytically.

Chapter 2 introduced several flexure hinge configurations for both two-
and three-dimensional compliant mechanism applications that were defined
as fully compliant multiple-spring members by giving compliance closed-
form equations for various motions (deformations). At the same time, trends
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were indicated for the ways in which a particular compliance can be increased
or reduced through corresponding variations of the defining geometric
parameters. In a similar manner, Chapter 4 included a segment where the
corresponding inertia properties of flexure hinges were derived, such that
their behavior can be studied in both the static (or quasi-static) and dynamic
ranges. An attempt will be made here to analyze the conditions under which
the response of a given flexure hinge can be optimized, with regard to either
the static and dynamic response of a given flexure hinge. A major research
effort has been directed lately at optimizing the compliant mechanism in its
entirety, but little research has targeted optimizing flexure hinges, as basic
components, before attacking the full system of a compliant mechanism.
Figure 6.7 describes the main aspects that are involved in the process of
optimizing a compliant mechanism.

It is known that the optimized design of a structural system defines first its
design parameters (quantities that usually remain unaltered during optimi-
zation) and its design variables (quantities that need to be determined in order
to render a design optimal). For a compliant mechanism, a flexure hinge
component can be regarded as a design subsystem that requires optimization
at its own level, as indicated in Figure 6.7, before proceeding with optimiza-
tion for the entire compliant mechanism system. This approach, compared to
the current procedures that attempt full-blown optimization of a compliant
mechanism, has its advantages. For example, it allows for better, more inti-
mate analysis of a flexure hinge, at its individual performance level, which is
most often not the case with the classic approach, which tends to divide its

FIGURE 6.7
Main components in the optimized design of a compliant mechanism.
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solving resources on an even basis between the components of the compliant
system, be they compliant or rigid. In doing so, it is possible to avoid the
great effort required to analyze the rigid links that are merely connectors and
followers of the flexure hinges. Optimizing a flexure hinge basically requires
maximizing the relative rotation between two adjacent rigid members, while
minimizing all other (or as many as possible of the) undesired motions under
given design restrictions or constraints, as pictured in Figure 6.8.

As mentioned by Kirsch,38 for example, it is necessary to discriminate
between design constraints, which are mainly defined through geometric
limitations that have to be imposed by the very nature of the design (for
instance, the length of a flexure hinge cannot exceed a maximum value but,
at the same time, obviously must be nonzero), and behavior constraints, which
denote limitations placed by maximum levels of stresses (to avoid excessive
loading), critical axial loading (to prevent buckling), displacement (to stay
within predefined bounds), or natural frequencies (to avoid or provoke the
resonant response). The mathematical formulation of a generic optimization
problem can be stated as:

(6.134)

where f is the objective function defined in terms of the design vector {X}, and
gj are constraint functions, also defined in terms of {X}. The design vector
{X} has n design variables, namely:

(6.135)

FIGURE 6.8
Generic optimization problem for flexure hinges.
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Several methods are available for mathematically treating an optimization
problem, but one of the most reliable and used methods is the Lagrange’s
multipliers method coupled with the Kuhn–Tucker conditions, as mentioned
in such works as those of Kirsch,38 Rozvany,39 or Vanderplaats,42 to cite just a
few. Lagrange’s function Φ is introduced and depends on the objective func-
tion f, the constraint functions gj, and several undetermined parameters, θj:

(6.136)

where:

(6.137)

and ja denotes the number of active constraints (i.e., constraints that effec-
tively influence the design variables). The necessary conditions for a mini-
mum point in the design space {X} for the function of Eq. (6.136) are:

(6.138)

The solutions of the optimized problem are among those identified by apply-
ing Eqs. (6.137) and, of those, only the ones that comply with the Kuhn–Tucker
conditions:

(6.139)

where the newly introduced differential operator is defined for a given vector
{V} that depends on the variables Xi as:

(6.140)

The same operator applied in matrix form to the constraint functions gj is
defined as:

(6.141)
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The usefulness of an approach that combines Lagrange’s function and
Kuhn–Tucker conditions resides in the fact that it incorporates the constraint
inequalities in a single function alongside the objective function.

A displacement-related optimization study is performed next that
addresses each group of flexure hinges, as previously defined, followed by
examples from each category. For single-axis flexure hinges, the objective
functions (that must be either maximized or minimized) are formulated in
terms of compliances and can be stated as:

(6.142)

because each of the above-mentioned compliances defines the capacity of
rotation of a specific flexure hinge. Coupled to Eq. (6.142), either of the
following statements are also desirable:

(6.143)

The compliances of Eq. (6.143) denote effects that must be minimized, such
as axial, out-of-plane bending and torsion, because they are detrimental to
the functional output of a flexure hinge. Instead of treating each of the
statements of Eqs. (6.142) and (6.143) individually, a mixed objective function
can be constructed of the form:

(6.144)

which must be minimized. For multiple-axis flexure hinges, the compliances
that have to be maximized are the ones enumerated in Eq. (6.142), while the
ones that must be minimized are:

(6.145)

As a result, a composite objective function of the following form can be
constructed in order to be minimized:

(6.146)

For two-axis flexure hinges, the minimum and maximum conditions, as well
as the form of composite objective function, f, are similar to those expressed in
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Eq. (6.145) although a more detailed discussion, not developed here, is necessary
in order to comply with the restrictions in compliance about the primary and
secondary sensitive axes.

With respect to constraints, in a displacement-based optimization approach
to flexures, a reasonable set of conditions for a single-sensitive axis flexure
hinges will place constraints upon the length, l; minimum thickness, t; and
parameter c (for elliptic, parabolic, hyperbolic, inverse parabolic, and secant
configurations, as detailed in Chapter 2) or fillet radius r (for corner-filleted
configurations) in the bounding form:

(6.147)

For this type of flexure hinge, it is considered that width w is constant.
Equation (6.147) can be rewritten in the form required by the generic con-
straint expression of Eq. (6.134), namely:

(6.148)

According to this form, six parameters, θj, will be necessary to complete the
Kuhn–Tucker conditions given in Eq. (6.139). Constraints that are identical
to this flexure category must be formulated for multiple-sensitivity flexure
hinges. For two-dimensional flexures, where the width is variable, a condi-
tion in addition to those of Eq. (6.148) must be applied:

(6.149)

which generates two additional standard constraint functions:

(6.150)
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and, as a consequence, two more θj parameters (j = 7, 8) will be needed in
the Kuhn–Tucker conditions.

The displacement-based optimization of different flexure hinges has
focused so far on known configurations, in the sense that the longitudinal
profiles and the associated compliances were explicit functions. The question
arises as to whether there are other profiles that have not been investigated
so far but which can lead to better results, compared to the definite-profile
flexures previously analyzed, in terms of the objective functions. In other
words, the optimization problem might be stated as: Find the thickness of
a flexure hinge in order to minimize a compliance-based objective function.
In this case, the compliances that would enter the objective functions are
unknown because they depend on the unknown thickness. Figure 6.9 illus-
trates the quarter model of a flexure hinge with unknown variation of its
thickness.

The geometric constraints that would apply to this particular optimization
problem are:

(6.151)

It is beyond the scope of this discussion to go into more detail with the shape
optimization of a flexure hinge by means of the general formulation previously
stated.

FIGURE 6.9
Quarter-model of flexure hinge with unknown thickness variation.
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6.7 Means of Actuation

Actuation is an extremely important topic in assessing the overall behavior
of flexure-based compliant mechanisms. Various means of actuation will
briefly be analyzed pertaining to either macroscale or microscale (MEMS)
applications.

6.7.1 Macro-Actuation

Several types of actuation can be utilized for macroscale flexure-based compliant
mechanisms, depending upon the specific functions the mechanism was
designed to accomplish. An entire class of materials and actuators is imple-
mented in various compliant mechanism applications because they share a com-
mon trait. Those materials are often encountered under the common label of
“smart materials” in the sense that they are capable of changing their shape and
geometrical dimensions in a meaningful and, often-times, controllable fashion
when subject to a specific input to which they are sensitive. Examples of such
materials or components take advantage of their sensitivity to an electric, mag-
netic, or thermal stimulus that prompts energy conversion and produces
mechanical work output. These special actuators are briefly described in the
following text, alongside more common types of actuators that are being
employed in macroscale flexure-based compliant mechanisms.

6.7.1.1 Induced-Strain Actuators

Induced-strain actuators are also called solid-state, strain-induced actuators
as they can generate mechanical output from either electrical or magnetic
input energy. Included in this category are piezoelectric, electrostrictive
(these two subsets are also called electroactive), and magnetostrictive
(also called magnetoactive) materials. They all produce relatively small
output displacement but high output force. Giurgiutiu and Rogers57 have
given a comparative account of the performance of the strain-induced actu-
ators, and a general view of the electroceramic materials can be found in the
work of Moulson and Herbert,58 as well as in a paper by Haertling.59 A brief
presentation of each of the above-mentioned types will be presented next.

6.7.1.1.1 Piezoelectric Ceramics

These materials are usually composed of lead, zirconium, and titanium
(denoted by PZT) or of lead, lanthanum, zirconium, and titanium (simply
denoted by PLZT). They are ferroelectric ceramics that are reciprocally elec-
troactive, as they can change their dimensions when an electrical field is
applied to them and, conversely, generate an electric output when acted upon
by an external mechanical pressure. Piezoelectric materials accept reversed
polarity in a proportion of up to 30% and display a hysteretic characteristic
that is quasi-linear up to an approximately 0.15% strain. The classical PZT
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equations (ANSI/IEE Standard 176–1987) connect mechanical to electrical
amounts in the following form:

(6.152)

where S is the mechanical strain, T is the mechanical stress, E denotes the
electrical field, D represents the electrical displacement, s is the mechanical
compliance of the material at zero electrical field (E = 0), ε is the dielectric
permitivity at zero mechanical stress (T = 0), and d denotes the piezoelectric
coupling factor between electrical and mechanical properties. It is worth
noting that in a piezoelectric material, the strains developed under an applied
electrical field are proportional to the voltage. In a PZT plate, for example,
that is subject to voltage V and has thickness t, the free strain that is produced
is expressed as:

(6.153)

where d is the piezoelectric charge constant.
PZT ceramics achieve a high performance actuation because of their mor-

photropic composition, being situated between the tetragonal and rhombo-
hedral phases, which allows easy coupling between the two phases and,
therefore, produces high piezoelectric properties through enhanced polariz-
ability, as mentioned by Park and Shrout.63 The piezoelectric properties are
further increased by reducing the Curie temperature, which dictates the
phase transformation for a PZT. Unfortunately, this leads to more sensitivity
to temperature and increased exposure to aging effects and less piezoelectric
activity. Such soft ceramic PZTs (the proptotype being the PZT-5H compo-
sition, also known as Navy type VI) could reach values of the piezoelectric
coefficient as high as 700 pC/N and strain levels of up to 0.1%, at the expense
of high hysteresis and poor temperature stability, which restrict the applica-
tion domain to low-frequency ones. Reducing the hysteretic losses can be
achieved through material enhancements such as in the hard PZTs such as
PZT-8 (Navy type III), for instance, but this improvement substantially
reduces the piezoelectric coefficient to maximum values of 300 pC/N.

Piezoelectric actuators are fabricated in various forms, and Figure 6.10
illustrates a few configurations. A very common design is the stacked PZT,
which is realized by gluing, pressing, and sintering together several piezo-
electric patches to form a bloc, as illustrated in Figure 6.10a. By applying an
electrical field, the PZT stack either contracts or expands, thus producing
the output linear motion. The stack PZT is a commonly utilized actuator in
small- to medium-scale compliant mechanisms that are designed as precision
positioning systems, for instance. Another application is the PZT bender that
can be constructed in a dome configuration, as sketched in Figure 6.10b,
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or in an initially planar shape as shown in Figure 6.10c. The domed design
is encountered in commercially available products such as THUNDER
(developed by Face® International Corp.). Other disk-shaped configurations
are MOONIE and RAINBOW. In such designs, the PZT wafer is attached to
a metal substrate and specific heat treatment induces stresses that bend the
entire structure in the absence of external loading or an electrical field. More
details on the particular geometry and operating features of these types of
commercially available actuators can be found in the papers of Li et al.,60–62

to cite just a few. Such constructions, in either bent or straight designs, are
called unimorph piezoelectrics, whereas the configurations that utilize different
pizoelectric materials glued together are called bimorphs. Apart from these
composite actuators, companies that are involved with piezoelectric materi-
als, such as Morgan Matroc, Inc., for instance, also develop actuators in more
common shapes, including blocks, discs, tubes, rings, or hemispheres.

6.7.1.1.2 Electrostrictive (PMN) Materials

The main constituents of electrostrictive materials are lead, magnesium, and
niobium (PMN). These electroactive ceramic also manifest reciprocal piezo-
electric properties by being able to convert the electric energy into mechan-
ical energy and vice versa; however, they do not accept reversed polarity.

FIGURE 6.10
Some configurations of strain-induced actuators: (a) linear PZT stack; (b) unimorph dome
(THUNDER variant); (c) bimorph bender.
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The strain produced by electrostrictive actuators is proportional to the square
of polarization, according to the general equation:

(6.154)

where c is a constant that incorporates both geometrical and material prop-
erties of the electrostrictive component.

The dielectric performance of commercially available electrostrictive mate-
rials rivals the performance of soft PZTs, as strain levels of up to 0.15% can
be achieved, and the d33 coefficient can reach values of 800 pC/N. Like hard
PZTs, the PMN materials are limited in their maximum strain levels by
polarization saturation and dielectric breakdown strength, which are inher-
ent material barriers. At the same time, electrostrictive materials exhibit low
hysteresis. Those good properties are only obtainable over a narrow electric
field and temperature domains, unfortunately. Electrostrictive polymers
mimicking natural muscle functions have recently been developed to be
utilized in robotic and microrobotic actuation. As mentioned by Kornbluh
et al.65 and Pelrine et al.,66 for instance, such actuators are capable of produc-
ing strains of up to 30% and stresses in an axial (linear actuator) loading of
up to 1.9 MPa. The paper by Kornbluh et al.65 presents a comparative syn-
thesis of different types of actuation in terms of various performance criteria,
such as maximum attainable strain, maximum stress (pressure), maximum
energy density, or relative speed. It is shown that the piezoelectric actuators
are performing the best in terms of the output force (pressure), whereas the
artificial muscle actuator delivers the best maximum strain (30%, as men-
tioned previously). A similar class of actuators is based on gel polymers or
film piezoelectric/electrostrictive layers that can be configured in various
shapes and therefore can be custom-designed to specific applications that
present spatial constraints where other actuators, built on a more standard
basis, cannot be utilized.

6.7.1.1.3 Relaxor-Based Ferroelectric Single Crystals

More recently, relaxor-based ferroelectric single crystals have demonstrated
real potential in terms of actuation performance, as Park and Shrout63 men-
tion in their paper. Materials such as PMN-PT (lead, magnesium, niobate,
and lead titanate) and PZN-PT (lead, zinc, niobate, and lead titanate) present
excellent properties in terms of the levels of strain, where they have produced
up to 1.7% (which is one order of magnitude larger than those available from
conventional piezoelectric or electrostrictive ceramics); electromechanical
coupling, as they have shown coupling coefficients k33 in excess of 90%; and
very low hysteresis through dielectric losses, less than 1%. Park and Shrout63

provide the following equation which relates the maximum strain energy
density to the maximum strain level, εmax; the material density, ρ; and Young’s
elastic modulus, E:

(6.155)

    ε = cV 2

U Es = 1
16

2

ρ
εmax
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which indicates that the energy performance of a relaxor-based single crystal
actuator depends on the level of strain, taking into account that density and
Young’s modulus vary little between different materials. At reasonable elec-
tric fields that do not exceed 50 kV/cm, the piezoelectric coefficient d33 is
ultrahigh compared to regular piezoelectric materials, and this accounts for
the elevated performance of this type of actuator material. Piezoelectric
coefficients with values nearing 2500 pC/N have been produced at strain
levels of 0.6 to 1.7% with relatively low hysteresis, as mentioned by Park
and Shrout.63 The optimum crystallographic configuration is pseudocubic in
rhombohedral crystals or rhombohedral-tetragonal crystals.

6.7.1.1.4 Magnetostrictive (TERFENOL) Materials

Magnetostrictive materials deform under the action of an external magnetic
field and are also termed TERFENOL, an acronym that combines the main
constituents, terbium and iron (Fe), and their development source, which is
NOL (Naval Ordinance Laboratory). These materials are piezomagnetic
(magnetoactive; converting magnetic energy into mechanical energy). Such
materials behave quasi-linearly within a range of up to 0.1% strain levels.
The basic equations that govern the magnetic–mechanical phenomena are
similar to those describing the piezoelectric effect, namely:

(6.156)

where H is the magnetic field and µ is the magnetic permeability under
constant stress. Clephas and Janocha64 recently described the possibility of
combining piezoelectric and magnetostrictive materials into a hybrid actu-
ator that would present the advantage of functioning under both the capac-
itive and inductive regimens, thus increasing the power efficiency, which for
either piezoelectrics or magnetostricters, taken individually, is rather low.

6.7.1.2 Thermal Actuators

Thermal actuators utilize their temperature-related deformation to act as
linear actuators. The two basic types of thermal actuators are metal thermo-
stats and wax actuators. The metal thermostats consist of several metal sheets
that are bonded in a sandwich fashion and constructed of materials with
different thermal expansion coefficients. The same amount of temperature
variation will cause each of the sheets to deform differently and, because of
the subsequent prevented expansion/contraction, the sandwiched beam will
bend and produce output motion or force. The output effects are generally
modest because they are proportional to the temperature variation. Wax
actuators are capable of producing larger output displacements, as their
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effect is based on either large thermal expansion coefficients or a liquid–solid
phase change. Such actuators can only generate a slow response because the
wax has a low thermal conductivity. Both categories of thermal actuators
can be utilized only in linear applications.

6.7.1.3 Shape-Memory Alloys

Shape-memory alloy (SMA) actuators use the same basic mechanism as the
thermal actuators, as they utilize the shape-memory effect to convert thermal
energy into mechanical output. The basic phenomenon that generates this
energy conversion (as shown by Otsuka and Wayman,67 for instance) is the
reversible martensitic–austenitic solid-state phase transformation. Alloys
such as those based on Ti–Ni, Au–Cd, In–Tl, Cu–Zn, or Cu–Al, among others,
present two basic effects or properties: the shape-memory effect and the
superelasticity, which are both based on the evidence that at low temperature
they present a martensitic state, with atoms that can move easily through
shearing-enabled mechanisms, while at higher temperatures, after passing
through the so-called reverse transformation temperature, the dominant
state is the austenite, which is more stable and therefore more difficult to
alter. Figure 6.11 illustrates the force–displacement characteristics of an SMA
linear spring that acts against an external load at two different temperatures.
By lowering the temperature from a value T1 that keeps the material within
the austenitic (parent) phase to a value T2 that defines the martensitic phase,
a gain in displacement is achieved.

The SMA actuators take advantage of the fact that their operation principle
enables compression/extension and torsion, as well as utilization in both
linear and rotary applications. Compared to thermal actuators and voice
coils (magnetic solenoids), the SMA actuators clearly perform better in terms
of stroke-to-weight and output force-to-weight ratios, quietness of operation,
and speed of motion or response at given temperatures. They are also advan-
tageous in applications that are designed based on a two-way effect.

A related breed of actuators that have entered the actuation scene rela-
tively recently is the shape memory polymer family, as discussed by Monk-
man.68 Like their metallic counterparts, the shape-memory polymers are

FIGURE 6.11
Force–displacement characteristic for a shape memory alloy in parent (austenitic) phase at a
higher temperature T2 versus the martensitic phase at the lower temperature T1.
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also based on a temperature effect that, through several phase transitions,
changes the elastic properties of the structural component. The radical
difference is due to the fact that the elastic modulus of a shape-memory
polymer reduces with increasing temperature, unlike the metallic shape-
memory alloys.

6.7.1.4 Classical Actuation

The hydraulic and pneumatic actuators provide high-output forces and large
displacements and are often equipped with servo-control that allows fre-
quency and stroke variation. They are less utilized in small-scale compliant
mechanism applications because of a few drawbacks, such as the necessity
for additional electric and hydraulic sources that increase their overall size.
The magnetic or electromagnetic actuators, in their various embodiments
(e.g., solenoids, moving coils, voice coils, linear and stepper motors, rotary
motors), can be employed in compliant mechanism applications that require
relatively low force capabilities. The magnetic motors are recognized for their
versatility in covering wide spans in terms of performance. In a recent paper
dedicated to magnetic actuation aspects, Howe69 mentions that this type of
actuation can produce displacements from microns to meters, accelerations
that can be a few hundred times larger than the gravitational acceleration,
highly accurate, and repeatable positioning.

6.7.2 MEMS Actuation

The means of actuation in compliant microelectromechanical systems (MEMS)
must adapt to the very small scale of this type of device and, as a consequence,
the actuators presented previously cannot be utilized here because they are
too large. Microactuation must successfully deliver quantities of mechanical
energy that are sufficient to the particular application. Because the primary
means of microactuation transforms a certain type of energy into mechanical
energy by intermediate storing of this energy, the amount of the stored energy
must also be relatively high. This aspect can be quite difficult to overcome,
as mentioned by Guckel,70 among others researchers. The stored energy is the
product of the energy density and the volume of the actuator; therefore, the
small dimensions of a microactuator must be counteracted by a high value of
the energy density. The energy density however is limited by the very of the
nature of the process of converting one type of energy into mechanical energy.
Electro- and magnetoactive materials are recognized as having good energy
density properties, but unfortunately they cannot be fabricated at the micros-
cale required by MEMS applications. Balancing this drawback is evidence that
in the great majority of cases MEMS do not require high output forces
although large output displacements might be desired. Nonetheless, large
output displacements can be achieved through utilizing large displacement
amplification devices that can take advantage of the important aspect that
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silicon flexible members are only subject to fracture at stress levels that are
substantially higher than those corresponding to bulk silicon members. As a
consequence, such micromembers can deform more and deliver the desired
levels in output displacement.

The main means of microactuation is discussed next, based on examples
given by the MEMS literature. It is worth noting that only the primary means
of actuation are presented here. The compound microactuators such as
microsteppers or micro-inchworms are analyzed in the chapter dedicated to
real-life MEMS applications (Chapter 7), as it is known that these actuators
combine primary means of actuation with additional structures in order to
gain the necessary output figures.

6.7.2.1 Electrostatic Actuation

This type of actuation is the most utilized in microelectromechanical systems.
The main configuration of an electrostatic actuator is the comb drive, which
is shown schematically in Figure 6.12. The comb drive is essentially a
parallel-plate capacitor. It consists of several interdigitated plates that are
placed on two supports, one of which is mobile, so that when a voltage is
applied to them the electrostatic force that is generated causes the fingers of
the mobile plate to move within the interstices created between the similar
fingers of the fixed plate. Rotary variants of the comb drives are also imple-
mented with the mobile plate, where the fingers move circularly within the
spaces created by the similarly designed fixed plate.

6.7.2.2 Piezoelectric Actuation

Present-day piezoelectric technology enables the fabrication of small actuators
that are capable of integrating with MEMS-type technology and applications.
Commercially available piezoelectric stacks can be as small as 1 mm long
with a 1-mm cross-section. Such PZT stacks were utilized by Cao et al.,71 for
instance, to design and fabricate a PZT-actuated micropump for drug delivery.
Three small PZT actuators of the sizes mentioned above were implemented
in a microhydraulic peristaltic pump that was capable of flow rates of up to
10 µl/min. The three PZTs were sequentially actuated to push against three

FIGURE 6.12
Schematic representation of a parallel-plate comb drive utilized as an electrostatic actuator in
compliant MEMS.
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elastic silicon membranes and produce the output peristaltic motion. A
similar application that utilizes small-dimensions PZT wafers is presented
by Roberts et al.,72 who introduced a high-stiffness piezoelectric actuator for
microhydraulic applications. The application employs one single piston that
is acted upon by three small-size bar PZT actuators that are equally spaced
radially and circumferentially.

6.7.2.3 Magnetostrictive Actuation

Small magnetostrictive actuators, of dimensions similar to the piezoelectric
ones that were just presented, can also be utilized in MEMS-scale applications.
An interesting alternative is reported by Quandt and Ludwig,73 who present
bending actuators realized by sputter-depositing multilayers of magneto-
strictive TbFe/FeCo on a silicon substrate. Such cantilevers operate on the
principle of prevented free-deformation of the magnetostrictive material
when subject to an external magnetic field, which results in bending of the
composite flexure. Such multilayered benders can operate favorably even at
low magnetic fields because they provide a reduction of the magnetostrictive
saturation, which translates to better deformation capability. A similar appli-
cation of a magnetostrictive bimorph is presented by Garnier et al.,74 who
detail its utilization in optical scanners.

6.7.2.4 Electromagnetic Actuation

Electromagnetic actuation has also been implemented into the microworld.
The work by Khoo and Liu,75 for example, describes the design of a micro-
magnetic actuator capable of high torque and large output displacements.
The microactuator consists of a highly flexible elastic-polymer membrane
that is fixed on its edges over a through-hole cut in a silicon support. Several
small-size magnetic flaps are embedded in the elastic membrane, and when
an external magnetic field is applied the flaps tend to move, thus causing
the membrane to deflect outside of its plane. A similar approach was pursued
by Maekoba et al.,76 who glued a patch of magnetic Permalloy at the free tip
of a silicon cantilever to achieve deflection of the composite flexure under
the action of an externally applied electromagnetic field. Such bimorph can-
tilevers are implemented in the construction of optical switches that are
operating in a bistable condition.

6.7.2.5 Pneumatic Actuation

In a recent paper, Butefisch et al.77 present the functional principles and
concrete design, fabrication, and testing of a micropneumatic actuator that
acted on a microgripper. Two different fabrication techniques were utilized:
reactive ion etching (RIE) for the silicon parts and ultraviolet-depth lithog-
raphy for the photoepoxy components. The micropneumatic actuator con-
sists of a piston that is attached to its housing by means of two serpentine
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multiflexure members that act as both return springs and sealing agents.
The piston can move in its cavity bidirectionally when air under pressure
is fed through the inlet. The actuator is capable of producing up to 600 µm
output displacement at 120-mbar air pressure in quasi-static conditions. The
operation frequency in the dynamic range has been measured up to 150 Hz,
at which level output displacements of approximately 500 µm were
obtained.

6.7.2.6 Thermal Actuation

Thermal actuation is also applicable at a microscale in a manner similar to
macroscale actuation. Liew et al.78 describe the main modeling aspects of
thermal actuation in bulk-micromachined CMOS micromirrors. The thermal
actuator is a multimorph member consisting of several layers of aluminum,
silicon dioxide, and polysilicon that are stacked together in the form of a
composite flexure. The entire structure is thermally isolated from the exte-
rior environment. Very much like in macroscale applications, the flexure
bends when thermal heating through an electrical resistor is applied,
because of the different thermal expansion coefficients of the components.
Modeling resulting from an analytic approach and finite-element analysis
produced results that were similar. A prototype micromirror was also fab-
ricated, and static as well as dynamic experimental measurements were
taken. The actuator showed a very promising thermal response of the order
of milliseconds which usually is the main impediment to using thermal
actuators.

6.7.2.7 Thermopneumatic Actuation

In situations where subsequent effects are not key to the main process,
thermopneumatic microactuation can be implemented to produce relatively
large output displacements at low levels of applied voltage. Jeong and
Yang79 present the details of fabricating and the performances of such a
thermopneumatic microactuator capable of delivering up to 6.25-µm/V out-
put displacement when utilizing a corrugated diaphragm constructed of a
p+ silicon film. The motion of the diaphragm (a flat configuration is also
analyzed) is generated by ohmic heating and air cooling of the air, which is
confined in a cavity enclosed on one side by the elastic diaphragm. The
displacement/voltage characteristic demonstrates a very good linearity for
both the corrugated and flat diaphragms.

6.7.2.8 Other Means of Microactuation

The so-called carbon nanotubes, presented, for instance, in the paper of Minett
et al.,80 are constructed as cantilevers that achieve their deflection by con-
verting electrical energy into mechanical energy. The phenomenon of this
energy transfer is the charge transfer that takes place under an externally
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applied electric field at the carbon–carbon bond interface, which causes
geometric expansion. The principles of quantum-mechanical actuation by
means of the Casimir force in MEMS is explained in a paper by Chan
et al.81 The Casimir force is an attraction between two surfaces determined
by the quantum-mechanical vacuum fluctuations of an electromagnetic field.
It is thus possible to obtain relative rotation of one plate that is laterally
supported by two torsional flexure hinges and is set parallel within nanometer
distance from a fixed plate.

6.8 Fabrication

Selecting the adequate material and fabrication technology for a given appli-
cation is clearly influenced by the scale of the flexure hinge or the flexure-
based compliant mechanism, as illustrated in Figure 6.13. Macroscale appli-
cations are usually constructed of metallic materials using fabrication tech-
niques that can handle machining at this scale, such as classical drilling,
milling, or wire electrodischarge machining (EDM), as shown in the follow-
ing text. On the other hand, microcompliant mechanisms are built on silicon
and other materials that are deposited on the silicon substrate for which
specific fabrication procedures such as LIGA or etching must be applied in
order to realize the necessary microshapes.

Although fundamentally similar, macro- and micromachining present
marked differences (as mentioned by Maluf,34 for instance) due to the scale
specificity of each procedure. While macromachining attempts to realize the
finite part by sequential operations and is therefore a serial process, micro-
machining procedures, in order to be cost effective, proceed in a parallel
fashion by applying a given operation to many “workpieces” (being placed
on the same wafer, in the case of silicon, for instance) and therefore are batch
procedures. Another contrast between the two machining categories is the
minimum attainable dimensions. Macromachining can fabricate parts to the
level of 20 to 25 µm, whereas micromachined components can be as small
as 1 µm.

FIGURE 6.13
Schematic showing the interrelations between the scale of the flexure-based compliant mecha-
nism and the corresponding fabrication technology and materials.
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6.8.1 Macroscale Fabrication

The procedures utilized for the fabrication of macroscale flexure hinges and
flexure-based compliant mechanisms have evolved historically from simple
ones, such as drilling or milling, to more complex ones, such as EDM, wire-
EDM, electron/ion beam machining, water jet machining, and laser machin-
ing, to name just a few. Obviously, simple shapes can be obtained by simple
machining procedures, while more sophisticated geometry configurations
require adequate fabrication techniques.

Three simple examples are presented in Figure 6.14, which suggests the
machining techniques that are applicable to a symmetric circular flexure
hinge (Figure 6.14a), a corner-filleted hinge (Figure 6.14b), and a more com-
plex shape flexure (Figure 6.14c). The circular flexure hinge can simply be
machined by drilling two through-holes in a blank material, followed by
cutting and removing the shaded portion of the workpiece. The corner-
filleted flexure hinge requires at least milling so that the line–arc–line profile
can be machined. The fillet radius at the corners is limited by the mill bits
that are available; therefore, small flexures that require even smaller fillet
radii cannot be machined by this procedure. Wire-EDM, however, can handle
complex shapes with small curvature radii and is the preferred method of
realizing such configurations.

6.8.1.1 Electrodischarge Machining

In a monograph dedicated to modern machining methods, McGeough82

focuses upon the process of electrodischarge machining (EDM), which is one
of the most utilized high-precision and relatively low-cost (therefore afford-
able) material removal procedures available today. The machining proce-
dure is based on the phenomenon of metal erosion under spark discharges.

FIGURE 6.14
Possible macromachining procedures for three different flexure configurations: (a) circular
flexure hinge machined by drilling; (b) corner-filleted flexure hinge machined by milling; (c) a
more complex-shaped flexure hinge machined by wire-EDM.
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First noticed in the late 1700s, advances were not made until the 1940s when
researchers B.R. Lazarenko and N.I. Lazarenko considered using the spark
discharge process for machining materials that were difficult to machine by
existing methods at that time, such as cutting by means of diamond tools.
Fundamentally, the EDM process consists of a controlled sequence of spark
discharges between two electrodes: the tool and the workpiece in a DC circuit
within a dielectric environment. The sequence is made up of very short-
duration discharges that repeat themselves at high frequency. During the
EDM process, the spark reaches temperatures of 20,000°C; this intensity
combined with its short lifetime results in local melting and vaporization of
the workpiece metal, while imposing few side effects on the adjacent areas.
The end result of all these localized sparks is a path that is cut in the
workpiece and which is the approximate negative imprint of the tool shape. 

The main roles of the dielectric are to keep the high energy of the spark
very localized and to cool the electrodes while also helping to transport the
tiny spherical metal debris (that resolidify in the dielectic) from the recently
created cut region. The electrical resistance of the dielectric must be balanced
between a minimum value that would produce a premature discharge and
a maximum value that would not permit the spark to occur at all. Technically,
a typical EDM process utilizes rectangular voltage pulses, oftentimes in the
50- to 150-V range, at frequencies in the range of 50 to 500 kHz. For high-
quality surface finishes, relatively low energy and high frequencies are uti-
lized, while for a rougher cut surface the reverse conditions must be applied
in order to achieve high rates of material removal. In many situations, these
two operations (rough cut and finish cut) are subsequently applied to ensure
both productivity and quality in the process. The material removal rate will,
of course, vary depending on the desired surface quality and the correspond-
ing machining conditions. By increasing the current and reducing the fre-
quency of the process, high removal rates on the order of 25 cm3/hr can be
obtained for rough machining. 

A big advantage of the EDM technique over other material-removing
procedures is that the machining speed is not influenced by the workpiece
hardness. Superior surface finishes require lower material removal rates, as
low as 0.05 cm3/hr. Two different EDM procedures were discussed by
McGeough82 and Hatschek.83 One method is drilling, which utilizes a hollow
electrode in order to negatively copy its own shape into the workpiece. Very
complex shapes, both in the depth of the workpiece and on the planes
perpendicular to the direction of penetration of the tool, can be obtained.
The other method is the wire-EDM technique currently in use on a wide
scale, as it offers high-quality cut profiles and is implemented on CNC
machines that can directly read the coordinates of a complicated contour
from a CAD-generated drawing. The tool electrode is a wire that is recircu-
lated continuously as it unwinds from one spool, passes through the work-
piece by cutting a portion of the desired profile, and then rewinds on a
second spool such that fresh portions of the wire are always in contact with

1367_Frame_C06  Page 402  Friday, October 18, 2002  1:59 PM



Topics Beyond the Minimal Modeling Approach to Flexure Hinges 403

the workpiece. The direction of machining is realized by the motion of either
the workpiece or the wire head. The wire-EDM technique enables machining
of complex shapes that are equivalent to offsetting a planar profile through
the thickness of the workpiece. Wire is usually constructed of copper or
brass, and regular EDM machines can utilize wire diameters as small as
0.25 mm. When tungsten or molybdenum wires are utilized, the diameter
can be reduced to 50 µm. The surface quality achieved by EDM techniques
is very good, and the surface roughness can be of the order of 0.05 µm, as
mentioned by McGeough.82

After machining a piece by EDM technology, the layers in the immediate
vicinity of the surface suffer changes that are mainly produced by the thermal
effects induced through the process. A thin epithaxial layer with a thickness
less than 40 µm is formed at the workpiece surface because the material
melts there and then is quickly hardened when it comes into contact with
the cooling dielectric fluid. Underneath this layer is another heat-affected
layer less than 250 µm thick which is subject to thermal stresses generated
through heating, cooling, and material diffusion during machining. These
layers particularly reduce the fatigue life of parts that are fabricated by EDM,
and their presence is particularly undesirable in flexure hinges and flexure-
based mechanisms. 

Xiaowei et al.84 reported on a combined EDM-based method for the fabri-
cation of flexure hinges. By applying EDM with orbital (planetary) motion
of the workpiece followed by stationary microsecond pulsed electrochemical
machining (MPECM), the authors found that this process managed to elim-
inate the heat-affected superficial layers in the region of minimum thickness
of the flexure hinge (the so-called subtle neck). Henein et al.85 investigated
the fatigue failure of flexure hinges that are machined by the EDM technology.
They tested several very thin circular flexure hinges (50 µm in diameter) and
compared the resulting experimental data with existing results for standard
test specimens; they concluded that fatigue data found in the literature can
be applied to EDM-produced flexure hinges without additional corrections.

6.8.1.2 Other Fabrication Procedures

Although electrodischarge machining is the predominant method, especially
for fabrication of two-dimensional or nonrevolute flexure hinges, other
machining methods are also applicable. For high-quality surfaces and dimen-
sional precision, such as that required by flexure-based compliant mechanisms,
advanced cutting methods that utilize tools constructed on monocrystalline
diamond or fine-grit corundum must be supplemented by special lapping
and polishing techniques. Unconventional machining techniques such as
electrochemical, laser, plasma-arc, water-jet, or abrasive jet machining can also
be applied to produce monolithic flexure-based compliant mechanisms, as well
as precision molding or stamping, for the fabrication of three-dimensional
revolute flexure hinges.
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6.8.2 MEMS-Scale Fabrication

A summary presentation is given here on the fabrication technologies that
apply to compliant MEMS. Detailed information into the general subject of
MEMS fabrication and materials can be found in the monographs of Maluf34

and Madou.86

Because the MEMS applications require several components that are
assembled or glued together, similar to the spate of materials, the fabrication
technologies necessary to construct these microsystems are also varied.
Mechanically compliant microsystems are almost totally based on the use of
the silicon as a backbone or supporting member, ensuring the overall defor-
mation and resulting motion of such systems. Structurally, the silicon is a
monocrystal that behaves like a brittle material. Although the reverse would
have been expected from a brittle material, it is well known that silicon
microstructural members that are subject to bending display excellent defor-
mation qualities (see, for example, Lang87), and large deformations can be
achieved in such members before the fracture limit of the material is reached.

An interesting comparison between silicon and titanium or steel can be
performed in terms of the maximum deflection produced by a constant cross-
section cantilever when an end moment is applied such that the ultimate
strength of the respective material is reached. It can be shown that the tip
deflection, under these circumstances, is given by the equation:

(6.157)

where l is the cantilever’s length, t is the thickness of a constant rectangular
cross-section, and cmat is a material constant, defined as the ratio of the
ultimate strength to the Young’s modulus. If the comparison is run between
two geometrically identical cantilevers made up of silicon and a regular
titanium alloy, then the ratio of the maximum deflection of the two cantile-
vers is:

(6.158)

Average values for the two materials discussed indicate that for silicon the
ultimate (fracture) strength is 7 GPa and the Young’s modulus is 160 GPa,
whereas for a titanium alloy the yield strength is approximately 1 GPa and
the Young’s modulus is 110 GPa. As a consequence, the ratio defined in Eq.
(6.158) will have a value of 4.812, which basically indicates that a silicon
cantilever can produce a deflection that is almost five times greater than the
deflection produced by a geometrically identical cantilever that is con-
structed of a titanium alloy.

As a consequence, the compliant MEMS are designed almost exclusively
based on this important property, and the output motion of these microsystems
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is obtained by the elastic deformation (most often bending and torsion) of
cantilever-like or double-clamped silicon members. Crystalline silicon of 4-
or 6-inch diameter with corresponding thicknesses of 525 µm and 650 µm,
respectively, that are commercially available are generally utilized as sub-
strates for MEMS applications. The crystalline silicon wafers have mechan-
ical properties that are very uniform and usually do not have internal
stresses. In addition to the excellent deformational properties, silicon also
has good thermal properties and preserves its mechanical properties up to
approximately 500°C.

Realizing the final MEMS application, however, requires several other
materials and components that would supplement the silicon flexible parts
in order to solve the functional tasks of the microsystem. In a recent paper,
Ehrfeld and Ehrfeld88 have summarized several other materials that are
utilized in constructing MEMS applications, including various metals, metal
alloys, and nonmetallics. A more detailed picture of the materials that are
utilized in constructing MEMS is provided by Maluf.34 Amorphous silicon
and polysilicon of different concentrations, for instance, are often deposited
on the crystalline silicon wafers as thin films. Silicon oxides and nitrides
form another group of materials that are used in MEMS fabrication, usually
as thermal and electrical insulating layers or sacrificial layers in surface
micromachining. Metal films such as aluminum, gold, titanium, tungsten,
nickel, platinum, or copper are also used in combination with the silicon
substrate in MEMS for different purposes mostly dedicated to electrical
connectivity. Polymers such as photoresists or special-purpose resists are
employed for patterned masks that further facilitate the etching of inner
layers already deposited on the silicon backbone. Other materials tested in
the construction of MEMS are glasses and quartz. They are usually used as
substrate materials in applications where optical transparency and/or elec-
trical insulation is required from a substrate component.

In a paper dedicated to looking into the future of microsystems, Lang87

suggests that the large variety of MEMS applications directly translates into
an equally extended pool of materials, technologies, and fabrication meth-
ods. Unlike the electronic chip industry, where the technology is quite stan-
dardized, in the silicon microworld an abundance of technological methods
are in place, mainly having to do with performing three-dimensional struc-
turing of the MEMS applications. Lang87 cites the main processes that are
utilized in fabricating microsystems as being wet chemical etching of silicon
for three-dimensional micromachining and plasma/ion-beam dry etching
for surface micromachining, as well as mechanical micromachining,
microreplication, quartz-machining procedures, ion implantation, or thick
and thin film deposition technology, in order to enable further fabrication
of MEMS. 

Figure 6.15 attempts to illustrate a sequence of the minimum number of
various processes involved in fabricating a micromechanical system. The
first group of fabrication methods includes deposition procedures that are
designed to attach thin layers (films) of various materials to the silicon
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substrate or to already-deposited layers. Specific deposition techniques
include epitaxy, sputter deposition, oxidation, evaporation, chemical vapor
deposition (CVD), or spin-on methods, each subgroup being developed for
different materials and physical conditions. The lithographic techniques usu-
ally follow the fabrication sequence and are intended for creating a protective
masking layer that will serve for subsequent etching operations. The lithog-
raphy itself is generally broken down into the following suboperations: A
photoresist layer is first deposited on the previously fabricated microcom-
ponent (which has an already-deposited layer on top of the silicon substrate).
A process of optical exposure follows by which a pattern is transferred
(printed) from a chromium-transparent glass mask to the photoresist layer.
Eventually, either the exposed resist (if the resist substance is positive) or
the unexposed portion (if the resist substance is negative) is dissolved such
that the mask pattern is machined into the resist layer and completes the

FIGURE 6.15
Minimal steps in the fabrication of micromechanical systems.
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lithography operation. An etching process is further applied that will selec-
tively remove material from the thin films that have already been deposited
and, possibly, from the silicon substrate as well. Wet and dry etching tech-
niques can be employed depending on the precision required for the final
product. The newly developed deep reactive ion etching technique (DRIE)
can channel down to depths of 500 µm.

The LIGA process was considered until a few years ago to be the technol-
ogy of choice for generating precision, high-aspect-ratio microcomponents.
The LIGA acronym is derived from lithography, galvoplating, and injection
molding (abformung in German; see Ehrfeld and Ehrfeld88 and Guckel70) and
is similar to a regular deposition–lithography–etching sequence, as previ-
ously described. The LIGA process is capable of utilizing resist layers that
can be up to 1000 µm thick. Instead of using a photolithography operation,
the LIGA technique utilizes collimated x-ray irradiation to create a deep
mask in the resist layer. The process continues with an electroplating/mold-
ing phase where the cavities in the resist material are filled with materials
such as gold, copper, aluminum, or nickel. The last phase removes the resist
mold and frees the newly created micromechanical component. It is worth
noting that microparts with very high aspect ratios can be obtained through
the LIGA process.
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7

 

Applications of Flexure-Based

 

Compliant Mechanisms

 

The preface to this book, as well as Chapter 1, underscored the importance
of the increase in industrial applications that incorporate flexure hinges and
flexure-based compliant mechanisms. The automotive, aeronautical, com-
puter, telecommunications, optical, and medical industries, to name just a
few, are utilizing both macroscale and microscale (microelectromechanical
systems, or MEMS) compliant mechanisms in their applications. Presented
here are a few application examples drawn from the multitude of flexure-
based compliant mechanisms. The selection represents just a very small
portion of the array of available applications and was definitely influenced
by the ability to obtain reproduction permission as well as by subjectivity;
therefore, apologies are extended, in advance, for the inevitable omissions.
The chapter first describes several macroscale flexure-based compliant mech-
anisms and concludes with another section that is dedicated to examples
from the MEMS world.

 

7.1 Macroscale Applications

 

The examples of macroscale flexure-based compliant mechanisms presented
in this section are based on either actual photographs of the designs (when
permission was obtained) or schematic line drawings, where the intention
is to emphasize principles of operation that are common to several mecha-
nism configurations.

The simplest flexure-based compliant mechanism is, naturally, the one that
is composed of a single flexure hinge, as pictured in Figure 7.1. The relatively
long flexure is constructed of carbon-based composite material with 60%
fiber volume to ensure good thermal stability in addition to general high
stiffness. The aspect ratio of the flexure was selected as shown in Figure 7.1
in order to complement the material elastic properties and to achieve very
low lateral stiffness (in bending about the sensitive axis) and very high axial
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stiffness such that the part could produce a precise lateral translation of
another component.

The schematic of an optical mount is sketched in Figure 7.2, and the
application serves as a device that allows orientation of an optical component
(generally a mirror) that is fixed on the output plate. The two strip flexures
are rather wide in this type of application to ensure low sensitivity in both
torsion and bending about the nonsensitive axis. Basically, the device is a
spatial serial compliant mechanism that is formed of three rigid links and
two flexure hinges and operates by actuating the middle and output plates
to produce a rotary motion with two degrees of freedom (DOFs) at the output
plate. A downside of this design configuration is its thermal sensitivity,
which, ironically, is created by the flexure hinges themselves, which are
rather prone to thermal deformations; this aspect reduces the capacity of
producing precise motion at the output port.

Precision flexure-based compliant mechanisms are frequently used in posi-
tioning/aligning applications in the optical, telecommunications, photonics,
and laser industries where output motions at the nanometer or sub-nanometer
levels are required. Tolbert

 

1

 

 presented specific aspects of utilizing nano-
alignment and nano-positioning in photonics manufacturing and discussed
the primary factors that have an impact on these processes, such as resolu-
tion, repeatability, stability, automation, and software control. Basically, two
motion modules can be designed and combined in various configurations

 

FIGURE 7.1

 

Composite flexure hinge for high lateral stiffness application. (Courtesy of Foster-Miller.)
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in order to achieve high-precision motion capability at the output port;
Figure 7.3 illustrates these two basic devices. The mechanism shown in
Figure 7.3a, also known as an 

 

xy

 

θ

 

 stage, is a planar parallel minimum config-
uration that can create two-dimensional motion. By combining the input of
the three actuators, 

 

A

 

1

 

, 

 

A

 

2

 

, and 

 

A

 

3

 

, it is possible to obtain individual trans-
lations about two arbitrary directions 

 

x

 

 and 

 

y

 

, as well as pure rotation about
an instantaneous center of rotation or other types of prescribed-path motions.
The flexural chains, 

 

F

 

1

 

, 

 

F

 

2

 

, and 

 

F

 

3

 

, are represented as single-flexure units but

 

FIGURE 7.2

 

Optical mount as a two-DOF spatial serial flexure-based compliant mechanism.

 

FIGURE 7.3

 

Flexure-based stages for precision positioning/alignment: (a) three-DOF planar mechanism; (b)
three-DOF spatial mechanism.
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they actually can encompass several flexures and rigid links in different
topologies. Figure 7.3b shows the main features of another basic design that
creates out-of-plane motion. In this case, the actuation must have compo-
nents that are perpendicular to the plane of the output platform, as indicated
in Figure 7.3b, in order to move this plate out of its own plane. In the situation
pictured in Figure 7.3a, the flexure hinges are arranged with their sensitive
axes perpendicular to the plane of the output platform, but for the compliant
mechanism of Figure 7.3b the flexure hinges have their sensitive axes parallel
to the plane of the output platform in order to produce the desired out-of-
plane motion component. Similar to the distinct motions that the 

 

xy

 

θ

 

 stage
can generate, the stage of Figure 7.3b (also called a 

 

z

 

 stage) is capable of
outputting a pure translation about the 

 

z

 

 axis and rotations about two arbi-
trary axes lying in the plane of the output platform or other mixed motions
as a result of various combinations of these three basic motive options. 

Each of the two compliant mechanisms described here behave as three-
DOF systems, and their combination results in configurations that are capa-
ble of spanning the full six-dimensional space. An output platform that is
actuated by such a six-DOF mechanism is illustrated in Figure 7.4, together
with the roll, pitch, and yaw angles that are customarily used to specify the
angular position of the output link.

Several designs shown in the following section of this chapter illustrate
various configurations and output capabilities. Figure 7.5, for instance, shows
a planar serial compliant device that serves to amplify the input motion from
a piezoelectric stack actuator through two stages so that the output motion
is parallel to the input motion. This mechanism contains both symmetric and
nonsymmetric corner-filleted flexure hinges arranged with their longitudinal
axis either parallel or perpendicular to the actuation source. 

The planar hybrid amplification compliant mechanism pictured in Figure 7.6
presents a double symmetry. Nonsymmetric corner-filleted flexure hinges
are employed in this configuration to amplify the input motion from two
serially connected stack actuators to an output direction which is perpen-
dicular to the input one. The stack actuators are precompressed by a wire,
which also acts as a return spring.

Figure 7.7 shows a design that is a real-life application of the schematic
representation of the 

 

xy

 

θ

 

 stage of Figure 7.3b. The three stack actuators

 

FIGURE 7.4

 

Output platform for spatial mechanism with main rotation angles.
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provide the input motion through identical serial flexure-based chains that
are designed to amplify the input. Various combinations of the actuator
motion can produce different output paths.

The spatial flexure-based design illustrated in Figure 7.8 is of the type that
has been described based on the principle drawing of Figure 7.3b. The input

 

FIGURE 7.5

 

Two-stage planar serial flexure-based compliant mechanism with piezoelectric actuation. (Cour-
tesy of Dynamic Structures and Materials.)

 

FIGURE 7.6

 

Planar hybrid amplification mechanism with piezoelectric actuation. (Courtesy of Dynamic
Structures and Materials.)
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to this mechanism is the linear amplified motion generated from three piezo-
driven devices of the type pictured in Figure 7.6. Identically actuating the
three input units produces a purely vertical translation; inputing different
motions from the three actuators results in a mixed output motion. The three
stages of triangular rigid links shown in Figure 7.8 are interconnected by
means of wire-like cylindrical flexure hinges that can handle bending, axial
loading, and torsion.

The literature to date mentions various other flexure-based compliant mech-
anism configurations, and a few examples are mentioned next. Park et al.

 

2

 

presented the design of a compact displacement accumulation device (of the
inchworm type) that has large displacement and force capabilities. King and
Xu

 

3

 

 designed two prototype piezoelectric-actuated flexure-based amplifica-
tion mechanisms that serve as the basis for analysis regarding the perfor-
mance of piezomotors. Xu and King

 

4

 

 compared the performance of
compliant mechanisms that are constructed by incorporating different types
of flexure hinges such as circular, corner-filleted, and elliptical. Ryu et al.

 

5

 

developed a flexure-based 

 

xy

 

θ

 

 stage that is actuated by three stack actuators.

 

FIGURE 7.7

 

Three-actuator, planar, hybrid flexure-based platform for 

 

xy

 

θ

 

 positioning. (Courtesy of Dynamic
Structures and Materials.)
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A parameterized mathematical model of the static response of the mecha-
nism was formulated that serves as a tool for performance optimization
simulations. Renyi et al.

 

6

 

 presented the design and characterization of a
piezo-driven micropositioning stage utilizing an amplification chain that
transforms the horizontal input motion into a vertical one at the output port.
Chen et al.

 

7

 

 designed and tested a flexure-based stage that is utilized to
position a system of mirrors in synchrotron x-ray equipment. Choi et al.

 

8

 

presented the design of orientation stages that are employed in high-resolution
step-and-flash imprint lithography machines.

Figure 7.9 illustrates a possible implementation of another flexure-based
design that is utilized in suspensions, gyroscopes, and couplings allowing
for misalignments of

 

 z

 

 stages of the type sketched in Figure 7.3b. The cylinder
of Figure 7.9 is hollow, and the flexure hinges (which are symbolically rep-
resented) are realized by wire-EDM, for instance. The two axially opposite
sections of the tube can move, one relative to the other, as this type of motion
is enabled by the flexure hinges. Figure 7.10 illustrates a design based on

 

FIGURE 7.8

 

Spatial hybrid flexure-based compliant mechanism for complex positioning. (Courtesy of
Dynamic Structures and Materials.)
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this principle and which can be utilized as a 

 

z

 

 stage mechanism of the type
sketched in Figure 7.3b.

Another group of flexure-based compliant mechanisms includes the so-
called flexural pivots or bearings that were first described and modeled by
Weinstein.

 

9

 

 Figure 7.11a shows the operating principle of a flexural pivot
that is designed to produce limited relative rotation between two split tubes
that are concentric. The flexure strip attaches to each of the two split tubes
at its ends and, through flexing (which ideally occurs about the midpoint of
the flexure that is collocated with the center of the two tubes), one tube can
rotate with respect to the other. Two or more flexure hinges can be utilized
and spaced axially in order to increase the load capacity of this system.
Figure 7.11b shows another design of a flexural pivot that makes possible
relative rotation between the base and the mobile part through either bend-
ing or torsion of the connecting flexure hinge. The cross-axis flexural pivot
is illustrated in Figure 7.11c, and a modeling of its behavior was developed
by Smith

 

10

 

 and Jensen and Howell.

 

11

 

 
Figure 7.12 provides a representation of a load cell that utilizes the Free-Flex

 

®

 

pivot developed at TRW Aeronautical Systems. This pivot is based on the

 

FIGURE 7.9

 

Flexure-based cylinder for out-of-plane opera-
tion.

 

FIGURE 7.10

 

The 

 

z

 

 stage for out-of-plane positioning. (Courtesy of Piezomax Technologies.)
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schematic of Figure 7.11 and incorporates two flexure hinges that are 90 degrees
apart and also spaced axially.

Another variant of the flexural pivot, designed and modeled by Goldfarb
and Speich,

 

12

 

 is referred to as a split-tube flexure and is capable of producing
a large relative rotation between its ends by accommodating both bending
and torsion of its compliant sections.

An interesting application of the flexure hinge is presented by Carlson
et al.,

 

13

 

 who developed a double short flexure-type orthotic ankle joint to be
used as a prosthesis. The design has the advantage that it is almost insensitive
to axial and torsional loads and therefore is highly stable.

 

7.2 Microscale (MEMS) Applications

 

Several applications illustrating the use of flexure hinges and flexure-based
compliant mechanisms in MEMS are presented in this section of the chapter.
The applications are separated into single- and multiple-flexure compliant
configurations.

 

FIGURE 7.11

 

Flexural pivot design variants: (a) relative-rotation configuration with bending of the single
flexure; (b) relative-rotation with bending/torsion of the single flexure; (c) cross-axis flexural pivot.

 

FIGURE 7.12

 

Load cell with Free-Flex
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 Pivot. (Adapted from TRW Aeronautical Systems.)
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7.2.1 Single-Flexure Microcompliant Mechanisms

 

7.2.1.1 Microcantilevers

 

Microcantilevers were originally utilized as ultra-precise means of sensing
forces in atomic force microscopy (AFM). With dimensions that can go down
to the micron level, this type of sensor is compact and lightweight and
requires low levels of energy for operation. In AFM applications, as shown
in Figure 7.13a, a tip is usually attached at the free tip of the cantilever in
order to minimize the friction surface.

Several cantilever configurations are actually in operation, and Figure 7.13b–d
illustrates a few of them. The most widely used geometry is the rectangular
one shown in Figure 7.13b. A triangular configuration is shown in Figure 7.13c;
the hollow variant is shown, but the solid configuration is also possible,
especially in practical applications where it is expected that the cantilever
will experience constant stresses along its length. The triangular shape is
adopted in cases where torsional effects might have to be minimized in order
not to blur the main bending operation mode of the cantilever. Figure 7.13d

 

FIGURE 7.13

 

Operation and main geometry configurations of microcantilevers: (a) side view; (b) top view
of rectangular configuration; (c) top view of triangular configuration; (d) top view of interdig-
itated configuration.
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shows a possible implementation of an interdigitated cantilever that is being
used for optical measurements by means of diffraction. 

As illustrated in Figure 7.14, the optical method of measuring the small tip
deflections of microcantilevers usually consists of sending an incident light
beam to the tip of a microcantilever, where a reflective coating is deposited in
order to enable reflection of the incident light on a position photodetector
device. The tip deflection of the microcantilever is monitored by the detection
device in a proportional manner. According to the technique of capturing the
reflected light beam, three different optical methods of measuring the tip
deflection are available: the optical lever deflection method, where the
reflected light beam is recorded by a photodetector device; the interferometric
method, which reads an interference pattern created by the reflected light
beam and another beam sent directly from the light source; and the diffraction-
pattern method, which reads the diffraction created by means of an interdig-
itated microcantilever, similar to the one shown in Figure 7.13d.

In addition to the optical methods of measuring the tip deflection of
microcantilevers, which are capable of sub-Angstrom resolutions, electrical
principles and methods are also utilized for the same purpose. As mentioned
by Raiteri et al.,

 

14

 

 the microcantilever can operate as a capacitive transducer,
as it can serve as the mobile armature of a capacitor whose capacitance varies
through bending of the microactuator. The bending can also be quantified
by electroresistive means when a resistive pattern is transferred on the micro-
cantilever to sense deformations based on the Wheatstone bridge (strain
gauge) principle. Another way of electrically monitoring the deformations
of microcantilevers is to apply a piezoelectric film on the transducer such
that the mechanical deformations of the compound sensor will be trans-
formed in electrical signals through the associated piezoelectric effect.

The microcantilevers can be utilized either in static (quasi-static) mode,
when the static deflections are measured, or in an oscillating mode, when
the monitored quantity is the natural frequency of the vibrating system.
Apart from being used as force sensors in (mainly) AFM applications, micro-
cantilevers are also implemented in several other applications. A microcan-
tilever can be conditioned to act as a thermal sensor by depositing a metal
layer and taking advantage of the difference in thermal expansion coeffi-
cients between the component materials that force the microcantilever to

 

FIGURE 7.14

 

Principle of optical measurement with microcantilever.
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deflect upon absorbtion of thermal energy, as detailed in the discussion on
actuation. Thermal sensitivity of bi-material microcantilever beams can be
of the order of 10

 

−

 

5

 

 K (see, for example, Raiteri et al.

 

14

 

 and Oden et al.

 

15

 

).
Other applications of microcantilevers in the thermal domain include calo-
rimetry and photothermal spectroscopy of thin coats, where the sensor is
capable of discerning energy levels down to atto-Joules. In phase-change
situations, the microcantilevers are capable of detecting enthalpy changes of
500 pico-Joules for picogram quantities that adhere to the tip of the sensor.

The microcantilever can also be implemented for detection of the presence
of very small quantities of material by monitoring changes in the vibratory
response of the system. Small amounts of external damping can also be
identified based on the same change in the natural frequency, in which case
the microcantilever functions as a damping sensor. Oden et al.

 

15

 

 describe a
microcantilever application where the infrared (IR) radiation can be detected
by means of the piezoelectric effect. The piezoelectric layer deposited over
a silicon microcantilever beam reacts to the thermal energy gained upon IR
exposure, and the composite beam bends, which causes a change in piezore-
sistance proportional to the absorbed heat. The authors conclude that utiliz-
ing such microcantilevers arranged in two-dimensional arrays may
constitute an adequate tool for remote IR sensing. 

In similar research, Wachter et al.

 

16

 

 investigated the response of composite
microcantilevers to both visible and mid-IR radiation that was frequency
modulated by utilizing AFM measurements and several types of commer-
cially available microcantilever configurations. Miyahara et al.

 

17

 

 presented
the design and testing of a piezoelectric microcantilever for AFM applica-
tions that integrates the functions of deflection sensing, actuation, and feed-
back. The system can be utilized successfully, according to the authors, in
extreme environments such as low temperature or low vacuum, and it dem-
onstrated atomic step resolution when tested on annealed alumina test sur-
faces. Lu et al.

 

18

 

 analyzed surface effects on the mechanical (frequency)
response of microcantilevers. Specifically, they investigated the changes in
the natural frequency of a coated microcantilever as induced by surface
stresses and the so-called 

 

Q

 

 factor.
The study demonstrated that the 

 

Q

 

 factor can be increased by placing the
coating layer toward the tip of the vibrating beam and that surface stresses,
such as those created in biosensing applications, will modify the natural
frequency by either increasing it (for tensile stresses) or decreasing it (for
compressive stresses).

The field of biosensing offers quite an impressive and spectacular range of
applications. In a recent article, Raiteri et al.

 

14

 

 discuss the implementation of
microcantilevers in physical and biochemical detecting and sensing of very
small amounts of materials. In these applications, the microcantilever must
first be 

 

functionalized

 

, which means that a receptor layer has to be deposited
on one surface of the beam. This receptor layer is usually a noble material
that should be thin enough (normally monolayer) so that it does not alter
the mechanical characteristic of the microcantilever, but still sufficiently
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strong as to be able to anchor incoming external material particles. This
monolayer contains a substance that can act as marker and enable a specific
reaction upon interaction with the external monitored agent. Upon capturing
the foreign material, the mechanical properties of the microcantilever change
and therefore can be detected by either static (modification of the tip deflec-
tion) or frequency (different natural frequencies) means. Raiteri et al.

 

14

 

 also
cite several biosensing applications that have used microcantilevers for
detection or sensing. Applications include identifying the response to exter-
nal agents of living cells that are directly cultured on microcantilevers,
counting or weighing of bacteria absorbed by an antibody layer, and detec-
tion and quantification of markers for prostate cancer or of various herbi-
cides. Equally spectacular is the report of DNA variation detection by means
of the same microcantilevers. The DNA hybridization is monitored by mea-
suring the differential deflection of two microcantilevers mounted in par-
allel in order to discriminate very slight differences in the DNA molecular
structure.

Microcantilevers are also successfully implemented in disk data write/read
applications, as discussed by Chui et al.

 

19

 

 and Maluf.

 

20

 

 Two geometrically
similar but functionally different microcantilevers, each provided with a
pointed tip at their free ends, are used for data writing (storage) and reading,
respectively. The writing cantilever inscribes microindentations in a prescribed
manner on a rotating polycarbonate disk by locally melting mini “craters”
on it through tip vibrations. The reading microcantilever decodifies the infor-
mation encoded in the already inscribed rotating disc piezoelectrically. The
reading microcantilever must be more compliant than the writing microcan-
tilever in order to be able to convert indentations of the order of a few tens
of nanometers into a discernable electric signal output, and its mass must
be almost meaningless in order to enable reading. Writing rates of 100 kbit/
sec and reading rates three times higher were feasible with these write/read
microcantilevers.

Another interesting application of microcantilevers, different from the
sensing functions presented so far, is in nanoindentation, according to a
procedure that has recently been introduced by the Veeco Metrology Group
(Santa Barbara, CA). A diamond piece is placed at the free end of a micro-
cantilever, and surface indentation followed by 

 

in situ

 

 measurement of the
marks are performed to check hardness or durability and to investigate
scratch and wearing properties of a vast array of materials from gold to
films.

 

7.2.1.2 Scratch Drive Actuators and Buckling Beams

 

An interesting single-flexure microcompliant mobile structure is the scratch
drive actuator (SDA), which was first presented in a paper by Akiyama
et al.

 

21

 

 It consists primarily of a thin flexible beam or plate attached to a
reasonably rigid part, as illustrated in Figure 7.15. The entire system can be
sustained laterally (out of plane in Figure 7.15) at the junction between the
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flexible sheet and the rigid part. A motion step has three main phases, as
indicated in Figure 7.15. First, electrostatic forces are generated that attract
the flexible sheet toward the silicon substrate. During this phase, the flexible
sheet progressively bends until a portion of it is in full contact with the
substrate. Because of the rigid connection between the sheet and its vertical
leg and because of the elastic deformation sustained by the sheet, the leg is
pushed forward in the inclined position (position 2 in Figure 7.15). By dis-
continuing the electrostatic actuation, the flexible sheet is released from its
contact with the substrate, but the vertical leg/substrate friction force does
not allow the leg to be dragged backwards; as a consequence, the entire SDA
recovers its original shape and moves one step forward to the right (position 3
in Figure 7.15).

Akiyama et al.

 

21

 

 utilized the SDA for self-assembly of three-dimensional
MEMS in an attempt to avoid external manipulation. They tested an SDA
prototype both in free motion and against a bias spring by running the device
horizontally and then vertically. The microactuator was capable of producing
maximum displacements of 150 

 

µ

 

m. In a recent paper, Linderman and
Bright

 

22 

 

report the results of their optimization research, designing, construct-
ing, and testing of SDA devices for nanometer-precision positioning. The
optimized length of the flexible plate was first derived in terms of the driving
voltage and then the other geometric parameters that define the SDA were
correspondingly determined. Based on the theoretical analysis, a prototype
array was constructed consisting of several SDAs powered by a gold wire
tether. The resulting microrobot was capable of pushing a 2 

 

×

 

 2 

 

×

 

 0.5-mm
chip on a silicon substrate over an 8-mm distance.

Researchers at the Northern Higher Institute of Electronics (ISEN) in
Villeneuve d’Ascq, France, as reported by Quevy et al.

 

23

 

 and Bains,

 

24

 

 have

 

FIGURE 7.15

 

Three main positions of one motion step produced by a scratch drive actuator (SDA).
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recently developed a similar SDA array that is aimed at self-assembly of
microstructures. Unlike the rectangular shape of the flexible sheet utilized
by Linderman and Bright,

 

22

 

 the French researchers have designed a triangu-
lar SDA sheet. An interesting manner of realizing the SDA motion is to
combine it with slender microrods (also called buckling beams), which can
be placed against the motion of the actuators, as shown in Figure 7.16.

During the motion of one step, the compliant microrods buckle and there-
fore create the motion of the output platform (which can be a micromirror),
which is attached at the midpoint of the buckling microrod. Because of the
fixed–fixed boundary conditions, the middle portion of the microrod pre-
serves its original slope, and, as a consequence, the output motion is a
translatory one, perpendicular to the input actuator motion. As reported by
Quevy et al.,

 

23

 

 it was possible to lift the microplates 90 

 

µ

 

m above the silicon
substrate. Additional electrostatic actuation applied to the output platform
can rotate it bidirectionally, with maximum angles of ±15

 

°

 

, as mentioned in
Smith.

 

10

 

 The SDA/microplate array was implemented into a microoptoelec-
tromechanical system (MOEMS) in the form of a continuous membrane for
adaptive optics applications.

 

7.2.1.3 Sensors, Accelerometers, and Gyroscopes

 

A large portion of the MEMS application pool is occupied by inertia-sensing
microinstruments in various design configurations, such as sensors, acceler-
ometers, and gyroscopes. Figure 7.17 illustrates two variants that are incorpo-
rated in linear devices based on two different detection principles. In the
capacitive detection principle (illustrated in Figure 7.17a), the moving mass
(which senses the variation in acceleration) moves closer or farther away from
a fixed electrode and thus creates a variable gap that translates into a propor-
tional charge or current. Another transduction principle (Figure 7.17b) utilizes
a sensitive film that is directly deposited on the silicon cantilever which
deforms under the action of the vibrating mass that is attached to it. The film

 

FIGURE 7.16

 

One application of the scratch drive actuator (SDA) coupled with a buckling microrod.
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can be either an electrically resistive material or a piezoelectric layer that
transforms the bending deformation of the cantilever into an electrical output. 

Laine et al.

 

25

 

 presented the design and performance of a microresonator
that is conceived on the schematic of Figure 7.17a and can be applied in
optical communications such as filtering, multiplexing, and switching. The
vibrating mass is a microsphere that is fabricated by melting the tip of an
optical fiber and thus presents the advantage of having a very low optical
loss, which makes the device extremely useful in precise measurement tasks.
Xiao et al.

 

26

 

 developed a microaccelerometer with high resolution and lin-
earity and large frequency bandwidth, based on the same detecting principle
of Figure 7.17a, where the transduction is capacitive for low-gravity mea-
surement applications. 

Aikele et al.

 

27

 

 constructed a resonant microaccelerometer with thermal
excitation consisting of a fixed–fixed beam coupled on a seismic mass, based
on the principle illustrated in Figure 7.17b. The microsystem demonstrates
robustness, shock resistance, and low sensitivity to parasitic vibrations,
attributes that make it a suitable solution in automotive applications. Fujita
et al.

 

28

 

 presented the design of a microgyroscope consisting of four units of
the form shown in Figure 7.17a, where the microcantilevers are connected
at a central point and the seismic masses extend radially and outwards.
The resulting system is utilized for measuring Coriolis accelerations by

 

FIGURE 7.17

 

Inertia sensors: (a) capacitive sensor with fixed–free flexure configuration; (b) resistive sensor
with fixed–fixed flexure configuration.

Fixed electrode
Gap

Vibrating mass

Micro-flexure

(a)

(b)

Vibrating mass

Micro-flexure Sensitive layer

 

1367_Frame_C07  Page 428  Friday, October 18, 2002  2:01 PM



 

Applications of Flexure-Based Compliant Mechanisms

 

429

detecting the capacitive change between the vibrating masses and their
corresponding fixed electrodes in applications such as devices for motion
compensation in video cameras or for automobile chassis control. 

The operation principle illustrated in Figure 7.17b was implemented by
Varadan et al.

 

29

 

 in a microaccelerometer device to be used in interdigital
transducer (IDT) devices for surface acoustic wave (SAW) sensing applica-
tions. Li et al.

 

30

 

 designed a microsensor for angular rate sensing purposes that
uses the construction shown in Figure 7.17a, with a special cantilever that
is more compliant than regular microflexures and therefore has a higher
sensitivity in capturing the angular acceleration.

 

7.2.1.4 Other Single-Flexure Microcomponents

 

Figure 7.18 illustrates two other microcomponents that may be regarded as
single flexures in compliant micromechanisms. The ribbon (flexible) beam
element of Figure 7.18a is fixed at both ends on a silicon substrate and is
sufficiently long and thin to bend under the electrostatic attraction forces
produced by an electrically active film deposited on the silicon. In a non-
actuated situation, the ribbon beam, which is covered with a light-reflective
layer, will preserve the angle of incidence of incoming light (position 1 in
Figure 7.18a), but when electrostatic actuation is applied the ribbon will bend
and contact the silicon substrate according to the location of the area being
actuated. An array of such ribbon beams is utilized to create the so-called
grating light valve, which is actually a surface with variable optical proper-
ties (see Maluf

 

20

 

) that uses the principle of light diffraction created by the
gaps between adjacent ribbons. In a non-actuated state, the surface is viewed
normally, but when a specific actuation is applied to individual ribbons a
diffraction pattern is created because of the modified gaps, and different
shades of gray can be selectively created. The principle can be implemented
in gray or full-color display.

 

FIGURE 7.18

 

Operation sequence of a fixed–fixed ribbon flexure: (a) grating light valves application; (b)
microswitch application.
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Figure 7.18b shows a physically similar application of a bridge microfab-
ricated in the form of a thin metallic fixed–fixed beam. Such a microcompo-
nent can be utilized as a radiofrequency (RF) capacitive switch, as noted in
the paper by Huang et al.,31 who presented the mechanical design and
optimization of a capacitive microswitch. An electrode is placed immediately
beneath the bridge on the silicon base substrate. In the non-actuated position
(position 1 of Figure 7.18b), the beam is undeflected and therefore works
accordingly in the circuit it is a part of. When the electrode is actuated, the
beam deflects toward it because of the electrostatic forces, and the resulting
motion will cause the beam to touch a contact such that the switching
function is accomplished. 

Another application that utilizes the fixed–fixed cantilever shown in
Figure 7.18b is the resonant beam filter, which is a valuable device for com-
munication systems. The operation principle of a resonant beam filter is
based on actuating the silicon cantilever at resonance which will generate
an electric signal that can be used in filtering another input signal. The double
action of actuating and transducing by means of the resonant filter is gen-
erally performed electrostatically, but in a recent paper Piekarski et al.32

present a design that utilizes the piezoelectric effect for both sensing and
actuation. A silicon cantilever is sandwiched between two piezoelectric film
layers, and drive voltage that is fed to the piezoelectric layers induces strains
in the cantilevers that generate bending moments. At resonance, the bending
moment is maximum and produces through the piezoelectric effect a current
that can be used in the filtering circuit.

Two other one-component flexible microconnectors are illustrated in Figure
7.19a and b. Figure 7.19a shows a serpentine wire spring utilized as a return
spring in MEMS applications—for instance, in the scratch drive actuators
implemented in the description presented by Quevy23 and Bains.24 The design
is more efficient than a simple flexural microbeam, for instance, because it
has more flexibility packed in a smaller volume and is mostly utilized for

FIGURE 7.19
Two configurations of single-member flexible connectors: (a) serpentine wire functioning as
compression/extension spring; (b) two-sided torsional flexure hinge.
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creating compression and extension compensating resistance. The same con-
figuration can function as a torsional spring by making it plane. The simplest
torsional spring is a straight constant rectangular cross-section flexure hinge,
similar to the ones discussed so far. A modification to this configuration that
makes it fit for applications where two rigid members must be torsionally
connected when their rotation axes are perpendicular is a two-sided, constant-
thickness flexure, as shown in Figure 7.19b and is discussed by Park et al.33

7.2.2 Multi-Flexure Compliant Micromechanisms

Almost all MEMS produce their specific motion by means of flexible con-
nectors that are monolithically built together with the rigid mobile parts,
and the vast majority of the connectors are flexure hinges. The most common
MEMS configurations are essentially two dimensional. Even in geometrically
three-dimensional cases (characterized by high aspect ratios) that are per-
mitted by dedicated MEMS technologies such as LIGA or DRIE, the flexure
hinges are of prismatic construction. They mainly and ideally function in
torsion and/or bending, as illustrated in Figure 7.20.

In practical situations, of course, the loading is not so purely and distinc-
tively defined because axial loading and possibly shearing are also present
and (although with probably small effects) they can superimpose over the
main torsion and bending of flexure hinges. Several specific applications are
briefly presented next that illustrate the use of flexure hinges as torsional or
bending connectors in MEMS.

Tilt or torsional mirrors are designed based on the functional principle
illustrated in Figure 7.20a, where the motion of the micromechanism is realized
by the torsion of two aligned flexure hinges. Figure 7.21 provides an overall
view of a two-axis tilt mirror designed and fabricated by MEMS Optical, Inc.
and Figure 7.22 shows a close-up view of one of the flexure hinges of the
micromechanism. The mirror plate is approximately octagonal. The inner
hinges provide rotation of the mirror about a horizontal axis, whereas the
outer hinges allow rotation of the gimbal and mirror together about an axis

FIGURE 7.20
Main functions of flexure hinges in compliant micromechanisms: (a) torsional flexures; (b)
bending flexures.
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FIGURE 7.21
Overall picture of a two-axis tilt mirror. (Courtesy of MEMS Optical, Inc.)

FIGURE 7.22
Close-up view of corner-filleted flexure hinge utilized in the two-axis tilt mirror. (Courtesy of
MEMS Optical, Inc.)
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perpendicular to the first one, such that the micromirror plate has two
degrees of freedom. Four electrodes under the mirror enable actuation about
each of the two rotation axes in a bidirectional fashion. The corner-filleted
flexure hinges are designed to be compliant enough to allow rotation below
a maximum voltage (approximately 80 V for this mirror), while keeping the
hinge stress below the failure limit. Resistance to vibrational shock is also a
concern with this design.

Another application based on the basic design of the two-flexure torsional
plate design of Figure 7.20a is the radiofrequency (RF) capacitive switch,
which was also mentioned in Chapter 6. Compared to the semiconductor
switches, the RF MEMS switches have the advantages of low resistive losses,
low power consumption, and good electrical isolation. Park et al.,33 for
instance, presented several RF microswitch configurations in terms of flexure
geometry, overall topology of the micromechanism, materials utilized to
realize the device, and microfabrication techniques. A similar RF microswitch
that can be integrated with the actuation circuitry was introduced by Plotz
et al.34 Preliminary simulation has been performed by means of dedicated
software, and the dynamic performance of the prototype design has been
tested interferometrically. A modeling procedure for an RF MEMS switch was
proposed by Sattler et al.35 whereby the dynamic response of the one-DOF
single-axis tilt plate is formulated in terms of the relevant design parameters
describing the material and geometry properties. Sampsell36 has provided
an interesting presentation of the application of torsional plate principles to
digital micromirror devices (DMDs) as spatial light modulators and their
integration into projection display systems. Zhang et al.37 developed a the-
oretical model of the static behavior of an electrostatically actuated torsional
micromirror by utilizing a normalized formulation. The results produced by
simulation based on the analytical model were verified experimentally with
small relative errors. Yee et al.38 presented a MEMS application in which the
flexure hinges are loaded in both torsion and bending. Specifically, a PZT
actuated micromirror was designed based on preliminary finite-element sim-
ulations for use in a fine-tracking mechanism for high-density optical data
storage. A similar microdevice, where the flexure hinges are acted upon by both
torsion and bending moments, is described by Kawai et al.,39 who developed
a high-resolution microgyroscope for automotive industry applications. The
actuation technology of this mechanism utilizes a special adjustment tech-
nique in order to tune the vibratory motion.

7.2.3 Some Novel Microapplications

Researchers at the Technical University of Denmark, Lingby, have recently
constructed a micron-sized silicon cantilever through MEMS-specific batch
fabrication procedures and scanning electron microscopy techniques.40 The
cantilever is designed in the form of two twin arms that are approximately
25 nm apart and can act as tweezers (grippers) when a voltage is applied to
the structure.
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A novel switch is under development by Network Photonics (Boulder,
CO).41 It is designed to separate the light into many wavelengths and to
route the individual components through networks. The procedure is based
on a multitude of microscopic mirrors that are built through MEMS tech-
niques and placed on a silicon chip.

Microelectromechanical systems have also penetrated the field of adaptive
optics, as a new class of MEMS deformable mirrors (MEMS-DMs) is under
development by researchers at Boston University.42 The mirror consists of a
flexible silicon membrane that can be electrostatically actuated by an array
of flexible plates.

Boeing is pursuing fiber alignment by means of an In-Package MEMS
Aligner (IPMA).43 Beam-like actuators are thermally actuated and move
individual optical fibers in the spatial x, y, and z directions. After the desired
position is achieved, the wire is locked by means of a bonding method, all
operations taking place in a sealed environment.

Minisatellites that are the dimensions of a golf ball are another project
currently under development. A docking system is also being pursued at
Palo Alto Research Center in California that is composed of micron-sized,
hair-like beam actuators, which, through heating, will contract and expand,
possibly in a controlled fashion, and will transport the aerial vehicle to the
desired position. The so-called cilia actuators are fabricated from silicon and
tungsten layers sandwiched between silicon nitride and polymer films and
are shaped through etching.44

A new version of microaccelerometers proposed by Applied MEMS (Stanford,
TX) replaces traditional electromagnetic detection utilized so far by electro-
static detection and position restoration, in the form of a 6.5 × 5.5 × 2-mm,
variable-capacitance MEMS accelerometer that is comprised of the proof-
mass, mass frame, center, and external electrodes.45
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A

 

Accelerometers, 427–429
Actuation

classical, 396
definition of, 390
electrostrictive materials, 392–393
induced-strain, 390–394
macro-actuation, 390–396
magnetostrictive materials, 394
microelectromechanical systems

description of, 396–397
electromagnetic, 398
electrostatic, 397
magnetostrictive, 398
piezoelectric, 397–398
pneumatic, 398–399
thermal, 399
thermopneumatic, 399

piezoelectric ceramics, 390–392
relaxor-based ferroelectric signal crystals, 

393–394
Actuators

hydraulic, 396
piezoelectric ceramic

description of, 390–392
microelectromechanical systems, 

397–398
pneumatic, 396
scratch drive, 425–427
shape-memory alloy, 395–396
thermal, 394–395

Adaptive optics, 434
Angular velocity, 224
Applications

macroscale, 413–421
microscale, 421–433

Axial compliance
composite flexure hinges, 373
description of, 65

Axial loading, 58
Axial vibration, 220–221

 

B

 

Behavior constraints, 385
Bending deformations, 345–346
Bending vibration, single-axis flexure hinges, 

221–225
Bistable mechanism, 348
Bloc output load, 166–169
Boundary conditions

description of, 21–22
planar serial compliant mechanisms with, 

173–181
Buckling

definition of, 354
dimensioning problem in, 358
elastic, 355
example of, 364–365
inelastic, 356
maximum safety load, 358–359
monographs regarding, 354–355
Simpson's rule, 362–363

Buckling beams, 425–427

 

C

 

Capacity of rotation
circular flexure hinge

multiple-axis, 119
nonsymmetric, 66
symmetric, 64–65

corner-filleted flexure hinges
multiple-axis, 120–121
single-axis, 68–69

elliptical flexure hinge
multiple-axis, 123–124
nonsymmetric, 81–82
symmetric, 79–80

 

1367_Frame_IDX  Page 437  Thursday, October 24, 2002  3:08 PM



 

438

 

Compliant Mechanisms: Design of Flexure Hinges

 

hyperbolic flexure hinge
multiple-axis, 122–123
nonsymmetric, 78–79
symmetric, 76–78, 77

inverse parabolic flexure hinge
multiple-axis, 124
nonsymmetric, 84
symmetric, 83

multiple-axis flexure hinge, 111–113
secant flexure hinge

multiple-axis, 125
nonsymmetric, 87
symmetric, 85–86

two-axis flexure hinge, 134–135
Carbon nanotubes, 399
Castigliano's displacement theorem

planar serial compliant mechanisms, 
155–160

principles of, 10, 24–25, 29–34, 43, 48–49
spatial serial compliant mechanisms, 

196–197
thermal effects, 380–382

Castigliano's first theorem, 30–31
Center of rotation, 23
Circular flexure hinge

compliance ratios, 97
constant cross-section flexure hinge 

comparison with, 102–103
description of, 63
limit verification of equations, 89
multiple-axis

capacity of rotation, 119
compliance ratio, 128
constant cross-section flexure hinge 

comparison with, 129–131
nonsymmetric

capacity of rotation, 66
precision of rotation, 67
symmetric circular flexure hinge 

comparison with, 106
precision of rotation, 120
symmetric

axial compliance, 65
capacity of rotation, 64–65
description of, 63
nonsymmetric circular flexure hinge 

comparison with, 106
numerical simulations, 91–92
precision of rotation, 65–66

Closed-form compliance
description of, 8
numerical simulations

individual trends, 91
internal comparisons, 96–97

symmetric circular flexure hinge, 
91–92

symmetric corner-filleted flexure 
hinges, 92

verification of equations
experimental, 90
finite element, 90–91
limit, 88–89, 126

Compliance-based design
circular flexure hinges

description of, 18, 63
limit verification of equations, 89
nonsymmetric

capacity of rotation, 66
precision of rotation, 67

symmetric
axial compliance, 65
capacity of rotation, 64–65
description of, 63
precision of rotation, 65–66

corner-filleted hinges
capacity of rotation, 68–69
description of, 18
nonsymmetric, 70–72
precision of rotation, 69–70
symmetric, 67–70

deformation-load equation, 58
description of, 17
history of, 17–18

Compliance content, 148
Compliant mechanisms

closed-form, 8
definition of, 5
description of, 145–149
energy efficiency, 147
flexure hinge configurations used with, 8
forced response of, 231–236
free response of, 231–236
large-displacement theories, 12
mechanical advantage, 147
optimization techniques, 383
planar

description of, 145, 150
hybrid, 189–195
parallel, 181–189
serial

bloc output load, 166–169
Castigliano's displacement 

theorem method, 155–160
composition of, 150–151
description of, 151
displacement amplification/

deamplification, 160–166
displacement-load equations, 

151–160
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energy efficiency, 169–170
five-link, 177
loop-closure method, 152–154
with other boundary conditions, 

173–181
precision of motion, 170–172
rigid links, 151

pseudo-rigid-body model of, 11, 13, 23, 
149, 170–171

rigid links, 6
spatial

description of, 145
hybrid, 202–204
parallel, 198–202
serial, 195–198

static modeling of
degrees of freedom, 147–148
description of, 146–147

terminology descriptions, 6–7
Composite flexure hinges

axial compliance of, 373
compliance properties of, 373–374
components of, 371–372
damping properties of, 375–376
degrees of freedom, 372
equivalence calculations, 372
illustration of, 372
inertia properties of, 374–375

Constant cross-section cantilever, 224
Constant cross-section flexure hinge

circular flexure hinge comparison with, 
102–103

compliance ratios, 101
corner-filleted flexure hinge comparison 

with, 103
description of, 101–102
elliptical flexure hinge comparison with, 

103–106
rectangular

capacity of rotation, 61–62
description of, 61
precision of rotation, 62–63
torsional compliance factor, 368

shearing effects, 101
Constant-width flexure hinge, 44
Corner-filleted flexure hinges

compliance ratios, 97–99
constant cross-section flexure hinge 

comparison with, 103
description of, 18
limit verification of equations, 89
multiple-axis

capacity of rotation, 120–121
compliance ratios, 128

constant cross-section flexure hinge 
comparison with, 131–132

precision of rotation, 120–121
nonsymmetric

capacity of rotation, 70–71
precision of rotation, 71–72
symmetric corner-filleted flexure 

hinge comparison with, 106–107
torsional compliance of, 369

precision of rotation, 69–70
symmetric

capacity of rotation, 68–69
nonsymmetric corner-filleted flexure 

hinge comparison with, 106–107
precision of rotation, 69–70
variable thickness, 67

torsional compliance of, 367
Cross-compliance, 96
Cross compliance ratio, 97
Cyclic tension testing, 39
Cylindrical flexure hinge

capacity of rotation, 118
description of, 118
precision of rotation, 119

 

D

 

Damping
coefficient, 254, 256
composite flexure hinges, 375–376
critical damping coefficient, 254
definition of, 251
dynamics of, 251–252
internal, 252
as long members, 257–260
loss factor, 254
microscopic sources, 253
modeling of, 252–257
multiple-axis flexure hinges, 259–260
passive, 253
ratio, 255
relaxation frequency, 255
as short members, 261
single-axis flexure hinges, 257–259
specific damping energy, 255–256
two-axis flexure hinges, 260

Deep reactive ion etching technique, 407
Deflection compliance ratio, 96
Deflection-force, 96
Deflection ratio, 51
Deflection-to-length ratio, 347
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Deformation
bending, 345–346
large, 345–354
theory of, 345

Deformation-load equation, 58
Degrees of freedom

composite flexure hinges, 372
description of, 10–11, 21–22, 148, 208–209
multiple-axis flexure hinges, 210
two-axis flexure hinges, 13–214, 148, 210
types of, 22–23, 148

Design constraints, 385
Design vector, 385
Digital micromirror devices, 433
Displacement amplification/

deamplification, 160–166
Displacement subvectors, 54
Displacement theorem (Castigliano)

planar serial compliant mechanisms, 
155–160

principles of, 10, 24–25, 29–34, 43, 48–49
spatial serial compliant mechanisms, 

196–197
thermal effects, 380–382

Ductile materials
failure of, 34–35
fatigue failure, 40
yield failure of, 35

Dynamic system
forced undamped response of, 233–234
Lagrange's equations, 210–211
modeling of, 208–211
overview of, 207–208

 

E

 

Effective inertia, 214–216
Eigenvalue, 233–234
Elastic joints, finite-element technique for, 

266
Elastic potential energy

multiple-axis flexure hinges, 212
single-axis flexure hinges, 211–212
two-axis flexure hinges, 212–213

Electrodischarge machining, 401–403
Electromagnetic actuation, 398
Electrostrictive materials, 392–393
Elemental matrices

equation, 271–272
flexure hinges, 276–277
multiple-axis flexure hinge, 285–293

rigid links
three-dimensional rigid link modeled 

as a two-node line element, 
305–310

two-dimensional rigid link modeled 
as a two-node line element, 
299–305

single-axis flexure hinge, 277–285
two-axis flexure hinge, 293–299

Elemental stiffness, 267
Elliptical flexure hinge

constant cross-section flexure hinge 
comparison with, 103–106

description of, 79
multiple-axis

capacity of rotation, 123–124
constant cross-section flexure hinge 

comparison with, 132
precision of rotation, 124

nonsymmetric
capacity of rotation, 81–82
precision of rotation, 82
symmetric elliptical flexure hinge 

comparison with, 108–110
torsional compliance of, 369

symmetric
capacity of rotation, 79–80
compliance factor, 92
compliance ratios, 100–101
nonsymmetric elliptical flexure hinge 

comparison with, 108–110
precision of rotation, 80–81
torsional compliance of, 367–368
variable thickness, 79

Endurance limit, 39
Energy efficiency

compliant mechanisms, 147
planar serial compliant mechanisms, 

169–170
single-axis flexure hinge, 60–61

Error threshold, 52
Euler–Bernoulli beams

description of, 47–48, 50, 210, 215, 351
multiple-axis flexure hinges, 378
single-axis flexure hinges, 377–378
two-axis flexure hinges, 378–379

 

F

 

Fabrication
description of, 400
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electrodischarge machining, 401–403
macromachining, 400
macroscale, 401–403
microelectromechanical systems-scale, 

404–407
Fatigue failure

definition of, 38
fatigue stress, 40
Goodman criterion, 40
studies of, 38–39
testing of, 39

Fatigue stress, 40
Finite-element technique

application example of, 310–315
CAD programs for, 265
data sets, 266
with dependent generalized coordinates 

eliminated from Lagrange's 
equations, 267

description of, 149, 265
displacement model, 269
elastic joints, 266
elemental matrices

equation, 271–272
flexure hinges, 276–277
mass matrix, 336–343
multiple-axis flexure hinge, 285–293
rigid links

three-dimensional rigid link 
modeled as a two-node line 
element, 305–310

two-dimensional rigid link 
modeled as a two-node line 
element, 299–305

single-axis flexure hinge, 277–285
stiffness matrix, 317–336
two-axis flexure hinge, 293–299

flexible-link mechanisms, 267
generic formulation

description of, 269–271
steps involved in, 269–270

global matrix equation, 272–275
literature regarding, 266–267
optimization module, 265
space-discretization process, 270–271
static problem, 275–276
time dependency, 270
two-dimensional beam element, 267
uses of, 265

Finite element verification of closed-form 
compliance equations, 90–91

Fixed–fixed ribbon flexure, 429
Fixed–free cross-section cantilever, 224
Flexible multibody systems, 207
Flexural pivots, 420

Flexure hinge, 

 

see also

 

 

 

specific hinge

 

bending-produced rotation, 23
benefits of, 2
biomedical uses of, 5
boundary condition of, 21–22
classification of, 18
commercial uses of, 5
components of, 1–2
constant rectangular cross-section

capacity of rotation, 61–62
description of, 61
precision of rotation, 62–63

definition of, 1, 17
inertia properties of, 216–217
limitations of, 3
machining of, 3
modeling of, 14
monolithic, 2–3
multiple-axis, 

 

see

 

 Multiple-axis flexure 
hinge

performance criteria for, 9
pseudo-rigid-body model of, 11, 13, 23
single-axis, 

 

see

 

 Single-axis flexure hinge
terminology descriptions, 6–7
three-dimensional applications, 3
two-axis, 

 

see

 

 Two-axis flexure hinge
two-dimensional applications, 3, 8–9

Force-deflection characteristics, 13
Form factor, 

 

see

 

 Stress concentration factor

 

G

 

Goodman criterion, 40
Grubler formula, 148
Gyroscopes, 427–429

 

H

 

Holonomic, 211
Homogenization method, 382–383
Hydraulic actuators, 396
Hyperbolic flexure hinge

description of, 9, 76
multiple-axis

capacity of rotation, 122–123
precision of rotation, 123

nonsymmetric, 78–79, 370
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symmetric, 76–78
torsional compliance of, 368

 

I

 

Induced-strain actuators, 390–394
Inertia properties

composite flexure hinges, 374–375
multiple-axis flexure hinges, 225–227
single-axis flexure hinges, 217–225

axial loading, 219
axial vibration, 220–221
bending vibration, 221–225
compliance factors, 217–218

two-axis flexure hinges, 227–229
In-plane compliances

capacity of rotation, 64
description of, 55
nonsymmetric corner-filleted flexure 

hinge, 70–71
symmetric circular flexure hinge, 64–65

Interdigital transducer, 429
Inverse parabolic flexure hinge

description of, 82
multiple-axis, 124–125
nonsymmetric, 84–85, 370
symmetric, 83–84
torsional compliance factor, 368
two-axis

capacity of rotation, 138–139
numerical simulation, 140–141
precision of rotation, 139–140
variable thickness and width, 138

Isotropic materials
stress effects, 35
yield failure of, 36

 

K

 

Kinetic energy
planar compliant mechanisms

hybrid, 245–246
parallel, 242–245
serial, 236–242

spatial compliant mechanisms
hybrid, 251
parallel, 248–251

serial, 246–248
Kuhn–Tucker conditions, 389

 

L

 

Lagrange's equations, 210–211, 250
Land–Colonnetti principle, 27–28
Large deformations, 345–354
Linear elastic materials

Castigliano's displacement theorem, 10, 
24–25, 29–34

description of, 25
failure of, 37
properties of, 25

Lithography, galvoplating, and injection 
molding, 407

Load-deformation relationships, reciprocity 
principle for defining, 27

Loading–relieving curves, 252–253
Load vector, 113
Loop-closure method, 152–154
Loss factor, 254

 

M

 

Macromachining, 400
Macroscale applications, 413–421
Macroscale fabrication, 401–403
Magnetostrictive actuators

description of, 394
microelectromechanical systems, 398

Mass matrix
definition of, 274
elemental, 336–343
multiple-axis flexure hinge, 290–293
rigid links

three-dimensional rigid link modeled 
as a two-node line element, 
309–310

two-dimensional rigid link modeled 
as a two-node line element, 
304–305

single-axis flexure hinge, 282–285
two-axis flexure hinge, 297–299

Material failure
description of, 34–35
fatigue failure, 38–43
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mechanisms of, 35
yield failure, 35–38

Mathematical formulations
Castigliano's displacement theorem, 

24–25, 29–34
description of, 24–25
reciprocity principle, 24–29

Maximum energy of deformation theory, 36
Maximum internal friction theory, 36
Maximum principal strain theory, 36
Maximum principal stress theory, 36
Maximum safety load, 358–359
Maximum shear stress, 36–37, 115–116
Maximum total strain energy theory, 36
Mechanical advantage

definition of, 147
planar serial compliant mechanisms, 

160–166
Metal thermostats, 394
Microaccelerometers, 428, 434
Microcantilevers, 422–425
Microelectromechanical systems

actuation
description of, 396–397
electromagnetic, 398
electrostatic, 397
magnetostrictive, 398
piezoelectric, 397–398
pneumatic, 398–399
thermal, 399
thermopneumatic, 399

adaptive optics uses, 434
compliant, 5
deformable mirrors, 434
description of, 3, 149, 266, 371
fabrication, 404–407
scratch drive actuators, 426

Microresonator, 428
Microscale applications, 421–433
Multibody systems, 207
Multiple-axis flexure hinges

applications of, 19, 431–433
circular

capacity of rotation, 119
compliance ratio, 128
constant cross-section flexure hinge 

comparison with, 129–131
corner-filleted

capacity of rotation, 120–121
compliance ratios, 128
constant cross-section flexure hinge 

comparison with, 131–132
precision of rotation, 120–121

cylindrical
capacity of rotation, 118

description of, 118
precision of rotation, 119

damping, 259–260
degrees of freedom, 210
description of, 3, 10, 18
elastic potential energy for, 212
elemental matrices

mass matrix, 290–293
stiffness matrix, 285–290

elliptical
capacity of rotation, 123–124
constant cross-section flexure hinge 

comparison with, 132
precision of rotation, 124

Euler–Bernoulli beams, 378
geometric symmetry of, 20–21
geometry of, 19
hyperbolic, 122–123
inertia properties of, 225–227
inverse parabolic, 124–125
limit verification of closed-form 

compliance equations, 126
mass matrix, 290–293
numerical simulations

description of, 126
internal comparison, 126–129

parabolic
capacity of rotation, 121–122
precision of rotation, 122

secant, 125
stiffness matrix, 285–290
three-dimensional applications

capacity of rotation, 111–113
description of, 24, 110–111
precision of rotation, 113–114
strain energy-based efficiency, 117–118
stresses, 115–117

Multiple-shooting technique, 347

 

N

 

Newmark method, 361–362
Noncircular cross-section flexure hinges, 

365–367
Nonsymmetric circular flexure hinge

capacity of rotation, 66
precision of rotation, 67
symmetric circular flexure hinge 

comparison with, 106
Nonsymmetric corner-filleted flexure hinge

capacity of rotation, 70–71
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precision of rotation, 71–72
symmetric corner-filleted flexure hinge 

comparison with, 106–107
torsional compliance of, 369

Nonsymmetric elliptical flexure hinge
capacity of rotation, 81–82
precision of rotation, 82
symmetric elliptical flexure hinge 

comparison with, 108–110
torsional compliance of, 369

Nonsymmetric hyperbolic flexure hinge, 
78–79, 370

Nonsymmetric inverse parabolic flexure 
hinge, 84–85

Nonsymmetric parabolic flexure hinge
capacity of rotation, 75–76
precision of rotation, 76
torsional compliance of, 369

Notch hinge, 6–7
Notch sensitivity factor, 43
Numerical integration, 361–362

 

O

 

Optical mount, 414–415
Optimization, 382–389
Out-of-plane compliances

capacity of rotation, 65
description of, 55–56
nonsymmetric corner-filleted flexure 

hinge, 71
symmetric circular flexure hinge, 71

 

P

 

Parabolic flexure hinge
description of, 8–9, 72–73
multiple-axis

capacity of rotation, 121–122
precision of rotation, 122

nonsymmetric
capacity of rotation, 75–76
precision of rotation, 76
torsional compliance of, 369

symmetric
capacity of rotation, 73–75
precision of rotation, 75

torsional compliance of, 368
Passive damping, 253
Piezoelectric ceramic actuators

description of, 390–392
microelectromechanical systems, 397–398

Piezoelectric stack actuator, 416
Planar compliant mechanisms

description of, 145, 150
hybrid, 189–195, 245–246
parallel, 181–189, 242–245
serial

bloc output load, 166–169
composition of, 150–151
displacement amplification/

deamplification, 160–166
displacement-load equations

Castigliano's displacement 
theorem method, 155–160

description of, 151
loop-closure method, 152–154

energy efficiency, 169–170
five-link, 177
kinetic energy of, 236–242
with other boundary conditions, 

173–181
potential energy of, 236
precision of motion, 170–172
rigid links, 151

Plane stress, 38
Pneumatic actuators

description of, 396
microelectromechanical systems, 398–399

Potential energy
elastic

multiple-axis flexure hinges, 212
single-axis flexure hinges, 211–212
two-axis flexure hinges, 212–213

planar compliant mechanisms
hybrid, 245–246
parallel, 242–245
serial, 236

spatial compliant mechanisms
hybrid, 251
parallel, 248–251
serial, 246–248

Precision of rotation
circular flexure hinge

nonsymmetric, 67
symmetric, 65–66

constant cross-section flexure hinge, 
62–63

corner-filleted flexure hinges
nonsymmetric, 71–72
symmetric, 69–70

cylindrical flexure hinge, 119
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elliptical flexure hinge
nonsymmetric, 82
symmetric, 80–81

hyperbolic flexure hinge, 79, 123
inverse parabolic flexure hinge, 139–140
parabolic flexure hinge

nonsymmetric, 76
symmetric, 75

rectangular flexure hinge, 62–63
secant flexure hinge, 86–87
two-axis flexure hinge, 136–137

Proportionality limit, 35
Pseudo-rigid-body model, for compliant 

mechanisms, 11, 13, 23, 149, 
170–171

 

Q

 

Q

 

 factor, 424
Quadrature formulas, 362

 

R

 

Radiofrequency capacitive switch, 433
Radiofrequency switches, 371
Rayleigh principle, 214–216, 223
Reactive ion etching, 398
Reciprocity principle, 24–29
Relaxation frequency, 255
Relaxor-based ferroelectric signal crystals, 

393–394
Resonant beam filter, 430
Revolute-geometry flexure hinge, 

 

see also

 

 
Multiple-axis flexure hinge

capacity of rotation, 111–113
degrees of freedom, 148
precision of rotation, 113–114
strain energy-based efficiency, 117–118
stresses, 115–117

Ribbon beam, 429
Rigid-body displacement, 267
Rigid links, 6
Rotary bearing, 1
Rotating bending testing, 39
Rotation center, 3
Rotation compliance ratio, 97
Runge–Kutta algorithm, 235, 347

 

S

 

Scratch drive actuators, 425–427
Secant flexure hinge

description of, 85
multiple-axis, 125
nonsymmetric

characteristics of, 87–88
torsional compliance, 370

symmetric
capacity of rotation, 85–86
precision of rotation, 86–87
variable thickness, 85

torsional compliance factor, 368
Sensitive axis

characteristics of, 19
definition of, 18
primary, 20
secondary, 20

Sensors, 427–429
Shape-memory alloy actuators, 395–396
Shape optimization, 382–389
Shearing force, 49
Shearing-to-bending deflection ratio, 51
Silicon, 404–405
Simpson's rule, 362–363
Single-axis flexure hinges, 

 

see also

 

 

 

specific 
flexure hinge

 

capacity of rotation, 45–53
configurations, 43
constant-width, 44
damping, 257–259
degrees of freedom, 148
description of, 4–5, 18, 43–45
elastic potential energy for, 211–212
elemental matrices for

calculations, 277–279
mass matrix, 282–285
stiffness matrix, 280–282

energy-based efficiency, 60–61
Euler–Bernoulli beams, 377–378
geometric symmetry of, 20
inertia properties of, 217–225

axial loading, 219
axial vibration, 220–221
compliance factors, 217–218

mass matrix, 282–285
microcomponents, 429–431
nonsymmetric, 369–370
performance criteria, 45
precision of rotation, 53–57
rectangular cross-section, 24
stiffness matrix, 209, 280–282
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strain-energy-based efficiency, 60–61
stress, 58–60
symmetric, 367–369
two-dimensional applications, 24

 

S–N

 

 curve, 39
Space-dependent velocity distribution, 223
Spatial compliant mechanisms

hybrid, 202–204, 251
parallel, 198–202, 248–3251
serial, 195–198, 246–248

Specific damping energy, 255–256
Static loading, 42
Stiffness matrix

definition of, 274
description of, 59
elemental, 317–336
multiple-axis flexure hinge, 285–290
rigid links

three-dimensional rigid link modeled 
as a two-node line element, 
306–309

two-dimensional rigid link modeled 
as a two-node line element, 
301–304

single-axis flexure hinge, 209, 280–282
two-axis flexure hinge, 294–297

Strain energy, 31
Strain energy-based efficiency

multiple-axis flexure hinge, 117–118
single-axis flexure hinge, 60–61

Stress
axial loading, 58
multiple-axis flexure hinge, 115–117
revolute-geometry flexure hinge, 115–117
single-axis flexure hinge, 58–60
two-axis flexure hinge, 137

Stress concentration factor, 41–42, 58
Stress concentrators, 41
Stress raisers, 41
Stress–strain curve, 35
Surface acoustic wave sensing, 429
Symmetric circular flexure hinge

axial compliance, 65
capacity of rotation, 64–65
description of, 63
nonsymmetric circular flexure hinge 

comparison with, 106
numerical simulations, 91–92
precision of rotation, 65–66

Symmetric corner-filleted flexure hinges
capacity of rotation, 68–69
nonsymmetric corner-filleted flexure 

hinge comparison with, 106–107
precision of rotation, 69–70
variable thickness, 67

Symmetric elliptical flexure hinge
capacity of rotation, 79–80
compliance factor, 92
compliance ratios, 100–101
nonsymmetric elliptical flexure hinge 

comparison with, 108–110
precision of rotation, 80–81
variable thickness, 79

Symmetric hyperbolic flexure hinge, 76–78
Symmetric inverse parabolic flexure hinge, 

83–84
Symmetric parabolic flexure hinge

capacity of rotation, 73–75
precision of rotation, 75

 

T

 

Tangent modulus, 356
Thermal actuators

description of, 394–395
microelectromechanical systems, 399

Thermal effects
calculations, 376
Castigliano's displacement theorem for, 

380–382
compliance factor errors induced 

through, 376–380
multiple-axis flexure hinges, 378
single-axis flexure hinges, 377–378
two-axis flexure hinges, 378–379

Thermopneumatic actuators, 399
Tilt mirrors, 431–432
Timoshenko beams

constant rectangular cross-section flexure 
hinge, 61–62

description of, 47–48, 50, 215, 379–380
procedures and equations, 229–231

Torsional compliance
corner-filleted flexure hinges

nonsymmetric, 369
symmetric, 367

description of, 366
elliptical flexure hinge

nonsymmetric, 369
symmetric, 367–368

hyperbolic flexure hinge
nonsymmetric, 370
symmetric, 368

inverse parabolic flexure hinge
nonsymmetric, 370
symmetric, 368
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parabolic flexure hinge
nonsymmetric, 369
symmetric, 368

secant flexure hinge
nonsymmetric, 370
symmetric, 368

symmetric single-axis flexure hinge, 
367–369

two-axis flexure hinge, 370–371
Torsional mirrors, 431
Torsional stiffness, 115
Two-axis flexure hinge

capacity of rotation, 134–135
characteristics of, 20, 133–134
damping, 260
degrees of freedom, 148, 210, 213–214
description of, 3, 18
elastic potential energy, 212–213
elemental matrices

calculations, 293
mass matrix, 297–299
stiffness matrix, 294–297

Euler–Bernoulli beams, 378–379
geometric symmetry of, 21
inertia properties of, 227–229
inverse parabolic

capacity of rotation, 138–139
numerical simulation, 140–141
precision of rotation, 139–140
variable thickness and width, 138

parabolic-profile, 370–371
precision of rotation, 136–137
stress, 137
torsional compliance, 370–371

 

V

 

Variational principle, 208
Vertical input displacement, 162
von Mises criterion

fatigue failure, 40–41
yield failure, 37–38

 

W

 

Wax actuators, 394–395

 

Y

 

Yield failure, 35–38
Yield stress, 38
Young's modulus, 50–51, 365

 

Z

 

z-axis cross-bending strain energy, 212
z-axis direct-bending strain energy, 212
Zero rotation angle, 177
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