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Preface

Complexity and Control is a graduate-level monographic textbook, intended
to be a novel and rigorous contribution to modern Complexity Theory.

The book contains 11 Chapters. Most Chapters have their own Appendices
(of graduate-level textbook nature). Chapter 1. is an Introduction, setting up
the stage for rigorous and controllable complexity theory. Chapter 2. intro-
duces a general geometrical machinery for complexity and control, in the form
of dynamics on Kähler manifolds; it includes Lagrangian dynamics on Rieman-
nian manifolds, Hamiltonian dynamics on symplectic manifolds, and quantum
dynamics in complex Hilbert spaces. Chapter 3. introduces global categorical
framework for complexity and control, from mathematical, computer-scientific
and (bio)physical perspectives. Chapter 4. introduces the basic crowd dynam-
ics and control in the complex plane and from it develops a unique framework
for simulation, optimization, control, learning and logic of generic complex sys-
tems. Chapter 5. is devoted to hierarchical self-similarity in group and crowd
behaviors. Chapter 6. presents hybrid topological adaptation in evolving en-
ergy landscapes. Chapter 7. explores complexity and control in solitary pulse
conduction of various nature. Chapter 8. develops quantum-computational ar-
chitecture for perceptual control theory. Chapter 9. explores complexity and
control in entropic and stochastic self-organization. Chapter 10. presents the
latest research in human biodynamics and crash simulation. Chapter 11. gives
the additional code samples (in several programming languages) used in com-
plexity research.

The book Complexity and Control is designed as a one-semester course
for engineers, applied and pure mathematicians, theoretical and experimental
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physicists, computer and economic scientists, theoretical chemists and biol-
ogists, as well as all mathematically educated scientists and students, both
in industry and academia, interested in predicting and controlling complex
dynamical systems of arbitrary nature.

Adelaide, Dr. Vladimir Ivancevic and Dr. Darryn Reid
May 2014 Command and Control Branch

Joint and Operations Analysis Division
Defence Science & Technology Organisation

Australia
Vladimir.Ivancevic@dsto.defence.gov.au

Darryn.Reid@dsto.defence.gov.au
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Glossary of Frequently Used Symbols

General

– ‘iff’ means ‘if and only if’;
– ‘r.h.s’ means ‘right hand side’; ‘l.h.s’ means ‘l.h.s.’;
– nD means n-dimensional [e.g., nD manifold ≡ n-manifold];
– ODE means ordinary differential equation, PDE means partial differential
equation, SDE means stochastic differential equation;
– imaginary unit: i =

√
−1; bar means the complex-conjugate [e.g., z̄ = x−iy

is the complex-conjugate of a complex number z = x+ iy];
– overdot means time derivative [e.g., ẋ(t) = dx(t)/dt];
– indicial notation with respect to (t, x, y, z) means the partial derivative [e.g.,
ux = ∂u/∂x];
– indicial notation with respect to (i, j, k, l, ..., α, beta, µ, ν, ...) means the co-
variant tensorial subscripts [e.g., Tij or Sµν ];
– Einstein’s summation convention over repeated indices (not necessarily one
up and one down) is assumed in the whole text, unless explicitly stated
otherwise.

Sets

N – natural numbers;
Z – integers;
R – real numbers;
C – complex numbers;
H – quaternions;
K – number field of real numbers, complex numbers, or quaternions.

Maps

f : A→ B – a function, (or map) between sets A ≡ Dom f and B ≡ Cod f ;

Ker f = f−1(eB)− a kernel of f ;
Im f = f(A)− an image of f ;

Coker f = Cod f/ Im f − a cokernel of f ;
Coim f = Dom f/Ker f − a coimage of f ;

X Y�f

h
�

�
�
��

Z
�

g

− a commutative diagram, requiring h = g ◦ f .
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XVI Glossary of Frequently Used Symbols

Derivatives

Ck(A,B) – set of k−times differentiable functions between sets A to B;
Ck(A,B) – set of smooth functions between sets A to B;
C0(A,B) – set of continuous functions between sets A to B;
f ′(x) = df(x)

dx – derivative of f with respect to x;
ẋ – total time derivative of x;
∂t ≡ ∂

∂t – partial time derivative;
∂xi ≡ ∂i ≡ ∂

∂xi – partial coordinate derivative;
ḟ = ∂tf + ∂xif ẋi – total time derivative of the scalar field f = f(t, xi);
ut ≡ ∂tu, ux ≡ ∂xu, uxx ≡ ∂x2u – only in PDEs;
Lxi ≡ ∂xiL, Lẋi ≡ ∂ẋiL – coordinate and velocity partials of Lagrangian;
LXT – Lie derivative of a tensor–field T in the direction of a vector-field X ;
[X,Y ] – Lie bracket (commutator) of two vector-fields X and Y ;
[F,G], or {F,G} – Poisson (or, Lie–Poisson) bracket of two C1(R) functions
F and G;
d – exterior derivative;
dH = iXHω – Hamiltonian 1-form with symplectic 2-form ω, Hamiltonian
vector-field XH and inner product (contraction) iXHω ≡ 〈XH , ω〉;
LXHωH ≡ diXHωH + iXHdωH = 0 – Lie derivative;
dzk = dxk + idyk, dz̄k = dxk − idyk – complex differentials;
∂z̄f, [for f ∈ C1(C)] – Wirtinger derivative, equivalent to the Cauchy-
Riemann equations: ∂xϕ = ∂yφ, ∂yϕ = −∂xφ, [for φ, ϕ ∈ C1(R)]
∂ ≡ ∂j and ∂̄ ≡ ∂j – Dolbeault operators;
∂n – boundary operator;
dn – coboundary operator;
∇ = ∇(g) – affine Levi–Civita connection on a smooth manifold M with
Riemannian metric tensor g = gij ;
Γ ijk – Christoffel symbols of the affine connection ∇;
∇XT – covariant derivative of a tensor–field T with respect to the vector-field
X , defined by means of Γ ijk;
T;xi ≡ T|xi – covariant derivative of the tensor–field T with respect to the
coordinate basis {xi};
Ṫ ≡ DT

dt ≡
∇T
dt – absolute (intrinsic, or Bianchi) derivative of the tensor–field

T upon the parameter t; e.g., acceleration vector is the absolute time deriva-
tive of the velocity vector, ai = ˙̄vi ≡ Dvi

dt
; note that in general, ai 	= v̇i – this

is crucial for covariant definition of the Newtonian force.
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Glossary of Frequently Used Symbols XVII

Smooth Manifolds and Fibre/Vector Bundles

Unless otherwise specified, all manifolds M,N, ... are assumed C∞−smooth,
real, finite–dimensional, Hausdorff, paracompact, connected and without bound-
ary,1 while all maps are assumed smooth (C∞). We use the symbols ⊗, ∨, ∧
and ⊕ for the tensor, symmetrized and exterior products, as well as the Whit-
ney sum2, respectively, while � denotes the interior product (contraction) of
(multi)vectors and p−forms, and ↪→ denotes a manifold imbedding (i.e., both
a submanifold and a topological subspace of the codomain manifold). The
symbols ∂AB denote partial derivatives with respect to coordinates possessing
multi–indices BA (e.g., ∂α = ∂/∂xα);

TM – tangent bundle of the manifold M ;
T ∗M – cotangent bundle of the manifold M ;
K = (M,ω) = (M, g) – Kähler manifold: K = TM + iT ∗M ;
ω = igij dz

i ∧ dzj – Kähler form;
g = igij dz

i ⊗ dzj – Kähler metric;
πM : TM →M – natural tangent-bundle projection;
π : E → M – projection from the fibre/vector bundle bundle E to the base
manifold M ;
(E, π,M) – fibre/vector bundle with the total space E, base space M and
projection π;

We use the following kinds of manifold maps: immersion, imbedding, sub-
mersion, and projection. A map f : M → M ′ is called the immersion if the
tangent map Tf at every point x ∈M is an injection (i.e., ‘1–1’ map). When
f is both an immersion and an injection, its image is said to be a submanifold
of M ′. A submanifold which also is a topological subspace is called imbedded
submanifold. A map f : M → M ′ is called submersion if the tangent map
Tf at every point x ∈ M is a surjection (i.e., ‘onto’ map). If f is both a
submersion and a surjection, it is called projection or fibre bundle.

1 The only 1D manifolds obeying these conditions are the real line R and the circle
S1.

2 Whitney sum ⊕ is an analog of the direct (Cartesian) product for vector bundles.
Given two vector bundles Y and Y ′ over the same base X, their Cartesian product
is a vector bundle over X × X. The diagonal map induces a vector bundle over
X called the Whitney sum of these vector bundles and denoted by Y ⊕ Y ′.



October 10, 2014 11:10 Complexity and Control 9in x 6in b1966-fm page XVIII

XVIII Glossary of Frequently Used Symbols

Lie Groups and (Co)Homology Groups

G – usually a general Lie group;
GL(n) – general linear group with real coefficients in dimension n;
SO(n) – group of rotations in dimension n;
T n – toral (Abelian) group in dimension n;
Sp(n) – symplectic group in dimension n;
T (n) – group of translations in dimension n;
SE(n) – Euclidean group in dimension n;
Hn(M) = Ker ∂n/ Im∂n−1 – nth homology group of the manifold M ;
Hn(M) = Ker dn/ Im dn+1 – nth cohomology group of the manifold M .
In particular,

H2
d (M,R) =

{d-closed real (1,1)-forms}
{d-exact real (1,1)-forms}

is the 2nd-order de Rham cohomology group of the complex manifold M ,
which is equivalent to the Dolbeault cohomology group of M :

H1,1

∂
(M,R) =

{∂-closed real (1,1)-forms}
{∂-exact real (1,1)-forms}

.

Other Spaces and Operators

Cn – nD complex space;
H(C) – complex Hilbert space;
Ck(M) – space of k−differentiable functions on the manifold M ;
Ωk(M) – space of k−forms on the manifold M ;
g – Lie algebra of a Lie group G, i.e., the tangent space of G at its identity;
� – semidirect (noncommutative) group product; e.g., SE(3) = SO(3) � R3;
Ad(g) – adjoint endomorphism; recall that adjoint representation of a Lie
group G is the linearized version of the action of G on itself by conjugation,
i.e., for each g ∈ G, the inner automorphism x �→ gxg−1 gives a linear trans-
formation Ad(g) : g→ g, from the Lie algebra g of G to itself.
‘∫
Σ – Feynman’s path-integral symbol, denoting integration over continuous
spectrum of smooth paths and summation over discrete spectrum of Markov

chains; e.g.,
∫
Σ D[x] eiS[x] denotes the path integral (i.e., sum–over–histories)

over all possible paths xi = xi(t) defined by the Hamilton’s action:
S[x] = 1

2

∫ t1
t0
gij ẋ

iẋj dt.
More generally, Euclidean and Lorentzian versions of the path integral

over all possible fields Φi = Φi(x), are respectively given, using some classical
field action (e.g., Maxwell) A[Φ], by:

ZEuc(Φ) =
∫
ΣD[Φ] e−A[Φ], ZLor(Φ) =

∫
ΣD[Φ] eiA[Φ].
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Glossary of Frequently Used Symbols XIX

Categories

S – all sets as objects and all functions between them as morphisms;
PS – all pointed sets as objects and all functions between them preserving
base point as morphisms;
V – all vector spaces as objects and all linear maps between them as mor-
phisms;
B – Banach spaces over R as objects and bounded linear maps between them
as morphisms;
G – all groups as objects, all homomorphisms between them as morphisms;
A – Abelian groups as objects, homomorphisms between them as morphisms;
AL – all algebras (over a given number field K) as objects, all their homo-
morphisms between them as morphisms;
T – all topological spaces as objects, all continuous functions between them
as morphisms;
PT – pointed topological spaces as objects, continuous functions between
them preserving base point as morphisms;
T G – all topological groups as objects, their continuous homomorphisms as
morphisms;
M – all smooth manifolds as objects, all smooth maps between them as mor-
phisms;
Mn – nD manifolds as objects, their local diffeomorphisms as morphisms;
LG – all Lie groups as objects, all smooth homomorphisms between them as
morphisms;
LAL – all Lie algebras (over a given field K) as objects, all smooth homomor-
phisms between them as morphisms;
T B – all tangent bundles as objects, all smooth tangent maps between them
as morphisms;
T ∗B – all cotangent bundles as objects, all smooth cotangent maps between
them as morphisms;
VB – all smooth vector bundles as objects, all smooth homomorphisms be-
tween them as morphisms;
FB – all smooth fibre bundles as objects, all smooth homomorphisms between
them as morphisms;
Symplec – all symplectic manifolds (i.e., physical phase–spaces), all symplec-
tic maps (i.e., canonical transformations) between them as morphisms;
Hilbert – all Hilbert spaces and all unitary operators as morphisms.
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1

Introduction

We introduce our motive for writing this book on complexity and control with
a popular “complexity myth,” which seems to be quite wide spread among
chaos and complexity theory fashionistas:

Low-dimensional systems usually exhibit complex behaviours (which
we know from May’s studies of the Logistic map), while high-dimensional
systems usually exhibit simple behaviours (which we know from syn-
chronisation studies of the Kuramoto model).

We admit that this naive view on complex (e.g., human) systems versus sim-
ple (e.g., physical) systems might seem compelling to various technocratic
managers and politicians; indeed, the idea makes for appealing sound-bites.
However, it is enough to see both in the equations and computer simulations
of pendula of various degree 1 – (i) a single pendulum, (ii) a double pendulum,
and (iii) a triple pendulum – that this popular myth is plain nonsense. The
only thing that we can learn from it is what every tyrant already knows: by
using force as a strong means of control, it is possible to effectively synchronise
even hundreds of millions of people, at least for a while.
1 If the reader needs a bit stronger argument to dismiss the validity of this popular

complexity myth, they might recall that the famous Liouville theorem describes
the basic characteristic of any n-dimensional Hamiltonian system described by
the phase-space coordinates qi ∈ M and the corresponding momenta pi ∈ M :
the time-evolution of this system preserves the phase-space volume (or, Liouville
measure) defined by the following ‘wedge’ products on the phase-space manifold
M :

vol = dq1 ∧ · · · ∧ dqn ∧ dp1 ∧ · · · ∧ dpn.

This preservation of volume vol causes structural instability of the system, i.e.,
the phase-space spreading effect, by which small phase regions Rt(∈ M) will tend
to get distorted from the initial one Ro(∈ M) (during the system evolution). The
problem is much more serious in higher dimensions than in lower dimensions,
since there are so many ‘directions’ in which the region Rt(∈ M) can locally
spread (see, e.g. [Pen89] for the popular explanation).
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More generally, the complexity theory, in its current stage of development,
is still fascinated by emergence of wonderful behavioural qualities of high-
dimensional self-organised systems. For example, the ‘science of fractal im-
ages’ is surely very nice, bridging the gap between science and visual arts,
and creating illustrations that serve to inspire and fascinate. Yet we are left
still wanting for something we contend is fundamentally important, namely
a necessary capability for prediction and control2. This requirement was in-
troduced into the world of physical sciences, at the end of the seventeenth
century, by Sir Isaac Newton, and is the reason for the enduring usefulness of
his theory, its empirical refutation notwithstanding. So, we can regard even
the world of visually-appealing cellular automata, which are supposed to be
able to efficiently model any kind of a complex system, as actually belonging
to pre-Newtonian scientific era, because they are not capable of predicting
and controlling individual agents’ behaviours.

We are arguing neither for nor against cellular automata and derived os-
tensibly soft engineering technologies3, which we acknowledge have produced
many useful contributions to modern science and technology. In this book,
we are proposing an alternative approach to behavioural complexity theory,
intended to be especially rigorous, and designed for prediction and control of
both crowds – or, indeed, large sets of agents of any kind – and of the individual
agents comprising such groupings. We hope that this approach will also find its
way to fields such as economics, where, in our view, the need for more sophis-
ticated models such as this is especially pressing. In simple words, our goal is
develop a rigorous framework for modelling very complex systems, potentially
with thousands of individual agents, while not ignoring the psycho-physical
individuality of each included agent. This novel, ‘hard maths’ approach to
behavioural complexity theory can be called high-dimensional Kähler mani-
fold complexity. It is a multi-fold mathematical approach, combining manifold
2 In most approaches, a successful predictability is a necessary condition for a suc-

cessful controllability . In other words, a comprehensive model, reflecting an aspi-
ration of a ’natural law’, should be capable of making successful definitive pre-
dictions; which is the same as saying that it should be refutable. Having such
a model, it is just a matter of adding a controller function to make the system
both controllable and observable. However, things can be more complicated than
this in practice: among the most successful controllers are model-free fuzzy-logic
controllers, which use linguistic variables to control the system at hand - without
even knowing the system’s model (e.g., to balance a double inverted pendulum
using a fuzzy-logic controller without defining the Lagrangian equations of mo-
tion, it is necessary only to specify and tune-up a set of fuzzy If-Then rules, such
as “If the two angles are medium left and small right, respectively, while the
two angular speeds are high and medium, respectively, then push the cart with
medium force to the left”). In this book we will focus on the modern and efficient
modeling theory , rather than on the model-free technology , including fuzzy logic,
as well as neural, Bayesian, Markovian and small-world networks.

3 including genetic algorithms, evolutionary computation, artificial life, etc.
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geometry, loop topology, complex analysis and gauge theory, and has already
been successfully tested in modern physics. From the signals-and-systems per-
spective, it is a nonlinear generalization of Kalman’s linear state-space control
and filter theory; from dynamical perspective it is both Lagrangian and Hamil-
tonian; from geometrical perspective it is both Riemannian and symplectic;
from physical perspective it is both classical and quantum; from ODE/PDE
perspective it is both deterministic and stochastic. It is a uniquely promis-
ing internal framework for a wide variety of nonlinear systems of ODEs and
PDEs, both real- and complex-valued. We submit that it is ready to become
available as a new foundation of a rigorous behavioral complexity theory.

The other, external side, a ‘wrapper’, of this new approach to complexity
is the commutative flow framework based on functional composition. Briefly,
composing maps (or, functions, processes, signals, systems, transformations)
is like following directed paths from one object to another (e.g., from set to
set). In general, a diagram is commutative iff any two paths along arrows
that start at the same point and finish at the same point yield the same
‘homomorphism’ via compositions along successive arrows. Commutativity of
the whole diagram follows from commutativity of its triangular components
(depicting a commutative flow, see Figure 1).

Fig. 1.1. A commutative flow (including all curved arrows) on a triangulated di-
graph, defining the resulting path AB. Note that the commutativity of the whole
diagram, and therefore the definition of the path AB, follows from the commutativ-
ity of its triangular components.

The result, we hope, is a rigorous theory of complex behaviour and control
that can address some of the shortcomings of contemporary ideas in complex-
ity. Our approach is founded on the principle of making definitive predic-
tions, both by which we may act in the world and by which we may subject
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our models to the harshest responsible logical and empirical scrutiny we can
muster. Indeed, it is our enduring hope that our approach will eventually
be supplanted by one or more improved theories of greater explanatory and
predictive power; such is the nature of the growth of knowledge.
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2

Local Geometrical Machinery for Complexity
and Control

In this Chapter, we present local geometrical machinery for studying complex-
ity and control, consisting of dynamics on Kähler manifolds, which combine
three geometrical structures – Riemannian, symplectic and complex (Hermi-
tian) – in a mutually compatible way. In other words, every Kähler manifold
is simultaneously Riemannian, symplectic and complex (Hermitian). It is well
known that Riemannian manifolds represent the stage on which Lagrangian
dynamics is set, symplectic manifolds represent the stage for Hamiltonian dy-
namics, and complex (Hermitian) varieties comprise the stage for quantum
dynamics. Therefore, Kähler manifolds represent the richest dynamical stage
available where Lagrangian, Hamiltonian, and quantum dynamics all dance
together.

2.1 Introduction: Why Kähler Manifolds?

A set of attractor-following dynamics of n agents (for arbitrary n) in the
complex plane C generate an n-dimensional (nD) crowd configuration space
(CCS), which is locally homeomorphic (i.e., topologically equivalent) to the
nD complex space Cn. In some special cases, including point attractors as
well as line-segment attractors, the CCS is also globally homeomorphic to
Cn, so we can say that the CCS is Cn. Incidentally, this also happens to
be the finite-dimensional Hilbert space H(C) � Cn, that we need for the
finite-dimensional control, optimization and learning, as well as for quantum
computation (e.g., the Hilbert space for a single qubit is H2 � C2, for two
qubits it is H2⊗H2 � C

4, for three qubits it is H2⊗H2⊗H2 � C
6, etc.). So,

the linear space Cn is both algebraic and geometrical basis for complex-valued
crowd dynamics, control and learning.

However, as soon as we have some closed-line attractors in the complex
plane with either one loop (a circle), or two loops (‘figure 8’), or three or more
loops, then the CCS (of agents following these attractors) becomes a more
complicated, nonlinear geometrical object (a complex hyper-surface) which
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is characterized by the notion of a high-dimensional genus: it is said to be
genus 0 in the linear case of an attractor without loops, genus 1 for a one-loop
attractor, genus 2 for a two-loop attractor, genus 3 for a three-loop attractor,
etc. Similarly, if we have a (quite common) case of several closed-loop attrac-
tors working/attracting simultaneously, then the total genus of the CCS will
be equal to the sum of all attractor loops. So, if there exists one or several
attractor-loops in the crowd dynamics, the CCS is no more globally equivalent
to C

n, but becomes a more general, nonlinear, complex n-manifold. In the sim-
plest case of a single agent, the CCS represents the so-called Riemann surface
(i.e., a donut with several holes), which is locally (at every point) homeomor-
phic to C1, that is the complex plane itself. In case of n agents, we clearly need
a concept of a complex manifold of higher dimension that generalizes the Rie-
mann surface to n dimensions. The rigorous mathematical framework for such
nonlinear complex n-spaces (which includes all high-dimensional generaliza-
tions of Riemann surfaces while obeying necessary topological conditions, and
possessing very rich geometry, topology, analysis and algebra), is the concept
of a high-dimensional Kähler manifold.

In this chapter, we will develop a geometrical and topological theory of
crowd’s Kähler manifolds. Informally, a Kähler manifold K is such a con-
figuration space of a crowd-dynamics system evolving in the complex plane,
which is locally homeomorphic to Cn, but also comprises three simultaneous
and compatible geometrical and dynamical structures: Lagrangian dynamics
(with its Riemannian geometry), Hamiltonian dynamics (with its symplectic-
Poisson geometry) and quantum-like complex dynamics (with its geometric
complex structure). If we have a CCS that is endowed with all three struc-
tures, then it is the Kähler n-manifold. This concept enables topological as
well as algebraic, geometrical and analytic considerations.

2.1.1 Dynamical Prologue: Complex Hamiltonian Dynamics

This subsection has a motivational character only, to show that there is a
complex structure hidden in the classical Hamiltonian formalism, which can
serve as a bridge between the complex plane C and our proposed Kähler
formalism. Both Lagrangian and Hamiltonian formalisms will be developed
properly later (see Appendix), as the Kähler formalism contains them both
(as its special cases).

Hamiltonian energy function H(x,p) ∈ R, describing planar Newtonian
dynamics of a crowd, group, or team of n agents in the complex-plane C ∼=
R× R, is given in vector form by:

H(x,p) =
1

2m
‖p‖2 + V (x),

where x = x(t) ∈ C
n ∼= R

n×R
n is an n-vector of individual agents’ generalized

coordinates xi(t), p(t) = m ẋ(t) ∈ Cn is the corresponding n-vector of the
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generalized momenta pi(t),1 while V (x) ∈ R is crowd’s (scalar) potential
function. Then crowd’s Cn-dynamics, classically governed by the Newton’s
second law:

m ẍ = −∂xV,
(

∂xV ≡
∂V

∂x

)

obtains the form of classical Hamilton’s equations of motion:2

ẋ = ∂pH, ṗ = −∂xH. (2.1)

If we introduce the symplectic matrix:3

J =
[

0 In
−In 0

]

,
(
with det J = 1 and J−1 = JT = −J

)

(where In is the n×n identity matrix), then Hamilton’s equations (2.72) can
be rewritten in symplectic form as:

ξ̇ = J
∂H

∂ξ
, with ξ = (x,p) ∈ C

n. (2.2)

Alternatively, in complex notation (by setting: z = x+ ip, i =
√
−1), the

symplectic Hamilton’s equations (2.2) obtain the complex Hamiltonian form
in Cn (see [AM78, CD82, AMR88, MR99]):

ż = −2i
∂H

∂z̄
, with

∂

∂z̄
:=

1
2

(
∂

∂x
− i

∂

∂p

)

, (2.3)

where bar denotes complex-conjugation.
The complex Hamiltonian crowd equations (2.3) represent dynamical

starting point for the construction of the crowd Kähler manifold K, which is
a symplectic manifold with an integrable complex structure compatible with
the symplectic structure J (alternatively, crowd Kähler manifold K can be de-
fined as a Hermitian manifold with a closed Hermitian form called the Kähler
metric).
1 Note that in Newtonian and Lagrangian mechanics, velocities are derived quan-

tities, defined as time derivatives of the coordinates, v(t) = ẋ(t). In Hamiltonian
mechanics, however, the momenta p(t) corresponding to the (generalized) coordi-
nates are usually postulated as another set of coordinates on the equal footing as
the coordinates themselves, but can also be derived from the Lagrangian function,
or simply as p(t) = m ẋ(t).

2 We remark that this same dynamical picture the basis of quantum mechanics as
well, where all dynamical observables (coordinates, momenta and Hamiltonian
energy function itself) are replaced by the Hermitian operators in the associated
Hilbert space.

3 Note that, in some resources, the symplectic matrix J is alternatively denoted
by Ω, although in geometrical references, Ω usually represents the space of all de
Rham’s exterior differential forms, the most important being the closed symplectic
2-form ω.
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2.1.2 Unified Behavioral Picture: Kähler Geometrodynamics

By experiences from modern physics, both classical and quantum, we have
learned that any kind of a multi-dimensional dynamical system can be formu-
lated as a generalized Lagrangian or Hamiltonian system (that is not restric-
tive to conservative dynamics only, but also includes dissipative and forced
dynamics; not only finite-dimensional, but infinite-dimensional as well). Now,
instead of arguing which formulation would be more efficient (from theoret-
ical and computational perspectives) for our general behavioral-complexity
dynamics, would it be a generalized Lagrangian or a generalized Hamiltonian
formalism, we propose here a unique formulation that comprises them both.

More precisely, our Kähler behavioral geometrodynamics (BGD) is given
by the following 4nD complex structure:

[
Kähler
K-BGD

]

�




Riemannian Geo

TM with
Lagrangian Dyn



 + i




Symplectic Geo
T ∗M with

Hamiltonian Dyn



 ,

such that the real part, Re (K) , consists of a real Riemannian 2n-manifold
TM with Lagrangian nD crowd-complexity dynamics defined on it, while
its imaginary part, Im (K) , consists of a real symplectic 2n-manifold T ∗M
with Hamiltonian 2nD crowd-complexity dynamics defined on it. In addition,
both component-manifolds, TM and T ∗M, are themselves derived geometrical
structures (a tangent bundle TM and a cotangent bundle T ∗M), derived from
the basic crowd configuration space M , which is an n-manifold with attractor
dynamics of n agents defined in the complex plane C.

In other words, standard approach of classical physics and quantum me-
chanics is given by the commutative diagram:4

[
TM, g, L(xk, ẋk)

] [
T ∗M,ω,H(xk, pk)

]�F

Config. Space :M ≡ {xk}

{ẋk}

�
�

�
�

�
�

�
��

{pk}

�
�

�
�

�
�

�
��

where the contravariant left-hand map: M → TM, given by {xk} 	→ {xk, ẋk},
defines the Riemannian geometry with the metric tensor g = gjk and La-
grangian function L(x,v) = L(xk, ẋk), while the covariant right-hand map
M → T ∗M , given by {xk} 	→ {xk, pk} defines the symplectic geometry
with the symplectic closed 2-form ω = dxk ∧ dpk and Hamiltonian function
4 See Chapter 3 for technical details on commutative diagrams.
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H(x,p) = H(xk, pk); the horizontal map F is called the fiber derivative, or
Legendre transformation.5

Here are some more details on this geometrical-mechanics picture, which
we will need for the future development. The left-hand branch of the above
mechanical commutative diagram is usually called Lagrangian dynamics . To
each nD smooth6 configuration manifoldM there is associated its 2nD velocity
phase-space manifold, denoted by TM and called the tangent bundle of M .
The original configuration manifold M is called the base of TM . There is an
onto map π : TM →M , called the projection. Above each point x ∈M there
is a tangent space TxM = π−1(x) to M at x, which is called a fibre. The
fibre TxM ⊂ TM is the subset of TM , such that the total tangent bundle,
TM =

⊔

x∈M
TxM , is a disjoint union of tangent spaces TxM to M for all

points x ∈ M . From dynamical perspective, the most important quantity
in the tangent bundle concept is the smooth map v : M → TM , which is
an inverse to the projection π, i.e, π ◦ v = IdM , π(v(x)) = x. It is the
velocity vector-field vk = ẋk. Its graph (x, v(x)) represents the cross-section
of the tangent bundle TM ; thus, velocity vector-fields are cross-sections of the
tangent bundle TM . The Lagrangian (kinetic minus potential energy) function
L(xk, ẋk) is a natural energy function on the tangent bundle TM , which is
itself a smooth 2n-manifold, having its own tangent bundle, TTM . Cross-
sections of the second tangent bundle TTM are the acceleration vector-fields.
The Lagrangian dynamics are governed by the set of n second-order equations
of motion on TM :

d

dt
∂ẋkL = ∂xkL, with L(xk, ẋk) =

1
2
gjk ẋ

j ẋk − V (xk),

where V (xk) is the potential energy function and summation convention (over
repeated indices) is in place.

The right-hand branch of the mechanical commutative diagram is usually
called Hamiltonian dynamics. It takes place in the cotangent bundle T ∗M ,
defined as follows. A dual notion to the tangent space TxM to a smooth mani-
fold M at a point x is its cotangent space T ∗

xM at the same point x. Similarly
to the tangent bundle TM , for any smooth configuration nD manifold M ,
5 Note that the Legendre transformation F is here mainly for historical reasons,

which are also respected in virtually all mechanical textbooks: usually one first de-
fines Lagrangian dynamics as a generalization of Newtonian dynamics, and then
derives from it the corresponding Hamiltonian dynamics, via Legendre trans-
formation. For our purpose, it is more important that it makes this diagram
commutative. Also, it is proven in advanced texts (see [AM78]) that the map F
is invertible, so it represents a two-way connection between the second-order La-
grangian formalism on TM with the first-order Hamiltonian formalism on T ∗M .
Later in the text, we will properly define both formalisms.

6 Briefly, a smooth manifold is an nD topological space with a C∞-smooth structure
defined on it (for more technical details, see [II06b, II07]).
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there is associated its 2nD momentum phase-space manifold, denoted by T ∗M
and called the cotangent bundle. T ∗M is the disjoint union of all its cotangent
spaces T ∗

xM at all points x ∈M , i.e., T ∗M =
⊔

x∈M
T ∗
xM . Therefore, the cotan-

gent bundle of an n-manifold M is the vector bundle T ∗M = (TM)∗, which
is the real dual of the tangent bundle TM . Momentum 1-forms (or, covector-
fields) pk are cross-sections of the cotangent bundle T ∗M . The Hamiltonian
(that is, kinetic plus potential energy) function H(xk, pk) is a natural energy
function on the cotangent bundle T ∗M , which is itself a smooth 2n-manifold,
which has its own tangent bundle, TT ∗M . Cross-sections of the mixed-second
bundle TT ∗M are the force 1-forms Fk = ṗk. The (forced and dissipative)
Hamiltonian dynamics are governed by the set of 2n first-order equations of
motion on T ∗M :

ẋk = ∂pk
H + ∂pk

R, ṗk = Fk − ∂xkH + ∂xkR,

where Fk are external forces and R = R(xk, pk) is the general dissipative
function.

So, this is a picture from mechanics (for more technical details, see
[II06b, II07]). On the other hand, a twice as powerful approach of modern
gauge theory, which we will follow in the development of our behavioral com-
plexity theory, unites both the Lagrangian manifold TM and the Hamiltonian
manifold T ∗M, in the form of a single Kähler manifold:

K = TM + iT ∗M .

2.2 Complex Manifolds and Their Vector Bundles

2.2.1 Behavioral Dynamics on Complex Plane

In this section, we firstly, informally set-up the complex-plane stage for general
behavioral dynamics, and secondly, formally define a minimum of complex
analysis necessary for development of complex behavioral manifolds.

Behavioral dynamics in the complex plane C

If we have a set of n agents’ behaviors:

ψ(t) = {ψ1(t) + ψ2(t) + ..., ψk(t); k ∈ n}

(for arbitrary n), representing behavioral dynamics of various vessels, vehicles,
people, robots, etc., naturally defined on the Euclidean plane R

2, which can
be conveniently identified with the complex plane C ∼= R×R, is governed by
the following set of standard rules:
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ψ(t) ≡ x(t) + iy(t) = ρ [cosθ(t) + i sinθ(t)] ≡ ρ cisθ = ρ ei θ,

where : θ(t) = {θ1(t) + θ2(t) + ..., θk(t); k ∈ n} are heading-angles,

ρ(t) = {ρk(t); k ∈ n} = |ψ(t)| =
√

x2(t) + y2(t) are radius-vectors,

θ(t) ≡ arg [ψ(t)] = arctan
y(t)
x(t)

= −i ln
ψ(t)
ρ

; ρ2 = |ψ(t)| 2 = PDF.

Each individual complex number ψ(t) ∈ ψ(t) ∈ C represents a “2D vector
on steroids,” for which not only addition/subtraction is defined (by the par-
allelogram law), but also multiplication, division, any powers and any roots.
This means, e.g. that ψ(t) can model an object’s (e.g. ship, aircraft, etc.)
course in time (while ψ(t) can model a fleet of vessels), and we can per-
form with it any kind of discrete- and/or continuous-time calculations. Be-
sides, the complex-conjugation, ψ(t) = x(t) − iy(t), means the flip around
the real (horizontal, equatorial) axis X , while multiplication by imaginary
unit, i =

√
−1, means the rotation anti-clockwise by π/2 = 90◦. So, e.g.

if a ship motion/course is modeled by the complex number ψ(t) then its
course-correction for 45 degrees clockwise is modeled by −0.5 iψ(t), etc. Not
to mention that the angles θ(t), by definition, determine the instantaneous
headings of all the agents, while the radius-vectors ρ(t), also by definition,
determine their corresponding instantaneous distances from the origin (0, 0)
in the complex plane C.

For these same reasons, the complex plane C has become the stage of mod-
ern physics (quantum gauge-, string-, and computation-theories). Conceptual
and computational machinery from these theories (e.g. quantum Ising-spin
chain used in quantum computation), applied to real-world problems, com-
prise “physical mathematics.” Its core concept is R. Feynman’s generalization
of a complex vector (see Appendix):

Ipaths =
∫
D[x] eiS[x],

called the path integral (or transition amplitude, or sum-over all possible dis-
crete + continuous paths xi = xi(t) in the complex plane C, both deter-
ministic and random), determined by classical Hamilton’s action S[x] of the
Lagrangian L[x] (which is crowd’s kinetic minus potential energy, with the
metric tensor gij):

S[x] =
∫
L[xi(t)] dt =

1
2

∫ t1

t0

[
gij ẋ

iẋj − V (x)
]
dt.

More generally, the following symbol:

Ifields =
∫
D[Φ] eiS[Φ]

denotes the sum-over-fields Φi = Φi(x) in C, which is both discrete + contin-
uous and deterministic + random, defined by some field action S[Φ]. In both
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cases, D[x] and D[Φ] define probabilistic Lebesgue measures on the sets of all
possible paths and fields in the complex plane C.

In this way, we have the full dynamics of agents’ paths [x] + environmental
fields [Φ]:

Behavioral Dynamics in C = Ipaths + Ifields

=
∫
Dagents′

paths [x] eiS[x] +
∫
Denviron

fields [Φ] eiS[Φ],

in the sense of K. Lewin’s ‘topological’ psycho-social force-fields and behaviors
(see [Gol99] and Lewin’s own references therein).

Holomorphic functions and their differential operators in C

Recall (from undergraduate complex analysis) that holomorphic functions
are complex-valued functions (of one or more complex variables), which are
complex-differentiable in some open subset U ⊂ C. The required complex-
differentiability is established in the following way: if a complex function
f(z) ∈ U given by:

f(z) ≡ f(x+ i y) = ϕ(x, y) + iφ(x, y)

is holomorphic, then its real-valued components, ϕ and φ, both have contin-
uous first partial derivatives, ∂xϕ ≡ ∂ϕ/∂x and ∂yϕ ≡ ∂ϕ/∂y, which satisfy
the Cauchy-Riemann equations:

∂xϕ = ∂yφ, ∂yϕ = −∂xφ, =⇒ ∂z̄f = 0, (2.4)

where ∂z̄f is the Wirtinger derivative. The set of all holomorphic functions
defined on U ⊂ C is denoted by O(U).

Next, complex-valued differential operators are defined in the following
way. On the Euclidean plane R2 endowed with (x, y)-coordinates, the standard
de Rham differentials ([Rha84]; see Appendix) are dx and dy. On the complex
plane C, identified with R2 by z 	→ (x, y) when z = x+ i y, the corresponding
de Rham differentials are:

dz = dx+ i dy and dz̄ = dx− i dy.

Let U ⊂ C be an open subset in C, and f ∈ C∞(U) be a smooth function
defined on U, then the following facts hold:

1. the differential operator df is defined on U by:

df = ∂zf dz + ∂z̄f dz̄,

where the Wirtinger derivatives ∂zf and ∂z̄f (corresponding to the Cauchy-
Riemann equations (2.4)) are defined by:

∂zf ≡
∂f

∂z
=

1
2

(
∂f

∂x
− i

∂f

∂y

)

, ∂z̄f ≡
∂f

∂z̄
=

1
2

(
∂f

∂x
+ i

∂f

∂y

)

. (2.5)
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2. f ∈ O(U) iff ∂z̄f = 0; that is, if f ∈ O(U) then df = ∂zf dz.
3. if an open subset U ⊂ C is bounded, with a smooth boundary ∂U, f ∈
O(U), and a is an isolated interior point in U , then (z−a)−1 is holomorphic
and the Cauchy integral formula is valid:

f(a) =
1

2πi

∫

∂U

f dz

z − a .

Residues of meromorphic functions in C

A meromorphic function f(z) defined on an open subset U ⊂ C is a function
that is holomorphic on all U except at a finite set of isolated points [the so-
called poles of f(z)], at each of which the function f(z) must have a Laurent-
series expansion.

Recall that a residue Res
z=a

f(z) of a meromorphic function f(z) at the point
a ∈ C is defined by the Cauchy Residue Theorem:

Res
z=a

f(z) =
1

2πi

∮
f(z) dz,

with integration along a closed curve around z = a with the winding number7

1. In particular, if f(z) is given by a Laurent expansion at z = a,

f(z) =
∞∑

k=−∞
ak (z − a)k then Res

z=a
f(z) = a−1.

However, if a =∞, then the Laurent expansion

f(z) =
∞∑

k=−∞
ak

1
zk

gives Res
z=∞ f(z) = −a−1.

Here we give several examples of residues, calculated using computer algebra
systems Reduce and Mathematica:
7 A winding number is an integer which counts how many times the curve winds

around the point a.
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Res
z=

√
2

[
z

z2 − 2

]

=
1
2
, pole order = 1,

Res
z=0

[
sin(z)
z2

]

= 1, pole order = 1,

Res
z=

√
2

[
sin(z)
z2 − 2

]

=
sin[
√

2]
2
√

2
, pole order = 1,

Res
z=2

[
1

(z − 1)m (z − 2)2

]

= −m, pole order = 2,

Res
z=π/2

[tan(z)] = −1, pole order = 1,

Res
z=π/2

[
tan(z)

sec(z − π/2)
+ sec(z)

]

= −2, pole order = 1.

Residue-based techniques have many applications in engineering and sci-
ence. For example, they are heavily used for calculating the inverse Laplace
transforms.8

2.2.2 3D Rotations: Spinors

In principle, any kind of rotations in our natural 3D space can be represented
by spinors , complex-valued 2D vectors of a general form:

{ci, cj} ∈ C
2, such that (ci, cj ∈ C).

They are usually defined with respect to some reference basis in C
2. In partic-

ular, the basis spinors, {{1, 0}, {0, 1}}, are interpreted as ‘spin-up’ and ‘spin-
down’, with respect to the z-axis of a Cartesian basis in R3. Another stan-
dard basis is: {{

√
2
−1
,
√

2
−1}, {−

√
2
−1
,
√

2
−1}}, with the spinor components:

{
√

2
−1
,−
√

2
−1}.

8 Recall that the forward Laplace transform is a linear integral operator L : R → C,
defined by the improper integral :

F (s) = L{f(t)} =

Z ∞

0

e−stf(t) dt,

while the corresponding inverse Laplace transform L−1 : C → R is defined by the
complex Bromwich integral (see, e.g. [II12]):

f(t) = L−1{F (s)} =
1

2πi

Z γ+i∞

γ−v∞
estF (s)ds,

which is directly solved as:

f(t) =
X

Res [estF (s)] at poles of F (s).
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Like all vectors, the spinors have their norms (e.g. Norm[{2,−i}] =
√

5)
and also they can be normalized to a spinor with a unit norm:

Normalize[{2,−i}] = {2/
√

5,−i/
√

5}, such that Norm[{2/
√

5,−i/
√

5}] = 1.

Fig. 2.1. A sample spinor shown as a vector on the surface of the Bloch-
sphere.

A spinor can be shown as a vector on the surface of the Bloch-sphere (see
Figure 2.1).

Related to spinors are Pauli’s sigma matrices, Hermitian 2 by 2 unitary
matrices of the form:

σx =
(

0 1
1 0

)

, σy =
(

0 −i
i 0

)

, σz =
(

1 0
0 −1

)

.

which represent quantum-mechanical observables for the spin measured with
respect to the x-, y-, and z-axis of a Cartesian basis in R

3. They obey both
the commutation and anticommutation relations, given respectively by:

[σa, σb] = 2iεabc σc , {σa, σb} = 2δab I,

where εabc is the Levi-Civita tensor, δab is the Kronecker tensor, while I is
the 2 by 2 identity matrix.

Spinors are also related to SU(2), the rotation Lie group. For example,

SU(2)rot[{1, 1, 1}] =






cos
(√

3
2

)
−

i sin
“ √

3
2

”
√

3
−

(1+i) sin
“ √

3
2

”
√

3

(1−i) sin
“ √

3
2

”
√

3
cos

(√
3

2

)
+

i sin
“ √

3
2

”
√

3




 .

Here is a textbook example of the SU(2)-rotation:
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SU(2)rot[φ, {n1, n2, n3}] =




cos

(
φ
2

)
− in3 sin

(
φ
2

)
−i(n1 − in2) sin

(
φ
2

)

(n2 − in1) sin
(
φ
2

)
cos

(
φ
2

)
+ in3 sin

(
φ
2

)



 .

2.2.3 Attractor Dynamics on Riemann Surfaces

Why Riemann surfaces?

Quick answer: because of some ‘strange’ topological reasons outlined infor-
mally below.

As this might look as a nontrivial thing to explain, let us first consider
a slightly easier example of a planar double pendulum. The motion of this
2-component dynamical system (which is chaotic, yet simple enough to vi-
sualize) is defined by 2 time-dependent angles θ1(t) and θ2(t). Topologically
speaking (topology is popularly called ‘rubber sheet geometry’), each of these
two angles defines a circle S1 in a plane of pendulum’s oscillation, that is to say,
a configuration space is a circle S1 for each of the two segments. What about
the whole double pendulum: its configuration space is the Cartesian product
of the two circles: CS = S1 × S1 = T 2, which is an ordinary torus. By induc-
tion, a configuration space (or more precisely, a configuration manifold) of an
n-tuple pendulum (with n segments) is an n-torus T n = S1 × S1 × ...× S1.

Well, this already looks similar to some very simple crowd dynamics. As
stated in the previous subsection, the behavior of each individual agent in the
crowd (or group, or team), is defined by a time-dependent complex number,
ρeiθ(t). So, in a trivial case, ρ = ρ [x(t), y(t)] = 1, and thus a configuration
space for each agent is again a circle S1 (in either Euclidean or complex
plane). This means, for example, that a pair of agents is homeomorphic (i.e.,
topologically equivalent, see below) to a ‘flexible’ double pendulum, with a
‘flexible torus’ T 2

flex as a configuration manifold. By induction, a configuration
manifold for a group of n trivial agents (with ρk(xk, yk) = 1) - is a ‘flexible’
n-torus Tnflex. Provided a complex structure is defined on it, T nflex represents a
simple (Abelian group) example of a Kähler n-manifold.

Now, let us have a more serious look at a single agent’s behavior. From
mechanical perspective, each agent is a rigid body constrained to a Euclidean
(or complex) plane, i.e., its proper configuration space is SE(2), a (special)
Euclidean group of plane rigid motions. SE(2) is a 3-parameter group, in-
cluding two translational coordinates [x(t), y(t)] and a heading angle θ(t).
Topologically, SE(2) is a Cartesian product of an (x, y)-plane R

2 and a circle
θ, which is a cylinder Cyl.9 So, a natural (uncontrolled) dynamics of n agents

9 More formally, a Lie group SE(2) ≡ SO(2) × R is a set of all 3 × 3− matrices of
the form: 2

4 cos θ sin θ x
− sin θ cos θ y

0 0 1

3
5 ,
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is topologically represented by an nD cylinder: Cyln =
n∏

k=1

Cylk, which is a

Cartesian product of n cylinders Cylk.
10

Finally, instead of a natural dynamics, we really want an attractor-driven
crowd (team, or group) dynamics, that is, a controlled behavioral complexity.
Let us start slowly, with a single agent following an a priori given attrac-
tor. The above picture of a topological cylinder is still valid for all open-line
attractors. However, as soon as we have a closed loop in the attractor, it is
again a circle S1, so the configuration space of an attractor-driven agent is a
Cartesian product of a cylinder and a circle, which can be again approximated
by a ‘flexible torus’ T 2

flex. Thus, a one-hole attractor followed by a single agent
forms T 2

flex as its configuration manifold.
What if the attractor has more than one hole in it? In that case, we

have a similar but more complicated topological surface which is ‘flexible
torus with several holes’. This is a Riemann surface, which accidently has a
complex structure already defined on it. So, a configuration manifold for a
loop-attractor dynamics of a single agent (that is just a simple rigid body
moving in the Euclidean or complex plane) is a Riemann surface. Therefore,
without an attractor (or with a non-loop attractor), dynamics of a single
plane-agent is constrained to a cylinder. With a loop-attractor, it is a Riemann
surface, which is another simple example of a Kähler manifold.

At this stage we can only imagine how complex can be dynamics of n
agents following a set of closed-loop attractors, each with several S1-holes
in the complex plane C. However, no matter how complicated this crowd
dynamics can be, its configuration manifold is still a Kähler n-manifold.

2.2.4 Complex Manifolds and Vector Bundles

The first step in the development of the Kähler manifold concept is its ‘parent
concept’ of a complex manifold. As mentioned in the Introduction, the con-
figuration space of a single agent’s attractor dynamics in the complex plane
C is a Riemann surface (that is, a donut with several holes), which is locally
equivalent to C. Its nD generalization is called a complex manifold (with a

including both rigid translations (i.e., Cartesian x, y−coordinates) and rotation

matrix

»
cos θ sin θ
− sin θ cos θ

–
in Euclidean plane R

2 (see [II06b, II07]).

10 More formally, a crowd configuration n-manifold M is defined as a Cartesian
product of n SE(2)-groups for all individual agents [IR10a]:

M =
nY
k=1

SE(2)k ≡
nY
k=1

SO(2)k × R
k � Cyln,

coordinated by xk = {xk, yk, θk}, (for k = 1, 2, ..., n).
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certain number of holes, possibly countable infinity of them), which is a topo-
logical space11 M endowed with a special kind of a C∞-smooth geometrical
atlas (see Appendix) in which the transition functions φαβ in the local open
charts Uαβ ⊂M satisfy the Wirtinger derivatives (2.5).

More precisely, two charts (U1, φ1) and (U2, φ2) in a topological manifold
M, such that U1∩U2 �= ∅ are called compatible if φ1(U1∩U2) and φ2(U2∩U1)
are open subsets of Cn. A family (Uα, φα)α∈A of compatible charts on M
such that the Uα form a covering of M is called an atlas. The maps φαβ =
φβ ◦ φ−1

α : φα(Uαβ) → φβ(Uαβ) are called the transition functions, for the
atlas (Uα, φα)α∈A, where Uαβ = Uα ∩ Uβ, so that the following triangle is
commutative:

φα(Uαβ) φβ(Uαβ)�
φαβ

Uαβ ⊆M

φα

�
�

�
�

��

φβ

�
�

�
�
��

11 Topological spaces are structures that allow one to formalize concepts such as con-
vergence, connectedness and continuity. They appear in virtually every branch of
modern mathematics and are a central unifying notion. Technically, a topological
space is an ND set X together with a collection T of subsets of X satisfying the
following three axioms:
(i) the empty set and X are in T ;
(ii) the union of any collection of sets in T is also in T ; and
(iii) the intersection of any pair of sets in T is also in T .
The collection T is called the topology on X. The sets in T are the open sets, and
their complements in X are the closed sets. The elements of X are called points.
By induction, the intersection of any finite collection of open sets is open.

A function between topological spaces is said to be C0-continuous iff the in-
verse image of every open set is open. This is an attempt to capture the intuition
that there are no ‘breaks’ or ‘separations’ in the function. A homeomorphism is
a bijection (that is, an invertible 1 − 1 and onto function), which is continuous
both ways. Two spaces are said to be homeomorphic if there exists a homeomor-
phism between them, and they are (from the standpoint of topology) essentially
identical.

Now, our complex manifold M is a separable ND topological space, which is
locally equivalent to C

n, with the following additional properties:
(i) every point x ∈ M has a neighborhood U ⊂ M that is diffeomorphic (i.e.,

1 − 1, onto and C∞-smooth) to an open subset V ⊂ C
n;

(ii) M is a Hausdorff space: for every pair of points x1, x2 ∈ M , there are
disjoint open subsets U1, U2 ⊂M such that x1 ∈ U1 and x2 ∈ U2;

(iii) M is a second-countable space: there exists a countable basis for the topol-
ogy of M ; and

(iv) a map φ : C
n ⊃ V → U ⊂ M is called a (local) coordinate map on M ,

and its component functions (x1, ..., xn) defined by φ(m) = (x1(m), ..., xn(m))
are called local coordinates on U ⊂M .
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An atlas (Uα, φα)α∈A on a manifold M is holomorphic, iff all transition func-
tions φαβ : φα(Uαβ) → φβ(Uαβ) are holomorphic. Two holomorphic atlases
are equivalent, iff their union is again a holomorphic atlas for M . An equiva-
lence class of holomorphic atlases is called a complex structure on M .

This implies that holomorphic (or, analytic) functions f : X → C can
be defined on M , by using the coordinate representatives f ◦ φ−1

i . On any
even-dimensional smooth manifold M ,12 complex coordinates of the form:
zj = xj +i yj (j = 1, ..., d) can always be introduced in local open charts Ui ⊂
M, with holomorphic transition functions between the charts, thus forming a
holomorphic atlas for a complex manifold M of complex dimension d = n/2.
This atlas represents the complex structure on M (see [Gre96, II06b, II07] and
references therein).

Now, the so-called biholomorphism defines an equivalence between two
complex manifolds, in much the same way as a diffeomorphism (that is, a
C∞-smooth homeomorphism) defines an equivalence between two C∞-smooth
manifolds. In other words, if M and N are two complex manifolds, they are
equivalent if there is a map φ : M → N which is both a diffeomorphism and
a holomorphic map.

More precisely, a map ϕ : M → N between two complex manifolds M and
N , with M � m 	→ ϕ(m) ∈ N , is called a holomorphic map, if we have the
following charting:

� ��
ψ ◦ ϕ ◦ φ−1

� ��ϕ

�

φ

�

ψ

�

�

�

�

�

�

�

�
�
�
�
�

�
�
�
�

U

m

V

ϕ(m)

M N

�

�

�

�

�

�

�

�
φ(U) ψ(V )

φ(m) ψ(ϕ(m))

C
m �

	

Cn


	

This means that for each m ∈ U ⊂ M and each chart (V, ψ) on N , together
with ϕ (m) ∈ V ⊂ N , there is a chart (U, φ) on M with ϕ (U) ⊂ Cm and also
the map Φ = ψ◦ϕ◦φ−1 is holomorphic, i.e., the following diagram commutes:
12 A smooth manifold is a topological manifold M with a C∞-smooth atlas

(Uα, φα)α∈A ⊂M (see Appendix).
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Cm ⊃ ϕ (U) ψ(V ) ⊂ Cn�
Φ

M ⊇ U V ⊆ N�ϕ

�

φ

�

ψ

2.2.5 (Co)Tangent Spaces to the Complex Manifold

We now proceed with the development of the complex manifold concept.
Firstly, a tangent space TmM to any smooth or complex manifold M at a
point m ∈M (that is, the closest flat approximation to M at its point m, see
Appendix) has a real vector basis consisting of n linearly-independent partial
derivatives:

TmM : {∂x1 |m, ..., ∂xn |m}, (2.6)

such that any vector v ∈ TmM can be expressed as: v = vα∂xα |m.
Its dual, cotangent space T ∗

mM at a point m ∈M , has a real vector basis
consisting of de Rham’s exterior one-forms [Rha84] (see Appendix):

T ∗
mM : {dx1|m, ..., dxn|m}, (2.7)

where, by definition, dxi : TmM → R is a linear map with dxim(∂xj |m) = δij .
In the case of a complex manifold M (of complex dimension d = n/2), the

so-called complexified tangent space TmM
C is the same real tangent space

TmM, but now extended in such a way that complex coefficients can be
used in the vector-space manipulations, which is most easily done by defining
TmM

C as the tensor product of the real tangent space and the complex plane:
TmM

C = TmM ⊗ C. So, we can still use the real vector basis (2.6) with an
arbitrary vector v ∈ TmMC expressed as v = vα∂xα |m, but its components
vα can now be complex numbers. So, we can conveniently rearrange the basis
vectors in (2.6) as [Gre96, II06b, II07]:

TmM
C : {(∂x1 + i ∂xd+1)|m, ..., (∂xd + i ∂x2d)|m,

(∂x1 − i ∂xd+1)|m, ..., (∂xd − i ∂x2d)|m}.

In terms of complex coordinates: zj = xj + i yj , we can write this basis as:

TmM
C : {∂z1 |m, ..., ∂zd |m, ∂z̄1 |m, ..., ∂z̄d |m},

where the real vector spaces ∂xj |m and i ∂xj |m are considered linearly-
independent, so that TmMC has the real dimension 2d = n.

Also, analogous to the dual real basis (2.7) is the dual complex vector
basis: T ∗

mM
C = T ∗

mM ⊗ C, consisting of the complex exterior one-forms:

T ∗
mM

C : {dz1|m, ..., dzd|m, dz̄1|m, ..., dz̄d|m}.
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2.2.6 Complex Vector Bundles

Now, as we proceed in developing more general and more abstract structures,
we still want to keep a connection with a real-world dynamics. Firstly, we
can recall that in classical Lagrangian mechanics, to each nD configuration
manifold M there is associated its 2nD velocity phase-space TM , called the
tangent bundle of M , while the original configuration manifold M is called
the base of TM . The core concept in the tangent bundle construction is the
onto map π : TM →M called the projection. Above every point m ∈M there
is a tangent space TmM = π−1(m) to M at m, which is called a fibre. The
fibre TmM ⊂ TM is the subset of TM , such that the total tangent bundle,
TM =

⊔

m∈M
TmM , is a disjoint union of tangent spaces TmM to M for all

points m ∈ M . From mechanical perspective, the most important quantity
in the tangent bundle concept is the smooth map v : M → TM , which is an
inverse to the projection π, i.e, π ◦ v = IdM , π(v(m)) = m. This map is called
the velocity vector-field ; its graph (m, v(m)) represents the cross-section of
the tangent bundle TM . The tangent bundle TM is the simplest example of
a real vector bundle concept, endowed with Riemannian metric g (see e.g.
[II06b, II07]).

The second example of a real vector bundle, endowed with the symplectic
two-form ω, is the dual concept to the tangent bundle TM of a smooth config-
uration manifold M , that is the cotangent bundle T ∗M , called the momentum
phase-space of a 2nD Hamiltonian dynamical system. T ∗M is defined as the
disjoint union of all its cotangent spaces T ∗

mM at all points m ∈ M , i.e.,
T ∗M =

⊔

m∈M
T ∗
mM . Therefore, the cotangent bundle of an n-manifold M is

the vector bundle T ∗M = (TM)∗, the (real) dual of the tangent bundle TM
(see e.g. [II06b, II07]).

More generally, a complex vector bundle K is a vector bundle π : K →M
whose fiber bundle π−1(m) is a complex vector space. If a complex vector
bundle has the structure of a holomorphic complex manifold, then it is called
a holomorphic vector bundle. A Hermitian metric h on a holomorphic vector
bundle K assigns a Hermitian inner product to every fiber bundle π−1(m).13

By a partition of unity, any complex vector bundle has a Hermitian metric.
In particular, the complexified tangent bundle K ≡ TM ⊗ C is the the

disjoint union of the complexified tangent spaces: TM ⊗ C =
⊔

m∈M
TmM

C.

The holomorphic vector bundle K ≡ TM ⊗ C may have a Hermitian metric
h, such that its real part is a Riemannian metric g and its imaginary part is
a nondegenerate de Rham’s exterior p-form ω which may be closed (dω = 0),
therefore it is a symplectic form. In other words, the real part of K ≡ TM⊗C

13 The simplest example of a holomorphic vector bundle is the trivial bundle π : U×
C

2 → U , where U is an open set in R
n. Here, a positive-definite Hermitian matrix

H defines a Hermitian metric by the following inner product: 〈v, w〉 = vTHw̄.
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is the tangent bundle TM (with the Riemannian geometry and Lagrangian
dynamics acting on it) and its imaginary part is the cotangent bundle T ∗M
(with the symplectic geometry and Hamiltonian dynamics acting on it), that
is:

K ≡ TM ⊗ C =TM + iT ∗M. (2.8)

If this is the case, the symplectic two-form ω becomes the so-called Kähler
form and the vector bundle K becomes the Kähler manifold .14

Note that the initial Kähler geometric relation (2.8) is beginning to realize
our big picture of the Kähler behavioral geometrodynamics:

[
Kähler
BGD

]

�




Riemannian Geo

TM with
Lagrangian Dyn



 + i




Symplectic Geo
T ∗M with

Hamiltonian Dyn



 .

In the next section, we will give a proper definition of a Kähler n-manifold.

2.3 From Kalman Systems to Riemann Manifolds

In this section we will show how the (left) Riemannian component of the
Kähler dynamics naturally rises from our everyday work performed say with
Matlab/Simulink. In the following section, we will do a similar modeling ex-
ercise with the (right) symplectic component of the general Kähler dynamics.

So, to start with, consider the standard Kalman’s decomposable linear
state-equation (see Appendix, section 2.8.2) for an arbitrary MIMO-system
(e.g., related to some cognitive-control or perceptual-control problem):

ẋ = Ax + Bu, (2.9)
y = Cx + Du,

with the state n-vector x = x(t) ∈ X ⊂ R
n, input m−vector u = u(t) ∈

U ⊂ Rm, output k−vector y = y(t) ∈ Y ⊂ Rk, state n× n matrix A = A(t) :
X→ X, input n×mmatrix B = B(t) : U→ X, output k×nmatrix C = C(t) :
X→ Y and input-output k ×m matrix D = D(t) : U→ Y.

Notwithstanding both the inherent ‘beauty’ and the practical usefulness of
the state equation (2.54), which is the basis of MatlabTM Control and Signal
toolboxes (and also used by half-a-dozen of otherMatlab toolboxes), we might
realize that, in real life nothing is linear, so the linear decomposable state-
equation (2.54) can only be the first approximation to some more realistic
nonlinear MIMO-system. Technically speaking, we can generalize (or, ‘lift-
up’) the linear model (2.54) that lives in nD linear Euclidean space Rn, into
14 The simplest example of a Kähler manifold is already mentioned Riemann surface,

that is a complex manifold of dimension 1, in which the imaginary part of any
Hermitian metric must be a closed form since all 2−forms are closed on a real 2D
manifold (see, e.g. [Gre96]).
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the tensor (or, ‘covariant’) equation that lives on nD nonlinear Riemannian
manifold M with the metric tensor gij and the metric form:

ds2 = gij dx
idxj , (i, j = 1, ..., n),

where the summation convention (summing over repeated indices) is in place.
Using this ‘nonlinear lift’, from the linear state equation (2.54) we obtain

the following covariant state equation:

˙̄xi = aij x
j + bis u

s, (s = 1, ...,m) (2.10)

yt = ctj x
j + dts u

s, (t = 1, ..., k)

where ˙̄xi = ˙̄xi(t) is the absolute (covariant) time-derivative, which includes
Christoffel’s symbols Γ ijk (i.e., the Levi-Civita connection associated with the
metric form ds2) of the Riemannian manifold M :

˙̄xi := ẋi + Γ ijkx
jxk.

The covariant state equation (2.55), which can be simulated in
MathematicaTM (or, MapleTM), in case of the flat connection (Γ ijk = 0),
reduces to the Kalman equation (2.54). Also, some higher-nonlinearity con-
nection (e.g., Cartan) can be used instead of the Levi-Civita connection Γ ijk.

2.4 Basic Kähler Geometry

2.4.1 Essential Kähler Tensors and Cohomology Groups

Kähler differential geometry (see, e.g. [Yau06, Don99, CL08, Mor07, Son12]
and references therein) represents a complexified synthesis of Riemannian ge-
ometry and symplectic geometry. It includes a variety of Kähler tensor-fields
and complex exterior differential forms, which are constructed using the ten-
sor product ⊗ and the wedge product ∧, respectively (see Appendix). These
tensor-fields represent complex generalizations of the standard tensor-fields
(and their corresponding multilinear forms) from these two geometries. We
remind the reader that the summation convention (over repeated indices) is
always in place.

As a start-off, let M be a compact (i.e., closed and bounded15) complex
n-manifold (which is our candidate for the Kähler manifold K), with local holo-
morphic coordinates {z1, · · · , zn}, defined in an open chart U ⊂ M, and the
Hermitian metric tensor-field gij = gij(z

i, zj), where (gij) is the Hermitian
matrix function.
15 Closed set contains all its limit points; its complement is an open set. An example

of a bounded set is a set S of real numbers that is bounded (from above) if there
is a real number k such that k ≥ s (∀s ∈ S).
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The (main) Kähler form ω is defined on M as a closed (dω = 0) and
positive (ω > 0) exterior (1,1)-form,16 given (in local holomorphic coordinates
z1, · · · , zn17 of an open chart U ⊂M) by:

ω = igij dz
i ∧ dzj ,

such that the corresponding Kähler metric g is a positive and symmetric
(1,1)-form:

g = igij dz
i ⊗ dzj.

The pair K = (M,ω) = (M, g) is called the Kähler manifold .
For example, in case of K = C

N , the Kähler form ω can be written as:

ω = i
(
dz1 ∧ dz1 + dz2 ∧ dz2 + ...+ dzN ∧ dzN

)

= −2 (dx1 ∧ dy1 + dx2 ∧ dy2 + ...+ dxN ∧ dyN )

=
N∑

k=1

dxk ∧ dyk.

while the corresponding Kähler metric g is given by:

g = i
(
dz1 ⊗ dz1 + dz2 ⊗ dz2 + ...+ dzN ⊗ dzN

)

= −2 (dx1 ⊗ dy1 + dx2 ⊗ dy2 + ...+ dxN ⊗ dyN )

=
N∑

k=1

dxk ⊗ dyk = δikdxkdyk , (δik = Kronecker delta).

16 We emphasize that the so-called Kähler condition, which is independent of the
choice of a holomorphic coordinate system on M , requires ω to be both closed
and positive (1,1)-form, that is:

∂gik
∂zj

=
∂gjk
∂zi

and
∂gki
∂zj

=
∂gkj

∂zi
(for all i, j, k = 1, 2, · · · , n).

17 To define complex differential forms in local holomorphic coordinates z1, · · · , zn
on a complex manifold M , we use the following three-step procedure:

1. Decompose the complex coordinates into their real and imaginary parts:
zk = xk + iyk for each j = 1, ..., n;

2. Complex differentials are then defined as:

dzk = dxk + idyk, dz̄k = dxk − idyk;

and
3. Any complex exterior differential form α can now be defined (using two arbitrary

real and smooth vector-functions fj and gj) by the following sum:

α = fjdz
k + gjdz̄

k.



October 10, 2014 11:9 Complexity and Control 9in x 6in b1966-ch02 page 25

2.4 Basic Kähler Geometry 25

To proceed with Kähler differential geometry, we need some basic cohomol-
ogy groups, both real (de Rham cohomology group) and complex (Dolbeault
cohomology group). Firstly, the real Kähler class of ω is the cohomology class
[ω] ∈ H2

d(M,R), where

H2
d (M,R) =

{d-closed real (1,1)-forms}
{d-exact real (1,1)-forms}

is the 2nd-order de Rham cohomology group of K = (M,ω). By the Hodge
theorem (see Appendix, as well as, e.g. [II06b, II07]), any other positive Kähler
form ωϕ ∈ [ω] is given by:

ωϕ = ω + i
∂2ϕ

∂zi∂zj
≡ ω + i∂i∂jϕ ≡ ω + i∂∂ϕ,

where ∂ ≡ ∂j and ∂̄ ≡ ∂j are the so-called Dolbeault differential operators ,18

while ϕ is a real smooth function called the Kähler potential . The functional
space of Kähler potentials is the set:

P(M,ω) = {ϕ | ωϕ = ω + i∂∂ϕ > 0}.

Alternatively, the Kähler class [ω] can be defined in terms of Dolbeault’s
operators as follows. Any p-form α defined on the Kähler manifold K = (M,ω)
is called ∂-closed iff ∂α = 0 and ∂-exact iff α = ∂η for some (p− 1)-form η on
K. The Dolbeault cohomology group H1,1

∂
(M,R) is a complexification of the

de Rham cohomology group H2
d(M,R), defined on K as a quotient:

H1,1

∂
(M,R) =

{∂-closed real (1,1)-forms}
{∂-exact real (1,1)-forms}

.

A Kähler form ω on K defines a nonzero element [ω] ∈ H1,1

∂
(M,R). If a

cohomology class α ∈ H1,1

∂
(M,R) can be written as α = [ω] for some Kähler

form ω on K then we say that α is a complex Kähler class (and write α > 0).

18 Dolbeault’s differential operators can be defined using the exterior derivative (see
Appendix) and the canonical projection of the vector bundle Ωp,q of complex
exterior (p, q)-forms, given respectively by:

d : Ωp,q → Ωp+1,q +Ωp,q+1, πp,q :
M
p+q

Ωp,q → Ωp,q, as:

∂ = πp+1,q ◦ d : Ωp,q → Ωp+1,q, ∂̄ = πp,q+1 ◦ d : Ωp,q → Ωp,q+1.

They obey the following properties:

d = ∂ + ∂̄, ∂2 = ∂̄2 = ∂∂̄ + ∂̄∂ = 0.
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Next, the volume form ωn (corresponding to the Kähler form ω) is given
on K = (M,ω) = (M, g) by:

ωn =
1
n!

in det
(
gij

)
dz1 ∧ dz1 ∧ · · · ∧ dzn ∧ dzn. (2.11)

The complex affine connections, i.e., Christoffel symbols (see Appendix)
corresponding to the Kähler metric g are given [for all i, j, k = 1, 2, · · · , n on
(M, g)] by:

Γ ki j = gkl
∂gil
∂zj

and Γ k
i j

= gkl
∂gli
∂zj

. (2.12)

Given the third-order connection symbols (2.12), we can define the fourth-
order curvature tensor on K in the following two steps (see Appendix):

(1) Firstly, we define the mixed curvature (1,3)-tensor on K, by:

R m
i k	

= −∂	Γ
m
ik ; and

(ii) Secondly, we define the covariant curvature (0,4)-tensor on K, by:

Rijk	 = gmjR
m
i k	

,

which is locally [in a open chart U ⊂ K with coordinates z1, · · · , zn] defined
by:19

Rijkl = −
∂gij

∂zk∂zl
+ gpq

∂giq
∂zk

∂gpj

∂zl
= −∂i∂jgk	 + gqp(∂igkq)(∂jgp	),

(for all i, j, k, l = 1, 2, · · · , n). It has the following three symmetries:

1. Rijk	 = Rji	k (conjugate symmetry);
2. Rijk	 = Rkji	 = Ri	kj (I Bianchi identity);
3. ∇mRijk	 = ∇iRmjk	 (II Bianchi identity);

Now, the Ricci curvature (or, contracted Riemannian curvature, see Ap-
pendix) of the Kähler metric g is a covariant (0,2)-tensor defined as:

Rij = g	kRijk	 = g	kRk	ij = R k
k ij

,

which has the trace in the form of the scalar curvature R = gjiRij . The
covariant Ricci tensor is locally [in an open chart U ⊂ (M, g) with holomorphic
coordinates z1, · · · , zn] given by:
19 The Kähler metric g possess a nonnegative bisectional curvature tensor Rijkl if

(for all non-zero vectors v and w in the holomorphic tangent bundle TM of M)
there is the following quadric form:

Rijklv
ivjwkwl ≥ 0.
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Rij = −
∂2 log

[
det(gkl)

]

∂zi∂z̄j
= −∂i∂j log

[
det(gkl)

]
.

Associated to the tensor Rij is the following closed Ricci (1,1)-form on K:

Ric(ω) = iRij(ω) dzi ∧ dzj = −i∂∂ log (det g) .

The main purpose of the Ricci curvature is to define the Kähler-Ricci flow .

2.4.2 Global Kähler Geometry

Fano manifolds

The richest and most useful structure in Kähler geometry is the Fano mani-
fold , that is a compact (i.e., closed and bounded) Kähler manifold with posi-
tive first Chern class . Recall that the Chern classes20 [Che46] are character-
istic classes associated to complex vector bundles. In the most important case
of a complex line bundle (see [Gro58]), the only nontrivial Chern class is the
first Chern class, which is an element of the second cohomology group of the
underlaying manifold.21 Formally, given a complex Hermitian vector bundle
E (of complex rank n) over a smooth manifold M , a representative of each
Chern class ck(E)22 of E are given as the coefficients of the characteristic
polynomial :

det
(

isΩ
2π

+ I

)

= ck(E) sk,

(with the n×n identity matrix I and the scalar s used here only as an indeter-
minate to generate the sum from the determinant), of the Cartan curvature
2-form:

Ω = dω + 1
2
[ω, ω],

where ω is the connection form for the gauge group of E. For example [MS74,
Wik13d], consider a holomorphic local coordinate z on the Riemann sphere,
that is a 1D complex projective space CP 1, with the complex line tangent
bundle E = TCP 1. We use the Kähler metric:

h =
dzdz̄

(1 + |z|2)2 ,

such that the Cartan curvature 2-form is:
20 The Chern classes are usually used, in conjunction with the Riemann-Roch the-

orem and the Atiyah-Singer index theorem , in algebraic topology, differential
geometry and algebraic geometry, for counting how many linearly-independent
sections are there in some vector bundle E.

21 As it is the top Chern class, it equals the Euler class of the bundle E, that is an
element of the integral cohomology group: Hr(E;Z).

22 ck(E) is usually called the Chern form of a complex Hermitian vector bundle E.
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Ω =
2dz ∧ dz̄

(1 + |z|2)2 ,

while the first Chern class is:

c1 =
[

i
2π

tr Ω
]

.

To show that E = TCP 1 is a non-trivial vector bundle, we need to prove that
the cohomology class c1 is non-zero; this is shown by calculating its integral
over the CP 1: ∫

c1dz ∧ dz̄ =
i
π

∫
dz ∧ dz̄

(1 + |z|2)2 = 2.

By the Stokes theorem, an exact form would integrate to 0, so the cohomol-
ogy class c1 is nonzero (thiss proves the so-called hairy ball theorem for the
Riemann sphere CP 1).

It has been one of main problems in Kähler geometry to study if a Fano
manifold admits a Kähler-Einstein metrics since the Aubin-Yau theorem on
Kähler-Einstein metrics with negative scalar curvature and the Calabi-Yau
theorem on Ricci-flat Kähler metrics in 70’s (see [Tia97, Tia12, Ti13]).

Kähler structures

According to [Don08a], within a fixed Kähler class on a compact complex
manifold M , there exist the following four different kinds of special Kähler
metrics:

1. Extremal Kähler metrics, due to Calabi [Cal83], which are critical points
(i.e., local minima) of the Calabi functional:

∫

M

|Riem(ω)|2dµω,

where ω varies over the Kähler metrics in a fixed Kähler class and Riem
is the Riemann curvature tensor. The Euler-Lagrange equation is

∂(∇Sω) = 0,

where ∇ is the gradient operator defined by ω and S(ω) is the scalar
curvature. In other words, the vector-field ∇Sω should be a holomorphic
vector-field. On the face of it, this is a sixth order partial differential
equation for the Kähler potential ψ.

2. Constant scalar curvature Kähler metrics are the extremal metrics with
constant Sω.23

23 If M has only trivial holomorphic vector-fields then there exist a constant scalar
curvature.
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3. Kähler-Einstein metrics are, by definition, those where the Ricci tensor
Ric is a multiple of λω.24

4. Kähler-Ricci solitons are metrics for which25

Ric− ω = Lvω,

where Lv is the Lie derivative along a holomorphic vector-field v.

Two Kähler structures and two alternative points of view

Consider a complex vector bundle E over a complex manifold M, as well as
the following two structures:

• A Hermitian metric h on E;
• A holomorphic structure on E defined by the ∂-operator

∂ : Ω0(E)→ Ω0,1(E).

These two structures together define a unique compatible unitary connec-
tion, in the sense that the ∂-operator is the (0, 1)-component of the covariant
derivative (see [Don08a]).

From the traditional point of view of complex algebraic geometry [GH78],
a holomorphic structure is firstly fixed and then various Hermitian metrics are
considered on it.26 Alternatively, from the point of view of general Yang-Mills
theory [AB82], the Hermitian metric is firstly fixed, and then various various
∂-operators are considered.

Consider two Kähler structures on an underlying compact manifold M :
a complex structure and a symplectic form, which are required to be alge-
braically compatible in the sense that the symplectic form is the imaginary
part of a Hermitian metric. Again, from the conventional point of view, the
complex structure is firstly fixed and then the Kähler form is varyed. If a
reference form ω0 is chosen and varyed in the fixed cohomology class then any
other form can be represented by the following Kähler potential :

ωψ = ω0 + i∂∂ψ.

For the alternative, Yang-Mills, point of view, the symplectic form ω is firstly
fixed and then the space J of algebraically-compatible almost-complex struc-
tures on M is considered. Then the group SDiff of symplecto-morphisms of
(M,ω) acts on J , and this is the analogue of the unitary gauge group U(E)
in the previous case27 [Don08a].
24 These metrics occur only in the Fano manifold case.
25 Ibid.
26 Here, we have the following formula for the curvature tensor in a local holomorphic

trivialisation:
Fh = ∂(h−1∂h),

where the metric is defined by a matrix-valued function h.
27 We consider the subset Jint of integrable almost complex structures, which is

preserved by SDiff. This is partitioned into equivalence classes under the relation
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2.4.3 Local Kähler Geometry

Complex coordinates

Consider the complex coordinates in an open chart on a Kähler manifold M
[Don08a]:

τa =
1
2
(ta + iθa).

Locally (in the neighborhood of a point in the free orbit M0 ∈M), the isom-
etry group acts by translations in the θa directions, and the Kähler metric
is given by i∂∂φ for a function φ of the complex variables τa. If we write
φ = φ(ta) then the tensor i∂∂φ is (using summation convention, as always):

i∂∂φ = ∂tatbφ dτadτ b, where ∂tatbφ =
∂2φ

∂ta∂tb
,

and this defines a positive Hermitian form iff the Hessian matrix of φ is positive
definite (in other words φ is a convex function of the real variables τa).28 The
Hessian of φ can be rewritten in index notation as ∇2φ = (φab), while (φab)
is the inverse matrix. Then, the symplectic form ω is given by:

ω =
1
2
φabdta ∧ dθb,

while the Riemannian metric g is:

g =
1
2

(
φabdtadtb + φabdθadθb

)
.

Then the curvature tensor R (regarded as an element of Λ2 ⊗ Λ2) is

R = Rabcddτadτ b ⊗ dτ cdτd , where Rabcd = φabcd − φacλφbdµφλµ .

Symplectic coordinates

A different point of view was outlined by [Don94, Abr98] as follows. Consider
an open set in the symplectic manifold Q×V ∗ (where Q ⊂ V = Rn is convex)
with linear coordinates {xa, θa}, and the standard symplectic form (that is
preserved by the translations in the θa):

Ω =
1
2
dxadθa.

J1 ∼ J2 if (M,J1), (M,J2) are isomorphic as complex manifolds. Although the
group SDiff does not have a true complexification one can argue that the equiv-
alence classes in Jint are formally the orbits of such a (mythical) complexified
group, in the sense that they behave that way at the level of tangent spaces and
Lie algebras [Don97].

28 Thus the theory of convex functions on Euclidean spaces is embedded, as this
translationally invariant case, in the theory of Kähler geometry.
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Formally, we have a Hamiltonian action of the group G = V ∗ on Q×V ∗, such
that the moment map [MR99] is the projection to Q, with components the
coordinates xa. Consider G-invariant almost-complex structures on Q × V ∗,
algebraically compatible with Ω. At each point of Q × V ∗ such a structure
is specified by a subspace of the complexified cotangent bundle T ∗ (Q× V ∗)
which has a unique basis of the form (see [Don08a]):

εa = dθa + Zabdx
b,

[where (Zab) is a symmetric complex matrix with positive definite imaginary
part] and the almost-complex structure is represented by a matrix-valued
function (Zab), while its G-invariance specifies that Z is a function of the
variables xa. The following 2-forms

dεa = ∂xcZab dx
cdxb

can be expressed as αab ∧ εb,29 thus giving the integrability condition:

∂xcZab = ∂xbZac. (2.13)

Next, by the elementary criterion for an exact differential , the condition
(2.13) implies that there are complex-valued functions ita such that:

Zab = i∂xb ta.

Furthermore, as Zab is symmetric, then (by the same criterion) there is a
single complex valued function F such that ta = ∂xaF ,30 i.e.:

Zab = ∂xaxbF.

Write u for the imaginary part of the function F above, so

Yab = ∂xaxbu = uab.

Some linear algebra shows that the metric defined by the almost complex
structure and the fixed form Ω is [Don08a]:

1
2
uijdx

idxj + uijdθidθj ,

where (uij) is the matrix inverse of the Hessian (uij).

29 This happens only when all the dεa are zero, since dεa does not contain any terms
involving dθi.

30 If we let f be minus the real part of F then the action of f ∈ G takes the
structure (Zab) to a new structure with zero real part. So, taking account of this
diffeomorphism group, we can reduce to considering Z = iY , with Y real and
positive-definite. Now the functions ta are real and εa = d(ta + iθa) so ta + iθa
are local complex coordinates.
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Thus we have two natural coordinate systems to use for this local Kähler
geometry. In the symplectic picture, we can set

Fijkl = uiaujb ∂xkxluab,

from which we can calculate the Riemann curvature tensor as:

F = Fijklη
i ∧ ηk ⊗ ηj ∧ ηl, where ηa = dxa + iuabdθb.

For example, the norm of the Riemann curvature tensor is the same as the
natural norm of F :

|F |2 = FijklFabcd u
iaujbukculd.

Similarly, the Ricci tensor is equivalent to the tensor:

Gij = Fijklu
kl, that is, Gij = ∂xixjL, where L = log det(uij).

Finally, the scalar curvature is given by another contraction, yielding the
Abreu formula [Abr98, Don02]:

S = Giju
ij = ∂xixjuij .

2.4.4 Invariant Hamiltonian Dynamics on Kähler Manifolds

In this subsection we consider symplectic Lie group actions on Kähler mani-
folds that are Lie groups (the so-called G-spaces).

Recall that the Kähler structure on a 2nD symplectic manifold M with a
symplectic form ω is given by a compatible triple (ω, J, g) on M, provided g
is a Riemannian metric and J is an almost complex structure.31

In addition, let a Lie group G (with its Lie algebra g) act on (M,ω) by
symplectomorphisms.32 Then, any element ξ ∈ g generates a vector-field ξM
on M , called the infinitesimal generator , given by:

ξM (x) :=
d

dt

∣
∣
∣
∣
t=0

exp(tξ) · x, (x ∈M),

whereexp: g → G is the exponential map. The G-action on M is said to be
Hamiltonian action if there exists a smooth equivariant map µ : M → g∗,
called the momentum map, such that for all ξ ∈ g we have the inner product :

iξM
ω = ω(ξM , ·) = d〈µ, ξ〉,

31 An almost complex structure J on a Kähler manifold M is a tangent bundle
automorphism J : TM → TM satisfying J2 = −I , such that g(·, ·) = ω(·, J ·) and
I is an identity matrix.

32 Symplectomorphisms are diffeomorphisms which preserve the symplectic form ω.
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where 〈·, ·〉 : g∗ × g → R is the duality pairing of the Lie algebra g with its
dual Lie algebra g∗. In this case, the compatible triple (ω, J, g) on M is called
G-invariant.

For example, if G = SO(3) is the rotation group of a rigid body, pa-
rameterized by three Euler angles (roll, pitch and yaw), then its tangent Lie
algebra g = so(3) contains the corresponding three angular velocities (which
are infinitesimal generators of the Euler angles), while its dual, cotangent Lie
algebra g∗ = so(3)∗ contains the three corresponding angular momenta. The
momentum map is:

µ : SO(3)→ so(3)∗.

For example, if G = T n, is an n-torus, the existence of a momentum map
µ is equivalent to the exactness of the one-forms iξM

ω for all ξ ∈ g. In this case
the obstruction of the action to being Hamiltonian lies in the first de Rham
cohomology group of M .33 If the complex structure J preserves harmonic
one-forms and the G-action has fixed points on every connected component,
then the action is Hamiltonian [PR10].

If the manifold is Kähler, the associated complex structure automatically
preserves the space of harmonic one-forms. For example, the S1-action on T 2

given by:
e2iϕ · (e2iθ1 , e2iθ2) = (e2iθ1 , e2i(θ2+ϕ))

is a symplectic action on a Kähler manifold which is free and hence has no
fixed points.

Since for compact manifolds one always has the Hodge decomposition for
the measure ωn, the following statement is valid [PR10]: Let (M,ω) be a
compact symplectic G-space. If M is a Kähler manifold, then the space of
harmonic one-forms is invariant under the complex structure J . If the G-action
has fixed points on every connected component of M then it is Hamiltonian.
For the proofs and more technical details, see [PR10] and references therein.

2.5 Dynamics on Quaternion-Kähler Manifolds

2.5.1 Quaternion-Kähler Manifolds

Recall that famous Irish mathematical physicist, Sir William Rowan Hamilton
(1805–1865), reformulated Newtonian and Lagrangian mechanics into a pow-
erful Hamiltonian formalism that united classical mechanics and geometrical
optics, thus setting-up the stage for the advent of quantum mechanics. Besides,
in 1843 Hamilton invented the quaternions , a number system that generalizes
33 The simplest example of a S1-Hamiltonian action is rotation of the sphere S2

about the polar axis. The flow lines of the infinitesimal generator defining this
action are the latitude circles.
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(or, extends) the complex numbers and also represents the four-parameter ro-
tations.34 He carved his fundamental formula for quaternion multiplication:35

i2 = j2 = k2 = ijk = −1

into the stone of Brougham Bridge.36 While Hamilton treated quaternions
geometrically, modern mathematics prefers to treat the field of quaternions H

algebraically, formally as the quaternion group, a non-Abelian group of order
eight, defined by the following set:

Q =
{
−1, i, j, k : (−1)2 = 1, i2 = j2 = k2 = ijk = −1

}
,

with 1 as the identity element, while −1 commutes with the other elements of
the group (for technical details, see [Qua13] and references and links therein).

From modern geometrical perspective, the so-called (almost) quaternion
manifold , denoted by (M,V ), is such an n-manifold M, which has a 3D vector
bundle V, associated to the tangent bundle TM of M, consisting of tensors of
type (1, 1) and in any coordinate neighborhood U of M , there exists a local
canonical basis {F,G,H} of the bundle V in U ⊂M, such that [Tek09a]:

F 2 = G2 = H2 = FGH = −I,

[where I denotes the identity tensor of type (1, 1)]. In such a way defined 3D
vector bundle V represents an almost quaternion structure on M , and (M,V )
is an almost quaternion manifold of dimension n = 4m (for m � 1).

Note that there is also a dual quaternion structure on M , given by a dual
local canonical basis {F ∗, G∗, H∗} of the 3D vector co-bundle V ∗, associated
to the cotangent bundle T ∗M of M, which satisfies the condition:

F ∗2 = G
∗2 = H∗2 = F ∗G∗H∗ = −I,

(it will be used later for explicit quaternion Kähler relations in the coframes
of T ∗M).

34 Recall that three spatial rotations are usually described by three Euler angles: roll,
pitch and yaw. However, Euler angles have the so-called gimbal lock (singularities
at 180 degrees), while quaternions do not have such a disadvantage, and because
of this, quaternions are used in various fields, including computer graphics, orbital
mechanics, computer vision, attitude control and robotics.

35 Note that the extended Kalman filter (see 2.8.2 in the Appendix) is frequently
used, in the form of the so-called quaternion filter , for sensor fusion, including
tracking of positions and quaternion-defined orientations of aircrafts, spacecrafts
and submarines, as well as in medical applications requiring the hand-eye cali-
bration (see, e.g. [Lei04] and references/links therein).

36 Brougham Bridge crosses the Royal Canal in Cabra, Dublin, Ireland. Hamilton
crossed this bridge and carved his fundamental quaternion formula on it when he
was on his way to the Royal Irish Academy to present his discovery.
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In any almost quaternion manifold (M,V ), there is an almost quaternion
metric structure, which is (for any cross-section φ of the bundle V and any
vector-fields X,Y ∈M) given by the Riemannian metric g such that:

g(φX, Y ) + g(X,φY ) = 0.

In that case, (M,V ) becomes an almost quaternion metric manifold (M, g, V ).
In addition, each of F,G,H in the local canonical basis {F,G,H} of V is
almost Hermitian with respect to the metric tensor g. Thus (for any vector-
fields X ,Y ∈M), by setting:

Φ(X,Y ) = g(FX, Y ), Ψ(X,Y ) = g(GX,Y ), Θ(X,Y ) = g(HX,Y ),

we see that Φ, Ψ ,Θ are local 2-forms on M .
Finally, to reach our target, the quaternion Kähler manifold , we have to

assume that the Riemannian (Levi-Civita) connection ∇ of the quaternion
metric manifold (M, g, V ) satisfies the following condition [YK84]: For any
vector-field X ∈M, if φ is a cross-section of the bundle V , then VXφ is also a
cross-section of V. In the local canonical basis {F,G,H} of V , this condition
is equivalent to the following three relations:

∇XF = r(X)G− q(X)H,
∇XG = −r(X)F + p(X)H, ∇XH = q(X)F − p(X)G,

where p, q,r are local 1-forms on M . If this condition is satisfied, the 3D
vector bundle V becomes a quaternion Kähler structure of M, while (M, g, V )
becomes the quaternion Kähler manifold.

More explicitely, following [Bur08], let {xi, xn+i, x2n+i, x3n+i} , for i =
1, ..., n be a real coordinate system on a neighborhood U ⊂M, such that:{
∂xi , ∂xn+i , ∂x2n+i , ∂x3n+i

}
is the corresponding frame on the tangent bundle

TM, while {dxi, dxn+i, dx2n+i, dx3n+i} is the corresponding coframe on the
cotangent bundle T ∗M of M. Then the following frame-relations hold in the
local canonical basis {F,G,H} of V :

F (∂xi) = ∂xn+i, F (∂xn+i) = −∂xi ,

F (∂x2n+i) = ∂x3n+i, F (∂x3n+i) = −∂x2n+i ,

G(∂xi) = ∂x2n+i, G(∂xn+i) = −∂x3n+i,

G(∂x2n+i) = −∂xi, G(∂x3n+i) = ∂xn+i ,

H(∂xi) = ∂x3n+i, H(∂xn+i) = ∂x2n+i ,

H(∂x2n+i) = −∂xn+i, H(∂x3n+i) = −∂xi .

In a dual local canonical basis {F ∗, G∗, H∗} of the 3D vector co-bundle
V ∗ (associated to T ∗M) the following coframe-relations hold:
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F ∗(dxi) = dxn+i, F
∗(dxn+i) = −dxi,

F ∗(dx2n+i) = dx3n+i, F
∗(dx3n+i) = −dx2n+i,

G∗(dxi) = dx2n+i, G
∗(dxn+i) = −dx3n+i,

G∗(dx2n+i) = −dxi, G∗(dx3n+i) = dxn+i,

H∗(dxi) = dx3n+i, H
∗(dxn+i) = dx2n+i,

H∗(dx2n+i) = −dxn+i, H
∗(dx3n+i) = −dxi.

2.5.2 Hamiltonian Dynamics on Quaternion-Kähler Manifolds

To start with, recall (see, e.g. [AM78]) that if M is an nD configuration
manifold of a complex physical system and H : T ∗M → R is its (regular)
Hamiltonian energy function defined on the cotangent bundle T ∗M with the
symplectic form ω ∈ T ∗M, called the momentum phase-space of M , then
there is a unique Hamiltonian vector-field X on T ∗M such that Hamilton’s
dynamical equations are given by the inner product:

iXω = dH, (2.14)

where ω is the symplectic form on T ∗M. The triple (T ∗M,ω,X) is called
Hamiltonian dynamical system on the cotangent bundle T ∗M.

Now, following [Tek09a], we will develop Hamiltonian formalism on the
quaternion Kähler manifold M = (M, g, V ) as follows. Let F ∗ be a component
of an almost quaternion structure V ∗, λF∗ be a Liouville form on M, and αF∗

be a 1-form on M . Then

αF∗ =
1
2
(xidxi + xn+idxn+i + x2n+idx2n+i + x3n+idx3n+i) and

λF∗ = F ∗(αF∗) =
1
2
(xidxn+i − xn+idxi + x2n+idx3n+i − x3n+idx2n+i).

Therefore, if ωF∗ is a closed Kähler form on a quaternion Kähler manifold
M, then ωF∗ is also a symplectic structure on M .

On a quaternion Kähler manifold M = (M, g, V ), the following Hamilto-
nian structures can be defined:

1. The Hamiltonian vector-field is given by:

X = X i∂xi +Xn+i∂xn+i +X2n+i∂x2n+i +X3n+i∂x3n+i ,

2. The differential of Hamiltonian energy H is:

dH = ∂xiH dxi + ∂xn+iH dxn+i + ∂x2n+iH dx2n+i + ∂x3n+iH dx3n+i,

3. The symplectic 2-form on M is given by:

ωF ∗ = −dλF∗ = dxn+i ∧ dxi + dx3n+i ∧ dx2n+i,
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4. The inner product (2.14) is given by:

iXωF∗ = ωF∗(X) = Xn+idxi −X idxn+i +X3n+idx2n+i −X2n+idx3n+i.

Combining these relations, the Hamiltonian vector-fieldX can be rewritten
as:

X = −∂xn+iH ∂xi + ∂xiH ∂xn+i − ∂x3n+iH ∂x2n+i + ∂x2n+iH ∂x3n+i .

Now, if a smooth curve α : I ⊂ R→M is an integral curve of the Hamil-
tonian vector-field X , i.e., X(α(t) =

.
α (for t ∈ I), then in local coordinates:

{xi, xn+i, x2n+i, x3n+i} ⊂M we have:

α(t) = (xi, xn+i, x2n+i, x3n+i) and
α̇(t) = ẋi ∂xi + ẋn+i ∂xn+i + ẋ2n+i ∂x2n+i + ẋ3n+i ∂x3n+i,

from which the following Hamilton’s equations follow [Tek09a]:

ẋi = −∂xn+iH, ẋn+i = ∂xiH,

ẋ2n+i = −∂x3n+iH, ẋ3n+i = ∂x2n+iH.

These are dynamical equations defined with respect to a component F ∗ of
an almost quaternion structure V ∗ on a quaternion Kähler manifold M =
(M, g, V ). This means that the triple (M,ωF∗ , X) represents a Hamiltonian
dynamical system on a quaternion Kähler manifold M . For more technical
details, see [Tek09a] and references therein.

2.5.3 Lagrangian Dynamics on Quaternion-Kähler Manifolds

To start with, recall (see [AM78, LR89, Tek05]) that if M is an nD configura-
tion manifold of a complex physical system and L : TM → R is its (regular)
Lagrangian energy function defined on the tangent bundle TM, called the
velocity phase-space of M , then there is a unique vector-field ξ on TM such
that dynamical equations are given by the inner product:

iξΦL = dEL, (2.15)

where ΦL is the symplectic form on TM and EL is the total energy function.
The triple (TM,ΦL, ξ) is called Lagrangian dynamical system on the tangent
bundle TM, while (2.15) represents the 2nd-order ODE system.

Now, following [Tek09b], we will develop Lagrangian formalism on the
quaternion Kähler manifold M = (M, g, V ) as follows. Let a component F of
an almost quaternion structure V has coordinate functions:
{xi, xn+i, x2n+i, x3n+i} ⊂ M . The Lagrangian vector-field ξ defines a semis-
pray (see, e.g. [AM78]) given by:

ξ = X i∂xi +Xn+i∂xn+i +X2n+i∂x2n+i +X3n+i∂x3n+i, where

X i = ẋi, Xn+i = ẋn+i, X2n+i = ẋ2n+i, X3n+i = ẋ3n+i.
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The associated vector-field:

VF = F (ξ) = X i∂xn+i −Xn+i∂xi +X2n+i∂x3n+i −X3n+i∂x2n+i

is called the Liouville vector-field on the quaternion Kähler manifold M =
(M, g, V ). The kinetic energy on M is the map EK : M → R, given by:

EK =
1
2
mi(ẋ2

i + ẋ2
n+i + ẋ2

2n+i + ẋ2
3n+i),

while the potential energy on M is the map EP : M → R, given by:
EP = migh, where mi, g and h represent masses of a dynamical system,
the gravity acceleration and distance to the origin of a dynamical system on
the quaternion Kähler manifold M , respectively. Then the map L : M → R,
given by: L = EK − EP is the Lagrangian function on M ; The associated
function given by EFL = VF (L)− L, is the total energy function.

Furthermore, the so-called vertical derivative dF is defined as the Lie
bracket (i.e., commutator) of the inner product iF and the exterior derivative
d,

dF = [iF , d] = iFd− diF , in components given by:
dF = ∂xn+idxi − ∂xidxn+i + ∂x3n+idx2n+i − ∂x2n+id3n+i.

This implies that for each F , the corresponding Kähler form ΦFL is the closed
2-form on M given by:

ΦFL = −dd
F
L.

By means of ΦFL , after heavy calculations performed in [Tek09b], the Euler-
Lagrangian equations have been derived on a quaternion Kähler manifold
M = (M, g, V ) in the form:

∂t (∂xiL) + ∂xn+iL = 0, ∂t
(
∂xn+iL

)
− ∂xiL = 0,

∂t
(
∂x2n+iL

)
+ ∂x3n+iL = 0, ∂t

(
∂x3n+iL

)
− ∂x2n+iL = 0.

This means that the triple (M,ΦFL , ξ) represents a Lagrangian dynamical sys-
tem on a quaternion Kähler manifold M . For more technical details, see
[Tek09b] and references therein.

2.6 Kähler-Ricci-Flow Framework

2.6.1 Motivation for the Kähler-Ricci Flow

Recall (from Appendix) that the Riemann-Ricci flow (introduced by R. Hamil-
ton [Ham82, Ham86, Ham88]), is a nonlinear, heat-like, geometric evolution
equation on a Riemannian n-manifold M :

∂tgij = −2Rij , (2.16)
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for a time-dependent Riemannian metric g = gij(t) with the Ricci curvature
tensor Rij . At any time t, we can choose local harmonic coordinates so that
the Ricci flow takes the general form:

∂tgij = ∆Mgij +Qij(g, ∂g), (2.17)

where Q = Qij(g, ∂g) is a lower-order term quadratic in g and (its first order
partial derivatives ∂g), while∆M is the Laplace-Beltrami differential operator,
defined on C2−functions on an M (with respect to the Riemannian metric
gij) by:

∆M ≡
1

√
det(g)

∂

∂xi

(√
det(g)gij

∂

∂xj

)

. (2.18)

The quadratic Ricci-flow equation (2.17) has been proposed in [II11b] as
a unique geometric framework for all real-valued nonlinear reaction-diffusion
systems of the general form:

∂tu = D∆u + R(u)
� � �

∂tgij = ∆Mgij + Qij(g, ∂g)

where u(x, t) is the the concentration state vector, D is a (symmetric) positive-
definite matrix of diffusion coefficients and R(u) includes local reactions.

In this section, we will generalize this Riemann-Ricci flow framework for
real-valued nonlinear reaction-diffusion systems to the complex-valued non-
linear reaction-diffusion systems, using a generalized form of the Ricci flow,
called the Kähler-Ricci flow. This will be the unique framework for various
nonlinear systems of complex PDEs, including: nonlinear Schrödinger equa-
tions, Gross-Pitaevskii equations, complex Ginzburg-Landau equations, open
quantum Liouville equations, etc.

2.6.2 Ricci Flow on a Kähler Manifold

Recall that the Ricci flow, introduced by R. Hamilton in [Ham82], provides
an indispensable tool for deforming Riemannian metrics towards canonical
metrics (such as Einstein ones), by which (it is hoped that) one can further
understand geometric and topological structures of underlying manifolds (see
[Ham93b] for more technical detail).

In the richest particular case when the underlying manifold is a Kähler
manifold, the normalized Ricci flow in a canonical Kähler class37 preserves
the Kähler class, which allows the Ricci flow to be reduced to a fully nonlinear
parabolic equation on almost pluri-subharmonic functions, usually called the
Kähler-Ricci flow [CT00]:

37 A Kähler class is canonical if the first Chern class is proportional to this Kähler
class.
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∂tϕ = log

(

det

[(
ω + ∂∂̄ϕ

)n

ωn

])

+ ϕ− hω, (2.19)

where ϕ is the evolved Kähler potential and ω is the fixed Kähler metric in
the canonical Kähler class. The corresponding Ricci form, Ric(ω) ≡ Ric(g),
satisfies:

Ric(ω)− ω = ∂∂̄hω such that
∫

M

(ehω − 1)ωn = 0.

The normalized Kähler-Ricci flow (2.19) is usually written as:

∂tg = g − Ric(g). (2.20)

For a recent review, see [TZ13].
It was proved by [Cao85] that the Kähler-Ricci flow (2.20) has a global so-

lution g(t) in the case that g(0) = g0 has canonical Kähler class, i.e., 2πc1(M)
as its Kähler class. In other words, Cao reproved in [Cao85] the famous Calabi-
Yau theorem [Yau78]. The main problem here is to understand the limit of g(t)
as t tends to∞. A desirable picture for the limit is given in the following Tian
folklore conjecture [Tia97]: (M, g(t)) converges (at least along a subsequence)
to a shrinking Kähler-Ricci soliton with mild singularities. This conjecture
implies, in the case of Fano manifolds, the Yau-Tian-Donaldson conjecture,
which states that a Fano manifold M admits a Kähler-Einstein metric iff it is
K-stable (see [Tia97, Tia12, Ti13], as well as [CDS12a, CDS12b, CDS12c]).

2.6.3 Definition of the Kähler-Ricci Flow

We start with the minimalist definition, necessary for the further development
(see, e.g. [CL08]). The general Kähler-Ricci flow is a complexified and general-
ized Ricci flow (2.67)-(2.17) that is lifted to a Kähler manifold K = (M, g0) of
complex dimension n with the complexified Laplace-Beltrami differential op-
erator ∆M lifted from equation (2.98) in the Appendix. In a local open chart
U ⊂ (M, g), starting from some smooth initial Kähler metric g0 = gij(0), the
Kähler-Ricci flow (2.22) is given (for i, j = 1, · · · , n) by:

∂tgij(t) = gij(t)−Rij(t). (2.21)

The Kähler-Ricci flow (2.21) preserves the Kähler class [ω] ∈ H2(M,R),
so it can be expressed in terms of the Kähler potentials ϕ = ϕ(t), starting
from some smooth initial potential value ϕ0 = ϕ(0), as:

∂tϕ = log
ωϕ

n

ωn
+ ϕ− hω,

where both ωn and ωϕ
n are given by (2.11), while the scalar function hω is

defined by [CL08]:
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i∂∂ hω = Ric(ω)− ω,
∫

M

(ehω − 1)ωn = 0.

From the flow (2.21), it follows that the evolution equation for the bisec-
tional curvature Rijkl = Rijkl(t) becomes:

∂tRijkl = ∆MRij̄kl̄ −Rij̄kl̄ +Rij̄mn̄Rnm̄kl̄ −Rim̄kn̄Rmj̄nl̄ +Ril̄mn̄Rnm̄kl̄ ,

starting from some smooth initial curvature Rijkl(0) and using the evolved
frames [CL08].

The corresponding evolutions of the Ricci curvature Rij = Rij(t) and the
scalar curvature R = R(t) are governed by:

∂tRij = ∆MRij +RijpqRqp −RipRpj ,
∂tR = ∆MR+RijRji −R, respectively,

starting from some smooth initial Ricci and scalar curvatures, Rij(0) and
R(0), respectively.

It was proved by [Cao85, CC99] (following the pioneering work of [Yau06])
that the Kähler-Ricci flow (2.21) exists globally for any smooth initial Kähler
metric g0 = gij(0).

2.6.4 Evolution of the Kähler-Perelman Entropy

Recall that that the richest and most useful structure in Kähler geometry is
the Fano manifold, that is a compact (i.e., closed and bounded) Kähler n-
manifold (M, g) with positive first Chern class c1(M) (for a recent review, see
[TZ13] and references therein). Consider the normalized Kähler-Ricci flow on
a Fano n-manifold (M, g):

∂tg(t) = g(t) − Ric [g(t)]). (2.22)

In a local open chart U ⊂ (M, g), starting from some smooth initial Kähler
metric g0 = gij(0), the Ricci flow (2.22) is given by:

∂tgij(t) = gij(t)−Rij(t), (for i, j = 1, · · · , n).

It was proved in [Cao85] that (2.22) has a global solution g(t) in the
case that g0 has canonical Kähler class, i.e., 2πc1(M) as its Kähler class. In
particular, by the ∂∂̄-lemma, there exists a family of real-valued functions
u(t), called Ricci potentials (see, e.g. [MT07]) of g(t), which are determined
by:

gij̄ −Rij̄ = ∂i∂j̄u,
1
V

∫
e−u(t)dvg(t) = 1,

where V =
∫
dvg denotes the volume of the Kähler-Ricci flow.

A Riemannian manifold (M, g) represents a shrinking Ricci soliton iff (see,
e.g. [MT07]):
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Ric(g) + Hess(u) = λg, (λ > 0).

In particular, if (M, g) is a Fano manifold with g ∈ 2πc1(M), it is a
shrinking Kähler-Ricci soliton iff λ = 1 and u = u(t) is the Ricci potential;
that is, iff (see [TZ13] and references therein):

∇∇u = 0,

or, applying the Bianchi identity, iff the following Shur-identity holds:

�u− |∇u|2 + u = a.

For any Kähler metric g ∈ 2πc1(M) with scalar curvature s and any
smooth real time-function u = u(t), define the Kähler-Perelman entropy µ(g)
defined by the following infimum of sets of entropy functionals (compare with
Perelman’s original definition [Per02]):

µ(g) = inf
{

W(g, u) :
∫

M

e−udv = V

}

, where

W(g, u) =
1
V

∫

M

(s+ |∇u|2 + u− n) e−udv.

A smooth minimizer of the entropy µ always exists (though not necessarily
unique, see [Rot81]), while µ admits a (natural) upper bound:

µ(g) ≤ 1
V

∫

M

u e−udv = a ≤ 0.

This implies the Kähler–Perelman monotonicity condition on the geometric
entropy [TZ13]:

(∀t ≥ 0) , E(g0) ≤ E [g(t)] ≤ 0.

2.7 Summary of Kähler-Ricci Geometrical Dynamics

A Kähler manifold, M ≡ (M, g) ≡ (M,ω), is a Hermitian n-manifold38

[that admits three mutually compatible dynamical structures: (i) Rieman-
nian/Lagrangian, (ii) symplectic/Hamiltonian, and (iii) complex/quantum],
given by the following data:
38 A complex-valued function f : C

n → C is called holomorphic if f = f1 + if2
satisfies the Cauchy–Riemann relations:

∂xjf1 = ∂yjf2, ∂xjf2 = −∂yjf1, (∂xj ≡ ∂/∂xj)

for each holomorphic coordinate, zj = xj + iyj (with i =
√−1). A complex mani-

fold M is a manifold with an atlas consisting of charts tij : Ui ∩ Uj −→ C
n, such

that the transition functions tij(z) are holomorphic and satisfy the cocycle con-
dition: tik(z) = tij(z)tjk(z) on triple overlaps Ui ∩ Uj ∩ Uk. An almost complex
structure J is defined on a complex manifold M as:

J∂zj = i∂zj , J∂z̄j = −i∂z̄j , J2 = −1.
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1. As an introductory example of a Kähler manifold MX = (M, g) consider
a complexified tangent bundle, that is, a disjoint union of complexified
tangent spaces at all points x ∈ X ,

MX ≡ TX ⊗ C = �x∈XTxXC,

of some real smooth manifold X, with the standard tangent bundle, TX =
�x∈XTxX, and its dual, cotangent bundle, T ∗X = �x∈XT ∗

xX . Then the
Kähler manifold (M, g) = TX ⊗ C admits a Hermitian metric form g,39

such that its real part is a Riemannian metric form gR ∈ TX and its
imaginary part is a symplectic form ωS ∈ T ∗X :

(M, g) = TX + iT ∗X with g = gR + iωS .

2. An open chart U ⊂ M defines a set of n holomorphic coordinates which
locally identify Cn with R2n, as: {zj = xj + iyj | k = 1, · · · , n}, with the
corresponding holomorphic differentials (or, exterior 1-forms):

dzj = dxj + idyj and dz̄j = dxj − idyj .

3. A Hermitian metric tensor, gij = gij(z
i, zj) ∈ M , obeys the following

Kähler condition [independent of the choice of local holomorphic coordi-
nates zj ∈ U ]:

∂jgik = ∂igjk and ∂jgki = ∂igkj , (∂j ≡ ∂/∂zj, ∂j ≡ ∂/∂zj)

where ∂j ≡ ∂ and ∂j ≡ ∂̄ are Dolbeault’s differential operators, which are
the components of the standard exterior derivative on M : d = ∂ + ∂̄.40

A Hermitian manifold (M, g) is a complex manifold M with a Hermitian metric

tensor gij = gij(z
i, zj), such that {gij} is a positive-definite Hermitian matrix

function, {gij} = {gij}∗ > 0. A Hermitian manifold (M, g) is a Kähler manifold
iff the almost complex structure J satisfies: ∇kJ = 0, where ∇k is the Levi-Civita
connection on (M, g).

39 All three structures defined on (M, g) = TX ⊗ C, that is, the Hermitian metric
g, the Riemannian metric gR, and the symplectic form ωS , preserve the almost
complex structure J . In other words, for any two complex tangent vectors (ψ, χ) ∈
M we have:

g(Jψ, Jχ) = g(ψ, χ), gR(Jψ, Jχ) = gR(ψ, χ), ωS(Jψ, Jχ) = ωS(ψ, χ).

40 Being components of the exterior derivative d on M, Dolbeault’s differential oper-
ators are the maps on the space Ωp,q(M) of exterior forms on M , ∂ : Ωp,q(M) →
Ωp+1,q(M) and ∂̄ : Ωp,q(M) → Ωp,q+1(M).

In a local zk-coordinate chart U ⊂ M , for any holomorphic function f ∈ U , ∂
and ∂̄ operators are given by:

∂f =
`
∂xkf − i∂ykf

´
dzk, ∂̄f =

`
∂xkf − i∂ykf

´
dz̄k.



October 10, 2014 11:9 Complexity and Control 9in x 6in b1966-ch02 page 44

44 2 Local Geometrical Machinery for Complexity and Control

4. The Kähler metric form g, corresponding to the Hermitian metric tensor
gij is a positive-definite, symmetric (1,1)-form on M defined as:41

g = igij dz
i ⊗ dzj > 0, (i, j = 1, · · · , n), while

gR = gij dz
i ⊗ dzj = Riemannian metric.

5. The associated (symplectic) Kähler form ω, is the closed (dω = 0, follows
directly from the Kähler condition) and positive-definite, exterior (1,1)-
form42 on M :

ω = igij dz
i ∧ dzj > 0, while

ωS = gij dz
i ∧ dzj = symplectic form.

6. Locally, in an open chart U ⊂M, the Kähler form ω is given by:

ω = i∂i∂jϕ = i∂∂ϕ > 0 ,

where ϕ ∈ U is a real-valued and smooth function called the Kähler
potential.

7. Any p-form α defined on M is called ∂-closed iff ∂α = 0 and ∂-exact
iff α = ∂η for some (p-1)-form η on M . The associated Dolbeault coho-
mology group H1,1

∂
(M,R) is a complexification of the standard de Rham

cohomology group H2
d(M,R), defined on M as the quotient:

H1,1

∂
(M,R) =

{∂-closed real (1,1)-forms}
{∂-exact real (1,1)-forms}

.

8. A Kähler form ω on M defines a nonzero element [ω] ∈ H1,1

∂
(M,R).

If a cohomology class α ∈ H1,1

∂
(M,R) can be written as α = [ω] for

some Kähler form ω on M then we say that α is a Kähler class (and
write α > 0). Therefore, the Kähler class of ω is its cohomology class
[ω] ∈ H1,1

∂
(M,R). Alternatively, in terms of H2

d (M,R), the Kähler class
of ω is its cohomology class [ω] ∈ H2

d(M,R). Usually, all this is simply
written: the Kähler class of ω is the cohomology class [ω] ∈ H2(M,R)
represented by ω.

9. The ∂∂-Lemma [the holomorphic version of the Poincaré Lemma, also
follows from the Hodge theory]: Let M be a compact Kähler manifold
and suppose that 0 = [α] ∈ H1,1

∂
(M,R) for a real smooth ∂-closed (1, 1)-

form α. Then there exists a real smooth Kähler potential ϕ (uniquely
determined up to the addition of a constant) with α = i∂∂ϕ. In other

41 In these notes, we are consistently using summation convention over repeated
tensor indices.

42 The Kähler form ω is also harmonic (δω ≡ ∗d ∗ ω = 0), a result from the Kähler-
Hodge theory.
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words, a real (1, 1)-form α is ∂-exact iff it is ∂∂-exact. It is an immediate
consequence of the ∂∂-Lemma that if ω and ωϕ are Kähler forms in the
same Kähler class on M, then ωϕ = ω + i∂∂ϕ for some smooth Kähler
potential function ϕ.

10. The nth power ωn of the Kähler form ω is the volume form on M, given
by:

ωn =
1
n!

in det
(
gij

)
dz1 ∧ dz1 ∧ · · · ∧ dzn ∧ dzn,

V =
∫

M

ωn is the standard volume.

11. The space K[ω] of Kähler forms ω with the same Kähler class [ω] is given
by:

K[ω] = {[ω] ∈ H2(M,R) | V = 0, ω + i∂∂ϕ > 0},
e.i., the functional space P(ω) of Kähler potentials ϕ on (M,ω) is given
by:

P(ω) = {ϕ ∈ C∞(M,R) | ωϕ = ω + i∂∂ϕ > 0}.
12. The complex Christoffel symbols corresponding to the Kähler metric g on

M are:

Γ ki j = gkl∂jgil and Γ k
i j

= gkl∂jgli, (i, j, k = 1, · · · , n).

13. The corresponding mixed and covariant Riemannian curvature tensors on
M are:

Rm
ikl

= −∂lΓ
m
ik and Rijkl = gmjR

m
ikl
, (i, j, k, l = 1, · · · , n).

14. Locally, in an open chart U ⊂M, the covariant Riemann tensor reads:

Rijkl = −∂i∂jgkl + gqp(∂igkq)(∂jgpl),

and has the following three symmetries:
a) Rijkl = Rjilk (complex-conjugate);
b) Rijkl = Rkjil = Rilkj (I Bianchi identity); and
c) ∇mRijkl = ∇iRmjkl (II Bianchi identity),

where ∇i ≡ ∂i + gkqg
qjΓ ki j is the complex covariant derivative on

(M, g).
15. The Ricci curvature of the Kähler metric g is defined as:

Rij = glkRijkl = glkRklij = Rk
k ij

.

Its trace is the scalar curvature: R = gjiRij .
16. Locally, in an open chart U ⊂M , Ricci tensor is given by:

Rij(g) = −∂∂ log[det(gij)].
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17. The associated Ricci form Ric(ω) is the closed (1,1)-form on M given by:

Ric(ω) ≡ Ric(g) = iRij(g) dz
i ∧ dzj = −i∂∂ log[det(gij)].

18. The first Chern class, denoted by c1(M), of a Kähler manifold (M, g), is
defined as the cohomology class [Ric(g)] ∈ H1,1

∂
(M,R).

19. Metric g on M is called the Kähler–Einstein metric iff :

Ric(ω) = λω, for a real constant λ =
2π
V

∫

M

c1(M) ∧ ωn−1,

if Ric(g) = 0 then g is a Ricci–flat metric,

where c1(M) is the first Chern class of M. If M admits a Ricci–flat metric
[Ric(g) = 0], then its first Chern class must vanish [c1(M) = 0]. This is
Calabi conjecture, proven by S.-T. Yau.

20. A compact (i.e., closed and bounded) Kähler manifold (M, g) with positive
first Chern class, c1(M) > 0, is called the Fano manifold, in which case,
[ω] = πc1(M). A compact Kähler manifold with vanishing first Chern
class, c1(M) = 0, is called the Calabi–Yau manifold. A compact Kähler
manifold with negative first Chern class, c1(M) < 0, admits the Kähler–
Einstein metric g, defined by:

g = −Ric(g).

21. A Fano n-manifold (M, g) admits the (normalized) Kähler–Ricci flow:

∂tg(t) = g(t) − Ric [g(t)] , (2.23)

which is locally, in an open chart U ⊂M , and starting from some smooth
initial Kähler metric g0 = gij(0), given by:

∂tgij(t) = gij(t)−Rij(t), (i, j = 1, · · · , n).

22. The Kähler–Ricci flow (2.23) preserves the Kähler class [ω]. It has a global
solution g(t) ≡ ω(t) when g0 = gij(0) has [ω] = 2πc1(M) as its Kähler
class [which is written as g0 ∈ 2πc1(M)].

23. In particular, by the ∂∂̄-lemma, there exists a family of real-valued func-
tions u(t), called Ricci potentials of the metric g(t), which are special
Kähler potentials. They are determined by:

gij̄ −Rij̄ = ∂i∂j̄u,
1
VR

∫

M

e−u(t)dvg = 1,

where VR =
∫
dvg is the volume of the Kähler–Ricci flow (2.23).

24. At the level of Kähler potentials ϕ, the Kähler–Ricci flow (2.23) becomes:

∂tϕ = ϕ+ log
ωnϕ
ωn
− hω, (2.24)
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where the Hermitian metric form hω is defined by:

i∂∂hω = Ric(ω)− ω and
∫

M

(ehω − 1)ωn = 0.

25. The corresponding evolutions of the Ricci curvature Rij = Rij(t) and the
scalar curvature R = R(t) on (M, g) are respectively governed by:

∂tRij = �Rij +RijpqRqp −RipRpj , ∂tR = �R+RijRji −R,

starting from some smooth initial Ricci and scalar curvatures, Rij(0) and
R(0).

26. The existence of the Kähler–Ricci flow in a time interval t ∈ [0, t1) can be
established as follows: If ω(t) is a solution of the Kähler–Ricci flow:

∂tω = −Ric(ω), ω(0) = ω0, (2.25)

then the corresponding cohomology class [ω(t)] evolves as an ODE:

∂t[ω(t)] = −c1(M), [ω(0)] = [ω0],
with the solution : [ω(t)] = [ω0]− t c1(M),

so the Kähler–Ricci flow (2.25) exists for t ∈ [0, t1) iff [ω0]− t c1(M) > 0
for t ∈ [0, t1).

27. The Kähler-Ricci flow (2.25) can be rewritten as a parabolic complex
Monge–Ampère equation:

∂tϕ = log
(ωϕ + i∂∂ϕ)n

ωn
, [with ωϕ + i∂∂ϕ > 0, ϕ(0) = 0].

28. The normalized Kähler–Ricci flow (2.23), or:

∂tω = −[ω + Ric(ω)], ω(0) = ω0,

can be rewritten as a normalized parabolic complex Monge–Ampère equa-
tion:

∂tϕ = log
(ω0 + i∂∂ϕ)n

ωn
− ϕ, [with ω0 + i∂∂ϕ > 0, ϕ(0) = 0].

29. A Riemannian manifold (M, g) generates a shrinking Ricci soliton iff
[TZ13]:

Ric(g) + Hess(u) = λg, (λ > 0).

Similarly, if (M, g) is a Fano manifold with g ∈ 2πc1(M), it is a shrinking
Kähler–Ricci soliton iff λ = 1 and for any u ≡ u(t) ∈ C∞(M,R) called the
Ricci potential; that is, iff: ∇∇u = 0, or, applying the Bianchi identity,
iff the following Shur identity holds:

�u− |∇u|2 + u = a.
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30. For any Kähler metric g ∈ 2πc1(M) with scalar curvature R and for any
u ≡ u(t) ∈ C∞(M,R), the Kähler–Perelman entropy E ≡ E(g) is defined
by:

E(g) = inf
{

W(g, u) :
∫

M

e−udv = V

}

, where

W(g, u) =
1
V

∫

M

(R+ |∇u|2 + u− n) e−udv, V =
∫

M

dv.

31. A smooth minimizer of the entropy E always exists (but is not necessarily
unique), so that E admits a natural upper bound:

E(g) ≤ 1
V

∫

M

u e−udv = a ≤ 0.

This implies the Kähler–Perelman monotonicity condition on the geomet-
ric entropy [TZ13]:

(∀t ≥ 0) , E(g0) ≤ E [g(t)] ≤ 0.

32. A general positive energy functional is defined (within V =
∫
M
ωn) by

[CT00b]:

Jω(ϕ) =
1
V

n−1∑

i=0

∫

M

i ∂ϕ ∧ ∂ϕ ∧ ωi ∧ ωn−1−i
ϕ ,

which in the simplest case n = 1, reduces to the Dirichlet energy:

Jω(ϕ) =
1

2V

∫

M

i∂ϕ ∧ ∂̄ϕ =
1

2V

∫

M

|∂ϕ|2ω.

33. The derivative of Jω along a path ϕ(t) ∈ P(M,ω),

∂t Jω(ϕ) = − 1
V

∫

M

∂tϕ
(
ωnϕ − ωn

)
,

shows that Jω does not satisfy the cocycle condition: ωnϕ = ωn. However,
the extended energy functional Fω, defined by:

Fω(ϕ) = Jω(ϕ)− 1
V

∫

M

ϕωn − log
[

1
V

∫

M

e(hω−ϕ)

]

satisfies the cocycle condition and its critical points are Kähler–Einstein
metrics [CT00b]. In the simplest case n = 1, we have M = S2 so Fω
becomes:

Fω(ϕ) =
1

2V

∫

M

|∂ϕ|2ω − 1
V

∫

S2
ϕω − log

[
1
V

∫

S2
e(hω−ϕ)

]

.

34. For further technical details on the Kähler geometry see, e.g. [Yau78,
Yau06, Don99, CL08, Mor07, Son12, Tia97, Tia12, Ti13, Nak03] and ref-
erences therein. For further technical details on the Riemann-Ricci flow,
see [Ham82, Ham86, Ham88, Ham93a, Ham93b, Ham99, CC99] and on the
Kähler–Ricci flow see [Cao85, CT00, CT00b, Ye07, TZ13] and references
therein.
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2.8 Appendix

2.8.1 Real Banach and Complex Hilbert Spaces

Here, we outline the concept of Banach and Hilbert spaces,43 which are vector
spaces equipped with a norm that defines a complete metric space.

Recall that a norm on a vector space V is defined as a map:

‖·‖ : V → R, v 	→ ‖v‖ , (2.26)

such that the following axioms hold (see, e.g. [CD82, AMR88]):

N1. Positive definiteness : (∀v ∈ V ) ‖v‖ ≥ 0, ‖v‖ = 0⇒ v = 0
N2. Homogeneity : (∀v ∈ V, λ ∈ R) ‖λv‖ = |λ| ‖v‖
N3. Triangle inequality : (∀v1,v2 ∈ V ) ‖v1 + v2‖ ≤ ‖v1‖+ ‖v2‖

.

In particular, the triangle inequality axiom N3 has the following important
consequence:

(∀v1,v2 ∈ V ) | ‖v1 − v2‖ | ≤ ‖v1 − v2‖ , where | ‖v‖ | ≡ abs(‖v‖).

A normed space, in which there is a length-measure for vectors, is formally
defined as a pair (V, ‖·‖). A very common example is the Euclidean space Rn

with the standard Euclidean L2 norm:44

‖x‖ =

√√
√
√

n∑

i=1

x2
i , where x = (x1, ..., xn), (2.27)

in Fortran 2008 ≡ norm2(x) = sqrt(sum(x(1:n)**2)) .
Closely related to norms are metrics (or, distances). Recall that a metric

on a vector space V is a map:

d : V × V → R, (v1,v2) 	→ d,

such that the following axioms hold (see, e.g. [CD82, AMR88]):

M1. Definiteness : (∀v1,v2 ∈ V ) d(v1,v2) = 0 iff v1 = v2

M2. Symmetry : (∀v1,v2 ∈ V ) d(v1,v2) = d(v2,v1)
M3. Triangle (∀v1,v2,v3 ∈ V ) d(v1,v3) ≤ d(v1,v2) + d(v2,v3)
inequality :

.

A metric space, in which distances can be measured, is formally defined as
a pair (V,d). A very common example is again the Euclidean space R

n with
the standard Euclidean metric:
43 We are assuming that the reader has the basic familiarity with the concept of

vector spaces.
44 If the axiom N1 is relaxed to: (∀v ∈ V ) ‖v‖ ≥ 0, the map (2.26) is called a

seminorm and the corresponding space (V, ‖·‖) is called a seminormed space. An
example of a seminorm is the function f : R

2 → R, ‖(x, y)‖ = |x|.
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d(x,y) =

√√
√
√

n∑

i=1

(xi − yi)2 . (2.28)

Let (V,d) be a metric space and {un} a sequence in V . Then {un} is
called a Cauchy sequence if for all real ε > 0, there is an integer N such that:
(n,m ≥ N) ⇒ d(un, um) < ε. The metric space (V,d) is called complete (or,
a Cauchy space) if every Cauchy sequence in V converges in V . Norm and
metric are ‘close cousins’. Let (V, ‖·‖) be a normed space and define

d(v1,v2) = ‖v1 − v2‖ .

Then (V,d) represents a metric space corresponding to (V, ‖·‖) (for the proof,
see [CD82, AMR88]).

Closely related to norms are also inner products. Recall that an inner
product on a vector space V is a map:

〈·, ·〉 : V × V → R, (v1,v2) 	→ 〈v1,v2〉 , (2.29)

such that the following axioms hold (see, e.g. [CD82, AMR88]):

I1. (∀v,v1,v2 ∈ V ) 〈v,v1 + v2〉 = 〈v,v1〉+ 〈v,v2〉
I2. (∀v ∈ V, λ ∈ R) 〈v, λv1〉 = λ 〈v,v1〉
I3. (∀v1,v2 ∈ V ) 〈v1,v2〉 = 〈v2,v1〉
I4. (∀v ∈ V ) 〈v,v〉 ≥ 0, v = 0⇒ 〈v,v〉 = 0

.

An inner-product space, in which angles between vectors can be measured (as
well as their lengths), is formally defined as a pair (V, 〈·, ·〉). For example, in
Rn, the standard Euclidean inner product is:

〈x,y〉 =
n∑

i=1

xiyi ≡ dot product(x, y) in F95. (2.30)

In an inner product space (V, 〈·, ·〉), two vectors v1,v2 ∈ V are called orthog-
onal iff 〈v1,v2〉 = 0.The most important theorem for inner products is the
Cauchy-Schwartz Inequality:

|v1,v2| ≤
√
〈v1,v2〉

√
〈v1,v2〉 ,

which holds iff the vectors v1,v2 are linearly dependent (for the proof, see
[CD82, AMR88]).

Norm and inner product are another ‘close cousins’. Let (V, 〈·, ·〉) be an
inner product space and

(∀v ∈ V ) ‖v‖ =
√
〈v,v〉.

Then (V, ‖·‖) is a normed space corresponding to (V, 〈·, ·〉) (for the proof, see
[CD82, AMR88]).
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If (V, 〈·, ·〉) is an inner-product space whose corresponding metric is com-
plete, then (V, 〈·, ·〉) is called a Hilbert space. The most common example is
Rn, which is a Hilbert space H with the standard inner product (2.30) (see,
e.g. [CD82, AMR88]).

For example, in common LM-optimization problems in Rn (including
general data fitting, output tracking control and function approximation in
multilayer neural networks), either L2-norm (2.27) or metric d (2.28) is effec-
tively minimized.

In particular, in quantum mechanics, the essential property of any complex
Hilbert space H(C) is the Hermitian inner dot-product 〈ψ, φ〉. In physics, it is
usually denoted by Dirac’s celebrated bra-ket 〈ψ|φ〉, or Feynman’s probability
amplitude〈Out|In〉, or statistical-mechanical partition function Z. Thus, all
these description are more-or-less equivalent: 〈ψ, φ〉 ≡ 〈ψ|φ〉 ≡ 〈Out|In〉 ≡ Z.
This inner product can be applied to any pair of H-vectors, |ψ〉 and |φ〉, to
produce a single complex number 〈ψ, φ〉 ≡ 〈ψ|φ〉 ∈ C, which satisfies a number
of simple algebraic properties (compare to the axioms I1-I4 above):

〈ψ + φ, ϕ〉 = 〈ψ, ϕ〉+ 〈φ, ϕ〉
〈ψ, φ+ ϕ〉 = 〈ψ, φ〉+ 〈ψ, ϕ〉
〈aψ, φ〉 = a 〈ψ, φ〉 , 〈ψ, a φ〉 = ā 〈ψ, φ〉
〈ψ, φ〉 = 〈φ, ψ〉 (where bar denotes complex-conjugate)
〈ψ, ψ〉 ≥ 0, 〈ψ, ψ〉 = 0 only if ψ = 0 (positive definite)

〈ψ, φ〉 =
∑

i

ψiφ̄i ∈ C
n, (for i = 1, ..., n).

Probability of finding a quantum system at a certain ket-state |ψ〉 is given
by its probability density function (PDF ), which is defined as the absolute
square of the wave ψ-function:

PDF := |ψ|2 ≡ ||ψ〉|2 ≡ 〈ψ|ψ〉 ≡ 〈ψ, ψ〉,

which is simply the squared length of the ket-vector |ψ〉 in H(C) and a nor-
malized state is given by a H-vector |1〉 (whose squared length is unity).
More generally, the PDF-description of any microscopic process, or even any
(quantum-influenced) macroscopic process, is the In→Out map determined
by the absolute square of the probability amplitude:

PDF : In 	→ Out := |〈Out|In〉|2 ≡ |ψ|2.

2.8.2 From Linear to Nonlinear MIMO Control Theory

Kalman’s Linear State-Space Formalism

It is a well-known fact (implemented in MatlabTM) that linear multiple-input
multiple-output (MIMO) control systems can always be put into Kalman’s
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canonical (modular) state-space form of order n, with m inputs and k out-
puts (see [KFA69]). In case of continuous-time systems we have the state and
output equation of the form

dx/dt = A(t)x(t) + B(t)u(t), (2.31)
y(t) = C(t)x(t) + D(t)u(t),

while in case of discrete time systems we have the state and output equation
of the form

x(n+ 1) = A(n)x(n) + B(n)u(n), (2.32)
y(n) = C(n)x(n) + D(n)u(n).

Both in (2.31) and in (2.32) the variables have the following meaning:
x(t) ∈ X is an n−vector of state variables belonging to the vector state-

space X ⊂ R
n;

u(t) ∈ U is an m−vector of inputs belonging to the vector input space
U ⊂ Rm;

y(t) ∈ Y is a k−vector of outputs belonging to the vector output space
Y ⊂ Rk;

A(t) : X→ X is an n× n matrix of state dynamics;
B(t) : U→ X is an n×m matrix of input map;
C(t) : X→ Y is a k × n matrix of output map;
D(t) : U→ Y is a k ×m matrix of input-output transform.
Input u(t) ∈ U can be empirically determined by trial and error; it is

properly defined by quadratic optimization process called Kalman regulator ,
or more generally (in the presence of noise), by (extended) Kalman filter
[Kal60].

Basics of Kalman Filtering

For a nice introduction to Kalman filtering, see [WB95]. Here, we give only a
brief overview.

Recall that the Kalman linear–quadratic regulator , widely used in state–
space control theory, represents a linear state feedback control law

u = −Kx,

for the linear MIMO system:

ẋ = Ax+Bu,

which minimizes a quadratic cost function

J =
∫ ∞

0

(
x(t)TQx(t) + u(t)TRu(t)

)
dt.
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The control law is called optimal with respect to the cost function J .
Now, one might ask whether there is an optimal design technique for a

state estimator . That is, is there an approach to observer design which is
equivalent, in some sense, to the linear quadratic regulator?

Given the observable system

ẋ = Ax+Bu, y = Cx,

one may define the dual system

θ̇ = AT θ + CT γ,

and design an LQR controller to minimize the quadratic cost function

J =
∫ ∞

0

(
θ(t)TQθ(t) + γ(t)TRγ(t)

)
dt.

However, it is unclear how one should ‘penalize’ θ and γ in the cost function.
Instead, consider the extended observable system

ẋ = Ax+Bu+ w, y = Cx+ v,

in which the dynamics are subject to random disturbances w and the measure-
ments are subject to random noise v. In parallel with the development of the
linear quadratic regulator, Rudolph Kalman examined the following optimal
estimator problem: Construct a full state observer which minimizes the com-
bined effect of the disturbances and the noise, thus providing a ‘most likely’
estimate of the system state. Solving this problem requires some information
about the random processes. If the processes are zero–mean, Gaussian white
noise processes, then the optimal estimator design problem becomes perfectly
analogous to the LQR control design problem. In 1960, Kalman published his
famous paper describing a recursive solution to the discrete–data linear filter-
ing problem [Kal60]. Since that time, due in large part to advances in digital
computing, the Kalman filter has been the subject of extensive particularly
in the area of autonomous or assisted navigation (see, e.g., [Hay01, GWA01]).

The Kalman filter is a discrete–time, two–step process, the steps of which
are usually called predictor and corrector , thus resembling a popular Adams–
Bashforth–Moulton integrator for ODEs. The predictor , or time update,
projects the current system’s state estimate ahead in time. The corrector ,
or measurement update, adjusts the projected state estimate by an actual
system’s measurement at that time. In this way, the correction step makes
corrections to an estimate, based on new information obtained from sensor
measurements . The continuous–time version is usually referred to as Kalman–
Bucy filter or smoother [SL03].

Consider a generic linear, discrete–time dynamical system. The concept of
discrete state is fundamental to this description. The state vector , denoted by
xk , is defined as the minimal set of data that is sufficient to uniquely describe
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the unforced dynamical behavior of the system; the subscript k denotes dis-
crete time. In other words, the state is the least amount of data on the past
behavior of the system that is needed to predict its future behavior. Typically,
the state xk is unknown. To estimate it, we use a set of observed data, denoted
by the observable vector zk.

The state–space model of a generic linear, discrete–time dynamical system
includes the process equation (2.33) and the measurement equation (2.34)

xk+1 = Fk+1,kxk + wk, (2.33)
zk = Hkxk + vk, (2.34)

where Fk+1,k is the transition matrix taking the state xk from time k to
time k + 1, Hk is the measurement sensitivity matrix , while wk and vk are
independent, additive, zero–mean, white Gaussian noise processes, defined
below.

The covariance matrix of the process noise wk is defined by:

E[wn, wTk ] =
{
Qk, for n = k,
0, for n = k.

Similarly, the covariance matrix of the measurement noise vk is defined by

E[vn, vTk ] =
{
Rk, for n = k,
0, for n = k.

The Kalman filtering problem, namely, the problem of jointly solving the
process and measurement equations for the unknown state in an optimum
manner may now be formally stated as follows: Use the entire observed data,
consisting of the vectors z1, z2, ..., zk, to find for each k ≥ 1 the minimum
mean–square error estimate of the state xi. The problem is called filtering if
i = k, prediction if i > k, and smoothing if 1 ≤ i < k.

The derivation of the Kalman filter is based on the following two theorems
(see [Kal60, Hay01]):

• Conditional mean estimator. If the stochastic processes {xk} and {zk}
are jointly Gaussian, then the optimum estimate x̂k that minimizes the
mean–square error Jk is the conditional mean estimator:

x̂k = E[xk|z1, z2, ..., zk].

• Principle of orthogonality. Let the stochastic processes {xk} and {zk} be
of zero means; that is,

E[xk] = E[zk] = 0, for all k.

Then:
(i) the stochastic process {xk} and {zk} are jointly Gaussian; or
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(ii) if the optimal estimate x̂k is restricted to be a linear function of the
observables and the cost function is the mean–square error,
(iii) then the optimum estimate x̂k, given the observables z1, z2, ..., zk, is
the orthogonal projection of xk on the space spanned by these observables.

The Kalman filter design algorithm consists of (see [Kal60, Hay01]):

1. Initialization: For k = 0, set

x̂0 = E[x0], P0 = E[(x0 − E[x0])(x0 − E[x0])T ].

and
2. Computation: For k = 1, 2, ..., compute:

(i) State estimate propagation

x̂k̄ = Fk,k−1 x̂k̄−1;

(ii) Error covariance propagation

Pk̄ = Fk,k−1 Pk−1F
T
k ,k−1 +Qk−1;

(iii) Kalman gain matrix

Kk = Pk̄H
T
k [HkPk̄H

T
k +Rk]−1;

(iv) State estimate update

x̂k = x̂k̄ +Kk(zk −Hkx̂k̄);

(v) Error covariance update

Pk = (I −KkHk)Pk̄.

Therefore, the basic Kalman filter is a linear, discrete–time, finite–dimensi-
onal system, which is endowed with a recursive structure that makes a digital
computer well suited for its implementation. A key property of the Kalman
filter is that it is the minimum mean–square (variance) estimator of the state
of a linear dynamical system. The model is stochastic owing to the additive
presence of process noise and measurement noise, which are assumed to be
Gaussian with zero mean and known covariance matrices.

Extended (Nonlinear) Kalman Filter

The Kalman filtering problem considered so far has addressed the estimation
of a state vector in a linear model of a dynamical system. If, however, the
model is nonlinear, we may extend the use of Kalman filtering through a lin-
earization procedure. The resulting filter is referred to as the extended Kalman
filter (EKF) (see, e.g., [Hay01]). Such an extension is feasible by virtue of the
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fact that the Kalman filter is described in terms of difference equations in the
case of discrete–time systems. While the ordinary (i.e., linear) Kalman filter
is defined in terms of the measurement sensitivity matrix Hk, the extended
Kalman filter can be defined in terms of a suitably differentiable vector–valued
measurement sensitivity function h(k, xk).

To set the stage for a development of the extended Kalman filter, consider
a nonlinear dynamical system described by the state–space model

xk+1 = f(k, xk) + wk, zk = h(k, xk) + vk, (2.35)

where, as before, wk and vk are independent zero–mean white Gaussian noise
processes with covariance matrices Rk and Qk, respectively. Here, however,
the functional f(k, xk) denotes a nonlinear transition matrix function that
is possibly time–variant. Likewise, the functional h(k, xk) denotes a vector–
valued measurement sensitivity function, i.e., a nonlinear measurement matrix
that may be time–variant, too [Hay01].

The basic idea of the extended Kalman filter is to linearize the state–space
model (2.35) at each time instant around the most recent state estimate, which
is taken to be either x̂k or x̂k̄, depending on which particular functional is
being considered. Once a linear model is obtained, the standard Kalman filter
equations are applied.

The EKF design algorithm consists of [Hay01]:

1. The discrete state–space model (2.35).
2. Definitions

Fk,k =
∂f(k, x)
∂x

∣
∣
∣
∣
x=xk

, Hk =
∂h(k, x)
∂x

∣
∣
∣
∣
x=xk̄

.

3. Initialization: For k = 0, set

x̂0 = E[x0], P0 = E[(x0 − E[x0])(x0 − E[x0])T ].

4. Computation: For k = 1, 2, ..., compute:
(i) State estimate propagation

x̂k̄ = Fk,k−1 x̂k̄−1;

(ii) Error covariance propagation

Pk̄ = Fk,k−1 Pk−1F
T
k ,k−1 +Qk−1;

(iii) Kalman gain matrix

Kk = Pk̄H
T
k [HkPk̄H

T
k +Rk]−1;

(iv) State estimate update

x̂k = x̂k̄ +Kk(zk −Hkx̂k̄);

(v) Error covariance update

Pk = (I −KkHk)Pk̄.
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Ensemble Kalman Filter and Nonlinear Estimation

The so-called Ensemble Kalman Filter (EnKF, firstly introduced by [Eve94]
and later discussed in detail by [EL96, HM98]) is a Monte-Carlo (MC) imple-
mentation of the following Bayesian update problem [Man09]: Given a PDF of
the state of the modeled system (the prior ; in geophysics, it is usually called
the forecast) and the data likelihood, the Bayes theorem is used to to obtain
PDF after the data likelihood has been taken into account (the posterior). In
other words, the EnKF gives such an MC-approach to Kalman filtering that
estimates the covariances between observed variables and the model state
variables through an ensemble of predictive model forecasts. EnKF is a re-
cursive filter suitable for problems with a large number of variables, such as
discretizations of PDEs (e.g. in geophysical models).

Here, following [Eve03, GRF12], we briefly outline how the EnKF can be
used for parameter estimation of a nonlinear dynamical system. Let p ∈ R

	

be a vector holding the different model parameters, and xf ∈ Rn be the
model state forecast. Let

(
pi,x

f
i

)
for i = 1 . . .N be an ensemble of model

parameters and state forecasts, and yo ∈ Rm a vector of m observations, then
the estimated parameter values pai given by the EnKF equations are

pai = pi + K̃
(
yoi −Hxfi

)
, (i = 1, . . . , N) (2.36)

K̃ = CTHT
(
HPfHT + R

)−1
, (2.37)

where the matrix K̃ ∈ R	×m is a modified Kalman gain matrix , Pf ∈ Rn×n

is the model forecast covariance matrix, C ∈ Rn×	 is the cross-correlation
matrix between the model forecast and parameters, R ∈ Rm×m is the obser-
vations covariance matrix, and H ∈ Rm×n is an observation operator matrix
that maps state variables onto observations. In the EnKF, the vector yoi is a
perturbed observation vector defined as

yoi = yo + εi, (2.38)

where εi ∈ Rm is a random vector sampled from a normal distribution with
zero mean and a specified standard deviation σ. Usually σ is taken as the
variance or error in the observations.

One of the main advantages of the EnKF is that the model forecast co-
variance matrix is approximated using the ensemble of model forecasts,

Pf ≈ 1
N − 1

N∑

i=1

(
xfi − x̄f

)(
xfi − x̄f

)T
, (2.39)

where x̄f ∈ Rn is the model forecast ensemble average. The use of an ensemble
of model forecast to approximate Pf enables the evolution of this matrix for
large nonlinear models at a reasonable computational cost. Additionally, the
cross-correlation matrix C is defined as
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C =
1

N − 1

N∑

i=1

(
xfi − x̄f

)
(pi − p̄)T , (2.40)

where p̄ ∈ R
	 is the parameter ensemble average.

The procedure used to estimate the parameters is the following: Let
t1, . . . , tk be the time instances where observations are available. For each
time instance tj , j = 1, . . . , k, the EnKF data assimilation provides parame-
ter estimates for the ensemble, pai (tj), i = 1 . . .N . A final parameter estimate
is then computed by first taking the ensemble average and then the time av-
erage of the parameters:

pa =
1
k

k∑

j=1

[
1
N

N∑

i=1

pai (tj)

]

(2.41)

This approach avoids the problems of parameter collapse and filter divergence,
since the data assimilation is used to estimate the parameters at each time
instance independently. Additionally, since the state is not being updated in
the assimilation, and only the parameters are being estimated, localization is
not required for the EnKF. For more technical details, see [Eve03, GRF12].

Affine Nonlinear Control System

Now me move to modern geometric nonlinear control theory. A nonlinear
extension of Kalman’s linear state-space control theory is a nonlinear control
theory, comprising a set of geometrical (manifold) techniques developed under
the name of affine nonlinear MIMO-systems, which are of the general form
(see, e.g. [Isi89, NS90, Lew95, LM97]):

ẋ(t) = f0(x(t)) + ui(t)fi(x(t)), (i = 1, ...,m) (2.42)

where t 	→ x(t) is a curve in a system’s state manifold M . The vector-field f0
is called the drift vector-field , describing the dynamics of the system in the
absence of controls, and the vector-fields f1, ..., fm are the input vector-fields
or control vector-fields , indicating how we are able to actuate the system.

Lie Derivative and Lie Bracket in Control Theory

Given a scalar function h(x) and a vector-field f(x) on some configuration nD-
manifold M (see below), we can define a new scalar function, Lfh = ∇hf ,
which is the Lie derivative of h w.r.t. f , i.e., the directional derivative of h
along the direction of the vector f . Repeated Lie derivatives can be defined
recursively:

L0
fh = h, Lifh = Lf

(
Li−1
f h

)
= ∇

(
Li−1
f h

)
f, (for i = 1, 2, ...)
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Or, given another vector-field, g, then LgLfh(x) is defined as

LgLfh = ∇ (Lfh) g.

For example, if we have a control system

ẋ = f(x), y = h(x),

with the state x = x(t) and the output y, then the derivatives of the output
are:

ẏ =
∂h

∂x
ẋ = Lfh, and ÿ =

∂Lfh

∂x
ẋ = L2

fh.

In particular, the Lie derivative of one vector-field with respect to another
vector-field is called the Lie bracket. Given two vector-fields, f(x) and g(x),
their Lie bracket is defined by:

[f, g] = Adfg = ∇gf −∇fg =
∂g

∂x
f − ∂f

∂x
g,

where ∇f = ∂f/∂x is the Jacobian matrix. We can define Lie brackets recur-
sively,

Ad0
fg = g, Adifg = [f,Adi−1

f g], (for i = 1, 2, ...)

Lie brackets have the properties of bilinearity, skew-commutativity and Jacobi
identity, so they form a Lie algebra (from a given space of vector-fields on a
manifold M).

Example: Car-Parking Using Lie Brackets

In this popular example, the driver has two different transformations at his
disposal. He/she can turn the steering wheel, or he/she can drive the car
forward or back. Here, we specify the state of a car by four coordinates: the
(x, y) coordinates of the center of the rear axle, the direction θ of the car, and
the angle φ between the front wheels and the direction of the car. L is the
constant length of the car. Therefore, the configuration manifold of the car is
4D, M = (x, y, θ, φ).

Using (2.42), the driftless car kinematics can be defined as:

ẋ = g1(x)u1 + g2(x)u2, (2.43)

with two vector-fields g1, g2 ∈ X k(M).
The infinitesimal transformations will be the vector-fields

g1(x) ≡ drive = cos θ
∂

∂x
+ sin θ

∂

∂y
+

tanφ
L

∂

∂θ
≡







cos θ
sin θ

1
L tanφ

0





 ,

and g2(x) ≡ steer =
∂

∂φ
≡







0
0
0
1





 .
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Now, steer and drive do not commute; otherwise we could do all your
steering at home before driving of on a trip. Therefore, we have a Lie bracket

[g2, g1] ≡ [steer,drive] =
1

L cos2 φ
∂

∂θ
≡ rotate.

The operation [g2, g1] ≡ rotate ≡ [steer,drive] is the infinitesimal version
of the sequence of transformations: steer, drive, steer back, and drive back,
i.e.,

{steer,drive, steer−1,drive−1}.
Now, rotate can get us out of some parking spaces, but not tight ones:
we may not have enough room to rotate out. The usual tight parking space
restricts the drive transformation, but not steer. A truly tight parking space
restricts steer as well by putting your front wheels against the curb.

Fortunately, there is still another commutator available:

[g1, [g2, g1]] ≡ [drive, [steer,drive]] = [[g1, g2], g1] ≡

[drive,rotate] =
1

L cos2 φ

(

sin θ
∂

∂x
− cos θ

∂

∂y

)

≡ slide.

The operation [[g1, g2], g1] ≡ slide ≡ [drive,rotate] is a displacement at
right angles to the car, and can get us out of any parking place. We just need
to remember to steer, drive, steer back, drive some more, steer, drive back,
steer back, and drive back:

{steer,drive, steer−1,drive, steer,drive−1, steer−1,drive−1}.

We have to reverse steer in the middle of the parking place. This is not intu-
itive, and no doubt is part of the problem with parallel parking.

Thus from only two controls u1 and u2 we can form the vector-fields drive
≡ g1, steer ≡ g2, rotate ≡ [g2, g1], and slide ≡ [[g1, g2], g1], allowing
us to move anywhere in the configuration manifold M . The car kinematics
ẋ = g1u1 + g2u2 is thus expanded as:







ẋ
ẏ

θ̇

φ̇





 = drive · u1 + steer · u2 ≡







cos θ
sin θ

1
L tanφ

0





 · u1 +







0
0
0
1





 · u2 .

The parking theorem says: One can get out from any parking lot that is
larger than the car. For more technical details, see [Isi89, NS90, Lew95, LM97].

2.8.3 Basic Complexity Geometrodynamics

Basic Tensor Machinery

To introduce tensors, consider a standard linear nD matrix system, Ax = b.
It can be rewritten in the so-called covariant form (using the summation
convention upon repeated indices) as
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aijx
j = bi , (i, j = 1, ..., n). (2.44)

Here, i is a free index and j is a dummy index to be summed upon, so the
expansion of (2.44) gives

a11x
1 + a12x

2 + ...+ a1nx
n = b1 ,

a21x
1 + a22x

2 + ...+ a2nx
n = b2 ,

...

an1x
1 + an2x

2 + ...+ annx
n = bn ,

as expected from the original matrix form Ax = b. This indicial notation
can be more useful than the matrix one, like e.g., in computer science, where
indices would represent loop variables. However, the full potential of tensor
analysis is to deal with nonlinear multivariate systems, which are untractable
by linear matrix algebra and analysis. The core of this nonlinear multivariate
analysis is general functional transformation.

Transformation of Coordinates

Suppose that we have two sets of curvilinear coordinates that are single-
valued, continuous and smooth functions of time, xj = xj(t), (j = 1, ...,m)
and x̄i = x̄i(t), (i = 1, ..., n), respectively, representing trajectories of motion
of some mechanical system. Then a general (m × n)D transformation (i.e., a
nonlinear map) xj 	→ x̄i is defined by the set of transformation equations

x̄i = x̄i(xj), (i = 1, ..., n; j = 1, ...,m). (2.45)

In case of the square transformation, m = n, we can freely exchange the
indices, like e.g., in general relativity theory. On the other hand, in the general
case of rectangular transformation, m �= n, like e.g., in robotics, and we need
to take care of these ‘free’ indices.

Now, if the Jacobian determinant of this coordinate transformation is dif-
ferent from zero, ∣

∣
∣
∣
∂x̄i

∂xj

∣
∣
∣
∣ �= 0,

then the transformation (2.45) is reversible and the inverse transformation,

xj = xj(x̄i),

exists as well. Finding the inverse transformation is the problem of matrix
inverse: in case of the square matrix it is well defined, although the inverse
might not exist if the matrix is singular. However, in case of the square ma-
trix, its proper inverse does not exist, and the only tool that we are left with
is the so-called Moore-Penrose pseudoinverse, which gives an optimal solu-
tion (in the least-squares sense) of an overdetermined system of equations.
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Every (overdetermined) rectangular coordinate transformation gives rise to a
redundant system.

For example, in Euclidean 3D space R3, transformation from Cartesian
coordinates yk = {x, y, z} into spherical coordinates xi = {ρ, θ, ϕ} is given by

y1 = x1 cosx2 cosx3, y2 = x1 sinx2 cosx3, y3 = x1 sinx3, (2.46)

with the Jacobian matrix given by

(
∂yk

∂xi

)

=




cosx2 cosx3 −x1 sinx2 cosx3 −x1 cosx2 sinx3

sinx2 cosx3 x1 cosx2 cosx3 −x1 sinx2 sinx3

sinx3 0 x1 cosx3



 (2.47)

and the corresponding Jacobian determinant,
∣
∣
∣∂y

k

∂xi

∣
∣
∣ = (x1)2 cosx3.

An inverse transform is given by

x1 =
√

(y1)2 + (y2)2 + (y3)2, x2 = arctan
(
y2

y1

)

,

x3 = arctan

(
y3

√
(y1)2 + (y2)2

)

, with
∣
∣
∣
∣
∂xi

∂yk

∣
∣
∣
∣ =

1
(x1)2 cosx3

.

As a main mechanical example, we have a rectangular transformation from
6 DOF external, end-effector (e.g., hand) coordinates, into n DOF internal,
joint-angle coordinates. In most cases this is a redundant manipulator system,
with infinite number of possible joint trajectories.

Scalars, Vectors and Covectors

A scalar invariant (or, a zeroth order tensor) with respect to the transforma-
tion (2.45) is the quantity ϕ = ϕ(t) defined as

ϕ(xi) = ϕ̄(x̄i),

which does not change at all under the coordinate transformation. In other
words, ϕ is invariant under (2.45). Biodynamic examples of scalar invariants
include various energies (kinetic, potential, biochemical, mental) with the cor-
responding kinds of work, as well as related thermodynamic quantities (free
energy, temperature, entropy, etc.).

Any geometric object vi = vi(t) that under the coordinate transformation
(2.45) transforms as

v̄i = vj
∂x̄i

∂xj
, (remember, summing upon j−index),

represents a vector, traditionally called a contravariant vector , or, a first-
order contravariant tensor. Standard mechanical examples include both trans-
lational and rotational velocities and accelerations.
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On the other hand, any geometric object vi = vi(t) that under the coor-
dinate transformation (2.45) transforms as

v̄i = vj
∂xj

∂x̄i
,

represents a one-form or covector , traditionally called a covariant vector , or,
a first order covariant tensor. Standard mechanical examples include both
translational and rotational momenta, forces and torques.

Second-Order Tensors

Any geometric object tik = tik(t) that under the coordinate transformation
(2.45) transforms as

t̄ik = tjl
∂x̄i

∂xj
∂x̄k

∂xl
, (i, k = 1, ..., n; j, l = 1, ...,m),

represents a second-order contravariant tensor . It can be obtained as an outer
product of two contravariant vectors, tik = uivk.

Any geometric object tik = tik(t) that under the coordinate transformation
(2.45) transforms as

t̄ik = tjl
∂xj

∂x̄i
∂xl

∂x̄k
,

represents a second-order covariant tensor . It can be obtained as an outer
product of two covariant vectors, tik = uivk.

Any geometric object tik = tik(t) that under the coordinate transformation
(2.45) transforms as

t̄ik = tjl
∂x̄i

∂xj
∂xl

∂x̄k
,

represents a second-order mixed tensor . It can be obtained as an outer product
of a covariant vector and a contravariant vector, tik = uivk.

Standard mechanical examples include:

1. The fundamental (material) covariant metric tensor g ≡ gik, i.e., inertia
matrix, given usually by the transformation from Cartesian coordinates
yj to curvilinear coordinates xi,

gik =
∂yj

∂xi
∂yj

∂xk
, (summing over j).

It is used in the quadratic metric form ds2 of the space in consideration
(e.g., a certain mechanical configuration space)

ds2 ≡ dyjdyj = gikdx
idxk,

where the first term on the r.h.s denotes the Euclidean metrics, while the
second term is the Riemannian metric of the space, respectively.
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2. Its inverse g−1 ≡ gik, given by

gik = (gik)−1 =
Gik
|gik|

, Gik is the cofactor of the matrix (gik);

3. The Kronecker-delta symbol δik, given by

δik =
{

1 if i = k
0 if i �= k

,

used to denote the metric tensor in Cartesian orthogonal coordinates. δik
is a discrete version of the Dirac δ−function. The generalized Kronecker-
delta symbol δijklmn (in 3D) is the product of Ricci antisymmetric tensors
εijk and εlmn,

δijklmn = εijkεlmn =






0 if at least two indices are equal
+1 if both ijk and lmn are either even or odd
−1 if one of ijk, lmn is even and the other is odd

.

For example, to derive components of the metric tensor g ≡ gij in standard
spherical coordinates, we use the relations (2.46-2.47) between the spherical
coordinates xi = {ρ, θ, ϕ} and the Cartesian coordinates yk = {x, y, z}, and
the definition, gij = ∂yk

∂xi
∂yk

∂xj , to get the metric tensor (in matrix form)

(gij) =




1 0 0
0 (x1)2 cos2 x3 0
0 0 (x1)2



 =




1 0 0
0 ρ2 cos2 ϕ 0
0 0 ρ2



 , (2.48)

and the inverse metric tensor

(gij) =




1 0 0
0 1

(x1)2 cos2 x3 0
0 0 1

(x1)2



 =




1 0 0
0 1
ρ2 cos2 ϕ

0
0 0 1

ρ2



 . (2.49)

Given a tensor, we can derive other tensors by raising and lowering its in-
dices, by their multiplication with covariant and contravariant metric tensors.
In this way, the so-called associated tensors to the given tensor are be formed.
For example, vi and vi are associated tensors, related by

vi = gikv
k and vi = gikvk.

Given two vectors, u ≡ ui and v ≡ vi, their inner (dot, or scalar) product
is given by

u · v ≡ gijuivj ,
while their vector (cross) product (in 3D) is given by

u× v ≡ εijkujvk.
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Higher-Order Tensors

As a generalization of above tensors, consider a geometric object Rikps =
Rikps(t) that under the coordinate transformation (2.45) transforms as

R̄ikps = Rjlqt
∂x̄i

∂xj
∂xl

∂x̄k
∂xq

∂x̄p
∂xt

∂x̄s
, (all indices = 1, ..., n). (2.50)

Clearly, Rikjl = Rikjl(x, t) is a fourth order tensor, once contravariant and
three times covariant, representing the central tensor in Riemannian geometry,
called the Riemann curvature tensor . As all mechanical configuration spaces
are Riemannian manifolds, they are all characterized by curvature tensors.
In case Rikjl = 0, the corresponding Riemannian manifold reduces to the
Euclidean space of the same dimension, in which gik = δik.

If one contravariant and one covariant index of a tensor a set equal, the
resulting sum is a tensor of rank two less than that of the original tensor. This
process is called tensor contraction.

If to each point of a region in an nD space there corresponds a definite
tensor, we say that a tensor-field has been defined. In particular, this is a
vector-field or a scalar-field according as the tensor is of rank one or zero. It
should be noted that a tensor or tensor field is not just the set of its compo-
nents in one special coordinate system, but all the possible sets of components
under any transformation of coordinates.

Tensor Symmetry

A tensor is called symmetric with respect to two indices of the same variance
if its components remain unaltered upon interchange of the indices; e.g., aij =
aji, or aij = aji. A tensor is called skew-symmetric (or, antisymmetric) with
respect to two indices of the same variance if its components change sign upon
interchange of the indices; e.g., aij = −aji, or aij = −aji. Regarding tensor
symmetry, in the following we will prove several useful propositions.

(i) Every second-order tensor can be expressed as the sum of two tensors,
one of which is symmetric and the other is skew-symmetric. For example, a
second order tensor aij , which is for i, j = 1, ..., n given by the n× n−matrix

aij =







a11 a12 ... a1n

a21 a22 ... an2

... ... ... ...
an1 an2 ... ann





 ,

can be rewritten as
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aij =
1
2
aij +

1
2
aij +

1
2
aji −

1
2
aji , that can be rearranged as

=
1
2
aij +

1
2
aji +

1
2
aij −

1
2
aji , which can be regrouped as

=
1
2
(aij + aji) +

1
2
(aij − aji), which can be written as

= a(ij) + a[ij] ,

where a(ij) denotes its symmetric part, while a[ij] denotes its skew-symmetric
part, as required.

(ii) Every quadratic form can be made symmetric. For example, a quadratic
form aijx

ixj , that (for i, j = 1, ..., n) expands as

aijx
ixj = a11x

1x1 + a12x
1x2 + ...+ a1nx

1xn +
+ a21x

2x1 + a22x
2x2 + ...+ a2nx

2xn +
...

+ an1x
nx1 + an2x

nx2 + ...+ annx
nxn,

with a non-symmetric second order tensor aij , can be made symmetric in the
following way.

aijx
ixj =

1
2
aijx

ixj +
1
2
aijx

ixj .

If we swap indices in the second term, we get

=
1
2
aijx

ixj +
1
2
ajix

jxi , which is equal to

=
1
2
(aij + aji)xixj .

If we now use a substitution,
1
2
(aij + aji) ≡ bij = bji, we get

aijx
ixj = bijx

ixj ,

where aij is non-symmetric and bij is symmetric, as required.
(iii) Every second order tensor that is the sum aij = uivj + ujvi, or,

aij = uivj + ujvi is symmetric. In both cases, if we swap the indices i and
j, we get aji = ujvi + uivj , (resp. aji = ujvi + uivj), which implies that the
tensor aij (resp. aij) is symmetric.

(iv) Every second order tensor that is the difference bij = uivj − ujvi, or,
bij = uivj − ujvi is skew-symmetric. In both cases, if we swap the indices i
and j, we get bji = −(ujvi−uivj), (resp. bji = −(ujvi−uivj)), which implies
that the tensor bij (resp. bij) is skew-symmetric.
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Tensor Derivatives on Riemannian Manifolds

Consider now some nD Riemannian manifold M (see below) with the metric
form (i.e., line element) ds2 = gikdx

idxk, as a configuration space for a certain
physical system.

Christoffel’s Symbols

Partial derivatives of the metric tensor gik form themselves special symbols
that do not transform as tensors (with respect to the coordinate transforma-
tion (2.45)), but nevertheless represent important quantities in tensor analysis.
They are called Christoffel symbols of the first kind, defined by

Γijk =
1
2
(∂xigjk + ∂xjgki + ∂xkgij),

(

remember, ∂xi ≡ ∂

∂xi

)

and Christoffel symbols of the second kind, defined by

Γ kij = gklΓijl.

The Riemann curvature tensor Rlijk (2.50) of the manifold M , can be ex-
pressed in terms of the later as

Rlijk = ∂xjΓ lik − ∂xkΓ lij + Γ lrjΓ
r
ik − Γ lrkΓ rij .

For example, in 3D spherical coordinates, xi = {ρ, θ, ϕ}, with the metric
tensor and its inverse given by (2.48, 2.49), it can be shown that the only
nonzero Christoffel’s symbols are:

Γ 2
12 = Γ 2

21 = Γ 3
13 = Γ 3

31 =
1
ρ
, Γ 3

23 = Γ 2
32 = − tan θ, (2.51)

Γ 1
22 = −ρ, Γ 1

33 = −ρ cos2 θ, Γ 2
33 = sin θ cos θ.

Geodesics

From the Riemannian metric form ds2 = gikdx
idxk it follows that the distance

between two points t1 and t2 on a curve xi = xi(t) in M is given by

s =
∫ t2

t1

√
gikẋiẋkdt.

That curve xi = xi(t) in M which makes the distance s a minimum is called
a geodesic of the space M (e.g., in a sphere, the geodesics are arcs of great
circles). Using the calculus of variations, the geodesics are found from the
differential geodesic equation,

ẍi + Γ ijkẋ
j ẋk = 0, (2.52)
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where overdot means derivative upon the line parameter s.
For example, in 3D spherical coordinates xi = {ρ, θ, ϕ}, using (2.51),

geodesic equation (2.52) becomes a system of three scalar ODEs,

ρ̈− ρθ̇2 − ρ cos2 θϕ̇2 = 0, θ̈ +
2
ρ
ρ̇ϕ̇+ sin θ cos θϕ̇2 = 0,

ϕ̈+
2
ρ
ρ̇ϕ̇− 2 tan θθ̇ϕ̇ = 0. (2.53)

The Covariant Derivative

Ordinary total and partial derivatives of vectors (covectors) do not transform
as vectors (covectors) with respect to the coordinate transformation (2.45).
For example, let yk be Cartesian coordinates and xi be general curvilinear
coordinates of a dynamical system (with i, k = 1, ..., n). We have: xi(t) =
xi[yk(t)], which implies that

dxi

dt
=
∂xi

∂yk
dyk

dt
, or equivalently, ẋi =

∂xi

∂yk
ẏk,

that is a transformation law for the contravariant vector, which means that
the velocity vi ≡ ẋi ≡ dxi

dt is a proper contravariant vector. However, if we
perform another time differentiation, we get

d2xi

dt2
=
∂xi

∂yk
d2yk

dt2
+

∂2xi

∂yk∂ym
dyk

dt

dym

dt
,

which means that d2xi

dt2
is not a proper vector.

d2xi

dt2 is an acceleration vector only in a special case when xi are another
Cartesian coordinates; then ∂2xi

∂yk∂ym = 0, and therefore the original coordinate
transformation is linear, xi = aiky

k + bi (where aik and bi are constant).
Therefore, d

2xi

dt2
represents an acceleration vector only in terms of Newto-

nian mechanics in a Euclidean space Rn, while it is not a proper acceleration
vector in terms of Lagrangian or Hamiltonian mechanics in general curvilin-
ear coordinates on a smooth manifold Mn. And we know that Newtonian
mechanics in R

n is sufficient only for fairly simple mechanical systems.
The above is true for any tensors. So we need to find another derivative

operator to be able to preserve their tensor character. The solution to this
problem is called the covariant derivative.

The covariant derivative vi;k of a contravariant vector vi is defined as

vi;k = ∂xkvi + Γ ijkv
j .

Similarly, the covariant derivative vi;k of a covariant vector vi is defined as

vi;k = ∂xkvi − Γ jikvj .
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Generalization for the higher order tensors is straightforward; e.g., the covari-
ant derivative tjkl;q of the third order tensor tjkl is given by

tjkl;q = ∂xq tjkl + Γ jqst
s
kl − Γ skqt

j
sl − Γ slqt

j
ks.

The covariant derivative is the most important tensor operator in general
relativity (its zero defines parallel transport) as well as the basis for defining
other differential operators in mechanics and physics.

Covariant Form of Gradient, Divergence, Curl and Laplacian

Gradient. If ϕ = ϕ(xi, t) is a scalar field, the gradient one-form grad(ϕ) is
defined by

grad(ϕ) = ∇ϕ = ϕ;i = ∂xiϕ.

Divergence. The divergence div(vi) of a vector-field vi = vi(xi, t) is defined
by contraction of its covariant derivative with respect to the coordinates xi =
xi(t), i.e., the contraction of vi;k, namely

div(vi) = vi;i =
1
√
g
∂xi(
√
gvi).

Curl. The curl curl(θi) of a one-form θi = θi(xi, t) is a second order covariant
tensor defined as

curl(θi) = θi;k − θk;i = ∂xkθi − ∂xiθk.

Laplacian. The Laplacian ∆ϕ of a scalar invariant ϕ = ϕ(xi, t) is the diver-
gence of grad(ϕ), or

∆ϕ = ∇2ϕ = div(grad(ϕ)) = div(ϕ;i) =
1
√
g
∂xi(
√
ggik∂xkϕ).

The Absolute Derivative and 3D Curve Geometry

The absolute derivative (or intrinsic, or Bianchi’s derivative) of a contravari-
ant vector vi along a curve xk = xk(t) is denoted by ˙̄vi ≡ Dvi/dt and defined
as the inner product of the covariant derivative of vi and ẋk ≡ dxk/dt, i.e.,
vi;kẋ

k , and is given by
˙̄vi = v̇i + Γ ijkv

jẋk.

Similarly, the absolute derivative ˙̄vi of a covariant vector vi is defined as

˙̄vi = v̇i − Γ jikvj ẋk.

Generalization for the higher order tensors is straightforward; e.g., the abso-
lute derivative ˙̄tjkl of the third order tensor tjkl is given by
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˙̄tjkl = ṫjkl + Γ jqst
s
klẋ

q − Γ skqt
j
slẋ

q − Γ slqt
j
ksẋ

q.

The absolute derivative is the most important operator in mechanics, as
it is the basis for the covariant form of both Lagrangian and Hamiltonian
equations of motion of many mechanical systems.

Now that we have defined the absolute derivative, given three unit vec-
tors: tangent τ i, principal normal βi, and binormal νi, as well as two scalar
invariants: curvature K and torsion T, of a curve γ(s) = γ[xi(s)], the so-called
Frenet-Serret formulae are valid45

˙̄τ i ≡ τ̇ i + Γ ijkτ
j ẋk = Kβi,

˙̄βi ≡ β̇
i
+ Γ ijkβ

j ẋk = −(Kτ i + Tνi),

˙̄νi ≡ ν̇i + Γ ijkν
j ẋk = Tβi.

Covariant state equation

Consider again Kalman’s linear state-equation (for an arbitrary MIMO-
system):

ẋ = Ax + Bu, (2.54)
y = Cx + Du,

with the state n-vector x = x(t) ∈ X ⊂ R
n, input m−vector u = u(t) ∈

U ⊂ Rm, output k−vector y = y(t) ∈ Y ⊂ Rk, state n× n matrix A = A(t) :
X→ X, input n×mmatrix B = B(t) : U→ X, output k×nmatrix C = C(t) :
X→ Y and input-output k ×m matrix D = D(t) : U→ Y.

Notwithstanding both the inherent ‘beauty’ and the practical usefulness
of the linear state equation (2.54) (which is the basis of MatlabTM Control
and Signal toolboxes), we might still realize that in real life nothing is linear,
so the linear state-equation (2.54) can only be the first approximation to some
more realistic nonlinear MIMO-system. Technically speaking, we can gener-
alize (or, ‘lift-up’) the linear model (2.54) that lives in nD linear Euclidean
space Rn, into the tensor (or, ‘covariant’) equation that lives on nD nonlinear
Riemannian manifold M with the metric tensor gij and the metric form:

ds2 = gij dx
idxj , (i, j = 1, ..., n),

where the summation convention (summing over repeated indices) is in place.
Using this ‘nonlinear lift’, from the linear state equation (2.54) we obtain

the following covariant state equation:

˙̄xi = aij x
j + bis u

s, (s = 1, ...,m) (2.55)

yt = ctj x
j + dts u

s, (t = 1, ..., k)

45 Here overdot denotes the total derivative with respect to the line parameter s
(instead of time t).
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where ˙̄xi = ˙̄xi(t) is the absolute (covariant) time-derivative, which includes
Christoffel’s symbols Γ ijk (i.e., the Levi-Civita connection associated to the
metric form ds2) of the
Riemannian manifold M :

˙̄xi := ẋi + Γ ijkx
jxk.

The covariant state equation (2.55), which can be simulated in Mathe-
matica� (or, Maple�), in case of the flat connection (Γ ijk = 0), reduces to
the Kalman equation (2.54). Also, some more-nonlinear connection can be
used instead of the Levi-Civita connection Γ ijk.

Basic Exterior Machinery

From Green’s to Stokes’ theorem

Now recall (from advanced calculus) that Green’s theorem in the region C in
the (x, y)−plane R

2 connects a line integral
∮
∂C

(over the boundary ∂C of a
closed line C) with a double integral

∫∫
C

(over the line C; see e.g., [MT03])

∮

∂C

Pdx+Qdy =
∫∫

C

(
∂Q

∂x
− ∂P

∂y

)

dxdy.

In other words, if we define two differential forms (integrands of
∮
∂C

and
∫∫
C

)
as

1−form : A = Pdx+Qdy, and

2−form : dA =
(
∂Q

∂x
− ∂P

∂y

)

dxdy,

(where d denotes the exterior derivative that makes a (p+ 1)−form out of a
p−form, see next subsection), then we can rewrite Green’s theorem as Stokes’
theorem: ∫

∂C

A =
∫

C

dA.

The integration domain C is in topology called a chain, and ∂C is a one-
dimensional (1D) boundary of a 2D chain C. In general, we have the celebrated
BBZ law: the boundary of a boundary is zero (see [MTW73, CW95]), that is,
∂(∂C) = 0, or formally ∂2 = 0.

Exterior derivative

The exterior derivative d is a generalization of ordinary vector differential
operators (grad, div and curl see [Rha84, Fla63]) that transforms p−forms ω
into (p+ 1)−forms dω (see next subsection), with the main property:
dd = d2 = 0, so that in R3 we have:
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• any scalar function f = f(x, y, z) is a 0−form;
• the gradient df = ω of any smooth function f is a 1−form

ω = df =
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz;

• the curl α = dω of any smooth 1−form ω is a 2−form

α = dω =
(
∂R

∂y
− ∂Q

∂z

)

dydz +
(
∂P

∂z
− ∂R

∂x

)

dzdx+
(
∂Q

∂x
− ∂P

∂y

)

dxdy;

if ω = df ⇒ α = ddf = 0.

• the divergence β = dα of any smooth 2−form α is a 3−form

β = dα =
(
∂A

∂x
+
∂B

∂y
+
∂C

∂z

)

dxdydz; if α = dω ⇒ β = ddω = 0.

In general, for any two smooth functions f = f(x, y, z) and g = g(x, y, z),
the exterior derivative d obeys the Leibniz rule [II06b, II07]:

d(fg) = g df + f dg,

and the chain rule:
d (g(f)) = g′(f)df.

Exterior forms

In general, given a so−called 4D coframe, that is a set of coordinate differ-
entials {dxi} ∈ R4, we can define the space of all p−forms, denoted Ωp(R4),
using the exterior derivative d : Ωp(R4)→ Ωp+1(R4) and Einstein’s summa-
tion convention over repeated indices (e.g., Ai dxi =

∑3
i=0Ai dx

i), we have:

1-form − a generalization of the Green’s 1−form Pdx+Qdy,

A = Ai dx
i ∈ Ω1(R4).

For example, in 4D electrodynamics, A represents electromagnetic (co)
vector potential.

2-form − generalizing the Green’s 2−form (∂xQ − ∂yP ) dxdy (with ∂j =
∂/∂xj),

B = dA ∈ Ω2(R4), with components

B =
1
2
Bij dx

i ∧ dxj , or

B = ∂jAi dx
j ∧ dxi, so that

Bij = −2∂jAi = ∂iAj − ∂jAi = −Bji.

where ∧ is the anticommutative exterior (or, ‘wedge’) product of two
differential forms; given a p−form α ∈ Ωp(R4) and a q−form β ∈ Ωq(R4),
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their exterior product is a (p+q)−form α∧β ∈ Ωp+q(R4); e.g., if we have
two 1−forms a = aidx

i, and b = bidx
i, their wedge product a ∧ b is a

2−form α given by

α = a ∧ b = aibj dx
i ∧ dxj = −aibj dxj ∧ dxi = −b ∧ a.

The exterior product ∧ is related to the exterior derivative d = ∂idx
i, by

d(α ∧ β) = dα ∧ β + (−1)pα ∧ dβ.

3-form

C = dB ( = ddA ≡ 0) ∈ Ω3(R4), with components

C =
1
3!
Cijk dx

i ∧ dxj ∧ dxk, or

C = ∂kB[ij] dx
k ∧ dxi ∧ dxj , so that

Cijk = −6∂kB[ij], where B[ij] is the skew−symmetric part of Bij .

For example, in the 4D electrodynamics, B represents the field 2−form
Faraday, or the Liénard−Wiechert 2−form (in the next section we will use
the standard symbol F instead of B) satisfying the sourceless magnetic
Maxwell’s equation,

Bianchi identity : dB = 0, in components ∂kB[ij] = 0.

4-form

D = dC ( = ddB ≡ 0) ∈ Ω4(R4) (if B �= dA), with components
D = ∂lC[ijk] dx

l ∧ dxi ∧ dxj ∧ dxk, or

D =
1
4!
Dijkl dx

i ∧ dxj ∧ dxk ∧ dxl, so that

Dijkl = −24∂lC[ijk].

Stokes theorem

Generalization of the Green’s theorem in the plane (and all other integral
theorems from vector calculus) is the Stokes theorem for the p−form ω, in an
oriented nD domain C (which is a p−chain with a (p− 1)−boundary ∂C, see
next section) ∫

∂C

ω =
∫

C

dω.

For example, in the 4D Euclidean space R
4 we have the following three

particular cases of the Stokes theorem, related to the subspaces C of R4:
The 2D Stokes theorem: ∫

∂C2
A =

∫

C2
B.
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The 3D Stokes theorem: ∫

∂C3
B =

∫

C3
C.

The 4D Stokes theorem: ∫

∂C4
C =

∫

C4
D.

Basic Manifold Machinery

Now, we drop boldface symbols, as we move into more advanced geometrical
machinery. First, recall that a smooth n-manifold is a curved nD space which
is locally equivalent to Rn. To sketch its formal definition, consider a set M
(see Figure 2.2) which is a candidate for a manifold. Any point x ∈ M has
its Euclidean chart , given by a 1-1 and onto map ϕi : M → Rn, with its
Euclidean image Vi = ϕi(Ui). Formally, a chart ϕi is defined by

ϕi : M ⊃ Ui � x 	→ ϕi(x) ∈ Vi ⊂ R
n,

where Ui ⊂M and Vi ⊂ Rn are open sets.
Any point x ∈ M can have several different charts (see Figure 2.2). Con-

sider a case of two charts, ϕi, ϕj : M → R
n, having in their images two

open sets, Vij = ϕi(Ui ∩ Uj) and Vji = ϕj(Ui ∩ Uj). Then we have transition
functions ϕij between them,

ϕij = ϕj ◦ ϕ−1
i : Vij → Vji, locally given by ϕij(x) = ϕj(ϕ

−1
i (x)).

If transition functions ϕij exist, then we say that two charts, ϕi and ϕj are
compatible. Transition functions represent a general (nonlinear) transforma-
tions of coordinates, which are the core of classical tensor calculus.

A set of compatible charts ϕi : M → Rn, such that each point x ∈M has
its Euclidean image in at least one chart, is called an atlas . Two atlases are
equivalent iff all their charts are compatible (i.e., transition functions exist
between them), so their union is also an atlas. A manifold structure is a class
of equivalent atlases.

Finally, as charts ϕi : M → Rn were supposed to be 1-1 and onto maps,
they can be either homeomorphisms, in which case we have a topological (C0)
manifold, or diffeomorphisms, in which case we have a smooth (Ck) manifold.

Recall that the velocity phase-space TM of some configuration nm-
manifold M has the Riemannian geometry with the local metric form:

〈g〉 ≡ ds2 = gijdx
idxj , (2.56)

where gij(x) is the material metric tensor defined by the configuraton system’s
mass-inertia matrix and dxi are differentials of the local joint coordinates xi

on M . Besides giving the local distances between the points on the manifold
M, the Riemannian metric form 〈g〉 defines the system’s kinetic energy:
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Fig. 2.2. Depicting the manifold concept.

T =
1
2
gij ẋ

iẋj,

giving the Lagrangian equations of the conservative skeleton motion with
kinetic-minus-potential energy Lagrangian L = T−V , with the corresponding
geodesic form

d

dt
Lẋi − Lxi = 0 or ẍi + Γ ijkẋ

j ẋk = 0, (2.57)

where subscripts denote partial derivatives, while Γ ijk are the Christoffel sym-
bols of the affine Levi-Civita connection of the configuraton manifold M .

The corresponding momentum phase-space P = T ∗M provides a natu-
ral symplectic structure that can be defined as follows. As the configuraton
configuration space M is a smooth n−manifold, we can pick local coordi-
nates {dx1, ..., dxn} ∈M . Then {dx1, ..., dxn} defines a basis of the cotangent
space T ∗

xM , and by writing θ ∈ T ∗
xM as θ = pidx

i, we get local coordinates
{x1, ..., xn, p1, ..., pn} on T ∗M . We can now define the canonical symplectic
form ω on P = T ∗M as:

ω = dpi ∧ dxi,

where ‘∧’ denotes the wedge or exterior product of exterior differential forms.

Tensor Fields and Bundles

A tensor bundle T associated to a smooth n-manifold M is defined as a tensor
product of tangent and cotangent bundles:

T =
q⊗
T ∗M ⊗

p⊗
TM =

︷ ︸︸ ︷
p times

TM ⊗ ...⊗ TM ⊗

︷ ︸︸ ︷
q times

T ∗M ⊗ ...⊗ T ∗M.



October 10, 2014 11:9 Complexity and Control 9in x 6in b1966-ch02 page 76

76 2 Local Geometrical Machinery for Complexity and Control

Tensor bundles are special case of more general fibre bundles.
A tensor-field of type (p, q) (see Appendix) on a smooth n-manifold M

is defined as a smooth section τ : M → T of the tensor bundle T . The
coefficients of the tensor-field τ are smooth (C∞) functions with p indices
up and q indices down. The classical position of indices can be explained in
modern terms as follows. If (U, φ) is a chart at a point m ∈ M with local
coordinates (x1, ..., xn), we have the holonomous frame field

∂xi1 ⊗ ∂xi2 ⊗ ...⊗ ∂xip ⊗ dxj1 ⊗ dxj2 ...⊗ dxjq ,

for i ∈ {1, ..., n}p, j = {1, ..., n}q, over U of this tensor bundle, and for any
(p, q)−tensor-field τ we have

τ |U = τ
i1...ip
j1...jq

∂xi1 ⊗ ∂xi2 ⊗ ...⊗ ∂xip ⊗ dxj1 ⊗ dxj2 ...⊗ dxjq .

For such tensor-fields the Lie derivative Lv along any vector-field v is
defined, and it is a derivation (i.e., both linearity and Leibniz rules hold)
with respect to the tensor product. Tensor bundle T admits many natural
transformations. For example, a ‘contraction’ like the trace T ∗M ⊗ TM =
L (TM, TM)→M ×R, but applied just to one specified factor of type T ∗M
and another one of type TM, is a natural transformation. And any ‘permu-
tation of the same kind of factors’ is a natural transformation.

The tangent bundle πM : TM → M of a manifold M (introduced above)
is a special tensor bundle over M such that, given an atlas {(Uα, ϕα)} of M ,
TM has the holonomic atlas

Ψ = {(Uα, ϕα = Tϕα)}.

The associated linear bundle coordinates are the induced coordinates (ẋλ) at
a point m ∈M with respect to the holonomic frames {∂λ} in tangent spaces
TmM . Their transition functions read

ẋ′λ =
∂x′λ

∂xµ
ẋµ.

Technically, the tangent bundle TM is a tensor bundle with the structure Lie
group GL(dimM,R).

Recall that the cotangent bundle of M is the dual T ∗M of TM . It is
equipped with the induced coordinates (ẋλ) at a point m ∈ M with respect
to holonomic coframes {dxλ} dual of {∂λ}. Their transition functions read

ẋ′λ =
∂x′µ

∂xλ
ẋµ.

Basic de Rham Machinery

Exact and closed forms and chains

In general, a p−form β is called closed if its exterior derivative d = ∂idx
i is

equal to zero,
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dβ = 0.

From this condition one can see that the closed form (the kernel of the exterior
derivative operator d) is conserved quantity. Therefore, closed p−forms possess
certain invariant properties, physically corresponding to the conservation laws
(see e.g., [AMR88]).

Also, a p−form β that is an exterior derivative of some (p− 1)−form α,

β = dα,

is called exact (the image of the exterior derivative operator d). By Poincaré
lemma, exact forms prove to be closed automatically,

dβ = d(dα) = 0.

Since d2 = 0, every exact form is closed. The converse is only partially
true, by Poincaré lemma: every closed form is locally exact .

Technically, this means that given a closed p−form α ∈ Ωp(U), defined on
an open set U of a smooth manifold M (see Figure 2.2), any point m ∈ U has
a neighborhood on which there exists a (p− 1)−form β ∈ Ωp−1(U) such that
dβ = α|U .

In particular, there is a Poincaré lemma for contractible manifolds: Any
closed form on a smoothly contractible manifold is exact.

The Poincaré lemma is a generalization and unification of two well−known
facts in vector calculus:

1. If curlF = 0, then locally F = grad f ; and
2. If divF = 0, then locally F = curlG.

A cycle is a p−chain, (or, an oriented p−domain) C ∈ Cp(M) such that
∂C = 0. A boundary is a chain C such that C = ∂B, for any other chain
B ∈ Cp(M). Similarly, a cocycle (i.e., a closed form) is a cochain ω such that
dω = 0. A coboundary (i.e., an exact form) is a cochain ω such that ω = dθ,
for any other cochain θ. All exact forms are closed (ω = dθ ⇒ dω = 0) and all
boundaries are cycles (C = ∂B ⇒ ∂C = 0). Converse is true only for smooth
contractible manifolds, by Poincaré lemma.

De Rham duality of forms and chains

Integration on a smooth manifold M should be thought of as a nondegenerate
bilinear pairing 〈, 〉 between p−forms and p−chains (spanning a finite domain
on M). Duality of p−forms and p−chains on M is based on the De Rham’s
‘period’, defined as [Rha84, CD82]

Period :=
∫

C

ω := 〈C, ω〉 ,
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where C is a cycle, ω is a cocycle, while 〈C, ω〉 = ω(C) is their inner product
〈C, ω〉 : Ωp(M)× Cp(M)→ R. From the Poincaré lemma, a closed p−form ω
is exact iff 〈C, ω〉 = 0.

The fundamental topological duality is based on the Stokes theorem,
∫

∂C

ω =
∫

C

dω or 〈∂C, ω〉 = 〈C, dω〉 ,

where ∂C is the boundary of the p−chain C oriented coherently with C on M .
While the boundary operator ∂ is a global operator, the coboundary operator
d is local, and thus more suitable for applications. The main property of the
exterior differential,

d ◦ d ≡ d2 = 0 =⇒ ∂ ◦ ∂ ≡ ∂2 = 0, (and converse),

can be easily proved using the Stokes’ theorem (and the above ‘period nota-
tion’) as

0 =
〈
∂2C, ω

〉
= 〈∂C, dω〉 =

〈
C, d2ω

〉
= 0.

De Rham cochain and chain complexes

In the Euclidean 3D space R
3 we have the following De Rham cochain complex

0→ Ω0(R3) d−→
grad

Ω1(R3) d−→
curl

Ω2(R3) d−→
div

Ω3(R3)→ 0.

Using the closure property for the exterior differential in R3, d ◦ d ≡ d2 = 0,
we get the standard identities from vector calculus

curl · grad = 0 and div · curl = 0.

As a duality, in R3 we have the following chain complex

0← C0(R3) ∂←−C1(R3) ∂←−C2(R3) ∂←−C3(R3)← 0,

(with the closure property ∂ ◦ ∂ ≡ ∂2 = 0) which implies the following three
boundaries:

C1
∂	→ C0 = ∂(C1), C2

∂	→ C1 = ∂(C2), C3
∂	→ C2 = ∂(C3),

where C0 ∈ C0 is a 0−boundary (or, a point), C1 ∈ C1 is a 1−boundary (or, a
line), C2 ∈ C2 is a 2−boundary (or, a surface), and C3 ∈ C3 is a 3−boundary
(or, a hypersurface). Similarly, the de Rham complex implies the following
three coboundaries:

ω0 d	→ ω1 = d(ω0), ω1 d	→ ω2 = d(ω1), ω2 d	→ ω3 = d(ω2),

where ω0 ∈ Ω0 is 0-form (or, a function), ω1 ∈ Ω1 is a 1-form, ω2 ∈ Ω2 is a
2-form, and ω3 ∈ Ω3 is a 3-form.

In general, on a smooth nD manifold M we has the following de Rham
cochain complex [Rha84]

0→ Ω0(M) d−→ Ω1(M) d−→ Ω2(M) d−→ Ω3(M) d−→ · · · d−→ Ωn(M)→ 0,

satisfying the closure property on M, d ◦ d ≡ d2 = 0.
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Fig. 2.3. A small portion of the De Rham cochain complex, showing a ho-
momorphism of cohomology groups.

De Rham cohomology vs. chain homology

Briefly, the de Rham cohomology is the (functional) space of closed differential
p−forms modulo exact ones on a smooth manifold.

More precisely, the subspace of all closed p−forms (cocycles) on a smooth
manifold M is the kernel Ker(d) of the De Rham d−homomorphism (see Fig-
ure 2.3), denoted by Zp(M) ⊂ Ωp(M), and the sub-subspace of all exact
p−forms (coboundaries) on M is the image Im(d) of the de Rham homomor-
phism denoted by Bp(M) ⊂ Zp(M). The quotient space

Hp
DR(M) :=

Zp(M)
BpM

=
Ker

(
d : Ωp(M)→ Ωp+1(M)

)

Im (d : Ωp−1(M)→ Ωp(M))
, (2.58)

is called the pth de Rham cohomology group of a manifoldM . It is a topological
invariant of a manifold. Two p−cocycles α,β ∈ Ωp(M) are cohomologous,
or belong to the same cohomology class [α] ∈ Hp(M), if they differ by a
(p−1)−coboundary α−β = dθ ∈ Ωp−1(M). The dimension bp = dimHp(M)
of the de Rham cohomology group Hp

DR(M) of the manifold M is called the
Betti number bp.

Similarly, the subspace of all p−cycles on a smooth manifold M is the
kernel Ker(∂) of the ∂−homomorphism, denoted by Zp(M) ⊂ Cp(M), and
the sub-subspace of all p−boundaries on M is the image Im(∂) of the
∂−homomorphism, denoted by Bp(M) ⊂ Cp(M). Two p−cycles C1,C2 ∈ Cp
are homologous, if they differ by a (p−1)−boundary C1−C2 = ∂B ∈ Cp−1(M).
Then C1 and C2 belong to the same homology class [C] ∈ Hp(M), where
Hp(M) is the homology group of the manifold M , defined as

Hp(M) :=
Zp(M)
Bp(M)

=
Ker(∂ : Cp(M)→ Cp−1(M))
Im(∂ : Cp+1(M)→ Cp(M))

,
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where Zp is the vector space of cycles and Bp ⊂ Zp is the vector space of
boundaries on M . The dimension bp = dimHp(M) of the homology group
Hp(M) is, by the de Rham theorem, the same Betti number bp.

If we know the Betti numbers for all (co)homology groups of the manifold
M , we can calculate the Euler-Poincaré characteristic of M as

χ(M) =
n∑

p=1

(−1)pbp.

For example, consider a small portion of the De Rham cochain complex of
Figure 2.3 spanning a space-time 4−manifold M ,

Ωp−1(M)
dp−1−→ Ωp(M)

dp−→ Ωp+1(M)

As we have seen above, cohomology classifies topological spaces by comparing
two subspaces of Ωp: (i) the space of p−cocycles, Zp(M) = Ker dp, and (ii)
the space of p−coboundaries, Bp(M) = Im dp−1. Thus, for the cochain com-
plex of any space-time 4−manifold we have,

d2 = 0 ⇒ Bp(M) ⊂ Zp(M),

that is, every p−coboundary is a p−cocycle. Whether the converse of this
statement is true, according to Poincaré lemma, depends on the particular
topology of a space-time 4−manifold. If every p−cocycle is a p−coboundary,
so that Bp and Zp are equal, then the cochain complex is exact at Ωp(M).
In topologically interesting regions of a space-time manifold M , exactness
may fail [Wis06], and we measure the failure of exactness by taking the pth
cohomology group

Hp(M) = Zp(M)/Bp(M).

Exterior Lagrangian Systems

Let Ωp(M) = φIdx
I denote the space of differential p-forms on a n-manifold

M , i.e., if a multi-index I ⊂ {1, . . . , n} is a subset of p elements then we have
a p-form: dxI = dxi1 ∧dxi2 ∧ · · · ∧dxip on M . We define the exterior derivative
d on M as:

dφ = ∂pφI dxp ∧ dxI .
Consider an n-DOF dynamical system Ξ, evolving in time on its con-

figuration n-manifold M (with local coordinates xi, i = 1, ..., n) as well as
on its tangent bundle TM (with local coordinates (xi; ẋi), where overdot
denotes time derivative). For the system Ξ we consider a well-posed varia-
tional problem (I, ω;ϕ) on the associated (2n + 1)-dimensional jet manifold
X = J1(R,M) ∼= R× TM , with local canonical variables (t;xi; ẋi).

Here, (I, ω) is called the Pfaffian exterior differential system on X , given
locally as:



October 10, 2014 11:9 Complexity and Control 9in x 6in b1966-ch02 page 81

2.8 Appendix 81

{
θi = dxi − ẋiω = 0,

ω ≡ dt �= 0,

with structure equations:
dθi = −dẋi ∧ ω.

Integral manifolds N ∈ J1(R,M) of the Pfaffian system (I, ω) are locally
1-jets: t→ (t, x(t), ẋ(t)) of curves x = x(t) : R→M .

ϕ in (I, ω;ϕ) is a 1-form: ϕ = Lω, where L = L(t, x, ẋ) is the system’s
Lagrangian function defined onX , having both coordinate and velocity partial
derivatives, respectively denoted by Lxi and Lẋi .

A variational problem (I, ω;ϕ) is said to be well-posed (or, strongly non-
degenerate) if the determinant of the matrix of mixed velocity partials of the
Lagrangian is positive definite: det ‖Lẋiẋj‖ > 0.

The extended Pfaffian system:





θi = 0,
dLẋi − Lxi ω = 0,

ω �= 0.

generates classical Euler-Lagrange equations:

∂tLẋi = Lxi , (where ∂t = d/dt). (2.59)

If an integral manifold N satisfies the Euler-Lagrange equations (2.59) of
a well-posed variational problem (I, ω;ϕ) then the following holds:

∂t

(∫

Nt

ϕ

)

t=0

= 0,

for any admissible variation Nt ∈ N that satisfies the endpoint conditions :
ω = θi = 0.

Theorem (Griffiths): Under the above conditions, both the Lagrangian dy-
namics with initial conditions:

{
∂tLẋi = Lxi,

x(t0) = x0, ẋ(t0) = ẋ0

and the Lagrangian dynamics with endpoint conditions:
{

∂tLẋi = Lxi,
x(t0) = x0, x(t1) = x1

have unique solutions.
If M is a Riemannian manifold its metric g =< . > is locally given by a

positive definite quadratic form:

ds2 = gij(x) dxidxj , (2.60)
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where the metric tensor is a C∞ symmetric matrix: g(x) = ‖gij(x)‖.
Kinetic energy of the system Ξ is a function T = T (x, ẋ) on the tangent

bundle TM , which induces a positive definite quadratic form in each fiber
TxM ⊂ TM . In local coordinates on TxM , it is related to the Riemannian
metric (2.60) by:

T ω2 =
1
2
ds2.

If the potential energy of the system Ξ is a function U = U(x) on M ,
then the autonomous Lagrangian is defined as kinetic minus potential energy:
L(x, ẋ) = T (x, ẋ)− U(x).

The condition of well-posedness is satisfied, as:

det ‖Lẋiẋj‖ = det ‖gij(x)‖ > 0.

The covariant Euler-Lagrange equations (2.59) expand as:

∂t
(
gij(x(t)) ẋj(t)

)
=

1
2
(
∂igjk(x(t) ẋj(t) ẋk(t)

)
− Fi(x(t)), (2.61)

where Fi(x(t)) = ∂ẋjU(x) denotes the gradient force 1-form.
Letting

∥
∥gij(x)

∥
∥ be the inverse matrix to ‖gij(x)‖ and introducing the

Christoffel symbols (of the Levi-Civita connection Γ on M):

Γ ijk = gil
1
2

(∂jgkl + ∂kgjl − ∂lgjk)

the equations (2.61) resolve to the contravariant form

ẍi(t) + Γ ijk(x(t)) ẋ
j (t) ẋk(t) = −F i(x(t)), (2.62)

where: F i(x(t)) = gij(x) ∂ẋjU(x) denotes the gradient force vector-field .
Griffiths Theorem implies that both the covariant dynamics with initial

conditions: {
ẍi(t) + Γ ijk(x(t)) ẋ

j(t) ẋk(t) = −F i(x(t))
x(t0) = x0, ẋ(t0) = ẋ0

and the covariant dynamics with endpoint conditions:
{
ẍi(t) + Γ ijk(x(t)) ẋ

j(t) ẋk(t) = −F i(x(t))
x(t0) = x0, x(t1) = x1

have unique solutions.

Basic Gauge Fields

Recall that a gauge theory is a theory that admits a symmetry with a lo-
cal parameter. For example, in every quantum theory the global phase of
the wave ψ−function is arbitrary and does not represent something physical.
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Consequently, the theory is invariant under a global change of phases (adding
a constant to the phase of all wave functions, everywhere); this is a global
symmetry. In quantum electrodynamics, the theory is also invariant under
a local change of phase, that is, one may shift the phase of all wave func-
tions so that the shift may be different at every point in space-time. This is
a local symmetry. However, in order for a well-defined derivative operator to
exist, one must introduce a new field, the gauge field , which also transforms
in order for the local change of variables (the phase in our example) not to
affect the derivative. In quantum electrodynamics this gauge field is the elec-
tromagnetic potential 1-form A (or, a covector), in components within the
nD coframe {dxµ} on a smooth manifold M (dual to the frame, i.e., basis of
tangent vectors {∂µ = ∂/∂xµ}, given by

A = Aµdx
µ, such that Anew = Aold + df, (f is any scalar function)

- leaves the electromagnetic field 2-form F = dA unchanged. This change df
of local gauge of variable A is termed gauge transformation. In quantum field
theory the excitations of fields represent particles. The particle associated with
excitations of the gauge field is the gauge boson. All the fundamental inter-
actions in nature are described by gauge theories. In particular, in quantum
electrodynamics, whose gauge transformation is a local change of phase, the
gauge group is the circle group U(1) (consisting of all complex numbers with
absolute value 1), and the gauge boson is the photon (see. e.g. [Fra86]).

The gauge field of classical electrodynamics, given in a local coframe {dxµ}
on M as an electromagnetic potential 1-form

A = Aµdx
µ = Aµdx

µ + df, (f = arbitrary scalar field),

is globally a connection on a U(1)−bundle of M . The corresponding electro-
magnetic field, locally the 2-form on M,

F = dA, in components given by

F =
1
2
Fµν dx

µ ∧ dxν , with Fµν = ∂νAµ − ∂µAν

is globally the curvature of the connection A under the gauge-covariant deriva-
tive,

Dµ = ∂µ − ieAµ, (2.63)

where e is the charge coupling constant.46 In particular, in 4D space-time
electrodynamics, the 1-form electric current density J has the components
46 If a gauge transformation is given by

ψ �→ eiΛψ

and for the gauge potential

Aµ �→ Aµ +
1

e
(∂µΛ),
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Jµ = (ρ, j) = (ρ, jx, jy, jz) (where ρ is the charge density), the 2-form Faraday
F is given in components of electric field E and magnetic field B by47

Fµν =







0 Ex Ey Ez
−Ex 0 −Bz By
−Ey Bz 0 −Bx
−Ez −By Bx 0





 , with Fνµ = −Fµν ,

while its dual 2-form Maxwell �F has the following components

then the gauge-covariant derivative,

Dµ = ∂µ − ieAµ

transforms as
Dµ �→ ∂µ − ieAµ − i(∂µΛ)

and Dµψ transforms as

Dµ �→ ∂µ − ieAµ − i(∂µΛ).

47 Recall that in the 19th Century, Maxwell unified Faraday’s electric and magnetic
fields. Maxwell’s theory led to Einstein’s special relativity where this unification
becomes a spin-off of the unification of space end time in the form of the Faraday
tensor [MTW73]

F = E ∧ dt+B,

where F is electromagnetic 2−form on space-time, E is electric 1−form on space,
andB is magnetic 2−form on space. Gauge theory considers F as secondary object
to a connection-potential 1−form A. This makes half of the Maxwell equations
into tautologies, i.e.,

F = dA =⇒ dF = 0 : Bianchi identity,

but does not imply the second half of Maxwell’s equations,

δF = −4πJ : dual Bianchi identity.

To understand the deeper meaning of the connection-potential 1−form A, we can

integrate it along a path γ in space-time, x
γ � y. Classically, the integralR

γ
A represents an action for a charged point particle to move along the path γ.

Quantum-mechanically, exp
“
i
R
γ
A
”

represents a phase (within the unitary Lie

group U(1)) by which the particle’s wave-function changes as it moves along the
path γ, so A is a U(1)−connection.

In other words, Maxwell’s equations can be formulated using complex line
bundles, or principal bundles with fibre U(1). The connection ∇ on the line bundle
has a curvature F = ∇2 which is a 2-form that automatically satisfies dF = 0
and can be interpreted as a field-strength. If the line bundle is trivial with flat
reference connection d, we can write ∇ = d + A and F = dA with A the 1-
form composed of the electric potential and the magnetic vector potential (see
[BM94]).
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�Fµν =







0 −Bx −By −Bz
Bx 0 −Ez Ey
By Ez 0 −Ex
Bz −Ey Bx 0





 , with � Fνµ = − � Fµν ,

so that classical electrodynamics is governed by the Maxwell equations, which
in modern exterior formulation read

dF = 0, δF = −4πJ, or in components,
F[µν,η] = 0, Fµν ,

µ = −4πJµ,

where � is the Hodge star operator and δ is the Hodge codiferential (see
Appendix), comma denotes the partial derivative and the 1-form of electric
current J = Jµdx

µ is conserved, by the electrical continuity equation,

δJ = 0, or in components, Jµ,
µ = 0.

The first, sourceless Maxwell equation, dF = 0, gives vector magnetostat-
ics and magnetodynamics,

Magnetic Gauss’ law : divB = 0,
Faraday’s law : ∂tB + curlE = 0.

The second Maxwell equation with source, δF = J , gives vector electrostatics
and electrodynamics,

Electric Gauss’ law : divE = 4πρ,
Ampère’s law : ∂tE− curlB = −4πj.

The standard Lagrangian for the free electromagnetic field, F = dA, is
given by [II06b, II07]

L(A) =
1
2
(F ∧ � F ),

with the corresponding action functional

S(A) =
1
2

∫
F ∧ � F.

Basic Lie Groups and Their Lie Algebras

In this subsection we give a minimalist definition of Lie groups and their
Lie algebras (for more technical expose, see e.g. [II06b, II07] and references
therein).

A Lie group G is a smooth n-manifold M that has at the same time a
group G−structure consistent with its manifold M−structure in the sense
that group multiplication µ : G × G → G, (g, h) 	→ gh and the group
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inversion ν : G → G, g 	→ g−1 are smooth maps. A point e ∈ G is called
the group identity element.

A Lie group can act on a smooth manifold M by moving the points of M,
denoted by G ×M → M.Group action on a manifold defines the orbit of a
point m on a manifold M, which is the set of points on M to which m can be
moved by the elements of a Lie group G. The orbit of a point m is denoted
by Gm = {g ·m|g ∈ G}.

Let G be a real Lie group. Its Lie algebra g is the tangent space TGe to
the group G at the identity e provided with the Lie bracket (commutator)
operation [X,Y ], which is bilinear, skew-symmetric, and satisfies the Jacobi
identity (for any three vector-fields X,Y, Z ∈ g):

[[X,Y ], Z] = [X, [Y, Z]]− [X, [Y, Z]].

Note that in Hamiltonian mechanics, Jacobi identity is satisfied by Poisson
brackets, while in quantum mechanics it is satisfied by operator commutators.

For example, G = SO(3) is the group of rotations of 3D Euclidean space,
i.e. the configuration space of a rigid body fixed at a point. A motion of the
body is then described by a curve g = g(t) in the group SO(3). Its Lie algebra
g = so(3) is the 3D vector space of angular velocities of all possible rotations.
The commutator in this algebra is the usual vector (cross) product.

A Lie group G acts on itself by left and right translations: every element
g ∈ G defines diffeomorphisms of the group onto itself (for every h ∈ G):

Lg : G→ G, Lgh = gh; Rg : G→ G, Rgh = hg.

The induced maps of the tangent spaces are denoted by:

Lg∗ : TGh → TGgh, Rg∗ : TGh → TGhg.

The diffeomorphism Rg−1Lg is an inner automorphism of the group G. It
leaves the group identity e fixed. Its derivative at the identity e is a linear
map from the Lie algebra g to itself:

Adg : g→ g, Adg(Rg−1Lg)∗e

is called the adjoint representation of the Lie group G.
Referring to the previous example, a rotation velocity ġ of the rigid body

(fixed at a point) is a tangent vector to the Lie group G = SO(3) at the point
g ∈ G. To get the angular velocity, we must carry this vector to the tangent
space TGe of the group at the identity, i.e. to its Lie algebra g = so(3). This
can be done in two ways: by left and right translation, Lg and Rg. As a result,
we obtain two different vector-fields in the Lie algebra so(3) :

ωc = Lg−1∗ġ ∈ so(3) and ωx = Rg−1∗ġ ∈ so(3),

which are called the ‘angular velocity in the body’ and the ‘angular velocity
in space,’ respectively.
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Now, left and right translations induce operators on the cotangent space
T ∗Gg dual to Lg∗ and Rg∗, denoted by (for every h ∈ G):

L∗
g : T ∗Ggh → T ∗Gh, R∗

g : T ∗Ghg → T ∗Gh.

The transpose operators Ad∗g : g → g satisfy the relations Ad∗gh = Ad∗hAd
∗
g

(for every g, h ∈ G) and constitute the co-adjoint representation of the Lie
group G. The co-adjoint representation plays an important role in all ques-
tions related to (left) invariant metrics on the Lie group. According to A.
Kirillov, the orbit of any vector-field X in a Lie algebra g in a co-adjoint
representation Ad∗g is itself a symplectic manifold and therefore a phase space
for a Hamiltonian mechanical system.

A Riemannian metric on a Lie group G is called left-invariant if it is
preserved by all left translations Lg, i.e., if the derivative of left translation
carries every vector to a vector of the same length. Similarly, a vector-field X
on G is called left-invariant if (for every g ∈ G) L∗

gX = X .
Again referring to the previous example of the rigid body, the dual space

g∗ to the Lie algebra g = so(3) is the space of angular momenta π. The kinetic
energy T of a body is determined by the vector-field of angular velocity in the
body and does not depend on the position of the body in space. Therefore,
kinetic energy gives a left-invariant Riemannian metric on the rotation group
G = SO(3).

2.8.4 Advanced Complexity Geometrodynamics

Basic Riemannian-Ricci Machinery

Riemann and Ricci curvatures on a smooth manifold

Recall that proper differentiation of vector and tensor fields on a smooth Rie-
mannian n−manifold is performed using the Levi-Civita covariant derivative
(see, e.g. [II06b, II07]). Formally, let M be a Riemannian n−manifold with the
tangent bundle TM and a local coordinate system {xi}ni=1 defined in an open
set U ⊂ M . The covariant derivative operator, ∇X : C∞(TM)→ C∞(TM),
is the unique linear map such that for any vector-fields X,Y, Z, constant c,
and function f the following properties are valid:

∇X+cY = ∇X + c∇Y ,
∇X(Y + fZ) = ∇XY + (Xf)Z + f∇XZ, with
∇XY −∇YX = [X,Y ], (torsion free property)

where [X,Y ] is the Lie bracket of X and Y (see, e.g. [Iva04]). In local coordi-
nates, the metric g is defined for any orthonormal basis (∂i = ∂xi) in U ⊂M
by

gij = g(∂i, ∂j) = δij , ∂kgij = 0.
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Then the affine Levi-Civita connection is defined on M by

∇∂i∂j = Γ kij∂k, where Γ kij =
1
2
gkl (∂igjl + ∂jgil − ∂lgij)

are the (second-order) Christoffel symbols .
Now, using the covariant derivative operator ∇X we can define the Rie-

mann curvature (3, 1)−tensor Rm by (see, e.g., [II06b, II07])

Rm(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z.

Rm measures the curvature of the manifold by expressing how noncommuta-
tive covariant differentiation is. The (3, 1)−componentsRlijk of Rm are defined
in U ⊂M by

Rm (∂i, ∂j) ∂k = Rlijk∂l, which expands (see [MTW73]) as

Rlijk = ∂iΓ
l
jk − ∂jΓ lik + ΓmjkΓ

l
im − Γmik Γ ljm.

Also, the Riemann (4, 0)−tensor Rijkl = glmR
m
ijk is defined as the g−based

inner product on M ,

Rijkl = 〈Rm (∂i, ∂j) ∂k, ∂l〉 .
The first and second Bianchi identities for the Riemann (4, 0)−tensor Rijkl

hold,

Rijkl +Rjkil +Rkijl = 0, ∇iRjklm +∇jRkilm +∇kRijlm = 0,

while the twice contracted second Bianchi identity reads

2∇jRij = ∇iR. (2.64)

The (0, 2) Ricci tensor Rc is the trace of the Riemann (3, 1)−tensor Rm,

Rc(Y, Z) + tr(X → Rm(X,Y )Z),
so that Rc(X,Y ) = g(Rm(∂i, X)∂i, Y ),

Its components Rjk = Rc (∂j , ∂k) are given in U ⊂ M by the contraction
[MTW73]

Rjk = Riijk, or, in terms of Christoffel symbols,

Rjk = ∂iΓ
i
jk − ∂kΓ iji + Γ imiΓ

m
jk − Γ imkΓmji .

Being a symmetric second-order tensor, Rc has n+ 12 independent compo-
nents on an n−manifold M . In particular, on a 3-manifold, it has 6 compo-
nents, and on a 2-surface it has only the following 3 components:

R11 = g22R2112, R12 = g12R2121, R22 = g11R1221,

which are all proportional to the corresponding coordinates of the metric
tensor,

R11

g11
=
R12

g12
=
R22

g22
= − R1212

det(g)
. (2.65)

Finally, the scalar curvature R is the trace of the Ricci tensor Rc, given
in U ⊂M by: R = gijRij .
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Ricci flow on a Riemannian manifold

Parabolic reaction-diffusion systems are abundant in mathematical biology.
They are mathematical models that describe how the concentration of one
or more substances distributed in space changes under the influence of two
processes: local chemical reactions in which the substances are converted into
each other, and diffusion which causes the substances to spread out in space.
More formally, they are expressed as semi-linear parabolic partial differen-
tial equations (PDEs, see e.g. [PBL05]). The evolution of the state vector
u(x, t) describing the concentration of the different reagents is determined by
anisotropic diffusion as well as local reactions [II11b]:

∂tu = D∆u + R(u), (∂t = ∂/∂t), (2.66)

where each component of the state vector u(x, t) represents the concentration
of one substance, ∆ is the standard Laplacian operator, D is a symmetric
positive-definite matrix of diffusion coefficients (which are proportional to the
velocity of the diffusing particles) and R(u) accounts for all local reactions.
The solutions of reaction-diffusion equations display a wide range of behaviors,
including the formation of travelling waves and other self-organized patterns
like dissipative solitons (DSs).

On the other hand, the Ricci flow equation (or, the parabolic Einstein
equation), introduced by R. Hamilton in 1982 (see [Ham82, Ham86]), is the
nonlinear heat-like evolution equation:

∂tgij = −2Rij , (2.67)

for a time-dependent Riemannian metric g = gij(t) on a smooth real n−mani-
fold M with the Ricci curvature tensor Rij .48 This equation roughly says that
we can deform any metric on a 2-surface or n−manifold by the negative of its
curvature; after normalization, the final state of such deformation will be a
metric with constant curvature. However, this is not true in general since, in
addition to the presence of singularities, the limits could be Ricci solitons (see
below). The factor of 2 in (2.67) is more or less arbitrary, but the negative
sign is essential to insure a kind of global volume exponential decay,49 since
48 This particular PDE (2.67) was chosen by Hamilton for much the same reason

that A. Einstein introduced the Ricci tensor into his gravitation field equation,

Rij − 1

2
gijR = 8πTij ,

where Tij is the energy-momentum tensor. Einstein needed a symmetric 2-index
tensor which arises naturally from the metric tensor gij and its first and second
partial derivatives. The Ricci tensor Rij is essentially the only possibility. In
gravitation theory and cosmology, the Ricci tensor has the volume-decreasing
effect (i.e., convergence of neighboring geodesics, see [H96P]).

49 This complex geometric process is globally similar to a generic exponential decay
ODE:
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the Ricci flow equation (2.67) is a kind of nonlinear geometric generalization
of the standard linear heat equation50

∂tu = ∆u. (2.68)

Like the heat equation (2.68), the Ricci flow equation (2.67) is well behaved
in forward time and acts as a kind of smoothing operator (but is usually
impossible to solve in backward time). If some parts of a solid object are hot
and others are cold, then, under the heat equation, heat will flow from hot
to cold, so that the object gradually attains a uniform temperature. To some
extent the Ricci flow behaves similarly, so that the Ricci curvature ‘tries’ to
become more uniform [Mil03], thus resembling a monotonic entropy growth,51

∂tS ≥ 0, which is due to the positive definiteness of the metric gij ≥ 0, and
naturally implying the arrow of time [II07].

In a suitable local coordinate system, the Ricci flow equation (2.67) has
a nonlinear heat-type form, as follows. At any time t, we can choose local
harmonic coordinates so that the coordinate functions are locally defined har-
monic functions in the metric g(t). Then the Ricci flow takes the general form
(see e.g., [And04])

∂tgij = ∆Mgij +Qij(g, ∂g), (2.69)

ẋ = −λf(x),

for a positive function f(x). We can get some insight into its solution from the
simple exponential decay ODE,

ẋ = −λx with the solution x(t) = x0e
−λt,

(where x = x(t) is the observed quantity with its initial value x0 and λ is a
positive decay constant), as well as the corresponding nth order rate equation
(where n > 1 is an integer),

ẋ = −λxn with the solution
1

xn−1
=

1

x0
n−1

+ (n− 1)λt.

50 More precisely, the negative sign is to make the equation parabolic so that there is
a theory of existence and uniqueness. Otherwise the equation would be backwards
parabolic and not have any theory of existence, uniqueness, etc.

51 Note that two different kinds of entropy functional have been introduced into the
theory of the Ricci flow, both motivated by concepts of entropy in thermodynam-
ics, statistical mechanics and information theory. One is Hamilton’s entropy, the
other is Perelman’s entropy. While in Hamilton’s entropy, the scalar curvature R
of the metric gij is viewed as the leading quantity of the system and plays the
role of a probability density, in Perelman’s entropy the leading quantity describ-
ing the system is the metric gij itself. Hamilton established the monotonicity of
his entropy along the volume-normalized Ricci flow on the 2-sphere S2 [Ham88].
Perelman established the monotonicity of his entropy along the Ricci flow in all
dimensions [Per02].
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where ∆M is the Laplace-Beltrami operator (2.98) and Q = Qij(g, ∂g) is a
lower-order term quadratic in g and its first order partial derivatives ∂g. From
the analysis of nonlinear heat PDEs, one obtains existence and uniqueness of
forward-time solutions to the Ricci flow on some time interval, starting at any
smooth initial metric g0.

The quadratic Ricci flow equation (2.69) is our geometric framework for
general bio-reaction-diffusion systems, so that the spatio-temporal PDE (2.66)
corresponds to the quadratic Ricci flow PDE [II11b]:

∂tu = D∆u + R(u)
� � �

∂tgij = ∆Mgij + Qij(g, ∂g)

with:

• the metric g = gij on an n−manifold M corresponding to the n−dimen-
sional (or n−component, or n−phase) concentration u(x, t);

• the Laplace-Beltrami differential operator∆M , as defined on C2−functions
on an n−manifold M , with respect to the Riemannian metric gij , by

∆M ≡
1

√
det(g)

∂

∂xi

(√
det(g)gij

∂

∂xj

)

(2.70)

- corresponding to the n−dimensional bio-diffusion term D∆u; and
• the quadratic n−dimensional Ricci-term, Q = Qij(g, ∂g), corresponding

to the n−dimensional bio-reaction term, R(u).

As a simple example of the Ricci flow equations (2.67)-(2.69), consider a
round spherical boundary S2 of the 3-ball radius r. The metric tensor on S2

takes the form
gij = r2ĝij ,

where ĝij is the metric for a unit sphere, while the Ricci tensor

Rij = (n− 1)ĝij

is independent of r. The Ricci flow equation on S2 reduces to

ṙ2 = −2(n− 1), with the solution r2(t) = r2(0)− 2(n− 1)t.

Thus the boundary sphere S2 collapses to a point in finite time (see [Mil03]).
More generally, the geometrization conjecture [Thu82] holds for any 3-

manifold M (see below). Suppose that we start with a compact initial 3-
manifold M0 whose Ricci tensor Rij is everywhere positive definite. Then,
as M0 shrinks to a point under the Ricci flow (2.67), it becomes rounder
and rounder. If we rescale the metric gij on M0 so that the volume of M0

remains constant, then M0 converges towards another compact 3-manifold
M1 of constant positive curvature [Ham82].
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In case of even more general 3−manifolds (outside the class of positive
Ricci curvature metrics), the situation is much more complicated, as various
singularities may arise. One way in which singularities may arise during the
Ricci flow is that a spherical boundary S2 = ∂M of an 3−manifold M may
collapse to a point in finite time. Such collapses can be eliminated by perform-
ing a kind of ‘geometric surgery’ on the 3-manifold M , that is a sophisticated
sequence of cutting and pasting without accumulation of time errors52 (see
[Per03]). After a finite number of such surgeries, each component either: (i)
converges towards a 3-manifold of constant positive Ricci curvature which
shrinks to a point in finite time, or possibly (ii) converges towards an S2×S1

which shrinks to a circle S1 in finite time, or (iii) admits a ‘thin-thick’ decom-
position of [Thu82]. Therefore, one can choose the surgery parameters so that
there is a well defined Ricci flow with surgery, that exists for all time [Per03].

In this section we use the evolving n−dimensional geometric machinery of
the volume-decaying and entropy-growing Ricci flow g(t), given by equations
(2.67)-(2.69), for modeling various biological reaction-diffusion systems and
dissipative solitons, defined by special cases of the general spatio-temporal
model (2.66).

Basic Hamiltonian Machinery

We develop (autonomous) Hamiltonian dynamics on the configuration mani-
fold M in three steps, following the standard symplectic geometry prescription
(see [II06b, II07]):

Step A Find a symplectic momentum phase-space (P, ω).
Recall that a symplectic structure on a smooth manifold M is a nondegen-

erate closed53 2−form ω on M , i.e., for each x ∈ M , ω(x) is nondegenerate,
and dω = 0.
52 Hamilton’s idea was to perform surgery to cut off the singularities and continue

his flow after the surgery. If the flow develops singularities again, one repeats the
process of performing surgery and continuing the flow. If one can prove there are
only a finite number of surgeries in any finite time interval, and if the long-time
behavior of solutions of the Ricci flow (2.67) with surgery is well understood, then
one would be able to recognize the topological structure of the initial manifold.
Thus Hamilton’s program, when carried out successfully, would lead to a proof
of the Poincaré Conjecture and Thurston’s Geometrization Conjecture [Yau06].

53 A p−form β on a smooth manifold M is called closed if its exterior derivative
d = ∂idx

i is equal to zero,
dβ = 0.

From this condition one can see that the closed form (the kernel of the exterior
derivative operator d) is conserved quantity. Therefore, closed p−forms possess
certain invariant properties, physically corresponding to the conservation laws.

Also, a p−form β that is an exterior derivative of some (p− 1)−form α,

β = dα,
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Let T ∗
xM be a cotangent space to M at m. The cotangent bundle T ∗M

represents a union ∪m∈MT ∗
xM , together with the standard topology on T ∗M

and a natural smooth manifold structure, the dimension of which is twice the
dimension of M . A 1−form θ on M represents a section θ : M → T ∗M of the
cotangent bundle T ∗M .

P = T ∗M is our momentum phase-space. On P there is a nondegenerate
symplectic 2−form ω is defined in local joint coordinates xi, pi ∈ U , U open
in P , as ω = dxi ∧ dpi. In that case the coordinates xi, pi ∈ U are called
canonical. In a usual procedure the canonical 1−form θ is first defined as
θ = pidx

i, and then the canonical 2-form ω is defined as ω = −dθ.
A symplectic phase-space manifold is a pair (P, ω).

Step B Find a Hamiltonian vector-field XH on (P, ω).
Let (P, ω) be a symplectic manifold. A vector-field X : P → TP is called

Hamiltonian if there is a smooth function F : P −→ R such that iXω = dF
(iXω denotes the interior product or contraction of the vector-field X and the
2-form ω). X is locally Hamiltonian if iXω is closed.

Let the smooth real-valued Hamiltonian function H : P → R, represent-
ing the total configuraton energy H(x, p) = T (p) + V (x) (T and V denote
kinetic and potential energy of the system, respectively), be given in local
canonical coordinates xi, pi ∈ U , U open in P . The Hamiltonian vector-field
XH , condition by iXHω = dH , is actually defined via symplectic matrix J ,
in a local chart U , as

XH = J∇H = (∂piH,−∂xiH) , J =
(

0 I
−I 0

)

, (2.71)

where I denotes the n× n identity matrix and ∇ is the gradient operator.

Step C Find a Hamiltonian phase-flow φt of XH .
Let (P, ω) be a symplectic phase-space manifold andXH = J∇H a Hamil-

tonian vector-field corresponding to a smooth real-valued Hamiltonian func-
tion H : P → R, on it. If a unique one-parameter group of diffeomorphisms
φt : P → P exists so that d

dt |t=0 φtx = J∇H(x), it is called the Hamiltonian
phase-flow.

is called exact (the image of the exterior derivative operator d). By Poincaré
lemma, exact forms prove to be closed automatically,

dβ = d(dα) = 0.

Since d2 = 0, every exact form is closed. The converse is only partially true,
by Poincaré lemma: every closed form is locally exact .

Technically, this means that given a closed p−form α ∈ Ωp(U), defined on
an open set U of a smooth manifold M any point m ∈ U has a neighborhood
on which there exists a (p − 1)−form β ∈ Ωp−1(U) such that dβ = α|U . In
particular, there is a Poincaré lemma for contractible manifolds: Any closed form
on a smoothly contractible manifold is exact.
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A smooth curve t 	→
(
xi(t), pi(t)

)
on (P, ω) represents an integral curve of

the Hamiltonian vector-field XH = J∇H , if in the local canonical coordinates
xi, pi ∈ U , U open in P , Hamiltonian canonical equations hold:

q̇i = ∂piH, ṗi = −∂qiH. (2.72)

An integral curve is said to be maximal if it is not a restriction of an
integral curve defined on a larger interval of R. It follows from the standard
theorem on the existence and uniqueness of the solution of a system of ODEs
with smooth r.h.s, that if the manifold (P, ω) is Hausdorff, then for any point
x = (xi, pi) ∈ U , U open in P , there exists a maximal integral curve of
XH = J∇H , passing for t = 0, through point x. In case XH is complete,
i.e., XH is Cp and (P, ω) is compact, the maximal integral curve of XH is the
Hamiltonian phase-flow φt : U → U .

The phase-flow φt is symplectic if ω is constant along φt, i.e., φ∗tω = ω
(φ∗
tω denotes the pull-back54 of ω by φt),

iff LXHω = 0
(LXHω denotes the Lie derivative55 of ω upon XH).
Symplectic phase-flow φt consists of canonical transformations on (P, ω),

i.e., diffeomorphisms in canonical coordinates xi, pi ∈ U , U open on all (P, ω)
which leave ω invariant. In this case the Liouville theorem is valid: φt preserves
the phase volume on (P, ω). Also, the system’s total energy H is conserved
along φt, i.e., H ◦ φt = φt.

54 Given a map f : X −→ X ′ between the two manifolds, the pullback on X of a
form α on X′ by f is denoted by f∗α. The pullback satisfies the relations

f∗(α ∧ β) = f∗α ∧ f∗β, df∗α = f∗(dα),

for any two forms α, β ∈ Ωp(X).
55 The Lie derivative Luα of p−form α along a vector-field u is defined by Cartan’s

‘magic’ formula (see [II06b, II07]):

Luα = u�dα+ d(u�α).

It satisfies the Leibnitz relation

Lu(α ∧ β) = Luα ∧ β + α ∧ Luβ.

Here, the contraction � of a vector-field u = uµ∂µ and a p−form α = αλ1...λpdx
λ1∧

· · · ∧ dxλp on a configuraton manifold X is given in local coordinates on X by

u�α = uµαµλ1...λp−1dx
λ1 ∧ · · · ∧ dxλp−1 .

It satisfies the following relation

u�(α ∧ β) = u�α ∧ β + (−1)|α|α ∧ u�β.
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Recall that the Riemannian metrics g =<,> on the configuration mani-
fold M is a positive-definite quadratic form g : TM → R, in local coordinates
xi ∈ U , U open in M , given by (2.56) above. Given the metrics gij , the sys-
tem’s Hamiltonian function represents a momentum p-dependent quadratic
form H : T ∗M → R - the system’s kinetic energy H(p) = T (p) = 1

2 < p, p >,
in local canonical coordinates xi, pi ∈ Up, Up open in T ∗M , given by

H(p) =
1
2
gij(x,m) pipj, (2.73)

where gij(x,m) = g−1
ij (x,m) denotes the inverse (contravariant) material

metric tensor

gij(x,m) =
n∑

χ=1

mχδrs
∂xi

∂xr
∂xj

∂xs
.

T ∗M is an orientable manifold, admitting the standard volume form

ΩωH
=

(−1)
N(N+1)

2

N !
ωNH .

For Hamiltonian vector-field, XH on M , there is a base integral curve
γ0(t) =

(
xi(t), pi(t)

)
iff γ0(t) is a geodesic, given by the one-form force equa-

tion

˙̄pi ≡ ṗi + Γ ijk g
jlgkm plpm = 0, with ẋk = gkipi. (2.74)

The l.h.s ˙̄pi of the covariant momentum equation (2.74) represents the
intrinsic or Bianchi covariant derivative of the momentum with respect to
time t. Basic relation ˙̄pi = 0 defines the parallel transport on TN , the simplest
form of human-motion dynamics. In that case Hamiltonian vector-field XH is
called the geodesic spray and its phase-flow is called the geodesic flow.

For Earthly dynamics in the gravitational potential field V : M → R, the
Hamiltonian H : T ∗M → R (2.73) extends into potential form

H(p, x) =
1
2
gijpipj + V (x),

with Hamiltonian vector-field XH = J∇H still defined by canonical equa-
tions (2.72).

A general form of a driven, non-conservative Hamiltonian equations reads:

ẋi = ∂piH, ṗi = Fi − ∂xiH, (2.75)

where Fi = Fi(t, x, p) represent any kind of joint-driving covariant torques,
including active neuro-muscular-like controls, as functions of time, angles and
momenta, as well as passive dissipative and elastic joint torques. In the covari-
ant momentum formulation (2.74), the non-conservative Hamiltonian equa-
tions (2.75) become:
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˙̄pi ≡ ṗi + Γ ijk g
jlgkm plpm = Fi, with ẋk = gkipi.

The general form of (autonomous) Hamiltonian dynamics is given by dis-
sipative, driven Hamiltonian equations on T ∗M :

ẋi =
∂H

∂pi
+
∂R

∂pi
, (2.76)

ṗi = Fi −
∂H

∂xi
+
∂R

∂xi
, (2.77)

xi(0) = xi0, pi(0) = p0
i , (2.78)

including contravariant equation (2.76) - the velocity vector-field , and covari-
ant equation (2.77) - the force 1-form (field), together with initial joint an-
gles and momenta (2.78). Here R = R(x, p) denotes the Raileigh nonlinear
(biquadratic) dissipation function, and Fi = Fi(t, x, p) are covariant driving
torques of equivalent muscular actuators , resembling muscular excitation and
contraction dynamics in rotational form. The velocity vector-field (2.76) and
the force 1−form (2.77) together define the generalized Hamiltonian vector-
field XH ; the Hamiltonian energy function H = H(x, p) is its generating
function.

As a Lie group, the configuration manifoldM =
∏
j SE(3)j is Hausdorff.56

Therefore, for x = (xi, pi) ∈ Up, where Up is an open coordinate chart
in T ∗M , there exists a unique one-parameter group of diffeomorphisms φt :
T ∗M → T ∗M , that is the autonomous Hamiltonian phase-flow:

φt : T ∗M → T ∗M : (p(0), x(0)) 	→ (p(t), x(t)), (2.79)
(φt ◦ φs = φt+s, φ0 = identity),

given by (2.76-2.78) such that

d

dt
|t=0 φtx = J∇H(x).

Pontryagin’s Maximum Principle

Pontryagin’s Maximum Principle (MP) applies to a general optimization
problem called a Bolza problem (see [PBK62]). To apply MP to optimal con-
trol, we need to define Hamiltonian function:

H(ψ, x, u) = (ψ, f(x, u)) = ψif
i(x, u), (i = 1, ..., n). (2.80)

Then in order for a control u(t) and a trajectory x(t) to be optimal, it is
necessary that there exist a nonzero absolutely continuous vector function
ψ(t) = (ψ0(t), ψ1(t), ..., ψn(t)) corresponding to the functions u(t) and x(t)
such that:
56 That is, for every pair of points x1, x2 ∈ M , there are disjoint open subsets

(charts) U1, U2 ⊂M such that x1 ∈ U1 and x2 ∈ U2.
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1. The functionH(ψ(t), x(t), u(t)) attains its maximum at the point u = u(t)
almost everywhere in the interval t0 ≤ t ≤ T ,

H(ψ(t), x(t), u(t)) = max
u∈U

H(ψ(t), x(t), u(t)).

2. At the terminal time T , the relations ψ0(T ) ≤ 0 and H(ψ(T ), x(T ), u(T ))
are satisfied.

MP states the following algorithm: To maximize the set of steering func-
tions γix

i(t) (with n constants γi) for controlling the changes in the state
variables

ẋi(t) = f i(xi, uk), (i = 0, 1, ..., n, k = 1, ...,m),

we maximize at each instant the Hamiltonian function (2.80), where

ψ̇i = −ψj
∂f j

∂xi
and ψi(T ) = γi.

Affine Control Systems

Now, let us look at MP as applied to the affine control system (see [Lew00b])

ẏ(t) = f0(γ(t)) + ua(t) fa(γ(t)),

with γ(t) ∈M , u taking values in U ⊂ R
m, and objective function L(x, u).

We need to have the control Hamiltonian on U × T ∗M :

H(αx, u) = αx(f0(x))︸ ︷︷ ︸
H1

+ αx(uafa(x))︸ ︷︷ ︸
H2

− L(x, u)
︸ ︷︷ ︸
H3

.

One of several consequences of the MP is that if (u, γ) is a minimizer
then there exists a 1−form field λ along γ with the property that t 	→ λ(t)
is an integral curve for the time–dependent Hamiltonian (αx, u) 	→ H(αx, u).
The Hamiltonian H(αx, u) is a sum of three terms, and so too will be the
Hamiltonian vector-field.

Let us look at the first term, that with (old) Hamiltonian H1 = αx(f0(x)).
In local coordinates XH1 is written as

ẋi = f i0(x), ṗi = −∂f
j
0 (x)
∂xi

pj . (2.81)

XH1 is the cotangent lift of f0 and, following [Lew00b], we denote it fT
∗

0 . So
we want to understand fT

∗
0 on TM with f0 = Z.

Let f0 be a vector-field on a general manifold N with fT0 its tangent lift
defined by

fT0 (vx) =
d

dt

∣
∣
∣
∣
t=0

TxFt(vx),
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where Ft denotes the flow of f0. Therefore, fT0 is the ‘linearisation’ of f0 and
in local coordinates it is given by (compare with (2.81))

ẋi = f i0(x), v̇i = −∂f
i
0(x)
∂xj

vj .

The flow of fT0 measures how the integral curves of f0 change as we change
the initial condition in the direction of vx.

Now, perhaps we can understand ZT on TM with f0 = Z in the discussion
of tangent lift. Let γ(t) be a geodesic. By varying the initial condition for the
geodesic we generate an ‘infinitesimal variation’ which satisfies the (extended)
Jacobi equation,

∇2
ẏ(t)ξ(t) +R(ξ(t), ẏ(t)) ẏ(t) +∇ẏ(t) (T (ξ(t), ẏ(t))) = 0. (2.82)

To make the ‘connection’ between ZT and the Jacobi equation, we perform
constructions on the tangent bundle using the spray Z. ∇ comes from a linear
connection on M which induces an Ehresmann connection on τM : TM →M .
Thus we may write TvqTM � TqM ⊕ TqM . Now, if IM : TTM → TTM is
the canonical involution then I∗MZ

T is a spray. We use I∗MZ
T to induce an

Ehresmann connection on τTM : TTM → TM. Thus,

TXvq
TTM � TvqTM ⊕ TvqTM � TqM ⊕ TqM︸ ︷︷ ︸

geodesic equations

⊕ TqM ⊕ TqM︸ ︷︷ ︸
variation equations

.

One represents ZT in this splitting and determines that the Jacobi equation
sits ‘inside’ one of the four components. Now one applies similar constructions
to T ∗TM and ZT

∗
to derive a 1−form version of the Jacobi equation (2.82),

the so–called adjoint Jacobi equation [Lew00b]:

∇2
ẏ(t)λ(t) +R∗(λ(t), ẏ(t)) ẏ(t)− T ∗ (∇ẏ(t)λ(t), ẏ(t)

)
= 0, (2.83)

where we have used 〈R∗(α, u)v;ω〉 = 〈α;R(ω, u)v〉, and 〈T ∗(α, u);ω〉 =
〈α;T (ω, u)〉 .

The adjoint Jacobi equation forms the backbone of a general statement
of the MP for affine connection control systems. When objective function is
the Lagrangian L(u, vq) = 1

2g(vq, vq), when ∇ is the Levi–Civita connection
for the Riemannian metric g, and when the system is fully actuated, then we
recover the equation of [NHP89]

∇3
ẏ(t) ẏ(t) +R

(
∇ẏ(t)ẏ(t), ẏ(t)

)
= 0.

Therefore, the adjoint Jacobi equation (2.83) captures the interesting part
of the Hamiltonian vector-field ZT

∗
, which comes from the MP, in terms of

affine geometry, i.e., from ZT
∗

follows

∇ẏ(t)ẏ(t) = 0, ∇2
ẏ(t)λ(t) +R∗(λ(t), ẏ(t)) ẏ(t)− T ∗ (∇ẏ(t)λ(t), ẏ(t)

)
= 0.

The geometry of Z on TM provides a way of globally pulling out the adjoint
Jacobi equation from the MP in an intrinsic manner, which is not generally
possible in the MP [Lew00b].
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Basic Hodge Machinery

Hodge star operator

The Hodge star operator � : Ωp(M)→ Ωn−p(M), which maps any p−form α
into its dual (n− p)−form � α on a smooth n−manifold M , is defined as (see,
e.g. [Voi02])

α ∧ � β = β ∧ � α = 〈α, β〉µ, (for α, β ∈ Ωp(M)),
� � α = (−1)p(n−p)α,
� (c1α+ c2β) = c1(� α) + c2(� β),
α ∧ � α = 0⇒ α ≡ 0.

The � operator depends on the Riemannian metric g = gij on M and also on
the orientation (reversing orientation will change the sign)57 [II07].

The volume form µ is defined in local coordinates on an n−manifold M
as (compare with Hodge inner product below)

µ = vol = � (1) =
√

det(gij) dx1 ∧ ... ∧ dxn, (2.84)

and the total volume on M is given by

vol(M) =
∫

M

� (1).

For example, in Euclidean R3 space with Cartesian (x, y, z) coordinates,
we have:

� dx = dy ∧ dz, � dy = dz ∧ dx, � dz = dx ∧ dy.

The Hodge dual in this case clearly corresponds to the 3D cross−product.
In the 4D−electrodynamics, the dual 2−form Maxwell � F satisfies the

electric Maxwell equation with the source [MTW73],

Dual Bianchi identity : d � F = � J,

where � J is the 3−form dual to the charge−current 1−form J .
57 Note that in local coordinates on a smooth manifold M , the metric g = gij is

defined for any orthonormal basis (∂i = ∂xi) in M by gij = g(∂i, ∂j) = δij ,
∂kgij = 0.

The Hodge � operator is defined locally in an orthonormal basis (coframe) of
1-forms eidx

i on a smooth manifold M as: �(ei ∧ ej) = ek, (�)2 = 1.
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Hodge inner product

For any two p−forms α, β ∈ Ωp(M) with compact support on an n−manifold
M , we define bilinear and positive−definite Hodge L2−inner product as

(α, β) =
∫

M

〈α, β〉 � (1) =
∫

M

α ∧ � β, (2.85)

where α∧� β is an n−form. We can extend the product (·, ·) to L2(Ωp(M)); it
remains bilinear and positive−definite, because as usual in the definition of L2,
functions that differ only on a set of measure zero are identified. The inner
product (2.85) is evidently linear in each variable and symmetric, (α, β) =
(β, α). We have: (α, α) ≥ 0 and (α, α) = 0 iff α = 0. Also, (� α, � β) = (α, β).
Thus, operation (2.85) turns the space Ωp(M) into an infinite−dimensional
inner−product space.

From (2.85) it follows that for every p−form α ∈ Ωp(M) we can define the
norm functional

‖α‖2 = (α, α) =
∫

M

〈α, α〉 � (1) =
∫

M

α ∧ � α,

for which the Euler−Lagrangian equation becomes the Laplace equation (see
Hodge Laplacian below),

∆α = 0.

For example, the standard Lagrangian for the free Maxwell electromag-
netic field,
F = dA (where A = Aidx

i is the electromagnetic potential 1−form), is given
by [II06b, II07, II08b]

L(A) =
1
2
(F ∧ � F ),

with the corresponding action

S(A) =
1
2

∫
F ∧ � F.

Using the Hodge L2−inner product (2.85), we can rewrite this electrodynamic
action as

S(A) =
1
2
(F, F ). (2.86)

Hodge codifferential operator

The Hodge dual (or, formal adjoint) to the exterior derivative d : Ωp(M) →
Ωp+1(M) on a smooth manifold M is the codifferential δ, a linear map δ :
Ωp(M) → Ωp−1(M), which is a generalization of the divergence, defined by
[Rha84, Voi02]

δ = (−1)n(p+1)+1 � d �, so that d = (−1)np � δ � .
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That is, if the dimension n of the manifold M is even, then δ = − � d �.
Applied to any p−form ω ∈ Ωp(M), the codifferential δ gives

δω = (−1)n(p+1)+1 � d � ω, δdω = (−1)np+1 � d � dω.

If ω = f is a 0−form, or function, then δf = 0. If a p−form α is a codifferential
of a (p+1)−form β, that is α = δβ, then β is called the coexact form. A p−form
α is coclosed if δα = 0; then � α is closed (i.e., d � α = 0) and conversely.

The Hodge codifferential δ satisfies the following set of rules:

• δδ = δ2 = 0, the same as dd = d2 = 0;
• δ� = (−1)p+1 � d; � δ = (−1)p � d;
• dδ� = � δd; � dδ = δd�.

Standard example is classical electrodynamics, in which the gauge field is
an electromagnetic potential 1−form (a connection on a U(1)−bundle),

A = Aµdx
µ = Aµdx

µ + df, (f = arbitrary scalar field),

with the corresponding electromagnetic field 2−form (the curvature of the
connection A)

F = dA, in components given by

F =
1
2
Fµν dx

µ ∧ dxν , with Fµν = ∂νAµ − ∂µAν .

Electrodynamics is governed by the Maxwell equations,58 which in exterior
formulation read:

dF = 0, δF = −4πJ, or in components,
F[µν,η] = 0, Fµν ,

µ = −4πJµ,

where comma denotes the partial derivative and the 1−form of electric current
J = Jµdx

µ is conserved, by the electrical continuity equation,

δJ = 0, or in components, Jµ,
µ = 0.

58 Note that the first, sourceless Maxwell equation, dF = 0, gives vector magneto-
statics and magneto-dynamics,

Magnetic Gauss’ law : divB = 0,

Faraday’s law : ∂tB + curlE = 0.

The second Maxwell equation with source, δF = J (or, d � F = − � J), gives
vector electro-statics and electro-dynamics,

Electric Gauss’ law : div E = 4πρ,

Ampère’s law : ∂tE − curlB = −4πj.
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Hodge Laplacian operator

The codifferential δ can be coupled with the exterior derivative d to construct
the Hodge Laplacian ∆ : Ωp(M)→ Ωp(M), a harmonic generalization of the
Laplace−Beltrami differential operator, given by59

∆ = δd+ dδ = (d+ δ)2.

∆ satisfies the following set of rules:

δ ∆ = ∆δ = δdδ; d∆ = ∆d = dδd; � ∆ = ∆ � .

A p−form α is called harmonic iff

∆α = 0 ⇔ (dα = 0, δα = 0).

Thus, α is harmonic in a compact domain D ⊂ M iff it is both closed and
coclosed in D. Informally, every harmonic form is both closed and coclosed.
[Note that a domain D is compact iff it is both closed and bounded; or,
formally, iff every open cover of D has a finite subcover.]

As a proof, we have:

0 = (α, ∆α) = (α, dδα) + (α, δdα) = (δα, δα) + (dα, dα) .

Since (β, β) ≥ 0 for any form β, (δα, δα) and (dα, dα) must vanish separately.
Thus, dα = 0 and δα = 0.

All harmonic p−forms on a smooth manifold M form the vector space
Hp
∆(M).

Also, given a p−form λ, there is another p−form η such that the equation:
∆η = λ −is satisfied iff for any harmonic p−form γ we have (γ, λ) = 0.

59 Note that the difference d − δ = ∂D is called the Dirac operator . Its square
∂2
D equals the Hodge Laplacian ∆. Also, in his QFT-based rewriting the Morse

topology, E. Witten [Wit82] considered also the operators:

dt = e−tfdetf , their adjoints : d∗t = etfde−tf ,

as well as their Laplacian: ∆t = dtd
∗
t + d∗t dt.

For t = 0, ∆0 is the Hodge Laplacian, whereas for t → ∞, one has the following
expansion

∆t = dd∗ + d∗d+ t2 ‖df‖2 + t
X
k,j

∂2h

∂xk∂xj
[i ∂xk , dx

j],

where (∂xk)k=1,...,n is an orthonormal frame at the point under consideration.
This becomes very large for t→ ∞, except at the critical points of f , i.e., where
df = 0. Therefore, the eigenvalues of ∆t will concentrate near the critical points
of f for t → ∞, and we get an interpolation between De Rham cohomology and
Morse cohomology.
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For example, to translate notions from standard 3D vector calculus, we first
identify scalar functions with 0−forms, field intensity vectors with 1−forms,
flux vectors with 2−forms and scalar densities with 3−forms. We then have
the following correspondence:

grad −→ d : on 0−forms; curl −→ � d : on 1−forms;
div −→ δ : on 1−forms; div grad −→ ∆ : on 0−forms;

curl curl − grad div −→ ∆ : on 1−forms.

We remark here that exact and coexact p−forms (α = dβ and ω = δβ)
are mutually orthogonal with respect to the L2−inner product (2.85). The
orthogonal complement consists of forms that are both closed and coclosed:
that is, of harmonic forms (∆γ = 0).

Hodge adjoints and self−adjoints

If α is a p−form and β is a (p+ 1)−form then we have [Rha84]

(dα, β) = (α, δβ) and (δα, β) = (α, dβ). (2.87)

This relation is usually interpreted as saying that the two exterior differentials,
d and δ , are adjoint (or, dual) to each other. This identity follows from the
fact that for the volume form µ given by (2.84) we have dµ = 0 and thus

∫

M

d(α ∧ �β) = 0.

Relation (2.87) also implies that the Hodge Laplacian ∆ is self−adjoint
(or, self−dual),

(∆α, β) = (α,∆β),

which is obvious as either side is (dα, dβ) + (δα, δβ). Since (∆α,α) ≥ 0, with
(∆α,α) = 0 only when ∆α = 0, ∆ is a positive−definite (elliptic) self−adjoint
differential operator.

Hodge decomposition theorem

The celebrated Hodge decomposition theorem (HDT) states that, on a compact
orientable smooth n−manifold M (with n ≥ p), any exterior p−form can be
written as a unique sum of an exact form, a coexact form, and a harmonic
form. More precisely, for any form ω ∈ Ωp(M) there are unique forms α ∈
Ωp−1(M), β ∈ Ωp+1(M) and a harmonic form γ ∈ Ωp(M), such that the
following result holds:

HDT :
any form
ω =

exact form

dα +
coexact form

δβ +
harmonic form

γ .

For the proof, see [Rha84, Voi02].
In physics community, the exact form dα is called longitudinal, while the

coexact form δβ is called transversal, so that they are mutually orthogonal.
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Thus, any form can be orthogonally decomposed into a harmonic, a longi-
tudinal and transversal form. For example, in fluid dynamics, any vector-
field v can be decomposed into the sum of two vector-fields, one of which is
divergence−free, and the other is curl−free.

Since γ is harmonic, dγ = 0. Also, by Poincaré lemma, d(dα) = 0. In case
ω is a closed p−form, dω = 0, then the term δβ in HDT is absent, so we have
the short Hodge decomposition,

ω = dα + γ, (2.88)

thus ω and γ differ by dα. In topological terminology, ω and γ belong to
the same cohomology class [ω] ∈ Hp(M). Now, by the De Rham theorems it
follows that if C is any p−cycle, then

∫

C

ω =
∫

C

γ,

that is, γ and ω have the same periods. More precisely, if ω is any closed
p−form, then there exists a unique harmonic p−form γ with the same periods
as those of ω (see [Rha84, Fla63]).

The Hodge−Weyl theorem [Rha84, Voi02] states that every De Rham co-
homology class has a unique harmonic representative. In other words, the
space Hp

∆(M) of harmonic p−forms on a smooth manifold M is isomorphic
to the De Rham cohomology group (2.58), or
Hp
∆(M) ∼= Hp

DR(M). That is, the harmonic part γ of HDT depends only on
the global structure, i.e., the topology of M .

For example, in (2 + 1)D electrodynamics, p−form Maxwell equations in
the Fourier domain Σ are written as [TC99]

dE = iωB, dB = 0,
dH = −iωD + J, dD = Q,

where H is a 0−form (magnetizing field), D (electric displacement field), J
(electric current density) and E (electric field) are 1−forms, while B (magnetic
field) and Q (electric charge density) are 2−forms. From d2 = 0 it follows that
the J and the Q satisfy the continuity equation

dJ = iwQ,

where i =
√
−1 and w is the field frequency. Constitutive equations, which

include all metric information in this framework, are written in terms of Hodge
star operators (that fix an isomorphism between p forms and (2− p) forms in
the (2 + 1) case)

D = �E, B = �H.

Applying HDT to the electric field intensity 1−form E, we get [HT05]
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E = dφ+ δA+ χ,

where φ is a 0−form (a scalar field) and A is a 2−form; dφ represents the static
field and δA represents the dynamic field, and χ represents the harmonic field
component. If domain Σ is contractible, χ is identically zero and we have the
short Hodge decomposition,

E = dφ+ δA.

Basic Applications to Quantum Field Theory

Feynman Path Integral

The ‘driving engine’ of quantum field theory is the Feynman path integral.60

Very briefly, there are three basic forms of the path integral (see, e.g. [Zee03,
II08b]):

1. Sum−over−histories, developed in Feynman’s version of quantum me-
chanics (QM); [Fey48];

60 Note that Feynman’s amplitude is a space-time version of the Schrödinger’s wave-
function ψ, which describes how the (non-relativistic) quantum state of a physical
system changes in space and time, i.e.,

〈Outtfin |Intini〉 = ψ(x, t), (for x ∈ [In,Out], t ∈ [tini, tfin]).

In particular, quantum wave-function ψ is a complex-valued function of real space
variables x = (x1, x2, ..., xn) ∈ R

n, which means that its domain is in R
n and its

range is in the complex plane, formally ψ(x) : R
n → C. For example, the one-

dimensional stationary plane wave with wave number k is defined as

ψ(x) = eikx, (for x ∈ R),

where the real number k describes the wavelength, λ = 2π/k. In n dimensions,
this becomes

ψ(x) = eip·x,

where the momentum vector p = k is the vector of the wave numbers k in natural
units (in which � = m = 1).

More generally, quantum wave-function is also time dependent, ψ = ψ(x, t).
The time-dependent plane wave is defined by

ψ(x, t) = eip·x−ip2t/2. (2.89)

In general, ψ(x, t) is governed by the Schrödinger equation [Tha00, II08b] (in
natural units � = m = 0)

i
∂

∂t
ψ(x, t) = −1

2
∆ψ(x, t),
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2. Sum−over−fields, started in Feynman’s version of quantum electrody-
namics (QED) [Fey98] and later improved by Fadeev−Popov [FS80]; and

3. Sum−over−geometries/topologies in quantum gravity (QG), initiated by
S. Hawking and properly developed in the form of causal dynamical tri-
angulations (see [ALW08]; for a ‘softer’ review, see [Lol08]).

In all three versions, Feynman’s action−amplitude formalism includes two
components:

• A real−valued, classical, Hamilton’s action functional,

S[Φ] :=
∫ tfin

tini

L[Φ] dt,

with the Lagrangian energy function defined over the Lagrangian density
L,61

where ∆ is the n−dimensional Laplacian. Its solution is given by the integral of
the time-dependent plane wave (2.89),

ψ(x, t) =
1

(2π)n/2

Z
Rn

eip·x−ip2t/2ψ̂0(p)dnp,

which means that ψ(x, t) is the inverse Fourier transform of the function

ψ̂(p, t) = e−ip2t/2ψ̂0(p),

where ψ̂0(p) has to be calculated for each initial wave-function. For example, if
initial wave-function is Gaussian,

f(x) = exp(−ax
2

2
), with the Fourier transform f̂(p) =

1√
a

exp(− p2

2a
).

then ψ̂0(p) = 1√
a

exp(− p2

2a
).

61 Note that in Lagrangian field theory, the fundamental quantity is the action

S[Φ] =

Z tout

tin

Ldt =

Z
R4
dnxL(Φ, ∂µΦ) ,

so that the least action principle, δS[Φ] = 0, gives

0 =

Z
R4
dnx


∂L
∂Φ

δΦ+
∂L

∂(∂µΦ)
δ(∂µΦ)

ff

=

Z
R4
dnx


∂L
∂Φ

δΦ− ∂µ

„
∂L

∂(∂µΦ)

«
δΦ+ ∂µ

„
∂L

∂(∂µΦ)
δΦ

«ff
.

The last term can be turned into a surface integral over the boundary of the R
4

(4D space-time region of integration). Since the initial and final field configura-
tions are assumed given, δΦ = 0 at the temporal beginning tin and end tout of
this region, which implies that the surface term is zero. Factoring out the δΦ from
the first two terms, and since the integral must vanish for arbitrary δΦ, we arrive
at the Euler-lagrange equation of motion for a field,
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L[Φ] =
∫
dnxL(Φ, ∂µΦ), (∂µ ≡ ∂/∂xµ),

while Φ is a common symbol denoting all three things to be summed upon
(histories, fields and geometries). The action functional S[Φ] obeys the
Hamilton’s least action principle, δS[Φ] = 0, and gives, using standard
variational methods, the Euler−Lagrangian equations, which define the
shortest path, the extreme field, and the geometry of minimal curvature
(and without holes).

• A complex−valued, quantum transition amplitude,62

∂µ

„
∂L

∂(∂µΦ)

«
− ∂L
∂Φ

= 0.

If the Lagrangian (density) L contains more fields, there is one such equation
for each. The momentum density π(x) of a field, conjugate to Φ(x) is defined as:
π(x) = ∂L

∂µΦ(x)
.

For example, the standard electromagnetic action

S = −1

4

Z
R4
d4xFµνF

µν , where Fµν = ∂µAν − ∂νAµ,

gives the sourceless Maxwell’s equations:

∂µF
µν = 0, εµνση∂νFση = 0,

where the field strength tensor Fµν and the Maxwell equations are invariant under
the gauge transformations,

Aµ −→ Aµ + ∂µε.

The equations of motion of charged particles are given by the Lorentz-force
equation,

m
duµ

dτ
= eFµνuν ,

where e is the charge of the particle and uµ(τ) its four-velocity as a function of
the proper time.

62 Note that the transition amplitude (2.92) is closely related to partition function
Z, which is a quantity that encodes the statistical properties of a system in
thermodynamic equilibrium. It is a function of temperature and other parameters,
such as the volume enclosing a gas. Other thermodynamic variables of the system,
such as the total energy, free energy, entropy, and pressure, can be expressed
in terms of the partition function or its derivatives. In particular, the partition
function of a canonical ensemble is defined as a sum Z(β) =

P
j e−βEj , where

β = 1/(kBT ) is the ‘inverse temperature’, where T is an ordinary temperature and
kB is the Boltzmann’s constant. However, as the position xi and momentum pi
variables of an ith particle in a system can vary continuously, the set of microstates
is actually uncountable. In this case, some form of coarse-graining procedure must
be carried out, which essentially amounts to treating two mechanical states as the
same microstate if the differences in their position and momentum variables are
‘small enough’. The partition function then takes the form of an integral. For
instance, the partition function of a gas consisting of N molecules is proportional
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〈Outtfin
|Intini〉 :=

∫

Ω

D[Φ] eiS[Φ], (2.92)

where D[Φ] is ‘an appropriate’ Lebesgue−type measure,

to the 6N−dimensional phase-space integral,

Z(β) ∼
Z

R6N

d3pi d
3xi exp[−βH(pi, x

i)],

where H = H(pi, x
i), (i = 1, ..., N) is the classical Hamiltonian (total energy)

function.
Given a set of random variables Xi taking on values xi, and purely potential

Hamiltonian function H(xi), the partition function is defined as

Z(β) =
X
xi

exp
h
−βH(xi)

i
.

The function H is understood to be a real-valued function on the space of states
{X1,X2, · · · } while β is a real-valued free parameter (conventionally, the inverse
temperature). The sum over the xi is understood to be a sum over all possible
values that the random variable Xi may take. Thus, the sum is to be replaced by
an integral when the Xi are continuous, rather than discrete. Thus, one writes

Z(β) =

Z
dxi exp

h
−βH(xi)

i
,

for the case of continuously-varying random variables Xi.
Now, the number of variables Xi need not be countable, in which case the set

of coordinates {xi} becomes a field φ = φ(x), so the sum is to be replaced by
the Euclidean path integral (that is a Wick-rotated Feynman transition amplitude
(2.93) in imaginary time), as

Z(φ) =

Z
D[φ] exp [−H(φ)] .

More generally, in quantum field theory, instead of the field Hamiltonian H(φ)
we have the action S(φ) of the theory. Both Euclidean path integral,

Z(φ) =

Z
D[φ] exp [−S(φ)] , real path integral in imaginary time, (2.90)

and Lorentzian one,

Z(φ) =

Z
D[φ] exp [iS(φ)] , complex path integral in real time, (2.91)

are usually called ‘partition functions’. While the Lorentzian path integral (2.91)
represents a quantum-field theory-generalization of the Schrödinger equation, the
Euclidean path integral (2.90) represents a statistical-field-theory generalization
of the Fokker-Planck equation.
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D[Φ] = lim
N→∞

N∏

s=1

Φis, (i = 1, ..., n),

so that we can ‘safely integrate over a continuous spectrum and sum over a
discrete spectrum of our problem domain Ω’, of which the absolute square
is the real−valued probability density function,

P := |〈Outtfin
|Intini〉〉|2.

The above transition amplitude (2.92) procedure can be redefined in a
mathematically cleaner way if we Wick−rotate the time variable t to imagi-
nary values, t 	→ τ = t, thereby making all integrals real:

∫
D[Φ] eiS[Φ] Wick�

∫
D[Φ] e−S[Φ]. (2.93)

For example, in non-relativistic quantum mechanics, the propagation am-
plitude from xa to xb is given by the configuration path integral63

U(xa, xb;T ) = 〈xb|xa〉 =
〈
xb| e−iHT |xa

〉
=
∫
D[x(t)] eiS[x(t)],

which satisfies the Schrödinger equation (in natural units)

i
∂

∂T
U(xa, xb;T ) = ĤU(xa, xb;T ), where Ĥ = −1

2
∂2

∂x2
b

+ V (xb).

63 On the other hand, the phase-space path integral (without peculiar constants in
the functional measure) reads

U(qa, qb;T ) =

 Y
i

Z
D[q(t)]D[p(t)]

!
exp

»
i

Z T

0

“
piq̇

i −H(q, p)
”
dt

–
,

where the functions q(t) (space coordinates) are constrained at the endpoints,
but the functions p(t) (canonically-conjugated momenta) are not. The functional
measure is just the product of the standard integral over phase space at each
point in time

D[q(t)]D[p(t)] =
Y
i

1

2π

Z
dqidpi.

Applied to a non-relativistic real scalar field φ(x, t), this path integral becomes

D
φb(x, t)| e−iHT |φa(x, t)

E
=

Z
D[φ] exp

»
i

Z T

0

L(φ) d4x

–
,

with L(φ) =
1

2
(∂µφ)2 − V (φ).
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Functional measure on the space of differential forms

The Hodge inner product (2.85) leads to a natural (metric−dependent) func-
tional measure Dµ[ω] on Ωp(M), which normalizes the Gaussian functional
integral ∫

Dµ[ω] ei〈ω|ω〉 = 1. (2.94)

One can use the invariance of (2.94) to determine how the functional mea-
sure transforms under the Hodge decomposition. Using HDT and its orthog-
onality with respect to the inner product (2.85), it was shown in [GK94] that

〈ω, ω〉 = 〈γ, γ〉+ 〈dα, dα〉+ 〈δβ, δβ〉 = 〈γ, γ〉+ 〈α, δdα〉+ 〈β, dδβ〉 , (2.95)

where the following differential/conferential identities were used [CD82]

〈dα, dα〉 = 〈α, δdα〉 and 〈δβ, δβ〉 = 〈β, dδβ〉.

Since, for any linear operator O, one has
∫
Dµ[ω] exp i〈ω|Oω〉 = det−1/2(O),

(2.94) and (2.95) imply that

Dµ[ω] = Dµ[γ]Dµ[α]Dµ[β] det1/2(δd)det1/2(dδ).

Abelian Chern−Simons theory

Recall that the classical action for an Abelian Chern−Simons theory,

S =
∫

M

A ∧ dA ,

is invariant (up to a total divergence) under the gauge transformation:

A 	−→ A+ dϕ. (2.96)

We wish to compute the partition function for the theory

Z :=
∫

1
VG
Dµ[A] eiS[A],

where VG denotes the volume of the group of gauge transformations in (2.96),
which must be factored out of the partition function in order to guarantee that
the integration is performed only over physically distinct gauge fields. We can
handle this by using the Hodge decomposition to parametrize the potential A
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in terms of its gauge invariant, and gauge dependent parts, so that the volume
of the group of gauge transformations can be explicitly factored out, leaving
a functional integral over gauge invariant modes only [GK94].

We now transform the integration variables:

A 	−→ α, β, γ,

where α, β, γ parameterize respectively the exact, coexact, and harmonic parts
of the connection A. Using the Jacobian (2.95) as well as the following identity
on 0−forms ∆ = δd, we get [GK94]

Z =
∫

1
VG
Dµ[α]Dµ[β]Dµ[γ] det1/2 (∆) det1/2 (dδ) eiS ,

from which it follows that
VG =

∫
Dµ[α], (2.97)

while the classical action functional becomes, after integrating by parts, using
the harmonic properties of γ and the nilpotency of the exterior derivative
operators, and dropping surface terms:

S = −〈β, �δdδβ〉 .

Note that S depends only the coexact (transverse) part of A. Using (2.97)
and integrating over β yields:

Z =
∫
Dµ[γ]det−1/2 (�δdδ) det1/2 (∆) det1/2 (dδ) .

Also, it was proven in [GK94] that

det(�δdδ) = det1/2((dδd)(δdδ)) = det
3
2 (dδ).

As a consequence of Hodge duality we have the identity

det(δd) = det(dδ),

from which it follows that

Z =
∫
Dµ[γ] det−3/4

(
∆T

(1)

)
det1/2 (∆) det1/2

(
∆T

(1)

)
.

The operator ∆T
(1) is the transverse part of the Hodge Laplacian acting on

1−forms:
∆T

(1) := (δd)(1).

Applying identity for the Hodge Laplacian ∆(p) [GK94]:

det
(
∆(p)

)
= det

(
(δd)(p)

)
det

(
(δd)(p−1)

)
,
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we get
det

(
∆T

(1)

)
= det

(
∆(1)

)
/det (∆)

and hence
Z =

∫
Dµ[γ] det−1/4

(
∆(1)

)
det3/4 (∆) .

The space of harmonic forms γ (of any order) is a finite set. Hence, the inte-
gration over harmonic forms (2.8.4) is a simple sum.

Lie Algebra-Valued Exterior Forms

Denote by Ωp = Ωp(T ∗M) the set of all smooth p-forms {ωi} on a smooth m-
manifold M (for all p = 1, ...,m). Let g be a real nD Lie algebra (with n ≤ m).
A g-valued p-form ω̃ on M is an element of the tensor product Ωp ⊗ g. If the
basis for g is given by the set of vectorfields {Xi}, (for i = 1, ..., n), then
ω̃ ∈ Ωp ⊗ g is given by the component tensor products:

ω̃ = ωi ⊗X i.

For any three Lie algebra-valued exterior forms (ω̃ ∈ Ωp ⊗ g, ϕ̃ ∈ Ωq ⊗ g,
ρ̃ ∈ Ωr ⊗ g) the following relations hold.

Standard exterior operations:

1. Exterior derivative: dω̃ = (dωi)⊗X i, so we have: ddω̃ = 0;
2. Hodge star: ∗ω̃ = (∗ωi)⊗X i;
3. Exterior product: α ∧ ω̃ = (α ∧ ωi) ⊗X i, for any p-form α ∈ Ωp, so we

have: d(α ∧ ω̃) = (dα) ∧ ω̃ + (−1)pα ∧ ω̃;
4. Interior product: Y �ω̃ = (Y �ωi)⊗X i, for any vectorfield Y ∈ g;
5. Pullback: f∗ω̃ = (f∗ωi)⊗X i, for any map f ∈M ;
6. Lie derivative: LY ω̃ = (LY ωi)⊗X i, for any vectorfield Y ∈ g.

Graded Lie bracket: [ω̃, ϕ̃] ∈ Ωp ∧Ωq ⊗ g is defined by:

[ω̃, ϕ̃] = (ωi ∧ ϕj)⊗ [Xi, Xj ], (2.98)

where [X i, Xj] ∈ g is the standard Lie bracket.The graded Lie bracket
(2.98) satisfies the following properties (inherited from the standard Lie
bracket):

1. Z2-graded anticommutativity: [ω̃, ϕ̃] = (−1)pq+1[ϕ̃, ω̃];
2. Bilinearity: [ω̃, ϕ̃+ ψ̃] = [ω̃, ϕ̃] + [ω̃, ψ̃]; and
3. Z2-graded Jacoby identity: (−1)pr[ω̃, [ϕ̃, ρ̃]] + (−1)pq[ϕ̃, [ρ̃, ω̃]] + (−1)rq[ρ̃,

[ω̃, ϕ̃]] = 0.
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g-valued exterior product: ω̃ ∧ ϕ̃ ∈ Ωp ∧Ωq ⊗ g2 is the matrix-valued (p+ q)-
form, defined by:

ω̃ ∧ ϕ̃ = (ωi ∧ ϕj)⊗ (X iXj),

where X iXj is the standard matrix product of vectorfields X i and Xj. In
particular, ω̃ ∧ ω̃ = (ωi ∧ ωj) ⊗ (X iXj), and (from ωi ∧ ωj = −ωj ∧ ωi),
we have:

ω̃ ∧ ω̃ = (ωi ∧ ωj)⊗ [Xi, Xj].

Exterior Connection, Curvature and Torsion

An exterior covariant derivative, or an exterior connection in a smooth vector
bundle E →M over a smooth n-manifold M is a differential operator:

D : Γ (E)→ Γ (E ⊗ T ∗M),

where Γ (E) denotes the space of smooth sections v of the bundle E. If f is a
smooth function with exterior derivative df , then D is defined as:

D(fv) = v ⊗ df + fDv.

The curvature 2-formΩ of a connection 1-form ω in the bundle E is defined
by:

Ω = Dω = dω + ω ∧ ω.

In terms of the exterior connection D, the curvature is given by:

Ω(v) = D(Dv) = D2v, (for any v ∈ E).

Thus the curvature measures the failure of the sequence:

Γ (E) D→ Γ (E ⊗Ω1(M)) D→ Γ (E ⊗Ω2(M)) D→ . . .
D→ Γ (E ⊗Ωn(M))

(where Ω1(M) = T ∗M) to be a de Rham chain complex.
If the fibre dimension of the vector bundle E is equal to dimM = n,then E

can be additionally equipped with a soldering form, a globally defined vector-
valued 1-form θ ∈ Γ (T ∗M) such that the mapping: θx : T ∗M → Ex is a
linear isomorphism for all x ∈M . Then we can define an E-valued 2-form on
M called the torsion Θ of the connection ω, as:

Θ = Dθ.

In the local frame {ei} on E, the components of the soldering form θ and
torsion Θ are:

θ = θiei, Θi = dθi + ωij ∧ θj .
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Cartan Calculus

Main exterior forms

1. Basis 1-form: θa

2. Connection 1-form: ωba
3. Curvature 2-form: Ωba
4. Torsion 2-form: Θa

Structure equations

Curvature (or, second) structure equation:

Ωba = dωba + ωca ∧ ωbc
Torsion (or, first) structure equation:

Θa = dθa − θb ∧ ωab

Bianchi identities

Taking the exterior derivative of the curvature structure equation gives:

dΩba − ωca ∧ dωbc + ωbc ∧ dωca = 0,

and subsequently applying both structure equations, we obtain the second
Bianchi identity:

dΩb
a + ωbp ∧Ωp

a − ωpa ∧Ωbp = 0.

Taking the exterior derivative of the torsion structure equation gives:

dΘa − θb ∧ dωab + ωab ∧ dθb = 0,

and subsequently applying both structure equations, we obtain the first
Bianchi identity:

dΘa − θp ∧Ωap + ωap ∧Θp = 0.

Cartan Equations, Gauge Potential and Field Strength

Let G be a Lie group with its Lie algebra g. The so-called gauge potential is a
g-valued 1-form ω, a canonical Maurer-Cartan form defined by the equation:

ω(Xg) = g−1Xg, (with g ∈ G).

The potential form ω is governed by the Maurer-Cartan structure equation:

dω +
1
2
[ω, ω] = O, or dω + ω ∧ ω = 0. (2.99)
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The corresponding field strength is its exterior-covariant derivative:
Ω = Dω ∈ G, which is a g-valued 2-form given by:

Ω = Dω = dω +
1
2
[ω, ω] = dω + ω ∧ ω. (2.100)

Equation (2.100) means that the 2-form Ω measures the extent to which
the 1-form ω fails to satisfy the Maurer-Cartan equation (2.99). In the lan-
guage of principal bundles, the gauge potential ω corresponds to connection,
while the field strength Ω corresponds to curvature.

The most important special case is when the group G is a Riemannian
manifold with the tangent bundle TG and the cotangent bundle T ∗G, with
the Levi-Civita connection Γ = Γ kij(e) given by the Christoffel symbols Γ kij(e)
(with i, j, k = 1, 2, ...,dimG). In the local frame e = {ei} ⊂ TG, the connec-
tion Γ is defined by the covariant derivative ∇ = ∇ei as:

∇e = Γe, in components: ∇eiej = Γ kijek.

If θ = {θi} ⊂ T ∗G denotes the local coframe, i.e., the dual basis on T ∗G,
such that θi(ej) = δij , then the connection 1-form ω = ωji (e) is defined in θ
by:

ω = Γθ, in components: ωji (e) = Γ jkiθ
k(e).

The curvature 2-form Ω = Ωji (e), corresponding to the Levi-Civita con-
nection Γ, still defined as the exterior-covariant derivative Ω = Dω in (2.100),
is in the local coframe θ given by:

Ω = dω + ω ∧ ω, in components: Ωji (e) = dωji (e) + ωjk(e) ∧ ωki (e).
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3

Global Categorical Framework for Complexity
and Control

In this Chapter, we present a global structural framework for complexity and
control, given by modern algebraic and computational machinery of cate-
gories, functors and derived natural structures. Category theory provides us
with what amounts to a powerful abstraction that hides and unifies the de-
tails of various individual theories and models. The central concept is that of
transformations between objects that preserve structure.

3.1 Introduction

In contrast with the local geometric machinery of the previous chapter, here
we are concerned with establishing a global perspective on complexity and
control using the theory of Categories. First, recall that a function (or, a
map) f is a rule that assigns to each element x in a set A exactly one element,
called f(x), in a set B. A function could be also thought of as an input-output
system [[f ]] with x−input (the domain of f is the set of all possible inputs)
and f(x)−output (the range of f is the set of all possible outputs):

x→ [[f ]]→ f(x).

Let f : A → B be a map between two sets: A ≡ Dom f and B ≡ Cod f .
Then:

Ker f = f−1(eB)− is a kernel of f ;
Im f = f(A)− is an image of f ;

Coker f = Cod f/ Im f − is a cokernel of f ;
Coim f = Dom f/Ker f − is a coimage of f ;
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X Y�f

h
�

�
�
��

Z
�

g

− is a commutative diagram, requiring h = g ◦ f .

Let f and g be maps with domains A and B. Then the maps f + g, f − g,
fg, and f/g are defined as follows (see, e.g. [II06b])

(f + g)(x) = f(x) + g(x) domain = A ∩B,
(f − g)(x) = f(x)− g(x) domain = A ∩B,

(fg)(x) = f(x) g(x) domain = A ∩B,
(
f

g

)

(x) =
f(x)
g(x)

domain = {x ∈ A ∩B : g(x) �= 0}.

Given two maps f and g, the composite map f ◦ g, called the composition
of f and g, is defined by

(f ◦ g)(x) = f(g(x)).

The (f ◦ g)−machine is composed of the g−machine (first) and then the
f−machine:

x→ [[g]]→ g(x)→ [[f ]]→ f(g(x)).

For example, suppose that y = f(u) =
√
u and u = g(x) = x2 + 1. Since

y is a function of u and u is a function of x, it follows that y is ultimately a
function of x. We calculate this by substitution

y = f(u) = f ◦ g = f(g(x)) = f(x2 + 1) =
√
x2 + 1.

Mathematical Example: Chain Homomorphism

Given two chain complexes C∗ and D∗ (see Appendix 3.8.1) with boundary
operators ∂C , ∂D, a (homological) chain homomorphism is given by homomor-
phisms αi : Ci −→ Di such that the following diagram commutes:

αi−1

· · · Di−1
�

∂Di−1

· · · Ci−1
�∂Ci−1

� �

αi

Di Di+1 · · ·�
∂Di

Ci Ci+1 · · ·�∂Ci

� �

αi+1
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Biomedical Example of a Functional Composition

Many biochemical and biophysical reactions in human body represent com-
positions (or, sequences) of various biophysical processes. Here we present
an elaborate example of electrical muscular stimulation EMS (see Figure
3.1), which is a nonsurgical biomedical rehabilitation procedure of exter-
nally stimulating weak human skeletal of face muscles. More precisely, the
EMS−response mapping F of a skeletal muscle to the efferent functional
stimulation from the Hodgkin-Huxley neural system (HH, see subsection 7.2.1
below) can be modeled as a fifth-order electrical transmission cascade

F = (F1 �→ F2 �→ F3 �→ F4 �→ F5) = (F5 ◦ F4 ◦ F3 ◦ F2 ◦ F1),

where the maps Fi (i = 1, . . . , 5) represent: neural action potential, synap-
tic potential, muscular action potential, excitation-contraction coupling and
muscle tension generating, respectively. All transmission components of the
cascade F represent (bio)electrical diffusion-reaction processes.

Formally, the mapping cascade F (for all included motor units in the
particular muscular contraction) can be described by the following recurrent
electrical diffusion system:

Fi : Ci
∂Vi
∂t

=
1
Ri

∂2Vi−1

∂z2
− Ji(Vi),

with the boundary condition at z = 0,
V1(0, t) = V0 sin(2πft) = S(t), (i = 1, . . . , 5).

The behavior of a single element F4 is now given by:

Vi(z, t) = V0 exp(−zi/m) sin(2πf(t− zi/n)), m =
1

RiCif
, n =

4πf
RiCi

.

3.2 Categories, Functors and Naturality

The properly defined mathematical framework for general functional compo-
sitions is the category theory, originated from the work in algebraic topology
by S. Eilenberg and S. MacLane1 [EM45, Mac71]. Here we give a short and
intuitive brief on this abstract algebraic and topological theory.
1 Sam Eilenberg and Sounders MacLane were American ex-members of the cele-

brated French Bourbaki group. Their best-known mathematical contribution is
the Eilenberg-MacLane space, a special kind of topological space that is a building
block for general homotopy theory.
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Fig. 3.1. Basic diagram of the EMS−biophysics: a HH-based, fifth-order, electrical
diffusion-reaction cascade: (F1 �→ F2 �→ F3 �→ F4 �→ F5 : iff stimulating nerves)
and a third-order cascade: (F3 �→ F4 �→ F5 : iff stimulating muscles directly).

3.2.1 Categories

Informally, a category is a generic mathematical structure consisting of a
collection of objects (sets with possibly additional structure), with a corre-
sponding collection of arrows, or morphisms (or just maps), between ob-
jects (agreeing with this additional structure). A category K is defined as
a pair (Ob(K), Mor(K)) of generic objects A,B, . . . in Ob(K) and generic ar-
rows f : A → B, g : B → C, . . . in Mor(K) between objects, with associative
composition (see, e.g. [II06b, II07]):

A
f � B

g � C = A
g◦f� C,

and identity (loop) arrow. A category K is usually depicted as a commutative
diagram:2

2 Formally, we say that a category K is defined iff we have:

1. A class of objects {A,B,C, ...} of K, denoted by Ob(K);
2. A set of morphisms, or morphisms MorK(A,B), with elements f : A → B,

defined for any ordered pair (A,B) ∈ K, such that for two different pairs
(A,B) �= (C,D) in K, we have MorK(A,B) ∩ MorK(C,D) = ∅;

3. For any triplet (A,B,C) ∈ K with f : A → B and g : B → C, there is a
composition of morphisms

MorK(B,C) × MorK(A,B) � (g, f) → g ◦ f ∈ MorK(A,C),
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C D�
k

A B�f

�
h

�
g

�

�

�

�
K

For example, a groupoid is a category3 in which every morphism is invert-
ible. A typical groupoid is the fundamental groupoid Π1(X) of a topological
space X . An object of Π1(X) is a point x ∈ X , and a morphism x→ xprime

of Π1(X) is a homotopy class of paths f from x to xprime. The composition
of paths g : xprime → xprimeprime and f : x → xprime is the path h which is
‘f followed by g’. Composition applies also to homotopy classes, and makes
Π1(X) a category and a groupoid (the inverse of any path is the same path
traced in the opposite direction).

Also, a group is a groupoid with one object, i.e., a category with one object
in which all morphisms are isomorphisms. Therefore, if we try to generalize

written schematically as

f : A→ B, g : B → C

g ◦ f : A→ C
.

3 To make K a category, it must also fulfill the following two properties:

1. Associativity of morphisms: for all f ∈ MorK(A,B), g ∈ MorK(B,C), and h ∈
MorK(C,D), we have h ◦ (g ◦ f) = (h ◦ g) ◦ f ; in other words, the following
diagram is commutative

B C�
g

A D�h ◦ (g ◦ f) = (h ◦ g) ◦ f

�

f
�
h

2. Existence of identity morphism: for every object A ∈ Ob(K) exists a unique
identity morphism 1A ∈ MorK(A,A); for any two morphisms f ∈ MorK(A,B),
and
g ∈ MorK(B,C), compositions with identity morphism 1B ∈ MorK(B,B) give
1B ◦ f = f and g ◦ 1B = g, i.e., the following diagram is commutative:

B

f
�

�
�
��

A B�f
C�g

�

1B g

�
�

�
��
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the concept of a group, keeping associativity as an essential property, we get
the notion of a category.

3.2.2 Functors

A functor is a generic picture projecting (all objects and morphisms of) a
source category into a target category. Let K = (Ob(K), Mor(K)) be a source
(or domain) category and L = (Ob(L), Mor(L)) be a target (or codomain)
category. A functor F = (FO ,FM ) is defined as a pair of maps, FO : Ob(K)→
Ob(L) and FM : Mor(K) → Mor(L), preserving categorical symmetry (i.e.,
commutativity of all diagrams) of K in L.4

Therefore, a covariant functor, or simply a functor, F∗ : K → L is a picture
in the target category L of (all objects and morphisms of) the source category
K:

C D�
k

A B�f

�
h

�
g

�

�

�

�
K

F(C) F(D)�
F(k)

F(A) F(B)�F(f)

�
F(h)

�
F(g)

�

�

�

�
LF∗ �

Similarly, a contravariant functor, or a cofunctor, F∗ : K → L is a dual
picture with reversed arrows:5

4 In algebraic topology, one attempts to assign to every topological space X some
algebraic object F(X) in such a way that to every C0−function f : X → Y there
is assigned a homomorphism F(f) : F(X) −→ F(Y ) (see [Swi75, II06b]). One
advantage of this procedure is, e.g., that if one is trying to prove the non–existence
of a C0−function f : X → Y with certain properties, one may find it relatively
easy to prove the non–existence of the corresponding algebraic function F(f) and
hence deduce that f could not exist. In other words, F is to be a ‘homomorphism’
from one category (e.g., T ) to another (e.g., G or A). Formalization of this notion
is a functor.

5 More formally, a functor F : K → L from a source category K to a target category
L, is a pair F = (FO,FM ) of maps FO : Ob(K) → Ob(L), FM : Mor(K) → Mor(L),
such that:

1. If f ∈ MorK(A,B) then FM (f) ∈ MorL(FO(A),FO(B)) in case of the covariant
functor F∗, and FM(f) ∈ MorL(FO(B),FO(A)) in case of the contravariant
functor F∗;

2. For all A ∈ Ob(K) : FM(1A) = 1FO(A);
3. For all f, g ∈ Mor(K): if cod(f) = dom(g), then FM (g ◦ f) = FM(g) ◦ FM(f) in

case of the covariant functor F∗, and FM(g ◦ f) = FM (f) ◦ FM (g) in case of
the contravariant functor F∗.
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C D�
k

A B�f

�
h

�
g

�

�

�

�
K

F(C) F(D)�
F(k)

F(A) F(B)� F(f)

�F(h) �F(g)

�

�

�

�
LF∗ �

For example, in computer science, every monad is a functor, but not every
functor is a monad. Monads are vitally important in creating higher-order
functions that capture notions of computation such as sequence and control
of flow. So, we can think of a functor as a structure that can be mapped over
using a mapping that takes on its ‘elements’ to give a new structure.

As a standard topological example, the fundamental group π1 is a functor.6

Algebraic topology constructs a group called the fundamental group π1(X)
from any topological space X , which keeps track of how many holes the space
X has. But also, any map between topological spaces determines a homomor-
phism φ : π1(X) → π1(Y ) of the fundamental groups. So the fundamental
group is really a functor π1 : T → G. This allows us to completely transpose
any situation involving spaces and continuous maps between them to a par-
allel situation involving groups and homomorphisms between them, and thus
reduce some topology problems to algebra problems.

Also, singular homology in a given dimension n assigns to each topological
space X an Abelian group Hn(X), its nth homology group of X , and also to
each continuous map f : X → Y of spaces a corresponding homomorphism
6 Another examples include covariant forgetful functors:

• From the category of topological spaces to the category of sets; it ‘forgets’ the
topology–structure.

• From the category of metric spaces to the category of topological spaces with
the topology induced by the metrics; it ‘forgets’ the metric.

For each category K, the identity functor IK takes every K−object and every
K−morphism to itself.

Given a category K and its subcategory L, we have an inclusion functor In : L
−→ K.

Given a category K, a diagonal functor ∆ : K −→ K × K takes each object
A ∈ K to the object (A,A) in the product category K ×K.

Given a category K and a category of sets S , each object A ∈ K determines a
covariant Hom–functor K[A, ] : K → S , a contravariant Hom–functor K[ , A] : K
−→ S , and a Hom–bifunctor K[ , ] : Kop ×K → S .

A functor F : K → L is a faithful functor if for all A,B ∈ Ob(K) and for all
f, g ∈ MorK(A,B), F(f) = F(g) implies f = g; it is a full functor if for every
h ∈ MorL(F(A),F(B)), there is g ∈ MorK(A,B) such that h = F(g); it is a full
embedding if it is both full and faithful.

A representation of a group is a functor F : G → V. Thus, a category is a
generalization of a group and group representations are a special case of category
representations.
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Hn(f) : Hn(X) → Hn(Y ) of groups, and this in such a way that Hn(X)
becomes a functor Hn : T → A.

The leading idea in the use of functors in topology is that Hn or πn gives
an algebraic picture or image not just of the topological spaces X,Y but also
of all the continuous maps f : X → Y between them.

Similarly, there is a functor Π1 : T → G, called the ‘fundamental groupoid
functor’, which plays a very basic role in algebraic topology. Here’s how we
get from any space X its ‘fundamental groupoid’ Π1(X). To say what the
groupoid Π1(X) is, we need to say what its objects and morphisms are. The
objects in Π1(X) are just the points of X and the morphisms are just certain
equivalence classes of paths in X . More precisely, a morphism f : x → y in
Π1(X) is just an equivalence class of continuous paths from x to y, where two
paths from x to y are decreed equivalent if one can be continuously deformed to
the other while not moving the endpoints. (If this equivalence relation holds,
we say the two paths are ‘homotopic’, and we call the equivalence classes
‘homotopy classes of paths’ [Swi75].

3.2.3 Natural Transformations

A natural transformation (i.e., a functor morphism, see Figure 3.2) τ : F ·→ G
is a map between two functors of the same variance, (F ,G) : K⇒ L, preserving
categorical symmetry:

A B�f

�

�

�

�K

F �

τ ⇓

G � G(A) G(B)�
G(f)

F(A) F(B)�F(f)

�
τA

�
τB

�

�

�

�
L

In other words, all functors of the same variance from a source category K
to a target category L form themselves objects of the functor category LK.
Morphisms of LK, called natural transformations, are defined as follows.

Let F : K → L and G : K → L be two functors of the same variance from
a category K to a category L. Natural transformation F τ−→ G is a family
of morphisms such that for all f ∈ MorK(A,B) in the source category K, we
have G(f) ◦ τA = τB ◦ F(f) in the target category L. Then we say that the
component τA : F(A)→ G(A) is natural in A.

If we think of a functor F as giving a picture in the target category L
of (all the objects and morphisms of) the source category K, then a natural
transformation τ represents a set of morphisms mapping the picture F to
another picture G, preserving the categorial structure, that is, commutativity
of all diagrams.

An invertible natural transformation, such that all components τA are
isomorphisms) is called a natural equivalence (or, natural isomorphism). In



October 10, 2014 11:9 Complexity and Control 9in x 6in b1966-ch03 page 125

3.2 Categories, Functors and Naturality 125

Fig. 3.2. A sample natural transformation calculated and plotted in
Mathematica�, using the WildCats package.

this case, the inverses (τA)−1 in L are the components of a natural isomor-
phism (τ )−1 : G ∗−→ F . Natural equivalences are among the most important
metamathematical constructions in algebraic topology (see [Swi75]).

As a mathematical example, let B be the category of Banach spaces over
R and bounded linear maps. Define D : B → B by taking D(X) = X∗ =
Banach space of bounded linear functionals on a space X and D(f) = f∗ for
f : X → Y a bounded linear map. Then D is a cofunctor. D2 = D◦D is also a
functor. We also have the identity functor 1 : B → B. Define T : 1→ D ◦D as
follows: for every X ∈ B let T (X) : X → D2X = X∗∗ be the natural inclusion
– that is, for x ∈ X we have [T (X)(x)](f) = f(x) for every f ∈ X∗. T is a
natural transformation. On the subcategory of nD Banach spaces T is even
a natural equivalence. The largest subcategory of B on which T is a natural
equivalence is called the category of reflexive Banach spaces [Swi75].

As a physical example, when we want to be able to conceive two physical
systems A and B as one whole (see [Coe06, CP09]), we can denote this using
a (symmetric) monoidal tensor product A ⊗ B (defined later in the section
3.6), and hence also need to consider the compound operations

A⊗B
f ⊗ g� C ⊗D,

inherited from the operations on the individual systems. Now, a (symmetric)
monoidal category is a category K defined as a pair (Ob(K), Mor(K)) of generic
objects A,B, . . . in Ob(K) and generic morphisms f : A→ B, g : B → C, . . . in
Mor(K) between objects, defined using the symmetric monoidal tensor prod-
uct:

Ob(K) : {A,B} �→ A⊗B,

Mor(K) : {A
f � B,C

g � D} �→ A⊗ C
f ⊗ g� B ⊗D,

with the additional notion of bifunctoriality: if we apply an operation f to
one system and an operation g to another system, then the order in which we
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apply them does not matter; that is, the following diagram commutes:

A1 ⊗B2 B1 ⊗B2
�

f ⊗ 1B2

A1 ⊗A2 B1 ⊗A2
�f ⊗ 1A2

�

1A1 ⊗ g
�
1B1 ⊗ g

which shows that both paths yield the same result (see [Coe06, CP09] for
technical details).

Natural transformations can be composed in two different ways. First, we
have an ‘ordinary’ composition: if F ,G and H are three functors from the
source category A to the target category B, and then α : F ·→ G, β : G ·→ H
are two natural transformations, then the formula

(β ◦ α)A = βA ◦ αA, (for all A ∈ A), (3.1)

defines a new natural transformation β ◦ α : F ·→ H. This composition law
is clearly associative and possesses a unit 1F at each functor F , whose A–
component is 1FA.

Second, we have the Godement product of natural transformations, usually
denoted by ∗. Let A, B and C be three categories, F ,G, H and K be four
functors such that (F ,G) : A ⇒ B and (H,K) : B ⇒ C, and α : F ·→ G, β :
H ·→ K be two natural transformations. Now, instead of (3.1), the Godement
composition is given by

(β ∗ α)A = βGA ◦H (αA) = K (αA) ◦ βFA, (for all A ∈ A), (3.2)

which defines a new natural transformation β ∗ α : H ◦ F ·→ K ◦ G.
Finally, the two compositions (3.1) and (3.2) of natural transformations

can be combined as

(δ ∗ γ) ◦ (β ∗ α) = (δ ◦ β) ∗ (γ ◦ α) ,

where A, B and C are three categories, F ,G, H, K, L, M are six functors,
and α : F ·→ H, β : G ·→ K, γ : H ·→ L, δ : K ·→ M are four natural
transformations.

3.3 Adjunctions

The adjunction ϕ : F � G between two functors (F ,G) : K � L of opposite
variance, represents a weak functorial inverse (see, e.g. [II06b, II07])

f : F(A)→ B

ϕ(f) : A→ G(B)
,
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forming a natural equivalence ϕ : MorK(F(A), B)
ϕ−→ MorL(A,G(B)). The ad-

junction isomorphism is given by a bijective correspondence (a 1-1 and onto
map on objects) ϕ : Mor(K)  f → ϕ(f) ∈ Mor(L) of isomorphisms in the two
categories, K (with a representative object A), and L (with a representative
object B). It can be depicted as a non-commutative diagram

B G(B)�
G

F(A) A� F

�
f

�
ϕ(f)

�

�

�

�
K

�

�

�

�
L

In this case F is called left adjoint, while G is called right adjoint.
In other words, an adjunction F � G between two functors (F ,G) of op-

posite variance, from a source category K to a target category L, is denoted
by (F ,G,η, ε) : K � L. Here, F : L → K is the left (upper) adjoint functor,
G : K ← L is the right (lower) adjoint functor, η : 1L → G ◦ F is the unit
natural transformation (or, front adjunction), and ε : F ◦G → 1K is the counit
natural transformation (or, back adjunction).7

3.3.1 Crowd/Team Dynamics Adjunction

The following unique dynamical adjunction, uncovering the natural equiva-
lence between geometrical and topological structures of crowd/team dynamics
has been established in [IR10c]:

7 Closely related to adjunctions are limits and colimits. A limit of a covariant
functor F : J → C is an object L of C, together with morphisms φX : L→ F(X)
for every object X of J , such that for every morphism f : X → Y in J , we have
F(f)φX = φY , and such that the following universal property is satisfied: for any
object N of C and any set of morphisms ψX : N → F(X) such that for every
morphism f : X → Y in J , we have F(f)ψX = ψY , there exists precisely one
morphism u : N → L such that φXu = ψX for all X. If F has a limit (which it
need not), then the limit is defined up to a unique isomorphism, and is denoted
by limF .

Analogously, a colimit of the functor F : J → C is an object L of C, together
with morphisms φX : F(X) → L for every object X of J , such that for every
morphism f : X → Y in J , we have φYF(X) = φX , and such that the following
universal property is satisfied: for any object N of C and any set of morphisms
ψX : F(X) → N such that for every morphism f : X → Y in J , we have
ψYF(X) = ψX , there exists precisely one morphism u : L → N such that
uφX = ψX for all X. The colimit of F , unique up to unique isomorphism if
it exists, is denoted by colimF .

Limits and colimits are related as follows: A functor F : J → C has a colimit
iff for every object N of C, the functor X �−→ MorC(F(X), N) (which is a co-
variant functor on the dual category J op) has a limit. If that is the case, then
MorC(colimF , N) = limMorC(F(−), N) for every object N of C.
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•[se(2)i] ∗
•[se(2)∗i ]��∼=

DualG

•[SE(2)i]

Lie

�
�

�
�

�
�	

Can

�
�

�
�

�
��

LGA

�
F

�
G�

TanBund CotBund��
∼=

DualT

DiffMan

Lag

�
�

�
�

�
�	

Ham

�
�

�
�

�
��

MFB

- by parallel development of Lagrangian (functor Lag) and Hamiltonian (func-
tor Ham) formulations of crowd dynamics, both within the category LGA of
Lie groups (SE(2)i) and their tangent and cotangent Lie algebras (se(2)i

and se(2)∗i , respectively) and in the category MFB of associated smooth
manifolds DiffMan and their fiber bundles (tangent and cotangent bundles,
TanBund and CotBund, respectively). In this way, a general crowd dynamics
is formally defined as the adjunction:

(F ,G) : LGA�MFB.

3.3.2 Neurophysiological Sensory-Motor Adjunction

Now, recall that both human and animal sensations from the skin, muscles,
and internal organs of the body, are transmitted to the central nervous system
via axons that enter via spinal nerves. They are called sensory pathways. On
the other hand, the motor system executes control over the skeletal muscles
of the body via several major tracts (including pyramidal and extrapyrami-
dal). They are called motor pathways. Sensory-motor (or, sensorimotor) con-
trol/coordination concerns relationships between sensation and movement or,
more broadly, between perception and action. The interplay of sensory and
motor processes provides the basis of observable human behavior. Anatomi-
cally, its top-level, association link can be visualized as a talk between sensory
and motor Penfield’s homunculi. This sensory-motor control system can be
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modeled as an adjunction between the afferent sensory functor S : BODY
−→ BRAIN and the efferent motor functor M : BRAIN −→ BODY. Thus,
we have SMC : S �M, with (S,M) : BRAIN � BODY and depicted as:

B M(B)�
M

S(A) A� S

�
f

�
SMC(f)

�

�

�

�
BRAIN

�

�

�

�
BODY

This adjunction offers a mathematical answer to the fundamental question:
How would Nature solve a general biophysical control/coordination problem?
By using a weak functorial inverse of sensory neural pathways and motor neu-
ral pathways, Nature controls human behavior in general, and human motion
in particular.

More generally, normal functioning of human body is achieved through in-
terplay of a number of physiological systems - Objects of the category BODY:
musculoskeletal system, circulatory system, gastrointestinal system, integu-
mentary system, urinary system, reproductive system, immune system and
endocrine system. These systems are all interrelated, so one can say that the
Morphisms between them make the proper functioning of the BODY as a
whole. On the other hand, BRAIN contains the images of all above functional
systems (Brain objects) and their interrelations (Brain morphisms), for the
purpose of body control. This body-control performed by the brain is partly
unconscious, through neuro-endocrine complex, and partly conscious, through
neuro-muscular complex. A generalized sensory functor SS sends the informa-
tion about the state of all Body objects (at any time instant) to their images
in the Brain. A generalized motor functor MM responds to these upward
sensory signals by sending downward corrective action-commands from the
Brain’s objects and morphisms to the Body’s objects and morphisms.

For physiological details, see [II06a].

3.3.3 Quantum Teleportation Example

Recall that the celebrated quantum teleportation [BBC93, NKL98, FSB98,
BPM97] represents a quantum entanglement8 based process by which a quan-
tum qubit can be transmitted from one location to another, without being
8 Recall that in 1935, A. Einstein, B. Podolsky, and N. Rosen (EPR) published a

seminal paper entitled “Can Quantum-Mechanical Description of Physical Reality
Be Considered Complete?”, which started a long lasting debate between Einstein
and the so-called Copenhagen school of the interpretation of quantum mechan-
ics, about the status of quantum theory [EPR35a] and the possible existence of
additional ‘hidden variables’. It was not until 1964, that J. Bell presented a way
to empirically test the two competing hypotheses [Bel64, Bel66, Bel87]. Famous
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Fig. 3.3. Quantum teleportation protocol
−−−→
QTP : the incoming arrow repre-

sents Alice’s initial unknown qubit and the outgoing arrow represents Bob’s
resulting qubit. The fact that the only labels it encounters are identities, im-
plies that Bob’s qubit is now in the state Alice’s qubit was, formally defining
the Bell-state entanglement.

transmitted through the intervening space.9 The quantum teleportation pro-
tocol (

−−−→
QTP ),10 represents a causal arrow of quantum information which in-

volves two agents, Alice (A) and Bob (B). Both Alice and Bob have their own
qubits, as well as a shared entangled qubit in the particular Bell-state:

−−−→
QTP (ψout=ψin) =

∑

k

1√
2
|kk〉.

Alice’s initial qubit is in an unknown quantum state. Alice performs a Bell-
base measurement on her two qubits (a bipartite measurement which has
the Bell-state as one of its eigenvectors, see Figure 3.3). If the measurement

Bell’s theorem is not strictly about quantum mechanics. It is a statement con-
cerning correlations of measurement outcomes at distant events that any physical
theory may predict under the assumption of an underlying local classical model
[Bal87, Mer93].

9 It is physically possible to transfer a quantum state to a different quantum system
at a distant location without physically transmitting the actual quantum system
in the particular state - provided that the parties initially share a pair of two-level
systems in a maximally entangled Bell-state. This transfer of a quantum state was
named quantum teleportation.

10 The
−−−→
QTP system consists of the following data: (i) a qubit that is to be teleported;

(ii) a conventional communication channel capable of transmitting two classical
bits (i.e., one of four states); and (iii) means of generating an entangled pair
of qubits, performing a Bell measurement on the pair, and manipulating the
quantum state of one of the pair. For the recent QTP-related paper, see [FB12].
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outcome is the eigenvalue corresponding to the Bell-state, then Bob’s qubit
appears to be in the same unknown state in which Alice’s qubit initially
was (see [AC04, Coe05, Coe09] for details). We will continue our expose on
quantum protocols in the section 3.6 below.

3.4 Hierarchical Recursive Categories

After about half-a-century of exploiting Eilenberg-MacLane’s category theory
in various mathematical disciplines, it has become increasingly obvious that
the theory in its original settings as defined by MacLane’s book [Mac71] is too
narrow to meet the requirements of modern mathematical and computer sci-
ences. So, in the last several decades a new idea of recursive higher-dimensional
categories, or n−categories (or multicategories) has been developed (see, e.g.
[Ben67, Bae97, BD98, Lei02, Lei03, Lei04]).

Informally, if we think of a point in geometrical space (either natural, or
abstract) as an object (or, a 0−cell), and a path between two points as an
arrow (or, a 1−morphism, or a 1−cell), we could think of a ‘path of paths’ as
a 2−arrow (or, a 2−morphism, or a 2−cell), and a ‘path of paths of paths’ (or,
a 3−morphism, or a 3−cell), etc. Here a ‘path of paths’ is just a continuous
1-parameter family of paths from between source and target points, which
we can think of as tracing out a 2D surface, etc. In this way we get a ‘skele-
ton’ of an n−category, where a 1−category operates with 0−cells (objects)
and 1−cells (arrows, causally connecting source objects with target ones), a
2−category operates with all the cells up to 2−cells [Ben67], a 3−category op-
erates with all the cells up to 3−cells, etc. This skeleton clearly demonstrates
the hierarchical self-similarity of n-categories :

0− cell : x •

1− cell : x •
f � • y

2− cell : x •

f

g

h
�

�∨
• y

3− cell : x •

f

g

h i
j

� �
>

�

�
• y

where triple arrow goes in the third direction, perpendicular to both single
and double arrows. Categorical composition is defined by pasting arrows.

Thus, a 1−category can be depicted as a commutative triangle:
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A F (A)�F

G(F (A))

G ◦ F
�

�
�
��

G
�

�
�

�	

a 2−category is a commutative triangle:

A

f

g

α
�

�∨
B F (A)

F (f)

F (g)

F (α)
�

�∨
F (B)�F

G(F (A))

G(F (f))

G(F (g))

G(F (α))
�

�∨
G(F (B))

G ◦ F

�
�

�
�

�
�
��

G

�
�

�
�

�
�

�	

a 3−category is a commutative triangle:

A

f

g

α β
ψ

� �
>

�

�
B F (A)

F (f)

F (g)

F (α) F (β)
F (ψ)

� �
>

�

�
F (B)�F

G(F (A))

G(F (f))

G(F (g))

G(F (α)) G(F (β))
G(F (ψ))

� �
>

�

�
G(F (B))

F ◦G

�
�

�
�

�
�

�
�

�
��

G

�
�

�
�

�
�

�
�

�
�	

etc., up to n−categories.

Therefore, while an ordinary category theory uses 1D arrows: 1D� ,
a higher-dimensional category theory uses higher-dimensional arrows:

2D
�

�∨
,

3D

� �
>

�

�
, etc. An n−category, or a multicategory, is
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a generic mathematical structure consisting of a collection of objects, a col-
lection of arrows between objects, a collection of 2−arrows between arrows
[Ben67], a collection of 3−arrows between 2−arrows, and so on up to n
[Bae97, BD98, Lei02, Lei03, Lei04].

Calculus of n−categories has been developed as follows. First, there is K2,
the 2-category of all ordinary (small) categories. K2 has categories K,L, ... as
objects, functors F ,G : K ⇒ L as arrows, and natural transformations, like
τ : F ·→ G as 2-arrows.

In a similar way, the arrows in a 3-category K3 are 2-functors F2,G2, ...
sending objects in K2 to objects in L2, arrows to arrows, and 2-arrows to
2-arrows, strictly preserving all the structure of K2

A

f

g

α
�

�∨
B

F2 � F2(A)

F2(f)

F2(g)

F2(α)
�

�∨
F2(B).

The 2-arrows in K3 are 2-natural transformations, like τ2 : F2
2·⇒ G2 between

2-functors F2,G2 : K2 −→ L2 that sends each object in K2 to an arrow in L2

and each arrow in K2 to a 2-arrow in L2, and satisfies natural transformation-
like conditions. We can visualize τ2 as a prism going from one functorial
picture of K2 in L2 to another, built using commutative squares:

A

f

g

α
�

�∨
B

G2
�

�
��

F2

�
�
��
F2(A)

F2(f)

F2(g)

F2(α)
�

�∨
F2(B)

G2(A)

G2(f)

G2(g)

G2(α)
�

�∨
G2(B)

⇓

K2

L2

�

τ 2(A)

�

τ2(B)

Similarly, the arrows in a 4-category K4 are 3-functors F3,G3, ... sending
objects in K3 to objects in L3, arrows to arrows, and 2-arrows to 2-arrows,
strictly preserving all the structure of K3

A

f

g

α β
ψ

� �
>

�

�
B

F3 � F3(A)

F3(f)

F3(g)

F3(α) F3(β)
F3(ψ)

� �
>

�

�
F3(B)
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The 2-arrows in K4 are 3-natural transformations, like τ3 : F 3·⇒ G between
3-functors F3,G3 : K3 → L3 that sends each object in K3 to a arrow in L3 and
each arrow in K3 to a 2-arrow in L3, and satisfies natural transformation-like
conditions. We can visualize τ3 as a prism going from one picture of K3 in L3

to another, built using commutative squares:

A

f

g

α β
ψ

� �
>

�

�
B

G3

�
�

�
��

F3

�
�

�
��
F3(A)

F3(f)

F3(g)

F3(α) F3(β)
F3(ψ)

� �
>

�

�
F3(B)

G3(A)

G3(f)

G3(g)

G3(α) G3(β)
G3(ψ)

� �
>

�

�
G3(B)

⇓

K3

L3

�

τ 3(A)

�

τ3(B)

3.4.1 Topological Structure of n−Categories

We already emphasized the topological nature of ordinary category theory.
This fact is even more obvious in the general case of n−categories (see [Lei02,
Lei03, Lei04]).

Hierarchical Recursive Homotopy Theory

Any topological manifold M induces an n−category Πn(M) (its fundamental
groupoid11), in which 0-cells are points in M ; 1-cells are paths in M (i.e.,
parameterized continuous maps f : [0, 1] → M); 2-cells are homotopies (de-
noted by �) of paths relative to endpoints (i.e., parameterized continuous
maps h : [0, 1] × [0, 1] → M); 3-cells are homotopies of homotopies of paths
in M (i.e., parameterized continuous maps j : [0, 1] × [0, 1] × [0, 1] → M);
categorical composition is defined by pasting paths and homotopies. In this
way the following ‘homotopy skeleton’ emerges:
11 A groupoid is a category in which every morphism is invertible; its special case

with only one object is a group.
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0− cell : x • x ∈M ;

1− cell : x •
f � • y f : x � y ∈M,

f : [0, 1]→M, f : x �→ y, y = f(x), f(0) = x, f(1) = y;
e.g., linear path: f(t) = (1− t)x+ ty;

2− cell : x •

f

g

h
�

�∨
• y h : f � g ∈M,

h : [0, 1]× [0, 1]→M, h : f �→ g, g = h(f(x)),
h(x, 0) = f(x), h(x, 1) = g(x), h(0, t) = x, h(1, t) = y

e.g., linear homotopy: h(x, t) = (1− t)f(x) + tg(x);

3− cell : x •

f

g

h i
j

� �
>

�

�
• y j : h � i ∈M,

j : [0, 1]× [0, 1]× [0, 1]→M, j : h �→ i, i = j(h(f(x)))
j(x, t, 0) = h(f(x)), j(x, t, 1) = i(f(x)),
j(x, 0, s) = f(x), j(x, 1, s) = g(x),
j(0, t, s) = x, j(1, t, s) = y

e.g., linear composite homotopy: j(x, t, s) = (1 − t)h(f(x)) + t i(f(x)).

If M is a smooth manifold, then all included paths and homotopies need
to be smooth.

Category T T

Topological n−category T T has:

• 0-cells: topological spaces X

• 1-cells: continuous maps X
f � Y

• 2-cells: homotopies h between f and g : X

f

g

h
�

�∨
Y

i.e., continuous maps h : X × [0, 1]→ Y , such that ∀x ∈ X , h(x, 0) = f(x)
and h(x, 1) = g(x)
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• 3-cells: homotopies between homotopies : X

f

g

h i
j

� �
>

�

�
Y

i.e., continuous maps j : X × [0, 1]× [0, 1]→ Y .

Category CK

Consider an n−category CK, which has:

• 0-cells: chain complexes A (of Abelian groups, for example)

• 1-cells: chain maps A
f � B

• 2-cells: chain homotopies A

f

g

α
�

�∨
B,

i.e., maps α : A→ B of degree 1

• 3-cells A

f

g

α β
Γ

� �
>

�

�
B: homotopies between homotopies,

i.e., maps Γ : A→ B of degree 2 such that dΓ − Γd = β − α.

There ought to be some kind of map CC : T T ⇒ CK (see [Lei02, Lei03, Lei04]).

3.4.2 Multicategorical Team/Group Dynamics

The crowd manifold M (see [IR10a, IR10b, IR12]) has quite a sophisticated
topological structure [IR10c] defined by its macrostate Euler-Lagrangian dy-
namics. As a Riemannian smooth n−manifold, M gives rise to its fundamen-
tal n−groupoid, or n−category Πn(M). In Πn(M), 0-cells are points in M ;
1-cells are paths in M (i.e., parameterized smooth maps f : [0, 1] → M);
2-cells are smooth homotopies (denoted by �) of paths relative to endpoints
(i.e., parameterized smooth maps h : [0, 1] × [0, 1] → M); 3-cells are smooth
homotopies of homotopies of paths in M (i.e., parameterized smooth maps
j : [0, 1]× [0, 1]× [0, 1] → M). Categorical composition is defined by pasting
paths and homotopies. In this way, the following recursive homotopy dynamics
emerges on the crowd 3n−manifold M :
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0− cell : x0 • x0 ∈M ; in the higher cells below: t, s ∈ [0, 1];

1− cell : x0 •
f � •x1 f : x0 � x1 ∈M,

f : [0, 1]→M, f : x0 �→ x1, x1 = f(x0), f(0) = x0, f(1) = x1;
e.g., linear path: f(t) = (1− t)x0 + t x1; or
Euler-Lagrangian f − dynamics with endpoint conditions (x0, x1) :
d

dt
fẋi = fxi , with x(0) = x0, x(1) = x1, (i = 1, ..., n);

2− cell : x0 •

f

g

h
�

�∨
•x1 h : f � g ∈M,

h : [0, 1]× [0, 1]→M, h : f �→ g, g = h(f(x0)),
h(x0, 0) = f(x0), h(x0, 1) = g(x0), h(0, t) = x0, h(1, t) = x1

e.g., linear homotopy: h(x0, t) = (1 − t) f(x0) + t g(x0); or
homotopy between two Euler-Lagrangian (f, g)− dynamics
with the same endpoint conditions (x0, x1) :
d

dt
fẋi = fxi , and

d

dt
gẋi = gxi with x(0) = x0, x(1) = x1;

3− cell : x0 •

f

g

h i
j

� �
>

�

�
• x1 j : h � i ∈M,

j : [0, 1]× [0, 1]× [0, 1]→M, j : h �→ i, i = j(h(f(x0)))
j(x0, t, 0) = h(f(x0)), j(x0, t, 1) = i(f(x0)),
j(x0, 0, s) = f(x0), j(x0, 1, s) = g(x0),
j(0, t, s) = x0, j(1, t, s) = x1

e.g., linear composite homotopy: j(x0, t, s) = (1− t)h(f(x0)) + t i(f(x0));
or, homotopy between two homotopies between above two Euler-
Lagrangian (f, g)− dynamics with the same endpoint conditions (x0, x1).

3.5 Crowd Symplectic Machine in a Category

Recall (from Chapter 2, subsection 2.5.2) that both Hamiltonian and La-
grangian formalisms on Kähler manifolds can be recast in a unique symplectic
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formulation (see also [AM78, LR89, Tek05]). So, to start with a dual symplec-
tic dynamics of general human crowds, given the crowd mD configuration
Kähler manifold Q12 with its cotangent bundle MH ≡ T ∗Q (that is a 2mD
momentum phase-space manifold) and a regular Hamiltonian (kinetic plus
potential energy) function H : MH → R, then:
(i) there is a unique Hamiltonian vector-field XH ∈MH , and
(ii) a unique symplectic 2-form ωH ∈MH ,
such that their inner product (or, contraction) iXHωH ≡ 〈XH , ωH〉13 is also
unique and defines the crowd Hamiltonian equations of motion on MH as the
Hamiltonian 1-form:14

dH = iXHωH . (3.3)

The triple H = (MH , XH , ωH) defines the crowd Hamiltonian system.
Alternatively, if ML ≡ TQ is a tangent bundle of the crowd mD configura-

tion Kähler manifold Q (which is a 2mD velocity phase-space manifold) with
a regular Lagrangian (kinetic minus potential energy) function L : ML → R

and its associated total (kinetic plus potential energy) function EL, then:
(i) there is a unique Lagrangian vector-field XL ∈ML, and
(ii) a unique Lagrangian symplectic 2-form ωL ∈ML,15

such that their inner product iXLωL ≡ 〈XL, ωL〉 is also unique and defines
the crowd Lagrangian equations of motion on ML as the Lagrangian 1-form:16

dEL = iXLωL. (3.4)

The triple L = (ML, XL, ωL) defines the crowd Lagrangian system.
The two dual crowd triple-systems, H and L, represent two dual symplec-

tic crowd categories based on the configuration Kähler manifold Q.17 This
symplectic crowd-dynamics duality has both geometric and topological ori-
gins (see [IR10c]). It is the starting point for the abstract crowd machine in
a category, in the sense of [AM74, AM80], which can be defined as a pair of
adjoint crowd functors:

(CR,CL) : H� L,
with the right crowd adjoint, CR : H −→ L, and the left crowd adjoint, CL : L
−→ H.
12 Recall that each individual agent can be defined as a rigid body in the (complex,

or Euclidean) plane, formally an SE(2)-group; so the whole crowd configuration
m-manifold is defined as the product: Q =

Qm
i=1 SE(2)i .

13 In the usual case of a holonomic crowd system, ωH is closed (i.e., it has a van-
ishing Lie derivative: LXHωH ≡ diXHωH + iXHdωH = 0) which leads to classical
conservation laws.

14 It can be shown that classical Hamilton’s equations of motion can be derived from
(3.3).

15 In the usual, holonomic crowd case, ωL is closed.
16 It can be shown that classical Lagrange’s equations of motion can be derived from

(3.4).
17 It can be shown that both H and L satisfy the category axioms.
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3.6 Quantum Categorical Structures

3.6.1 Monoidal Tensor Product

To combine two quantum systems A and B into one, we use a symmetric
monoidal tensor product A⊗B, together with its compound operations:

A⊗B
f ⊗ g� C⊗D. Using the tensor product ⊗, we can define a symmetric

monoidal category K as a pair (Ob(K), Mor(K)) of generic objects:
A,B, . . . ∈ Ob(K) and generic morphisms between objects:
f : A→ B, g : B → C, . . . ∈ Mor(K). Formally, we have (see [Coe06, CP09]):

Ob(K) : {A,B} �→ A⊗B,

Mor(K) : {A
f � B,C

g � D} �→ A⊗ C
f ⊗ g� B ⊗D,

together with the commutative bifunctoriality: the order in which two opera-
tions/functions, f (applied to one quantum system) and g (applied to another
system), does not matter, that is, the following diagram commutes:

A1 ⊗B2 B1 ⊗B2
�

f ⊗ 1B2

A1 ⊗A2 B1 ⊗A2
�f ⊗ 1A2

�

1A1 ⊗ g
�
1B1 ⊗ g

which shows that both paths from A1 ⊗A2 to B1 ⊗B2 yield the same result
(see [Coe06, CP09] for technical details).

3.6.2 Snake Lemma and Tensor Products

One of the common theorem-proving tools in algebraic topology is the snake
lemma, which concerns a commutative and exact diagram called a snake di-
agram [Lan02]:

N ′ N�
f

M ′ �f

� �

d

N N ′′�
g

M M ′′�g

� �

d′′

0 �

� 0

d′

Given a snake diagram as above, the map:

δ : Ker d′′ −→ Cokerd′
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is well defined and we have the following exact sequence [Lan02]:

Ker d′ −→ Ker d −→ Ker d′′ δ−→ Coker d′ −→ Cokerd −→ Cokerd′′

where the maps besides δ are the natural ones. The extended snake diagram
includes the following kernels and cokernels:

Ker d′ �

� �

Kerd Ker d′′�

� �

N ′ N�

M ′ �

� �
N N ′′�

M M ′′�

� �

Cokerd′ �
� �

Coker d Cokerd′′�
� �

0 �

� 0

together with the connection map:

δ : Ker d′′ −→ Coker d′.

For example, consider a commutative diagram of R−modules and homo-
morphisms such that each row is exact:

N ′ N�

M ′ �

� �

g

N N ′′�

M M ′′�

� �

h

0 �

� 0

f

The following assertions about this diagram can be proved [Lan02]:

1. If f, h are monomorphisms, then g is a monomorphism.
2. If f, h are surjective, then g is surjective.
3. Assume in addition that 0 −→M ′ −→M is exact and that N −→ N ′′ −→ 0

is exact. If any two of f, g, h are isomorphisms, then so is the third.

Now, the following conditions are formally equivalent and define the tensor
exact module F :
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1. For every exact sequence

E′ −→ E −→ E′′

the following sequence is exact:

F ⊗ E′ −→ F ⊗ E −→ F ⊗ E′′,

where ⊗ defines the tensor product operation, which will be used later for
modelling crowd behavior in a topos.

2. For every short exact sequence

0 −→ E′ −→ E −→ E′′ −→ 0

the following sequence is exact:

0 −→ F ⊗ E′ −→ F ⊗ E −→ F ⊗ E′′ −→ 0.

3. For every injection 0 −→ E′ −→ E the following sequence is exact:

0 −→ F ⊗ E′ −→ F ⊗ E.

3.6.3 Product of Hilbert Spaces and Quantum Entanglement

Recall that quantum-mechanical systems are properly described by Hermitian
operators in complex Hilbert spaces18 (HA,HB , ...). In the simplest quantum-
interaction case, we have only two agent particles, Alice (A) and Bob (B),
defined respectively by their state-vectors (or, wave-functions): ψA = |ψ〉A
and ψB = |ψ〉B, which live in their corresponding individual Hilbert state-
spaces, HA and HB . Therefore, the interaction between Alice and Bob can be
formaly represented by a causal arrow:

Q : HA  A �→ B ∈ HB .

The Alice-Bob compound quantum state19 |ψ〉A⊗ |ψ〉B lives in the composite
Hilbert state-space HA ⊗HB , which is the monoidal tensor product ⊗ of HA
and HB.
18 In this section we are talking about finitary quantum mechanics, in which all

Hilbert spaces are finite-dimensional. The state-space of the system is represented
as a space H, i.e. a finite-dimensional complex vector space with a ‘sesquilinear’
inner-product written 〈φ|ψ〉, which is conjugate-linear in the first argument and
linear in the second. A state of a quantum system is standardly represented by
a vector ψ = |ψ〉 ∈ H of unit norm. For quantum informatics purposes, the
basic type is that of qubits, namely 2-dimensional Hilbert space, equipped with
a computational basis: {|0〉, |1〉}.

19 Quantum compound systems are described by tensor products of the component
systems. Here, the key phenomenon of quantum entanglement arises, since the
general form of a vector in HA ⊗HB is:

P
k αk · φk ⊗ ψk [AC04].
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From categorical perspective, HA and HB are objects of a (symmetric)
monoidal category Hilb defined by:

Ob(Hilb) : {HA,HB} �→ HA ⊗HB ,

Mor(K) : {HA
f � HB,HC

g � HD}

�→ HA ⊗HC
f ⊗ g� HB ⊗HD.

From standard quantum-mechanical perspective, HA ⊗ HB = C2 ⊗ C2

consists of all weighted vectors of the form

|ψ〉A ⊗ |ψ〉B =
∑

k,j

ωkj · |k〉A ⊗ |j〉B ,

with complex weights ωkj ∈ C.20

More precisely, if {|k〉}k is a basis for the Hilbert space HA and {|j〉}j
is a basis for the Hilbert space HB , then their tensor product, containing all
composite states |ψ〉A⊗|ψ〉B, is defined by the following comprehension set21

(see [AC04, Coe05, Coe09]):

HA ⊗HB =






∑

k,j

ωkj · |k〉A ⊗ |j〉B : (∀i, j), ωkj ∈ C





. (3.5)

Two such composite vectors,

ψ =
∑

k,j

ωkj · |k〉 ⊗ |j〉 and ψ′ =
∑

k,j

ω′
kj · |k〉 ⊗ |j〉,

are equal iff their complex weights ωkj coincide for all k, j, that is, if their
matrices (ω)kj and (ω)′kj are equal. As each matrix (ω)kj is the matrix of some

20 This 2-qubit state represents the so-called EPR pair (a pair of qubits which jointly
are in a Bell-state, i.e., entangled with each other), given by:

b1 = |ψ+〉AB =
1√
2
(|00〉AB + |11〉AB) ∈ HA ⊗HB,

or, projected on one of 1D subspaces of HA ⊗ HB spanned by a vector in the
so-called Bell basis:

b1 := 1√
2
· (|00〉+|11〉), b2 := 1√

2
· (|01〉+|10〉),

b3 := 1√
2
· (|00〉−|11〉), b4 := 1√

2
· (|01〉−|10〉) .

The EPR pair has the following properties: if qubit A is measured in the compu-
tational basis {|0〉, |1〉} a uniformly random bit x ∈ {0, 1} is observed and qubit
B collapses to |x〉.

21 We remark here of the natural relation between the interaction tensor product
(3.5) and complex-valued neural networks (see Appendix, section 3.8.5).
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linear operator ω : HA → HB , namely the one for which we have ω(|j〉) =∑
k ωkj ·|k〉, this implies that there is a bijective correspondence between linear

operators ω : HA → HB and the composite vectors ψ ∈ HA⊗HB = C2⊗C2.
The compound Alice-Bob quantum state:

|ψ〉AB = |ψ〉A ⊗ |ψ〉B =
∑

k,j

ωkj · |k〉A ⊗ |j〉B (3.6)

is called separable quantum state if the weight matrix (ω)kj can be decomposed
as:

ωkj = ωAk ω
B
j , which implies :

|ψ〉A =
∑

k

ωAk · |k〉A and |ψ〉B =
∑

j

ωBj · |j〉B .

Otherwise (when ωkj �= ωAk ω
B
j ), the compound Alice-Bob state |ψ〉AB given

by (3.6) is called inseparable, or entangled state. In particular, the so-called
Bell-state represents the simplest example of quantum entanglement, defined
as a maximally entangled state of two qubits.

3.7 Quantum Protocols

Earlier (in the subsection 3.3.3), we introduced the basic quantum teleporta-
tion protocol. Here we mention three new quantum protocols: (i) logic gate
teleportation protocol (

−−−→
GTP ), (ii) entanglement swapping protocol (

−−−→
ESP ), and

(iii) quantum gambling protocol (QGP). For technical details of more general
protocols, see [AC04, Coe05, Coe09].

3.7.1 Gate Teleportation Protocol

The quantum (logic) gate teleportation protocol (
−−−→
GTP ) (see Figure 3.4) is an

extension of the
−−−→
QTP, in which Alice and Bob are initially not necessarily an

EPR-pair but may be in some other entangled state.
−−−→
QTP not only transfers

a state ψin from Alice to Bob, but at the same time applies a linear operator
ω to it: ψout = ω(ψin). Because of this,

−−−→
QTP is important in applications

since it enables robust information processing.
The basic functionality of the

−−−→
GTP was described in [KSW05] as:

−−−→
GTP =






|HH 〉 → |HH 〉
|HV 〉 → |HV 〉
|V H 〉 → |V H 〉
|V V 〉 → −|V V 〉,

(3.7)

where the Boolean states 0 and 1 are represented by the linear horizontal (H)
and vertical (V ) polarization states of a photon, respectively.
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Fig. 3.4. Gate teleportation protocol GTP is an extension of the quantum
teleportation protocol QTP mentioned earlier.

The
−−−→
GTP -gate can be used to perform a complete Bell-state projection

measurement by mapping four Bell states onto four orthogonal product states.
In our case of the maximally entangled Bell-state:

| ψ̃+ 〉 = 1√
2
(|H+ 〉+ |V−〉),

(where + (−) denotes +45 ◦ (−45 ◦) linear polarization), the
−−−→
GTP -gate per-

forms the following bilateral operation [SKW09]:

| ψ̃+ 〉 =
1
2
(
|HH 〉+ |HV 〉+ |V H 〉 − |V V 〉

)

←−→
GTP

1
2
(
|HH 〉+ |HV 〉+ |V H 〉+ |V V 〉

)

=
1
2
(
|H 〉+ |V 〉

)
⊗
(
|H 〉+ |V 〉

)
= |++ 〉.

This means, the gate transforms between the product state |++ 〉 and the

maximally entangled Bell state | ψ̃+ 〉. Therefore, by detecting one of these
four product states behind the phase gate, we know that the photons have
been in the corresponding Bell state before the phase gate (see [SKW09] for
technical details). This fact demonstrates the causality of the

−−−→
GTP -gate.

3.7.2 Entanglement Swapping Protocol

The entanglement swapping protocol (
−−−→
ESP ) is another variation/extension of

the
−−−→
QTP . We start with two Bell-states, then apply a Bell-base measurement
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to one qubit in each pair (see Figure 3.5). The inherent quantum features of the
teleportation process are best seen by performing the

−−−→
ESP . In this quantum

communication method, two photons that have never interacted in the past,
become entangled by teleporting the state of one photon of an entangled pair
onto one photon of another entangled pair (see [SKW09] for technical details).

Fig. 3.5. Entanglement swapping protocol ESP is another extension of the
QTP, which maps two Alices into their corresponding Bobs.

For derivation of all three quantum communication protocols in terms of
special quantum projectors of the form, see [Coe03]:

P = |ψ〉〈ψ| with |ψ〉 =
∑

k,j

ωkj · |kj〉 ∈ H ⊗H ,

where the main theorem is that any four linear operators satisfy the following
bifunctorial equation:

(g ◦ f)⊗ (k ◦ h) = (g ⊗ k) ◦ (f ⊗ h). (3.8)

3.7.3 Quantum Gambling Protocol

Recall that coin tossing is defined as a method of generating a random bit
over a communication channel between two distant parties. In case of quan-
tum protocols, the two parties, Alice and Bob, do not trust each other, or a
third party. They create the random bit by exchanging quantum and classical
information. At the end of the protocol, the generated bit is known to both of
them. If a party cheats, i.e., changes the occurrence probability of an outcome,
the other party should be able to detect the cheating. We would consider a
coin tossing protocol to be secure if it defines a parameter such that when it
goes to infinity the probability to detect any finite change of probabilities goes
to 1. Using a secure protocol, the parties can make certain decisions depending
on the value of the random bit, without being afraid that the opponent may
have some advantage. For instance, Alice and Bob can play a game

−−−→
QGP in

which Alice wins if the outcome is ‘0’ and Bob wins if it is ‘1’. Note that if bit
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commitment were secure, it could be used to implement coin tossing trivially:
Alice commits a bit a to Bob; Bob tells Alice the value of a bit b; the random
bit is the parity bit of a and b.

The gambling task
−−−→
QGP : A → B can be precisely defined as follows

[GVW99]: the casino (Alice) and the player (Bob) are physically separated,
communicating via quantum and classical channels. The bet of Bob in a single
game is taken for simplicity to be 1 coin. At the end of a game the player wins
1 or R coins, or loses 1 coin (his bet), depending on the result of the game.
We have found a protocol which implement this game while respecting two
requirements: First, the player can ensure that, irrespective of what the casino
does, his expected gain is not less than δ coins, where δ is a negative function
of R which goes to zero when R goes to infinity. The exact form of δ(R) will
be specified below. Second, the casino can ensure that, irrespective of what
the player does, its expected gain is not less than 0 coins.

In order to define the protocol rigorously, we will first present the rules of
the game, then the strategies of the players which ensure the outcomes quoted
above and finally we will prove the security of the method.

The Rules of the Game: Alice has two boxes, A and B, which can
store a particle [GVW99]. The quantum states of the particle in the boxes are
denoted by |a〉 and |b〉, respectively. Alice prepares the particle in some state
and sends box B to Bob.

Bob wins in one of the two cases:

1. If he finds the particle in box B, then Alice pays him 1 coin (after checking
that box A is empty).

2. If he asks Alice to send him box A for verification and he finds that she
initially prepared a state different from

|ψ0〉 =
1√
2
(|a〉+ |b〉), (3.9)

then Alice pays him R coins.

In any other case Alice wins, and Bob pays her 1 coin.
The players’ strategies which ensure (independently) an expectation value

of Alice’s gain GA ≥ 0 (irrespective of Bob’s actions) and an expectation value
of Bob’s gain GB ≥ δ (irrespective of Alice’s actions) are as follows:
Alice’s Strategy: Alice prepares the equally distributed state |ψ0〉 (given in
(3.9)).
Bob’s Strategy: After receiving box B, Bob splits the particle in two parts;
specifically, he performs the following unitary operation:

|b〉 →
√

1− η |b〉+√η |b′〉, (3.10)

where 〈b′|b〉 = 0. The particular splitting parameter η he uses is η = η̃(R) (to
be specified below). After the splitting Bob measures the projection operator
on the state |b〉, and then
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I. If the measurement yields a positive result, i.e. he finds the particle, he
announces Alice that he won.

II. If the measurement yields a negative result, he asks Alice for box A and
verifies the preparation.

This completes the formal definition of the gaming protocol (for more
technical details, see [GVW99]).

3.8 Appendix

3.8.1 Abelian Category of Chain and Cochain Complexes

Chain and Cochain Complexes on a Smooth Manifold

Recall that the central concept in (co)homology theory is the category S•(C)
of generalized (co)chain complexes in an Abelian category C [Die88, II07]. The
objects of the category S•(C) are infinite sequences

A• : · · · −→ An−1 dn−1� An
dn � An+1 −→ · · ·

where, for each n ∈ Z, An is an object of C and dn a morphism of C, with the
conditions

dn−1 ◦ dn = 0

for every n ∈ Z. When An = 0 for n < 0, one speaks of cochain complexes.
The dn are called coboundary operators .

The morphisms of the category S•(C) are sequences f• = (fn) : A• → B•

where, for each n ∈ Z, fn : An → Bn is a morphism of C, and in the diagram

· · · −→ An−1 dn−1� An
dn � An+1 −→ · · ·

fn−1
|
↓ fn

|
↓ fn+1

|
↓ (3.11)

· · · −→ Bn−1 dn−1� Bn
dn � Bn+1 −→ · · ·

all squares are commutative; one says the fn commute with the coboundary
operators. One has Im dn+1 ⊂ Kerdn ⊂ An for every n ∈ Z; the quotient
Hn(A•) = Ker dn/ Imdn+1 is called the nth cohomology object of A•. From
(3.11) it follows that there is a morphism

Hn(f•) : Hn(A•)→ Hn(B•)

deduced canonically from f•, and

(A•, f•)⇒ (Hn(A•), Hn(f•))



October 10, 2014 11:9 Complexity and Control 9in x 6in b1966-ch03 page 148

148 3 Global Categorical Framework for Complexity and Control

is a covariant functor from S•(C) to C.
The cohomology exact sequence: if three cochain complexes A•, B•, C• are

elements of a short exact sequence of morphisms

0 −→ A• −→ B• −→ C• −→ 0

then there exists an infinite sequence of canonically defined morphisms dn :
Hn(C•)→ Hn−1(A•) such that the sequence

· · · −→ Hn(A•) −→ Hn(B•) −→ Hn(C•) −→ Hn−1(A•) −→ · · ·

is exact, that is the image of each homomorphism in the sequence is exactly
the kernel of the next one.

The dual to the category S•(C) is the category of S•(C) of generalized
chain complexes. Its objects and morphisms are obtained by formal inversion
of all arrows and lowering all indices.

(Co)Homologies in Abelian Categories Related to the Smooth
(Team) Manifold

LetM• denote the Abelian category of cochains, (i.e., p-forms) on the crowd
configuration manifold M . When C =M•, we have the category S•(M•) of
generalized cochain complexes A• in M•, and if A′ = 0 for n < 0 we have a
subcategory S•DR(M•) of the De Rham differential complexes inM•:

A•
DR : 0→ Ω0(M) d−→ Ω1(M) d−→ Ω2(M) · · · d−→ Ωn(M) d−→ · · · . (3.12)

Here A′ = Ωn(M) is the vector space over R of all p-forms ω on M (for
p = 0 the smooth functions on M) and dn = d : Ωn−1(M) → Ωn(M) is the
exterior differential. A form ω ∈ Ωn(M) such that dω = 0 is a closed form
or n-cocycle. A form ω ∈ Ωn(M) such that ω = dθ, where θ ∈ Ωn−1(M),
is an exact form or n-coboundary. Let Zn(M) = Ker d (resp. Bn(M) = Im d
denote a real vector space of cocycles (resp. coboundaries) of degree n. Since
dn+1 ◦ dn = d2 = 0, we have Bn(M) ⊂ Zn(M). The quotient vector space,

Hn
DR(M) = Ker d/ Im d = Zn(M)/Bn(M),

is the De Rham cohomology group. The elements of Hn
DR(M) represent equiv-

alence sets of cocycles. Two cocycles ω1, ω2 belong to the same equivalence
set, or are cohomologous (written ω1 ∼ ω2) iff they differ by a coboundary
ω1 − ω2 = dθ. The de Rham’s cohomology class of any form ω ∈ Ωn(M) is
[ω] ∈ Hn

DR(M). The De Rham differential complex (3.12) can be considered
as a system of second-order DEs: d2θ = 0, θ ∈ Ωn−1(M), having a solution
represented by Zn(M) = Kerd.

Analogously, let M• denote the Abelian category of chains on the con-
figuration manifold M . When C = M•, we have the category S•(M•) of
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generalized chain complexes A• in M•, and if An = 0 for n < 0 we have a
subcategory SC• (M•) of chain complexes in M•:

A• : 0← C0(M) ∂←− C1(M) ∂←− C2(M) · · · ∂←− Cn(M) ∂←− · · · .

Here An = Cn(M) is the vector space over R of all finite chains C on the
manifold M and ∂n = ∂ : Cn+1(M) → Cn(M). A finite chain C such that
∂C = 0 is an n−cycle. A finite chain C such that C = ∂B is an n−boundary.
Let Zn(M) = Ker ∂ (resp. Bn(M) = Im ∂) denote a real vector space of
cycles (resp. boundaries) of degree n. Since ∂n+1 ◦ ∂n = ∂2 = 0, we have
Bn(M) ⊂ Zn(M). The quotient vector space,

HC
n (M) = Ker ∂/ Im∂ = Zn(M)/Bn(M),

is the n−homology group. The elements of HC
n (M) are equivalence sets of

cycles. Two cycles C1, C2 belong to the same equivalence set, or are homol-
ogous (written C1 ∼ C2), iff they differ by a boundary C1 − C2 = ∂B). The
homology class of a finite chain C ∈ Cn(M) is [C] ∈ HC

n (M).
The dimension of the n−cohomology (resp. n−homology) group equals

the nth Betti number bn (resp. bn) of the manifold M . Poincaré lemma says
that on an open set U ∈M diffeomorphic to RN , all closed forms (cycles) of
degree p ≥ 1 are exact (boundaries). That is, the Betti numbers satisfy bp = 0
(resp. b = 0), for p = 1, . . . , n.

The De Rham theorem states the following. The map Φ : Hn × Hn → R

given by ([C], [ω]) → 〈C, ω〉 for C ∈ Zn,ω ∈ Zn is a bilinear nondegenerate
map which establishes the duality of the groups (vector spaces) Hn and Hn

and the equality bn = bn.

3.8.2 A Brief on Categorical Logic

In this subsection, we give a brief on advanced categorial logic. For the basic,
first-order logic, see subsection 4.3.6 below.

Now we are almost ready to embark on our journey into topos theory.
Before that, in this subsection we will make a brief excursion into related area
of logic in coherent Cartesian closed categories.22

A category with multiplication is a category C together with a bifunctor
· : C × C → C and a special object I (a propositional constant, see below).

22 The term “coherence” covers in category theory what from a logical point of
view would be called problems of completeness, axiomatizability and decidability.
A coherence condition, or coherence theorem expresses the statement that two
or more morphisms between two given objects, the existence of which is given
or follows from general properties, are equal. As different authors put stress on
different things related to coherence, we stick to MacLane’s usage of the term in
[Mac63], the primordial paper on coherence. Basically, MacLane has shown that
monoidal and symmetric monoidal categories are coherent.
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In particular, a category with binary products is a category with a binary
operation (Cartesian product ×) on objects, projection morphisms [DP01,
DP04]

k1
A,B : A×B → A, k2

A,B : A×B → B,

and the pairing operation on morphisms 〈 , 〉 given by

f : C → A g : C → B

〈f, g〉 : C → A×B . (3.13)

The morphisms must satisfy the following set of equations:

k1
A,B ◦ 〈f, g〉 = f, k2

A,B ◦ 〈f, g〉 = g,

〈f, g〉 ◦ h = 〈f ◦ h, g ◦ h〉, 〈k1
A,B,k

2
A,B〉 = 1A×B.

A category has a terminal object T iff it has the special morphisms: kA :
A→ T, which satisfy the equation: for f : A→ T, f = kA.

A cartesian category is a category with binary products and a terminal
object.

In particular, standard equational axiomatization of Cartesian categories
(see [LS86]) is based on the universality of the Cartesian product and uses
as primitives the following morphisms: 1A : A → A, πA,B : A×B → A,
π′
A,B : A×B → B and kA : A → I for all objects A and B, and a partial

binary operation on morphisms (3.13). The following equations hold:

f = kA, for every f : A→ I;
πA,B〈f, g〉 = f ; for f : C → A and g : C → B;

πprimeA,B 〈f, g〉 = g; for f : C → A and g : C → B;

〈πA,Bh,πprimeA,B h〉 = h, for h : C → A×B,

together with the standard categorial equations:

(cat 1) 1B ◦f = f ◦1A = f, (cat 2) h◦(g◦f) = (h◦g)◦f. (3.14)

Now, we can define the propositional language P as generated from a
set of propositional letters L with the nullary connectives, i.e. propositional
constants, I and O, and the binary connectives × and +. The fragments
P×,+,I, P×,+ etc. of P are obtained by keeping only those formulae of P that
contain the connectives in the index. For the propositional letters of P , i.e.,
for the members of L, we use the schematic letters p, q, . . . , p1, . . . , and for the
formulae of P , or of its fragments, we use the schematic lettersA,B, . . . , A1, . . .
(see [DP04]).

Next we define inductively the terms that will stand for the morphisms of
the free bicartesian category C generated by L. Every term has a type, which
is a pair (A,B) of formulae of P . That a term f is of type (A,B) is written
f : A→ B. The atomic terms of C are for every A of P
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1A : A→ A,
kA : A→ I, lA : O→ A.

The terms 1A are called identities. The other terms of C are generated with
the following operations on terms, which we present by rules so that from
the terms in the premises we obtain the terms in the conclusion (using
f, g, . . . , f1, . . . as schematic letters for terms of C) :

f : A→ B g : B → C

g ◦ f : A→ C
,

f : A→ C

K1
Bf : A×B → C

,
f : C → A

L1
Bf : C → A+B

,

f : B → C

K2
Af : A× B → C

,
f : C → B

L2
Af : C → A+B

,

f : C → A g : C → B

〈f, g〉 : C → A×B ,
f : A→ C g : B → C

[f, g] : A+B → C
.

The category C has as objects the formulae of P and as morphisms equiv-
alence classes of terms23 so that the both (3.14) and the following equations
are satisfied for i ∈ {1, 2} [DP02]

(K1) g ◦Ki
Af = Ki

A(g ◦ f), (L1) LiAg ◦ f = LiA(g ◦ f),
(K2) Ki

Ag ◦ 〈f1, f2〉 = g ◦ fi, (L2) [g1, g2] ◦ LiAf = gi ◦ f,
(K3) 〈g1, g2〉 ◦ f = 〈g1 ◦ f, g2 ◦ f〉, (L3) g ◦ [f1, f2] = [g ◦ f1, g ◦ f2],
(K4) 〈K1

B1A,K2
A1B〉 = 1A×B , (L4) [L1

B1A, L2
A1B ] = 1A+B,

(k) for f : A→ I, f = kA, (l) for f : O→ A, f = lA.

For more technical details on categorical logic, an interested reader might
consult J. Lambek’s categorial proof-theoretical program [Lam68, Lam69,
Lam72, LS86].

3.8.3 Natural Geometrical Operations on Kähler Manifolds

Lie Derivative on a Kähler Manifold

To define how vector-fields operate on functions on a Kähler m-manifold M ,
we will use the Lie derivative.24 Let f : M → R so Tf : TM → TR = R× R.
23 Equivalence between proofs in intuitionistic logic is axiomatized independently

of these diagrams in the typed lambda calculus and in various sorts of categories,
like bicartesian closed categories. There, proofs are coded by typed lambda terms
or by arrow terms, and two proofs are considered equivalent iff the coding terms
are equal as lambda terms or as arrow terms in categories [DP02, DP04].

24 Recall that the Lie derivative is popularly called the ‘fisherman’s derivative’. In
continuum mechanics it is called Liouville operator . This is a central differential
operator in modern differential geometry and its physical and control applications.
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By generalizing the notions of [AMR88] to the Kähler geometry, we write Tf
acting on a vector v ∈ TmM in the form

Tf · v = (f(m), df(m) · v) .

This defines, for each point m ∈M , the element df(m) ∈ T ∗
mM . Thus df is a

section of the cotangent bundle T ∗M , i.e., a 1−form. The 1−form df : M →
T ∗M defined this way is called the differential of f . If f is C∞, then df is
Ck−1.

If φ : U ⊂ M → V ⊂ E is a local chart for a Kähler m-manifold M ,
then the local representative of f ∈ C∞(M,R) is the map f : V → R defined
by f = f ◦ φ−1. The local representative of Tf is the tangent map for local
manifolds,

Tf(x, v) = (f(x), Df(x) · v) .
Thus the local representative of df is the derivative of the local representative
of f . In particular, if (x1, ..., xn) are local coordinates on M , then the local
components of df are

(df)i = ∂xif.

The introduction of df leads to the following definition of the Lie derivative.
The directional or Lie derivative LX : C∞(M,R)→ Ck−1(M,R) of a function
f ∈ C∞(M,R) along a vector-field X is defined by

LXf(m) = X [f ](m) = df(m) ·X(m),

for any m ∈ M . Denote by X [f ] = df(X) the map M  m �→ X [f ](m) ∈ R.
If f is F−valued, the same definition is used, but now X [f ] is F−valued.

If a local chart (U, φ) on a Kähler m-manifold M has local coordinates
(x1, ..., xn), the local representative of X [f ] is given by the function

LXf = X [f ] = X i ∂xif.

Evidently if f is C∞ and X is Ck−1 then X [f ] is Ck−1.
Let ϕ : M → N be a diffeomorphism between two Kähler manifolds M

and N . Then LX is natural with respect to push–forward by ϕ. That is, for
each f ∈ C∞(M,R),

Lϕ∗X(ϕ∗f) = ϕ∗LXf,
i.e., the following diagram commutes:

C∞(M,R) C∞(N,R)�
ϕ∗

C∞(M,R) C∞(N,R)�ϕ∗

�

LX
�

Lϕ∗X

Also, LX is natural with respect to restrictions. That is, for U open in a
Kähler m-manifold M and f ∈ C∞(M,R),
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LX|U (f |U) = (LXf)|U,

where —U : C∞(M,R)→ C∞(U,R) denotes restriction to U , i.e., the follow-
ing diagram commutes:

C∞(M,R) C∞(U,R)�
|U

C∞(M,R) C∞(U,R)�|U

�

LX
�

LX|U

Since ϕ∗ = (ϕ−1)∗ the Lie derivative is also natural with respect to pull–
back by ϕ. This has a generalization to ϕ−related vector-fields as follows:
Let ϕ : M → N (between two Kähler manifolds M and N) be a C∞−map,
X ∈ X k−1(M) and Y ∈ X k−1(N), k ≥ 1. If X ∼ϕ Y , then

LX(ϕ∗f) = ϕ∗LY f

for all f ∈ C∞(N,R), i.e., the following diagram commutes:

C∞(N,R) C∞(M,R)�
ϕ∗

C∞(N,R) C∞(M,R)�ϕ∗

�

LY
�

LX

The Lie derivative map LX : C∞(M,R) → Ck−1(M,R) is a derivation,
i.e., for two functions f, g ∈ C∞(M,R) the Leibniz rule is satisfied

LX (fg) = gLXf + fLXg;

Also, Lie derivative of a constant function is zero, LX(const) = 0.
The connection between the Lie derivative LXf of a function f ∈ C∞

(M,R) and the flow Ft of a vector-field X ∈ X k−1(M) is given as:

d

dt
(F ∗
t f) = F ∗

t (LXf) .

Lie Bracket on a Kähler Manifold

If X,Y ∈ X k(M), k ≥ 1 are two vector-fields on a Kähler m-manifold M ,
then

[LX ,LY ] = LX ◦ LY − LY ◦ LX
is a derivation map from Ck+1(M,R) to Ck−1(M,R). Then there is a unique
vector-field, [X,Y ] ∈ X k(M) of X and Y such that L[X,Y ] = [LX ,LY ] and
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[X,Y ](f) = X (Y (f))− Y (X(f)) holds for all functions f ∈ C∞(M,R). This
vector-field is also denoted LXY and is called the Lie derivative of Y with
respect to X , or the Lie bracket of X and Y . In a local chart (U, φ) at a point
m ∈ M with coordinates (x1, ..., xn), for X |U = X i∂xi and Y |U = Y i∂xi we
have [

X i∂xi , Y j∂xj

]
=
(
Xi
(
∂xiY j

)
− Y i

(
∂xiXj

))
∂xj ,

since second partials commute. If, also X has flow Ft, then [AMR88]

d

dt
(F ∗
t Y ) = F ∗

t (LXY ) .

In particular, if t = 0, this formula becomes

d

dt
|t=0 (F ∗

t Y ) = LXY.

Then the unique Ck−1 vector-field LXY = [X,Y ] on M defined by

[X,Y ] =
d

dt
|t=0 (F ∗

t Y ) ,

is called the Lie derivative of Y with respect to X , or the Lie bracket of X
and Y, and can be interpreted as the leading order term that results from the
sequence of flows

F−Y
t ◦ F−X

t ◦ FYt ◦ F−X
t (m) = ε2[X,Y ](m) +O(ε3), (3.15)

for some real ε > 0. Therefore a Lie bracket can be interpreted as a ‘new
direction’ in which the system can flow, by executing the sequence of flows
(3.15).

Lie bracket satisfies the following property:

[X,Y ][f ] = X [Y [f ]]− Y [X [f ]],

for all f ∈ Ck+1(U,R), where U is open in M .
An important relationship between flows of vector-fields is given by the

Campbell–Baker–Hausdorff formula:

F Yt ◦ FXt = F
X+Y+ 1

2 [X,Y ]+ 1
12 ([X,[X,Y ]]−[Y,[X,Y ]])+...

t (3.16)

Essentially, if given the composition of multiple flows along multiple vector-
fields, this formula gives the one flow along one vector-field which results in
the same net flow. One way to prove the Campbell–Baker–Hausdorff formula
(3.16) is to expand the product of two formal exponentials and equate terms
in the resulting formal power series.

Lie bracket is the R−bilinear map [, ] : X k(M)× X k(M) → X k(M) with
the following properties:
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1. [X,Y ] = −[Y,X ], i.e., LXY = −LYX for all X,Y ∈ X k(M) – skew–
symmetry;

2. [X,X ] = 0 for all X ∈ X k(M);
3. [X, [Y, Z]] + [Y, [Z,X ]] + [Z, [X,Y ]] = 0 for all X,Y, Z ∈ X k(M) – the

Jacobi identity;
4. [fX, Y ] = f [X,Y ] − (Y f)X , i.e., LfX (Y ) = f(LXY ) − (LY f)X for all
X,Y ∈ X k(M) and f ∈ C∞(M,R);

5. [X, fY ] = f [X,Y ] + (Xf)Y , i.e., LX(fY ) = f(LXY ) + (LXf)Y for all
X,Y ∈ X k(M) and f ∈ C∞(M,R);

6. [LX ,LY ] = L[x,y] for all X,Y ∈ X k(M).

The pair (X k(M), [, ]) is the prototype of a Lie algebra [KMS93]. In more
general case of a general linear Lie algebra gl(n), which is the Lie algebra as-
sociated to the Lie group GL(n), Lie bracket is given by a matrix commutator

[A,B] = AB −BA,

for any two matrices A,B ∈ gl(n).
Let ϕ : M → N be a diffeomorphism. Then LX : X k(M) → X k(M) is

natural with respect to push–forward by ϕ. That is, for each f ∈ C∞(M,R),

Lϕ∗X(ϕ∗Y ) = ϕ∗LXY,

i.e., the following diagram commutes:

X k(M) X k(N)�
ϕ∗

X k(M) X k(N)�ϕ∗

�

LX
�

Lϕ∗X

Also, LX is natural with respect to restrictions. That is, for U open in a
Kähler m-manifold M and f ∈ C∞(M,R),

[X |U, Y |U ] = [X,Y ]|U,

where U : C∞(M,R)→ C∞(U,R) denotes restriction to U , i.e., the following
diagram commutes [AMR88]:

X k(M) X k(U)�
|U

X k(M) X k(U)�|U

�

LX
�

LX|U

If a local chart (U, φ) on a Kähler m-manifold M has local coordinates
(x1, ..., xn), then the local components of a Lie bracket are
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[X,Y ]j = Xi ∂xiY j − Y i ∂xiXj,

that is, [X,Y ] = (X · ∇)Y − (Y · ∇)X .
Let ϕ : M → N be a C∞−map, X ∈ X k−1(M) and Y ∈ X k−1(N), k ≥ 1.

Then X ∼ϕ Y , iff
(Y [f ]) ◦ ϕ = X [f ◦ ϕ]

for all f ∈ C∞(V,R), where V is open in N.
For every X ∈ X k(M), the operator LX is a derivation on(

C∞(M,R),X k(M)
)
, i.e., LX is R−linear.

For any two vector-fields X ∈ X k(M) and Y ∈ X k(N), k ≥ 1 with flows
Ft and Gt, respectively, if [X,Y ] = 0 then F ∗

t Y = Y and G∗
tX = X .

Lie Groups and Lie Algebras on Kähler Manifolds

In the setting of Kähler geometry, a Lie group is a Kähler m-manifold M
that has at the same time a group G−structure consistent with its manifold
M−structure in the sense that group multiplication

µ : G×G→ G, (g, h) �→ gh (3.17)

and the group inversion

ν : G→ G, g �→ g−1 (3.18)

are C∞−maps (compare with [Che46, AMR88, MR99, Put93] for the case of
Banach manifolds). A point e ∈ G is called the group identity element .

Let G and H be two Kähler Lie groups. A map G → H is said to be a
morphism of Lie groups (or their smooth homomorphism) if it is their homo-
morphism as abstract groups and their smooth map as manifolds [Pos86].

All Kähler Lie groups and all their morphisms form the category LG. For-
mally, there is a countable family of categoriesLG depending onCk−smoothness
of the corresponding Kähler manifolds.

Similarly, a group G defined on a Kähler m-manifold M , which is at the
same time a topological space is said to be a topological group if maps (3.17–
3.18) are continuous, i.e., C0−maps for it. The homomorphism G → H of
topological groups is said to be continuous if it is a continuous map.25 Topo-
logical groups and their continuous homomorphisms form the category T G.

For every g in a Kähler Lie group G, the following two maps:

Lg : G→ G, h �→ gh, and
Rh : G→ G, g �→ gh,

25 A topological group (as well as a smooth manifold) is not necessarily Hausdorff.
A topological group G is Hausdorff iff its identity is closed. As a corollary we have
that every Lie group is a Hausdorff topological group (see [Pos86]).
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are called left and right translation maps. Since Lg ◦Lh = Lgh, and Rg ◦Rh =
Rgh, it follows that (Lg)

−1 = Lg−1 and (Rg)
−1 = Rg−1 , so both Lg and Rg are

diffeomorphisms. Moreover Lg ◦Rh = Rh ◦ Lg, i.e., left and right translation
commute.

A vector-field X on Kähler Lie group G is called left–invariant vector-field
if for every g ∈ G, L∗

gX = X , that is, if (ThLg)X(h) = X(gh) for all h ∈ G,
i.e., the following diagram commutes:

G G�
Lg

TG TG�TLg

�
X

�
X

The correspondences G → TG and Lg → TLg obviously define a functor
F : LG ⇒ LG from the category G of Lie groups to itself. F is a special case
of the vector bundle functor.

Let XL(G) denote the set of left–invariant vector-fields on G; it is a
Lie subalgebra of X (G), the set of all vector-fields on G, since L∗

g[X,Y ] =
[L∗
gX,L

∗
gY ] = [X,Y ], so the Lie bracket [X,Y ] ∈ XL(G).

Let e be the identity element of G. Then for each ξ on the tangent space
TeG we define a vector-field Xξ on G by

Xξ(g) = TeLg(ξ).

XL(G) and TeG are isomorphic as vector spaces. Define the Lie bracket on
TeG by

[ξ, η] = [Xξ, Xη] (e),

for all ξ, η ∈ TeG. This makes TeG into a Lie algebra. Also, by construction,
we have

[Xξ, Xη] = X[ξ,η],

this defines a bracket in TeG via left extension. The vector space TeG with
the above algebra structure is called the Lie algebra of the Lie group G and
is denoted g.

For example, let V be a nD vector space. Then TeV � V and the left–
invariant vector-field defined by ξ ∈ TeV is the constant vector-field Xξ(η) =
ξ, for all η ∈ V . The Lie algebra of V is V itself.

Since any two elements of an Abelian Lie group G commute, it follows
that all adjoint operators Adg, g ∈ G, equal the identity. Therefore, the Lie
algebra g is Abelian; that is, [ξ, η] = 0 for all ξ, η ∈ g [MR99].

Lie algebras and their smooth homomorphisms form the category LAL.
We can now introduce the fundamental Lie functor , F : LG ⇒ LAL, from
the category of Lie groups to the category of Lie algebras [Pos86].
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Let Xξ be a left–invariant vector-field on a Kähler Lie group G correspond-
ing to ξ in g. Then there is a unique integral curve γξ : R→ G of Xξ starting
at e, i.e.,

γ̇ξ(t) = Xξ

(
γξ(t)

)
, γξ(0) = e.

γξ(t) is a smooth one–parameter subgroup of G, i.e.,

γξ(t+ s) = γξ(t) · γξ(s),

since, as functions of t both sides equal γξ(s) at t = 0 and both satisfy
differential equation

γ̇(t) = Xξ

(
γξ(t)

)

by left invariance of Xξ, so they are equal. Left invariance can be also used
to show that γξ(t) is defined for all t ∈ R. Moreover, if φ : R → G is a one–
parameter subgroup of G, i.e., a smooth homomorphism of the additive group
R into G, then φ = γξ with ξ = φ̇(0), since taking derivative at s = 0 in the
relation

φ(t+ s) = φ(t) · φ(s) gives φ̇(t) = Xφ̇(0) (φ(t)) ,

so φ = γξ since both equal e at t = 0. Therefore, all one–parameter subgroups
of G are of the form γξ(t) for some ξ ∈ g.

The map exp : g→ G, given by

exp(ξ) = γξ(1), exp(0) = e, (3.19)

is called the exponential map of the Lie algebra g of G into G. exp is a C∞–
map, similar to the projection π of tangent and cotangent bundles; exp is
locally a diffeomorphism from a neighborhood of zero in g onto a neighborhood
of e in G; if f : G→ H is a smooth homomorphism of Lie groups, then

f ◦ expG = expH ◦Tef .

Also, in this case (see [Che46, MR99, Pos86])

exp(sξ) = γξ(s).

Indeed, for fixed s ∈ R, the curve t �→ γξ(ts), which at t = 0 passes through
e, satisfies the differential equation

d

dt
γξ(ts) = sXξ

(
γξ(ts)

)
= Xsξ

(
γξ(ts)

)
.

Since γsξ(t) satisfies the same differential equation and passes through e at
t = 0, it follows that γsξ(t) = γξ(st). Putting t = 1 induces exp(sξ) = γξ(s)
[MR99].

Hence exp maps the line sξ in g onto the one–parameter subgroup γξ(s)
of G, which is tangent to ξ at e. It follows from left invariance that the flow
F ξt of X satisfies F ξt (g) = g exp(sξ).
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Globally, the exponential map exp, as given by (3.19), is a natural oper-
ation, i.e., for any morphism ϕ : G → H of Lie groups G and H and a Lie
functor F , the following diagram commutes [Pos86]:

G H�
ϕ

F(G) F(H)�F(ϕ)

�

exp

�

exp

Let G1 and G2 be Kähler Lie groups with Lie algebras g1 and g2. Then
G1 ×G2 is a Lie group with Lie algebra g1 × g2, and the exponential map is
given by [MR99].

exp : g1 × g2 → G1 ×G2, (ξ1, ξ2) �→ (exp1(ξ1), exp2(ξ2)) .

The unit circle in the complex plane S1 = {z ∈ C : |z| = 1} is an Abelian
Lie group under multiplication. The tangent space TeS

1 is the imaginary
axis, and we identify R with TeS

1 by t �→ 2πit. With this identification, the
exponential map exp : R→ S1 is given by exp(t) = e2πit.

The nD torus Tn = S1×···×S1 (n times) is an Abelian Lie group. The
exponential map exp : Rn → Tn is given by

exp(t1, ..., tn) = (e2πit1 , ..., e2πitn).

Since S1 = R/Z, it follows that

T n = R
n/Zn,

the projection Rn → T n being given by the exp map (see [MR99, Pos86]).
For every g ∈ G, the map

Adg = Te
(
Rg−1 ◦ Lg

)
: g→ g

is called the adjoint map (or operator) associated with g.
For each ξ ∈ g and g ∈ G we have

exp (Adgξ) = g (exp ξ) g−1.

The relation between the adjoint map and the Lie bracket is the following:
For all ξ, η ∈ g we have

d

dt

∣
∣
∣
∣
t=0

Adexp(tξ)η = [ξ, η].

A Kähler Lie subgroup H of G is a subgroup H of G which is also a Kähler
submanifold of G. Then h is a Lie subalgebra of g and moreover h = {ξ ∈
g| exp(tξ) ∈ H , for all t ∈ R}.
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Finally, recall that one can characterize Lebesgue measure up to a multi-
plicative constant on Rn by its invariance under translations. Similarly, on a
locally compact group there is a unique (up to a nonzero multiplicative con-
stant) left–invariant measure, called Haar measure. For Kähler Lie groups the
existence of such measures is especially simple [MR99]: Let G be a Kähler Lie
group; then there is a volume form Ub5, unique up to nonzero multiplicative
constants, that is left–invariant. If G is compact, Ub5 is right invariant as well.

Vector Bundles of Kähler Manifolds

Maps of fibre bundles (or, bundle maps), by definition, preserve their fibra-
tions, i.e., send a fibre to a fibre. Namely, a bundle map of a fibre bundle
π : Y → X to a fibre bundle π′ : Y ′ → X ′ is defined as a pair (Φ, f) of
Kähler-manifold maps such that the following diagram commutes:

X X ′�
f

Y Y ′�Φ

�

π

�
π′

i.e., Φ is a fibrewise map over f which sends a fibre Yx, (for all x ∈ X), to a
fibre Y ′

f(x), (for all f(x) ∈ X ′). A bundle diffeomorphism is called an auto-
morphism if it is an isomorphism to itself. In field theory, any automorphism
of a fibre bundle is treated as a gauge transformation.

Given a bundle Y → X , every map f : X ′ → X induces a bundle Y ′ = f∗Y
over X ′ which is called the pull–back of the bundle Y by f , such that the
following diagram commutes

X X ′�
f

Y Y ′� f∗

�

π

�
π′

In particular, the product Y ×Y ′ over X of bundles π : Y → X and π′ : Y ′ →
X is the pull–back

Y × Y ′ = π∗Y ′ = π′∗Y.

The most important fibre bundles are vector and affine bundles, which
give a standard framework in both classical and quantum dynamics and field
theory (e.g., matter fields are sections of vector bundles, while gauge potentials
are sections of affine bundles).

Recall that both the tangent bundle (TM, πM ,M) and the cotangent bun-
dle (T ∗M , π∗

M ,M) are examples of a more general notion of vector bundle
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(E, π,M) of a Kähler manifold M , which consists of manifolds E (the total
space) and M (the base), as well as a smooth map π : E →M (the projection)
together with an equivalence class of vector bundle atlases (see [KMS93]). A
vector bundle atlas (Uα, φα)α∈A for (E, π,M) is a set of pairwise compatible
vector bundle charts (Uα, φα) such that (Uα)α∈A is an open cover of a Kähler
m-manifold M . Two vector bundle atlases are called equivalent, if their union
is again a vector bundle atlas.

On each fibre Em = π−1(m) corresponding to the point m ∈M there is a
unique structure of a real vector space, induced from any vector bundle chart
(Uα, φα) with m ∈ Uα. A section u of (E, π,M) is a smooth map u : M → E
with π ◦ u = IdM .

Let (E, πM ,M) and (F, πN , N) be vector bundles. A vector bundle homo-
morphism Φ : E → F is a fibre respecting, fibre linear smooth map induced
by the smooth map ϕ : M → N between the base Kähler manifolds M and
N , i.e., the following diagram commutes:

M N�
ϕ

E F�Φ

�

πM

�

πN

We say that Φ covers ϕ. If Φ is invertible, it is called a vector bundle isomor-
phism.

All smooth vector bundles together with their homomorphisms form a
category VB.

If (E, π,M) is a vector bundle which admits a vector bundle atlas (Uα,
φα)α∈A with the given open cover, then, we have φα ◦ φ−1

β (m, v) = (m,
φαβ(m)v) for C∞−transition functions φαβ : Uαβ = Uα∩Uβ → GL(V ) (where
we have fixed a standard fibre V ). This family of transition maps satisfies the
cocycle condition

{
φαβ(m) · φβγ(m) = φαγ(m) for each m ∈ Uαβγ = Uα ∩ Uβ ∩ Uγ,

φαα(m) = e for all m ∈ Uα.

The family (φαβ) is called the cocycle of transition maps for the vector bundle
atlas (Uα, φα) .

Now, let us suppose that the same vector bundle (E, π,M) is described
by an equivalent vector bundle atlas (Uα, ψα)α∈A with the same open cover
(Uα). Then the vector bundle charts (Uα, φα) and (Uα, ψα) are compatible for
each α, so ψα ◦ φ−1

β (m, v) = (m, τα(m)v) for some τα : Uα → GL(V ). We get

τα(m)φαβ(m) = φαβ(m) τβ(m) for all m ∈ Uαβ ,

and we say that the two cocycles (φαβ) and (ψαβ) of transition maps over
the cover (Uα) are cohomologous. If GL(V ) is an Abelian group, i.e., if the
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standard fibre V is of real or complex dimension 1, then the cohomology
classes of cocycles (φαβ) over the open cover (Uα) form a usual cohomology
group H1 (M,GL(V )) with coefficients in the sheaf GL(V ) [KMS93].

Let (E, π,M) be a vector bundle and let ϕ : N → M be a smooth map
between the base Kähler manifolds N and M . Then there exists the pull–
back vector bundle (ϕ∗E,ϕ∗π, ϕ∗N) with the same typical fibre and a vector
bundle homomorphism, given by the commutative diagram [KMS93]:

N M�
ϕ

ϕ∗E E�π∗ϕ

�

ϕ∗π

�

π

The vector bundle (ϕ∗E,ϕ∗π, ϕ∗N) is constructed as follows. Let E =
V B(φαβ) denote that E is described by a cocycle (φαβ) of transition maps over
an open cover (Uα) of M . Then (φαβ ◦ϕ) is a cocycle of transition maps over
the open cover

(
ϕ−1(Uα)

)
ofN and the bundle is given by ϕ∗E = V B(φαβ◦ϕ).

In other words, a vector bundle is a fibre bundle which admits an atlas of
linear bundle coordinates. Typical fibres of a smooth vector bundle π : Y → X
are vector spaces of some finite dimension (called the fibre dimension, fdimY
of Y ), and Y admits a bundle atlas ΨY , where trivialization maps ψξ(x) and
transition functions ρξζ(x) are linear isomorphisms of vector spaces. The cor-
responding bundle coordinates (yi) obey a linear coordinate transformation
law

y′i = ρij(x)y
j .

We have the decomposition y = yiei(π(y)), where

{ei(x)} = ψ−1
ξ (x){vi}, x = π(y) ∈ Uξ,

are fibre bases (or frames) for fibres Yx of Y and {vi} is a fixed basis for the
typical fibre V of Y .

There are several standard constructions of new vector bundles from old
ones:

• Given two vector bundles Y and Y ′ over the same base X , their Whitney
sum Y ⊕ Y ′ is a vector bundle over X whose fibres are the direct sums of
those of the vector bundles Y and Y ′.

• Given two vector bundles Y and Y ′ over the same base X , their tensor
product Y ⊗ Y ′ is a vector bundle over X whose fibres are the tensor
products of those of the vector bundles Y and Y ′. In a similar way the
exterior product Y ∧ Y of vector bundles is defined, so that the exterior
bundle of Y is defined as

∧Y = X × R⊕ Y ⊕ ∧2Y ⊕ · · · ⊕ ∧mY, (m = fdimY ).
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• Let Y → X be a vector bundle. By Y ∗ → X is denoted the dual vector
bundle whose fibres are the duals of those of Y . The interior product (or
contraction) of Y and Y ∗ is defined as a bundle map

� : Y ⊗ Y ∗ → X × R.

Given a linear bundle map Φ : Y ′ → Y of vector bundles over X , its kernel
KerΦ is defined as the inverse image Φ−1(0̂(X)) of the canonical zero section
0̂(X) of Y . If Φ is of constant rank, its kernel KerΦ and its image ImΦ
are subbundles of the vector bundles Y ′ and Y , respectively. For example,
monomorphisms and epimorphisms of vector bundles fulfil this condition. If
Y ′ is a subbundle of the vector bundle Y → X , the factor bundle Y/Y ′ over
X is defined as a vector bundle whose fibres are the quotients Yx/Y ′

x, x ∈ X .
Consider the short exact sequence of vector bundles over X,

0→ Y ′ i−→ Y
j−→Y ′′ → 0, (3.20)

which means that i is a bundle monomorphism, j is a bundle epimorphism,
and Ker j = Im i. Then Y ′′ is the factor bundle Y/Y ′. One says that the short
exact sequence (3.20) admits a splitting if there exists a bundle monomorphism
s : Y ′′ → Y such that j ◦ s = IdY ′′ , i.e.,

Y = i(Y ′)⊕ s(Y ′′) ∼= Y ′ ⊕ Y ′′.

Vector bundles of rank 1 are called line bundles .

Multivector-fields and Tangent–Valued Exterior Forms

Recall that a vector-field on a Kähler m-manifold M is defined as a global
section of the tangent bundle TM → M . The set V1(M) of vector-fields on
M is a real Lie algebra with respect to the Lie bracket (see [GMS97]):

[v, u] = (vα∂αuµ − uα∂αvµ)∂µ, v = vα∂α, u = uα∂α. (3.21)

Every vector-field on a Kähler m-manifold M can be seen as an infinites-
imal generator of a local 1–parameter Lie group of diffeomorphisms of M as
follows [KN63/9]. Given an open subset U ⊂ M and an interval (−ε, ε) ∈ R,
by a local 1–parameter group of diffeomorphisms of M defined on (−ε, ε)×U
is denoted a map

G→M, (t, x) �→ Gt(x)

such that:

1. for each t ∈ (−ε, ε), the map Gt is a diffeomorphism of U onto the open
subset Gt(U) ⊂M ; and

2. Gt+t′(x) = (Gt ◦Gt′)(x) if t, t′, t+ t′ ∈ (−ε, ε) and Gt′(x), x ∈ U .
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Any local 1–parameter group of diffeomorphisms G on U ⊂ M defines
a local vector-field u on U by setting u(x) to be the tangent vector to the
curve x(t) = Gt(x) at t = 0. Conversely, if u is a vector-field on a manifold
M , there exists a unique local 1–parameter group Gu of diffeomorphisms on
a neighborhood of every point x ∈ M which defines u. We call Gu a flow
of the vector-field u. A vector-field u on a manifold M is called complete if
its flow is a 1–parameter group of diffeomorphisms of M . In particular, every
vector-field on a compact manifold is complete [KN63/9].

A vector-field u on a fibre bundle Y −→ X is an infinitesimal generator of a
local 1–parameter group Gu of isomorphisms of Y −→ X iff it is a projectable
vector-field on Y . A vector-field u on a fibre bundle Y −→ X is called pro-
jectable if it projects onto a vector-field on X , i.e., there exists a vector-field
τ on X such that the following diagram commutes:

X TX�
τ

Y TY�u

�

π

�
Tπ

A projectable vector-field has the coordinate expression:

u = uα(xµ)∂α + ui(xµ, yj)∂i,

where uα are local functions on X . A projectable vector-field is said to be
vertical if it projects onto the zero vector-field τ = 0 on X , i.e., u = ui∂i takes
its values in the vertical tangent bundle V Y .

For example, in field theory, projectable vector-fields on fibre bundles play
a role of infinitesimal generators of local 1–parameter groups of gauge trans-
formations.

In general, a vector-field τ = τα∂α on a base X of a fibre bundle Y → X
induces a vector-field on Y by means of a connection on this fibre bundle.
Nevertheless, every natural fibre bundle Y → X admits the canonical lift τ̃
onto Y of any vector-field τ on X . For example, if Y is the tensor bundle, the
above canonical lift reads:

τ̃ = τµ∂µ + [∂ντα1 ẋνα2···αm

β1···βk
+ . . .− ∂β1

τν ẋα1···αm

νβ2···βk
− . . .] ∂

∂ẋα1···αm

β1···βk

. (3.22)

In particular, we have the canonical lift onto the tangent bundle TX ,

τ̃ = τµ∂µ + ∂ντ
αẋν

∂

∂ẋα
(3.23)

and another one onto the cotangent bundle T ∗X ,

τ̃ = τµ∂µ − ∂βτν ẋν
∂

∂ẋβ
. (3.24)
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A multivector-field ϑ of degree r (or simply a r-vector-field) on a Kähler
m-manifold M , by definition, is a global section of the bundle ∧rTM → M .
It is given by the coordinate expression

ϑ = ϑα1...αr∂α1 ∧ · · · ∧ ∂αr
, |ϑ| = r,

where summation is over all ordered collections (λ1, ..., λr).
Similarly, an exterior r−form on a Kähler m-manifold M with local co-

ordinates xα, by definition, is a global section of the skew–symmetric tensor
bundle (exterior product) ∧rT ∗M →M ,

φ =
1
r!
φα1...αr

dxα1 ∧ · · · ∧ dxαr , |φ| = r.

The 1–forms are also called the Pfaffian forms .
The vector space Vr(M) of r−vector-fields on a Kähler m-manifold M

admits the Schouten–Nijenhuis bracket (or, SN bracket)

[., .]SN : Vr(M)×Vs(M)→ Vr+s−1(M)

which generalizes the Lie bracket of vector-fields (3.21). The SN–bracket has
the coordinate expression:

ϑ = ϑα1...αr∂α1 ∧ · · · ∧ ∂αr , υ = υα1...αs∂α1 ∧ · · · ∧ ∂αs ,

[ϑ, υ]SN = ϑ � υ + (−1)|ϑ||υ|υ � ϑ, where
ϑ � υ = ϑµα1...αr−1∂µυ

α1...αs∂α1 ∧ · · · ∧ ∂αr−1 ∧ ∂α1 ∧ · · · ∧ ∂αs .

The following relations hold for the SN–bracket:

[ϑ, υ]SN = (−1)|ϑ||υ|[υ, ϑ]SN ,
[ν, ϑ ∧ υ]SN = [ν, ϑ]SN ∧ υ + (−1)|ν||ϑ|+|ϑ|ϑ ∧ [ν, υ]SN ,
(−1)|ν||ϑ|+|ν|[ν, ϑ ∧ υ]SN + (−1)|ϑ||ν|+|ϑ|[ϑ, υ ∧ ν]SN
+ (−1)|υ||ϑ|+|υ|[υ, ν ∧ ϑ]SN = 0.

In particular, let w = wµν∂µ ∧ ∂ν be a bivector-field. We have

[w,w]SN = wµα1∂µw
α2α3∂α1 ∧ ∂α2 ∧ ∂α3 . (3.25)

Every bivector-field w on a Kähler m-manifold M induces the ‘sharp’ bundle
map w� : T ∗M → TM defined by

w�(p)�q := w(x)(p, q), w�(p) = wµν(x)pµ∂ν , (p, q ∈ T ∗
xM). (3.26)

A bivector-field w whose bracket (3.25) vanishes is called the Poisson bivector-
field .

Let ∧r(M) denote the vector space of exterior r−forms on a Kähler m-
manifold M . By definition, ∧0(M) = C∞(M) is the ring of smooth real func-
tions on M . All exterior forms on M constitute the N-graded exterior algebra
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∧∗(M) of global sections of the exterior bundle ∧T ∗M with respect to the
exterior product ∧. This algebra admits the exterior differential

d : ∧r(M)→ ∧r+1(M),

dφ = dxµ ∧ ∂µφ =
1
r!
∂µφα1...αr

dxµ ∧ dxα1 ∧ · · · dxαr ,

which is nilpotent, i.e., d ◦ d = 0, and obeys the relation

d(φ ∧ σ) = d(φ) ∧ σ + (−1)|φ|φ ∧ d(σ).

The interior product (or, contraction) of a vector-field u = uµ∂µ and an
exterior r−form φ on a Kähler m-manifold M is given by the coordinate
expression

u�φ =
r∑

k=1

(−1)k−1

r!
uαkφα1...αk...αr

dxα1 ∧ · · · ∧ d̂x
αk ∧ · · · ∧ dxαr (3.27)

=
1

(r − 1)!
uµφµα2...αr

dxα2 ∧ · · · ∧ dxαr ,

where the caret ·̂ denotes omission. The following relations hold:

φ(u1, . . . , ur) = ur� · · ·u1�φ, (3.28)
u�(φ ∧ σ) = u�φ ∧ σ + (−1)|φ|φ ∧ u�σ, (3.29)
[u, u′]�φ = u�d(u′�φ)− u′�d(u�φ)− u′�u�dφ, (φ ∈ ∧1(M)). (3.30)

Recall from section 3.8.3 above, that the Lie derivative Luσ of an exterior
form σ along a vector-field u is defined by the Cartan relation:

Luσ = u�dσ + d(u�σ).

It satisfies the relation

Lu(φ ∧ σ) = Luφ ∧ σ + φ ∧ Luσ.

In particular, if f is a function, then

Luf = u(f) = u�df.

It is important for dynamical applications that an exterior form φ is invariant
under a local 1–parameter group of diffeomorphisms Gt of M (i.e., G∗

tφ = φ)
iff its Lie derivative Luφ along the vector-field u, generating Gt, vanishes.

Let Ω be a two–form on a Kählerm-manifoldM . It defines the ‘flat’ bundle
map Ω�, as

Ω� : TM → T ∗M, Ω�(v) = −v�Ω(x), (v ∈ TxM). (3.31)

In coordinates, if Ω = Ωµνdx
µ ∧ dxν and v = vµ∂µ, then
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Ω�(v) = −Ωµνvµdxν .

One says that Ω is of constant rank k if the corresponding map (3.31) is
of constant rank k (i.e., k is the greatest integer n such that Ωn is not the
zero form). The rank of a nondegenerate two–form is equal to dimM . A
nondegenerate closed two–form is called the symplectic form.

Given a manifold map f : M →M ′, any exterior k-form φ on M ′ induces
the pull–back exterior form f∗φ on M by the condition

f∗φ(v1, . . . , vk)(x) = φ(Tf(v1), . . . , T f(vk))(f(x))

for an arbitrary collection of tangent vectors v1, · · · , vk ∈ TxM . The following
relations hold:

f∗(φ ∧ σ) = f∗φ ∧ f∗σ, df∗φ = f∗(dφ).

In particular, given a fibre bundle π : Y → X , the pull–back onto Y of
exterior forms on X by π gives the monomorphism of exterior algebras

π∗ : ∧∗(X)→ ∧∗(Y ).

Elements of its image π∗ ∧∗ (X) are called basic forms. Exterior forms on Y
such that u�φ = 0 for an arbitrary vertical vector-field u on Y are said to be
horizontal forms . They are generated by horizontal 1–forms {dxα}. For exam-
ple, basic forms are horizontal forms with coefficients in C∞(X) ⊂ C∞(Y ).
A horizontal form of degree n = dimX is called a density. For example,
Lagrangians in field theory are densities.

Elements of the tensor product ∧r(M) ⊗ V1(M) are called the tangent–
valued r-forms on M . They are sections

φ =
1
r!
φµα1...αr

dxα1 ∧ · · · ∧ dxαr ⊗ ∂µ

of the tensor bundle
∧rT ∗M ⊗ TM →M.

Tangent-valued 1–forms are usually called the (1,1) tensor fields.
In particular, there is the 1–1 correspondence between the tangent–valued

1–forms on a Kähler m-manifold M and the linear bundle maps over M ,

φ : TM → TM, φ : TxM  v �→ v�φ(x) ∈ TxM. (3.32)

In particular, the canonical tangent–valued one–form θM = dxα ⊗ ∂α defines
the identity map of TM .

Tangent-valued forms play a prominent role in jet formalism and theory of
connections on fibre bundles. In particular, tangent–valued 0-forms are vector-
fields on M . Also, there is 1–1 correspondence between the tangent–valued
1–forms φ on a Kähler m-manifold M and the linear bundle endomorphisms
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φ̂ : TM → TM, φ̂ : TxM  v �→ v�φ(x) ∈ TxM, (3.33)

φ̂
∗

: T ∗M → T ∗M, φ̂
∗

: T ∗
xM  v∗ �→ φ(x)�v∗ ∈ T ∗

xM, (3.34)

over M . For example, the canonical tangent–valued 1–form on M ,

θM = dxα ⊗ ∂α , (3.35)

corresponds to the identity maps (3.33) and (3.34).
The most important are the following types of vector-fields and differential

forms on a bundle Y −→ X (see [GMS97]):

• a projectable vector-field on Y ,

u = uµ(x)∂µ + ui(y)∂i,

which covers a vector-field τu = uµ(x)∂µ on the base X such that the
following diagram commutes:

X TX�
τu

Y TY�u

�

π

�
Tπ

• a vertical vector-field , u : Y → V Y, given by u = ui(y)∂i, is a projectable
vector-field which covers τu = 0;

• an exterior horizontal form, φ : Y → ∧rT ∗X, given by

φ =
1
r!
φα1...αr

(y)dxα1 ∧ · · · ∧ dxαr ;

• a tangent–valued horizontal form, φ : Y → ∧rT ∗X ⊗ TY, given by

φ =
1
r!
dxα1 ∧ · · · ∧ dxαr ⊗ [φµα1...αr

(y)∂µ + φiα1...αr
(y)∂i];

• a vertical–valued horizontal form, φ : Y → ∧rT ∗X ⊗ V Y, given by

φ =
1
r!
φiα1...αr

(y)dxα1 ∧ · · · ∧ dxαr ⊗ ∂i.

• a vertical-valued soldering form, σ : Y → T ∗X ⊗ V Y, given by

σ = σiα(y)dxα ⊗ ∂i (3.36)

and, in particular, the canonical soldering form on TX ,

θX = dxα ⊗ ∂α.
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The pull–back–valued forms on a bundle Y → X are the following two
maps:26

Y → ∧rT ∗Y ⊗ TX, φ =
1
r!
φµα1...αr

(y)dxα1 ∧ · · · ∧ dxαr ⊗ ∂µ,

and (3.37)

Y → ∧rT ∗Y ⊗ V ∗X, φ =
1
r!
φα1...αri(y)dx

α1 ∧ · · · ∧ dxαr ⊗ dyi.

The pull–back-valued forms (3.37) are exemplified by the canonical bundle
monomorphism

∧nT ∗X ⊗ V ∗Y ↪→ ∧n+1T ∗Y, ω ⊗ dyi �→ ω∧dyi.

All horizontal n−forms on a bundle Y −→ X are called horizontal densities.
For any vector-field τ on X , we can define its pull–back on Y ,

π∗τ = τ ◦ π : Y −→ TX.

This is not a vector-field on Y , for the tangent bundle TX of X fails to be
a subbundle of the tangent bundle TY of Y . One needs a connection on Y
−→ X in order to set the imbedding TX ↪→ TY .

The space ∧∗(M)⊗V1(M) of tangent–valued forms admits the Frölicher–
Nijenhuis bracket (or, FN bracket)

[., .]FN : ∧r(M)⊗ V1(M)× ∧s(M)⊗ V1(M)→ ∧r+s(M)⊗ V1(M),

[φ, σ]FN =
1
r!s!

(φνα1...αr
∂νσ

µ
αr+1...αr+s

− σναr+1...αr+s
∂νφ

µ
α1...αr

− (3.38)

rφµα1...αr−1ν
∂αr

σναr+1...αr+s
+ sσµναr+2...αr+s

∂αr+1φ
ν
α1...αr

)dxα1

∧ · · · ∧ dxαr+s ⊗ ∂µ.

The following relations hold for the FN–bracket:

[φ, ψ]FN = (−1)|φ||ψ|+1[ψ, φ]FN , (3.39)
[φ, [ψ, θ]FN ]FN = [[φ, ψ]FN , θ]FN + (−1)|φ||ψ|[ψ, [φ, θ]FN ]FN .

26 The forms (3.37) are not tangent–valued forms. The pull–backs

φ =
1

r!
φµα1...αr

(x)dxα1 ∧ · · · ∧ dxαr ⊗ ∂µ

of tangent–valued forms on X onto Y by π exemplify the pull–back-valued forms
(3.37). In particular, we shall refer to the pull–back π∗θX of the canonical form
θX on the base X onto Y by π. This is a pull–back-valued horizontal one–form
on Y which we denote by the same symbol

θX : Y → T ∗X ⊗ TX, θX = dxα ⊗ ∂α.
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Given a tangent–valued form θ, the Nijenhuis differential , dθσ, along θ on
∧∗(M)⊗ V1(M) is defined as

dθσ = [θ, σ]FN . (3.40)

By virtue of the relation (3.39), it has the property

dφ[ψ, θ]FN = [dφψ, θ]FN + (−1)|φ||ψ|[ψ, dφθ]FN .

In particular, if θ = u is a vector-field, the Nijenhuis differential becomes the
Lie derivative of tangent–valued forms

Luσ = duσ = [u, σ]FN = (uν∂νσµα1...αs
− σνα1...αs

∂νu
µ (3.41)

+ sσµνα2...αs
∂α1u

ν)dxα1 ∧ · · · ∧ dxαs ⊗ ∂µ, (σ ∈ ∧s(M)⊗ V(M)).

3.8.4 Tensor-Product State-Space for n Quantum Particles

Recall that classical state-space for the system of n particles is its 6ND phase-
space P , including all position and momentum vectors, ri = (x, y, z)i and
pi = (px, py, pz)i respectively (for i = 1, ..., n). The quantization is performed
as a linear representation of the real Lie algebra LP of the symplectic phase-
space P , defined by the Poisson bracket {A,B} of classical variables A,B -
into the corresponding real Lie algebra LH of the Hilbert space H, defined by
the commutator [Â, B̂] of skew-Hermitian operators Â, B̂ [II08b, II09].

We start with the Hilbert space Hx for a single 1D (non-relativistic) quan-
tum particle, which is composed of all vectors |ψx〉 of the form

|ψx〉 =
∫ +∞

−∞
ψ (x) |x〉 dx,

where ψ (x) = 〈x|ψ〉 are square integrable Fourier coefficients,
∫ +∞

−∞
|ψ (x)| 2 dx < +∞.

The position and momentum Hermitian operators, x̂ and p̂, respectively, act
on the vectors |ψx〉 ∈ Hx in the following way:

x̂|ψx〉 =
∫ +∞

−∞
x̂ ψ (x) |x〉 dx,

∫ +∞

−∞
|xψ (x)| 2 dx < +∞,

p̂|ψx〉 =
∫ +∞

−∞
−i�∂x̂ψ (x) |x〉 dx,

∫ +∞

−∞
|−i�∂xψ (x)|2 dx < +∞.

The orbit Hilbert space Ho1 for a single 3D quantum particle with the full
set of compatible observable r̂ =(x̂, ŷ, ẑ), p̂ = (p̂x, p̂y, p̂z), is defined as

Ho1 = Hx ⊗Hy ⊗Hz,
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where r̂ has the common generalized eigenvectors of the form

|̂r〉 = |x〉×|y〉×|z〉 .

Ho1 is composed of all vectors |ψr〉 of the form

|ψr〉 =
∫

Ho

ψ (r) |r〉 dr =
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
ψ (x, y, z) |x〉×|y〉×|z〉 dxdydz,

where ψ (r) = 〈r|ψr〉 are square integrable Fourier coefficients,

∫ +∞

−∞
|ψ (r)| 2 dr < +∞.

The position and momentum operators, r̂ and p̂, respectively, act on the
vectors |ψr〉 ∈ Ho1 in the following way:

r̂|ψr〉 =
∫

Ho
1

r̂ψ (r) |r〉 dr,
∫

Ho
1

|rψ (r)| 2 dr < +∞,

p̂|ψr〉 =
∫

Ho
1

−i�∂r̂ψ (r) |r〉 dr,
∫

Ho
1

|−i�∂rψ (r)|2 dr < +∞.

Now, if we have a system of n 3D particles, let Hoi denote the orbit Hilbert
space of the ith particle. Then the composite orbit state-spaceHon of the whole
system is defined as a direct product

Hon = Ho1 ⊗Ho2 ⊗ ...⊗Hon.

Hon is composed of all vectors

|ψnr 〉 =
∫

Ho
n

ψ (r1, r2, ..., rn) |r1〉×|r2〉×...×|rn〉 dr1dr2...drn

where ψ (r1, r2, ..., rn) = 〈r1, r2, ..., rn|ψnr 〉 are square integrable Fourier coef-
ficients ∫

Ho
n

|ψ (r1, r2, ..., rn)|2 dr1dr2...drn < +∞.

The position and momentum operators r̂i and p̂i act on the vectors |ψnr 〉 ∈
Hon in the following way:

r̂i|ψnr 〉 =
∫

Ho
n

{r̂i}ψ (r1, r2, ..., rn) |r1〉×|r2〉×...×|rn〉 dr1dr2...drn,

p̂i|ψnr 〉 =
∫

Ho
n

{−i�∂r̂i}ψ (r1, r2, ..., rn) |r1〉×|r2〉×...×|rn〉 dr1dr2...drn,

with the square integrable Fourier coefficients
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∫

Ho
n

|{r̂i}ψ (r1, r2, ..., rn)|2 dr1dr2...drn < +∞,
∫

Ho
n

|{−i�∂ri}ψ (r1, r2, ..., rn)|2 dr1dr2...drn < +∞,

respectively. In general, any set of vector Hermitian operators {Âi} corre-
sponding to all the particles, act on the vectors |ψnr 〉 ∈ Hon in the following
way:

Âi|ψnr 〉 =
∫

Ho
n

{Âi}ψ (r1, r2, ..., rn) |r1〉×|r2〉×...×|rn〉 dr1dr2...drn,

with the square integrable Fourier coefficients
∫

Ho
n

∣
∣
∣
{
Âi

}
ψ (r1, r2, ..., rn)

∣
∣
∣
2

dr1dr2...drn < +∞.

3.8.5 Complex-Valued Neural Networks

The main characteristics of complex-valued, feedforward, multi-layered, back-
propagation neural networks (NNs)27 are (see [Nit97, II07] and references
therein):

(a) the properties greatly different from those of the real-valued back-
propagation (BP) network, including 2D motion structure of weights and the
orthogonality of the decision boundary of a complex-valued neuron;

(b) the learning property superior to the real-valued back-propagation;
(c) the inherent 2D motion learning ability (an ability to transform geo-

metric figures); and
(d) the ability to solve the XOR problem and detection of symmetry prob-

lem with a single complex-valued neuron.
Complex-valued NNs consist of the complex-valued neurons. Their input

signals, weights, thresholds and output signals are all complex numbers. The
net input Un to a complex-valued neuron n is defined as

Un = WmnXm + Vn,

where Wmn is the (complex-valued) weight connecting the complex-valued
neurons m and n, Vn is the (complex-valued) threshold value of the complex-
valued neuron n, and Xm is the (complex-valued) input signal from the
complex-valued neuron m. To get the (complex-valued) output signal, convert

27 It is expected that complex-valued neural networks, whose parameters (weights
and threshold values) are all complex numbers, would have applications in all
the fields dealing with complex numbers (e.g., quantum physics/computation,
telecommunications, electronics, etc).
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the net input Un into its real and imaginary parts as follows: Un = x+ iy = z
(where i =

√
−1). The (complex-valued) output signal is defined to be:28

σ(z) = tanh(x) + i tanh(y), where (for all u ∈ R)
tanh(u) = (exp(u)− exp(−u)) = (exp(u) + exp(−u)).

A complex-valued NN consists of such complex-valued neurons. A typical
network has three layers: m→ n→ 1, with ωij ∈ C being the weight between
the input neuron i and the hidden neuron j; ω0j ∈ C is the threshold of
the hidden neuron j; cj ∈ C is the weight between the hidden neuron j and
the output neuron (1 ≤ i ≤ m; 1 ≤ j ≤ n), and c0 ∈ C is the threshold
of the output neuron. Let yj(z), h(z) denote the output values of the hidden
neuron j, and the output neuron for the input pattern z = [z1, ..., zm]t ∈ Cm,
respectively. Let also νj(z) and µ(z) denote the net inputs to the hidden
neuron j and the output neuron for the input pattern z ∈ C

m, respectively.
Then the following relations hold:

νj(z) = ωijzi + ω0j , µ(z) = cjyj(z) + c0,

yj(z) = σ(νj(z)), h(z) = σ(µ(z)).

The set of allm→ n→ 1 complex-valued NNs is usually denoted by Nm,n.
In particular, the complex-BP learning rule for the Nm,n has been obtained
in [Nit97] by using a steepest-descent method.

28 Note that −1 < Re[σ], Im[σ] < 1 and also that σ is not regular as a complex
function, because the Cauchy-Riemann equations do not hold.
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4

Dynamics of Crowd Behaviors: From Complex
Plane to Quantum Random Fields

4.1 Complex Plane Dynamics of Crowds and Groups

In this section, we present a unique modelling framework for dynamics, sim-
ulation and control of groups and crowds behaviors in the complex plane.
First, we formulate a general conceptual framework for representing human
behaviour in the language of commutative diagrams. Second, we derive a
nonlinear, attractor, Langevin-type dynamics in the complex plane from the
previously published crowd dynamics model [IR12]. This previous model was
based on the nonlinear Schrödinger equation; the development presented here
is essentially a restatement using formal geometrical representation in terms
of Kähler manifolds and the associated Kähler-Ricci flow. We simulate this
Langevin-type crowd dynamics in the C-sharp visual environment, using a
complexified version of the Runge-Kutta-Cash-Karp numerical integrator. Fi-
nally, we use our approach to perform finite-type control in the complex
Hilbert space of hundreds of agents moving around in the complex plane.

4.1.1 Introduction

As a motivation, consider a local map of a sea with a fleet of vessels moving
on it; the sea can be naturally modeled by a region in the complex-plane,
so that dynamics of an ND ship fleet sailing on that local map is governed
by a set of complex-valued ordinary differential equations (ODEs). Then all
individual agents behaviors comprise a complex ND Hilbert control-space.

The above motivational example can be abstracted to formal conceptual
modelling of a wide class of human behaviors, which can be externally ob-
served as some form of two-dimensional (2D) dynamics, each consisting of
a deterministic drift and random fluctuations. Such class of human behav-
iors can be efficiently modeled by Langevin-type dynamical equations in the
complex plane. Some examples of such behaviors include:

(i) Movements of a group/crowd of people on any horizontal surface (e.g.
see, soccer field, swimming pool, street, corridor, ship deck, gym, or any large
hall); and
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(ii) Movements of any kind of vehicles (land, sea, amphibian), or a fleet of
N such vehicles, moving on a flat surface, etc.

As a more formal example, here is a functional definition of the general
concept of human behaviors. Suppose that we are given the following data:

• A set of N nonlinear attractor ODEs governing individual agents’ motions
in the complex plane C, or formally, a map:

Dyn : R→ C, given by t �→ żk(t), (for k = 1, ..., N); and

• A set of the corresponding individual agents’ controllers, formally given
by a map:

Con : C→ H(C) � C
N , given by żk(t) �→ conk(t),

where H(C) is the Hilbert space constructed over C, by a double least-
squares method and the inner product between them.1

Then the functional set Behav of agent behaviors is defined as a func-
tional composition of the set Dyn of functional dynamics and the set Con of
functional controls:

Behav = Dyn ◦ Con : R→ H(C), given by t �→ conk(t).
1 Consider a common practical problem of general data-fitting with a set of ar-

bitrary functions, using an efficient Levenberg-Marquardt (LM) optimizer. This
nonlinear least-squares problem does not have a closed-form solution, so it can
be only iteratively solved, by minimizing a certain L2-norm (i.e., setting its gen-
eralized gradient to zero). If the associated Cauchy L2-sequence converges (to
zero), we have created a real N-dimensional (ND) Banach space. Slightly more
generally, if we can successfully fit two data-sets simultaneously, we will create
two real ND Banach spaces. Then their “dot-product” is a complex ND Hilbert
space H, which represents a rigorous framework for analyzing lattice-ODE dy-
namics in the complex plane. [More precisely, this is a tensor product of two real
Banach spaces V N1 and V N2 together with an inner product defined on it in such
a way that for each pair of N-vectors

`
v1 ∈ V N1 ,v2 ∈ V N2

´
there exists an inner

(dot) product, a complex number z = v1·v2 ∈ H(C).] This lattice dynamics of
N agents, each governed by its own wave-like descriptor ψ(t), has some kind of
a complex chain-form (or, a discrete nonlinear Schrödinger equation). Finally,
if we replace the fitting sum (of-squares) with the integral (of square-integrable
functions) – we create an infinite-dimensional Hilbert space, which represents a
rigorous framework for analyzing fluid-PDE dynamics in the complex plane. Al-
ternatively, by taking the continuous limit (N → ∞) of an lattice-ODE dynamics,
we come to the same ‘fluid’-PDE dynamics with its infinite-dimensional Hilbert
control-space. From computational perspective, however, we will be always con-
strained to finite-dimensional ND lattice dynamics and its associated ND Hilbert
control-space. For example, consider a local map of a sea. It can be most-naturally
modeled as a complex-plane, so that dynamics of an ND ship-fleet sailing on that
local map is governed by the ODE-lattice dynamics. Then all individual behav-
iors of the ships in the fleet (i.e., all individual agents) comprise a complex ND
Hilbert control-space.
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Furthermore, suppose that we are given the following two functional sets:

• Dyn : adaptive dynamics ψk(t) of N agents (for k = 1, ..., N) in the com-
plex plane C, for small N (say N < 100) given by a set of nonlinear at-
tractor ODEs, otherwise (for N ≥ 100) given by the adaptive Schrödinger
lattice2, with random initial conditions and parameter values:

ψ̇k = i
(
αkψk−1 + 2ψk + βkψk+1

)
, (i =

√
−1). (4.1)

Here, αk and βk are the best-fit parameters, to be determined by the
LM-least-squares from some externally observed data-set. The quantum
random field (4.1) formally defines the map:

Dyn : R −→ C
N , given by t �→ ψ̇k(t).

• Con : a set of the corresponding individual agents’ controllers, formally
given by a map:

Con : C
N −→ H(C), given by ψ̇k(t) �→ conk(t),

where H(C) is the complex Hilbert space constructed over C by a double
least-squares method and the inner product of vectors from the two real
Banach spaces.

If the maps Dyn and Con are properly defined, then the following diagram
commutes:

t ∈ R ψ̇k(t) ∈ C�
Dyn

Behav

�
�

�
�

�
�
��

conk(t) ∈ H(C)
�

Con

Attr

�
�

�
�

�
�
��

C

�

Follow

2 This is a discretized (and adaptive) version of the standard linear Schrödinger
equation (see, e.g. [II09]):

i∂tψ = − 1

2
∂xxψ, (∂x ≡ ∂/∂x)

governing the time evolution of the complex-valued wave function ψ = ψ(x, t),
describing a (‘quantum cloud’ around a) free elementary particle.
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where Attr is an attractor in the complex plane C, while Follow is the set
of the path-following maps.

That is, the set Behav of dynamic agent behaviors is defined by the
functional composition:

Behav = Con ◦Dyn, given by t �→ conk(t). (4.2)

For example, using the Arrows package in the Haskell language (see [OGS08]),
the composition (4.2) can be implemented as:

Behav == Con ·Dyn == Con(Dyn t)) == (Con<<<Dyn) t ,

by calling the two core C-functions RKF and LM; RFK implements the adap-
tive dynamics Dyn, and LM implements the agents’ controllers Con.

More generally, combining different behaviors is defined by composing maps
(e.g. functions, processes, signals, systems), which is like following directed
paths from one object to another. Compositions along successive paths or
arrows comprise a commutative flow.

As an illustration, consider a path
−−→
AB on a street directory, or a ship

deck and corridors, to be followed by a crew or a special unit.
−−→
AB is given

by the commutative flow below, i.e., the following set of compositional rules,
where each arrow represents behavioral dynamics given by equation (4.1):

g ◦ e = h ◦ f
= k ◦ c ◦ a ◦ i
= k ◦ d ◦ b ◦ i
= k ◦ c ◦ j ◦ e

= k ◦ d ◦ l ◦ f ;

e.g. imagine a map from a street
directory (or, a building floor,
a ship’s deck, etc.) underneath
this diagram and a special
unit (or person of interest)
moving from A to B, where
each path is defined by (4.1).

• B�
h

A •�e

�

f

�

g

• •�
d

• •�a

�

b

�

c

i����
j�

���

k����
l

�
���

The objective of this problem might be to implement an abstract commutative–
flow crowd framework in a functional programming language like Haskell and
apply it to modelling and reasoning about general dynamics of individuals,
teams, groups and crowds [IR10a, IR10b, IR10c, IR12], on various hierarchical
levels of nonlinear complexity [II08a].
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4.1.2 Complex-Valued Dynamics of Crowd and Group Behaviors

A nonlinear Schrödinger equation (NLS) of the cubic focusing form (see [II09]
and references therein):

i∂tψ = − Φ

2
∂xxψ + V |ψ|2ψ, (4.3)

governing the time evolution of the complex-valued wave function ψ = ψ(x, t)
with the strength (scaling factor) Φ, describing a free elementary particle
moving in adaptive potential well V = V (x) has been recently used for fi-
nancial option pricing [Iva10, Iva11a] as well as for general crowd modelling
(see [IR12] and references therein). As a crowd dynamics simulator, the NLS
equation (4.3) has been numerically solved with the method of lines (MOL),
using the second-order central finite difference scheme (for technical details,
see [IR12] and references therein). MOL-lines effectively but automatically
define and solve the crowd velocity vector-field in the complex plane C, thus
implicitly governing motions of N agents.

In the present paper, we further develop crowd dynamics in the complex
plane C, by explicitly defining all individual velocity controllers in the complex
plane C, by the set of 1st-order ODEs:3

żk(t) = Φ [A− f(z)] , (for k = 1, ..., N) (4.4)

where z = z(t) is a time-dependent complex number (z = z + iy, with z as
its real part and y as its imaginary part); A = A(z) is an attractor function
(trajectory) in the complex plane C, while f(z) is some nonlinear function
of z, yet to be defined. Numerical solution of the system (4.4) gives the time
evolution of N agents of SE(2)-kinematic type.4

To encapsulate the main characteristics of both linear Schrödinger quan-
tum mechanics and solitonic quantum media given by the cubic NLS (4.3) the

3 For comparison, we remark here that a direct discretizaton of the NLS equation
(4.3) gives the following lattice NLS model (see the Kerr-cubic DNLS case in
[OB07]):

ψ̇k(t) = iΦ
ˆ
ψk+1(t) + ψk−1(t) + V ψ3

k(t)
˜
, (for k = 1, ..., N).

4 The Euclidean group SE(2) ≡ SO(2) × R, giving motion of a rigid-body in a
plane, represents a set of all 3 × 3−matrices of the form:

2

4
cos θ sin θ x
− sin θ cos θ y

0 0 1

3

5 ,

including both rigid translations (i.e., Cartesian x, y−coordinates) and rotation

matrix

»
cos θ sin θ
− sin θ cos θ

–

in Euclidean plane R
2 ≈ C, see [II12].
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function f(z) is defined as: f(z) = αzk + βz3
k. Further more, for the sake of

more realistic dynamical simulations, the notion of ‘quantum cloud’ is added
in the form of both additive and multiplicative Wiener-type zero-mean ran-
dom noise, i.e. Brownian motion: W (t) = βzk(t)(ζ − 0.5), so that the system
(4.4) becomes the set of complex-valued Langevin-type equations:

żk = Φ
[
A(t)− αzk − βz3

k + βzk(ζ − 0.5)
]
, (4.5)

where ζ is the pseudo-random number from the range [0,1], generated at each
integration time step.

4.1.3 Kähler Geometry of Crowd and Group Dynamics

Crowd dynamics model from the previous section can be further developed
using sophisticated machinery from Kähler differential geometry, which com-
bines Riemannian (Lagrangian) and symplectic (Hamiltonian) formalisms
with the quantum-like complex structure (see Appendix), as follows.

A Kähler manifold is a symplectic manifold that has an integrable almost-
complex structure that maps with the symplectic form. Formally, the ODE
system (4.4) defines the crowd vector-field on its own configuration Kähler
N -manifold K = (M,ω) = (M, g) (with the above-mentioned special case
K = C

N ), which has the following characteristics:

1. Crowd’s local holomorphic coordinates: {z1, · · · , zN} ∈ U ⊂M, with the
corresponding complex-valued crowd differentials:

dzk = dxk + idyk, dz̄k = dxk − idyk;

2. Crowd’s Hermitian metric tensor:5 gij = gij(z
i, zj), with the correspond-

ing Kähler metric g as a positive and symmetric (1,1)-form:

g = igij dz
i ⊗ dzj ,

and the associated main Kähler form ω as a closed (dω = 0) and positive
(1,1)-form:

ω = igij dz
i ∧ dzj.

In the particular case of K = CN used before as a crowd manifold example,
the Kähler form ω can be written as:

ω = i
(
dz1 ∧ dz1 + dz2 ∧ dz2 + ...+ dzN ∧ dzN

)

= −2 (dx1 ∧ dy1 + dx2 ∧ dy2 + ...+ dxN ∧ dyN )

=
N∑

k=1

dxk ∧ dyk.

5 The metric tensor gij(z
i, zj) gives both distances between individual agents and

their total mass-distribution within the crowd.
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while the corresponding Kähler metric g is given by:

g = i
(
dz1 ⊗ dz1 + dz2 ⊗ dz2 + ...+ dzN ⊗ dzN

)

= −2 (dx1 ⊗ dy1 + dx2 ⊗ dy2 + ...+ dxN ⊗ dyN )

=
N∑

k=1

dxk ⊗ dyk = δikdxkdyk , (δik = Kronecker delta).

3. Dolbeault cohomology group for the crowd:

H1,1

∂
(M,R) =

{∂-closed real (1,1)-forms}
{∂-exact real (1,1)-forms}

;

4. Main functional crowd relation:6

Kähler crowd form −→ ωϕ = ω + i∂∂ϕ←− Kähler crowd potential.

5. Functional space of Kähler crowd potentials:

P = {ϕ | ωϕ = ω + i∂∂ϕ > 0}.

Once the Kähler configuration manifold is properly defined, the so-called
normalised Kähler-Ricci flow is usually written as:

∂tg = g − Ric(g), (4.6)

where Ric(g) is the Ricci form. In a local open chart on the Kähler crowd
(configuration) manifoldK = (M, g), starting from some smooth initial Kähler
metric g0 = gij(0), the Kähler-Ricci flow (4.6) is given (for i, j = 1, · · · , n) by:

∂tgij(t) = gij(t)−Rij(t). (4.7)

During the Kähler-Ricci flow (4.6)-(4.7), the corresponding evolutions of
the Ricci curvature Rij = Rij(t) and the scalar curvature R = R(t) on the
Kähler crowd manifold K are governed by:

∂tRij = ∆MRij +RijpqRqp −RipRpj and (4.8)
∂tR = ∆MR+RijRji −R, respectively,

starting from some smooth initial Ricci and scalar curvatures, Rij(0) and
R(0), respectively.

The Kähler-Ricci flow (4.7)–(4.8) is a geometrical representation of the
basic crowd dynamics model (4.4). It was proved by [Cao85, CC99], following

6 The Kähler crowd potential ϕ is a real–valued function ϕ on a Kähler configu-
ration manifold for which the Kähler form ω can be written as ω = i∂∂̄ϕ, where
∂ = ∂zkdzk and ∂̄ = ∂z̄kdz̄k.
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the pioneering work of [Yau06], that the Kähler-Ricci flow (4.7) exists glob-
ally for any smooth initial Kähler metric g0 = gij(0). For the most recent
review, see [TZ13]. From the control-theory perspective, the most important
characteristic of the Kähler-Ricci flow and the associated curvatures is the
existence of its solitary solutions, which are shrinking, or decaying in time.
This characteristic is associated to geometrical entropy decrease and gives the
global Lyapunov stability to the crowd flow. This quality is particularly ob-
vious in numerical crowd simulations driven by complex-plane attractors (see
next section), where all initial randomness gradually vanishes during the sim-
ulation, while the attractor gradually becomes the most dominant dynamics
factor.

4.1.4 Computer Simulations of Crowds and Croups Dynamics

We have built a dynamical simulator in the C# language for simulating
attractor-driven Langevin-type crowd dynamics in the complex plane C.

Fig. 4.1. A sample complex attractor.

We adopted the following approach to yield the illustrations here:

1. The set of complex-plane attractors, A(t) ≡ Attr(t), has been defined (see
Figure 4.1) as:

sin(t) + i cos(t) : basic circle,
sin(2t) + i cos(t) : vertical figure 8,
sin(t)− i sin(2t) : horizontal figure 8,
sin(3t) + i cos(t) : double figure 8,
sin(4t) + i cos(t) : triple figure 8,
sin(t)± i cos(2t) : convez/concave parabolas,
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cos(3t)± i cos(t) : figures S/Z,
0 + i cos(t) : central vertical line,
±1 + i cos(t) : left/right vertical lines,

sin(t) + 0 i : central horizontal line,
sin(t)± i : top/bottom horizontal lines,

sin(t)± γ i sin(t) : various diagonals (for γ = 1, 2, 3)

using (real and imaginary) pairs of C# λ-functions of the form:
Func <double, double, double> f1 = (t, a) =>
(t < 0.5*tFin) ? 2 * Math.Sin(a * t) : 2 * Math.Cos(a * t);

– etc.
2. The set of complex-valued Langevin-type ODEs, one ODE per agent, has

been defined, including the previously-defined attractors, as:

żk = Φ
[
A(t) − αzk − βz3

k + βzk(ζ − 0.5)
]
, which in C# reads :

dz[k] = FldStrn * (Attr(t) - alpha * z[k] - beta * Math.Pow(z[k], 3)
+ beta * z[k] * (rand.NextDouble() - 0.5));

where Φ ≡ FldStrn is the field strength, α ≡ alpha and β ≡ beta are
coefficients, ζ ≡ rand.NextDouble() is the pseudo-random number from
the range [0,1], generated at each integration time step;

3. Complexified version of the Runge-Kutta-Cash-Karp integrator [CK90]
has been implemented;

4. Dynamics of several hundred agents has been visualised on the standard
C-sharp panel component;

5. Plots of the simulations are visualised on the standard MS-chart compo-
nent (see Figures 4.2, 4.3 and 4.4).

4.1.5 Braids of Agents’ Behaviors in the Complex Plane

There is a close relationship between braid groups and configuration spaces
of distinct points in the complex plane C, which can provide a useful model
for various agents’ dynamic behaviors in different planar environments (e.g.
land, sea, ship deck/corridor, street, etc.).

Informally, assume that all individual agents are represented as points in
C. If the subset O ⊂ C represents the obstacles which the agents need to
avoid, then the configuration space C, representing a ‘safe7 configuration’ of
n non-colliding agents, is given by [Ghr01]:

C(C−O) = [(C−O)× (C−O) · · · × (C−O)]−∆, where
∆ = {(x1, x2, . . . , xn : xi = xj for some i = j} (the pairwise diagonal).

7 According to [Ghr01] there is an analytical measure of ‘safety’, that is the distance
from each agent to the boundary of C(C −O).
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Fig. 4.2. Simulating a crowd of 200 agents moving up and down the corridor.

The unlabeled configuration space, Cu(C−O), is defined as the quotient C(C−
O)/Sn, of C(C− O) by the (natural action of) the symmetric group Sn that
permutes the ordered points in C. Now, the n-strand braid group of (C−O)
is defined as:

Bn(C−O) = π1 [Cu(C−O)] ,

whereas the n-strand pure braid group of (C−O) is:

Pn(C−O) = π1 [C(C−O)] ,

where π1(X) is the fundamental group of the topological space X . In case of
C−O = R2, these are classical Artin braid groups Bn and their pure relatives
Pn.

8

Formally, let En be an affine complex algebraic variety (i.e., the set of so-
lutions of a system of polynomial equations over the field of complex numbers,
singular if n � 2), given by the set of all unordered n-tuples of points of C

[Rud83, Rud05]. A discriminant locus is a subset ∆ ⊂ En of n-tuples with at

8 Besides Artin’s representation, there is also classical Burau’s representation, given
as a matrix (or, ring) of Laurent polynomials, and also related to Alexander’s
polynomial.
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Fig. 4.3. Simulating a fleet of 200 boats moving within the rectangular sea-
region, driven by ‘figure 8’ attractors (both vertical and horizontal).

least one duplication (representing an irreducible algebraic hypersurface). Its
complement, C =En\∆, is the configuration space (of n distinct points in C).
Any function F : X → En defined on a topological space X is an n-valued
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Fig. 4.4. Simulating general behaviors of a crowd of 200 agents, including:
up-and-down moves on both left and right sides, left-and-right on both top and
bottom sides, left and right diagonals, clockwise and anticlockwise circles.

analytic function (which is locally given by a convergent power series) on X
(such that its graph is the subset of X × C).

The braid group Bn with n strands is the fundamental group Bn =
π1(En\∆) of the configuration space C =En\∆ [Bir75]. Bn acts (faithfully) as
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a group of automorphisms of the free group Fn of rank n. Explicitly, if Fn =
π1(C\{w1, ..., wn};w0), the acting Bn is realized as π1(En−∆; {w1, . . . , wn});
on standard free generators x1, . . . , xn of Fn (positively oriented meridians
around w1, . . . , wn), the action is:

xiσi = xixi+1x
−1
i , xi+1σi = xi, xjσi = xj for j = i, i+ 1.

There is a map from the set of strata of Qn into a hierarchy of “types of
expressions” of ∆2 ∈ Bn as products β(1) · · ·β(k) [Rud83, Rud05]. For exam-
ple, ∆2 = (σ1σ

2 · · ·σn−1)n is pure, and in terms of the standard generators
of the pure braid group:

Aij = (σi · · ·σj−1)σ2
j (σi · · ·σj−1)−1, 1 � i � j � n− 1,

∆2 is given by

∆2 = A1,n−1A1,n−2 · · ·A1,1A2,n−1 · · ·A2,2 · · ·An−1,n−1.

More generally, let ∆2 = β(1) · · ·β((n2 − n)/2), where β(i) = Ap,q. For
each pair p, q the generators xp, xq+1 commute, that is, e.g. the action of
A1,1 = σ2

1 on Fn is

x1σ
2
1 = (x1x2x

−1
1 )σ1 = x1x2x1x

−1
2 x−1

1 ,

x2σ
2
1 = x1σ

2
1 = x1x

2x−1
1 , xkσ

2
1 = xk, k = 1, 2;

and the relations x1 = x1x2x1x
−1
2 x−1

1 and x2 = x1x2x
−1
1 both say x1 com-

mutes with x2. The group Bn is free Abelian of rank n− 1.

4.1.6 Hilbert-Space Control of Crowds and Groups Dynamics

In the so-called finite control problem (e.g., output tracking and navigation,
see [II12] and references therein) one wants the scalar system output y(x, t) to
follow a continuous model (nominal) trajectory χ(t), for a given MD system-
vector x and time t. This problem can be expressed as:

min
x∈RM

∫ t1

t0

[y(x, t)− χ(t)]2 dt, (4.9)

and, upon time discretization (using a suitable quadrature scheme), becomes
the following least-squares problem:

min
x∈RM

f(x) =
N∑

i=1

[ỹ(x, ti)− χ̃(ti)]
2 dt,

where both discretized functions, ỹ(x, ti) and χ̃(ti), include the weights of the
chosen quadrature scheme (see [Mat13]).
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We remark here that the finite control problem (4.28) is formally a mini-
mization of the square of the Banach metric (4.31), see Appendix. Similarly,
a ship (or other vehicle or agent) navigation problem modeled in the complex
plane is formally a minimization of the square of the Hilbert metric (4.34)
(see Appendix).

To proceed, let us consider the vector space V (f) of real-valued square-
integrable functions f defined on an interval [a, b] ⊂ R (i.e., functions with
the convergent integral: I(f) =

∫ b
a |f(x)|2dx <∞).

To be able to perform the analysis on Banach and Hilbert spaces, we first
need to make V (f) a normed space. However, a naive approach will not work
here, because the most natural choice of a norm,

‖·‖ : f �→

√∫ b

a

|f(x)|2dx, (4.10)

is not a proper norm on V (f), which can be seen, e.g. in case:

f(x) =
{

0 for x = a
1 for x = a

=⇒ ‖f‖ = 0, but f = 0,

so it violates the N1-axiom (of positive definiteness). However, the problem
is solved with a little help from measure theory, namely, (4.30) becomes a
proper norm if we identify functions f which are equal almost everywhere
(i.e., differ only on a set of measure zero in [a, b]). The resulting vector space
of equivalence classes [f ] is (usually) denoted by L2[a, b] and is an infinite-
dimensional Banach space with the norm of the equivalence class [f ] defined
by:

L2[a, b] = ‖[f ]‖ =

√∫ b

a

|f(x)|2dx.

For the proof of the necessary completeness, see e.g. [Roy68].
The corresponding Banach metric (i.e., distance) between any two real-

valued square-integrable functions f, g defined on an interval [a, b] ⊂ R, asso-
ciated with the norm L2[a, b] reads:

d(f, g) =

√∫ b

a

|f(x)− g(x)|2dx. (4.11)

For example, the finite control problem (4.28) is actually a minimization of
the square of the Banach metric (4.31).

Next, if we define the inner product:

〈f, g〉 =
∫ b

a

f(x)g(x)dx,

L2[a, b] becomes the infinite-dimensional real Hilbert space H(R), which is
used for statistical learning theory of support vector machines.
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Finally, if we repeat this whole procedure (while instead of f ∈ R) using
complex-valued square-integrable wave-functions ψ ∈ C defined in a complex-
plane region [a, b] ⊂ C, with

〈ψ, ϕ〉 =
∫ b

a

ψ(x)ϕ(x)dx, (4.12)

we are landing at the infinite-dimensional quantum Hilbert space L2 ([a, b],C)
≡ H(C) of both QHO and AQO, with the L2-norm defined by:

L2 ([a, b],C) = ‖[ψ]‖ =

√∫ b

a

|ψ(x)|2dx. (4.13)

The corresponding Hilbert metric (i.e., distance) between any two complex-
valued square-integrable functions f, g defined on an region [a, b] ⊂ C, associ-
ated with the norm L2 ([a, b],C) reads:

d(ψ, ϕ) =

√∫ b

a

|ψ(x) − ϕ(x)|2dx. (4.14)

For example, the ship-navigation problem can be formulated in the complex-
plane C as a minimization of the square of the Hilbert metric (4.34).

Summary

In this section we have proposed a unique modeling framework for dynam-
ics, simulation and control of groups and crowds behaviors in the complex
plane. The simulations with two-dimensional animations are performed in
the C-sharp object-oriented environment, using the fast, complexified, Runge-
Kutta-Cash-Karp numerical integrator. An efficient algorithm for simulating
a variety of behaviors of several hundreds of agents was adopted on an or-
dinary PC, using a nonlinear, attractor, Langevin-type crowd dynamics. A
finite-type control is performed in the complex Hilbert space.

4.2 Quantum Random Fields: A Unique Framework for
Simulation, Optimization, Control and Learning

In this section, we generalize the complex-plane crowd behavioral dynamics
into a unified modeling and simulation framework, of both rigorous theoretical
and efficient computational nature, for developing/implementing five prac-
tical engineering problem-solving tools (simulation, optimization, learning,
control, and logic) on a common physical ground of quantum random fields
and within the common geometrical settings of infinite-dimensional Banach-
Hilbert spaces.
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4.2.1 Introduction

In our previous development of the Crowd Simulator in a powerful but not
friendly C++ (see, [IR12]), we would use one crowd dynamics model (defined
by two or more nonlinear Schrödinger equations) which would be put into
different 3D graphics environments (a bush or a street) and we would apply
to it different events (bushfire or car-explosion). So, we didn’t mathematically
define these 3D environments, they were just parts of the 3D graphics engine
used (including the collision dynamics engine).

Recently, we started a different, much easier to implement, line of devel-
opment in a 2D visual environment in a friendly C-sharp language. So far,
we have developed various agents’ dynamics xi = xi(t), following different
attractors in the complex plane C, which are given a priori by the ‘leaders’
:→ these could be called ‘supervised dynamics.’ We are also trying to make
these dynamics adaptive, so that the attractors are not given a priori but
rather learned or trained on the fly :→ these could be called ‘unsupervised
or self-organized dynamics.’ However, in both cases, these are only agents’
dynamics, without mathematically defining any environments.

Fig. 4.5. A sample line-attractor in the complex plane. In the background,
we can see the chess-board like field lattice.

Here is a field-theoretic proposal for modeling environments in the complex
plane, which would affect both the attractors and the followers’ dynamics. If
we look carefully at the Figure 4.5, we will see not only the attractor line in the
complex plane, but also the ‘chess board’ in the background, which can haveN
by N squares (for arbitrary N) and can be modeled as the adaptive quantum
field (AQF). This AQF is our proposal for modeling environments in the
complex plane C, similar to the quantized (Maxwell) electrodynamics fields
Φi (QED for short). In this context, the word ‘quantized’ can be interpreted
as: ‘each square has its own rules of behavior’; so, each square can represent a
different environmental section Φi . So, we would have not only line or point
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attractors, but the whole area of the complex plane would be ‘quantized’ into
many squares that would have their own, different rules of behavior. The line
attractors (or, leaders) would be restricted by these rules of behavior, and all
individual agents would strictly follow.

In this way, we would have the full dynamics of agents’ paths [x] + envi-
ronmental fields [Φ]:

Full Complex Dynamics =
∫
Σ Dagents′

paths [x] eiS[x] +
∫
Σ Denviron

fields [Φ] eiS[Φ]

4.2.2 Adaptive Quantum Oscillator

In this section, starting from a simple mechanical harmonic oscillator, we
will derive our main physical object, the adaptive quantum oscillator (AQO),
the generator of random fields, on which optimization, learning, control and
logic. We will perform this AQO-derivation rather intuitively and using the
necessary minimum of Schrödinger’s quantum wave mechanics (leaving the
rigorous quantization to Appendix) - yet with straightforward and clean de-
scriptive brevity, thus setting up the scene for rigorous learning, control and
logic development.

Quantum Harmonic Oscillator

The AQO-derivation starts with the classical harmonic oscillator (CHO), a
simple mass-and-spring system which is a generator of sinusoidal oscillations
(about the equilibrium point), and is formally given by the Hamiltonian energy
(kinetic plus potential) function:

H(p, x) =
1
2

(
p2

m
+ kx2

)

, (4.15)

where (x, p) is a pair of canonically-conjugated real variables (coordinate and
momentum, respectively), while (m, k) is a pair of real constants (mass and
spring, respectively). This is all that we need from classical physics for the
moment. We will revisit the CHO later in the subsection 4.3.4 below, but now
we quickly and intuitively move into the quantum world.

Standard quantum harmonic oscillator (QHO) is obtained from the clas-
sical one (4.15) by performing the process of the so-called first quantization.
Informally, a time-dependent state of any quantum-mechanical system is de-
termined by a normalized, complex-valued, wave psi-function ψ = ψ(x, t).
Semi-formally, in Dirac’s notation (which is ‘de facto’ standard in quantum
physics, see [Dir49]), ψ(x, t) is a unit ket -vector |ψ〉, which is an element of
the complex, infinite-dimensional Hilbert space of square-integrable wave ψ-
functions H(C) ≡ L2(R) = {|ψ〉, |φ〉, |ϕ〉, ...} with the coordinate basis (xi),
for i = 1, 2, ...∞.
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Recall from Chapter 2 that the essential property ofH(C) is the Hermitian
inner product 〈ψ, φ〉. In physics, it is usually denoted by Dirac’s celebrated
bra-ket 〈ψ|φ〉, or Feynman’s probability amplitude 〈Out|In〉, or statistical-
mechanical partition function Z. Thus, all these description are more-or-less
equivalent: 〈ψ, φ〉 ≡ 〈ψ|φ〉 ≡ 〈Out|In〉 ≡ Z. This inner product can be applied
to any pair of H-vectors, |ψ〉 and |φ〉, to produce a single complex number
〈ψ, φ〉 ≡ 〈ψ|φ〉 ∈ C, which satisfies a number of simple algebraic properties:

〈ψ + φ, ϕ〉 = 〈ψ, ϕ〉+ 〈φ, ϕ〉
〈ψ, φ+ ϕ〉 = 〈ψ, φ〉+ 〈ψ, ϕ〉
〈aψ, φ〉 = a 〈ψ, φ〉 , 〈ψ, a φ〉 = ā 〈ψ, φ〉
〈ψ, φ〉 = 〈φ, ψ〉 (where bar denotes complex-conjugate)
〈ψ, ψ〉 ≥ 0, 〈ψ, ψ〉 = 0 only if ψ = 0 (positive definite)

〈ψ, φ〉 =
∑

i

ψiφ̄i ∈ C
n, (for i = 1, n).

Probability of finding a quantum particle at a certain location, or more
generally, a quantum system at a certain ket-state |ψ〉, is given by its proba-
bility density function (PDF ), which is defined as the absolute square of the
wave ψ-function:

PDF := |ψ|2 ≡ ||ψ〉|2 ≡ 〈ψ|ψ〉 ≡ 〈ψ, ψ〉,

which is simply the squared length of the ket-vector |ψ〉 in H(C) and a nor-
malized state is given by a H-vector |1〉 (whose squared length is unity).
More generally, the PDF-description of any microscopic process, or even any
(quantum-influenced) macroscopic process, is the In→Out map determined
by the absolute square of the probability amplitude:

PDF : In �→ Out := |〈Out|In〉|2 ≡ |ψ|2.

Every quantum state-vector |ψ〉 ∈ H(C) is subject to the action of Hermi-
tian operators (i.e., self-adjoint operators with associated Hermitian matrices,
real eigenvalues and orthogonal eigenfunctions) obtained by quantization of
classical dynamical quantities, and whose real eigenvalues are being measured
(see e.g. [Tha00, Gri05]). In other words, the quantization process generates
Hermitian operators from the corresponding classical variables:

x quant−−−−−−−→x̂ = x (coordinate operator)

p quant−−−−−−−→p̂ = −i� d
dx (momentum operator)

H quant−−−−−−−→Ĥ = Ĥ(x, p̂) (Hamiltonian operator),

where i =
√
−1and � is Planck’s constant. In general, Dirac’s canonical quan-

tization, by which classical dynamical variables(f, g, ...) become quantum Her-
mitian operators

(
f̂ , ĝ, ...

)
states:
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{f, g} �−→ 1
i�

[f̂ , ĝ], (4.16)

which means that the quantum commutator [f̂ , ĝ] has the same values as
the classical Poisson bracket {f, g}. See Appendix (subsection 4.3.4) for the
rigorous geometric formulation.

Now, quantum mechanics can be described in three standard pictures (see,
e.g. [II08b, II09]). In the most common Schrödinger picture (of the coordinate
x-representation), under the action of the Hermitian evolution operator Ŝ(t),
the quantum state-vector |ψ(t)〉 rotates, starting with the initial state-vector
|ψ(0)〉:

|ψ(t)〉 = Ŝ(t) |ψ(0)〉,

while the infinite-dimensional coordinate basis (xi) in the Hilbert space H(C)
is fixed, so the Hermitian operators are constant in time:

F̂ (t) = F̂ (0) = F̂ ,

and the system evolution is determined by the time-dependent Schrödinger
wave equation:9

i� ∂t|ψ(t)〉 = Ĥ |ψ(t)〉, (where ∂t = ∂/∂t), (4.17)

where Ĥ =Ĥ(x, p̂) is Schrödinger’s Hamiltonian operator, which in our QHO-
case reads:10

Ĥ =
1
2

(
p̂2

m
+ kx2

)

≡ − �2

2m
d2

dx2
+

1
2
kx2 (where p̂2 = −�

2 d
2

dx2
).

Alternatively, in the Heisenberg picture, under the action of the evolution
operator Ŝ(t), the coordinate basis (xi) rotates, and the system evolution is
determined by the Heisenberg equation of motion:
9 The time-dependent Schrödinger equation (4.17) represents a complex-valued

generalization of the real-valued Fokker-Planck equation for describing the spatio-
temporal probability density function for the system exhibiting continuous-time
Markov stochastic process.

10 If the Hamiltonian does not explicitly depend on time, or at t = 0, Ĥ(t) = Ĥ ,
which is the case with the absence of variables of macroscopic fields, the state
vector |ψ(t)〉 can be presented in the form:

|ψ(t)〉 = exp

„

−i
E

�
t

«

|ψ〉,

where the stationary state vector |ψ〉 satisfies the time-independent (stationary)
Schrödinger equation:

Ĥ |ψ〉 = E |ψ〉,
which gives the eigenvalues Em and the corresponding eigenfunctions |ψm〉 of the
Hamiltonian operator Ĥ.
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i� ∂tF̂ (t) = [F̂ (t), Ĥ(t)], (4.18)

where F̂ (t) denotes an arbitrary Hermitian operator of the system, while the
quantum commutator [, ] is given by:

[F̂ (t), Ĥ(t)] = F̂ (t) Ĥ(t)− Ĥ(t) F̂ (t).

In both pictures,11 the evolution operator Ŝ(t) is determined by the
Schrödinger-like equation:

i� ∂tŜ(t) = Ĥ Ŝ(t), with Ŝ(0) = Îd.

This completes our ‘intuitive quantization’ of the classical harmonic oscil-
lator (4.15), so that we now have two QHO-versions, the Schrödinger (4.17)
one and the Heisenberg (4.18) one, and thus we can move on towards our
main physical/computational object: the adaptive quantum oscillator. For
mathematical completeness sake, a rigorous geometric CHO-quantization in
the Heisenberg picture is provided in Appendix (section 4.3.4).

From Schrödinger to Cubic NLS to Lattice DNLS

We are now preparing to enter into the nonlinear world of quantum matter (or
quantum media, or quantum super-fluids, like Bose-Einstein condensates, or
quantum optics). So, we will remain in the complex Hilbert spaceH(C) (which
is the natural stage for all complex PDEs), but we will not need Dirac’s bras
and kets nor Hermitian-operator caps. So, we firstly switch to dimensionless
units in which (� = 1), mass m becomes a dimensionless weight-parameter
m and spring constant k becomes a dimensionless spring-parameter k. In this
way, the linear Schrödinger equation (4.17) simplifies into:

i∂tψ = H ψ or i∂tψ = − 1
2m

∂xxψ +
1
2
kx2ψ, (4.19)

which generates an infinite-dimensional family of harmonic-waves as solutions
(see e.g. [Tha00, Gri05]).

Now comes the critical shift from linear quantum wave mechanics to non-
linear quantum-matter waves, which comprise the macroscopic physical sys-
tem with quantum origin and much more interesting wave mechanics that
includes a zoo of solitons, kinks, breathers, shock waves and rogue waves (as

11 Note that in the third, Dirac interaction picture, both the state vector |ψ(t)〉 and
the coordinate basis (xi) rotate, so the system evolution is determined by both the
Schrödinger wave equation (4.17) and the Heisenberg equation of motion (4.18).

We remark here that there is also a number of other ways in which the CHO-
quantization can be performed, including the well-known quantizations by Von
Neumann (density matrix formalism), Feynman (path-integral formalism) and
Wigner (phase-space formalism).
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well as harmonic waves if nonlinearity approaches zero). The shift from lin-
ear to nonlinear wave mechanics is most easily performed by generalizing the
spring-parameter’s potential energy: Vspr = 1

2 kx2 of (4.19) into the following
wave-dependent, recursive potential energy: Vrec = 1

2h|ψ|2 with the heat pa-
rameter h. So, the spring-parameter k becomes the heat-parameter h, while the
square term x2 becomes the absolute square term |ψ|2. In this way, we come
to the nonlinear Schrödinger equation (NLS), also called the Gross-Pitaevskii
equation (GP), given by:12

i∂tψ = − 1
2m

∂xxψ +
1
2
h|ψ|2ψ. (4.20)

The cubic NLS equation (4.20) is the one that has a before-mentioned zoo of
solutions in the complex Hilbert space H(C).

We remark here that a slightly different form of the cubic NLS equation
(4.20) was previously derived in a different way, from the linear Schrödinger
equation governing a free quantum particle: i∂tψ = −1

2
∂xxψ, which was then

put into a nonlinear feedback loop13 that gave rise to the peculiar cubic NLS-
term: |ψ|2ψ (see [IR12] and references therein). This NLS-form has been
recently implemented14 as a Crowd Dynamics Simulator, IP of Australian
Defence.

Furthermore, the NLS (4.20) can be spatially-discretized to give the fol-
lowing lattice model,15 or discrete NLS (DNLS), in the complex plane C: (see,
e.g. the Kerr (cubic) case in [OB07])

ψ̇i(t) = iw1

[
ψi+1(t) + ψi−1(t) + w2ψ

3
i (t)
]
, (i = 1, ...N ; ψ̇ = ∂tψ)

(4.21)
where the two weights (i.e., best fit parameters w1, w2) are defined by: w1 =
1/m, w2 = 2h.

The lattice DNLS model (4.21) represents a set of differential-difference
equations, an N -dimensional (ND) chain in the complex plane C. This is
the basic model for the adaptive quantum oscillator (AQO). It is meant for
numerical (iterative) solution, using the sophisticated Cash-Karp (RKF) nu-
merical integrator, starting from random initial waves: ψi(0) and random
initial weights: (w1, w2). The numerical solution of (4.21) is meant to evolve
along a certain time-period in such a way that at every adaptive time-step dt,
12 Note that the standard form of the non-dimensional cubic NLS is:

i∂tψ = −1

2
∆ψ ± |ψ|2ψ.

The sign + in front of the cubic nonlinearity |ψ|2ψ represents defocusing NLS ,
while the − sign represents focusing NLS .

13 Every feedback loop is necessarily nonlinear.
14 using the numerical method of lines, so that each single line became the controller

for a single agent
15 This is a simplified analog to the method of lines.
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Fig. 4.6. Simulation of the lattice DNLS model (4.21) in Mathematica�

gives different AQO-signatures of its quantum random field, presented here in
four sub-figures (a)-(d). The signatures are slightly different from each other,
depending on random initial and boundary conditions. Fields are shown on the
left, while the corresponding PDFs are on the right of each sub-figure. The code
for this simulation is given below. While here we use NDSolve ODE-solver,
we also have the same DNLS-implementation in several native and managed
programming languages (using RKF (Cash-Karp) numerical ODE-solver).

an efficient LM-optimizer (see next section) is called and the local minimum
(w1, w2)-values are adopted for the continuation of the time evolution. In this
way, different AQO-signatures (see Figure 4.6) are obtained, depending on
numerical values of the weights (w1, w2).

Mathematica Code for the Adaptive Quantum Oscillator (Random Field)

tt := Table[n = 10; Tfin = 5; w1 = 1; w2 = 1;

DNLS = Table[{Derivative[1][Subscript[\[Psi], i]][t] ==
I*w1*(Subscript[\[Psi], i + 1][t] + Subscript[\[Psi], i-1][t]
+ w2*Subscript[\[Psi], i][t]^3),
Subscript[\[Psi], i][0] == 0.1*Random[Complex]}, {i,n}];
Subscript[\[Psi], 0][t] = Sin[3*Random[]*t];
Subscript[\[Psi], n + 1][t] = I*Sin[3*Random[]*t];

sol = Quiet[NDSolve[Flatten[DNLS],
Table[Subscript[\[Psi], i], {i, n}], {t, Tfin}]];

pl1 = Table[Subscript[g, i] = ParametricPlot[
Evaluate[{Re[Subscript[\[Psi], i][t]],
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Im[Subscript[\[Psi], i][t]]} /. sol], {t, 0, Tfin},
PlotRange -> All, PlotStyle -> AbsoluteThickness[1.5],
Frame -> True, ColorFunction -> (Hue[1*#1] & ),
DisplayFunction -> Identity], {i, n}];

pl2 = Table[Subscript[f, i] =
Plot[Evaluate[Abs[Subscript[\[Psi], i][t]^2] /. sol],
{t, 0, Tfin}, PlotRange -> All, PlotStyle ->
AbsoluteThickness[1.5], Frame -> True,
ColorFunction -> (Hue[1*#1] & ), DisplayFunction ->
Identity], {i, n}]; {Show[pl1, AspectRatio -> 1,
ImageSize -> 200], Show[pl2, AspectRatio -> 1,
ImageSize -> 200]}, {j, 1, 1}];

Finally, our sought-for complex ND AQO is readily obtained from the ba-
sic AQO-model (4.21), using the following complex-valued optimization proce-
dure. Namely, the pair of weights (w1, w2) will not be given a priori, but rather
computed as a minimum of the complex cost function C ≡ (w1, w2) ∈ C, de-
fined by:

C = min
1
2

N∑

j=1

z2
j = min

1
2

N∑

j=1

(
αj + iβj

)2
, (4.22)

where the components
(
αj + iβj

)
≡ (zj) ∈ CN of the complex ND weight

vector z = (zj) are derived from a specific domain knowledge, presented in
the form of two sets of weighted rules (one giving αj-weights and another one
giving βj-weights) of some first-order logic implementation.

4.2.3 Optimization and Learning on Banach and Hilbert Spaces

Nonlinear Least-Squares Optimization

In this subsection, we give an informal and intuitive review of the most pow-
erful algorithm for general least-squares optimization: Levenberg-Marquardt
(LM) method , and briefly outline three main fields of its application: (i) gen-
eral data fitting in nonlinear regression statistics, (ii) finite control (output
tracking and navigation), and (iii) machine learning (function approximation
in multilayered neural networks).

At the core of modern nonlinear optimization problems is the minimization
of an ND cost function C(ϕ) defined as a sum of squares of the set (or, vector)
f of residuals:

C(ϕ) =
1
2

N∑

i=1

fi(ϕ)2, (4.23)

where [fi(ϕ)] = f : RM → RN is a nonlinear ND vector function of M param-
eters ϕm (where N ≥ M). The values of ϕm-parameters that minimize C(ϕ)
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are known as the best fit parameters. Here is a C-code example of a highly-
nonlinear vector of residuals f , including 7 functions of 7 variables, which have
been quickly and very accurately minimized using the LM-algorithm:

{
fvec[0] = tanh(x[0]*x[1]) - 1.7*x[2]

+ log(1.5 + x[3]*x[4]);
fvec[1] = sin(-4.0*x[0]) - 3.*tanh(x[1]*x[5])

+ 0.1*x[2]*x[4]+x[3]*x[6];
fvec[2] = 0.5*x[1]*x[3] - tanh(x[2]*x[4])

+ sinh(x[5]*x[6]) + x[2]*x[1];
fvec[3] = x[5]*x[1] + x[2]*x[3] + x[0]*x[2]

- x[6]*x[4];
fvec[4] = sinh(x[0]*x[1]) + x[2]*x[3]

+ x[6]*x[4] - x[3]*x[4];
fvec[5] = 0.5*x[1]*x[4] - sinh(x[2]*x[3])

+ tanh(x[5]*x[6]) + x[2]*x[1];
fvec[6] = x[0]*x[1] + x[3]*x[4]

+ x[2]*x[5] - atan(x[3]*x[6]);
}

As an illustration, Figure (4.7) shows a sample output of the LM-algorithm,
performing an efficient optimization of the vector function f , including 7
highly-nonlinear functions fi = fvec[i] of 7 variables x[i], (i = 0, ..., 6). The
output, achieved in a split second on an ordinary desktop PC, shows an ex-
tremely strong convergence of the Cauchy sequence for the L2-norm: start-
ing from the initial norm L2 ≈ 0.4, it monotonically converges to the final
L2 ≈ 10−219. This means that the 7-dimensional Banach space V 7(f) is ef-
fectively constructed. While next subsection gives rigorous details on opti-
mization on real (Euclidean) Banach spaces and complex (quantum) Hilbert
spaces, here we outline the main idea. Very briefly, suppose that we are given
to optimize not one, but rather two nonlinear vector functions, f1 and f2.
If, under the optimization by the LM-algorithm, their corresponding Cauchy
sequences converge with their L2-norm monotonically approaching zero, we
have effectively constructed two real N -dimensional Banach spaces, V N1 (f1)
and V N2 (f2). Then their inner dot-product

〈
V N1 , V N2

〉
forms a complex N -

dimensional Hilbert space H(CN ), which naturally appears when minimizing
complex cost functions (4.22) on the AQO-system (4.21).

For example, in general nonlinear data fitting, the vector f of residuals is
given by:

fi(ϕ) =
x(ti,ϕ)− xi

σi
, (4.24)

where x(ti,ϕ) is a model of the observed data sequence {ti, xi}, which depends
on a vector of unknown parameters ϕ = [ϕm] . The weight vector σ = [σi]
measures the uncertainty in observed data, that is the deviation of the model
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Fig. 4.7. Output of the LM-algorithm in C on efficiently minimizing the
vector function f , including 7 highly-nonlinear functions fi = fvec[i] of 7
variables x[i], (i = 0, ..., 6).

x(ti,ϕ) from the observation sequence {ti, xi} (see, e.g. [TS12] and references
therein).

The LM-algorithm is a modification of the Gauss-Newton (GN) method
(see [Lev44, Mar63, PTV07]). Recall that the standard GN algorithm is based
on a local linearization of the residuals:

fi(ϕ+ δϕ) ≈ fi(ϕ) + Jimδϕ
m, (4.25)
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where J = [Jim] = [∂fi/∂ϕm] is the Jacobian matrix. The GN-iteration is
defined by:

δϕ = −(JTJ)−1∇C(ϕ) = −(JTJ)−1JT f , (4.26)

where ∇C(ϕ) = JT f is the gradient of the cost function. The GN-method
usually converges quickly if it begins sufficiently near a minimum of C(ϕ).
However, the matrix JTJ is often ill-conditioned (with a very wide range of
eigenvalues). So, unless the initial guess is very good, the GN method would
fail to converge.

To correct the shortcomings of the GN-method, Levenberg and Marquardt
suggested (separately) damping the JTJ matrix by a diagonal cutoff [Lev44,
Mar63]. The LM-iteration is defined by:

δϕ = −
(
JTJ + λDTD

)−1∇C(ϕ) = −
(
JTJ + λDTD

)−1
JT f , (4.27)

where DTD is a diagonal, positive-definite matrix (with the scaled parameters
ϕn) and λ is a damping parameter adjusted by the LM-algorithm. When
the LM-parameter λ is large, the method takes a small step in the gradient
direction. As the algorithm comes closer to a solution, λ is chosen to be
small and the method converges quickly via the GN-method [TS12]. The LM-
method can interpolate between gradient descent and the GN-algorithm for
quick and efficient convergence, by properly adjusting the damping parameter
λ.

In finite control (i.e., output tracking and navigation) one wants the scalar
system output y(x, t) to follow a continuous model (nominal) trajectory χ(t),
for a given MD system-vector x and time t. This problem can be expressed
as:

min
x∈RM

∫ t1

t0

[y(x, t)− χ(t)]2 dt, (4.28)

and, upon time discretization (using a suitable quadrature scheme), becomes
the following least-squares problem:

min
x∈RM

f(x) =
N∑

i=1

[ỹ(x, ti)− χ̃(ti)]
2
dt,

where both discretized functions, ỹ(x, ti) and χ̃(ti), include the weights of
the chosen quadrature scheme (see [Mat13]). We remark here that the finite
control problem (4.28) is formally a minimization of the square of the Banach
metric (4.31), see subsection 4.2.3 below. Similarly, a ship navigation problem
modeled in the complex plane is formally a minimization of the square of the
Hilbert metric (4.34).

Finally, in machine learning (mainly supervised learning of multilayer feed-
forward neural networks, see Appendix 4.3.5) the LM-algorithm is mostly
suitable for function approximation problems16 where the network has up to
16 The universal approximation theorem of Kolmogorov states [Hay94]:

Let φ(·) be a nonconstant, bounded, and monotone-increasing continuous (C0)
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a few hundred weights and the approximation must be very accurate; if this is
the case, then on the average the LM-algorithm is over four times faster than
any other known algorithm (see [BHD13]). In multilayer feedforward neural
networks, given the weight-vector w(n) = [w0(n), ..., wD(n)]T , if we put

∇e = JTe,

where e is a vector of network errors and ∇e =
[
∂e
∂w0

, ..., ∂e
∂wD

]T
is the MSE-

gradient (see Appendix 4.3.5), we obtain the LM-learning algorithm:

w(n+ 1) = w(n)− [JTJ + ηI]−1JT e, (4.29)

where η is the learning rate (step size).

Optimization-Based Control on Complex Hilbert spaces

Now we will try and move our rigorous optimization, control and learning
methodology back to the complex Hilbert space. To start width, let us consider
the vector space V (f) of real-valued square-integrable functions f defined on
an interval [a, b] ⊂ R (i.e., functions with the convergent integral: I(f) =
∫ b
a
|f(x)|2dx <∞).
To be able to perform the analysis on Banach and Hilbert spaces, we first

need to make V (f) a normed space. However, a naive approach will not work
here, because the most natural choice of a norm,

‖·‖ : f �→

√∫ b

a

|f(x)|2dx, (4.30)

is not a proper norm on V (f), which can be seen, e.g. in case:

f(x) =
{

0 for x = a
1 for x = a

=⇒ ‖f‖ = 0, but f = 0,

so it violates the N1-axiom (of positive definiteness). However, the problem
is solved with a little help from measure theory, namely, (4.30) becomes a

function. Let IN denote anND unit hypercube [0, 1]N . The space of C0−functions
on IN is denoted by C(IN ). Then, given any function f ∈ C(IN ) and ε > 0, there
exist an integerM and sets of real constants αi, θi, ωij , i = 1, . . . ,M ; j = 1, . . . , N
such that we may define

F (x1, . . . , xN) = αiφ(ωijxj − θi),

as an approximate realization of the function f(·); that is

|F (x1, . . . , xN) − f(x1, . . . , xN)| < ε for all {x1, . . . , xN} ∈ IN .
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proper norm if we identify functions f which are equal almost everywhere
(i.e., differ only on a set of measure zero in [a, b]). The resulting vector space
of equivalence classes [f ] is (usually) denoted by L2[a, b] and is an infinite-
dimensional Banach space with the norm of the equivalence class [f ] defined
by:

L2[a, b] = ‖[f ]‖ =

√∫ b

a

|f(x)|2dx.

For the proof of the necessary completeness, see e.g. [Roy68].
The corresponding Banach metric (i.e., distance) between any two real-

valued square-integrable functions f, g defined on an interval [a, b] ⊂ R, asso-
ciated with the norm L2[a, b] reads:

d(f, g) =

√∫ b

a

|f(x)− g(x)|2dx. (4.31)

For example, the finite control problem (4.28) is actually a minimization of
the square of the Banach metric (4.31).

Next, if we define the inner product:

〈f, g〉 =
∫ b

a

f(x)g(x)dx,

L2[a, b] becomes the infinite-dimensional real Hilbert space H(R), which is
used for statistical learning theory of support vector machines.

Finally, if we repeat this whole procedure (while instead of f ∈ R) using
complex-valued square-integrable wave-functions ψ ∈ C defined in a complex-
plane region [a, b] ⊂ C, with

〈ψ, ϕ〉 =
∫ b

a

ψ(x)ϕ(x)dx, (4.32)

we are landing at the infinite-dimensional quantum Hilbert space L2 ([a, b],C)
≡ H(C) of both QHO and AQO, with the L2-norm defined by:

L2 ([a, b],C) = ‖[ψ]‖ =

√∫ b

a

|ψ(x)|2dx. (4.33)

The corresponding Hilbert metric (i.e., distance) between any two complex-
valued square-integrable functions f, g defined on an region [a, b] ⊂ C, associ-
ated with the norm L2 ([a, b],C) reads:

d(ψ, ϕ) =

√∫ b

a

|ψ(x) − ϕ(x)|2dx. (4.34)

For example, the ship-navigation problem mentioned above can be formulated
in the complex-plane C as a minimization of the square of the Hilbert metric
(4.34).
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Summary

In this section we have proposed a unified theoretical and computational
framework for developing and implementing the following five practical en-
gineering problem-solving tools: numerical simulation of ODEs and PDEs,
general least-squares optimization, machine learning, finite navigation con-
trol, and first-order logic.

The rigorous theoretical framework for optimization-based learning is pro-
posed in the form of both finite- and infinite dimensional real Banach spaces
and complex Hilbert spaces.

The central physical/computational object is a two-core adaptive quantum
oscillator (AQO, RKF-integrator + LM-optimizer), designed for simulation of
quantum random fields, nonlinear optimization, learning and control, while an
external first-order logic module is currently under implementation (in both
Erlang and Haskell, to be called separately). Both AQO-cores are very fast,
designed for high-dimensional, real-life problems, and can be called from any
other languages.

4.3 Appendix

4.3.1 Complex-Valued Image Processing

Complex Fourier Transform Approach

A linear (albeit sophisticated and elegant) ‘distant relative’ of our nonlinear
crowd dynamics in the complex plane is a complex-valued image processing,
in which every pixel of a 2D image is represented by its own complex number
c ∈ C. For the sake of completeness, in this subsection we give a brief review of
this approach that is commonly used in computer vision, as well as in satellite-
and neuro-imaging.

Basically, given two real-valued square-integrable signals or functions
f, g ∈ L2(R), their inner product is defined by:

〈f, g〉 =
∫

R

f(x)g(x) dx,

while the Fourier transform (FT) of f, denoted by F = F [f(x)], is given by:

F [f(x)] = f̂(ξ) =
∫

R

f(x) e−2πiξxdx, (4.35)

such that the original signal f(x) is recovered by the inverse Fourier transform
(IFT) of f̂(ξ):

f(x) = F−1[f̂(ξ)] =
∫

R

f̂(ξ) e2πiξxdf.
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Without going into technical details about image processing in the fre-
quency space, based on either discrete Fourier transform (DFT) or fast
Fourier transform (FFT)17 (see [Wik13b, II12], or any textbook on digital
image processing; e.g., common are those with applications in Matlab�, like
[SB10]), we focus here on the basic DFT-algorithm18 with complex Fourier
components: ck = (ak − ibk)/2, for k = 0, ..., N − 1 (where N is the number
of samples of the signal function f(n), defined by the formula:

ck =
1
N

N−1∑

n=0

[

f(n) exp
(

− i2πkn
N

)]

, where (4.36)

exp
(

− i2πkn
N

)

= cos
(

2πkn
N

)

− i sin
(

2πkn
N

)

.

According to (4.36), each complex Fourier component ck is a complex sum
of complex products of the signal f(n) and complex vectors spinning around
the unit circle z ≤ 1 in the C-plane. For example in C#, the complex DFT
formula (4.36) can be given the following naive implementation (see [Mos13]):

public void ComplexDFT(int N) {
int k, n; TKomplex w;
if (N > 0)
{
for (k = 0; k < N; k++)
{
c[k].real = 0; c[k].imag = 0;
for (n = 0; n < N; n++)
{

w.real = Math.Cos((double)(2.0 * Math.PI
* (double)(k * n) / (double)(N)));

w.imag = -Math.Sin((double)(2.0 * Math.PI
* (double)(k * n) / (double)(N)));

c[k] = ksum(c[k], kprod(w, y[n]));
}
c[k].real = c[k].real / (double)(N) * 2.0;
c[k].imag = -c[k].imag / (double)(N) * 2.0;

}
}
c[0].real = c[0].real / 2;
c[0].imag = c[0].imag / 2;

17 Recall that an FFT is an efficient algorithm to compute the discrete Fourier
transform (DFT) and its inverse. The most commonly used FFT approach is the
Cooley–Tukey algorithm [CT65], a divide and conquer algorithm that recursively
breaks down a DFT of any composite size N = N1N2 into many smaller DFTs
of sizes N1 and N2.

18 A DFT decomposes a sequence of values into components of different frequencies.
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}

A more efficient complex DFT implementation, firstly builds the look-up
table consisting of the cosine (real) and sine (imaginary) terms:

for (k = 1; k < N; k++) {
we[k].real = Math.Cos((2.0 * Math.PI

* (double)(k) / (double)(N)));
we[k].imag = -Math.Sin((2.0 * Math.PI

* (double)(k) / (double)(N)));
}

– and secondly, reads the above look-up table and implements formula
(4.36) using the following code (see [Mos13]):

public void ComplexDFT() {
int k, n;
if (N > 0)
{
for (k = 0; k < N; k++)
{
c[k].real = 0; c[k].imag = 0;
for (n = 0; n < (N - 1); n++)
{

c[k] = ksum(c[k], kprod(we[(k * n) % N], y[n]));
}
c[k].real = c[k].real / N * 2;
c[k].imag = -c[k].imag / N * 2;

}
c[0].real = c[0].real / 2;
c[0].imag = c[0].imag / 2;

}
}

Using a similar (albeit more efficient) DFT code, for both forward and
inverse Fourier transforms, one can perform low-pass and high-pass filtering of
the complex-valued image, following the procedural prescription implemented
in the popular AForge.NET library for complex-valued image processing19

and machine learning (see [Kir07]):

// 1. Create a complex image from a bitmap
AForge.Imaging.ComplexImage cimage =

AForge.Imaging.ComplexImage.FromBitmap( bitmap );
// 2. Perform the forward FFT
cimage.ForwardFourierTransform( );

19 Here, a C# class is used to keep image represented in complex numbers suitable
for FFT.
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// 3. Get the frequency view
System.Drawing.Bitmap img = cimage.ToBitmap( );
// 4. Perform the lowpass or hipass filtering
cimage.FrequencyFilter( new Range( 0, 100 ) );
// 5. Perform the backward FFT (or, IFFT)
cimage.BackwardFourierTransform( );
// 6. Get the filtered image
System.Drawing.Bitmap img = cimage.ToBitmap( );

Complex Wavelet Transform Approach

Uncertainty principle of signal processing

Recall that the purpose of the wavelet transform (WT) is to provide informa-
tion about both time t and (angular) frequency w of a signal, which satisfy
the fundamental uncertainty principle20 of signal processing:

∆t∆ω ≥ 1
2
,

which means that the higher the required resolution of a signal in time, the
lower is its resolution in frequency.21

The wavelet-transformed signal provides information about the time and
the frequency. Therefore, wavelet-transformation contains information similar
to the short-time Fourier transform (STFT),22 but with additional special
properties of the wavelets, which show up at the resolution in time at higher
analysis frequencies of the basis function. In contrast to the FT, the WT offers
the 2D expansion for a time–dependent signal with the scale and translation
parameters which are interpreted physically one employs the so-called mother
20 This is analogous to Heisenberg’s uncertainty principles of quantum mechanics:

(i) ∆q∆p ≥ �

2
between coordinate (q) and momentum (p), and (2) ∆t∆E ≥ �

2

between time (t) and energy (E).
21 In case of large∆t, we have: (i) bad time resolution, (ii) good frequency resolution,

and (iii) low frequency, large scaling factor. In case of small ∆t, we have: (i) good
time resolution, (ii) bad frequency resolution, and (3) high frequency, small scaling
factor.

22 Recall that Fourier transform (FT) requires that a signal to be examined is sta-
tionary, not giving the time evolution of the frequency pattern. However, most
real-life (e.g., biological) signals are usually non-stationary. This FT-limitation
can be partly resolved by using the STFT. Assuming that the signal is quasi–
stationary in the narrow time period, the FT is applied with time–evolving narrow
windows. Then STFT yields the time evolution of the frequency spectrum. The
STFT, however, has a critical limitation violating the above uncertainty principle,
which asserts that if the window is too narrow, the frequency resolution will be
poor whereas if the window is too wide, the time resolution will be less precise.
This limitation becomes serious for signals with much transient components, like
spike signals.
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wavelet which is localized in both frequency and time domains. The WT
expansion is carried out in terms of a family of wavelets which is made by
dilation and translation of the mother wavelet. The time evolution of frequency
pattern can be followed with an optimal time–frequency resolution. The WT
appears to be an ideal tool for analyzing signals of a non– stationary nature.

Briefly, there are two types of WTs: one is the continuous wavelet trans-
form (CWT) and the other the discrete wavelet transform (DWT). In the
former the parameters denoting the scale and translation are continuous vari-
ables while in the latter they are discrete variables.

CWT

The CWT23 for a given regular function f(t) can be defined, using the
quantum-like notation, by the inner product in the complex Hilbert space
H(C) = L2(C) (see [Has02]):

c(a, b) =
∫
ψ̄ab(t)f(t)dt = 〈ψab(t), f(t)〉 ,

where ψab(t) is the family of wavelets generated by:

ψab(t) = |a|−1/2ψ(
t− b
a

), (4.37)

in which ψ(t) is the mother wavelet ,24 while a and b express the scale change
and translation, respectively, and they physically stand for the inverse of the
frequency and the time. Then the CWT transforms the time–dependent func-
tion f(t) into the frequency- and time-dependent function c(a, b). The mother
wavelet (e.g., Mexican Hat wavelet, Meyer wavelet, or Morlet wavelet) is a
smooth function with good localization in both frequency and time spaces. A
wavelet family given by (4.37) plays a role of elementary function, representing
the function f(t) as a superposition of wavelets ψab(t).

The inverse wavelet transform (IWT) can then be given by:

f(t) = C−1
ψ

∫
da

a2

∫
c(a, b)ψab(t)db,

when the mother wavelet satisfies the following two conditions:

(i) the admissibility condition given by

0 < Cψ <∞, with Cψ =
∫ ∞

−∞
|Ψ̂(ω)|2/|ω| dω,

23 For more introductory information about continuous wavelet transforms (starting
from orthonormal wavelets that can be used to define a basis for the Hilbert space
of (real or complex) square integrable functions), see [Wik13e, II12].

24 One of the advantages of the WT over FT is that one can choose a proper mother
wavelet among many mother wavelets, depending on a signal to be analyzed.
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where Ψ̂(ω) is the Fourier transform of ψ(t), and

(ii) the zero mean of the mother wavelet:
∫ ∞

−∞
ψ(t)dt = Ψ̂(0) = 0.

DWT

From computational perspective, much more interesting is the DWT, which is
an invertible WT that permits sparse signal decompositions at a low computa-
tional cost (see [Mal09] for a general overview). Again using the quantum-like
notation, the DWT can be defined for discrete values of a = 2j and b = 2jk
(j, k ∈ Z) as

cjk ≡ c(2j , 2jk) =
〈
ψjk(t), f(t)

〉
, with ψjk(t) = 2−j/2ψ(2−jt− k).

(4.38)
The orthonormal condition for the wavelet functions is given by (see [Has02])

〈
ψjk(t), ψj′k′ (t)

〉
= δjj′δkk′ ,

which leads to the inverse DWT :

f(t) =
∑

j

∑

k

cjkψjk(t). (4.39)

MRA

In the multiresolution analysis (MRA) of the DWT, one introduces a scaling
function φ(t), which satisfies the recurrent relation with 2K masking coeffi-
cients, hk, given by:

φ(t) =
√

2
2K−1∑

k=0

hkφ(2t− k),

with the normalization condition for φ(t) given by:
∫
φ(t)dt = 1.

A family of wavelet functions is generated by:

ψ(t) =
√

2
2K−1∑

k=0

(−1)kh2K−1−kφ(2t− k).

The scaling and wavelet functions satisfy the ortho–normal relations:

〈φ(t), φ(t−m)〉 = δm0, 〈ψ(t), ψ(t−m)〉 = δm0, 〈φ(t), ψ(t−m)〉 = 0.
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A set of masking coefficients hj is chosen so as to satisfy the conditions shown
above. Here, gk = (−1)kh2M−1−k, which is derived from the orthonormal
relations among wavelet and scaling functions.

The simplest wavelet function for K = 1 is the Harr wavelet for which we
get h0 = h1 = 1/

√
2, and

ψH(t) = 1, (for 0 ≤ t < 1/2)
= −1, (for 1/2 ≤ t < 1)

= 0, otherwise.

In the more sophisticated wavelets like the Daubechies wavelet , an additional
condition given by

∫
t�ψ(t)dt = 0, (for � = 0, 1, 2, 3..., L− 1)

is imposed for the smoothness of the wavelet function. Furthermore, e.g., in
the Coiflet wavelet , a similar smoothing condition is imposed also for the
scaling function as

∫
t�φ(t)dt = 0, (for � = 1, 2, 3..., L′ − 1) .

Once WT coefficients are obtained, we can calculate various quantities
such as auto– and cross–correlations and SNR, as will be discussed shortly. In
principle the expansion coefficients cjk in DWT may be calculated by using
(4.38)-(4.39) for a given function f(t) and an adopted mother wavelet ψ(t).

For example, a 1D forward and inverse Harr wavelets can be respectively
implemented in C# as:

public void ForwHarr(double[] dat) {
double[] tmp = new double[dat.Length];
int h = dat.Length >> 1;
for (int i = 0; i < h; i++) {

int k = (i << 1);
tmp[i] = dat[k] * s0 + dat[k + 1] * s1;
tmp[i + h] = dat[k] * w0 + dat[k + 1] * w1;

}
for (int i = 0; i < dat.Length; i++) dat[i] = tmp[i];

}

public void BackHaar(double[] dat) {
double[] tmp = new double[dat.Length];
int h = dat.Length >> 1;
for (int i = 0; i < h; i++) {

int k = (i << 1);
tmp[k] = (dat[i] * s0 + dat[i + h] * w0) / w0;
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tmp[k + 1] = (dat[i] * s1 + dat[i + h] * w1) / s0;
}
for (int i = 0; i < dat.Length; i++) dat[i] = tmp[i];

}

DT-CWT

The DWT has been successfully employed in many applications, including
image compression, noise reduction and speech recognition. However, in the
area of statistical signal processing, the DWT is less effective due to the high
translation sensitivity of the DWT25 (see [BDS12] and references therein).
In particular, for sophisticated complex-valued signal and image analysis, the
best currently-available tool is the so-called dual-tree complex wavelet trans-
form (DT-CWT), which exhibits better shift-invariance than the conventional
DWT.26 In this subsection, mainly following [BDS12], we briefly describe main
features of DT-CWT, based on the Hilbert transform (HT) H, which is itself
defined by its relation to the Fourier transform (4.35):

H{F [f(x)]} = Ĥf(ξ) = −i sign(ξ)f̂(ξ).

The Hilbert transform is orthogonal to the signal, commutes with translations
and positive dilatations, and H−1 = −H.

Let {ψj,k}j,k∈Z and {ψ′
j,k}j,k∈Z be two real-valued bi-orthogonal wavelet

systems that form a Hilbert-transform pair , i.e., ψ′ = Hψ. We define the
wavelet coefficients of f with respect to these wavelet systems by (see
[BDS12]):

aj [k] =
〈
f, ψj,k

〉
and bj [k] =

〈
f, ψ′

j,k

〉
, (for all j, k ∈ Z) ,

from which the following wavelet identities follow:

f =
∑

j,k∈Z

aj [k]ψ̃j,k and f =
∑

j,k∈Z

bj [k]ψ̃
′
j,k,

where ψ̃j,k and ψ̃
′
j,k represent the dual wavelets of ψj,k and ψ′

j,k respectively.
Now we can introduce the complex wavelets:

25 Small shifts in the input signal may completely change the wavelet coefficient
pattern; therefore, algorithms based on the DWT need to recognize a wide variety
of different wavelet patterns.

26 The near shift-invariance property of the DT-CWT has been extensively stud-
ied over the last decade (see [BDS12] and references therein). In particular, an
amplitude-phase representation for dual-tree complex wavelet transforms that
involve modulated wavelets was studied in [CU10], linking the multiresolution
framework of the wavelet components to the frequency decomposition through
Fourier analysis, which demonstrated the improved shiftability of the DT-CWT.
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Ψj,k =
ψj,k + iψ′

j,k

2
and Ψ̃j,k =

ψ̃j,k + iψ̃
′
j,k

2
,

for which DT-CWT coefficients are given by (see [BDS12]):

cj [k] = 〈f, Ψj,k〉 = 1
2
(aj [k]− ibj[k]), (for all j, k ∈ Z) .

In particular, for dyadic wavelet transforms, the level j coefficients of a
shifted signal f(· + s) with s = 2−jm, m ∈ Z, can be easily predicted from
the coefficients of the reference signal. They satisfy the following relations:

csj [k] =
〈
f(·+ 2−jm), Ψj,k

〉
=
〈
f, Ψj,k(· − 2−jm)

〉
= 〈f, Ψj,k+m〉 = cj [k +m].

This well-known property can be adapted for arbitrary shifts s by decomposing
s into a dyadic number 2−jm and some remainder h with |h| < 2−j: s =
2−jm+ h. Then we have:

csj [k] = 〈f(·+ s), Ψj,k〉 = 〈f(·+ h), Ψj,k+m〉 = chj [k +m].

The adjusted shift error , given by:

|cj [k +m]− csj [k]| = |cj [k +m]− chj [k +m]|,

is in general much smaller than the original shift error |cj[k]− csj [k]|. In order
to further reduce the shift error |cj[k + m] − chj [k + m]|, we will perform a
phase change of cj [k+m] over an angle φh that partially compensates for the
small shift h (|h| < 2−j), so that

csj[k] = chj [k +m] ≈ eiφhcj [k +m].

As suggested in [CU10], the assumption that the involved wavelet ψ is
modulated is made here, i.e.,

ψ(x) = w(x) cos(ω0x+ ξ0)

for ω0, ξ0 > 0 where the localization window w is bandlimited to [−Ω,Ω] for
some Ω < ω0. Examples of modulated wavelets are the Shannon wavelets and
Gabor wavelets . As the orthonormal spline, resp. B-spline, wavelets resemble
the Shannon, resp. Gabor, wavelet, they can be seen as a kind of modulated
wavelets. Using the so-called Bedrosian identity (see [CU10]), one can show
that

ψ′(x) = w(x) sin(ω0x+ ξ0).

In this way, we obtain the identity

Ψ(x) =
eiξ0

2
w(x)eiω0x.

For more technical details on DT-CWT, including the study of the phase-
compensated shift error , see [BDS12] and references therein.
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Application: Handwritten signature identification

A method for handwritten signature identification, based on complex wavelet
filters was proposed in [SK11]. Use of the rotated complex wavelet filters were
proposed in conjunction with DT-CWT, to derive signature feature extrac-
tion, which captures information in twelve different directions. The proposed
method proved to be superior over conventional DWT.

The following two algorithms were used for DWT and DT-CWT, respec-
tively:

Algorithm 1: Feature datbase creation using DWT Input:
Signature image datbase: DB
1D filters : LF, HF
Handwritten Signature : Si

Output:
Feature datbase FV

Begin
For each Si in DB do

Decompose the Si by applying low pass LF and
high pass HF filters up to 6th level
Calculate energy E and standard deviation SD for
each wavelet-decomposed subband
respectively in each level
Feature vector f = [E U SD]
FV=FV U f

End for
End

Algorithm 2: Feature datbase creation using DT-CWT Input:
Signature image datbase: DB
2D DT-CWT filters : F
Handwritten Signature : Si

Output:
Feature datbase : FV

Begin
If DT-RCWF

Rotate 2D filters F by 45 0
End if
For each Si in DB do

Decompose the Si by applying 2D filters F up to 6th
Level. Calculate energy E and standard deviation SD
for each wavelet-decomposed subband respectively in
each level
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Feature vector f = [E U SD]
FV=FV U f

End for
End

For more technical details on signature feature extraction using DWT and
DT-CWT, see [SK11].

4.3.2 Linear Integral Equations

As a reference, we give here a short review of common integral equations. For
more technical details, see [PZ04] and references therein.

Electro-Mechanical Systems

In electrical and control engineering (in particular in robotics and mechatron-
ics) various electro-mechanical input-output systems are ubiquitous. Some
of them are most naturally described by integro-differential equations, while
others (usually overdamped ones) are usually given by integral equations.

Integro-Differential Equations

We start with several examples of linear integro-differential equations arising
in electrical and mechanical engineering:

• Series RLC-circuit with voltage-input u(t), resistance R, inductance L,
capacitance C and current i(t), is governed by the following integro-
differential equation:27

L
di(t)
dt

+R i(t) + C−1

∫ t

0

i(t) dt = u(t).

Applcation of the Laplace transform L to this equation (assuming zero
initial conditions) gives:28

Ls I(s) +RI(s) + (Cs)−1 I(s) = U(s),

which implies the impedance of the series RLC-circuit:

Z(s) =
U(s)
I(s)

= Ls+R+ (Cs)−1 .

27 In terms of electric charge q(t), given by i(t) = q̇(t), this equation becomes the
2nd-order ODE:

L q̈(t) +R q̇(t) +C−1q(t) = u(t).

28 We denote: L[g(t)] = G(s).
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• Translational mass-spring-damper with force-input f(t), mass M, damper
viscosity B, spring stiffness K and velocity v(t), is governed by the integro-
differential equation:29

M
dv(t)
dt

+B v(t) +K

∫ t

0

v(t) dt = f(t).

In the Laplace transform, this equation reads:

MsV (s) +B V (s) + (K/s)V (s) = F (s),

which implies the mechanical impedance of the translational mass-spring-
damper:

Z(s) =
F (s)
V (s)

= Ms+B +
K

s
.

• Rotational mass-spring-damper with torque-input τ (t), inertia-moment J,
angular damper B, angular spring stiffness K and angular velocity w(t),
is governed by the integro-differential equation:30

J
dw(t)
dt

+Dw(t) + κ

∫ t

0

w(t) dt = τ (t).

In the Laplace transform, this equation reads:

JsW (s) +DW (s) + (κ/s)W (s) = T (s),

which implies the mechanical impedance of the rotational mass-spring-
damper:

Z(s) =
T (s)
W (s)

= Js+D +
κ

s
.

• Linear electric RLC-network is governed by the following system of
integro-differential equations:

z11i1 + z12i2 + ...+ z1nin = u1(t)
z21i1 + z22i2 + ...+ z2nin = u2(t)

... ... ... ... ...

zn1i1 + zn2i2 + ...+ znnin = un(t),
29 In terms of displacement x(t), given by v(t) = ẋ(t), this equation becomes the

2nd-order ODE:
M ẍ(t) +B ẋ(t) +K x(t) = f(t).

30 In terms of angle ϕ(t), given by w(t) = ϕ̇(t), this equation becomes the 2nd-order
ODE:

J ϕ̈(t) +D ϕ̇(t) + κϕ(t) = τ(t).
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with integro-differential operators:

zjkik = Ljk
dik(t)
dt

+Rjk ik(t) + C−1
jk

∫ t

0

ik(t) dt.

In the Laplace transform, this equation reads:

Ljks Ik(s) +Rjk Ik(s) + (Cjks)−1 Ik(s) = Uj(s),

which implies the impedance of the RLC-network:

Zjk(s) =
Uj(s)
Ik(s)

= Ljks+Rjk + (Cjks)−1 .

Linear Integral Equations

If we remove derivative terms from the above integro-differential equations
representing linear electrical and mechanical systems, we get the following
Volterra integral equations:

• Series RC-circuit with voltage-input u(t), resistance R, capacitance C and
current i(t), is governed by the following integral equation:

R i(t) + C−1

∫ t

0

i(t) dt = u(t).

Applying the Laplace transform to this equation (for zero initial condi-
tions) gives:

R I(s) + (Cs)−1 I(s) = U(s),

which implies the RC-circuit impedance:

Z(s) =
U(s)
I(s)

= R+ (Cs)−1 .

• Translational overdamped spring with force-input f(t), damper viscosity
B, spring stiffnessK and velocity v(t), is governed by the integral equation:

B v(t) +K

∫ t

0

v(t) dt = f(t).

In the Laplace transform, this equation reads:

B V (s) + (K/s)V (s) = F (s),

which implies the mechanical impedance of the translational spring-
damper:

Z(s) =
F (s)
V (s)

= B +
K

s
.
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• Rotational overdamped spring with torque-input τ (t), angular damper B,
angular spring stiffness K and angular velocity w(t), is governed by the
integral equation:

Dw(t) + κ

∫ t

0

w(t) dt = τ (t).

In the Laplace transform, this equation reads:

DW (s) + (κ/s)W (s) = T (s),

which implies the mechanical impedance of the rotational spring-damper:

Z(s) =
T (s)
W (s)

= D +
κ

s
.

• Linear electric RC-network is governed by the following system of integral
equations:

z11i1 + z12i2 + ...+ z1nin = u1(t)
z21i1 + z22i2 + ...+ z2nin = u2(t)

... ... ... ... ...

zn1i1 + zn2i2 + ...+ znnin = un(t),

with integral operators:

zjkik = Rjk ik(t) + C−1
jk

∫ t

0

ik(t) dt.

In the Laplace transform, this equation reads:

Rjk Ik(s) + (Cjks)−1 Ik(s) = Uj(s),

which implies the impedance of the linear RC-network:

Zjk(s) =
Uj(s)
Ik(s)

= Rjk + (Cjks)−1 .

Solutions of Some Volterra Integral Equations

Basic objective of this paragraph is to solve for y(x) a linear Volterra equation
with kernel K(x, t): ∫ x

a

K(x, t) y(t) dt = f(x).

where (a ≤ x ≤ b) and f(x) is a given function. In particular, we have the
difference kernel:

K(x, t) = K(x− t).
In the following, zero initial conditions are always assumed: 0 = f(a) =

fx(a) = fxx(a) = fxxx(a) ... Also, all integrals
∫ x
0
K(x, t)y(t) dt are evaluated

below for: y(x) = sinx.
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Simple kernels

1.

Eq :
∫ x

a

y(t) dt = f(x),

Sol : y(x) = fx(x), for y(x) = sinx,

Int :
∫ x

0

y(t) dt = 1− cosx.

2.

Eq :
∫ x

a

(x− t) y(t) dt = f(x),

Sol : y(x) = fxx(x),

Int :
∫ x

0

(x− t) y(t) dt = x− sinx.

3.

Eq :
∫ x

a

(x− t)2 y(t) dt = f(x),

Sol : y(x) =
1
2
fxxx(x),

Int :
∫ x

0

(x− t)2 y(t) dt = x2 + 2 cosx− 2.

4.

Eq :
∫ x

a

(x− t)3 y(t) dt = f(x),

Sol : y(x) =
1
3!
fxxxx(x),

Int :
∫ x

0

(x− t)3 y(t) dt = x3 − 6x+ 6 sinx.

5.

Eq :
∫ x

a

(x− t)n y(t) dt = f(x),

Sol : y(x) =
1
n!
f (n+1)
x (x),

Int :
∫ x

0

(x− t)4 y(t) dt = x4 − 12x2 − 24 cosx+ 24.
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6.

Eq :
∫ x

a

(x2 − t2) y(t) dt = f(x),

Sol : y(x) =
1
2
d

dx

[
1
x
fx(x)

]

,

Int :
∫ x

0

(x2 − t2) y(t) dt = x2 − 2x sinx− 2 cosx+ 2.

7.

Eq :
∫ x

a

(x3 − t3) y(t) dt = f(x),

Sol : y(x) =
1
3
d

dx

[
1
x2
fx(x)

]

,

Int :
∫ x

0

(x3 − t3) y(t) dt = x3 − 3
(
x2 − 2

)
sinx− 6x cosx.

8.

Eq :
∫ x

a

(xn − tn) y(t) dt = f(x), n− integer

Sol : y(x) =
1
n

d

dx

[
1

xn−1
fx(x)

]

,

Int :
∫ x

0

(x4 − t4) y(t) dt = x4 − 4
(
x2 − 6

)
x sin x− 12

(
x2 − 2

)
cosx− 24.

9.

Eq :
∫ x

a

(xµ − tµ) y(t) dt = f(x), µ− noninteger

Sol : y(x) =
1
µ

d

dx

[
x1−µfx(x)

]
.

Exponential kernels

1.

Eq :
∫ x

a

eλ(x−t) y(t) dt = f(x),

Sol : y(x) = fx(x)− λf(x),

Int :
∫ x

0

eλ(x−t) y(t) dt =
eλx − λ sinx− cosx

λ2 + 1
.

In particular,

Eq :
∫ x

0

eλ(x−t) y(t) dt = Ax,

Sol : y(x) = A(1− λx).
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2.

Eq :
∫ x

a

[
eλ(x−t) − 1

]
y(t) dt = f(x),

Sol : y(x) =
1
λ
fxx(x)− fx(x),

Int :
∫ x

0

[
eλ(x−t) − 1

]
y(t) dt =

eλx − λ sinx− cosx
λ2 + 1

+ cosx− 1.

3.

Eq :
∫ x

a

eλx+βt y(t) dt = f(x),

Sol : y(x) = e−(λ+β)x [fx(x)− λf(x)] ,

Int :
∫ x

0

eλx+βt y(t) dt =
eλx

(
eβx(β sinx− cosx) + 1

)

β2 + 1
.

In particular,

Eq :
∫ x

0

eλx+βt y(t) dt = A sin(γx),

Sol : y(x) = Ae−(λ+β)x [γ cos(γx)− λ sin(γx)] .

4.

Eq :
∫ x

a

eλ(x2−t2) y(t) dt = f(x),

Sol : y(x) = fx(x)− 2λxf(x),

Int :
∫ x

0

eλ(x2−t2) y(t) dt =

√
πex

2λ− 1
4λ

(
−i erf

(
2λx−i
2
√
λ

)
+ i erf

(
2λx+i
2
√
λ

)
+ 2erfi

(
1

2
√
λ

))

4
√
λ

.

5.

Eq :
∫ x

a

eλ(xβ−tβ) y(t) dt = f(x),

Sol : y(x) = fx(x) − λβxβ−1f(x).

6.

Eq :
∫ x

a

(
eλx − eλt

)
y(t) dt = f(x),

Sol : y(x) = e−λx
[

1
λ
fxx(x) − fx(x)

]

,

Int :
∫ x

0

(
eλx − eλt

)
y(t) dt =

eλx(cosx− λ sinx)− 1
λ2 + 1

− eλx(cosx− 1).
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7.

Eq :
∫ x

a

(
eλx

2 − eλt
2
)
y(t) dt = f(x),

Sol : y(x) =
1
2λ

d

dx

[
fx(x)
x eλx2

]

,

Int :
∫ x

0

(
eλx

2
− eλt

2
)
y(t) dt = −eλx

2
(cos x− 1)

−
√
πe

1
4λ

(
erf
(

1−2iλx
2
√
λ

)
+ erf

(
1+2iλx

2
√
λ

)
− 2erf

(
1

2
√
λ

))

4
√
λ

.

8.

Eq :
∫ x

a

(x− t) eλ(x−t) y(t) dt = f(x),

Sol : y(x) = fxx(x) − 2λfx(x) + λ2f(x),

Int :
∫ x

0

(x− t) eλ(x−t) y(t) dt =

eλx
(
λx2 + x− 2λ

)
+
(
λ2 − 1

)
sinx+ 2λ cosx

(
λ2 + 1

)2 .

9.

Eq :
∫ x

a

(
eλx+µt − eµx+λt

)
y(t) dt = f(x),

Sol : y(x) =
fxx(x)− (λ+ µ) fx(x) + λµ f(x)

(λ− µ) e(λ+µ)x
,

Int :
∫ x

0

(
eλx+µt − eµx+λt

)
y(t) dt =

eµx
(
eλx(cosx− λ sinx)− 1

)

λ2 + 1

+
eλx (eµx(µ sinx− cosx) + 1)

µ2 + 1
.

Hyperbolic kernels

1.

Eq :
∫ x

a

cosh [λ(x− t)] y(t) dt = f(x),

Sol : y(x) = fx(x) − λ2

∫ x

a

f(t) dt,

Int :
∫ x

0

cosh [λ(x− t)] y(t) dt =
cosh(λx)− cosx

λ2 + 1
.
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2.

Eq :
∫ x

a

(cosh [λ(x− t)]− 1) y(t) dt = f(x),

Sol : y(x) =
1
λ2
fxxx(x) − fx(x),

Int :
∫ x

0

(cosh [λ(x− t)]− 1) y(t) dt =

cosh(λx)− cosx
λ2 + 1

+ cosx− 1.

3.

Eq :
∫ x

a

[cosh(λx)− cosh(λt)] y(t) dt = f(x),

Sol : y(x) =
1
λ

d

dx

[
fx(x)

sinh(λx)

]

,

Int :
∫ x

0

[cosh(λx)− cosh(λt)] y(t) dt =
(
λ2(− cosx) + λ2 + 1

)
cosh(λx)− λ sinx sinh(λx)− 1

λ2 + 1
.

4.

Eq :
∫ x

a

[cosh(λx)− cosh(λt)]n y(t) dt = f(x),

Sol : y(x) =
sinh(λx)
λnn!

[
1

sinh(λx)
d

dx

]n+1

f(x),

Int :
∫ x

0

[cosh(λx)− cosh(λt)]2 y(t) dt =

1
8λ4 + 10λ2 + 2

[−6λ3 sinx sinh(2λx) − 4
(
4λ2 + 1

)
cosh(λx)

+
(
λ2 + 1

) ((
4λ2 + 1

)
cosh(2λx) + 8λ2 + 3

)

+2λ2 cosx
((

1− 2λ2
)
cosh(2λx)− 4λ2 − 1

)
]

5.

Eq :
∫ x

a

sinh [λ(x− t)] y(t) dt = f(x),

Sol : y(x) =
1
λ
fxx(x)− λf(x),

Int :
∫ x

0

sinh [λ(x− t)] y(t) dt =
sinh(λx)− λ sinx

λ2 + 1
.
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6.

Eq :
∫ x

a

[sinh(λx) − sinh(λt)] y(t) dt = f(x),

Sol : y(x) =
1
λ

d

dx

[
fx(x)

cosh(λx)

]

,

Int :
∫ x

0

[sinh(λx) − sinh(λt)] y(t) dt =
(
λ2(− cosx) + λ2 + 1

)
sinh(λx)− λ sinx cosh(λx)

λ2 + 1
.

7.

Eq :
∫ x

a

[
sinh2(λx)− sinh2(λt)

]
y(t) dt = f(x),

Sol : y(x) =
1
λ

d

dx

[
fx(x)

cosh(2λx)

]

,

Int :
∫ x

0

[
sinh2(λx)− sinh2(λt)

]
y(t) dt =

cos(x)
(
cosh(2λx)− 4λ2 − 1

)
− 2λ sinx sinh(2λx) + 4λ2

8λ2 + 2
+(1− cosx) sinh2(λx).

8.

Eq :
∫ x

a

[sinhµx− sinhµt] y(t) dt = f(x),

Sol : y(x) =
1
µ

d

dx

[
fx(x)

coshx sinhµ−1 x

]

.

9.

Eq :
∫ x

a

[tanh(λx)− tanh(λt)] y(t) dt = f(x),

Sol : y(x) =
1
λ

d

dx

[
cosh2(λx) fx(x)

]
.

10.

Eq :
∫ x

a

[
tanh2(λx)− tanh2(λt)

]
y(t) dt = f(x),

Sol : y(x) =
d

dx

[
cosh3(λx) fx(x)

2λ sinh(λx)

]

.
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11.

Eq :
∫ x

a

[tanhµx− tanhµt] y(t) dt = f(x),

Sol : y(x) =
1
µ

d

dx

[
coshµ+1x fx(x)

sinhµ−1 x

]

.

12.

Eq :
∫ x

a

[tanh(λx)− tanh(λt)]n y(t) dt = f(x),

Sol : y(x) =
1

λnn!cosh2(λx)

[

cosh2(λx)
d

dx

]n+1

f(x).

13.

Eq :
∫ x

a

[coth(λx)− coth(λt)] y(t) dt = f(x),

Sol : y(x) = − 1
λ

d

dx

[
sinh2(λx) fx(x)

]
.

14.

Eq :
∫ x

a

[
coth2(λx)− coth2(λt)

]
y(t) dt = f(x),

Sol : y(x) = − d

dx

[
sinh3(λx) fx(x)

2λ cosh(λx)

]

.

15.

Eq :
∫ x

a

[cothµx− cothµt] y(t) dt = f(x),

Sol : y(x) = − 1
µ

d

dx

[
sinhµ+1 x fx(x)

coshµ−1x

]

.

16.

Eq :
∫ x

a

[coth(λx)− coth(λt)]n y(t) dt = f(x),

Sol : y(x) =
(−1)n

λnn!sinh2(λx)

[

sinh2(λx)
d

dx

]n+1

f(x).
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Trigonometric kernels

1.

Eq :
∫ x

a

cos [λ(x− t)] y(t) dt = f(x),

Sol : y(x) = fx(x) + λ2

∫ x

a

f(x) dx,

Int :
∫ x

0

cos [λ(x− t)] y(t) dt =
cosx− cos(λx)

λ2 − 1
.

2.

Eq :
∫ x

a

(cos [λ(x− t)]− 1) y(t) dt = f(x),

Sol : y(x) = − 1
λ2 fxxx(x)− fx(x),

Int :
∫ x

0

(cos [λ(x− t)]− 1) y(t) dt =
cosx− cos(λx)

λ2 − 1
+ cosx− 1.

3.

Eq :
∫ x

a

[cos(λx)− cos(λt)] y(t) dt = f(x),

Sol : y(x) = − 1
λ

d

dx

[
fx(x)

sin(λx)

]

,

Int :
∫ x

0

[cos(λx)− cos(λt)] y(t) dt =
(
λ2(− cosx) + λ2 − 1

)
cos(λx)− λ sinx sin(λx) + 1

λ2 − 1
.

4.

Eq :
∫ x

a

[
cos2(λx)− cos2(λt)

]
y(t) dt = f(x),

Sol : y(x) = − 1
λ

d

dx

[
fx(x)

sin(2λx)

]

.

5.

Eq :
∫ x

a

(cosµx− cosµt) y(t) dt = f(x),

Sol : y(x) = − 1
µ

d

dx

[
fx(x)

sinx cosµ−1 x

]

.
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6.

Eq :
∫ x

a

[cos(λx)− cos(λt)] ny(t) dt = f(x),

Sol : y(x) =
(−1)n

λnn!
sin(λx)

[
1

sin(λx)
d

dx

]n+1

f(x).

7.

Eq :
∫ x

a

sin [λ(x− t)] y(t) dt = f(x),

Sol : y(x) =
1
λ
fxx(x) + λf(x),

Int :
∫ x

0

sin [λ(x− t)] y(t) dt =
λ sinx− sin(λx)

λ2 − 1
.

8.

Eq :
∫ x

a

[sin(λx) − sin(λt)] y(t) dt = f(x),

Sol : y(x) =
1
λ

d

dx

[
fx(x)

cos(λx)

]

,

Int :
∫ x

0

[sin(λx) − sin(λt)] y(t) dt =

sin(λx)
(
λ2(− cosx) + λ2 − 1

)
+ λ sinx cos(λx)

λ2 − 1
.

9.

Eq :
∫ x

a

[
sin2(λx) − sin2(λt)

]
y(t) dt = f(x),

Sol : y(x) =
1
λ

d

dx

[
fx(x)

sin(2λx)

]

,

Int :
∫ x

0

[
sin2(λx) − sin2(λt)

]
y(t) dt =

(
4λ2 cosx− 4λ2 + 1

)
cos(2λx) + 2λ sinx sin(2λx)− 1

8λ2 − 2
.

10.

Eq :
∫ x

a

(sinµx− sinµt) y(t) dt = f(x),

Sol : y(x) =
1
µ

d

dx

[
fx(x)

cosx sinµ−1x

]

.
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11.

Eq :
∫ x

a

[tan(λx)− tan(λt)] y(t) dt = f(x),

Sol : y(x) =
1
λ

d

dx

[
cos2(λx) fx(x)

]
.

12.

Eq :
∫ x

a

[
tan2(λx)− tan2(λt)

]
y(t) dt = f(x),

Sol : y(x) =
d

dx

[
cos3(λx) fx(x)

2λ sin(λx)

]

.

13.

Eq :
∫ x

a

(tanµx− tanµt) y(t) dt = f(x),

Sol : y(x) =
1
µ

d

dx

[
cos µ+1x fx(x)

sinµ−1x

]

.

14.

Eq :
∫ x

a

[tan(λx)− tan(λt)]n y(t) dt = f(x),

Sol : y(x) =
1

λnn!cos2(λx)

[

cos2(λx)
d

dx

]n+1

f(x).

15.

Eq :
∫ x

a

[cot(λx)− cot(λt)] y(t) dt = f(x),

Sol : y(x) = − 1
λ

d

dx

[
sin2(λx) fx(x)

]
.

16.

Eq :
∫ x

a

[
cot2(λx)− cot2(λt)

]
y(t) dt = f(x),

Sol : y(x) = − d

dx

[
sin3(λx) fx(x)

2λ cos(λx)

]

.

17.

Eq :
∫ x

a

(cotµx− cotµt) y(t) dt = f(x),

Sol : y(x) = − 1
µ

d

dx

[
sinµ+1x fx(x)

cosµ−1x

]

.
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18.

Eq :
∫ x

a

[cot(λx)− cot(λt)]n y(t) dt = f(x),

Sol : y(x) =
(−1)n

λnn!sin2(λx)

[

sin2(λx)
d

dx

]n+1

f(x).

Inverse trigonometric kernels

1.

Eq :
∫ x

a

[arccos(λx)− arccos(λt)] y(t) dt = f(x),

Sol : y(x) = − 1
λ

d

dx

[√
1− λ2x2 fx(x)

]
.

2.

Eq :
∫ x

a

[arccosµ(λx)− arccosµ(λt)] y(t) dt = f(x),

Sol : y(x) = − 1
λµ

d

dx

[ √
1− λ2x2 fx(x)

arccosµ−1(λx)

]

.

3.

Eq :
∫ x

a

[arccos(λx) − arccos(λt)] ny(t) dt = f(x),

Sol : y(x) =
(−1)n

λnn!
√

1− λ2x2

[√
1− λ2x2

d

dx

]n+1

f(x).

4.

Eq :
∫ x

a

[arcsin(λx)− arcsin(λt)] y(t) dt = f(x),

Sol : y(x) =
1
λ

d

dx

[√
1− λ2x2 fx(x)

]
.

5.

Eq :
∫ x

a

[arcsinµ(λx)− arcsinµ(λt)] y(t) dt = f(x),

Sol : y(x) =
1
λµ

d

dx

[ √
1− λ2x2 fx(x)
arcsinµ−1(λx)

]

.

6.

Eq :
∫ x

a

[arcsin(λx)− arcsin(λt)] n y(t) dt = f(x),

Sol : y(x) =
1

λnn!
√

1− λ2x2

[√
1− λ2x2

d

dx

]n+1

f(x).
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7.

Eq :
∫ x

a

[arctan(λx)− arctan(λt)] y(t) dt = f(x),

Sol : y(x) =
1
λ

d

dx

[ (
1 + λ2x2

)
fx(x)

]
.

8.

Eq :
∫ x

a

[arctan(λx)− arctan(λt)] ny(t) dt = f(x),

Sol : y(x) =
1

λnn!
(
1 + λ2x2

)
[
(
1 + λ2x2

) d

dx

]n+1

f(x).

9.

Eq :
∫ x

a

[arctanµ(λx)− arctanµ(λt)] y(t) dt = f(x),

Sol : y(x) =
1
λµ

d

dx

[ (
1 + λ2x2

)
fx(x)

arctanµ−1(λx)

]

.

10.

Eq :
∫ x

a

[arccot(λx)− arccot(λt)] y(t) dt = f(x),

Sol : y(x) = − 1
λ

d

dx

[ (
1 + λ2x2

)
fx(x)

]
.

11.

Eq :
∫ x

a

[arccot(λx)− arccot(λt)] ny(t) dt = f(x),

Sol : y(x) =
(−1)n

λnn!
(
1 + λ2x2

)

[
(
1 + λ2x2

) d

dx

]n+1

f(x).

12.

Eq :
∫ x

a

[arccotµ(λx)− arccotµ(λt)] y(t) dt = f(x),

Sol : y(x) = − 1
λµ

d

dx

[ (
1 + λ2x2

)
fx(x)

arccotµ−1(λx)

]

.

Combined elementary kernels

1.

Eq :
∫ x

a

eλ(x−t) [ln(x/t)] ny(t) dt = f(x),

Sol : y(x) =
1
n!x

eλx
(

x
d

dx

)n+1

e−λxf(x).
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2.

Eq :
∫ x

a

eλ(x−t) (lnx− lnt) y(t) dt = f(x),

Sol : y(x) = eλx [xϕxx(x) + ϕx(x)] , ϕx(x) = e−λxf(x).

3.

Eq :
∫ x

a

eµ(x−t) [cos(λx)− cos(λt)] ny(t) dt = f(x),

Sol : y(x) =
(−1)n

λnn!
eµxsin(λx)

[
1

sin(λx)
d

dx

]n+1

e−µxf(x).

4.

Eq :
∫ x

a

eµ(x−t)cos [λ(x− t)] y(t) dt = f(x),

Sol : y(x) = fx(x) − µf(x) + λ2

∫ x

a

eµ(x−t)f(t) dt.

5.

Eq :
∫ x

a

eµ(x−t)sin [λ(x− t)] y(t) dt = f(x),

Sol : y(x) =
1
λ

[
fxx(x)− 2µfx(x) + (λ2 + µ2)f(x)

]
.

6.

Eq :
∫ x

a

(sinh [λ(x− t)]− sin [λ(x− t)]) y(t) dt = f(x),

Sol : y(x) =
1

2λ3

(
d4

dx4
− λ4

)

f(x).

Logarithmic kernels

1.

Eq :
∫ x

a

(lnx− lnt) y(t) dt = f(x),

Sol : y(x) = xfxx(x) + fx(x),

Int :
∫ x

0

(lnx− lnt) y(t) dt = lnx− Ci(x) + γ(� 0.577216).

2.

Eq :
∫ x

a

[
ln2(λx)− ln2(λt)

]
y(t) dt = f(x),

Sol : y(x) =
d

dx

[
x fx(x)
2ln(λx)

]

.
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3.

Eq :
∫ x

a

[lnµ(λx)− lnµ(λt)] y(t) dt = f(x),

Sol : y(x) =
1
µ

d

dx

[
x ln1−µ (λx) fx(x)

]
.

4.

Eq :
∫ x

a

[ln(x/t)] ny(t) dt = f(x),

Sol : y(x) =
1
n!x

(

x
d

dx

)n+1

f(x).

5.

Eq :
∫ x

a

ln
(
x+ b

t+ b

)

y(t) dt = f(x),

Sol : y(x) = (x+ b) fxx(x) + fx(x).

Bessel kernels

1.

Eq :
∫ x

a

[J0(λx)− J0(λt)] y(t) dt = f(x),

Sol : y(x) = − d

dx

[
fx(x)

λJ1(λx)

]

.

2.

Eq :
∫ x

a

[Jν(λx)− Jν(λt)] y(t) dt = f(x),

Sol : y(x) =
d

dx

[
x fx(x)

νJν(λx)− λxJν+1(λx)

]

.

3.

Eq :
∫ x

a

(x− t)1/2J1/2 [λ(x − t)] y(t) dt = f(x),

Sol : y(x) =
√

π

2λ
[
fxx(x) + λ2f(x)

]
.

4.

Eq :
∫ x

a

(x− t)3/2J3/2 [λ(x − t)] y(t) dt = f(x),

Sol : y(x) =
√
π

(2λ)3/2

(
d2

dx2
+ λ2

)2

f(x).
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5.

Eq :
∫ x

a

(x− t)
2n−1

2 J 2n−1
2

[λ(x− t)] y(t) dt = f(x),

Sol : y(x) =
√
π

(2λ)
2n−1

2 (n− 1)!

(
d2

dx2
+ λ2

)n
f(x).

6.

Eq :
∫ x

a

[Y0(λx)− Y0(λt)] y(t) dt = f(x),

Sol : y(x) = − d

dx

[
fx(x)

λY1(λx)

]

.

7.

Eq :
∫ x

a

[Yν(λx)− Yν(λt)] y(t) dt = f(x),

Sol : y(x) =
d

dx

[
x fx(x)

νYν(λx)− λxYν+1(λx)

]

.

8.

Eq :
∫ x

a

(x− t)1/2I1/2 [λ(x− t)] y(t) dt = f(x),

Sol : y(x) =
√

π

2λ
[
fxx(x) − λ2f(x)

]
.

9.

Eq :
∫ x

a

(x− t)3/2I3/2 [λ(x− t)] y(t) dt = f(x),

Sol : y(x) =
√
π

(2λ)3/2

(
d2

dx2
− λ2

)2

f(x).

10.

Eq :
∫ x

a

(x− t)
2n−1

2 I 2n−1
2

[λ(x − t)] y(t) dt = f(x),

Sol : y(x) =
√
π

(2λ)
2n−1

2 (n− 1)!

(
d2

dx2
− λ2

)n
f(x).

11.

Eq :
∫ x

a

[K0(λx)−K0(λt)] y(t) dt = f(x),

Sol : y(x) = − d

dx

[
fx(x)

λK1(λx)

]

.
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Arbitrary kernels

1.

Eq :
∫ x

a

g(x)h(t) y(t) dt = f(x),

Sol : y(x) =
1

h(x)
d

dx

[
f(x)
g(x)

]

.

2.

Eq :
∫ x

a

[g(x) − g(t)] y(t) dt = f(x),

Sol : y(x) =
d

dx

[
fx(x)
gx(x)

]

.

3.

Eq :
∫ x

a

[g(x) − g(t)]n y(t) dt = f(x),

Sol : y(x) = Sol : y(x) =
1
n!
gx(x)

(
1

gx(x)
d

dx

)n+1

f(x).

4.

Eq :
∫ x

a

[g(x)h(t)− h(x)g(t)] y(t) dt = f(x),

Sol : y(x) =
1

h(x)
d

dx

(
d
dx

[ f(x)/h(x)]
d
dx

[g(x)/h(x)]

)

.

Difference kernel: K(x, t) = K(x− t)

1.

Eq :
∫ x

−∞
K(x− t) y(t) dt = f(x).

Sol1 : If f(x) =
n∑

k=0

Akx
k , y(x) =

n∑

k=0

Bkx
k,

(Ak , Bk undetermined coefficients).

Sol2 : If f(x) = eλx
n∑

k=0

Akx
k , y(x) = eλx

n∑

k=0

Bkx
k.

Sol3 : If f(x) = cos(λx)
n∑

k=0

Akx
k,
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y(x) = cos(λx)
n∑

k=0

Bkx
k + sin(λx)

n∑

k=0

Ckx
k .

Sol4 : If f(x) = sin(λx)
n∑

k=0

Akx
k,

y(x) = cos(λx)
n∑

k=0

Bkx
k + sin(λx)

n∑

k=0

Ckx
k .

2.

Eq :
∫ ∞

x

K(x− t) y(t) dt = f(x) : Laplace transforms.

Sol1 : If f(x) =
n∑

k=0

Akx
k, y(x) =

n∑

k=0

Bkx
k , (Ak, Bk

undetermined coefficients).

Sol2 : If f(x) = eλx
n∑

k=0

Akx
k, y(x) = eλx

n∑

k=0

Bkx
k .

Sol3 : If f(x) = cos(λx)
n∑

k=0

Akx
k,

y(x) = cos(λx)
n∑

k=0

Bkx
k + sin(λx)

n∑

k=0

Ckx
k.

Sol4 : If f(x) = sin(λx)
n∑

k=0

Akx
k,

y(x) = cos(λx)
n∑

k=0

Bkx
k + sin(λx)

n∑

k=0

Ckx
k.

For arbitrary right-hand side f(x), the solution of this integral equation
can be calculated by the inverse Laplace transform

y(x) =
1

2πi

∫ c+i∞

c−i∞

F (s)
k(−s)esxds, with

F (s) = L[f(x)] =
∫ ∞

0

f(x)e−sxdx,

k(−s) = L[K(−z)] =
∫ ∞

0

K(−z)eszdz.

Some transformations

Let the solution of the integral equation
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∫ x

a

K(x, t) y(t) dt = f(x)

have the form
y(x) = F [f(x)] ,

where F is some linear integro-differential operator. Then the solution of the
more complicated integral equation

∫ x

a

K(x, t) g(x)h(t) y(t) dt = f(x)

has the form

y(x) =
1

h(x)
F
[
f(x)
g(x)

]

.

1.

Eq :
∫ x

a

K(x, t) (x/t)λy(t) dt = f(x),

Sol : y(x) = xλF
[
x−λf(x)

]
.

2.

Eq :
∫ x

a

K(x, t) eλ(x−t) y(t) dt = f(x),

Sol : y(x) = eλxF
[
e−λxf(x)

]
.

4.3.3 Riemann-Liouville Fractional Calculus

Here we give a brief overview of Riemann-Liouville fractional calculus: (i)
integral, (ii) differential, (iii) integral equations, and (iv) diffusion-wave PDE
(for additional details see references listed in [FC13]).

Fractional Integral

Cauchy formula: an n−fold primitive fn(t) of a function f(t) is calculated by
a convolution integral:

Jnf(t) := fn(t) =
1

(n− 1)!

∫ t

0

(t−τ)n−1 f(τ) dτ , (for t > 0 , n ∈ N). (4.40)

Riemann-Liouville fractional integral of order α > 0 is given by:

Jα f(t) : =
1

Γ (α)

∫ t

0

(t− τ )α−1 f(τ ) dτ , (for t > 0 , α ∈ R
+), (4.41)

J0 f(t) : = f(t), Jαf(0+) = lim
t→0+

Jαf(t).
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Semigroup property:

JαJβ = Jα+β , (for α , β ≥ 0 ), (4.42)

implies the commutative property JβJα = JαJβ , and the effect of our oper-
ators Jα on the power functions (tγ with γ > −1, t > 0 ,)

Jαtγ =
Γ (γ + 1)

Γ (γ + 1 + α)
tγ+α , α > 0 , γ > −1 , t > 0 . (4.43)

The properties (4.42-4.43) are natural generalization of those known when the
order is a positive integer. The proofs are based on the properties of the two
Eulerian integrals, i.e., the Gamma function and Beta function:

Γ (z) : =
∫ ∞

0

e−u uz−1 du , Γ (z + 1) = z Γ (z) , {z} > 0 , (4.44)

B(p, q) : =
∫ 1

0

(1− u)p−1 uq−1 du =
Γ (p)Γ (q)
Γ (p+ q)

= B(q, p) , {p , q} > 0 .

(4.45)

where Re {p , q} > 0 .
Let us now recall the notion of Laplace convolution, i.e., the convolution

integral with two causal functions, which reads in a standard notation:

f(t) ∗ g(t) :=
∫ t

0

f(t− τ ) g(τ ) dτ = g(t) ∗ f(t) .

Also, it is convenient to introduce the following causal function

Φα(t) :=
tα−1
+

Γ (α)
, α > 0 , (4.46)

where the suffix + is just denoting that the function is vanishing for t < 0 .
Being α > 0 , this function turns out to be locally absolutely integrable in
R+ .

Then we note from (4.41) and (4.46) that the fractional integral (of a
function f(t)) of order α > 0 can be considered as the Laplace convolution
between Φα(t) and f(t) , i.e.,

Jα f(t) = Φα(t) ∗ f(t) , α > 0 . (4.47)

Furthermore, based on the Eulerian integrals, one proves the composition rule

Φα(t) ∗ Φβ(t) = Φα+β(t) , α , β > 0 , (4.48)

which can be used to re-obtain (4.42) and (4.43).
Introducing the Laplace transform by the notation:
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L{f(t)} :=
∫ ∞

0

e−st f(t) dt = F (s) , s ∈ C ,

and using the sign ÷ to denote a Laplace transform pair: f(t)÷F (s) , we note
the following rule for the Laplace transform of the fractional integral,

Jα f(t)÷ F (s)
sα

, α > 0 , (4.49)

which is the straightforward generalization of the case with an n-fold repeated
integral (α = n). (For the proof it is sufficient to recall the convolution theorem
for Laplace transforms and note the pair Φα(t)÷ 1/sα , with α > 0 .)

Fractional Derivative

Riemann-Liouville Fractional Derivative

Denoting by Dn with n ∈ N , the operator of the derivative of order n , we
first note that

Dn Jn = I , JnDn = I , n ∈ N , (4.50)

i.e., Dn is left-inverse (and not right-inverse) to the corresponding integral
operator Jn . In fact we easily recognize from (4.40) that

JnDn f(t) = f(t)−
n−1∑

k=0

f (k)(0+)
tk

k!
, t > 0 . (4.51)

As a consequence we expect that Dα is defined as left-inverse to Jα. For
this purpose, introducing the positive integer m such that m − 1 < α ≤ m,
one defines the Riemann-Liouville fractional derivative of order α > 0 :

Dα f(t) := Dm Jm−α f(t) , namely

Dα f(t) :=

{
dm

dtm

[
1

Γ (m−α)

∫ t
0

f(τ)
(t−τ)α+1−m dτ

]
, m− 1 < α ≤ m,

dm

dtm f(t), α = m.
(4.52)

Defining for complementation D0 = J0 = I , then we easily recognize that

Dα Jα = I , α ≥ 0 , (4.53)

and

Dα tγ =
Γ (γ + 1)

Γ (γ + 1− α)
tγ−α , α > 0 , γ > −1 , t > 0 . (4.54)

The properties (4.53-4.54) are a natural generalization of those known when
the order is a positive integer.
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Caputo Fractional Derivative

We now observe that an alternative definition of fractional derivative, orig-
inally introduced by Caputo in the late sixties and adopted by Caputo and
Mainardi in the framework of the theory of linear viscoelasticity, is the so-
called Caputo fractional derivative of order α > 0 : Dα∗ f(t) := Jm−αDm f(t)
with m− 1 < α ≤ m, namely

Dα
∗ f(t) :=

{
1

Γ (m−α)

∫ t
0

f(m)(τ)
(t−τ)α+1−m dτ , m− 1 < α ≤ m,

dm

dtm
f(t), α = m.

(4.55)

This definition is more restrictive than (4.52), in that requires the absolute
integrability of the derivative of order m. Whenever we use the operator Dα

∗
we (tacitly) assume that this condition is met.

We easily recognize that in general

Dα f(t) := Dm Jm−α f(t) = Jm−αDm f(t) := Dα
∗ f(t) , (4.56)

unless the function f(t) along with its firstm−1 derivatives vanishes at t = 0+.
In fact, assuming that the passage of the m-derivative under the integral is
legitimate, one recognizes that, for m− 1 < α < m and t > 0 ,

Dα f(t) = Dα
∗ f(t) +

m−1∑

k=0

tk−α

Γ (k − α+ 1)
f (k)(0+) , (4.57)

and therefore, recalling the fractional derivative of the power functions (4.54),

Dα

[

f(t)−
m−1∑

k=0

tk

k!
f (k)(0+)

]

= Dα
∗ f(t) . (4.58)

The Caputo definition (4.55) for the fractional derivative thus incorporates
the initial values of the function and of its integer derivatives of lower order.
The subtraction of the Taylor polynomial of degree m − 1 at t = 0+ from
f(t) means a sort of regularization of the fractional derivative. In particular,
according to this definition, the relevant property for which the fractional
derivative of a constant is still zero, i.e.,

Dα
∗ 1 ≡ 0 , α > 0 . (4.59)

can be easily recognized.

Fractional Integral Equations

Abel’s equation of the first kind

Let us consider the Abel integral equation of the first kind
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1
Γ (α)

∫ t

0

u(τ)
(t− τ )1−α dτ = f(t) , 0 < α < 1 , (4.60)

where f(t) is a given function. We easily recognize that this equation can be
expressed in terms of a fractional integral, i.e.,

Jα u(t) = f(t) , (4.61)

and consequently solved in terms of a fractional derivative, according to

u(t) = Dα f(t) . (4.62)

To this end we need to recall the definition (4.41) and the property (4.53)
Dα Jα = I.

Let us now solve (4.60) using the Laplace transform. Noting from (4.46-
4.47) and (4.49) that

Jα u(t) = Φα(t) ∗ u(t) ÷ U(s)/sα ,

we then obtain
U(s)
sα

= F (s) =⇒ U(s) = sα F (s) . (4.63)

Now we can choose two different ways to get the inverse Laplace transform
from (4.63), according to the standard rules. Writing (4.63) as

U(s) = s

[
F (s)
s1−α

]

, (4.64)

we obtain

u(t) =
1

Γ (1− α)
d

dt

∫ t

0

f(τ )
(t− τ )α dτ . (4.65)

On the other hand, writing (4.63) as

U(s) =
1

s1−α
[sF (s)− f(0+)] +

f(0+)
s1−α

, (4.66)

we obtain

u(t) =
1

Γ (1− α)

∫ t

0

f ′(τ )
(t− τ)α dτ + f(0+)

t−α

Γ (1− a) . (4.67)

Thus, the solutions (4.65) and (4.67) are expressed in terms of the fractional
derivatives Dα and Dα∗ , respectively, according to (4.52), (4.55) and (4.57)
with m = 1 .

The way b) requires that f(t) be differentiable with L-transformable
derivative; consequently 0 ≤ |f(0+)| < ∞ . Then it turns out from (4.67)
that u(0+) can be infinite if f(0+) = 0 , being u(t) = O(t−α) , as t→ 0+ .
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The way a) requires weaker conditions in that the integral at the R.H.S.
of (4.65) must vanish as t → 0+; consequently f(0+) could be infinite but
with f(t) = O(t−ν) , 0 < ν < 1 − α as t → 0+ . To this end keep in mind
that Φ1−α ∗ Φ1−ν = Φ2−α−ν . Then it turns out from (4.65) that u(0+) can
be infinite if f(0+) is infinite, being u(t) = O(t−(α+ν)) , as t→ 0+ .

Finally, let us remark that we can analogously treat the case of equation
(4.60) with 0 < α < 1 replaced by α > 0 . If m−1 < α ≤ m with m ∈ N , then
again we have (4.61), now with Dα f(t) given by the formula (4.52) which can
also be obtained by the Laplace transform method.

Abel’s equation of the second kind

Let us now consider the Abel equation of the second kind

u(t) +
λ

Γ (α)

∫ t

0

u(τ)
(t− τ )1−α dτ = f(t) , α > 0 , λ ∈ C . (4.68)

In terms of the fractional integral operator such equation reads

(1 + λJα) u(t) = f(t) , (4.69)

and consequently can be formally solved as follows:

u(t) = (1 + λJα) −1 f(t) =

(

1 +
∞∑

n=1

(−λ)n Jαn
)

f(t) . (4.70)

Noting by (4.46-4.47) that

Jαn f(t) = Φαn(t) ∗ f(t) =
tαn−1
+

Γ (αn)
∗ f(t)

the formal solution reads

u(t) = f(t) +

( ∞∑

n=1

(−λ)n
tαn−1
+

Γ (αn)

)

∗ f(t) . (4.71)

Using the definition of the Mittag-Leffler function,31

31 The Mittag-Leffler function Eα(z) with α > 0 is defined by the following series
representation, valid in the whole complex plane,

Eα(z) :=
∞X

n=0

zn

Γ (αn+ 1)
, α > 0 , z ∈ C .

It turns out that Eα(z) is an entire function of order ρ = 1/α and type 1 . This
property is still valid but with ρ = 1/Re{α} , if α ∈ C with positive real part.The
Mittag-Leffler function provides a simple generalization of the exponential func-
tion because of the substitution of n! = Γ (n+ 1) with (αn)! = Γ (αn+ 1) in the
denominator of the terms of the exponential series.
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eα(t;λ) := Eα(−λ tα) =
∞∑

n=0

(−λ tα)n

Γ (αn+ 1)
, t > 0 , α > 0 , λ ∈ C , (4.72)

where Eα denotes the Mittag-Leffler function of order α , we note that

∞∑

n=1

(−λ)n
tαn−1
+

Γ (αn)
=

d

dt
Eα(−λtα) = e′α(t;λ) , t > 0 . (4.73)

Finally, the solution reads

u(t) = f(t) + e′α(t;λ) ∗ f(t) . (4.74)

The above formal proof based on the series development of the operator
(1 + λJα)−1 ,can be made rigorous. Simply observe that because of the rapid
growth of the gamma function the infinite series in (4.71) and (4.73) are uni-
formly convergent in every bounded interval of the variable t so that term-wise
integrations and differentiations are allowed. However, we prefer to use the al-
ternative technique of Laplace transforms, which will allow us to obtain the
solution in different forms, including the result (4.74).

Applying the Laplace transform to (4.68) we obtain
(

1 +
λ

sα

)

U(s) = F (s) =⇒ U(s) =
sα

sα + λ
F (s) . (4.75)

Now, let us proceed to obtain the inverse Laplace transform of (4.75) using
the following Laplace transform pair:

eα(t;λ) := Eα(−λ tα) ÷ sα−1

sα + λ
. (4.76)

As for the Abel equation of the first kind, we can choose two different ways
to get the inverse Laplace transforms from (4.75), according to the standard
rules.

Writing (4.75) as

ū(s) = s

[
sα−1

sα + λ
F (s)

]

,

we obtain

u(t) =
d

dt

∫ t

0

f(t− τ ) eα(τ ;λ) dτ .

If we write (4.75) as

U(s) =
sα−1

sα + λ
[sF (s)− f(0+)] + f(0+)

sα−1

sα + λ
,

we obtain

u(t) =
∫ t

0

f ′(t− τ) eα(τ ;λ) dτ + f(0+) eα(t;λ) .
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We also note that, eα(t;λ) being a function differentiable with respect to t
with eα(0+;λ) = Eα(0+) = 1 , there exists another possibility to re-write
(4.75), namely

U(s) =
(

s
sα−1

sα + λ
− 1
)

F (s) + F (s) .

Then we obtain

u(t) =
∫ t

0

f(t− τ ) e′α(τ ;λ) dτ + f(t) ,

in agreement with (4.74).
We see that the way b) is more restrictive than the ways a) and c) since it

requires that f(t) be differentiable with L-transformable derivative.

Newtonian heating problem

Consider the equation of a heat flow :

ut − uxx = 0 , u = u(x, t) , (4.77)

in the semi-infinite intervals 0 < x < ∞ and 0 < t < ∞ of space and time,
respectively. In this dimensionless equation u = u(x, t) means temperature.
Assume vanishing initial temperature, i.e., u(x, 0) = 0 for 0 < x < ∞ and
given influx across the boundary x = 0 from x < 0 to x > 0 ,

− ux(0, t) = p(t) . (4.78)

Then, under appropriate regularity conditions, u(x, t) is given by the formula:

u(x, t) =
1√
π

∫ t

0

p(τ )√
t− τ

e−x2/[4(t−τ)] dτ , x > 0 , t > 0 . (4.79)

We turn our special interest to the interior boundary temperature φ(t) :=
u(0+, t) , t > 0 , which by (4.79) is represented as

1√
π

∫ t

0

p(τ )√
t− τ

dτ = J1/2 p(t) = φ(t) , t > 0 . (4.80)

We recognize (4.80) as an Abel integral equation of first kind for determination
of an unknown influx p(t) if the interior boundary temperature φ(t) is given
by measurements, or intended to be achieved by controlling the influx. Its
solution is given by formula (4.52) with m = 1 , α = 1/2 , as

p(t) = D1/2 φ(t) =
1√
π

d

dt

∫ t

0

φ(τ )√
t− τ

dτ . (4.81)

We now modify our problem to obtain an Abel integral equation of second
kind . Assume that the rod x > 0is bordered at x = 0by a bath of liquid in
x < 0 with controlled exterior boundary temperature u(0−, t) := ψ(t) .
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Assuming Newton′s radiation law, we have an influx of heat from 0− to
0+ proportional to the difference of exterior and interior temperature,

p(t) = λ [ψ(t)− φ(t)] , λ > 0 . (4.82)

Inserting (4.82) into (4.80) we obtain

φ(t) =
λ√
π

∫ t

0

ψ(τ )− φ(τ )√
t− τ

dτ ,

namely, in operator notation,
(
1 + λJ1/2

)
φ(t) = λJ1/2 ψ(t) . (4.83)

If we now assume the exterior boundary temperature ψ(t) as given and the
evolution in time of the interior boundary temperature φ(t) as unknown, then
(4.83) is an Abel integral equation of second kind for determination of φ(t) .

Fractional Diffusion-Wave Equation

In this section, we deal with the family of evolution equations obtained from
the standard diffusion equation (or the D’Alembert wave equation) by re-
placing the first-order (or the second-order) time derivative by a fractional
derivative of order α with 1 ≤ α ≤ 2, namely

∂αu

∂tα
=
∂2u

∂x2
, (4.84)

where x ∈ R, t ∈ R
+ denote the space and time variables, respectively.

In (4.84), u = u(x, t) represents the response field variable and the frac-
tional derivative of order α, n − 1 < α < n, n ∈ N is defined in the Caputo
sense (compare with (4.55)):

∂αu

∂tα
=

1
Γ (n− α)

∫ t

0

(t− τ)n−α−1 ∂
nu(τ)
∂τn

dτ . (4.85)

For α = n, n ∈ N, the Caputo fractional derivative is defined as the standard
derivative of order n.

In order to guarantee existence and uniqueness of a solution, we must add
to (4.84) some initial and boundary conditions. Denoting by f(x) , x ∈ R

and h(t) , t ∈ R
+ sufficiently well-behaved functions, the Cauchy problem for

the time-fractional diffusion-wave equation with 1 ≤ α ≤ 2 is formulated as
follows: {

u(x, 0) = f(x) , (for −∞ < x < +∞),
u(∓∞, t) = 0 , (for t > 0). (4.86)

If 1 < α ≤ 2 , we must add to (4.86) the initial value of the first time derivative
of the field variable, ut(x, 0) , since in this case the Caputo fractional derivative
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is expressed in terms of the second order time derivative. To ensure continuous
dependence of the solution with respect to the parameter α we agree to assume

ut(x, 0) = 0 , (for 1 < α ≤ 2) .

In view of our subsequent analysis we find it convenient to set ν := α/2,
so that 1/2 ≤ ν ≤ 1 for 1 ≤ α ≤ 2.

For the Cauchy problem, we introduce the so-called Green function Gc
(x, t; ν), which represents the respective fundamental solution, obtained when
f(x) = δ(x), δ being the Dirac δ-function. As a consequence, the solution of
the Cauchy problem is obtained by a space convolution according to

u(x, t; ν) =
∫ +∞

−∞
Gc(x− ξ, t; ν) f(ξ) dξ .

It should be noted that Gc(x, t; ν) = Gc(|x|, t; ν) since the Green function of
the Cauchy problem turns out to be an even function of x. This means that we
can restrict our investigation of the function Gc to non-negative values x ≥ 0.

For the standard diffusion equation (ν = 1/2) it is well known that

Gc(x, t; 1/2) := Gdc (x, t) =
t−1/2

2
√
π

e−x
2/4t .

In the limiting case ν = 1 we recover the standard wave equation, for which
we get

Gc(x, t; 1) := Gwc (x, t) =
1
2

[δ(x− t) + δ(x+ t)] .

In the case 1/2 < ν < 1, the Green function Gc can be determined by using
the technique of the Laplace and the Fourier transforms.

Here we are interested in investigation of some important characteristics of
the Green function Gc including location of its maximum point, its propagation
speed, and its maximum value. Consider an integral representation of the
Green function Gc:

Gc(x, t; ν) =
1
π

∫ ∞

0

E2ν

(
−κ2t2ν

)
cos(xκ) dκ, (4.87)

where Eα(z) is the Mittag-Leffler function defined by the series

Eα(z) =
∞∑

n=0

zn

Γ (αn+ 1)
, α > 0. (4.88)

The representation (4.87) can be easily obtained by transforming the Cauchy
problem for the equation (4.84) into the Laplace-Fourier domain using the
known formula

L
{
dαu(t)
dtα

; s
}

= sαL{u(t); s} −
n−1∑

k=0

u(k)(0+)sα−1−k, n− 1 < α ≤ n, (4.89)
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with n ∈ N, for the Laplace transform of the Caputo fractional derivative.
This formula together with the standard formulas for the Fourier transform
of the second derivative and of the Dirac δ-function lead to the representation

̂̃Gc(κ, s, ν) =
s2ν−1

s2ν + κ2
, ν = α/2, (4.90)

of the Laplace-Fourier transform ̂̃Gc of the Green function Gc. Using the well-
known Laplace transform formula:

L{Eα(−tα); s} =
sα−1

sα + 1
,

and applying to the R.H.S of the formula (4.90) first the inverse Laplace trans-
form and then the inverse Fourier transform we obtain the integral represen-
tation (4.87) if we take into consideration the fact that the Green function of
the Cauchy problem is an even function of x that follows from the formula
(4.90).

4.3.4 Rigorous Geometric Quantization

Now we perform the rigorous CHO-quantization in the Heisenberg picture
using machinery from symplectic mechanics. Recall from section 4.2.2 that
Dirac’s canonical quantization (4.16) means that for any pair of dynamical
variables (f, g) , the quantum commutator [f̂ , ĝ] has the same values as the
classical Poisson bracket {f, g}. In this section, we will look at Dirac’s quan-
tization from symplectic geometric perspective.

Also, recall (see, e.g. [Put93, II06b]) that a symplectic structure on a
smooth manifold M is a nondegenerate closed 2-form ω on M , i.e.,

(∀x ∈M) dω = 0 and ω(x) is nondegenerate.

Let T ∗
xQ be a cotangent space to a smooth configuration manifold Q of some

classical system at the point x ∈ Q that determines its state. The cotangent
bundle M = T ∗Q represents a union ∪x∈QT ∗

xQ,32 the dimension of which
is twice the dimension of Q. A canonical 1-form θ on M, such that ω = dθ,
represents a section θ : M → T ∗M of the cotangent bundle M .33 A symplectic
phase-space manifold is a pair (M,ω). In our case of the CHO (4.15), we have
(p, x) as canonical coordinates on R2 and the following symplectic dynamics
(with unit mass and spring, for simplicity):

M = T ∗
R � R

2, ω = dp ∧ dx, H(p, x) =
1
2
(
p2 + x

)
, (4.91)

32 together with the standard topology on T ∗Q and a natural smooth manifold
structure (see, e.g. [II06b])

33 In the general case of an arbitrary symplectic manifold (M,ω) (not necessarily the
cotangent bundle) we can find only a locally exact 1-form θ (such that ω = dθ).
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from which the Hamiltonian equations of CHO-motion read:

ẋ = p, ṗ = −x.

In general, for any pair of smooth functions f, g ∈ C∞(M,R) the Poisson
bracket is given by

{f, g}ω =
∂f

∂x

∂g

∂p
− ∂f

∂p

∂g

∂x
.

Dirac’s quantization can be formulated in the language of symplectic ge-
ometry in the following way: we can associate smooth functions f, g, h, ... of
any classical system (like the CHO), defined on their symplectic phase-space
manifold (M,ω), with operators on a Hilbert spaceH(C), with the inner prod-
uct (4.32), norm (4.33) and metric (4.34), in such a way that their Poisson
brackets correspond to quantum commutators. Abstractly speaking, there is a
quantization functor34 from the category Symplec (of symplectic manifolds
and smooth functions defined on them) to the category Hilbert (of complex
Hilbert spaces and quantum Hermitian operators defined on them).

Formally, a symplectic manifold (M,ω = dθ) is quantizable (i.e., we can
define the Hilbert representation space H(C) and the Hermitian quantum
operators δf in a globally consistent way) if ω defines an integral cohomology
class (that is, it integrates to an integer on any 1D submanifold of M , i.e.,
an algebraic curve). If (M,ω) is a quantizable manifold, then the pair (H, δ)
defines its quantization (see [Put93]).

Let the Hamiltonian structure of the CHO be given by the symplectic
dynamics (4.91). If the canonical 1-form θ on M (also called the symplectic
potential of ω) is given by: θ = 1

2(pdx − xdp), then the spectrum (i.e., set of
eigenvalues) of the Hamiltonian operator:

δH ≡ Ĥ = i�
(

x
∂

∂p
− p ∂

∂x

)

is {...,−2�,−�, 0, �, 2�, ...},

where each eigenvalue occurs with infinite multiplicity.
Furthermore, let g be the vector space of the CHO, spanned by the oper-

ators:

δx = i�
∂

∂p
+ x, δp = −i�

∂

∂x
, δH = i�

(

x
∂

∂p
− p ∂

∂x

)

, and Id. (4.92)

Then g is a solvable Lie algebra,35 given by (see [Put93]):

34 Strictly speaking, in this section we are performing the (pre)quantization functor,
but for our application this subtle difference can be neglected.

35 A Lie algebra g is a vector space V provided with the commutator [, ] : g×g → g,
which is bilinear, skew-symmetric, and satisfies the Jacobi identity (for any three
vector-fields X,Y,Z ∈ g):

[[X, Y ], Z] = [X, [Y,Z]] − [X, [Y,Z]].
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[δp, δx] = i�δ{p,x}ω
= i� Id,

[δH , δx] = i�δ{H,x}ω
= −i�δp,

[δH , δp] = i�δ{H,p}ω
= i�δx,

such that the commutator of Lie algebras [g, g] is itself spanned by (4.92), or
equivalently, g is called the Heisenberg Lie algebra.

4.3.5 Supervised Machine-Learning Methods

Given the (n + 1)D vector of synaptic weights w(n) = [w0(n), ..., wD(n)]T

(with w0 = bias), and the correspondent Mean Square Error (MSE) gradient
(including partial derivatives of MSE w.r.t. weights)

∇e =
[
∂e

∂w0
, ...,

∂e

∂wD

]T
,

and the learning rate (step size) η, we have the following learning algorithms.

Basic gradient-descent method:

w(n+ 1) = w(n)− η∇e(n),

which in index form reads

wi(n+ 1) = wi(n)− η∇ei(n).

Least mean square (LMS) algorithm:

w(n+ 1) = w(n) + ηε(n)x(n),

where x is an input (measurement) vector, and ε is a zero-mean Gaussian
noise vector uncorrelated with input, or

wi(n+ 1) = wi(n) + ηε(n)xi(n).

Newton’s method:

w(n+ 1) = w(n)− ηR−1e(n),

where R is input (auto)correlation matrix, or

w(n+ 1) = w(n) + ηR−1ε(n)x(n),

Lie algebra g is solvable if the derived series of commutators:

g > [g, g] > [[g, g], [g, g]] > [[[g, g], [g, g]], [[g, g], [g, g]]] > · · ·
eventually converges to zero.
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Conjugate-gradient method:

w(n+ 1) = w(n) + η p(n),
p(n) = −∇e(n) + β(n)p(n− 1),

β(n) =
∇e(n)T∇e(n)

∇e(n− 1)T∇e(n− 1)
.

4.3.6 First-Order Logic and Quantum Random Fields

First-order theories

Here, we are interested in the implementation of first-order theories for the
purpose of knowledge representation and automated reasoning; towards this
end, we present a condensed overview of some fundamental concepts in first-
order logic. For more comprehensive treatments. Sentences in a first-order
language L are constructed using disjoint countable sets of constants ΣC ,
variables ΣV , functions ΣF and relations ΣR, as well as logical connective
symbols and quantifier symbols Ω = {¬,∧,∨,⇒,⇔, ∃, ∀}. Constant symbols
ΣC name objects in the application domain of interest. Function symbols ΣF

map ordered tuples of constants to constants. Variable symbols ΣV range
over constants. Relations symbols ΣR represent attributes of objects or de-
scribe relationships between objects in the domain. The non-logical symbols
comprising the symbols in ΣC , ΣF and ΣR, together with functions vF : ΣF

−→ N and vR : ΣR −→ N giving the valence of function symbols and relation
symbols, form the signature, say σ, of L.

A term is an expression that represents any object in the domain, and
can be a constant, a variable, or a function of a tuple of terms; note also
that a function may itself take a function term as one of its arguments. A
ground term is any term that contains no variables. An atomic sentence in L
is then any relation over terms, and a literal is an atomic sentence or a negated
atomic sentence. Ground atoms are atomic sentences over atomic terms, and
the (possibly countably infinite) set of all possible ground atoms generated by
the signature σ of L is its Herbrand base, say H(σ). Compound sentences in
L can also be constructed from atomic sentences in L using logical connective
symbols and quantifier symbols in Ω. If ρ and φ are a sentences in L, then
the following hold:

Negation: ¬ρ ∈ L which evaluates to true iff ρ is false.
Conjunction: ρ ∧ φ ∈ L, which is true iff both ρ and φ are true.
Disjunction: ρ ∨ φ ∈ L, which is true iff either ρ or φ are true.
Material Implication: ρ⇒ φ ∈ L, which is true iff either ρ is false or φ is true.
Material Equivalence: ρ ⇔ φ ∈ L, which is true iff either both ρ and φ are

false or both ρ and φ are true.
Universal Quantification: ∀xρ ∈ L, which is true iff ρ is true for every assign-

ment of constants to x.
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Existential Quantification: ∃xρ ∈ L, which is true iff ρ is true for some as-
signment of a constant to x.

Note that a quantifier symbol is not an operator, but rather can be considered
as a unary operator in combination with the variable it binds.

We are specifically interested in first-order theories, which constitute
knowledge about domains of interest: a first-order theory T is simply a set
T = {ρ1, ..., ρn} of sentences ρi in some first-order language L 36. The sen-
tences in the set T are considered to be in conjunction, so T logically corre-
sponds to the sentence ρ1 ∧ ... ∧ ρn ∈ L. The sentences ρi ∈ T are sometimes
said to be axioms of T . For convenience, we will also directly associate the
signature σ of language L with the theory T .

An interpretation is a mapping from a domain to symbols, and a Herbrand
interpretation assigns true or false to every possible ground atom (noting that
they may be countably infinite in number). Any sentence in L is said to be
satisfiable if there is at least one possible Herbrand interpretation in which it
evaluates to true; otherwise, the sentence is unsatisfiable. A sentence is said to
be a tautology if it evaluates to true for all possible Herbrand interpretations.
Any Herbrand interpretation for which all sentences ρi in a theory T evaluate
to true is said to be a model of that theory.

It is often computationally convenient to convert sentences to equivalent
sentences having regular structures, such as Disjunctive Normal Form (DNF)
and Conjunctive Normal Form (CNF). The former is satisfied by all disjunc-
tions over conjunctions of literals, the latter by all conjunctions of disjunctions
of literals. Sentences in normal forms are not necessarily equivalent to those
they replace, but are equisatisfiable with them. Existential quantifiers can be
removed by Skolemization, which replaces existentially quantified variables
with constant symbols or function symbols that are new (i.e. not in ΣC or
ΣF , respectively). In finite domains, existentially quantified sentences can be
replaced with disjunctions. Universal quantifiers can be similarly handled by
36 There are numerous variations on this construction in the literature. Function-

free first-order languages do not permit function symbols. We could also do away
with constant symbols by admitting function symbols of valence 0 instead. The
assumption implicit here that each relation symbol has unique valence can be
relaxed in the obvious manner. Different references use various different symbols
for the logical connectives, and we could reduce or extend the set of logical con-
nectives in various ways. An important variation is the introduction of equality
(=), also called identity, either as a relation symbol conventionally written in infix
form, or as a part of the logic itself with the addition of a couple of extra rules
in the definition of a term. Partial order relations may similarly appear in some
constructions, either as relation symbols or directly in the logic with additional
rules in the definition of terms. Finally, it can be useful to introduce a uniqueness
modifier symbol on existential quantifiers, usually written as ∃!xρ, which evalu-
ates to true iff there is precisely one value of x in the domain that for which ρ is
true.
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some form of Skolemization with the observation that ∀xρ = ¬∃x¬ρ, or, in
finite domains, with conjunctions.

Logical inference in first-order logic is about deciding logical entailment: A
first-order theory T is said to entail a sentence ρ when, in all interpretations
in which all sentences in T are true, ρ is also true. Like satisfiability, this
problem is only semi-decidable 37, which results in the widespread use crafted
subsets of first-order logic (the most common of which is Horn Clauses, each
of which contains at most one positive literal) to make inference on first-order
theories implemented by knowledge bases decidable.

First-order logic and quantum random fields

The basic motivation behind using Markov Random Fields in automated
reasoning and knowledge representation is to encode first-order theories as
Markov Random fields. The effect is to wrap the first-order theory T in a
kind of Bayesian shell: instead of a Herbrand interpretation either being a
model of the theory or not, we regard it as more or less likely depending on
how many sentences of the theory evaluate to false under it and how relatively
important we regard satisfaction of each sentence of the theory. We associate
with each sentence of T a weight that describes its relative importance. Typ-
ically, these weights are real-valued; with our proposed Quantum Random
Fields, these weights will be complex-valued instead.

Each sentence in T is represented by a single clique (a completely con-
nected component of the graph).

37 A decision problem is semidecidable when there is an effective procedure that
always halts with the answer “yes” on problem instances that are members of the
set under question, but may map some instances that are not a member of the
set to non-terminating computations rather than halting with “no”. Equivalently,
the set is said to be “recursively enumerable”.
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5

Hierarchical Self-Similarity in Group and
Crowd Behaviors

In this Chapter,1 a nonlinear, complex, Hamiltonian description of socio–
cognio–physical dynamics at the macroscopic, classical, inter-personal crowd
level and microscopic, quantum, intra-personal agent level, is presented,
uniquely, in the form of the open Liouville equation. At the microscopic level,
this can be considered to be a nonlinear extension of the linear correlation
and factor dynamics. This implies the arrow of time in both microscopic
and macroscopic processes and shows the existence of the formal crowd-agent
space-time self-similarity. This in itself shows the existence of a unique con-
trol law, which acts on different scales of agent functioning. This self-similar
socio–cognio–physical control law enables us to use the crowd dynamics sim-
ulator (previously developed at Defence Science & Technology Organisation,
Australia), for recursive simulation of individual agents’ representation spaces
on a cluster of computers.

5.1 Introduction

There are a number of reasons why an understanding of nonlinear complexity
is needed for modeling and simulation of multi-component systems, both in the
general case, and for human behavioral group dynamics, in particular. In the
general case, it is well-known that a system of interacting forces will be inter-
dependent, due to nonlinear interactions, and this is the quality which is lost
by decoupling and/or linearization (see, e.g. [Hak83, Hak93]. For behavioral
group dynamics2, it is also not possible to look at individual behaviors of
1 The work presented in this Chapter has been developed in collaboration with Mr.

Wayne Johnson, a senior defence scientist.
2 Here we mean to imply that the resultant path and an individual agent will

follow is due to a resultant field which has contributions from a social-field, a
cognitive-field and a physical-field.
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agents, in a crowded street scene for instance, in complete isolation3, without
breaking the whole web of interdependencies [Gol99].

We have recently shown that both individual and group/crowd behavioral
dynamics exists both at the macroscopic, inter–personal, classical level and
at the microscopic, intra–personal, quantum level (see [IR12] and references
therein). In the present Chapter we try to describe group/crowd behavioral
socio–cognio–physics on both levels by the unique form of a single equation,
namely open Liouville equation: crowd–dynamics using its classical form, and
individual agent dynamics using its quantum form in the Heisenberg picture.
If this formulation is consistent, that would prove the existence of the formal
macro–micro socio–cognio–physical crowd self-similarity. This proof implies
the existence of a unique behavioral control law, which acts on different scales
of human agent functioning. Such a self-similar control law would enable us to
use the CDS, including the NLS effects, for recursive simulation of individual
agents’ representation spaces on a cluster of computers.

As this is an interdisciplinary study we will address technical preliminar-
ies, concerning some nonlinear extensions of linear factor analysis first. Sub-
sequently we will return to the more specify technical points concerning the
open Liouville equation framework .

5.1.1 From Correlation Dynamics to Quantum Dynamics

To develop a linear correlation–factor dynamics model, we are using geo-
metrical analogy with Schrödinger quantum mechanics (see [II08b, II09] for
technical details). A time-dependent state of a quantum system is determined
by a normalized (complex), time–dependent, wave psi–function ψ = ψ(t), i.e.
a unit Dirac’s ‘ket’ vector |ψ(t)〉, an element of the Hilbert space L2(ψ) with
a coordinate basis (qi), under the action of the Hermitian operators, obtained
by the procedure of quantization of classical mechanical quantities, for which
real eigenvalues are measured. The state–vector |ψ(t)〉, describing the motion
of L. de Broglie’s waves, has a statistical interpretation as the probability am-
plitude of the quantum system, for the square of its magnitude determines the
density of the probability of the system detected at various points of space.
The summation over the entire space must yield unity and this is the nor-
malization condition for the psi–function, determining the unit length of the
state vector |ψ(t)〉.

In the coordinate q–representation and the Schrödinger S–picture we con-
sider an action of an evolution operator (in normal units Planck constant
� = 1)

Ŝ ≡ Ŝ(t, t0) = exp[−iĤ(t− t0)],
i.e., a one–parameter Lie–group of unitary transformations evolving a quan-
tum system. The action represents an exponential map of the system’s total
3 As per a classic behavioral stimulus-response (S-R) controlled laboratory psychol-

ogy experiment.
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energy operator – Hamiltonian Ĥ = Ĥ(t). It moves the quantum system from
one instant of time, t0, to some future time t, on the state–vector |ψ(t)〉, rotat-
ing it: |ψ(t)〉 = Ŝ(t, t0)|ψ(t0)〉. In this case the Hilbert coordinate basis (qi)
is fixed, so the system operators do not evolve in time, and the system evolu-
tion is determined exclusively by the time–dependent Schrödinger equation,
in Dirac’s notation given by:

i∂t|ψ(t)〉 = Ĥ(t)|ψ(t)〉 , (5.1)

with initial condition given at one instant of time t0 as |ψ(t0)〉 = |ψ〉.
If the Hamiltonian Ĥ = Ĥ(t) does not explicitly depend on time (which is

the case with the absence of variables of macroscopic fields), the state vector
reduces to the exponential of the system energy:

|ψ(t)〉 = exp(−iE(t− t0)|ψ〉,

satisfying the time–independent (i.e., stationary) Schrödinger equation

Ĥ |ψ〉 = E|ψ〉, (5.2)

which represents the characteristic equation for the Hamiltonian operator Ĥ
and gives its real eigenvalues (stationary energy states) En and corresponding
orthonormal eigenfunctions (i.e., probability amplitudes) |ψn〉.

To model the correlation and factor dynamics we start with the charac-
teristic equation for the correlation matrix .

Rx = λx,

making heuristic analogy with the stationary Schrödinger equation (5.2). This
analogy allows a ‘physical’ interpretation of the correlation matrix R as an
operator of the ‘total correlation or covariation energy’ of the statistical system
(the simulator–test data matrix X = {xiα}), eigenvalues λn corresponding to
the ‘stationary energy states’, and eigenvectors xn resembling ‘probability
amplitudes’ of the system.

So far we have considered one instant of time t0. Including the time–flow
into the stationary Schrödinger equation (5.2) we get the time–dependent
Schrödinger equation (5.1) and returning back with our heuristic analogy, we
get the basic equation of the n–dimensional correlation dynamics

∂tx(t) = R(t)xk(t), (5.3)

with initial condition at time t0 given as a stationary manifest–vectors
xk(t0) = xk (k = 1, . . . , n).

In a more realistic case of ‘many’ observables (i.e., very big n), instead
of the correlation dynamics (5.3), we can use the reduced–dimension factor
dynamics, represented by analogous equation in the factor space spanned by
the extracted (oblique) factors F = f i, defined by the oblique factor model ( see
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[CL71, And84, Har75]) with inter–factor–correlation matrix C = cij (i, j =
1, . . . ,no. of factors)4

∂tfi(t) = C(t) fi(t), (5.4)

subject to initial condition at time t0 given as stationary vectors fi(t0) = fi.
Now, according to the fundamental existence and uniqueness theorem for

linear autonomous ordinary differential equations, if A = A(t) is an n×n real
matrix, then the initial value problem

∂tx(t) = Ax(t), x(0) = x0 ∈ R
n,

has the unique solution

x(t) = x0etA, for all t ∈ R.

Therefore, analytical solutions of our correlation and factor–correlation
dynamics equations (5.3) and (5.4) are given respectively by exponential maps

xk(t) = xk exp[tR],
fi(t) = fi exp[tC].

Thus, for each t ∈ R, the matrix x exp[tR], respectively the matrix
f exp[tC], maps

xk �→ xk exp[tR], respectively fi �→ fi exp[tC].

The sets gtcorr = {exp[tR]}t∈R and gtfact = {exp[tC]}t∈R are 1–parameter
families (groups) of linear maps of R

n into R
n, representing the correlation

flow , respectively the factor–correlation flow of simulator–tests. The linear
flows gt (representing both gtcorr and gtfact) have two essential properties:

1. identity map: g0 = I, and
2. composition: gt1+t2 = gt1 ◦ gt2 .

They partition the state space Rn into subsets that we call ‘correlation orbits’,
respectively ‘factor–correlation orbits’, through the initial states xk, and fi,
of simulator tests, defined respectively by

γ(xk) = {xkgt|t ∈ R} and γ(fi) = {figt|t ∈ R}.

The correlation orbits can be classified as:

1. If gtxk = xk for all t ∈ R, then γ(xk) = {xk} and it is called a point
orbit . Point orbits correspond to equilibrium points in the manifest and
the factor space, respectively.

4 The oblique factor model is a higher-order dimensionality reduction technique
derivired from principal component analysis, which is itself derived from correla-
tion matrix analysis. The overall aim is to distill statistically the small number of
most important socio–cognitive descriptors and their interrelationships, without
making any initial assumptions about which descriptors are important.
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2. If there exists a T > 0 such that gTxk = xk, then γ(xk) is called a periodic
orbit . Periodic orbits describe a system that evolves periodically in time
in the manifest and the factor space, respectively.

3. If gtxk �= xk for all t �= 0, then γ(xk) is called a non-periodic orbit .

Analogously, the factor–correlation orbits can be classified as:

1. If gtfi = fi for all t ∈ R, then γ(fi) = {fi} and it is called a point orbit.
Point orbits correspond to equilibrium points in the manifest and the
factor space, respectively.

2. If there exists a T > 0 such that gT fi = fi, then γ(fi) is called a periodic
orbit. Periodic orbits describe a system that evolves periodically in time
in the manifest and the factor space, respectively.

3. If gtfi �= fi for all t �= 0, then γ(fi) is called a non–periodic orbit.

Now, to interpret properly the meaning of (really discrete) time in the cor-
relation matrix R = R(t) and factor–correlation matrix C = C(t), we can
perform a successive time–series {t, t + ∆t, t + 2∆t, t + k∆t, · · · } of simula-
tor tests (and subsequent correlation and factor analysis), and discretize our
correlation (respectively, factor–correlation) dynamics, to get

xk(t+∆t) = xk(0) + R(t)xk(t)∆t, and
fi(t+∆t) = fi(0) + C(t) fi(t)∆t,

respectively. Finally we can represent the discrete correlation and factor–
correlation dynamics in the form of the (computationally applicable) three–
point iterative dynamics equation, respectively in the manifest space

xs+1
k = xs−1

k + Rs
k xsk,

and in the factor space
fs+1
i = fs−1

i + Cs
i f
s
i ,

in which the time–iteration variable s labels the time occurrence of the simu-
lator tests (and subsequent correlation and factor analysis), starting with the
initial state, labelled s = 0.

5.2 Modeling Framework: Open Liouville Equation

Now we move into the general framework of the open Liouville equation, in
which we will demonstrate the self-similarity between macro and micro crowd
levels.
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5.2.1 Hamiltonian Formalism

Suppose that on the macroscopic crowd level we have a conservative Hamil-
tonian system acting in a 2N -dimensional symplectic phase space M =
T ∗Q = {qi(t), pi(t)}, i = 1 . . .N (which is the cotangent bundle of the
crowd–configuration manifold Q = {qi}), with a Hamiltonian function H =
H(qi, pi, t) : T ∗Q×R→ R. The conservative dynamics is defined by classical
Hamiltonian canonical equations:

q̇i = ∂piH – contravariant velocity equation ,
ṗi = −∂qiH – covariant force equation , (5.5)

(here and henceforth overdot denotes the total time derivative). Within the
framework of the conservative Hamiltonian system (5.5) we can apply the
formalism of classical Poisson brackets: for any two functions A = A(qi, pi, t)
and B = B(qi, pi, t) their Poisson bracket is (using the summation convention)
defined as:

[A,B] = (∂qiA∂piB − ∂piA∂qiB).

5.2.2 Conservative Classical Dynamics

Any function A(qi, pi, t) is called a constant (or, integral) of motion of the
conservative system (5.5) if the following equation holds [II06b, II07]:

Ȧ ≡ ∂tA+ [A,H ] = 0, which implies ∂tA = −[A,H ] . (5.6)

For example, if A = ρ(qi, pi, t) is a density function of ensemble phase–points
(or, a probability density to see a state x(t) = (qi(t), pi(t)) of an ensemble at
a moment t), then equation

∂tρ = −[ρ,H ] (5.7)

represents the Liouville theorem, which is usually derived from the continuity
equation

∂tρ+ div(ρ ẋ) = 0 .

Conserved quantity here is the Hamiltonian function H = H(qi, pi, t),
which is the sum of kinetic and potential energy. For example, in case of an
ND harmonic oscillator, we have the phase space M = T ∗

R
N� R

2N , with the
symplectic form ω = dpi ∧ dqi and the Hamiltonian (total energy) function:

H =
1
2

N∑

i=1

[
p2
i + (qi)2

]
. (5.8)

The corresponding Hamiltonian vector-field XH is given by:

XH = pi∂qi − qi∂pi ,
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which gives canonical equations:

q̇i = pi, ṗi = −δijqj , (where δij is the Kronecker symbol). (5.9)

In addition, for any two smooth ND functions f, g : R
2N → R, the Poisson

bracket is given by:

[f, g]ω =
∂f

∂qi
∂g

∂pi
− ∂f

∂pi

∂g

∂qi
,

which implies that the particular functions f = pipj+qiqj and g = piq
j+pjqi

(for i, j = 1, ..., N) – are constants of motion. This system is integrable in an
open set of T ∗Rn with N integrability functions:

K1 = H, K2 = p2
2 + (q2)2, ..., KN = p2

N + (qN )2.

5.2.3 Conservative Quantum Dynamics

Here we perform the formal canonical quantization of the conservative equa-
tion (5.7) in the Heisenberg picture: all variables become Hermitian opera-
tors (denoted by ‘(̂·)’), the symplectic phase space T ∗Q = {qi, pi} becomes
the combined Hilbert state space for N particles: H = Hq̂i ⊗ Hp̂i (where
Hq̂i = Hq̂1 ⊗ ...⊗Hq̂N and Hp̂i = Hp̂1 ⊗ ... ⊗Hp̂N ), while the classical Pois-
son bracket [ , ] becomes the quantum commutator { , } multiplied by −i/�
[II08a]:

[ , ] −→ −i{ , } (� = 1 in normal units) . (5.10)

In this way the classical Liouville equation (5.7) becomes the quantum Liou-
ville equation [II08b]

∂tρ̂ = i{ρ̂, Ĥ} , (5.11)

where Ĥ = Ĥ(q̂i, p̂i, t) is the Hamiltonian evolution operator, while

ρ̂ =
∑

a

P (a)|Ψa >< Ψa|, with Tr(ρ̂) = 1

denotes the von Neumann density matrix operator, where each quantum state
|Ψa > occurs with probability P (a); ρ̂ = ρ̂(q̂i, p̂i, t) is closely related to another
von Neumann concept – entropy:

S = −Tr(ρ̂[ln ρ̂]).

5.2.4 Open Classical Dynamics: Hamiltonian Crowd Model

We now move to the open (nonconservative) system: on the macroscopic crowd
level the opening operation is equivalent to adding a covariant vector-field of
external (dissipative and/or motor) forces Fi = Fi(qi, pi, t) to (the right-hand-
side of) the covariant Hamiltonian force equation, so that crowd Hamiltonian
equations5 obtain the open (dissipative and/or forced) form [II06b, II07]:
5 For equivalent Lagrangian crowd model, see [IR10c].
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q̇i = ∂piH, ṗi = −∂qiH + Fi . (5.12)

In the framework of the open Hamiltonian system (5.12), dynamics of any
function A(qi, pi, t) is defined by the open (dissipative and/or forced) evolution
equation:

∂tA = −[A,H ] + Fi[A, qi] , ( [A, qi] = −∂piA) . (5.13)

In particular, if A = ρ(qi, pi, t) represents the density function of ensem-
ble phase–points then its dynamics is given by the open Liouville equation
(dissipative and/or forced) [II06b, II07]:

∂tρ = −[ρ,H ] + Fi[ρ, qi] . (5.14)

Equation (5.14) represents the open classical model of our microscopic
crowd dynamics.

For example, in case of our ND oscillator, Hamiltonian function (5.8) is
not conserved any more, the canonical equations (5.9) become

q̇i = pi, ṗi = Fi − δijqj,

and the system is not integrable any more.

5.2.5 Neural Crowd System

Using analogy with neuronal biophysics (see [II06a] and neural references
therein), we will consider two different types of agents: (i) ‘male’ agents of
graded-response type (GRA), and (ii) ‘female’ agents of coupled-oscillators
type (COA). Behavior of both types of agents can be presented in the form of
a Langevin equation (see, e.g. [II08a])

σ̇i = fi + ηi(t), (5.15)

where σi = σi(t) are the continual personal variables of the ith agent (repre-
senting either action potentials in case of GRA, or oscillator phases in case of
COA); Jij are individual synaptic weights; fi = fi(σi, Jij) are the determin-
istic forces (given, in GRA-case, by

fi =
∑

j

Jij tanh[γσj ]− σi + θi, with γ > 0

and with the θi representing input functions, and in COA–case, by

fi =
∑

j

Jij sin(σj − σi) + ωi,

with ωi representing the natural frequencies of the individual oscillators); the
noise variables are given as
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ηi(t) = lim
∆→0

ζi(t)
√

2T/∆,

where ζi(t) denote uncorrelated Gaussian distributed random forces and the
parameter T controls the amount of noise in the system, ranging from T = 0
(deterministic dynamics) to T =∞ (completely random dynamics).

More convenient, probabilistic description of the random process (5.15) is
provided by the Fokker-Planck equation, describing the time evolution of the
probability density P (σi) [II08a]

∂tP (σi) = −
∑

i

∂σi
[fiP (σi)] + T

∑

i

∂σ2
i
P (σi). (5.16)

In the case of deterministic dynamics T = 0, equation (5.16) can be easily
put into the form of the conservative Liouville equation (5.7), by making the
substitutions:

P (σi)→ ρ, fi = σ̇i, and [ρ,H ] = div(ρ σ̇i) ≡
∑

i

∂σi
(ρ σ̇i) ,

where H = H(σi, Jij). Further, we can formally identify the stochastic forces,
i.e., the second-order noise-term T

∑
i ∂σ2

i
ρ with F i[ρ, σi] , to get the open

Liouville equation (5.14).
Therefore, on the crowd level deterministic dynamics corresponds to the

conservative system (5.7). Inclusion of stochastic forces corresponds to the
system opening (5.14), implying the macroscopic arrow of time.

5.2.6 Open Quantum System

By formal quantization of equation (5.14), we obtain the quantum open Liou-
ville equation [II08a, II08b]:

∂tρ̂ = i{ρ̂, Ĥ} − iF̂i{ρ̂, q̂i} , (5.17)

where F̂i = F̂i(q̂i, p̂i, t) represents the covariant quantum operator of external
friction forces in the Hilbert state space H = Hq̂i ⊗Hp̂i .

Equation (5.17) represents the open quantum-decoherence model for our
microscopic agent–dynamics. In EMN–language of non-critical bosonic
strings6 [EMN99, MN97, Nan95], the general agent–dynamics equation (5.17)
expands into bosonic string equation of motion [II08a, II08b]:
6 In order for any string theory to be consistent, its world-sheet (a 2D manifold

which describes the embedding of a string in space-time) must be conformally in-
variant. For the bosonic string this can be accomplished by a world-sheet theory
consisting of 26 free bosons. Since each boson is interpreted as a flat space-time
dimension, the critical dimension of the bosonic string is 26. The non-critical
string theory describes the relativistic string without enforcing the critical di-
mension. Therefore, a non-critical bosonic string consists of N bosons, and thus
has N dimensions.
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∂tρ̂ = i{ρ̂, Ĥ} − iĝij{ρ̂, q̂i} ˆ̇qj , (i, j = 1, ..., N), (5.18)

where the target-space density matrix ρ̂(q̂i, p̂i) is viewed as a function of
coordinates q̂i that parameterize the couplings of the composite oriented
string world-sheet (see Figure 5.1), and their conjugate momenta p̂i, while
ĝij = ĝij(q̂i) is the quantum operator of the positive definite metric in the
space of bosonic couplings. Therefore, the covariant quantum operator of ex-
ternal friction forces is in EMN–formulation given as F̂i(q̂i, ˆ̇qi) = ĝij ˆ̇qj .

Fig. 5.1. A composite oriented string world-sheet with M incoming strings
(inputs), interacting through several internal loops (state feedbacks), to pro-
duce N outgoing strings (outputs). The arrow of time goes from left to right.
Note the striking similarity with MIMO–systems of (nonlinear) control theory.

From statistical point of view, equation (5.18) can be considered to be a
sophisticated nonlinear extension of a linear N -dimensional factor dynamics
equation (5.4). Physically speaking, the string equation 5.18) establishes the
conditions under which a large–scale coherent state appears in the agent–
network, which can be considered responsible for highly efficient, loss–free,
energy transfer within the agent–networks.

The system-independent properties of equation (5.18), are:
(i) Conservation of probability P

∂tP = ∂t[Tr(ρ̂)] = 0. (5.19)

(ii) Conservation of energy E, on the average

∂t 〈〈E〉〉 ≡ ∂t[Tr(ρ̂E)] = 0. (5.20)

(iii) Monotonic increase in entropy

∂tS = ∂t[−Tr(ρ̂ ln ρ̂)] = (ˆ̇qiĝij ˆ̇qj)S ≥ 0, (5.21)

due to the positive definiteness of the metric ĝij , and thus automatically and
naturally implying a microscopic arrow of time [EMN99].
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5.2.7 Equivalence of Hierarchical Models

Both the macroscopic crowd–equation (5.14) and the microscopic agent–
equation (5.17) have the same open Liouville form, which implies the arrow
of time [II08b]. These demonstrates the existence of the formal macro–micro
socio–cognio–physical crowd self-similarity.

5.3 Computational Compositions for Crowd Actions

In our future work we will focus on computational aspects of a human/crowd
modeling, in which the crowd is perceived as a construction of individual
computational actions, which is itself a collective computational action.7 Such
computational actions can be effectively represented in the functional lan-
guage Haskell using Arrows package [Hug00, Hug04],8 which are (in our view)
the most efficient way of structuring computations. The basic arrow combi-
nators, for both serial and parallel processing of crowd actions, are:

(f <<< g)x == f(gx)) == f.g, (actional composition),
(f >>> g)x == g(fx) == g.f , (inverse composition), (5.22)

(f∗∗∗g)(x, y) == (fx, gy), (split into two actions),
(f&&&g)x == (fx, gx), (fusion of two actions).

– so, they enable parallelism and therefore also time–flow modeling of crowd
actions.

A similar computational framework has already been applied in the so-
called arrowized functional reactive programming (AFRP, see e.g. [Nil02]),
and implemented in the Haskell package Yampa.9

5.3.1 Haskell Example Code

For example, on a closed time-domain interval: ts = [0.0, 1.5] ⊂ R we can
define the following two crowd action signals:

f : R ⊃ ts � t �→ f(t) = 100(1− exp(−5t3)) ∈ R, end (5.23)
g : R ⊃ ts � t �→ g(t) = 100(1− exp(−5t2)) ∈ R, (5.24)

and apply to them the four above-defined actional functions (5.22) within the
Haskell ghci environment (interactive mode), as follows:
7 Our idea is that human crowd has a ‘collective unconscious mind’ including some

basic ‘goal-driven actions’.
8 For the Haskell Arrows package, see link:
http://www.haskell.org/ghc/docs/latest/html/libraries/base/

Control-Arrow.html
9 For the Haskell Yampa package, see link: http://www.haskell.org/

haskellwiki/Yampa.

http://www.haskell.org/ghc/docs/latest/html/libraries/base/
Control-Arrow.html
http://www.haskell.org/
haskellwiki/Yampa
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ghci> import Control.Arrow -- import the package
-- define the time domain [0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,

...,1.5]:
ghci> let ts = [0.0,0.1..1.5]
-- define two crowd actions:
ghci> let f t = 100*(1-exp(-5*t^3)) -- one way
ghci> let g = \t -> 100*(1-exp(-5*t^2)) -- another way
-- map them to the time domain:
ghci> map f ts -- gives the output:
[0.0,0.498752080731768,3.9210560847676823,12.628408831196559,

...,99.99999530883598]
ghci> map g ts -- gives the output:
[0.0,4.877057549928598,18.12692469220182,36.23718483782268,

...,99.9986992702346]
-- now map the four actional combinations:
ghci> map (f<<<g) ts -- composition gives the output:
[0.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,

100.0,...,100.0]
ghci> map (f>>>g) ts -- inv. composition gives the output:
[0.0,71.17041848844417,100.0,100.0,100.0,100.0,100.0,100.0,

100.0,...,100.0]
ghci> map (f&&&g) ts -- splitting gives the output:
[(0.0,0.0),(0.498752080731,4.877057549928),...,

(99.999995308836,99.9986992702)]
ghci> map (f***g) (map (f&&&g) ts) -- fusion gives the
output:
[(0.0,0.0),(46.22341156852793,100.0),(100.0,100.0),

(100.0,100.0),...,(100.0,100.0)]

Summary

In this Chapter we have proposed a nonlinear, complex, Hamiltonian model of
a general socio–cognio–physical dynamics at the macroscopic, classical, inter-
personal crowd level and microscopic, quantum, intra-personal agent level,
is presented in the unique form of the open Liouville equation. At the mi-
croscopic level, this can be considered as a nonlinear extension of the linear
correlation and factor dynamics. The open Liouville equation implies the ar-
row of time in both socio–cognio–physical dynamic processes and shows the
existence of the formal crowd-agent space-time self-similarity. This shows the
existence of a unique behavioral control law, which acts on different hierarchi-
cal levels of agents functioning.
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6

Hybrid Topological Lie-Hamiltonian Learning
in Evolving Energy Landscapes

In this Chapter, a novel bidirectional algorithm for hybrid (discrete + continu-
ous-time) Lie-Hamiltonian evolution in adaptive energy landscape-manifold
is designed and its topological representation is proposed. The algorithm is
developed within a geometrically and topologically extended framework of
Hopfield’s neural nets and Haken’s synergetics (it is currently designed in
Mathematica, although with small changes it could be implemented in Sym-
bolic C++ or any other computer algebra system). The adaptive energy man-
ifold is determined by the Hamiltonian multivariate cost function H , based
on the user-defined vehicle-fleet configuration matrix W , which represents the
pseudo-Riemannian metric tensor of the energy manifold. Search for the global
minimum of H is performed using random signal differential Hebbian adapta-
tion. This stochastic gradient evolution is driven (or, pulled-down) by ‘gravi-
tational forces’ defined by the 2nd Lie derivatives of H . Topological changes
of the fleet matrix W are observed during the evolution and its topological
invariant is established. The evolution stops when the W−topology breaks
down into several connectivity-components, followed by topology-breaking in-
stability sequence (i.e., a series of phase transitions).

6.1 Introduction

The present Chapter addresses the general problem of designing a cognitive-
type topological evolution of adaptable complex systems (see [II08a]) within
the framework of Hopfield’s neural networks [Hop82), Hop84, HT85, DHS91,
II07] and Haken’s synergetics [Hak83, Hak93, Hak91, Hak96, Hak00, Hak02]
(see Appendix, 6.3.1), using the case of a vehicle fleet configuration matrix. We
propose a novel, Lie-derivative based generalization of a classical stochastic
gradient-descent algorithm, for the hybrid topological evolution of an adaptive
fleet of n vehicles along its energy landscape which geometrically represents
the Hilbert n-manifold. The hybrid evolution consists of number of discrete
generations, each having a short continuous-time flow, suitable for defining
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symbolic derivatives. The proposed adaptive evolution is ‘topological’ in two
ways: (i) it is visually depicted as a graph-theoretic evolution, and (ii) it has
a special kind of a ‘topological invariant’.

6.2 The Hybrid Evolution Model

The hybrid evolution model within an adaptive energy landscape-manifold,
proposed in this article, is summarized in Figure 6.1, which visualizes a bidi-
rectional hybrid evolution of an energy landscape cost function H formu-
lated from the fleet configuration matrix W (t). Adaptive evolution in the
〈Q · P 〉−Hilbert space starts with the initial binary configuration matrix
W0 = W (0); it proceeds with discrete time-steps of sudden changes, followed
by continuous time-steps of their smooth modifications. Search for the global
minimum of H (the white path) is performed using random signal differential
Hebbian adaptation (RSDH).1 The evolution is pulled-down by ‘gravitational
forces’ defined by the 2nd Lie derivatives of H . Topological changes of the
fleet matrix W are observed during this hybrid evolution and its topological
invariant is established. The evolution stops when the W−topology breaks
down into several connectivity-components followed by topology-breaking in-
stability sequence (i.e., a series of phase transitions).

6.2.1 Hamiltonian Cost-Function Model

The Hamiltonian cost-function is given as a negative-definite bilinear form:

H(ωαβ) = −1
2

n∑

α=1

n∑

β=1

[ωαβ(t)qα(t)qβ(t) + ωαβ(t)pα(t)pβ(t)] . (6.1)

The adaptive evolution, in the Hilbert space determined by the inner product
〈Q · P 〉 =

∑
α qα(t)pα(t), starts from the initial binary fleet configuration

matrix W = ωαβ(0), which is either predefined or random (see Figure 6.5),
and its dynamics is governed by the following ‘field dynamics equations’:

q̇α(t) = qα(t)− LLFQ, qα(0) = η, (6.2)
ω̇αβ(t) = −ωαβ(t) + SqαSpβ + Sq̇αSṗβ + η, ωαβ(0) = Wαβ,

ṗβ(t) = pβ(t)− LLGP, pβ(0) = η,

where α, β = 1, ..., n ≡ number of vehicles in the fleet.
In (6.2) η represents the standard Gaussian random noise (see Appendix

6.3.1); Sqα = tanh[qα(t)] and Spβ = tanh[pβ(t)] are sigmoid activation

1 Recall that basic Hebbian adaptation or learning reflects the basic principle of
neurobiology: ‘Cells that fire together, wire together’. Here we are using its ran-
dom signal differential formulation.
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Fig. 6.1. A hybrid evolution within the evolving energy landscape defined by the
Hamiltonian cost function H = H(w, q, p).

functions and Sq̇α and Sṗβ are the corresponding ‘signal velocities’. LLFQ
and LLGP are the 2nd-order (iterated) Lie derivatives2 of the Hamiltonian

2 Let F (M) denote the set of all C∞−smooth real-valued scalar functions f : M →
R on a smooth manifold M , V (M) - the set of all smooth vector-fields on M ,
and V ∗(M) - the set of all differential one-forms on M . Also, let the vector-field
ζ ∈ V (M) be given with its local flow φt : M → M such that at a point x ∈ M ,
d
dt
|t=0 φtx = ζ(x), and φ∗

t representing the pull-back by φt. The Lie derivative
differential operator Lζ is defined [II06b, II07]:

(i) on a scalar function f ∈ F (M) as

Lζ : F (M) → F (M), Lζf =
d

dt
(φ∗
t f)|t=0 = ζ[f ] =

nX

α=1

∂f

∂xα
ζα;

(ii) on a vector-field X ∈ V (M) as

Lζ : V (M) → V (M), LζX =
d

dt
(φ∗
tX)|t=0 ≡ [ζ, X];

- that is the Lie bracket, and
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H(ωαβ) with respect to the signal vector-fields: F (q) = {Sqα, α = 1, ..., n}
and G(p) = {Spβ , β = 1, ..., n}.

The basic structure (without Lie derivatives and signal functions) of the
hybrid field dynamics equations (6.2) can be derived as a real-valued dis-
cretization of the two-party crowd dynamics model (see [IR12] and references
therein), defined by a pair of strongly-coupled nonlinear Schr ödinger equa-
tions (NLS, see e.g. [II09]) with the simple Hebbian adaptation:

BLUE : i∂tψB = − aB

2
|φR|2∂xxψB + V (w)|ψB|2ψB,

HEBB : ẇi = − wi + cH|ψB|gi|φR|, V (w) =
n∑

i=1

wigi,

RED : i∂tφR = − bR
2
|ψB|2 ∂xxφR + V (w)|φR|2φR,

where, aB, bR, cH are parameters related to Red, Blue and Hebb equations,
respectively, while gi are Gaussian kernel functions. Besides, a similar NLS
equation has been used for an option-pricing model in [Iva10b]. Spatial dis-
cretization:

ψB(x, t) �−→ qα(t), φR(x, t) �−→ pβ(t),

can be performed using the standard method of lines, that is, the 2nd order
central finite difference approximation for ∂xxψ and ∂xxφ, defined as:

∂xxψ ≡
∂2ψ

∂x2
≈ ψk+1 − 2ψk + ψk−1

∆x2
,

where k is an index designating a position along a grid in x which has n
points, corresponding to the number n of the vehicles in the fleet, and ∆x is
the spacing in x along the grid.

In each generation, the field equations (6.2) are numerically solved for a
short time and the resulting fleet matrix ωαβ(ti) gives an initial fleet config-
uration for the next generation ωαβ(ti+1).

6.2.2 Synergetics Interpretation of the Hybrid Model

In terms of Haken’s synergetics (see Appendix, 6.3.1), the two vector evolution
equations in the hybrid model (6.2):

(iii) on a one-form α ∈ V ∗(M) as

Lζ : V ∗(M) → V ∗(M), Lζα =
d

dt
(φ∗
tα)|t=0.

In general, for any smooth tensor field T on the manifold M , the Lie derivative
LζT geometrically represents a directional derivative of T along the flow φt of
the vector-field ζ.
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Fig. 6.2. Adaptive hybrid evolution of a fleet of n = 20 vehicles, performed in
60 discrete generations with 0.02sec of continuous evolution within each generation
(starting with the time-step of 10−7). The evolution is represented as a series of 3D
graphs, showing topology-breaking instability sequence ranging from the 45th to the
60th generation.

q̇α(t) = qα(t)− LLFQ, qα(0) = η,

ṗβ(t) = pβ(t)− LLGP , pβ(0) = η,

represent the weak-noised Langevin equations driven by LL -derivatives, while
the matrix evolution equation:

ω̇αβ(t) = −ωαβ(t) + SqαSpβ + Sq̇αSṗβ + η, ωαβ(0) = Wαβ ,

is a stochastic gradient system that can be interpreted as the overdamped mo-
tion of a representative particle in a scalar potential field H(ωαβ), subject to
fluctuating forces: Fωαβ

(t) = SqαSpβ+Sq̇αSṗβ. During the hybrid evolution,
the particle undergoes a series of non-equilibrium phase transitions caused by
topology-breaking instability sequence (see Figures 6.2 and 6.3).

6.2.3 Geometry and Topology of the Hybrid Model

The evolving energy landscape geometrically represents a real nD Hilbert man-
ifold , that is a pseudo-Riemannian n-dimensional configuration manifold M ,
with an evolving “〈bra · ket〉”-like inner product:
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〈Q · P 〉 =
n∑

α=1

qα(t)pα(t),

and the negative-definite, bilinear metric form (6.1), in which the fleet matrix
W = ωαβ(t) represents the adaptive pseudo-Riemannian metric tensor of M .
The adaptive evolution on M geometrically represents a generalized gradient
flow Φt, which is a one-parameter group of diffeomorphisms (smooth time-
dependent homeomorphisms) of M .

The evolution-flow Φt can be formally geometrically modeled by the Ricci-
flow (see [II11b] and references therein):

∂tωαβ = −2Rαβ (6.3)

on the configuration manifoldM , whereRαβ is the Ricci curvature tensor ten-
sor of M . It states that the fleet matrix changes are governed by the changing
curvature ofM . The negative sign in (6.3) is essential to insure a global volume
exponential decay,3 since the Ricci flow equation (6.3) is a nonlinear geometric
generalization of the standard linear heat equation

∂tΨ = ∆Ψ.

Topological analysis

Topology changes (see [II08a]) start with the 20th generation. Topology-
braking instability sequence starts with the 45th generation (see Figures 6.2
and 6.3).

Hamiltonian cycle is a closed path that visits each vertex (vehicle) exactly
once. It is a topological invariant for the adaptive hybrid evolution (see Figure
6.4).

3 This complex geometric process is globally similar to a generic exponential decay:

ẋ = −λf(x),

for a positive function f(x). We can get some insight into its solution from the
simple exponential decay ODE,

ẋ = −λx with the solution x(t) = x0e
−λt,

(where x = x(t) is the observed quantity with its initial value x0 and λ is a
positive decay constant), as well as the corresponding nth order rate equation
(where n > 1 is an integer),

ẋ = −λxn with the solution
1

xn−1
=

1

x0
n−1

+ (n− 1)λt.



October 10, 2014 11:9 Complexity and Control 9in x 6in b1966-ch06 page 269

6.2 The Hybrid Evolution Model 269

Fig. 6.3. Adaptive hybrid evolution (performed under the conditions defined in
Figure 6.2) represented as a series of 2D graphs, showing topology-breaking instability
sequence ranging from the 45th to the 60th generation.

Fig. 6.4. Hamiltonian cycle is a topological invariant of the hybrid adaptive evo-
lution.

Summary

We have presented a new algorithm for bidirectional hybrid (discrete +
continuous-time) topological evolution in adaptive energy Hilbert n -manifold
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M , currently developed in MathematicaTM (although with small changes it
could be implemented in Symbolic C++ or any other computer algebra sys-
tem). The algorithm is developed in a geometrically and topologically general-
ized Hopfield-Haken framework. The energy landscape manifold is determined
by the Hamiltonian multivariate cost function H , based on the user-defined
vehicle-fleet configuration matrix W . The Hamiltonian H is the negative-
definite, bilinear metric form for the manifold M , in which the fleet matrix
W = ωαβ represents the pseudo-Riemannian metric tensor of M . Search for
the global minimum of H is performed using random signal differential Heb-
bian adaptation. The evolution is driven (or, pulled-down) by ‘gravitational
forces’ defined by the 2nd Lie derivatives of H . In terms of Haken’s synergetics
this stochastic gradient system can be interpreted as the overdamped motion
of a representative particle in a scalar potential fieldH(ωαβ), subject to fluctu-
ating forces, such that during the adaptive evolution, the particle undergoes a
series of non-equilibrium phase transitions caused by topology-breaking insta-
bility sequence. The adaptive evolution geometrically represents a generalized
gradient flow: Φt, that can be formally modeled by the Ricci-flow on the con-
figuration manifold M , where Rαβ is the Ricci curvature tensor of M . This
equation states that the fleet matrix changes are governed by the curvature
of M . Topological changes of the fleet matrix W are observed during the evo-
lution and its topological invariant is established. The evolution stops when
the W−topology breaks down into several connectivity-components, followed
by topology-breaking instability sequence.

6.3 Appendix

6.3.1 Haken’s Synergetics and Hopfield’s Overlaps

Recall that Haken synergetics deals with complex systems (far from thermal
equilibrium) that are composed of many individual components that interact
with each other and are able to produce spatial, temporal or functional struc-
tures by self-organization (see [Hak83, Hak93, Hak91, Hak96, Hak00, Hak02]).

The aim of synergetics is to describe processes of spontaneous self-
organization and cooperation in such complex systems of various bio-psycho-
socio-physical nature. General properties of the subsystems are their own
nonlinear/chaotic dynamics as well as mutual nonlinear/chaotic interactions.
Furthermore, the systems of synergetics are open. The influence from outside
is measured by a small set of control parameters. Synergetic processes are
described by a small set of order parameters, similar to those in Landau’s
phase-transition theory of physical systems in thermal equilibrium.

Synergetics originated in Haken’s modeling of optical lasers using modified
Lorenz attractor equations , where the control parameter was the laser pump
rate. At low pump rate, the laser waves are entirely uncorrelated as in a usual
lamp. When the pump rate is increased to a first critical value, the noise
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disappears and is replaced by a pure focused signal . This means that the
atoms emit a pure sinusoidal light wave which means that they become self-
organized . When the pump rate is increased beyond a second critical value,
the laser may periodically emit very intense and short pulses . Under different
conditions the frequency spectrum becomes broadened and the light emission
may become chaotic. In this way the following instability sequence of phase
transitions occurs:

no oscillation �→ first frequency �→ second frequency �→ chaos

A similar instability sequence occurs in our hybrid topology-changing evolu-
tion (see Figures 6.2 and 6.3).

In particular, Haken’s brain synergetics considers two types of agents (for
an overview, see [II07, II08a]): (i) graded-response type (GR), and (ii)
coupled-oscillators type(CO), both governed by the vector Langevin equation:

σ̇i = fi(σ,W ) + ηi,

where σi = σi(t) are order-parameters: neural action potentials in case of GR
and oscillator phases in case of CO, while ηi is the noise. fi = fi(σ,W ) are
deterministic forces given by:

GR : fi =
∑

j

Wij tanh[σj ]− σi + θi,

CO : fi =
∑

j

Wij sin(σj − σi) + ωi,

where Wij are synaptic weights, θi are input GR-functions, and ωi are natural
CO-frequencies.

The noise variables ηi in the Langevin equation are given by:

ηi(t) = lim
h→0

ζi(t)
√
T/h,

where ζi(t) denote uncorrelated Gaussian-distributed random forces and the
control parameter T controls the amount of noise in the system, ranging from
T = 0 (deterministic dynamics) to T =∞ (completely random dynamics).

An alternative, probabilistic description of the same Langevin random pro-
cess is given by the Fokker-Planck equation, describing the time evolution of
the probability density function (PDF):

∂tP (σi) = −
∑

i

∂σi [fiP (σi)] +
T

2

∑

i

∂σ2
i
P (σi). (6.4)

Now, recall that the similarity between two different n-dimensional pat-
terns ξµi and ξνi is in Hopfield theory [Hop84, DHS91] measured by their
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mutual overlap or cross-overlap mµν ,4 equal

mµν = n−1ξµi ξ
ν
i . (6.5)

For similar patterns the cross-overlap is close to unity whereas for uncorrelated
patterns it is random variable with zero mean and small (1/

√
N) variance.

The dynamics of overlaps is governed by the nonlinear ordinary differential
equation (ODE, generalized from [DHS91], pp. 23):

ṁµν(t) = −mµν(t) +
〈
ξµ(t)ξν(t) tanh[βmµν(t)ξµ(t)ξν(t)]

〉
, (6.6)

(where the angular brackets denote an average over the q patterns ξµ(t)),5

which has the fixed-point stationary solution:

mµν =
〈
ξµξν tanh[βmµνξ

µξν ]
〉
.

In terms of synergetics, the ODE (6.6) represents an order parameter equa-
tion. If we introduce an overlap-dependent scalar quadratic potential field:

V (mµν) = −1
2

q∑

µ=1

m2
µν ,

the ODE (6.6) becomes the stochastic-gradient order parameter equation

ṁµν(t) = −∂V (mµν)
∂mµν(t)

+ Fµν(t), (6.9)

where Fµν(t) in (6.9) denotes a tensor fluctuating force, with average (over
the underlying random process):

〈Fµν(t)〉 =
〈
ξµ(t)ξν(t) tanh[βmµν(t)ξµ(t)ξν(t)]

〉
,

4 In other parlance, Hopfield’s cross-overlap is called Karhunen-Loeve covariance
matrix that extracts the principal components from a data set. It resembles the
cross-correlation function of two time-series, with several distinct peaks, indicat-
ing that the two series are very similar at each point in time where the peaks
occur.

5 The ODE (6.6) corresponds to the average, self-organizing Hebbian-type adap-
tation scheme (see [II07]):

ṁµν(t) = −mµν(t) + 〈Iµν〉 , (6.7)

with random signal innovation:

Iµν = fµ[ξµ(t)] fν [ξ
ν(t)] + ηµν(t) , (6.8)

where ηµν , denotes the tensorial, additive, zero-mean, Gaussian white noise, inde-
pendent of the main innovation function Iµν , while fµ,ν [·] represent the sigmoid
(tanh) activation functions.
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and variation
〈Fµν(t)Fµν(t′)〉 = Qµνδ(t− t′), (6.10)

in which the coefficient Qµν denotes the strength of the random processes,
while the Dirac δ-function δ(t− t′) gives its short-term memory.

The non-equilibrium phase transitions of the overlap mµν(t) can be de-
scribed in terms of the corresponding PDF defined by the Fokker-Planck
equation similar to (6.4):

ṗ(mµν , t) = p(mµν , t) +
1
2
Qµν

∂2p(mµν , t)
∂m2

µν

.

6.3.2 The Hybrid-Evolution Algorithm Design

Functional-type definitions of the gradient and Lie derivative of a scalar field:

Gradient : Grad[s , x List] := ∂#s@x;
Lie derivative : LieDer[v List , s , x List] := Grad[s, x].v;

Set up (DOF: n = 20 vehicles in the fleet) with two sets of time-dependent
coordinates:

Q = Table [qα(t), {α, n}] ;
P = Table [pβ(t), {β, n}] ;

Initial fleet state (configuration) given by random adjacency matrix:

Wo = Table [Wα,β = RandomInteger[], {α, n}, {β, n}] ; Wo//MatrixForm

Initial fleet graph/network plots in 2D and 3D

See Figure 6.5.

{GraphPlot[Wo,VertexLabeling→ True],
GraphPlot3D[Wo,VertexLabeling→ True]}

Set up activation functions and directional vector-fields:

Sigmoid threshold functions and their time derivatives (for RSDH adaptation)
are defined as:

Table [Sqα = Tanh [qα(t)] , {α, n}] ;
Table

[
Spβ = Tanh [pβ(t)] , {β, n}

]
;

Table
[
Sdqα = 1− Sq2

α, {α, n}
]
;

Table
[
Sdpβ = 1− Sp2

β , {β, n}
]
;

Directional vector-fields F (q) and G(p):

F = Table [Sqα, {α, n}] ; G = Table
[
Spβ , {β, n}

]
;
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Fig. 6.5. Initial fleet state (configuration) given by the random adjacency matrix
(down) and depicted as a 2D graph (left-up) and 3D graph (right-up).

Define (negative) Energy Landscape (Hamiltonian) H as a negative-definite
(Q,P )−bilinear form:

H = −1
2

n∑

α=1

n∑

β=1

[ωα,β[t]qα[t]qβ [t] + ωα,β [t]pα[t]pβ [t]];

Driving ‘gravitational’ forces for the evolution defined by the second Lie
derivatives of the Hamiltonian wrt. F (q) and G(p):

LQF= LieDer[F,H,Q]; LLQF = LieDer [F,LQF , Q] ;
LPG= LieDer[G,H,P ]; LLPG = LieDer [G,LPG, P ] ;
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Adaptive field equations defined:

q′α[t] == qα[t]− LQF − LLQF , qα[0] == η,

p′β [t] == pβ [t]− LPG − LLPG, pβ [0] == η,

ω′
α,β[t] == −ωα,β[t] + SqαSpβ + SdqαSdpβ + η, ωα,β [0] == Wα,β

Main loop (hybrid simulations for all generations/iterations):

Tfin = 0.02; M = NumGener = 60;
For[gen = 1, gen ≤M, (* Main loop *)

Eqns = Flatten[Join[(* Field equations defined *)
Table[{(qα)′ (t) == qα(t)− LQF − LLQF , qα[0]

== RR[{−10, 10}]}, {α, n}],
Table[{(pβ)′ (t) == pβ(t)− LPG − LLPG, pβ [0]

== RR[{−10, 10}]}, {β, n}],
Table[{(ωα,β)′ (t) == −ωα,β(t) + SqαSpβ

+SdqαSdpβ + RR[{−1, 1}],
ωα,β [0] == Wα,β} , {α, n}, {β, n}]]] ;

Sol = NDSolve[Eqns, (* Field equations numerically solved *)
Flatten [Join [Table [qα, {α, n}] ,Table [pβ , {β, n}] ,
Table [ωα,β, {α, n}, {β, n}]]] , {t, 0,Tfin},

StartingStepSize→ 1
107

]

;

Do [Wα,β = Evaluate [ωα,β[Tfin]/.Sol] [[1]], {α, n}, {β, n}] ;
Print[{gen, (* Printout results for each generation *)
MatrixForm [WW[gen] = Table [ Evaluate [ωα,β[Tfin]/.Sol] [[1]],
{α, n}, {β, n}]]}]
Print [MatrixForm [{Table [Evaluate [qα[Tfin]/.Sol] [[1]], {α, n}] ,
Table [Evaluate [pβ[Tfin]/.Sol] [[1]], {β, n}]}]]

gen ++ ] (* End of main loop *)

Here RR is an abbreviation for RandomReal.
For this particular simulation of the hybrid fleet evolution we used 60 dis-

crete generations and the short continuous time for each generation is chosen
to be 0.02 sec.

6.3.3 Topological Analysis of the Hybrid Evolution

Fleet-matrix Plots in the i-th generations (see Figure 6.6)

Table[ArrayPlot[WW[i],ColorFunction→ ”Rainbow”], {i, 5, 60, 5}]
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Fig. 6.6. The evolution of the fleet-matrix (plots in every fifth generation) - the
lighter the color, the weaker the connection.

Fig. 6.7. Plotting (some of) the matrix values j, k = 1, ..., 4 in every fifth genera-
tion.

Plotting (some of) the matrix values (j,k) in the i-th generations (see Figure
6.7)

Table[DiscretePlot[WW[i][[j, k]], {i, 5, 60, 5}], {j, 4}, {k, 4}]
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Fig. 6.8. Plotting the fleet-matrix eigenvectors in every fifth generation.

Plotting the Fleet-matrix Eigenvectors in the i-th generations (see Figure 6.8)

Evolution of the Fleet Network Topology in 2D (Figure 6.3) and in 3D
(Figure 6.2)

Table[GraphPlot[Round[WW[i]], DirectedEdges −→ True,
VertexRenderingFunction −→ ({Green,EdgeForm[ Black],Disk[#, .05]}&),
ImageSize −→ {300, 260}], {i, 5, 60, 5}]
Table[GraphPlot3D[Round[WW[i]]], {i, 5, 60, 5}]

A Topological Invariant of adaptive fleet evolution (Figure 6.4)

Hamiltonian Cycle doesn’t change during the hybrid fleet evolution: so it is a
topological invariant for this adaptive evolution.
Needs[GraphUtilities‘]
c2 = FindHamiltonianCycle[WW[2]];
cs2 = Transpose[{c2,RotateRight[c2]}];
GraphPlot[WW[2],EdgeRenderingFunction −→
(If[MemberQ[cs2,#2]‖MemberQ[cs2 ,Reverse[#2]],
{Red,Thickness[.01],Line[#1]}, {Black ,Line[#1]}]&),
VertexLabeling −→ True,MultiedgeStyle −→ False]
c38 = FindHamiltonianCycle[WW[38]];
cs38 = Transpose[{c38,RotateRight[c38]}];
GraphPlot[WW[38],EdgeRenderingFunction→
(If[MemberQ[cs38,#2]‖MemberQ[cs38,Reverse[#2]],
{Red,Thickness[.01],Line[#1]}, {Black ,Line[#1]}]&),
VertexLabeling→ True,MultiedgeStyle→ False]
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7

Complexity and Control in Solitary
Conductive PDEs

In this Chapter, we review and analyze models of controlled complexity in
nonlinear pulse conduction, ranging from the Hodgkin-Huxley action poten-
tials propagating along neural fibers to rogue waves in optical fibers. The novel
model proposed is an alternative to the Hodgkin-Huxley neural model in the
form of the sine-Gordon wave equation. This new alternative explains pulse
conduction in terms of general wave phenomena (such as kinks, solitons and
breathers).

7.1 Introduction

In this multidisciplinary Chapter, we explore new models of controlled com-
plexity (see [II12, II08a]) in general pulse conduction. Towards this end,
we review previously existing models, starting with the Hodgkin-Huxley
[HH52, Hod64] action potentials propagating along a neural fiber. The electri-
cal behavior of neurons is studied in terms of electrically equivalent circuits:
the Hodgkin-Huxley model is loosely based on the lossy transmission line (see
Figure 7.1 as well as [II07]). Resistors model various types of ion channels
in membranes, and capacitors model charge storage of cell membranes. The
power source models electrochemical potentials between regions of different
ion concentrations.

Here, Rs are resistances [in which the Ohm law between the voltage V (t)
and current I(t) holds: V (t) = R I(t)], Gs are the conductances (inverse re-
sistances: G = I−1), Cs are capacitances [defined by: I(t) = C V̇ (t)], and
Ls are inductances [defined by: V (t) = L İ(t)]). The velocity of a signal x(t)
propagating along the line at the point x is (assuming small loss due to resis-
tance) given by: ẋ(t) = 1/

√
L(x)C(x), while the characteristic impedance at

the same point is given by: z(x) =
√
L(x)/C(x).

Later, we also review the development of solitons, positons, breathers and
rogue waves in optical fibers (see, e.g. [MB99]). While much of the text is a
review of both traditional and recent theories, the novel model is a second
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Fig. 7.1. An equivalent electric-circuit representation (or, a lumped-
parameter model) of a lossy transmission line.

alternative to the Hodgkin-Huxley neural model in the form of sine-Gordon
solitons, kinks and breathers (initiated in [II13]).

Ultimately, we are interested in broad questions concerning observability
and controllability in highly complex environments, such as the exercise of
authority over assigned forces in accomplishing military goals. The present
subject of controlled complexity in biophysical systems is a case study in
which to develop an understanding of certain phenomena, particularly trav-
eling waves (solitons, breathers and kinks-antikinks).

7.2 Neural Action-Potential Solitons

The foundation of both electro-physiology and modern biophysics is given by
electrical theory of neural impulse conduction (or, action potential propaga-
tion), proposed in 1952 by A.L. Hodgkin and A.F. Huxley in the form of their
celebrated HH-model , for which they were awarded the 1963 Nobel Prize in
Physiology or Medicine. More generally, the Hodgkin-Huxley electrical theory
of neural action potentials is the accepted textbook basis of modern neuro-
physiology; for a recent review, see [GWP12, II09]. The HH-model describes
the flow of membrane currents through the membrane capacitor and ion chan-
nels (see Figure 7.2).

The total membrane current, I(t) = IC + Iion , is the sum of the capacitive
current IC = CmV̇ (t) and the ionic current Iion that is associated with the
conductances gNa, gK , gL due to different concentrations of the sodium Na
and potassium K ions (while the leak current IL approximates the passive
properties of the neuron). Formally, it is written:

Iion = INa + IK + IL = gNa (V − VNa) + gK (V − VK) + gL (V − VL) .

7.2.1 Hodgkin-Huxley Theory

In its basic form (without any of many modern extensions), the HH-model
consists of four coupled nonlinear first-order ODEs, including the cable equa-
tion for the neural membrane potential V , together with m,h and n equations
for the gating variables of Na and K channels and leakage [HH52, Hod64]:
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Fig. 7.2. An equivalent electric-circuit representation of an excited (de-
polarized) neural membrane, pioneered by Hodgkin and Huxley in 1952
[HH52, Hod64]

CmV̇ = −gNam3h[V (t)− VNa]− gKn4[V (t)− VK ]− gL[V (t)− VL] + Iext
j ,

ṁ = −(am + bm)m+ am, ḣ = −(ah + bh)h+ ah, (7.1)
ṅ = −(an + bn)n+ an,

where
am = 0.1 (V + 40)/[1− e−(V+40)/10], bm = 4 e−(V+65)/18,

an = 0.01 (V + 55)/[1− e−(V+55)/10], bn = 0.125 e−(V+65)/80,

an = 0.07 e−(V+65)/20, bn = 1/[1 + e−(V+35)/10] .

In general, conductances are dependent on other factors such as mem-
brane potential and concentrations of other ions in the intracellular medium.
Hodgkin and Huxley assumed that gK and gNa are dependent on voltage,
while they took leakage gL to be constant, in order to resolve their model
with their experimental data.

Here the reversal potentials of Na and K channels and leakage are:
VNa = 50mV, VK = −77mV and VL = −54.5mV; the maximum values of
corresponding conductivities are: gNa = 120mS/cm2, gK = 36mS/cm2 and
gL = 0.3mS/cm2; the capacity of the membrane is: Cm = 1 µF/cm2. The
external, input current is given by:

Iext
j = gsyn(Va − Vc)

∑

n

α(t− tin), (7.2)

which is induced by the pre-synaptic spike-train input applied to the neuron
i, given by: Ui(t) = Va

∑
n δ(t − tin). In (7.2), tin is the nth firing time of

the spike-train inputs, gsyn and Vc denote the conductance and the reversal
potential, respectively, of the synapse, τ s is the time constant relevant to the
synapse conduction, and α(t) = (t/τ s) e−t/τ sΘ(t), where Θ(t) is the Heaviside
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function. Numerical simulation (using the fast fourth-fifth order Runge-Kutta-
Cash-Karp integrator [CK90]) of the system (7.1)-(7.2) is given in Figure 7.3.

Fig. 7.3. Numerical simulation of the HH-model (7.1)-(7.2), using the
parameter-values defined in the text.

In addition, Hodgkin and Huxley postulated that the total current is the
sum of the trans-membrane current and the current along the axon, and that
a propagating solution exists that fulfills a wave equation. The simple cable
ODE figuring in the basic HH-model (7.1) was further expanded on this basis
into the following PDE for the propagating nerve impulse, depending on the
axon radius a:

a

2Ri
Vxx = CmVt + gK(V − EK) + gNa(V − ENa).

Here, Ri is the resistance of the cytosol within the nerve (see [HJ07] for
technical review).

The HH-model was originally proposed to account for the property of squid
giant axons [HH52, Hod64] and it has been generalized with modifications of
ion conductances. More generally, the so-called HH-type models (including the
Morris-Lecar model, see [SchMor13]) have been widely adopted for a study on
activities of transducer neurons such as motor and thalamus relay neurons,
which transform the amplitude-modulated input to spike-train outputs.

For the attempts to relate the HH-model with propagation of solitons in
neural cell membranes, see [DS95] and the references therein. The simplified
form, namely the FitzHugh-Nagumo (FN) model [Fit55, Fit61, NAY62], with
the tunnel-diode equivalent neural circuit (see [SchFit13]), is also discussed.
Among a number of forms of the FN-model, the simplest one (similar to the
Van der Pol oscillator) is suggested by FitzHugh himself in [Fit55]:

εẋ = x− x3 − y, ẏ = γx− y + b,
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where x = x(t) is the fast voltage variable and y = y(t) is the slow recovery
variable, while γ, b, ε (0 ≤ ε� 1) are parameters.

More generally, dynamics of an N -dimensional ensemble of FN neurons is
given by the following set of nonlinear ODEs (see, e.g. [RT96, TR98, TP01]):

ẋi = F (x)−cyi+I(c)
i +I(e)+ξi, ẏi = bxi−dyi, (for i = 1, ..., N), (7.3)

where xi = xi(t) and yi = yi(t) denote the fast (voltage) variable and slow
(recovery) variable, respectively; F (x) = kx (x− a) (1− x) is the nonlinear
spring-like forcing term (with positive parameters k, a, b, c, d); and ξi = ξi(t)
is the Gaussian white noise with

〈ξi(t)〉 = 0 and
〈
ξi(t) ξj(t

′)
〉

= β2
i δij δ(t− t′), (7.4)

where 〈·〉 means the average over random variables.
The inputs, I(c)

i = I
(c)
i (t) and I(e) = I(e)(t), represent N coupling terms

and an external (single-spike) input applied to all neurons, respectively. They
are given by:

I
(c)
i =

w

N

∑

j( �=i)
G(xj) with G(x) =

(
1 + e−(x−θ)/α

)−1

,

where w is the coupling strength and G(x) is the sigmoid function with the
threshold θ and the width α, and

I(e) = AΘ(t − tin)Θ(tin + Tw − t), (7.5)

where Θ = Θ(x) is the Heaviside step (threshold) function with the input
time tin, width Tw and amplitude A.

Even more generally, a network of noisy FitzHugh-Nagumo neurons is
governed by the following set of nonlinear stochastic ODEs (see [KB93]):

dxi =

[

φ (xi, yi) + Ii(t) +
N∑

k=1

JikΘ(xk)

]

dt+ ξidWi , (7.6)

dyi = ψ (xi, yi) dt, (for i, k = 1, ..., N),

where φ and ψ are nonlinear functions, while Jik are synaptic weights for the
connection from neuron i to neuron k. The Ito-type stochastic analysis of the
system (7.6) was performed in [RT96].

7.2.2 Wave Equation Alternative

The discussion of previous subsections represents compressed history of neural
biophysics, as is written in advanced neurophysiological textbooks. Recently,
two biophysicists from the Niels Bohr Institute in Copenhagen, T. Heimburg
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and A. Jackson (see [HJ05, HJ07]), challenged the half-a-century old Hodgkin-
Huxley theory. Their main claim is that the HH-model fails to explain a
number of features of the propagating nerve pulse, including the reversible
release and reabsorption of heat, as well as the accompanying mechanical,
fluorescence, and turbidity changes [HJ05, HJ07]. In short, electrical currents
through resistors generate heat, independent of the direction of the ion flux;
the heat production in the HH-model should always be positive, while the heat
dissipation should be related to the power of a circuit through the resistor,
i.e. Q̇ = P = V · I > 0 (for each of the conducting objects in all phases of the
action potential).

“The most striking feature of the isothermal and isentropic compression

modulus is its significant undershoot and striking recovery. These features

lead generically to the conclusions (i) that there is a minimum velocity of a

soliton and (ii) that the soliton profiles are remarkably stable as a function

of the soliton velocity. There is a maximum amplitude and a minimum

velocity of the solitons that is close to the propagation velocity in myelinated

nerves...”

The previous neural-conduction related work of Englishman Archibald V.
Hill (a Nobel Laureate in Physiology or Medicine, 1922), specifically regarding
heat production in nerves [AHH58]. This was based on his prior work on
heat production in contracting muscles [Hil38], which was actually reviewed
by Hodgkin in [Hod64]. However, Hodgkin noted that the heat release and
absorption response during the neural action potential “is important but is
not understood,” after which the thermodynamic path of neural biophysics
research was effectively shut down for the next half-century.1

Based on the thermodynamic relation between heat capacity and mem-
brane area compressibility, Heimburg and Jackson considered a (1+1) hydro-
dynamic PDE for the dispersive sound propagation in a cylindrical membrane
[HJ05, HJ07]. A density-pulse, governing the changes ∆ρA (along the x-axis)
of the lateral membrane density ρA, is defined by: ∆ρA(x, t) = ρA(x, t)− ρA0 ,
where ρA0 = 4.035·10−3 g/m2 is the equilibrium lateral area density in the fluid
phase of the membrane slightly above the melting point. The related sound
velocity c can be expanded into a power series (close to the lipid melting
transition) as:

c2 = c20 + p(∆ρA) + q(∆ρA)2 + . . . , (7.7)

where c0 = 176.6 m/s is the velocity of small amplitude sound, while p and q
are parameters (p = −16.6 c20/ρ

A
0 and q = 79.5 c20/(ρ

A
0 )2).

In the standard φ−notation, with φ(x, t) ≡ ∆ρA(x, t), the dispersive wave
equation of [HJ05, HJ07] can be rewritten as a driven wave equation with the
driving force f(φ):
1 An analogous example in 20th Century physics is A. Einstein’s shutting down of

the Kaluza-Klein five-dimensional relativity theory, which was recently revived
by the advent of string theory.
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φtt = c2φxx − f(φ) . (7.8)

Here we make two remarks regarding the dispersive wave equation (7.8):

1. If the compressibility is approximately constant and if ∆ρA � ρA0 , then
f(φ) = 0 (that is, small changes in compressibility means small deviation
of f(φ) from 0); (7.8) then reduces to the standard wave equation:

φtt = c20φxx .

2. Higher sound frequencies result in higher propagation velocities, since the
isentropic compressibility is a decreasing function of frequency. If higher
frequencies become dominant, the dispersive forcing function f(φ) in (7.8)
needs to be defined, or ad-hoc chosen [HJ05, HJ07] to mimic the linear
frequency-dependence of the sound velocity with a positive parameter
h: f(φ) = hφxxxx . Furthermore, by introducing the sound propagation
velocity v the wave equation (7.8) can be recast into a time-independent
form, describing the shape of a propagating density excitation (in original
Heimburg-Jackson form), giving

v2 ∂
2

∂z2
∆ρA =

∂

∂z

[
(
c20 + p(∆ρA) + q(∆ρA)2

) ∂
∂z
∆ρA

]

− h ∂
4

∂z4
∆ρA,

which has a localized (stationary) solution [LAJ11]:

∆ρA(z) =
p

q
·

1−
(
v2−v2min

c20−v2
min

)

1 +
(
1 + 2

√
v2−v2

min

c20−v2min
cosh

(
c0
h z
√

1− v2

c20

)) .

This solution represents a sech-type soliton, a typical solution for nonlinear
PDEs (e.g. KdV and NLS).

Instead of arguing either pro- or contra- Heimburg-Jackson theory of neu-
ral sound propagation, as an alternative to Hodgkin-Huxley neural electri-
cal theory, we simply accept the natural solitary explanation of the nerve
impulse conduction, regardless of the physical medium that is carrying it
(sound, or heat, or electrical, or smectic liquid crystal [DS95], or possibly
quantum-mechanical [MN95a, MN95b, MN97]). Under this standpoint, we
are still free to chose a different form for the dispersive force term f(φ) in the
perturbed wave equation (7.8). Therefore, instead of the Heimburg-Jackson’s
ad-hoc choice of the forth-derivative term, we can, following [STZ93] and
subsequent studies of neural micro-tubules, choose a double-well quartic dis-
persive potential:

V (φn) = −1
2
Aφ2

n +
1
4
Bφ4

n , (7.9)

where A and B are real parameters, with A being a linear function of temper-
ature. If we now plug-in the (first two terms of the) Taylor-series expansion
of the sine term, we have
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sinφ = φ− 1
6
φ3 +O(φ4) ≈ Aφ−Bφ3. (7.10)

The quartic dispersive potential (7.9) would result in another novel alternative
to the Hodgkin-Huxley model, in the form of standard sine-Gordon equation
(see equation (7.21) in the following subsection), which generates analytical
solutions in the form of traveling waves. That is, we have solitons, kinks-
antikinks and breathers (see [II13]).

7.2.3 Sine-Gordon Alternative

The sine-Gordon equation (SGE), representing a new alternative to the
Hodgkin-Huxley neural model, is the following real-valued, hyperbolic, spa-
tiotemporal, nonlinear wave-type PDE, defined on the (1+1) space-time R

1,1

(see Figure 7.4):

φtt = φxx − sinφ, or φtt(x, t) = φxx(x, t)− sinφ(x, t). (7.11)

A basic solution of the SGE (7.21) is:

φ(x, t) = 4 arctan
[

exp
(

± x− vt√
1− v2

)]

, (7.12)

which describes a soliton moving with velocity 0 ≤ v < 1 and changing the
phase either from 0 to 2π or from 2π to 0. The first case is a kink, when the
sign is positive, and the second, when the sign is negative, is an anti-kink.
Each traveling-wave solution of the SGE has the corresponding surface in R

3

(see [TU00]).
The first 1-soliton solution of the SGE (7.21) was given by [AKN73, AC91]

in the form:

φ(x, t) = 4 arctan

[ √
1− ω2 cos(ωt)

ω cosh(x
√

1− ω2)

]

,

which, for ω < 1, is periodic in time t and decays exponentially when moving
away from x = 0.

There is a well-known traveling solitary wave solution with velocity v (see
[Tab89]), given by the following generalization of (7.22):

φ(x, t) = 4 arctan
[

exp
±2(z − z0)√

1− v2

]

, with (z = µ(x+ vt)) , (7.13)

and the center at z0. In (7.31), as with (7.22), the case when the sign is
positive describes kink, while the case when the sign is negative represents an
anti-kink.

The stationary kink with the center at x0 is defined by

φ(x) = 2 arctan [exp(x− x0)] ,
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Fig. 7.4. Mathematica� simulations of the (1+1) sine-Gordon PDE (7.21)
for different initial and boundary conditions (for technical details, see [II13]).

in which the position of the center x0 can be varied continuously (−∞ < x0 <
∞) and represents the solution of the first-order ODE φx(x) = sinφ(x).

Regarding solutions of the slightly more general three-parameter SGE

φtt = aφxx + b sin(λφ), (7.14)

the following cases were established in the literature (see [PZ04, II13] and
references therein):

1. If a function w = φ(x, t) is a solution of (7.32), then so are also the
following functions:

w1 =
2πn
b
± φ(C1 ± x,C2 ± t) for (n = 0,±1,±2, ...) ,

w2 = ±φ
(

x coshC3 + t
√
a sinhC3, x

sinhC3√
a

+ t coshC3

)

,

where C1, C2, and C3 are arbitrary constants.
2. Traveling-wave solutions:

φ(x, t) =
4
λ

arctan

[

exp

(

±bλ(C1x+ C2t+ C3)√
bλ(C2

2 − aC2
1 )

)]

(7.15)

if bλ(C2
2 − aC2

1 ) > 0,

φ(x, t) = −π
λ

+
4
λ

arctan

[

exp

(

±bλ(C1x+ C2t+ C3)√
bλ(aC2

1 − C2
2 )

)]

if bλ(C2
2 − aC2

1 ) < 0,
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where the first expression (for bλ(C2
2 − aC2

1) > 0) represents another

1-soliton solution, which is kink in case of exp
(
bλ(C1x+C2t+C3)√

bλ(C2
2−aC2

1)

)

and

antikink in case of exp
(

− bλ(C1x+C2t+C3)√
bλ(C2

2−aC2
1)

)

. In case of the standard SGE

(7.21), this kink-antikink expression specializes to the Lorentz-invariant
solution similar to (7.31):

φK(x, t) = 4 arctan
[

exp
(
±(x− xc)− vt√

1− v2

)]

, (7.16)

where the velocity v (0 < v < 1) and the soliton-center xc are real-valued
constants. The kink solution has the following physical (EM) characteris-
tics:
(i) Energy:

E[φK(x, t)] =
∫
T 00dx =

8√
1− v2

;

(ii) Momentum:

P [φK(x, t)] =
∫
T 10dx = − 8v√

1− v2
.

3. Functional separable solution:

w(x, t) =
4
λ

arctan [f(x)g(t)] ,

where the functions f = f(x) and g = g(t) are determined by the first-
order autonomous separable ODEs:

f2
x = Af4 +Bf2 + C, g2

t = −aCg4 + (aB + bλ)g2 − aA,

where A, B, and C are arbitrary constants. In particular, for A = 0, B =
k2 > 0, and C > 0, we have the 2-soliton solution [PS62]:

w(x, t) =
4
λ

arctan
[

η sin(kx+ A1)
k
√
a cosh(ηt+B1)

]

, with
(
η2 = ak2 + bλ > 0

)
,

where k, A1, and B1 are arbitrary constants.

The only stable traveling wave SGE-solutions, meaning localized solutions
with identical boundary conditions φ = 0 and φ = 2π, for a scalar field φ are
2π-kinks [OS83, Das85] . However, easier to follow experimentally are non-
localized π-kinks [KGS92], where separate regions have different values of the
field φ (see also [ZML98] and references therein).

On the other hand, a breather is spatially localized, time periodic, oscilla-
tory SGE-solution (see, e.g. [HS98]). It represents a field which is periodically
oscillating in time and decays exponentially in space as the distance from the
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center x = 0 is increased. This oscillatory solution of (7.21) is characterized
by some phase that depends on the breather’s evolution history. This could
be, in particular, a bound state of vortex with an antivortex in a Joseph-
son junction. In this case, breather may appear as a result of collision of a
fluxon (a propagating magnetic flux-quantum) with an antifluxon, or even in
the process of measurements of switching current characteristics. stationary
breather solutions form one-parameter families of solutions. An example of a
breather-solution of (7.21) is given by [GK06]:

φ = 4 arctan
(

sinT
u cosh (g(u)x)

)

,

with parameters u = u(t) and T = T (t), such that

g(u) = 1/
√

1 + u2 and T (t) =
∫ t

0

g(u(t′))u(t′) dt′.

For more technical details on SGE, including its solitary solutions as well
as various generalizations and discretizations, see Appendix, subsection 7.4.1.

7.3 Fiber-Optics Solitons

One half of the 2009 Nobel Prize in Physics was awarded to Charles K. Kao
“for ground-breaking achievements concerning the transmission of light in
fibers for optical communication,” mainly for his pioneering work [KH66]
published in July 1966, “the date now regarded as the birth of optical fiber
communication.” The importance of this discovery for today’s world can be
illustrated by the following quote from Kao’s Nobel lecture:

“The news of the Nobel Prize reached me in the middle of the night at 3

am in California, through a telephone call from Stockholm (then in their

morning) no doubt carried on optical fibers; congratulations came literally

minutes later from friends in Asia (for whom it was evening), again through

messages carried on optical fibers.”

For the present Chapter, it is important that there are two kinds of soli-
tons traveling along optical fibers [MB99, GTW12]. The first kind is governed
by the nonlinear Schrödinger (NLS) equation,2 describing the balance be-
tween the 2nd-order dispersion and Kerr nonlinearity [Agr01]. The second is
governed by the Maxwell-Bloch equation, describing the self-induced trans-
parency soliton in the two-level resonance medium [AE75, XTA12].

2 Note that there is a number of other NLS-applications, including financial analysis
[Iva10, Iva11a] and crowd dynamics [IR12, IJ12].
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7.3.1 NLS-Maxwell-Bloch System

More generally, in erbium doped fibers3 [GH13], those two types of solitons
usually coexist, which is governed by the coupled NLS-Maxwell-Bloch system
[AE75, GH13]:

qz = i (
1
2
qtt + |q|2q) + 2p, (7.17)

pt = 2iωp+ 2qη, ηt = −(qp̄+ pq̄),

where q is the (slowly-varying) amplitude of the complex-valued pulse-field
envelope, ω is the frequency, p = ψ1ψ̄2 is the polarization and η = |ψ2|2 is the
population inversion, while ψ1 and ψ2 are the wave functions in a two-level
atomic system. For more technical details on this nonlinear PDE system, see
[AE75].

7.3.2 Hirota-Maxwell-Bloch System

Although representing a common pulse-conduction model, the NLS-Maxwell-
Bloch system (7.17) does not include the higher-order effects (including the
3rd-order dispersion, self-steepening and nonlinear response effects), which
are important for modeling the ultra-short pulse propagation in nonlinear
optical fibres. A more realistic optical pulse-conduction model is given by the
following Hirota-Maxwell-Bloch system (see [AE75, GH13]):

qz = iα(
1
2
qtt + 2|q|2q) + β(qttt + 6|q|2qt) + 2p, (7.18)

pt = 2iωp+ 2qη, ηt = −(qp̄+ pq̄).

The symbols have the same meaning as in (7.17); in addition, α comprises both
the 2nd-order dispersion and Kerr nonlinearity, while β represents the strength
of the higher order nonlinear effects [AE75]. The Hirota-Maxwell-Bloch sys-
tem (7.18) has been recently analyzed from different aspects. For example,
conservation laws and multi-soliton solutions (on the zero background) were
derived in [XtZ09] using Darboux transformation, Painlevé properties were de-
fined in [PN96], while rouge wave solutions (on continuous-wave backgrounds)
were constructed in [LHP13].

Lax pair representation

It was demonstrated in [PN95] that the system (7.18) is integrable and also
admits a Lax pair representation, as well as other required properties of com-
plete integrability. The linear eigenvalue problem is expressed in the form of
the Lax pair (U, V ) , defined by the linear equation:
3 Erbium (Er) is a chemical element belonging to the group of rare earth metals.

It is widely used in the form of the trivalent ion Er3+ as the laser-active dopant
of gain media (including crystals and glasses), which can amplify the power of
light, which is required in a laser to compensate for the resonator losses.
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Φt = UΦ, Φz = V Φ. (7.19)

In (7.19), the eigenfunctions U and V (corresponding to the eigenvalue λ) are
defined as follows:

U = λ

(
−i 0
0 i

)

+
(

0 q
−q̄ 0

)

= −iλσ + U0, where σ =
(

1 0
0 −1

)

.

V = λ3V3 + λ2V2 + λV1 + V0 + i
1

λ+ ω
V−1, where

V3 =
(

4iβ 0
0 −4iβ

)

, V2 =
(
−αi −4βq
4βq̄ αi

)

, V1 =
(
−2βi|q|2 αq − 2βiqt
−αq̄ − 2βiq∗t 2βi|q|2

)

V0 =
(

α
2 i|q|2 − β(qq̄t − qtq̄) 2β|q|2q + α

2 iqt + βqtt
−2β|q|2q̄ + α

2
iq̄t − βq̄tt −α2 i|q|2 + β(qq̄t − qtq̄)

)

, V−1 =
(
η −p
−p̄ −η

)

.

From the Lax pair (U, V ) , the system (7.18) is obtained by setting α = 2, β =
−1.

Method of successive Darboux transformations

The so-called Darboux transformation is an efficient method for constructing
the soliton solutions for integrable nonlinear PDEs [MS92]. To apply this
method to the Lax pair (7.19) of the the Hirota-Maxwell-Bloch model (7.18),
consider the following transformation [LHP13]:

Φ′ = TΦ = (λA− S)Φ, where

A =
(
a11 a12

a21 a22

)

, S =
(
s11 s12
s21 s22

)

about linear function Φ = Φ(λ), in which the new function Φ′ satisfies:

Φ′
t = U ′Φ′, Φ′

z = V ′Φ′, (7.20)

such that the matrix T satisfies the following identities:

Tt + TU = U ′T, Tz + TV = V ′T.

Substituting the matrices A and S into (7.20) and comparing the coefficients
of both sides gives the following conditions:

a12 = a21 = 0, (a11)t = (a22)t = 0.

Of particular interest is the choice: A = I and T = (λI − S). The relation
between old solutions (q, p, η) and new solutions (q′, p′, η′) is called Darboux
transformation and can be obtained via (7.20).

Details of the one-fold and n-fold Darboux transformations performed on
the above Lax pair representation of the Hirota-Maxwell-Bloch model are
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shown in [LHP13], from which a variety of soliton solutions of the Hirota-
Maxwell-Bloch system (7.18) has been constructed (by assuming suitable seed
solutions). In particular, assuming trivial seed solutions (q = 0, p = 0, η = 1)
the linear system (7.19) becomes [LHP13]:

Φt = UΦ, Φz = V Φ, with

Φ =
(
Φ1

Φ2

)

, U =
(
−iλ 0
0 iλ

)

,

V =
(

4iβλ3 − αiλ2 0
0 −4βiλ3 + αiλ2

)

+
i

λ+ ω

(
1 0
0 −1

)

.

and the explicit eigenfunctions (with arbitrarily fixed real constants x0, y0, θ)
given by:

Φ1 = e−iλt+(4βiλ3−αiλ2+ i
λ+ω )z+

x0+iy0
2 ,

Φ2 = eiλt+(−4βiλ3+αiλ2− i
λ+ω )z−x0+iy0

2 +iθ.

Their substituton into the one-fold Darboux transformation (while choosing
λ = α1 +Iβ1, x0 = 0, y0 = 0, θ = 0), has given the following soliton solutions:

q = 2β1e
−2i C

B sech(2β1

A

B
),

p =
iβ1

[
(α1 − iβ1 + ω)e−2 D

B + (α1 + iβ1 + ω)e−2 F
B

]

B
sech2(2β1

A

B
),

η = 1− 2β2
1

B
sech2(2β1

A

B
).

Similarly, the construction of the two-soliton solutions of the Hirota-
Maxwell-Bloch system (7.18) was performed in [LHP13] by using two spectral
parameters λ1 = α1 + iβ1 andλ2 = α2 + iβ2 and the second Darboux trans-
formation. In the case of two-soliton solutions, if λ2 is assumed to be close
to λ1, performing the Taylor expansion of wave function to first order up to
λ1 leads to a new kind of solution which is called smooth positon solution.4

Bright and dark positon solutions of the system (7.18) have been constructed
in [LHP13], using four linear functions and second Darboux transformation.
An example of such constructed positon solutions qp has the form:

qp = 8ie14.8iz−it[1582zcosh(2t+ 2.40z)− 688izsinh(2t+ 2.4z)
− 50i cosh(2t+ 2.4z) + 100i tsinh(2t+ 2.4z)]/

[400t2 + 119296z2− 5504tz + 50 + 50cosh(4.8z + 4t)].

4 A term positon was coined by Matveev [MS92, Mat92b, Mat92a, Mat02] for the
Korteweg-de Vries (KdV) equation by the same limiting approach.



October 10, 2014 11:9 Complexity and Control 9in x 6in b1966-ch07 page 293

7.3 Fiber-Optics Solitons 293

Next, by formulating (through the second Darboux transformation) the
complex modified Korteweg-de Vries-Maxwell-Bloch system out of the Hirota-
Maxwell-Bloch system (7.18), both dark and bright breather solutions were
constructed in the form:

qb = [d2(ei
Ab(w)

Y + e
Ab(−w)

Y i) + 2dβ1(e
i

C̄b
Y + e

Cb
Y i)− dβ1(e

Db
X i + e

D̄b
X i)

+ 2β1(w − β1)e
Fb(w)

Y i − 2β1(w + β1)e
Fb(−w)

Y i]/[2dcosh(2iwβ1z
Gb
Y

)

− 2β1cosh(2w
Hb

Y
)], where

w =
√
β2

1 − d2, X = (α1 + β1i + ω)(−α1 + β1i− ω),

Y = (α1 + ω)(α1 + β1i + ω)(−α1 + β1i− ω),

while [Ab(w), Cb, Db, Fb(w)] and Gb, Hb are polynomials of:
(t, z, ω, w, a, b, d, α, β, α1, β1) defined in [LHP13].

Finally, using the limit method of the NLS equation [HZW12], the bright
and dark rogue-wave solutions of the system (7.18) were constructed in
[LHP13], with the specific rogue-wave solution qr:

qr = e−
i
4 (8+20β+7α)[40α− 17α2 + 156β − 40− 585β2 − 192αβ

+ i(32 + 8α+ 96β)]/(1170β2 − 80α+ 34α2 − 312β + 112 + 384αβ).

Numerical simulations of positons, 2-solitons, breathers and rogue-waves are
given in Figure 7.5 (for more technical details, see [LHP13]). The figure illus-
trates some of the wide range of behaviors for which our generalized system
can account.

Summary

We have looked to models of controlled complexity in nonlinear pulse con-
duction and proposed a novel new alternative, in the form of a sine-Gordon
wave equation, to the traditional Hodgkin-Huxley neural model. Our proposed
model explains pulse conduction in terms of more general traveling wave phe-
nomena, such as kinks, solitons, breathers, positons and rogue waves.

What about our broader questions concerning controlling complexity? Our
investigations here represent one case study in biological control from which
we - eventually - hope to be able to formulate useful models for significantly
broader contexts, such as in military command and control. We conclude that
there are two significant barriers which we must tackle in pursuing this broader
goal: such problems do not enjoy well established and stable problem state-
ments, and discrepancies in their conceptualization may particularly strongly
limit the scope and usefulness of a model. Unlike the pulse conduction prob-
lem, we do not more broadly expect to have a range of solutions to a single
stable problem, but rather multiple solutions to multiple overlapping – and
possibly contradictory - problems.
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Fig. 7.5. Numerical simulations of positons (a − b), 2-solitons (c − d),
breathers (e − f) and rogue-waves (g − h), for various boundary and initial
conditions; modified and adapted from [LHP13].

7.4 Appendix

7.4.1 A ‘Zoo’ of Sine–Gordon Solitons

In spatio-temporal dynamics of complex nonlinear systems (see, e.g. [II08a,
IR12]), the Sine–Gordon equation (SGE) is, together with the Korteweg–
deVries (KdV) and the nonlinear Schrödinger (NLS) equations, one of the
celebrated nonlinear-yet-integrable partial differential equations (PDEs), with
a variety of traveling solitary waves as solutions (see Figures 7.6 and 7.7).

Briefly, a solitary wave is a traveling wave (with velocity v) of the form:
φ(x, t) = f(x − vt), for a smooth function f that decays rapidly at infinity;
e.g., a nonlinear wave equation:

φtt − φxx = φ(2φ2 − 1)

has a family of solitary–wave solutions:

φ(x, t) = sech(xcoshµ+ tsinhµ),

parameterized by µ ∈ R. In complex physical systems, SGE solitons, kinks
and breathers appear in various situations, including propagation of magnetic
flux (fluxons) in long Josephson junctions, dislocations in crystals, nonlinear
spin waves in superfluids, and waves in ferromagnetic and anti-ferromagnetic
materials.
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In this subsection we give a brief overview of the SGE; for further technical
details, see [II13] and references therein.

Fig. 7.6. Basic static examples of kinks: tanh(x), arctan(x) and bell–shaped
solitons: sech(x), exp(−x2), together with their (absolute) differences; plotted
in MathematicaTM .

The Sine–Gordon equation (SGE)

SGE is a real-valued, hyperbolic, nonlinear wave equation defined on R
1,1,

which appears in two equivalent forms (using standard indicial notation for
partial derivatives: φzz = ∂2

zφ = ∂2φ/∂xz):

• In the (1+1) space-time (x, t)−coordinates, the SGE reads:

φtt = φxx − sinφ, or φtt(x, t) = φxx(x, t) − sinφ(x, t), (7.21)

which shows that it is a nonlinear extension of the standard linear wave
equation: φtt = φxx. The solutions φ(x, t) of (7.21) determine the internal
Riemannian geometry of surfaces of constant negative scalar curvature
R = −2, given by the line-element:

ds2 = sin2

(
φ

2

)

dt2 + cos2
(
φ

2

)

dx2,

where the angle φ describes the embedding of the surface into Euclidean
space R3. A basic solution of the SGE (7.21) is:

φ(x, t) = 4 arctan
[

exp
(

± x− vt√
1− v2

)]

, (7.22)
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describing a soliton moving with velocity 0 ≤ v < 1 and changing the
phase from 0 to 2π (kink, the case of + sign) or from 2π to 0 (anti-kink,
the case of − sign). Each traveling soliton solution of the SGE has the
corresponding surface in R3.

• In the (1+1) light-cone (u, v)−coordinates, defined by: u = (x+ t)/2, v =
(x + t)/2, in which the line-element (depending on the angle φ between
two asymptotic lines: u = const, v = const) is given by:

ds2 = du2 + 2 cosφdu dv + dv2,

the SGE describes a family of pseudo-spherical surfaces with constant
Gaussian curvature K = −1, and reads:

φuv = sinφ , or φuv(u, v) = sinφ(u, v). (7.23)

SGE (7.23) is the single Codazzi–Mainardi compatibility equation between
the first (IG) and second (IIC) fundamental forms of a surface, defined by
the Gauss and Codazzi equations, respectively:

IG = du2 + 2 cosφdu dv + dv2, IIC = 2 sinφ du dv.

A typical, spatially-symmetric, boundary-value problem for (7.21) is de-
fined by:

x ∈ [−L,L] ⊂ R,
(
t ∈ R

+
)
,

φ(x, 0) = f(x), φt(x, 0) = 0, φ(−L, t) = φ(L, t),

where f(x) ∈ R is an axially-symmetric function (e.g., Gaussian or sech, see
Figure 7.8).

Bäcklund transformations (BT) for the SGE (7.21) were devised in 1880s in
Riemannian geometry of surfaces and are attributed to Bianchi and Bäcklund.
[In 1883, A. Bäcklund showed that if L : M → M ′ is a pseudo-spherical line
congruence between two surfaces M,M ′, then both M and M ′ are pseudo-
spherical and L maps asymptotic lines on M to asymptotic lines on M ′.
Analytically, this is equivalent to the statement that if φ is a solution of the
SGE (7.21), then so are also the solutions of the ODE system (7.24). BT have
the form:

1
2
(φ+ ϕ)ξ = α sin

φ− ϕ
2

,
1
2
(φ − ϕ)η =

1
α

sin
φ+ ϕ

2
, (7.24)

where both φ and ϕ are solutions of the SGE (7.21), and can be viewed as
a transformation of the SGE into itself. BT (7.24) allows one to find a 2-
parameter family of solutions, given a particular solution φ0 of (7.21). For
example, consider the trivial solution φ = 0 that, substituted into (7.24),
gives:
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Fig. 7.7. Basic solitary SGE–solutions, simulated in Mathematica
as systems of spring-coupled torsional pendula: (a) single soli-
ton: φ(x, t) = 4 arctan

(
exp x−vt

1−v2
)

; (b) soliton–soliton collision:

φ(x, t) = 4 arctan
(
v sinh x

1−v2

cosh vt
1−v2

)

; (c) soliton–antisoliton collision:

φ(x, t) = 4 arctan
(

sinh vt
1−v2

v cosh x
1−v2

)

; and (d) single breather: φ(x, t) =

4 arctan
(

sin vt
1−v2

v cosh x
1−v2

)

.

ϕξ = −2α sin
ϕ

2
, ϕη = − 2

α
sin

ϕ

2
,

which, by integration, gives:

2αξ = −2 ln(tan
ϕ

4
) + p(η),

2
α
η = −2 ln(tan

ϕ

4
) + p(ξ),

from which the following new solution is generated:

ϕ = 4 arctan
[

exp(−αξ − 1
α
η + const)

]

.

The sine–forcing term in the SGE can be viewed as a nonlinear defor-
mation: φ → sinφ, of the linear forcing term in the Klein–Gordon equation
(KGE, a vacuum linearization of the SGE), which is commonly used for de-
scribing scalar fields (quantum) field theory:

φtt = φxx − φ, (7.25)
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Fig. 7.8. Numerical solution of the SGE (7.21) in Mathematica, using nu-
merical ODE/PDE integrator NDSolve, with the following data (including the
Gaussian initial state, zero initial velocity and symmetric boundary condition):
x ∈ [−20, 20], t ∈ [0, 30], φ(x, 0) = exp(−x2), φt(x, 0) = 0, φ(−20, t) =
φ(20, t). The waves oscillate around the zero plane and increase their width
with time. Both near-periodicity and nonlinearity of the time evolution are
apparent.

This, in turn, implies that (as a field equation) SGE can be derived as an
Euler–Lagrangian equation from the Lagrangian density:

LSG(φ) =
1
2
(φ2
t − φ2

x)− 1 + cosφ. (7.26)

It could be expected that LSG(φ) is a ‘deformation’ of the KG Lagrangian:

LKG(φ) =
1
2
(φ2
t − φ2

x)−
φ2

2
. (7.27)

That can be demonstrated by the Taylor–series expansion of the cosine term:

cosφ =
∞∑

n=0

(−φ2)n

(2n)!
,
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so that we have the following relationship between the two Lagrangians:

LSG(φ) = LKG(φ) +
∞∑

n=2

(−φ2)n

(2n)!
.

Fig. 7.9. Numerical solution of the SGE (7.37) in Mathematica, with the
following data (including the Gaussian initial state, zero initial velocity and
symmetric boundary condition): x ∈ [−20, 20], t ∈ [0, 30], φ(x, 0) =
exp(−x2), φt(x, 0) = 0, φ(−20, t) = φ(20, t). Under the same boundary
conditions, the SGE with the plus sine gives about 20 times higher ampli-
tude waves, which are all above the zero plane and decrease their width with
time. Again, both near-periodicity and nonlinearity of the time evolution are
apparent.

The corresponding Hamiltonian densities, of kinetic plus potential energy
type, are given in terms of canonically–conjugated coordinate and momentum
fields by:
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HSG(φ, π) = πφt − LSG(φ) =
1
2
(π2 + φ2

x) + 1− cosφ,

HKG(φ, π) = πφt − LKG(φ) =
1
2
(π2 + φ2

x) + φ2.

Both SGE and KGE are infinite–dimensional Hamiltonian systems, with Pois-
son brackets given by:

{F,G} =
∫ ∞

−∞

[
δF

δφ(x)
δG

δπ(x)
− δF

δπ(x)
δG

δφ(x)

]

dx, (7.28)

so that both (7.21) and (7.25) follow from Hamilton’s equations with Hamil-
tonian H and symplectic form ω:

φt = {H,φ}, πt = {H,π},

with H =
∫ ∞

−∞
H(φ, π) dx, ω =

∫ ∞

−∞
dπ ∧ dφ dx. (7.29)

The Hamiltonian (7.29) is conserved by the flow of both SGE (7.21) and KGE
(7.25), with an infinite number of commuting constants of motion (common
level sets of these constants of motion are generically infinite-dimensional tori
of maximal dimension). Both SGE and KGE admit their own infinite families
of conserved functionals in involution with respect to their Poisson bracket
(7.28). This fact allows them both to be solved with the inverse scattering
transform.

Momentum and energy of SGE–solitons

SGE is Lorentz–covariant (i.e., invariant with respect to special–relativistic
Lorentz transformations; each SGE–soliton behaves as a relativistic object
and contracts when v → c ≡ the speed of light), and for this fact it has been
used in (quantum) field theory.

In both forms (7.21) and (7.23), the SGE has the following symmetries:

t→ t+ t0, x→ x, φ→ φ (shift in t),
t→ t, x→ x+ x0, φ→ φ (shift in x),
t→ t, x→ x, φ→ φ+ 2πn (discrete shifts in φ),
t→ −t, x→ x, φ→ φ (reflection in t),
t→ t, x→ −x, φ→ φ (reflection in x),
t→ t, x→ x, φ→ −φ (reflection in φ),

t→ t−vx√
1−v2 , x→

x−vx√
1−v2 , φ→ φ (Lorentz transformations with velocity v),

where e.g. reflection in φ means: if φ is a solution then so is −φ, etc.
In Minkowski (1+1) space-time coordinates (xµ ∈ R1,1, x0 = t, x1 = x)

with metric tensor ηµν (µ, ν = 0, 1; η11 = −η22 = 1, η11 = η11 = 0), the SG–
Lagrangian density has the following ‘massive form’ of kinetic minus potential
energy, with mass m and coupling constant λ:
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LMink
SG (φ) =

1
2
(φ2
t − φ2

x)−
m4

λ

[

1− cos

(√
λ

m
φ

)]

,

which reduces to the dimensionless form (7.26) by re-scaling the fields and
coordinates: √

λ

m
φ→ φ, mxµ → xµ. (7.30)

The SG–Lagrangian density LMink
SG (φ) ≡ m4

λ
LSG(φ) obeys the conservation

law and admits topological (i.e., not sensitive to local degrees of freedom)
Noether current with respect to (7.30):

jµ =
1
2π
εµν∂νφ with zero-divergence: ∂µj

µ = 0,

where εµν is the R1,1−Levi–Civita tensor. The corresponding topological
Noether charge is given by:

Q =
∫ ∣
∣∂tj0(x, t)

∣
∣ dx =

1
2π
|φ(+∞, t)− φ(−∞, t)| ,

with Qt =
1
2π
|φt(−∞, t)− φt(+∞, t)| = 0.

The most important physical quality of SGE is its energy–momentum
(EM) tensor Tµν , which is the Noether current corresponding to spacetime–
translation symmetry: xµ → xµ + ξµ; this conserved quantity is derived from
the Lagrangian (7.26) as:

Tµν = ∂µφ∂νφ− ηµνLSG(φ).

Tµν has the following components:

T00 =
1
2
(φ2
t + φ2

x) + 1− cosφ, T10 = φxt = T01.

T11 =
1
2
(φ2
t + φ2

x)− 1 + cosφ,

EM’s contravariant form T µν has the following components:

T 00 = T00, T 11 = T11, T 10 = −T01,

obtained by raising the indices of Tµν using the inverse metric tensor ηµν =
1/(η)µν .

EM’s conserved quantities are: momentum P =
∫
T 10dx, which is the

Noether charge with respect to space–translation symmetry, and energy
E =

∫
T 00dx, which is the Noether charge with respect to time–translation

symmetry. Energy and momentum follow from EM’s zero divergence:

∂µT
µν = 0 =⇒

{
∂tT

00 − ∂xT 10 = 0
∂tT

01 − ∂xT 11 = 0 =⇒
{
∂tE = ∂t

∫
T 00dx = 0

∂tP = ∂t
∫
T 10dx = 0 .
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SGE solutions and integrability

SGE solitons, kinks and breathers

The first one-soliton solution of the SGE (7.21) was given by [AKN73, AC91]
in the form:

φ(x, t) = 4 arctan

[ √
1− ω2 cos(ωt)

ω cosh(x
√

1− ω2)

]

,

which, for ω < 1, is periodic in time t and decays exponentially when moving
away from x = 0.

There is a well-known traveling solitary wave solution with velocity v,
given by the following generalization of (7.22):

φ(x, t) = 4 arctan
[

exp
±2(z − z0)√

1− v2

]

, with (z = µ(x+ vt)) , (7.31)

and the center at z0. In (7.31), the case +2 describes kink, while the case −2
corresponds to antikink.

The stationary kink with the center at x0 is defined by:

φ(x) = 2 arctan [exp(x− x0)] ,

(in which the position of the center x0 can be varied continuously:−∞ < x0 <
∞) and represents the solution of the first-order ODE: φx(x) = sinφ(x).

Regarding solutions of the slightly more general, three-parameter SGE:

φtt = aφxx + b sin(λφ), (7.32)

the following cases were established in the literature (see [II13] and references
therein):

1. If a function w = φ(x, t) is a solution of (7.32), then so are also the
following functions:

w1 =
2πn
b
± φ(C1 ± x,C2 ± t) for (n = 0,±1,±2, ...) ,

w2 = ±φ
(

x coshC3 + t
√
a sinhC3, x

sinhC3√
a

+ t coshC3

)

,

where C1, C2, and C3 are arbitrary constants.
2. Traveling-wave solutions:

φ(x, t) =
4
λ

arctan

[

exp

(

±bλ(C1x+ C2t+ C3)√
bλ(C2

2 − aC2
1 )

)]

(7.33)

if bλ(C2
2 − aC2

1 ) > 0,

φ(x, t) = −π
λ

+
4
λ

arctan

[

exp

(

±bλ(C1x+ C2t+ C3)√
bλ(aC2

1 − C2
2 )

)]

if bλ(C2
2 − aC2

1 ) < 0,
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where the first expression (for bλ(C2
2 − aC2

1) > 0) represents another

1-soliton solution, which is kink in case of exp
(
bλ(C1x+C2t+C3)√

bλ(C2
2−aC2

1)

)

and

antikink in case of exp
(

− bλ(C1x+C2t+C3)√
bλ(C2

2−aC2
1)

)

. In case of the standard SGE

(7.21), this kink–antikink expression specializes to the Lorentz-invariant
solution similar to:

φK(x, t) = 4 arctan
[

exp
(
±(x− xc)− vt√

1− v2

)]

, (7.34)

where the velocity v (0 < v < 1) and the soliton-center xc are real-valued
constants. The kink solution has the following physical (EM) characteris-
tics:
(i) Energy:

E[φK(x, t)] =
∫
T 00dx =

8√
1− v2

;

(ii) Momentum:

P [φK(x, t)] =
∫
T 10dx = − 8v√

1− v2
.

3. Functional separable solution:

w(x, t) =
4
λ

arctan [f(x)g(t)] ,

where the functions f = f(x) and g = g(t) are determined by the first-
order autonomous separable ODEs:

f2
x = Af4 +Bf2 + C, g2

t = −aCg4 + (aB + bλ)g2 − aA,

where A, B, and C are arbitrary constants. In particular, for A = 0, B =
k2 > 0, and C > 0, we have the two-soliton solution:

w(x, t) =
4
λ

arctan
[

η sin(kx+ A1)
k
√
a cosh(ηt+B1)

]

, with
(
η2 = ak2 + bλ > 0

)
,

where k, A1, and B1 are arbitrary constants.

On the other hand, a breather is spatially localized, time periodic, oscil-
latory SGE–solution . It represents a field which is periodically oscillating in
time and decays exponentially in space as the distance from the center x = 0
is increased. This oscillatory solution of (7.21) is characterized by some phase
that depends on the breather’s evolution history. This could be, in particular,
a bound state of vortex with an antivortex in a Josephson junction. In this
case, breather may appear as a result of collision of a fluxon (a propagating
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magnetic flux-quantum) with an antifluxon, or even in the process of mea-
surements of switching current characteristics. stationary breather solutions
form one-parameter families of solutions. An example of a breather–solution
of (7.21) is given by:

φ = 4 arctan
(

sinT
u cosh (g(u)x)

)

,

with parameters u = u(t) and T = T (t), such that

g(u) = 1/
√

1 + u2 and T (t) =
∫ t

0

g(u(t′))u(t′) dt′.

Lax–pair and general SGE integrability

In both cases (7.21) and (7.23), the SGE admits a Lax–pair formulation:5

L̇ = [L,M ], (7.35)

where overdot means time derivative, L andM are linear differential operators
and [L,M ] ≡ LM −ML is their commutator (or, Lie bracket).

For example, the SGE (7.21) is integrable through the following Lax pair:

φt = Lφ, φx = Mφ, where (7.36)

L =
(

i
4 (φx + φt) − 1

16λeiφ + λ
1

16λ
e−iφ − λ − i

4
(φx + φt)

)

,
(
i =
√
−1
)

M =
(

i
4
(φx + φt)

1
16λ

eiφ + λ
− 1

16λ
e−iφ − λ − i

4
(φx + φt)

)

, (λ ∈ R) .

5 Historically, the first Lax-pair for a nonlinear PDE was found by P. Lax in 1968
consisting of the following two operators [Lax68]:

L =
d2

dx2
− u, M = 4

d3

dx3
− 6u

d

dx
− 3ux,

such that their Lax formulation (7.35) gives the KdV equation:

ut − 6uux + uxxx = 0, by

Lt = −ut, LM −ML = uxxx − 6uux.

The Lax-pair form of the KdV–PDE immediately shows that the eigenvalues of
L are independent of t. The key importance of Lax’s observation is that any PDE
that can be cast into such a framework for other operators L andM , automatically
obtains many of the features of the KdV–PDE, including an infinite number of
local conservation laws.
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Fig. 7.10. Numerical solution of the damped and spatially-forced SGE ( 7.38)
in Mathematica, with the following data (including the Gaussian initial state,
zero initial velocity and symmetric boundary condition): x ∈ [−20, 20], t ∈
[0, 30], φ(x, 0) = exp(−x2), φt(x, 0) = 0, φ(−20, t) = φ(20, t), γ =
0.2, F (x) = 0.5sech(x). We can see the central sech-forcing along all time
axis. Damping of the SG-waves is also apparent.

The Lax pair (7.36) possesses the following complex-conjugate symmetry: if

φ =
(
φ1

φ2

)

solves the Lax pair (7.36) at (λ, φ), then
(
φ2

φ1

)

solves the Lax

pair (7.36) at (−λ̄, φ). In addition, there is a Darboux transformation for the
Lax pair (7.36) as follows: let

u = φ+ 2i ln
[
iφ2

φ1

]

, (u ∈ R) .

If φ = φ|λ=ν for some ν ∈ R, then

ψ =
(
−νφ2/φ1 λ
−λ νφ1/φ2

)

φ.

solves the Lax pair (7.36) at (λ, u). Also, from its spatial part: φx = Mφ, a
complete Floquet theory can be developed.
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Fig. 7.11. Numerical solution of the damped and temporally-forced SGE
(7.38) in Mathematica, with the following data (including the Gaussian
initial state, zero initial velocity and symmetric boundary condition): x ∈
[−20, 20], t ∈ [0, 30], φ(x, 0) = exp(−x2), φt(x, 0) = 0, φ(−20, t) =
φ(20, t), γ = 0.2, F (x) = 0.1 sin(t/2). We can see the sine-forcing along all
time axis. Damping of the SG-waves is also apparent.

SGE modifications

SGE with the positive sine term

The simplest SGE modification is to replace the minus sine term with the
plus sine:

φtt = φxx + sinφ, or φtt(x, t) = φxx(x, t) + sinφ(x, t). (7.37)

Again, a typical, spatially-symmetric, boundary-value problem for (7.37) is
defined by:

x ∈ [−L,L] ⊂ R,
(
t ∈ R

+
)
,

φ(x, 0) = f(x), φt(x, 0) = 0, φ(−L, t) = φ(L, t),

where f(x) ∈ R is an axially-symmetric function (see Figure 7.9).
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Perturbed SGE and π–kinks

As we have seen above, the (1+1) SGE is integrable. In general though, the
perturbations to this equation associated with the external forces and inho-
mogeneities spoil its integrability and the equation can not be solved exactly.
Nevertheless, if the influence of these perturbations is small, the solution can
be found perturbatively (see [II13] and references therein).

Fig. 7.12. Numerical solution of the damped and both spatially and temporally
forced SGE (7.38) in Mathematica, with the following data (including the
Gaussian initial state, zero initial velocity and symmetric boundary condition):
x ∈ [−20, 20], t ∈ [0, 30], φ(x, 0) = exp(−x2), φt(x, 0) = 0, φ(−20, t) =
φ(20, t), γ = 0.2, F (x, t) = 0.1 sin(t/2) + 0.5 sech(x). We can see both
temporal sine-forcing and spatial sech-forcing along all time axis. Damping of
the SG-waves is still visible.

One common form is a damped and driven SGE:

φtt + γφt − φxx + sinφ = F, (7.38)

where γφt is the damping term and F (x, t) is the spatiotemporal forcing.
Special cases of the forcing term F = F (x, t) in (7.38) are: (i) purely temporal
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F = F (t) (e.g., periodic, see Figure 7.10); (ii) purely spatial F = F (x) (e.g.,
central-symmetric, see Figure 7.11); and (iii) spatiotemporal F = F (x, t) (e.g.,
temporally-periodic and spatially central-symmetric, see Figure 7.12).

Considering (for simplicity) purely spatial forcing: F (x, t) = F (x), if
F (x0) = 0 for some point x0 ∈ R, this can be an equilibrium position for
the soliton. If there is only one zero, in case of a soliton this is a stable equi-
librium position if

(
∂F (x)
∂x

)

x0

> 0; in case of an antisoliton, this is a stable

equilibrium position if
(
∂F (x)
∂x

)

x0

< 0 (see and references therein).

In particular if

F (x) = 2(β2 − 1) sinh(βx)/ cosh2(βx), (β ∈ R),

the exact stationary kink–solution of (7.38) is:

φk = 4 arctan [exp (βx)] .

The stability analysis, which considers small amplitude oscillations around
φk
[
φ(k, x) = φk(x) + f(x)eλt

]
, leads to the following eigenvalue problem:

L̂f = Γf, where L̂ = −∂2
x +

[
1− 2 cosh−2(βx)

]
and Γ = −λ2 − γλ .

The eigenvalues of the discrete spectrum are given by the formula

Γn = β2(Λ + 2Λn− n2)− 1,

where Λ(Λ+1) = 2/β2. The integer part of Λ, yields the number of eigenvalues
in the discrete spectrum, which correspond to the soliton modes (this includes
the translational mode Γ0, and the internal or shape modes Γn with n > 0.

In case of a function F defined in such a way that it possesses many
zeroes, maxima and minima, perturbed SGE (7.38) describes an array of in-
homogeneities. For example,

F (x) =
q∑

n=−q
4
(
1− β2

) eβ(x+xn) − e3β(x+xn)

(
e2β(x+xn) + 1

)2 ,

where xn = (n + 2) log
(√

2 + 1
)
/β (n = −q,−q + 1 · · · , q − 1, q), and q + 2

is the number of extrema points of F (x). When the soliton is moving over
intervals where dF (x)

dx
< 0, its internal mode can be excited. The points xi

where F (xi) = 0 and dF (xi)
dx

< 0, are ‘barriers’ which the soliton can overcome
due to its kinetic energy.

Study of non-localized π-kinks in parametrically forced SGE (PSGE):

φtt = φxx − a(t/ε) sinφ, (7.39)

(over the fast time scale ε, where a is a mean-zero periodic function with a
unit amplitude), has been performed via 2π-kinks as approximate solutions.
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In particular, a finite-dimensional counterpart of the phenomenon of π-kinks
in PSGE is the stabilization of the inverted Kapitza pendulum by periodic
vibration of its suspension point. The so-called geometric averaging technique
(see [II13] and references therein; here, the averaged forces in a rapidly forced
system) was applied as a series of canonical near-identical transformations via
V. Arnold’s normal form technique, as follows.

Starting with the Hamiltonian of PSGE (7.39), given by:

H(φ) =
∫ +∞

−∞

(
p2

2
+
φ2
x

2
− a cosφ

)

dx, where
(
p ≡ φt ≡ φ̇

)
,

a series of canonical transformations was performed by Zharnitsky with the
aim to kill all rapidly-oscillating terms, the following slightly-perturbed Hamil-
tonian was obtained:

Hper =
∫ +∞

−∞

(
p2
3

2
+
φ2

3x

2
+

1
2
ε2〈a2

−1〉 sin2 φ3

)

dx+O(ε3),

which, after rescaling: X = εx, T = εt, P = 2ε−1p3, Φ = 2φ3, gave the
following system of a slightly perturbed SGE with 2π-kinks as approximate
solutions:

ΦT = P +O(ε2), PT = ΦXX − 〈a2
−1〉 sinΦ+O(ε),

where a−1 is an anti-derivative with zero average. Finally, after rescaling back
to variables (φ3, p3), approximate solutions φ3 ≈ ψ(x, t) in the form of π-kinks
were obtained, with

ψ(x, t) = 2 arctan
[

exp
(

ε
√
〈a2

−1〉
x− ct√
1− c2

)]

,

where c is the wave-propagation velocity.
In addition, he following two versions of the perturbed SGE have been

studied by Zharnitsky:

1. Directly forced SGE:

φtt − φxx + sinφ = Mf(ωt).

After shifting to the oscillating reference frame by the transformation:

φ = θ +Mω−2F (ωt), (7.40)

where F has zero mean and F ′′(τ) = f(τ ), the parametrically forced ODE
is obtained:

θ̈ = − sin (θ +Mω−2F (ωt)) , with (7.41)

H =
p2

2
−A(ωt) cos(θ) +B(ωt) sin(θ),
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where p is the momentum canonically conjugate to θ, and

A(ωt) = cos(Mω−2F (ωt)), B(ωt) = sin(Mω−2F (ωt)).

From (7.41), the corresponding evolution PDE (in canonical form) is ob-
tained for a new phase θ on top of a rapidly oscillating background field:

θt = p, pt = θxx − sin (θ +Mω−2F (ωt)).

After retracing the identical transformation (7.40), the so-obtained (ap-
proximate) solutions become π-kinks.

2. Damped and driven SGE

φtt − φxx + sinφ = Mf(ωt)− αφt + η, (7.42)

which is frequently used to describe long Josephson junctions. [In (7.42),
φ represents the phase-difference between the quantum-mechanical wave
functions of the two superconductors defining the Josephson junction, t
is the normalized time measured relative to the inverse plasma frequency,
x is space normalized to the Josephson penetration depth, while Mf(ωt)
represents tunneling of superconducting Cooper pairs (normalized to the
critical current density).] Starting with a homogeneous transformation
to the oscillating reference frame, analogous to (7.40) and designed to
remove the free oscillatory term: φ = θ + G(t), and substituting this
transformation to (7.42), while choosing the function G so that it solves
the following ODE:

G̈+ αĠ = Mf(ωt),

the following evolution PDE is obtined (in canonical form):

θt = p, pt = θxx − αp+ η − sin(θ +G(ωt)). (7.43)

For the particular case of f(τ ) = sin τ , the the function G is found to be:

G(τ ) = −α
ω

M

α2 + ω2
cos τ − M

α2 + ω2
sin τ.

SGE in (2+1) dimensions

The (2+1)D SGE with additional spatial coordinate6 (y) is defined on R2,1as:

6 In the case of a long Josephson junction, the soliton solutions of (7.44) describe
Josephson vortices or fluxons. These excitations are associated with the distortion
of a Josephson vortex line and their shapes can have an arbitrary profile, which
is retained when propagating. In (7.44), ϕ denotes the superconducting phase
difference across the Josephson junction; the coordinates x and y are normalized
by the Josephson penetration length λJ , and the time t is normalized by the
inverse Josephson plasma frequency ω−1

p .
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ϕtt = ∆ϕ− sinϕ = ϕxx + ϕyy − sinϕ. (7.44)

A special class of solutions of (7.44) can be constructed by generalization
of the solution of (7.21) which does not depend on one of the coordinates,
or, obtained by Lorentz transforming the solutions of a stationary 2D SGE.
However, there are numerical solutions of (7.44) which cannot be derived from
the (7.21) or (7.23), e.g., radial breathers (or, pulsons).

A more general class of solutions of the (2+1)D SG equation has the
following form:7

ϕ(x, y, t) = 4 arctan exp [y − f(x± t)] , (7.45)

which exactly satisfies (7.44) with an arbitrary real-valued twice-differentiable
function f = f(x ± t). The excitations, described by f are similar to elastic
shear waves in solid mechanics.

Since the equation (7.44) is Lorentz-covariant, we can obtain other solu-
tions performing Lorentz transformations on (7.45), which leads to a class of
solutions of the form:

ϕ(x, y, t) = 4 arctan exp
[
y − v t√
1− v2

− f
(

x± t− v y√
1− v2

)]

.

Sine–Gordon chain and discrete breathers

Frenkel–Kontorova model

The original Frenkel–Kontorova model [FK38, BK98, BK04] of stationary
and moving crystal dislocations, was formulated historically decades before
the continuous SGE. It consists of a chain of harmonically coupled atoms
7 Because of the arbitrariness of f , solution (7.45) describes a variety of excitations

of various shapes. Choosing f localized in a finite area, e.g., f = A/ cosh(x− t),
solution (7.45) describes an excitation, localized along x that keeps its shape
when propagating, i.e., a soliton. For each solitary wave of this type, there exists
an anti-partner with an f of opposite sign in (7.45). For solitary waves to be
solitons, there is an additional important criterion: restoring their shapes after
they collide.

Consider a trial function

ϕ(x, y, t) = 4 arctan exp [y − f(x+ t) ± f(x− t)] ,

that, when t→ −∞, describes the propagation of two solitary shape waves toward
each other (minus sign) or a solitary wave and its anti-partner (plus sign). One can
see that (7.45) can only approximately satisfy (7.44) when |f ′(x+ t)f ′(x− t)| � 1
for all values of x and t. This suggests that, in general, the condition for restoring
the shapes may not be satisfied. In general case, (7.44) can not be satisfied, that
prompts that the collision of two solitary waves leads to distortion of the original
excitations.
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in a spatially periodic potential, governed by the set of differential-difference
equations:

φ̈n +
1

∆x2

[
φn+1 − 2φn + φn−1

]
+ sinφn = 0, (7.46)

where φn denotes the position of the nth atom in the chain. Alternatively,
system (7.46) represents a chain of torsionally-coupled pendula (see Figure
7.7), where φn is the angle which the nth pendulum makes with the vertical.

Sine–Gordon chain

To derive dynamical equations of the sine–Gordon chain (SGC), consisting of
anharmonic oscillators with the coupling constant µ, we start with the three-
point, central, finite-difference approximation of the spatial derivative term
φxx in the SGE:

φxx ≈
1

∆x2

[
φn+1 − 2φn + φn−1

]
+ O(x2)

= − 1
∆x2

[
(φn − φn−1)− (φn+1 − φn)

]
+O(x2).

Applying this finite-difference approximation to the SGE (7.21), and also per-
forming the corresponding replacements: φ→ φn, φtt → φ̈n and µ = 1/∆x2,
we obtain the set of difference ODEs defining the SGC:

φ̈n + µ
[
(φn − φn−1)− (φn+1 − φn)

]
+ sinφn = 0 . (7.47)

The system (7.47) describes a chain of interacting particles subjected to a pe-
riodic on-site potential V (x) = sin(x). In the continuum limit, (7.47) becomes
the standard SGE (7.21) and supports stable propagation of a kink-soliton of
the form (7.34).

Fig. 7.13. Simple sine–Gordon chain (SGC) with the coupling constant µ
and the periodic on-site potential V (x) = sin(x).

The linear-wave spectrum of (7.47) around a kink has either one or two
localized modes (which depends on the value of µ). The frequencies of these
modes lie inside the spectrum gap. The linear spectrum, with the linear fre-
quency ω and the wave number k, is given by:

ω2 = 1 + 4µ sin2 k

2
, (7.48)
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while the gap edge frequency is ω = 1.
The simplest example of (7.47), containing only two oscillators, is defined

by:
φ̈1, 2 + µ(φ1, 2 − φ2, 1) + sinφ1, 2 = 0 . (7.49)

A perturbed SGC, damped and driven by a large-amplitude ac-force of
the form:

φ̈n − µ
[
φn+1 − 2φn + φn−1

]
+ sinφn = χ+ α sinωt− γφ̇n, (7.50)

(where χ is a dc-force, α and ω are the normalized (large) amplitude and
frequency of a periodic force, respectively, while γ is the normalized dissipative
coefficient) – might support localized kink solitons. Without the forcing on
the right-hand side, (7.50) reduces to (7.47).

Continuum limits

Perturbed SGEs have their corresponding perturbed SGCs. The following 0-
π SGC:

φ̈n =
φn−1 − 2φn + φn+1

a2
− sin(φn + θn) + γ, (7.51)

has been proposed as an equation of a phase φn-motion (of a 0-π array of
Josephson junctions). Here, a is the lattice spacing parameter, γ > 0 is the
applied bias current density, and θn = (0 if n ≤ 0 and −π if n > 0) is the
phase jump of π in φn. The SGC equation (7.51) is derived from the following
discrete Lagrangian:

LD =
∫ ∑

n∈Z

[
1
2

(
dφn
dt

)2

− 1
2

(
φn+1 − φn

a

)2

− 1 + cos(φn + θn) + γφn

]

dt.

(7.52)
In the continuum limit a� 1 Lagrangian (7.52) becomes

LC =
∫∫ ∞

−∞

[
1
2

(φt)
2 − 1

2

(
L̃aφx

)2

− 1 + cos(φ+ θ) + γφ

]

dx dt ,

from which, the continuum limit of (7.51) gives the following perturbed SGE:

φtt = Laφxx − sin(φ + θ) + γ,

where θ = (0 if x ≤ 0 and −π if x > 0), while the differential operators Laφxx
and L̃aφx are given by the following Taylor expansions:

Laφxx =
φn−1 − 2φn + φn+1

a2
= 2

∞∑

k=0

a2k

(2k + 2)!
∂kxxφxx(na),

L̃aφx =
φn+1 − φn

a
=

∞∑

k=0

ak

(k + 1)!
∂kxφ(na).

For more technical details, including several other continuum limits, see
[DDG07].
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Discrete breathers

Generally speaking, it is a well-known fact that different types of excitations ,
most notably phonons (propagating linear waves) and discrete breathers (DBs
for short; they are time-periodic spatially localized excitations, also labeled in-
trinsic localized modes or discrete solitons) can occur as solutions of spatially-
discrete nonlinear lattices. According to S. Flach et al. [FMF03, FW98, FG05].
DBs are caused by a specific interplay between the nonlinearity and dis-
creteness of the lattice. The lattice nonlinearity provides with an amplitude-
dependent tunability of oscillation or rotation frequencies of DBs, while its
spatial discreteness leads to finite upper bounds of the frequency spectrum
of small amplitude waves. Different types of DBs depending on the spectrum
of linear waves propagating in the lattice, including: acoustic breathers, roto-
breathers and optical breathers (see Figure 7.14).

Fig. 7.14. Different types of discrete breathers (DBs): acoustic breather (top),
rotobreather (middle), and optical breather (bottom); modified and adapted
from [FMF03, FW98, FG05]).

A particular DB system is characterized by the following lattice Hamilto-
nian:

H =
∑

n

(
1
2
ẋ2
n +W (xn − xn−1) + V (xn)) (7.53)

=
∑

n

(
1
2
p2
n +W (xn − xn−1) + V (xn)),

where xn = xn(t) are time-dependent coordinates with canonically-conjugate
momenta pn = ẋn(t), W (xn) = W (x) is the nearest neighbor interaction, and
V (xn) = V (x) is an optional on-site (substrate) potential. From (7.53) the
following equations of motion are derived:
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ẍn = −W ′(xn − xn−1) +W ′(xn+1 − xn)− V ′(xn), or
ẋn = ẋn, ṗn = −W ′(xn − xn−1) +W ′(xn+1 − xn)− V ′(xn),

where (for simplicity) the following zero initial conditions are assumed:

V (0) = W (0) = V ′(0) = W ′(0) = 0, V ′′(0) ≥ 0, W ′′(0) > 0.

Hamiltonian (7.53) supports the excitation of small amplitude linear waves:

xn(t) ∼ exp [i(ωqt− qn)] ,

with the wave number q and the corresponding frequency spectrum ω2
q which,

due to the underlying lattice, depends periodically on q:

ω2
q = V ′′(0) + 4W ′′(0) sin2

(q
2

)
,

and its absolute value has always a finite upper bound. The maximum (Debye)
frequency of small amplitude waves is:

ωq =
√
V ′′(0) + 4W ′′(0).

For more technical details on SGE solitons, kinks and (discrete) breathers,
see [II13] and references therein.

7.4.2 The Emperor’s New Clothes:
From Tesla’s ‘Æther’ to Modern Quantum Turbulence

Much of Nikola Tesla’s discovery (including over 800 patents only on AC
electricity) can be attributed to some sort of ‘deus ex machina’, or ‘spirit
of technology’. At the same time, Tesla frequently used the term ‘natural
medium’ through he was actually creating his machines. We argue that these
two obscure (or rather mystical) terms denote one and the same thing, a
controversial ‘æther’.

Recall that classical Aristotelian concept of æther , which was operatively
used in the fundamental electrodynamics research of Michael Faraday, James
Clerk Maxwell , Hendrik Lorentz and Nikola Tesla,8 can be naturally recast
8 While Einstein’s special relativity showed that Maxwell’s electrodynamics equa-

tions do not require the æther for their existence, it also does not imply the
non-existence of the
aether. In other words, mathematics does not require the æther; what about
physics? Einstein even wrote that the special relativity theory “does not compel
us to deny the æther. We may assume the existence of an æther”. Einstein some-
times used the word ‘æther’ for the gravitational field within general relativity.

We argue that Tesla, who referenced the æther as a natural medium, used his
deep knowledge of the æther to create his unique lightning strokes and plasma-
balls.
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into modern nonlinear physics of quantum plasma, an old research field with
a new spin [Shu09], tightly related to quantum turbulence.

We propose here a simple and clear definition for Tesla’s ‘medium’:

Tesla’s medium
def
= æther

def
= quantum plasma .

This modern ‘physical beast’ is very different both from Aristotelian ‘change-
less quintessence’ and from Newtonian ‘absolute space’. Our æther is nei-
ther static, nor incompressible. It is a highly-nonlinear, yet fully predictable
and controllable quantum medium9 (e.g., a quantum superfluid), which ex-
hibits quantum turbulence (see [IR12] and references therein), based on non-
linear Schrödinger equation, while its covariant (relativistic) generalizations
are based on nonlinear Dirac equation (see, e.g. [II08b, II09]).

Fig. 7.15. Using (a simplified numerical approximation of) the modern quan-
tum turbulence to simulate Tesla’s ‘æther’ dynamics.

‘Tesla’s æther deus’ is a nonlinear, adaptive and wave-form phenomenon.
Its simplest model is the nonlinear Schrödinger equation (NLS), defining

9 Note that standard quantum mechanics, both nonrelativistic and relativistic, as
well as quantum field and gauge field theories are all linear theories, completely
reversible in time. In our view, all these linear time-reversible theories are just
first approximations of some more realistic future theories of Nature. From the
shear vastness of Tesla’s creation, it is quite clear that his æther-based intuition
was far superior then all these linear theories.
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the time-dependent complex-valued macroscopic wave function ψ = ψ(x, t),
whose absolute square |ψ(x, t)|2 represents the æther density function. In nat-
ural quantum units (� = 1, m = 1), with i =

√
−1, the NLS equation can be

written:

i∂tψ = −1
2
∂xxψ + V (x)|ψ|2ψ, (with ∂zψ =

∂ψ

∂z
), (7.54)

where V (x) denotes the adaptive heat potential, trained either by the Heb-
bian or Levenberg-Marquardt learning (see [IR12] and references therein).
Physically, the NLS equation (7.54) describes a nonlinear wave in a quantum
matter (such as helium superfluid and Bose-Einstein condensates). It gener-
ates a whole ‘zoo’ of nonlinear waves (such solitons, kinks, shock-waves as
and rogue-waves), representing a variety of dynamical forms of ‘Tesla’s æther
deus’.

The main characteristic of ‘Tesla’s æther deus’ is turbulence. Why? Be-
cause turbulence is necessary for any kind of creation, and Tesla was primarily
a creator. However, the main characteristic of classical fluid turbulence (e.g.,
turbulence at the bottom of Niagara Falls) is total unpredictability. Clearly,
such a wild turbulence is useless. What every creator needs is a fully pre-
dictable and controllable kind of turbulence. And luckily there is one: it is
quantum turbulence, the main property of quantum plasma. Just for compar-
ison, we will briefly analyze both classical and quantum turbulence, that is to
say, both ‘wild æther’ and ‘tamed æther’.

Classical Plasma =⇒ Classical Turbulence: Totaly Unpredictable and
Uncontrollable

Classical plasma is usually described in terms of Navier-Stokes equations of
fluid dynamics combined with Maxwell’s electromagnetic equations. It exhibits
totally unpredictable/uncontrollable classical turbulence. It is an ionized, elec-
trically conducting gas/fluid of charged particles, which is a foundation of a
number of attractive natural phenomena, such as lightning (both terrestrial
and upper-atmospheric), ionosphere and polar aurorae, all of which fascinated
Tesla, who tried to use and/or re-create them in his lab in Colorado Springs.

Formally, the so-called viscous æther flows evolve according to nonlinear
Navier-Stokes equations:

u ·∇u + u̇ +∇p/ρ = f+ν∆u, (7.55)

where u = u(x, t) is the 3D velocity of the æther flow, u̇ ≡ ∂tu is the
3D acceleration of the æther flow, p = p(x, t) is the æther’s pressure field,
f = f(x, t) is the external energy source to the æther, while ρ, ν are the
æther’s flow density and viscosity coefficient, respectively. Such an æther flow
can be characterized by the ratio of the first term on the left-hand side of the
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equation (7.55), u ·∇u, referred to as the æther inertial term, and the second
term on the right-hand side, ν∆u, that we call the æther viscous term.10

Classically, plasma dynamics is usually modeled using magnetohydrody-
namics (MHD), which is formally defined by the following set of nonlinear
PDEs for the charge volume density ρ, scalar pressure field p, electric conduc-
tivity σ, fluid velocity field v and magnetic field B, given by:

∂tρ = −div(ρv), ∂tB = curl (v ×B) +
1
µ0σ

, div B = 0,

ρv̇ = ρρ+ µ∆v −∇p+
1
µ0

curlB×B +
(

λ+
1
3
µ

)

∇ (∇ · v) ,

where p = f(ρ),
(
f ∈ C0

)
, while (λ, µ, µ0) are transport viscosity coefficients .

Alternatively, a plasma consisting of particles with charge q and mass m
moving in Euclidean 3D space R3 with positions x and velocities v, can be
modeled using the following Maxwell-Vlasov PDEs as follows. Let ρ(x,v, t)
be the plasma density at time t, while E(x, t) and B(x, t) be the electric and
magnetic fields; then the Maxwell-Vlasov equations are defined as [AMR88]:

∂tρ+ v · ∂xρ+
q

m

(

E +
v ×B
c

)

· ∂vρ = 0, (7.56)

1
c
∂tB = −curlE,

1
c
∂tE = curlB− q

c

∫
v ρ(x,v, t) d3v, (7.57)

together with the non-evolutionary equations:

div E = ρ, where ρ = q

∫
v ρ(x,v, t) d3v, div B = 0.

If we let the speed of light c→∞, equation (7.56) leads to the Poisson-Vlasov
equation for the scalar potential ϕρ:

∂tρ+ v · ∂xρ−
q

m
∂xϕρ · ∂vρ = 0, where ∆ϕρ = −ρ.

In above natural units, the Hamiltonian for the Maxwell-Vlasov system (7.56)-
(7.57) is given by:

H(ρ,E,B) =
1
2

∫
‖v‖2 ρ(x,v, t) dxdv +

1
2

∫
‖E(x, t)‖2 + ‖B(x, t)‖2 d3v.

10 This ratio defines the Reynolds number Re = v̄D/ν, where v̄ and D are a charac-
teristic velocity and length scale, respectively. When v̄ increases and the Reynolds
number Re exceeds a critical value, the æther changes from a laminar state to a
turbulent state, in which the æther flow is complicated and contains eddies. To
simplify the problem, the so-called Reynolds condition, 〈f ·u〉 = ε, can be impose
on the nergy source f , where ε is the average rate of energy injection to the æther.
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With this Hamiltonian H , the Maxwell-Vlasov system (7.56)-(7.57) is equiv-
alent to the general dynamical equation in the Poisson-bracket form:

Ḟ = {F,H},

where F is any locally defined function on the corresponding with functional
derivatives (see [AMR88]).

Quantum Plasma =⇒ Quantum Turbulence: Fully Predictable and
Controllable

The so-called quantum plasma (see [Shu06, SE10, SE11, ES11, ES12, SE12],
which exhibits fully predictable and controllable quantum turbulence, is usu-
ally described in terms of the complex-valued NLS ψ-equation (7.54) combined
with the real-valued Poisson ϕ-equation: ∇2ϕ = ρ.

In particular, for studying the formation and dynamics of electrostatic
nano-structures in the so-called dense quantum plasmas , the NLS-Poisson
system has been used (see [Shu06, SE10, SE11, ES11, ES12, SE12] and refer-
ences therein) as follows:

i∂tψ +H∇2ψ + ϕψ − |ψ|4/Dψ = 0, ∇2ϕ = |ψ|2 − 1, (7.58)

where H is the system Hamiltonian, ψ = ψ(x, t) is the normalized complex-
valued wave function, while ϕ = ϕ(x) is the normalized real-valued electro-
static potential.

The system (7.58) is usually supplemented by the complex-valued Maxwell
equation (see [AMR88, Shu06, SE10, SE11, ES11, ES12, SE12]):11

∂tE = iH (ψ∇ψ∗ − ψ∗∇ψ) , (7.59)

where the electric field is: E = −∇φ. The system (7.58)-(7.59) has the follow-
ing conserved integrals:

1. The number of electrons :

N =
∫
|ψ| d3x,

2. The electron momentum:

P = −i
∫
ψ∗∇ψ d3x,

3. The electron angular momentum:

L = −i
∫
ψ∗r×∇ψ d3x, and

11 A slightly modified version of the nonlinear Schrödinger-Poisson system (7.58)-
(7.59) has been used for exploring quantum electron-fluid turbulence both in 2D
and in 3D (for more technical details, see [Shu06, SE10, SE11, ES11, ES12, SE12].
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4. The total energy:

E =
∫

[−ψ∗H∇2ψ + |∇ϕ|2/2 + |ψ|2+4/DD/(2 +D)] d3x.

The system (7.58)-(7.59) is our proposed ‘Emperor’s New Clothes’: a
quantum-turbulence model for Tesla’s ‘æther’ dynamics (see Figure 7.15).
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8

Quantum-Computation for Perceptual Control
Architecture

In this Chapter, we propose a quantum-dynamical modeling approach to Per-
ceptual Control Architecture, using large networks of Josephson Junctions
and their category-theoretic generalizations with fuzzy associative functors.

Our approach provides the basis for composing modular multi-layered per-
ceptual control architectures using Josephson Junction Networks, employing
intuitively appealing category-theoretic abstractions to hide the algebraic de-
tails from the designer while nonetheless being able to rigorously ensure func-
tional composition correctness. That is, our approach ensures that Josephson
Junction Networks, as a modeling primitive, can be composed into formally
correct multi-layered perceptual control architectures, while hiding the under-
lying algebraic systems of equations from the designer under a blanket of
category-theoretic abstraction.

8.1 Introduction

8.1.1 From Brain Research to Perceptual Control Architecture

For the last few decades, a controversial issue in the research of biological
neural networks has been how neurons communicate information (by firings
or spikes, see [RWS96, Cha98, Egg98, UR99, CZ00, PDZ00]). In other words,
there has been a continuous debate on the nature of the neural code, mainly
focusing on the following two issues (see [Has03a]):

1. Whether information in the brain is encoded as the average firing rate of
individual neurons (the rate code hypothesis), or in the precise firing times
(the temporal code hypothesis). For example, firing activities of motor and
sensory neurons in the brain have been reported to vary in response to
applied stimuli, which was first noted in [Adr26], forms the basis of the
rate-code hypothesis. In temporal-code hypothesis (see [SK93, KES96,
SZ98]) detailed spike timings are assumed to play an important role in
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information transmission (information is encoded in interspike intervals
or in relative timings between firing times of spikes).

2. Whether information in the brain is encoded in the activity of a single
neuron (or a small number of neurons), or in the activity of a large neu-
ral ensembles. The ensemble rate code hypothesis [AS98], proposes that
information is coded in the relative firing rates of ensembles of neurons;
this view has been adopted in the most of the theoretical analysis. The al-
ternative, ensemble temporal-code hypothesis (see [Hop95, HL98, Rt01]),
assumes that relative timings between spikes in ensemble neurons may
be used as an encoding mechanism for perceptual processing - which is
closely related to perceptual control theory (PCT), a system of hierarchi-
cal negative feedbacks, constituted by number of layers of perceptual and
behavioral loops (including: intensities, sensations, configuration, transi-
tions, events, relationship, category, principle and system concepts; see
[Pow73a, Pow73b, Pow11, Pow05]).

Recently, a PCT-based architecture has been proposed in [WTW12] as a
unified modeling approach to cyber-physical systems, inspired by the effec-
tive organization of living systems (accommodating heterogeneous informa-
tion processing and environmental interaction) and applied to traffic incident
management. The authors essentially propose a model-free approach for (the
construction of) the PCT-architecture, based on Bayesian network reasoning.

In the present paper, we propose an alternative, quantum-dynamical mod-
eling approach to perceptual control architecture, using large networks of
Josephson junctions and their category-theoretic generalizations with fuzzy
associative functors.

8.1.2 Josephson Junctions

A Josephson junction (JJ)1 is a type of electronic circuit (an insulating bar-
rier separating two superconducting materials and producing the Josephson
effect ,2 see Appendix capable of switching at very high frequency (1010−1011

Hz) when operated at temperatures approaching absolute zero. It is the hard-
ware for qubits (or, more generally, N -qubits, see Figure 8.1 below), which
1 The Josephson Junction is named after Brian D. Josephson, 1973 Nobel Prize

for Physics for the discovery of tunnelling supercurrents - also known as the
Josephson effect - in 1962. See [Jos74].

2 While researching superconductivity, B.D. Josephson studied the properties of a
junction between two superconductors. Following up on earlier work by L. Esaki
and I. Giaever (who both shared the Nobel Prize with Josephson), he demon-
strated that in a situation when there is electron flow between two supercon-
ductors through an insulating layer, in the absence of an applied voltage, and a
voltage is applied, the current stops flowing and oscillates at a high frequency. The
Josephson effect is influenced by magnetic fields in the vicinity, a capacity that
enables the Josephson junction to be used in devices that measure extremely weak
magnetic fields, such as superconducting quantum interference devices (SQUIDs).
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are basic building blocks of quantum computers (see [II09] and references
therein).3

One of the most important JJs is the RCSJ model, a JJ with the critical
current Ic , shunted by normal resistanceR and capacitance C (see Appendix).
RCSJ is governed by the 2nd-order ODE of motion (written here in normal
units with � = 1), similar to the equation for a driven and damped pendulum
(that is potentially chaotic), derived from the Kirchoff’s law (see, e.g. [CK08,
II09] and references therein):

C

2e
ϕ̈+

1
2eR

ϕ̇+ Ic sinϕ = Idc + I0 cos(ωt) (8.1)

where, in accordance with the usual conventions, overdots refer to time deriva-
tives, 2e and ω are the charge and frequency, ϕ is the phase difference of the
Schrödinger wave ψ-function across the junction, Idc is the dc-bias current
and I0 cos(ωt) is the driving rf-field with the frequency ω.

Fig. 8.1. A superconducting-phase N -qubit is an inductance loop composed
of N = 3 superconducting islands (squares) connected by Josephson junctions
(crosses) and also capacitively coupled to each other and to the ground (mod-
ified and adapted from [IIG02]).

8.2 Effective Josephson-Junction Networks

8.2.1 Qubits, Loops, Ladders, Arrays and Networks

By means of introduction to the quantum-mechanical zoo of loops, arrays,
ladders and networks of JJs, let us consider its basic unit, a superconducting-
3 The first JJ-based quantum computer was demonstrated in April 1999 by Naka-

mura et al. of NEC Fundamental Research Laboratories in Tsukuba [NPT99] and,
independently, just a week later, by Ioffe et al. [IGF99].
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phase N -qubit (see Figure 8.1, for the case N = 3), which is placed in an
external magnetic field producing one half superconducting flux quantum Φ/2
through the loop (around the islands). The N -qubit is governed by the fol-
lowing Hamiltonian operator4 [IIG02]:

H =
1
2

N∑

i,j=1

QiC
−1
ij Qj +

N∑

i

ViQi +
N∑

i=1

Ui(ϕi+1 − ϕi −Wi,i+1), (8.2)

where ϕi and Qi = −i∂/∂ϕi are the vectors of phases on the islands (repre-
sented as squares) and their conjugate charge operators, respectively; Vi and
Ui are the vectors of gate-voltages applied to the islands and Josephson ener-
gies of the junctions (circles); Cij is the nonsingular capacitance matrix (with
the inverse C−1

ij ) and Wi,i+1 is the electromagnetic vector potential (induced
by an external magnetic field).

We now introduce the Coulomb charging energy Ec of a single island and
EJ = Ic/2e, where Ic is the critical current of a single JJ, for measuring the
strength of the phase-coupling between the superconducting islands. In the
charge-dominated limit [LPM96]: Ec � EJ and assuming the restriction to
tunneling JJs with Ui(ϕ) = −EJ cos(ϕ), the operators Qi are diagonal and
the Josephson term in the Hamiltonian operator (8.2) takes the simple linear
form [IIG02]):

HJ = −EJ
2

∑

i

(L+
i L

−
i+1e

iπ/n +O(2)), (8.3)

where L+
i is the charge raising operator and L−

i ) is the corresponding lowering
operator on the ith island with L±

i |Qi〉 = |Qi ± 1〉, and O(2) is the 2nd-order
remainder term.

Fig. 8.2. A schematic of a Josephson-junction ladder, with crosses denoting
the junctions and arrows denoting the dc-bias current flow (abstracted from
[MSF05]).

N -qubits can be combined into ladders and/or arrays. A Josephson-
junction ladder is a schematic depicted in Figure 8.2 and governed by the
4 Note that, for simplicity reasons, we drop the usual ‘hat’ notation for Hermitian

quantum-mechanical operators (self-adjoint complex-valued operators with real
eigen-values). In particular, all Hamiltonians used in this paper are Hamiltonian
operators.
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following three coupled nonlinear pendulum-like ODEs [MSF05] (compare this
with Appendix):

ϕ̈vn + αϕ̇vn + sinϕvn = γ +
1
βL

(�ϕvn +∇ϕhn−1 −∇ϕ̃hn−1)

ϕ̈hn + αϕ̇hn + sinϕhn = − 1
ηβL

(∇ϕvn + ϕhn − ϕ̃hn) (8.4)

¨̃ϕhn + α ˙̃ϕhn + sin ϕ̃hn =
1
ηβL

(∇ϕvn + ϕhn − ϕ̃hn) .

Here, ∇fn ≡ fn+1 − fn and �fn ≡ fn+1 − 2fn + fn−1 are the finite-
difference approximations for the first and second spatial derivatives, respec-
tively; ϕvn, ϕ̃

h
n, ϕ

h
n denote the Josephson phases of vertical, upper- and lower-

horizontal junctions in the nth cell, respectively; α and γ are the effective
damping and the external dc-bias (across vertical junctions); βL is the the
discreteness inductance parameter (that characterizes the ratio of geometri-
cal cell inductance and the Josephson inductance of vertical junctions), and
η = IHc /I

V
c denotes the anisotropy current parameter [here, IVc (resp. IHc ) is

the vertical (resp. horizontal) junction critical current]. For technical details,
see [MSF05] and references therein.

By combining a number of ladders, a large-scale Josephson Junction array
can be created. For large N,M such an array becomes a Josephson-junction
network (JJN, see Figure 8.3). JJNs are the basic components of our PCT-
architecture; they are described in the following subsections.

For a general information on Josephson-junction ladders, arrays and net-
works, consisting of small superconducting islands (squares) connected by JJs
(crosses), see [GPG89, MWG90, ZFE92, ZEG96, DCH94, CDH98, TTH93,
NLG00] and references therein.

8.2.2 Complexity: Breathers and Chaos Synchronization

JJNs exhibit several forms of nonlinear complexity, including breathers, chaos
and synchronization.

JJNs support dynamic localized states which are common characteris-
tics of all discrete nonlinear Hamiltonian systems called discrete breathers
(DBs hereafter), which are time-periodic spatially localized excitations5, also
called intrinsic localized modes or discrete solitons. These can occur as so-
lutions of spatially-discrete nonlinear lattices like JJNs (see [II13] and refer-
ences therein). For example, the ladder system (8.4) represents three coupled
damped and driven sine-Gordon chains of the form:

ϕ̈n +
1

∆x2

[
ϕn+1 − 2ϕn + ϕn−1

]
+ sinϕn = χ+ α sinωt− γϕ̇n. (8.5)

5 According to S. Flach et al. [FW98, FMF03, FG05, FG08], DBs are caused by a
specific interplay between the nonlinearity and discreteness of the lattice.
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Fig. 8.3. A Josephson-junction network (JJN) is given by a large-scale N×M
array of superconducting islands (squares), each one connected by four neigh-
boring JJs (crosses); an external current I is injected from the left through
the electrode having the superconducting phase ϕL and extracted through the
right electrode with the phase ϕ

R
(modified and adapted from [FVB08]).

Here, χ, α, ω, γ are respectively, the dc-force, the normalized amplitude and
frequency of a periodic force, and the normalized dissipative coefficient. This
perturbatively extends the classical Frenkel-Kontorova model [FK38, BK98,
BK04, II13], which governs a chain of torsionally-coupled pendula:

ϕ̈n +
1

∆x2

[
ϕn+1 − 2ϕn + ϕn−1

]
+ sinϕn = 0, .

The angle which the nth pendulum makes with the vertical is ϕn. The con-
tinuum limit of the sine-Gordon chain (8.5) gives the following perturbed
sine-Gordon PDE:

ϕtt = ϕxx − sinϕ− γϕt + F, (F = χ+ α sinωt).

For example, the following 0-π sine-Gordon chain was analyzed in [DDG07]
as an equation of a phase ϕn-motion of a 0-π array of JJs:

ϕ̈n =
1

∆x2

[
ϕn+1 − 2ϕn + ϕn−1

]
− sin(ϕn + θn) + γ. (8.6)
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The applied bias current density is γ > 0, and θn = (0 if n ≤ 0 and −π if
n > 0) is the phase jump of π in ϕn. The ODE (8.6) is derived from the
following discrete Lagrangian:

LD =
∫ ∑

n∈Z

[
1
2

(
dϕn
dt

)2

− 1
2

(
ϕn+1 − ϕn

a

)2

− 1 + cos(ϕn + θn) + γϕn

]

dt.

Its continuum limit a� 1,

LC =
∫∫ ∞

−∞

[
1
2

(ϕt)
2 − 1

2

(
L̃aϕx

)2

− 1 + cos(ϕ+ θ) + γϕ

]

dx dt ,

gives the perturbed sine-Gordon PDE:

ϕtt = Laϕxx − sin(ϕ+ θ) + γ,

where θ = (0 if x ≤ 0 and −π if x > 0). The differential operators Laϕxx and
L̃aϕx are given by the Taylor expansions [DDG07]:

Laϕxx =
ϕn−1 − 2ϕn + ϕn+1

a2
= 2

∞∑

k=0

a2k

(2k + 2)!
∂kxxϕxx(na),

L̃aϕx =
ϕn+1 − ϕn

a
=

∞∑

k=0

ak

(k + 1)!
∂kxϕ(na).

The solutions of the perturbed sine-Gordon PDEs produce a virtual zoo of soli-
tons, kinks and breathers, as various combinations of kinks: tanh(x), arctan(x)
and bell-shaped solitons: sech(x), exp(−x2), see [II13].

Since it was first reported by [PC90, PC91] that synchronization of chaotic
systems was possible, different types of synchronization - including complete,
generalized and phase synchronization of chaotic oscillators - have been de-
scribed theoretically and observed experimentally (see [RPK97a, RPK97b,
PZR97, PRK00, PRK01, OPK02, GP05]). The presence of even a small phase-
difference between the externally-applied fields was found to desynchronize a
completely synchronized system; also, the phase difference could be applied
for taming chaos in nonlinear systems.

An array of JJs was studied in [CK08] in the presence of a phase difference
between the driving fields and its effect on synchronization and suppression of
chaos. Formally, a JJ-array consisting of N coupled current-driven JJs of the
type governed by (8.1) is described by the following set of 2nd-order ODEs of
motion resembling the system of coupled, damped and driven pendula:

ϕ̈1 + βϕ̇1 + sinϕ1 = Idc + I0 cos(Ωt)− αs [ϕ̇1 − ϕ̇2] (8.7)
...

...
...

ϕ̈i + βϕ̇i + sinϕi = αs
[
ϕ̇i+1 + ϕ̇i−1 − 2ϕ̇i

]

...
...

...
ϕ̈N + β ˙ϕN + sinϕN = Idc + I0 cos(Ωt)− αs

[
˙ϕN − ϕ̇N−1

]
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where i = 2, ..., N − 1,. The dimensionless damping parameter is β =(
R
√

2eIc
)−1. The normalized time scale is used across the whole array, by

weighting the single-JJ time by ωJ1 =
√

2eIc1/C1. The direct bias current
Idc and the RF amplitude I0 are both normalized to the critical current Ic1.
The actual frequency ω is re-scaled to Ω = ω/ωJ1 and the coupling factor is
defined as αs = (R1/Rs)β. It was shown in [CK08] that the JJ-array gov-
erned by (8.7) is chaotic for the parameter values β = 0.3, I0 = 1.2, ω = 0.6
and Idc = 0.3. The junctions were taken to be identical and for a coupling
strength of αs = 0.37, the outer junctions synchronized while the inner junc-
tion remained uncorrelated with the two outer ones.

A particular case of (8.7) consists of three JJs linked in parallel. Assuming
three identical junctions, the following set of first-order ODEs is given in
[CK08]:

ϕ̇1 = φ1

φ̇1 = −βφ1 − sinϕ1 + Idc + I0 cos(Ωt) − αs [φ1 − φ2]
ϕ̇2 = φ2

φ̇2 = −βφ2 − sinϕ2 + αs [φ1 + φ3 − 2φ2]
ϕ̇3 = φ3

φ̇3 = −βφ3 − sinϕ3 + Idc + I0 cos(Ωt+ θ)− αs [φ3 − φ2] .

The outer junctions are identical and symmetric to the interchange of variables
in the absence of a phase-difference between the applied fields. Hence there
exists an identical solution for the outer systems given by ϕ1 = ϕ3 = ϕ(t),
which demonstrates the complete synchronization. For further technical de-
tails, including stability analysis, see [CK08].

8.2.3 Formalism of Effective JNN Hamiltonians

In this subsection, we develop a general formalism of effective Hamiltonian
operators (to be used in the next subsection), based on the following concerns:

1. A modern (geometric) version of the Rayleigh-Schrödinger autonomous
perturbation theory [Ray894, Sch26] (for a review, see [LL77]),

2. Adiabatic assumption, which states that the eigen-energies En = En(xµ)
and eigen-states |n〉 = |n(xµ)〉 of a multi-parameter Hamiltonian H =
H(xµ) are smooth functions of the parameter-set {xµ}, such that their
values in the vicinity region of the parameter manifold M = {xµ} can be
expanded into a power series of xµ (see, e.g. [Fra98, Mos97]);

3. Hellman-Feynman theorems [Hel37, Fey39] for calculating parametric
derivatives of the Schrödinger Hamiltonian operator (for a computational
review, see [Jen07]).

To start with, let us define a linearly-parameterized Hamiltonian H =
H(xµ), as a Hermitian operator H : M → H, which maps the parameter
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manifold
M := {xµ : µ = 1, ..., n} onto the quantum Hilbert space H, by the weak
perturbation6 [Sol81, RU06, Per13, II09]:

H = H0 + λHprt ≡ H0 + xµFµ, (using summation convention).

Here, H0 is the unperturbed Schrödinger Hamiltonian,7 Hprt is an external
weak-disturbance potential-energy operator8 with the associated perturbation
parameter λ ∈ [0, 1], while Fµ are the (generalized) force operators corre-
sponding to the coordinate parameters xµ ∈M (e.g., if xµ are magnetic-field
coordinates, then Fµ are the corresponding magnetizations). Using the adia-
batic assumption, we obtain the following power-series expansions9:

En(xµ) = E(0)
n + λE(1)

n + λ2E(2)
n +O(3)

≡ En + xµ∂µEn +
1
2!
xµxν∂µ∂νEn +O(3),

|n(xµ)〉 = |n(0)〉+ λ|n(1)〉+ λ2|n(2)〉+O(3) ≡ |n〉+ xµ|∂µn〉

+
1
2!
xµxν |∂µ∂νn〉+O(3).

Here, the 0th-order approximation corresponds to (8.9) from which we ob-
tain the expectation value 〈m|H |n〉 of the unperturbed Hamiltonian H0. In a
similar way, consider the 1st-order approximation:

H0|n(1)〉+Hprt|n(0)〉 = E(0)
n |n(1)〉+ E(1)

n |n(0)〉 ≡ En|∂µn〉+ ∂µEn|n〉

gives us the expectation value of the perturbed Hamiltonian H(xµ):

E(1)
n = 〈n(0)|Hprt|n(0)〉 ≡ 〈n(0)|∂µEn|n(0)〉 ≡ 〈m|∂µH |n〉,

where we have used the first Hellman-Feynman theorem [Fey39] [derived by
applying ∂µ to both sides of (8.8)]:

6 The energy levels En and eigen-states |n〉 of the perturbed Hamiltonian H =
H0 + λHprt ≡ H(xµ) are given by the perturbed Schrödinger equation:

(H0 + λHprt) |n〉 = En|n〉. (8.8)

7 H0 satisfies the stationary Schrödinger equation:

H0|n〉 = En|n〉. (8.9)

8 Note that our potential-energy perturbation Hprt is commonly denoted as V (see,
e.g. [RU06]). However, in this paper, symbol V is reserved for the voltage.

9 Here, we are using the following notation:

∂µ ≡ ∂

∂xµ
, E(m)

n =
1

m!

dmEn

dλm , |n(m)〉 =
1

m!

dm|n〉
dλm .
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∂µEn = 〈n|∂µH |n〉.

If we next apply the second Hellman-Feynman theorem [Fey39]:

〈m|∂µn〉 =
〈m|∂µH |n〉
En − Em

and 〈∂µm|n〉 =
〈m|∂µH |n〉
Em − En

,

we obtain the 2nd-order series expansion for the effective Hamiltonian:

Heff = 〈m|H |n〉 + 〈m|∂µH |n〉xµ +
1
2!

∑

k∈H

[
〈m|∂µH |k〉〈k|∂νH |n〉

Em − Ek
+
〈m|∂νH |k〉〈k|∂µH |n〉

En − Ek

]

xµxν +O(3).

8.2.4 Effective JJN Hamiltonian as Perturbative Sum

Using the effective Hamiltonian formalism and by simplifying and abstracting
the dense quantum-mechanical calculations from [FVB08], we formulate the
effective JJN-Hamiltonian operator (corresponding to Figure 8.3) in the form
of the perturbative sum:

Heff = H0 +Hbath +Hint +Hac . (8.10)

This uses normal units (with � = 1). The components are as follows:

• The unperturbed JJN-Hamiltonian, given by:

H0 =
∑

(i,j)

[
(ϕ̇ij − ϕ̇kl)2

4Ec
− EJ cos

(
2etVij−kl + ϕij − ϕkl

)
]

+
∑

i,j

ϕ̇2
ij

4Ec
,

(8.11)
where Vij−kl are the dc-voltage drops on the junctions, while

∑
(i,j) denotes

the summation over pairs of adjacent junctions;
• The heat bath Hamiltonian Hbath (characterizing the thermal bath and

modeled as a set of N harmonic oscillators with coordinates ξi, frequencies
ωi and masses mi) is given by:

Hbath =
N∑

i=1

(
ξ̇
2

i

2mi
+miω

2
i ξ

2
i

)

; (8.12)

• The interaction Hamiltonian, given by:

Hint =
N∑

i=1

ciξi(ϕ L − ϕ R). (8.13)
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Here ci denotes the coupling constants, so that
∑
i c

2
i /(miω

2
i ) � R/Rext,

where Rext is the external resistance;
• The Hamiltonian Hac for the AC-component Iac of the Josephson current

I [generated by the finite voltage V applied to JJN and oscillating with
the frequency ω = 2e(Vj + VN )] is given by:

Hac =
2E2

J

Ec

M∑

j=1

cos
[
2e(V1j + VNj)t+ ψ(t)− ϕ1j(t) + ϕNj(t)

]
. (8.14)

The corresponding DC-component Idc of the Josephson current I results
from the time averaging of the AC-currents Iac, and calculated by the
correlations of the (time-dependent) fluctuations of the Josephson phases
ϕij(t) across the JJN.

• The voltage-current JJN characteristics - that is, the JJN I-V curves - are
defined by the quantum expectation value:

I(V ) =
〈

∂H

∂[ϕR − ϕL]

〉

. (8.15)

For the complete derivations of the above equations and other technical
details, see [FVB08] and the references therein.

8.3 Commutative JJN Hierarchies

8.3.1 Fuzzy Associative Functors

Only Commutative Diagrams are Formally Valid

From a formal mathematical perspective, out of an infinite variety of possi-
ble action-control diagrams in any area of applied mathematics, only com-
mutative diagrams are automatically valid: commutative diagrams define the
general process of functional composition, thus implying both the existence
and uniqueness of the corresponding algebraic equations. In modern mathe-
matics, commutative diagrams are used as visual means for rigorous theorem
proofs. They are illustratively appealing without sacrificing formal validity.
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While commutative diagrams are particularly widespread in category the-
ory [Mac71], which was born within algebraic topology [Die88], they are also
heavily used in modern analysis [Die69] and its applications [AMR88], and in
modern geometrical dynamics [II06b, II07].

JJN Categories and Functors

From the perspective of modern mathematics and computer science, a generic
JJN, like the one in Figure 8.3, represents a category, in which the super-
conducting islands (squares) are objects, while their neighboring JJs (crosses)
are morphisms, also called arrows. The corresponding maps between cate-
gories, the so-called functors, map squares (objects) to squares and crosses
(morphisms) to crosses.

Fuzzy Associative Functors

Fuzzy associative functors are adaptive, or tuned, fuzzy inference systems
(see [Zad65, Zad78, Kos93, Kos96, Kos99, II07]), which map objects and
morphisms of a source category, say A = (Ob(A), Mor(A)) into objects and
morphisms of a target category, say B = (Ob(B), Mor(B)). This is depicted in
Figure 8.4.

Fig. 8.4. A fuzzy associative functor maps objects and morphisms of a source
category A = (Ob(A), Mor(A)) into objects and morphisms of a target category
B = (Ob(B), Mor(B)). It is a tuned (or, adaptive) fuzzy inference system, con-
sisting of three modules: (i) Fuzzification module, which converts numerical
inputs into membership functions (consisting of overlapping fuzzy sets); (ii)
Inference module which is a fuzzy If-Then rule base (combined using Mam-
dani or Takagi-Sugeno operators), and (iii) Defuzzification module, converting
fuzzy linguistic processes into numerical outputs, using CoM method (see, e.g.
[II07]).
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Fig. 8.5. The 1st-level PCT architecture: a commutative square of JJNs.

8.3.2 Hierarchy for JJN Architectures

The 1st-Level JJN Architecture

The 1st-level PCT architecture is defined by a commutative square of JJNs
(see Figure 8.5). Here, A1,B1, C1,D1 are the JNN-categories, while F1,G1,K1,
L1 are the corresponding fuzzy associative functors, mapping squares (islands)
onto squares and crosses (junctions) onto crosses.

The 2nd-Level JJN Architecture

The 2nd-level PCT architecture is defined by a commutative square of the 1st-
level architectures (see Figure 8.6). Here, A2,B2, C2,D2 are the 2-categories
(each one consisting of four small JNN-categories), while F2,G2,K2,L2 are
the corresponding fuzzy associative 2-functors.

The 3rd-Level JJN Architecture

The 3rd-level PCT architecture is defined by a commutative square of the 2nd-
level architectures (see Figure 8.7). Here, A3,B3, C3,D3 are the 3-categories
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Fig. 8.6. The 2nd-level PCT architecture: a commutative square of the 1st-
level architectures.

(each one consisting of four 2-categories), while F3,G3,K3,L3 are the corre-
sponding fuzzy associative 3-functors.

Higher-Level JJN Architectures

By induction, the Nth-level PCT architecture is recursively defined by a com-
mutative square of the (N -1)th-level architectures.

Summary

We have proposed a novel quantum-dynamical approach to Perceptual Con-
trol Architecture (PCT) modeling. In our conception, any such model will
essentially consist of large networks of Josephson Junctions and their cate-
gory theoretic generalizations, in a layered architecture. This contrasts with
the essentially model-free PCT design mechanisms using reasoning in Bayesian
networks elsewhere in the literature [WTW12].
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Fig. 8.7. The 3rd-level PCT architecture: a commutative square of the 2nd-
level architectures.

Our approach allows complete PCT architectures to be composed from
JJN units, mirroring the fundamental notion in theoretical computer science,
where categories correspond to types. Thus we have the basis for composing
PCT architectures while being able to rigorously prove the absence of un-
desirable outcomes; or, alternatively, to ensure that components fit together
in ways that preserve the properties of proper functional compositions. Our
proposed PCT composition is, in computer science parlance, strongly typed.
That is, we have the basis for easily composing PCT architectures using in-
tuitively appealing design methods while also ensuring formal validity: that
the underlying algebraic equations exist and are unique without having we
can guarantee the existence and uniqueness of underlying algebraic equations
without having to deal with them directly.

Future research work lies in developing and extending the basis established
here with practical machinery, to provide a new constructive modeling frame-
work for PCT. We anticipate that this machinery will consist of tractable



October 10, 2014 11:9 Complexity and Control 9in x 6in b1966-ch08 page 336

336 8 Quantum-Computation for Perceptual Control Architecture

syntactic means for classifying PCT compositions according to the kinds of
functions they represent.

8.4 Appendix

8.4.1 Hardware for Quantum Computers

A Josephson junction (JJ) is made up of two superconductors, separated by
a weak coupling non-superconducting layer, so thin that electrons can cross
through the insulating barrier. It can be conceptually represented as:

Superconductor 1 : ψ1e
iϕ1

Weak Coupling 
Superconductor 2 : ψ2e

iϕ2

where the two superconducting regions are characterized by simple quantum-
mechanical wave functions , ψ1eiϕ1 and ψ2eiϕ2 , respectively. One of JJ charac-
teristics (part of the Josephson effect)10 is that as the temperature is lowered,
superconducting current flows through it even in the absence of voltage be-
tween the electrodes.

The basic equations governing the dynamics of the Josephson effect are
(see, e.g. [BP82]):

U(t) =
�

2e
ϕ̇, I(t) = Ic sinϕ(t),

where overdot means time derivative, � is the Planck constant (h divided by
2π), U(t) and I(t) are the voltage and current across the JJ, ϕ(t) is the phase
difference between the wave functions in the two superconductors comprising
the junction, and Ic is a constant, called the critical current of the junction.
The critical current is an important phenomenological parameter of the device
that can be affected by temperature as well as by an applied magnetic field.
The physical constant �/2e is the magnetic flux quantum, the inverse of which
is the Josephson constant .

The three main effects predicted by Josephson follow from these relations:
10 The Josephson effect in particular results from two superconductors acting to

preserve their long-range order across an insulating barrier. With a thin enough
barrier, the phase of the electron wave-function in one superconductor maintains a
fixed relationship with the phase of the wave-function in another superconductor.
This linking up of phase is called phase coherence. It occurs throughout a single
superconductor, and it occurs between the superconductors in a Josephson junc-
tion. The phase coherence, or long-range order , is the essence of the Josephson
effect.
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1. The DC Josephson effect . This refers to the phenomenon of a direct
current crossing the insulator in the absence of any external electromagnetic
field, owing to Josephson tunnelling. This DC Josephson current is propor-
tional to the sine of the phase difference across the insulator, and may take
values between −Ic and Ic.

2. The AC Josephson effect . With a fixed voltage UDC across the junctions,
the phase will vary linearly with time and the current will be an AC current
with amplitude Ic and frequency 2e/�UDC. This means a JJ can act as a
perfect voltage-to-frequency converter .

3. The inverse AC Josephson effect . If the phase takes the form

ϕ(t) = ϕ0 + nωt+ a sin(ωt),

the voltage and current will be

U(t) =
�

2e
ω[n+ a cos(ωt)], I(t) = Ic

∞∑

m=−∞
Jn(a) sin[ϕ0 + (n+m)ωt].

The DC components will then be

UDC = n
�

2e
ω, I(t) = IcJ−n(a) sinϕ0.

Hence, for distinct DC voltages, the junction may carry a DC current and the
junction acts like a perfect frequency-to-voltage converter .

To show a driven-damped pendulum analog of a microscopic description
of a single JJ, we start with:

1. The Josephson current-phase relation

I = Ic sinϕ,

where Ic is the critical current , I is the bias current, and ϕ = ϕ2 − ϕ1 is the
constant phase difference between the phases of the two superconductors that
are weakly coupled; and

2. The Josephson voltage-phase relation

V =
�

2e
ϕ̇,

where V = V (t) is the instantaneous voltage across the junction and e is the
charge on the electron.

Now, if we apply Kirhoff’s voltage and current laws for the parallel RC-
circuit with resistence R and capacitance C, we come to the first-order ODE

CV̇ +
V

R
+ Ic sinϕ = I,

which can be recast solely in terms of the phase difference ϕ as the 2nd-order
pendulum-like ODE:
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JJ :
�C

2e
ϕ̈+

�

2eR
ϕ̇+ Ic sinϕ = I, (8.16)

Pendulum : ml2θ̈ + bθ̇ +mgl sin θ = τ .

This mechanical analog has often proved useful in visualizing the dynamics of
JJs [Str94]. If we divide (8.16) by Ic and define a dimensionless time

τ =
2eIcR

�
t,

we get the (dimensionless) JJ-oscillator equation:

βϕ′′ + ϕ′ + sinϕ =
I

Ic
, (8.17)

where ϕ′ = dϕ/dτ . The dimensionless group β, defined by

β =
2eIcR2C

�
,

is called the McCumber parameter and represents a dimensionless capaci-
tance.

In a simple overdamped limit β << 1 with resistive loading, the ‘inertial
term’ βϕ′′ may be neglected (as if oscillating in a highly-viscous medium),
and so (8.17) reduces to a non-uniform oscillator

ϕ′ =
I

Ic
− sinϕ, (8.18)

with solutions approaching a stable fixed-point for I < Ic, and periodically
varying for I < Ic. To find the current-voltage curve in the overdamped limit,
we take the average voltage 〈V 〉 as a function of the constant applied current I,
assuming that all transients have decayed and the system has reached steady-
state, and get

〈V 〉 = IcR 〈ϕ′〉 .
An overdamped array of N JJs (8.18), parallel with a resistive load R, can

be described by the system of 1st-order (dimensionless) ODEs [Str94]

ϕ′
k = Ω + a sinϕk +

1
N

N∑

j=1

sinϕj , (k = 1, ..., N) , (8.19)

where

Ω = IbR0/Icr, a = −(R0 + r)/r, R0 = R/N,

Ib = Ic sinϕk +
1

2eR



ϕ̇k +
N∑

j=1

ϕ̇j



 .
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8.4.2 Adaptive Fuzzy Inference Systems

In this subsection, we give a brief introduction to a adaptive fuzzy inference
system (AFIS). For more technical details on this matter, see [Kos92, II07]
and references therein.

Computational-Intelligence

Recall that term ‘Computational Intelligence’ (CI) was coined by IEEE as an
alternative to classical AI.
IEEE CI-Society publishes three transactions journals:

• IEEE Transactions on Neural Networks;
• IEEE Transactions on Fuzzy Systems; and
• IEEE Transactions on Evolutionary Computation.

Thus, it is implicitly assumed that CI consists of these three areas and their
combinations. Two main CI characteristics are: adaptation and knowledge-
base.

Here, instead of trying to cover a very wide area of ‘both worlds’, neu-
ral networks and fuzzy logic (see, e.g. [Kos92, II07]), we focus on adaptive
fuzzy inference system (AFIS), which is a superior MIMO-control technology
already available in a digital chip. Besides, adaptivity (or, learning) is not
necessarily neural; it can also be GA-evolutionary, or just a simple matrix
iteration:

New V alue (t+ 1) = Old V alue (t) + Innovation (t+ 1)

with Innovation = |desired output − achieved output|

or innovation = |reward − penalty|

Motivational Fuzzy Examples

Easy Fuzzy-Control Example: Truck Backer-Upper

Let’s start with an easy, textbook, fuzzy-control example: truck backer-upper
steering control system. It has the following structure:

• Two input linguistic variables: position and direction of the truck, and one
output variable: steering angle.

• Invars:
1. position = {NL,NS,ZR,PS,PL} and
2. direction = {NL,NM,NS,ZR,PS,PM,PL}
where NL denotes Negative Large, NM is Negative Medium, NS is Negative
Small, etc.

• Outvar: steering angle = {NL,NM,NS,ZR,PS,PM,PL}
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Defining fuzzy sets (only output fuzzy sets are shown here):
defineSet [NB, -30, 1, -15, 0, -15, 0, -15, 0];
defineSet [NM, -25, 0, -15, 1, -15, 1, -5, 0];
defineSet [NS, -12, 0, -6, 1, -6, 1, 0, 0];
defineSet [ZE, -5, 0, 0, 1, 0, 1, 5, 0];
defineSet [PS, 0, 0, 6, 1, 6, 1, 12, 0];
defineSet [PM, 5, 0, 15, 1, 15, 1, 25, 0];
defineSet [PB, 18, 0, 30, 1, 30, 1, 30, 1];

Fuzzy IF-THEN rule-base:
IF direction is NL & position is NL, THEN steering angle is NL;
IF direction is NL & position is NS, THEN steering angle is NL;
IF direction is NL & position is ZE, THEN steering angle is PL;
IF direction is NL & position is PS, THEN steering angle is PL;
IF direction is NL & position is PL, THEN steering angle is PL;
IF direction is NM & position is NL, THEN steering angle is ZE;
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
IF direction is PL & position is PL, THEN steering angle is PL.

Alternative representation: Kosko’s FAM matrix
(works only for 2 −→ 1 case)













PS(θ) PM(θ) PM(θ) PM(θ) PB(θ)
NS(θ) PS(θ) PM(θ) PB(θ) PB(θ)
NM(θ) NS(θ) PS(θ) PM(θ) PB(θ)
NM(θ) NM(θ) ZE(θ) PM(θ) PM(θ)
NB(θ) NM(θ) NS(θ) PS(θ) PM(θ)
NB(θ) NB(θ) NM(θ) NS(θ) PS(θ)
NB(θ) NB(θ) NM(θ) NM(θ) NS(θ)













Harder Control Example: Truck-and-Trailer Backer-Upper Steering Control
System

This is a nontrivial control problem (for a human operator).
Yet, a number of efficient controllers exist:
- sliding mode controllers;
- extended/unscented Kalman filters;
- fuzzy, ANN, GA, controllers;
- other nonlinear controllers, etc.

Very Hard Control problem: Truck-with-two (or more) Trailers
Backer-Upper Steering Control System

To the best of our knowledge, only two solutions exist today:

• A soft approach of (adaptive) fuzzy-logic controller ; and
• A hard approach of (adaptive) Lie-derivative controller

(together with its exterior-differential dual).
• So, the only soft option is: adaptive fuzzy logic.
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• Besides, many different fuzzy-chips already exist, starting from Motorola’s
1996 pioneering one. Current Motorola’s 68HC12 is the standard micro-
controller family with a comprehensive fuzzy-logic instruction set and ar-
bitrary number of inputs and outputs.

Fuzzy Logic Basics

Brief History of Fuzzy Logic

1965 Fuzzy Sets Theory founded by Lotfi Zadeh
(UC Berkeley); Zadeh subsequently founded both Fuzzy Logic and Possi-
bility Theory.

1970 Fuzzy-Logic Control founded by E. Mamdani (Queen-Mary College,
London) and
H. Zimmermann (RWTH Univ. Aachen, Germany);

1975 Introduction of Fuzzy Logic in Japan;
1985 Broad application of Fuzzy Logic in Japan;
1990 Broad application of Fuzzy Logic in Europe;
1995 Broad application of Fuzzy Logic in the US, in spite of two major ob-

stacles: (i) wrong name “fuzzy”, and (ii) strong Bayesian probability com-
munity, which did not like the possibility-theory competitor.

1996 IEEE Study of Fuzzy-Logic Applications

• Published over 1100 successful fuzzy-logic applications (an estimated 5%
of those in existence);

• Almost all applications were MIMO supervisory control, rather than re-
placement of conventional SISO controllers;

• Applications range from Embedded Control (28%), Industrial Automation
(62%) to Process Control (10%);

• In most cases, Fuzzy Logic has slashed Design time by more than half.

Fuzzy Logic Basics: Fuzzy Sets 1 A crisp set X is defined by a binary
characteristic function µX(x) of its elements x:

µX(x) =
{

1, if x ∈ X,
0, if x /∈ X,

while a fuzzy set is defined by a continuous characteristic function (which is
now called the membership function):

µX(x) = [0, 1] ,

including all (possible) real values between the two crisp extremes 1 and 0,
and including them as special cases.

Fuzzy Logic Basics: Fuzzy Sets 2 A fuzzy set X is a collection of ordered
pairs
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X = {(x, µ(x))},

where µ(x) is the membership function representing the grade of membership
of the element x in the set X .

A single pair is called a fuzzy singleton (for technical details, including possi-
bility theory, see Zadeh, 1965; 1978).

Fuzzy Inference System

Fuzzy Inference System (FIS) is a MIMO-system that works as a nonlinear
multivariate function approximator.
FIS maps a set of input linguistic variables (IF−part)
into a set of output linguistic variables (THEN−part).
FIS consists of three sequential modules:

Fuzzification ⇒ Inference ⇒ Defuzzification

Fuzzification Module In this module, numerical crisp input variables are fuzzi-
fied. This is performed as an overlapping partition of their universes of dis-
course by means of fuzzy membership functions µ(x), which can have various
shapes, including triangular/trapezoidal (shown before), Gaussian:

µ(x) = exp
[
−(x−m)2

2σ2

]

,

(with mean m and standard deviation σ), and sigmoid:

µ(x) =

[

1 +
(
x−m
σ

)2
]−1

.

Inference Module It has two submodules:

(i) The expert–knowledge base consisting of a set of fuzzy IF-THEN rules
relating input and output variables, and

(ii) The inference method, or implication operator, that actually com-
bines the rules to give the fuzzy output. Most common is Mamdani Min–Max
inference, in which the membership functions for input variables are first com-
bined inside the IF-THEN rules using AND (∩, or Min) operator, and then
the output fuzzy sets from different IF-THEN rules are combined using OR
(∪, or Max) operator to get the common fuzzy output.

Defuzzification Module In this module, fuzzy-linguistic outputs from the in-
ference module are converted to numerical crisp values.
This is achieved by one of the several defuzzification algorithms. Most com-
mon is the centroid, or Center of Mass (CoM) method, in which the crisp
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output value is calculated as the abscissa under the center of mass/gravity of
the output fuzzy set.

Two Optional Modules In more complex technical applications of general
function approximation, two optional blocks are usually added to the FIS:

• Preprocessor, preceding the fuzzification module, performing various kinds
of normalization, scaling, filtering, averaging, differentiation or integration
of input data.

• Postprocessor, succeeding the defuzzification module, performing the ana-
log operations on output data.

Adaptive Fuzzy Inference System (AFIS)

In addition to all the FIS items, AFIS also includes:

• Weights on the fuzzy IF-THEN rules;
• Adjustable parameters in membership functions (e.g. mean and standard

deviation in case of Gaussian fuzzy sets);
• Adjustable centroid (CoM) parameters.

Neuro-AFIS

Although FIS adaptivity can be achieved both by simple matrix iteration:

NewV alt+1 = OldV alt + Innovt+1,

or by GA-evolution, the most common is a feedforward three-layer perceptron

Kosko’s Standard Additive Model (SAM)

Fuzzy system F approximates a MIMO-function f : Rn → Rp by covering its
graph with rule patches, which are fuzzy Cartesian products [Kos98]: Ai×Bi ⊂
Rn×Rp (Kosko, IEEE-SMC, 1998). Almost all applied fuzzy systems use some
form of SAM.
SAM is an additive map F : Rn → Rp, which stores m rules:
‘If X = Ai Then Y = Bi’, or formally, Ai ×Bi ⊂ Rn × Rp,
and adds the ‘fired’ Then-parts B

′
i(x), to give the output set B(x) calculated

as:

B(x) =
n∑

i=1

wiB
′
i(x) =

n∑

i=1

wiµi(x)Bi(x), (i = 1, ..., n)

for a scalar rule weight wi > 0. SAM map F computes its output F (x) by
taking the centroid CoM of the output set B(x):

F (x) = CoM [B(x)]

Kosko’s SAM Theorem:
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F (x) =
n∑

i=1

pi(x)ci, pi(x) =
wiµi(x)Vi∑n

k=1 wkµk(x)Vk
, (i = 1, ..., n)

where pi(x) are discrete probability weights, and Vi are finite positive volumes
in the codomain space Rp,

Vi =
∫

Rp

bi(y1, ..., yp)dy1...dyp > 0

while ci is the centroid CoM of the Then-part set Bi(x),

ci =

∫
Rp y bi(y1, ..., yp)dy1...dyp∫
Rp bi(y1, ..., yp)dy1...dyp

Fuzzy Control Basics

There are four basics types of fuzzy-logic control:

• Direct Fuzzy Control (rare). Here, the FIS-output gives the command vari-
ables for direct control of an arbitrary plant. In other words, FIS works
here like a conventional PID controller (“on steroids”).

• Supervisory Fuzzy Control (usual). Here, FIS sets the values for a cluster
of PID controllers.
This is (clearly) a more appropriate FIS-application.

• Adaptive Fuzzy Control (by design, without NN). Here, by its own design,
a non-adaptive FIS sets/adapts the (P,I,D) parameters of a conventional
PID controller.

• Fuzzy Intervention Control. Here, FIS-controller and a conventional PID-
controller are working in parallel.

Conclusion: When AFIS?

Informally: recall that there is a train in Japan (Sendai subway), which is
controlled by fuzzy logic. The train pulls into the station within a few inches
of its target and its timing is within a minute.
Comment by E. Cox [Cox92]: Fuzzy control is more accurate, but nevertheless
replacing human expert-control.
And this is roughly a recipe when to use AFIS.

AFIS: Definition Def: AFIS is a model-free strategy for human-like control
of high-dimensional complex systems with uncertainty.
So, AFIS should be used in the following 4 cases:

• When the problem is too complex (or, too hard) for one to be able to
derive exact system’s state/control equations.

• When there is a lot of practical (intuitive) expert knowledge available (e.g.
pilot, driver, worker, player).

• When there are many inputs (e.g. 10) and outputs (e.g. 5).
• When the problem scenario is full of uncertainty.
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9

Complexity and Control in Entropic and
Stochastic Self-Organization

In this Chapter1, we are primarily interested in developing advanced entropic
and stochastic models of military command and control (C2). The underpin-
ning thesis here stands in sharp contrast to much grand historical theorizing
based on the idea of discovering some inexorable laws of historical destiny;
this belief shows up as efforts to predict the future by uncovering ‘trends’ and
treating them as ‘laws’ as well as in narratives attributing causes to anything
and everything except randomness that are constructed – of course – with
the full benefits of hindsight. Instead, our approach expressly allows for the
fact that significant combinations of events might arise purely randomly, and
the observed realized outcome is merely one path of events among potentially
innumerable unrealized possibilities. Entropy – an order parameter by which
we may quantify uncertainty, information content, complexity, or relative in-
adequacy of historical determinism, depending on our point of view at the
time – is therefore a central concern in our conceptualization.

9.1 A Path-Integral Model for Entropic
Self-Organization

In this section, motivated by the notion of perceptual error (as a core of the
perceptual control theory), we propose an action-amplitude model for con-
trolled entropic self-organization (CESO). We present several aspects of this
development that illustrate its explanatory power: (i) a physical view of par-
tition functions and path integrals, as well as entropy and phase transitions;
(ii) a global view of functional compositions and commutative diagrams; (iii)
a local geometric view of the Kähler-Ricci flow and time-evolution of entropic
action; and (iv) a computational view using various path-integral approxima-
tions.
1 The work in this chapter has been developed in conjunction with Dr Jason Scholz,

a Defence Research Leader.



October 10, 2014 11:9 Complexity and Control 9in x 6in b1966-ch09 page 346

346 9 Complexity and Control in Entropic and Stochastic Self-Organization

Our basic C2-models we formulate as follows2. Our approach should also
be applicable across a wide range of non-military organizational decision-
making settings. Consider a group Γ := {Γi : i = 1, 2, ..., n} of n agents, each
characterized by its own Intent Ii and the set of m Capabilities {Cj : j =
1, 2, ..., J}. The basic modeling construction of the problem is that, according
to perceptual control theory (see [Pow73a, Pow73b]), the perceptual error of
an agent Γi is the difference between its intent and the consequences of its
choice of a capability Cj :

Ei = |Ii −Ai(Cj)| . (9.1)

Thus, under this construction, the optimal behavior Γ opti of each agent Γi is
given by minimizing the perceptual error Ei:

Γ opti = min
Cj

(Ei) , (9.2)

so that the probability Pri = Pri(Xi = Cj) of a specific choice Cj is expected
to be maximal when the perceptual error (9.2) is minimal.

The following geometrical interpretations can be given to the optimization
problem (9.1)-(9.2):

1. The perceptual error Ei given by the simple absolute value (9.1) can be
‘promoted’ to the Euclidean L2-norm:

Enrm
i = ‖I, A‖ =

√
√
√
√

n∑

i=1

|Ii −Ai(Cj)|2, (9.3)

or to the Euclidean metric:

Emtr
i = d(I, A) =

√
√
√
√

n∑

i=1

[I2
i −A2

i (Cj)]. (9.4)

2. Its continuous generalization, allowing for a continuum of capability
choices, is given by the Banach L2-norm:

Bnrm
i = ‖[I, A]‖ =

√∫ b

a

|I(x) −A [C(x)] |2dx, (9.5)

and the associated Banach metric between any two real-valued square-
integrable functions I, A defined on a real interval [a, b] ⊂ R:

Bmtr
i = d(I, A) =

√∫ b

a

|I(x)2 − g(x)2|dx. (9.6)

2 This is the simplest formulation of the command and control problem.
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For example, the finite control problem3 is actually a minimization of the
square of the Banach metric (9.6).

3. The optimization problem (9.2) can be rewritten in variational formula-
tion as the stationary Hamilton action problem:

δEi = 0,

with the following particular cases:

δ |Ii −Ai(Cj)| = 0 or δ| I(x) −A [C(x)] | = 0,

δ

√√
√
√

n∑

i=1

|Ii −Ai(Cj)|2 = 0 or δ

√∫ b

a

|I(x) −A [C(x)] |2dx = 0,

δ

√√
√
√

n∑

i=1

[I2
i −A2

i (Cj)] = 0 or δ

√∫ b

a

|I(x)2 − g(x)2|dx = 0.

From these cases, the set of discrete Euler–Lagrangian equations of motion
on the group/graph Γ can be derived (see [IR14] as well as section 9.1.2
below). Geometrically, this means that the perceptual error , in all three
forms – the absolute value (9.1), the L2-norm (9.3)-(9.5), or the metric
(9.4)-(9.6) – represents an energy landscape. The optimization problem is
some kind of a gradient or Levenberg-Marquardt (LM)4 descent along the
Lagrangian geodesics of this energy landscape.

Next, we assume the probability Pri = Pri(Xi = Cj) of a specific choice Cj
in the optimization problem (9.1)-(9.2) to be a monotonically-decreasing func-
tion of the perceptual error Ei (or Enrm

i -Bnrm
i , or Emtr

i -Bmtr
i ). If we consider

3 In finite control (i.e. output tracking and navigation), we want the scalar system
output y(x, t) to follow a continuous nominal objective trajectory, say χ(t), for a
given MD system vector x, and where t is time. This problem can be expressed
as:

min
x∈RM

Z t1

t0

[y(x, t) − χ(t)]2 dt.

Upon time discretization using a suitable quadrature scheme, this becomes the
following least-squares problem:

min
x∈RM

f(x) =
NX

i=1

[ỹ(x, ti) − χ̃(ti)]
2 dt.

Both discretized functions ỹ(x, ti) and χ̃(ti) include the weights of the chosen
quadrature scheme.

4 The LM-algorithm, sometimes also known as Damped Least Squares (DLS), inter-
polates between the gradient descent and the Gauss-Newton algorithm for quick
and efficient convergence, by properly adjusting the damping parameter. It is
more robust than Gauss-Newton, meaning that it can often find an optimum
even when initialised far from it.
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only a finite set of capabilities, a useful example of the probability distribution
function (PDF) can be formulated as an exponentially-weighted collection of
discrete Dirac-delta functions:

Pr
i

(Xi = Cj) = δ |Ii −Ai(Cj)| e−βEi . (9.7)

The PDF (9.7) can be easily generalized to the Gibbs measure of a random
variable Xi having the set of corresponding coordinates {xi}, defined by the
PDF [Mou74]:

Pr(Xi = xi) =
1

Z(β)
e−βH(xi) ≡

exp
[
−βH(xi)

]

∑
xi exp [−βH(xi)]

,

where H = H(xi) ≡ Ei (or H ≡ Emtr
i , or H ≡ Enrm

i ) is the Hamiltonian
energy function of the above energy landscape with local coordinates {xi}, and
β is a free parameter (in thermodynamics, β would be inverse temperature).
The corresponding partition function (see, e.g. [Lan41])

Z(β) =
∑

xi

e−βH(xi) (9.8)

provides the Gibbs measure on the system’s state-space, which is a unique
statistical distribution that maximizes the entropy for a fixed expectation
value of the energy:

〈H(xi)〉 = −∂ log(Z(β))
∂β

.

The associated system’s order parameter, entropy, is given by:

S = −
∑

xi

P (xi) lnP (xi) = β〈H(xi)〉+ logZ(β).

Entropy describes both ‘ignorance’ – Heisenberg’s uncertainty – and ‘random-
ness’ – also meaning ’complexity’, ’incompressibility’ or ’information content’.

A useful particular example of (9.8) is the partition function of a 3-
dimensional ensemble of n ‘molecules’, given by the 6n-dimensional phase–
space integral:

Z(β) =
∫

R6n

exp[−βH(xi)] d3pi d
3xi, (9.9)

where pi = pi(xi) are generalized momenta.
More generally, we consider Markov random fields/Markov networks, which

have a Markov property described by an undirected graph (see [Mou74]). In
Markov networks with local vertex coordinates {xi}, the PDF is usually given
by the log-linear inner product model:

Pr
i

(Xi = xi) =
1
Z

exp

(
n∑

i=1

wifi

)

, (9.10)
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where fi = fi(xi) are the feature functions and wi are their corresponding
weights (so that

∑
wifi is their dot-product), while Z is the partition function.

When the PDF (9.10) is strictly positive, the Markov network is often called
the Gibbs random field.

We remark here that Markov random fields have been introduced as a
Markovian framework for the Ising spin-lattice model, defined by the Hamil-
tonian energy function (given here in its simplest dot-product form):

H(σ) = −
n∑

i=1

n∑

j=1

Jijσiσj ,

where σi ∈ {+1,−1} are discrete spin-up and spin-down states (or, more gen-
erally, Pauli spin matrices), while Jij is the interaction matrix with synaptic
weights. The same Hamiltonian has also been used in Hopfield neural networks
[Hop82)], in which case σi represents the state of the McCulloch-Pitts neuron
[MP43].

In this paper we present several different views of an action-amplitude
model for controlled entropic self-organization (CESO).

9.1.1 Physical Perspective

From partition function to Feynman’s path integral

We have already seen from example (9.9) that the number of random variables
Xi need not be countable; if we continue in this direction, the set of corre-
sponding coordinates {xi} becomes a field φ = φ(x) ∈ Rn. Consequently, the
sum in (9.8) is replaced by the path integral5 (see, e.g. [II08a]):

Z(φ) =
∫
D[φ] e−βH(φ), (9.11)

where D[φ] represents the appropriate Lebesgue measure. We can interpret
the path integral philosophically as the sum over possible histories.

More generally, in quantum field theory, instead of the field Hamiltonian
H(φ) we have the classical (Lagrangian or Hamiltonian) action A(φ) of the
theory. Both the real path integral in imaginary time (the so-called Euclidean
path integral)

ZEuc(φ) = 〈out| in〉Euc =
∫

Rn
D[φ] e−A[φ], (9.12)

and the complex path integral in real time (the so-called Lorentzian path
integral)
5 As any quantum system has both continuous spectrum (consisting of eigenfunc-

tions) and discrete spectrum (consisting of eigenvectors), the path-integral sym-
bol

R D[φ] represents both the integration over the continuous spectrum and the
summation over the discrete spectrum of the field system φ = φ(x) [II08a].
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ZLor(φ) = 〈out| in〉Lor =
∫

Rn
D[φ] eiA[φ], (9.13)

represent partition functions of the quantum field theory in Rn. In both cases,
quantum probability Pr(φ) is defined as the absolute square of the transition
amplitude:

Pr(φ) = |〈out| in〉|2 .
Finally, we generalize our quantum theory of fields, from φ ≡ φ(x) ∈ R

n

to Φ ≡ Φ(x) ∈M defined on an arbitrary nonlinear configuration n-manifold
M , with its curved geometry and topology with a certain number of holes. In
this way, we arrive at our main conceptual tool, the geometrical/topological
path integral, in its Euclidean and Lorentzian versions, respectively given by
(see [II09]):

ZEuc(Φ) = 〈out| in〉Euc(M) =
∫

M

D[Φ] e−A[Φ], (9.14)

ZLor(Φ) = 〈out| in〉Lor(M) =
∫

M

D[Φ] eiA[Φ].

Here, A[Φ] represents classical Lagrangian action, the integration is performed
over all continuous paths+ fields+ geometries defined on the configuration
manifold M , while summation is performed along the edges of the correspond-
ing discrete graph structure,6 obtained either by putting the tram-tracks-like
constraints along the manifoldM, or by performing some form of triangulation
discretization.

Three-phase entropic framework with transition amplitudes

Recall that Prigogine’s Extended Second Law of Thermodynamics [NP77]

∂tS ≥ 0, (where ∂tS ≡ ∂S/∂t) , (9.15)

considers open (i.e. non-isolated) irreversible systems or processes which ex-
change energy and matter with their environment, in such a way that the
entropy change (or, entropy variation) is given by the sum of the internal and
external entropy change:

∂tS =
diS

dt
+
deS

dt
, (9.16)

where diS denotes the internal entropy production within the system, while
the deS is the external entropy flux due to the exchanges with the environ-
ment; for an isolated system, deS = 0.
6 Given any topological/smooth manifold M , one can always obtain not one but

rather a family (or, a set) of discrete network/graph structures on it, defined either
by fixing some tram-like constraints of motion, or by simplicial (or, Regge-type)
triangulation. In terms of dynamics, this means spatio-temporal discretization
(e.g., from standard continuous Laplacian (or, Laplace-Beltrami) operator � de-
fined on a manifold M , one can obtain the discrete Laplacian �d.)



October 10, 2014 11:9 Complexity and Control 9in x 6in b1966-ch09 page 351

9.1 A Path-Integral Model for Entropic Self-Organization 351

By further extending Prigogine’s open Second Law (9.15) into the strict-
control regime, we formulate a generic three-phase entropic framework for
entropy S in any complex system described by one of the partition functions
(9.11)-(9.14). the framework consists of the following ccomponents:

1. The phase of Intent, given by the monotonically increasing entropy:
∂tS > 0;

2. The phase of Action, corresponding to conservation of information, de-
scribed by the conserved entropy: ∂tS = 0;

3. The phase of Control, described by the monotonically decreasing entropy:
∂tS < 0.

The phase transition from one phase to another, caused by the system’s
topology change (see [II08a]), is described by the transition amplitude:

〈out phase t1 | in phase t0〉 :=
∫

tchc
d(M)

D[Φ] eiA[Φ],

where ‘tchcd(M)’ denotes both continuous topology-change ‘tchc(M)’ of the
system’s configuration manifold M and discrete topology-change ‘tchd(M)’ of
the system’s configuration graph/network structure (e.g., removing or adding
vertices of the graph).

9.1.2 Global Functional Perspective

The set – or, more appropriately, the category – of generic agents’ behaviors,
Behav, is defined by the functional composition of the following two successive
multidimensional maps:

Behav ≡ G ◦ F , where :
F : Intent t0 −→ Action t1 and G : Action t1 −→ Control t2

such that the following diagram commutes:

Intent Action�
F

Behav

�
�

�
�

�
��
Control

�

G

The maps F and G are given by their respective adaptive path integrals,
meaning partition functions defined by the respective multi–phase and multi–
path (multi–field and multi–geometry) transition amplitudes:
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F : Intent t0 −→ Action t1 := 〈
∂tS=0

Action t1 |
∂tS>0

Intent t0〉 =
∫

tch(M)

D[wΦ] eiA1[Φ],

(9.17)

G : Action t1 −→ Control t2 := 〈
∂tS<0

Control t2 |
∂tS=0

Action t1〉 =
∫

tch(M)

D[ωΨ ] eiA2[Ψ ].

(9.18)

Here, the Lebesgue integration, in both integrals, is performed over all con-
tinuous(
Φic, Ψ

i
c

)
= paths+ fields+ geom/tops. Summation is performed over all dis-

crete random processes (i.e. Markov chains) and regional network-topologies(
Φjd, Ψ

j
d

)
.

The path integrals (9.17) and (9.18) are constructed, respectively, from
the classical behavioral actions (see [IR14]):

A1[Φ] =
∫ tfin

tini

[Φ(xi) +
1
2
gij ẋ

iẋj ] dt, A2[Φ] =
∫ tfin

tini

[Ψ(xi) +
1
2
gij ẋ

iẋj ] dt,

(9.19)
where overdot denotes time derivative, and their corresponding action princi-
ples:

δA1[Φ] = 0 and δA2[Φ] = 0.

These correspond to classical Euler–Lagrangian equations of motion on the
configuration manifold M , with the Riemannian metric tensor gij :

d

dt
Lẋi = Lxi and

d

dt
Lẋi = Lxi

with Lagrangians

L =
1
2
gij ẋ

iẋj − Φ(xi) and L =
1
2
gij ẋ

iẋj − Ψ(xi).

The symbolic differentials D[wΦ] and D[ωΨ ] in the path integrals (9.17)
represent adaptive path measures, defined as the weighted products:

D[wΦ] = lim
N→∞

N∏

s=1

wsdΦ
i
s, (i = 1, ..., N = coni + disi),

D[ωΨ ] = lim
M→∞

M∏

p=1

ωpdΨ
k
s , (k = 1, ...,M = conk + disk).

Both adaptive path integrals (9.17)-(9.18) represent arbitrary toplogy ∞-
dimensional neural networks (see [II07]), with weights (w, ω) updated accord-
ing to

w(t + 1) = w(t) + Innovw(t), ω(t+ 1) = ω(t) + Innovω(t),

where Innovw(t) and Innovω(t) are the respective innovations.
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9.1.3 Local Geometric Perspective

A complexified extension of the behavioral actions (9.19), which is more ap-
propriate for general Lorentzian path integrals, is called the Kahler-Perelman
entropic action.7 In this section we give present its time-evolution along the
complex geometric dynamics called the Kähler-Ricci flow. For this objective,
we utilize the richest and most useful structure in the Kähler geometry8, the
so-called Fano manifold, which is a compact (i.e., closed and bounded) Kähler
n-manifold (M, g) with positive first Chern class c1(M). For a recent review,
see [TZ13] and references therein.

Consider the normalized Kähler-Ricci flow on a Fano n-manifold (M, g):

∂tg(t) = g(t) − Ric [g(t)]) (∂t ≡ ∂/∂t). (9.20)

In a local open chart U ⊂ (M, g), starting from some smooth initial Kähler
metric g0 = gij(0), the Ricci flow (9.20) is given by:

∂tgij(t) = gij(t)−Rij(t), (for i, j = 1, · · · , n).

It was proved in [Cao85] that (9.20) has a global solution g(t) in the
case that g0 has canonical Kähler class, i.e., 2πc1(M) as its Kähler class. In
particular, by the ∂∂̄-lemma,9 there exists a family of real-valued functions
7 The Kahler-Perelman entropic action W(g) is, roughly speaking, a complexified

Einstein-Hilbert action from general relativity.
8 Recall that a Kähler manifold (M, g) is a complex n-manifold that has the fol-

lowing basic characteristics:

1. A set of n local holomorphic coordinates: {z1, · · · , zn} ∈ U ⊂ M, with the
corresponding complex-valued differentials:

dzk = dxk + idyk, dz̄k = dxk − idyk;

2. Hermitian metric tensor: gij = gij(z
i, zj), with the corresponding Kähler metric

g as a positive and symmetric (1,1)-form:

g = igij dz
i ⊗ dzj ,

and the associated Kähler form ω as a closed (dω = 0) and positive (1,1)-form:

ω = igij dz
i ∧ dzj.

3. Functional space of Kähler potentials:

P = {ϕ | ωϕ = ω + i∂∂ϕ > 0}.
9 ∂ ≡ ∂j and ∂̄ ≡ ∂j are the so-called Dolbeault differential operators. Any p-form

α defined on the Kähler manifold (M, g) is called ∂-closed iff ∂α = 0 and ∂-exact
iff α = ∂η for some (p− 1)-form η on (M, g). The Dolbeault cohomology group
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u(t), called Ricci potentials (see, e.g. [MT07]) of the metric g(t), which are
special Kähler potentials. They are determined by

gij̄ −Rij̄ = ∂i∂j̄u,
1
V

∫

M

e−u(t)dvg(t) = 1,

where V =
∫
dvg denotes the volume of the Kähler-Ricci flow.

From the control-theory perspective, the most important characteristic
of the Kähler-Ricci flow is the existence of its solitary solutions (solitons),
which are shrinking, or decaying in time. This characteristic is associated to
geometrical entropy decrease and gives the global Lyapunov stability to the
flow.

Formally, a Riemannian manifold (M, g) represents a shrinking Ricci soli-
ton iff (see, e.g. [MT07]):

Ric(g) + Hess(u) = λg, (λ > 0).

In particular, if (M, g) is a Fano manifold with g ∈ 2πc1(M), it is a
shrinking Kähler-Ricci soliton iff λ = 1 and u ≡ u(t) is the Ricci potential;
that is, iff (see [TZ13] and references therein):

∇∇u = 0,

or, applying the Bianchi identity, iff the following Shur-identity holds:

�u− |∇u|2 + u = a.

For any Kähler metric g ∈ 2πc1(M) with scalar curvature s and any
smooth real time-function u ≡ u(t), define the Kähler-Perelman entropy E ≡
E(g) defined by the following infimum of sets of entropy functionals (compare
with Perelman’s original definition [Per02]):

E(g) = inf
{

W(g, u) :
∫

M

e−udv = V

}

, where

W(g, u) =
1
V

∫

M

(s+ |∇u|2 + u− n) e−udv.

A smooth minimizer of the entropy E always exists, though it need not nec-
essarily be unique (see [Rot81]). Entropy E admits a natural upper bound:

E(g) ≤ 1
V

∫

M

u e−udv = a ≤ 0.

H1,1

∂
(M,R) is a complexification of the standard de Rham cohomology group

H2
d(M,R), defined on (M, g) as a quotient:

H1,1

∂
(M,R) =

{∂-closed real (1,1)-forms}
{∂-exact real (1,1)-forms} .
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To see how the Kahler-Perelman entropic actionW(g, u) evolves under the
Kähler-Ricci flow (9.20), recall that for any solution u(t) of the backward heat
equation (compare with [Per02])

∂tu = −�u+ |∇u|2 +�u, (9.21)

we have

∂tW(g, u) =
1
V

∫

M

[
|∇∇̄(u− u)|2 + |∇∇u|2

]
e−udv,

which implies the Kähler-Perelman monotonicity condition on the geometric
entropy [TZ13]:

(∀t ≥ 0) , E(g0) ≤ E [g(t)] ≤ 0.

Roughly speaking, application of control is trying to reduce the system’s
entropy. This is achieved through shrinking Kähler-Ricci solitons.

9.1.4 Computational Perspective

In this subsection we will outline a fast desktop simulation framework for
controlled entropic self-organization, based on the preceding idea of functional
composition of path-integrals (9.17)-(9.18).

In quantum field theory, there is both a theoretical and a numerical ap-
proach to solve a similar path integral as a sum-over-fields. A theoretical way
consists of its perturbative expansion into a series of Feynman diagrams; al-
though, there is a Mathematica� package ‘FeynArts–FeynCalc’ devoted to
this, this approach does not scale well with respect to increasing numbers
of agents, and therefore is not well suited to our task. A numerical way of
handling the problem might be to discretize a path integral on a lattice (of
dimension 2, 3, or 4) and use techniques of lattice gauge theory; again, al-
though possible, this approach is not really feasible for the numbers of agents
in which we are typically interested 10.

In non-relativistic quantum mechanics, the path integral can be numeri-
cally solved, either by a direct implementation of the Feynman formula (see,
e.g. [II09]), or by Monte Carlo methods. Both these kinds of solvers are fairly
slow, except for the Metropolis algorithm [MRR53] (see Figure 9.1). As shown
in Feynman’s first paper [Fey48], this path integral is equivalent to the linear
Schrödinger equation. Its adaptive version is equivalent to the cubic Nonlinear
Schrödinger equation (NLS, see [IR12] and references therein).

By analogy, in statistical mechanics, the real path integral in real time is
equivalent to the linear Fokker-Planck equation, while its adaptive version is
equivalent to the nonlinear Fokker-Planck equation. This approach is devel-
oped in the next subsection.
10 Military Command and Control (C2) can involve hundreds of actors, and it is not

unreasonable to expect that other non-military decision-making processes could
involve similarly large numbers.
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Simple Metropolis approach

For the sake of completeness, we include here Fortran 90 code simulating the
ground state wave function using the Metropolis path-integral algorithm with
discrete kinetic and potential energy given in Figure 9.1.

Fig. 9.1. Simulating a non-relativistic quantum-mechanical path-integral us-
ing the Metropolis algorithm, with the probability of an uphill move give
by the exponent of the difference between new energy and old energy: P =
exp [−(Enew − Eold)].

program PathQmMetro ! Path integral: ground-state
wave-function
implicit none ! Metropolis algorithm; j=[1,100];
i=[1,3.d5]
integer :: i,j,N=100,element,prob(100),maxSteps=8.d5
!=3.*10^5
real*8 path(100),change,enerFun,newE,oldE,outPr
do j=1,N ! zero initial path and probability
path(j) = 0.; prob(j) = 0

end do
oldE = enerFun(path,N) ! energy function of the initial
path
do i=1,maxSteps
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element = rand()*N + 1 ! pick random element
change = 2*(rand()-0.5) ! update path by rand +
change
path(element) = path(element) + change
newE = enerFun(path,N) ! enerFun of the current path

! Metropolis algorithm: uphill move =
exp(-(newE-oldE))

if ((newE > oldE) .and. (exp(oldE-newE) < rand())) then
path(element) = path(element) - change ! upd:
path-change

end if
do j=1,N ! summing probabilities [1,100]
element = path(j)*10 + 50
prob(element) = prob(element) + 1

end do
oldE = newE

end do
print *, ’Path integral: ground-state wave-function:’;
print *
open(1,file=’qPr.csv’)
write(1,*) ’j’,’,’,’P’; print *,’ j P’; print *
do j=1,N ! printout to ’qPr.csv’
outPr = prob(j); write(1,*) j,’,’,outPr/maxSteps
print *, j, outPr/maxSteps;

end do; close(1)
end program

function enerFun(array,maxSteps) ! total energy of the
system
implicit none; integer i,maxSteps
real*8 enerFun,array(maxSteps)
enerFun = 0. ! initialize energy
do i=1,(maxSteps-1) ! kinetic plus potential energy
enerFun = enerFun + (array(i+1) - array(i))**2 +
array(i)**2

end do
end function

Fokker-Planck-Ito approach

The Fokker-Planck equation, also known as the Kolmogorov forward equation

∂tP (x, t) = −∂x [f(x, t)P (x, t)] +
1
2
∂xx

[
g2(x, t)P (x, t)

]
(9.22)

= [−∂xf(x, t) +
1
2
∂xxg

2(x, t) ]P (x, t)
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is a parabolic partial differential equation (PDE) that describes the time-
forward evolution of the probability distribution P (x, t), also called the prob-
ability density function (PDF, see Figure 9.2). The expression on the right-
hand side of (9.22), including

linear advective term : −∂xP (x, t) f(x, t), and

quadratic diffusive term :
1
2
g2(x, t) ∂xxP (x, t),

defines the Fokker-Planck differential operator:

DFP := −∂xf(x, t) +
1
2
∂xxg

2(x, t).

Note that the quadratic diffusive term vanishes in case of zero noise g(x, t) = 0.

Fig. 9.2. Illustrative simulation of a (1+1)D Fokker-Planck equation (9.22)
in MathematicaTM for the simple case of f(x, t) = g(x, t) = 1: depicting six
PDF-snapshots for different time/space values.

The PDE (9.22) satisfies the probability conservation law:11

11 The backward Fokker-Planck equation, or the Kolmogorov backward equation:

∂tP (x, t) = −f(x, t)∂xP (x, t) − 1

2
g2(x, t) ∂xxP (x, t) (9.23)

= −[f(x, t) ∂x +
1

2
g2(x, t)∂xx]P (x, t)

describes the time-backward evolution of the PDF P (x, t). It corresponds to the
same SDE (9.24). Equation (9.23) is an evolution PDE with the formal adjoint



October 10, 2014 11:9 Complexity and Control 9in x 6in b1966-ch09 page 359

9.2 Self-Organization and Stochastic Delay Differential Equations 359

∂tP (x, t) + ∂xJ(x, t) = 0,

where J(x, t) represents the probability current, defined as:

J(x, t) := f(x, t)P (x, t) − 1
2
∂xg(x, t)P (x, t).

The Fokker-Planck PDE (9.22) corresponds to the Ito stochastic differ-
ential equation [SDE, with deterministic drift f(Xt, t) and random diffusion
g(Xt, t)12]

dXt = f(Xt, t) dt+ g(Xt, t) dWt, (9.24)

where Xt is the Ito stochastic process (a solution to the SDE (9.24)). Wt is the
Wiener process (or, Brownian motion), also known as the red noise, because
its time derivative dWt/dt represents the white noise.

As a simple demonstration case for the statistical path-integral simula-
tion, we have implemented the following Ito-type SDE with the nonlinear
drift: f(Xt, t) and the vector Wiener process g(Xt, t) =

∑
i gi(Xt, t) dWi,t

that includes plane waves (sine and cosine) as well as soliton-type sech waves
and shock-wave-type tanh waves (see Figure 9.3). Thus:

dXt = f(Xt, t) dt+
4∑

i=1

gi(Xt, t) dWi,t,

where

f(Xt, t) = − Xt√
X2
t + 1

, g1(Xt, t) = sin(Xt), g2(Xt, t) = cos(Xt),

g3(Xt, t) = sech(0.5Xt), g4(Xt, t) = tanh(0.5Xt).

9.2 Self-Organization and Stochastic Delay Differential
Equations

In this section, we review various forms of controlled complexity in neuro-
dynamical feedback control systems defined by delay differential equations
(DDEs) and stochastic delay differential equations (SDDEs).

To start with, as a motivation, we analyze several forms of complexity in
dynamical and control systems defined by simple DDEs.

of the Fokker-Planck differential operator:

D∗
FP := −[f(x, t)∂x +

1

2
g2(x, t)∂xx].

12 g(Xt, t) describes the coupling of the drifting particle with the heat bath.
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Fig. 9.3. Illustrative simulation of the Ito stochastic process with a nonlin-
ear drift and a vector Wiener process including both harmonic and nonlinear
waves: 16 paths of this nonlinear random process are depicted (up) and also
overlayed with a slice distribution of the process state at discrete time steps
(down).

Motivation 1: Inverted Pendulum Control System.

Dynamics of a damped, inverted pendulum with the mass m > 0, length l > 0
and damping γ ≥ 0 (with gravity g = 9.81m/s2 giving the only active external
force) is governed by the 2nd-order ODE (see, e.g. [Jos]):

mlϕ̈+ γlϕ̇−mg sinϕ = 0. (9.25)

The act of balancing (i.e., control) of the pendulum defined by the equation
of motion(9.25) means applying an external force F = F (ϕ, ϕ̇, τ) on the right-
hand side of (9.25), which depends on: (i) the deviation ϕ = ϕ(t) of the
pendulum from the vertical position ϕ0 = 0, (ii) the angular velocity ϕ̇ = ϕ̇(t)
of the pendulum, and (iii) the delay τ > 0 (called the reaction time):
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mlϕ̈+ γlϕ̇−mg sinϕ = F [ϕ(t− τ ), ϕ̇(t− τ )], (9.26)

thus defining a delayed feedback control system.
Formal definition of similar control problems is much easier (and more

elegant) within the framework of LTI13 systems [e.g., in case of (9.26), lin-
earization is performed by the substitution: sinϕ → ϕ]. In particular, in a
SISO control system with the transfer function H(s), a delay τ is incorporated
by means of the exponential shift: e−sτH(s), where s is the complex-valued
Laplace-transform variable. More generaly, in a MIMO-control system, trans-
port delays from given inputs to given outputs (i.e., I/O delays) are given by
a transfer-function matrix. Here is an example of a 2×2 transfer function with
four I/O delays (τ1, τ 2, τ3, τ4):

H(s) =
[

e−sτ1H1(s) e−sτ2H2(s)
e−sτ3H3(s) e−sτ4H4(s)

]

, with
{
H1(s) = a

s
, H2(s) = a

s+b

H3(s) = s−1
s+c , H4(s) = s+1

s+d

.

Motivation 2: Predator-Prey Models.

Given the sizes x = x(t) and y = y(t) of the prey (e.g., rabbits) and predator
(e.g., foxes) populations at time t, with the corresponding growth rates ẋ =
ẋ(t) and ẏ = ẏ(t) of the two populations over time, the standard Lotka-
Volterra predator-prey model (see, e.g. [Mur03, LV13]) can be written as:

ẋ = r1x (1− x)− b1xy, ẏ = −r2y + b2xy, (9.27)

where r1, r2 > 0 are the growth/death rates per capita, while b1, b2 > 0 are
the predation coefficients.

A more realistic model [Cus77] includes a positive time delay: τ = t1 − t0
(where t0 is the time when the prey is eaten and t1 > t0 is the time when this
food is converted into new biomass through births of predators) in the second
equation of (9.27):

ẋ = r1x (1− x)− b1xy, (9.28)
ẏ = −r2y(t) + b2x(t− τ )y(t− τ).

An even more realistic model, using a continuous distribution of delays
(including the fact that the gestation period is usually different for each indi-
vidual), includes the convolution integral (with the probability-normalization
condition:

∫∞
0
G(τ )dτ = 1) in the second equation [Cus77]:

ẋ = r1x (1− x)− b1xy, (9.29)

ẏ = −r2y(t) + b2

∫ ∞

0

G(τ )x(t− τ )y(t− τ)dτ .

In the particular case of the Dirac δ-function: G(τ ) = δ(t− τ), the continuous
delay-model (9.29) reduces to the discrete delay-model (9.28).
13 LTI means ‘linear time invariant’.
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Motivation 3: Retarded Extension of the Logistic Map.

Recall that the classical route to chaos was first demonstrated in 1978 by M.
Feigenbaum [Fei78], using the logistic map:14

xi+1 = rxi(1− xi), (9.30)

which shows successive bifurcations as one increases the parameter r ≥ 3; the
chaos occurs at r = 3.5699 (see Figure 9.4).

Fig. 9.4. Output of the logistic-map simulator.

One of interesting extensions of the basic logistic map (9.30) was proposed
in [Ber01] by the τ -delayed continuous-time substitution: xi → f(t − τ ) and
addition of the inertia term σḟ(t). In this way, the following retarded DDE
was obtained:

σḟ(t) + f(t) = αf(t− τ )[1− f(t− τ)]. (9.31)

DDE (9.31) reduces to the logistic map (9.30) for σ = 0 and f(t − τ ) = xi.
In general, such retarded DDEs can be quite complex and have been used to
model both periodic and aperiodic dynamics of physiological systems [MG77].
Stability analysis of the system (9.31) was performed by [Mor03].

9.2.1 Mean-Field Neurodynamics

In this section, we review mean-field neurodynamics of an ensemble of
FitzHugh-Nagumo neurons.
14 Recall that logistic map was made very popular in 1970s by R. May [May76];

recently, its generalized version has been used in [SI10] for modeling human sit-
uational awareness.
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From Brain Research to Perceptual Control Theory

For the last few decades, a controversial issue in the research of biological
neural networks has been how neurons communicate information (by firings
or spikes, see [RWS96, Cha98, Egg98, UR99, CZ00, PDZ00]). In other words,
there has been a continuous debate on the nature of the neural code, mainly
focusing on the following two issues (see [Has03a]):

1. Whether information in the brain is encoded in the rate code (i.e., the
average firing rate of individual neurons), or in the precise firing times
(temporal code). For example, firing activities of motor and sensory neu-
rons in the brain have been reported to vary in response to applied stimuli,
which was first noted in [Adr26], forms the basis of the rate-code hypothe-
sis. In temporal-code hypothesis (see [SK93, KES96, SZ98]) detailed spike
timings are assumed to play an important role in information transmis-
sion (information is encoded in interspike intervals or in relative timings
between firing times of spikes).

2. Whether information in the brain is encoded in the activity of a single
neuron (or a small number of neurons), or in the activity of a large neu-
ral ensembles. The ensemble rate-code hypothesis [AS98], assuming that
information is coded in the relative firing rates of ensemble neurons, has
been adopted in the most of the theoretical analysis. The alternative, en-
semble temporal-code hypothesis (see [Hop95, HL98, Rt01]), assumes that
relative timings between spikes in ensemble neurons may be used as an
encoding mechanism for perceptual processing - which is closely related to
perceptual control theory (PCT, see [Pow73a, Pow73b, Pow11, Pow05]).

Ensemble of FitzHugh-Nagumo Neurons

Dynamics of an N -dimensional ensemble of FitzHugh-Nagumo (FN) neurons
is given by the following set of nonlinear ODEs (see, e.g. [RT96, TR98]):

ẋi = F (x)−cyi+I(c)
i +I(e)+ξi, ẏi = bxi−dyi, (for i = 1, ..., N), (9.32)

where xi = xi(t) and yi = yi(t) denote the fast (voltage) variable and slow
(recovery) variable, respectively; F (x) = kx (x− a) (1− x) is the nonlinear
spring-like forcing term (with positive parameters k, a, b, c, d); and ξi = ξi(t)
is the Gaussian white noise with

〈ξi(t)〉 = 0 and
〈
ξi(t) ξj(t

′)
〉

= β2
i δij δ(t− t′), (9.33)

where 〈·〉 means the average over random variables.
The inputs, I(c)

i = I
(c)
i (t) and I(e) = I(e)(t), represent N coupling terms

and an external (single-spike) input applied to all neurons, respectively. They
are given by:
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I
(c)
i =

w

N

∑

j( �=i)
G(xj) with G(x) =

(
1 + e−(x−θ)/α

)−1

where w is the coupling strength and G(x) is the sigmoid function with the
threshold θ and the width α, and

I(e) = AΘ(t − tin)Θ(tin + Tw − t), (9.34)

where Θ = Θ(x) is the Heaviside step (threshold) function with the input
time tin, width Tw and amplitude A.

Network of Stochastic FitzHugh-Nagumo Neurons

One of many possible generalizations of the neural ensemble (9.32) is repre-
sented by a network of noisy FitzHugh-Nagumo neurons, given by the follow-
ing set of nonlinear stochastic ODEs (see [KB93]):

dxi =

[

φ (xi, yi) + Ii(t) +
N∑

k=1

JikΘ(xk)

]

dt+ ξidWi, (9.35)

dyi = ψ (xi, yi) dt, (for i, k = 1, ..., N),

where φ and ψ are nonlinear functions, while Jik are synaptic weights for the
connection from neuron i to neuron k. The Ito-type stochastic analysis of the
system (9.35) is performed in [RT96].

Statistical Moment Method

In the moment method of [RT96, TR98, TP01], dynamics of the membrane
potential of a neural ensemble stimulated by the white noise has been analyzed
by replacing stochastic ODEs by deterministic ODEs described by moments
of state variables, as follows (for a review see [Has03a]).

1. Global ensemble variables [X = X(t), Y = Y (t)] and their averages
[µ1 = µ1(t), µ2 = µ2(t)] are defined as:

X =
1
N

N∑

i=1

xi, Y (t) =
1
N

N∑

i=1

yi, µ1 = 〈X〉 , µ2 = 〈Y 〉 .

(9.36)
2. Using (9.36), the ensemble ODEs (9.32) can be rewritten as:

ẋi = F (µ1) + F ′(µ1)δxi +
1
2
F (2)(µ1)δx

2
i

+
1
6
F (3)(µ1)δx

3
i − cµ2 − cδyi + I

(c)
i + I

(e)
i + ξi,
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ẏi = bµ1 − dµ2 + bδxi − dδyi + e, with
δxi = xi − µ1, δyi = yi − µ2,

I
(c)
i = w(1 − 1

N
)G(µ1) +

1
N

∑

j( �=i)
[G′(µ1)δxj

+
1
2
G(2)(µ1)δx

2
j +

1
6
G(3)(µ1)δx

3
j ].

3. We define variances and covariances between local variables:

γ1,1 =
1
N

N∑

i=1

〈
δx2
i

〉
, γ2,2 =

1
N

N∑

i=1

〈
δy2
i

〉
, γ1,2 =

1
N

N∑

i=1

〈
δx2
i δy

2
i

〉
,

and between global variables (using δX = X − µ1, δY = Y − µ2):

ρ1,1 =
〈
δX2

〉
, ρ2,2 =

〈
δY 2

〉
, ρ1,2 = 〈δX δY 〉 .

4. After some algebraic gymnastics (see [Has03a]), the following ODE-set
can be derived:

µ̇1 = f0 + f2γ1,1 − cµ2 + w (1− 1
N

) U0 + I(e)(t),

µ̇2 = bµ1 − dµ2 + e,

γ̇1,1 = 2[(f1 + 3f3γ1,1)γ1,1 − cγ1,2] + 2w(ρ1,1 −
γ1,1

N
) U1 + β2,

γ̇2,2 = 2(bγ1,2 − dγ2,2),

γ̇1,2 = bγ1,1 + (f1 + 3f3γ1,1 − d)γ1,2 − cγ2,2 + w (ρ1,2 −
γ1,2

N
) U1,

ρ̇1,1 = 2[(f1 + 3f3γ1,1)ρ1,1 − cρ1,2] + 2w (1− 1
N

) ρ1,1 U1 +
β2

N
,

ρ̇2,2 = 2(bρ1,2 − dρ2,2),

ρ̇1,2 = bρ1,1 + (f1 + 3f3γ1,1 − d)ρ1,2 − cρ2,2 + w (1− 1
N

) ρ1,2 U1,

where β2 =
1
N

N∑

i=1

β2
i ,

U0 = go + g2γ1,1, U1 = g1 + 3g3γ1,1,

fk = (1/k!)F (k)(µ1), gk = (1/k!)G(k)(µ1).

Based on the moment method , a dynamical mean-field approximation
(DMA) for an N -dimensional ensemble of FN-neurons (9.32) was proposed in
[Has03a] and subsequently applied to Hodgkin-Huxley neurons in [Has03b].

9.2.2 Stochastic Neural DDEs

In real-life dynamical systems, we can often see the coexistence of both noises
and time-delays. Their combined effect can be described by stochastic delay
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differential equations (SDDEs). For example, SDDEs have been used physi-
ology [LMB90, CDK97] as well as in optics [GR96, Mas01] - for modeling of
noise-driven systems with time-delayed feedbacks.

Langevin Ensembles

Dynamics of a Langevin ensemble with delayed couplings is given by the
following set of SDDEs [Has04a]:

ẋi = F (xi) +
w

N

N∑

k=1

H [xk(t− τ)] + ξi + I(e), (for i = 1, ..., N), (9.37)

where F (x) and H(x) are functions of x, I(e) is given by (9.34) and white
noises ξi are given by (9.33).

In DMA [Has03a, Has03b], the global variable X(t) and its mean µ(t) are
given by (9.36), with correlation functions given by:

γ(t, t′) =
1
N

N∑

i=1

〈δxi(t) δxi(t′)〉 , ρ(t, t′) = 〈δX(t) δX(t′)〉 ,

using δxi(t) = xi(t)− µ(t) and δX(t) = X(t)− µ(t).
The following three particular forms of the Langevin model (9.37) have

been analyzed (see [Has04a]):

1. Linear Langevin model (with the positive parameter a), given by:

F (x) = −ax, H(x) = x,

giving the stochastic ODEs (for m ≥ 1):

µ̇ = −aµ+ wµ(t− τ ) + I(e),

γ̇ = −2aγ + 2wρ(t, t− τ) + β2,

ρ̇ = −2aρ+ 2wρ(t, t− τ ) +
β2

N
,

ρ̇(t, t−mτ) = −2aρ(t, t−mτ) + wρ [t, t− (m+ 1)τ ]

+ wρ(t− τ , t−mτ) +
(
β2

2

)

∆(mτ).

2. Cubic Langevin model (with (a ≥ 0, b > 0)):

F (x) = −ax, H(x) = x− bx3,

giving the stochastic ODEs (for m ≥ 1):
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µ̇ = −aµ(t) + wu0(t− τ) + I(e)(t), (9.38)
γ̇ = −2aγ(t, t) + 2wu1(t− τ )ρ(t, t− τ) + β2,

ρ̇ = −2aρ(t, t) + 2wu1(t− τ )ρ(t, t− τ ) +
β2

N
,

ρ̇(t, t−mτ) = −2aρ(t, t−mτ) + wu1(t− (m+ 1)τ)ρ(t, t− (m+ 1)τ)

+ wu1(t− τ )ρ(t− τ, t−mτ) +
β2

N
∆(mτ), using

u0(t) = µ(t)− bµ(t)3 − 3bµ(t)γ(t, t), u1(t) = 1− 3bµ(t)2 − 3bγ(t, t).
(9.39)

3. Ikeda-Langevin model, using functions F and H previously used in
[IDA80, IM87] for analyzing chaotic dynamics in time-delayed systems
(for a ≥ 0):

F (x) = −ax, H(x) = sin(x),

as well as the relations:

H(2n)(t) = (−1)n sin(x), H(2n+1)(t) = (−1)n cos(x),

we get the ODEs (9.38), but with inputs given by:

u0(t) = sin [µ(t)] e−γ(t,t)/2, u1(t) = cos [µ(t)] e−γ(t,t)/2,

instead of (9.39).

FitzHugh-Nagumo SDDEs

Dynamics of an N -unit ensemble of noisy FN neurons has been described in
[Has04b] by the following set of SDDEs:

ẋ1i = F [x1i]− cx2i +
1

N − 1

∑

j( �=i)
wijG [x1j(t− τ ij)] + ξi + I(e),

ẋ2i = bx1i − dx2i, (9.40)

where i = 1, ..., N, F (x) = kx[x − h][1 − x], while the other terms have the
same meaning as before.

After applying DMA [Has03a, Has03b], the system (9.40) reduces to the
following set of DDEs [Has04b]:

µ̇1 = f0 + f2γ1,1 − cµ2 + w u0(t− τ) + I(e),

µ̇2 = bµ1 − dµ2 + e,

γ̇1,1 = 2[aγ1,1 − cγ1,2] + 2wu1(t− τ) ζ1,1(t, t− τ) + β2,

γ̇2,2 = 2[bγ1,2 − dγ2,2],
γ̇1,2 = bγ1,1 + [a− d]γ1,2 − cγ2,2 + wu1(t− τ ) ζ2,1(t, t− τ ),
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ρ̇1,1 = 2[aρ1,1 − cρ1,2] + 2wu1(t− τ )ρ1,1(t, t− τ ) +
β2

N
,

ρ̇2,2 = 2[bρ1,2 − dρ2,2],
ρ̇1,2 = bρ1,1 + [a− d]ρ1,2 − cρ2,2 + wu1(t− τ )ρ2,1(t, t− τ).

For the functions a = a(t), u0 = u0(t), u1 = u1(t), fk = fk(t), gk = gk(t) and
ζκ,ν(t, t

′) and other technical details, see [Has04b].

9.3 Appendix

9.3.1 Adaptive Path-Integral Computation in Python/Cython

In this section, we demonstrate adaptive numerical Monte Carlo (MC) solu-
tion of quantum-mechanical (QM) path integrals as high-dimensional integrals
with exponential integrands.

Class vegas.Integrator

A fast Python/Cython15 class vegas.Integrator [Lep14] gives fast MC-
estimates of arbitrary multidimensional integrals, using a recently enhanced
version of Lepage’s adaptive MC Vegas algorithm16 [Lep78] (for a review, see
[Ohl99]). The current vegas.Integrator implementation uses several adaptive
strategies, the most important of which is the re-mapping of the integration
variables in each direction, before it makes MC-estimates of the integral.17

Evaluation of multidimensional integrals

For example, consider a numerical solution of the following 4D integral:

I(x) = C

∫ 1

0

dx0

∫ 1

0

dx1

∫ 1

0

dx2

∫ 1

0

dx3 e−100g(x), g(x) =
∑

d

(xd − 0.5)2

(9.41)
where the constant C is chosen so that the exact solution is: I = 1.

The integral (9.41) can be evaluated, using the vegas.Integrator class in
several ways:

(i) The slow way is given by the following Python code):
15 Cython is a compiled hybrid of Python and C, which approaches C and Fortran

in speed.
16 Classical Vegas algorithm, which was implemented in Fortran, C and C++, was a

method for reducing error in MC-simulations by using a known (or approximate)
PDF to concentrate the search in those areas of the integrand that make the
greatest contribution to the total integral to be evaluated.

17 This is equivalent to a standard MC-optimization technique called importance
sampling .
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import vegas
import numpy as np

C=1013.2118364296088 # const. chosen so that exact sol: I=1.
# define the integrand f(x) where x[d] is a point in
4D space.
def f(x):

g=0.
for d in range(4):

g += (x[d]-0.5)**2 # exponent sum
return np.exp(-100.*g)*C

# create a 4D integrator
integ = vegas.Integrator([[-1,1],[0,1],[0,1],[0,1]])

result = integ(f, nitn=10, neval=1e4)
print(result.summary())
print(’result = %s Q = %.2f’ % (result, result.Q))

produces the following sample output:18

itn integral wgt average chi2/dof Q
-------------------------------------------------------
1 1.03(13) 1.03(13) 0.00 1.00
2 1.053(37) 1.052(36) 0.02 0.88
3 1.003(17) 1.012(16) 0.77 0.46
4 0.9970(89) 1.0007(78) 0.75 0.52
5 1.0036(84) 1.0020(57) 0.58 0.68
6 1.0048(75) 1.0031(45) 0.48 0.79
7 1.0158(69) 1.0069(38) 0.80 0.57
8 0.9943(59) 1.0032(32) 1.15 0.33
9 0.9986(49) 1.0019(27) 1.08 0.37

10 0.9970(44) 1.0005(23) 1.06 0.39

result = 1.0005(23) Q = 0.39

The result.summary() returns a summary of results per iteration. Here, the
first column is the iteration (ranges from 1 to nitn = 10), the second column
is the integral value evaluated in the iteration, ‘wgt average’ is the weighted-
average result per iteration (estimates are weighted by the inverse variance,
which gives much less weight to the early iterations), which minimizes the
following χ2 measure:

χ2 ≡
∑

i

(Ii − I)2
σ2
i

,

18 The result is slightly different in each simulation, due to random MC-fluctuations.
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(where Ii ± σi are the estimates from individual iterations), while Q-value of
the χ2, which is the probability that a larger χ2 could result from random
fluctuations.

(ii) About an order-of-magnitude faster way, producing a similar quality
result, is given by executing the following optimized Python (NumPy) code
(which uses the vegas.batchintegrand() decorator19 to a batch function for the
integrand):

import vegas
import numpy as np

dim=4; norm=1013.2118364296088**(dim/4.)

@vegas.batchintegrand
def f(x):

g=0.# simultaneous integration at multiple points
for d in range(dim):

g += (x[:,d]-0.5)**2
return np.exp(-100.*g)*norm

integ = vegas.Integrator(dim*[[0,1]],nhcube_batch=1000)

result = integ(f, nitn=10, neval=1e4)
print(result.summary())
print(’result = %s Q = %.2f’ % (result,result.Q))

(iii) Even (a few times) faster way, producing a similar quality result, is
given by executing the following Python/Cython code, which consists of two
modules: the Cython integrand:

# file: cython_integrand.pyx

cimport vegas # for BatchIntegrand
from libc.math cimport exp # use exp() from C library

import vegas
import numpy

cdef class f_cython(vegas.BatchIntegrand):
cdef double norm
cdef readonly int dim

def __init__(self, dim):
self.dim = dim

19 This batch integrand is pretty fast because it is expressed in terms of NumPy-
operators acting on entire arrays.
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self.norm = 1013.2118364296088**(dim/4.)

def __call__(self, double[:, ::1] x):
cdef int i, d
cdef double g
cdef double[::1] f = numpy.empty(x.shape[0], float)
for i in range(f.shape[0]):

g = 0.
for d in range(self.dim):

g += (x[i,d]-0.5)**2
f[i] = exp(-100.*g)*self.norm

return f

and the main Python code (that calls the Cython integrand):

import pyximport; pyximport.install()

import vegas
from cython_integrand import f_cython

f = f_cython(dim=4)
integ = vegas.Integrator(f.dim*[[0,1]],nhcube_batch=1000)

result = integ(f, nitn=10, neval=1e4)
print(result.summary())
print(’result = %s Q = %.2f’ % (result,result.Q))

Evaluation of oscillatory QM path-integrals

Now, we are ready for adaptive MC-approximation of QM path-integrals (with
the Hamiltonian operator Ĥ):

Ψ(x, t) = 〈xout| exp
[
−Ĥ (tout − tin) |xin

]
=
∫
Dx(t) exp [−S (x)] . (9.42)

with the classical action S (x) , given as a time integral of the Lagrangian
L = L(x, ẋ) [which is a kinetic energy mẋ2/2 (for a mechanical system with
mass m) minus potential energy V (x)]:

S (x) ≡
∫ tout

tin

Ldt =
∫ tout

tin

[
mẋ2

2
+ V (x)

]

dt, (9.43)

evaluated for each possible path x = x(t), in such a way that the sum of
probabilities of all paths is normalized to 1.
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A generic Cython integrand for 1D path-integrals

The numeric approximation of oscillatory 1D path-integrals of the form of
(9.42), has been implemented in the generic Cython integrand, based on the
following approximation:

∫ tj+1

tj

Ldt ≈ a

[
m

2

(
xj+1 − xj

a

)2

+
1
2

(V (xj+1) + V (xj))

]

(where a = (tout − tin) /N), from which the discretized action follows (see
[Lep98]):

Sdis (x) ≡
N−1∑

j=0

[m
2a

(xj+1 − xj)2 + aV (xj)
]
, (where x0 = xN = x) .

Here is the Cython implementation:

# cython: profile=True
# Modified from ’vegas-2.1.4/path_integrand.pyx’ by
G.P. Lepage,
# Ref: G.P. Lepage, Lattice QCD for Novices, Proc.HUGS98
(J.Goity ed),
# World Sci.(2000)
""" Cython code for the integrand used in various Python path
integrals.
Contains two classes: (i) class PathIntegral is a base class
for classes that do path integrals for 1-d systems; (ii)
class
Oscillator is derived from it and specifies a specific
potential. """
cimport vegas # import Cython
description of vegas
from libc.math cimport exp, tan, pow
# import funs from C
import numpy as np
import vegas

cdef class PathIntegral(vegas.BatchIntegrand):
"""Computes the amplitude: < x0 | exp(-H*T) | x0 >

# for some Hamiltonian H
Parameters:

T ...... (Euclidean) time
x0 ..... starting and ending position
(if None=>integrate over x0)
ndT .... total number of time steps
m ...... mass
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xscale . typical length scale for ground state
wavefunction
neval .. number of evaluations per iteration (vegas)
nitn ... number of iterations (vegas)

"""
cdef readonly int ndT, neval, nitn
cdef readonly double T, m, xscale, norm
cdef readonly double[::1] x
cdef readonly object integ

def __init__(self,T,ndT=10,m=1,xscale=1.,neval=25000,
nitn=10):

self.ndT = ndT; self.T = T; self.neval = neval
self.nitn = nitn; self.m = m; self.xscale = xscale
self.x = np.empty(self.ndT+1, float)
self.norm = (self.m*self.ndT/2./np.pi/T)**
(self.ndT/2.)

cdef double V(self, double x):
""" Derived classes needs to fill this in. """
raise NotImplementedError(’need to define V’)

def __call__(self, theta):
""" integrand for the path integral """
cdef int i, j
cdef double S, jac
cdef double a = self.T/self.ndT
cdef double m_2a = self.m/2./a
cdef double[::1] f = np.empty(theta.shape[0],float)
for i in range(len(f)):

jac = self.norm # compute Jacobian; map back to
range

-oo to +oo;
for j in range(theta.shape[1]):

self.x[j+1] = self.xscale*tan(theta[i,j])
jac *= (self.xscale + self.x[j+1]**2/
self.xscale)

self.x[0] = self.x[-1] # enforce periodic
bound. cond.
# compute the action according to eq.(17) from
(Lepage,98)
S = 0.
for j in range(self.ndT):

S += m_2a*(self.x[j+1]-self.x[j])**2 +
a*self.V(self.x[j])
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f[i] = jac*exp(-S)
return f

def correlator(self, x0=None):
"""Compute the amplitude: <x0|exp(-H*T)|x0> for array
of x0 values.
If x0 is None, integrate over x0. """
if x0 is None or len(x0) == 0:

# integrate over endpoints -> exp(-E0*T)
self.integ = vegas.Integrator(self.ndT*
[[-np.pi/2,np.pi/2]])
# train integrator
self.integ(self, neval=self.neval,
nitn=self.nitn)
# final integral
return self.integ(self,neval=self.neval,

nitn=self.nitn,alpha=0.1)
else:

ans = [] # set endpoints equal to x0[i]
-> psi(x0[i])^2 *

exp(-E0*T)
self.integ = vegas.Integrator((self.ndT-1)*
[[-np.pi/2,np.pi/2]])
# train integrator
self.x[0] = x0[0]; self.x[-1] = x0[0]
self.integ(self, neval=self.neval, nitn=self.
nitn)
for x0i in x0: # do final integrals

self.x[0] = x0i; self.x[-1] = x0i
ans.append(self.integ(self,neval=self.neval,

nitn=self.nitn,alpha=0.1))
return np.array(ans)

cdef class Oscillator(PathIntegral):
""" V(x) = x^2/2 + c*x^4 + c1*x^6
Exact solution: E0=0.5 for c=0; E0=0.602405 for c=0.2 """
cdef double c, c1
def __init__(self, c=0.0, c1=0.0, c2=0.0, *args,
**kargs):

super(Oscillator, self).__init__(*args, **kargs)
self.c = c; self.c1 = c1

cdef double V(self, double x):
return x*x/2. + self.c*pow(x,4) + self.c1*pow(x,6)
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Harmonic oscillator

We start with the path-integral (PI) code for the (exactly solvable) harmonic
oscillator (HO) with the quadratic potential energy: V (x) = x2/2 (see
Figure 9.5):

# Path Integral for the Harmonic Oscillator: V = x^2/2
# Modified from ’vegas-2.1.4/path-integral.py’ by G.P. Lepage
import pyximport; pyximport.install() # compiles
PIO_integrand.pyx
import vegas
import numpy as np
import matplotlib.pyplot as plt
from PIO_integrand import Oscillator

def main():
np.random.seed((1,2)) # seed random nums for
repeatability
T=4.; ndT = 8; neval = 30000; nitn = 15 # initialize
PI
pathint = Oscillator(T=T, ndT=ndT, neval=neval,
nitn=nitn)
exp_E0T = pathint.correlator() # compute ground-state
energy
E0 = -np.log(exp_E0T)/T
x0 = np.linspace(0.,2.,6) # compute psi^2 at
points x0
psi2 = pathint.correlator(x0=x0)/exp_E0T.mean
exact_hosc = np.empty(psi2.shape,float)
plot_results(E0,x0,psi2,T)

def plot_results(E0,x0,corr,T):
def make_plot(x0=x0,E0=E0,corr=corr,T=T):

corr_mean = np.array([z.mean for z in corr])
corr_sdev = np.array([z.sdev for z in corr])
plt.errorbar(x=x0,y=corr_mean,yerr=corr_sdev,

fmt=’bo’,label=’path integral’)
x = np.linspace(0,2.,100)
y = np.exp(-x**2)/np.sqrt(np.pi)
plt.plot(x,y,’r:’,label=’exact’)
plt.legend((’numeric’,’exact’), frameon=False)
plt.xlabel(’$x$’)
plt.ylabel(’$|\psi(x)|^2$’)
plt.text(1.4,0.475,’$E_0 =$ %s’%E0)
plt.title("Harmonic Oscillator: Psi^2")
plt.draw()
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make_plot()
plt.show()

if __name__ == ’__main__’:
main()

Fig. 9.5. Path integral: harmonic oscillator (HO, dots), compared to the exact
solution E0 (line).

Quartic anharmonic oscillator

Next, here is the PI-code for the weak quantum anharmonic oscillator with
the quartic potential energy: V (x) = x2/2 + x4/4 (see Figure 9.6):

# Path Integral for the Anharmonic Oscillator:
V = x^2/2 + x^4/4
# Modified from ’vegas-2.1.4/path-integral.py’ by G.P. Lepage
import pyximport; pyximport.install() # compiles
PIO_integrand.pyx
import vegas
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import numpy as np
import matplotlib.pyplot as plt
from PIO_integrand import Oscillator

def main():
np.random.seed((1,2)) # seed random nums for
repeatability
T=4.; ndT = 8; neval = 30000; nitn = 15 # initialize
PI
pathint = Oscillator(c=0.25,T=T,ndT=ndT,neval=neval,
nitn=nitn)
exp_E0T = pathint.correlator() # compute ground-state
energy
E0 = -np.log(exp_E0T)/T
x0 = np.linspace(0.,2.,6) # compute psi^2 at
points x0
psi2 = pathint.correlator(x0=x0)/exp_E0T.mean
plot_results(E0,x0,psi2,T)

def plot_results(E0,x0,corr,T):
def make_plot(x0=x0,E0=E0,corr=corr,T=T):

corr_mean = np.array([z.mean for z in corr])
corr_sdev = np.array([z.sdev for z in corr])
plt.errorbar(x=x0,y=corr_mean,yerr=corr_sdev,

fmt=’bo’,label=’path integral’)
x = np.linspace(0,2.,100)
y = np.exp(-x**2)/np.sqrt(np.pi)
plt.plot(x,y,’r:’)
plt.xlabel(’$x$’)
plt.ylabel(’$|\psi(x)|^2$’)
plt.text(1.4,0.475,’$E_0 =$ %s’%E0)
plt.title("Anharmonic Oscillator: Psi^2")
plt.draw()

make_plot()
plt.show()

if __name__ == ’__main__’:
main()

Sixtic anharmonic oscillator

Finally, here is the PI-code for the strong quantum anharmonic oscillator with
the sixtic potential energy: V (x) = x2/2 + x4/4 + x6/6 (see Figure 9.7):

# Path Integral for the Anharmonic Oscillator 2:
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Fig. 9.6. Path integral: quartic anharmonic oscillator (dots), compared to
the HO (line). The exact solution E0 is also given.

V = x^2/2 + x^4/4 + x^6/6
# Modified from ’vegas-2.1.4/path-integral.py’ by G.P. Lepage
import pyximport; pyximport.install() # compiles
PIO_integrand.pyx
import vegas
import numpy as np
import matplotlib.pyplot as plt
from PIO_integrand import Oscillator

def main():
np.random.seed((1,2)) # seed random nums for
repeatability
T=4.; ndT = 8; neval = 30000; nitn = 15 # initialize
PI
pathint = Oscillator(c=0.25,c1=0.166666667,T=T,ndT=ndT,

neval=neval,nitn=nitn)
exp_E0T = pathint.correlator() # compute ground-state
energy
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E0 = -np.log(exp_E0T)/T
x0 = np.linspace(0.,2.,6) # compute psi^2 at
points x0
psi2 = pathint.correlator(x0=x0)/exp_E0T.mean
plot_results(E0,x0,psi2,T)

def plot_results(E0,x0,corr,T):
def make_plot(x0=x0,E0=E0,corr=corr,T=T):

corr_mean = np.array([z.mean for z in corr])
corr_sdev = np.array([z.sdev for z in corr])
plt.errorbar(x=x0,y=corr_mean,yerr=corr_sdev,

fmt=’bo’,label=’path integral’)
x = np.linspace(0,2.,100)
y = np.exp(-x**2)/np.sqrt(np.pi)
plt.plot(x,y,’r:’)
plt.xlabel(’$x$’)
plt.ylabel(’$|\psi(x)|^2$’)
plt.title("Anharmonic Oscillator 2: Psi^2")
plt.draw()

make_plot()
plt.show()

if __name__ == ’__main__’:
main()

9.3.2 Main Continuous Probability Distributions

Some Important Special Functions

The following special functions are frequently used in probability distributions
(see [AS72]):

• The Euler gamma function:

Γ (α) =
∫ ∞

0

tα−1e−tdt.

The incomplete gamma function:

Γ (α, β) =
∫ ∞

β

tα−1e−tdt.

• The Euler beta function:

B(α, β) =
Γ (α)Γ (β)
Γ (α+ β)

=
∫ 1

0

tα−1(1 − t)β−1dt.
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Fig. 9.7. Path integral: sixtic anharmonic oscillator (dots), compared to the
HO (line).

The incomplete beta function:

Bt(α, β) =
∫ t

0

tα−1(1 − t)β−1dt.

• The error function:

erf(α) =
2√
π

∫ α

0

exp(−t2) dt.

Uniform distribution

Uniform distribution dunif(min,max), giving values between min and max,
is given by the following PDF:

f(t,min,max) =

{
1

max−min
min ≤ t ≤ max

0 otherwise
,

(with −∞ ≤ min ≤ t ≤ max ≤ ∞).

The mean, variance and CDF of the log-normal distribution are given by:
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Mean =
max+ min

2
,

V ariance =
1
12

(max−min)2,

CDF =

{
t−min

max−min
min ≤ t ≤ max

1 t > max
.

Normal distribution

Normal (Gaussian) distribution dnorm(µ, σ), with mean µ and standard de-
viation σ, is given by the following PDF:

f(t, µ, σ) =
exp

[
− (t−µ)2

2σ2

]

√
2πσ

, [with µ, σ > 0, t ∈ (−∞,∞)].

Its CDF is given by:

CDF =
1
2

(

erf
(
t− µ√

2σ

)

+ 1
)

,

where erf
(
t−µ√

2σ

)
is the error function.

Log-Normal distribution

Log-normal distribution dlnorm(µ, σ), where (µ, σ) are the mean and the
standard deviation of the corresponding normal distribution dnorm(µ, σ), is
given by the following PDF:

f(t, µ, σ) =
exp

[
− (log(t)−µ)2

2σ2

]

√
2πσt

, [with µ, σ > 0, t ∈ (−∞,∞)].

The mean, variance and CDF of the log-normal distribution are given by:

Mean = exp
(

µ+
σ2

2

)

,

V ariance =
[
exp

(
σ2
)
− 1
]
exp

(
2µ+ σ2

)
,

CDF =

{
1
2

[
erf
(

log(t)−µ√
2σ

)
+ 1
]
, t > 0

0, t ≤ 0
,

where erf
(

log(t)−µ√
2σ

)
is the error function.
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Beta distribution

Log-normal distribution dbeta(α,β), with shape parameters α and β, is given
by the following PDF:

f(t, α, β) =
tα−1(1 − t)β−1

B(α, β)
, [with α, β > 0, t ∈ (0, 1)],

where B(α, β) is the Euler beta function.
The mean, variance and CDF of the log-normal distribution are given by:

Mean =
α

α+ β

V ariance =
αβ

(α+ β)2(α+ β + 1)
,

CDF = It(α, β) ≡ Bt(α, β)
B(α, β)

,

where It(α, β) is the regularized incomplete beta function.

Chi-squared (χ2) distribution

Chi-squared distribution dchisqr(ν), with ν degrees of freedom, is given by
the following PDF:

f(t, ν) =
2(−ν/2)t(

ν
2 −1) exp(− t

2
)

Γ
(
ν
2

) , [with t, ν > 0].

The mean, variance and CDF of the χ2 distribution are given by:

Mean = ν

V ariance = 2ν,

CDF = Q

(
ν

2
, 0,

t

2

)

≡
Γ
(
ν
2
, 0, t

2

)

Γ
(
ν
2

) ,

where Q
(
ν
2 , 0,

t
2

)
is the generalized regularized incomplete gamma function.

Student-t distribution

Student distribution dt(µ,λ,ν), with location parameter µ,scale parameter
λ, and degrees of freedom ν, is given by the following PDF:

f(t, µ, λ, ν) =

[
ν/( (t−µ)2

λ2 + ν)
] ν+1

2

λ
√
νB
(
ν
2
, 1

2

) , [with λ, ν > 0; t, µ ∈ (−∞,∞)].

The mean, variance and CDF of the χ2 distribution are given by:
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Mean =

{
µ ν > 1
Indeterminate ν ≤ 1

V ariance =

{
λ2ν
ν−2

ν > 2
Indeterminate ν ≤ 2

,

CDF =
1
2

[

sgn(t− µ) Iα

(
ν

2
,
1
2

)

+ 1
]

,

with α =

(
ν

(t−µ)2

λ2 + ν
, 1

)

, Iα

(
ν

2
,
1
2

)

≡
Bα(ν

2
, 1

2
)

B(ν
2
, 1

2
β)
,

where Iα
(
ν
2 ,

1
2

)
is the regularized incomplete beta function.

Weibull distribution

Weibull distribution dweib(α, λ) is given by the following PDF:

f(t, α, λ) = αtα−1λ−α exp [− (t/λ)α] , (with t, α, λ > 0),

where α is a shape parameter and λ is a scale parameter.
The mean, variance and CDF of the Weibull distribution are given by:

Mean = λΓ

(

1 +
1
α

)

,

V ariance = λ2

(

Γ

(

1 +
2
α

)

− Γ
(

1 +
1
α

)2
)

,

CDF = 1− exp [− (t/λ)α] ,

where Γ (z) is the Euler gamma function.
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10

Crash Simulator: Brain-and-Spine Injury
Mechanics

Recently, the first author has proposed a new coupled loading-rate hypothesis
as a unique cause of both brain and spinal injuries, which states that they are
both caused by a Euclidean jolt, an impulsive loading that strikes head and
spine (or, any other part of the human body) - in several coupled degrees-of-
freedom simultaneously. Injury never happens in a single direction only, nor
is it ever caused by a static force. It is always an impulsive translational plus
rotational force. The Euclidean jolt causes two basic forms of brain, spine
and other musculo-skeletal injuries: (i) localized translational dislocations;
and (ii) localized rotational disclinations. In the present Chapter, we first
review this unique mechanics of a general human mechanical injury, and then
describe how it can be predicted and controlled by a crash simulator toolbox.
This rigorous Matlab toolbox has been developed using an existing third-
party toolbox DiffMan, for accurately solving differential equations on smooth
manifolds and mechanical Lie groups. The present crash simulator toolbox
performs prediction/control of brain and spinal injuries within the framework
of the Euclidean group SE(3) of rigid motions in our natural 3-dimensional
space.1

10.1 Introduction

Prediction and prevention of traumatic brain injury and spinal injury, as well
as general musculo-skeletal injury, is a very important aspect of preventive
medical science. In a series of papers [Iva09a, Iva09b, Iva09c, Iva10a], the
first author of the present article proposed a new coupled loading-rate hy-
pothesis as a unique cause of all above injuries. This new hypothesis states
that the main cause of all mechanical injuries is a Euclidean Jolt, which is
1 The work in this chapter has been developed in collaboration with Dr.

Shady Mohamed, Centre for Intelligent Systems Research, Deakin University,
Australia; e-mail:Shady.Mohamed@deakin.edu.au
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an impulsive loading that strikes any part of the human body (head, spine
or any bone/joint) - in several coupled degrees-of-freedom simultaneously. It
never goes in a single direction only. Also, it is never a static force. It is al-
ways an impulsive translational and/or rotational force coupled to some mass
eccentricity.

Fig. 10.1. Human brain and its SE(3)-group of microscopic three-
dimensional motions within the cerebrospinal fluid inside the cranial cavity.

To show this, based on the previously defined covariant force law [II06a,
II05, II06b], we have firstly formulated the fully coupled Newton-Euler dy-
namics of:

1. Brain’s micro-motions within the cerebrospinal fluid inside the cranial
cavity;

2. Any local inter-vertebral motions along the spine; and
3. Any major joint motions in the human musculo-skeletal system.

Then, from it, we have defined the essential concept of Euclidean Jolt ,
which is the main cause of all mechanical human injuries. The Euclidean Jolt
has two main components:

• Sudden motion, caused either by an accidental impact or slightly distorted
human movement; and
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• Unnatural mass distribution of the human body (possibly with some added
external masses), which causes some mass eccentricity from the natural
physiological body state.

Fig. 10.2. Human body representation in terms of SE(3)/SE(2)-groups of
rigid-body motion, with the vertebral column represented as a chain of 26
flexibly-coupled SE(3)-groups.

This can be intuitively (in “plain English”) explained in the following way.
As we live in a (Euclidean) 3D space, one could think that motion of any part
of the human body, caused either by a voluntary human movement, or by an
accidental impact, “simply obeys classical mechanics in 6 degrees-of-freedom:
three translations and three rotations”. However, these 6 degrees-of-freedom
are not independent motions as it is suggested by the standard term “degrees-
of-freedom”. In reality, these six motions of any body in space are coupled.
Firstly, three rotations are coupled in the so-called rotation group (or matrix,
or quaternion). Secondly, three translations are coupled with the rotation
group to give the full Euclidean group of rigid body motions in space. A sim-
ple way to see this is to observe someone throwing an object in the air or
hitting a tennis ball: how far and where it will fly depends not only on the
standard “projectile” mechanics, but also on its local “spin” around all three
axes simultaneously. Every golf and tennis player knows this simple fact. Once
the spin is properly defined we have a “fully coupled Newton-Euler dynamics”
- to start with.

The covariant force law for any biodynamical system goes one step beyond
the Newton-Euler dynamics. It states:
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Euclidean Force covector field

= Body mass distribution × Euclidean Acceleration vector field

This is a nontrivial biomechanical generalization of the fundamental New-
ton’s definition of the force acting on a single particle. Unlike classical en-
gineering mechanics of multi-body systems, this fundamental law of biome-
chanics proposes that forces acting on a multi-body system and causing its
motions are fundamentally different physical quantities from the resulting ac-
celerations. In simple words, forces are massive quantities while accelerations
are massless quantities. More precisely, the acceleration vector-field includes
all linear and angular accelerations of individual body segments. When we
couple them all with the total body’s mass-distribution matrix of all body
segments (including all masses and inertia moments), we get the force co-
vector-field, comprising all the forces and torques acting on the individual
body segments. In this way, we have defined the 6-dimensional Euclidean
force for an arbitrary biomechanical system.

Now, for prediction of injuries, we need to take the rate-of-change (or
derivative, with respect to time) of the Euclidean biomechanical force defined
above. In this way, we get the Euclidean Jolt, which is the sudden change (in
time) of the 6-dimensional Euclidean force:

Euclidean Jolt covector field

= Body mass distribution × Euclidean Jerk vector field

And again, it consists of two components: (i) massless linear and angular
jerks (of all included body segments), and (ii) their mass distribution. For the
sake of simplicity, we can say that the mass distribution matrix includes all
involved segmental masses and inertia moments, as well as “eccentricities” or
“pathological leverages” from the normal physiological state.

Therefore, the unique cause of all brain, spine and musculo-skeletal injuries
has two components:

• Coupled linear and angular jerks; and
• Mass distribution with “eccentricities”.

In other words, there are no injuries in static conditions without any mass
eccentricities; all injuries are caused by mutually coupled linear and angular
jerks, which are also coupled with the involved mass distribution.

The Euclidean Jolt causes two forms of discontinuous brain, spine or
musculo-skeletal injury:

1. Mild rotational disclinations; and
2. Severe translational dislocations and/or bone fractures.
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In the cited papers above, we have developed the soft-body dynamics of
biomechanical disclinations and dislocations, caused by the Euclidean Jolt,
using the Cosserat multipolar viscoelastic continuum model.

Implications of the new universal theory are various, as follows.

A. The research in traumatic brain injury (TBI, see Figure 10.1) has so far
identified the rotation of the brain-stem as the main cause of the TBI due to
various crashes/impacts. The contribution of my universal Jolt theory to the
TBI research is the following:

1. Rigorously defined this brain rotation as a mechanical disclination of
the brain-stem tissue modeled by the Cosserat multipolar soft-body model;

2. Showing that brain rotation is never uni-axial but always three-axial;
3. Showing that brain rotation is always coupled with translational dis-

locations. This is a straightforward consequence of my universal Jolt theory.

These apparently ‘obvious’ facts are actually radically new: we cannot
separately analyze rapid brain’s rotations from translations, because they are
in reality always coupled.

One practical application of the brain Jolt theory is in design of helmets.
Briefly, a ‘hard’ helmet saves the skull but not the brain; alternatively, a ‘soft’
helmet protects the brain from the collision jolt but does not protect the skull.
A good helmet is both ‘hard’ and ‘soft’. A proper helmet would need to have
both a hard external shell (to protect the skull) and a soft internal part (that
will dissipate the energy from the collision jolt by its own destruction, in the
same way as a car saves its passengers from the collision jolt by its own de-
struction).

Similarly, in designing safer car air-bags, the two critical points will be
(i) their placement within the car, and (ii) their “soft-hard characteristics”,
similar to the helmet characteristics described above.

B. In case of spinal injury (see Figure 10.2), the contribution of my universal
Jolt theory is the following:

1. The spinal injury is always localized at the certain vertebral or inter-
vertebral point;

2. In case of severe translational injuries (vertebral fractures or discus
herniae) they can be identified using X-ray or other medical imaging scans; in
case of microscopic rotational injuries (causing the back-pain syndrome) they
cannot be identified using current medical imaging scans;

3. There is no spinal injury without one of the following two causes:
a. Impulsive rotational + translational loading caused by either fast

human movements or various crashes/impacts; and/or
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b. Static eccentricity from the normal physiological spinal form,
caused by external loading;

c. Any spinal injury is caused by a combination of the two points
above: impulsive rotational + translational loading and static eccentricity.

This is a straightforward consequence of my universal Jolt theory. We
cannot separately analyze translational and rotational spinal injuries. Also,
there are no “static injuries” without eccentricity. Indian women have for
centuries carried bulky loads on their heads without any spinal injuries; they
just prevented any load eccentricities and any jerks in their motion.

The currently used “Principal loading hypothesis” that describes spinal
injuries in terms of spinal tension, compression, bending, and shear, covers
only a small subset of all spinal injuries covered by my universal Jolt theory.
To prevent spinal injuries we need to develop spinal jolt awareness: ability to
control all possible impulsive spinal loadings as well as static eccentricities.

C. In case of general musculo-skeletal injury, the contribution of my univer-
sal Jolt theory is the following:

1. The injury is always localized at the certain joint or bone and caused
by an impulsive loading, which hits this particular joint/bone in several cou-
pled degrees-of-freedom simultaneously;

2. Injury happens when most of the body mass is hanging on that joint;
for example, in case of a knee injury, when most of the body mass is on one
leg with a semi-flexed knee – and then, caused by some external shock, the
knee suddenly “jerks” (this can happen in running, skiing, and ball games, as
well as various crashes/impacts); or, in case of shoulder injury, when most of
the body mass is hanging on one arm and then it suddenly jerks.

To prevent all these injuries we need to develop musculo-skeletal jolt aware-
ness. For example, never overload a flexed knee and avoid any kind of uncon-
trolled motions (like slipping) or collisions with external objects.

In this Chapter, we propose two things: firstly, a universal theory of brain-
and-spine injury prediction and prevention; and secondly, a MatlabTM crash-
simulator toolbox for prediction of brain-and-spine injury.

10.2 Brain-and-Spine Injury

10.2.1 Traumatic Brain Injury Mechanics

Traumatic brain injury (TBI) is still a major health problem, with over a half-
a-milion cases per year, mostly caused by motor-vehicle accidents (frequently
involving alcohol use). TBI occurs when physical trauma causes brain damage,
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which can result from a closed head injury2 or a penetrating head injury.3 In
both cases, TBI is caused by rapid deformation of the brain, resulting in a cas-
cade of pathological events and ultimately neuro-degeneration.4 Parts of the
brain that can be damaged include the cerebral hemispheres, cerebellum, and
brain stem. TBI can cause a host of physical, cognitive, emotional, and social
effects. TBI is a frequent cause of major long-term disability in individuals
surviving head injuries sustained in war zones. This is becoming an issue of
growing concern in modern warfare in which rapid deployment of acute inter-
ventions are effective in saving the lives of combatants with significant head
injuries. Traumatic brain injury has been identified as the ‘signature injury’
among wounded soldiers of military engagement. Rapid deformation of brain
matter caused by skull acceleration is most likely the cause of concussion, as
well as more severe TBI. The inability to measure deformation directly has
led to disagreement and confusion about the biomechanics of concussion and
TBI (see [Iva09a] and references therein).

TBI can be mild, moderate, or severe (depending on the extent of the
damage to the brain), while the final outcome can be anything from complete
recovery to permanent disability or death (see [CCC08]). Some symptoms are
evident immediately, while others do not surface until several days or weeks
after the injury5 (see [NIH02]).

The natural cushion that protects the brain from trauma is the cere-
brospinal fluid (CSF). It resides within cranial and spinal cavities and moves
in a pulsatile fashion to and from the cranial cavity (see Figure 10.1). This
motion can be measured by functional magnetic resonance imaging (fMRI,
see [Sok08] for a review) and may be of clinical importance in the diagno-
sis of several brain and spinal cord disorders such as hydrocephalus, Chiari
2 A closed injury occurs when the head suddenly and violently hits an object but

the object does not break through the skull.
3 A penetrating injury occurs when an object pierces the skull and enters brain

tissue.
4 In many cases of TBI widespread disruption of the axons occurs through a process

known as diffuse axonal injury (DAI) or traumatic axonal injury (TAI).
5 With mild TBI, the patient may remain conscious or may lose consciousness for

a few seconds or minutes; the person may also feel dazed or not like him- or her-
self for several days or weeks after the initial injury; other symptoms include:
headache, mental confusion, lightheadedness, dizziness, double vision, blurred
vision (or tired eyes), ringing in the ears, bad taste in the mouth, fatigue or
lethargy, a change in sleep patterns, behavioral or mood changes, trouble with
memory/concentration/calculation. With moderate or severe TBI, the patient
may show these same symptoms, but may also have: loss of consciousness, person-
ality change, a severe/persistent/worsening headache, repeated vomiting/nausea,
seizures, inability to awaken, dilation (widening) of one or both pupils, slurred
speech, weakness/numbness in the extremities, loss of coordination, increased
confusion, restlessness/agitation; vomiting and neurological deficit together are
important indicators of prognosis and their presence may warrant early CT scan-
ning and neurosurgical intervention.
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malformation, and syringomyelia. It was found in [MHJ94] that brain and
CSF of healthy volunteers exhibited periodic motion in the frequency range
of normal heart rate. Both brain hemispheres showed periodic squeezing of
the ventricles, with peak velocities up to 1 mm/sec followed by a slower re-
coil. Superimposed on the regular displacement of the brain stem was a slow,
respiratory-related periodic shift of the neutral position. During the Valsalva
maneuver, the brain stem showed initial caudal and subsequent cranial dis-
placement of 2-3 mm. Coughing produced a short swing of CSF in the cephalic
direction. The pressure gradient waveform of a linearized Navier-Stokes model
of the pulsatile CSF flow was found in [LYA01] to be almost exclusively de-
pendent on the flow waveform and cross-sectional area.

The microscopic motion of human brain within the skull is, in the lan-
guage of modern dynamics [II06a, II05, II06b], governed by the Euclidean
SE(3)-group of 3D motions. Within brain’s SE(3)-group we have both SE(3)-
kinematics (consisting of SE(3)-velocity and its two time derivatives: SE(3)-
acceleration and SE(3)-jerk) and SE(3)-dynamics (consisting of SE(3)-mo-
mentum and its two time derivatives: SE(3)-force and SE(3)-jolt), which is
brain’s kinematics × brain’s mass-inertia distribution.

As already explained, the external SE(3)-jolt6 is a sharp and sudden
change in the SE(3)-force acting on brain’s mass-inertia distribution (given
by brain’s mass and inertia matrices). That is, a ‘delta’-change in a 3D force-
vector coupled to a 3D torque-vector, striking the head-shell with the brain
immersed into the cerebrospinal fluid. In other words, the SE(3)-jolt is a sud-
den, sharp and discontinues shock in all 6 coupled dimensions of brain’s con-
tinuous micro-motion within the cerebrospinal fluid (see Figure 10.1), namely
within the three Cartesian (x, y, z)-translations and the three corresponding
Euler angles around the Cartesian axes: roll, pitch and yaw. If the SE(3)-
jolt produces a mild shock to the brain (e.g., strong head shake), it causes
mild TBI, with temporary disabled associated sensory-motor and/or cognitive
functions and affecting respiration and movement. If the SE(3)-jolt produces
a hard shock (hitting the head with external mass), it causes severe TBI, with
the total loss of gesture, speech and movement.

The SE(3)-jolt is rigorously defined in terms of differential geometry [II06b,
II07]. Briefly, it is the absolute time-derivative of the covariant force 1-form
(or, co-vector-field). As already stated, the fundamental law of biomechanics
is the covariant force law:
6 The mechanical SE(3)-jolt concept is based on the mathematical concept of

higher-order tangency (rigorously defined in terms of jet bundles of the head’s
configuration manifold) [II06b, II07], as follows: When something hits the hu-
man head, or the head hits some external body, we have a collision. This is
naturally described by the SE(3)-momentum, which is a nonlinear coupling of 3
linear Newtonian momenta with 3 angular Eulerian momenta. The tangent to the
SE(3)-momentum, defined by the (absolute) time derivative, is the SE(3)-force.
The second-order tangency is given by the SE(3)-jolt, which is the tangent to the
SE(3)-force, also defined by the time derivative.
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Force co-vector-field = Mass distribution×Acceleration vector-field,

which is formally written (using the Einstein summation convention, with
indices labelling the three Cartesian translations and the three corresponding
Euler angles):

Fµ = mµνa
ν , (µ, ν = 1, ..., 6)

where Fµ denotes the 6 covariant components of the external “pushing” SE(3)-
force co-vector-field, mµν represents the 6×6 covariant components of brain’s
inertia-metric tensor, while aν corresponds to the 6 contravariant components
of brain’s internal SE(3)-acceleration vector-field.

Now, the covariant (absolute, Bianchi) time-derivative D
dt(·) of the covari-

ant SE(3)-force Fµ defines the corresponding external “striking” SE(3)-jolt
co-vector-field:

D

dt
(Fµ) = mµν

D

dt
(aν) = mµν

(
ȧν + Γ νµλa

µaλ
)
, (10.1)

where D
dt (a

ν) denotes the 6 contravariant components of brain’s internal
SE(3)-jerk vector-field and overdot (˙) denotes the time derivative. Γ νµλ are
the Christoffel’s symbols of the Levi-Civita connection for the SE(3)-group,
which are zero in case of pure Cartesian translations and nonzero in case of
rotations as well as in the full-coupling of translations and rotations.

In the following, we elaborate on the SE(3)-jolt concept (using vector and
tensor methods) and its biophysical TBI consequences in the form of brain’s
dislocations and disclinations.

SE(3)-group of brain’s micro-motions within the CSF

The brain and the CSF together exhibit periodic microscopic translational and
rotational motion in a pulsatile fashion to and from the cranial cavity, in the
frequency range of normal heart rate (with associated periodic squeezing of
brain’s ventricles) [MHJ94]. This micro-motion is mathematically defined by
the Euclidean (gauge) SE(3)-group. Briefly, the SE(3)-group is defined as a
semidirect (noncommutative) product � of 3D rotations and 3D translations:

SE(3) := SO(3) � R
3.

Its most important subgroups are the following (see Appendix for technical
details):
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Subgroup Definition
SO(3), group of rotations
in 3D (a spherical joint)

Set of all proper orthogonal
3× 3− rotational matrices

SE(2), special Euclidean group
in 2D (all planar motions)

Set of all 3× 3−matrices:


cos θ sin θ rx
− sin θ cos θ ry

0 0 1





SO(2), group of rotations in 2D
subgroup of SE(2)-group

(a revolute joint)

Set of all proper orthogonal
2× 2− rotational matrices
included in SE(2)− group

R3, group of translations in 3D
(all spatial displacements) Euclidean 3D vector space

In other words, the gauge SE(3)-group of Euclidean micro-motions of the
brain immersed in the cerebrospinal fluid within the cranial cavity, contains

matrices of the form
„

R b
0 1

«

, where b is brain’s 3D micro-translation vector

and R is brain’s 3D rotation matrix, given by the product R = Rϕ · Rψ · Rθ
of brain’s three Eulerian micro-rotations, roll = Rϕ, pitch = Rψ, yaw = Rθ,
performed respectively about the x−axis by an angle ϕ, about the y−axis by
an angle ψ, and about the z−axis by an angle θ [Iva04, PC05, II06a, II05,
II06b]:

Rϕ =

2

4
1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ

3

5 , Rψ =

2

4
cosψ 0 sinψ

0 1 0
− sinψ 0 cosψ

3

5 , Rθ =

2

4
cos θ − sin θ 0
sin θ cos θ 0

0 0 1

3

5 .

Therefore, brain’s natural SE(3)-dynamics within the cerebrospinal fluid
is given by the coupling of Newtonian (translational) and Eulerian (rotational)
equations of micro-motion.

Brain’s natural SE(3)-dynamics

To support our coupled loading-rate hypothesis, we formulate the coupled
Newton-Euler dynamics of brain’s micro-motions within the scull’s SE(3)-
group of motions. The forced Newton-Euler equations read in vector (boldface)
form

Newton : ṗ ≡Mv̇ = F + p× ω, (10.2)
Euler : π̇ ≡ Iω̇ = T + π × ω + p× v,

where × denotes the vector cross product,7

7 Recall that the cross product u × v of two vectors u and v equals u × v =
uv sin θn, where θ is the angle between u and v, while n is a unit vector perpen-
dicular to the plane of u and v such that u and v form a right-handed system.
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M ≡Mij = diag{m1,m2,m3} and I ≡ Iij = diag{I1, I2, I3},
(i, j = 1, 2, 3)

are brain’s (diagonal) mass and inertia matrices,8 defining brain’s mass-inertia
distribution, with principal inertia moments given in Cartesian coordinates
(x, y, z) by volume integrals

I1 =
∫∫∫

ρ(z2 + y2)dxdydz, I2 =
∫∫∫

ρ(x2 + z2)dxdydz,

I3 =
∫∫∫

ρ(x2 + y2)dxdydz,

dependent on brain’s density ρ = ρ(x, y, z),

v ≡ vi = [v1, v2, v3]t and ω ≡ ωi = [ω1, ω2, ω3]t

(where [ ]t denotes the vector transpose) are brain’s linear and angular velocity
vectors (that is, column vectors),

F ≡ Fi = [F1, F2, F3] and T ≡ Ti = [T1, T2, T3]

are gravitational and other external force and torque co-vectors (that is, row
vectors) acting on the brain within the scull,

p ≡ pi ≡Mv = [p1, p2, p3] = [m1v1,m2v2,m2v2] and
π ≡ πi ≡ Iω = [π1, π2, π3] = [I1ω1, I2ω2, I3ω3]

are brain’s linear and angular momentum co-vectors.
In tensor form, the forced Newton-Euler equations (10.2) read:

ṗi ≡ Mij v̇
j = Fi + εjikpjω

k, (i, j, k = 1, 2, 3)

π̇i ≡ Iij ω̇
j = Ti + εjikπjω

k + εjikpjv
k,

where the permutation symbol εjik is defined as:

8 In reality, mass and inertia matrices (M, I) are not diagonal but rather full 3× 3
positive-definite symmetric matrices with coupled mass- and inertia-products.
Even more realistic, fully-coupled mass-inertial properties of a brain immersed in
(incompressible, irrotational and inviscid) cerebrospinal fluid are defined by the
single non-diagonal 6×6 positive-definite symmetric mass-inertia matrix MSE(3),
the so-called material metric tensor of the SE(3)-group, which has all nonzero
mass-inertia coupling products. In other words, the 6×6 matrix MSE(3) contains:
(i) brain’s own mass plus the added mass matrix associated with the fluid, (ii)
brain’s own inertia plus the added inertia matrix associated with the potential
flow of the fluid, and (iii) all the coupling terms between linear and angular
momenta. However, for simplicity, in this paper we shall consider only the simple
case of two separate diagonal 3 × 3 matrices (M, I).
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εjik =






+1 if (i, j, k) is (1, 2, 3), (3, 1, 2) or (2, 3, 1),
−1 if (i, j, k) is (3, 2, 1), (1, 3, 2) or (2, 1, 3),
0 otherwise: i = j or j = k or k = i.

In scalar form, the forced Newton-Euler equations (10.2) expand as

Newton :






ṗ1 = F1 −m3v3ω2 +m2v2ω3

ṗ2 = F2 +m3v3ω1 −m1v1ω3

ṗ3 = F3 −m2v2ω1 +m1v1ω2

, (10.3)

Euler :






π̇1 = T1 + (m2 −m3)v2v3 + (I2 − I3)ω2ω3

π̇2 = T2 + (m3 −m1)v1v3 + (I3 − I1)ω1ω3

π̇3 = T3 + (m1 −m2)v1v2 + (I1 − I2)ω1ω2

,

showing brain’s individual mass and inertia couplings.
Equations (10.2)-(10.3) can be derived from the translational + rotational

kinetic energy of the brain9

Ek =
1
2
vtMv +

1
2
ωtIω, (10.4)

or, in tensor form

E =
1
2
Mijv

ivj +
1
2
Iijω

iωj .

For this we use the Kirchhoff-Lagrangian equations (see [Iva09a] and ref-
erences therein):

d

dt
∂vEk = ∂vEk × ω + F, (10.5)

d

dt
∂ωEk = ∂ωEk × ω + ∂vEk × v + T,

where ∂vEk = ∂Ek

∂v
, ∂ωEk = ∂Ek

∂ω
; in tensor form these equations read

d

dt
∂viE = εjik (∂vjE)ωk + Fi,

d

dt
∂ωiE = εjik (∂ωjE)ωk + εjik (∂vjE) vk + Ti.

Using (10.4)-(10.5), brain’s linear and angular momentum co-vectors are
defined as

p = ∂vEk, π = ∂ωEk ,

9 In a fully-coupled Newton-Euler brain dynamics, instead of equation (10.4) we
would have brain’s kinetic energy defined by the inner product:

Ek =
1

2

" 
p

π

!
˛
˛MSE(3)

 
p

π

!#

.



October 10, 2014 11:9 Complexity and Control 9in x 6in b1966-ch10 page 397

10.2 Brain-and-Spine Injury 397

or, in tensor form
pi = ∂viE, πi = ∂ωiE,

with their corresponding time derivatives, in vector form

ṗ =
d

dt
p =

d

dt
∂vE, π̇ =

d

dt
π =

d

dt
∂ωE,

or, in tensor form

ṗi =
d

dt
pi =

d

dt
∂viE, π̇i =

d

dt
πi =

d

dt
∂ωiE,

or, in scalar form

ṗ = [ṗ1, ṗ2, ṗ3] = [m1v̇1,m2v̇2,m3v̇3],
π̇ = [π̇1, π̇2, π̇3] = [I1ω̇1, I2ω̇2, I3ω̇3].

While brain’s healthy SE(3)-dynamics within the cerebrospinal fluid is
given by the coupled Newton-Euler micro-dynamics, the TBI is actually
caused by the sharp and discontinuous change in this natural SE(3) micro-
dynamics, in the form of the SE(3)-jolt, causing brain’s discontinuous defor-
mations.

Brain’s traumatic dynamics: the SE(3)-jolt

The SE(3)-jolt, the actual cause of the TBI (in the form of the brain’s plastic
deformations), is defined as a coupled Newton+Euler jolt; in (co)vector form
the SE(3)-jolt reads10

SE(3)− jolt :
{

Newton jolt : Ḟ = p̈− ṗ× ω − p× ω̇ ,

Euler jolt : Ṫ = π̈ −π̇ × ω − π × ω̇ − ṗ× v − p× v̇,

where the linear and angular jolt co-vectors are

Ḟ ≡Mv̈ = [Ḟ1, Ḟ2, Ḟ3], Ṫ ≡ Iω̈ = [Ṫ1, Ṫ2, Ṫ3],

where
v̈ = [v̈1, v̈2, v̈3]t, ω̈ = [ω̈1, ω̈2, ω̈3]t,

are linear and angular jerk vectors.
In tensor form, the SE(3)-jolt reads11

10 Note that the derivative of the cross-product of two vectors follows the standard
calculus product-rule: d

dt
(u × v) = u̇ × v + u × v̇.

11 In this paragraph the overdots actually denote the absolute Bianchi (covariant)
time-derivative (10.1), so that the jolts retain the proper covector character, which
would be lost if ordinary time derivatives are used. However, for the sake of
simplicity and wider readability, we stick to the same overdot notation.
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Ḟi = p̈i − εjik ṗjωk − ε
j
ikpjω̇

k, (i, j, k = 1, 2, 3)

Ṫi = π̈i − εjikπ̇jω
k − εjikπj ω̇

k − εjikṗjv
k − εjikpj v̇

k,

in which the linear and angular jolt covectors are defined as:

Ḟ ≡ Ḟi = Mv̈ ≡ Mij v̈
j = [Ḟ1, Ḟ2, Ḟ3],

Ṫ ≡ Ṫi = Iω̈ ≡ Iij ω̈j = [Ṫ1, Ṫ2, Ṫ3],

where v̈ = v̈i, and ω̈ = ω̈i are linear and angular jerk vectors.
In scalar form, the SE(3)-jolt expands as:

Newton jolt :






Ḟ1 = p̈1 −m2ω3v̇2 +m3 (ω2v̇3 + v3ω̇2)−m2v2ω̇3,

Ḟ2 = p̈2 +m1ω3v̇1 −m3ω1v̇3 −m3v3ω̇1 +m1v1ω̇3,

Ḟ3 = p̈3 −m1ω2v̇1 +m2ω1v̇2 − v2ω̇1 −m1v1ω̇2,

Euler jolt :






Ṫ1 = π̈1 − (m2 −m3) (v3v̇2 + v2v̇3)− (I2 − I3) (ω3ω̇2 + ω2ω̇3) ,
Ṫ2 = π̈2 + (m1 −m3) (v3v̇1 + v1v̇3) + (I1 − I3) (ω3ω̇1 + ω1ω̇3) ,
Ṫ3 = π̈3 − (m1 −m2) (v2v̇1 + v1v̇2)− (I1 − I2) (ω2ω̇1 + ω1ω̇2) .

We remark here that the linear and angular momenta (p,π), forces (F,T)
and jolts (Ḟ, Ṫ) are co-vectors (row vectors), while the linear and angular ve-
locities (v,ω), accelerations (v̇, ω̇) and jerks (v̈, ω̈) are vectors (column vec-
tors). This bio-physically means that the ‘jerk’ vector should not be confused
with the ‘jolt’ co-vector. For example, the ‘jerk’ means shaking the head’s
own mass-inertia matrices (mainly in the atlanto-occipital and atlanto-axial
joints), while the ‘jolt’means actually hitting the head with some external
mass-inertia matrices included in the ‘hitting’ SE(3)-jolt, or hitting some ex-
ternal static/massive body with the head (e.g., the ground - gravitational
effect, or the wall - inertial effect). Consequently, the mass-less ‘jerk’ vector
represents a (translational+rotational) non-collision effect that can cause only
weaker brain injuries, while the inertial ‘jolt’ co-vector represents a (transla-
tional+rotational) collision effect that can cause hard brain injuries.

For example, while driving a car, the SE(3)-jerk of the head-neck system
happens every time the driver brakes abruptly. On the other hand, the SE(3)-
jolt means actual impact to the head. Similarly, the whiplash-jerk, caused by
rear-end car collisions, is like a soft version of the high pitch-jolt caused by the
boxing ‘upper-cut’. Also, violently shaking the head left-right in the transverse
plane is like a soft version of the high yaw-jolt caused by the sidewise, or hook
punch.

Brain’s dislocations and disclinations caused by the SE(3)-jolt

Recall from introduction that for mild TBI, the best injury predictor is consid-
ered to be the product of brain’s strain and strain rate, which is the standard
isotropic viscoelastic continuum concept. To improve this standard concept,
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in this subsection, we consider human brain as a 3D anisotropic multipo-
lar Cosserat viscoelastic continuum (see [Iva09a] and references therein), ex-
hibiting coupled-stress-strain elastic properties. This non-standard continuum
model is suitable for analyzing plastic (irreversible) deformations and fracture
mechanics in multi-layered materials with microstructure (in which slips and
bending of layers introduces additional degrees of freedom, non-existent in the
standard continuum models).

The SE(3)-jolt (Ḟ, Ṫ) causes two types of brain’s rapid discontinuous de-
formations:

1. The Newton jolt Ḟ can cause micro-translational dislocations, or discon-
tinuities in the Cosserat translations;

2. The Euler jolt Ṫ can cause micro-rotational disclinations, or discontinu-
ities in the Cosserat rotations.

To precisely define brain’s dislocations and disclinations, caused by the
SE(3)-jolt (Ḟ, Ṫ), we first define the coordinate co-frame, i.e., the set of basis
1-forms {dxi}, given in local coordinates xi = (x1, x2, x3) = (x, y, z), attached
to brain’s center-of-mass. Then, in the coordinate co-frame {dxi} we introduce
the following set of brain’s plastic-deformation-related SE(3)-based differen-
tial p−forms12 (see, e.g. [II06b, II07]):

12 Differential p−forms are totally skew-symmetric covariant tensors, defined using
the exterior wedge-product and exterior derivative. The proper definition of exte-
rior derivative d for a p−form β on a smooth manifold M , includes the Poincaré
lemma [II06b, II07]: d(dβ) = 0, and validates the general Stokes formula

Z

∂M

β =

Z

M

dβ,

where M is a p−dimensional manifold with a boundary and ∂M is its (p −
1)−dimensional boundary, while the integrals have appropriate dimensions.

A p−form β is called closed if its exterior derivative is equal to zero,

dβ = 0.

From this condition one can see that the closed form (the kernel of the exterior
derivative operator d) is conserved quantity. Therefore, closed p−forms possess
certain invariant properties, physically corresponding to the conservation laws.

A p−form β that is an exterior derivative of some (p− 1)−form α,

β = dα,

is called exact (the image of the exterior derivative operator d). By Poincaré
lemma, exact forms prove to be closed automatically,

dβ = d(dα) = 0.

This lemma is the foundation of the de Rham cohomology theory.
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the dislocation current 1-form, J = Ji dx
i;

the dislocation density 2-form, α = 1
2αij dx

i ∧ dxj ;
the disclination current 2-form, S = 1

2Sij dx
i ∧ dxj ; and

the disclination density 3-form, Q = 1
3!Qijk dx

i ∧ dxj ∧ dxk ,
where ∧ denotes the exterior wedge-product. According to Edelen [Ede80,

KE83], these four SE(3)-based differential forms satisfy the following set of
continuity equations:

α̇ = −dJ− S, (10.6)
Q̇ = −dS, (10.7)
dα = Q, (10.8)
dQ = 0, (10.9)

where d denotes the exterior derivative.
In components, the simplest, fourth equation (10.9), representing the

Bianchi identity, can be rewritten as

dQ = ∂lQ[ijk] dx
l ∧ dxi ∧ dxj ∧ dxk = 0,

where ∂i ≡ ∂/∂xi, while θ[ij...] denotes the skew-symmetric part of θij....
Similarly, the third equation (10.8) in components reads

1
3!
Qijk dx

i ∧ dxj ∧ dxk = ∂kα[ij] dx
k ∧ dxi ∧ dxj, or

Qijk = −6∂kα[ij].

The second equation (10.7) in components reads

1
3!
Q̇ijk dx

i ∧ dxj ∧ dxk = −∂kS[ij] dx
k ∧ dxi ∧ dxj , or

Q̇ijk = 6∂kS[ij].

Finally, the first equation (10.6) in components reads

1
2
α̇ij dx

i ∧ dxj = (∂jJi −
1
2
Sij) dxi ∧ dxj , or

α̇ij = 2∂jJi − Sij .

In words, we have:

• The 2-form equation (10.6) defines the time derivative α̇ =1
2
α̇ij dx

i∧dxj of
the dislocation density α as the (negative) sum of the disclination current
S and the curl of the dislocation current J.

• The 3-form equation (10.7) states that the time derivative Q̇ = 1
3! Q̇ijk dx

i∧
dxj ∧ dxk of the disclination density Q is the (negative) divergence of the
disclination current S.
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• The 3-form equation (10.8) defines the disclination density Q as the di-
vergence of the dislocation density α, that is, Q is the exact 3-form.

• The Bianchi identity (10.9) follows from equation (10.8) by Poincaré
lemma and states that the disclination density Q is conserved quantity,
that is, Q is the closed 3-form. Also, every 4-form in 3D space is zero.

From these equations, we can derive two important conclusions:

1. Being the derivatives of the dislocations, brain’s disclinations are higher-
order tensors, and thus more complex quantities, which means that they
present a higher risk for the severe TBI than dislocations – an old fact
which is supported by the literature (see review of existing TBI-models
given in Introduction).

2. Brain’s dislocations and disclinations are mutually coupled by the un-
derlaying SE(3) group, which means that we cannot separately analyze
translational and rotational TBIs – a new fact which is not supported by
the literature.

10.2.2 Spinal Injury Mechanics

The traditional principal loading hypothesis [MM93, WZ98], which describes
spinal injuries in terms of spinal tension, compression, bending, and shear, is
insufficient to predict and prevent the cause of the back-pain syndrome. Its
underlying mechanics is simply not accurate enough.

On the other hand, to be recurrent, musculo-skeletal injury must be asso-
ciated with a histological change, i.e., the modification of associated tissues
within the body. However, incidences of functional musculoskeletal injury, e.g.,
lower back pain, generally shows little evidence of structural damage [Wad98].
The incidence of injury is likely to be a continuum ranging from little or no
evidence of structural damage through to the observable damage of muscles,
joints or bones. The changes underlying functional injuries are likely to con-
sist of torn muscle fibers, stretched ligaments, subtle erosion of join tissues,
and/or the application of pressure to nerves, all amounting to a disruption of
function to varying degrees and a tendency toward spasm.

For example, in a review of experimental studies on the role of mechani-
cal stresses in the genesis of intervertebral disk degeneration and herniation
[RCR01], the authors dismissed simple mechanical stimulations of functional
vertebra as a cause of disk herniation, concluding instead that a complex
mechanical stimulation combining forward and lateral bending of the spine
followed by violent compression is needed to produce posterior herniation of
the disk. Considering the use of models to estimate the risk of injury the au-
thors emphasize the need to understand this complex interaction between the
mechanical forces and the living body [SG01]. Compressive and shear loading
increased significantly with exertion load, lifting velocity, and trunk asymme-
try [GM95]. Also, it has been stated that up to two-thirds of all back injuries
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have been associated with trunk rotation [KN06]. In addition, load-lifting in
awkward environment places a person at risk for low back pain and injury
[RWM08]. These risks appear to be increased when facing up or down an
inclined surface.

The above-mentioned safe spinal motions (flexion/extension, lateral flex-
ion and rotation) are governed by standard Euler’s rotational intervertebral
dynamics coupled to Newton’s micro-translational dynamics. On the other
hand, the unsafe spinal events, the main cause of spinal injuries, are caused by
intervertebral SE(3)-jolts, the sharp and sudden, “delta”- (forces + torques)
combined, localized both in time and in space. These localized intervertebral
SE(3)-jolts do not belong to the standard Newton-Euler dynamics. The only
way to monitor them would be to measure “in vivo” the rate of the combined
(forces + torques)- rise.

Ivancevic proposed in [Iva09b, Iva10a] a new locally-coupled loading-rate
hypothesis, which states that the main cause of both soft- and hard-tissue
spinal injury is a localized Euclidean jolt, or SE(3)-jolt, an impulsive loading
that strikes a localized spine in several coupled degrees-of-freedom (DOF)
simultaneously. To show this, based on the previously defined covariant force
law, we formulate the coupled Newton-Euler dynamics of the local spinal
motions and derive from it the corresponding coupled SE(3)-jolt dynamics.
The SE(3)-jolt is the main cause of two forms of local discontinuous spinal
injury: (i) hard-tissue injury of local translational dislocations; and (ii) soft-
tissue injury of local rotational disclinations. Both the spinal dislocations and
disclinations, as caused by the SE(3)-jolt, are described using the Cosserat
multipolar viscoelastic continuum model.

While we can intuitively visualize the SE(3)-jolt, for the purpose of simu-
lation we use the necessary simplified, decoupled approach (neglecting the 3D
torque matrix and its coupling to the 3D force vector). Note that decoupling
is a kind of linearization that prevents chaotic behavior, giving an illusion
of full predictability. In this decoupled framework of reduced complexity, we
define:

• The cause of hard spinal injuries (discus hernia) is a linear 3D-jolt vector
hitting some intervertebral joint - the time rate-of-change of a 3D-force
vector (linear jolt = mass × linear jerk); and

• The cause of soft spinal injuries (back-pain syndrome) is an angular 3-axial
jolt hitting some intervertebral joint - the time rate-of-change of a 3-axial
torque (angular jolt = inertia moment × angular jerk).

This decoupled framework has been implemented in the Human Biody-
namics Engine, a world-class neuro-musculo-skeletal dynamics simulator (with
270 DOFs, the same number of equivalent muscular actuators and two-level
neural reflex control), developed by the present author at Defence Science and
Technology Organization, Australia. This kinematically validated human mo-
tion simulator has been described in a series of papers and books (see [Iva10c]
and references therein).
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As shown in [Iva10a], the mechanics of spinal (intervertebral) injury is
essential the same as the mechanics of brain injury, described in the previous
subsection. In particular, we can conclude that localized spinal dislocations
and disclinations are mutually coupled by the underlaying SE(3)-group, which
means that we cannot separately analyze translational and rotational spinal
injuries – a new fact which is not supported by the literature.

10.3 Rigorous Crash Simulator Toolbox for Matlab�

A Matlab toolbox entitled Rigorous Crash Simulator (RCS) was recently
developed jointly by Defence Science & Technology Organisation, Australia
and the Centre for Intelligent Systems Research, Deakin University, Australia.
This new toolbox is a spin-off of the Human Biodynamics Engine [Iva10c],
based on two existing Matlab toolboxes: (i) the third-party toolbox DiffMan
(for solving ODEs on manifolds), by K. Engø, A. Marthinsen and H. Munthe-
Kaas, and (ii) the standard Virtual Reality (VR) toolbox for Matlab and
Simulink.

Briefly, human spine with head and pelvis (see Figure 10.3), mechanically
represents a chain of 27 rigid bodies, flexibly joined by 26 inter-vertebral
joints. For rigorous prediction and prevention spinal injuries under various
crash-impact situations, modern computational mechanics needs to be used.
It is modeled as a chain of 26 Euclidean groups of motion and numerically
solved by Lie-group integrators.

The RCS toolbox is developed around the main Lie-group integrator,
called Runge-Kutta-Munte-Kass (RKMK) integrator (see next section).

10.3.1 Rigid Body Motion and ODEs on Smooth Manifolds

Recall from mechanics of brain-and-spine injury described in the previous
section, that the special Euclidean group SE(3) of rigid-body motions in our
everyday Euclidean space R3, is a semidirect (non-commutative) product of
the rotation group SO(3) and the translation group R3. This practically means
that the motion of a rigid body in a 3D space is given by a pair (R, p) ∈ SE(3)
of rotation matrix R and translation vector p, such that its angular velocity
(attitude) matrix ω and linear velocity vector v belong to its Lie algebra se(3),
that is: (ω,v) ∈ se(3) ≈ R

6.
Kinematic equations of motion of a rigid body are:

ṗ = Rv, Ṙ = Rω.

Kinetic energy of a rigid body has the symmetrical form:

Ek =
1
2
vTMv +

1
2
ωT Iω, (10.10)
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Fig. 10.3. A 3D model of human spine implemented in the VR toolbox of
Matlab.

where (assuming uniform mass-distribution) mass and inertia matrices are
diagonal:

M = diag{m1,m2,m3},
I = diag{I1, I2, I3}.

From the kinetic energy (10.10), dynamical equations of motion follow
(these are coupled Newton-Euler equations, see my injury papers for the
derivation):

Mv̇ = Mv× ω, Iω̇ = Iω × ω + Mv × v.

Finally, by including the forces fi and torques τ i acting on the body
(i = 1, ..., n), with input controls ui = u(t), the dynamical-control equations
become:

Mv̇ = Mv× ω + F, (with F =
∑

i

fiu
i), (10.11)

Iω̇ = Iω × ω + Mv × v + T, (with T =
∑

i

τ iu
i). (10.12)

In the spinal crash-test model, the motion of the head, as well as of each
individual vertebral body, is governed by the pair of vector equations (10.11)-
(10.12). They are evolving on the smooth SE(3)-manifold.
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Evolving ODEs on smooth manifolds

To give a brief description of the computational mechanics implemented in
the RCS toolbox, consider the following ODE (ordinary differential equation)
evolving in time (t ≥ 0) on some configuration manifold M :13

ẋ = F (x), x(0) = x0 ∈M, (10.13)

where ẋ = dx/dt, while F (x) ∈ X(M) is the tangent vector-field on M passing
through the points x(t).

The solution of the ODE (10.13) is determined by its flow φt,F (x0) that
starts from the initial point x(0) = x0, which is formally defined as:

x(t) = φt,F (x0), (for t ≥ 0).

In general, any tangent vector-field is an infinitesimal generator of its flow.
This means that the vector-field F (x) is given by the time-derivative of the
flow φt,F (x0) at the initial point:

F (x) =
d

dt
φt,F (x0)|t = 0.

The inverse of the time-derivative of the flow is something that plays the
role of the time-integral, which is the exponential map, a nonlinear generaliza-
tion of the matrix exponential. So, the flow φt,F is given by the exponential
map of (tF ):

φt,F = exp(tF ).

In the special case of the linear ODE defined by some matrix A:

ẋ = Ax, we have (10.14)
φt,A(x) = exp(tA)x0

with the standard matrix exponential :

exp(tA) =
∞∑

n=0

1
n!
tnAn.

In the case of linear ODEs, solved by the matrix exponentials, we can see
that their flows do not commute: going first along the flow φt,A and then along
some other flow φt,B is different from going first along the flow φt,B and then
along the flow φt,A. This is because matrix multiplication is not commutative,
so it yields the commutator :

[A,B] = AB −BA �= 0.

13 For example, M = SE(3), the configuration manifold of a rigid body.
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This non-commutativity of flows is even more significant in a general case
of nonlinear ODEs. Let us start from some point x0 on the manifold M , and
flow from x0 first along φt,F = exp(tF ) and then along some other flow φt,G =
exp(tG), so that we come to some point x1. If we now reverse the order of
flows and starting from the same point x0 we flow first along φt,G and then
along φt,F - we will in general arrive at a different point x2 �= x1. In terms of
exponential maps this non-commutativity of flows can be written as:

exp(sF ) ◦ exp(tG) ◦ exp(−sF ) ◦ exp(−tG) �= 0.

If the flows do not commute, then their vector-fields do not commute either.
This statement is defined by the commutator [F,G] �= 0 called the Lie bracket
of vector-fields F and G, which has the following three properties:

[F,G] = −[G,F ],
[F +G,H ] = [F,H ] + [G,H ] ,

0 = [F, [G,H ]] + [G, [H,F ]] + [H, [F,G]],

called anti-symmetry, bilinearity and Jacobi identity, respectively. The set of
all tangent vector-fields X(M) on the manifold M now (with the Lie bracket)
becomes the Lie algebra.

Runge-Kutta-Munte-Kass family of Lie-group integrators

The RCS toolbox is developed around the main Lie-group integrator, called
Runge-Kutta-Munte-Kass (RKMK) integrator [EMM99a, EMM99b], which
combines standard Runge-Kutta family with Lie-group integration methods
developed by A. Iserles (for a recent review, see [IMK05]) and H. Munthe-Kaas
[MK95, MK98, MK99].

ODEs are solved in DiffMan usiing the following general 5-step proce-
dure:14

1. Construct an initial domain object y in a homogeneous space;
2. Construct a vector-field object vf over the domain object y; DiffMan

finds numerically the integral curve of this vector-field through the initial
domain object;

3. Construct a time stepper object ts, ehich determines the numerical
method used to advance the numerical solution along the integral line;
it consists of two parts: coordinate and method;

4. Construct a flow object f , which is defined by the vector-field object; and
5. Solve the ODE by the flow object which is done by evaluating the flow

object at the initial domain object, start time, end time, and step size.

14 For technical details with worked examples, see [EMM99a, EMM99b].
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10.3.2 Computational Newton-Euler Dynamics

First-order (velocities) equations of motion

Standard description of Newton-Euler dynamics starts with the first-order
equations of motion in terms of translational and rotational velocities:15

Newton :






ṗ1(t) ≡ m1v1(t) = F1(t)−m3v3(t)ω2(t) +m2v2(t)ω3(t),
ṗ2(t) ≡ m2v2(t) = F2(t)−m3v3(t)ω1(t)−m1v1(t)ω3(t),
ṗ3(t) ≡ m3v3(t) = F3(t)−m2v2(t)ω1(t) +m1v1(t)ω2(t).






Euler :






π̇1(t) ≡ J1ω1(t)
= T1(t) + (J2 − J3)ω2(t)ω3(t) + (m2 −m3) v2(t) v3(t),

π̇2(t) ≡ J2ω2(t)
= T2(t) + (J3 − J1)ω1(t)ω3(t) + (m3 −m1) v1(t) v3(t),

π̇3(t) ≡ J3ω3(t)
= T3(t) + (J1 − J2)ω1(t)ω2(t) + (m1 −m2) v1(t) v2(t).






Numerical solution of these equations (for some initial conditions) gives
translational and rotational velocities (vi(t) and ωi(t), i = 1, 2, 3). However,
to be able to actually see the body motion in a virtual 3D environment, we
need to evaluate these equations into the second-order equations in terms of
translations (displacements xi) and rotations (Euler angles θi).

Second-order (coordinates) equations of motion

The above standard first-order Newton-Euler velocity equations are expanded/
evaluated into the following coordinate equations of motion:

Newton :






ṗ1(t) ≡ m1ẍ1(t)
= −m3ẋ3(t)θ̇2(t) +m2ẋ2(t)θ̇3(t)− b1ẋ1(t)− k1x1(t),

ṗ2(t) ≡ m2ẍ2(t)
= −m3ẋ3(t)θ̇1(t)−m1ẋ1(t)θ̇3(t)− b2ẋ2(t)− k2x2(t),

ṗ3(t) ≡ m3ẍ3(t)
= −m2ẋ2(t)θ̇1(t) +m1ẋ1(t)θ̇2(t)− b3ẋ3(t)− k3x3(t).






Euler :






π̇1(t) ≡ J1θ̈1(t) = (J2 − J3) θ̇2(t)θ̇3(t)
+ (m2 −m3) ẋ2(t)ẋ3(t)−B1θ̇1(t)−K1θ1(t),

π̇2(t) ≡ J2θ̈2(t) = (J3 − J1) θ̇1(t)θ̇3(t)
+ (m3 −m1) ẋ1(t)ẋ3(t)−B2θ̇2(t)−K2θ2(t),

π̇3(t) ≡ J3θ̈3(t) = (J1 − J2) θ̇1(t)θ̇2(t)
+ (m1 −m2) ẋ1(t)ẋ2(t)−B3θ̇3(t)−K3θ3(t).






15 “≡” means “ekvivalent”, whatever is left from it is not part of the equations to
be solved.
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For simplicity, in these evaluated 2nd order equations of motion, forces
Fi(t) are replaced by springs kixi(t) and dampers biẋi(t); and similarly for
rotations, instead of torques Ti(t) we have angular springs Kiθi(t) and angular
dampers Biθ̇i(t).

Computational form of Newton-Euler equations of rigid motions

Newton-Euler acceleration ODEs.

Newton-Euler acceleration ODEs are defined as:

Newton :






ẍ1(t) =
[
−m3ẋ3(t)θ̇2(t) +m2ẋ2(t)θ̇3(t)

−b1ẋ1(t)− k1x1(t)
]
/m1,

ẍ2(t) =
[
−m3ẋ3(t)θ̇1(t)−m1ẋ1(t)θ̇3(t)

−b2ẋ2(t)− k2x2(t)
]
/m2,

ẍ3(t) =
[
−m2ẋ2(t)θ̇1(t) +m1ẋ1(t)θ̇2(t)

−b3ẋ3(t)− k3x3(t)
]
/m3.






Euler :






θ̈1(t) =
[
(J2 − J3) θ̇2(t)θ̇3(t) + (m2 −m3) ẋ2(t)ẋ3(t)

−B1θ̇1(t)−K1θ1(t)
]
/J1,

θ̈2(t) =
[
(J3 − J1) θ̇1(t)θ̇3(t) + (m3 −m1) ẋ1(t)ẋ3(t)

−B2θ̇2(t)−K2θ2(t)
]
/J2,

θ̈3(t) =
[
(J1 − J2) θ̇1(t)θ̇2(t) + (m1 −m2) ẋ1(t)ẋ2(t)

−B3θ̇3(t)−K3θ3(t)
]
/J3.






Full set of first-order ODEs suitable for numerical integration.

The following set of 12 first-order ODEs has been implemented in the RCS
toolbox for simulating a single intervertebral joint:

ẋ1(t) = v1(t), (10.15)

v̇1(t) =
[
−m3ẋ3(t)θ̇2(t) +m2ẋ2(t)θ̇3(t)− b1ẋ1(t)− k1x1(t)

]
/m1,

ẋ2(t) = v2(t),

v̇2(t) =
[
−m3ẋ3(t)θ̇1(t)−m1ẋ1(t)θ̇3(t)− b2ẋ2(t)− k2x2(t)

]
/m2,

ẋ3(t) = v3(t),

v̇3(t) =
[
−m2ẋ2(t)θ̇1(t) +m1ẋ1(t)θ̇2(t)− b3ẋ3(t)− k3x3(t)

]
/m3,

θ̇1(t) = ω1(t),
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ω̇1(t) =
[
(J2 − J3) θ̇2(t)θ̇3(t) + (m2 −m3) ẋ2(t)ẋ3(t)

−B1θ̇1(t)−K1θ1(t)
]
/J1,

θ̇2(t) = ω2(t),

ω̇2(t) =
[
(J3 − J1) θ̇1(t)θ̇3(t) + (m3 −m1) ẋ1(t)ẋ3(t)

−B2θ̇2(t)−K2θ2(t)
]
/J2,

θ̇3(t) = ω3(t),

ω̇3(t) =
[
(J1 − J2) θ̇1(t)θ̇2(t) + (m1 −m2) ẋ1(t)ẋ2(t)

−B3θ̇3(t)−K3θ3(t)
]
/J3,

init. conds : xi(0) = ai, ẋi(0) = ci, θi(0) = di, θ̇i(0) = ei,

(for i = 1, 2, 3).

The ODEs (10.15) have been solved using the RKMK integrator, as fol-
lows.

Matlab/DiffMan implementation

Testing the RKMK integrator.

For testing the RKMK integrator, we implemented three second-order Lorenz-
like ODEs, rewritten as six coupled first-order ODEs. In MathematicaTM ,
these equations are implemented as:






x′(t) = v1(t), v′1(t) = y(t)− x(t),
y′(t) = v2(t), v′2(t) = x(t)(−z(t)) + x(t) − y(t),

z′(t) = v3(t), v′3(t) = x(t)y(t)− z(t),
x(0) = z(0) = 0.001, y(0) = 1,
v1(0) = v2(0) = v3(0) = 0.01.






and solved using the NDSolve integrator for 15 sec.
In DiffMan these ODEs are implemented in the following m-function:16

function [la] = vfexShady2Lorenz(t,y)
la = liealgebra(y);
ydat = getdata(y);
dat = [ 0 0 0 -1 1 0;

16 More precisely, to implement any particular ODE-system in DiffMan, two m-
functions are required. We are showing here only the first function (in which the
ODEs are implemented), while we are skipping the second function (which calls
the first one), because it is too long and out of scope of this paper.
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0 0 0 1 -1 -ydat(4);
0 0 0 0 ydat(4) -1;
1 0 0 0 0 0;
0 1 0 0 0 0;
0 0 1 0 0 0; ];

setdata(la,dat);
return;

The phase plots of this test problem for 15 sec are shown in Figure 10.4.

Fig. 10.4. Test problem: solution of the 2nd-order Lorenz-like ODEs in Mat-
lab, using the RKMK integrator. The phase plots are identical to those calcu-
lated by Mathematica’s integrator NDSolve.

DiffMan implementation of the system (10.15).

Matlab/DiffMan implementation of the system (10.15), using the RKMK in-
tegrator, is given by the following two m-function:

function [la] = vfexShady2(t,y)
la = liealgebra(y);
ydat = getdata(y);
global k1 k2 k3 b1 b2 b3 B1 B2 B3 K1 K2 K3 m1 m2 m3 J1 J2 J3
dat = [0 1 0 0 0 0 0 0 0 0 0 0;

-k1 -b1 0 0 0 0 0 0 0 -m3*ydat(6) 0 m2*ydat(4);
0 0 0 1 0 0 0 0 0 0 0 0;
0 0 -k2 -b2 0 0 0 -m3*ydat(6) 0 0 0 -m1*ydat(2);
0 0 0 0 0 1 0 0 0 0 0 0;
0 0 0 0 -k3 -b3 0 -m2*ydat(4) 0 m1*ydat(2) 0 0;
0 0 0 0 0 0 0 1 0 0 0 0;
0 0 0 0 0 (m2-m3)*ydat(4) -K1 -B1 0 0 0 (J2-J3)*ydat(10);
0 0 0 0 0 0 0 0 0 1 0 0;
0 0 0 0 0 (m3-m1)*ydat(2) 0 0 -K2 -B2 0 (J3-J1)*ydat(8);
0 0 0 0 0 0 0 0 0 0 0 1;
0 0 0 (m1-m2)*ydat(2) 0 0 0 0 0 (J1-J2)*ydat(8) -K3 -B3];
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setdata(la,dat);
return;

Initial modeling of external impact forces for the crash simulation.

To simulate the action of an impact force on the single intervertebral joint,
a ‘soft form of’ the impulse Dirac delta function term with amplitude A has
been modeled by:

F (t) = A sech(At−A/2), (10.16)

and added to translational Newtonian accelerations only. Due to transla-
tional/rotational coupling between Newton’s and Euler’s equations within
the SE(3)-group dynamics, this translational impact force should cause both
macroscopic angular change and microscopic displacement change within the
intervertebral joint. This type of impact forces with amplitudes in the range
20g-100g are used to model road-vehicle crashes, while the amplitudes in the
range 100g-400g are used to model land-mine related crashes and helicopter
hard landings. In addition, for modeling effects of riding an operational wa-
tercraft with the speed of 20-30 knots on the high seas with waves of 2m-3m
hight, the following sinus forces with frequency ϕ are used:

F (t) = A sin(ϕ t). (10.17)

To test RKMK integrator on the impact forces (10.16)-(10.17) the follow-
ing two versions of the forced Van der Pol oscillator (with parameters a, b, w):

sech : ẍ(t) = A sech(At−A/2)− a
[
1− 4b x(t)2

]
ẋ(t) + w2x(t),

sin : ẍ(t) = A sin(ϕ t)− a
[
1− 4b x(t)2

]
ẋ(t) + w2x(t), (10.18)

for the simulation with near-zero initial conditions, have been inplemented in
the following two m-functions, respectively:

function [la] = vfexVdPolSech(t,y)
la = liealgebra(y);
ydat = getdata(y);
a=1.5; b=5; w=2; A=20;
dat=[ 0 1 ;

-w*w+A*sech(A*t-A/2)/ydat(1) a*(1-4*b*ydat(1)*ydat(1))];
setdata(la,dat);
return;

function [la] = vfexVdPolSin(t,y)
la = liealgebra(y);
ydat = getdata(y);
a=1.5;b=5;w=2;A=20;fr=3;
dat=[ 0 1 ;

-w*w+A*sin(fr*t)/ydat(1) a*(1-4*b*ydat(1)*ydat(1))];
setdata(la,dat);
return;
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Full set of the forced first-order ODEs for a single joint crash
dynamics.

After successful tasting of the forced Van der Pol oscillators (10.18) against
Mathematica’s integrator NDSolve using the above m-functions, the following
set of 12 first-order SE(3)-ODEs has been implemented in the RCS toolbox
for simulating an impact force action on a single intervertebral joint:

ẋ1(t) = v1(t), (10.19)

v̇1(t) =
[
−m3ẋ3(t)θ̇2(t) +m2ẋ2(t)θ̇3(t)− b1ẋ1(t)− k1x1(t)

+A1 sech(A1t−A1/2)
]
/m1,

ẋ2(t) = v2(t),

v̇2(t) =
[
−m3ẋ3(t)θ̇1(t)−m1ẋ1(t)θ̇3(t)− b2ẋ2(t)− k2x2(t)

+A2 sech(A2t−A2/2)
]
/m2,

ẋ3(t) = v3(t),

v̇3(t) =
[
−m2ẋ2(t)θ̇1(t) +m1ẋ1(t)θ̇2(t)− b3ẋ3(t)− k3x3(t)

+A3 sech(A3t−A3/2)
]
/m3,

θ̇1(t) = ω1(t),

ω̇1(t) =
[
(J2 − J3) θ̇2(t)θ̇3(t) + (m2 −m3) ẋ2(t)ẋ3(t)

−B1θ̇1(t)−K1θ1(t)
]
/J1,

θ̇2(t) = ω2(t),

ω̇2(t) =
[
(J3 − J1) θ̇1(t)θ̇3(t) + (m3 −m1) ẋ1(t)ẋ3(t)

−B2θ̇2(t)−K2θ2(t)
]
/J2,

θ̇3(t) = ω3(t),

ω̇3(t) =
[
(J1 − J2) θ̇1(t)θ̇2(t) + (m1 −m2) ẋ1(t)ẋ2(t)

−B3θ̇3(t)−K3θ3(t)
]
/J3,

i.c. : xi(0) = ai, ẋi(0) = ci, θi(0) = di, θ̇i(0) = ei, (for i = 1, 2, 3).

DiffMan implementation of the full set of the forced first-order
ODEs for a single joint crash dynamics.

The full set of forced SE(3)-ODEs (10.19) has been implemented in the fol-
lowing m-function:

function [la] = vfexShady4(t,y)
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la = liealgebra(y);
ydat = getdata(y);
global k1 k2 k3 b1 b2 b3 B1 B2 B3 K1 K2 K3 m1 m2 m3 J1 J2 J3
global A1 A2 A3 A4 A5 A6
val1=A1*sech(A1*t-A1/2);
val2=A2*sech(A2*t-A2/2);
val3=A3*sech(A3*t-A3/2);
dat = [0 1 0 0 0 0 0 0 0 0 0 0;

(-k1+val1/ydat(2)) -b1 0 0 0 0 0 0 0 -m3*ydat(6) 0 m2*ydat(4);
0 0 0 1 0 0 0 0 0 0 0 0;
val2/ydat(4) 0 -k2 -b2 0 0 0 -m3*ydat(6) 0 0 0 -m1*ydat(2);
0 0 0 0 0 1 0 0 0 0 0 0;
val3/ydat(6) 0 0 0 -k3 -b3 0 -m2*ydat(4) 0 m1*ydat(2) 0 0;
0 0 0 0 0 0 0 1 0 0 0 0;
0 0 0 0 0 (m2-m3)*ydat(4) -K1 -B1 0 0 0 (J2-J3)*ydat(10);
0 0 0 0 0 0 0 0 0 1 0 0;
0 0 0 0 0 (m3-m1)*ydat(2) 0 0 -K2 -B2 0 (J3-J1)*ydat(8);
0 0 0 0 0 0 0 0 0 0 0 1;
0 0 0 (m1-m2)*ydat(2) 0 0 0 0 0 (J1-J2)*ydat(8) -K3 -B3];

setdata(la,dat);
return;

10.3.3 Full Spine Crash Simulator

The full spine crash simulator, as implemented in the RCS toolbox, figures
the forced SE(3)-equations of motion (10.19) at each spinal (intervertebral)
joint independently. This dynamical decoupling along the spine is the only
way to deal with the shear dimensionality of our problem: seven SE(3)-joints
for the neck only (cervical spine) and 26 SE(3)-joints for the full spine. To
compensate for this dynamical decoupling along the spine, at the same time
we are inertially re-coupling all the joints along the spine: in the first joint
(above the C1) the only mass is the head; in the second joint (above the C2)
we have two masses: the head and C1; in the third joint (above C3) we have
three masses: head + C1 + C2, etc. Regarding simulating various crashes, in
the RCS toolbox, the so-called ‘generic crash’ is represented by a 3D force-
vector which hits somewhere along the spine, at one only vertebral joint, so
this force vector has 3 components:

Fcrash(t) =
[
A1 sech(A1t−A1/2),

A2 sech(A2t−A2/2), A3 sech(A3t−A3/2)
]
.

The full spine crash simulator has been implemented in the form of the
following vector of 26 SE(3)-equations of motion (with the joint-labeling su-
perscript index j = 1, ..., 26):
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ẋj
1(t) = vj

1(t), (10.20)
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3ẋ
j
3(t)θ̇

j

1(t)−m
j
1ẋ
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1ẋ

j
1(t)θ̇

j

2(t)− b
j
3ẋ
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3,

i.c. : xj
i(0) = aj

i, ẋj
i(0) = cji, θji(0) = dj

i, θ̇
j

i(0) = eji, (for i = 1, 2, 3).

In the full spine SE(3)-crash model (10.20), all crash amplitudes Aj
i (for

i = 1, .., 3; j = 1, .., 26) are assumed zero, unless the impact joint has been
selected with its 3 amplitudes only (e.g., A7

i - for the C7 cervical intervertebral
joint).

In the Matlab implementation of (10.20) in the RCS toolbox (see Figure
10.5), the external forces are applied to each rigid body in the spinal system:
all vertebras as well as the head and the pelvis. To propagate the force ef-
fect along the spine we make use of both graphical and numerical vertebral
inter-dependency. In the graphical part, the whole spine is modeled as a tree
structure. All vertebras are children to the pelvis and they are also connected
to the head (which is the grandchild). So, the transformation of each spinal
part affects all its children. In the numerical part, the transform propagation
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is modeled as a mass-propagation. Here, the mass of each spinal part is equal
to the accumulated mass of all its children plus its own mass.

Fig. 10.5. RCS toolbox at work: simulating a boxing punch (left hook) in the
head.

DiffMan implementation of the full spine crash simulator (10.20).

The full set of forced SE(3)-ODEs (10.20) has been implemented, for each
spinal joint independently, in the following m-function:

function [la] = vfexShady5(t,y)
la = liealgebra(y);
ydat = getdata(y);
global k1 k2 k3 b1 b2 b3 B1 B2 B3 K1 K2 K3 m1 m2 m3 J1 J2 J3
global A1 A2 A3 A4 A5 A6
global prev data
%x
if ˜isWithin(ydat(1),-0.001,0.001)
ydat(1)=clip(ydat(1),-0.01,0.01);
ydat(2)=clip(ydat(2),10,10);
end
%y
if ˜isWithin(ydat(3),-0.001,0.001)
ydat(3)=clip(ydat(3),-0.01,0.01);
ydat(4)=clip(ydat(4),10,10);
end
%z
if ˜isWithin(ydat(5),-0.001,0.001)
ydat(5)=clip(ydat(5),-0.01,0.01);
ydat(6)=clip(ydat(6),10,10);
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end
%th1
if ˜isWithin(ydat(7),-0.01,0.01)
ydat(7)=clip(ydat(7),-0.01,0.01);
ydat(8)=clip(ydat(8),100,100);
end
%th2
if ˜isWithin(ydat(9),-0.01,0.01)
ydat(9)=clip(ydat(9),-0.01,0.01);
ydat(10)=clip(ydat(10),100,100);
end
%th3
if ˜isWithin(ydat(11),-0.01,0.01)
ydat(11)=clip(ydat(11),-0.01,0.01);
ydat(12)=clip(ydat(12),100,100);
end
val1=A1*sech(A1*t-A1/2);
val2=A2*sech(A2*t-A2/2);
val3=A3*sech(A3*t-A3/2);
dat = [0 1 0 0 0 0 0 0 0 0 0 0;
(-k1+val1/ydat(2)) -b1 0 0 0 0 0 0 0 -m3*ydat(6) 0 m2*ydat(4);
0 0 0 1 0 0 0 0 0 0 0 0;
val2/ydat(4) 0 -k2 -b2 0 0 0 -m3*ydat(6) 0 0 0 -m1*ydat(2);
0 0 0 0 0 1 0 0 0 0 0 0;
val3/ydat(6) 0 0 0 -k3 -b3 0 -m2*ydat(4) 0 m1*ydat(2) 0 0;
0 0 0 0 0 0 0 1 0 0 0 0;
0 0 0 0 0 (m2-m3)*ydat(4) -K1 -B1 0 0 0 (J2-J3)*ydat(10);
0 0 0 0 0 0 0 0 0 1 0 0;
0 0 0 0 0 (m3-m1)*ydat(2) 0 0 -K2 -B2 0 (J3-J1)*ydat(8);
0 0 0 0 0 0 0 0 0 0 0 1;
0 0 0 (m1-m2)*ydat(2) 0 0 0 0 0 (J1-J2)*ydat(8) -K3 -B3];
setdata(la,dat);
return;

10.3.4 Road-Vehicle Crash Simulation

Several crashes are implemented in the RCS toolbox, including road-vehicle
crash, ejection seat and land-mine crash. In particular, Figure 10.6 shows the
basic implementation of the road-vehicle crash. Note that, about 1 sec after
the crash, the head moves back purely due to spinal elasticity. This particular
simulated crash could cause severe TBI if the distance from the head and
the steering wheel (or some other frontal part of cabin) is shorter that the
movement amplitude. If the distance is safe, only a mild loss of consciousness
for a few minutes could be expected, together with the strain in the cervical
spine (neck).
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Fig. 10.6. Road-vehicle crash simulation in the RCS toolbox: the sequence of
8 snapshots (starting with top-left and finishing with bottom-right) simulates
the frontal (head-on) crash at the combined speed of two cars of about 80 km/h
with the proper seat-belt on.

Summary

We have presented the unique mechanics of traumatic brain-and-spine injury
based on the new coupled loading-rate hypothesis, which states that the main
cause of all mechanical human injuries is the Euclidean jolt, an impulsive
loading that strikes head and spine (or any other part of the human body) -
in several coupled degrees-of-freedom simultaneously, which causes two basic
forms of brain and spinal injuries: (i) localized translational dislocations; and
(ii) localized rotational disclinations. This model-theory of traumatic brain-
and-spine injury is supported by the Rigorous Crash Simulator toolbox for
Matlab, to be used for modeling high-impact crashes which can lead to both
brain and spinal injuries. An example of a road-vehicle crash is included.

10.4 Appendix: Biodynamics and Control of Humanoid
Robots

Here, starting from the basic biodynamics, we give a brief on a three-level
control of humanoid robots.
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10.4.1 Basics of Human Biodynamics

To describe general biodynamics of human–like movement, which is governed
by the covariant force law :

Fi = mija
j ,

which states that:

the force covector-field Fi equals the mass-distribution tensor mij times the
acceleration vector-field aj (see Chapter 10 below and our references therein),

we usually start from the generalized Hamiltonian vector-field XH , describing
the basic behavior of the human–like locomotor system:

q̇i =
∂H

∂pi
+
∂R

∂pi
, (10.21)

ṗi = Fi −
∂H

∂qi
+
∂R

∂qi
, (10.22)

where the vector-field XH is generating time evolution, or phase–flow, of 2n
system variables : n generalized coordinates (joint angles qi) and n generalized
momenta (joint angular momenta pi), H = H(q, p) represents the system’s
conservative energy: kinetic energy + various mechano–chemical potentials,
R = R(q, p) denotes the nonlinear dissipation of energy, and Fi = Fi(t, q, p, σ)
are external control forces (biochemical energy inputs). The system parame-
ters include inertia tensor with mass distribution of all body segments, stiff-
ness and damping tensors for all joints (labeled by index i, which is, for geo-
metric reasons, written as a subscript on angle variables, and as a superscript
on momentum variables), as well as amplitudes, frequencies and time charac-
teristics of all active muscular forces (supposed to be acting in all the joints; if
some of the joints are inactive, we have the affine Hamiltonian control system,
see chapter 6).

The equation (10.21) is called the velocity equation, representing the flow
of the system (analogous to current in electrodynamics), while the equation
(10.22) is a Newton–like force equation, representing the effort of the sys-
tem (analogous to voltage). Together, these two functions represent Hamil-
tonian formulation of the biomechanical force–velocity relation of A.V. Hill
[Hil38]. From engineering perspective, their (inner) product, flow · effort,
represents the total system’s power, equal to the time–rate–of–change of the
total system’s energy (included in H,R and Fi functions). And energy itself
is transformed into the work done by the system.

10.4.2 Spinal Control Level

The general form of Hamiltonian humanoid robotics on the symplectic cotan-
gent bundle T ∗Mrob of the configuration manifold Mrob is based on the affine
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Hamiltonian function Ha : T ∗M → R, in local canonical coordinates on T ∗M
given by (see [Iva10c], as well as references therein):

Ha(x, p, u) = H0(x, p)−Hj(x, p)uj , (10.23)

where H0(x, p) is the physical Hamiltonian (kinetic + potential energy) de-
pendent on joint coordinates xi and canonical momenta pi, Hj = Hj(x, p),
(j = 1, . . . , m ≤ n are the coupling Hamiltonians corresponding to the sys-
tem’s active joints and ui = ui(t, x, p) are (reflex) feedback–controls. Using
(10.23) we come to the affine Hamiltonian control HBE–system, in determin-
istic form

ẋi = ∂piH0 − ∂piH
j uj + ∂piR, (10.24)

ṗi = Fi(t, x, p)− ∂xiH0 + ∂xiHj uj + ∂xiR,

oi = −∂uiHa = Hj ,

xi(0) = xi0, pi(0) = p0
i ,

(i = 1, . . . , n; j = 1, . . . , M ≤ n),

(Fi = Fi(t, x, p), H0 = H0(x, p), Hj = Hj(x, p), Ha = Ha(x, p, u), R =
R(x, p)), as well as in the fuzzy–stochastic form

dqi =
(
∂piH0(σµ)− ∂piH

j(σµ)uj + ∂piR
)
dt,

dpi = Bij [xi(t), t] dW j(t) + (10.25)
(
F̄i(t, x, p)− ∂xiH0(σµ) + ∂xiHj(σµ)uj + ∂xiR

)
dt,

dōi = −∂uiHa(σµ) dt = Hj(σµ) dt,

xi(0) = x̄i0, pi(0) = p̄0
i

In (10.24)–(10.25), R = R(x, p) denotes the joint (nonlinear) dissipation func-
tion, oi are affine system outputs (which can be different from joint coor-
dinates); {σ}µ (with µ ≥ 1) denote fuzzy sets of conservative parameters
(segment lengths, masses and moments of inertia), dissipative joint dampings
and actuator parameters (amplitudes and frequencies), while the bar (̄.) over
a variable denotes the corresponding fuzzified variable; Bij [qi(t), t] denote dif-
fusion fluctuations and W j(t) are discontinuous jumps as the n–dimensional
Wiener process.

Humanoid’s force servo–controller is formulated as affine control Hamil-
tonian systems (10.24–10.25) (with possible extensions along the lines of the
previous section), which resemble J. Houk’s autogenetic motor servo [Hou79],
acting on the spinal–reflex level of the human locomotion control. A volun-
tary contraction force F of human skeletal muscle is reflexly excited (positive
feedback +F−1) by the responses of its spindle receptors to stretch and is re-
flexly inhibited (negative feedback −F−1) by the responses of its Golgi tendon
organs to contraction. Stretch and unloading reflexes are mediated by com-
bined actions of several autogenetic neural pathways, forming the so–called
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‘motor servo.’ The term ‘autogenetic’ means that the stimulus excites recep-
tors located in the same muscle that is the target of the reflex response. The
most important of these muscle receptors are the primary and secondary end-
ings in the muscle–spindles, which are sensitive to length change – positive
length feedback +F−1, and the Golgi tendon organs, which are sensitive to
contractile force – negative force feedback −F−1.

The gainG of the length feedback +F−1 can be expressed as the positional
stiffness (the ratio G ≈ S = dF/dx of the force–F change to the length–x
change) of the muscle system. The greater the stiffness S, the less the muscle
will be disturbed by a change in load. The autogenetic circuits +F−1 and
−F−1 appear to function as servoregulatory loops that convey continuously
graded amounts of excitation and inhibition to the large (alpha) skeletomotor
neurons. Small (gamma) fusimotor neurons innervate the contractile poles of
muscle spindles and function to modulate spindle–receptor discharge.

10.4.3 Cerebellum–Like Velocity and Jerk Control

Nonlinear velocity and jerk (time derivative of acceleration) servo–controllers
(see [Iva10c] and references therein), developed using the Lie–derivative for-
malism, resemble self–stabilizing and adaptive tracking action of the cerebel-
lum ([HBB96]). By introducing the vector-fields f and g, given respectively
by

f =
(
∂piH0, −∂qiH0

)
, g =

(
−∂piH

j, ∂qiHj
)
,

we obtain the affine controller in the standard nonlinear MIMO–system form:

ẋi = f(x) + g(x)uj . (10.26)

Finally, using the standard Lie derivative formalism17 (see, e.g. [Iva04] and
references therein) and applying the constant relative degree r to all HB joints,
the control law for asymptotic tracking of the reference outputs ojR = ojR(t)
could be formulated as:

uj =
ȯ
(r)j
R − L(r)

f Hj +
∑r

s=1 cs−1(o
(s−1)j
R − L(s−1)

f Hj)

LgL
(r−1)
f Hj

, (10.27)

17 Let F (M) denote the set of all smooth (i.e., C∞) real valued functions f : M → R

on a smooth manifold M , V (M) – the set of all smooth vector-fields on M , and
V ∗(M) – the set of all differential one–forms on M . Also, let the vector-field
ζ ∈ V (M) be given with its local flow φt : M → M such that at a point x ∈ M ,
d
dt
|t=0 φtx = ζ(x), and φ∗

t representing the pull–back by φt. The Lie derivative
differential operator Lζ is defined:

(i) on a function f ∈ F (M) as

Lζ : F (M) → F (M), Lζf =
d

dt
(φ∗
t f)|t=0,
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where cs−1 are the coefficients of the linear differential equation of order r for
the error function e(t) = xj(t)− ojR(t)

e(r) + cr−1e
(r−1) + · · ·+ c1e

(1) + c0e = 0.

The control law (10.27) can be implemented symbolically in Mathe-
maticaTM in the following three steps:

1. Symbolic functions defining the gradient and Lie derivatives:18

Grad[s , x List] : = (D[s,#1]&)/@x;
LieDer[v List, s , x List] : = Grad[s, x] · v;

KLieDer[v List, s , x List, k ] : =
Block[{t}, p := s; If [k == 0, p = s,Do[p = LieDer[v, p, x], {k}]]; p];

2. Control law defined (for simplicity, we show here only the first–order
control law):

u[t ] = (−LieDer[F, y,X ] +D[yR[t], t] + α(yR[t]− y))/LieDer[g, y,X ];

3. Example for the reference output yR[t], with the final time Tfin:

yR[t ] = If[t <= Tfin/2, 5(1− e−5t), (5(1 − e−5t))/e(5(t−Tfin/2))];

The affine nonlinear MIMO control system (10.26) with the Lie–derivative
control law (10.27) resembles the self–stabilizing and synergistic output track-
ing action of the human cerebellum. To make it adaptive (and thus more
realistic), instead of the ‘rigid’ controller (10.27), we can use the adaptive
Lie–derivative controller, as explained in the seminal paper on geometrical
nonlinear control [SI89].

10.4.4 Cortical–Like Fuzzy–Topological Control

For the purpose of our cortical control, the dominant, rotational part of the
human configuration manifold MN , could be first, reduced to an N–torus,

(ii) on a vector-field η ∈ V (M) as

Lζ : V (M) → V (M), Lζη =
d

dt
(φ∗
t η)|t=0 ≡ [ζ, η]

– the Lie bracket, and
(iii) on a one–form α ∈ V ∗(M) as

Lζ : V ∗(M) → V ∗(M), Lζα =
d

dt
(φ∗
tα)|t=0.

In general, for any smooth tensor field T on M , the Lie derivative LζT geomet-
rically represents a directional derivative of T along the flow φt.

18 This is the code in MathematicaTM version 7.
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and second, transformed to an N–cube (‘hyper–joystick’), using the following
topological techniques19 [Iva04].

Let S1 denote the constrained unit circle in the complex plane, which is an
Abelian Lie group. Firstly, we propose two reduction homeomorphisms, using
the Cartesian product of the constrained SO(2)−groups:

SO(3) ≈ SO(2)× SO(2)× SO(2) and SO(2) ≈ S1.

Next, let IN be the unit cube [0, 1]N in RN and ‘∼’ an equivalence relation
on R

N obtained by ‘gluing’ together the opposite sides of IN , preserving their
orientation. Therefore, MN can be represented as the quotient space of RN

by the space of the integral lattice points in RN , that is an oriented and
constrained N–dimensional torus TN :

R
N/ZN ≈

N∏

i=1

S1
i ≡ {(qi, i = 1, . . . , N) : mod2π} = TN . (10.28)

Its Euler–Poincaré characteristic is (by the de Rham theorem) both for the
configuration manifold TN and its momentum phase–space T ∗TN given by:

χ(TN , T ∗TN) =
N∑

p=1

(−1)pbp ,

where bp are the Betti numbers defined as

b0 = 1,

b1 = N, . . . bp =
(
N

p

)

, . . . bN−1 = N,

bN = 1, (0 ≤ p ≤ N).

Conversely by ‘ungluing’ the configuration space we obtain the primary
unit cube. Let ‘∼∗’ denote an equivalent decomposition or ‘ungluing’ relation.
According to Tychonoff’s product–topology theorem, for every such quotient
space there exists a ‘selector’ such that their quotient models are homeomor-
phic, that is, TN/ ∼∗≈ AN/ ∼∗. Therefore INq represents a ‘selector’ for the
configuration torus TN and can be used as an N–directional ‘q̂–command–
space’ for the feedback control (FC). Any subset of degrees of freedom on the
configuration torus TN representing the joints included in HB has its simple,
19 This top control level has not yet been implemented. The main reason for this is

its high dimensionality. For example, the Human Biodynamics Engine simulator
has 270 degrees of freedom (both rotational and translational). Its rotational
part includes 135 individual Lie-derivative controllers. The integration of so many
individual controllers is a nontrivial problem that is currently beyond the capacity
of pure fuzzy control.
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rectangular image in the rectified q̂–command space – selector INq , and any
joint angle qi has its rectified image q̂i.

In the case of an end–effector, q̂i reduces to the position vector in external–
Cartesian coordinates zr (r = 1, . . . , 3). If orientation of the end–effector can
be neglected, this gives a topological solution to the standard inverse kine-
matics problem.

Analogously, all momenta p̂i have their images as rectified momenta p̂i in
the p̂–command space – selector INp . Therefore, the total momentum phase–

space manifold T ∗TN obtains its ‘cortical image’ as the (̂q, p)–command space,
a trivial 2N–dimensional bundle INq × INp .

Now, the simplest way to perform the feedback FC on the cortical (̂q, p)–
command space INq × INp , and also to mimic the cortical–like behavior, is to
use the 2N– dimensional fuzzy–logic controller, in much the same way as in
the popular ‘inverted pendulum’ examples.

We propose the fuzzy feedback–control map Ξ that maps all the rectified
joint angles and momenta into the feedback–control one–forms

Ξ : (q̂i(t), p̂i(t)) �→ ui(t, q, p), (10.29)

so that their corresponding universes of discourse, Q̂i = (q̂imax − q̂imin), P̂i =
(p̂maxi − p̂mini ) and Û i = (umaxi − umini ), respectively, are mapped as

Ξ :
N∏

i=1

Q̂i ×
N∏

i=1

P̂i →
N∏

i=1

Û i. (10.30)

The 2N–dimensional map Ξ (10.29,10.30) represents a fuzzy inference
system, defined by:

1. Fuzzification of the crisp rectified and discretized angles, momenta and
controls using Gaussian–bell membership functions

µk(χ) = exp[− (χ−mk)2

2σk
], (k = 1, 2, . . . , 9),

where χ ∈ D is the common symbol for q̂i, p̂i and ui(q, p) and D is the
common symbol for Q̂i, P̂i and i; the mean valuesmk of the nine partitions
of each universe of discourse D are defined as mk = λkD+χmin, with par-
tition coefficients λk uniformly spanning the range of D, corresponding to
the set of nine linguistic variables L = {NL,NB,NM,NS,ZE, PS, PM ,
PB,PL}; standard deviations are kept constant σk = D/9. Using the
linguistic vector L, the 9 × 9 FAM (fuzzy associative memory) matrix (a
‘linguistic phase–plane’), is heuristically defined for each human joint, in
a symmetrical weighted form

µkl = �kl exp{−50[λk + u(q, p)]2}, (k, l = 1, ..., 9)

with weights �kl ∈ {0.6, 0.6, 0.7, 0.7, 0.8, 0.8, 0.9, 0.9, 1.0}.
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2. Mamdani inference is used on each FAM–matrix µkl for all human joints:
(i) µ(q̂i) and µ(p̂i) are combined inside the fuzzy IF–THEN rules using
AND (Intersection, or Minimum) operator,

µk[ūi(q, p)] = min
l
{µkl(q̂i), µkl(p̂i)}.

(ii) the output sets from different IF–THEN rules are then combined us-
ing OR (Union, or Maximum) operator, to get the final output, fuzzy–
covariant torques,

µ[ui(q, p)] = max
k
{µk[ūi(q, p)]}.

3. Defuzzification of the fuzzy controls µ[ui(q, p)] with the ‘center of gravity’
method

ui(q, p) =
∫
µ[ui(q, p)] dui∫

dui
,

to update the crisp feedback–control one–forms ui = ui(t, q, p).

Finally, it is easy to make this top–level controller adaptive, simply by
weighting both the above fuzzy–rules and membership functions, by the use
of any standard competitive neural–network (see [Kos92]).



October 10, 2014 11:9 Complexity and Control 9in x 6in b1966-ch11 page 425

11
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It is often held that things should always be made simple, which presumes
that either that they can always be made simple or that all the jetisoned
logic doesn’t matter anyway. Alledgedly, anything should be explainable so
that anyone can understand it. Don’t get bogged down in dreary details. It
should be effortless for the reader: low-dimensional systems exhibit complex
behaviour while high-dimensional systems exhibit simple behaviour (to return
to our prolegomonal opening), competition is a universal solution, demand
must increase as price falls, and everything under the sun neatly fits a power
law. Or so the story goes.

There’s just one problem with all of this: it’s plain wrong. Yet neither
do we give much credence to clattering jargon for jargon’s sake, with sim-
ple concepts wrapped up in verbiage to make it appear impressive; think of
Hegelian discourse. Equations can be used to escape reality just as readily as
to investigate it, and writing a differential equation doesn’t by itself amount
to the conduct of science. What of the apparent contradiction? The impetus
for simplicity appears to be two-fold. Firstly, the principle of Occam’s Ra-
zor is sometimes held to dictate that everything be made simple, period, and
secondly, it is just easier to market a simple message. Yet this this is a bla-
tant abuse of Occam’s Razor, for the principle actually holds that among all
the possible explanations whose predictions do not conflict with the available
evidence, we should prefer the simplest. In other words, we yearn to keep it
as simple as we are able but strictly without oversimplifying and sacrificing
explanatory and predictive power. As for the second: there is much more to
science than merely touring the conference circuit.

What we have attempted to do in this book is specifically to avoid making
simplifying assumptions that keep our theory development within the bounds
of familiar tools yet limit the power of our theory, and to avoid conveniently
forgetting about those assumptions on the way to declaring that our conclu-
sions constitute immutable truths. We have proposed a basis for a rigorous ap-
proach to behavioural complexity suited to addressing problems of prediction
and control pertaining to both arbitrarily large sets of agents and simultane-
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ously to the individual agents making up such groupings. Despite our efforts,
it is not without limitations and we do not claim that it constitutes the final
word in complexity, behaviour and control. Our emphasis on mathematical
rigour pertains to our impatience with mere narratives generally constructed
with the full benefits of hindsight, and our conviction that the models of any
theory worthy of the name must make definitive predictions that can conciev-
ably be refuted upon contact with the phenonema the theory and its models
are supposed to address. We admit that the consequence is a rather more
steep entry price than many interested in complex systems will want to pay;
the result of our investigation is admittedly not the most gentle of reads nor
the most amenable to reduction to intuitively appealing shibboleths and nice
quotidian anecdotes.

We have implemented this approach throughout the book. The local ge-
ometrical and topological theory of crowds uses Käler manifolds to give us,
simultaneously, Lagrangian dynamics, Hamiltonian dynamics, and a complex
dynamics resembling quantum dynamics. This setting, we have argued, is the
richest currently available for representing the behavioural dynamics of intel-
ligent entities physically moving about in the complex plane; in other words,
we submit that this approach makes the smallest concessions to the need to
make simplifying assumptions we can currently muster.

The problem of burgeoning complexity in our models is bound to swamp
us at some point in our search for rigorous models of ever greater explanatory
and predictive power. Making simplifying assumptions is acceptable and, in-
deed, inevitable; what is neither acceptable nor inevitable is the practice of
forgetting about the boundaries our assumptions set on the precision and gen-
erality of our conclusions. We have attempted wherever possible to adopt an
approach that is distinctly computer science in flavour, whereby we abstract
over details rather than assuming them away. Not suprisingly in light of the
prominent role Category Theory plays in modern computer science precisely
for its abstractive power, we use Categories to construct a global view that
hides and generalises over the particulars of individual theories and models.

Our subsequent modelling framework for simulation and control of crowds
and groups is built on this idea, using the language of commutative diagrams,
and constructing a nonlinear attractor dynamics in the Langevin style. Rather
than a nonlinear Schrödinger equation, this approach is built on a geomet-
rical interpretation using the Kähler Manifolds and the consequent Kähler-
Ricci flow introduced earlier. The simulation uses a Runge-Kutta-Cash-Carp
numerical integrator, complexified, to yield a Langevin-type crowd dynamics
and finite-type control of hundreds of agents moving in the complex plane.

We presented our socio-cognio-physical dynamics in the form of the open
Liouville equation to describe dynamics simultaneously at the macroscopic
interpersonal crowd level and the microscopic intrapersonal individual level.
At the microscopic level, our approach amounts to a nonlinear generalisation
of the linear correlation and factor dynamics, which gives us an arrow of time
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and shows a formal self-similarity property. This, in turn, gives us a unique
control law that acts across different scales.

Next, we expored the problem of designing a topological evolution of
adaptable complex systems, and proposed a novel generalisation of a stochas-
tic gradient-descent algorithm. The model hinges on an Hamiltonian energy
landscape cost funtion derived from a fleet configuration matrix. The result-
ing system adaption is topological in the sense that it satisfies a topological
invariant and in that the evolution is graph-theoretic.

We have reviewed and analysed models of controlled complexity in non-
linear pulse conduction, starting with the Hodgkin-Huxley model of pulse
conduction in neural fibres and advancing to rogue wave phenonema in op-
tical fibres. We proposed a novel sine-Gordon alternative to the venerable
Hodgkin-Huxley model, which explains pulse conduction more generally in
terms of wave phenonema, including kinks/anti-kinks, solitons and breathers.

Our quantum-dynamical model based on Perceptual Control Theory uses
large networks of Josephson Junctions in a multi-layered architecture, which
returns us to the point about the need for abstraction rather than simplifi-
cation wherever we can manage it: intuitive Category-Theoretic abstractions
hide necessary but potentially overwhelming algebraic details from view while
nonetheless enabling us to ensure rigorously correct function compositions.
This represents a new take on Perceptual Control Theory, which provides a
unifying framework for modelling psycho-physical systems, but is essentally
model-free.

We built on this Perceptual Control Theory basis further in examining
military Command and Control (and other organisational decision-making
settings), where our modelling approach allows for the possibility that ran-
domness plays a central role in selecting the path of realised events from all
those that events are possible. This establishes entropy as a central order pa-
rameter by which we can, roughly speaking, quantify the degree of uncertainty
about outcomes. We offer several views of this development: a physical view
of partition functions and path integrals (which we can roughly describe as a
sum over possible histories), a global view in which we employ our Category-
Theoretic machinery to abstract away from details, a local geometrical view
of the Kähler-Ricci flow, and a computational view using approximations of
path integrals.

We have also presented a couple-loading rate hypothesis for brain and
spinal injuries, holding that such injuries are caused by impulsive loading in
several coupled degrees-of-freedom simultaneously – a Euclidean jolt. It is
never a static force and never occurs in just one direction, but is impulsive
transational and/or rotational and coupled to a mass eccentricity. The hy-
pothesis allows prediction and thus prevention of injury, and pertains to both
sudden motion injury and to mass distribution injury; it is motivated by the
realisation that the traditional principal loading hypothesis that describes in-
jury in terms of bending, shear, tension and compression does not suffice to
predict and thus prevent the occurrence of injury.



October 10, 2014 11:9 Complexity and Control 9in x 6in b1966-ch11 page 428

428 11 Conclusion

The theme behind each of these components to our study of complexity,
control and behaviour is that it doesn’t suffice in the study of complexity to
create anecdotes or narratives after the fact, and employing simplifying as-
sumptions that keep us within the boundaries of our familiar tools will run out
of steam surprisingly quickly. Perhaps it will not be so surprising to those who
are naturally curious about the limitations and weaknesses that all assump-
tions necessarily impose on our conclusions and naturally suspicious of claims
that overlook these caveats, whatever the intended ends. Applying more pow-
erful – and necessarily more difficult – rigorous methods is necessary, but so
too is using powerful mathematical means of preserving rigor while hiding as
many details as possible under layers of abstraction. In fact, we submit that
the future success of research in complexity topics in the broad hinges more,
if anything, on the latter than on the former. We hope that our contribution
will stimulate further investigation, and that in the application of our ideas,
as attempts to explain phenonema in the real world, their weaknesses and
limitations will eventually reveal themselves. In doing so, our readers will fur-
ther the growth of knowledge and hopefully propose new theories behaviour,
complexity and control of greater predictive power.
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Code Samples Used for Complexity and
Control

12.1 Mathematica� Code

12.1.1 Generic Chaotic Simulator

In this notebook we are experimenting with seven 3D nonlinear attractor
dynamical systems, which are all chaotic for certain values of their parameters
(a,b,c). Three forms of their presentation are given: (i) x− y − z time-series,
(ii) 3D phase space, and (iii) x − y − z FFT-spectrum. Implemented chaotic
attractor systems are defined by the following sets of three 1st-order attractor
ODEs (see Figure 12.1 for the case of the Forced Van der Pol oscillator):

1. Lorenz attractor: ẋ = a(y − x), ẏ = x(b − z)− y, ż = xy − cz.
2. Rossler attractor: ẋ = −y − z, ẏ = x+ ay, ż = b+ z(x− c).
3. Forced Duffing oscillator: ẋ = y, ẏ + aẋ− bx+ cx3 = z, ż = cos(5t).
4. Forced Van der Pol oscillator: ẋ = y, ẏ − a(1 − 4bx2)y + c2x = z, ż =

cos(5t).
5. Another1 attractor: ẋ = ax+ yz, ẏ = by − xz, ż = cz + xy.
6. Another2 attractor: ẋ = −y− z, ẏ = x−0.5ay, ż = 0.1+ |b|+xz+10cz.
7. Another3 attractor: ẋ = ayz2, ẏ = |b|xz, ż = cxy2.

Manipulate[
Module[{Lorenz, Rossler, ForceDuffing, ForceVanDerPol,
Another1,

Another2, Another3, sol, x, y, z, t, pl1, pl2, pl3, data,
fdata},

Lorenz = {{x’[t] == a (y[t] - x[t]), y’[t] == x[t] (b - z[t])
- y[t],
z’[t] == x[t] y[t] - c z[t], x[0] == y[0] == 20, z[0]
== 100}};
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Fig. 12.1. Numerical simulation of the Forced Van der Pol oscillator: (a)
time plot, (b) phase space, and (iii) FFT spectrum.

Rossler = {{x’[t] == -y[t] - z[t], y’[t] == x[t] + \[Alpha]1
y[t],
z’[t] == \[Beta]1 + z[t] (x[t] - \[Gamma]1), x[0] == 0.2,
y[0] == 0.3,
z[0] == 0.5}};

ForceDuffing = {{x’[t] == y[t], y’[t] + \[Alpha]2 x’[t] -
\[Beta]2 x[t]
+ \[Gamma]2 x[t] == z[t], z’[t] == Cos[5 t], x[0] == y[0] ==
z[0] == 0}};

ForceVanDerPol = {{x’[t] == y[t], y’[t] - \[Alpha]3
(1-4\[Beta]3 x[t])y[t]
+ \[Gamma]3 x[t] == z[t], z’[t] == Cos[5 t], x[0] == y[0] ==
z[0] == 0}};

Another1 = {{x’[t] == a1 x[t] + y[t] z[t], y’[t] == b1 y[t]
- x[t] z[t],
z’[t] == c1 z[t] + x[t] y[t], x[0] == -1, y[0] == 1, z[0]
== 2}};

Another2 = {{x’[t] == -y[t] - z[t], y’[t] == x[t] - 0.5 a2
y[t],
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z’[t] == 0.1 + Abs[b2] + x[t] z[t] + 10 c2 z[t], x[0] == y[0]
== -1.2, z[0] == 1.2}};

Another3 = {{x’[t] == a3 y[t] z[t], y’[t] == Abs[b3] x[t]
z[t], z’[t] == c3 x[t] y[t], x[0] == 1, y[0] == 2,
z[0] == 1.8}};

sol = Quiet[NDSolve[ForceVanDerPol, {x[t], y[t], z[t]},
{t, 0, 50}, MaxSteps -> Infinity]];

data = Transpose[Table[Evaluate[x[t] y[t] z[t] /. sol],
{t,10,50,0.01}]];
fdata = Log[Abs[Fourier[data]] ];

pl1 = Plot[Evaluate[{x[t], y[t], z[t]} /. sol], {t,10,50},
PlotRange->All,
PlotStyle -> AbsoluteThickness[1.5], ImageSize -> {500,
350}];
pl2 = ParametricPlot3D[Evaluate[{x[t], y[t], z[t]} /. sol],
{t, 0, 50},
BoxRatios -> {1, 1, 1}, PlotRange -> All, ColorFunction ->
Rainbow,
PlotStyle -> AbsoluteThickness[1.5], ImageSize -> {500,
400}];
pl3 = ListLinePlot[fdata, PlotRange -> All, PlotStyle ->
AbsoluteThickness[1.1], ImageSize -> {500, 350}];

Which[Analysis == "Time series", Show[pl1], Analysis
== "Phase space",

Show[pl2], Analysis == "FFT spectrum", Show[pl3]]],

Delimiter, Style["Lorenz", 10],
{{a, 16, "a"}, 16, 20, 0.1, ImageSize -> Small,
Appearance -> "Labeled"}, {{b, 45.92, "b"}, 45, 56, 1,
ImageSize -> Small, Appearance -> "Labeled"}, {{c, 4, "c"},
1.0, 6, 0.1,
ImageSize -> Small, Appearance -> "Labeled"},

Delimiter, Style["Rossler", 10],
{{\[Alpha]1, 0.2, "a"}, 0.15, 0.3, 0.01, ImageSize -> Small,
Appearance -> "Labeled"}, {{\[Beta]1, 0.2, "b"}, 0.15, 0.4,
0.01,
ImageSize -> Small,
Appearance -> "Labeled"}, {{\[Gamma]1, 3.0, "c"}, 1, 10,
0.1,
ImageSize -> Small, Appearance -> "Labeled"},
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Delimiter, Style["ForceDuffing", 10],
{{\[Alpha]2, 1.5, "a"}, 0, 3, 0.01, ImageSize -> Small,
Appearance -> "Labeled"}, {{\[Beta]2, 0.25, "b"}, 0, 1,
0.01,
ImageSize -> Small, Appearance -> "Labeled"}, {{\[Gamma]2,
2, "c"}, 1, 3, 0.01,
ImageSize -> Small, Appearance -> "Labeled"},

Delimiter, Style["ForceVanDerPol", 10],
{{\[Alpha]3 , 3, "a"}, 1, 9, 0.1, ImageSize -> Small,
Appearance -> "Labeled"}, {{\[Beta]3, 2, "b"}, 2, 9, 0.1,
ImageSize -> Small, Appearance -> "Labeled"}, {{\[Gamma]3,
3, "c"}, 1, 9, 0.1,
ImageSize -> Small, Appearance -> "Labeled"},

Delimiter, Style["Another1", 10],
{{a1, -0.4, "a"}, -1, -0.25, 0.001, ImageSize -> Small,
Appearance -> "Labeled"}, {{b1, 0.3, "b"}, -1, 1, 0.001,
ImageSize -> Small, Appearance -> "Labeled"}, {{c1, -0.1,
"c"}, -1, 0, 0.001,
ImageSize -> Small, Appearance -> "Labeled"},

Delimiter, Style["Another2", 10],
{{a2, -0.4, "a"}, -1, -0.25, 0.001, ImageSize -> Small,
Appearance -> "Labeled"}, {{b2, 0.3, "b"}, -1, 1, 0.001,
ImageSize -> Small, Appearance -> "Labeled"}, {{c2, -0.8,
"c"}, -1, 0, 0.001, ImageSize -> Small, Appearance
-> "Labeled"},

Delimiter, Style["Another3", 10],
{{a3, -0.4, "a"}, -1, -0.25, 0.001, ImageSize -> Small,
Appearance -> "Labeled"}, {{b3, -0.7, "b"}, -1, 1, 0.001,
ImageSize -> Small, Appearance -> "Labeled"}, {{c3, -0.8,
"c"}, -1, 0, 0.001, ImageSize -> Small, Appearance ->
"Labeled"},

Delimiter, {{Analysis, "Time series"}, {"Time series",
"Phase space", "FFT spectrum"}}, TrackedSymbols
-> Manipulate]

12.1.2 Vector Differential Operators

Here we give Mathematica� functions for definition/calculation of various
vector differential operators. Note that, functional programming is used for
this objective.

GM[x_List] := Times @@ x^(1/Length[x]) (* Geometric
mean *)

Nrm[x_List] := Sqrt[x^2 /. List -> Plus] (* Norm *)
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Grad[s_, x_List] := (D[s, #1] & ) /@ x (* Gradient *)

GradSys[s_,x_List] := (D[#1,t] == -D[s,#1]&)/@x (* Grad.
system *)

JacMat[v_List, x_List] := Outer[D, v, x] (* Jacobian
matrix *)

Hess[s_, x_List] := Outer[D, Grad[s, x], x] (* Hessian
matrix *)

Div[v_List, x_List] := Inner[D, v, x, Plus] (* Divergence
*)

Laplacian[s_, x_List] := Div[Grad[s, x], x] (* Laplacian *)

LieDer[v_List, s_, x_List] := Grad[s, x] . v (* Lie
derivative *)

KLieDer[v_List, s_, x_List, k_] := (* k-th order Lie
derivative *)
Block[{t}, p := s; If[k == 0, p = s, Do[p = LieDer[v, p,
x],

{k}]]; p]

LieBrc[u_List, v_List, x_List] := JacMat[v, x] . u
- JacMat[u, x] . v (* Lie bracket
*)

Adj[u_List, v_List, x_List, k_] := If[k == 0, v,
LieBrc[u, Adj[u, v, x, k - 1], x]] (* k-th order Lie
bracket *)

PoisBrc[u_List, v_List, x_List, y_List] := (* Poisson
bracket *)
JacMat[u, x] . JacMat[v, y] - JacMat[u, y] . JacMat[v, x]

12.1.3 NLS Explorer

The following Mathematica� code explores various forms of numerical solu-
tions of the (1+1)D nonlinear Schrödinger equation (NLS).

V[t_, x_] := a*Sech[a*t*x^3];
IC[x_] := c*Exp[I*x]*Sech[c*x];
Tfin = 100; L = 60; a = b = c = 0.5;
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Fig. 12.2. NLS Explorer.

NLS = I*D[\[Psi][t, x], t] == (-(1/2))*D[\[Psi][t, x], x, x]
+ V[t, x]*Abs[\[Psi][t, x]]^2*\[Psi][t, x];

sol = NDSolve[{NLS, \[Psi][0, x] ==
IC[x], \[Psi][t, -L] == \[Psi][t, L]}, \[Psi], {t, 0,

Tfin}, {x, -L, L}, Method -> {"MethodOfLines",
"SpatialDiscretization" -> {"TensorProductGrid",
"DifferenceOrder" -> "Pseudospectral"}}];

Manipulate[pl1 = Plot[{Evaluate[Re[\[Psi][t, x] /.
First[sol]]],

Evaluate[Im[\[Psi][t, x] /. First[sol]]]}, {x, -L, L},
PlotRange -> All, PlotStyle -> Thickness[0.004]],

Style["Re/Im[\[Psi]] depending on t"])], {t, 0, Tfin}]

Manipulate[pl2 = Plot[{Evaluate[Re[\[Psi][t, x] /.
First[sol]]],

Evaluate[Im[\[Psi][t, x] /. First[sol]]]}, {t, 0, Tfin},
PlotRange -> All, PlotStyle -> Thickness[0.004]],

Style["Re/Im[\[Psi]] depending on x"])], {x, -L, L}]
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Manipulate[pl3 = Plot[Evaluate[Abs[\[Psi][t, x]/.
First[sol]]], {x,-L,L},

PlotRange -> All, PlotStyle -> Thickness[0.004]],
Style["Abs[\[Psi]] depending on t"])], {t, 0, Tfin}]

Manipulate[pl4 = Plot[Evaluate[Abs[\[Psi][t,x]/.
First[sol]]^2],{x,-L,L},

PlotRange -> All, PlotStyle -> Thickness[0.004]],
Style["PDF=[\(Abs\), \(2\)]\)[\[Psi]]
depending on t"])], {t, 0, Tfin}]

Manipulate[pl5 = ParametricPlot[{Evaluate[Re[\[Psi][t, x]/.
First[sol]]],

Evaluate[Im[\[Psi][t, x] /. First[sol]]]}, {x, -L, L},
PlotRange -> All, PlotStyle -> Thickness[0.004]],

Style["Complex Plane: Re[\[Psi]] vs Im[\[Psi]]
depending on t"])],
{t, 0, Tfin}]

Manipulate[pl0 = Plot3D[{Evaluate[Re[\[Psi][t, x] /.
First[sol]]],

Evaluate[Im[\[Psi][t, x] /. First[sol]]]}, {x, -L, L},
{t, 0, Tfin}, PlotRange -> All, ColorFunction ->
(Hue[#1] & ),
AxesLabel -> x,t, "Re/Im[\[Psi]]"}, ImageSize -> 500],
Style["3DPlot of Re[\[Psi]] and Im[\[Psi]] depending on t
and x"])],
{t, 0, Tfin}, {x, -L, L}]

Manipulate[pl6 = ContourPlot[{Evaluate[Re[\[Psi][t, x] /.
First[sol]]],

Evaluate[Im[\[Psi][t, x] /. First[sol]]]}, {x, -L, L},
{t, 0, Tfin}, PlotRange -> All],

Style["ContourPlot: Re[\[Psi]] vs Im[\[Psi]] depending on
t"])],
{t, 0, Tfin}]

Manipulate[pl8 = StreamPlot[{Evaluate[Re[\[Psi][t, x] /.
First[sol]]],

Evaluate[Im[\[Psi][t, x] /. First[sol]]]}, {x, -L, L},
{t, 0, Tfin}, PlotRange -> All], Style["StreamPlot:
Re[\[Psi]]
vs Im[\[Psi]] depending on t"])], {t, 0, Tfin}]

The output of the code is given in Figure 12.2.
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12.2 C++ Code

12.2.1 C++ Lambda Functions for Real Calculus

The following sample C++ code provides recursive numerical integration and
differentiation of branching functions (see Figure 12.3) using auto-lambda
functions (C++11 standard).

Fig. 12.3. Recursive numerical integration and differentiation of branching
functions using C++ auto-lambda functions.

// Recursive integrator & differentiator of branching
functions
// using auto-lambda functions (C++11 standard)

#include <iostream>
#include <fstream>
#include <cmath>

using namespace std;

double t=0., h=0.03, tFin=5.;
// Define a branching function (using cond.op)
auto f = [] (double x) { return (x > 1) ? exp(-sin(x))
*tanh(x*x) :
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exp(-sin(x*x*x))/cosh(x*x); };
// Weddle integration formula
auto ii = [] (double a,double b) { return

3*(b-a)*(f(a)+5*f((5*a+b)/6)+f((4*a+2*b)/6)+6*f((3*a+3*b)
/6)
+ f((2*a+4*b)/6)+5*f((a+5*b)/6)+f(b))/60; };

// 7-point central diff. formula
auto dd = [] (double x) { return

(-f(x-3*h)+9*f(x-2*h)-45*f(x-h)
+ 45*f(x+h)-9*f(x+2*h)+f(x+3*h))/(60*h); };

int main() {
ofstream file ("derInt.csv");
file << "t" <<","<< "f(t)" <<","<< "i1(0-t)" <<","<<
"i2(0-t)" <<","<< "i3(0-t)" <<","<< "i4(0-t)" <<","<<
"i5(0-t)" <<","<< "d1(t)" <<","<< "d2(t)" <<","<< "d3(t)"
<<","<< "d4(t)" <<","<< "d5(t)" << endl;
while (t < tFin)
{// Calling higher integrals and derivatives recursively

file << t <<","<< f(t) <<","<< ii(0,t) <<","<<
ii(0,ii(0,t)) <<","<< ii(0,ii(0,ii(0,t))) <<","<<
ii(0,ii(0,ii(0,ii(0,t)))) <<","<<
ii(0,ii(0,ii(0,ii(0,ii(0,t))))) <<","<< dd(t) <<","<<
dd(dd(t)) <<","<< dd(dd(dd(t))) <<","<< dd(dd(dd(dd(t))))
<<","<< dd(dd(dd(dd(dd(t))))) << endl;

t+=h;
}

file.close(); return 0;
}

12.2.2 Accelerometer Data Processor

Here we give a C++ code that implements input reading of the N -column
accelerometer data, and then performs its basic processing (calculating veloc-
ities, displacements and jerks) with an output to a csv-file.

// N-column accelerometer processor
// Simple Euler integration and derivative

#include <stdio.h>
#include <math.h>
#include <string.h>

#define n 9 // number of data-columns
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double Tfin = 19.5; // final time
double dt = 0.1; // time step
double t = 0.0; // initial time
double Gdata[n],x[n],v[n],a[n],aPrev[n],j[n];

void header(FILE* pOut) {
fputs("t", pOut);
for(int i=0; i<n; i++)

fprintf(pOut,",a%i,v%i,x%i,j%i",i,i,i,i);
fputs("\n", pOut);

}

void print(FILE* pOut) {
fprintf(pOut, "%.4f", t);
for(int i=0; i<n; i++)

fprintf(pOut,",%.7f,%.7f,%.7f,%.7f", a[i],v[i],x[i],
j[i]);
fprintf(pOut,"\n");

}

int main() {
char sLine[512], *pch;
FILE* pIn; FILE* pOut;
for(int i=0; i<n; i++) {

x[i] = 0.0; // initial displacement
v[i] = 0.0; // initial velocity
a[i] = 0.0; // initial acceleration
aPrev[i] = 0.0; // initial accPrev
j[i] =0.0; // initial jerk

}

pIn = fopen("9cols.csv", "r"); // open input
file
pOut = fopen("VelocJerk9.csv", "w"); // open
output file
header(pOut); // print
header

while (t < Tfin) { // main
time loop

fscanf(pIn,"%s",sLine);
pch = strtok(sLine,",");

for(int i=0; i<n; i++) {
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// G-data input:
pch = strtok(NULL,",");
Gdata[i] = atof(pch);

// Euler integrations:
a[i] = 9.81*Gdata[i]; // acceleration
[m/s^2]
v[i] += a[i]*dt; // velocity [m/s]:
v = v0 + a*dt
x[i] += v[i]*dt; // displacement [m]:
x = x0 + v*dt

// Derivative:
j[i] = (a[i]-aPrev[i])/dt; // jerk [m/s^3]:
j = (a - a0)/dt
aPrev[i] = a[i];

}
t += dt; // time increment
print(pOut); // data printout

}
fclose(pIn); fclose(pOut);

}

12.2.3 Simple Predictor-Corrector Integrator

Here we give the simplest C++ implementation of the predictor-corrector
ODE-integrator (see Figure 12.5).

// Simple predictor-corector ODE-integrator
// Simulating a 1D particle under elastic force
#include <iostream>
#include <fstream>
#include <cmath>
using namespace std;

#define n 1001
#define dt 0.01
#define m 5

int main()
{

ofstream fOut("fOut.csv");
double t[n], x[n], v[n];
t[0]=0; x[0]=0; v[0]=1;
for (int i=0; i<n-1; ++i)
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Fig. 12.4. Example for the Shooting method: solving the BVP for the Forced
Van der Pol oscillator (top: time series, bottom: phase-plot).

Fig. 12.5. Simulation of a 1D particle under elastic force, using the simple
predictor-corrector ODE-integrator.
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{
t[i+1] = (i+1)*dt;

// Predictor for position and velocity
x[i+1] = x[i]+v[i]*dt;
v[i+1] = v[i]-x[i]*dt;

// Corrector for position and velocity
x[i+1] = x[i]+(v[i]+v[i+1])*dt/2;
v[i+1] = v[i]-(x[i]+x[i+1])*dt/2;

if (i == 0 || (i+1)%m == 0) // printing every m-th
step

fOut << t[i] <<","<< x[i] <<","<< v[i] << endl;
}

fOut.close();
}

12.2.4 Solving the BVP with the Shooting Method

Here we give a C++ code that solves the boundary-value problem (BVP)
for a 2nd-order nonlinear ODE, using the Shooting Method: combining the
RK4 integrator with the secant root-finder (see Figure 12.4). The code also
demonstrates the use of OpenMP for multi-threaded parallel processing.

// Solving BVP for the Forced Van der Pol Oscillator using
the Shooting Method:
// Combining the RK4 integrator with the Secant root-finder.

#include <stdio.h>
#include <math.h>
// using OpenMP for multi-threaded parallel processing
#include <omp.h>

#define n 10001 // total number of steps
#define ta 0.0 // initial and final times
#define tb 15.0
#define xa 5.0 // initial and final positions
#define xb 0.4
#define pi 3.141592653589793
#define a 12.0 // system parameters
#define b 9.0
#define c 0.6

// Using Lambda-functions
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auto gX = [] (double x1,double x2,double t) { return x2; };
// x1=position, g=x2=velocity
auto gY = [] (double x1,double x2,double t)
{ return a*cos(pi*t) + c*(1-b*x1*x1)*x2 - pi*pi*x1; };

// Alternative - old C-style
//#define gX(x1,x2,t) (x2) // System ODEs: x’=y=gX,
x’’=y’=gY
//#define gY(x1,x2,t) (a*cos(pi*t) + c*(1-b*x1*x1)*x2 -
pi*pi*x1)

double t, h; double x[2][n]; FILE* pOut;
void print(FILE*); //function prototypes
void RK4(double [2][n]);

int main() {
double d=0.1, dt=0.01, tol=1e-3;
double t0, t1, t2, x1, x2, f0, f1;
#pragma omp parallel // using OpenMP
pOut = fopen("ShootVDPforc.csv", "w"); // open output
file
h = (tb-ta)/(n-1); // calculated time-step
t0 = (xb-xa)/(tb-ta); // initial slope calculation
t1 = t0 + dt; // initial slope increment
x[0][0] = xa; // position = initial position
while (fabs(d) > tol) { // secant search for the root
// RK4: first trial solution
x[1][0] = t0; // velocity = slope
RK4(x); // call RK4
f0 = x[0][n-1]-1; // first function value
calculated by RK4
// RK4: second trial solution
x[1][0] = t1; // velocity = slope increment
RK4(x); // call RK4
f1 = x[0][n-1]-1; // second function value
calculated by RK4
// perform secant search
d = f1-f0; // difference of the two
function values
t2 = t1-f1*(t1-t0)/d; // second slope increment
t0 = t1; // swap slopes and their
increments
t1 = t2;

}
print(pOut); // data printout
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printf("tB,xB = %.2f,%.2f\n", tb,xb);
printf("slope t0 = %.7f\n", t0);

} // main

void print(FILE* pOut) {
fputs("t,x,y\n", pOut);
for (int i=0; i<n; i++) {
t = h*i;
fprintf(pOut, "%.4f,%.7f,%.7f\n", t, x[0][i], x[1][i]);

}
}

void RK4(double x[2][n]) { // RK4 algorithm for (gX,gY)
double k11, k21, k12, k22, k13, k23, k14, k24;
double x1, x2;
for (int i=0; i<n-1; i++) {
t = ta+h*(i+1);
x1 = x[0][i];
x2 = x[1][i];
k11 = h*gX(x1,x2,t);
k21 = h*gY(x1,x2,t);
k12 = h*gX((x1+k11/2),(x2+k21/2),(t+h/2));
k22 = h*gY((x1+k11/2),(x2+k21/2),(t+h/2));
k13 = h*gX((x1+k12/2),(x2+k22/2),(t+h/2));
k23 = h*gY((x1+k12/2),(x2+k22/2),(t+h/2));
k14 = h*gX((x1+k13),(x2+k23),(t+h));
k24 = h*gY((x1+k13),(x2+k23),(t+h));
x[0][i+1] = x[0][i]+(k11+2*(k12+k13)+k14)/6;
x[1][i+1] = x[1][i]+(k21+2*(k22+k23)+k24)/6;

}
}

12.2.5 Linear Hyperbolic PDE Solver

Here, we show a finite-difference method based wave equation solver (see Fig-
ure 12.6).

// Linear Hyperbolic PDE Solver
// Algorithm: Finite-Difference Method

// Approximate solution of the Wave PDE: u_(tt)(x,t)
=c^2u_(xx)(x,t)
// over R = {(x,t): 0 <= x <= a, 0 <= t <= b} with
// u(0,t) = 0, u(a,t) = 0 for 0 <= t <= b and
// u(x,0) = f(x), u_t(x,0) = g(x) for 0 <= x <= a
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Fig. 12.6. Solving the (1+1)-wave equation, using the finite-difference
method.

#include<stdio.h>
#include<stdlib.h>
#include<math.h>
#include<time.h>

#define Max 50

// Global Variables

double h; // step size

// Prototypes
double Fi(int i);
double Gi(int i);

// Grid function for amplitude
double Fi(int i)
{
extern double h;
double arg;
arg = h * (i - 1);
if( (arg >= 0) && (arg <= 1.0) ) return ( sin
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(3.1415926*arg) );
else
{
printf(" Fi() :Argument not in range ! Exiting !\n");
printf(" arg : %lf\n", arg);
exit(0);
}
}

// Grid function for velocity
double Gi(int i)
{
extern double h;
double arg;
arg = h * (i - 1);
if( (arg >= 0) && (arg <= 1) ) return ( 0.0 );
else
{
printf(" Gi() : Argument not in range ! Exiting !\n");
printf(" arg : %lf\n", arg);
exit(0);
}
}

int main()
{
double A, B; // INPUT : width and height of
Rectangle
double C; // INPUT : wave equation const
int N, M; // dimensions of the grid
double K, R, R2, R22, S1, S2;
double U[Max][Max]; // grid-amplitudes

double t = 0.0; // Initial time
int ticks;
double ms;
clock_t start, stop;
double prev_t = -1; // Previous t

FILE* pOut; // File pointer to
output file
pOut = fopen("out.csv", "w"); // Write header
start = clock() * CLK_TCK; // Clock setup

A = 1.0; // interval boundary of x
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B = 1.0; // interval boundary of t
N = 40; // dimension of grid in x-direction
M = 40; // dimension of grid in y-direction
C = 0.5; // wave equation constant C

// Compute step sizes
h = A / ( N - 1 );
K = B / ( M - 1 );
R = C * K / h;
R2 = R * R;
R22 = R * R / 2.0;
S1 = 1.0 - R * R;
S2 = 2.0 - 2.0 * R * R;

// Boundary conditions
for ( int j = 1; j <= M; j++ )
{
U[1][j] = 0;
U[N][j] = 0;
}

// First and second rows
for ( int i = 2; i <= N - 1 ; i++ )
{
U[i][1] = Fi(i);
U[i][2] = S1 * Fi(i) + K * Gi(i) + R22 * ( Fi(i+1) +
Fi(i-1) );
}

// Generate new waves
for ( int j = 3; j <= M; j++ )
{
for ( int i = 2; i <= N - 1; i++ )
{
U[i][j]=S2*U[i][j-1] + R2*(U[i-1][j-1] +
U[i+1][j-1] ) - U[i][j-2];
}
}

// Output the solution
for ( int j = 1; j <= M; j++ )
{
fprintf(pOut,"%8.6lf ", K * (j - 1));
for ( int i = 1; i <= N; i++ ) fprintf(pOut,"
%8.6lf,", U[i][j]);
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fprintf(pOut,"\n");
}
fclose(pOut);
stop = clock() * CLK_TCK; // Timing
ticks = stop - start;
ms = (float)ticks / 1000.0f;
printf("finished... (ms = %f)\n", ms);
getchar(); return 0;
}

12.2.6 Linear Elliptic PDE Solver

Here, we show a Dirichlet-grid algorithm based Laplace PDE-solver (see Fig-
ure 12.7).

Fig. 12.7. Solving the 2D Laplace equation, using the Dirichlet grid method.

// Linear Elliptic PDE Solver
// Dirichlet Grid Method for the Laplace Equation
// Approximate solution of the PDE: u_(xx)(x,y) + u_(yy)(x,y)
= 0
// over R = {(x,y): 0 <= x <= a, 0 <= y <= b } with
// u(x,0) = f_1(x), u(x,b) = f_2(x) for 0 <= x <= a and
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// u(0,y) = f_3(y), u(a,y) = f_4(y) for 0 <= y <= b

#include<stdio.h>
#include<stdlib.h>
#include<math.h>
#include<time.h>

#define Max 50
double h; // step size

// Prototypes
double F1i(int i);
double F2i(int i);
double F3i(int i);
double F4i(int i);

// Grid function for amplitude

double F1i(int i)
{
extern double h;
double arg;
arg = h * ( i - 1.0 );
if( (arg >= 0) && (arg <= 4.0) ) return ( 180.0 );
else
{
printf(" F1i() :Argument not in range !
Exiting !\n");
printf(" arg : %lf\n", arg);
exit(0);
}
}

double F2i(int i)
{
extern double h;
double arg;
arg = h * ( i - 1.0 );
if( (arg >= 0) && (arg <= 4) ) return ( 20.0 );
else
{
printf(" F2i() :Argument not in range !
Exiting !\n");
printf(" arg : %lf\n", arg);
exit(0);
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}
}

double F3i(int i)
{
extern double h;
double arg;
arg = h * ( i - 1.0 );
if( (arg >= 0) && (arg <= 4) ) return ( 80.0 );
else
{
printf(" F3i() :Argument not in range !
Exiting !\n");
printf(" arg : %lf\n", arg);
exit(0);
}
}

double F4i(int i)
{
extern double h;
double arg;
arg = h * ( i - 1.0 );
if( (arg >= 0) && (arg <= 4) ) return ( 0.0 );
else
{
printf(" F4i() :Argument not in range !
Exiting !\n");
printf(" arg : %lf\n", arg);
exit(0);
}
}

int main()
{
double A, B; // INPUT : Rectangle width and
height
double Ave; // INPUT : Initial approximation
int N, M; // dimensions of the grid
double U[Max][Max]; // grid-amplitudes
int Count; // counter for while loop
double Tol; // stop criteria
double w, Pi;
double h; // grid spacing
double Relax, temp;
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double t = 0.0; // Initial time
int ticks;
double ms;
clock_t start, stop;
double prev_t = -1; // Previous t

FILE* pOut; // File pointer to
output file
pOut = fopen("out.csv", "w"); // Write header
start = clock() * CLK_TCK; // Clock setup

A = 4; // interval boundary of x
B = 4; // interval boundary of y
h = 0.5; // grid-spacing h
N = 30; // dimension of grid in x-direction
M = 30; // dimension of grid in y-direction
Ave = 70; // initial approximation
Pi = 3.1415926535;

// Compute step sizes:

// Only to make the 0-indexes save we initialize them to
zero
for ( int i = 0; i < N; i++ ) U[i][0] = 0.0;
for ( int i = 1; i < M; i++ ) U[0][i] = 0.0;

// Initialize starting values at the interior points
for ( int i = 2; i <= N-1; i++ )
{
for ( int j = 2; j <= M-1; j++ ) U[i][j] = Ave;
}

// Store boundary values in the solution matrix
for ( int j = 1; j <= M ; j++ )
{
U[1][j] = F3i(j);
U[N][j] = F4i(j);
}

for ( int i = 1; i <= N ; i++ )
{
U[i][1] = F1i(i);
U[i][M] = F2i(i);
}
// The SQR parameter
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temp = cos( Pi/(N-1) ) + cos( Pi/(M-1) );
w = 4.0 / ( 2.0 + sqrt( 4.0 - temp * temp ) );

// Initialize the loop control parameters
Tol = 1.0;
Count = 0.0;

while ( (Tol > 0.001) && (Count <= 140) )
{
Tol = 0.0;
for ( int j = 2; j <= M - 1; j++ )
{
for ( int i = 2; i <= N - 1; i++ )
{
Relax = w * ( U[i][j+1] + U[i][j-1] +
U[i+1][j] + U[i-1][j] - 4.0 * U[i][j] ) / 4.0;
U[i][j] += Relax;
if( fabs(Relax) > Tol ) Tol = fabs(Relax);
}
Count++;
}
}

// Output the solution
for ( int j = 1; j <= M; j++ )
{
for ( int i = 1; i <= N; i++ )
{
fprintf(pOut,"%8.4lf, ", U[i][j]);
fprintf(pOut,"\n");
}
// printf("%8.4lf ", U[i][j]);
// printf("\n");
}
fclose(pOut);
stop = clock() * CLK_TCK; // Timing
ticks = stop - start;
ms = (float)ticks / 1000.0f;
printf("finished... (ms = %f)\n", ms);
getchar(); return 0;
}
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12.2.7 Method of Lines for a Set of the NLS Equations

Here we give a C++ code implementing the Method of Lines for solving a set
of n nonlinear Schrödinger equations:

i∂tψj = − ∂xxψj + V (w)|ψj |2ψj, (j = 1, · · · , n)

weekly-coupled in a common adaptive potential field V (w) (see Figure 12.8).
The code implements the complex-valued Runge-Kutta-Fehlberg 4-5 integra-
tor for a set of time-dependent ODEs, coupled with the following 2nd-order
central finite difference scheme for the spatial discretization of each NLS:1

∂xxψ ≈
ψk+1 − 2ψk + ψk−1

∆x2
(where k is indexing the x-grid).

Fig. 12.8. Numerical solution of a set of three weekly-coupled, adaptive, NLS
equations with Hebbian learning: presenting PDFs for the first 10 lines for
each PDE. Note that, besides PDFs, the code evaluates and outputs a number
of other functions (wave-functions, Gaussian kernels, adaptive weights and
potentials).

1 This code is the basis of the Crowd Dynamics Simulator, IP of Defence Science
& Technology Organisation, Australia (see [IR12] for more technical details).
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// Example: System of weakly-coupled, adaptive NLS equations
with Hebbian learning

// Algorithm: Method of Lines (using complex-valued
Runge-Kutta-Fehlberg 4-5 integrator for ODEs)

// Include statements
#include <stdio.h>
#include <math.h>
#include <time.h>
#include <stdlib.h>
#include <complex>

// Define statements
#define max(a, b) (((a) > (b)) ? (a) : (b)) // maximum macro
#define TRUE 1
#define FALSE 0
#define h0 0.01 // initial step-size
#define MAX_h h0*20
#define MIN_h h0/20
#define abstol 0.00001 // tolerance
#define reltol 0.001
#define TWO_PI 6.28318531 // 2pi
#define N 30 // number of lines per PDE
#define M 3 // number of PDEs

// Type declarations
typedef std::complex<double> _Complex;

// function pointer typedef for passing function as args.
typedef void (*Eqs)(double, _Complex[], _Complex*);

double h = h0; // Time step
double t = 0.0; // Initial time
double t1 = 10.0; // Final time
_Complex x0 (0.0, 0.1); // Initial x
_Complex x1 (50.0 + 0.1); // Final x
_Complex I (0,1);

_Complex q[M+1][N+1]; _Complex w[N+1];
_Complex V[N+1]; _Complex gkf[N+1];

double g[N+1]; double beta = 0.1; _Complex dx;

// Random generator defined
double RandomEqual(double Low, double High)
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{
return ((double) rand() / RAND_MAX) * (High-Low) + Low;

}

// Gaussian kernel functions
void gkf_func(int i, _Complex q, _Complex x)
{

int j;
double y, y2, pdf, vv, g_i;
pdf = abs(q)*abs(q);
y2 = -(1 / x.real() * pdf * dx.real()); // PDF
y = 2 * sin(TWO_PI * 10 * t); // y = 2sin
(2pi*10t)
vv = y - y2;
g_i = g[i] * vv; // Set-up means g[i]
for gkf’s
gkf[i] = exp(-(vv-g_i)*(vv-g_i));

}

// NLS PDEs: Method of Lines
void q_eqs(double t, _Complex q[], _Complex* dq)
{

double coeff = -0.5;
_Complex pdf, dx2 = pow(dx,2);

for(int i=2; i<=N; i++)
{

pdf = abs(q[i])*abs(q[i]);

if(i==N) //u(t,x1)
dq[i] = ((2.0*q[N-1] - q[i]) / dx2 * coeff)/ I +

((V[i] * q[i] * pdf / I));
else

dq[i] = ((q[i+1] - 2.0*q[i] + q[i-1]) / dx2 * coeff) /
I + ((V[i] * q[i] * pdf / I));

}

dq[1] = dq[N]; // BC: u(t,0)=u(t,x1);
}

// Weight ODE’s: continuous Hebbian learning
void w_eqs(double t, _Complex w[], _Complex* dw)
{

_Complex pdf, x, dx2 = pow(dx,2);
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for(int i=1; i<=N; i++)
{

pdf = abs(q[1][i])*abs(q[1][i]);
x = (double)(i-1)/(N-1) * x1;
gkf_func(i, q[1][i], x);
dw[i] = -w[i] + beta * gkf[i] * pdf; // Hebbian
learning

}
}

// Initial conditions and defininitions
void Initialise()
{

int i,j; double x;

for(i = 1; i <= N; i++)
{

q[1][i] = 0.3; // ICs
q[2][i] = 0.5;
q[3][i] = 0.7;

}

for(i = 0; i <= N; i++)
w[i] = RandomEqual(-1.0, 1.0); // Initialize
weights

for(i = 0; i <= N; i++)
{

x = (double)(i-1)/(N-1) * real(x1); // Define x
}

for(i = 0; i <= N; i++)
g[i] = RandomEqual(-1.0, 1.0); // Initialize means
for gkf’s

dx = (double)(real(x1)-real(x0))/(N-1);
// Define dx
}

// Complex RKF45 integrator
void RKF45(Eqs eqs, _Complex fx[], int increase_t)
{
_Complex k1[N+1],k2[N+1],k3[N+1],k4[N+1],k5[N+1],k6[N+1],
err[N+1],x[N+1];
double delta, maxerr, tol[N+1]; int i=0,j=0;
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_Complex dx = (real(x1)-real(x0))/(N-1);

//k1
eqs(t,fx,k1);
for(i=1; i<=N; i++) k1[i]*=h;

//k2
for(i=1; i<=N; i++) x[i] = fx[i]+(k1[i]/4.0);
eqs(t+(h/4),x,k2);
for(i=1; i<=N; i++) k2[i]*=h;

//k3
for(i=1; i<=N; i++) x[i] = fx[i]+(3.0*k1[i]/32.0)+
(9.0*k2[i]/32.0);
eqs(t+(3*h/8),x,k3);
for(i=1; i<=N; i++) k3[i]*=h;

//k4
for(i=1; i<=N; i++) x[i] = fx[i]+(1932.0*k1[i]/2197.0)-

(7200.0*k2[i]/2197.0)+(7296.0*k3[i]/2197.0);
eqs(t+(12*h/13),x,k4);
for(i=1; i<=N; i++) k4[i]*=h;

//k5
for(i=1; i<=N; i++) x[i] = fx[i]+(439.0*k1[i]/216.0)

-(8.0*k2[i])+(3680.0*k3[i]/513.0)-(845.0*k4[i]/
4104.0);

eqs(t+h,x,k5);
for(i=1; i<=N; i++) k5[i]*=h;

//k6
for(i=1; i<=N; i++) x[i] = fx[i]-(8.0*k1[i]/27.0)

+(2.0*k2[i])-(3544.0*k3[i]/2565.0)+(1859.0*k4[i]
/4104.0)-(11.0*k5[i]/40.0);

eqs(t+(h/2),x,k6);
for(i=1; i<=N; i++) k6[i]*=h;

maxerr = 0;
for(i=1; i<=N; i++)
{
x[i] = fx[i]+(25.0*k1[i]/216.0)+(1408.0*k3[i]/

2565.0)+(2197.0*k4[i]/4104.0)-(k5[i]/5.0);
err[i] = fx[i]+(16.0*k1[i]/135.0)+(6656.0*k3[i]/

12825.0)+(28561.0*k4[i]/56430.0)-(9.0*k5[i]/
50.0)+(2.0*k6[i]/55.0);
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tol[i] = real(x[i])*reltol + abstol;
maxerr = max(maxerr, fabs(real(err[i]) - real(x[i]))/
tol[i]);
}

if(maxerr <= 1.0)
{
if(increase_t == TRUE) t += h; // Only
update t if RKF45 goes
delta = 0.84*pow(maxerr, -0.25);

if(delta > 1.5 && h < MAX_h) h*= 1.5; // Increase
step if required
else if(delta > 1.0 && h < MAX_h) h*=delta;
if(t+h > t1) h = t1-t;

for(i=1; i<=N; i++)
fx[i] = x[i]; // Save
updated values
}
else
{

delta = 0.84*pow(maxerr,-0.25);
if(delta < 0.1) h *= 0.1; // Reduce
step-size
else h *= delta;

}
}

void header(FILE* pOut_r, FILE* pOut_i, FILE* pOut_pdf,
FILE* pOut_w, FILE* pOut_gkf, FILE* pOut_V) // changed
by Vlad

{
int i,j;
fputs(",t\n u,", pOut_r);
fputs(",t\n u,", pOut_i);
fputs(",t\n u,", pOut_pdf);
fputs(",t\n u,", pOut_w);
fputs(",t\n u,", pOut_gkf);
fputs(",t\n u,", pOut_V);
for(i=1; i<=N; i++)

{
fprintf(pOut_w, ",w%i", i);
fprintf(pOut_gkf, ",gkf%i", i);
fprintf(pOut_V, ",v%i", i);
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}

for(j=1; j<=M;j++)
for(i=1; i<=N; i++)
{

fprintf(pOut_r, ",x%i", i+(j-1)*N);
fprintf(pOut_i, ",x%i", i+(j-1)*N);
fprintf(pOut_pdf, ",x%i", i+(j-1)*N);

}

fputs("\n", pOut_r);
fputs("\n", pOut_i);
fputs("\n", pOut_pdf);
fputs("\n", pOut_w);
fputs("\n", pOut_gkf);
fputs("\n", pOut_V);
}

void print(FILE* pOut_r, FILE* pOut_i, FILE* pOut_pdf, FILE*
pOut_w,

FILE* pOut_gkf, FILE* pOut_V) // changed by Vlad
{

int i,j;
fprintf(pOut_r, ",%.4f", t);
fprintf(pOut_i, ",%.4f", t);
fprintf(pOut_pdf, ",%.4f", t);
fprintf(pOut_w, ",%.4f", t);
fprintf(pOut_gkf, ",%.4f", t);
fprintf(pOut_V, ",%.4f", t);

for(i=1; i<=N; i++)
{

fprintf(pOut_w, ",%.4f", w[i]);
fprintf(pOut_gkf, ",%.4f", gkf[i]);
fprintf(pOut_V, ",%.4f", V[i]);

}

for(j=1; j<=M;j++)
for(i=1; i<=N; i++)
{

fprintf(pOut_r, ",%.4f", real(q[j][i]));
fprintf(pOut_i, ",%.4f", imag(q[j][i]));
fprintf(pOut_pdf, ",%.4f", abs(q[j][i])*abs(q[j][i]));

}
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fprintf(pOut_r, "\n");
fprintf(pOut_i, "\n");
fprintf(pOut_pdf, "\n");
fprintf(pOut_w, "\n");
fprintf(pOut_gkf, "\n");
fprintf(pOut_V, "\n");

}

int main()
{
int ticks,i,j; _Complex x;
double ms, prev_t = -1; // Previous t;
clock_t start, stop;

FILE* pOut_r = fopen("out_r.csv", "w");
FILE* pOut_i = fopen("out_i.csv", "w");
FILE* pOut_pdf = fopen("out_pdf.csv", "w");
FILE* pOut_w = fopen("out_w.csv", "w");
FILE* pOut_gkf = fopen("out_gkf.csv", "w");
FILE* pOut_V = fopen("out_v.csv", "w");

srand((unsigned int)time((time_t *)NULL));

header(pOut_r, pOut_i, pOut_pdf, pOut_w, pOut_gkf,
pOut_V); // header
start = clock() * CLK_TCK; // Clock setup
Initialise(); // Initialize
Integrator

while (t < t1) // Main time
integration loop
{

for(j=1; j<=M;j++)
RKF45(&q_eqs, q[j], j-1); // Call RKF
RKF45(&w_eqs, w, FALSE); // Call RKF
for(i=1; i<=N; i++) V[i] += w[i] * gkf[i]; // Update
pot. V(x)
if(prev_t != t)
print(pOut_r, pOut_i, pOut_pdf, pOut_w, pOut_gkf,
pOut_V);
prev_t = t;

}
fclose(pOut_r); fclose(pOut_i); fclose(pOut_pdf);
fclose(pOut_w); fclose(pOut_gkf); fclose(pOut_V);
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stop = clock() * CLK_TCK; // Timing
ticks = stop - start;
ms = (float)ticks / 1000.0f;
printf("finished... (ms = %f)\n", ms);
getchar();

return 0;
}

12.3 C# Code

12.3.1 Iterative Equation Solver

Here we give a C# class performing the iterative solution of various nonlinear
algebraic equations with a given error (accuracy) and initial conditions. Note
that the iteration method requires the equations to be written in iterative
form.

using System;

class Iter {
static void Main() {

double[] x = new double[501];
double err = 0.00000001;
int i = 0;
x[0] = 0.0;

do { // Equations to be solved:
//x(i + 1) = 1 + 1 / Math.Cosh(x(i))
//x(i + 1) = (1 + Math.Cos(x(i))) / 10.0
//x(i + 1) = 1 / (4 + x(i) ^ 2)
//x(i + 1) = (1 - x(i) ^ 3) / 3
//x(i + 1) = 1 + 0.5 * Math.Atan(x(i))
//x(i + 1) = Math.Exp(-x(i) ^ 2)
//x(i + 1) = Math.Sin(Math.Exp(-x(i) ^ 3))
//x[i + 1] = Math.Tanh(Math.Exp(-(Math.Pow(x[i],
4))));
x[i + 1] =
Math.Tanh(Math.Sin(Math.Atan(Math.Exp(-(Math.Pow
(x[i],4))))));
i += 1;

} while (Math.Abs(x[i] - x[i - 1]) >= err);

Console.Write("Equation: x = f(x)"); Console.Write
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(’\n’);
Console.Write("has a solution = "); Console.Write
(x[i]);
Console.Write(’\n’); Console.Write("with
error = ");
Console.Write(err); Console.Write(’\n’);
Console.Write("no. iterations = "); Console.Write
(i + 1);
Console.Write(’\n’); Console.
Read();

}
}

12.3.2 Simulated Annealing: A Function Minimum

Here, we give a C# class that finds a local minimum of a highly-oscillating
function (given analytically), using the basic simulated annealing algorithm.

using System;

namespace Anneal
{

class Program
{

public static double f(ref double x)
{

return Math.Sin(x) * x * x * Math.Exp(-x / 15.0);
}

public static void randval(ref double s)
{

const double pi = 3.14159265;
s = Math.IEEERemainder((s + pi) * (s + pi) *
(s + pi)

* (s + pi) * (s + pi), 1.0);
}

public static int accept(ref double Ecurrent,
ref double Enew, ref double T, ref double s)

{
double dE = Enew - Ecurrent;
if (dE < 0.0) { return 1; }
if (s < Math.Exp(-dE / T)) { return 1; }
else { return 0; }

}
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static void Main(string[] args)
{

Console.Write("Finding the minimum via
simulated annealing:");

Console.Write("\n");
double xlow = 0.0, xhigh = 100.0;
double Tmax = 500.0, Tmin = 1.0, Tstep = 0.1;
double s = 0.118; // seed
randval(ref s);
double xcurrent = s * (xhigh - xlow);
double Ecurrent = f(ref xcurrent);
for (double T = Tmax; T > Tmin; T = T - Tstep)
{ // main for loop

randval(ref s);
double xnew = s * (xhigh - xlow);
double Enew = f(ref xnew);
if (accept(ref Ecurrent, ref Enew,

ref T, ref s) != 0)
{

xcurrent = xnew;
Ecurrent = Enew;

}
}
Console.Write("The minimum found is ");
Console.Write(Ecurrent);
Console.Write(" at x = ");
Console.Write(xcurrent);
Console.Write(".\n"); Console.Read();

}
}

}

12.3.3 Simple Nonlinear Dynamics

Here we give a C# class performing (very) simple nonlinear dynamics, using
Euler integrator (see Figure 12.9).

using System;
using System.Windows.Forms;
using System.Windows.Forms.DataVisualization.Charting;

namespace SimpleDynWhile {
public partial class Form1 : Form {

public Form1() { InitializeComponent(); }
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Fig. 12.9. Simple nonlinear dynamics in C#.

Series cs1 = new Series("a"); Series cs2 =
new Series("v");
Series cs3 = new Series("x"); Series cs4 =
new Series("j");

private void button1_Click(object sender, System.
EventArgs e)
{

double t = -3.0, h = 0.1, a = 0.0, v = 0.0;
double x = 0.0, j = 0.0, aPr = 0.0;
while (t < 3.0)
{

a = Math.Atan(Math.Pow(t,2))/Math.Cosh(Math.
Pow(t,2));
v += a * h;
x += v * h;
j = (a - aPr) / h;
aPr = a;
cs1.Points.AddXY(t, a); cs2.Points.AddXY(t,
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v);
cs3.Points.AddXY(t, x); cs4.Points.AddXY(t,
j);
t += h;

}
cs1.ChartType = SeriesChartType.FastLine;
cs2.ChartType = SeriesChartType.FastLine;
cs3.ChartType = SeriesChartType.FastLine;
cs4.ChartType = SeriesChartType.FastLine;
chart1.Series.Add(cs1); chart2.Series.Add(cs2);
chart3.Series.Add(cs3); chart4.Series.Add(cs4);

}
}

}

12.3.4 Nonlinear Pendulum Simulator

Here we give a C# class performing numerical integration of a 2nd order ODE
system, solved by the standard Runge-Kutta 4 integrator (see Figure 12.10).

Fig. 12.10. Simulating a hyperbolic pendulum in C# using the RK4 integra-
tor.

using System;
using System.Windows.Forms;
using System.Windows.Forms.DataVisualization.Charting;

namespace RK4hypen {



October 10, 2014 11:10 Complexity and Control 9in x 6in b1966-ch12 page 465

12.3 C# Code 465

public partial class Form1 : Form {

public Form1() { InitializeComponent(); }

Series cs1 = new Series("x"); Series cs2 = new
Series("v");
Series cs3 = new Series("x-v");

// 2nd order ODE system:
Func<double, double, double, double> g = (x1, x2, t)
=> x2;
Func<double, double, double, double> f = (x1, x2, t)
=> 12.0 * Math.Tanh(3.1416 * t) - 1.3 * x2*x2*x2
- 9.8696 * Math.Sinh(x1);

private void Button1_Click(object sender, System.
EventArgs e)
{

double t = 0.0, x1 = 0.0, x2 = 0.1, h = 0.1;
double k11 = 0.0, k21 = 0.0, k12 = 0.0,
k22 = 0.0;
double k13 = 0.0, k23 = 0.0, k14 = 0.0,
k24 = 0.0;

while (t < 40.0)
{

k11 = h * g(x1, x2, t);
k21 = h * f(x1, x2, t);
k12 = h * g(x1 + k11 / 2, x2 + k21 / 2, t +
h / 2);
k22 = h * f(x1 + k11 / 2, x2 + k21 / 2, t + h
/ 2);
k13 = h * g(x1 + k12 / 2, x2 + k22 / 2, t + h
/ 2);
k23 = h * f(x1 + k12 / 2, x2 + k22 / 2, t + h
/ 2);
k14 = h * g(x1 + k13, x2 + k23, t + h);
k24 = h * f(x1 + k13, x2 + k23, t + h);
x1 += (k11 + 2 * (k12 + k13) + k14) / 6;
x2 += (k21 + 2 * (k22 + k23) + k24) / 6;
cs1.Points.AddXY(t, x1); cs2.Points.AddXY(t,
x2);
cs3.Points.AddXY(x1, x2);
t += h;

}
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cs1.ChartType = SeriesChartType.Spline;
cs2.ChartType = SeriesChartType.Spline;
cs3.ChartType = SeriesChartType.Spline;
Chart1.Series.Add(cs1); Chart1.Series.Add(cs2);
Chart2.Series.Add(cs3);

}
}

}

12.3.5 Lagrangian Dynamics Simulator

Here we give a C# class implementing a generic Lagrangian dynamics simu-
lator, using the Runge-Kutta-Fehlberg 4-5 integrator (see Figure 12.11).

Fig. 12.11. A generic Lagrangian dynamics simulator in C#, based on the
Runge-Kutta-Fehlberg integrator.

using System;
using System.Windows.Forms;
using System.Windows.Forms.DataVisualization.Charting;

namespace Lagrangian {
public partial class Form1 : Form {

public double h, t, prev_t;
public const int N = 2; // System
order
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public Form1()
{

InitializeComponent();

this.comboBox1.Items.AddRange(items);
this.comboBox1.SelectedIndex = 0;
par1.Value = (decimal)(a); par2.Value = (decimal)
(m);
par3.Value = (decimal)(b);
par4.Value = (decimal)(g); par5.Value = (decimal)
(c);
par6.Value = (decimal)(d);
par7.Value = (decimal)(F); ic1.Value = (decimal)
(xx);
ic2.Value = (decimal)(vv);
timeInt.Value = (decimal)(t1);

}

// default parameters
public double m = 2.0, g = 9.8, a = 0.8, b = 5.0;
public double c = 0.5, d = 5.0, F = 10.0;

// default ICs
public double xx = 1.0, vv = 1.0;
public double t1 = 20.0; // Final time

public String[] items = {
"1. Lagr = (m a^2 dx^2) / 2 - m g a Cos(x):
Force = 0",
"2. Lagr = (m dx^2) / 2 - (b x^2) / 2:
Force = 0",
"3. Lagr = (m a^2 dx^2) / 2 - (b x^2) / 2 - m g a
Cos(x):
Force = 0",
"4. Lagr = (m dx^2) / 2 - (b x^4) / 4:
Force = 0",
"5. Lagr = (m dx^2) / 2 - (b x^4) / 4 - (a b x^2)
/ 2:
Force = 0",
"6. Lagr = (m dx^2) / 2 - (b x^4) / 4 - (a b x^2)
/ 2
- m g a Cos(x): Force = 0",
"7. Lagr = (m a^2 dx^2) / 2 - m g a Cos(x):
Force = c dx",
"8. Lagr = (m dx^2) / 2 - (b x^2) / 2: Force = c
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dx",
"9. Lagr = (m a^2 dx^2) / 2 - (b x^2) / 2 - m g a
Cos(x):
Force = c dx",
"10. Lagr = (m dx^2) / 2 - (b x^4) / 4:
Force = F [1 - exp(-d t)] + c dx",
"11. Lagr = (m dx^2) / 2 - (b x^4) / 4 -
(a b x^2) / 2:
F [1 - exp(-d t)] + c dx",
"12. Lagr = (m dx^2) / 2 - b x^4 / 4 - (a b x^2)
/ 2
- m g a Cos(x): Force = c dx",
"VDP. Lagr = dx^2 / 2 - (a^2 x^2) / 2:
Force = - b (1 - x^2) dx",
"VDP-forc. Lagr = dx^2 / 2 - (a^2 x^2) / 2:
Force = - F Cos(d t) - b (1 - x^2) dx",
"Duffing. Lagr = dx^2 / 2: Force = - F Cos(d t)
+ c dx
- a x (1 - x^2)",
"Musc1. Lagr = (m dx^2) / 2 - (b x^4) / 4:
Force = a dx - c Sin(d t)",
"Musc2. Lagr = (m dx^2) / 2 + b Sech(x):
Force = a dx - c Sin(d t)"

};

public String[] eqns = {
"1. ddx = g Sin(x) / a",
"2. ddx = - b x / m",
"3. ddx = (a g m Sin(x) - b x) / (a^2 m)",
"4. ddx = - b x^3 / m",
"5. ddx = - (a b x + b x^3) / m",
"6. ddx = (a g m Sin(x) - a b x - b x^3) / m",
"7. ddx = (a g m Sin(x) - c dx) / (a^2 m)",
"8. ddx = - (b x + c dx) / m",
"9. ddx = (a g m Sin(x) - b x - c dx) / (a^2 m)",
"10. ddx = (F [exp(-d t) - 1] - b x^3 - c dx)
/ m",
"11. ddx = (F [exp(-d t) - 1] - a b x - b x^3
- c dx) / m",
"12. ddx = (a g m Sin(x) - a b x - b x^3 - c dx)
/ m",
"VDP. ddx = b (1 - x^2) dx - a^2 x",
"VDP-forc. ddx = F Cos(d t) + b (1 - x^2) dx -
a^2 x",
"Duffing. ddx = F Cos(d t) + a x (1 - x^2) - c
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dx",
"Musc1. ddx = [c Sin(d t) - b x^3 - a dx] / m",
"Musc2. ddx = [c Sin(d t) - b Sech(x) Tanh(x) -
a dx] / m"

};

public double Fun(double t, double[] x)
{

int n = comboBox1.SelectedIndex;
switch (n)
{

case 0: // 1.
return g * Math.Sin(x[0]) / a;

case 1: // 2.
return -b * x[0] / m;

case 2: // 3.
return (a * g * m * Math.Sin(x[0]) - b * x[0]) /
(a * a * m);

case 3: // 4.
return -b * x[0] * x[0] * x[0] / m;

case 4: // 5.
return -(a * b * x[0] + b * x[0] * x[0] * x[0])
/ m;

case 5: // 6.
return (a * g * m * Math.Sin(x[0]) - a * b * x[0]
- b * x[0] * x[0] * x[0]) / m;

case 6: // 7.
return (a * g * m * Math.Sin(x[0]) - c * x[1]) /
(a * a * m);

case 7: // 8.
return -(b * x[0] + c * x[1]) / m;

case 8: // 9.
return (a * g * m * Math.Sin(x[0]) - b * x[0]
- c * x[1]) / (a * a * m);

case 9: // 10.
return (F * (Math.Exp(-d * t) - 1) - b * x[0] *
x[0] * x[0]
- c * x[1]) / m;

case 10: // 11.
return (F * (Math.Exp(-d * t) - 1) - a * b * x[0]
- b * x[0] * x[0] * x[0] - c * x[1]) / m;

case 11: // 12.
return (a * g * m * Math.Sin(x[0]) - a * b * x[0]
- b * x[0] * x[0] * x[0] - c * x[1]) / m;

case 12: // 13.
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return b * (1 - x[0] * x[0]) * x[1] - a * a *
x[0];

case 13: // 14.
return F * Math.Cos(d * t) + b * (1 - x[0] *
x[0]) * x[1]
- a * a * x[0];

case 14: // 15.
return F * Math.Cos(d * t) + a * (1 - x[0] *
x[0]) *
x[0]
- c * x[1];

case 15: // 16.
return (c * Math.Sin(d * t) - b * x[0] * x[0] *
x[0]
- a * x[1]) / m;

case 16: // 17.
return (c * Math.Sin(d * t) - b * Math.Tanh(x[0])
/
Math.Cosh(x[0]) - a * x[1]) / m;

default:
return 0.0;
}

}

// ODEs defined
public void Eqs(double t, double[] y, double[] dy)
{

dy[0] = y[1];
dy[1] = Fun(t, y);

}

// integrator parameters
public const double h0 = 0.01, MAX_h = h0 * 10,
MIN_h = h0 / 10;
public const double abstol = 0.00001, reltol = 0.001;

// Runge-Kutta-Fehlberg integrator
public void RKF45(double[] y)
{

double[] k1 = new double[N];
double[] k2 = new double[N];
double[] k3 = new double[N];
double[] k4 = new double[N];
double[] k5 = new double[N];
double[] k6 = new double[N];



October 10, 2014 11:10 Complexity and Control 9in x 6in b1966-ch12 page 471

12.3 C# Code 471

double[] err = new double[N];
double[] x = new double[N];
double[] tol = new double[N];
double delta, maxerr;
int i = 0;

//k1
Eqs(t, y, k1);
for (i = 0; i < N; i++) k1[i] *= h;

//k2
for (i = 0; i < N; i++) x[i] = y[i] +
(k1[i] / 4);
Eqs(t + (h / 4), x, k2);
for (i = 0; i < N; i++) k2[i] *= h;

//k3
for (i = 0; i < N; i++) x[i] = y[i]
+ (3 * k1[i] / 32) + (9 * k2[i] / 32);
Eqs(t + (3 * h / 8), x, k3);
for (i = 0; i < N; i++) k3[i] *= h;

//k4
for (i = 0; i < N; i++) x[i] = y[i]
+ (1932 * k1[i] / 2197) - (7200 * k2[i] / 2197)
+ (7296 * k3[i] / 2197);
Eqs(t + (12 * h / 13), x, k4);
for (i = 0; i < N; i++) k4[i] *= h;

//k5
for (i = 0; i < N; i++) x[i] = y[i]
+ (439 * k1[i] / 216) - (8 * k2[i])
+ (3680 * k3[i] / 513) - (845 * k4[i] / 4104);
Eqs(t + h, x, k5);
for (i = 0; i < N; i++) k5[i] *= h;

//k6
for (i = 0; i < N; i++) x[i] = y[i]
- (8 * k1[i] / 27) + (2 * k2[i])
- (3544 * k3[i] / 2565) + (1859 * k4[i] / 4104)
- (11 * k5[i] / 40);
Eqs(t + (h / 2), x, k6);
for (i = 0; i < N; i++) k6[i] *= h;

maxerr = 0;
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for (i = 0; i < N; i++)
{

x[i] = y[i] + (25 * k1[i] / 216)
+ (1408 * k3[i] / 2565) + (2197 * k4[i]
/ 4104)
- (k5[i] / 5);
err[i] = y[i] + (16 * k1[i] / 135)
+ (6656 * k3[i] / 12825) + (28561 * k4[i]
/ 56430)
- (9 * k5[i] / 50) + (2 * k6[i] / 55);
tol[i] = x[i] * reltol + abstol;
maxerr = Math.Max(maxerr, Math.Abs(err[i]
- x[i]) / tol[i]);

}

if (maxerr <= 1.0)
{

t += h;
delta = 0.84 * Math.Pow(maxerr, -0.25);

// Increase step if required
if (delta > 1.5 && h < MAX_h) h *= 1.5;
else if (delta > 1.0 && h < MAX_h) h
*= delta;
if (t + h > t1) h = t1 - t;

// Save updated values
for (i = 0; i < N; i++) y[i] = x[i];

}
else
{

// Reduce step
delta = 0.84 * Math.Pow(maxerr, -0.25);
if (delta < 0.1) h *= 0.1;
else h *= delta;

}
}

private void butSimul_Click(object sender,
EventArgs e)
{

this.chart1.Series.Clear();
this.chart1.ChartAreas.Clear();
ChartArea chartArea1 = new ChartArea();
this.chart1.ChartAreas.Add(chartArea1);
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this.chart2.Series.Clear();
this.chart2.ChartAreas.Clear();
ChartArea chartArea2 = new ChartArea();
this.chart2.ChartAreas.Add(chartArea2);

label1.Text = eqns[comboBox1.SelectedIndex];

a = (double)par1.Value;
m = (double)par2.Value;
b = (double)par3.Value;
g = (double)par4.Value;

c = (double)par5.Value;
d = (double)par6.Value;
F = (double)par7.Value;

xx = (double)ic1.Value;
vv = (double)ic2.Value;
t1 = (double)timeInt.Value;

h = h0;
t = 0.0;
prev_t = -1.0;

Series dSeries = new Series("x");
dSeries.ChartType = SeriesChartType.Spline;
Series vSeries = new Series("v");
vSeries.ChartType = SeriesChartType.Spline;
Series pSeries = new Series("Phase");
pSeries.ChartType = SeriesChartType.Spline;

double[] y = new double[2] { xx, vv };
// Initial conditions

while (t < t1) // time
loop
{

RKF45(y); // Call
RKF45
if (prev_t != t)
{

dSeries.Points.AddXY(t, y[0]);
vSeries.Points.AddXY(t, y[1]);
pSeries.Points.AddXY(y[0], y[1]);
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}
prev_t = t;

}
this.chart1.Series.Add(dSeries);
this.chart1.Series.Add(vSeries);
this.chart2.Series.Add(pSeries);

}
}

}

12.3.6 Complex-Valued Crowd Attractor Dynamics

Here we give a sample from the attractor-driven complex crowd dynamics
simulation.

using System;
using System.Drawing;
using System.Drawing.Drawing2D;
using System.Windows.Forms;
using System.Windows.Forms.DataVisualization.Charting;

namespace IvCrowdLangevin
{
public partial class MultiAttrForm :
Form
{ // Initializations
public int N = 200;
// number of agents
public double h = 0.05; // Time
step
public double t;
// Initial time
public double prev_t;
// Previous t
public static double tFin = 160.0;
// final time
public Complex I = new Complex(0, 1); // define
imagin unit
public Random rand = new Random();
// random generator
public double FldStrn = 0.3; // attractor
field strength
public double alpha = 1.0;
// linear parameter
public double beta = 0.0001;
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// cubic parameter

protected override void OnPaint(PaintEventArgs e)
{ // Drawing X-Y axes frame around the panel
Graphics g = e.Graphics;
Pen p = new Pen(Color.Black, 5);
p.StartCap = LineCap.Round;
p.EndCap = LineCap.ArrowAnchor;
g.DrawLine(p, 60, 820, 910, 820);
g.DrawLine(p, 95, 835, 95, 10);
p.Dispose();

}

public MultiAttrForm()
{ // Initializing the form
InitializeComponent();
this.DoubleBuffered = true;
numericUpDwnN.Value = (int)(N);
numericUpDwnFld.Value = (decimal)(FldStrn);

}

// Attractors:
public Complex Attr1(double t) {
return new Complex(Math.Sin(2 * t)) + I * (new Complex
(Math.Cos(t)));

}
public Complex Attr2(double t) {
return new Complex(Math.Sin(t)) + I * (new Complex
(Math.Cos(2 * t)));

}
public Complex Attr3(double t) {
return new Complex(-1) + I * (new Complex(Math.
Cos(t)));

}
public Complex Attr4(double t) {
return new Complex(1) + I * (new Complex(Math.Cos(t)));

}
public Complex Attr5(double t) {
return new Complex(Math.Sin(t)) + I * (new
Complex(-1));

}
public Complex Attr6(double t) {
return new Complex(Math.Sin(t)) + I * (new Complex(1));

}
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public void Eqs(double t, Complex[] x, Complex[] dx)
{
for (int i = 0; i < N; i++) // Langevin ODEs:
{

if (i < N / 6)
{
dx[i] = FldStrn * (3 * Attr1(t) - alpha * x[i] -
beta * x[i] * x[i] * x[i] + beta * (rand.NextDouble
() - 0.5) * x[i]);

}
else if (i < N / 3)
{
dx[i] = FldStrn * (3 * Attr2(t) - alpha * x[i] -
beta * x[i] * x[i] * x[i] + beta * (rand.NextDouble
() - 0.5) * x[i]);

}
else if (i < N / 2)
{
dx[i] = FldStrn * (3 * Attr3(t) - alpha * x[i] -
beta * x[i] * x[i] * x[i] + beta * (rand.NextDouble
() - 0.5) * x[i]);

}
else if (i < 2 * N / 3)
{
dx[i] = FldStrn * (3 * Attr4(t) - alpha * x[i] -
beta * x[i] * x[i] * x[i] + beta * (rand.NextDouble
() - 0.5) * x[i]);

}
else if (i < 5 * N / 6)
{
dx[i] = FldStrn * (3 * Attr5(t) - alpha * x[i] -
beta * x[i] * x[i] * x[i] + beta * (rand.NextDouble
() - 0.5) * x[i]);

}
else
{
dx[i] = FldStrn * (3 * Attr6(t) - alpha * x[i] -
beta * x[i] * x[i] * x[i] + beta * (rand.NextDouble
() - 0.5) * x[i]);

}
}

}
// ODE string printout on the form
public String eqStr = " dx[i] = FldStrn . ( Attr(t) -
alpha . x[i] - beta . x[i]^3 + Rand(0) . x[i] )";
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public const double h0 = 0.01;
public const double MAX_h = h0 * 10;
public const double MIN_h = h0 / 10;
public const double abstol = 0.00001;
public const double reltol = 0.001;
// Runge-Kutta-Fehlberg (Cash-Karp) adaptive integrator
public void RKF45(Complex[] y)
{
Complex[] k1 = new Complex[N];
Complex[] k2 = new Complex[N];
Complex[] k3 = new Complex[N];
Complex[] k4 = new Complex[N];
Complex[] k5 = new Complex[N];
Complex[] k6 = new Complex[N];
Complex[] err = new Complex[N];
Complex[] x = new Complex[N];
double[] tol = new double[N];
double delta, maxerr;
int i = 0;

//k1
Eqs(t, y, k1);
for (i = 0; i < N; i++) k1[i] = h * k1[i];

//k2
for (i = 0; i < N; i++) x[i] = y[i] + (k1[i] / 4);
Eqs(t + (h / 4), x, k2);
for (i = 0; i < N; i++) k2[i] = h * k2[i];

//k3
for (i = 0; i < N; i++) x[i] = y[i] + (3 * k1[i] / 32)
+ (9 * k2[i] / 32);
Eqs(t + (3 * h / 8), x, k3);
for (i = 0; i < N; i++) k3[i] = h * k3[i];

//k4
for (i = 0; i < N; i++) x[i] = y[i] + (1932 * k1[i]
/ 2197)
- (7200 * k2[i] / 2197) + (7296 * k3[i] / 2197);
Eqs(t + (12 * h / 13), x, k4);
for (i = 0; i < N; i++) k4[i] = h * k4[i];

//k5
for (i = 0; i < N; i++) x[i] = y[i] + (439 * k1[i]
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/ 216)
- (8 * k2[i]) + (3680 * k3[i] / 513) - (845 * k4[i]
/ 4104);
Eqs(t + h, x, k5);
for (i = 0; i < N; i++) k5[i] = h * k5[i];

//k6
for (i = 0; i < N; i++) x[i] = y[i] - (8 * k1[i] / 27)
+ (2 * k2[i]) - (3544 * k3[i] / 2565) + (1859 * k4[i]
/ 4104)
- (11 * k5[i] / 40);
Eqs(t + (h / 2), x, k6);
for (i = 0; i < N; i++) k6[i] = h * k6[i];

maxerr = 0.0;
for (i = 0; i < N; i++)
{

x[i] = y[i] + (25 * k1[i] / 216) + (1408 * k3[i]
/ 2565)
+ (2197 * k4[i] / 4104) - (k5[i] / 5);
err[i] = y[i] + (16 * k1[i] / 135) + (6656 * k3[i]
/ 12825)
+ (28561 * k4[i] / 56430) - (9 * k5[i] / 50) + (2 *
k6[i] / 55);
tol[i] = reltol * x[i].real + abstol;
maxerr = Math.Max(maxerr, Math.Abs(err[i].real
- x[i].real) / tol[i]);

}

if (maxerr <= 1.0)
{

t += h;
delta = 0.84 * Math.Pow(maxerr, -0.25);

// Increase step if required
if (delta > 1.5 && h < MAX_h) h *= 1.5;
else if (delta > 1.0 && h < MAX_h) h *= delta;
if (t + h > tFin) h = tFin - t;

// Save updated values
for (i = 0; i < N; i++) y[i] = x[i];

}
else
{

// Reduce step
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delta = 0.84 * Math.Pow(maxerr, -0.25);
if (delta < 0.1) h *= 0.1;
else h *= delta;

}
}

// Button butInit_Click event - Initialize
private void butInit_Click(object sender, EventArgs e)
{
richTextBox3.AppendText(eqStr);
//richTextBox1.AppendText(attrStr); // text boxes
// Initializing dynamical variables
Complex[] x = new Complex[N];
Complex[] dx = new Complex[N];
for (int j = 0; j < N; j++)
{ // initial conditions for Langevin ODEs

x[j] = new Complex(0.03 * (1 + j * (rand.NextDouble()
- 0.5)), 0.03 * (1 + j * (rand.NextDouble() - 0.5)));
dx[j] = new Complex(0.0, 0.0);

}

// Initializing 2D graphics on the panel
Graphics graphics = panel1.CreateGraphics();
graphics.Clear(Color.Navy);
Image[] image = new Image[5];
for (int j = 0; j < 5; j++)
{ // read images for agents

image[j] = Image.FromFile("image" + j + ".gif");
}

for (int j = 0; j < N - 1; j++)
{ // initializing 2D animations of moving agents

graphics.ResetTransform();
// non-commutative translations and rotations
graphics.TranslateTransform(400 +
(int)(100 * x[j].real), 400 + (int)(100 * x[j].
imagin));
graphics.DrawImage(image[j % 5], 0, 0);

}
}

// Button butSimul_Click event - Simulate (Run!)
private void butSimul_Click(object sender, EventArgs e)
{
h = h0;
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t = 0.0;
prev_t = -1.0; // re-initializing
Complex[] x = new Complex[N];
Complex[] dx = new Complex[N];
double[] Angle = new double[N];

// Initializing Charts and Series
this.chart1.Series.Clear();
this.chart2.Series.Clear();
Series[] Xser = new Series[N];
Series[] Yser = new Series[N];
Series[] XYser = new Series[N];
Series Aser = new Series();
Aser.ChartType = SeriesChartType.FastLine;

for (int j = 0; j < N; j++)
{

Xser[j] = new Series(); // initialize charts
Yser[j] = new Series();
XYser[j] = new Series();
Xser[j].ChartType = SeriesChartType.FastLine;
Yser[j].ChartType = SeriesChartType.FastLine;
XYser[j].ChartType = SeriesChartType.FastLine;

}

// Initializing 2D graphics on the panel
Graphics graphics = panel1.CreateGraphics();
Image[] image = new Image[5];

for (int j = 0; j < 5; j++)
{ // read little images for agents

image[j] = Image.FromFile("image" + j + ".gif");
}

while (t < tFin)
// Main time loop: Langevin dynamics starts here!

{
RKF45(x); // Call RKF45
for (int j = 0; j < N; j++)
{
Xser[j].Points.AddXY(t, x[j].real);
// real-time plots
Yser[j].Points.AddXY(t, x[j].imagin);
// imagin-time plots
XYser[j].Points.AddXY(x[j].real, -x[j].imagin);
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// phase plots
}
prev_t = t;

if (t % (tFin / 300) < h)
{
graphics.Clear(Color.Navy); // clearing graphics
for (int j = 0; j < N - 1; j++)
{ // 2D animations of moving agents
graphics.ResetTransform();
// non-commutative translations and rotations
if (x[j].real - x[j + 1].real < 0.1 && x[j].real
> x[j + 1].real) {
x[j].real += 0.1;

} // My simple ColDet
if (x[j + 1].real - x[j].real < 0.1 && x[j].real
< x[j + 1].real) {
x[j].real -= 0.1;

}
if (x[j].imagin - x[j + 1].imagin < 0.1 && x[j].
imagin
> x[j + 1].imagin) {
x[j].imagin += 0.1;

}
if (x[j + 1].imagin - x[j].imagin < 0.1 && x[j].
imagin
< x[j + 1].imagin) {
x[j].imagin -= 0.1;

}
graphics.TranslateTransform(400 +
(int)(400 * x[j].real), 400 + (int)(400 * x[j].
imagin));
graphics.RotateTransform((float)Angle[j]);
graphics.DrawImage(image[j % 5], 0, 0);

}
graphics.Flush(); // flushing graphics

}
}
for (int j = 0; j < N; j++) // create charts
{

this.chart1.Series.Add(Xser[j]);
this.chart1.Series.Add(Yser[j]);
this.chart2.Series.Add(XYser[j]);

}
}
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}
}

12.4 Freeform Fortran Code

Fig. 12.12. Simulating the Lorenz butterfly-attractor in F90 using the RK4
integrator (plotting in Excel).

12.4.1 Lorenz Attractor Simulator

Here we give an F90 code simulating the Lorenz butterfly-attractor (see Figure
12.12), using the standard RK4 integrator.

program lorRK4 ! Lorenz attractor in RK4
real :: ti=0.,xi=0.,yi=1.,zi=0.,dt=0.03,tFin=90.
real tf,xf,yf,zf
external dx,dy,dz ! declare functions
open(1, file=’lorRK4.csv’) ! file and header
write(1,*) ’t’,’,’,’x(t)’,’,’,’y(t)’,’,’,’z(t)’
do while(ti<tFin) ! main time loop

tf = ti + dt ! time increment; ! call RK4
call RK4(dx,dy,dz,ti,tf,xi,yi,zi,xf,yf,zf)
write(1,*) tf,’,’,xf,’,’,yf,’,’,zf ! printout
ti = tf; xi = xf; yi = yf; zi = zf
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end do
close(1)

end program

! Defining Lorenz equations:
function dx(t,x,y,z)

real dx,t,x,y,z
dx = -3*(x-y)

end function dx

function dy(t,x,y,z)
real dx,t,x,y,z
dy = -x*z + 26.5*x - y

end function dy

function dz(t,x,y,z)
real dx,t,x,y,z
dz = x*y - z

end function dz

! Runge-Kutta 4th-order ODE solver:
subroutine RK4(dx,dy,dz,ti,tf,xi,yi,zi,xf,yf,zf)

real h,t,dx,dy,dz,ti,tf,xi,yi,zi,xf,yf,zf
real k1x,k2x,k3x,k4x,k1y,k2y,k3y,k4y,k1z,k2z,k3z,k4z
h = tf-ti; t = ti
k1x = h*dx(t,xi,yi,zi)
k1y = h*dy(t,xi,yi,zi)
k1z = h*dz(t,xi,yi,zi)
k2x = h*dx(t+h/2.,xi+k1x/2.,yi+k1y/2.,zi+k1z/2.)
k2y = h*dy(t+h/2.,xi+k1x/2.,yi+k1y/2.,zi+k1z/2.)
k2z = h*dz(t+h/2.,xi+k1x/2.,yi+k1y/2.,zi+k1z/2.)
k3x = h*dx(t+h/2.,xi+k1x/2.,yi+k1y/2.,zi+k1z/2.)
k3y = h*dy(t+h/2.,xi+k1x/2.,yi+k1y/2.,zi+k1z/2.)
k3z = h*dz(t+h/2.,xi+k1x/2.,yi+k1y/2.,zi+k1z/2.)
k4x = h*dx(t+h,xi+k3x,yi+k3y,zi+k3z)
k4y = h*dy(t+h,xi+k3x,yi+k3y,zi+k3z)
k4z = h*dz(t+h,xi+k3x,yi+k3y,zi+k3z)
xf = xi + (k1x + 2.*(k2x+k3x) + k4x)/6.
yf = yi + (k1y + 2.*(k2y+k3y) + k4y)/6.
zf = zi + (k1z + 2.*(k2z+k3z) + k4z)/6.

end subroutine RK4
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Fig. 12.13. Complex-valued Lorenz attractor: time evolutions (top-left) and
phase (Re vs. Im) plots.

12.4.2 Complex Lorenz Attractor

Here we give an F90 code simulating the complex-valued Lorenz attractor (see
Figure 12.13), using the complexified RK4 integrator.

program cmplxLor
! Complex Lorenz attractor via complex RK4-integrator
real :: ti=0., dt=0.03, tFin=17., tf
complex :: xi=(0.01,0.01), yi=(0.01,0.01),

zi=(0.01,0.01), xf,yf,zf
external dx,dy,dz ! declare functions
open(1, file=’cmplxLor.csv’) ! file and header
write(1,*) ’t’,’,’,’x.re’,’,’,’x.im’,’,’,’y.re’,’,’,

’y.im’,’,’,’z.re’,’,’,’z.im’
print *, ’t’,’,’,’x.re’,’,’,’x.im’,’,’,’y.re’,
’,’,’y.im’,’,’,’z.re’,’,’,’z.im’

do while (ti<tFin) ! main time loop
tf = ti + dt ! time increment
call cmplxRK4(dx,dy,dz,ti,tf,xi,yi,zi,xf,yf,zf) ! call
RK4
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write(1,*) tf,’,’,real(xf),’,’,aimag(xf),’,’,real(yf)
,’,’,aimag(yf),

’,’,real(zf),’,’,aimag(zf) ! printout to file
print *, tf,’,’,real(xf),’,’,aimag(xf),’,’,real(yf)
,’,’,aimag(yf),

’,’,real(zf),’,’,aimag(zf) ! printout to screen
ti = tf; xi = xf; yi = yf; zi = zf

end do
close(1)
end program

function dx(t,x,y,z)
real :: t; complex :: dx,x,y,z
dx = -3*(x-y)

end function dx

function dy(t,x,y,z)
real :: t; complex :: dy,x,y,z
dy = -x*z + 26.5*x - y

end function dy

function dz(t,x,y,z)
real :: t; complex :: dz,x,y,z
dz = x*y - z

end function dz

subroutine cmplxRK4(dx,dy,dz,ti,tf,xi,yi,zi,xf,yf,zf)
real :: h,t,ti,tf
complex :: dx,dy,dz,xi,yi,zi,xf,yf,zf
complex::k1x,k2x,k3x,k4x,k1y,k2y,k3y,k4y,k1z,k2z,k3z,k4z
h = tf-ti; t = ti
k1x = h*dx(t,xi,yi,zi)
k1y = h*dy(t,xi,yi,zi)
k1z = h*dz(t,xi,yi,zi)
k2x = h*dx(t+h/2.,xi+k1x/2.,yi+k1y/2.,zi+k1z/2.)
k2y = h*dy(t+h/2.,xi+k1x/2.,yi+k1y/2.,zi+k1z/2.)
k2z = h*dz(t+h/2.,xi+k1x/2.,yi+k1y/2.,zi+k1z/2.)
k3x = h*dx(t+h/2.,xi+k1x/2.,yi+k1y/2.,zi+k1z/2.)
k3y = h*dy(t+h/2.,xi+k1x/2.,yi+k1y/2.,zi+k1z/2.)
k3z = h*dz(t+h/2.,xi+k1x/2.,yi+k1y/2.,zi+k1z/2.)
k4x = h*dx(t+h,xi+k3x,yi+k3y,zi+k3z)
k4y = h*dy(t+h,xi+k3x,yi+k3y,zi+k3z)
k4z = h*dz(t+h,xi+k3x,yi+k3y,zi+k3z)
xf = xi + (k1x + 2.*(k2x+k3x) + k4x)/6.
yf = yi + (k1y + 2.*(k2y+k3y) + k4y)/6.
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zf = zi + (k1z + 2.*(k2z+k3z) + k4z)/6.
end subroutine

Fig. 12.14. Simple Sine-Gordon soliton (antikink): comparing numerical so-
lution with the exact one (two traces are on top of each other).

12.4.3 Simple SGE Soliton

Here we give a simple F90 code that numerically solves the Sine-Gordon equa-
tion:

φtt = φxx − sinφ

and compares the numerical solution (see Figure 12.14) with the exact antikink
solution:

φexact(x) = 4 atan[exp(−x/
√

1− c2)].

program SGsimple ! Solitary SGE solutions
! f’’(1-c**2)=sin(f),f(inf)=f’(inf)=0
! Based on f77-code by R.Baretti

data c,xi,xf,nstep/0.5,6.,-6.,2000/
yexact(x)=4.*atan(exp(-x/sqrt(1.-c**2)))
dx=(xf-xi)/float(nstep)
f0=4.*exp(-xi/sqrt(1.-c**2))
f1=4.*exp(-(xi+dx)/sqrt(1.-c**2))
kp=int(float(nstep)/60.)
kount=kp
print *,’ x f yex’; print *
open(1, file=’SG.csv’) ! file and header
write(1,*) xi,’,’,f0,’,’,yexact(xi)
do i=2,nstep

x = xi + float(i)*dx
f2 = 2.*f1 - f0 + sin(f1)/(1.-c**2)*(dx**2)
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if (i==kount) then
write(1,*) x,’,’,f2,’,’,yexact(x)
kount = kount + kp

end if
f0=f1
f1=f2

end do
close(1)

end

Fig. 12.15. Evaluating and presenting a complex-valued signal out of two
real-valued sampled signals.

12.4.4 Complex Signal Presentation

Here we give a short F90 code that takes two real sampled signals and forms
out of them a complex signal and its conjugate (see Figure 12.15).

program CmplxSignal ! Complex Signal Presentation
real :: t=0.,h=0.1,tFin=50.,x,y
complex z,z1
open(1,file=’cmplxSig.csv’)
write(1,*) ’t’,’,’,’re(z)’,’,’,’im(z)’,’,’,’re(z‘)’,’,’,

’im(z‘)’,’,’,’|zz‘|’
do while(t<tFin)
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x = sin(t)*(1-cos(t/3.0)) ! 2 real signals
y = sin(2*t)*(1-cos(t/5.0))
z = cmplx(x,y) ! complex signal: z=x+iy
z1= conjg(z) ! conjugated z : z1=x-iy
write(1,*) t,’,’,real(z),’,’,aimag(z),’,’,real(z1),’,’
,aimag(z1),’,’,abs(z*conjg(z))

t = t+h
end do
close(1)

end program

Fig. 12.16. Evolution of a Gaussian wave packet by numerically solving the
(1+1)D time-dependent Schrödinger equation.

12.4.5 Gaussian Wave Packet

Here we give an F90 code that numerically solves the time-dependent
Schrödinger equation and thus simulates the evolution of the Gaussian wave
packet (see Figure 12.16). The algorithm uses the forward finite-difference
scheme to solve the following discretized Schrödinger PDE:

Ψ(x, t+∆t) = {1− iH∆t+ (1/2)(−iH∆t)2}Ψ(x, t),

where H = −(1/2)∆2 = −(1/2)d2/dx2 is the Hamiltonian operator.

program GaussSchrod
! Gaussian wave packet
! Solution of time-dependent Schrodinger eq. by FD method
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! Based on F77-code by Reinaldo Baretti Machn
complex psiold,psinew,rooti,g,psi,psiG,d2psi,d4psi
dimension psiold(0:1000),psinew(0:1000)
data sigma,ak0,nstep/1.0,2.,150/
g(x)=pi**(-.25)*sigma**(-.5)*exp(-.5*(x/sigma)**2)

*exp(rooti*ak0*x)
! psiG from ref 2

psiG(x,t)=pi**(-.25)*(sigma+rooti*beta*t)**(-.5)* &
exp(rooti*(ak0*x-w0*t))*exp(-.5*(x-vg*t)**2

/(sigma+rooti*beta*t)**2)
d2psi(n)=(psiold(n+1)-2.*psiold(n)+psiold(n-1))/dx**2
d4psi(n)=(psiold(n+2)-4.*psiold(n+1)+ &
6.*psiold(n)-4.*psiold(n-1)+psiold(n-2))/dx**4
rooti=cmplx(0.0,1.0)
pi=2.0*asin(1.0)
vg=ak0
beta=1./2.
w0=ak0**2/2.
aLength=sigma
tscale= sigma**2
tfinal=.8*tscale
xi=-3.*alength
xf=3.0*alength+vg*tfinal
dx=(xf-xi)/float(nstep)
dt=dx**2/100.

! dt=5.E-3*dx**2
nt=int(tfinal/dt)
ratio=dt/dx**2
! ratio dt/dx**2 is approx 5.0E-3
print*,’tfinal,tscale,dt/dx**2=’,tfinal,tscale,ratio
print*,’nt,nstep,dt=’,nt,nstep,dt

! initial psi(x,t=0) along x axis t=0
do i=0,1000

psiold(i)=0.
end do
do i=0,nstep

x = xi + float(i)*dx
psiold(i)=g(x)

end do
! forward difference

do it=1,nt
t=dt*float(it)
do i=0,nstep

x = xi + float(i)*dx
psinew(i)=psiold(i)+(rooti*dt/2.0)*d2psi(i)
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-1.*(dt**2/8.)*d4psi(i)
end do
do j=0,nstep

psiold(j)=psinew(j)
end do

end do
! print group

open(1,file=’Schr.csv’)
print*,’ t, x, Real psinum(x,t), Real psiG ’;
print *
do i=0,nstep,2

x = xi + float(i)*dx
print’(2x,4(3x,e10.3))’,t,x,real(psiold(i)),

real(psiG(x,t))
write(1,*) x,’,’,real(psiold(i)),’,’,real(psiG(x,t))

end do
close(1)

end program

12.4.6 Hermitian Matrices

Here we give an F95 code that performs basic algebraic operations with Her-
mitian matrices.

program Hermitian ! Operations with Hermitian Matrices
implicit none; integer i
complex A(2,2),At(2,2),Ac(2,2),An1(2,2),An2(2,2)
open(1, file=’Hermit.dat’)

A = reshape([ & !matrix A
(4., 0.), (1., 3.), &
(1., -3.), (7., 0.)], [2, 2])

write ( 1, ’(a)’ ) ’ ’
write ( 1, ’(a)’ ) ’ Matrix A:’
do i=1,2
write ( 1, ’(2(2g8.2))’ ) A(i,1:2)

end do

At=transpose(A)
write ( 1, ’(a)’ ) ’ ’
write ( 1, ’(a)’ ) ’ At=transpose(A):’
do i=1,2
write ( 1, ’(2(2g8.2))’ ) At(i,1:2)

end do
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Ac=conjg(At)
write ( 1, ’(a)’ ) ’ ’

write ( 1, ’(a)’ ) ’ Ac=conjg(At):’
do i=1,2
write ( 1, ’(2(2g8.2))’ ) Ac(i,1:2)

end do
write(1,*) ’Hermitian criterion: Ac==A :’, Ac==A

An1=matmul(A,Ac)
AN2=matmul(Ac,A)
write ( 1, ’(a)’ ) ’ ’
write ( 1, ’(a)’ ) ’ A.Ac=matmul(A,Ac):’
do i=1,2
write ( 1, ’(2(2g8.2))’ ) An1(i,1:2)

end do
write ( 1, ’(a)’ ) ’ ’

write ( 1, ’(a)’ ) ’ Ac.A=matmul(Ac,A):’
do i=1,2
write ( 1, ’(2(2g8.2))’ ) AN2(i,1:2)

end do
write(1,*) ’Normality criterion: A.Ac==Ac.A :’, An1==AN2
close(1)

end program

The output of the program is:

Matrix A:
4.0 0.0 1.0 -3.0
1.0 3.0 7.0 0.0

At=transpose(A):
4.0 0.0 1.0 3.0
1.0 -3.0 7.0 0.0

Ac=conjg(At):
4.0 -0.0 1.0 -3.0
1.0 3.0 7.0 -0.0
Hermitian criterion: Ac==A : T T T T

A.Ac=matmul(A,Ac):
26. 0.0 11. -33.
11. 33. 59. 0.0

Ac.A=matmul(Ac,A):
26. 0.0 11. -33.
11. 33. 59. 0.0
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Normality criterion: A.Ac==Ac.A : T T T T

12.4.7 Euclidean L2-Norm

Here we give a short F95 code that calculates Euclidean L2-norm both directly
and indirectly.

program L2Norm ! Euclidean L^2 Norm
real*8 :: x(9) = [1.3, 2.1, 3.7, 4.2, 5.6, 6.3, 7.5, 8.4,
9.8]
open(1, file=’norm.dat’)
write ( 1, ’(a)’ ) ’Given a sample 9D vector :’
write ( 1, ’(a)’ ) ’x(9)=[1.3,2.1,3.7,4.2,5.6,6.3,7.5,
8.4,9.8]’
write ( 1, ’(a)’ ) ’Its Euclidean L2-norm is :’;
write ( 1, *) norm2(x)
write ( 1, ’(a)’ ) ’L2-norm is computed as :’;
write ( 1, *) sqrt(sum(x(1:9)**2))
close(1)

end program

The output of the program is:

Given a sample 9D vector :
x(9) = [1.3, 2.1, 3.7, 4.2, 5.6, 6.3, 7.5, 8.4, 9.8]
Its Euclidean L2-norm is :

18.202472274145126
L2-norm is computed as :

18.202472274145126

12.4.8 Vector/Matrix Operations

Here we give a short F95 code that performs basic vector and matrix opera-
tions.

program VecMat ! Vector and Matrix Operations
implicit none
integer :: i, j, n=5, m=5
integer :: a(5)=[(i, i=1,5)], b(5)=[9,8,7,6,5]
integer, dimension(5,5) :: c, d
open(1, file=’vecMat.dat’)
write(1,*) ’VECTOR AND MATRIX OPERATIONS IN F95/03’;
write(1,*)
write(1,*) ’vec a(5)=[(i, i=1,5)]=’; write(1,’(5i3)’) a;
write(1,*)
write(1,*) ’size(a), sum(a), prod(a), min(a), max(a) = ’;
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write(1,’(5i8)’)size(a),sum(a),product(a),minval(a),
maxval(a);
write(1,*)
write(1,*) ’vec b(5)=[9,8,7,6,5]=’; write(1,’(5i3)’) b;
write(1,*)
write(1,*) ’size(b), sum(b), prod(b), min(b), max(b) = ’;
write(1,’(5i8)’)size(b),sum(b),product(b),minval(b),
maxval(b);
write(1,*)
write(1,*) ’dot_prod(a,b)=’; write(1,*) dot_product(a,b);
write(1,*)
forall (i=1:n, j=1:m) c(i,j)=i+j; ! defining two
matrices
forall (i=1:n, j=1:m) d(i,j)=i*j;
write(1,*) ’mat c(i,j)=i+j=’;
write(1,’(5i4)’) c; write(1,*)
write(1,*) ’mat d(i,j)=i*j=’;
write(1,’(5i4)’) d; write(1,*)
write(1,*) ’transp(c)=’; write(1,’(5i4)’) transpose(c);
write(1,*)
write(1,*) ’transp(d)=’; write(1,’(5i4)’) transpose(d);
write(1,*)
write(1,*) ’matmul(c,transp(dd))=’;
write(1,’(5i5)’) matmul(c,transpose(d)); write(1,*)
write(1,*) ’matmul(d,transp(cc))=’;
write(1,’(5i5)’) matmul(d,transpose(c)); write(1,*)
close(1)

end program

The output of the program is:

VECTOR AND MATRIX OPERATIONS IN F95/03

vec a(5)=[(i, i=1,5)]=
1 2 3 4 5

size(a), sum(a), prod(a), min(a), max(a) =
5 15 120 1 5

vec b(5)=[9,8,7,6,5]=
9 8 7 6 5

size(b), sum(b), prod(b), min(b), max(b) =
5 35 15120 5 9

dot_prod(a,b)=
95
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mat c(i,j)=i+j=
2 3 4 5 6
3 4 5 6 7
4 5 6 7 8
5 6 7 8 9
6 7 8 9 10

mat d(i,j)=i*j=
1 2 3 4 5
2 4 6 8 10
3 6 9 12 15
4 8 12 16 20
5 10 15 20 25

transp(c)=
2 3 4 5 6
3 4 5 6 7
4 5 6 7 8
5 6 7 8 9
6 7 8 9 10

transp(d)=
1 2 3 4 5
2 4 6 8 10
3 6 9 12 15
4 8 12 16 20
5 10 15 20 25

matmul(c,transp(dd))=
70 85 100 115 130

140 170 200 230 260
210 255 300 345 390
280 340 400 460 520
350 425 500 575 650

matmul(d,transp(cc))=
70 140 210 280 350
85 170 255 340 425

100 200 300 400 500
115 230 345 460 575
130 260 390 520 650
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12.5 Plain C-Code: Levenberg-Marquardt Optimizer

Here we give a plain C-code implementing a fast Levenberg-Marquardt opti-
mizer for M nonlinear functions in N variables.

// Levenberg-Marquardt Optimizer, an algorithm from MINPACK
// Minimizes the sum-of-squares of M nonlinear functions
(or a vector function FVEC) of N variables
// used values: M=7, N=7 and M=9, N=9
// This is a significantly shortened (almost 40%) and
cleaned-up modification of S. Moshier’s C-translation of
the original MINPACK.F77 library by J. More, B. Garbow and
K. Hillstrom, Argonne National Laboratory, US, 1980.
// Modified by V. Ivancevic, July 2013

#define BUG 0
#define N 7
#define M 7
double ftol=1.0e-14, xtol=1.0e-14, gtol=1.0e-14;
double epsfcn=1.0e-15, factor=0.1, enorm();
double x[N]={0.0}, fvec[M]={0.0}, diag[N]={0.0};
double fjac[M*N]={0.0}, qtf[N]={0.0}, wa1[N]={0.0};
double wa2[N]={0.0}, wa3[N]={0.0}, wa4[M]={0.0};
int ipvt[N]={0}, maxfev = 200*(N+1), fcn();
double MACHEP = 1.2e-16; extern double MACHEP;
double DWARF = 1.0e-38; extern double DWARF;

int main() // Main function
{
/* fcn is the user-supplied function which gives the
functions.

the value of iflag should not be changed by fcn
unless
the user wants to terminate execution of lmdif1.
in this case set iflag to a negative integer.

m is a positive integer input variable set to the
number of functions.

n is a positive integer input variable set to the
number
of variables. n must not exceed m.

x is an array of length n. on input x must contain
an initial estimate of the solution vector. on
output x contains the final estimate of the solution
vector.
fvec is an output array of length m which contains
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the functions evaluated at the output x. */
int m,n,info,mode,nfev,nprint,iflag,ldfjac;
double zero = 0.; n = N; m = M;
fcn(m, n, x, fvec, &iflag);

printf("============================================\n");
printf(" *** Levenberg-Marquardt Optimizer
(V.I., July 2013) ***\n");
printf("Minimizes the sum-of-squares of M nonlinear
functions of N vars\n");
printf("Effectively minimizes the Euclidean L2-norm:

norm2(f) = sqrt(sum(f(1:M)**2))\n");
printf("The norm2(f) induces the Euclidean metric:

norm2(f1-f2) ||\n");
printf("It is itself induced by the inner product:

norm2(f) = dot_product(f,f)\n");
printf("If L2 Cauchy minimization sequence is convergent,

a Banach space is constructed\n");
printf("========================================\n");

printf("\n");
printf("Sample initial solution x:\n"); pmat(1,n,x);
printf("\n");
printf("Sample initial vector function f:\n");
pmat(1,m,fvec); printf("\n");
printf("----------------\n");
printf("Banach space construction ->\n");
printf("Cauchy sequence for the L2-norm:\n");
printf("----------------\n");
ldfjac = m; mode = 1; nprint = 1; info = 0;
lmdif(m,n,x,fvec,ftol,xtol,gtol,maxfev,epsfcn, // Call
lmdif
diag,mode,factor,nprint,&info,&nfev,fjac,
ldfjac,ipvt,qtf,wa1,wa2,wa3,wa4);
printf("\n"); printf("%d functional evalutations
performed\n",nfev);
printf("\n"); printf("Computed solution x:\n");
pmat(1,n,x); printf("\n");
printf("Computed minimum of the vector function f:\n");
pmat(1,m,fvec);
printf("\n");
printf("Final L2-norm = %.15e\n", enorm(m,fvec));

printf("\n");
if (enorm(m,fvec) <= 1.0e-10)

printf("1. Weak convergence : L2-norm <= 1.0e-10\n");
if (enorm(m,fvec) <= 1.0e-30)
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printf("2. Moderate convergence : L2-norm <=
1.0e-30\n");

if (enorm(m,fvec) <= 1.0e-60)
printf("3. Strong convergence : L2-norm <=
1.0e-60\n");

if (enorm(m,fvec) <= 1.0e-100)
printf("4. Very strong convergence : L2-norm <=

1.0e-100\n");
if (enorm(m,fvec) <= 1.0e-200)
printf("5. Extremely strong convergence : L2-norm <=
1.0e-150\n");
printf("===========================================\n");

printf(" :- Banach space is constructed (see attached
PDF)\n");

printf("================================================\n");
getchar();

}

// Sample user-given function
int fcn(m,n,x,fvec,iflag)
int m,n,*iflag; double x[],fvec[];
/* m = number of functions
n = number of variables

x = vector of function arguments
fvec = vector of function values
iflag = error return variable */

{
double sin(), log(), sinh(), tanh(), atan();
// Sample test vector function, including 7 funs with
7 vars:
fvec[0] = tanh(x[0]*x[1]) - 1.7*x[2] + log(1.5 +
x[3]*x[4]);
fvec[1] = sin(-4.0*x[0]) - 3.*tanh(x[1]*x[5]) + 0.1*x[2]
*x[4] + x[3]*x[6];
fvec[2] = 0.5*x[1]*x[3] - tanh(x[2]*x[4]) + sinh(x[5]*
x[6]) + x[2]*x[1];
fvec[3] = x[5]*x[1] + x[2]*x[3] + x[0]*x[2] - x[6]*x[4];
fvec[4] = sinh(x[0]*x[1]) + x[2]*x[3] + x[6]*x[4] -
x[3]*x[4];
fvec[5] = 0.5*x[1]*x[4] - sinh(x[2]*x[3]) + tanh(x[5]*
x[6]) + x[2]*x[1];
fvec[6] = x[0]*x[1] + x[3]*x[4] + x[2]*x[5] -
atan(x[3]*x[6]);
}
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#define BUG 0
extern double MACHEP;
// function lmdif (the CORE of the algorithm)
lmdif(m,n,x,fvec,ftol,xtol,gtol,maxfev,epsfcn,
diag,mode,factor,nprint,info,nfev,fjac,
ldfjac,ipvt,qtf,wa1,wa2,wa3,wa4)
int m,n,maxfev,mode,nprint,ldfjac;
int *info, *nfev, ipvt[];
double ftol, xtol, gtol, epsfcn, factor;
double x[],fvec[],diag[],fjac[],qtf[],wa1[],wa2[],wa3[],
wa4[];
{
/* The function lmdif minimizes the sum of the squares of
* m nonlinear functions in n variables by a
* modification of
* the levenberg-marquardt algorithm. The user
* provides a
* function which calculates the functions. the
* jacobian is
* then calculated by a forward-difference
* approximation.
* the function statement is
* function lmdif(fcn,m,n,x,fvec,ftol,xtol,gtol,maxfev,
* epsfcn,
* diag,mode,factor,nprint,info,nfev,fjac,
* ldfjac,ipvt,qtf,wa1,wa2,wa3,wa4)
* where
* fcn is the name of the user-supplied function which
* calculates the functions.
* the value of iflag should not be changed by fcn
* unless
* the user wants to terminate execution of lmdif.
* in this case set iflag to a negative integer.
* m is a positive integer input variable set to the
* number of functions.
* n is a positive integer input variable set to the
* number
* of variables. n must not exceed m.
* x is an array of length n. on input x must contain
* an initial estimate of the solution vector. on
* output x
* contains the final estimate of the solution vector.
* fvec is an output array of length m which contains
* the functions evaluated at the output x.
* ftol is a nonnegative input variable. termination
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* occurs when both the actual and predicted relative
* reductions in the sum of squares are at most ftol.
* therefore, ftol measures the relative error desired
* in the sum of squares.
* xtol is a nonnegative input variable. termination
* occurs when the relative error between two
* consecutive
* iterates is at most xtol. therefore, xtol measures the
* relative error desired in the approximate solution.
* gtol is a nonnegative input variable. termination
* occurs when the cosine of the angle between fvec and
* any column of the jacobian is at most gtol in
* absolute value. therefore, gtol measures the
* orthogonality desired between the function vector and
* the columns of the jacobian.
* maxfev is a positive integer input variable.
* termination
* occurs when the number of calls to fcn is at least
* maxfev by the end of an iteration.
* epsfcn is an input variable used in determining a
* suitable
* step length for the forward-difference
* approximation. this
* approximation assumes that the relative errors in the
* functions are of the order of epsfcn. if epsfcn is
* less
* than the machine precision, it is assumed that the
* relative
* errors in the functions are of the order of the
* machine precision.
* diag is an array of length n. if mode = 1 (see
* below), diag is internally set. if mode = 2, diag
* must contain positive entries that serve as
* multiplicative scale factors for the variables.
* mode is an integer input variable. if mode = 1, the
* variables will be scaled internally. if mode = 2,
* the scaling is specified by the input diag. other
* values of mode are equivalent to mode = 1.
* factor is a positive input variable used in
* determining the
* initial step bound. this bound is set to the
* product of
* factor and the euclidean norm of diag*x if nonzero,
* or else
* to factor itself. in most cases factor should lie
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* in the
* interval (.1,100.). 100. is a generally recommended
* value.
* nprint is an integer input variable that enables
* controlled
* printing of iterates if it is positive. in this case,
* fcn is called with iflag = 0 at the beginning of
* the first
* iteration and every nprint iterations thereafter
* and
* immediately prior to return, with x and fvec
* available
* for printing. if nprint is not positive, no special
* calls
* of fcn with iflag = 0 are made.
* info is an integer output variable. if the user has
* terminated execution, info is set to the (negative)
* value of iflag. see description of fcn. otherwise,
* info is set as follows.
* info = 0 improper input parameters.
* info = 1 both actual and predicted relative
* reductions
* in the sum of squares are at most ftol.
* info = 2 relative error between two consecutive
* iterates
* is at most xtol.
* info = 3 conditions for info = 1 and info = 2 both
* hold.
* info = 4 the cosine of the angle between fvec and any
* column of the jacobian is at most gtol in
* absolute value.
* info = 5 number of calls to fcn has reached or
* exceeded maxfev.
*
* info = 6 ftol is too small. no further reduction in
* the sum of squares is possible.
* info = 7 xtol is too small. no further improvement in
* the approximate solution x is possible.
* info = 8 gtol is too small. fvec is orthogonal to the
* columns of the jacobian to machine precision.
* nfev is an integer output variable set to the number
* of calls to fcn.
* fjac is an output m by n array. the upper n by n
* submatrix of fjac contains an upper triangular matrix
* r with diagonal elements of nonincreasing magnitude
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* such that
* t t t
* p *(jac *jac)*p = r *r,
* where p is a permutation matrix and jac is the final
* calculated jacobian. column j of p is column ipvt(j)
* (see below) of the identity matrix. the lower
* trapezoidal
* part of fjac contains information generated during
* the computation of r.
* ldfjac is a positive integer input variable not less
* than m
* which specifies the leading dimension of the array
* fjac.
* ipvt is an integer output array of length n. ipvt
* defines a permutation matrix p such that
* jac*p = q*r,
* where jac is the final calculated jacobian, q is
* orthogonal (not stored), and r is upper triangular
* with diagonal elements of nonincreasing magnitude.
* column j of p is column ipvt(j) of the identity
* matrix.
* qtf is an output array of length n which contains
* the first n elements of the vector (q transpose)*

fvec. */
int i,iflag,ij,jj,iter,j,l;
double actred,delta,dirder,fnorm,fnorm1,gnorm;
double par,pnorm,prered,ratio,sum,temp,temp1,temp2,temp3,
xnorm;
double enorm(), fabs(), dmax1(), dmin1(), sqrt();
int fcn(); // user supplied function (given above)
double one=1., zero=0., p1=0.1, p5=0.5, p25=0.25;
double p75=0.75, p0001=1.0e-4, p05=0.05;
*info = 0; iflag = 0; *nfev = 0;
// check the input parameters for errors.
if ( (n <= 0) || (m < n) || (ldfjac < m) || (ftol < zero)
|| (xtol < zero) || (gtol < zero) || (maxfev <= 0)
|| (factor <= zero) ) goto L300;
if (mode == 2) { // scaling by diag[]
for(j=0; j<n; j++) {
if (diag[j] <= 0.0) goto L300;
}
}
#if BUG
printf("lmdif\n");
#endif
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// evaluate the function at the starting point and calc.
its norm
iflag = 1;
fcn(m,n,x,fvec,&iflag);
*nfev = 1;
if(iflag < 0) goto L300;
fnorm = enorm(m,fvec);
// initialize LM-parameter and iteration counter
par = zero;
iter = 1;
// beginning of the outer loop
L30:
// calculate the jacobian matrix
iflag = 2;
fdjac2(m,n,x,fvec,fjac,ldfjac,&iflag,epsfcn,wa4);
*nfev += n;
if (iflag < 0) goto L300;
// if requested, call fcn to enable printing of
iterates
if(nprint > 0) {
iflag = 0;
if (mod(iter-1,nprint) == 0) {
fcn(m,n,x,fvec,&iflag);
if (iflag < 0) goto L300;
printf("L2-norm = %.15e\n", enorm(m,fvec));
}
}
// compute the qr factorization of the jacobian
qrfac(m,n,fjac,ldfjac,1,ipvt,n,wa1,wa2,wa3);
// on the first iteration and if mode is 1, scale

according
// to the norms of the columns of the initial jacobian.
if (iter == 1) {
if (mode != 2) {
for (j=0; j<n; j++) {
diag[j] = wa2[j];
if (wa2[j] == zero) diag[j] = one;
}
}
// on the first iteration, calculate the norm of the

scaled x
// and initialize the step bound delta

for(j=0; j<n; j++) wa3[j] = diag[j] * x[j];
xnorm = enorm(n,wa3);
delta = factor*xnorm;
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if (delta == zero) delta = factor;
}
// form (q transpose)*fvec and store the first n
components in qtf
for (i=0; i<m; i++) wa4[i] = fvec[i];
jj = 0;
for (j=0; j<n; j++) {
temp3 = fjac[jj];
if (temp3 != zero) {
sum = zero;
ij = jj;
for (i=j; i<m; i++) {
sum += fjac[ij] * wa4[i];
ij += 1; // fjac[i+m*j]
}
temp = -sum / temp3;
ij = jj;
for (i=j; i<m; i++) {
wa4[i] += fjac[ij] * temp;
ij += 1; // fjac[i+m*j]
}
}
fjac[jj] = wa1[j];
jj += m+1; // fjac[j+m*j]
qtf[j] = wa4[j];
}
// compute the norm of the scaled gradient
gnorm = zero;
if (fnorm != zero)
{
jj = 0;
for (j=0; j<n; j++) {
l = ipvt[j];
if (wa2[l] != zero) {
sum = zero;
ij = jj;
for (i=0; i<=j; i++) {
sum += fjac[ij]*(qtf[i]/fnorm);
ij += 1; // fjac[i+m*j]
}
gnorm = dmax1(gnorm,fabs(sum/wa2[l]));
}
jj += m;
}
}
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// test for convergence of the gradient norm
if (gnorm <= gtol) *info = 4;
if (*info != 0) goto L300;
// rescale if necessary
if (mode != 2) {
for (j=0; j<n; j++) diag[j] = dmax1(diag[j],wa2[j]);
}
// beginning of the inner loop
L200:
// determine the levenberg-marquardt parameter
lmpar(n,fjac,ldfjac,ipvt,diag,qtf,delta,&par,wa1,wa2,
wa3,wa4);
// store the direction p and x + p. calculate the norm

of p
for (j=0; j<n; j++) {
wa1[j] = -wa1[j];
wa2[j] = x[j] + wa1[j];
wa3[j] = diag[j]*wa1[j];
}
pnorm = enorm(n,wa3);
// on the first iteration, adjust the initial step bound
if (iter == 1) delta = dmin1(delta,pnorm);
// evaluate the function at x + p and calculate its norm
iflag = 1;
fcn(m,n,wa2,wa4,&iflag);
*nfev += 1;
if (iflag < 0) goto L300;
fnorm1 = enorm(m,wa4);
#if BUG
printf("pnorm %.10e fnorm1 %.10e\n", pnorm, fnorm1);
#endif
// compute the scaled actual reduction.
actred = -one;
if ((p1*fnorm1) < fnorm) {
temp = fnorm1/fnorm;
actred = one - temp * temp;
}
// compute the scaled predicted reduction and the scaled

directional derivative
jj = 0;
for (j=0; j<n; j++) {
wa3[j] = zero;
l = ipvt[j];
temp = wa1[l];
ij = jj;
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for (i=0; i<=j; i++) {
wa3[i] += fjac[ij]*temp;
ij += 1; // fjac[i+m*j]
}
jj += m;
}
temp1 = enorm(n,wa3)/fnorm;
temp2 = (sqrt(par)*pnorm)/fnorm;
prered = temp1*temp1 + (temp2*temp2)/p5;
dirder = -(temp1*temp1 + temp2*temp2);
// compute the ratio of the actual to the predicted
reduction
ratio = zero;
if (prered != zero) ratio = actred/prered;
// update the step bound
if (ratio <= p25) {
if (actred >= zero) temp = p5;
else temp = p5*dirder/(dirder + p5*actred);
if (((p1*fnorm1) >= fnorm) || (temp < p1))
temp = p1;
delta = temp*dmin1(delta,pnorm/p1);
par = par/temp;
}
else {
if ((par == zero) || (ratio >= p75)) {
delta = pnorm/p5;
par = p5*par;
}
}
// test for successful iteration
if (ratio >= p0001)
{
// successful iteration. update x, fvec, and their

norms
for (j=0; j<n; j++) {
x[j] = wa2[j];
wa2[j] = diag[j]*x[j];
}
for (i=0; i<m; i++) fvec[i] = wa4[i];
xnorm = enorm(n,wa2);
fnorm = fnorm1;
iter += 1;
}
// tests for convergence
if ( (fabs(actred) <= ftol)
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&& (prered <= ftol)
&& (p5*ratio <= one) ) *info = 1;
if (delta <= xtol*xnorm) *info = 2;
if ( (fabs(actred) <= ftol)
&& (prered <= ftol)
&& (p5*ratio <= one)
&& ( *info == 2) ) *info = 3;
if (*info != 0) goto L300;
// tests for termination and stringent tolerances
if (*nfev >= maxfev) *info = 5;
if ( (fabs(actred) <= MACHEP)
&& (prered <= MACHEP)
&& (p5*ratio <= one) ) *info = 6;
if (delta <= MACHEP*xnorm) *info = 7;
if (gnorm <= MACHEP) *info = 8;
if (*info != 0) goto L300;
// end of the inner loop. repeat if iteration
unsuccessful
if (ratio < p0001) goto L200;
// end of the outer loop
goto L30;
L300:
// termination, either normal or user imposed
if (iflag < 0) *info = iflag;
iflag = 0;
if (nprint > 0) fcn(m,n,x,fvec,&iflag);
}

#define BUG 0
// function lmpar
lmpar(n,r,ldr,ipvt,diag,qtb,delta,par,x,sdiag,wa1,wa2)
int n,ldr,ipvt[];
double r[],diag[],qtb[],x[],sdiag[],wa1[],wa2[],delta,*par;
{
/* Given an m by n matrix a, an n by n nonsingular
* diagonal matrix d, an m-vector b, and a positive number
* delta, the problem is to determine a value for the
* parameter par such that if x solves the system
* a*x = b , sqrt(par)*d*x = 0 ,
* in the least squares sense, and dxnorm is the
* euclidean norm of d*x, then either par is zero and
* (dxnorm-delta) .le. 0.1*delta ,
* or par is positive and abs(dxnorm-delta) .le. 0.1*delta
* this function completes the solution of the problem
* if it is provided with the necessary information
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* from the qr factorization, with column pivoting, of a.
* that is, if a*p = q*r, where p is a permutation matrix,
* q has orthogonal columns, and r is an upper triangular
* matrix with diagonal elements of nonincreasing
* magnitude, then lmpar expects
* the full upper triangle of r, the permutation matrix p,
* and the first n components of (q transpose)*b. on
* output lmpar also provides an upper triangular matrix s
* such that
* t t t
* p *(a *a + par*d*d)*p = s *s .
* s is employed within lmpar and may be of separate
* interest. only a few iterations are generally needed
* for convergence of the algorithm. if, however, the
* limit of 10 iterations is reached, then the output
* par will contain the best value obtained so far.
* the function statement is
* function lmpar(n,r,ldr,ipvt,diag,qtb,delta,par,x, sdiag,
* wa1,wa2)
* where
* n is a positive integer input variable set to the
* order of r.
* r is an n by n array. on input the full upper
* triangle
* must contain the full upper triangle of the matrix r.
* on output the full upper triangle is unaltered, and the
* strict lower triangle contains the strict upper
* triangle (transposed) of the upper triangular matrix s.
* ldr is a positive integer input variable not less than n
* which specifies the leading dimension of the array r.
* ipvt is an integer input array of length n which
* defines the permutation matrix p such that a*p = q*r.
* column j of p is column ipvt(j) of the identity matrix.
* diag is an input array of length n which must contain the
* diagonal elements of the matrix d.
* qtb is an input array of length n which must contain
* the first n elements of the vector (q transpose)*b.
* delta is a positive input variable which specifies an
* upper bound on the euclidean norm of d*x.
* par is a nonnegative variable. on input par contains
* an initial estimate of the levenberg-marquardt
* parameter. on output par contains the final estimate.
* x is an output array of length n which contains the
* least squares solution of the system a*x = b,
* sqrt(par)*d*x = 0, for the output par.
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* sdiag is an output array of length n which contains
* the diagonal elements of the upper triangular matrix s.
* wa1 and wa2 are work arrays of length n. */
int i,iter,ij,jj,j,jm1,jp1,k,l,nsing;
double dxnorm,fp,gnorm,parc,parl,paru,sum,temp;
double enorm(), fabs(), dmax1(), dmin1(), sqrt();
static double zero=0.,one=1.,p1=0.1, p001=0.001;
extern double MACHEP, DWARF;
#if BUG
printf("lmpar\n");
#endif
// Compute and store in x the gauss-newton direction.
If the
// jacobian is rank-deficient, obtain a least-squares
solution
nsing = n;
jj = 0;
for (j=0; j<n; j++) {
wa1[j] = qtb[j];
if ((r[jj] == zero) && (nsing == n)) nsing = j;
if (nsing < n) wa1[j] = zero;
jj += ldr+1; // [j+ldr*j]
}
#if BUG
printf("nsing %d ", nsing);
#endif
if (nsing >= 1) {
for (k=0; k<nsing; k++) {
j = nsing - k - 1;
wa1[j] = wa1[j]/r[j+ldr*j];
temp = wa1[j];
jm1 = j - 1;
if (jm1 >= 0) {
ij = ldr * j;
for (i=0; i<=jm1; i++) {
wa1[i] -= r[ij]*temp;
ij += 1;
}
}
}
}

for (j=0; j<n; j++) {
l = ipvt[j];
x[l] = wa1[j];
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}
/* initialize the iteration counter.
evaluate the function at the origin, and test
for acceptance of the gauss-newton direction */
iter = 0;
for (j=0; j<n; j++) wa2[j] = diag[j]*x[j];
dxnorm = enorm(n,wa2);
fp = dxnorm - delta;
if (fp <= p1*delta) {
#if BUG
printf("going to L220\n");
#endif
goto L220;
}
/* if the jacobian is not rank deficient, the newton
step provides a lower bound, parl, for the zero of
the function. otherwise set this bound to zero. */
parl = zero;
if (nsing >= n) {
for (j=0; j<n; j++) {
l = ipvt[j];
wa1[j] = diag[l]*(wa2[l]/dxnorm);
}
jj = 0;
for (j=0; j<n; j++) {
sum = zero;
jm1 = j - 1;
if (jm1 >= 0) {
ij = jj;
for (i=0; i<=jm1; i++) {
sum += r[ij]*wa1[i];
ij += 1;
}
}
wa1[j] = (wa1[j] - sum)/r[j+ldr*j];
jj += ldr; // [i+ldr*j]
}
temp = enorm(n,wa1);
parl = ((fp/delta)/temp)/temp;
}
// calculate an upper bound, paru, for the zero of the
function
jj = 0;
for (j=0; j<n; j++) {
sum = zero;
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ij = jj;
for (i=0; i<=j; i++) {
sum += r[ij]*qtb[i];
ij += 1;
}
l = ipvt[j];
wa1[j] = sum/diag[l];
jj += ldr; // [i+ldr*j]
}
gnorm = enorm(n,wa1);
paru = gnorm/delta;
if (paru == zero) paru = DWARF/dmin1(delta,p1);
// if the input par lies outside of the interval
(parl,paru),
// set par to the closer endpoint
*par = dmax1( *par,parl);
*par = dmin1( *par,paru);
if (*par == zero) *par = gnorm/dxnorm;
#if BUG
printf("parl %.4e par %.4e paru %.4e\n", parl, *par,
paru);
#endif
// beginning of an iteration
L150:
iter += 1;
// evaluate the function at the current value of par
if (*par == zero) *par = dmax1(DWARF,p001*paru);
temp = sqrt( *par );
for (j=0; j<n; j++) wa1[j] = temp*diag[j];
qrsolv(n,r,ldr,ipvt,wa1,qtb,x,sdiag,wa2);
for (j=0; j<n; j++) wa2[j] = diag[j]*x[j];
dxnorm = enorm(n,wa2);
temp = fp;
fp = dxnorm - delta;
/* If the function is small enough, accept the current
value
of par. also test for the exceptional cases where
parl
is zero or the number of iterations has reached 10. */
if ( (fabs(fp) <= p1*delta)
|| ((parl == zero) && (fp <= temp) && (temp < zero))
|| (iter == 10) ) goto L220;
// compute the Newton correction
for (j=0; j<n; j++) {
l = ipvt[j];
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wa1[j] = diag[l]*(wa2[l]/dxnorm);
}
jj = 0;
for (j=0; j<n; j++) {
wa1[j] = wa1[j]/sdiag[j];
temp = wa1[j];
jp1 = j + 1;
if (jp1 < n) {
ij = jp1 + jj;
for (i=jp1; i<n; i++) {
wa1[i] -= r[ij]*temp;
ij += 1; // [i+ldr*j]
}
}
jj += ldr; // ldr*j
}
temp = enorm(n,wa1);
parc = ((fp/delta)/temp)/temp;
// depending on the sign of the function, update parl or
paru
if (fp > zero) parl = dmax1(parl, *par);
if (fp < zero) paru = dmin1(paru, *par);
// compute an improved estimate for par
*par = dmax1(parl, *par + parc);
// end of an iteration
goto L150;
L220:
// termination
if (iter == 0) *par = zero;
}

#define BUG 0
// function qrfac
qrfac(m,n,a,lda,pivot,ipvt,lipvt,rdiag,acnorm,wa)
int m,n,lda,lipvt,ipvt[],pivot;
double a[],rdiag[],acnorm[],wa[];
{
/* This function uses Householder transformations with
* column pivoting (optional) to compute a qr
* factorization of the m by n matrix a. that is, qrfac
* determines an orthogonal matrix q, a permutation matrix
* p, and an upper trapezoidal matrix r with diagonal
* elements of nonincreasing magnitude, such that
* a*p = q*r. the householder transformation for column k,
* k = 1,2,...,min(m,n), is of the form
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* t
* i - (1/u(k))*u*u
*
* where u has zeros in the first k-1 positions. the
* form of this transformation and the method of pivoting
* first appeared in the corresponding linpack function.
* the function statement is
* function qrfac(m,n,a,lda,pivot,ipvt,lipvt,rdiag, acnorm,wa)
* where
* m is a positive integer input variable set to the number
* of rows of a.
* n is a positive integer input variable set to the number
* of columns of a.
* a is an m by n array. on input a contains the matrix for
* which the qr factorization is to be computed. on output
* the strict upper trapezoidal part of a contains the
* strict upper trapezoidal part of r, and the lower
* trapezoidal part of a contains a factored form of q (the
* non-trivial elements of the u vectors described above).
* lda is a positive integer input variable not less than m
* which specifies the leading dimension of the array a.
* pivot is a logical input variable. if pivot is set true,
* then column pivoting is enforced. if pivot is set false,
* then no column pivoting is done.
* ipvt is an integer output array of length lipvt. ipvt
* defines the permutation matrix p such that a*p = q*r.
* column j of p is column ipvt(j) of the identity matrix.
* if pivot is false, ipvt is not referenced.
* lipvt is a positive integer input variable. if pivot
* is false, then lipvt may be as small as 1. if pivot is
* true, then
* lipvt must be at least n.
* rdiag is an output array of length n which contains the
* diagonal elements of r.
* acnorm is an output array of length n which contains the
* norms of the corresponding columns of the input matrix a.
* if this information is not needed, then acnorm can
* coincide with rdiag.
* wa is a work array of length n. if pivot is false, then wa
* can coincide with rdiag. */
int i,ij,jj,j,jp1,k,kmax,minmn;
double ajnorm,sum,temp,zero=0.,one=1.,p05=0.05;
extern double MACHEP;
double enorm(), dmax1(), sqrt();
// compute the initial column norms and initialize



October 10, 2014 11:10 Complexity and Control 9in x 6in b1966-ch12 page 513

12.5 Plain C-Code: Levenberg-Marquardt Optimizer 513

several arrays
ij = 0;
for (j=0; j<n; j++) {
acnorm[j] = enorm(m,&a[ij]);
rdiag[j] = acnorm[j];
wa[j] = rdiag[j];
if (pivot != 0) ipvt[j] = j;
ij += m; // m*j
}
#if BUG
printf("qrfac\n");
#endif
// reduce a to r with Householder transformations
minmn = min0(m,n);
for (j=0; j<minmn; j++)
{
if (pivot == 0) goto L40;
// bring the column of largest norm into the pivot
position
kmax = j;
for (k=j; k<n; k++) {
if (rdiag[k] > rdiag[kmax]) kmax = k;
}
if (kmax == j) goto L40;
ij = m * j;
jj = m * kmax;
for (i=0; i<m; i++) {
temp = a[ij]; // [i+m*j]
a[ij] = a[jj]; // [i+m*kmax]
a[jj] = temp;
ij += 1;
jj += 1;
}
rdiag[kmax] = rdiag[j];
wa[kmax] = wa[j];
k = ipvt[j];
ipvt[j] = ipvt[kmax];
ipvt[kmax] = k;
L40:
/* Compute the Householder transformation to reduce
the
j-th column of a to a multiple of the j-th unit
vector */
jj = j + m*j;
ajnorm = enorm(m-j,&a[jj]);
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if (ajnorm == zero) goto L100;
if (a[jj] < zero) ajnorm = -ajnorm;
ij = jj;
for (i=j; i<m; i++) {
a[ij] /= ajnorm;
ij += 1; // [i+m*j]
}
a[jj] += one;
// apply the transform. to the remaining columns and
update the norms
jp1 = j + 1;
if (jp1 < n) {
for (k=jp1; k<n; k++) {
sum = zero;
ij = j + m*k;
jj = j + m*j;
for (i=j; i<m; i++) {
sum += a[jj]*a[ij];
ij += 1; // [i+m*k]
jj += 1; // [i+m*j]
}
temp = sum/a[j+m*j];
ij = j + m*k;
jj = j + m*j;
for (i=j; i<m; i++) {
a[ij] -= temp*a[jj];
ij += 1; // [i+m*k]
jj += 1; // [i+m*j]
}
if ((pivot != 0) && (rdiag[k] != zero)) {
temp = a[j+m*k]/rdiag[k];
temp = dmax1(zero, one-temp*temp);
rdiag[k] *= sqrt(temp);
temp = rdiag[k]/wa[k];
if ((p05*temp*temp) <= MACHEP) {
rdiag[k] = enorm(m-j-1,&a[jp1+m*k]);
wa[k] = rdiag[k];
}
}
}
}
L100:
rdiag[j] = -ajnorm;
}
}
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#define BUG 0
// function qrsolv
qrsolv(n,r,ldr,ipvt,diag,qtb,x,sdiag,wa)
int n,ldr,ipvt[];
double r[],diag[],qtb[],x[],sdiag[],wa[];
{
/* Given an m by n matrix a, an n by n diagonal matrix d,
* and an m-vector b, the problem is to determine an x
* which solves the system:
* a*x = b , d*x = 0 ,
* in the least squares sense.
* This function completes the solution of the problem
* if it is provided with the necessary information
* from the qr factorization, with column pivoting, of a.
* that is, if a*p = q*r, where p is a permutation matrix,
* q has orthogonal columns, and r is an upper triangular
* matrix with diagonal elements of nonincreasing
* magnitude, then qrsolv expects the full upper triangle
* of r, the permutation matrix p, and the first n
* components of (q transpose)*b. the system
* a*x = b, d*x = 0, is then equivalent to
* t t
* r*z = q *b , p *d*p*z = 0 ,
* where x = p*z. if this system does not have full rank,
* then a least squares solution is obtained. on
* output qrsolv also provides an upper triangular matrix
* s such that
* t t t
* p *(a *a + d*d)*p = s *s .
* s is computed within qrsolv and may be of separate
* interest. the function statement is
* function qrsolv(n,r,ldr,ipvt,diag,qtb,x,sdiag,wa), where
* n is a positive integer input variable set to the
* order of r.
* r is an n by n array. on input the full upper
* triangle must contain the full upper triangle of the
* matrix r. on output the full upper triangle is unaltered,
* and the strict lower triangle contains the strict upper
* triangle (transposed) of the upper triangular matrix s.
* ldr is a positive integer input variable not less
* than n which specifies the leading dimension of the
* array r.
* ipvt is an integer input array of length n which defines
* the permutation matrix p such that a*p = q*r. column j
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* of p is column ipvt(j) of the identity matrix.
* diag is an input array of length n which must contain
* the diagonal elements of the matrix d.
* qtb is an input array of length n which must contain
* the first n elements of the vector (q transpose)*b.
* x is an output array of length n which contains the
* least squares solution of the system a*x = b, d*x = 0.
* sdiag is an output array of length n which contains
* the diagonal elements of the upper triangular matrix s.
* wa is a work array of length n. */
int i,ij,ik,kk,j,jp1,k,kp1,l,nsing;
double cos,cotan,qtbpj,sin,sum,tan,temp;
static double zero=0., p25=0.25, p5=0.5;
double fabs(), sqrt();
/* copy r and (q transpose)*b to preserve input and
initialize s.

in particular, save the diagonal elements of r in x.
*/
kk = 0;
for (j=0; j<n; j++) {
ij = kk;
ik = kk;
for (i=j; i<n; i++) {
r[ij] = r[ik];
ij += 1; // [i+ldr*j]
ik += ldr; // [j+ldr*i]
}
x[j] = r[kk];
wa[j] = qtb[j];
kk += ldr+1; // j+ldr*j
}
#if BUG
printf("qrsolv\n");
#endif
// eliminate the diagonal matrix d using a givens
rotation
for (j=0; j<n; j++)
{
/* prepare the row of d to be eliminated, locating

the
* diagonal element using p from the qr

factorization. */
l = ipvt[j];
if (diag[l] == zero) goto L90;
for (k=j; k<n; k++) sdiag[k] = zero;
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sdiag[j] = diag[l];
/* the transformations to eliminate the row of d

modify only a single element of (q transpose)*b
beyond the first n, which is initially zero. */

qtbpj = zero;
for (k=j; k<n; k++) {
/* determine a givens rotation which eliminates

the appropriate element in the current row of d. */
if (sdiag[k] == zero) continue;
kk = k + ldr * k;
if (fabs(r[kk]) < fabs(sdiag[k])) {
cotan = r[kk]/sdiag[k];
sin = p5/sqrt(p25+p25*cotan*cotan);
cos = sin*cotan;
}
else {
tan = sdiag[k]/r[kk];
cos = p5/sqrt(p25+p25*tan*tan);
sin = cos*tan;
}
/* compute the modified diagonal element of r

and the modified element of ((q transpose) *b,0). */
r[kk] = cos*r[kk] + sin*sdiag[k];
temp = cos*wa[k] + sin*qtbpj;
qtbpj = -sin*wa[k] + cos*qtbpj;
wa[k] = temp;
// accumulate the tranformation in the row
of s.
kp1 = k + 1;
if (n > kp1) {
ik = kk + 1;
for (i=kp1; i<n; i++) {
temp = cos*r[ik] + sin*sdiag[i];
sdiag[i] = -sin*r[ik] + cos*sdiag[i];
r[ik] = temp;
ik += 1; // [i+ldr*k]
}
}
}
L90:
/* store the diagonal element of s and restore

the corresponding diagonal element of r. */
kk = j + ldr*j;
sdiag[j] = r[kk];
r[kk] = x[j];
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}
/* solve the triangular system for z. if the system is

singular, then obtain a least squares solution. */
nsing = n;
for (j=0; j<n; j++) {
if ((sdiag[j] == zero) && (nsing == n)) nsing = j;
if (nsing < n) wa[j] = zero;
}
if (nsing < 1) goto L150;
for (k=0; k<nsing; k++) {
j = nsing - k - 1;
sum = zero;
jp1 = j + 1;
if (nsing > jp1) {
ij = jp1 + ldr * j;
for (i=jp1; i<nsing; i++) {
sum += r[ij]*wa[i];
ij += 1; // [i+ldr*j]
}
}
wa[j] = (wa[j] - sum)/sdiag[j];
}
L150:
// permute the components of z back to components of x
for (j=0; j<n; j++) {
l = ipvt[j];
x[l] = wa[j];
}
}

// function enorm
double enorm(n,x)
int n; double x[];
{
/* Given an n-vector x, this function calculates the
* Euclidean norm of x.
* The Euclidean norm is computed by accumulating the
* sum of squares in three different sums. the sums of
* squares for the small and large components are scaled
* so that no overflows occur. non-destructive underflows
* are permitted. underflows and overflows do not occur
* in the computation of the unscaled sum of squares for
* the intermediate components. the definitions of small,
* intermediate and large components depend on two
* constants, rdwarf and rgiant. the main restrictions
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* on these constants are that rdwarf**2 not underflow and
* rgiant**2 not overflow. the constants given here are
* suitable for every known computer. the function
* statement is
* double precision function enorm(n,x), where
* n is a positive integer input variable.
* x is an input array of length n. */
int i;
double agiant,floatn,s1,s2,s3,xabs,x1max,x3max,ans,temp;
double rdwarf=3.834e-20, rgiant=1.304e19,zero=0.,one=1.;
double fabs(), sqrt();
s1 = zero; s2 = zero; s3 = zero;
x1max = zero; x3max = zero;
floatn = n; agiant = rgiant/floatn;
for(i=0; i<n; i++)
{
xabs = fabs(x[i]);
if ((xabs > rdwarf) && (xabs < agiant)) {
// sum for intermediate components
s2 += xabs*xabs;
continue;
}
if (xabs > rdwarf)
{
// sum for large components
if (xabs > x1max) {
temp = x1max/xabs;
s1 = one + s1*temp*temp;
x1max = xabs;
}
else {
temp = xabs/x1max;
s1 += temp*temp;
}
continue;
}
// sum for small components
if (xabs > x3max) {
temp = x3max/xabs;
s3 = one + s3*temp*temp;
x3max = xabs;
}
else {
if (xabs != zero) {
temp = xabs/x3max;
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s3 += temp*temp;
}
}
}
// calculation of norm
if (s1 != zero) {
temp = s1 + (s2/x1max)/x1max;
ans = x1max*sqrt(temp);
return(ans);
}
if (s2 != zero) {
if (s2 >= x3max) temp = s2*(one+(x3max/s2)*
(x3max*s3));
else temp = x3max*((s2/x3max)+(x3max*s3));
ans = sqrt(temp);
}
else ans = x3max*sqrt(s3);
return(ans);
}

#define BUG 0
// function fdjac2
fdjac2(m,n,x,fvec,fjac,ldfjac,iflag,epsfcn,wa)
int m,n,ldfjac,*iflag;
double epsfcn,x[],fvec[],fjac[],wa[];
{
/* Computes a forward-difference approximation to the
* m by n jacobian matrix associated with a specified
* problem of m functions in n variables.
* the function statement is
* function fdjac2(fcn,m,n,x,fvec,fjac,ldfjac,iflag,epsfcn,wa)
* where
* fcn is the name of the user-supplied function which
* calculates the functions.
* the value of iflag should not be changed by fcn unless
* the user wants to terminate execution of fdjac2.
* in this case set iflag to a negative integer.
* m is a positive integer input variable set to the number
* of functions.
* n is a positive integer input variable set to the number
* of variables. n must not exceed m.
* x is an input array of length n.
* fvec is an input array of length m which must contain the
* functions evaluated at x.
* fjac is an output m by n array which contains the
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* approximation to the jacobian matrix evaluated at x.
* ldfjac is a positive integer input variable not less than m
* which specifies the leading dimension of the array fjac.
* iflag is an integer variable which can be used to terminate
* the execution of fdjac2. see description of fcn.
* epsfcn is an input variable used in determining a suitable
* step length for the forward-difference approximation.
* this approximation assumes that the relative errors in
* the functions are of the order of epsfcn. if epsfcn is
* less than the machine precision, it is assumed that the
* relative errors in the functions are of the order of the
* machine precision.
* wa is a work array of length m. */
int i,j,ij;
double eps,h,temp;
double fabs(), dmax1(), sqrt(), zero = 0.0;
extern double MACHEP;
temp = dmax1(epsfcn,MACHEP);
eps = sqrt(temp);
#if BUG
printf("fdjac2\n");
#endif
ij = 0;
for (j=0; j<n; j++) {
temp = x[j];
h = eps * fabs(temp);
if (h == zero) h = eps;
x[j] = temp + h;
fcn(m,n,x,wa,iflag);
if (*iflag < 0) return;
x[j] = temp;
for (i=0; i<m; i++) {
fjac[ij] = (wa[i] - fvec[i])/h;
ij += 1; // fjac[i+m*j]
}
}
#if BUG
pmat(m, n, fjac);
#endif
}

// other functions
double dmax1(a,b)
double a,b;
{
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if (a >= b) return(a);
else return(b);
}

double dmin1(a,b)
double a,b;
{
if (a <= b) return(a);
else return(b);
}

int min0(a,b)
int a,b;
{
if (a <= b) return(a);
else return(b);
}

int mod(k, m)
int k, m;
{ return(k % m); }

pmat(m, n, y)
int m,n;
double y[];
{
int i,j,k;
k = 0;
for (i=0; i<m; i++) {
for (j=0; j<n; j++) {
printf("%.5e ", y[k]);
k += 1;
}
printf("\n");
}
}

12.6 Free Basic Code: 2D Crowd Dynamics with 3000
Agents

Here we give a fast FB code using Chipmunk 2D Physics Engine and simulat-
ing 2D crowd dynamics (‘an obstacle course through force-fields’) with 3000
particle-type agents (see Figure 12.17).
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Fig. 12.17. Molecular 2D crowd dynamics with 3000 agents moving through
‘an obstacle course through force-fields’ using Chipmunk 2D Physics Engine.

’’
’’ Molecular Crowd Dynamics using Chipmunk 2D Physics Engine
’’

#include "chipmunk/chipmunk.bi"
#inclib "chipmunk"
#include "fbgfx.bi"
using fb

#define GRABABLE_MASK_BIT (1 shl 31)
#define NOT_GRABABLE_MASK (not GRABABLE_MASK_BIT)

’ define balls-agents’ parameters
const nball as integer = 3000
const radius as double = 9.0
const mass as double = 50.0

’ define screen’s parameters
const as integer xx = 1800
const as integer yy = 950
const as integer aa = 1400
const as integer bb = 30

’ Define type to make the program more readible
type PhysEngine
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’ This allocates/initializes all the main/global chipmunk
variables
declare constructor( byval Hz as integer )
declare destructor( ) ’ De-allocate/initialize all the
chipmunk stuff

declare sub simulate( ) ’ Starts the simulation ticks
declare sub stop( ) ’ Stop simulation ticks
declare function iskilled( ) as ubyte ’ checks if the
simulation stopped

declare sub getinput() ’ Input handling
declare sub update() ’ Update the screen

mousePoint as cpVect ’ Mouse position
mouseBody as cpBody ptr ’ A static body attached to the
mouse position

’ This connects a non-static body to the mouse temporarily
mouseJoint as cpConstraint ptr

space as cpSpace ptr ’ Simulation space
staticbody as cpBody ptr ’ Main static body (for attaching
any shape)

kill as unsigned integer ’ Flag to stop the physics engine
mutex as any ptr ’ Mutex for thread safety
physthread as any ptr ’ Thread to make physics simulation
consistent

deltaTime as cpFloat ’ dt used in cpSpaceStep
currentTime as double ’ Used to help smooth out the
simulation ’ Helps to know how many more cpSpaceStep calls
are needed accumulator as double
end type

’ Physics engine tick thread
sub physicstick( byval e as any ptr )
var physics = cptr( PhysEngine ptr, e )
do
mutexlock( physics->mutex )
var newTime = timer()
var ftime = newTime - physics->currentTime
physics->accumulator += ftime
while physics->accumulator >= physics->deltaTime
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cpSpaceStep( physics->space, physics->deltaTime )
physics->accumulator -= physics->deltaTime
wend
physics->currentTime = newTime
mutexunlock( physics->mutex )

’ Sleep a consistent amount of time to make a smooth
simulation sleep 1, 1 ’ without affecting
the frame-rate loop until physics->iskilled()
end sub

’ Main function
function main( byval argc as integer,

byval argv as zstring ptr ptr ) as integer
dim i as integer

const ff = 160
const fg = 100

dim cc as Integer = xx-10
dim c3c as Integer = xx-50
dim dd as Integer = yy-10
dim d3d as Integer = yy-50
dim ee as Integer = xx-300

dim gg as Integer = yy-ff
dim hh as Integer = yy\3
dim kk as Integer = 2*yy\3
dim ll as Integer = yy\2
dim mm as Integer = xx\2
dim nn as Integer = xx\3

’ Create a new instance of the physics engine (60 hertz)
dim instance as PhysEngine ptr = new PhysEngine( 60 )
’ Define ground
dim as cpShape ptr ground(0 to 3)
ground(0) = cpSegmentShapeNew( NULL, cpv( 10, 10 ),
cpv( cc, 10 ), 1 )
ground(1) = cpSegmentShapeNew( NULL, cpv( cc, 10 ),
cpv( cc, dd ), 1 )
ground(2) = cpSegmentShapeNew( NULL, cpv( cc, dd ),
cpv( 10, dd ), 1 )
ground(3) = cpSegmentShapeNew( NULL, cpv( 10, dd ),
cpv( 10, 10 ), 1 )
for i = 0 to 3
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ground(i)->e = 1.0
ground(i)->u = 10.0
ground(i)->layers = NOT_GRABABLE_MASK
cpSpaceAddStaticShape( instance->space, ground( i ) )

next i

dim as cpShape ptr Hline1 ’ Defining Horizontal
Obstacle 1
dim verts1(0 to 3) as cpVect =

{ cpv(0,10), cpv(ee,10), cpv(ee,0), cpv(ff,0) }
Hline1 = cpPolyShapeNew(instance->staticBody,

4, @verts1(0), cpv( ff, ff ))
Hline1->e = 1.0
Hline1->u = 5.0
Hline1->layers = NOT_GRABABLE_MASK
cpSpaceAddShape( instance->space, Hline1 )

dim as cpShape ptr Hline2 ’ Defining Horizontal
Obstacle 2
dim verts2(0 to 3) as cpVect =

{ cpv(0,10), cpv(ee,10), cpv(ee,0), cpv(ff,0) }
Hline2 = cpPolyShapeNew(instance->staticBody,

4, @verts2(0), cpv( ff, 2*ff ))
Hline2->e = 1.0
Hline2->u = 5.0
Hline2->layers = NOT_GRABABLE_MASK
cpSpaceAddShape( instance->space, Hline2 )

dim as cpShape ptr Hline3 ’ Defining Horizontal
Obstacle 3
dim verts3(0 to 3) as cpVect =

{ cpv(0,10), cpv(ee,10), cpv(ee,0), cpv(ff,0) }
Hline3 = cpPolyShapeNew(instance->staticBody,

4, @verts3(0), cpv( ff, 3*ff ))
Hline3->e = 1.0
Hline3->u = 5.0
Hline3->layers = NOT_GRABABLE_MASK
cpSpaceAddShape( instance->space, Hline3 )

dim as cpShape ptr Hline4 ’ Defining Horizontal
Obstacle 4
dim verts4(0 to 4) as cpVect =

{ cpv(0,10), cpv(ee,10), cpv(ee,0), cpv(ff,0) }
Hline4 = cpPolyShapeNew(instance->staticBody,

4, @verts4(0), cpv( ff, 4*ff ))
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Hline4->e = 1.0
Hline4->u = 5.0
Hline4->layers = NOT_GRABABLE_MASK
cpSpaceAddShape( instance->space, Hline4 )

dim as cpShape ptr Hline5 ’ Defining Horizontal
Obstacle 5
dim verts5(0 to 5) as cpVect =

{ cpv(0,10), cpv(ee,10), cpv(ee,0), cpv(ff,0) }
Hline5 = cpPolyShapeNew(instance->staticBody,

4, @verts5(0), cpv( ff, 5*ff ))
Hline5->e = 1.0
Hline5->u = 5.0
Hline5->layers = NOT_GRABABLE_MASK
cpSpaceAddShape( instance->space, Hline5 )

’ Defining Corner Circular Obstacles
dim as cpShape ptr shape1 =

cpCircleShapeNew( NULL, ff, cpv(0,0) )
cpSpaceAddStaticShape( instance->space, shape1 )

dim as cpShape ptr shape2 =
cpCircleShapeNew( NULL, ff, cpv(0,yy) )

cpSpaceAddStaticShape( instance->space, shape2 )

dim as cpShape ptr shape3 =
cpCircleShapeNew( NULL, ff, cpv(xx,0) )

cpSpaceAddStaticShape( instance->space, shape3 )

dim as cpShape ptr shape4 =
cpCircleShapeNew( NULL, ff, cpv(xx,yy) )

cpSpaceAddStaticShape( instance->space, shape4 )

’ Defining Side Circular Obstacles
dim as cpShape ptr shape5 =

cpCircleShapeNew( NULL, fg, cpv(0,ll) )
cpSpaceAddStaticShape( instance->space, shape5 )

dim as cpShape ptr shape6 =
cpCircleShapeNew( NULL, fg, cpv(xx,ll) )

cpSpaceAddStaticShape( instance->space, shape6 )

’ Defining Top Circular Obstacles
dim as cpShape ptr shape7 =

cpCircleShapeNew( NULL, fg, cpv(nn,0) )



October 10, 2014 11:10 Complexity and Control 9in x 6in b1966-ch12 page 528

528 12 Code Samples Used for Complexity and Control

cpSpaceAddStaticShape( instance->space, shape7 )
dim as cpShape ptr shape71 =

cpCircleShapeNew( NULL, fg, cpv(2*nn,0) )
cpSpaceAddStaticShape( instance->space, shape71 )

’ Defining Bottom Circular Obstacles
dim as cpShape ptr shape8 =

cpCircleShapeNew( NULL, fg, cpv(nn,yy) )
cpSpaceAddStaticShape( instance->space, shape8 )
dim as cpShape ptr shape81 =

cpCircleShapeNew( NULL, fg, cpv(2*nn,yy) )
cpSpaceAddStaticShape( instance->space, shape81 )

’ Defining middle small Circular Obstacles 9
dim as cpShape ptr shape90 =

cpCircleShapeNew( NULL, 40, cpv(350,400))
cpSpaceAddStaticShape( instance->space, shape90 )
dim as cpShape ptr shape91 =

cpCircleShapeNew( NULL, 40, cpv(350+300,400))
cpSpaceAddStaticShape( instance->space, shape91 )
dim as cpShape ptr shape92 =

cpCircleShapeNew( NULL, 40, cpv(350+600,400))
cpSpaceAddStaticShape( instance->space, shape92 )
dim as cpShape ptr shape93 =

cpCircleShapeNew( NULL, 40, cpv(350+900,400))
cpSpaceAddStaticShape( instance->space, shape93 )
dim as cpShape ptr shape94 =

cpCircleShapeNew( NULL, 40, cpv(350+1200,400))
cpSpaceAddStaticShape( instance->space, shape94 )

’ Defining middle small Circular Obstacles 10
dim as cpShape ptr shape100 =

cpCircleShapeNew( NULL, 40, cpv(350,565))
cpSpaceAddStaticShape( instance->space, shape100 )
dim as cpShape ptr shape101 =

cpCircleShapeNew( NULL, 40, cpv(350+300,565))
cpSpaceAddStaticShape( instance->space, shape101 )
dim as cpShape ptr shape102 =

cpCircleShapeNew( NULL, 40, cpv(350+600,565))
cpSpaceAddStaticShape( instance->space, shape102 )
dim as cpShape ptr shape103 =

cpCircleShapeNew( NULL, 40, cpv(350+900,565))
cpSpaceAddStaticShape( instance->space, shape103 )
dim as cpShape ptr shape104 =

cpCircleShapeNew( NULL, 40, cpv(350+1200,565))



October 10, 2014 11:10 Complexity and Control 9in x 6in b1966-ch12 page 529

12.6 Free Basic Code: 2D Crowd Dynamics with 3000 Agents 529

cpSpaceAddStaticShape( instance->space, shape104 )

’ Defining middle small Circular Obstacles 11
dim as cpShape ptr shape110 =

cpCircleShapeNew( NULL, 40, cpv(350,240))
cpSpaceAddStaticShape( instance->space, shape110 )
dim as cpShape ptr shape111 =

cpCircleShapeNew( NULL, 40, cpv(350+300,240))
cpSpaceAddStaticShape( instance->space, shape111 )
dim as cpShape ptr shape112 =

cpCircleShapeNew( NULL, 40, cpv(350+600,240))
cpSpaceAddStaticShape( instance->space, shape112 )
dim as cpShape ptr shape113 =

cpCircleShapeNew( NULL, 40, cpv(350+900,240))
cpSpaceAddStaticShape( instance->space, shape113 )
dim as cpShape ptr shape114 =

cpCircleShapeNew( NULL, 40, cpv(350+1200,240))
cpSpaceAddStaticShape( instance->space, shape114 )

’ Defining middle small Circular Obstacles 12
dim as cpShape ptr shape120 =

cpCircleShapeNew( NULL, 40, cpv(350,720))
cpSpaceAddStaticShape( instance->space, shape120 )
dim as cpShape ptr shape121 =

cpCircleShapeNew( NULL, 40, cpv(350+300,720))
cpSpaceAddStaticShape( instance->space, shape121 )
dim as cpShape ptr shape122 =

cpCircleShapeNew( NULL, 40, cpv(350+600,720))
cpSpaceAddStaticShape( instance->space, shape122 )
dim as cpShape ptr shape123 =

cpCircleShapeNew( NULL, 40, cpv(350+900,720))
cpSpaceAddStaticShape( instance->space, shape123 )
dim as cpShape ptr shape124 =

cpCircleShapeNew( NULL, 40, cpv(350+1200,720))
cpSpaceAddStaticShape( instance->space, shape124 )

’ Defining balls-agents
dim ballb(0 to nball - 1) as cpBody ptr,

balls(0 to nball - 1) as cpShape ptr
for i = 0 to nball - 1

ballb(i) = cpBodyNew(mass, cpMomentForCircle(mass,
0.0, radius, cpvzero))

ballb(i)->p = cpv( int(rnd * c3c) + 30, int(rnd * d3d) +
30)
cpSpaceAddBody( instance->space, ballb(i) )
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balls(i) = cpCircleShapeNew( ballb(i), radius, cpvzero )
balls(i)->e = 1.0
balls(i)->u = 1.0
cpSpaceAddShape( instance->space, balls(i) )

next i

instance->simulate( ) ’ Begin the simulation

do
instance->getinput()
mutexlock( instance->mutex )
screenlock()
cls

’ Draw horizontal lines
for i = 0 to 4

line ( ff, ff+i*ff )-step( ee, 10 ), rgb( 0, 0,
255 ), bf

next i

’ Draw corner circles
circle (0, 0), ff, rgb( 0, 0, 255 )
,,,,f
circle (xx, 0), ff, rgb( 0, 0, 255 )
,,,,f
circle (0, yy), ff, rgb( 0, 0, 255 )
,,,,f
circle (xx, yy), ff, rgb( 0, 0, 255 )
,,,,f

’ Draw side circles
circle (0, ll), fg, rgb( 0, 0, 255 ),,,,f
circle (xx, ll), fg, rgb( 0,0, 255 ),,,,f

’ Draw top and bottom circles
for i = 1 to 2

circle (nn*i, 0), fg, rgb( 0, 0, 255 ),,,,f
next i
for i = 1 to 2

circle (nn*i, yy), fg, rgb( 0, 0, 255 ),,,,f
next i

’ Draw middle small circles
for i = 0 to 4
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circle (350+i*300, 400), 40, rgb( 0, 0, 255 )
,,,,f

next i
for i = 0 to 4

circle (350+i*300, 565), 40, rgb( 0, 0, 255 )
,,,,f

next i
for i = 0 to 4

circle (350+i*300, 240), 40, rgb( 0, 0, 255 )
,,,,f

next i
for i = 0 to 4

circle (350+i*300, 720), 40, rgb( 0, 0, 255 )
,,,,f

next i

’ Draw balls-agents
for i = 0 to nball - 1

circle (ballb(i)->p.x, ballb(i)->p.y), radius,
rgb( 255, 255, 0 )
next i

screenunlock()
mutexunlock( instance->mutex )
instance->update()
sleep 1, 1
loop until instance->iskilled()

delete instance ’ Cleanup
return 0 ’ Nothing went wrong :)
end function ’ End main function

end main( __FB_ARGC__, __FB_ARGV__ ) ’ Main Entry Point

’’ ------------------------------ PhysEngine - Wrapper class

’ Constructor PhysEngine
constructor PhysEngine( byval Hz as integer )
screenres xx, yy, 32
screenset 0, 1
Window ( 0, yy ) - ( xx, 0 ) ’ Chipmunk flips the y
axis

’2D Force Field defined as a function of "timer"
dim ForceField as cpVect = cpv(100*(sin(cos(timer))),
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100*(cos(exp(-timer))))

cpInitChipmunk() ’ Initialize the Chipmunk
Engine

this.kill = 0
this.mutex = mutexcreate()

this.staticBody = cpBodyNew(INFINITY, INFINITY)
this.mouseBody = cpBodyNew(INFINITY, INFINITY)

this.space = cpSpaceNew()
this.space->iterations = 10
cpSpaceResizeStaticHash( this.space, bb, aa )

cpSpaceResizeActiveHash( this.space, bb, aa )
this.space->gravity = ForceField ’Force Field

WindowTitle "Molecular Crowd Dynamics: An Obstacle Course
through 2D Force Fields, with "& nball &" Agents,
using Chipmunk Phys.Eng.v" & cpVersion()

this.deltaTime = 1.0 / csng( Hz ) ’ 1/60 Hz
this.currentTime = timer
this.accumulator = 0.0
end constructor

’ Destructor PhysEngine
destructor PhysEngine( )
if this.iskilled() = 0 then

this.stop()
mutexdestroy this.mutex

end if
cpBodyFree( this.staticBody )
cpBodyFree( this.mouseBody )
cpSpaceFree( this.space )
end destructor

’ Other subs and funs
sub PhysEngine.simulate( )

this.physthread = threadcreate( @physicstick, @this )
end sub

sub PhysEngine.stop()
mutexlock( this.mutex )
this.kill = 1
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mutexunlock( this.mutex )
threadwait this.physthread
cpSpaceFreeChildren( this.space )

end sub

function PhysEngine.iskilled() as ubyte
mutexlock( this.mutex )
var status = this.kill
mutexunlock( this.mutex )
return status

end function

sub PhysEngine.getinput()
dim e as Event
dim killit as integer = 0

const yy = 950
if ScreenEvent( @e ) then
mutexlock( this.mutex )
select case e.type
case EVENT_MOUSE_EXIT
’ Remove any joint between the mouse and a shape if the mouse
if this.mouseJoint <> 0 then ’ leaves the window

cpSpaceRemoveConstraint( this.space, this.mouseJoint )
cpConstraintFree( this.mouseJoint )
this.mouseJoint = NULL

end if
case EVENT_MOUSE_MOVE
’ Update the mouse location
var newPoint = cpv( e.x, yy - e.y )
’this.mouseBody->v = cpvmult(cpvsub(newPoint, this.
mousePoint), 0.01)
this.mousePoint = newPoint
this.mouseBody->p = this.mousePoint
case EVENT_MOUSE_BUTTON_PRESS
if e.button = BUTTON_LEFT then

var shape = cpSpacePointQueryFirst(this.space,
mousePoint, _GRABABLE_MASK_BIT, 0 )
if shape <> 0 then

’ If you click on a shape, then attach it to the
mouse var body = shape->body
this.mouseJoint = cpPivotJointNew2( this.mouseBody,
body,_ cpvzero, cpBodyWorld2Local( body, this.
mousePoint ) )
this.mouseJoint->maxForce = INFINITY
this.mouseJoint->biasCoef = 1.0
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cpSpaceAddConstraint( this.space, this.mouseJoint )
end if

end if
case EVENT_MOUSE_BUTTON_RELEASE

if e.button = BUTTON_LEFT then
if this.mouseJoint <> 0 then
’ Release any attached shape from the mouse

cpSpaceRemoveConstraint( this.space, this.
mouseJoint )
cpConstraintFree( this.mouseJoint )
this.mouseJoint = NULL

end if
end if

case EVENT_KEY_RELEASE
’ Exit if the user presses Escape
if e.scancode = SC_ESCAPE then killit = 1

end select
mutexunlock( this.mutex )

end if
if killit = 1 then this.stop()
end sub

sub PhysEngine.update()
screencopy
flip

end sub
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BG79. Barrow-Green, J.: Poincaré and the Three Body Problem. American Math-

ematical Society, Providence, RI, (1997)
BG96. Baker, G.L., Gollub, J.P.: Chaotic Dynamics: An Introduction (2nd ed.)

Cambridge Univ. Press, Cambridge, (1996)
Bir912. Birkhoff, G.D.: A determinant formula for the number of ways of coloring

a map, Ann. of Math. 2(14), 42-46, (1912)
Bir75. Birman, J.: Braids, Links, and Mapping Class Groups. Ann. Math. Studies

82, Princeton Univ. Press, (1975)
BS73. Black, F., Scholes, M.: The Pricing of Options and Corporate Liabilities, J.

Pol. Econ. 81, 637-659, (1973)
BMZ05. Bloch, A.M., Marsden, J.E., Zenkov, D.V.: Nonholonomic Dynamics, No-

tices of the AMS, 52(3), 320-329, (2005)
BGL00. Boccaletti, S., Grebogi, C., Lai, Y.-C., Mancini, H., Maza, D.: The Control

of Chaos: Theory and Applications. Physics Reports 329, 103-197, (2000)
BC020. Boccaletti, S., Kurths, J., Osipov, G., Valladares, D.L., Zhou, C.S., The

synchronization of chaotic systems, Phys. Rep. 366(1-2), 1-101, (2002)
Bil65. Billingsley, P.: Ergodic theory and information, Wiley, New York, (1965)
Bla86. Blackman, S.S.: Multiple-Target Tracking with Radar Applications, Artech

House, Norwood, MA, (1986)
BDS12. Barri, A., Dooms, A., Schelkens, P.: The near shift-invariance of the dual-

tree complex wavelet transform revisited, J. Math. Anal. Appl. 389(2), 1303-
1314, (2012)

BLV01. Boffetta, G., Lacorata, G., Vulpiani, A.: Introduction to chaos and diffusion.
Chaos in geophysical flows, ISSAOS, (2001)

Boa88. Boashash, B.: Note on the Use of the Wigner Distribution for Time Fre-
quency Signal Analysis, IEEE Trans. Acoustics, Speech, Signal Proc. 36(9),
1518-1521, (1988)

BEW03. Bracken, A.J., Ellinas, D., Wood, J.G.: Group theory and quasiprobability
integrals of Wigner functions. J. Phys. A 36(20), L297-L305, (2003)

BPT97. Broeck, C. van, Parrondo, J.M.R., Toral, R., Kawai, R., Nonequilibrium
phase transitions induced by multiplicative noise, Phys. Rev. E 55(4), 4084-
4094, (1997)



October 10, 2014 11:10 Complexity and Control 9in x 6in b1966-ref page 538

538 References

Bae97. Baez, J.: An introduction to n−categories. 7th Conference on Category The-
ory and Computer Science, E. Moggi and G. Rosolini (eds), Lecture Notes in
Computer Science, Springer, Berlin, (1997)

BD98. Baez, J., Dolan, J.: Higher-Dimensional Algebra III: n−categories and the
Algebra of Opetopes. Adv. Math. 135(2), 145-206, (1998)

BN01. Bastian J., Nguyenkim J.: Dendritic Modulation of Burst-Like Firing in Sen-
sory Neurons. J. Neurophysiol. 85, 10-22, (2001)

BP82. Barone, A., Paterno, G.: Physics and Applications of the Josephson Effect.
Wiley, New York, (1982)

BO95. Basar, T., Olsder, G.J.: Dynamic Noncooperative Game Theory (2nd ed.),
Academic Press, New York, (1995)

B-KMR05. Balint-Kurti, G., Manby, F., Ren, Q., Artamonov, M., Ho, T.-S., Rabitz,
H.: Quantum control of molecular motion including electronic polarization
effects with a two-stage toolkit, J. Chem. Phys. 122, 084110, (2005)

BBS97. Baumert, T., Brixner, T., Seyfried, V., Strehle, M., Gerber, G.: Femtosec-
ond pulse shaping by an evolutionary algorithm with feedback, Appl. Phys.
B 65, 779-782, (1997)

BHD13. Beale, M.H., Hagan, M.T., Demuth, H.B.: Neural Network ToolboxTM,
Matlab� R2013a User’s Guide, (2013)

BK64. Bellman, R., Kalaba, R.: Selected papers on mathematical trends in control
theory. Dover, New York, (1964)

Ben67. Bénabou, J.: Introduction to bicategories. In: Lecture Notes in Mathematics.
Springer, New York, (1967)

BDR07. Beltrani, V., Dominy, J., Rabitz, H.A.: Laboratory observation of quantum
control level sets, Phys. Rev. A 74, 043414, (2007)

Bal87. Ballentine, L.E.: Foundations of Quantum Mechanics Since the Bell Inequal-
ities. Amer. J. Phys. 55, 785, (1987)

BBC93. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Woot-
ters, W.K.: Teleporting an Unknown Quantum State via Dual Classical and
Einstein-Podolsky-Rosen Channels. Phys. Rev. Lett. 70, 1895-1899, (1993)

BV93. Bernstein, E., Vazirani, U.: Quantum complexity theory. SIAM J. Comput.
26(5), 1411-1473, (1997)

Ben82. Benioff, P.A.: Quantum mechanical Hamiltonian models of Turing machines.
J. Stat. Phys. 29(3), 515-546, (1982)

BP92. Benvenuto, N., Piazza, F.: On the complex backpropagation algorithm. IEEE
Trans. Sig. Proc., 40(4), 967-969, (1992)

BS90. Butkovskiy, A., Samoilenko, Y.L.: Control of Quantum-Mechanical Processes
and Systems, Kluwer Academic, Dordrecht, (1990)

BP97. Badii, R. Politi, A: Complexity: Hierarchical Structures and Scaling in
Physics, Cambridge Univ. Press, Cambridge, (1997)

BDK03. Brixner, T., Damrauer, M.H., Kiefer, B., Gerber, G.: Liquid-phase adaptive
femtosecond quantum control: Removing intrinsic intensity dependencies, J.
Chem. Phys 118, 3692, (2003)

BCG02. Boscain, U., Charlot, G., Gauthier, J.P., Guerin, S., Jauslin, H.R.: Optimal
Control in laser-induced population transfer for two and three level quantum
systems, J. Math. Phys. 43, 2017, (2002)

Ble81. Bleecker, D.: Gauge Theory and Variational Principles, Addison-Wesley,
Reading, MA, (1981)

BT82. Bott, R., Tu, L.W.: Differential Forms in Algebraic Topology. Graduate Texts
in Mathematics, Springer, New York, (1982)



October 10, 2014 11:10 Complexity and Control 9in x 6in b1966-ref page 539

References 539

Bra01. Branke, J.: Evolutionary Optimization in Dynamic Environments. Kluwer,
Dordrecht, (2001)

Bro77. Broadbent, D.E.: Levels, hierarchies and the locus of control. Quarterly J.
Exper. Psychology, 29, 181-201, (1977)

BCG03. Berlekamp, E.R., Conway, J.H., Guy, R.K.: Winning Ways for Your Math-
ematical Plays, Vol. 3 (2nd ed.), A.K. Peters, MA, (2003)

BPM97. Bouwmeester, D., Pan, J.-W., Mattle, K., Eibl, M., Weinfurter, H.,
Zeilinger, A.: Experimental quantum teleportation, Nature 390, 575-579,
(1997)

Bro72. Brockett, R.W.: System theory on group manifolds and coset spaces, SIAM
J. Con. 10(2), 265-284, ( 1972)

Bro82. Brockett, R.W.: Control theory and singular Riemannian geometry. In New
Directions in Applied Mathematics, Springer-Verlag, (1982)

Bro01. Brockett, R.: New Issues in the Mathematics of Control. In Mathematics
Unlimited - 2001 and Beyond, Springer, New York, (2001)

Bro86. Brooks, R.A.: A robust layered control system for a mobile robot. IEEE
Trans. Rob. Aut. 2(1), 14-23, (1986)

BN09. Buluta, I., Nori, F.: Quantum Simulators, Science, 326(5949), 108-111, (2009)
BS93. Beck, C., Schlogl, F.: Thermodynamics of chaotic systems. Cambridge Univ.

Press, Cambridge, (1993)
Bou02. Bourbaki, N.: Elements of Mathematics, Lie Groups and Lie Algebras,

Springer, (2002)
BT93. Busemeyer, J.R., Townsend, J.T.: Decision field theory: A dynamic-cognitive

approach to decision making in an uncertain environment. Psych. Rev., 100,
432-459, (1993)

BD02. Busemeyer, J.R., Diederich, A.: Survey of decision field theory. Math. Soc.
Sci., 43, 345-370, (2002)

BY97. Bar-Yam, Y.: Dynamics of Complex Systems. Perseus Books, Reading, Mas,
(1997)

Cha98. deCharms, R.C.: Information coding in the cortex by independent or coor-
dinated populations, Proc. Natl. Acad. Sci USA 95, 15166-15168, (1998)

CZ00. deCharms, R.C., Zador, A.: Neural representation and the cortical code, Ann.
Rev. Neurosci. 23, 613-647, (2000)

Che46. Chevalley, C.: Theory of Lie groups, Princeton Univ. Press, Princeton,
(1946)

CD82. Choquet-Bruhat, Y., DeWitt-Morete, C.: Analysis, Manifolds and Physics
(2nd ed). North-Holland, Amsterdam, (1982)

CD00. Choquet-Bruhat, Y., DeWitt-Morete, C.: Analysis, Manifolds and Physics,
Part II, 92 Applications (rev. ed). North-Holland, Amsterdam, (2000)

Chu98. Chua, L.O.: CNN: A Paradigm for Complexity, World Scientific, Singapore,
(1998)

Chu95. Chua, L.O. (Ed): Special issue on ‘Nonlinear waves, patterns and spatio-
temporal chaos in dynamic arrays,’ IEEE. Trans. Circ. Syst. 42, 557, (1995)

CK08. Chitra, R.N., Kuriakose, V.C.: Phase synchronization in an array of driven
JJs, Chaos 18, 013125, (2008)

Che46. Chern, S.S.: Characteristic classes of Hermitian Manifolds, Ann. Math.
47(1), 85-121, (1946)

CDH98. Chow, E., Delsing, P., Haviland, D.B.: Length-Scale Dependence of the
Superconductor-to-Insulator Quantum Phase Transition in One Dimension,
Phys. Rev. Lett. 81, 204-207, (1998)



October 10, 2014 11:10 Complexity and Control 9in x 6in b1966-ref page 540

540 References

CT00b. Chen, X.X., Tian, G.: Ricci flow on Kähler-Einstein surfaces,
arXiv:math/0010008 [math.DG], (2000)

CMQ91. Coifman, R., Meyer, Y., Quake, S., Wickerhauser, M.V.: Wavelet Analy-
sis and Signal Processing, Proceedings, conference on Wavelets, Lowell, MA,
(1991)

Cox92. Cox, E.: Fuzzy Fundamentals, IEEE Spectrum, 58–61, (1992)
CH93. Cross, M.C., Hohenberg, P.C.: Pattern-Formation Outside of Equilibrium,

Rev. Mod. Phys. 65, 851, (1993)
CFP91. Crisanti, A., Falcioni, M., Paladin, G., Vulpiani, A.: Lagrangian Chaos:

Transport, Mixing, Diffusion in Fluids. Riv. Nuovo Cim. 14, 1, (1991)
CFP94. Crisanti, A., Falcioni, M., Paladin, G., Vulpiani, A.: Stochastic Resonance

in Deterministic Chaotic Systems. J. Phys. A 27, L597, (1994)
CG03. Carpenter, G.A., Grossberg, S.: Adaptive Resonance Theory. In M.A. Arbib

(ed.) The Handbook of Brain Theory, Neural Networks, Second Edition, MIT
Press, Cambridge, MA, 87-90, (2003)

CT-HR05. Cardoza, D., Trallero-Herrero, C., Langhojer, F., Rabitz, H.A.,
Weinacht, T.: Transformations to diagonal bases in closed loop quantum
learning control problems, J. Chem. Phys. 122, 124306, (2005)

CK90. Cash, J.R., Karp, A.H.: A variable order Runge-Kutta method for initial
value problems with rapidly varying right-hand sides, ACM Trans. Math.
Software 16, 201-222, (1990)

CCC08. Chen, Z., Cao, J., Cao, Y., Zhang, Y., Gu, F., Zhu, G., Hong, Z., Wang, B.,
Cichocki, A.: An empirical EEG analysis in brain death diagnosis for adults.
Cogn. Neurodyn. 2, 257-271, (2008)

CDK97. Chen, Y., Ding, M., Kelso, S.J.A.: Long memory processes (1/fα-type) in
human coordination, Phys. Rev. Lett. 79, 4501-504, (1997)

Cal83. Calabi, E.: Extremal Kähler metrics In: Seminar in Differential geometry
(ed. Yau) Princeton Univ. Press (1983)

CG83. Cohen, M.A., Grossberg, S.: Absolute stability of global pattern formation,
parallel memory storage by competitive neural networks. IEEE Trans. Syst.,
Man, Cybern., 13(5), 815-826, (1983)

CCN85. Conway, J.H., Curtis, R.T., Norton, S.P., Parker, R.A., Wilson, R.A.: Atlas
of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple
Groups. Clarendon Press, Oxford, (1985)

Chi79. Chirikov, B.V.: A universal instability of many-dimensional oscillator sys-
tems. Phys. Rep. 52, 264-379, (1979)

CL84. Cheng, T.-P., Li, L.-F.: Gauge Theory of Elementary Particle Physics.
Clarendon Press, Oxford, (1984)

CT07. Craddock, T.J.A., Tuszynski, J.A.: On the Role of the Microtubules in Cog-
nitive Brain Functions, NeuroQuant. 5(1), 32-57, (2007)

Col06. Collins, G.P.: Computing with Quantum Knots. Scientific American, April,
(2006)

CMN98. Carinena, J.F., Marmo, G., Nasarre, J.: The nonlinear superposition prin-
ciple and the Wei-Norman method, Int. J. Mod. Phys. A 13, 3601-3627, (1998)

Cao85. Cao, H.D.: Deformation of Kähler metrics to Kähler-Einstein metrics on
compact Kähler manifolds. Invent. Math. 81, 359-372, (1985)

CC99. Cao, H.D., Chow, B.: Recent developments on the Ricci flow, Bull. Amer.
Math. Soc. 36, 59-74, (1999)

Cho75. Choi, M.-D., Completely Positive Linear Maps on Complex Matrices, Lin.
Alg. Appl. 10, 285, (1975)



October 10, 2014 11:10 Complexity and Control 9in x 6in b1966-ref page 541

References 541

CL08. Chen, X.X., Li, H.: The Kähler-Ricci flow on Kähler manifolds with 2
traceless bisectional curvature operator, Chin. Ann. Math. 29B(5), 543-556,
(2008); preprint arXiv:math/0503645 [math.DG], (2005)

CT00. Chen, X.X., Tian, G.: Ricci flow on Kähler manifolds, arXiv:math/0010007
[math.DG], (2000)

CW95. Ciufolini, I., Wheeler, J.A.: Gravitation and Inertia, Princeton Series in
Physics, Princeton University Press, Princeton, New Jersey, (1995)

Coe03. Coecke, B.: The logic of entanglement. Research Report PRG-RR-03-12,
(2003); http://web.comlab.ox.ac.uk/oucl/publications/tr/rr-03-12.html

Coe05. Coecke, B.: Kindergarten quantum mechanics - lecture notes. In A. Khren-
nikov, ed. Quantum Theory: Reconsiderations of the Foundations III, pp 81-
98. AIP Press, (2005)

Coe06. Coecke, B.: Introducing categories to the practicing physicist. in: What is
Category Theory? Advanced Studies in Mathematics and Logic 30, Polimet-
rica Publishing, (2006)

CP09. Coecke, B., Paquette, E.O.: Categories for the practising physicist. in: New
Structures for Physics, B. Coecke (ed.), Springer Lecture Notes in Physics,
(2009)

Coe09. Coecke, B.: Quantum picturalism. Contem. Phys. 51, 59-83, (2009)
CU10. Chaudhury, K.N., Unser, M.: On the Shiftability of Dual-Tree Complex

Wavelet Transforms, IEEE Trans. Sig. Proc. 58, 221–232, (2010)
Cor84. Cornwell, J.F.: Group theory in Physics, Vol. II, Academic Press, London,

(1984)
CT65. Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of com-

plex Fourier series. Math. Comput. 19, 297–301, (1965)
CL71. Cooley, W.W., Lohnes, P.R.: Multivariate Data Analysis. Wiley, New York,

(1971)
Cus77. Cushing, J.: Integrodifferential Equations and Delay Models in Population

Dynamics, Springer, Berlin, (1977)
Con. Conway, J.H.: An enumeration of knots and links, Computational problems

in abstract algebra (ed. J.Leech), Pergamon Press, NY, (1969)
CRV92. Celeghini, E., Rasetti, M., Vitiello, G.: Quantum Dissipation. Annals Phys.,

215, 156, (1992)
CS00. Cristianini, N., Shawe-Taylor, J.: Support Vector Machines. Cambridge Univ.

Press, Cambridge, (2000)
CGP88. Cvitanovic, P., Gunaratne, G., Procaccia, I.: Topological, metric properties
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STZ93. M. V. Satarić, J. A., Tuszyńsky, and R. B. Zakula, “Kinklike excitations

as an energy-transfer mechanism in microtubules,” Phys. Rev. E, vol. 48,
pp. 589-597, 1993.

http://www.scholarpedia.org/article/FitzHugh-Nagumo_model
http://www.scholarpedia.org/article/Morris-Lecar_model


October 10, 2014 11:10 Complexity and Control 9in x 6in b1966-ref page 573

References 573

SI89. Sastri, S.S., Isidori, A.: Adaptive control of linearizable systems, IEEE Trans.
Aut. Con. 34(11), 1123-1131, (1989)

SJD94. Schiff, S.J., Jerger, K., Duong, D.H., Chang, T., Spano, M.L., Ditto, W.L.:
Controlling chaos in the brain. Nature, 370, 615-620, (1994)

SHR06. Shen, Z., Hsieh, M., Rabitz, H.: Quantum Optimal Control: Hessian anal-
ysis of the control landscape, J. Chem. Phys. 124, 204106, (2006)

SHF99. Siegelmann, H.T., Hur, A.B., Fishman, S.: Computational complexity for
continuous time dynamics, Phys. Rev. Lett. 83, 1463, (1999)

SGL00. Schirmer, S.G., Girardeau, M.D., Leahy, J.V.: Efficient algorithm for opti-
mal control of mixed-state quantum systems, Phys. Rev. A 61, 012010, (2000)

SMT99. Sola, I., Malinovsky, V.S., Tannor, D.J.: Optimal pulse sequences for pop-
ulation transfer in multilevel systems, Phys. Rev. A 60, 3081, (1999)

Sok08. Sokoloff, L.: The physiological and biochemical bases of functional brain
imaging. Cogn. Neurodyn. 2, 1-5, (2008)

Son12. Song, J., Weinkove, B.: Lecture notes on the Kähler-Ricci flow, preprint,
arXiv:1212.3653 [math.DG], (2012)

SR90. Shi, S., Rabitz, H.: Quantum mechanical optimal control of physical observ-
ables in microsystems, J. Chem. Phys. 92, 364, (1990)

Spi65. Spivak, M.: Calculus on Manifolds, A Modern Approach to Classical Theo-
rems of Advanced Calculus. HarperCollins Publishers, (1965)

Spi75. Spivak, M.: A comprehensive introduction to differential geometry, Vol.I-V,
Publish or Perish Inc., Berkeley, (1970-75)

SG01. Seidel, H., Griffin, M.J. Modelling the response of the spinal system to whole-
body vibration and repeated shock. Clin. Biomech. 16(1), S3-7, (2001)

SS09. Sarlette, A., Sepulchre, R.: Consensus optimization on manifolds, SIAM J.
Con. Opt. 48(1), 56-76, (2009)

Ste93. Stengel, R.: Optimal control and estimation. Dover, New York, (1993)
SBS10. Sarlette, A., Bonnabel, S., Sepulchre, R.: Coordinated motion design on Lie

groups, IEEE Trans. Aut. Con. 55(5), 1047-1058, (2010)
SJK. Sepulchre, R., JankoviC, M., Kokotovic, P.: Constructive Nonlinear Control.

Springer, (1997)
SPL05. Sepulchre, R., Paley, D., Leonard, N.: Stabilization of planar collective mo-

tion with all-to-all communication. IEEE Trans. Aut. Con. 52(5), 811-824,
(2007)

Shu06. Shukla, P.K., Eliasson, B.: Formation and Dynamics of Dark Solitons and
Vortices in Quantum Electron Plasmas, PRL 96, 245001 [4 pages] (2006)

Shu09. Shukla, P.K.: Plasma physics: A new spin on quantum plasmas, Nature
Physics 5, 92-93, (2009)

SE10. Shukla, P.K., Eliasson, B.: Nonlinear aspects of quantum plasma physics,
UFN, 180(1), 55-82, (2010)

SE11. Shukla, P.K., Eliasson, B.: Colloquium: Nonlinear collective interactions in
quantum plasmas with degenerate electron fluids, Rev. Mod. Phys. 83, 885-
906, (2011)

SE12. Shukla, P.K., Eliasson, B.: Novel attractive force between ions in quantum
plasmas, PRL 108, 165002 [5 pages] (2012)

SL00. Sprott, J.C., Linz, S.J.: Algebraically Simple Chaotic Flows. Int. J. Chaos
Theory, Appl., 5(2), 3-22, (2000)

Sm88. Strogatz, S.H., Mirollo, R.E.: Phase-locking and critical phenomena in lat-
tices of coupled nonlinear oscillators with random intrinsic frequencies. Phys-
ica D 31, 143, (1988)



October 10, 2014 11:10 Complexity and Control 9in x 6in b1966-ref page 574

574 References

Ste03. Steven, P.: Applying Elliott Wave Theory Profitably. Wiley, New York,
(2003)

SO00. Sweet D., Ott E.: Fractal dimension of higher-dimensional chaotic repellors.
Physica D 139(1), 1-27, (2000)

Spa82. Sparrow, C.: The Lorenz Equations: Bifurcations, Chaos and Strange At-
tractors. Springer, New York, (1982)

Spr93b. Sprott, J.C.: Strange Attractors: Creating Patterns in Chaos. M&T Books,
New York, (1993)

Str01. Strogatz, S.H.: Exploring complex networks. Nature, 410, 268, (2001)
Str00. Strogatz, S.H.: From Kuramoto to Crawford: exploring the onset of synchro-

nization in populations of coupled oscillators. Physica D, 143, 1-20, (2000)
Str94. Strogatz, S.: Nonlinear Dynamics and Chaos. Addison-Wesley, Reading, MA,

(1994)
SJ72. Sussmann, H., Jurdjevic, V.: Controllability of nonlinear systems J. Diff. 12,

95-116, (1972)
SB98. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT

Press, Cambridge, MA, (1998)
SMO02. Spooner, J.T., Maggiore, M., Ordonez, R., Passino, K.M.: Stable Adaptive

Control and Estimation for Nonlinear Systems: Neural and Fuzzy Approxi-
mator Techniques. Wiley, New York, (2002)

SYT02. Seliger, P., Young, S.C., Tsimring, L.S.: Plasticity and learning in a network
of coupled phase oscillators, Phys. Rev. E 65, 041906, (2002)

SOR11. Skardal, P.S., Ott, E., Restrepo, J.G.: Cluster synchrony in systems of
coupled phase oscillators with higher-order coupling, Phys. Rev. E 84, 036208,
(2011)

SCB08. So, P., Cotton, B.C., Barreto, E.: Synchronization in interacting popu-
lations of heterogeneous oscillators with time-varying coupling, Chaos 18,
037114, (2008)

Sod94. Soderkvist, J.: Micromachined gyroscopes. Sensors and Actuators A, 43,
65-71, (1994)

Sol81. Soliverez, C.E.: General Theory of Effective Hamiltonians, Phys. Rev. A 24,
4-9, (1981)

SK11. Shirdhonkar, M.S., Kokare, M.: Off-Line Handwritten Signature Identifica-
tion Using Rotated Complex Wavelet Filters, Int. J. Comp. Sci. Issu. 8(1),
1694-0814, (2011)

SB10. Solomon, C.J., Breckon, T.P.: Fundamentals of Digital Image Processing: A
Practical Approach with Examples in Matlab. Wiley-Blackwell, (2010)

SAM05. Strogatz, S.H., Abrams, D.M., McRobie, A., Eckhardt, B., Ott, E.: Theo-
retical mechanics: Crowd synchrony on the Millennium Bridge, Nature (Lon-
don) 438, 43, (2005)

Sar98. Sardanashvily, G.: Hamiltonian time-dependent mechanics. J. Math. Phys.
39, 2714, (1998)

Str66. Stratonovich, R.L.: A new representation for stochastic integrals and equa-
tions. SIAM J. Control 4, 362-371, (1966)

Sun82. Sundermeyer, K.: Constrained Dynamics (with Applications to Yang-Mills
Theory, General Relativity, Classical Spin, Dual String Model), Springer-
Verlag, Berlin, (1982)

Sus83. Sussmann, H.: Lie brackets and local controllability: A sufficient condition
for scalar-input systems, SIAM J. Cntr. Opt. 21, 686-713, (1983)



October 10, 2014 11:10 Complexity and Control 9in x 6in b1966-ref page 575

References 575

Sus87. Sussmann, H.: General theorem on local controllability. SIAM J. Cntr. Opt.
25, 158-194, (1987)

Sch85. Schwarz, K.W.: Three-dimensional vortex dynamics in superfluid 4He: Line-
line and line-boundary interactions. Phys. Rev. B 31, 5782-5803, (1985)

Sch88. Schwarz, K.W.: Three-dimensional vortex dynamics in superfluid 4He: Ho-
mogeneous superfluid turbulence. Phys. Rev. B 38, 2398-2417, (1988)

Swi75. Switzer, R.K.: Algebraic Topology - Homology and Homotopy. Series Clas-
sics in Mathematics, Springer, New York, (1975)

Sco75. Scott, A.C.: The electrophysics of a nerve fiber, Rev. Mod. Phys. 47, 487,
(1975)

SZ98. Stevens, C.F., Zador, A.M.: Input synchrony and the irregular firing of cor-
tical neurons, Nature Neurosci. 1, 210-217, (1998)

SK93. Softky, W.R., Koch, C.: The highly irregular firing of cortical cells is incon-
sistent with temporal integration of random EPSPs, J. Neurosci. 13, 334-350,
(1993)

SK88. Sugeno, M., Kang, G.T.: Structure identification of fuzzy model. Fuzzy Sets
and Systems, 28, 15-33, (1988)

TS85. Takagi, T., Sugeno, M., Fuzzy identification of systems and its applications to
modelling and control. IEEE Transactions on Systems, Man and Cybernetics,
20(2), 116-132, (1985)

TP01. Tabuada, P., Pappas, G.J.: Abstractions of Hamiltonian Control Systems.
Proceedings of the 40th IEEE Conf. Decis. Con., Orlando, FL, (2001)

TP01. Tanabe, S., Pakdaman, K.: Dynamics of moments of FitzHugh-Nagumo neu-
ronal models and stochastic bifurcations, Phys. Rev. E 63, 31911, (2001)

TR98. Tuckwell, H.C., Rodriguez, R.: Analytical and simulation results for stochas-
tic Fitzhugh-Nagumo neurons and neural networks, J. Comput. Neurosci. 5,
91-113, (1998)

Tek05. Tekkoyun, M.: On Para-Euler-Lagrange and Para-Hamiltonian Equations,
Phys. Lett. A 340(1-4), 7-11, (2005)

Tek09a. Tekkoyun, M.: Hamiltonian Mechanics on Quaternion Kähler Manifolds,
arXiv[math-ph]:0902.3727, (2009)

Tek09b. Tekkoyun, M.: Lagrangian Mechanics on Quaternion Kähler Manifolds,
arXiv[math-ph]:0902.4079, (2009)

Tur52. Turing, A.M.: The Chemical Basis of Morphogenesis, Phil. Trans. Roy. Soc.
London B 237, 37-72, (1952)

Tao06. Tao, T.: Nonlinear dispersive equations: local and global analysis, CBMS
regional series in mathematics, (2006)

Tha00. Thaller, B.: Visual Quantum Mechanics, Springer, New York, (2000)
Thu82. Thurston, W.: Three-dimensional manifolds, Kleinian groups and hyper-

bolic geometry, Bull. Amer. Math. Soc. 6, 357-381, (1982)
TKU02. Tsubota, M., Kasamatsu, K., Ueda, M.: Vortex lattice formation in a ro-

tating Bose-Einstein condensate, Phys. Rev. A 65, 023603, (2002)
Tou82. Tough, J.T.: Superfluid turbulence. Progress in Low Temperature Physics

Vol. 8 (Gorter, C. J. ed.). Amsterdam. North-Holland, 133-220, (1982)
Tho75. Thom, R.: Structural Stability and Morphogenesis. Addison-Wesley, Read-

ing, (1975)
TR85. Tannor, D.J., Rice, S.A.: Control of selectivity of chemical reaction via con-

trol of wavepacket evolution, J. Chem. Phys. 83, 5013, (1985)



October 10, 2014 11:10 Complexity and Control 9in x 6in b1966-ref page 576

576 References

TTH93. Tighe, T.S., Tuominen, M.T., Hergenrother, J.M., Tinknam, M.: Measure-
ments of charge soliton motion in two-dimensional arrays of ultrasmall JJs,
Phys. Rev. B 47, 1145-1148, (1993)

TC99. Teixeira, F.L., Chew, W.C.: Lattice electromagnetic theory from a topolog-
ical viewpoint, J. Math. Phys. 40, 169-187, (1999)

TW01. Tegmark, M., Wheeler, J.A.: 100 Years of the Quantum. Scientific American,
68-75, February, (2001)

TSS05. Trees, B.R., Saranathan, V., Stroud, D.: Synchronization in disordered
Josephson junction arrays: Small-world connections and the Kuramoto model.
Phys. Rev. E 71, 016215, (2005)

TS12. Transtruma, M.K., Sethna, J.P.: Improvements to the Levenberg-Marquardt
algorithm for nonlinear least-squares minimization, arXiv[physics.data-
an]1201.5885, (2012)

TVP99. Tabony, J., Vuillard, L., Papaseit, C.: Biological self-organisation, pattern
formation by way of microtubule reaction-diffusion processes. Adv. Complex
Syst. 2(3), 221-276, (1999)

Tab89. Tabor, M.: Chaos and integrability in nonlinear dynamics. John Wiley &
Sons, New York, (1989)

Thi05. Thiffeault, J-L.: Measuring topological chaos. Phys. Rev. Let. 94, 084502,
(2005)

Thi10. Thiffeault, J-L.: Braids of entangled particles trajectories. CHAOS 20,
017516, (2010)

Tia97. Tian, G.: Kähler-Einstein metrics with positive scalar curvature, Invent.
Math., 130 (1997), 1-39.

Tia12. Tian, G.: K-stability and Kähler-Einstein metrics, arXiv:1211.4669
Ti13. Tian, G.: Partial C0-estimates for Kähler-Einstein metrics, Commun. Math.

Stat., 1 (2013), 105-113.
TZ13. Tian, G., Zhang, Z.: Regularity of Kähler-Ricci flows on Fano manifolds,

arXiv:1310.5897 [math.DG], (2013)
TK93. Turner, R.H., Killian, L.M. Collective Behavior (4th ed.) Englewood Cliffs,

NJ, (1993)
TU00. Terng, C.L., Uhlenbeck, K.: Geometry of Solitons, Notices of AMS 47, 17-25,

(2000)
TFT98. Thurner, S., Feurstein, M.C., Teich, M.C.: Multiresolution wavelet analysis

of heartbeat intervals discriminates healthy patients from those with cardiac
pathology, Phys. Rev. Lett. 80, 1544-1547, (1998)

TP98. Tomlin, C., Pappas, G.J., Sastry, S.: Conflict resolution for air traffic man-
agement: A case study in multi-agent hybrid systems, IEEE Trans. Aut. Con.,
43, 509-521, (1998)

Tow79. Townsend, P.K.: Covariant quantization of antisymmetric tensor gauge
fields, Phys. Let. B, 88(1-2), 97-101, (1979)

Tho867. Thomson, W.H. (Lord Kelvin): On vortex motion, Trans. Roy. Soc. Edin.
25, 217-260, (1867)

TT93. Turcott, R.G., Teich, M.C.: Fractal Character of the Electrocardiogram: Dis-
tinguishing Heart-Failure and Normal Patients. Proc. SPIE 2036 (Chaos in
Biology and Medicine), 22-39, (1993)

TT96. Turcott, R.G., Teich, M.C.: Fractal Character of the Electrocardiogram: Dis-
tinguishing Heart-Failure and Normal Patients. Ann. Biomed. Eng. 24, 269-
293, (1996)



October 10, 2014 11:10 Complexity and Control 9in x 6in b1966-ref page 577

References 577

Ume93. Umezawa, H.: Advanced field theory: micro, macro and thermal concepts.
Am. Inst. Phys. New York, (1993)

UMS96. Umbanhowar, P.B., Melo, F., Swinney, H.L.: Localized excitations in a
vertically vibrated granular layer, Nature 382, 793-796, (1996)

UR99. Ursey, W.M., Reid, R.C.: Synchronous activity in the visual system, Annu.
Rev. Physiol. 61, 435-456, (1999)

Vap95. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York,
(1995)

GVW99. Goldenberg, L., Vaidman, L., Wiesner, S.: Quantum Gambling, Phys. Rev.
Lett. 82, 3356-3359, (1999)

Vap98. Vapnik, V.: Statistical Learning Theory. Wiley, New York, (1998)
Van771. Vandermonde, A.T.: Remarques sur les problèmes de situation, Mémoires
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